
Technical Report
Number 762

Computer Laboratory

UCAM-CL-TR-762
ISSN 1476-2986

Resource provisioning for
virtualized server applications

Evangelia Kalyvianaki

November 2009

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Evangelia Kalyvianaki

This technical report is based on a dissertation submitted
August 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Lucy Cavendish
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Resource Provisioning for Virtualized Server Applications

Evangelia Kalyvianaki
August 2008

Data centre virtualization creates an agile environment for application deployment. Ap-
plications run within one or more virtual machines and are hosted on various servers
throughout the data centre. One key mechanism provided by modern virtualization
technologies is dynamic resource allocation. Using this technique virtual machines can
be allocated resources as required and therefore, occupy only the necessary resources for
their hosted application. In fact, two of the main challenges faced by contemporary data
centres, server consolidation and power saving, can be tackled efficiently by capitalising
on this mechanism.

This dissertation shows how to dynamically adjust the CPU resources allocated to vir-
tualized server applications in the presence of workload fluctuations. In particular it
employs a reactive approach to resource provisioning based on feedback control and
introduces five novel controllers. All five controllers adjust the application allocations
based on past utilisation observations.

A subset of the controllers integrate the Kalman filtering technique to track the utilisa-
tions and based on which they predict the allocations for the next interval. This ap-
proach is particularly attractive for the resource management problem since the Kalman
filter uses the evolution of past utilisations to adjust the allocations. In addition, the ad-
aptive Kalman controller which adjusts its parameters online and dynamically estimates
the utilisation dynamics, is able to differentiate substantial workload changes from small
fluctuations for unknown workloads.

In addition, this dissertation captures, models, and builds controllers based on the CPU
resource coupling of application components. In the case of multi-tier applications,
these controllers collectively allocate resources to all application tiers detecting satura-
tion points across components. This results in them acting faster to workload variations
than their single-tier counterparts.

All controllers are evaluated against the Rubis benchmark application deployed on a
prototype virtualized cluster built for this purpose.

3

Acknowledgements

I would like to thank my two supervisors, Steven Hand and Ian Pratt. I am very grateful
to Steven Hand for his invaluable suggestions on this dissertation and helping me reach
the finish line. As his student I have learnt so many things in such a short time. I am also
grateful to Ian Pratt for his advice and help for most of my studies. My gratitude goes to
Jon Crowcroft for his comments and enthusiasm on my research over the years. Simil-
arly, to Rebecca Isaacs for an enjoyable summer during my internship at MSR Cambridge
and for her advice from then on. I am grateful to Derek McAuley and Intel Research at
Cambridge for funding the first years of my studies and to Derek McAuley for interesting
discussions. I would like to thank my examiners Ian Leslie and Ian Wakeman for a very
interesting discussion and suggestions.

I would like to thank Themistoklis Charalambous for fruitful discussions on control
theory. In particular, for his contribution on forming array M and on the MIMO-UB
stability proof in Section 5.2.1. Themis also introduced me to the Kalman filters and our
discussions led to the design of the related controllers.

I am indebted to Steven Hand, Rebecca Isaacs, Jon Crowcroft, Alex Ho, Themistoklis
Charalambous, Eleni Kalyvianaki, Faye Chalcraft, and Giuliano Casale for reading and
commenting on drafts of this dissertation.

I would like to thank my friends and best office mates I could have ever asked for, the
Volta Lounge residents: Anil Madhavapeddy, Christian Kreibich, Alex Ho and honor-
ary member Euan Harris, for sharing so many good moments. To my colleagues over
the years Eric (Yu-En) Lu, Evangelos Kotsovinos, Andrew Warfield, Cali Policroniades,
Christopher Clark, Grzegorz Milos, Wenjun Hu, and Michael Fetterman for their com-
pany and fruitful research discussions.

A big thank you to: Stelios, Zacharias, Irine, Katerina, Athina, Ria, Nastja, Christos,
Stavros, Lene, Chae-Young, and Peri for their friendship which they “practise” either in
person or remotely.

For partially funding my studies, I would like to thank: Lucy Cavendish College, Schilizzi
Foundation, Cambridge Philosophical Society, Board of Graduate Studies and Jeff Buzen
and the Computer Measurement Group.

I am immensely grateful to my family, George, Niki, and Eleni for their support which
they demonstrate in so many ways. Thank you!

Θα ήθελα να ευχαριστήσω θερμά την οικογένεια μου Γιώργο, Νίκη, και Ελένη για την
συνεχή υποστηριξή τους, την οποία δείχνουν με τόσους τρόπους. Σας ευχαριστώ!

4

To my parents George and Niki,

my sister Eleni,

and my grandmother Georgia.

Στους γονείς μου Γιώργο, Νίκη,

στην αδερφή μου Ελένη,

και στην γιαγιά μου Γεωργία.

5

Contents

Summary 3

Acknowledgements 4

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Motivation . 15
1.2 Context . 18
1.3 Contributions . 19
1.4 Outline . 19
1.5 Publications/Awards . 20

2 Background and Motivation 23
2.1 Server Applications . 24

2.1.1 Architecture . 24
2.1.2 Performance Related Terminology 26
2.1.3 Workload Characteristics . 26
2.1.4 Summary . 27

2.2 Resource Management . 27
2.2.1 Deployment . 28
2.2.2 Dedicated Hosting . 29
2.2.3 Shared Hosting . 30
2.2.4 Discussion . 31
2.2.5 Summary . 32

2.3 Server Virtualization . 33
2.3.1 Virtualization . 33
2.3.2 New Generation Data Centres . 36
2.3.3 Operations . 37
2.3.4 Challenges . 39
2.3.5 Commercial Solutions . 41
2.3.6 Summary . 42

2.4 Feedback Control . 42

7

8 Contents

2.4.1 Overview . 42
2.4.2 Feedback Control for Resource Management 44

2.5 Summary . 45

3 Architecture and Tools 47
3.1 Deployment Model . 47
3.2 Evaluation Platform . 48
3.3 Architecture . 49
3.4 Rubis Benchmark . 52

3.4.1 Introduction . 52
3.4.2 Tier-Layout and Request Execution Path 53
3.4.3 Client Emulator . 54
3.4.4 Summary . 54

3.5 Xen . 55
3.6 CPU Sharing and Management in Xen 56
3.7 Summary . 57

4 System Identification 59
4.1 Introduction . 59
4.2 QoS Target . 60
4.3 Control Signals . 64
4.4 System Modelling . 64
4.5 Inter-Component Resource Coupling . 67
4.6 Summary . 70

5 Controllers Design 71
5.1 Single-Tier Controllers . 71

5.1.1 SISO Usage-Based Controller . 73
5.1.2 The Kalman Filter . 76
5.1.3 Kalman Filter Formulation . 77
5.1.4 Kalman Basic Controller . 79
5.1.5 Discussion . 83

5.2 Multi-Tier Controllers . 83
5.2.1 MIMO Usage-Based Controller 84
5.2.2 Process Noise Covariance Controller 88
5.2.3 Summary . 89

5.3 Process Noise Adaptation . 90
5.4 Discussion . 91

6 Experimental Evaluation 93
6.1 Preliminaries . 93
6.2 Usage Based Controllers . 97

6.2.1 SISO-UB . 97
6.2.2 MIMO-UB . 103
6.2.3 SISO-UB and MIMO-UB Comparison 107
6.2.4 Discussion . 113

6.3 Kalman Based Controllers . 113

Contents 9

6.3.1 KBC . 115
6.3.2 PNCC . 125
6.3.3 KBC and PNCC Comparison . 127
6.3.4 APNCC . 130
6.3.5 PNCC and APNCC Comparison 132

6.4 Discussion . 136

7 Related Work 139
7.1 Control-Based Resource Provisioning . 139

7.1.1 Single-Tier Feedback Control . 139
7.1.2 Multi-Tier Feedback Control . 141
7.1.3 Predictive Control . 142

7.2 Filtering methods . 143
7.3 Machine Learning in Resource Management 143
7.4 Resource Management in Grids . 144

8 Conclusion 145
8.1 Summary . 145
8.2 Future Work . 147
8.3 Conclusions . 149

A Steady-State Kalman Gain 151

Bibliography 153

List of Figures

2.1 Modern Enterprise Web Server . 25
2.2 Operating System Server Virtualization 34
2.3 New Generation of Data Centres . 36
2.4 Resource Management in Server Consolidation 40
2.5 Feedback Control System . 43

3.1 Virtualized Prototype and Control System 49
3.2 Resource Management Architecture . 50
3.3 Controller and Measurement Intervals 51
3.4 Rubis Tier Layout . 53
3.5 Xen Architecture Layout . 55

4.1 System Identification . 61
4.2 System Identification (Response Distributions Summary) 62
4.3 System Identification (Tomcat CPU usage Distributions Summary) 63
4.4 Extra Allocation . 66
4.5 Inter-Component Resource Coupling Example 68
4.6 Inter-Component Resource Coupling Experiments 69

5.1 SISO-UB Controller Layout . 74
5.2 Kalman Filter Overview . 78
5.3 KBC Controller Layout . 80
5.4 MIMO-UB Controller Layout . 84
5.5 PNCC Controller Layout . 88
5.6 APNCC Controller Layout . 90

6.1 SISO-UB Controllers Performance . 99
6.2 SISO-UB Allocations for Stable Input. 103
6.3 MIMO-UB Controller Performance . 104
6.4 MIMO-UB Allocations for Stable Input. 107
6.5 SISO-UB and MIMO-UB Comparison 108
6.6 SISO-UB and MIMO-UB Comparison for Different Parameter Values . . 110
6.7 Values of Utilisation Variances and Covariances 115
6.8 KBC Performance for Stable Workload and Q0 Values 116
6.9 KBC Performance for Stable Workload and Q0/400 Values 118
6.10 KBC Performance for Stable Workload and Different Q Values 119

11

12 List of Figures

6.11 KBC Allocations for Variable Workload and two Q Values 121
6.12 KBC Server Performance for Variable Workload and two Q Values 122
6.13 KBC Performance for Workload Increases and Different Q Values 124
6.14 Settling Times and Overshoot for KBC Controllers. 124
6.15 PNCC Performance for Variable Workload and Q0/400 Values 126
6.16 PNCC Allocations for Stable Input. 127
6.17 PNCC and KBC Comparison for E1(600,200) and Different x 128
6.18 PNCC and KBC Comparison for E2 Experiments and Different x 129
6.19 APNCC Performance for Variable Workload and Q/40 Values 131
6.20 APNCC Gains for Variable Workload and Q/40 Values. 132
6.21 PNCC and APNCC Comparison for E0(40,80,120) Experiments 133
6.22 PNCC and APNCC Comparison for E2 experiments 134
6.23 APNCC and PNCC Kalman Gains for x = 8 and x = 400 135

List of Tables

4.1 Parameters of the Models of Components’ Utilisation Coupling. 70

5.1 Controllers Notation. 72
5.2 Classification of Controllers . 92

6.1 Performance Evaluation Experiments . 94
6.2 Performance Evaluation Metrics . 95
6.3 Input Parameter Configuration for SISO-UB Controllers 101
6.4 Input Parameter Configuration for MIMO-UB Controller 106
6.5 Experiment Description for the MIMO-UB and SISO-UB Comparison. . 110
6.6 Additional Resources Comparison . 111
6.7 UB Controllers Comparison, SISO-UB λ = 0.45, MIMO-UB λ = 0.12 . . 112
6.8 UB Controllers Comparison, SISO-UB λ = 0.75, MIMO-UB λ = 0.2 . . . 112
6.9 KBC Server Performance for Stable Workload and Different x. 119

13

1
Introduction

This dissertation is concerned with the dynamic CPU resource provisioning of multi-tier
virtualized server applications. It introduces feedback controllers that adapt resources
based on recent observed utilisations, allowing server applications to meet their perform-
ance goals in the presence of workload fluctuations, while at the same time, resources
become available for other applications to use.

This chapter starts by motivating the current problem (Section 1.1). It then provides
the context of the work (Section 1.2) and enumerates the contributions in Section 1.3.
Finally, it presents the structure for the rest of this dissertation in Section 1.4 and lists
the publications/awards related to this work in Section 1.5.

1.1 Motivation

Resource Provisioning in Data Centres

Modern omnipresent server applications are complex programs that provide diverse ser-
vices to thousands of users. Their demanding operations require a powerful deployment
base delivered from contemporary data centres which are equipped with hundreds or
thousands of commodity machine units. Machine resource provisioning is central for
each application to comply with its service level agreements and to efficiently administer
data centre machines hosting multiple applications.

Commonly, due to the low costs of commodity hardware, a set of machines is dedicated
to a single application. The size of the machine group is subject to the resource demands

15

16 Introduction

of the application. A common practice is to over-provision applications to cope with
their most demanding workloads, however rare they may be. Other factors include load
balancing and machine failure recovering. This resource management scheme, that hosts
applications in non-overlapping sets of machines, provides performance isolation and
performance guarantees for the applications.

Machine dedication in conjunction with over-provisioning has caused several implica-
tions stemming from the ever increasing data centre size required to host more applica-
tions that grow in size and complexity. Several reports show that machines are under-
utilised most of the time. As quoted in [ser08] “According to Tony Iams, Senior Analyst
at D.H. Brown Associates Inc. in Port Chester, NY, servers typically run at 15-20% of
their capacity”. In addition, an IDC 2007 report [IDC07] shows that current enterprises
have already spent $140B (capital expenses) more than needed to satisfy their current
needs1. Furthermore, as the number of applications grows, the power and cooling costs
for the servers increase too. IDC [SE07] reports that for every $1.00 (capital expenses)
spent on new server equipment, another $0.50 is spent on power and cooling expenses.

To alleviate these issues data centres need fewer but more utilised machines. A practice
known as server consolidation increases machine utilisation by running multiple applic-
ations on the same host machine. However, in the case of applications with strict per-
formance requirements, resource sharing is efficient only when mechanisms that ensure
performance isolation among the running applications exist. Without these means, server
consolidation becomes inadequate to support application performance constraints.

Data centre machines usually run general purpose operating systems which lack these
mechanisms. Recognising consolidation’s potential, some have proposed prototype
frameworks that support resource sharing for clusters running general purpose operating
systems (e.g. [USR02,US04]). Despite these attempts, server consolidation in traditional
data centres is not fully exploited or operates with non-strict application performance
isolation.

Resource Management in the Virtual World

Recent advances in virtualizing commodity hardware (e.g. [BDF+03]) are changing the
structure of the data centre. A physical machine is transformed into one or more virtual
ones, each capable of hosting a different application. Each virtual machine is subject
to management operations, such as, creation, deletion, migration between physical ma-
chines, as well as run-time resource allocation. Virtualizing the data centre enables re-
source sharing in arbitrary combinations between applications and physical servers and
is now regarded as the key technology towards achieving efficient server consolidation.
This is because virtualization: (a) is transparent to the applications since the underly-
ing virtual machine monitor handles resource multiplexing; (b) provides almost native
performance to virtual machines; (c) ensures performance isolation since each virtual
machine is guaranteed resources; and (d) is widely applicable, as virtual machines run
heterogeneous operating systems.

1Information taken from [vmw08a].

1.1 Motivation 17

To capitalise on this technology, it is essential to adaptively provision virtualized ap-
plications with resources according to their workload demands. It is known that server
applications operate under fluctuating workloads [AJ00, Vir02] that cause diverse and
changing resource demands to their components. Adjustable resource allocations that
follow the workload fluctuations for virtualized application components are important
to create a high performance server consolidation environment. In this case, each applic-
ation is provisioned resources as required, and therefore, there could be free resources
for other applications to use. Efficiently managing virtual machine resources is also im-
portant for other high level management tasks in addition to server consolidation, such
as power management and load balancing.

Current commercial resource management tools provide only partial solutions to this
problem. VMware [vmw08b] and XenSource [xen08a], the two leading vendors in
modern virtualization technologies, offer tools such as, the VMware Distributed Re-
source Scheduler (DRS) [vmw08d] and XenCenter [Xen08b] respectively, which provide
resource management capabilities by forcing virtual machines allocations to be within
certain limits. However, these tools do not address setting these limits with appropriate
values for each application, or how they should be changed in case, for example, an
application requires more resources than the upper limit. This dissertation address these
limitations and builds resource management tools that dynamically adapt CPU alloca-
tions to workload fluctuations.

Resource Management and Feedback Control

There are two general approaches to dynamic resource allocation: proactive and react-
ive. Proactive allocation is based on resource utilisation predictions. In this case, util-
isation patterns are learnt in advance and allocations are accordingly adjusted prior to
any change. When predictions are accurate, this scheme provides very good performance
(e.g. [XZSW06]). However, it fails when predictions are not possible (for instance when
deploying a new application, or when the utilisations do not follow any predictable pat-
terns) and/or are inaccurate (for instance in the case of unprecedented sharp changes in
workloads, e.g. flash crowds, or in the case of very noisy workloads). In addition, util-
isation predictions are expensive since they require workload data analysis and storage
space.

With reactive schemes, allocation is adjusted on-demand based solely on recent beha-
viour; a change is detected and the allocations are adjusted accordingly. Reactive alloc-
ation is computationally attractive since it does not require extensive knowledge of the
application’s resource demands. However, its efficiency in practice depends on its ability
to detect changes and adjust allocations in response to them in a timely fashion while
smoothly handling transient fluctuations.

This dissertation employs a reactive allocation approach. It uses feedback control-based
allocation that embodies the essence of reactive allocation. In parallel with this disser-
tation others have also approached the problem of resource provisioning of virtualized
server applications using feedback control (e.g. [PSZ+07, WLZ+07]). This dissertation
builds a set of controllers that provide a range of solutions for virtualized server applica-

18 Introduction

tions, with diverse workload characteristics. In particular, it uses a filtering technique to
deal with noisy utilisations and address the characteristics of multi-tier applications.

1.2 Context

This dissertation presents basic tools for the realisation of resource management in vir-
tualized applications. This section discusses the context of the current work with respect
to the ways it can be used for data center management.

The current controllers allocate CPU resources to virtualized server components using an
adaptive upper-bound threshold approach; every time interval they adjust the maximum
CPU allocation each virtualized component uses based on the application performance
model. The purpose of this approach is to constanlty provision each virtualized applic-
ation with resources to meet its performance goals. Additionally, this mechanism makes
the available free resources easy to calculate and further use for co-hosting more applic-
ations subject to the total machine physical capacity.

Examples below indicate they way the current controllers can be used in conjunction
with other tools for further data center management. These examples do not provide an
exhaustive list of solutions, rather, they are used to further motivate the current control-
lers.

Assume a multi-step control architecture for data center management: at first, low-level
CPU allocation controllers like the ones of this dissertation adjusts the allocations of the
application according to its requirements and, later, high-level tools dictate the applic-
ation placement on machines for resource sharing.2 The controllers of this dissertation
implement the low-level resource allocations and are built with characteristics towards
facilitating the high-level tools. For instance, certain configurations in the case of the
Kalman controllers presented later in Chapter 5 enable smooth CPU allocations despite
transient fluctuations of the workload. This creates stable allocations when the work-
load is relatively stable with small fluctuations, as well as important allocation changes to
happen only when the workload substantially changes. In this way, the high-level tools
could operate under a relatively confident manner that the allocation of a running ap-
plication changes only when absolutely necessary and, therefore, they could make plans
to shuffle applications among machines based on the available free resources.3

In addition to smooth allocations, the controllers of this dissertation can also operate in
a different way and allocate CPU resources in a way that reflects every resource require-
ment by the application at every time interval. In this case, it is hard for the management
tools to plan for QoS driven applications placement since the available free resource

2Such schemes have been proposed, for example, Padala et al. present a two-layered controller to reg-
ulate the CPU resources of two instances of two-tier virtualized servers co-hosted on two physical
servers [PSZ+07]. The first layer controller regulates the resources for each server tier and the second
layer controller adjusts the allocations in cases of contention.

3There are of course several additional issues to be considered by the high-level tools, such as, resource
contention, migration costs, etc.

1.3 Contributions 19

could change frequently based on momentarily fluctuations. However, there are applic-
ations that could still benefit for this type of allocations. Consider for instance a CPU-
intensive scientific application with no strict QoS requirements. This kind of applications
can use CPU resources as they become available and can be used for example in cases
where the free resources are not enough to host another application with QoS require-
ments. In fact, the high-level tools can switch between the different low-level tools based
on the availability of resources and application requirements.

The controllers of this dissertation focuss on providing adaptive CPU allocations for
virtualized server applications. This is an integral part to data center management and
can be used as standalone tools or in conjunction with high-level tools for data center
management.

1.3 Contributions

The work of this dissertation is evaluated based on a prototype virtualized cluster created
for this purpose. The cluster consists of four server machines. Three of them run the Xen
virtualization technology and host the multi-tier Rice University Bidding System (Rubis)
benchmark [ACC+02]. Rubis is a prototype auction web site server application which
models eBay.com and implements the basic operations of such a site: selling, browsing,
and bidding. The fourth machine runs the Rubis Client Emulator that emulates clients
generating different types of requests to the application. The cluster uses a prototype im-
plementation of the resource management control software that monitors components’
utilisations and remotely controls their allocations.

In particular, this dissertation makes the following contributions:

1. a general architecture for resource management of virtualized server applications;

2. a system identification analysis for multi-tier virtualized server applications. Ana-
lysis shows that there exists (a) a correlation between the resource allocation and
the CPU utilisations and (b) a resource coupling between components;

3. a black-box approach to modelling resource coupling of virtualized server com-
ponents;

4. the integration of the Kalman filtering technique to feedback resource provisioning;

5. controllers that manage the CPU allocations of individual virtual machines; and

6. controllers that collectively manage the CPU allocations of server components.

1.4 Outline

Chapter 2 further motivates the work of this dissertation and describes the background.
In particular it elaborates on four areas that constitute the current context, namely server
applications, resource management, server virtualization and feedback control.

20 Introduction

Chapter 3 describes the resource management architecture and all the components of the
evaluation platform. It describes the prototype cluster, the Xen virtualization technology,
and discusses resource management related issues. Finally, it presents the multi-tier Rubis
benchmark server application.

Chapter 4 discusses the system identification analysis upon which all controllers are
based. The application is subjected to different workload conditions and three system
models are defined. The additive and the multiplicative model describe the relation-
ship between allocation and utilisation for maintaining good server performance. The
resource coupling between components’ utilisation is also identified. These models are
used to build the controllers in the next chapter.

Chapter 5 presents five novel CPU allocation controllers. Two controllers, the SISO-UB
and the KBC, allocate CPU resource to application tiers individually. The KBC controller
in particular is based on the Kalman filtering technique. The other two controllers, the
MIMO-UB and the PNCC, allocate resources to all application components collectively.
The MIMO-UB controller is based on the resource coupling model identified in the pre-
vious chapter. The PNCC controller extends the KBC design to multiple components.
Finally, the APNCC controller extends the PNCC to adapt its parameters online.

Evaluation results on all controllers are shown in Chapter 6. Evaluation is performed on
a per-controller basis and comparisons between controllers are also given.

Chapter 7 covers recent related work in the area of resource provisioning for single-tier
and multi-tier virtualized server applications. In addition, it discusses filtering methods
used for resource allocation in resource sharing environments. Furthermore, it presents
other methods for performance modelling based on machine learning. Finally, it intro-
duces concepts of resource management in the Grid environment.

Finally, Chapter 8 provides a summary, conclusions, and discusses future work.

1.5 Publications/Awards

The following publications/awards are based on this dissertation:

1. Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Self-
Adaptive and Self-Configured CPU Resource Provisioning for Virtualized Servers
Using Kalman Filters. To appear in the 6th International Conference on Autonomic
Computing and Communications (ICAC), 2009.

This paper presents the Kalman filtering based controllers and extensive evaluation.

2. Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Applying
Kalman Filters to Dynamic Resource Provisioning of Virtualized Server Applica-
tions. In Proceedings of the 3rd International Workshop on Feedback Control
Implementation and Design in Computing Systems and Networks (FeBID 2008),
2008.

1.5 Publications/Awards 21

This paper presented the Kalman filtering based controllers and preliminary evalu-
ation.

3. Evangelia Kalyvianaki and Themistoklis Charalambous. On Dynamic Resource
Provisioning for Consolidated Servers in Virtualized Data Centres, In Proceedings
of the 8th International Workshop on Performability Modelling of Computer and
Communication Systems, (PMCCS-8), 2007.

This paper presented initial system identification analysis, the MIMO-UB, the KBC
controllers and some preliminary results.

4. The proposal of this dissertation titled “Tuning Server Applications with OS Virtu-
alization Support using Feedback Control” is awarded the Computer Measurement
Group (CMG) Graduate Fellowship 2006. The proposal also suggested the migra-
tion of server components in shared clusters to maximise total resource utilisation.

5. Parts of this dissertation will be published on The Computer Measurement Group
(CMG) Journal.

2
Background and Motivation

During the past three decades, server applications have evolved with respect to both in-
creasing complexity and resource requirements. At the same time, the hardware and
software technological developments of the underlying hosting platforms have led to dif-
ferent resource management capabilities. This chapter follows the parallel development
of server applications and hardware/software advances from single machine hosting to
modern virtualized data centres. Modern server virtualization provides the mechanisms
for secure and adaptive resource sharing of server applications while guaranteeing per-
formance. However, as server applications exhibit diverse resource demands, efficient
use of these mechanisms for high performance server virtualization imposes unique chal-
lenges.

This chapter presents the background and motivation of this dissertation and identi-
fies resource management as an integral part of high performance server virtualization.
Here, a control-based direction towards adaptive resource provisioning is employed; its
motivation is given towards the end of this chapter.

In particular, this chapter is divided into four sections, which correspond to the four
different dimensions that shape this dissertation:

1. Server Applications. Section 2.1 provides an overview of the architecture and
workload characteristics of server applications.

2. Resource Management. Section 2.2 identifies the significance of resource manage-
ment in making efficient use of data centres while achieving individual application
performance goals. This section also describes the two models of hosting, dedic-
ated and shared, and presents their advantages and limitations in traditional data
centres.

23

24 Background and Motivation

3. Server Virtualization. The next section presents virtualization and its use in modern
data centres. This section shows that virtualization provides the means for efficient
resource sharing.

4. Control Theory. Finally, Section 2.4 motivates the use of control theory to obtain
efficient resource management.

2.1 Server Applications

Server applications are programs designed to provide access to data and/or execute oper-
ations on it on behalf of a group of users, referred to as clients. They are widely deployed
— for instance, Netcraft reports almost 65 million active web sites [net08], hosted by a
huge number of web servers — and perform a variety of diverse operations. There are
many types of servers, e.g. e-commerce, video-streaming, database, corporate-specific,
file-system servers, and so on.

One of the most common server applications is a web server. A simple web server stores
and provides access to information in the form of static HTML web pages. The server
application executes on one or more machines and clients access its resources using the
Internet. Using the server’s publicly-known URL and the HTTP protocol, a client re-
quests some content. Upon receiving the request, the server retrieves the requested doc-
ument from its storage and sends back the response to the initiating client. Today’s web
servers are very complex applications that provide a wide range of services ranging from
retrieving static HTML pages to uploading data or accessing multimedia content.

The rest of this section presents the characteristics of server applications related to the
context of this dissertation and defines the terminology. It starts by describing the multi-
tier server architecture (Section 2.1.1), proceeds with the metrics used to characterise
performance (Section 2.1.2), and concludes by presenting the unique workload charac-
teristics of web server applications (Section 2.1.3).

2.1.1 Architecture

One of the main characteristics of server applications’ internal architecture is their mod-
ularity. The multi-tier model has become the predominant way of building server applic-
ations, where the application logic implementation is distributed into several different
parts, referred to as tiers or components. A web server application typically employs the
three-tier model which consists of (a) the client-side user interface tier, used by the cli-
ents to issue requests to the server, (b) the application logic tier responsible for the server
specific functions such as manipulating user data and executing actions upon them on
behalf of the clients, and (c) the storage tier which handles the server data. The last two
tiers are also referred to as the server-side tiers.

As server applications grow in complexity by offering different services to clients and
grow in size by serving thousands of requests per second, the diversity and the number
of server-side tiers also increases. For example, the application-logic tier can be further

2.1 Server Applications 25

Proxy

Web Servers

Load

Balancer

Application

Servers

Database

 Servers

client

client

client

Server-Side Tiers hosted in Data Centre

Figure 2.1: Modern Enterprise Web Server. Today’s server applications employ a multi-
tier architecture to cope with the complexity of their operations. Server com-
ponents span across multiple tiers and components within each tier could
also be replicated to face demanding workloads. Server-side tiers are hosted
within a data centre.

divided into a web server tier1 handling the HTTP incoming requests and one or more
application-logic tiers, each one implementing different server functions (Figure 2.1). In
this case, the server application is composed from one or multiple components.

In this dissertation, the application tier layout is defined as the group of server-side tiers
that the server application is composed from. The exact tier layout is the result of a
wide spectrum of decisions that span the application’s lifetime. For instance, there is
a large range of application and database servers, e.g. JBoss [jbo08], Jonas [jon08],
MySQL [mys08], and Oracle [ora08], from which the application architect can choose
based on both the application’s and the servers’ specifications. Each decision might result
in a different tier layout. Also, the server administrator can choose to replicate tiers either
in advance or at run-time in order to accommodate changing workloads. The process
of defining the application tier layout has been the subject of research for many years
and continues to face new challenges as server applications and available middle-ware
platforms become more complex. This dissertation focuses on applications with static
tier layout.

1Note that the term web server is used in two ways: (a) to denote the type of the application itself and
(b) to identify the first tier of the application.

26 Background and Motivation

2.1.2 Performance Related Terminology

Server application load is usually described and measured by its workload. The work-
load is a set of parameters and their values that describe various client and application
operations over a time interval. For example, in an online bookstore server, two work-
load parameters could be: (a) the number of buy requests for travel books per day, and
(b) the web server’s CPU utilisation per minute.

The term workload is also loosely used to characterise the overall behaviour of the client-
server application. When the client requests do not significantly vary in frequency, the
server is said to be under a stable workload. In contrast, when the request types or
frequency change over time, the server is under a dynamic or variable workload. In
addition, the term workload demand refers to the resource requirements needed to serve
client requests.

The performance of a server application is usually measured by its throughput — the
number of completed requests per time interval — and/or request response times — the
time elapsed between the arrival of a client request to the server and the server’s response
to the client. It is important to sustain the performance of commercial web servers
at certain levels. In fact, there are dedicated contracts, called Service Level Agreements
(SLAs) [MA98, page 101] that denote the Quality of Service (QoS) level the server should
provide to its clients. The QoS is expressed by a number of performance/workload
metrics and their appropriate values. For example, in a news web server, a clause in
an SLA could be: 90% of requests accessing news in the economic sector must have
response times less than 2 seconds. SLAs are used in commercial hosting providers to
charge server applications for their resources. A SLA violation indicates that the required
resource provisioning is not adequate and that further capacity planning is needed.

2.1.3 Workload Characteristics

Web server applications exhibit highly dynamic, diverse and bursty workloads. The ar-
rival rate and the types of server requests vary in time causing variable resource demands
at the server tiers. In particular special patterns on the requests’ arrival rates have been
observed during the same hours every day. For example, the load to a news web server
increases during the afternoon hours. Additionally, extreme server loads also occur in the
form of flash crowds where an unusual increase in the number of clients causes unique
resource demands at the server side. Some flash crowds have been observed because of
very popular, known in advance events, such as the World Cup [AJ00] or the Olympic
Games [ICDD00, page 17]. There are also cases, however, where unprecedented events,
such as the September 11th attack in the United States or a very important political
event, might cause extreme loads to a news web server. Even under “normal” condi-
tions, web servers have bursty resource utilisations across their tiers due to the variation
of the operations over incoming requests.

2.2 Resource Management 27

2.1.4 Summary

This section introduced the architecture and the workload characteristics of web server
applications. Although emphasis so far has been given to the description of web servers,
this dissertation is concerned with the resource management of any server application
with similar architecture and workload characteristics. The next section discusses the
importance of resource management for efficient server applications and provides an
overview of two different approaches developed over the years.

2.2 Resource Management

Resource management or resource provisioning is one of the most important tasks in
server application deployment and management. It involves the suitable provisioning
of resources — CPU time, memory, disk, and network bandwidth — in order for the
application to meet its QoS performance goals in the presence of time-varying workloads.
Unless properly provisioned to capture changing resource demands, applications fail or
delay serving incoming requests with consequences such as loss of revenue (e.g. in e-
commerce applications). The following are examples of resource provisioning questions:

1. What is the change in CPU demand as the number of clients in a video distribution
server increases by 20% within a period of 5 minutes?

2. What are the memory resources required across all server tiers for all the requests
that involve purchasing an item in an e-commerce server?

Planning for the server resources involves two main steps: workload characterisation
and system modelling. The types and characteristics of incoming requests are analysed
and modelled in workload characterisation, while in system modelling, a model of the
application’s resource demands is derived. Specifically, system modelling is a process that
associates the server’s operations (e.g. request serving path) and physical characteristics
(e.g. number of CPUs) with various performance metrics (e.g. throughput, response
time). The modelling method, the level of model detail, and the performance metrics all
depend upon the specific resource provisioning task in question and the available tools.
Together, system modelling and workload characterisation provide a thorough view of
the server’s performance and identify the major contributing blocks.

Resource provisioning is achieved either in a proactive and/or in a reactive manner. In
proactive allocation, all resources are provided in advance of workload changes, which
can be predicted with workload forecasting. Future request demands are predicted and,
using the system model, the corresponding resource demands are estimated. Resource
provisioning is traditionally linked to the proactive way of resource estimation. However,
since accurate workload forecasting is not always possible, resource corrective actions
can also happen in a reactive manner. In reactive allocation, resources are updated after
a workload change is detected. In either case, the aim is to update the resource allocations
in a timely fashion by minimising the deviation from the QoS performance goals during
and after the workload change.

28 Background and Motivation

In addition, resource provisioning highly depends on the server’s workload. If the work-
load’s resource demands exhibit small variation, the allocation of resources is a simple
process. Using either off-line or on-line monitoring methods, utilisations are measured,
and the relating allocations are set to appropriate levels. In a dynamic workload case,
however, utilisations fluctuate over time, making any static allocation scheme inadequate.

The rest of this section starts by presenting the deployment infrastructure of modern
server applications (Section 2.2.1). It then overviews the two main resource alloca-
tion schemes adopted throughout the years — dedicated hosting (Section 2.2.2) and
shared hosting (Section 2.2.3) — and concludes by evaluating the efficacy of the differ-
ent schemes across several dimensions (Section 2.2.4).

2.2.1 Deployment

In the 1970s, server applications were run on mainframes. They were deployed by large
institutions, corporations, and governments, which could afford the expensive main-
frames.

In the mid 1980s, there was a shift in both the types of deployed server applications and
the available hardware solutions for hosting them. With hardware becoming less ex-
pensive, personal computers (PCs) appeared. A few years later, small server applications
(when compared to the ones running in large corporations) appeared on the Internet.
In addition, many small to medium enterprises deployed server applications to manage
their own data.

Today, hardware has become increasingly less expensive and more powerful. In particu-
lar, commodity server machines can be used as a group to host server applications with
diverse and demanding computational and storage demands. With this cheap solution at
hand, enterprises adjust to computational demands simply by adding or removing server
machines as needed.

Modern server applications are complex programs that offer diverse functionality and
span across several machines (Figure 2.1). To address management and power consid-
erations, server machines are usually deployed in dedicated places equipped with special
cooling facilities, called data centres. In addition to corporate owned data centres, there
are specialised companies that provide hardware resources under payment for third-
party server deployment, called hosting platforms. A hosting platform can be used in
many different ways: (a) by a company that lacks the resources to deploy and manage
its own data centre, (b) by a company that wishes to outsource some of its services, (c)
for handling excess service requests, and (d) for taking advantage of the geographical
position of the platform (e.g. placing the server application closer to the end users).

This section continues by describing the different deployment models used to host server
applications in modern data centres. There are two different types of hosting platforms:
(a) dedicated hosting, where disjoint sets of machines are dedicated to different applic-
ations, and (b) shared hosting where applications are co-located on the same machines
and share physical resources.

