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Abstract

Reasoning about concurrent programs is difficult because of the need to consider all

possible interactions between concurrently executing threads. The problem is especially

acute for programs that manipulate shared heap-allocated data structures, since heap-

manipulation provides more ways for threads to interact. Modular reasoning techniques

sidestep this difficulty by considering every thread in isolation under some assumptions

on its environment.

In this dissertation we develop modular program logics and program analyses for

the verification of concurrent heap-manipulating programs. Our approach is to exploit

reasoning principles provided by program logics to construct modular program analyses

and to use this process to obtain further insights into the logics. In particular, we build

on concurrent separation logic—a Hoare-style logic that allows modular manual reasoning

about concurrent programs written in a simple heap-manipulating programming language.

Our first contribution is to show the soundness of concurrent separation logic without

the conjunction rule and the restriction that resource invariants be precise, and to con-

struct an analysis for concurrent heap-manipulating programs that exploits this modified

reasoning principle to achieve modularity. The analysis can be used to automatically

verify a number of safety properties, including memory safety, data-structure integrity,

data-race freedom, the absence of memory leaks, and the absence of assertion violations.

We show that we can view the analysis as generating proofs in our variant of the logic,

which enables the use of its results in proof-carrying code or theorem proving systems.

Reasoning principles expressed by program logics are most often formulated for only

idealised programming constructs. Our second contribution is to develop logics and anal-

yses for modular reasoning about features present in modern languages and libraries for

concurrent programming: storable locks (i.e., locks dynamically created and destroyed in

the heap), first-order procedures, and dynamically-created threads.
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Chapter 1

Introduction

This dissertation is about program verification, which is concerned with formally proving

desirable properties of computer programs. Of the spectrum of the currently available

approaches to verification, here we are interested in two: program logics and program

analyses. Program logics are proof systems that formalise reasoning principles for arguing

program correctness. They are most often used in manual proofs, which require insight

into the reasons for the program being correct. Program analyses are algorithms that

compute an over-approximation of the denotation of the program, and are implemented

as automatic tools. They usually use the simplest reasoning principles, compensating for

this with brute force. For example, analyses based on abstract interpretation typically

involve an iterative computation accumulating facts (expressed in so-called abstract do-

mains) that describe possible states the program might visit. It is rare to see a subtle

reasoning principle of a program logic being applied in a program analysis, so that instead

of computing the denotation of the program directly, the analysis computes an incarnation

of the reasoning principle. In this dissertation, we develop logics and analyses exhibiting

such a connection for a class of programs, concurrent heap-manipulating programs, for

which analyses based on straightforward reasoning principles are infeasible.

A straightforward way of reasoning about a concurrent program is by considering all

interleavings of executions of its threads. The number of possible interleavings tends to

be huge, thus, this approach results in program analyses being unscalable and proofs in

program logics being intractable. The problem is especially acute for programs that ma-

nipulate shared heap-allocated data structures, since heap-manipulation provides more

ways for concurrently executing threads to interact. One way to overcome this prob-

lem is to use techniques for modular reasoning, i.e., those which consider every thread

or component in the program in isolation under some assumptions on its environment

and thus avoid reasoning about all thread interactions directly. Modular reasoning tech-

niques for shared-variable concurrent programs typically partition program variables into

thread-local and shared; assumptions on a thread’s environment need only specify how

the environment changes the shared variables. For heap-manipulating programs, such a
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priori fixed partitioning into thread-local and shared state is usually inappropriate, which

makes devising modular techniques for them challenging.

Striking progress in this realm has recently been made by O’Hearn [56], who proposed

concurrent separation logic as a basis for reasoning about such programs. The main idea of

the reasoning principle provided by the logic is to partition the heap into thread-local and

shared parts while allowing the partitioning to change: the logic permits the ownership of

memory cells to be transferred from thread-local parts of the heap into shared and back.

Interaction between threads via shared parts is mediated using resource invariants, which

are assertions about them that must be respected by every thread. This is supported by a

mechanism for modular sequential reasoning using the separating conjunction connective.

The reasoning method based on dynamic heap splitting is subtle: the logic is unsound

unless resource invariants satisfy the restriction of precision, informally requiring that

they unambiguously carve out an area of the heap.