2.2 Resource Management 29

2.2.2 Dedicated Hosting

As mentioned earlier, server applications exhibit highly unpredictable and bursty work-
loads. To avoid dropping incoming requests, a simple approach to resource provisioning
has been adopted the last few years: a dedicated group of server machines is used for
each application with enough total resource capacity to accommodate requests at peak
rates. Consider, for example, a news web server in which incoming requests have been
shown to follow the time-of-day effect: between 5pm and 11pm, the number of incom-
ing requests is almost twice as much as during the rest of the day. Performance analysis
has shown that during peak times the application requires two server machines, while
the rest of the day one will suffice. To provide 24 hour availability over the server’s con-
tent, the simplest approach to resource management is to always dedicate two machines.
Although some of the resources are under-utilised most of the time, this approach is easy
to implement and relatively cost effective because of the low price of commodity server
machines. This is a very simple and administratively efficient approach. If the current
server machine group is still not adequate to serve incoming requests, another machine
is manually added to the group, or an upgrade is scheduled.

Dedicated hosting is widely adopted because of its simplicity and the low cost of com-
modity machines. Nevertheless, it constitutes a rigid deployment model, and to this end
additional techniques such as: load balancing in replicated tiers; admission control in
overload conditions; and dynamic server distribution have been developed to enhance its
performance and flexibility. These are further discussed below.

Servers at any tier might be replicated to cope with increasing number of requests (Fig-
ure 2.1). Load balancing techniques have been developed to efficiently distribute the
load of incoming requests among the available machines for low response times and high
throughput. A number of different dispatching techniques in cluster-based server applica-
tions have been developed to route requests to the front-tiers [ZBCS99,ASDZ00,CRS99]
or back-end database servers [PAB+98,ACZ03].

Despite over-provisioning, there may be cases where the request load exceeds the overall
server capacity and where augmenting the computing power is not feasible. In order to
sustain a manageable resource utilisation of the server resources and achieve controlled
performance, admission control techniques have been developed to manage the rate and
the type of incoming requests that eventually get forwarded to the server, e.g. [ENTZ04,
KMN04,WC03]

In general, large data centres offer dedicated hosting to applications from many different
parties. To ensure efficient and flexible use of machines, there are different techniques
that dynamically allocate servers amongst the running applications. For example, the
Océano prototype [AFF+01] aims to re-distribute servers among multiple web applica-
tions based on their resource usage and their SLAs. It collects information regarding the
servers’ load and predefined performance metrics, such as overall response time. Based
on this information and when a SLA is violated, corrective actions (e.g. re-distribution of
servers) are performed. Cluster-On-Demand (COD) [MIG+02] further extends Océano’s
concept to provide a pool of servers for applications with diverse software requirements.
An application runs on an isolated group of servers, called a virtual cluster, with com-

30 Background and Motivation

plete control over its resources. Resources are managed locally within each virtual cluster,
while nodes’ allocations and releases are performed in coordination with the central
COD management.

Summary

To summarise, dedicated hosting provides performance guarantees among the running
applications. A high QoS is achieved, as each application is provisioned with resources
to meet its resource close to its peak loads. In addition, isolation among applications is
sustained since a hardware or a software failure, or a denial-of-service attack on any of
the running applications does not affect the rest, since they use disjoint sets of servers.

However, there are two main drawbacks to dedicated hosting. First, it is commonly
found that commodity server machines run at a low 15-20% utilisation rate due to over-
provisioning (e.g. from [sys08] and references therein). Second, there are cases where
the number of applications exceeds the number of physical servers in dedicated hosting
platforms. To address these limitations, shared hosting is used.

2.2.3 Shared Hosting

With shared hosting, applications are co-located on server machines sharing the physical
resources. This practice is also referred to as server consolidation.

The simplest way to perform application consolidation is to co-host applications on the
same machine running a general purpose operating system, provided that the machine is
equipped with the proper libraries and software packages required by all applications.
For instance, two different database applications can be hosted on the same database
server. In this way, (a) server utilisation is increased by increasing the number of running
applications; (b) management is easier as the administrator needs to update and maintain
one hardware and software platform instead of two; and (c) licence costs are decreased
as the two applications share the same database server licence. However, unless this
scheme is equipped with QoS differentiation mechanisms, one of the applications could
monopolise the use of physical resources, leaving the second one starving.

High performance server consolidation requires performance isolation among the run-
ning applications, and mechanisms for QoS differentiation. Recognising the potential of
server consolidation, some research in the late 1990s and early 2000s studied various as-
pects of it, such as (a) enhancing general purpose operating systems with resource sched-
ulers for performance isolation; (b) detailed resource accounting for server activities; and
(c) developing mechanisms for resource sharing across clusters. These contributions are
discussed in the next three paragraphs.

Resource schedulers that guarantee performance isolation among applications are im-
portant to resource sharing as they ensure that each application is allocated resources as
required. Many different schedulers that provide QoS guarantees have been developed
for allocating CPU time [JRR97, LMB+96, WW94], network [GVC96] and disk band-
width [SV98], and for managing memory [VGR98, Wal02]. Although these schedulers

2.2 Resource Management 31

were initially developed for multimedia and real-time operating systems, they have also
been used in the context of resource scheduling for co-hosted server applications on
single machines and shared clusters [US04].

QoS differentiation uses resource accounting to schedule running applications. Fine-
grained resource accounting for operations in multi-threaded servers running on a gen-
eral purpose operating system is challenging. A client request usually invokes several
user-level server threads and kernel activities. As general purpose operating systems
usually provide resource accounting at the process granularity, methods have been pro-
posed to accurately account for the resource utilisation from all the different entities
involved in a single server operation. Resource containers [BDM99] are abstract en-
tities used to account for system resources (e.g. CPU time, memory, sockets, etc) as-
sociated with a particular server activity such as serving a client request in monolithic
kernels. The SILK mechanism [BVW+02] creates a vertical slice entity that encapsulates
the flow of data and the processing actions associated with a networking operation of
sending and receiving packets from the network based on the Scout operating system
paths [MP96]. Similar accounting mechanisms have been developed for real-time oper-
ating system (e.g. activities in Rialto [JLDJSB95]) and multimedia operating system (e.g.
domains in Nemesis [LMB+96]).

Finally, different approaches to resource sharing for applications deployed on cluster
machines were also developed. Urgaonkar et al. [US04] propose the Sharc system that
manages CPU time and network bandwidth across applications in shared clusters. Sharc
provides a generic mechanism for multi-component application placement on cluster
machines and resource trading across components of the same application. Aron et
al. [ADZ00] extend the notion of resource containers in single machines for clustered
applications by introducing cluster reserves. They aim to differentiate between classes of
requests. Their system maintains global allocations per service class while adjusting the
allocations per node as indicated by local utilisations, where service classes “steal” re-
sources from under-utilised classes. Chase et al. [CAT+01] present the Muse system that
manages resource sharing among shared servers with emphasis given to energy manage-
ment. Muse uses an economic model to efficiently allocate resources which maximises
the performance gain for each application while minimising the necessary power.

2.2.4 Discussion

Despite some specific solutions to resource sharing, today’s data centres still suffer from
under-utilisation with further implications to other areas such as energy consumption.
The problem escalates as server applications grow in both size and complexity, and so
does their deployment base; reports show that the current installed base is around 35
million [SE07, Figure 1 from IDC, 2007]. This section outlines the problems faced by
contemporary data centres.

32 Background and Motivation

Resource Under-Utilisation

Numerous reports show that current data centres are poorly utilised. In fact many of
today’s commodity server machines are known to use only 15 − 20% of their CPU capa-
city. This is mainly the result of application over-provisioning: server machines are al-
located to cope with demanding but infrequent workloads. As a result, most of the time
the server application runs with average workloads and the server machines are under-
utilised. An IDC 2007 report [IDC07] shows that current entrerprises have already spent
$140B (capital expense) more than needed to satisfy their current needs; or differently,
the current infrastructure can in principle support application needs for the next three
years, without purchasing any additional servers2.

Management Expenditures

As applications grow in both size and complexity, the administrative costs for the servers
increase too. IDC [IDC07] reports that for the years between 2001 and 2007, almost
50% of the total spendings on the server market worldwide was for people related ad-
ministrative costs3. The same report predicts that this percentage will further increase
over the next 4 years. As servers number increase and applications become more de-
manding with complex workloads, managing the data centres to deliver QoS has proved
to be a challenge. Human intervention is necessary to configure the machine infrastruc-
ture and the applications themselves to achieve the QoS goals set. In addition, further
maintenance for server machines is required to keep them aligned with the latest oper-
ating system and application server software patches and updates for both performance
and security reasons.

Energy Consumption

IDC [SE07] reports that for every $1.00 (capital expense) spent on new server equipment,
another $0.50 is spent on power and cooling expenses. According to the same report,
this amount has increased over the last years and is predicted to further increase in the
next three. In fact, the power allocation scheme follows the capacity planning model,
according to which, power is allocated to cope with the most demanding workloads.
This results in peak power consumption, while the servers are under-utilised most of the
time. Finally, part of the administrative costs are due to managing energy in data centres
and finding ways to reduce the energy costs.

2.2.5 Summary

Resource management of server applications is challenging because of the time-varying
and bursty workloads that cause diverse resource demands across tiers. There are two

2Information taken from [vmw08a].
3Information taken from [CMH08, Figure 1-1].

2.3 Server Virtualization 33

main models of deployment in data centres. Dedicated hosting offers performance isol-
ation among running applications, yet, due to over-provisioning, resources are under-
utilised. In shared hosting, applications are co-located and share the physical resources
increasing the overall resource utilisation. Despite the benefits from shared hosting, cur-
rent ad-hoc solutions are not widely adopted and data centres face a significant amount
of loss in revenue with consequences in energy and management costs.

Nowadays, server virtualization is considered as a means to combine the advantages of
both dedicated and shared hosting: on one hand benefiting from performance isolation
and on the other increasing the resource utilisation. The next section introduces virtual-
ization and discusses the ways it is shaping future data centres.

2.3 Server Virtualization

Server virtualization constitutes an abstract and secure method for server applications
to share physical resources. This section starts by introducing the concept of virtualiza-
tion and then discusses modern system-level virtualization technologies. It then provides
an overview of next generation of data centres and concludes by identifying adaptive
resource management as an integral part of efficient server virtualization.

2.3.1 Virtualization

Virtualization is a technique that transforms physical resources into one or more logical
versions that can be used by end users or process applications in exactly the same way
as if traditionally using the physical ones. A good example of this technique is memory
management in an operating system. Virtualization is used to allow multiple processes
to simultaneously access the physical memory in a secure and transparent way via the
concept of virtual memory. The physical memory is mapped onto multiple virtual address
spaces, one for each process. Each process uses pages from its own address space and
behaves as if it owns all of the physical address space. The memory manager is respons-
ible for the translation between the virtual and the physical space; it ensures isolation
between the processes and provides an abstract way for each process to access physical
memory.

History

System virtualization or operating system virtualization has its origins in the time-sharing
concept for mainframes, which appeared in the late 1950s. In the case of a mainframe,
time-sharing meant allowing multiple users to simultaneously use its expensive resources.
Time-sharing kept the mainframe busy most of the time; whenever an executing task
would wait for user input, another one was scheduled. Users prepared their tasks us-
ing remote consoles. The next task to be executed was selected among those that were
ready. In this way, users on average were executing their programs faster. In 1961, the

34 Background and Motivation

Windows XP

Web

Server

Linux

FTP

Server

(a) Traditional Servers

Windows XP

Web

Server

Linux

FTP

Server

Virtual Machine Monitor

Virtual Machine Virtual Machine

(b) Virtualized Server

Figure 2.2: Operating System Server Virtualization. Traditionally, each server is hosted
on a separate machine. With operating system virtualization, different Virtual
Machines are created that run heterogeneous operating systems. Different
server applications run within each Virtual Machine.

Compatible Time-Sharing System (CTSS) deployed on an IBM 709 was the first such
system developed. The next step was the development of Virtual Machines (VMs). VMs
were execution environments where users would run their programs and gave them the
illusion of being the only user of the machine. The first such system was developed in
mid 1960s on a specially modified IBM System/360 Model 30 with memory address
translation capabilities. The Virtual Machine Control Program (CP) controlled the exe-
cution and time-sharing among 14 Virtual Machines, each one executing the Cambridge
Monitor System (CMS). The system was referred to as CP/CMS [MS70].

Since the first appearance of VMs almost five decades ago, virtualization in mainframes
has evolved into a mature technology. It has also gained significant attention during the
last decade as one of the most promising technologies for commodity machines. The
key point to its resurrection has been the virtualization of the popular Intel Pentium
commodity hardware by the two leading vendors in virtualization, VMware [vmw08b]
and XenSource [xen08a].

Figure 2.2 illustrates the basic concepts of modern operating system virtualization in a
server deployment example. In a traditionally non-virtualized system, a simple server ap-
plication is deployed on a machine, and the application uses the hardware resources via
the operating system layer. In the virtualized case, there is an additional layer between
the operating system and the hardware, called the Virtual Machine Monitor (VMM).
The VMM creates the different execution environments, the VMs, interposes between
the hardware and the running operating systems, and handles resource multiplexing and
isolation between the VMs. In this particular example, each VM hosts a technologically
different operating system and each one of them uses the hardware resources in an isol-
ated manner. Server applications run in the VMs as if running on a traditional operating
system.

2.3 Server Virtualization 35

Techniques

Initially, virtualization was synonymous with full virtualization, where a functionally
equivalent image of the hardware is created by the VMM. Any operating system can run
on the VM provided by the VMM without any modifications since the VMM provides
virtualized versions of the hardware resources. VMs can use these resources as they
would use the bare hardware.

The wide adoption of the commodity server machines in data centres has led to an
increased interest in their virtualization. However, as full virtualization is not always
possible in the popular Intel Pentium architecture [RI00], several techniques have been
developed over the last 10 years, e.g. full virtualization with binary translation, para-
virtualization [WSG02] and most recently hardware assisted virtualization. Different
virtualization systems have been developed based on these techniques, such as VMware
ESX server [esx08], the Xen hypervisor [BDF+03], and Microsoft Virtual Server [vir08].

Functionality

Independently of the virtualization technique used, there are three basic functional char-
acteristics exported by most of the available virtualization systems: virtual machine con-
trol, resource management, and migration. These characteristics are described below
independently of performance and implementation considerations.

Virtual Machine Control: The main functionality of operating system virtualization is
the control of VMs. VMs can be created, paused, resumed, and deleted dynamically
and on demand. Upon creation of a VM a new execution environment is created and a
new operating system instance runs within it. In addition, a subset of physical resources
available are allocated for the new VM. This is the equivalent of a new server machine
being added to the infrastructure. The set-up of the applications running on the new VM
can be either configured in advance or at run-time, exactly as it would be done as in a
new server machine.

The execution of a running VM can be paused and thus all applications running within
the VM are also paused. The VM no longer executes, but still has resources allocated
to it. A paused or a running VM can be shutdown, and therefore, the execution of all
running applications within the VM are stopped and all of its resources are freed. This
is the equivalent of shutting down a physical server machine.

Resource Management: One of the key functionalities offered by virtualization systems
is VM resource management. When creating a VM, the amount of resources that should
be made available to it is specified; that is, disk and memory space, CPU share and
network bandwidth. In this way, an initial execution environment is created. This is
the equivalent of specifying and configuring a server machine with specific hardware
characteristics.

The initial resource allocation can be changed during a VM’s lifetime. A running VM
can be configured online to a new memory allocation, CPU share policy, disk space and
network allocation. Dynamic hardware configuration is different than with traditional

36 Background and Motivation

Application

A
Web

Server

VMM

Application

Server

VMM VMM

Database

Server

Web

Server

Database

Server

Application

B

Figure 2.3: New Generation of Data Centres. Different applications are co-located on
virtualized server machines. The Virtual Machine Monitor handles resource
sharing and isolation among the running applications per physical server.
Applications might be distributed across several machines.

server machines. For instance, when upgrading a machine’s CPU, the machine has to be
shutdown, therefore stopping all of its services.

Migration: A created VM can be migrated from one physical machine to another, as-
suming that the destination machine has the necessary free resources. The execution of
the VM after the migration is resumed at the destination machine. During some part of
the migration, all running services of the migrating VM will be temporarily paused. This
is a key mechanism that allows VMs to run on different servers based on their resource
needs and high-level operations for the data center such as server consolidation.

To summarise, virtualization provides a basic management interface and is now a key
technology to create the next generation of data centres.

2.3.2 New Generation Data Centres

Using virtualization as a key feature, a new generation of data centres is now emerging.
Based on the hardware to software decoupling offered by virtualization and using the
VM as the basic computing unit, a drastically different image of the data centre is ap-
pearing (as shown in Figure 2.3) and described below.

The data centre consists of a set of virtualized servers, distributed on a local network.
There is also shared storage to support the migration of virtual machines. All hosts are
treated as a common unified set of resources, referred to as resource pool, that can be
used by any VM. For instance, the total available memory in a resource pool is the sum
of all physical memories from individual hosts. A server application is deployed on one
or more VMs (depending on the structure of the application), a technique referred to as

2.3 Server Virtualization 37

server virtualization.

A high-level management layer is also needed to interact between the applications and
every VMM at any physical machine, to manage the virtualization platform, and to
provide functionality of advanced tasks such as load balancing and disaster recovery.
This layer would be responsible for allocating the necessary resources for all VMs and
for finding the most appropriate machines to host them according to a utility function
or global policy, such as load balancing (e.g. all machines must operate at 80% of their
CPU capacity) or power saving (e.g. use as few machines as possible). At run-time, VMs
could be dynamically re-mapped to physical servers or re-assigned resources to adapt to
changes such as the addition of new applications or machine failures.

2.3.3 Operations

Server virtualization has now been embraced by companies that aim to ease their data
centre management and reduce costs, as shown by several surveys. In a 2007 report by
the Aberdeen Group [abe07a], it was reported that in a survey of 140 companies, small
companies have virtualized 27% of their server environments, medium ones 18% and
large companies 14% — small companies are those with less than 50 employees, medium
sized companies are those with between 51 and 1000 employees, while companies with
more than 1001 are categorised as large companies. According to the same survey all
companies, independent of their size, plan to increase their number of virtualized servers
to almost 50% within the next three years. In another 2006 report conducted by For-
rester Research, 40% of North American companies [GS06a, executive summary] and
26% of companies worldwide [GS06b, executive summary] surveyed by Forrester had
implemented virtualization in their data centres.

The wide adoption of server virtualization is partly due to numerous benefits including
server consolidation, ease in management operations, and debugging.

Server Consolidation

Server virtualization provides an abstract way for different servers to co-exist on the
same server machine and share resources, while the underlying virtualization layer offers
isolation and performance guarantees. The building block of this abstraction is the VM,
which can accommodate a whole server application or parts of it. Multiple different
server applications, even running on heterogeneous operating systems can be hosted by
the same physical machine, as shown in Figure 2.2.

With average server utilisations as low as 15%, server consolidation can increase the util-
isations in the average server machine. Current virtualization technologies report high
utilisation rates; VMware selects to report that some of its customers exhibit a 60-80%
utilization rate for server machines [VMw08f]. A key prerequisite to efficient server con-
solidation is dynamic resource allocation per VM along with isolation among the VMs.
The resources for each VM are allocated upon its creation and are adjusted during its
lifetime to accommodate changing workloads. In addition, performance isolation among

38 Background and Motivation

the running VMs guarantees that each VM does not compromise the resources allocated
to others. An adaptive framework that “shrinks” and “expands” VMs according to their
needs can be built to offer high utilisation rates per physical machine.

In addition, with server consolidation, fewer server machines are used. A 2007 IDC
report estimates that the initial prediction of x86 shipments to increase by 61% has
now dropped to 39% by 2010 due to multi-core technologies and server consolida-
tion [IDC07]. By decreasing the number of machines, the total spending at data centres
including buying new hardware as well as power and cooling expenditures are expec-
ted to drop. As the number of servers reduces and the utilisation per physical machine
increases, less energy should be needed for data centres. Since in many cases power is re-
served to meet peak loads, even though in general the machines are under-utilised, fewer
more highly utilised machines can be used to achieve similar goals as before.

Management Operations

A key feature of virtualization is hardware-software decoupling. The VMM layer exports
a generic interface to running VMs, which are no longer hardware specific. In this way,
a number of administrative critical operations, such as hardware upgrade and system
maintenance, can be performed without disrupting the running applications within the
VMs. During these operations, VMs are migrated to other hosts; the same can occur
when a hardware failure occurs [CLM+08].

Another benefit is fast server deployment. One of the major administrative operations
in data centres is the deployment of a new server system. It is a rigorous process that
involves a series of activities, such as defining the server specifications, purchasing the
required hardware, configuring the new server machines and the application, and finally
deploying and testing the new setup. This process can be significantly reduced with
the use of virtualization. An existing host can be selected to host the VM while a VM
template can be used to deploy the new server application. VMware claims that the time
to deploy a new IT service can be reduced by as much as 50-70% [VMw08e].

Testing and Debugging

Virtualized servers can also be used to test and debug new applications before produc-
tion. In such an environment, the new application can be rigorously tested against threats
such as attacks, intense workloads, and malicious code [HFC+06]. It is also the case
that a crashed VM can be more easily replaced than an operating system running on
a dedicated machine. In addition, there are specialised tools to debug distributed ap-
plications running on VMs, that can pinpoint potential race conditions or performance
problems [HH05,HSH05].

2.3 Server Virtualization 39

2.3.4 Challenges

Virtualization in data centres is being adopted rapidly due to its many applications as
well as its potential to reduce cost. There are three key points to efficient data centre
virtualization:

1. High performance and secure VMMs are essential to deploy virtualization in mis-
sion critical environments. Virtualization technologies continue to improve rapidly
in this direction.

2. Flexible VMM functionality is necessary to build high-level management opera-
tions. As discussed before, the basic functionality provided by the most popular
virtualization technologies can be used to support simple or more complicated ap-
plication scenarios.

3. Automatic management tools are necessary to administer virtualized applications
on large scale virtual servers, and to handle heterogeneous application demands.

Although, to date, much emphasis has been given by the community to the first two
issues, the task of building management tools is evolving more slowly. In a survey con-
ducted by Rackspace in August 2007 [rac07], involving 354 of their customers, it was
reported that some of the main obstacles to the deployment of virtualization in their data
centres is the lack of expertise, immature technologies, and management/administration.
71% of them prefer to host a production application on a virtualized platform managed
by a hosting provider, since they possess the necessary expertise. In another Aberdeen
Group report in July 2007 [abe07b], it was reported that a noteworthy percentage of
companies — 22% of small ones (with less than $500M revenue) and 30% of large
companies (with more than $500M revenue) — refuse to deploy virtualization in their
data centres, mainly because of the lack of staff and domain knowledge of these new
technologies. The two reports indicate that management and administration can be an
obstacle to further adoption of virtualization.

Management tools are crucial to the efficient administration of virtual servers. There are
two main categories of management tools. The first category involves essential tools that
implement management operations, such as create a VM; allocate 500MB of memory
to a VM; migrate a VM from host A to host B, and so on. The tools in the second
category are built on those of the first to manage the virtualized servers for a specific
high-level purpose such as server consolidation, load balancing, and disaster recovery. As
data centres and subsequently virtualized ones accommodate hundreds and thousands
of physical and virtual servers that serve complex distributed applications, the second
category of tools are essential to deliver high availability and high performance.

High level management tools need to support many operations including disaster recov-
ery and load balancing. Depending on the task, different operations are required. For
instance, to achieve load balancing, different VMs need to be hosted on machines so that
all hosts have roughly equal resource usage. To save power, all VMs need to be hosted
by as few machines as possible in order to switch off the rest and save on energy. There
is, however, a very important operation integral to the success of all high level tasks: VM
resource provisioning.

40 Background and Motivation

A B A B

Static Workload Dynamic Workload

allocation A allocation B allocation A allocation B

A B

Dynamic Workload

allocation A allocation B

Figure 2.4: Resource Management in Server Consolidation. This figure illustrates three
scenarios of resource provisioning of two virtualized server applications A
and B co-located on a physical server. In the left diagram, the applications’
resource utilisations are known in advance (shaded rectangles) and their al-
locations are adjusted accordingly (solid lines). In the middle diagram, the
utilisations change due to workload fluctuations, however, the allocations
remain the same. In this case, application A suffer from performance degrad-
ation, while there are unused resources allocated to application B. To address
these limitations, allocations are adjusted to resource utilisations as shown in
the right most diagram.

VM Resource Provisioning

Adequate provisioning for VMs’ resources is crucial for a high performance data centre.
On one hand, it is very important for the hosted application within the VM to always
have the necessary resources to achieve its performance goals. On the other hand, as
long as the VMs’ resource requirements are met, any high level task can be planned and
executed within the data centre. However, resource provisioning for virtualized server
applications is a challenging task.

Consider a server consolidation example with two single-component server applications
and one server machine. Assume that each application has a workload with known
resource requirements and the sum of resources from both applications does not exceed
the total available physical resources for the server machine. The left diagram in Figure
2.4 illustrates two VMs, each one hosting an application with resources allocated as
required. In this way, both applications are served adequately and the total resource
utilisation of the physical machine is now increased simply by augmenting the number
of running servers.

Consider now the case where the workload in both applications changes, (middle dia-
gram in Figure 2.4). In VM A it increases, therefore more resources are required,
while in VM B it decreases so fewer resources are needed. In the case of VM A, the
under-provisioning results in performance degradation, since the application does not
have enough resources to serve its incoming requests. In the case of VM B, the over-
provisioning does not affect the running application within the VM B. However it does
reduce the free available resources for a third VM to be placed on the same machine.
Therefore, in both cases, the resource allocation needs to adapt to the new resource
demands (right most diagram in Figure 2.4).

2.3 Server Virtualization 41

Nevertheless, adapting to the new demands is a daunting task. Workload fluctuations
make the problem of VM resource provisioning difficult. Furthermore, resource pro-
visioning is more demanding due to the complexity of modern server applications as
demonstrated by their multi-component nature. This dissertation is concerned with the
development of automatic tools that dynamically adapt the CPU resource allocations of
virtualized server applications in order to meet their performance goals. The next section
explores the current state of available solutions and identifies challenges.

2.3.5 Commercial Solutions

There is a wide range of management products offered by the two most popular mod-
ern virtualization technologies — products from VMware [VMw08g] and from Xen-
Source [Xen08c] — for managing server virtualization. Less emphasis has been given,
however, to the creation of resource management products. The most related are presen-
ted below.

VMware Capacity Planner [vmw08c] offers long-term capacity planning assessment of
virtualization and consolidation in a traditional data centre through scenario exploration
and “what-if” modelling. This work focuses on dynamic, short-term resource provision-
ing of running virtualized servers.

VMware Distributed Resource Scheduler (DRS) [vmw08d] dynamically allocates cluster
resources to running VMs. Each VM is configured with three attributes: (a) the reser-
vation, which declares the minimum assigned resources to the VM, (b) the limit, which
represents the maximum resources ever allocated to the VM, and (c) the shares attrib-
ute, which denotes the resource utilisation priority over other VMs. Similarly XenCen-
ter [Xen08b] provides resource management capabilities by configuring priorities and
limits for VM resources. These tools provide the mechanisms to ensure that the alloca-
tions for VMs’ lie within certain limits, but do not deal with setting these limits to appro-
priate values for each application. Additionally, to the best of the author’s knowledge, at
the time of writing this dissertation, there is no published documentation describing the
ways in which the above tools operate to maintain the resource allocations within the
resource limits in the presence of dynamic workload demands.

VMware DRS also offers the capability to group VMs for multi-tier applications and col-
lectively assign resources. Again, the online published documentation does not provide
any further information.

In addition to tools for modern virtualization technologies, there are other traditional
vendors, such as HP, that specialise on workload management. For instance, HP UX
Workload Manager (WLM) [hpW08b,hpW08c] is a tool that automatically manages the
CPU resources of applications running on HP server machines with dynamic resource
sharing capabilities. The allocation is based on user-defined Service Level Objectives
(SLOs) and priorities. There are two modes when defining the SLO: a non-metric and
a metric based mode. The non-metric allocation policy defines the application desirable
CPU usage4. With the metric based SLO policy a user can define the portion of resources

4In this mode, a user can also choose a fixed amount of CPU resources.

42 Background and Motivation

assigned to a metric unit (e.g. “five CPU shares for each active process” [hpW08a, page
12]). The efficiency of this mode, however, depends on the correct mappings of resources
to metric unit. In either case, the WLM allocates CPU resources to maintain the SLOs.
In case of contention, different applications are assigned resources according to their
priorities. As reported by the WLM’s Overview Data Sheet [hpW08a, page 8], WLM
is more suitable for CPU-intensive applications, while this dissertation targets multi-
purpose multi-tier server applications.

2.3.6 Summary

The virtualization of commodity machines transforms the data centre into an agile envir-
onment for server application deployment. Applications are hosted within VMs which
can be deployed on any physical server machine. Using the basic functionality offered
by most modern virtualization technologies — VM control, VM resource management,
and VM migration — high level operations such as server consolidation and power man-
agement can be planned to increase machine’s resource utilisation and decrease power
and cooling cost. To plan for high level management operations, there is, however, a
very important task central to their success: adaptive VM resource provisioning. Adjust-
ing the CPU shares of running virtualized server applications on demand in response to
workload changes is challenging because of the diverse and fluctuating workload char-
acteristics.

Feedback Control provides a flexible and reactive way to dynamically adjust the CPU
resources as workload changes happen. The next section introduces the basic principles
of feedback control and motivates its use towards the current problem.

2.4 Feedback Control

This section presents the basic concepts of feedback control systems and describes related
terminology. The description presented here outlines those concepts related to this disser-
tation and which are directly applied to the current work. Therefore, it does not, in any
way, constitute a thorough presentation of the Control Theory field. Finally, the section
overviews the way control theory is applied to the problem of resource management of
virtualized servers.

2.4.1 Overview

A control system (Figure 2.5) is composed from two main parts: the plant and the con-
troller. The plant (or target system) is the system of interest which is built to perform a
task/goal (e.g. room temperature regulator). The purpose of the controller is to determ-
ine the settings of the “knobs” that make the plant reach its user defined tasks despite
the presence of noise in the operating environment. To this end, the controller monit-
ors the plant at regular intervals and if any deviation from its goals is observed (error),

2.4 Feedback Control 43

plantcontrollererror

noise

control

input(s)

control

output(s)
reference

value

Figure 2.5: Feedback Control System. In a feedback control system the controller period-
ically gets updates of the controlled system, called plant, through the control
output(s). Based on their values and the error from the reference value, it
computes the next values of the control input(s). The goal of the controller
is to maintain the plant’s performance around the reference value despite the
noise coming from its environment.

corrected actions are applied to it. The controller and the plant communicate through
signals, named control input(s) and control output(s). The control output(s) provide in-
formation regarding the latest state of the plant, while the control input(s) update the
plant to correct its state towards its goal.

The control system operates in a closed-loop fashion, since data flows periodically
between the controller and the plant, at regular intervals, and updated values of the
control input(s) are based on measurements from the control output(s). This type of
control is also referred to as feedback control. If there is one control input and one con-
trol output, then the system is referred to as a Single Input Single Output (SISO) system.
If there are many inputs and many outputs the system is called a Multiple Input Multiple
Output (MIMO) one.

The controller is the most important part of the control system. It uses a model of the
target system and the control error and accordingly adjusts the input(s), so that the plant
achieves its goals. The model captures the dynamics of the plant, and quantitatively
associates the control input(s) to the control output(s). For example, consider a tem-
perature control system of a room with an electric heater (part of this example is taken
from [Oga90, page 10]). The purpose of the controller is to maintain the temperature of
the room at a certain reference level. However, the temperature of the room fluctuates
when for instance a door or a window is opened. To always maintain the same temper-
ature in the room, the controller measures it at regular intervals. When a deviation/error
from the reference value occurs, the controller based on the system model adjusts the
heater to either increase or decrease its power and defines its magnitude. The process of
discovering the system’s model and in particular the combinations of input(s)/output(s)
that best capture the dynamics of the target system for a specific goal and define their
relationship is called system identification [Lju87, page 6].

There are four main properties of interest in a control system: stability, accuracy, settling
time, and overshoot. These properties are also referred to collectively as SASO proper-
ties [HDPT04, page 8]. An informal definition of the properties is now given based

44 Background and Motivation

on [HDPT04, page 8].

• Stability: A system is Bounded-Input Bounded-Output (BIBO) stable if for any
bounded input, the output is also bounded.5 In a mathematic way this means that
the poles of the transfer function of a discrete-time linear system have to be within
the unit circle.

• Accuracy: A system is accurate when its output converges to its reference value.
Rather than measuring accuracy, it is often the case that a system’s inaccuracy is
calculated. For a system in steady-state, its inaccuracy is measured as the steady-
state error, the difference of the output from its reference value, usually denoted as
ess.

• Settling Time: In addition, settling time (denoted as ks) is defined as the time it
takes for the system to converge, usually within 2%, to its steady-state value after
a change in input or reference value.

• Maximum Overshoot: Finally, a system should converge to its steady-state without
overshooting. Maximum overshoot (denoted as Mp) is defined as the largest
amount by which the output exceeds the reference output scaled by the steady-
state value: (1 + Mp)yss = Mo, where Mo is the maximum value of the output and
yss the steady-state value.

Having presented the basic concepts of feedback control, this section continues by de-
scribing the way it is applied in the current work.

2.4.2 Feedback Control for Resource Management

There is a direct correlation between the problem addressed here and a feedback control
system. The problem addressed in this dissertation is the provisioning of virtualized
servers with resources in order for them to meet their performance goals in the presence
of fluctuating workloads. The target system is any virtualized server with time-varying
resource demands caused by diverse and fluctuating workloads. Despite the noise from
the workload, the server should maintain its performance as indicated by the reference
input. The controller is therefore responsible for maintaining the performance around
the reference input (e.g. utilisation) by tuning certain parameters (e.g. CPU allocations).
Feedback control for this problem is particularly attractive since (a) the model of the
system is neither known in advance nor well defined and (b) the virtualized servers are
under noisy workloads.

The focus of this dissertation is the design and implementation of controllers that manage
the CPU allocation of virtualized servers. Chapter 3 presents the overall architecture and
the implementation of the supporting control system. The system identification process
is performed in Chapter 4 and Chapter 5 presents the different controllers.

Control theory has been used in computer systems in the past [HDPT04]. In fact it

5According to [HDPT04, Section 3.3.1]: A signal t(k) is a bounded signal if there exists a positive
constant L such that |t(k)| ≤ L for all k.

2.5 Summary 45

has also been used to address very similar problems to the current one; related work is
discussed in Chapter 7.

2.5 Summary

There are two main approaches for hosting applications: dedicated and shared. The
popular and widely adopted dedicated hosting provides performance isolation to run-
ning applications. However, it has resulted in resource under-utilisation mainly because
of over-provisioning against highly fluctuating application workloads. Although shared
hosting alleviates this problem, it has been difficult to implement due to lack of generic
mechanisms in the popular Intel Pentium server machines. The resurgence of commodity
machines virtualization is transforming the data centre into an agile pool of resources
for secure and flexible sharing among the applications. Although modern virtualiza-
tion technologies offer the basic functionality for high-level operations in data centre
management, there is, however, a key prerequisite to their success: adaptive resource
provisioning for virtualized applications. As long as each application is provisioned with
enough resources to meet its performance goals in the presence of changing resource de-
mands, further planning for tasks such as server consolidation and power management
is possible.

This dissertation is concerned with the development of tools that automatically adjust the
CPU shares of virtualized multi-component applications. To this end, a feedback control
approach is adopted. Feedback control provides a flexible and intuitive approach to
resource management, as allocations are updated to workload changes and there is no
need for extensive a priori domain knowledge.

This dissertation proposes in Chapter 5 and evaluates in Chapter 6 different feedback
controllers which perform adaptive resource management. However first Chapter 3 de-
scribes the evaluation platform used to deploy and assess the solution.

3
Architecture and Tools

This chapter presents the architecture of the resource provisioning process and its imple-
mentation in the prototype virtualized cluster that was built for evaluation.

This chapter begins (Section 3.1) by presenting (a) the main assumptions regarding the
server application model, (b) the application deployment on VMs, and (c) the type of
resource management considered in this dissertation. Next, Section 3.2 presents an over-
view of the evaluation platform used. The architecture of the resource management
process is presented in Section 3.3. The rest of this chapter reviews the benchmark ap-
plication (Section 3.4), presents the Xen VMM (Section 3.5) used for virtualizing the
cluster, and finally, Section 3.6, discusses the resource management issues specific to the
Xen platform.

3.1 Deployment Model

This section presents the assumptions made in this dissertation regarding the application
model, the deployment on VMs, and the type of resource management. These assump-
tions provide the context for the resource management process.