Our first contribution is to show the soundness of concurrent separation logic without

this restriction on resource invariants and one of the rules (the conjunction rule), and

to construct an analysis for concurrent heap-manipulating programs that exploits this

modified reasoning principle to achieve modularity. Namely, our analysis infers (generally

imprecise) resource invariants thread-modularly, i.e., by repeatedly considering each indi-

vidual thread instead of the whole program and thus avoiding interleaving enumeration.

It can be used to automatically verify a number of safety properties, including memory

safety, data-structure integrity, data-race freedom, the absence of memory leaks, and the

absence of assertion violations.1 We prove the soundness of our variant of concurrent

separation logic and the analysis together, in a uniform framework. Furthermore, we

show that we can view the analysis as generating proofs in our variant of the logic, which

enables the use of its results in proof-carrying code or theorem proving systems. In this

case, trying to implement a reasoning principle of a program logic in a program analysis

leads to an additional insight into the logic, suggesting an alternative way of attaining

soundness.

Reasoning principles expressed by program logics are most often formulated for only

idealised programming constructs. For example, concurrent separation logic essentially

reasons about programs with static locks (i.e., locks declared as global variables) and

threads created in a well-structured manner using parallel composition. Our second con-

tribution is to develop logics and analyses for modular reasoning about features present

in modern languages and libraries for concurrent programming [71, 6, 44]: storable locks

(i.e., locks dynamically created and destroyed in the heap), first-order procedures, and

dynamically-created threads. In some cases, this requires us to resolve set-theoretic para-

doxes in the models of the logics. As before, the principles of reasoning about the corre-

1In this dissertation we restrict ourselves to verifying safety properties. Developing methods for veri-

fying liveness properties of concurrent heap-manipulating programs has been the subject of our ongoing

work [35, 18].
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sponding language constructs used by the logics we develop for manual reasoning and by

our analyses differ: the latter may invalidate the conjunction rule in exchange for lifting

the restrictions imposed by the former that are hard for the analyses to satisfy.

1.1 Dissertation outline

In Chapter 2 we present the necessary technical background from program logics and

program analyses, providing a brief overview of concurrent separation logic and abstract

interpretation.

In Chapter 3 we consider a simple concurrent programming language in which pro-

grams consist of a top-level parallel composition of threads synchronising via static locks.

We first present a novel framework for constructing thread-modular analyses for such pro-

grams out of analyses for the sequential subset of the language that operate on abstract

separation domains, i.e., abstract domains with a separating conjunction-like operation

defined on them. We give several examples of abstract separation domains and present

an instantiation of the framework with a sequential heap analysis based on separation

logic. We further demonstrate that our analysis can be viewed as generating proofs in

a variant of concurrent separation logic without the conjunction rule and the restriction

that resource invariants be precise. We prove the soundness of the analysis and both the

standard and our variants of the logic, thereby resolving the open question about the

soundness of concurrent separation logic without the conjunction rule and the precision

restriction.

In Chapter 4 we extend the programming language with commands for allocation and

deallocation of locks in the heap. We design a new logic and a corresponding analysis

that treat storable locks along with the data structures they protect as resources, assign-

ing invariants to them and managing their dynamic creation and destruction. This task

is nontrivial, as the straightforward definition of a resource-oriented model for storable

locks leads to a form of Russell’s paradox, circularity arising from locks referring to them-

selves through their resource invariants. We address this foundational difficulty by cutting

the circularity with an indirection, which lets us give a simple semantics to our logic and

yields the formulation of an appropriate analysis. We demonstrate that the proposed logic

allows modular reasoning about programs for which there exists a notion of dynamic own-

ership of heap parts by locks and threads. The class of such programs contains programs

with coarse-grained synchronisation and some, but not all, programs with fine-grained

synchronisation, including examples that were posed as challenges in the literature. As

in Chapter 3, we consider two variants of the logic: one that requires resource invariants

to be precise, but includes the conjunction rule, and one that omits the rule and the

restriction.