Application Model

A server application is composed of one or more components/tiers. Incoming requests
are processed by a subset of the components. The exact tier layout is defined before the
application’s deployment and remains the same throughout the resource provisioning

47

48 Architecture and Tools

process. Each tier is a stand-alone server and relies on network connectivity to commu-
nicate with the other tiers. Tiers of the same functionality (e.g. replicated web servers)
can exist, but each tier is considered unique for the resource provisioning process.

Deployment on VMs

Each tier is hosted by only one VM. A server application is therefore composed of one
or more VMs. Components of the same server application can be deployed on the same
or different physical machines.

Resource Management

Each VM is treated as a black-box. Under the same workload (mix of requests types and
incoming requests’ arrival rate), the application’s performance depends on the resource
allocations of the individual components. The resource usages for each VM include the
utilisations caused by both the application’s tier and the operating system running within
the VM.

3.2 Evaluation Platform

Figure 3.1 shows the prototype cluster deployed to evaluate the application’s perform-
ance and subsequently the controllers’ performance. In this system, the 3-component
Rubis server application [ACC+02] is deployed on three machines. Each machine runs
the Xen VMM [BDF+03]. Each of the three Rubis server tiers, namely the Tomcat web
server tier, the JBoss application server tier and the MySQL database (DB) server tier, is
deployed on a separate VM running on a separate physical machine. A fourth machine
hosts the Rubis Client Emulator used to generate the requests to the server. All machines
are connected via Gigabit Ethernet. The control and the manager building blocks are
also shown. There are three manager components, each one running within the Xen
VM control domain of each physical machine. The Xen control domain is called dom0;
the Xen architecture and terminology is explained in detail in Section 3.5.

The manager records CPU usage every 1 sec using the xentop command which is
the equivalent of the top Linux command for the Xen system and periodically displays
information regarding the Xen VMs. At the end of the controller interval, it calculates
the mean over all data and submits the response to the control. The duration of the
controller interval used in this dissertation is 5 seconds (s).

The prototype cluster is deployed on typical server machines used for commercial applic-
ations. All machines are x86-64, each equipped with 2 AMD Opteron Processors run-
ning at 2.4GHz, 4GB of main memory, 70GB of SCSI disk space and a NetXtreme Gig-
abit Ethernet Card. Each machine runs the popular Xen VMM, version 3.0.2 [BDF+03].
Finally, all VMs are similar and they run the commercial SUSE Linux Enterprise Server

3.3 Architecture 49

RUBIS Server System

c

c

c

MIMO
Controller

manager

manager

manager

dom0

dom0

dom0

Tomcat

JBoss

MySQL

Xen

Xen

Xen

control

control

control

Client
Emulator

Incoming Requests

allocations

usages

Figure 3.1: Virtualized Prototype and Control System Overview. Solid lines between the
control modules and the Rubis Server System depict the connection of the
three SISO controllers. The MIMO controller is shown by the dashed rect-
angle.

(SLES) 10 with Linux-xen 2.6.16, popular for server application deployment. The hard-
ware and software setup of the server machines makes the cluster a realistic if small-scale
implementation of a virtualized data centre.

The Client Emulator machine has the same hardware characteristics as the server ma-
chines and it runs the same SLES distribution with Linux 2.6.16.

The next section discusses in more detail the architecture of the control and the
manager blocks.

3.3 Architecture

The controller is the most prominent part of the resource provisioning process. Based
on the application performance model, it periodically calculates the required component
resource allocations in order for the application to serve unknown fluctuating workloads
and to meet its performance goals.

The resource provisioning process is based on control theory principles and has two
main characteristics: (a) resource allocations for the application components are per-
formed on-line at regular intervals while the application processes incoming requests and
(b) allocations are made according to an application performance model that associates
allocations and usages with performance metrics.

The architecture presented in this section provides the means to support the deployment
of the controller in a virtualized data centre. The following functions are supported:

50 Architecture and Tools

VMM

usage

allocation

stats

controller

configuration

parameters

input

CONTROL

MANAGER

VM

Figure 3.2: Resource Management Architecture. The architecture supports a feedback
control loop for resource provisioning of VMs and consists of the manager
and the control blocks. The control block adjusts the allocations of VMs
based on information on past measured usages — as sent by the manager
block — and the application model embedded in the controller.

(a) it provides remote resource monitoring and application of the controller’s outputs at
regular intervals at the VMs; (b) it enables deployment of different controller schemes on
the same platform with minimal changes; and (c) it supports arbitrary combinations of
server components deployed on physical machines. This section presents the architecture
and elaborates on its operations.

A conceptual view of the architecture is shown in Figure 3.2. The resource management
framework is composed of two software blocks, the control and the manager block.
The manager, which runs on dom0, is responsible for the resource monitoring for each
VM running on the same physical machine. It uses the interface provided by the VMM
to measure the VM’s resource utilisations, a summary of which (e.g. mean) is sent to
the control. The control, which runs on an another machine, calculates the new
allocations based on measurements from the manager and the performance model used
for the server application. The new allocations are remotely applied to the VM by the
control after performing any necessary transformations (e.g. checking that the new
allocation does not exceed the total physical machine capacity). Finally, the control
accepts input configuration parameters (e.g. controller interval) which are further sent if
required to the manager. Both blocks are built using the Python programming language.

Measurement and allocation data flow between the two blocks at regular intervals. At
the end of each interval, the manager sends its measurements to the control which
responds back with the new allocations at the beginning of the new interval. During
each interval, resource usages are measured at a time granularity as indicated by the
control, (every t time units as presented in Figure 3.3). The shortest measurement
update is restricted by the virtualization platform. Consider the interval between time
instances k and k + m, referred to as interval k. The real time elapsed can be several
seconds or minutes or any other time period as indicated by the control. During

3.3 Architecture 51

(k-m) (k) (k+m) (k+2m)

m time units t time units

time

(k+t) (k+2t)

Figure 3.3: Controller and Measurement Intervals. The control periodically updates
the allocations every m time units. The manager measures the utilisations
every t time units during each controller interval.

interval k, the manager measures the resource usage every t time units. Every interval
is m time units and t ≤ m. Different time units for t and m can also be used. At the end
of interval k, a summary (e.g mean) of all measured usages during the interval is sent to
the controller. The time k and t, and the type of summary information are all input to
the control block and are specific to the application and the control process.

The controller in the control block executes the most important operation of the re-
source provisioning process. Based on the application performance model, it periodically
updates the allocations to meet the resource demands of incoming requests and to com-
ply with the performance goals set for the application. The application performance
model is derived off-line during the system identification process — a process that is de-
scribed in Chapter 4 — and its parameters can be set in an off-line or an on-line fashion
— both described in Chapter 5. The model associates the resource measurements to the
allocations and the way they affect the application performance. Therefore, a predefined
performance goal is achieved by adjusting the allocations at appropriate levels using the
resource utilisations to measure the application performance. Different control schemes
are easily supported by the current framework by deploying them at the controller. In
this dissertation, different control schemes are considered and presented in Chapter 5.

Finally, the architecture supports remote resource allocation of arbitrary combinations
of deployed components to physical machines. This is achieved by the clear separation
of functions between the two building blocks, the manager and the control. The
manager operates as a server that monitors the usage of all VMs on the same physical
machine as requested by its client, the control block. A control block connects
to it, remotely manages the resources of some or all the VMs, and receives the results.
There can be one or more control blocks that manage the allocations of each, a subset
of or all of the application’s components. In this dissertation two different models are
considered: (a) a one-to-one model, with one control block per application component
and (b) a one-to-many model, with one control for all application components, both
presented in Chapter 5.

Summary

This section presented the framework for remotely managing the resource allocations
for server applications deployed on VMs. The architecture implements the basic prop-

52 Architecture and Tools

erties of a control-based resource management process. Finally, it provides a flexible
framework for deploying different controllers and supporting arbitrary combinations of
multi-component applications deployed on physical machines.

The controllers discussed in this dissertation are evaluated against the Rubis multi-
component benchmark application which is deployed on an industry-level prototype
virtualized data centre built for this purpose. The rest of this chapter presents the im-
plementation of the evaluation platform. More precisely it presents an overview of the
Rubis benchmark server application and the Xen VMM used to virtualize the machines.
Finally, it discusses Xen related resource management details.

3.4 Rubis Benchmark

This section describes the Rubis auction site benchmark used for the evaluation of the
resource provisioning architecture, here Rubis version 1.4.3 with session beans is used.1

Emphasis is given to its 3-tier layout description and the request processing path. An
overview of the Client Emulator tool that is used to generate load on the server is also
given. The section also outlines the reasons why the Rubis benchmark is an excellent
candidate for the evaluation of the current approach.

3.4.1 Introduction

The Rice University Bidding System (Rubis) [ACC+02] is a prototype auction web site
server application modelled after eBay.com. Rubis implements the basic operations of
an auction site: selling, browsing, and bidding. Using the server, a client can perform
27 different types of requests including: browsing items from a category or a region;
viewing an item; registering an item; bidding on an item; buying an item; and selling an
item.

Rubis was originally designed for testing and benchmarking purposes. Initially, it was
developed to study the performance of web applications with dynamic content and to
compare different implementation methods such as PHP, Java servlets, and Enterprise
Java Beans (EJB) [ACC+02]. It was also used to examine the performance and scalability
of different J2EE application servers, namely JBoss and Jonas, as well as the application
implementation [CMZ02, CCE+03]. Rubis has since been used for evaluation purposes
in areas such as: fault detection [CAK+04], VM resource provisioning [PSZ+07], and
component-based performance modelling [SS05].

This section gives an overview of the Rubis benchmark regarding the clients’ operations
on the server, its tier-layout, the backend data structure and volume, and the Client
Emulator.

1Minor modifications to the official Rubis distribution were made. These include setting up the different
configuration files for the application beans and recording the requests response times at the Client
Emulator.

3.4 Rubis Benchmark 53

Web Server

Tomcat

Application Server

JBoss

EJB

Database

MySQL

client

request

(1) (2) (3)

(4)(5)(6)

client

request

(7)

(8)

Static

Page

servlet

Figure 3.4: Rubis Tier Layout. The Rubis benchmark is composed of three tiers: the
web, the application, and the database tier. The web server accepts clients’
requests. Depending on whether the requests require access to the database,
different action paths are followed. In the case of requesting dynamic con-
tent, actions (1)-(6) are invoked and all the tiers participate in serving the
requests. In the case of static content, actions (7) and (8) serve the static
HTML page back to the client.

3.4.2 Tier-Layout and Request Execution Path

Rubis is composed of three tiers: the web, the application, and the database tier, as
shown in Figure 3.4.

The web tier is responsible for accepting clients’ requests (actions (1) and (7)) and invok-
ing the appropriate actions according to the type of request. If the client’s request requires
content from the database (e.g. browse regions, put comment on item), a new request
to the database through the application server is invoked (action (2)). The majority of
request types (22 out of 27) require the generation of dynamic content and trigger access
to the database. Different servlet objects, depending on the request type, are launched
to handle the internal operations necessary (between actions (1) and (2)). If the client’s
request does not require access to the database, then a shorter path is followed: the web
server retrieves the static HTML page and sends it back to the client (action (8)).

The application server is responsible for establishing database connections to retrieve
and/or store data as requested by the clients. It also maintains a consistent view of
the database by updating the tables as necessary (actions (3) and (4)). Finally, it also
performs additional application business logic operations whenever necessary such as
user authentication (e.g. only registered users are allowed to put comments on items).
Similar to the servlet architecture, different bean objects (EJB) are launched to handle the
internal operations. The application server returns the results of the database access to
the web server (action (5)). At the web server, the final HTML response page is formed
and the result is sent back to the client, (action (6)).

The third tier hosts the Rubis database. An already populated database is used for the
experiments. It contains around 34000 items for sale, which belong to 20 different
categories and 62 different regions. The database dump is made using observations from
the eBay.com web site [CCE+02].

54 Architecture and Tools

The web container used is Tomcat [tom08], version 5.0.30. The JBoss [jbo08] version
4.0.2 application server executes the application logic. Finally, the database is stored on
the MySQL [mys08] database server, version 5.0.1.

3.4.3 Client Emulator

The Rubis package contains the Client Emulator used to generate load for the Rubis
server. The Client Emulator tool emulates a number of simultaneous clients that access
the auction server via their web-browser. Each client opens a persistent HTTP connec-
tion to the auction server and creates a session with the server, during which the client
generates a sequence of requests. After issuing a request, the client waits for the response.
Upon receiving the response — an HTML web page — it waits for some “think time”
and then issues the next request. The think time emulates the time it takes for a real
user until he or she issues the next request. It is generated from a negative exponential
distribution with a mean of 7 seconds [TPPC02, clause 5.3.1.1]. The next request type is
determined by a state matrix which contains the probabilities of transit from one request
type to another. The next request might use information from the last HTML response
page (e.g. view an item with a specific ID). The session terminates when the maximum
number of requests allowed by each client has been issued, or when such time has elapsed
that the session has reached its predefined end.

The Client Emulator includes different transition tables, each corresponding to a differ-
ent workload mix. There are two available mixes from the Client Emulator: the brows-
ing mix (BR) with read-only requests and the bidding mix (BD) with 15% read-write
requests. The experiments in this dissertation use the BR mix unless otherwise stated.

A number of parameters, such as the number of active clients and the type of workload
mix, can be set at the beginning of the emulation using the interface provided by the
Client Emulator. More information on the Rubis Emulator and the workload mixes can
be found in [ACC+02].

Finally, the Rubis Emulator is altered to record all requests’ response times. This is the
time that elapses between the initiation of a client’s request and the time that the response
arrives at the client. In a real environment, recording the response times at the clients’
side is unrealistic. Ideally, they must be recorded at the server side. However, due to the
fast network connectivity (all machines are connected on a Gigabit Ethernet network)
between the Emulator and the server machines, which results in negligible network delays
between them, the response times can be recorded at the client side instead of at the server
side without any performance implications to the resource control system.

3.4.4 Summary

The Rubis benchmark provides a realistic distributed implementation of a 3-tier web
server auction site. It is designed according to industrial standards — servlets and EJB
— and uses commercial middleware servers — Tomcat, JBoss, and MySQL. The tier-
layout used in this dissertation is very close to the proposed layouts for Rubis server

3.5 Xen 55

Hardware

Xen Virtual Machine Monitor

Virtual Machine

OS

User Level

Application

OS

User level

VM control

tools

Virtual Machine

OS

User Level

Application

domUs

Virtual Machine

dom0

...

Figure 3.5: Xen Architecture Layout. The Xen Virtual Machine Monitor runs on top of
the hardware and creates execution environments (Virtual Machines (VMs)
or domains) where user-level applications run. In particular, there are two
types of domains: (1) dom0, which is created automatically with Xen and
provides the platform for user-level control tools that manage Xen operations
and (2) domUs, which are used for running user-level applications.

deployment [CMZ02]. Its database structure and size is based on observations from
the popular eBay.com auction site, at the time. In addition, the Client Emulator soft-
ware distributed with the Rubis package is based on the well-known TPC-W [TPPC02]
specification [ACC+02]. Therefore, the Rubis benchmark makes an excellent and real-
istic candidate for the evaluation of resource provisioning controllers. Finally, the 3-tier
architecture of Rubis enables the evaluation of the controllers against diverse CPU re-
source conditions as seen by the highly noisy MySQL component utilisations to the least
variable ones from the JBoss. This is shown in later in Chapter 6.

3.5 Xen

Xen is a Virtual Machine Monitor (VMM) designed for x86 commodity hardware ma-
chines. A Xen-virtualized system consists of three components as shown in Figure 3.5:
(a) the Xen VMM, (b) the control domain (dom0), and (c) the guest VMs or domains.

The Xen VMM, also called the hypervisor, provides the basic layer of interaction
between running operating systems and hardware resources. Based on x86 para-
virtualization, it creates different execution environments the VMs or domains in Xen
terminology. It provides a low-overhead virtualization platform, where running applic-
ations within VMs achieve almost native performance, and supports execution of het-
erogeneous operating systems with minimal modifications required within the operating
system kernel.

The Xen VMM implements the basic mechanisms to ensure safe resource sharing and
isolation for memory, I/O and CPU access. It also exports a generic interface for con-
trolling the basic underlying mechanisms through the management tools of the control

56 Architecture and Tools

domain, called dom0. Dom0 is a basic part of the virtualized platform and is created
automatically with Xen’s invocation. The management tools for controlling the Xen
virtualization platform reside in dom0. Management of all other domains is achieved
through a set of tools that use the appropriate interface exported by Xen. With this set
of tools, basic control operations on other domains such as creation, deletion, migration
and pausing, are possible. In addition, access to resources and permission settings on
VMs are administered through dom0. Building on these basic mechanisms for resource
management, more elaborate policies on the use of resources can be applied. Finally, a
user-level application usually runs within a guest domain or domU.

In this dissertation, Xen is used as an example virtualization platform. The resource
management tools are built on top of the basic management Xen tools. In the next
section, the Xen CPU resource sharing scheme is presented.

3.6 CPU Sharing and Management in Xen

CPU resource sharing is performed at an operating system granularity. CPU time is par-
titioned among different operating systems; processes running on operating systems use
the CPU share of their VMs as they would normally do in a non-virtualizable envir-
onment. Throughout this dissertation, the Simple Earliest Deadline First (SEDF) CPU
scheduler is used. SEDF is the default CPU scheduler for the Xen 3.0.2 distribution,
which is used for the evaluation cluster.

SEDF is a soft real-time scheduler that allocates CPU resources to VMs. CPU time is
partitioned into fixed time periods. For every period, each VM is configured with
the time it can use the CPU, called its slice. Another configuration parameter denotes
whether VMs can use any free CPU time (the work-conserving mode (WC)), or not (the
non-work-conserving mode (NWC)). For instance, for a 10ms period, two VMs can be
configured with slices of 2ms and 5ms. In the NWC, VMs can use up to 20% and
50% of the CPU time respectively, even if either of the two requires more resources and
the CPU is idle. In the WC mode however, any VM can use the free time as long as
all VMs have used their share of CPU resources. In this dissertation, the NWC mode
is used. This enables complete control over the allocation of CPU resources to VMs
and, therefore, proper evaluation of the different controller schemes with respect to the
allocations they make and the resulting application performance. Using the NWC, the
resource provisioning tools can apply policies for performance guarantees and provide
performance isolation among consolidated servers.

Each server machine has two CPUs and each domain is pinned on a separate CPU. Dom0
consumes CPU resources for handling I/O requests on behalf of the guest operating sys-
tem (domU). To ensure best performance for the server application, I/O must be handled
in a timely fashion. Therefore, assigning one CPU per dom0 ensures that the control do-
main has access to all CPU resources necessary to perform I/O for domU. DomU runs on
the second CPU, which can use up to 100% of its resources according to the allocations
made by the controller.

However this simple setup does not maximise resource utilisation per physical machine.

3.7 Summary 57

Due to SEDF’s lack of automatic load balancing among CPUs,2 dom0’s CPU can still be
under-utilised even if domU’s CPU reaches its peak utilisation for some workloads. The
focus of this dissertation, however, is the controller’s ability to control VM allocations
for multi-tier applications. At the time the work of this dissertation was started, SEDF
was the stable scheduler. The now default Xen CPU scheduler, called the credit scheduler,
enables automatic SMP load balancing and operates in both WC and NWC modes. The
current system uses only the generic features of CPU schedulers, namely the NWC mode
and the ability to set maximum resource utilisation per VM. Since both features exist in
the new credit scheduler, the current architecture could easily be applied to the latest Xen
version.

Two issues regarding the configuration of SEDF are now examined. The value of the
period and slice SEDF scheduling parameters affect the performance of the server applic-
ation. A simple experiment was performed to choose those that give the best perform-
ance for the server application. For this experiment the prototype cluster with the Rubis
benchmark was used and the clients issued requests of the browsing mix to the server.
The period values were varied between 10ms and 90ms in steps of 20ms. For each exper-
iment, the response times of the client requests were recorded. For large period values,
the response times increased to high values (> 1sec) as the number of clients was in-
creased, even though domU was not saturated. For small values such as 10ms, however,
the response times depended only on the saturation of domU and were consistently low
for increasing number of clients. When the period is set to large values, domU is not
scheduled soon enough to accept the I/O requests. However, when the period is short,
domU is scheduled more often therefore handling I/O more often. For all the experi-
ments, a period of 10ms for domU is used. Dom0’s period is set to 20ms — however, since
it operates in the WC mode, this does not have any effect. Cherkasova et al. [LDV07]
also study the same issue, and they make similar qualitative conclusions; they observe
better server throughput as the period becomes smaller.

3.7 Summary

This chapter presented the architecture of the resource management process for virtu-
alized server applications. In particular, it described the evaluation platform built for
testing the control tools and algorithms (Section 3.2). The platform consists of three
parts. First, there are four typical x86 server machines that host the Rubis benchmark
application and the Client Emulator. The VMs run the commercial SLES operating sys-
tem and are connected via a Gigabit Ethernet network. Second, the Rubis benchmark
application, built based on industrial standards (Section 3.4), is used. Finally, the plat-
form consists of the resource provisioning architecture that remotely controls — using
a feedback loop — the CPU allocations of arbitrary combinations of applications and
physical machines (Section 3.3). The architecture also supports flexible deployment of

2Some level of load distribution can still be achieved with the SEDF by issuing multiple virtual CPUs
(vCPUs) per domain and deploying them on the physical machines as needed. Nevertheless, user-land
tools are required to distribute the shares evenly across the vCPUs and additional care is needed to
ensure that the running VMs do not get overwhelmed by constant switching between the CPUs.

58 Architecture and Tools

different controllers. Finally, this chapter presented an overview of the Xen virtualiza-
tion platform (Section 3.5) and discussed Xen-related CPU resource management issues
(Section 3.6).

The evaluation platform provides a realistic albeit small-scale virtualized cluster suit-
able to deploy and test the different controllers presented in the following chapters. In
particular, the next chapter presents the system identification process that exercises the
application’s dynamics in a variety of conditions. Based on this analysis, a number of
controllers are derived and described in Chapter 5.

4
System Identification

Previous chapters highlighted the resource management of server components as an es-
sential part of achieving high performance virtualization. The solution given in this
dissertation is a control system that dynamically allocates CPU resources to server com-
ponents. This chapter presents the system identification process that captures the model
of the system based on which controllers in the next chapter are built. In particular, Sec-
tion 4.1 introduces the related concepts and provides an outline of the work presented
in this chapter. The QoS goal for the current server benchmark application is derived in
Section 4.2. Section 4.3 identifies the control input/output (allocation, utilisation) pair.
The system modelling procedure is presented in Section 4.4. Finally, Section 4.5 identi-
fies the system model to include the resource utilisation coupling among components of
multi-tier applications.

4.1 Introduction

Building a controller requires a system model that captures the dynamics of the system
and associates the control input(s) to the control output(s). Using the model and the con-
trol error the controller adjusts the input(s) so that system achieves its goal. However,
it is not always possible to know in advance the model of the system. The system iden-
tification process is a procedure which discovers the model of the system for a specific
goal. The model describes the relationship between the control input(s) and the control
output(s). The system identification process depends on the goals of the target system.

The goal of the current control system is to adapt the CPU resource allocations of server
components in order for the application to maintain its performance at a reference QoS

59

60 System Identification

level (mean response time ≤ 1s) in the presence of workload changes. In this way the
application achieves reference performance and there are free resources to co-host other
applications.

First, the performance goal for the application when deployed on the prototype cluster
needs to be defined. Although, the goal of some systems is easily set — e.g. the goal for
the temperature control system could be to maintain the room temperature at 18oC — in
this case, the performance of the server application depends on the deployed infrastruc-
ture; it is very likely that a different performance goal would be derived on a different
prototype. In section 4.2 the QoS performance goal for the Rubis application is defined.

To maintain the reference performance, the control system adjusts the control input(s)
based on the control output(s) and using the system model. However, it is difficult to
know a priori the model of the system, especially when dealing with complex server
applications. To address the complexity of server applications, this dissertation employs
a black-box approach to system modelling. To this end, during the system identification
process the server is subjected to variable workloads, its performance is measured and
the pair of control input/output is identified for the current control task. At the same
time the model between the input and the output signal is also derived.

There are two workload parameters that affect the server’s performance, namely the
workload type mix and the number of clients simultaneously issuing requests to the
server (hereafter referred to as the number of clients). Both parameters affect the com-
ponents’ CPU utilisation and consequently Rubis’ performance. Analysis in this chapter
studies the performance with respect to a changing number of clients and a single work-
load type mix, namely the browsing mix. A similar analysis can be done for different
workload mixes.

The rest of this chapter presents the system identification process towards building the
controllers. In particular, Section 4.3 presents the control input/output pair that captures
the dynamics of the current system; Section 4.4 describes the model of the system; and
Section 4.5 identifies and quantifies the utilisation resource coupling between the multiple
tiers.

4.2 QoS Target

This section identifies the reference QoS performance of the Rubis server. The QoS target
performance is defined as the number of clients the system can sustain effectively with
respect to their response time.

The application performance is measured when each component is allocated 100% of
the CPU capacity and the number of clients varies. Figures 4.1(a) shows the mean client
response time (hereafter denoted as mRT) and Figure 4.1(b) illustrates the corresponding
throughput (hereafter denoted as Throughput) as measured when the number of clients
increases from 100 to 1400 in steps of 100. Each measurement is derived from an exper-
iment where the corresponding number of clients issue requests to the server for 200
seconds (s) in total. The mRT is the mean response time over all completed requests. The

4.2 QoS Target 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Clients (x100)

m
R

T
 in

 s
ec

on
ds

(a) Response

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

120

140

160

180

200

Number of Clients (x100)

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(b) Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

120

Number of Clients (x100)

%
 C

P
U

 u
sa

ge

Tomcat usage
JBoss usage
MySQL usage

(c) CPU utilisation

Figure 4.1: System Identification. When the clients vary from 100 and 1200, all com-
ponents are adequately provisioned for incoming requests. When the num-
ber of clients increases from 1300 to 1400, the Tomcat component reaches
its maximum allocation, the server saturates, the mRT increases and the
Throughput remains constant. The error bars in Figure 4.1(a) correspond
to a 95% confidence interval (CI) around the mean and in Figure 4.1(c) they
show ± one standard deviation (σ) around the mean.

Throughput is the number of completed requests divided by the experiment duration
in seconds. This is very similar to the Throughput when calculated for every second
which is therefore not presented here. In all cases, 200s is enough to capture the servers’
dynamics.

As the number of clients increases up to 1200, the mRT stays well below 1s and the
Throughput increases linearly with the number of clients. When the number of clients
rises beyond 1200 the mRT grows beyond 1s, while the Throughput remains constant.
As expected, the figures show that there is a point of saturation (in this case with respect
to the number of clients) below which the server operates effectively and above which its
performance is unpredictable. Here, the server saturates at around 1200 clients. If more
clients issue requests, the mRT increases, as the requests are delayed in the server queues.
This also results in each client issuing fewer requests on average (due to the closed-
loop nature of the Client Emulator), and the Throughput remains constant despite the
increasing number of clients.

62 System Identification

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
es

po
ne

 in
 s

es
co

nd
s

Number of Clients (x100)

Figure 4.2: System Identification (Response Distributions Summary). For each number
of clients, a summary of the clients response distribution is shown. Each box-
plot shows the responses between Q1 and Q3. The median is also shown (red
line within each box). Whiskers are extended to 1.5 the Inter Quantile Range
(IQR) above Q3 and below Q1. The dashed blue line indicates the mean in
each data set. As the number of clients increases (up to 1200) the distribu-
tions do not change significantly; only the mean is relatively more increased.
When the number of clients exceeds 1200, the server saturates and this is
shown by the larger variation of the two rightmost response distributions.

The components’ CPU utilisation is also measured and shown in Figure 4.1(c). Again,
each point in the graph is the mean of all utilisations (there is one measurement every
second for the duration of the experiment). Each component uses more CPU resources
as more clients issue requests to the server. When the number of client exceeds 1200
the Tomcat component reaches almost 100% of its allocation and it cannot serve more
clients. It becomes the bottleneck component and as a result the mRT increases above 1s
and the Throughput remains constant.

The reference QoS performance level is therefore summarised as: The Rubis server can
serve up to 1200 clients with a performance of mRT ≤ 1s. This denotes the level of
performance the server is expected to achieve, even when the controller dynamically
allocates CPU resources to the components. This is also referred to as the reference QoS
performance of the server or the reference input of the control system.

For the above analysis, the mean statistic is used to summarise the response time and
CPU utilisation distributions. Further analysis, presented below, shows that the mean is
enough to capture the dynamics of the system without loss of generality.

In Figure 4.2 a summary of the main statistics (first quartile Q1 and third quartile Q3

(box), median (line within each box)) of each of the 14 response data sets from Fig-
ure 4.1 is illustrated. In each boxplot, whiskers (single lines above and below each box)
are extended to 1.5 the Inter Quartile Range (IQR) above the Q3 and below the Q1. The
mRT for each data set is also shown by the dashed line across boxplots. Each response
distribution is right skewed as the mean is larger than the median. Both the mean and the
median remain relatively stable for the first 10 data sets (100 to 1000 clients). For the

4.2 QoS Target 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

20

40

60

80

100

T
om

ca
t %

 C
P

U
 u

sa
ge

Number of Clients (x100)

Figure 4.3: System Identification (Tomcat CPU usage Distributions Summary). For each
number of clients, a summary of the usages for the Tomcat component is
shown. Each boxplot shows the utilisations between Q1 and Q3. The median
is also shown (red line within each box). Whiskers are extended to 1.5 the
IQR above Q3 and below Q1. Outliers are plotted by red crosses. The dashed
blue line across boxes indicates the mean in each data set. In general, the
utilisations are normally distributed for small number of clients (less than
1000). When the number of clients increases the utilisation increases too and
its distribution is upper bounded by the physical machine capacity.

last 4 sets (1100 to 1400 clients), the variance in the measured response times increases
significantly and both the mean and the median are affected. For the current analysis,
both the mean and the median exhibit similar behaviour and can be used as an applic-
ation performance metric. In the case of the median, the reference performance level of
the server is: The Rubis server can serve up to 1300 clients with a performance of median
response time < 0.5s.1 The dashed-dot line shows the 0.5s cut-off point.

In addition, Figure 4.3 shows a summary of some of the main statistics (Q1, Q3,, median,
mean) for each of the 14 utilisation data sets for the Tomcat component. In most cases,
the mean (dashed line across boxplots) is very close to the median (solid line within each
boxplot), indicating that the CPU usages in each data set are normally distributed. In
the rightmost four data sets however, the mean is below the median as the usages are
left skewed and most of them close to the 100% of the CPU usage. In the case of the
JBoss and MySQL components, the utilisations in all the cases of different clients are
(or are very close) to being normally distributed since these components do not saturate.
Therefore, in the usage distributions case, either the mean or the median can be used to
measure the server’s performance.

This section defined the reference QoS performance for Rubis server. The above analysis
showed that similar conclusions can be drawn irrespectively of whether the mean or
the median of the response and utilisations distributions are used. For the rest of this

1The server’s performance in the presence of the controllers was also measured in several cases using the
median response time and the above statement and similar conclusions to the ones presented in this
thesis (Chapter 6) were derived.

64 System Identification

dissertation the mean is used as the centrality index.

4.3 Control Signals

In a control system, the selection of the control input(s)/output(s) signals depends on
the task assigned to the system. Here, the control system dynamically allocates CPU
resources for server components. Therefore, the control input(s) are the parameters that
change the CPU allocation of the components. As described in Chapter 3, this is achieved
by using the interface exported by the SEDF CPU scheduler and assigning a proportion
of the machine’s CPU capacity to the running VMs.

The control output(s) is the component’s CPU utilisation. The problem addressed here
is a CPU allocation one, and intuitively the utilisation provides a very good indication
of the allocation itself. In addition, the utilisation indirectly relates to the server’s per-
formance; if a server is CPU saturated, it is very likely that its performance is degraded.
A component’s utilisation indicates its required allocation and to maintain the reference
performance, the controller should follow the components’ utilisations. A change in the
usage observed over one period of time can be used to set the allocation for the next one.
There are three advantages of using the utilisation: (a) it is easily measured at the server
side; (b) it does not require any application domain knowledge; and (c) it has negligible
overhead over the control process. Thus, utilisation is a suitable control output signal.

The next section presents the model between the control input/output pair: allocation
and utilisation.

4.4 System Modelling

Previous analyses have identified the allocation/utilisation as the control input/output
pair and suggested that to achieve reference performance the allocations should follow
the utilisations. This section identifies a simple type of relationship between the alloc-
ation and the utilisation that: (a) satisfies the above statement and (b) handles the mis-
match between the metrics (utilisation and mRT) that accounts for the control error.

A simple way to model the statement that the allocations follow the utilisations is to
always assign the allocations to the mean utilisations as computed over a time interval.
Although the mean statistic provides a simple summary of the utilisation, it does not
however capture the utilisation variability. For instance, the allocations for each com-
ponent in the case of 800 clients could be set to the corresponding mean utilisations as
shown in Figure 4.1(c). However, the error bars in the same figure show that the com-
ponents’ utilisations vary around the mean even for stable workloads. To better assess
the use of the mean utilisation and the effect of a component’s utilisation variability to
its allocation and subsequently to the server’s performance the next three experiments
are performed.

4.4 System Modelling 65

For a stable workload (e.g. 800 clients of the browsing mix) the allocation of one com-
ponent is varied in the following way: if u is a component’s mean utilisation and r
denotes an additional amount of CPU resources, hereafter denoted as extra allocation,
then its allocation a is assigned by:

a = u + r. (4.1)

The extra allocation increases from 0 up to 40 in steps of 5. The allocation for the
other two components is set to 100% of their CPU capacity.

Figures 4.4(a) and 4.4(b) illustrate the mRT and the Throughput respectively when the
Tomcat component is subject to varying allocation. As the extra allocation increases,
the mRT decreases and the Throughput increases. Both the mRT and Throughput
stabilise when the extra allocation is 15. Increasing the allocation beyond this value
does not improve the performance significantly. Similar experiments are performed for
the other two components and the results are shown in Figures 4.4(c) and 4.4(d) for
the JBoss component, and in Figures 4.4(e) and 4.4(f) for the MySQL component. A
similar analysis indicates that the extra allocation should be set to 10 for the other two
components.2

Results indicated that to maintain the reference server performance the allocation can be
assigned to the mean utilisation plus a value of the parameter r which should be above
a certain threshold. The parameter r captures the utilisation variability. Note that the
reference server performance is achieved for various r values above the threshold. To
estimate the minimum such value a much larger number of experiments (e.g. varying
number of clients, changing workload mixes, combinations of components and varying
allocations) is required. However, the current analysis aims to identify the system model
between the control input and control output. Assigning the parameter r to its best
value is part of the tuning process in a live system. Results in Chapter 6 examine how
the values of this parameter affect the server’s performance.

Maintaining the allocation above the utilisation is a common practice and has also been
used elsewhere. In data centres there is usually a headroom of CPU resources above
the utilisation to enable applications to cope with workload fluctuations and variable
utilisations. In this case, the allocation is expressed as a multiple of the utilisation and
takes the form:

a = x ∗ u, (4.2)

where x should be > 1. In [PSZ+07] an analysis that used the later model for a 2-
components virtualized Rubis server showed that as long as the allocation was at least
equal to a utilisation proportion (well above 1) the application achieved good perform-
ance. Further increasing the allocation above this threshold did not improve the applic-
ation performance significantly.

This section has identified the type of relationship between the allocation and the utilisa-
tion. In general, to sustain the reference performance, the allocation should follow the

2The current experiments provide an approximation of the extra allocation values.

66 System Identification

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

extra allocation

m
R

T
 in

 s
ec

on
ds

(a) mRT for Tomcat allocations

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

extra allocation

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(b) Throughput for Tomcat allocations

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

extra allocation

m
R

T
 in

 s
ec

on
ds

(c) mRT for JBoss allocations

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

extra allocation

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(d) Throughput for JBoss allocations

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

extra allocation

m
R

T
 in

 s
ec

on
ds

(e) mRT for MySQL allocations

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

extra allocation

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(f) Throughput for MySQL allocations

Figure 4.4: Extra Allocation. These figures illustrate the server’s performance when the
allocation of each component is changing for a fixed number of 800 clients.
Each point comes from an experiment of 100s duration. In all three com-
ponents, there is an extra allocation after which the server’s performance
stabilises. The error bars in the mRT figures correspond to a 95% CI around
the mean as calculated over .

mean utilisation and it should also provide some additional resources to the mean. Ad-
ditional resources can be expressed either (a) as an additive term to the mean utilisation
(Equation (4.1) is referred hereafter to as the additive model), or (b) as a multiplicative

4.5 Inter-Component Resource Coupling 67

factor of the mean utilisation (Equation (4.2) is hereafter denoted as the multiplicative
model). These terms are subject to each application and the reference QoS input. The
controllers presented in the next chapter are built based on these models.