In Chapter 5 we consider concurrent programs with first-order procedures. Inter-
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procedural program analysis of heap-manipulating programs is challenging even in the

sequential setting because of the explosion in the number of calling contexts that the

analysis has to consider. One way to combat this problem is to perform localisation at

procedure calls in the analysis (i.e., to pass only the relevant part of the program state

to the procedure), which usually reduces the number of contexts. We develop a frame-

work for constructing interprocedural analyses with localisation for sequential programs

out of intraprocedural analyses operating on abstract separation domains that generalises

the Reps-Horwitz-Sagiv algorithm for interprocedural analysis. This extends the existing

work on interprocedural analysis of sequential heap-manipulating programs, which so far

has considered only particular abstract domains or localisation schemes. We also present

an instantiation of our framework with an abstract domain based on separation logic. We

propose an abstract (i.e., interpreted over a class of models) version of separation logic

for programs with procedures that our analysis generates proofs in. We give two proofs

of soundness to the logic. The first one is an elegant proof using standard techniques that

establishes the soundness of the whole logic, including the conjunction rule, by computing

the best predicate transformer corresponding to the procedure specifications used in the

proof of a program. The second is a novel proof that avoids computing the transformer at

the price of being more complicated and not establishing the soundness of the conjunction

rule. However, unlike the former proof, this one can be adapted to the concurrent setting

even when resource invariants may be imprecise and the conjunction rule does not hold.

This allows us to show that our interprocedural analysis can soundly be composed with

the thread-modular analysis of Chapter 3.

In Chapter 6 we move from a top-level parallel composition of threads to dynamic

thread creation, adding a command for forking a new thread to the programming lan-

guage of Chapter 4. We present a logic for dynamic thread creation and construct a

corresponding analysis using the methods proposed in the previous chapters. We thus

demonstrate that these methods can be applied to language constructs other than the

ones they were originally proposed for.

In Chapter 7 we conclude and note some directions of further research that our results

suggest.

Collaboration. The thread-modular heap analysis of Chapter 3 first appeared in the

PLDI’07 paper Thread-modular shape analysis, coauthored with Josh Berdine, Byron

Cook, and Mooly Sagiv [34]. The logic for storable locks of Chapter 4 in the case of precise

resource invariants and a variant of the logic for threads of Chapter 6 were proposed in

the APLAS’07 paper and a companion technical report Local reasoning for storable locks

and threads, coauthored with Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly

Sagiv [32, 33]. A version of the interprocedural heap analysis for sequential programs

of Chapter 5 with an abstract domain based on separation logic was published in the

SAS’06 paper Interprocedural shape analysis with separated heap abstractions, coauthored

12



with Josh Berdine and Byron Cook [31].

Follow-on work. In the time between the above publications and the submission of this

dissertation, a number of other papers addressing the topics discussed here have appeared,

some of them following on our results. We discuss them in the related work sections of

the corresponding chapters.
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Chapter 2

Technical background

2.1 Separation logic

In this dissertation, by program logics we mean Hoare logics [41]. In particular, we are

interested in a Hoare logic for heap-manipulating programs—separation logic [45, 66]. We

now review the foundations of the version of separation logic for sequential and concurrent

programs proposed by Calcagno et al. [15]. This version of the logic is abstract in the sense

that it can be interpreted over a wide class of semantic models with a given structure,

which allows reusing results about the logic in multiple contexts. As any Hoare logic,

separation logic includes two formal systems—one for assertions (formulae describing

program states) and one for Hoare triples (logical judgements describing the effect of

commands on program states). We discuss the former first.

2.1.1 Assertions

Separation algebras and domains. In abstract separation logic, assertions are inter-

preted with respect to a separation algebra, which represents program states.

Definition 2.1 (Separation algebra). A separation algebra is a partial commutative

semigroup (Σ, ∗). A partial commutative semigroup is given by a partial binary operation

of separate combination ∗ where the commutativity and associativity laws hold for the

equality that means both sides are defined and equal, or both are undefined:

∀σ1, σ2, σ3 ∈ Σ. σ1 ∗ (σ2 ∗ σ3) = (σ1 ∗ σ2) ∗ σ3;

∀σ1, σ2 ∈ Σ. σ1 ∗ σ2 = σ2 ∗ σ1.

The original definition of separation algebras given in [15] requires a separation algebra

to have a unit element and the ∗ operation to be cancellative. The latter requirement

states that for each σ ∈ Σ, the partial function σ ∗ · : Σ ⇀ Σ is injective, and is connected

with conditions for validating the conjunction rule of Hoare logic. Since in this dissertation
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we also consider models of concurrent separation logic invalidating the conjunction rule,

we omit this requirement.