4.5 Inter-Component Resource Coupling

The system modelling process in the previous section analysed the server’s performance
with respect to the behaviour of each component. In multi-tier applications, there is,
however, a resource coupling between the components. This section starts with an ex-
ample to illustrate the drawbacks when not considering the resource coupling when al-
locating resources to virtualized components. It then proceeds to model the utilisation
resource coupling for the components of the Rubis benchmark application.

Figure 4.5 illustrates a system that controls the allocations of each tier of a 3-component
application independently. For each component, the dashed line indicates its required us-
age for the current workload,3 and the solid line shows its current allocation. The shaded
part of each component shows the actual usage. The figure illustrates two snapshots of
the allocation procedure. In the top illustration component B is the bottleneck tier, since
its allocation is less than its required usage. This results in under-utilisation of the other
two tiers, despite those having been allocated with enough resources (solid lines) for the
current workload. Later, the controller for component B adjusts the allocation of the
bottleneck tier. The allocations of the other tiers remain unchanged, as they have not
reached saturation point. Depending on the allocation of each of the other tiers, the
bottleneck point can then be moved to the tier(s) with the smallest difference between
the allocation and the usage, e.g. component C, as shown in the bottom illustration.
This scheme, where each tier’s allocation is controlled independently, would result in
slower overall response to workload changes, as the bottleneck point could move from
component to component.

In a multi-tier application, each component uses a different amount of resources to pro-
cess incoming requests (even when tiers are running on machines of the same physical
capacity), since they perform different sets of operations for each input. When dynamic-
ally allocating component resources, the controller should adjust them in a manner that
meets each component’s distinct demands. In fact, in multi-tier systems the resource us-
ages of the different components are closely related and a control system that considers
this behaviour is appropriate.

Recall that the Rubis components consume different amounts of CPU resources, with
Tomcat consuming the most and JBoss the least (Figure 4.1(c)). The components’ CPU
usages are coupled since the workload on each component is affected by the workload
on the rest, as long as there are adequate resources. If one of the components does not
have enough resources to process all the incoming requests (bottleneck component), then
the rest of the components cannot process the requests of more clients.

3Assuming for this example that the components’ usage for the current workload is measured and known
in advance.

68 System Identification

A B
C

Bottleneck Component B

A B C

Bottleneck Component C

allocation

required utilisation

utilisation

Figure 4.5: Inter-Component Resource Coupling Example. The figures illustrate two
snapshots of the allocation procedure in the case of a 3-component applica-
tion, where each tier is provisioned individually. The solid lines indicate the
components’ resource allocation, the dashed lines show how much resources
are required for the current workload, and the shaded part illustrates the ac-
tual usage. As shown in the topmost diagrams, the component B lacks of
resources to process the incoming workload and is therefore, the bottleneck
component. When more resources are allocated to it (bottommost diagrams),
the saturation point moves to component C, whose allocation remains the
same and not enough for the current workload.

This is further illustrated by the following experiment. The CPU allocation of one of
the three components is varied from 10 to 100 in increments of 10, the number of clients
is kept constant at 800, and each of the other two components is allocated 100% of its
CPU capacity. Initially, the allocation of the Tomcat component is varied. As shown
in Figure 4.6(a) its usage follows the allocation until the allocation exceeds the required
one for the current workload. The usage for the other two components increases slowly,
despite their having the necessary resources to serve 800 clients. In this case the bottle-
neck component is Tomcat, and since it does not have adequate resources to cope with
the current workload, the other components’ usages are affected as well. Similar beha-
viour is observed when either the JBoss or the MySQL components are the bottlenecks
as shown in Figures 4.6(b) and 4.6(c).

Overall, in the case of a bottleneck, an increase of its allocation eventually leads to the
increase in the CPU usage of the other components, suggesting that their allocations
should be increased as well. A controller that takes into account the CPU usage of all the
components and assigns the CPU allocation to each of them will clearly do better than
one that does not.

The provisioning of multi-tier applications based on a model of all tiers’ resource de-
mands was also proposed in [UC05]. The authors proposed the use of an analytical
model to compute the resource demands of all tiers and then allocated servers for each
tier accordingly.

4.5 Inter-Component Resource Coupling 69

10 20 30 40 50
0

20

40

60

80

100

% Tomcat CPU allocation

%
 C

P
U

 u
sa

ge

Tomcat usage
JBoss usage
MySQL usage
Tomcat allocation

(a) Tomcat

10 20 30 40 50
0

20

40

60

80

100

% JBoss CPU allocation

%
 C

P
U

 u
sa

ge

Tomcat usage
JBoss usage
MySQL usage
JBoss allocation

(b) JBoss

10 20 30 40 50
0

20

40

60

80

100

% MySQL CPU allocation

%
 C

P
U

 u
sa

ge

Tomcat usage
JBoss usage
MySQL usage
MySQL allocation

(c) MySQL

Figure 4.6: Inter-Component Resource Coupling Experiments. These figures illustrate
the components’ utilisations when one of the three is subject to variable al-
location. In all cases, if one of the components is not adequately provisioned
to serve incoming requests (800 clients), the rest also consume less resources,
and the server’s performance is affected. The error bars correspond to a 95%
CI around the mean utilisation.

70 System Identification

coefficients name coefficients values R2

γ1, δ1 3.77, -8.23 0.98
γ2, δ2 0.47, 1.68 0.98
γ3, δ3 0.55, 1.21 0.97

Table 4.1: Parameters of the Models of Components’ Utilisation Coupling.

This section continues to quantify the resource coupling among the utilisations of the
different components using a black-box approach. This relationship will later be used to
built the Multi-Input Multi-Output (MIMO) Usage Based (MIMO-UB) controller. First,
the relationships between the different components’ usage are extracted. Data is collected
(10 sets of CPU usages over 100s duration each, for all three components running with
clients in the range of [100,1200]) and then processed with the aid of the MATLAB
Curve Fitting Toolbox [MAT]. The CPU usage for all components (denoted by u1, u2

and u3) are found to be related by the following formulae:

u1 = γ1u2 + δ1, (4.3)

u2 = γ2u3 + δ2, (4.4)

u3 = γ3u1 + δ3, (4.5)

where γi, δi are the coefficients found.4 The coefficients found are shown in Table 4.1.
In general R2 ≥ 0.8 provides a very good fit to the data.

4.6 Summary

This chapter presented the system identification analysis for the Rubis server system.
Through experimental analysis the following emerged: (a) the reference QoS input that
the controller system should maintain was identified (Section 4.2); (b) the (allocation,
utilisation) signal pair was presented to control and monitor the server applications (Sec-
tion 4.3); (c) a linear model between the two signals was derived (Section 4.4), and (d) the
resource coupling model between component utilisations was also given (Section 4.5).

The next chapter presents the controllers design based on the above conclusions from
the system identification analysis. Each controller aims to maintain the reference per-
formance despite workload changes. It uses the utilisation control output to monitor the
server and, based on the system model, it updates the allocations.

4Two of the equations are adequate to describe the relationships between all three components, but, they
are all retained here for notational simplicity.

5
Controllers Design

This chapter presents five controllers that dynamically adjust the CPU allocation of vir-
tualized applications. The controllers are designed based on the system identification
analysis from previous chapter. In particular, they make use of the observation that the
VM allocation should follow the utilisation of the hosted application. There are two
models that describe this relationship: the additive (Equation (4.1)) and the multiplic-
ative model (Equation (4.2)). Some also make use of the fact that there is a utilisation
resource coupling among the components in a multi-tier application.

Based on these observations, this chapter presents five novel controllers: (a) the SISO
Usage-Based (SISO-UB) controller (Section 5.1.1) controls the CPU allocation of indi-
vidual tiers based on their utilisation; (b) the Kalman Basic Controller (KBC) controller
(Section 5.1.4) also adjusts the CPU allocation of individual tiers and is based on the
Kalman filtering technique; (c) the MIMO Usage-Based (MIMO-UB) controller (Sec-
tion 5.2.1) extends the SISO-UB controller to collectively allocate resources for multi-
component applications; (d) the Process Noise Covariance Controller (PNCC) controller
(Section 5.2.2) expands the KBC design for multi-tier applications; and, (e), the Adapt-
ive PNCC (APNCC) (Section 5.3) controller which further extends the PNCC design
with online estimation of the model parameters. Table 5.1 below presents all controllers
notation used in this dissertation:

5.1 Single-Tier Controllers

This section presents two Single-Input Single-Output controllers that adjust the CPU
allocations for each application component separately. Figure 3.1 of the evaluation plat-

71

72 Controllers Design

symbol description

n number of application components
i component index
ai

k allocation of component i at interval k
ui

k measured usage of component i at interval k
pi minimum proportion of utilisation assigned to the allocation of component i
ei

k controller error for component i at interval k
λ tunable parameter to multiple the control error
ri extra resources for component i
vi

k real usage of component i at interval k
tk process noise of real utilisation v at interval k
zk process noise of allocation a at interval k
wk measurement noise at interval k
c fraction of the utilisation that accounts for the final allocation
Q process noise variance
S measurement noise variance
Kk Kalman gain at interval k
ãk a priori allocation estimation at interval k
âk a posteriori allocation estimation at interval k

P̃k a priori estimation error variance at interval k

P̂k a posteriori estimation error variance at interval k
ak allocation for all components at interval k, ak ∈ R

n×1

uk measured utilisation for all components at interval k, uk ∈ R
n×1

P diagonal matrix with the pi values along its diagonal, P ∈ R
n×n

M array with the coefficients of the usage coupling models, M ∈ R
n×n

r reference values for all components, r ∈ R
n×1

ek control errors from all components , ek ∈ R
n×1

ek(i) controller error for component i at interval k, ith element of ek

ãk a priori allocation estimations for all components at interval k, ãk ∈ R
n×1

âk a posteriori allocation estimations for all components at interval k, ãk ∈ R
n×1

Wk process noise for all components at interval k, Wk ∈ R
n×1

Vk measurement noise for all components at interval k, Vk ∈ R
n×1

C array with the c values for all components along its diagonal, C ∈ R
n×n

Q process noise covariance matrix, Q ∈ R
n×n

S measurement noise covariance matrix, S ∈ R
n×n

K Kalman gains for all components, K ∈ R
n×n

Qk process noise covariance matrix at interval k, Qk ∈ R
n×n

Rk measurement noise covariance matrix at interval k, R ∈ R
n×n

Kk Kalman gains for all components at interval k, K ∈ R
n×n

Table 5.1: Controllers Notation.

5.1 Single-Tier Controllers 73

form illustrates the way three SISO controllers adjust the allocations for the Rubis com-
ponents. Both SISO controllers are built based on the observation from the system iden-
tification process, that the allocation follows the utilisation. In particular, Section 5.1.1
presents the SISO Usage Based controller (SISO-UB). This is a simple controller which
adjusts the allocation based on the last interval mean utilisation and uses both system
models (Equations (4.1) and, (4.2)). The second SISO Kalman Basic controller (KBC)
uses the Kalman filter to track the utilisation and update the allocation accordingly. This
is a more advanced approach where a filtering technique is used to eliminate the noise
of the CPU utilisation signal and still discovers its main fluctuations. To better explain
the KBC controller, this section also briefly presents the Kalman filter (Sections 5.1.2
and 5.1.3). Finally, the two controllers also differ in the way their control errors are
defined. The control error in the SISO-UB controller uses the additive model (Equation
(4.1)), while the KBC controller uses the multiplicative model (Equation (4.2)).

5.1.1 SISO Usage-Based Controller

This section presents the SISO-UB controller (Figure 5.1). The SISO-UB notation is given
first. If i denotes the application component, then: ai

k is defined as the proportion of the
total CPU capacity of a physical machine allocated to a running VM for interval k;
ui

k denotes a component’s CPU usage or utilisation as the proportion of the total CPU
capacity of a physical machine measured to be used by that component for interval k;
and, pi is a tunable parameter which indicates the lowest proportion of the utilisation
that the allocation is assigned to and its values are > 1. The SISO-UB control law is given
by:

ai
k+1 = piui

k + λei
k, (5.1)

where ei
k, its control error, is calculated as:

ei
k = |ri − (ai

k − ui
k)|, (5.2)

where λ in (5.1) is a tunable parameter which shows the portion of the control error that
is considered towards the final allocation; and ri in (5.2) denotes the extra allocation
required for this component. Recall that the extra allocation is the additional amount
of CPU resources added to the mean utilisation in order for the component to be ad-
equately provisioned for incoming requests; it is required to capture the CPU utilisation
variability around the mean.

The SISO-UB controller aims to allocate enough resources for each component to serve
incoming requests based on the previous interval’s utilisation. System identification ana-
lysis showed that there are two ways to model required CPU resources as a function of
the utilisation: the additive model (Equation (4.1)) and the multiplicative one (Equation
(4.2)). The SISO-UB control law draws on both models.

First, according to the additive model, the difference between the allocation and the util-
isation should be sustained around a reference value. This is incorporated in the control
error (5.2). The allocation ai

k+1
depends on the control error λei

k, which shows the dif-

74 Controllers Design

component
+

-

|)(|1 kkkk uarpua −−+=+ λ

ka

ku

p,λ

∑

r

+

Figure 5.1: SISO-UB Controller Layout. The allocation for the next interval ak+1 is calcu-
lated based on the utilisation uk of the previous interval and the control error
ek, which denotes the difference between the allocation and the utilisation
over the previous interval from the reference value r. The controller takes as
input the parameters: r, λ and p. For simplicity the superscript component
index i is omitted.

ference between the allocation and the utilisation, and the reference value ri. To always
allocate more resources than the CPU utilisation, the absolute error is used. Different λ
values can be used to build controllers with different reactions to the control error. How-
ever, if the difference between the allocation ai

k and the utilisation ui
k equals the reference

value ri, then the control error ei
k becomes 0. To always allocate more CPU resources

than the previous utilisation, pi is also introduced. The allocation ai
k+1

is also propor-
tional to the utilisation piui

k (use of the multiplicative model (4.2)) and since pi > 1,
the controller always allocates more resources than the mean utilisation ui

k, providing
therefore, some minimum resources.

The SISO-UB control law comes from a combination of the two system models. The
final allocation is a sum of the utilisation of the previous interval plus some additional
resources, which come from both the utilisation proportion and the control error. The
advantages of using the control error and the utilisation proportion are two-fold. First,
when a high control error occurs, the controller allocates more resources according to
the error, thereby acting faster to considerable changes than when just using the utilisa-
tion proportion. Second, the control error enables the controller to provide adequate
resources when the utilisation is low and its variability high. For example, consider
a system with low utilisation ui

k = 20, high variance (values of ui during interval k
∈ [20 − 15, 20 + 15], and pi = 1.25. If just the multiplicative model is used, then
ai

k+1
= 25. However, this allocation is lower than several possible utilisation values,

and therefore, the application could be inadequately provisioned. Now add the control
error. If ai

k = 23, λ = 0.8 and ri = 15, then ai
k+1

= 34.6. The final allocation has now in-
creased, and the application has more resources to serve incoming requests with variable
utilisation demands. The combination of the two models provides a flexible scheme for
applications with diverse characteristics.

5.1 Single-Tier Controllers 75

Stability

The SISO-UB is stable when |λ| < 1, as shown below. For (ri − (ai
k − ui

k)) > 0 the
allocation signal is:

ak+1 = puk + λ(r − ak + uk),

where the superscript component index i is omitted for simplicity and without loss of
generality. The Z-transform of the allocation signal is:

zA(z) − za(0) = pU(z) + λ ∗ (
r

1 − z−1
− A(z) + U(z)) ⇔

zA(z) − za(0) = pU(z) +
λr

1 − z−1
− λA(z) + λU(z) ⇔

(z + λ)A(z) = (p + λ)U(z) + za(0) +
λr

1 − z−1
.

So, the transfer function is:

T (z) =
A(z)

U(z)
=

p + λ

z + λ
,

where the denominator is the characteristic function. The pole of the characteristic equa-
tion is:

z + λ = 0 ⇔ z = −λ

and for stability it suffices for the pole to be within the unit circle:

|z| < 1 ⇔⊢ λ| < 1. (5.3)

When (ri − (ai
k − ui

k)) < 0 a similar analysis shows that the transfer function is:

T (z) =
p − λ

z − λ
.

The pole of the characteristic equation is:

z − λ = 0 ⇔ z = λ

and for stability it suffices:

|z| < 1 ⇔ |λ| < 1. (5.4)

To summarise, from Equations (5.3) and (5.4) the SISO-UB controller is stable when:

|λ| < 1. (5.5)

76 Controllers Design

Discussion

This section has presented the SISO-UB controller. This is a simple controller that uses
the mean utilisation of the last interval and the two system models (the additive and the
multiplicative) to update the allocation for the next interval. The next sections present
the integration of the Kalman filtering technique into a feedback controller. The advant-
age of using a filter to track the utilisation over the SISO-UB approach is the ability of
filters to “clean” a signal from noise and discover its main fluctuations. This is partic-
ularly attractive in the case of noisy CPU utilisations. In this dissertation, the Kalman
filter is used because it is the optimal recursive estimator when certain conditions hold.
It also provides good results even when these conditions are relaxed and is a very well
researched technique.

5.1.2 The Kalman Filter

Since first presented by R.E. Kalman in his seminal 1960 paper [Kal60], the Kalman filter
has been used in a large number of areas including autonomous or assisted navigation,
interactive computer graphics, motion prediction, and so on. It is a data filtering method
that estimates the state of a linear stochastic system in a recursive manner based on noisy
measurements. The Kalman filter is optimal in the sum squared error sense under the
following assumptions: (a) the system is described by a linear model and (b) the process
and measurement noise are white and Gaussian. It is also computationally attractive,
due to its recursive computation, since the production of the next estimate only requires
the updated measurements and the previous predictions.

To briefly illustrate the basics of the Kalman filter, a very simple example is now discussed
[SGLB99]. Assume that via measurements the value of a quantity, let’s say length, is
to be calculated. Every new measurement (same or different equipment can be used,
such as a mechanical ruler or a laser system) provides an observation of the true value
with some error. Assume that N measurements are taken. An estimate of the length
that minimises the distances from all the measurements can easily be calculated using
the normalised Euclidean distance. The result minimises the sum of the distances to all
measurements, weighted by their standard deviations. Consider now the case where,
after each new measurement, a new best estimation of the length is to be calculated.
A simple but expensive approach would be to calculate the new best length given all
the previous measurements at hand plus the new one. With the Kalman filter estimator,
the new best length is calculated using the current best estimate so far and the next
measurement. Note that this is an iterative process and, at any point, no more than two
measurement states are involved.

In what follows, an introduction to the basics of the Kalman filter is provided. Emphasis
is given to presenting those that are needed in later sections to approach the problem of
the CPU allocation for virtualized server applications. There are numerous papers and
books that provide a thorough and more comprehensive analysis of the Kalman filter
(e.g. [Sim06,May79,WB95]).

5.1 Single-Tier Controllers 77

5.1.3 Kalman Filter Formulation

In this subsection the basics of the discrete Kalman filter are presented.1 The Kalman
filter estimates the next state of the system. The states usually correspond to the set of
the system’s variables that are of interest. The evolution of the system’s states is described
by the following linear stochastic difference equation:

xk+1 = Axk + Bbk + wk, (5.6)

where x is a n×1 vector representing the system states; A is a n×n matrix that represents
the way the system transits between successive states in the absence of noise and input;
b is the optional m × 1 vector of system inputs; the n × m B matrix relates the inputs to
the states; w is the n × 1 process noise vector; and the subscript k denotes the interval.

The states x are linearly related to the measurements z:

zk = Hxk + vk, (5.7)

where the n × n matrix H represents the transition between the states and the measure-
ments; and v is the n×1 measurement noise vector. A and H might change between time
steps, but here they are assumed to be constant.

The measurement and process noise are independent of each other, stationary over time,
white, and normally distributed:

p(w) ∼ N(0, Q),

p(v) ∼ N(0, S).

The state xk+1 of the system at any time point k + 1 is unknown. The purpose of the
Kalman filter is to derive an estimate of xk+1, given the measurements (5.7) and the way
the system evolves (5.6), while minimising the estimation error. This process is described
below.

The Kalman filter always iterates between two estimates of the xk state; the a priori
estimate denoted as x̃k and the a posteriori estimate given by x̂k, as shown in Figure 5.2.
It first estimates the a priori state x̃k during the Predict or Time Update phase. This is
a prediction of the state xk given the measurements so far over the previous intervals
and using the system model (5.6). Since this is only a prediction of the true state xk, the
Kalman filter later further adjusts this estimation closer to the true value by incorporating
the updated knowledge of the system coming from the new measurements. This latter
phase is called the Correct or Measurement Update phase and it results in the a posteriori
estimate x̂k. The is the closest and final estimation to the real value of xk.

The exact relationship between the two estimates is given by:

x̂k = x̃k + Kk(zk − Hx̃k). (5.8)

1Notation in this section is independent of the notation used elsewhere in this dissertation and is not
contained in Table 5.1.

78 Controllers Design

)~(kkk xHzK −

kx~
+ kx̂

A 1
~

+kx

Predict

H,S kk PK , ˆ
A,Q

Correct Predict

kP
~

1

~
+kP

Figure 5.2: Kalman Filter Overview. The Kalman filter operates between two phases, the
Predict and the Correct. During the predict phase, the filter estimates the next
state of the system x̃k based on the observations so far. During the correct
phase, the filter adjusts its prediction using the latest observation to x̂k. This is
also the prediction for the next phase x̃k+1. All predictions are made using the
system’s dynamics through the Kalman gain Kk which depends, among other
variables, on the process noise variance Q and measurement noise variance
S.

In this equation the a priori estimate is adjusted as given by the residual zk − Hx̃k, also
known as the innovation. The factor Kk is called the Kalman gain. The Kalman gain is
calculated by minimising the mean squared error of the estimation. The purpose of the
filter is to make the best estimate of the next state. The error in the estimate is calculated
by:

P̂k = E[(xk − x̂k)(xk − x̂k)
T], (5.9)

where P̂k is the a posteriori covariance error n × n matrix and E is the expected value.

The Kalman gain Kk that minimises the covariance error is derived by substituting the
x̂k from Equation (5.8) in Equation (5.9) and performing the necessary calculations. The
resulting minimum gain is:

Kk = P̃kH
T (HP̃kH

T + S)−1 (5.10)

where P̃k is the a priori estimate of the P̂k. The updated error covariance is thus given
by:

P̂k = (I − KkH)P̃k. (5.11)

Finally, using the updated estimates the new predicted values for the next state and the
covariance matrix are:

x̃k+1 = Ax̂k + Bbk, (5.12)

P̃k+1 = AP̂kA
T + Q. (5.13)

Simply put, the Kalman filter takes as input the predictions of the new state and the
covariance error matrix and, using the new measurements, it produces the new adjusted
estimations. The error covariance matrix is also used to evaluate the predictions.

The Kalman filter has been widely applied, although not all systems can be described

5.1 Single-Tier Controllers 79

through linear processes. There are cases involving an assumption that a linear model
describes a system and captures its main dynamics where it is enough to apply the Kal-
man filter. This is the direction taken in this dissertation; results in Chapter 6 show that
the current approach is sufficient.

5.1.4 Kalman Basic Controller

This section presents the SISO Kalman Basic Controller (KBC) (Figure 5.3). It is a utilisa-
tion tracking controller based on the Kalman filtering technique. Rather than using Kal-
man filters to estimate the parameters of an application performance model [ZYW+05],
Kalman filters are here used both as a tracking method and to build a feedback con-
troller. The Kalman filter is particularly attractive since it is the optimal linear filtering
technique when certain conditions hold and has good performance even when those con-
ditions are relaxed. All metrics presented in this subsection are scalar and refer to a single
component.

The time-varying CPU usage is modelled as a one-dimensional random walk. The system
is thus governed by the following linear stochastic difference equation:

vk+1 = vk + tk, (5.14)

where vk is the proportion of the total CPU capacity of a physical machine actually used
by a component and the independent random variable tk represents the process noise
and is assumed to be normally distributed.

Intuitively, in a server system the CPU usage in interval vk+1 will generally depend on the
usage of the previous interval vk as modified by changes, tk, caused by request processing,
e.g. processes being added to or leaving the system, additional computation by existing
clients, lack of computation due to I/O waiting, and so on.2 Knowing the process noise
and the usage over the previous interval vk, one can predict the usage for the next interval
vk+1.

To achieve reference performance the KBC controller uses the multiplicative system
model Equation (4.2). To this end, the allocation should be maintained at a certain
level 1

c
of the usage, where c is customised for each server application or VM. c para-

meter corresponds to the transition matrix H from Equation (5.7) between the states, in
this case the allocation, and the measurements. The allocation signal is described by:

ak+1 = ak + zk, (5.15)

and the utilisation measurement uk relates to the allocation ak, as:

uk = cak + wk. (5.16)

The independent random variables zk and wk represent the process and measurement

2In the current context of virtualized servers, vk also models the utilisation “noise” coming from the
operating system that runs in the VM.

80 Controllers Design

component
+

-

)~(~ˆ kkkk acuKaa −+=

c
ka~

ku

),(RQfK =

∑
kk aa ˆ~

1 =+

Figure 5.3: KBC Controller Layout. The KBC controller is based on the Kalman filter
to adjust the CPU allocation of individual components. The controller uses
the a priori estimation of the allocation ãk and the new measurement uk to
compute the allocation for the next interval ãk+1 using the Kalman gain Kk.
The Kalman gain is a function of the input parameters Q and S which are
computed offline.

noise respectively, and are assumed to be normally distributed:

p(z) ∼ N(0, Q),

p(w) ∼ N(0, S).

The measurement noise variance S might change with each time step or measurement.
Also, the process noise variance Q might change in order to adjust to different dynamics;
however, for the rest of this section they are assumed to be stationary during the filter
operation. Later, another approach, which considers non-stationary noise, is presented.
Given that the equations (5.15) and (5.16) describe the system dynamics, the required al-
location for the next interval is a direct application of the Kalman filter theory, presented
below.

ãk is defined as the a priori estimation of the CPU allocation, that is the predicted es-
timation of the allocation for the interval k based on previous measurements. âk is the a
posteriori estimation of the CPU allocation, that is the corrected estimation of the alloc-
ation based on measurements. Similarly, the a priori estimation error variance is P̃k and
the a posteriori estimation is P̂k. The predicted a priori allocation for the next interval
k + 1 is given by:

ãk+1 = âk, (5.17)

where the corrected a posteriori estimation over the previous interval is:

âk = ãk + Kk(uk − cãk). (5.18)

At the beginning of the k +1 interval the controller applies the a priori ãk+1 allocation. If
the ãk+1 estimation exceeds the available physical resources, the controller allocates the
maximum available. In the region where the allocation is saturated, the Kalman filter is
basically inactive. Thus, the filter is active only in the underloaded situation where the
dynamics of the system are linear. The correction Kalman gain between the actual and

5.1 Single-Tier Controllers 81

the predicted measurements is:

Kk = cP̃k(c
2P̃k + S)−1. (5.19)

The Kalman gain Kk stabilises after several k iterations (Appendix A). The a posteriori
and a priori estimations of the error variance are respectively:

P̂k = (1 − cKk)P̃k, (5.20)

P̃k+1 = P̂k + Q. (5.21)

Kalman Gain

The Kalman gain is important when computing the allocation for the next interval ãk+1.
It is a function of the variables Q and S which describe the dynamics of the system. In
general, Kk monotonically increases with Q and decreases with S. This is also explained
intuitively: Consider a system with large process noise Q. Its states experience large vari-
ation, and this is shown by the measurements as well. The filter should then increase its
confidence in the new error (the difference between the predicted state and the measure-
ment), rather than the current prediction, in order to keep up with the highly variable
measurements. Therefore the Kalman gain is relatively large. On the other hand, when
the measurement noise variation S increases, the new measurements are biased by the in-
cluded measurement error. The filter should then decrease its confidence in the new error
as indicated by the smaller values of the Kalman gain. In fact the Kalman gain depends
on the ratio S

Q
(Appendix A). In addition, the original Kalman gain values as computed

from Q and S can be tuned to make the filter more or less reactive to workload changes;
as will be demonstrated by the results shown in Chapter 6.

Modelling Variances

To obtain a good estimation of the allocation process noise variance Q, since it is con-
sidered to be proportional to the usage, it is enough to estimate the usage variance and
then evaluate it via the following formula (var denotes variance):

var(a) ≃ var(
u

c
) =

1

c2
var(u). (5.22)

The usage process noise corresponds to the evolution of the usage signal in successive
time frames. Estimating its variance is difficult, since the usage signal itself is an un-
known signal, which does not correspond to any physical process well described by a
mathematical law. The usage variance is calculated from measurements of the CPU util-
isation. When the KBC controller is used, the stationary process variance Q is computed
offline before the control process and remains the same throughout.

Finally, the measurement noise variance S corresponds to the confidence that the meas-
ured value is very close to the real one. Once more it is difficult to compute the exact
amount of CPU usage. However, given the existence of relatively accurate measurement

82 Controllers Design

tools, a small value (such as S = 1.0, which is used throughout this dissertation) acts as
a good approximation of possible measurement errors.

Stability

The KBC controller is stable for all the values of the Kalman gain, as shown below. The
KBC control law is:

ak+1 = ak + K(uk − cak). (5.23)

The Z-transform of the allocation signal is:

zA(z) − za(0) = A(z) + KU(z) − cKA(z) ⇔ (5.24)

(z − 1 + cK)A(z) = KU(z) + za(0). (5.25)

The transfer function is:

T (z) =
A(z)

U(z)
=

K

z − 1 + cK
, (5.26)

where the denominator is the characteristic function. The pole of the characteristic equa-
tion is:

z − 1 + cK = 0 ⇔ z = 1 − cK (5.27)

and for stability it suffices for the pole to be within the unit circle:

|z| < 1 ⇔ |1 − cK| < 1 ⇔ 0 < K <
2

c
. (5.28)

Equation (5.28) is true for all Kalman gain values, shown below. From (5.28):

K <
2

c
⇔ from (A.4)

c +
√

c2 + 4 S
Q

c2 + c
√

c2 + 4 S
Q

+ 2 S
Q

<
2

c
⇔

c +

√
c2 + 4

S

Q
< 2c + 2

√
c2 + 4

S

Q
+

4 S
Q

c
⇔

0 <

√
c2 + 4

S

Q
+ c +

4 S
Q

c
,

is always true. Therefore, the KBC controller is stable for all values of the Kalman gain.

5.2 Multi-Tier Controllers 83

5.1.5 Discussion

This section presented two SISO controllers: the SISO-UB and the KBC controller. Both
controllers track the utilisation of the previous interval to update the allocation for the
next. The SISO-UB controller implements a simple tracking approach, while the KBC
integrates the Kalman filtering technique into its design and creates a more elaborate ap-
proach, where the system’s dynamics are incorporated into the tracking process through
the Kalman gain.

There are several input parameters in both controllers’ cases that need to be defined be-
fore the control process. In the case of the SISO-UB, the parameters are: pi, λ and ri.
There is also the parameter c of the KBC controller. All of them relate to the additional
CPU resources required for the application to achieve the reference QoS performance.
However, setting these parameters to appropriate values might require some offline ana-
lysis and, in some cases a “trial by error” approach. The controllers presented in this
dissertation do not aim to find the best such values that would allocate the minimum
resources for the reference performance. Rather they provide a framework where the
parameters can be set to different values for different applications and control object-
ives. The evaluation of controllers in Chapter 6 show the effects of parameter values on
controllers’ allocations and server’s performance.

In addition, the KBC controller has another two input parameters, Q and S, which de-
note the system’s noise variance and are particularly important to the control process.
Section 5.3 will present a mechanism that estimates these parameters online, adapts to
systems’ dynamics at run-time and therefore makes the deployment of the Kalman filter-
ing technique for any application even more attractive in practice.

Finally, all controllers adjust the allocations of individual components. System analysis
showed that there is a resource coupling between tiers. This observation is used to
build controllers that adjust the allocations for all application tiers collectively, there-
fore, reacting faster to workload changes. The next section presents two such multi-tier
controllers.

5.2 Multi-Tier Controllers

This section presents two MIMO controllers that control the CPU resources of all ap-
plication tiers. Figure 3.1 of the evaluation platform illustrates the way a MIMO con-
troller adjusts the allocations for the Rubis components. The MIMO type of controllers
make use of the resource coupling observation from the system analysis (Section 4.5).
The MIMO-UB controller (Section 5.2.1) extends the SISO-UB to dynamically allocate
resources based on the offline-derived utilisation coupling models of component pairs
(Equations (4.3), (4.4), and (4.5)). The PNCC controller (Section 5.2.2) extends the
KBC to consider the process covariance noises between component pairs.

84 Controllers Design

component 1

+

-

))3()2()1(()1()1,1()1(211
1 kkkkk eeeuPa γγγλ +++=+

ka

ku

P,λ

∑

r

+

component 2

component 3

ke

Figure 5.4: MIMO-UB Controller Layout. The MIMO-UB controller allocates CPU re-
sources collectively to all components. The allocation for each component is
adjusted based on its utilisation over the previous interval plus a fraction (λ)
from all components’ errors. This figure illustrates the allocation for the first
component in a 3-tier application.

5.2.1 MIMO Usage-Based Controller

This section presents the MIMO Usage Based (MIMO-UB) controller which dynamically
allocates resources for multi-component server applications (Figure 5.4). The MIMO-
UB controller is based on the SISO-UB controller and considers the individual resource
demands of each tier; it also takes into account the resource usage coupling between the
different tiers. By considering the coupling between the tiers, the controller adjusts the
allocation for all components accordingly. In the example from Figure 4.5 the controller
would allocate new resources not only to the bottleneck component B, but also to the
component C. In this way, faster overall response to workload changes could be achieved.

First, the MIMO-UB notation is given. If n denotes the number of application compon-
ents, then: ak ∈ R

n×1 and uk ∈ R
n×1 are the allocation and usage vectors respectively,

and each row corresponds to a component; P ∈ R
n×n is a diagonal matrix with the pi

values which denote the minimum proportion of utilisation allocated to each component
and must be set to values > 1 for each component along the diagonal; and, λ shows the
proportion of each component’s error accounted towards the allocation. The MIMO-UB
controller (Figure 5.4) assigns the new allocations by using the following control law:

ak+1 = Puk + λMek, (5.29)

where ek ∈ R
n×1 is the control error vector and each row corresponds to a component’s

error (e.g. error for component i is ek(i)). If |x| is the element-wise absolute value of the
vector (i.e. |x| , [|xi]]), then the controller error vector is defined as:

ek = |r − (ak − uk)|, (5.30)

where the r ∈ R
n×1 vector contains the reference values that the difference between the

CPU usages u and the CPU allocations a is to be maintained from; again each row cor-

5.2 Multi-Tier Controllers 85

responds to a component. The absolute error is used to always provide more resources
than the previous utilisations. Finally, to consider the resource coupling between the
components in a 3-tier server application, M is introduced and multiplied with e:

M =




1 γ1 ... γn−2γn−1

γn−1γn 1 ... γn−1

...
...

...
...

γn γ1γn .. 1


 ,

where γ1, γ2, ..., γn are the coefficients from the linear utilisation coupling models
between components. By using M, the errors from all components are included when
calculating the error for every other component.

For example, consider the case where the first component’s error in a 3-component ap-
plication (n = 3) is calculated. The total error for the first component is given by:
e(1) + γ1e(2) + γ1γ2e(3), which is the sum of all components’ errors as seen from the
point of view of the first component. e(1), e(2), and e(3) are calculated by using equa-
tion (5.30). Formulae (4.3), (4.4), (4.5) are used to relate the errors between the different
components. Therefore, any new allocation is affected by all components’ errors. Finally,
only a portion of the final error is considered by introducing the tunable parameter λ. λ
does not depend on γ1, γ2, ..., γn and the controller is globally stable when |λ| < 1/3 as
shown below in the case of a 3-tier application.

Stability

The stability for the MIMO-UB in the case of a 3-tier application is as follows. For the
stability proof the following notation, Theorem, and relationship of the coefficients of
the utilisation coupling models are required:

Notation: |A| is the element-wise absolute value of the matrix (i.e. |A| , [|Aij]]), A ≤ B
is the element-wise inequality between matrices A and B and A < B is the strict element-
wise inequality between A and B. A nonnegative matrix (i.e. a matrix whose elements
are nonnegative) is denoted by A ≥ 0 and a positive matrix is denoted by A > 0. det(A)
denotes the determinant of matrix A. ρ(A) denotes the spectral radius of matrix A, i.e.
the eigenvalue with the maximum magnitude.

Theorem from [HJ85]: Let A ∈ R
N×N and B ∈ R

N×N , with B ≥ 0. If |A| ≤ B, then

ρ(A) ≤ ρ(|A|) ≤ ρ(B). (5.31)

86 Controllers Design

Relationship among the coefficients of the utilisation coupling models: From (4.5):

u3 = γ3u1 + δ3

= γ3(γ1u2 + δ1) + δ3 from (4.3)

= γ1γ3u2 + γ3δ1 + δ3

= γ1γ3(γ2u3 + δ2) + γ3δ1 + δ3 from (4.4)

= γ1γ2γ3

︸ ︷︷ ︸
1

u3 + γ1γ3δ2 + γ3δ1 + δ3

︸ ︷︷ ︸
equal to 0

,

and so,

γ1γ2γ3 = 1. (5.32)

For (r − (ak − uk)) < 0, the allocation signal is:

ak+1 = Puk − λM(r − (ak − uk)),

and its Z-transform is:

zA(z) − za(0) = PU(z) − λ ∗ M(
1

1 − z−1
r − (A(z) − U(z))) ⇔

zA(z) − za(0) = PU(z) −
λMr

1 − z−1
+ λMA(z) − λMU(z) ⇔

(zI − λM)A(z) = (P − λM)U(z) −
λMr

1 − z−1
+ za(0),

where I is the identity matrix. The transfer function is:

T (z) =
A(z)

U(z)
=

P − λM

zI − λM
,

where the denominator is the characteristic function. The poles of the characteristic
function are the z values that make its determinant equal to 0:

det(zI − λM) = 0 ⇔

det




z − λ −λγ1 −λγ1γ2

−λγ2γ3 z − λ −λγ2

−λγ3 −λγ1γ3 z − λ


 = 0.

By expansion and using equation (5.32), the above equation becomes:

(z − λ)((z − λ)2 − λ2) − λ2(z − λ) − λ3 − λ3 − λ2(z − λ) = 0 ⇔

(z − λ)(z2 − 2zλ) − 2zλ2 = 0 ⇔

z3 − λz2 − 2λz2 = 0 ⇔

z2(z − 3λ) = 0.

5.2 Multi-Tier Controllers 87

So there are three poles, the double pole z = 0 and the pole z = 3λ. z = 3λ is the spectral
radius of the matrix λM:

ρ(λM) = 3λ. (5.33)

For stability, the poles have to be within the unit circle, |z| < 1, hence:

|3λ| < 1 ⇔ |λ| <
1

3
. (5.34)

For different combinations of either positive or negative components’ errors ei
k in ek, the

Z-transform of the allocation signal is:

zA(z) − za(0) = PU(z) + λ ∗ M(
1

1 − z−1
r − (A(z) − U(z))) ⇔

zA(z) − za(0) = PU(z) +
λM1r

1 − z−1
+ λM2A(z) + λM3U(z) ⇔

(zI − λM2)A(z) = (P + λM3)U(z) +
λM1r

1 − z−1
+ za(0),

where M1,M2 and M3 ∈ R
3×3 are matrices whose element-wise absolute values equal

the corresponding values of M elements (|M1|, |M2|, |M3| = M), but their elements are
either positive or negative depending on whether the errors ei

k are negative or positive.

The transfer function is:

T (z) =
A(z)

U(z)
=

P + λM3

zI − λM2

,

where the denominator is the characteristic function. To prove MIMO-UB stability for
all combinations of negative or positive ek(i) errors, the poles of the characteristic func-
tion (or the eigenvalues of λM2) have to be within the unit circle. Note that matrix M

has all its entries positive and in the case where the error is negative, it was shown that
the spectral radius of λM is less than one and hence within the unit circle when |λ| < 1

3

(Equations (5.33) and (5.34)). Therefore, using the Theorem from [HJ85] and λ ≥ 0,
since |M2| ≤ M ⇔ |λM2| ≤ λM and then ρ(λM2) ≤ ρ(|λM2|) ≤ ρ(λM) < 1. So, the
eigenvalue with the maximum magnitude of λM2 is within the unit circle and, therefore,
the MIMO-UB system is stable for any combination of errors when:

|λ| <
1

3
. (5.35)

Discussion

The MIMO-UB uses the offline-derived linear resource coupling models of components’
utilisations. However, not all applications’ resource coupling can be linearly modelled.
In addition, the MIMO-UB relies on offline system identification to derive matrix M.
To tackle both problems, an online version of MIMO-UB that derives M every several
controller intervals using utilisation measurements can be proposed. The resource coup-

88 Controllers Design

component 1

+

-

)3()3,1()2()2,1()1()1,1()1(~)1(ˆ kkkkk eKeKeKaa +++=

ka~

ku

∑ component 2

component 3

ke
)1(ˆ)1(~

1 kk aa =+

),(RQK f=

C

Figure 5.5: PNCC Controller Layout. The PNCC controller allocates resources to all
application tiers collectively. It considers their resource coupling by using
their utilisation covariances. This figure illustrates the allocation for the first
component in a 3-tier application.

ling could still be modelled through linear equations for shorter periods of time and,
therefore, the current M form can be retained as it is.

5.2.2 Process Noise Covariance Controller

This section presents the MIMO Process Noise Covariance Controller (PNCC) (Fig-
ure 5.5) which extends the KBC to consider the resource coupling between multi-tier
applications. The allocation for each component is adjusted based on the errors of the
current component in addition to the errors caused by the other components, through
the covariance process noises. If n is the number of application components, then the
PNCC Kalman filter equations for stationary process and measurement noise take the
form:

ak+1 = ak + Wk, (5.36)

uk = Cak + Vk, (5.37)

âk = ãk + Kk(uk − Cãk), (5.38)

Kk = CP̃k(CP̃kC
T + S)−1, (5.39)

P̂k = (I − CKk)P̃k, (5.40)

ãk+1 = âk, (5.41)

P̃k+1 = P̂k + Q, (5.42)

where ak ∈ R
n×1 and uk ∈ R

n×1 are the allocation and usage vectors respectively and
each row corresponds to a component; Wk ∈ R

n×1 is the process noise matrix; Vk ∈
R

n×1 is the measurement noise matrix; C ∈ R
n×n is a diagonal matrix with the target

value c for each component along the diagonal; P̃k ∈ R
n×n and P̂k ∈ R

n×n are the a priori
and a posteriori error covariance matrices; Kk ∈ R

n×n is the Kalman gain matrix and
S ∈ R

n×n and Q ∈ R
n×n are the measurement and process noise matrices respectively.

5.2 Multi-Tier Controllers 89

For matrices Q and S, the diagonal elements correspond to the process and measurement
noise for each component. The non-diagonal elements of the matrix Q correspond to
the process noise covariance between different components. Similarly, the non-diagonal
elements of the Kk matrix correspond to the gain between different components. For a
3-tier application, for example, the a posteriori âk(1) estimation of the allocation of the
first component at interval k is the result of the a priori estimation ãk(1) of the allocation
plus the corrections from all components’ innovations, given by:

âk(1) = ãk(1) + Kk(1, 1)(uk(1) − C(1, 1)ãk(1))

+ Kk(1, 2)(uk(2) − C(2, 2)ãk(2))

+ Kk(1, 3)(uk(3) − C(3, 3)ãk(3)).

The covariances between variables show how much each variable is changing if the other
one is changing as well. In this case the covariances indicate the coupling of the utilisation
changes between components.

Modelling Covariances

Like the computation of the allocation variances, the covariances between the compon-
ents’ allocations are computed offline based on the usage covariances. If ui and uj are
the measured usages between components i and j, then the covariance between their
allocations ai and aj is computed as (cov denotes the covariance):

cov(ai, aj) ≃ cov(
ui

c
,
uj

c
) =

1

c2
cov(ui, uj). (5.43)

Stability

As described in Section 2.4.1 a system is stable if, for any bounded input, the output is
also bounded. The PNCC is stable because both of its inputs, the CPU utilisations, and
its output, the CPU allocations, are bounded by the physical machine’s capacity: a com-
ponent’s utilisation and allocation cannot exceed the 100% of the machine’s capacity.3

5.2.3 Summary

This section presented two MIMO controllers, the MIMO-UB and the PNCC. Both con-
trollers consider the resource coupling between the components and incorporate it into
their design. In the case of the MIMO-UB, this is achieved through the M array. In the
case of the PNCC, it is done by using the covariance matrices. Results in the next chapter
show that the MIMO controllers offer better performance than the SISO ones.

There are input configuration parameters in both controllers: P, r, and λ for the MIMO-
UB and C for the PNCC. In addition, the MIMO-UB controller uses offline derived

3This approach to determine stability can be applied to all the controllers of this dissertation. However,
in cases where the analysis using the poles of the transfer function was feasible it is also given.

90 Controllers Design

component 1

+

-

)3()3,1()2()2,1()1()1,1()1(~)1(ˆ
kkkkkkkk eKeKeKaa +++=

ka~

ku

∑ component 2

component 3

ke
)1(ˆ)1(~

1 kk aa =+

R

C

kK

Figure 5.6: APNCC Controller Layout. The APNCC controller extends the PNCC
design to online estimate the system’s process noise covariance matrix and
update the Kalman gain at regular intervals. This figure illustrates the alloc-
ation for the first component in a 3-tier application.

utilisation models incorporated in the M array and the PNCC uses the system dynamics
in the Q and S arrays. The advantage of the PNCC over the MIMO-UB is that its
parameters (apart from C) are related to the system’s dynamics and therefore easier to
set than those in the MIMO-UB. However, it would be even more useful to automate
the process of setting the parameters and therefore eliminate any offline analysis. The
next section presents an online parameter estimation mechanism for the Kalman based
controller.

5.3 Process Noise Adaptation

So far only stationary process and measurement noises have been considered. Both con-
trollers can be easily extended to adapt to operating conditions by considering non-
stationary noises. For example in the case of the PNCC controller, all formulae are as
before but instead of the stationary Q, the dynamic Qk is now used. In this case, Qk

is updated every several intervals with the latest computations of variances and covari-
ances from CPU utilisation measurements over the last iterations. For simplicity, the
measurement noise variance is considered to always be stationary, i.e. Sk = S.

The next chapter evaluates the adaptation mechanism in the case of the PNCC control-
ler. The new controller is called Adaptive PNCC (hereafter denoted as APNCC) and its
layout is given in Figure 5.6.

Stability

As in the case of the PNCC, the APNCC is stable, because for any bounded input, CPU
utilisations, its outputs, CPU allocations, are also bounded by the machines’ physical
capacities.

5.4 Discussion 91

5.4 Discussion

This chapter presented five feedback controllers that allocate CPU resources to virtu-
alized server applications. Controllers are based on the system identification analysis.
First, the controllers are based on the additive and multiplicative models to track the
utilisations and adjust the allocations. Second, the MIMO designs incorporate the re-
source coupling between the components’ utilisation to allocate resources more quickly
to application tiers. This section categorises the controllers according to four different
characteristics (Table 5.2).

Kalman Filter

All controllers adjust the allocations to follow the components’ utilisation. However,
three of them, the KBC, the PNCC, and the APNCC, are based on the Kalman filtering
technique. These controllers use Kalman filters to track the utilisation and subsequently
the allocation itself using a linear model of the system. The advantage of this technique
over a simple tracking method is as follows. The Kalman filter uses the system dynamics
to adjust the allocations. This is achieved through the Kalman gain which is a function of
the process and measurement noise of the system. The process noise depicts the evolution
of the utilisation between intervals and, therefore, contains important information about
the system itself. The measurement noise corresponds to the belief of the measurement
tools and hence provides information regarding the tools used in the control system.

Inter-VM Coupling

The two SISO controllers (SISO-UB and KBC) allocate resources individually to applica-
tion tiers. System analysis showed that there is a resource coupling between component
utilisations. The three MIMO controllers (MIMO-UB, PNCC, and APNCC) use this
observation to collectively update the components’ allocations based on errors from all
tiers. The MIMO controllers are designed to react more quickly to workload changes
than the SISO designs. The MIMO-UB uses an offline derived model that depicts the
utilisation correlations. The PNCC and APNCC use the utilisation covariance between
components.

Allocation Tuning

Another advantage that comes with integrating Kalman filters into feedback controllers
is that the Kalman gain can be tuned to different values that make the final allocations
react in different ways to resource fluctuations. Depending on the gain, the controllers
might not be strongly affected by transient resource fluctuations while still adapting to
important workload changes. In a shared cluster environment where the allocation of
one application affects the available resources for another, this feature can be particularly
useful.

92 Controllers Design

Kalman inter-VM allocation parameter
filter coupling tuning adaptation

controller no yes yes no adaptive constant adaptive constant

SISO-UB X X X X

MIMO-UB X X X X

KBC X X X X

PNCC X X X X

APNCC X X X X

Table 5.2: Classification of Controllers based on the following four criteria: Kalman filter
design method, inter-VM coupling, allocation tuning, and parameter adapta-
tion.

Parameter Adaptation

The final characterisation of the controllers is whether they are able to estimate their
parameters online. All controllers have input configuration parameters, the values of
which affect the server’s performance. In a control-based resource provisioning scheme,
however, it might be more practical to update these parameters online and adjust them
to applications and operating conditions. The last section of this chapter provided an
adaptation mechanism for the Kalman based controllers, and, in particular, it suggested
the use of the APNCC controller, an adaptive version of the PNCC.

The next chapter evaluates the performance of all five controllers. In addition, it evalu-
ates whether (a) the MIMO controllers improve the performance of the SISO controllers;
(b) the Kalman gains can be tuned to provide adjustable allocations, and (c) the adapta-
tion mechanism captures the system dynamics.

6
Experimental Evaluation

The previous chapter presented different controllers that dynamically provision virtual-
ized servers with CPU resources. The SISO-UB and the KBC controllers provision each
component separately, while the MIMO-UB and the PNCC manage the allocation col-
lectively for all components. In addition, the KBC and the PNCC are based on the Kal-
man filter. Finally, an adaptive mechanism for estimating the parameters for the Kalman
based controllers was introduced.

This chapter evaluates each controller individually — SISO-UB in Section 6.2.1, MIMO-
UB in Section 6.2.2, KBC in Section 6.3.1, PNCC in Section 6.3.2, and APNCC in Sec-
tion 6.3.4 — and compares them — MIMO-UB and SISO-UB in Section 6.2.3, KBC and
PNCC in Section 6.3.3, and PNCC and APNCC in Section 6.3.5. The chapter starts by
introducing the evaluation methodology (Section 6.1). The term “usage based control-
lers” is only used in this chapter to distinguish the SISO-UB and MIMO-UB controllers
from the Kalman based (KBC, PNCC, and APNCC), although all controllers in this dis-
sertation are based on the components’ utilisations.

6.1 Preliminaries

This section discusses the evaluation procedure of the controllers. There are three types
of experiments used for the evaluation which are summarised in Table 6.1. Two differ-
ent workload mixes, available from the Rubis distribution are used: the browsing mix
(BR) contains read-only requests and the bidding mix (BD) that includes 15% read-write
requests. BR is mostly used unless otherwise stated.

93

94 Experimental Evaluation

SYMBOL DESCRIPTION

E0(t1, t2, t3)

Varying number of clients.
300 clients issue requests to the server for
t3 intervals in total. At the t1th interval,
another 300 clients are added until the t2th

interval.

E1(n,d)
Static number of clients.
n number of clients issue requests to the
server for d intervals in total.

E2

Big workload change in the number of cli-
ents.
200 clients issue requests to the server for
60 intervals in total. At the 30th interval,
another 600 are added for the next 30 inter-
vals.

Table 6.1: Performance Evaluation Experiments. Intervals are set to 5s.

An E0(t1, t2, t3) experiment is used for the basic evaluation of each controller. The
purpose of this type of experiment is two-fold. It tests the controller’s ability to (a) adjust
the allocations to follow the utilisations while (b) maintaining the reference Rubis server
performance (mRT ≤ 1s) under diverse workload conditions as the number of clients
increase (their number doubles at t1 interval) and decrease (their number halves at t2
interval). The total experiment duration is t3 intervals. There are six different types of
graphs used to illustrate the results. Three of them show the average component util-
isation and the average corresponding controller’s allocation for each controller interval
(denoted as sample point in the graphs) for each different Rubis tier. The other three
graphs present the server’s performance: (a) mean response times (mRT) (in seconds) for
each controller interval, (b) Throughput (requests/sec) for each controller interval, and
(c) cumulative distribution function (CDF) of response times for the duration of the ex-
periment. All together these graphs provide a complete and detailed view of the server’s
performance, from both the point of view of the resource allocations and the requests
performance. Finally, recall that the mRT data are not used to control the allocations,
rather, are captured to provide a graphical representation of the server’s performance
and are used to assess the server’s performance.

E1(n,d) experiments are used to evaluate the values of controllers’ parameters. In this
experiment n clients issue requests to the server for d intervals in total. This simple
experiment with stable workload1 tests the controllers when changing their parameters
and compares the different configurations with the least implications from workload
variations.

Finally, to compare the different SISO and MIMO controller designs, E2 experiments
are used. As the MIMO is designed to allocate resources faster in workload changes,

1The term stable is used in this chapter to characterise a workload with static number of clients.

6.1 Preliminaries 95

SYMBOL DESCRIPTION

CR number of completed requests
NR proportion of requests with response time ≤ 1s over CR

RMS Root Mean Squared error over parameter l

RMS =

√√√√ 1

N

N∑

i=1

(
l − predicted(l)

predicted(l)
)2,

where N is the total size of l observations

additional allocation

sum of the differences of CPU resources
between the allocations and the utilisations of
a component

COV coefficient of variation

COV =
s

x̄
,

where s is the sample standard deviation and x̄
is the sample mean of a statistic

Table 6.2: Performance Evaluation Metrics. All metrics are calculated over a duration of
several intervals and given in the text when used.

when components are most likely to saturate, E2 experiments are designed to stress
the server under these conditions. To this end, in an E2 experiment, a sudden and large
change in the number of clients occurs; clients increase from 200 to 800. The controllers’
performance is evaluated for the duration of the change between the intervals 30 up to
50 (i.e. 100s in total). That is from the interval the number of clients increases up to the
one where the server settles down to the new increased number of clients. In this way,
emphasis is given only to the actual workload change.

For the rest of this chapter the numbers reported for E1 and E2 experiments come from
multiple runs of the same experiment (with respect to input configuration parameters)
for statistically confident results. The number of repetitions, given in each case, is defined
as follows. Initially, a small number of repetitions (usually 2-3 times) is used; then, the
same experiment is repeated until the new data do not significantly change the results.
The results reported here usually come from all the repetitions.

Table 6.2 contains all metrics used for evaluation in this chapter. All metrics are calcu-
lated over a period of several intervals; their number is given throughout. Metrics belong
to two categories: (a) metrics that evaluate the server’s performance and (b) metrics that
evaluate the controllers’ resource allocations.

The metrics that evaluate the performance of the server are described now. CR denotes
the number of completed requests. NR gives the proportion of requests with response
time ≤ 1s over CR. The server’s performance improves when the values of either metric
increases between similar types of experiments of the same duration.

96 Experimental Evaluation

Both CR and NR metrics provide aggregate numbers that describe request characteristics
over some duration. To provide a more detailed view of the request response times, the
Root Mean Squared (RMS) error metric is also used. The RMS metric is widely used to
evaluate the performance of prediction models as it provides a measure of the accuracy
of the models for all predictions combined. Here the RMS is used to provide a more
detailed view of the response times throughout the experiments. To calculate the RMS
in the current system, the predicted value is the mRT for a specific number of clients.
Since the current system does not predict an individual request response time, the RMS
uses the mRT to evaluate the controllers’ performance. Therefore, an error will always
be present between the model predictions (mRT) and the measured response times. For
example, the mRT in the case of 600 clients was measured in the system identification
analysis and equals 0.282s (Figure 4.1(a)). Using this mRT, the RMS in the case of an
E1(600,20) experiment is measured and is 2.17. In general, the smaller the RMS values
the closer the response times to the mRT. A combination of the three metrics CR, NR,
and RMS provide enough information to compare the different controllers.

The metrics additional allocation and COV evaluate the controllers’ resource alloca-
tions. The additional allocation denotes the sum of resources given for each compon-
ent on top of its mean utilisation over some intervals. This metric enables comparisons
between controllers with respect to the amount of resources they occupy and their per-
formance. If similar performances (according to CR, NR, and RMS) are achieved for
different additional allocations, then the smallest values are preferred. In this way,
more resources are available for other applications to run.

The COV metric is used to measure the variability of the allocation and the utilisation
signals. Different degrees of allocation variability might be appropriate depending on
the control system operation and the types of applications sharing a virtualized cluster.
For instance, if two controllers adjust the allocations for two applications with strict
QoS performance guarantees, it might be more practical for the two controllers to be ro-
bust to transient utilisation fluctuations and adjust the allocations only when important
workload changes occur. On the other hand, consider a server application which shares
CPU resources with a batch-processing workload that does not have real-time QoS guar-
antees. In this case, if the server’s allocations vary with every utilisation fluctuation, this
does not affect the overall performance for the batch-processing workload. Therefore,
depending on the types of virtualized applications, different allocation variability might
be desired.

Controller Interval

The controller interval is important to the resource allocation process since it character-
ises the frequency of the new allocations and the time period over which the component
usages are averaged and used by the controller to make new allocations. The new alloc-
ations are calculated based on both the average component usages and the error over a
time interval. With a small interval the controller reacts fast to workload changes but
is prone to transient workload fluctuations. A better approximation is achieved with
a larger interval, as the number of sample values increases. However, the controller’s
responses can be slower. Depending on the workload characteristics, the interval can be

6.2 Usage Based Controllers 97

set to smaller values for frequently changing workloads and larger ones for more stable
workloads.

For the current evaluation intervals of 5s and 10s were examined. Utilisations averaged
over both durations were close to the mean utilisation over long runs (e.g. 100s) and
hence, both intervals are suitable to summarise usages. In addition, preliminary experi-
ments (three SISO-UB controllers allocating resources during E0(20,40,60) experiments)
using either interval duration showed that with a shorter interval the server had better
responses to workload increases. Therefore, a 5s controller interval is selected for the
evaluation in this chapter.

Single Application Evaluation

As discussed earlier, the controllers’ evaluation is based on a single Rubis instance par-
titioned in three components each hosted by one VM running on a different machine.
One might argue that this is not a representative case where resource management is
needed. The particular setting is chosen so as to focuss on the evaluation of the control-
lers: this evaluation examines how do the controllers perform assuming there are free
physical resources when needed. The current work is assumed that would be part of a
larger data center management scheme, where there is need to isolate the performance of
applications by adjusting their resources according to their needs and be able to account
the available free resources for further application placement.

6.2 Usage Based Controllers

The usage-based controllers, SISO-UB and MIMO-UB, are evaluated in this section.
The SISO-UB controller allocates CPU resources to individual components, while the
MIMO-UB uses the offline-derived utilisation model between components to collectively
allocate resources to all tiers. The performance of each controller is initially evaluated
using an E0(20,40,60) experiment (SISO-UB controller in Section 6.2.1 and MIMO-UB
in Section 6.2.2). Both controllers also have a number of input configuration paramet-
ers whose values affect the server’s performance. The parameter values are evaluated
through a number of E1(600,60) experiments. Finally, in previous chapters, it was ad-
vocated that the MIMO controller which considers the resource coupling between tiers
act faster to workload changes and therefore provide better performance than the SISO
designs. Section 6.2.3 experimentally evaluates this claim and shows that the MIMO-UB
controller has better performance than the SISO-UB ones.

6.2.1 SISO-UB

The SISO-UB controller allocates resources based on the mean utilisation of the previous
interval and the control error. In particular, the allocation is proportional to the util-
isation and proportional to the control error (the SISO-UB control law from Equations
(5.1) and (5.2) is: ai

k+1
= piui

k + λ|ri − (ai
k − ui

k)|).

98 Experimental Evaluation

Initially, the SISO-UB performance is evaluated using an E0(20,40,60) experiment (Fig-
ure 6.1). There are three input configuration parameters for each SISO-UB controller;
their values for the E0(20,40,60) experiment are set to: pi = 1.25, ri = 20 and λ = 0.3. A
justification of the parameter values is given later in this section. Figures 6.1(a), 6.1(b),
and 6.1(c) illustrate the CPU allocations and utilisations for the three Rubis components
for the duration of the experiment. At the beginning, each controller drops the allocation
from the initial 100% to approach the usage in just one interval and then the allocations
are adjusted as utilisations change. Each SISO-UB controller is able to adjust the alloca-
tions to follow the CPU utilisations as small resource fluctuations occur throughout the
experiment and large workload changes happen around the 20th and 40th sample points.
Therefore, the first goal of each SISO-UB controller, which is to update the allocations
to follow the usages, is achieved.

Section 5.1.1 described how the SISO-UB controller uses both system models and in this
way components with low utilisation and high variance are allocated more resources
than when just using the multiplicative model. This is shown in Figure 6.1. The dashed
lines in Figures 6.1(a), 6.1(b), and 6.1(c) depict hypothetical allocations if each SISO-UB
controller used just the multiplicative system model and its law was: ak+1 = pi ∗ uk. It
is shown that in the case of the JBoss and MySQL components when their utilisations
are low and their variance considerable, the SISO-UB controller (allocation line) allocates
more resources than just the simple controller that uses the multiplicative model (p*usage
line). When the utilisation is high — for instance in the Tomcat component during 20
and 40 intervals — both lines are very close. The combination of both system models
results in a flexible controller whose allocations are adjustable to different utilisations. In
this way, the SISO-UB parameters do not need to be configured differently for different
levels of utilisation.

Figures 6.1(d), 6.1(e), and 6.1(f) show the server’s performance. As shown in Fig-
ure 6.1(d), for most of the experiment the requests’ mRT is close to its reference value
(≤ 1s). There are however, a few spikes above and close to the reference value; this
is happening when one or more components are saturated for that interval. To better
evaluate the mRT spikes, Figure 6.1(e) shows the cumulative distribution function (CDF)
of the request response times. This figure shows that 85.25% of the requests have re-
sponse times ≤ 1s. The spikes in Figure 6.1(d) are caused by a small percentage of
requests (14.75%) with large response times. Finally, Figure 6.1(f) depicts the server’s
Throughput. The Throughput changes as the workload varies for the duration of the
experiment. Its values approach those values that were measured before-hand for differ-
ent numbers of incoming clients (Figure 4.1(b)) when all machine CPU resources were
allocated to components; approximately 90 req/sec for 600 clients between 20 and 40
intervals and 48 req/sec for 300 clients for all other intervals. As in the case of the mRT,
when any of the components saturates, the Throughput drops from its corresponding
value for the given number of clients. Overall, the second goal of the SISO-UB controller,
which is to maintain the reference performance of mRT ≤ 1s is achieved for most of the
intervals and the vast majority of the requests have response times ≤ 1s.

Note, however, that the SISO-UB allocations follow all utilisation changes even subtle
ones, which causes the allocation signal to be as noisy as the utilisation. This behaviour
might not be suitable in a server consolidation scenario, where the allocation of one

6.2 Usage Based Controllers 99

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation
p*usage

(a) Tomcat CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation
p*usage

(b) JBoss CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation
p*usage

(c) MySQL CPU allocation and utilisation

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

requests response time in seconds

C
D

F

(e) CDF of request response times

10 20 30 40 50 60
0

50

100

150

Sample point

re
qu

es
ts

/s
ec

(f) Throughput

Figure 6.1: SISO-UB Controllers Performance. Figures illustrate the performance of the
SISO-UB controllers for variable number of clients. All controllers adjust
the allocations to follow the utilisation changes. The server’s performance is
sustained close to its reference value, with a few spikes in mRT and drops in
Throughput when one or more components are saturated.

application might affect the available resources for the other co-hosted applications. A
controller that adjusts the allocations but is not so strongly affected by the transient
resource fluctuations might be more appropriate. The KBC controller, presented later,
addresses this issue.

100 Experimental Evaluation

Parameter Configuration

It was shown previously (Figure 4.4) that the server’s performance depends on the
amount of extra resources allocated to the components which in turn depends on the
parameter values. The rest of this section evaluates the way the parameter values affect
the server’s performance through a number of E1(600,60) experiments.

There are three input configuration parameters for each SISO-UB controller. If i corres-
ponds to a component then, (a) pi denotes the minimum percentage of the utilisation
that the allocation is assigned to; (b) ri corresponds to the reference value of the extra
allocation; and (c) λi denotes the percentage of the control error accounted for the fi-
nal allocation. For the current analysis, each parameter is assigned to a value that is
either empirically set or guided from the system identification analysis and correspond to
worse-, medium-, and best-case allocation policy.

The pi have to be ≥ 1 and in practice each pi is set to values from {1.11, 1.25, 1.43}. These
values correspond to a target CPU utilisation rate within each VM of {90%, 80%, 70%}
and are used to model “tight” (worse-case), “moderate” (medium-case), and “loose”
(easy-case) allocation policies. These values are used in data centres. ri values are set
from {10, 20, 30}. In this case, system identification analysis showed that to achieve
reference performance, the ri values for the Tomcat, JBoss, and MySQL components
were {15, 10, 10} respectively (Figure 4.4). In these experiments only one component was
subject to varying allocation each time, and so the above values ({15, 10, 10}) correspond
to “tight” allocation policies. Finally, λ values are set to {0.1, 0.3, 0.5, 0.7, 0.9} as the
SISO-UB controller is stable when |λ| < 1 (Equation (5.5)). Here only positive λ values
are considered, since there are combinations of pi and negative λ values that would
result in smaller allocations than utilisations, and therefore, they would compromise the
controller’s performance.

The parameters for the E0(20,40,60) experiment (in Figure 6.1) were set to values that
correspond to a middle-case allocation policy (for all i, {pi, ri, λ} = {1.25, 20, 0.3}). Al-
though λ could have also been set to 0.5, the value of 0.3 also provides a middle-case
allocation and enables comparisons with the MIMO-UB E0(20,40,60) experiment in the
next section. The rest of this section provides an empirical evaluation of the effects of
the configuration parameters on the server’s performance across the range of values given
above. The purpose of this evaluation is to provide guidelines on the relative effects of
the different parameters.

The server’s performance is evaluated against different sets of parameter values using
four metrics. Parameters are varied as shown in Table 6.3 where each row corresponds
to a different set of values; for reasons of simplicity all three components are assigned to
the same value for the same parameter. In each row only one parameter changes each
time, while the rest are assigned to values that correspond to middle-case allocations. For
each set of values an E1(600,60) experiment is performed 5 times. Server’s performance
is measured using two metrics: CR and NR (defined in Table 6.2). Another two metrics
are used to study the resource allocations at the server components: (a) additional
allocation which corresponds to the sum of the differences between the allocation and
the utilisation for all intervals and (b) COV which shows the coefficient of variance of

6.2 Usage Based Controllers 101

index parameters application performance metrics

pi λ ri CR NR additional COV COV
allocation alloc. usage

1 1.25 0.1 20 24354 ± 269 0.80 ± 0.02 788 ± 11 0.15 0.11
2 1.25 0.3 20 24934 ± 248 0.85 ± 0.01 892 ± 5 0.14 0.10
3 1.25 0.5 20 25276 ± 116 0.89 ± 0.01 987 ± 19 0.14 0.11
4 1.25 0.7 20 25381 ± 229 0.89 ± 0.01 1067 ± 10 0.14 0.09
5 1.25 0.9 20 25385 ± 206 0.90 ± 0.01 1198 ± 32 0.15 0.11

6 1.11 0.5 20 24359 ± 436 0.82 ± 0.02 670 ± 7 0.16 0.11
7 1.25 0.5 20 25276 ± 116 0.89 ± 0.01 987 ± 19 0.14 0.11
8 1.43 0.5 20 25619 ± 78 0.92 ± 0.01 1491 ± 13 0.12 0.11

9 1.25 0.5 10 24482 ± 236 0.85 ± 0.02 960 ± 24 0.12 0.11
10 1.25 0.5 20 25276 ± 116 0.89 ± 0.01 987 ± 19 0.14 0.11
11 1.25 0.5 30 25521 ± 192 0.90 ± 0.01 1134 ± 5 0.14 0.11

Table 6.3: Input Parameter Configuration for SISO-UB Controllers. Each row corres-
ponds to a different set of parameter values. Performance metrics are com-
puted over an E1(600,60) experiment repeated 5 times. Results are averaged
and mean values are shown with a 95% CI. The COV and the additional
allocation values are shown only for the Tomcat component. Similar observa-
tions hold for the other two components.

the allocation and the utilisation.

Parameter λ

λ is varied as shown in the first 5 lines of Table 6.3. As λ increases, the application serves
more requests (increasing CR), and the percentage of requests with response times ≤ 1s
also increases (increasing NR). This is because with larger λ the controller allocates more
resources (increasing additional allocations) and therefore it serves more requests. λ
does not have a significant affect on the allocation COV.

Parameter pi and ri

Changing the values of parameters pi (lines 6 − 8 in Table 6.3) and ri (lines 9 − 11 in
Table 6.3) also affect the controller’s performance. As pi or ri increase, more resources
are allocated to the server components (increasing additional allocations) and the
server achieves better performance (increasing CR and NR). In addition, the COV of the
allocation decreases as pi increases. This is because more resources are allocated and
the two signals, allocation and utilisation, are not that close to each other and therefore
do not affect each other. ri values do not significantly affect the COV of the allocation
signal.

102 Experimental Evaluation

To conclude, increasing the parameters improves the server’s performance as more re-
sources are allocated to the components. However, there are cases where further increas-
ing the additional allocations do not significantly improve the performance (e.g. lines
7 and 8 in Table 6.3). This is aligned with the system identification analysis that defined
the extra allocation parameter. A balance between the desired application performance
and the additional allocations on a shared cluster can be achieved with further system
identification analysis.

Finally, one of the most challenging tasks in applying any control-theoretic tool to re-
source management is the configuration of its parameters. This section followed a step-
by-step procedure to setting the values of the SISO-UB input parameters which can be
used as guidelines when deploying a new application. The procedure is the following:
(a) define the ri values with simple system identification experiments (as in the case of
Figure 4.4), (b) set the pi values from empirical analysis; (c) set λ values according to the
controller’s stability analysis. The server’s performance can be improved by increasing
any of the pi, ri, or λ, at the cost of additional resources.

Properties

In Chapter 2 it was discussed (Section 2.4.1) that the SASO properties (stability, accuracy,
short settling times, and small overshoot) are desirable in a control system. The SISO-UB
stability analysis was given in Section 5.1.1. The analysis for the other three properties is
given here. Recall, that a controller’s properties are studied with respect to the reference
output and the steady-state value. However, in the case of the SISO-UB controller, there is
no reference output; this controller maintains the allocation within boundaries (between
piui

k and piui
k + λei

k) which change with ui
k, p

i, and λ. The analysis is based on Matlab
simulations where the utilisation signal is kept constant and without fluctuations in order
for the allocation to reach a steady-state value.

Figure 6.2 shows the SISO-UB allocations for three different λ values. The utilisation is
kept constant at 50%, the allocation starts at 70%, ri = 30, and pi = 1.25. Although, the
output does not converge to a pre-defined value, it converges to some value, as shown
in the figure. The properties are discussed with respect to these values for different λs.
As the λ increases, the allocations converge to certain values, therefore, the steady-state
error (ess), with respect to these values, is zero. The controller practically does not
overshoot; for instance, in the worse case of allocations fluctuations when λ = 0.9, Mp

is calculated and equals 0.008. Finally, the allocations converge to a steady-state value
immediately; the allocations are all within 2% of the steady-state utilisations.