In this dissertation, by a domain D we understand a join-semilattice (D,⊑,
⊔

,⊥,⊤)

with a bottom element ⊥. For a set Σ let P(Σ)⊤ be the domain of subsets of Σ with a

special element ⊤. The order ⊑ in the domain P(Σ)⊤ is subset inclusion with ⊤ being

the greatest element. When Σ represents program states, we usually use ⊤ to denote an

error state resulting, e.g., from dereferencing an invalid pointer. Note that the order ⊑

defines the corresponding join ⊔ and meet ⊓ operations on the domain P(Σ)⊤. If Σ is a

separation algebra, we can lift the ∗ operation to P(Σ)⊤ pointwise: for all p, q ∈ P(Σ)

p ∗ q =
⋃

{σ ∗ η | σ ∈ p, η ∈ q, σ ∗ η is defined}; ⊤ ∗ p = p ∗ ⊤ = ⊤.

Thus, P(Σ)⊤ has a total commutative semigroup structure. We can generalise this con-

struction to the notion of an arbitrary separation domain.

Definition 2.2 (Separation domain). A separation domain is a domain

(D,⊑,
⊔

,⊥,⊤, ∗, e) equipped with an operation of separate combination ∗ : (D×D) → D

such that (D,⊑, ∗, e) is a partially-ordered commutative monoid, i.e.,

• ∗ is associative and commutative:

∀p1, p2, p3 ∈ D. p1 ∗ (p2 ∗ p3) = (p1 ∗ p2) ∗ p3;

∀p1, p2 ∈ D. p1 ∗ p2 = p2 ∗ p1;

• ∗ has the unit e: ∀p ∈ D. p ∗ e = p;

• ∗ is monotone: ∀p1, p2, q ∈ D. p1 ⊑ p2 ⇒ p1 ∗ q ⊑ p2 ∗ q.

The requirement that a separation domain must have a unit is imposed here for tech-

nical convenience. For a separation algebra Σ in the case when the domain P(Σ)⊤ defined

above has a unit, we call it the separation domain constructed out of the algebra Σ. We

denote with ⊛ the iterated version of ∗:

n
⊛

k=1
pk = e ∗ p1 ∗ . . . ∗ pn.

In the future, for σ ∈ Σ∪{⊤} we denote with {|σ}| the singleton set containing σ if σ ∈ Σ

and ⊤ if σ = ⊤ (thus, {|σ}| ∈ P(Σ)⊤).

Example of a separation domain. Elements of separation algebras and domains

are often defined using partial functions. We use the following notation: f(x)↓ means

that the function f is defined on x, f(x)↑ means that the function f is undefined on x,

dom(f) denotes the set of arguments on which the function f is defined, and [ ] denotes a

nowhere-defined function. We denote with f [x : y] the function that has the same value
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Values = {. . . ,−1, 0, 1, . . .}

Perms = (0, 1]

Locs = {1, 2, . . .}

Vars = {x, y, . . .}

LVars = {X, Y, . . .}

Stacks = Vars ⇀fin (Values × Perms)

Heaps = Locs ⇀fin Cell(Values)

Ints = LVars → Values

States = Stacks × Heaps × Ints

Figure 2.1: Example of a separation algebra

as f everywhere, except for x, where it has the value y (even if f(x)↑). f ⊎ g is the union

of the disjoint partial functions f and g. It is undefined if dom(f) ∩ dom(g) 6= ∅.

Figure 2.1 defines a separation algebra States used to define the semantics of heap-

manipulating programs. We distinguish integer program variables Vars (which may ap-

pear in programs) and logical variables LVars (which do not appear in programs, only in

formulae). A state of the program is a triple of a stack, a heap, and an interpretation. A

stack is a finite partial function from variables to values and permissions (numbers from

(0, 1] that show “how much” of the variable is owned by the assertion), a heap is a finite

partial function from locations to values, and an interpretation is a total function from

logical variables to values. In the following chapters, we define algebras with several kinds

of heap cells, therefore, in Figure 2.1 we mark ordinary heap cells introduced here with

the constructor Cell. Logical variables and fractional permissions [10, 7] for program

variables are necessary for obtaining a complete (in the sense of [62]) proof system for

this separation algebra. For clarity of presentation we omit the treatment of permissions

for memory cells.

We define the operation of separate combination on states in the following way. For

s1, s2 ∈ Stacks let

s1 ♮ s2 ⇔ (∀x. s1(x)↓∧s2(x)↓ ⇒ (∃u, π1, π2. s1(x) = (u, π1)∧s2(x) = (u, π2)∧π1+π2 ≤ 1)).