Summary

This section evaluated the SISO-UB controller performance. An E0(20,40,60) experi-
ment showed that the controller achieves both of its goals: (a) the allocations are adjus-
ted according to utilisation and (b) the server’s performance remains close to its reference
value throughout the experiment; the majority of the intervals had mRT≤ 1s. In addition,
an evaluation of the parameter values on the server’s performance was given. Parameters

6.2 Usage Based Controllers 103

1 10 20 30 40 50
50

60

70

80

90

100

Sample point

%
 C

P
U

lambda=0.1
lambda=0.5
lambda=0.9

Figure 6.2: SISO-UB Allocations for Stable Input.

pi have the most effects on the allocation COV. Finally, this section provided guidelines
to choose and tune the SISO-UB configuration parameters when deploying a new applic-
ation.

6.2.2 MIMO-UB

The MIMO-UB controller (presented in Section 5.2.1) extends the SISO-UB design to
collectively allocate CPU resources to all application tiers based on the offline derived
utilisation model between components. Its control law is given by: ak+1 = Puk + λMek,
from Equation (5.29). The allocation of each component is proportional (by pi) to its
utilisation of the previous interval and also proportional (by λ) to its control error and
the other components’ errors from its own point of view. Finally, the control error for
each component uses the additive system model and, as in the SISO-UB case, equals the
difference of the allocation less the utilisation from the reference value ri.

Initially, the MIMO-UB performance is evaluated using an E0(20,40,60) experiment
(Figure 6.3). In this experiment, the controller’s configuration parameters are set to:
pi = 1.25, λ = 0.3 and ri = 20, where the same parameters for all components are set
to the same values for simplicity. Figures 6.3(a), 6.3(b), and 6.3(c) show the controller’s
CPU allocations and components’ utilisations. At first, the controller decreases the CPU
allocations from the initial 100% to an amount close to each component’s CPU utilisa-
tion. The CPU allocations however, follow the changes in CPU usage for the duration
of the experiment, even when the number of clients increases or decreases substantially
as can be seen at around sample points 20 and 40. The allocations follow all utilisation
changes, even small ones. This was also observed in the case of the SISO-UB controller.
The Kalman based controllers address this behaviour and allocate resources that are not
so strongly affected by noisy fluctuations.

The server’s performance is shown in Figures 6.3(d), 6.3(e), and 6.3(f). For most of the
experiment, the mRT stays very close to its target performance (≤ 1s). There are a few
mRT spikes that approach 1s; this is happening when any of the component’s utilisation
gets very close to its allocation for that interval. To better evaluate the mRT spikes,

104 Experimental Evaluation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL CPU allocation and utilisation

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

request response time in seconds

C
D

F

(e) CDF of request response times

10 20 30 40 50 60
0

50

100

150

Sample point

re
qu

es
ts

/s
ec

(f) Throughput

Figure 6.3: MIMO-UB Controller Performance. Figures illustrate the performance of
the MIMO-UB controller for variable number of clients. The controller ad-
justs the allocations to follow the utilisations. The server’s performance ap-
proaches very close to its reference value, with a few short spikes in mRT and
drops in Throughput, when the utilisation of one or more components are
very close to their allocations.

6.2 Usage Based Controllers 105

Figure 6.3(e) depicts the CDF of request responses. The majority of requests (93.18%)
have response times (≤ 1s). Finally, the Throughput increases or decreases substantially
with workload changes. Overall, the MIMO-UB controller achieves both its goals: (a) its
allocations follow the components’ utilisations and (b) the server’s performance is very
close to its target performance goal.

When comparing Figure 6.3 (MIMO-UB) and Figure 6.1 (SISO-UB) it is clear that the
MIMO-UB controller performs better because it allocates more resources to components
aligned to all components’ errors and, therefore, the requests have overall better response
times. The two controllers are thoroughly compared in Section 6.2.3 where they are also
configured to provide similar additional allocations under stable workloads.

Parameter Configuration

There are three categories of MIMO-UB configuration parameters: (a) the diagonal P

matrix contains the pi values. If i denotes the component, then pi denotes the minimum
proportion of utilisation that the allocation is assigned to; (b) the matrix r contains the
ri values which correspond to the extra allocation used to compute the control error
for each component i; and, (c) the λ parameter shows the proportion of the control
error accounted for the final allocation. This section continues to evaluate the effects
of the configuration parameter values on the server’s performance. For simplicity, and
without loss of generality, the same category parameters are set to the same values for all
components for the current evaluation.

Similarly to the SISO-UB parameter analysis, the MIMO-UB parameters are set to values
that are either empirically assigned or come from the system identification analysis and
correspond to worse-, medium-, and best-case allocation policies. pi have to be > 1 and
are set to values from {1.11, 1.25, 1.43}. ri are set to values from {10, 20, 30}. Finally, λ
values are set to {0.1, 0.2, 0.3} because the MIMO-UB controller is stable when |λ| < 1

3

(Equation (5.35)). As in the SISO-UB case, only positive λ values are considered. To
evaluate the effects of each parameter in turn, only its values change while the values of
the other two parameters remain the same and are assigned to the corresponding values
of the middle-case scenario.

The evaluation is performed across different sets of values of the configuration paramet-
ers. The server’s performance is measured over E1(600,60) experiments repeated five
times for each set of parameter values and evaluated using four different metrics: CR,
NR, additional allocation, and COV. Results are shown in Table 6.4 where λ values
are varied in lines (1-3), pi are varied in lines (4-6), and ri in lines (7-9). In general,
increasing any of the input parameters increases the allocated resources at the server’s
components (increasing additional allocation). This causes the application to serve
more requests in total (increasing CR) and to increase the proportion of requests with
response time ≤ 1s (increasing NR).

106 Experimental Evaluation

index parameters application performance metrics

pi λ ri CR NR additional COV COV
allocation alloc. usage

1 1.25 0.1 20 25000 ± 270 0.86 ± 0.02 1130 ± 12 0.14 0.15
2 1.25 0.2 20 25539 ± 138 0.90 ± 0.01 1441 ± 12 0.12 0.12
3 1.25 0.3 20 25835 ± 201 0.93 ± 0.00 1724 ± 15 0.10 0.11

4 1.11 0.2 20 25270 ± 118 0.89 ± 0.01 1108 ± 8 0.13 0.11
5 1.25 0.2 20 25539 ± 138 0.90 ± 0.01 1441 ± 12 0.12 0.12
6 1.43 0.5 20 25722 ± 219 0.92 ± 0.00 1855 ± 16 0.10 0.12

7 1.25 0.2 10 25024 ± 273 0.86 ± 0.01 1111 ± 13 0.13 0.10
8 1.25 0.2 20 25539 ± 138 0.90 ± 0.01 1441 ± 12 0.12 0.12
9 1.25 0.2 30 25906 ± 100 0.93 ± 0.01 1760 ± 16 0.11 0.12

Table 6.4: Input Parameter Configuration for MIMO-UB Controller. Each row corres-
ponds to a different set of parameter values. Performance metrics are com-
puted over an E1(600,60) experiment repeated 5 times. Results are averaged
and mean values are shown with a 95% CI. The COV and the additional
allocation values are shown only for the Tomcat component. Similar observa-
tions hold for the other two components.

Properties

As in the case of the SISO-UB controllers, the MIMO-UB controller does not maintain
its output to a reference value. However, when the utilisations are kept constant, its al-
locations converge to some values based on which the properties of accuracy, overshoot,
and settling times are now discussed.

The analysis is based on Matlab simulations where the utilisation signal is kept constant
in order to avoid noise fluctuations. Figure 6.4 shows the MIMO-UB allocations for all
components and for three different λ values. The utilisation is kept constant at 40%, the
allocation starts at 70%, ri = 30, and pi = 1.25.

In all cases, the allocations converge to certain values, therefore, the steady-state error,
ess, is zero. The controller generally does not overshoot, unless the utilisation is relatively
high; for instance, when λ = 0.33 for the Tomcat component, Mp is calculated and equals
0.2. Finally, the allocations converge to a steady-state value in just a few intervals; for
example in the case of λ = 0.33 and the Tomcat component, the allocations are within
2% of the steady-state value in 5 intervals.

Summary

This section initially evaluated the MIMO-UB controller’s performance using an
E0(20,40,60) experiment. Results showed that the controller achieved both its goals:
(a) allocations follow utilisation and (b) the server’s performance stays very close to its
target performance. This section also evaluated the effects of the controller parameter

6.2 Usage Based Controllers 107

1 10 20 30 40 50
0

20

40

60

80

100

Sample point

%
 C

P
U

Tomcat
JBoss
MySQL

(a) λ = 0.1

1 10 20 30 40 50
0

20

40

60

80

100

Sample point

%
 C

P
U

Tomcat
JBoss
MySQL

(b) λ = 0.2

1 10 20 30 40 50
0

20

40

60

80

100

Sample point

%
 C

P
U

Tomcat
JBoss
MySQL

(c) λ = 0.33

Figure 6.4: MIMO-UB Allocations for Stable Input.

values on the server’s performance. Increasing the values of any parameter improves the
server’s performance. In a production environment, an economic model based on further
parameter analysis can be adopted to choose the most appropriate values. The proced-
ure used to choose the parameter values and to further analyse their effects on server
performance can be used as a guideline when deploying a new application.

6.2.3 SISO-UB and MIMO-UB Comparison

The MIMO-UB controller is designed to incorporate the resource coupling between tiers
and provide faster responses to workload changes for multi-tier applications by taking
into account the control error from all components when allocating resources to any of
the tiers. This section compares the performance of the MIMO-UB controller against
the SISO-UB to evaluate the above. The roadmap of the evaluation is as follows. Firstly,
the behaviour of the controllers are studied when configured with same parameter val-
ues. Secondly, the controllers are examined when they are configured to make similar
additional allocations.

Initially, the two controllers are compared using the two E0(20,40,60) experiments from
the last two sections. Their configuration parameters are set to the same values. Key
results from the two experiments are placed side-by-side in Figure 6.5 for comparison
reasons. Figures 6.5(a) and 6.5(b) illustrate the allocations and utilisations for the Tom-
cat component. While both controllers follow the changes of the utilisations throughout
the experiment, they differ in the amount of resources that they allocate for similar util-

108 Experimental Evaluation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) SISO-UB Tomcat CPU allocation and util-
isation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) MIMO-UB Tomcat CPU allocation and us-
age

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(c) SISO-UB Requests mRT

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(d) MIMO-UB Requests mRT

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

request response time in seconds

C
D

F

MIMO−UB
SISO−UB

(e) SISO-UB, MIMO-UB CDF of response
times

Figure 6.5: SISO-UB and MIMO-UB Comparison. The MIMO-UB controller allocates
more resources to components. The application is better provisioned to serve
incoming requests as can be seen by the fewer spikes in the mRT and the
higher proportion of requests with response times ≤ 1s.

6.2 Usage Based Controllers 109

isations. The MIMO-UB controller clearly allocates more resources since it accounts for
the aggregate control errors from all components. As a result, the application is better
provisioned to serve incoming requests. The mRT in the case of the MIMO-UB controller
(Figure 6.5(d)) has fewer and shorter spikes and stays closer to its target performance for
more intervals than the SISO-UB controller (Figure 6.5(c)). Finally, Figure 6.5(e) depicts
the CDF of the request response times from both controllers. Again, in the MIMO-UB
case the proportion of requests with response times ≤ 1s is higher than in the SISO-UB
case.

This section next compares the two controllers across different configuration parameters.
To this end, an E2 experiment, where a large workload increase occurs, is performed
20 times for each different set of parameter values for the SISO-UB and MIMO-UB
controllers. Table 6.5 shows the values of the parameters which are chosen to exercise the
spectrum of their possible values. Results are shown in Figure 6.6 where the performance
of the server is compared using the CR, NR, RMS, and additional metrics. Each
figure also shows the absolute percentage of the metric difference between the MIMO-
UB controller over the SISO-UBs with a 95% CI. The CI is calculated after a T-test is
applied to compare the results from the different experiment runs.

Figures show that according to all metrics (CR, NR, and RMS), the MIMO-UB controller
performs better than the SISO-UBs. There are more completed requests (CR) during
the workload change, more requests with response times ≤ 1s, and more requests with
response times closer to their mean value for that workload (RMS). The MIMO-UB
controller outperforms the SISO-UBs because it allocates more resources to components
as aligned to their errors (Figure 6.6(d)).

To better evaluate how much it costs for the MIMO-UB to improve the SISO-UB with
respect to the increased additional resources it allocates, the following analysis is per-
formed. The aim is to roughly estimate how many more resources the MIMO-UB al-
locates than the SISO-UB for a given server performance. To this end, the data from
Tables 6.3 and 6.4, which come from E1(600,60) experiments with different parameter
configurations for both controllers, are used. The mean additional resources per con-
troller interval (which is 5s) each controller allocates for every 400 completed requests2

across configurations for the Tomcat component is 16.25 CPU units3 for the SISO-UB
and 22.65 CPU units for the MIMO-UB. So, the MIMO-UB allocates on average 6.5
more CPU units than the SISO-UB controllers. To put this number under perspective
with respect to the mean utilisation in the case of the E1(600,60) experiments, which
is around 46, the following sentence gives an indication of the cost of the increased al-
locations by the MIMO-UB: for every 400 completed requests the MIMO-UB allocates
more resources than the SISO-UB which equal in the case of the Tomcat component to
6.4/46 = 13.91% of its utilisation.

So far the comparison showed that the MIMO-UB outperforms the SISO-UB controllers
simply because the former controller allocates more resources when both are configured

2The mean additional resources is calculated for 400 requests because, this is very close to the average
number of completed requests per controller interval over which mean utilisation and mean allocation
measurements are taken.

3CPU units is the % of CPU resources.

110 Experimental Evaluation

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

experiment index

C
R

SISO−UB
MIMO−UB

5%42%10%31%9%17%

(a) CR

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

experiment index

N
R

SISO−UB
MIMO−UB

44% 12% 59% 14% 118% 7%

(b) NR

1 2 3 4 5 6
0

5

10

15

20

25

experiment index

R
M

S

SISO−UB
MIMO−UB

57% 58% 61% 63% 75% 42%

(c) RMS

1 2 3 4 5 6
0

200

400

600

800

1000

1200

experiment index

ad
di

tio
na

l r
es

ou
rc

es

SISO−UB
MIMO−UB

61% 70% 70% 73% 35%132%

(d) additional

Figure 6.6: SISO-UB and MIMO-UB Comparison for Different Parameter Values. Per-
centages in each case show the absolute metric difference of the MIMO-UB
controller over the SISO-UBs within a 95% CI.

experiment index pi ri λ

1 1.25 20 0.1
2 1.25 20 0.3
3 1.25 10 0.2
4 1.25 30 0.2
5 1.11 20 0.2
6 1.43 20 0.2

Table 6.5: Experiment Description for the MIMO-UB and SISO-UB Comparison.

to same parameter values. It can also be noted that there are cases between different sets
of configuration parameters, that the performance of the server is similar between the
MIMO-UB and the SISO-UB controllers (e.g. in Figure 6.6(a) the MIMO-UB CR in the
1st experiment is almost equal to the SISO-UB CR in the 4th experiment). This is because
the parameters of the SISO-UB controllers caused the allocations to be high enough and
compared with the MIMO-UB allocations.

The evaluation continues to compare the controllers when they are particularly con-

6.2 Usage Based Controllers 111

SISO SISO SISO SISO SISO SISO SISO SISO SISO
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MIMO MIMO MIMO MIMO SISO SISO SISO SISO SISO SISO
0.1 56% 27% 9.6% 2.3% 11% 19% 25% 31% 37%

MIMO MIMO MIMO MIMO MIMO MIMO MIMO MIMO SISO SISO
0.2 116% 77% 51% 35% 22% 12% 3.6% 5.5% 13%

MIMO MIMO MIMO MIMO MIMO MIMO MIMO MIMO MIMO MIMO
0.3 170% 120% 89% 68% 52% 39% 29% 17% 8.2%

Table 6.6: Additional Resources Comparison. This table compares the additional
resources between the SISO-UB (short SISO) and the MIMO-UB (short
MIMO) controllers as measured for stable workloads and different λ con-
figurations. For each different λ and for each controller design an E1(600,60)
experiment is repeated 10 times. The table shows the results from the pairwise
comparisons, using a T-test. Each comparison shows the controller with the
highest amount of additional resources along with its increased percent-
age.

figured to make similar additional allocations. This enables to focuss on the MIMO-
UB mechanism for faster workload adaptation against the SISO-UB controllers. This
comparison is performed in two steps. Firstly, the values of the λ parameters that make
the two controllers to allocate similar additional resources are identified. Secondly,
using these values the controllers are compared when a large workload increase occurs
through an E2 experiment.

Initially, the next experiment identifies the λ values of the SISO-UB and MIMO-UB which
under stable workload conditions cause the controllers to have similar additional al-
locations. To this end, the additional allocations for each controller and for different
λ values are measured using an E1(600,60) experiment repeated 10 times. The range of
λ values comes in the case of the SISO-UB controllers from Equation (5.5) and in the
case of the MIMO-UB from Equation (5.35). Pairwise comparisons of the additional
allocations between the two controllers for different λ values are performed and results
are shown in Table 6.6. For each combination of λ, the table shows which controller
allocates more resources and also indicates the percentage of its increased additional
resources. For instance, when comparing the SISO-UB with λ = 0.3 and the MIMO-
UB with λ = 0.1, the table shows that the MIMO-UB controller allocates 9.6% more
resources.

This table indicates that the additional allocations for each controller also depend
on its parameter values; this is aligned with previous results (Figure 6.6). For example,
as the SISO-UB λ increases for same MIMO-UB λ, the SISO-UB controllers allocate
more resources. This table is used to narrow the search range for λ values which cause
similar allocations between the controllers; two regions, among many, are identified:
(SISO-UB λ ∈ (0.4, 0.5) and MIMO-UB λ ∈ (0.1, 0.2)) and (SISO-UB λ ∈ (0.7, 0.8) and
MIMO-UB λ ∈ (0.1, 0.2)). Additional E1(600,60) experiments repeated 20 times across
λ values within the above ranges were performed. Two combinations of parameters that
give similar additional allocations are identified: (SISO-UB λ = 0.45 and MIMO-UB
λ = 0.12) and (SISO-UB λ = 0.75 and MIMO-UB λ = 0.2).

For each of the two combinations of parameters the controllers are now compared

112 Experimental Evaluation

intervals additional CR NR
1-29 -0.2% 0.4% 1.2%

30-40 6.2% 2.8% 2.6%

Table 6.7: UB Controllers Comparison, SISO-UB λ = 0.45, MIMO-UB λ = 0.12.

intervals additional CR NR
1-29 -0.6% -0.67% 0.7%

30-40 5.1% 1.6% 3.2%

Table 6.8: UB Controllers Comparison, SISO-UB λ = 0.75, MIMO-UB λ = 0.12.

against large workload increases. In each case, an E2 type of experiment is performed
20 times and results are shown in Tables 6.7 and 6.8. Each table compares the control-
lers across two regions of intervals. The first region (intervals 1-29) involves the period
before the workload increase and is used to examine that the two controllers allocate
similar additional resources. The second region (intervals 30-40) is the time during
the workload increase. Percentages in each case show the metric difference between the
two controllers over the SISO-UB with a 95% CI after a T-test is applied. A positive
number indicates that the metric in the MIMO-UB case is larger than in the SISO-UB.

Results show that during the first 29 intervals the controllers have very similar perform-
ances (first row in both tables). Their additional resources are very close and so is
their performance, shown by CR and NR. However, during the intervals of the workload
change (second row in both tables) the MIMO-UB controller allocates more resources
despite being configured to make similar allocations to the SISO-UB. The increased al-
locations cause the MIMO-UB controller to have better performance as shown by the
increased number of completed requests (CR) and the proportion of requests with mRT
≤ 1s (NR).

The MIMO-UB controller is able to act faster to workload increases by allocating more
resources than the SISO-UB controllers because it accounts for all components’ errors
according to their resource coupling model derived offline. In this case, the error from
any component is “translated” to an error for any other component. In this way, the
MIMO-UB adjusts the allocations so that all components are settled down to the work-
load change as soon as possible.

Summary

This section compared the two usage based controllers, the SISO-UB and the MIMO-
UB. Comparison showed that under workload increases and the same parameter values
between the two controller designs the MIMO-UB controller outperforms the SISO-UBs
because it allocates more resources since it accounts for the aggregate error from all
components. However, even when the two controllers are configured to make similar
allocates, the MIMO-UB responds faster to workload increases because it allocates more
resources according to the resource coupling model.

6.3 Kalman Based Controllers 113

6.2.4 Discussion

The last section compared the usage based controllers, the SISO-UB and the MIMO-
UB. Analysis showed that both controllers achieve their goals. Further parameter tuning
showed that increasing their values results in improving the server’s performance since
more resources are allocated to components. In addition, the MIMO-UB controller im-
proves the SISO-UB controllers, since it considers the control errors from all components
according to their resource coupling model.

Before proceeding to the evaluation of the Kalman based controllers, there are three
issues related to the usage-based controllers that need to be addressed. First, there are a
number of input configuration parameters for both controllers, the values of which affect
the server’s performance. This section also suggested a procedure towards setting their
values and provided guidelines for their tuning based on experimental analysis. However,
setting their values for a new application is a challenging task. Second, the allocations
made by either controller are affected by every resource fluctuation, even the subtle ones.
This behaviour might not be appropriate in several consolidation cases where changes in
the resource allocations should reflect important workload changes. Third, the MIMO-
UB controller uses the resource coupling model derived offline for one workload type.
Since this might be a drawback for this controller, an online version was also suggested
(Section 5.2.1).

The Kalman based controllers address all of these issues. The KBC and PNCC have fewer
configuration parameters than the usage based ones and the APNCC further contains an
adaptation mechanism to set all but one of its parameters. In addition, with any of the
Kalman based controllers the allocations can be tuned to different degrees of variability.
The next section evaluates the Kalman based controllers and discusses these issues.

6.3 Kalman Based Controllers

This section evaluates the performance of the three Kalman-based controllers. The SISO
Kalman Basic Controller (KBC) (presented in Section 5.1.4) allocates CPU resources sep-
arately to each application tier. Based on the Kalman filtering technique it uses past
utilisation measurements to predict the utilisation for the next interval and hence the al-
location itself. The KBC controller is based on the multiplicative system model (Equation
(4.2)) to achieve reference performance; the controller aims to maintain the utilisation
rate within each VM at a certain 1

c
of its allocation (Equation (5.16)). The integration

of the Kalman filtering technique into a feedback controller is particularly useful for the
current problem, since: (a) the controller filters out the transient changes from the util-
isation signal and discovers the important underlying resource variations; and (b) the
responsiveness of the controller to the control error (through the Kalman gain) depends
on the system’s variance itself (via the process noise variance computed offline). Different
degrees of noise filtering are achieved with parameter tuning.

The second Kalman-based controller is the MIMO Process Noise Covariance Controller
(PNCC) controller (Section 5.2.2). The PNCC controller extends the KBC design to

114 Experimental Evaluation

collectively allocate resources to all application tiers. It captures the resource correlation
between components’ utilisations through the use of the covariance process noises. The
computation of the covariance matrix Q, which contains all the components’ variances
and covariances, is performed offline.

The final controller evaluated is the Adaptive Process Noise Covariance Controller
(APNCC) controller (Section 5.3). This controller is similar to the PNCC design, but, in
addition, it updates the estimate of the covariance matrix Q online by using the utilisa-
tion measurements.

The purpose of the experimental procedure is to evaluate each controller’s ability to
achieve its goals: the allocations should (a) follow the utilisations, and (b) maintain the
server’s performance to its reference value under workload changes. In addition, this
section evaluates specific features such as: (a) the effects of the parameter tuning to the
variability of the allocation signal and (b) the ability of the APNCC to adapt to workload
changes and compute the system variances and covariances online. Finally, comparisons
between pairs of controllers are performed. The PNCC is compared against the KBC
in order to evaluate the use of the covariance noise between components. Finally, the
APNCC is compared against the PNCC to evaluate the effectiveness of the adaptation
mechanism to compute the system variances. The rest of this section discusses the settings
of some parameter values that are common to all experiments that follow.

Parameter c

The parameter c, which denotes the level of the CPU utilisation rate to the allocation,
is set to 60%. Although 60% might seem low and that resources are “wasted” and
hence less resources are left for another application to run, this value enables the study
of the controllers’ performance with few implications from saturated components. Pre-
vious analysis showed that when the allocation approaches the utilisation, the server’s
performance degrades. To study the Kalman based controller, a low utilisation rate is
chosen, so as to avoid transient component saturation as much as possible.

Variances and Covariances

Both the KBC and the PNCC controllers use offline computed parameters. Each KBC
controller uses the allocation process variance Q and the PNCC controller uses the pro-
cess covariance matrix Q. The diagonal elements contain the variances of the com-
ponents (e.g. Q(1, 1) denotes the process noise variance of the 1st component). The
non-diagonal elements of the symmetric Q matrix contain the covariances between com-
ponents, (e.g. Q(1, 2) denotes the process noise covariance between the 1st and the 2nd

components). These parameters are essential to the computation of the Kalman gains
and to the allocations for the next interval.

To compute their values, it was shown that it suffices to compute the corresponding val-
ues for the utilisations and then perform the necessary transformations using the para-
meter c (Equations (5.22) and (5.43)). The variances and covariances of the components’

6.3 Kalman Based Controllers 115

component usage variance
Tomcat 28.44
JBoss 4.75

MySQL 47.43

component pair usage covariance
(Tomcat, JBoss) 2.36

(Tomcat, MySQL) 5.06
(JBoss, MySQL) 1.80

Figure 6.7: Values of Utilisation Variances and Covariances. These values are computed
from utilisation measurements under static workload of 600 clients. The
set of the offline computed variance values is referred to as Q0 values. The
covariance matrix with the offline computed variances and covariances is
referred to as Q0 matrix.

utilisations are computed using an E1(600,40) experiment repeated ten times for confid-
ent results and where each component is allocated 100% of its CPU. Although the vari-
ances and covariances might change with the number of clients, for simplicity the offline
computations are performed for a fixed number of clients (600). The current offline com-
puted numbers for 600 clients are used throughout the evaluation as an approximation
for other workloads as well. The left hand-side table in Figure 6.7 shows the utilisation
variances of the three Rubis components. Hereafter, these set of values are referred to
as Q0. Finally, the right hand-side table in Figure 6.7 depicts the utilisation covariances
between components. The covariance matrix with the offline computed variances and
covariances is referred to as Q0.

Finally, the measurement noise variance is set to a small value (e.g. S = 1.0) given the
existence of relatively accurate measurement tools. This value acts as a good approxim-
ation of possible measurement errors.

6.3.1 KBC

This section evaluates the performance of the KBC controllers first in the case of a stable
workload and then for a variable number of clients. In each case the controllers are
evaluated using: (a) the process noise variances Q0 as computed offline and (b) using a
portion of Q0 for each component which affects the allocation variability and server’s
performance. The experiments that use stable workloads emphasise the effects of Q0

values on the allocation variability. The experiments with variable number of clients
study the effects of Q0 values on server performance during a workload change.

Stable Workload

Figure 6.8 illustrates the results of an E1(600,40) experiment with a constant number
of clients. Figures 6.8(a), 6.8(b), and 6.8(c) show that the CPU allocations track the
utilisations for each component. The server’s performance (Figures 6.8(d) and 6.8(e)) is
sustained at very good levels. The mRT is below its target value (1s) with a few spikes and
the Throughput remains stable with small variations. The mRT spikes are caused when
one or more components is close to saturation. The saturation is caused because each

116 Experimental Evaluation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat CPU allocation and utilisation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss CPU allocation and utilisation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL CPU allocation and utilisation

1 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

1 10 20 30 40
0

50

100

150

200

250

300

Sample point

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(e) Throughput

1 10 20 30 40
1.4

1.45

1.5

1.55

1.6

1.65

1.7

Sample point

K
al

m
an

 G
ai

n

Tomcat
JBoss
MySQL

(f) Kalman gains

Figure 6.8: KBC Performance for Stable Workload and Q0 Values. The KBC controllers
allocate resource to follow utilisation changes, while the server’s performance
maintains its target performance (mRT ≤ 1s) with only a few spikes.

KBC controller corrects its allocation to match even the more subtle resource utilisation
changes. For example, if the utilisation drops in one interval but increases the next, the
allocation drops as well in the next interval and the component saturates (e.g. sample
points 30 − 32 in Figures 6.8(c) and 6.8(d)). This behaviour, which was also observed
in the SISO-UB and MIMO-UB controllers, is because of the large values of the Kalman

6.3 Kalman Based Controllers 117

gains (Figure 6.8(f)) which make each controller to have an increased confidence in the
new measurements; therefore, the allocations are corrected after each interval to match
the usage. Although in the case of the SISO-UB and MIMO-UB controllers this issue
was not addressed, the controllers in this section can be used to filter out small signal
fluctuations.

Filters in general and the Kalman filter in particular are used to eliminate the noise from
measured signals, while discovering the underlying patterns. In the above figures, the
allocations correctly “follow” the usage. However it might be more useful to construct
a controller that adjusts to the underlying trends of the CPU signal while not being
strongly affected by its variance. In the case of the Kalman filter, this is achieved through
the tuning of the parameters Q and S that affect the Kalman gain K (Section 5.1.4). The
Kalman gain depends on the relative values of Q and S. If the process noise variance Q
is larger than the measurement noise variance S, then the system states are noisy and the
Kalman gain is relatively large in order to follow the variable system. If, however, S is
larger than Q then the measurements of the system states are noisy, and therefore, the
Kalman gain is relatively small and the system is less confident in the new observations
of the states.

To better illustrate this behaviour a similar experiment of stable workload E1(600,40) is
now performed for a different value of K. To this end, only a portion of the offline com-
puted Q values is now considered (Q is divided by 4004); for simplicity reasons S is kept
the same. Results are shown in Figure 6.9. The allocations are smoother than the utilisa-
tions for all the three components (Figures 6.9(a), 6.9(b), and 6.9(c)) and smoother than
before (e.g. Tomcat allocation in Figure 6.8(a) is more noisy than the corresponding
allocation in Figure 6.9(a)). In the second case, the values of the Kalman gains (Fig-
ure 6.9(f)) are smaller than previously (Figure 6.8(f)) and therefore the filter has more
confidence in the predicted values than in the measured ones. The server’s performance
is again maintained below its target performance, with fewer mRT spikes than before
(Figure 6.9(d)) and stable Throughput (Figure 6.9(e)).

To properly evaluate the effects of the different Q values on the Kalman gains and
the server’s performance, Qo variances are divided by different x values drawn from
Y = {1, 4, 8, 10, 40, 80, 100, 400, 800, 1000}. Hereafter x is denoted as the damping factor.
These values are chosen in order to cover a wide range of Kalman gains K values.5 For
each x value an experiment E1(600,200) is performed, and results are shown in Fig-
ure 6.10 and Table 6.9 where the following metrics are computed: (a) the components’
Kalman gains (Figure 6.10(a)), (b) the COV for each component (Figures 6.10(b), 6.10(c)
and 6.10(d)), (c) the CR, NR, RMS, and the additional resources (Table 6.9).

As the process noise Q decreases (when the damping factor x increases), the Kalman gain
for each component drops (Figure 6.10(a)), indicating that the predicted value

4Other values are also considered later in this chapter.
5It is common practice when studying the Kalman filter in different applications to retain one of the Q or

S stable and vary the other.

118 Experimental Evaluation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat CPU allocation and utilisation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss CPU allocation and utilisation

1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL CPU allocation and utilisation

1 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

1 10 20 30 40
0

50

100

150

200

250

300

Sample point

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(e) Throughput

1 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 G
ai

n

Tomcat
JBoss
MySQL

(f) Kalman Gains

Figure 6.9: KBC Performance for Stable Workload and Q0/400 Values. The allocations
from the KBC controllers follow the utilisations without adapting to every
subtle resource change due to their small Kalman gains. The server maintains
its target performance (mRT ≤ 1s) with just a few short spikes.

of the allocation becomes more important than the new measurement. This further
affects the variability of the allocation signal. Figure 6.10(b) shows the COV of the
allocation and the utilisation signals for the Tomcat component. As Q decreases the
allocation COV decreases too while the utilisation COV remains almost the same; the
allocations are smoother due to the small Kalman gains. The same observations hold

6.3 Kalman Based Controllers 119

1 10 100 1000
0

0.5

1

1.5

2

 damping factor x

K
al

m
an

 g
ai

ns

Tomcat
JBoss
MySQL

(a) Kalman Gains

1 4 8 10 40 80 100 400 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

 damping factor x

C
O

V

utilisation
allocation

(b) Tomcat usage and allocation COV

1 4 8 10 40 80 100 400 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 damping factor x

C
O

V

utilisation
allocation

(c) JBoss usage and allocation COV

1 4 8 10 40 80 100 400 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

 damping factor x

C
O

V

utilisation
allocation

(d) MySQL usage and allocation COV

Figure 6.10: KBC Performance for Stable Workload and Different Q Values. As Q values
decrease (when the x damping factor increases) the Kalman gains decrease,
the allocation signal becomes less noisy than the utilisation one and the
server’s performance, shown in Table 6.9, improves.

x values CR NR RMS additional

1 82840 0.9164 2.3433 10145
4 82949 0.9304 2.0628 10477
8 82940 0.9324 1.8298 10350
10 83512 0.9365 1.7725 10374
40 83554 0.9350 1.8826 10530
80 83700 0.9429 1.5800 10530
100 83564 0.9425 1.7291 10587
400 83860 0.9462 1.5017 10972
800 83639 0.9470 1.3871 11091
1000 83962 0.9504 1.4417 11085

Table 6.9: KBC Server Performance for Stable Workload and Different x.

for the JBoss (Figure 6.10(c)) and MySQL components (Figure 6.10(d)). In the case of
MySQL, the COV increases for the last two x values. This is because there is a small
utilisation fluctuation that changes the mean utilisation depicted in the allocation as well.

120 Experimental Evaluation

The server’s performance is also affected by the choice of Q. Table 6.9 shows the CR, NR,
RMS, and additional resources for the duration of the experiment. In the case of the
RMS, the predicted(response time) is the mRT as measured offline for the 600 clients.
As x increases the server’s performance improves: it serves more clients (increasing CR),
the proportion of requests with response times ≤ 1s increases too (increasing NR), and all
requests are closer to the mRT (decreasing RMS). However, note, that the improvement in
server’s performance with increasing x is achieved because the workload is stable. As the
Kalman gains become smaller (increasing x), the controllers are less affected by transient
fluctuations, and therefore, they avoid transient component saturations. This is also
shown by the increasing additional resources allocated to components. However, in a
workload increase, a small Kalman gain would stall the controller to adapt to a resource
change. Later this section evaluates the effects of Q values on workload changes.

For the rest of this chapter, the evaluation of the Kalman controllers is based on different
Q values as divided by x drawn from X = (x ∈ {8, 10, 40, 80, 100, 400}). As can be seen
from Figure 6.10(a) the Kalman gains for x ∈ {1, 4} are close to the gains for x = 8.
Similarly, the gains for x ∈ {800, 1000} are close to the gains for x = 400. Further
evaluation based on these x ∈ {1, 4, 800, 1000} does not significantly contribute to the
analysis.

To conclude, by computing the process noise variance offline, the KBC controllers cor-
rectly allocate resources as needed and sustain the server’s performance very close to its
target values. Tuning the Q parameters causes different degrees of allocation variabil-
ity. With decreasing Q values the controllers’ allocations are smoother and do not get
so affected by transient fluctuations. For stable workloads this also results in improved
server’s performance. However, as the allocations are slower to act to resource changes,
this might cause slower reactions to workload changes. This issue is considered next.

Workload Changes

The evaluation of the KBC controllers has been so far on a stable workload. The rest of
this section studies performance with variable workloads. Figures 6.11 and 6.12 illus-
trate the KBC allocations and server’s performance respectively during two E0(20,40,60)
experiments. The graphs on the left hand-side in both Figures come from an
E0(20,40,60) experiment which considers the initial Q0 process noise variances (here-
after denoted 1st experiment). The graphs on the right hand-side show the results from
another E0(20,40,60) experiment (hereafter denoted 2nd experiment) which however, ac-
counts only for a fraction (Q0/400) of the initial process noise variances.

In both experiments, the controllers track the usage fluctuations and the allocations are
adjusted accordingly (Figure 6.11). However, it is obvious that the allocations on the
right hand-side graphs are smoother than those on the left hand-side and slower to fol-
low the resource changes. This is due to smaller Kalman gains in the 2nd experiment
(Figure 6.12(d)) when compared to the 1st (Figure 6.12(c)). This causes the controllers
in the 2nd experiment to have more confidence in their predicted values than in the new
measurements.

The two Q configurations also affect the servers’ performances in different ways. At the

6.3 Kalman Based Controllers 121

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat CPU allocation, usage (Q0)

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) Tomcat CPU allocation, usage
(Q0/400)

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) JBoss CPU allocation, usage (Q0)

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(d) JBoss CPU allocation, usage (Q0/400)

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(e) MySQL CPU allocation, usage (Q0)

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(f) MySQL CPU allocation, usage (Q0/400)

Figure 6.11: KBC Allocations for Variable Workload and two of Q Values. In the left
hand-side graphs, the KBC controllers are configured with Q0 values. In the
right hand-side graphs the controllers are configured with Q0/400 values,
which makes the allocations to be less affected by small workload changes.

122 Experimental Evaluation

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(a) Response (Q0)

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(b) Response (Q0/400)

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
JBoss
MySQL

(c) Kalman gains (Q0)

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
JBoss
MySQL

(d) Kalman gains (Q0/400)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

request respone time in seconds

C
D

F

KBC Qo
KBC Qo/400

(e) CDF of response times (Q0 and Q0/400)

Figure 6.12: KBC Server Performance for Variable Workload and two Q Values. When
the controllers are configured with Q0 values (left hand-side graphs) their
Kalman gains are higher than the KBC controllers when configured with
Q0/400 values (right hand-side graphs). With smaller gains the server’s per-
formance has fewer mRT spikes since the allocations are less affected by
transient fluctuations.

beginning of the 1st experiment the controllers adjust the allocations to the utilisations
in just one interval. This behaviour in combination with the fact that during the first
few intervals the workload increases gradually, results in components’ saturation and
performance degradation. In this case for the duration of almost the first 10 intervals

6.3 Kalman Based Controllers 123

(or approximately 50s) the MySQL component in the 1st experiment is saturated (Fig-
ure 6.11(e)) and the mRT stays above its reference value of 1s (Figure 6.12(a)). However,
in the 2nd experiment for the same duration, the allocations follow more slowly the util-
isations leaving the components with enough resources to adapt to the new increased
workload and the mRT stays below its target value (Figure 6.12(b)). However, the slower
allocation adaptation in the case of workload increases causes server degradation. For
example, when the number of clients doubles around the 20th sample point, it causes the
requests’ mRT in the 2nd experiment to stay above their target value of 1s for more inter-
vals (see mRT spikes between sample points 20 to 30 in 6.12(b)) than in the 1st experiment
(mRT spikes between sample points 20 to 30 in 6.12(a)). Overall for these experiments
as shown in Figure 6.12(e), there are more requests (89.6%) in the 2nd experiment with
response times ≤ 1s than in the 1st (87.92%). Although smoother allocations are po-
tentially more useful since they ignore transient resource fluctuations, they might cause
server performance degradation when workload increases occur.

The effects of Q values on server’s performance under workload increases is evaluated
using E2 experiments repeated 20 to 40 times for each x ∈ X. Recall that during this
experiment the number of clients quadruples (from 200 to 800) and hence the server is
under a sharp workload increase. The server’s performance is measured using the CR,
NR, RMS, and additional metrics and results are shown in Figure 6.13. CI are very
small and therefore not plotted.

As Q decreases (when the x damping factor increases) both CR (Figure 6.13(a)) and
NR (Figure 6.13(b)) decrease too. This is because with decreasing Q, the Kalman gains
decrease too and the KBC controllers become less confident in their predictions than the
measured values and hence they are slower to adapt to the increasing resource demands,
also shown by the decreasing additional resources in Figure 6.13(d). For the same
reasons, the RMS (Figure 6.13(c)), which depicts the difference of request response times
from the mean response time in the case of 800 clients, increases while Q decreases.

Properties

Three of the SASO properties: settling times, maximum overshoot, and zero steady-state
error for the KBC controller are now examined using experimental results from this
section. The analysis uses Figures 6.14(a) and 6.14(b) which are produced using the data
from Figures 6.11(a) and 6.11(b) to illustrate allocations based on two Kalman gains
which cause diverse controller behaviour. Each figure shows the measured allocation
(line allocation) and the hypothetical allocation as calculated from the utilisation signal
divided by the c parameter (line utilisation/c); the latter corresponds to the steady-state
output of the controller according to the reference input. In this case, there is a reference
output and the KBC controllers should converge to it because they are integral controllers
and have zero steady-state error.

The settling times depend on the values of the Kalman gains. In Figure 6.14(a), where
the Kalman gain is relatively large, the allocation signal is identical to the signal that
corresponds to the steady-state values, therefore, the controller converges in just one
interval. In Figure 6.14(a), where the Kalman gain is smaller, the controller takes a few

124 Experimental Evaluation

8 10 40 80 100 400
0

2,000

4,000

6,000

8,000

10,000

12,000

 damping factor x

C
R

(a) CR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

 damping factor x

N
R

(b) NR

8 10 40 80 100 400
0

5

10

15

20

25

 damping factor x

R
M

S

(c) RMS

8 10 40 80 100 400
0

200

400

600

800

1000

1200

damping factor x

ad
di

tio
na

l r
es

ou
rc

es

(d) additional

Figure 6.13: KBC Performance for Workload Increases and Different Q Values. As Q de-
creases the server’s performance drops since the KBC controllers are slower
to adapt to workload demands.

2 10 20 30 40 50 60
0

20

40

60

80

100

Sample point

%
 C

P
U

utilisation/c
allocation

(a) Tomcat CPU allocation, usage (Q0)

2 10 20 30 40 50 60
0

20

40

60

80

100

Sample point

%
 C

P
U

utilisation/c
allocation

(b) Tomcat CPU allocation, usage (Q0/400)

Figure 6.14: Settling Times and Overshoot for KBC Controllers.

intervals to converge to values very close to the steady-state, despite the noisy utilisations.
For example, at the beginning of the experiment, the controller takes a few intervals
(around 10) to reach to values very close to the utilisation/c signal despite the utilisation

6.3 Kalman Based Controllers 125

fluctuations. Additionally, the KBC controllers do not overshoot. In both cases they
approach the steady-state without exceeding its value (e.g. intervals 20-40).

Summary

This section evaluated the performance of the SISO KBC controllers in stable and vari-
able workload conditions. In all cases the controllers achieved their goals by following
the resource fluctuations and maintaining the reference server performance. Depending
on the values of the process noise variances Q, the controllers achieve different variations
in the allocation and subsequently exhibit different server performance. As Q decreases
the server’s performance under workload increase decreases too. Depending on the ap-
plications, different damping factor x values can be chosen.

The slow responsiveness of the controller to workload changes is mainly the result of
two factors. Firstly, when the controller is configured to make smooth allocations it
responds slowly to sudden workload changes. Secondly, the KBC controller controls
the allocations for each component separately, ignoring any resource coupling between
them. It was shown previously (Section 6.2.3) that merging the SISO-UB controllers into
the MIMO-UB (with the utilisation resource coupling between components) gives better
server performance. The next section presents the results of the PNCC controller which
comes from merging the KBC controllers into one MIMO controller and incorporating
the resource correlation of the components.

6.3.2 PNCC

The MIMO PNCC controller combines the SISO KBC controllers to collectively allocate
resources based on their resource utilisations. Components’ utilisations are used in two
ways. First, they guide the allocations through the use of the control errors. Second, they
are used to compute the process noise variances and covariances. Similar to the compu-
tation of the allocation variances, the covariances between the components’ allocations
are computed offline based on the usage covariances (Figure 6.7). The utilisation vari-
ances are used to compute the allocation variances along the diagonal in the covariance
matrix Q. The utilisation covariances are used to compute the allocation covariances in
the non-diagonal elements in Q. This matrix is referred to as Q0.

The PNCC controller is now evaluated using an E0(20,40,60) experiment with workload
fluctuations; results are shown in Figure 6.15. The process covariance Q matrix is set to
the offline computed values Q0 divided by 400. This Q value enables direct comparisons
with the 2nd E0(20,40,60) experiment with KBC controllers from Figures 6.11 and 6.12.
The PNCC allocations adapt to the utilisation fluctuations (Figures 6.15(a), 6.15(b),
and 6.15(c)). The server’s performance is very close to the reference value since the mRT
(Figure 6.15(d)) stays below 1s for most of the experiment’s duration. When compared to
the previous E0(20,40,60) experiment with the three KBC controllers, the PNCC which
allocates resources collectively, adjusts to the increased demand faster than in the KBC
case. This is shown by the fewer mRT spikes at the 20th interval comparing the PNCC

126 Experimental Evaluation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss CPU allocation and utilisation

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL CPU allocation and utilisation

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

requests respone time in seconds

C
D

F

PNCC Qo/400

(e) CDF of response times

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
Tomcat−JBoss gain
Tomcat−MySQL gain

(f) Kalman gains

Figure 6.15: PNCC Performance for Variable Workload and Q0/400 Values. The PNCC
controller adapts to workload changes and the requests mRT is at very good
levels. The PNCC controller considers the control error from all compon-
ents by a small fraction as shown by the Kalman gains between components.

controller (Figure 6.15(d)) to the KBC (Figure 6.12(b)) and the increased proportion of
requests with response times ≤ 1s (92.1% as shown in Figure 6.15(e)).

The PNCC’s ability to adapt faster to workload changes than the KBC controllers comes
from the utilisation resource covariance between components integrated into its design.

6.3 Kalman Based Controllers 127

2 10 20 30 40 50 60
0

20

40

60

80

100

Sample point

%
 C

P
U

utilisation/c
allocation

Figure 6.16: Settling Times and Overshoot for the PNCC Controller.

The PNCC controller uses the covariance matrix Q to account for the resource coupling
between components. The final allocation of each component is the result of its own
error plus the errors from the other components. The non-diagonal elements of the
Kalman gain K matrix indicate these fractions. For instance, Figure 6.15(f) shows the
Kalman gains for each of the three control errors accounted for the allocation of the
Tomcat component. This figure shows that Tomcat’s allocations are the result of its
own error (multiplied by the Tomcat gain) in addition to the control errors from JBoss
(multiplied by the Tomcat-JBoss gain) and MySQL (multiplied by the Tomcat-MySQL)
components. Section 6.3.3 will compare the PNCC and KBC controllers for different
values of the covariance Q matrices.

Properties

The following PNCC properties are now examined using Figure 6.16 (the data of this fig-
ure come from Figure 6.15(a)): settling times, maximum overshoot, and zero steady-state
error. The Figure shows the measured allocation (line allocation) and the hypothetical
allocation as calculated from the utilisation signal divided by the c parameter (line util-
isation/c); the latter corresponds to the steady-state output of the controller according to
the reference input. In this case, there is a reference input and the PNCC should converge
to it because it is an integral controller and has zero steady-state error.

It has short settling times despite being configured for smooth allocations (Qo/400). As
shown in the Figure (first 15 intervals), the PNCC approaches to steady-state values in
just a few intervals. Finally, the PNCC does not overshoot. Its allocations do not exceed
the steady-state values (e.g. intervals 20-40).

6.3.3 KBC and PNCC Comparison

This section compares the two Kalman based controllers, the KBC and the PNCC. The
PNCC differs from the KBC controllers since it considers all components’ control errors
when computing the final allocation of each tier. Since the fraction of each control error

128 Experimental Evaluation

8 10 40 80 100 400
0

20000

40000

60000

80000

damping factor x

C
R

KBC
PNCC

0.1% −0.6%0.2% 0.2%−0.3%−0.4%

(a) CR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1.0

damping factor x

N
R

KBC
PNCC

0.4% 0.3% −0.1% 0.4%−0.8% 0.6%

(b) NR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

damping factor x

R
M

S

KBC
PNCC

17% −16% −4% −7% 2% 12%

(c) RMS

8 10 40 80 100 400
0

2000

4000

6000

8000

10000

damping factor x

ad
di

tio
na

l r
es

ou
rc

es

KBC
PNCC

0.9% 2% 1% 0.5% 0.8%1.4%

(d) additional

Figure 6.17: PNCC and KBC Comparison for E1(600,200) Experiments and Different
x. Percentages shown in each case represent the percentage of the metric
difference of the PNCC controller over the KBC.

considered to the components’ allocations depends on the values of the covariance matrix
Q the evaluation is performed for different Q values (Q is divided by x ∈ X). To better
evaluate the two controllers the comparison is performed in two steps. First the control-
lers are compared under stable workloads and then using a series of E2 experiments that
stress the controllers for sharp workload increases.

Comparison against stable workload conditions

Figure 6.17 shows the results from the KBC and PNCC comparison for a stable work-
load; for each x and controller an E1(600,200) experiment is performed. Results
show that the two controllers have very similar performances: they allocate similar
additional resources (Figure 6.17(d)); the server performance is similar in both cases
of CR (Figure 6.17(a)) and NR (Figure 6.17(b)); and, there are small differences in the
case of RMS (Figure 6.17(c)). In the case of stable workloads, the PNCC mechanism
does not provide any significant improvement over the KBC controllers. The control
errors and the coupling from the different components do not affect the final allocation
for each component more than the KBC controllers.

6.3 Kalman Based Controllers 129

8 10 40 80 100 400
0

2,000

4,000

6,000

8,000

10,000

12,000

damping factor x

C
R

KBC
PNCC

3% 2%1% 6% 5%1%

(a) CR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

damping factor x

N
R

KBC
PNCC

2% 4% 6% 0% 14% 15%

(b) NR

8 10 40 80 100 400
0

5

10

15

20

damping factor x

R
M

S

KBC
PNCC

5% 5% 16% 18% 3%0%

(c) RMS

8 10 40 80 100 400
0

200

400

600

800

1000

1200

damping factor x

ad
di

tio
na

l r
es

ou
rc

es

KBC
PNCC

6%5% 2% 5% 13% 11%

(d) additional

Figure 6.18: PNCC and KBC Comparison for E2 Experiments and Different x. Percent-
ages shown in each case represent the absolute percentage of the metric
difference of the PNCC controller over the KBC with a 90% CI.

Comparison against a large workload increase

The comparison is now focussed on sharp workload increases using an E2 experiment
where 200 clients issue requests to the server for 60 intervals and at the 30th interval
another 600 are added. Figure 6.18 shows the performance differences between the
PNCC and the KBC as measured using the metrics NR, CR, RMS, and additional
resources. In all figures the percentages shown in each case represent the absolute metric
difference of the PNCC controller over the KBC with a 90% CI. To obtain this CI a
T-test over all metrics across data sets in each case is applied. If after applying the T-test
the means of the two data sets show no difference at the 90% CI, a 0% difference is
shown (e.g. Q = Q0/10, Figure 6.18(c)).

The PNCC controller has equal or better performance over the KBC controllers when
looking at CR, NR, and RMS metrics combined for each x value. As the damping
factor x values increase both controllers are becoming slower to adjust their allocations
to the workload increase. However, the performance improvement of the PNCC over
the KBC is increased as the x values increase. In these cases, where the small Kalman
gains make the allocations slow to react to workload changes, the improvement of the

130 Experimental Evaluation

PNCC over the KBC is more apparent. The PNCC is able to react faster to important
workload changes — increased additional resources (Figure 6.18(d)) — than the KBC
controllers because it incorporates all components’ errors.

Discussion

The section compared the KBC and the PNCC controllers. Both controllers make smooth
allocations as the damping factor increases and, hence, the Kalman gains decrease. The
PNCC provides better response to significant workload changes in all cases of the damp-
ing factor, although the two controllers perform similarly under stable workloads. The
PNCC provides better response to workload changes because it considers the control
errors from all components through the utilisation covariances. Under stable workloads,
taking into account the control errors from the different components does not affect
its performance when compared to the KBC. Overall, the PNCC controller provides a
timely resource adaptation for significant workload changes. When the server operates
under stable workloads the PNCC maintains similar server performance to the simpler
KBCs.

6.3.4 APNCC

This section evaluates the Adaptive PNCC controller (APNCC). APNCC uses the adapt-
ation mechanism that estimates the covariance matrix Q online from utilisation meas-
urements and updates its values every few intervals (Section 5.3). The advantage of this
controller over all other controllers is that it does not require offline parameter estima-
tion and that the adaptation mechanism captures the system’s dynamics as they happen.

The performance of the APNCC is evaluated using an experiment with fluctuating work-
loads coming from different mixes, the browsing (BR) and the bidding (BD) mix, as
shown in Figure 6.19(a). The covariance matrix Q is updated using a sliding window
mechanism which calculates the gains every controller interval using the measurements
from the last 10 intervals and the controller always uses Q/40 values. Results are shown
in Figure 6.19; Figures 6.19(a), 6.19(b), and 6.19(c) show the controller’s allocations
and components’ utilisations. The controller adjusts the allocations to track the util-
isations of unknown and diverse workloads for the duration of the experiment. The
server’s performance (shown in Figures 6.19(d), 6.19(e), and 6.19(f)) is very close to its
target performance. The mRT (Figure 6.19(d)) is below 1s for the duration of the experi-
ment. There are a few prolonged spikes when the workload increases, but 89.58% of the
requests have response times ≤ 1s (Figure 6.19(e)). The spikes in the response times (Fig-
ure 6.19(d)) are due to momentarily JBoss CPU increases caused by the Rubis benchmark
(Figure 6.19(d)) and make the JBoss component to saturate. Finally, the Throughput
changes according to the number of clients with some fluctuations (Figure 6.19(f)).

Figure 6.20 illustrates the Kalman gain values as computed throughout the experiment.
In each case the gains adapt to the different utilisation fluctuations. The adaptation
mechanism captures the workload changes and the controller’s parameters are updated
accordingly, e.g. the Tomcat gains increase around the interval 60 when the workload

6.3 Kalman Based Controllers 131

1 20 40 60 80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

100 BR
100 BD

300 BR 400 BD

300 BR
300 BD

(a) Tomcat CPU allocation and utilisation

1 20 40 60 80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss CPU allocation and utilisation

1 20 40 60 80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL CPU allocation and utilisation

1 20 40 60 80 100 120 140 160 180 200 220 240
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
 in

 s
ec

on
ds

(d) Requests mRT

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

request response time in seconds

C
D

F

(e) CDF of request response times

1 20 40 60 80 100 120 140 160 180 200 220 240
0

20

40

60

80

100

120

140

Sample point

re
qu

es
ts

/s
ec

(f) Throughput

Figure 6.19: APNCC Performance for Variable Workload and Q/40 Values. The APNCC
controller adapts to diverse workload mixes (browsing (BR) and bidding
(BD) mix) and fluctuating number of clients.

132 Experimental Evaluation

1 20 40 60 80 100 120 140 160 180 200 220 240

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample point

ga
in

(a) Tomcat

1 20 40 60 80 100 120 140 160 180 200 220 240

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample point

ga
in

(b) JBoss

1 20 40 60 80 100 120 140 160 180 200 220 240

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample point

ga
in

(c) MySQL

Figure 6.20: APNCC Gains for Variable Workload and Q/40 Values.

changes. While it is difficult for the offline parameter estimation to capture all the dy-
namics of the system, the APNCC controller follows all utilisation changes without a
priori knowledge of the workload characteristics, namely the workload mixes and the
number of clients.

6.3.5 PNCC and APNCC Comparison

To better evaluate the adaptive APNCC controller this section compares this controller
against the PNCC in two situations. In the first case, the two controllers are evaluated
using E0(40,80,120) experiments. These experiments simulate a relatively “normal”
situation where the workload remains stable for several intervals and only two work-
load changes happen throughout. In the second case, the two controllers are evaluated
using E2 experiments. In this case, the comparison is focussed around a large workload
increase.

Comparison against “normal” workload conditions

The APNCC is now compared against the PNCC using E0(40,80,120) experiments for
different x values. For each x ∈ X and for each controller, an E0(40,80,120) is repeated

6.3 Kalman Based Controllers 133

8 10 40 80 100 400
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

damping factor x

C
R

PNCC
APNCC

1.3% 0.5% 0.2% −0.6%−0.2% −0.7%

(a) CR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

damping factor x

N
R

PNCC
APNCC

1.3% 0.1% 0.6% −2.5%−1.4%−1.3%

(b) NR

8 10 40 80 100 400
0

1

2

3

4

5

6

damping factor x

R
M

S

PNCC
APNCC

2.4% 32.7%21%1.7%−5.5% −0.8%

(c) RMS

8 10 40 80 100 400
0

1000

2000

3000

4000

5000

damping factor x

ad
di

tio
na

l r
es

ou
rc

es

PNCC
APNCC

−3.3%−0.9%−0.5%0%0.2%0.2%

(d) additional

Figure 6.21: PNCC and APNCC Comparison for E0(40,80,120) Experiments. Percent-
ages in each case show the metric difference of the APNCC controller over
the PNCC with a 95% CI after a T-test is applied. A positive sign in the
percentage indicates that the metric in the APNCC case has a higher value
than in the case of the PNCC. A negative sign shows the opposite.

five times. The covariance matrix Q is estimated every 10 controller intervals from the
utilisation measurements. Results are shown in Figure 6.21. According to all three
metrics calculated for the duration of the experiment — CR in Figure 6.21(a), NR in
Figure 6.21(b), RMS in Figure 6.21(c), and additional resources in Figure 6.21(d) —
the two controllers perform almost the same.

The APNCC controller performs equally well to the PNCC with offline computed para-
meters while it eliminates the need for any offline computations, since its parameter Q is
updated online.

Comparison against a large workload increase

The two controllers are also compared based on E2 experiments that simulate a large
workload increase; the number of clients quadruples (from 200 to 800) half-way through
the experiment. Q is updated based on a sliding window mechanism which calculates
the gains every controller interval using the measurements from the last 10 intervals.

134 Experimental Evaluation

8 10 40 80 100 400
0

2000

4000

6000

8000

10000

12000

damping factor x

C
R

PNCC
APNCC

7%5% 4% 8% 1% 4%

(a) CR

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

damping factor x

N
R

PNCC
APNCC

7% 14% 9% 9% 3% 8%

(b) NR

8 10 40 80 100 400
0

5

10

15

20

25

damping factor x

R
M

S

PNCC
APNCC

28% 41% 15% 10% 5% 14%

(c) RMS

8 10 40 80 100 400
0

200

400

600

800

1000

1200

damping factor x

ad
di

tio
na

l r
es

ou
rc

es

PNCC
APNCC

2% 0% 8% 16%2% 3%

(d) additional

Figure 6.22: PNCC and APNCC Comparison for E2 experiments. Percentages in each
case show the absolute metric difference of the APNCC controller over the
PNCC with a 95% CI after a T-test is applied.

For every value x ∈ X each experiment is performed 20 times. Results are shown in
Figure 6.22. The APNCC controller performs almost as well as the PNCC as shown by
the CR in Figure 6.22(a), NR in Figure 6.22(b), and RMS in Figure 6.22(c).

To better explain these last results Figure 6.23 depicts the APNCC Kalman gains as
computed online in the case of two different x values. Figure 6.23(a) shows the gains
for a small value of the damping factor x = 8, which makes their values relatively large.
Figure 6.23(b) illustrates the gains for a larger value x = 400, which causes their values to
decrease and therefore the allocations are slower to detect the utilisation changes. Both
figures also show the offline computed gains in the case of the PNCC controller for the
Tomcat component (dashed line). It is apparent that the absolute gain values are affected
by the damping factor x. For example, for small x values the gains (Figure 6.23(a)) are
larger than for large x values (Figure 6.23(b)). However, their behaviour with respect to
detecting the workload increase is similar and discussed below.

Initially, the gain values are assigned to the offline computed ones and after the first ten
intervals they are adapted for every sample point. At first, their values decrease from the
offline computed ones which were calculated based on 600 clients and in this case the

6.3 Kalman Based Controllers 135

1 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sample point

K
al

m
an

 g
ai

n

APNCC Tomcat
APNCC JBoss
APNCC MySQL
PNCC Tomcat

(a) Kalman gains, x=8

1 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sample point

K
al

m
an

 g
ai

n

APNCC Tomcat
APNCC JBoss
APNCC MySQL
PNCC Tomcat

(b) Kalman gains, x=400

Figure 6.23: APNCC and PNCC Kalman Gains for x = 8 and x = 400. Figures show the
PNCC offline estimated gains only for the Tomcat component.

number of clients is 200 until the 30th sample point6. When the workload increase occurs
at the 30th point, the adaptation mechanism detects the utilisation change and all gain
values are adapted from there on. The absolute gain values increase beyond the values
of the offline computed values as the clients have now increased to 800.

The PNCC controller in the E2 experiments is slightly better than the APNCC when
comparing same x values (Figure 6.22). This is because at the time the workload change
happens, the PNCC offline computed gain values are larger than the online APNCC
estimated ones. This causes the PNCC to operate with a larger gain than the APNCC
when the workload increases, at the 30th sample point. In this case, the PNCC controller
reacts faster to the workload change for the next few intervals. However, although the
APNCC gain is small at the time of the workload increase starts, the controller detects the
change and adapts its gain according to the new utilisations. At the end, its performance
is only slightly worse than the PNCC.

Now consider the hypothetical scenario where the offline computed gain values are smal-
ler than the online computed ones before the workload increase occurs. For instance, this
occurs when APNCC is configured for x = 8 and the PNCC for x = 400 (APNCC gains
are shown in Figure 6.23(a) and the Tomcat PNCC gain is shown in Figure 6.23(b) with
the dashed line). In this case the APNCC performs better than the PNCC as illustrated
in Figure 6.22 (APNCC performance for x = 8 and PNCC for x = 400). In cases where
the PNCC Kalman gains over-estimate the online APNCC computed ones, the PNCC
performs better than the APNCC. However, if their values under-estimate the real ones,
the APNCC is better than the PNCC. The APNCC adapts to any workload by calculat-
ing the process noise variance as it happens and, therefore, its gains correspond to the
current workload variability.

Although the PNCC has an increased performance in all configurations, the APNCC al-
locates more resources for some values of x (Figure 6.22(d)). The APNCC allocates more
additional resources because its Kalman gains for the Tomcat and JBoss components

6Figures show only the Tomcat offline computed gains, but similar observations hold for the other two
components.

136 Experimental Evaluation

are higher than in the PNCC case after the workload increase (e.g. Figure 6.23). In addi-
tion, further analysis showed that the increased additional allocations are also caused
by the relatively high values of the APNCC inter-component Kalman gains with respect
to the Kalman gain in the Tomcat and JBoss cases. In other words, the errors from
the other components significantly contribute to the final allocation for these two com-
ponents. However, although the APNCC allocates more resources in total, the PNCC
performs better. This is because the APNCC increased additional allocations come
after a few intervals of the workload increase and, therefore, the PNCC has already
served more requests.

Discussion

This section evaluated the adaptive APNCC controller and compared its performance
with the PNCC which uses Kalman gains based on offline workload measurements. The
APNCC is able to capture the utilisation variability across workloads in a server ap-
plication and efficiently adapts its Kalman gains without using any a priori workload
information as in the case of the PNCC.

The comparison between the two controllers showed that the APNCC performs as well
as the PNCC under “normal” workload conditions where a roughly estimated PNCC
gain is enough to capture the small workload variability (Figure 6.21). The APNCC
is also able to adapt to substantial workload increases resulting in a consistent good
behaviour (Figure 6.22). However, there are cases where the APNCC allocates more
resources when compared to PNCC because it retrospectively detects and adapts to im-
portant workload changes. Nevertheless, it offers great workload adaptability potentials
when the PNCC’s performance depends on how close its offline estimated gains are to
the current workload. In addition, the APNCC does not need any special mechanism to
detect or predict a large workload increase. This controller, which treats all workload
changes the same, automatically adapts its gain to values that depict the importance or
not of the workload change. Finally, when tuning the APNCC controller, the x damping
factor values do not seem to be that important when it comes to workload increases.
One can essentially choose any x value and the controller would still adjust its gain to
capture a substantial workload increase.

6.4 Discussion

This chapter thoroughly evaluated the performance of the five different controllers
presented in this dissertation across different workload conditions and different eval-
uation metrics. Basic E0 type of experiments showed that each controller achieved its
goals towards tracking the utilisations and maintaining the mRT close to the reference
value (mRT ≤ 1s) for the majority of the intervals.

Additional E1 experiments evaluated the usage based controllers’ performance with dif-
ferent parameter values. Analysis for the SISO-UB and MIMO-UB controllers showed
that increasing any of their values improves the server’s performance since more resources

6.4 Discussion 137

are allocated to the components. It was also shown that the performance does not sig-
nificantly improve after a certain amount of additional allocations. This is aligned
with the system identification results, where it was pointed out that there is a threshold
for the extra allocation beyond which the performance of the server stabilises. Based
on the experimental analysis, guidelines were given to set the parameter values. When
deploying a new application, further system experimentation similar to the one followed
for evaluating the parameter values can be used to find those values that provide accept-
able server performance based on its QoS performance goals and the policy on how to
share resources on the virtualized cluster.

The MIMO controllers are designed to adjust the allocations faster to saturated compon-
ents and the SISO-UB and MIMO-UB controllers were compared using E2 experiments
that simulate a large workload increase. Analysis showed that the MIMO-UB controller
outperformed the SISO-UBs for the same parameter values, at a cost of allocating more
resources than the SISO-UBs (Figure 6.6). To better evaluate the MIMO-UB resource
coupling mechanism another comparison based on E2 experiments was performed where
the two controllers were particularly configured to make similar additional alloca-
tions. In this case, the MIMO-UB performed better during the workload increase, be-
cause it allocated more resources using the errors from all components (Table 6.7 and
Table 6.8).

There are two issues concerning the usage based controllers: (a) they use a number of
input configuration parameters and (b) their allocations are prone to every workload
fluctuation. The Kalman based controllers address these issues. Based on experiments,
it was illustrated that the COV of the allocations can be decreased when using a frac-
tion (based on the damping factor) of the initial variances, in the case of the KBC, or
covariance matrix, in the case of the PNCC. As the damping factor increases the COV
decreases and the controllers are not affected by transient fluctuations. However, very
smooth allocations were shown to be slow to respond to sudden large workload changes.
In all cases, the MIMO PNCC controller, which takes into account the resource coup-
ling between components, improved the performance of the KBC controllers during the
workload change (Figure 6.18), although the two controller made similar additional
allocation under stable workload conditions (Figure 6.17).

Although the KBC and the PNCC use fewer configuration parameters than the usage
based controllers, their values are also based on offline system identification analysis.
The APNCC uses a parameter adaptation mechanism to compute the parameter values
online. Experiments showed that the APNCC adjusts the Kalman gains to different op-
erating conditions. In fact it is able to detect large workload increases and different
workload mixes and adapts its gain, even in cases where it is configured for smooth al-
locations (large damping factor) where it avoids transient utilisation fluctuations. When
compared to the PNCC under large workload increases, its performance is only slightly
worse since it detects and responds to the workload change retrospectively. Neverthe-
less, it updates and configures its Kalman gains to always reflect to the latest utilisation
patterns.

The APNCC controller provides the best choice for multi-tier applications among con-
trollers because: (a) it uses an online adaptation mechanism to estimate its parameters

138 Experimental Evaluation

and hence, reduces offline system identification analysis; (b) it captures workload vari-
ability as it happens, and (c) it can be configured to allocate with different degrees of
variability depending on the virtualized applications and the way they share resources.
In the case of a single-tier application and for similar reasons the KBC controller is the
best choice. Its adaptive version is expected to perform equally well.

7
Related Work

This chapter presents work related to this dissertation. Section 7.1 discusses other
control-based solutions to resource management in virtualized server applications and
compares the proposed schemes to the controllers of this dissertation. Section 7.2
presents two filtering methods developed to estimate the CPU utilisation in shared non-
virtualized clusters. The next section briefly discusses recent resource management based
on machine learning techniques. Finally, Section 7.4 discusses resource management on
the resource sharing platform of Grids.

7.1 Control-Based Resource Provisioning

Some related work leverages on the dynamic resource capabilities of modern virtual
containers and exploits control theory to build robust resource provisioning controllers
for highly stochastic server applications. This section reviews related work starting from
schemes that control the allocation of single-tier server applications and continues to
related work on provisioning of multi-tier applications.

7.1.1 Single-Tier Feedback Control

This section discusses papers published in 2005 and 2006 that control the CPU resources
of a single-tier Apache server running on the HP-UX PRM resource container [LZSA05,
WZS05, ZWS06]. Different controllers are discussed that aim to regulate QoS metrics
such as mean response time mRT across overload (i.e. a tier has insufficient resources for

139

140 Related Work

its current workload) and underload (i.e. a tier has more resources than needed). Liu
et al. [LZSA05] present an adaptive Proportional-Integral (PI) controller which regulates
the clients’ mRT at desired levels by controlling the CPU allocation. The controller builds
on a linear relationship between the inverse mRT and the CPU allocation, as shown by
system identification measurements on the overload region. The controller performs well
and adapts to different workload rates by dynamically updating its model’s parameters
and subsequently calculating its gain. This controller is based on a linear input-output
relationship existing for the application under control and for only the overload region.

Wang et al. [WZS05] identify the bimodal behaviour of the mRT under overload and
underload conditions and study the operation of three different controllers across all
conditions. The first adaptive PI controller, also presented in [LZSA05], regulates the
inverse mRT based on its linear relationship to the CPU allocation, which exists however
only in the overload region. When stepping from the overload to the underload region
this controller fails to adjust the allocations, as the inverse mRT is no longer linear to the
CPU allocations. The second gain-adaptive Integral (I) nonlinear controller regulates the
relative CPU utilisation to a reference value. Its adaptive gain operates so as, when in the
overload region, the controller allocates resources more quickly to avoid performance
degradation, while responding more slowly when the system steps into the underload
region. This controller in general offers slow overall response time and good resource
utilisation. However, this controller does not provide any QoS metric guarantees and,
therefore, the authors propose a third adaptive controller that regulates the mRT based
on an ARX model of both the inverse mRT and the relative utilisation. This controller
aims to compensate for the lack of controllability of the inverse mRT in the underload
region by using the relative utilisation. This controller offers better stability only when a
clear boundary of the two operating regions can be detected.

Finally, in [ZWS06], a nested control design is presented. An inner control loop uses the
gain-adaptive I controller from [WZS05] to regulate the relative utilisation. The outer
loop implements another I controller which regulates the reference relative utilisation to
a value so that the mRT is maintained within a user-specified range. The output of the
outer loop controller is given as the input to the inner loop. The authors provide no
justification for the outer loop controller design. When comparing to a single loop con-
troller with either the relative utilisation controller or the mRT controller from [WZS05],
this nested-loop controller meets more effectively the QoS guarantees and provides better
resource utilisation.

The controllers of this dissertation do not provide fine-grain QoS output metric guar-
antees (which are mostly application specific). The mRT is used in the broad context of
controller evaluation. They build on the usage output metric which is intuitively indic-
ative of the application’s resource requirements and they operate across all regions. The
related work on mRT-based controllers are application and workload dependent. They
are based on offline system identification analysis and although they provide reasonable
performance to the systems under test, they offer no guarantees when applied to a differ-
ent system.

The relative utilisation adaptive controller presented in [WZS05] is conceptually similar
to the SISO-UB and the KBC controllers presented in this dissertation as they both track

7.1 Control-Based Resource Provisioning 141

the relative utilisation. However, the SISO-UB and the KBC controllers are linear and re-
spond equally quickly (subject to tuning in the case of the Kalman filter) to the transitions
between different operating conditions. This might be important in a server consolida-
tion environment where resources are important to other running applications. The
SISO-UB controller frees resources much more quickly than other controllers without
needing to distinguish between overload and underload regions.

7.1.2 Multi-Tier Feedback Control

The control of multi-tier server applications has also recently gained attention.
In [PSZ+07,WLZ+07,LZP+07], different controllers that regulate the relative utilisation
of multi-tier Rubis server applications deployed on Xen VMs are studied and discussed
below.

In [PSZ+07] the authors present a two-layered controller that regulates the relative util-
isation of two instances of two-tier virtualized Rubis servers co-hosted on two physical
servers. The first layer controller regulates the relative utilisation for each server tier.
The second layer controller adjusts the allocations of the first layer according to a QoS
differentiation metric in cases where the sum of the requested CPU allocations from the
first-layer controllers are above the physical machines’ capacity. Offline analysis identifies
the same bimodal behaviour as in [WZS05], and so the same gain-adaptive I controller is
used to control the allocations for each tier separately without considering any resource
coupling between the components.