If s1 ♮ s2, then we define

s1 ∗ s2 = {(x, (u, π)) | (s1(x) = (u, π) ∧ s2(x)↑) ∨ (s2(x) = (u, π) ∧ s1(x)↑) ∨

(s1(x) = (u, π1) ∧ s2(x) = (u, π2) ∧ π = π1 + π2)};

otherwise s1 ∗ s2 is undefined. For h1, h2 ∈ Heaps we define h1 ∗ h2 = h1 ⊎ h2. The

∗-combination i1 ∗ i2 of interpretations i1, i2 ∈ Ints is defined to be i1 only if i1 = i2. For

(s1, h1, i1) ∈ States and (s2, h2, i2) ∈ States we then let

(s1, h1, i1) ∗ (s2, h2, i2) = (s1 ∗ s2, h1 ∗ h2, i1 ∗ i2).
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(s, h, i) |= E 7→F ⇔ JEKs,i↓ ∧ JF Ks,i↓ ∧ h = [JEKs,i : Cell(JF Ks,i)]

(s, h, i) |= Ownπ(x) ⇔ ∃u. JπKs,i↓ ∧ s = [x : (u, JπKs,i)] ∧ 0 < JπKs,i ≤ 1

(s, h, i) |= emps ⇔ s = [ ]

(s, h, i) |= emph ⇔ h = [ ]

(s, h, i) |= E = F ⇔ JEKs,i↓ ∧ JF Ks,i↓ ∧ JEKs,i = JF Ks,i

(s, h, i) |= π1 = π2 ⇔ Jπ1Ks,i↓ ∧ Jπ2Ks,i↓ ∧ Jπ1Ks,i = Jπ2Ks,i

(s, h, i) |= P ⇒ Q ⇔ ((s, h, i) |= P ) ⇒ ((s, h, i) |= Q)

(s, h, i) |= false ⇔ false

(s, h, i) |= P ∗ Q ⇔

∃s1, h1, s2, h2. s = s1 ∗ s2 ∧ h = h1 ∗ h2 ∧ (s1, h1, i) |= P ∧ (s2, h2, i) |= Q

(s, h, i) |= P −−∗ Q ⇔

∀s′, h′. s ♮ s′ ∧ h ♮ h′ ∧ ((s′, h′, i) |= P ) ⇒ ((s ∗ s′, h ∗ h′, i) |= Q)

(s, h, i) |= ∃X. P ⇔ ∃u. (s, h, i[X : u]) |= P

Figure 2.2: Satisfaction relation for the assertion language formulae: (s, h, i) |= P

Let RAM be the separation domain constructed out of the algebra States, i.e., RAM =

P(States)⊤. Note that although the separation algebra States does not have a unit, the

separation domain RAM has one: {[ ]} × {[ ]} × Ints.

Assertion language. The following syntax defines formulae P, Q of the assertion lan-

guage interpreted over the domain RAM:

x ∈ Vars

X ∈ LVars

E, F ::= NULL | x | X | E + F | . . .

P, Q ::= false | P ⇒ Q | ∃X. P | P ∗ Q | P −−∗ Q | emps | emph

| E = F | π1 = π2 | Ownπ(x) | E 7→F

where π, π1, π2 range over permission expressions, evaluating to numbers from (0, 1].

The satisfaction relation for the assertion language formulae is defined in Figure 2.2.

We assume a function JEKs,i that evaluates an expression with respect to the stack s and

the interpretation i and is undefined if s is undefined for a variable used in the expression.

In the future we omit i when s suffices to evaluate the expression. We let JP K ∈ RAM\{⊤}

denote the set of states in which the formula P is satisfied.

In the assertion language, ∗ is the separating conjunction connective, which is inter-

preted as the operation of separate combination in the corresponding separation domain

(by abuse of notation we denote the connective and its interpretation with the same sym-

bol). We also use the iterated version ⊛ of the ∗ connective. We can define the usual

connectives not mentioned in the syntax definition using the provided ones. The asser-

tion E 7→F denotes the set of states in which the heap consists of one cell allocated at the

address E and holding the value F , and the stack contains all variables mentioned in E
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and F . The assertion Ownπ(x) restricts the stack to contain only the variable x with the

permission π and leaves the heap unconstrained. Variables are treated as resource [62] in

the sense that we can separate assertions about variable ownership Own1(x) with ∗ in the

same way as assertions E 7→F about ownership of heap cells. For example, variable x rep-

resented by Own1(x) can be split into two permissions Own1/2(x), each of which permits

reading the variable, but not writing to it. Two permissions Own1/2(x) can later be recom-

bined to obtain the full permission Own1(x), which allows both reading from and writing

to x. We use π1x1, . . . , πkxk 
 P to denote Ownπ1(x1) ∗ . . . ∗ Ownπk
(xk) ∧ P , abbreviate

1x to x, and make the convention that 
 binds most loosely and ∗ binds most strongly.

The assertion emps describes the empty stack, and the assertion emph the empty heap.

We denote with emp the assertion emps ∧ emph. We write for a value that is irrelevant

and implicitly existentially quantified.

Linked data structures are represented by extending the assertion language with induc-

tive predicate assertions. For example, singly-linked lists are described using the assertion

ls(E, F ) denoting the least predicate satisfying

ls(E, F ) ⇔ E 6= F ∧ (E 7→F ∨ ∃X. E 7→X ∗ ls(X, F )),

where X is chosen fresh. Thus, ls(E, F ) represents all of the states in which E 6= F

and the heap has the shape of a nonempty acyclic singly-linked list with the first node

allocated at the address E and the pointer stored in the last node equal to F . Cyclic lists

can be expressed using multiple predicates: e.g., x 
 ∃X. ls(x, X) ∗ ls(X, x). Note that

x 
 x7→x is a cycle of length one, while x 
 ls(x, x) is inconsistent.

Assuming a definition of a C-like structure with a field F, in the future we use x.F in

the assertion language as syntactic sugar for x + d, where d is the offset of the field F in

the structure. Thus, given the C type

struct NODE {

NODE *Back;

NODE *Fwd;

int Data;

};

we can describe doubly-linked lists of NODEs with the assertion dll(E1, F1, F2, E2) denoting

the least predicate such that

dll(E1, F1, F2, E2) ⇔ (F2 = E1 ∧ F1 = E2 ∧ emp) ∨

∃X. (E1.Back 7→F1 ∗ E1.Fwd 7→X ∗ E1.Data 7→ ∗ dll(X, E1, F2, E2))

for a fresh X. The assertion dll(E1, F1, F2, E2) represents the states in which the heap has

the shape of a (possibly empty) doubly-linked list, where E1 is the address of the first

node of the list, E2 is the address of the last node, F1 is the pointer in the Back field of

the first node, and F2 is the pointer in the Fwd field of the last node. When the list is

cyclic, we have F2 = E1 and F1 = E2.
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Precise and intuitionistic predicates. The following special classes of predicates

p ∈ P(Σ) over separation algebras Σ are important for the future technical development.

A predicate p is precise [58, 56] if for any state σ there exists at most one substate σ1

satisfying p: σ = σ1 ∗ σ2 for some σ2. If such a substate exists and the ∗ operation is

cancellative, then the substate σ2 is unique and is denoted with σ\p. By convention, we

also say that ⊤ is precise. A predicate p is intuitionistic [45] if it is closed under state

extension: if p is true of a state σ1, then for any state σ2, such that σ1 ∗ σ2 is defined, p

is also true of σ1 ∗ σ2. An assertion is precise or intuitionistic if its denotation is precise

or intuitionistic. Consider the following examples of assertions in the language for the

domain RAM introduced above.

• emps ∧ 10 7→ is precise, but (emps ∧ 10 7→ ) ∨ emp is not: in a heap where the cell

at the address 10 is allocated, both the empty subheap and the subheap containing

only the cell satisfy the assertion.

• Neither of the above assertions is intuitionistic, but (emps ∧ 10 7→ ) ∗ true is.

• h 
 ∃X. dll(h, X, h, X) is imprecise, since it is satisfied both by the empty heap

and by a non-empty cyclic doubly-linked list containing the node at the address h.

However, h 
 ∃X, Y. h.Back 7→X ∗ h.Fwd 7→Y ∗ h.Data 7→ ∗ dll(Y, h, h, X) is precise,

since it is only satisfied by a non-empty cyclic doubly-linked with a node at the

address h.

• h 
 ls(h, ) is imprecise, since it is true of any prefix of a singly-linked list starting

from h. However, h 
 ls(h, NULL) is precise.

2.1.2 