Wang et al. [WLZ+07] present a 3-layer nested control design to control the CPU alloc-
ations of a 3-tier Rubis application. The two inner loops are similar to [ZWS06]. The
outer loop is used to provide with a better approximation of the corresponding utilisa-
tion per tier in respect to the reference mRT. It uses a model-based approach, presented
in [SKZ07], which computes the mRT based on the utilisation per tier and the transaction
mix. The outer loop uses the above model to find the reference utilisation per tier based
on the reference mRT and the transaction mix as recorded at the client emulator during
the last interval. This combination of controllers uses application specific information to
compute the transaction mixes however, which might not be available to any application.

The MIMO-UB and the PNCC one-layer controllers use a simple model of the resource
coupling between the components. It is either computed off-line for stable workloads
or on-line for more general workloads as in the case of the APNCC and updated every
some controller interval. The MIMO controllers solely depend on the easily available
and non-intrusive relative utilisation per tier. Detailed transaction mixes are not always
available at the server-side due to privacy issues and additional computational costs.

Finally, Liu et al. [LZP+07] present an optimal controller that computes the resource
allocations of two 2-tier virtualized Rubis server applications providing QoS differenti-
ation when the shared resources are overloaded. A first-order ARX model that captures
the resource coupling across tiers of the same and different applications is used. Based on
this model, in which parameters are estimated online during the last interval, the control-
ler allocates resource by minimising a linear quadratic function of the normalised QoS

142 Related Work

ratio for each application and the relative utilisation for each tier. The controller per-
forms well and manages to keep the ratio of mean response times between applications
close to its reference value. However, it does not provide any guarantees as to individual
application performance.

This controller is similar to the MIMO-UB and PNCC controllers as they both use
the tiers’ resource coupling. However the controller in [LZP+07] has a limited scope
of providing QoS differentiation of co-hosted applications only in the overload region
where the utilisation equals the allocation and therefore, a resource coupling observa-
tion based on the allocations is present. The MIMO-UB and PNCC controllers, how-
ever, operate across all regions as they are based on the tiers’ relative utilisation which is
different to the allocation in the underload region. Finally, they provide a more general
framework in which resource coupling is not attached to any QoS differentiation metric.

7.1.3 Predictive Control

In contrast to feedback control, where reactive actions are taking place to correct the
measured error, there is also predictive control, where a controller proactively tunes the
system to cope with future estimated load.

Xu et al. [XZSW06] present a predictive controller that regulates the relative utilisa-
tion of a single-tier virtualized server based on three time-series prediction algorithms,
namely the AR auto-regressive model, the ANOVA decomposition, and the MP multi-
pulse model. Any of the above methods predicts the utilisation for the next interval
based on past measurements; this is used directly by the controller to set the allocation
of the next interval. Results show that once the predictive model is properly trained
either via on-line or off-line analysis, the predictive controllers react quickly to repeated
CPU usage trends. However, predictive controllers perform poorly against newly seen
trends. The predictive controllers outperform the relative-utilisation feedback controller
of [WZS05] when the utilisation exhibits regular patterns that can be captured and accur-
ately modelled by the prediction controller. However, unseen utilisation patterns cause
the predictive controller to fail to provide adequate resources for the server application.

Time-series prediction is a powerful tool for resource provisioning if the system’s para-
meters exhibit regular patterns. Either off-line or on-line training can be used to capture
the system’s dynamics and provide accurate predictions. However, feedback control is
more general and does not depend on system patterns. The Kalman filter is a very power-
ful method that predicts future demands based on past measurements and directly relates
measurements to system states. It is a one-step prediction method; the allocation for the
next interval is the best estimate given all measurements so far. By tuning the different
parameters, the controller achieves different degrees of responsiveness to sudden work-
load changes. Finally, when adaptive, it captures the changing dynamics of the system.

7.2 Filtering methods 143

7.2 Filtering methods

Before commodity hardware virtualization became widely adopted, other systems were
developed to manage resource multiplexing and server consolidation. Section 2.2.3 dis-
cussed these approaches. The next two paragraphs present their methods for resource
estimation.

In Sharc [US04], an exponentially-weighted moving average (EWMA) filter is used to
estimate future CPU and network bandwidth resources based on past observations. The
Sharc system uses the estimates to redistribute resources among co-located applications.
EWMA filters provide a flexible framework to estimate the values of noisy signals. De-
pending on the values of the filter’s smoothing parameter, the filter can be set to work in a
range of modes from being aggressively adaptive to changes of the observed signal (agile
filter), or to being smooth on transient fluctuations (stable filter) and, therefore, slower
to any changes. However, a filter with a statically assigned parameter like this works
only in one mode and therefore it is not adaptive to different operating conditions.

To address the above limitations, Chase et al. [CAT+01] use a flop-flip filter, which is
based on flip-flop filters [KN01]. The flop-flip filter uses the moving average of the es-
timations over a 30s window and, if that estimation fails outside one standard deviation
then, it switches to the new moving average. The authors use this filter to smooth partic-
ularly bursty signals as they describe them: “Even during steady load, this bursty signal
varies by as much as 40% between samples.”. The adaptivity of the Kalman filter-based
controllers in diverse workload conditions presented in this dissertation was demon-
strated in two ways: (a) through the estimation of the process noise variance from meas-
ured values and (b) by dividing the noise variance by different values. Results showed
a wide range of different operations of the Kalman filters that act either in an adaptive
manner to all workload fluctuations or in a more stable way to transient changes while
still being adaptive to notable workload changes.

Finally, simple time-series analysis techniques have also been used to predict future re-
source demands in modern virtualized shared clusters. A first order AR predictor is used
by the Sandpiper system [WSVY07] to estimate future resource demands in virtualized
servers.

7.3 Machine Learning in Resource Management

Machine learning approaches to performance modelling in virtualized environments have
also been developed. Xu et al. [XZF+07] present a 2-layer resource management system
that aims to minimise the resources consumed for single-tier applications to meet their
SLAs, while maximising the profit of a utility function over the shared resources’ revenue.
They use fuzzy modelling to learn the relationship, modelled as a group of states, between
workload and required resource usages to meet SLAs. Their models employ a black-box
approach to the applications’ internal structure, although in order to update the CPU
resource allocations it requires information on the current workload. Controllers in this

144 Related Work

dissertation do not consider the current workload but rather incrementally adjust the
allocations based on the relative utilisation.

Tesauro et al. [TJDB07] apply Reinforcement Learning (RL) to data centre server alloc-
ation. The authors employ a 2-layer resource management scheme. For each application
at the first layer, an application manager provides a utility curve of its expected value
based on the number of allocated servers. At the second layer, a resource arbiter decides
how to allocate servers among all applications so as to maximise some global utility
function. RL is a trial-and-error method, where the system learns to make good de-
cisions through a series of interactions with its environment. Tesauro et al., use queueing
models initially to bootstrap the resource management process as well as to train the
system. The final model learnt by the arbiter outperformed the initial estimations based
on the queueing model.

7.4 Resource Management in Grids

This last section briefly discusses resource management in the Grid environment.

In Grid Computing a set of heterogeneous machines distributed world-wide and inter-
connected through the Internet are sharing their resources to support advanced scientific
applications. Similar to the virtualized cluster paradigm, Grid applications share a pool
of resources distributed over a set of machines. In both cases, resource management of
the applications is important.

The Grid middleware is a collection of software tools that manage the Grid, such as
the very popular, open-source Globus Toolkit [glo08]. It handles all operations from
low-level tasks such as remote control of the Grid machines to high-level functions like
resource management. Grids use a Resource Management System (RMS) [KBM02] to
(a) coordinate resource allocation between applications and Grid machines; (b) handle
diverse policies and constraints imposed by the contributing peers; (c) manage scalability
and heterogeneity issues, and so on. In particular in the case of the Globus toolkit, the
Globus Resource Allocation Manager (GRAM) [CFK+98] accepts application requests
for resources, discovers resources that meet the application demands, and allocates them.
Application requests define the limits of the resources the application will need for exe-
cution such as minimum and maximum amount of memory [gra08].

This dissertation is concerned with applications with diverse and unpredictable work-
loads. Their resource demands fluctuate over time and hence adaptive resource alloc-
ations are key for the applications to continuously meet their QoS performance goals.
In contrast, the applications deployed on Grids have pre-defined resource requirements
and Grid resource managers are mostly concerned with the discovery and allocation of
resources among the machines.

8
Conclusion

This dissertation is concerned with the resource management of virtualized server ap-
plications. It presented feedback controllers for adjusting the CPU resource allocations
based on tracking the utilisations over previous intervals. The controllers maintain the
allocations within a certain distance of the utilisations in spite of fluctuating workloads.
In this way, the application maintained its performance very close to its goals. Finally,
when considering the resource coupling between components, the controllers adjusted
the allocations more quickly in response to workload changes.

8.1 Summary

Chapter 2 presented the motivation for the problem of resource management of virtual-
ized server applications and the reasons for using a control-theoretic based approach to
this problem. The chapter started by describing server applications in Section 2.1 and
their demanding workload characteristics in Section 2.1.3. It then discussed how vir-
tualization is changing the nature of data centres and explained why adaptive resource
management is integral to creating a truly agile and efficient environment for hosting
virtualized server applications (Section 2.3). Finally, Section 2.4 motivated the use of
feedback control to create a reactive adaptive allocation scheme and introduced its basic
concepts.

Chapter 3 presented all the necessary means for the realisation of this dissertation. It
presented the prototype virtualized cluster used for the evaluation of this work (Sec-
tion 3.2) and related issues such as the Xen virtualization technology (Section 3.5) and
CPU resource management considerations (Section 3.6). It also presented the Rubis

145

146 Conclusion

benchmark server application (Section 3.4), which was deployed on the prototype cluster,
and used throughout for experimental evaluation. Section 3.3 presented the architecture
used to realise the resource management control framework.

The system identification process was described in Chapter 4. The application was sub-
jected to a number of experiments that aimed to capture the behaviour of the system.
First, components’ utilisations were identified to be indicative of the application’s CPU
resource requirements and the pair (allocation, utilisation) was identified as the control
input and control output signals (Section 4.3). Second, the system model was identified
and results showed that for the application to maintain its reference performance goals,
allocations should be sustained above a certain limit of the utilisations; this relationship
was expressed using either the additive or the multiplicative model (Section 4.4). Finally,
this chapter showed that there is a resource coupling between components’ CPU utilisa-
tions (Section 4.5). The relationships between utilisations were expressed using linear
models that provided a very good fit over a large collection of utilisation data across
components and diverse workloads.

Chapter 5 formulated all five controllers of this dissertation. The two SISO controllers,
the SISO-UB (Section 5.1.1) and the KBC (Section 5.1.4), adjust the CPU allocations for
individual application components. The two MIMO controllers, the MIMO-UB (Sec-
tion 5.2.1) and the PNCC (Section 5.2.2), allocate resources collectively to all compon-
ents based on their resource coupling. The MIMO-UB controller uses the offline-derived
resource coupling model between components, while the PNCC is based on the com-
ponents’ utilisation covariances. The KBC and the PNCC controllers incorporate the
Kalman filtering technique into their design to track the components’ utilisations and
update the allocations. Section 5.3 presented a mechanism to dynamically update the
estimated variances and covariances of the KBC and PNCC controllers and introduced
the adaptive version of the PNCC controller, the APNCC.

Chapter 6 presented the experimental evaluation results for all five controllers. Each
controller managed to maintain the application’s performance very close to its reference
value in spite of workload fluctuations. Extensive analysis also showed the effects of
input configurations parameters on the controllers’ allocation in the case of the SISO-UB
(Section 6.2.1) and the MIMO-UB (Section 6.2.2) controllers. The Kalman based con-
trollers were shown to make smooth allocations by changing the values of their configur-
ation parameters (Section 6.3.1). Comparisons between controllers were also performed.
The MIMO-UB controller outperformed the SISO-UB ones when their input configura-
tion parameters were set to same values (Section 6.2.3). In addition, the MIMO-UB
responded better to large workload increases even when the two usage-based controllers
were configured to make similar allocations for same workloads. The MIMO PNCC
controller also performed better than the KBC controllers when faced large workload in-
creases (Section 6.3.3). This chapter also evaluated the APNCC controller (Section 6.3.4)
which adjusts its Kalman gain online in response to workload variations. The APNCC
controller was compared against the PNCC in Section 6.3.5. For small workload vari-
ations, its performance was comparable to the PNCC. For large workload increases the
APNCC was able to automatically detect the change by adapting its gain accordingly,
retaining relatively high performance levels.

8.2 Future Work 147

Chapter 7 discussed other approaches to resource management similar to the context of
this dissertation. It described work on resource management for virtualized servers using
feedback control (Section 7.1). The main differences of the work presented in this disser-
tation and other related work is that it uses the Kalman filter to track the utilisation and
it builds MIMO controllers based on the resource coupling between components which
work in any operating region. In addition, this chapter presented resource estimation
using simple filters (Section 7.2), related work on server performance modelling based
on machine learning (Section 7.3), and resource management on Grids (Section 7.4).

8.2 Future Work

Resource management of virtualized servers has become a prominent area of work
with increasing interest from the research and industrial community. This dissertation
tackled the problem of CPU resource provisioning for virtualized server applications and
provided several efficient solutions. During the course of this work, the author identified
extensions of the current dissertation and future directions of research as outlined below.

Enhanced Evaluation

The evaluation of the controllers used the Rubis benchmark application deployed on
three machines. Each Rubis tier was deployed on a separate machine. Each machine was
dual core, and each of dom0 and domU were pinned on one of the two CPUs. This setup
enabled an extensive system identification and experimental evaluation for the control-
lers without implications from other co-hosted applications and scheduling artifacts. To
enable deployment of the controllers in an industrial data centre, a more detailed evalu-
ation is required. The current work can be further evaluated under a server consolidation
example scenario where multiple benchmark applications (e.g. multiple copies of Rubis
or a mixture of server applications) are hosted by the various machines in the cluster.

Enhanced Functionality

The current work can be further extended to provide a more general solution to the
resource management of virtualized server applications. The system model could be
extended to incorporate dom0’s utilisations and the controllers should then manage the
CPU allocations accordingly for dom0 as well; Cherkasova et al. [CG05] have performed
some initial evaluation on the dom0 CPU overhead for I/O and disk processing. In
addition, the controllers could be expanded to provision resources for memory space,
network and disk bandwidth in addition to CPU. Both enhancements would provide data
centre administrators more complete solutions to manage their applications’ resources.

148 Conclusion

Solving an Optimisation Problem for extra Resources

The amount of extra resources that allocations should maintain above the mean util-
isations play an important role in the management of resources in virtualized server
machines and in the application’s performance. All controllers in this dissertation main-
tain this difference at reference values as indicated by their input parameters, which are
set based on either system identification or empirical analysis. However, setting these
parameters to appropriate values is challenging. On one hand, if extra resources are
less than required, the application‘ performance degrades. On the other hand if more
resources than needed are given to components, machine resources are underutilised.
In fact, there is a minimum amount of extra resources above which the application
performance stabilised as shown in the simple case where the allocations of only one
component was subjected to varying resources (Figure 4.4).

An interesting direction of research is to formulate the allocation problem as an optimisa-
tion one. In this case, a controller would have to find the minimum amount of resources
required by components to maintain a reference application performance. This problem
becomes particularly challenging under fluctuating workloads.

High Level Application Management Tasks

It was mentioned before that CPU resource provisioning for applications is an integral
part of any high-level data centre operation, such as load balancing, power saving, etc.
The controllers of this dissertation can be used in conjunction with other controllers for
advanced data centre management.

For instance, consider the demanding job of handling hundreds of multi-tier applications
in a large virtualized data centre consisting of tens or hundreds of machines. Assume that
the administrator aims to place applications on as few machines as possible and switch
off the rest to save on power.

To tackle this problem one can use two levels of controllers. At the bottom level, the
resource management of individual applications is handled by any of the controllers of
this dissertation as chosen using the criteria mentioned throughout. At the high level,
another set of controllers can be built to handle application placement on physical ma-
chines based on their resource requirements. The two controllers can operate at different
granularities. The controllers of the bottom level operate at short intervals and provide
resources for small scale fluctuations. The controller(s) at the high-level operate when
workload fluctuations cause such changes in applications’ demands that component mi-
gration is necessary to ensure maximum power saving and/or maintain QoS.

8.3 Conclusions 149

8.3 Conclusions

This dissertation makes the following three main conclusions:

1. Reactive resource provisioning for virtualized server applications is feasible using
feedback control.

This dissertation proposed and evaluated five novel feedback controllers — namely the
SISO-UB, the MIMO-UB, the KBC, the PNCC, and the APNCC — for CPU resource
provisioning. Thorough evaluation showed that each of these controllers allocated CPU
resources to application components while maintaining the server’s performance very
close to its reference performance in the presence of fluctuating and unknown workloads.

2. Resource provisioning based on the resource coupling found in multi-tier applications
is more efficient than its per single-tier allocation counterpart.

Modern virtualized applications employ the multi-tier model and span multiple com-
ponents deployed on separate VMs. This dissertation identified and modelled the
utilisation resource coupling between application components. Evaluation showed that
the MIMO controllers, which consider this coupling in making their decisions regarding
resource allocation to all application components improve the performance of the SISO
controllers when facing large workload increases.

3. The Kalman filtering technique integrates efficiently into resource allocation feedback
controllers.

Three of the controllers presented here — namely the KBC, the PNCC and the APNCC
— use the Kalman filtering technique to track utilisation changes based on which they
allocate CPU resources. The Kalman filter estimates the next state of a system based
on past observations. The key point of this technique which makes it attractive for
resource management is that it uses the dynamics of the system itself to estimate the
validity of the next observation and choose whether it is an important change to follow
or just a small variation. The adaptive APNCC controller encompasses exactly this
behaviour. Experimental evaluation showed that the APNCC dynamically adapts to
workload conditions and distinguishes between small variations and important workload
changes.

A
Steady-State Kalman Gain

The Kalman gain depends on the ratio S
Q

. According to [Sim06, section 5.4.2] the steady-

state Kalman gain is given by:

Kk =
P−

k HT
k

HkP
−

k HT
k + Sk

, (A.1)

P−

k is the steady-state covariance. The steady-state covariance for a scalar, time-invariant
Kalman filter is given by:

lim
k→∞

P−

k =
τ1

2H2
, (A.2)

where τ1 is:

τ1 =
√

H2Q + S(F + 1)2
√

H2Q + S(F − 1)2, (A.3)

where H represents the transition between the states and the measurements; F represents
the transition between states in the absence of noise; Q is the process noise variance; and,
S the measurement noise variance.

In the case of the KBC controllers: H = c, F = 1, and Q and S are the process noise
and measurement variance respectively and are measured offline. From Equations (A.3),
(A.2), and (A.1) and using the parameter values for the current system, the steady-state

151

152 Steady-State Kalman Gain

Kalman gain for the KBC controllers is given by:

Kk =
c +

√
c2 + 4 S

Q

c2 + c
√

c2 + 4 S
Q

+ 2 S
Q

(A.4)

Bibliography

[abe07a] Business Continuity: The Next Phase in Server and Storage Virtualization
(Research Brief). Aberdeen Group, July 2007.

[abe07b] Vendors Invest to Simplify Virtualization: Will Small/Medium Businesses
(SMBs) Bite? Aberdeen Group, July 2007.

[ACC+02] Cristiana Amza, Anupam Chandra, Alan L. Cox, Sameh Elnikety, Romer
Gil, Karthick Rajamani, Willy Zwaenepoel, Emmanuel Cecchet, and Julie
Marguerite. Specification and Implementation of Dynamic Web Site Bench-
marks. In Proceedings of the 5th Annual IEEE International Workshop on
Workload Characterization (WWC-5), pages 3–13, 2002.

[ACZ03] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Conflict-Aware
Scheduling for Dynamic Content Applications. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems (USITS), 2003.

[ADZ00] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster Reserves: a
Mechanism for Resource Management in Cluster-Based Network Servers.
In Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), pages 90–101, 2000.

[AFF+01] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krish-
nakumar, D.P. Pazel, J. Pershing, and B. Rochwerger. Océano - SLA Based
Management of a Computing Utility. In Proceedings of the 2001 IEEE/IFIP
International Symposium on Integrated Network Management, pages 855–
868, 2001.

[AJ00] Martin Arlitt and Tai Jin. A Workload Characterization Study of the 1998
World Cup Web Site. IEEE Network, 14(3):30–37, May/June 2000.

[ASDZ00] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel. Scal-
able Content-aware Request Distribution in Cluster-based Network Servers.
In Proceedings of the Annual USENIX Technical Conference (USENIX),
pages 323–336, 2000.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 164–177, 2003.

153

154 Bibliography

[BDM99] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource Containers:
A New Facility for Resource Management in Server Systems. In Proceed-
ings of the Symposium on Operating Systems Design and Implementation
(OSDI), pages 45–58, 1999.

[BVW+02] Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Peterson, and Per
Gunningberg. SILK: Scout Paths in the Linux Kernel. Technical Re-
port 2002-009, Department of Information Technology, Uppsala University,
Uppsala Sweden, 2002.

[CAK+04] Mike Y. Chen, Anthony Accardi, Emre Kiciman, , Dave A. Patterson, Ar-
mando Fox, and Eric A. Brewer. Path-Based Failure and Evolution Manage-
ment. In Proceedings of the 1st USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI’04), pages 309–322, 2004.

[CAT+01] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat,
and Ronald P. Doyle. Managing Energy and Server Resources in Hosting
Centres. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 103–116, 2001.

[CCE+02] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite,
and Willy Zwaenepoel. A Comparison of Software Architectures for E-
business Applications. Technical Report TR02-389, Rice University Com-
puter Science, 2002.

[CCE+03] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite,
and Willy Zwaenepoel. Performance Comparison of Middleware Archi-
tectures for Generating Dynamic Web Content. In Proceedings of the
ACM/IFIP/USENIX International Middleware Conference (Middleware),
pages 16–20, June 2003.

[CFK+98] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Mar-
tin, Warren Smith, and Steven Tuecke. A Resource Management Architec-
ture for Metacomputing Systems. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, pages 62–82, 1998.

[CG05] Ludmila Cherkasova and Rob Gardner. Measuring CPU Overhead for I/O
Processing in the Xen Virtual Machine Monitor. In Proceedings of the An-
nual USENIX Technical Conference (USENIX), pages 387–390, 2005.

[CLM+08] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High Availability via Asyn-
chronous Virtual Machine Replication. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 161–174, 2008.

[CMH08] Lancelot Castillo, Walter Montes, and Stephen Hochstetler. Virtualizing an
Infrastructure with System p and Linux. http://www.redbooks.ibm.
com/, 2008.

[CMZ02] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Perform-

Bibliography 155

ance and Scalability of EJB Applications. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 246–261, 2002.

[CRS99] Ariel Cohen, Sampath Rangarajan, and Hamilton Slye. On the Performance
of TCP Splicing for URL-Aware Redirection. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems (USITS), pages 117–126,
1999.

[ENTZ04] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. A
Method for Transparent Admission Control and Request Scheduling in E-
Commerce Web Sites. In Proceedings of the International Conference on
World Wide Web (WWW), pages 276–286, 2004.

[esx08] VMware ESX Server. http://www.vmware.com/products/vi/
esx/, 2008.

[glo08] Globus Home Page. http://www.globus.org/, 2008.

[gra08] GRAM Job Manager Reference Manual, RSL Attributes. http://www.
globus.org/api/c-globus-4.2.0/globus gram job manager/
html/globus job manager rsl.html, 2008.

[GS06a] Frank E. Gillett and Galen Schreck. Pragmatic Approaches To Server Virtu-
alization. Forrester Research, June 2006.

[GS06b] Frank E. Gillett and Galen Schreck. Server Virtualization Goes Mainstream.
Forrester Research, February 2006.

[GVC96] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time Fair
Queuing: A Scheduling Algorithm for Integrated Services Packet Switching
Networks. In Proceedings of ACM SIGCOMM’96, pages 157–168, 1996.

[HDPT04] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawin M. Tilbury.
Feedback Control of Computing Systems. IEEE Press/Wiley Interscience,
2004.

[HFC+06] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and
Steven Hand. Practical Taint-based Protection Using Demand Emulation. In
Proceedings of the European Conference on Computer Systems (EuroSys),
pages 29–41, 2006.

[HH05] Alex Ho and Steven Hand. On the Design of a Pervasive Debugger. In
Proceedings of the 6th Int. Symposium on Automated Analysis-Driven De-
bugging (AADEBUG’05), pages 117–122, 2005.

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Uni-
versity Press, 1985.

[hpW08a] HP UX Workload Manager overview. http://h71036.www7.hp.com/
hpux11i/downloads/wlm.overview.pdf, 2008.

156 Bibliography

[hpW08b] HP UX Workload Manager (WLM) Home Page. http://h71036.www7.
hp.com/hpux11i/cache/328328-0-0-0-121.html, 2008.

[hpW08c] Using HP UX Workload Manager: A quick reference. http://h71036.
www7.hp.com/hpux11i/downloads/wlm.quickref.pdf, 2008.

[HSH05] Alex Ho, Steven Smith, and Steven Hand. On Deadlock, Livelock, and For-
ward Progress. Technical Report UCAM-CL-TR-633, University of Cam-
bridge, Computer Laboratory, 2005.

[ICDD00] Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig. High-
Performance Web Site Design Techniques. IEEE Internet Computing,
4(2):17–26, Mar/Apr 2000.

[IDC07] Virtualization and Multicore Innovations Disrupt the Worldwide Server
Market. IDC, March 2007.

[jbo08] JBoss, Java Middleware Platform. http://www.jboss.org/, 2008.

[JLDJSB95] Michael B. Jones, Paul J. Leach, Richard P. Draves, and III Joseph S. Barrera.
Modular Real-Time Resource Management in the Rialto Operating System.
In Proceedings of the 5th Workshop on Hot Topics in Operating Systems
(HotOS-V), pages 12–17, 1995.

[jon08] JOnAS, Java Open Application Server. http://jonas.objectweb.
org/, 2008.

[JRR97] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu. CPU Reserva-
tions and Time Constraints: Efficient, Predictable Scheduling of Independ-
ent Activities. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 198–211, 1997.

[Kal60] Rudolph E. Kalman. A New Approach to Linear Filtering and Predic-
tion Problems. Transaction of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[KBM02] Klaus Kraute, Rajkumar Buyya, and Muthucumaru Maheswaran. A Tax-
onomy and Survey of Grid Resource Management Systems for Distributed
Computing. Software – Practice & Experience, 32(22):135–164, 2002.

[KMN04] Abhinav Kamra, Vishal Misra, and Erich M. Nahum. Yaksha: A Self-
Tuning Controller for Managing the Performance of 3-Tiered Web Sites. In
Proceedings of the International Workshop on Quality of Service (IWQoS),
pages 47–56, 2004.

[KN01] Minkyong Kim and Brian Noble. Mobile Network Estimation. In Proceed-
ings of the ACM Annual Conference on Mobile Computing and Network-
ing (MobiCom), pages 298–309, 2001.

[LDV07] Cherkasova Ludmila, Gupta Diwaker, and Amin Vahdat. When Virtual
is Harder than Real: Resource Allocation Challenges in Virtual Machine
Based IT Environments. Technical Report HPL-2007-25, HP Laboratories,
2007.

Bibliography 157

[Lju87] Lennart Ljung. System Identification: Theory for the User. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987.

[LMB+96] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul T.
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The Design
and Implementation of an Operating System to Support Distributed Mul-
timedia Applications. IEEE Journal of Selected Areas in Communications,
14(7):1280–1297, 1996.

[LZP+07] Xue Liu, Xiaoyun Zhu, Pradeep Padala, Zhikui Wang, and Sharad Sing-
hal. Optimal Multivariate Control for Differentiated Services on a Shared
Hosting Platform. In Proceedings of the IEEE Conference on Decision and
Control, pages 3792–3799, 2007.

[LZSA05] Xue Liu, Xiaoyun Zhu, Sharad Singhal, and Martin Arlitt. Adaptive Enti-
tlement Control of Resource Containers on Shared Servers. In Proceedings
of the IFIP/IEEE International Symposium on Integrated Network Man-
agement, pages 163–176, 2005.

[MA98] Daniel A. Menascé and Virgilio A.F. Almeida. Capacity Planning for Web
Performance: Metrics, Models, & Methods. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998.

[MAT] MATLAB Curve Fitting Toolbox. http://www.mathworks.com/
products/curvefitting.

[May79] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 141
of Mathematics in Science and Engineering. New York: Academic Press,
INC., 1979.

[MIG+02] Justin Moore, David Irwin, Laura Grit, Sara Sprenkle, and Jeff Chase. Man-
aging Mixed-Use Clusters with Cluster-on-Demand. Technical Report CS-
2002-07, Duke University, 2002.

[MP96] David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout
Operating System. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), pages 153–167, 1996.

[MS70] Richard A. Meyer and Love H. Seawright. A Virtual Machine Time-Sharing
System. IBM Systems Journal, 9(3):199–218, 1970.

[mys08] MySQL, Open Source Database. http://www.mysql.com/, 2008.

[net08] Netcracft, March 2008 Web Server Survey. http://news.netcraft.
com/archives/web server survey.html, 2008.

[Oga90] Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1990.

[ora08] Oracle Database. http://www.oracle.com/database/index.
html, 2008.

158 Bibliography

[PAB+98] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter
Druschel, Willy Zwaenepoel, and Erich M. Nahum. Locality-Aware Re-
quest Distribution in Cluster-based Network Servers. In Proceedings of the
Architectural Support for Programming Languages and Operating Systems
Conference (ASPLOS), pages 205–216, 1998.

[PSZ+07] Pradeep Padala, Kang Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive Control of
Virtualized Resources in Utility Computing Environments. In Proceedings
of the European Conference on Computer Systems (EuroSys), pages 289–
302, 2007.

[rac07] Rackspace Virtualization Survey. Rackspace, August 2007.

[RI00] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor. In Proceedings of the
9th USENIX Security Symposium, pages 129–144, 2000.

[SE07] Jed Scaramella and Matthew Eastwood. Solutions for the Datacenter’s
Thermal Challenges. White Paper, 2007.

[ser08] Server Sprawl Definition from SearchDataCenter.com. http:
//searchdatacenter.techtarget.com/sDefinition/0,
,sid80 gci1070280,00.html, 2008.

[SGLB99] Joris De Schutter, Jan De Geeter, Tine Lefebvre, and Herman Bruyninckx.
Kalman Filters: A Tutorial. Journal A, 40(4):52–59, December 1999.

[Sim06] Dan Simon. Optimal State Estimation. John Wiley & Sons, Inc., 2006.

[SKZ07] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting Non-
stationarity for Performance Prediction. In Proceedings of the European
Conference on Computer Systems (EuroSys), pages 31–44, 2007.

[SS05] Christopher Stewart and Kai Shen. Performance Modeling and System
Management for Multi-component Online Services. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 71–84, 2005.

[SV98] Prashant Shenoy and Harrick M. Vin. Cello: A Disk Scheduling Framework
for Next Generation Operating Systems. In Proceedings of the ACM Inter-
national Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), pages 44–55, 1998.

[sys08] System z9: The Value of Mainframe. http://www-03.ibm.com/
systems/z/about/charter/value utilization.html, 2008.

[TJDB07] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Ben-
nani. On the Use of Hybrid Reinforcement Learning for Autonomic Re-
source Allocation. Cluster Computing, 10(3):287–299, 2007.

[tom08] Apache Tomcat. http://tomcat.apache.org/, 2008.

Bibliography 159

[TPPC02] TPC Transaction Processing Performance Council. TPC Benchmark, Web
Commerce, Specification, Version 1.8. http://www.tpc.org/tpcw/
default.asp, February 2002.

[UC05] Bhuvan Urgaonkar and Abhishek Chandra. Dynamic Provisioning of Multi-
tier Internet Applications. In Proceedings of the International Conference
on Autonomic Computing (ICAC), pages 217–228, 2005.

[US04] Bhuvan Urgaonkar and Prashant Shenoy. Sharc: Managing CPU and Net-
work Bandwidth in Shared Clusters. IEEE Transactions on Parallel and
Distributed Systems, 15(1):2–17, 2004.

[USR02] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource Over-
booking and Application Profiling in Shared Hosting Platforms. In Proceed-
ings of the Symposium on Operating Systems Design and Implementation
(OSDI), pages 239–254, 2002.

[VGR98] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Performance Isol-
ation: Sharing and Isolation in Shared-Memory Multiprocessors. In Pro-
ceedings of the Architectural Support for Programming Languages and Op-
erating Systems Conference (ASPLOS), pages 181–192, 1998.

[Vir02] Virgilio Almeida and Martin Arlitt and Jerry Rolia. Analyzing a Web-Based
System’s Performance Measures at Multiple Time Scales. SIGMETRICS
Performance Evaluation Review, 30(2):3–9, 2002.

[vir08] Microsoft Virtual Server. http://www.microsoft.com/
windowsserversystem/virtualserver/default.aspx, 2008.

[vmw08a] Server Consolidation and Containment, With Virtual Infrastructure. http:
//www.vmware.com/, 2008.

[vmw08b] VMware. http://www.vmware.com, 2008.

[vmw08c] VMware Capacity Planner. "http://www.vmware.com/products/
capacity planner/, 2008.

[vmw08d] VMware Distributed Resource Scheduler (DRS). http://www.vmware.
com/products/vi/vc/drs.html, 2008.

[VMw08e] VMware. Server Consolidation and Containment. http://www.vmware.
com/pdf/server consolidation.pdf/, 2008.

[VMw08f] VMware. Virtualization Basics. http://www.vmware.com/
vinfrastructure/, 2008.

[VMw08g] VMware. VMware Products. http://www.vmware.com/products/,
2008.

[Wal02] Carl A. Waldspurger. Memory Resource Management in VMware ESX
Server. In Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), pages 181–194, 2002.

160 Bibliography

[WB95] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. Tech-
nical Report 95-041, University of North Carolina at Chapel Hill, Depart-
ment of Computer Science, February 1995.

[WC03] Matt Welsh and David Culler. Adaptive Overload Control for Busy Internet
Servers. In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems (USITS), page 4, 2003.

[WLZ+07] Zhikui Wang, Xue Liu, Alex Zhang, Christopher Stewart, Xiaoyun Zhu,
Terence Kelly, and Sharad Singhal. AutoParam: Automated Control of
Application-Level Performance in Virtualized Server Environments. In Pro-
ceedings of the IEEE International Workshop on Feedback Control Imple-
mentation and Design in Computing Systems and Networks (FeBID), 2007.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven Gribble. Denali: Light-
weight Virtual Machines for Distributed and Networked Applications.
Technical Report 02-02-01, University of Washington Department of Com-
puter Science and Engineering, February 2002.

[WSVY07] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif.
Black-box and Gray-box Strategies for Virtual Machine Migration. In Pro-
ceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 229–242, 2007.

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation (OSDI), pages
1–11, 1994.

[WZS05] Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal. Utilization and SLO-
Based Control for Dynamic Sizing of Resource Partitions. In Proceedings of
the IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM), pages 133–144, October 2005.

[xen08a] XenSource. http://www.xensource.com/, 2008.

[Xen08b] XenSource XenCenter. http://www.citrixxenserver.com/
Documents/xensourcev4 datasheet.pdf, 2008.

[Xen08c] XenSource. Virtual Data Center. http://www.xensource.com/
solutions/Pages/Virdata.aspx, 2008.

[XZF+07] Jing Xu, Ming Zhao, José Fortes, Robert Carpenter, and Mazin Yousif.
On the Use of Fuzzy Modeling in Virtualized Data Center Management.
In Proceedings of the International Conference on Autonomic Computing
(ICAC), page 25, 2007.

[XZSW06] Wei Xu, Xiaoyun Zhu, Sharad Singhal, and Zhikui Wang. Predictive Con-
trol for Dynamic Resource Allocation in Enterprise Data Centers. In Pro-
ceedings of the IEEE/IFIP Network Operations and Management Sym-
posium (NOMS), pages 115–126, 2006.

Bibliography 161

[ZBCS99] Xiaolan Zhang, Michael Barrientos, J. Bradley Chen, and Margo Seltzer.
HACC: An Architecture for Cluster-Based Web Servers. In Proceedings of
the USENIX Windows NT Symposium, pages 155–164, 1999.

[ZWS06] Xiaoyun Zhu, Zhikui Wang, and Sharad Singhal. Utility-Driven Workload
Management using Nested Control Design. In Proceedings of the American
Control Conference, 2006.

[ZYW+05] Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu, and Gabriel
Iszlai. Tracking Time-Varying Parameters in Software Systems with Exten-
ded Kalman Filters. In Proceedings of the 2005 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), pages 334–335,
2005.

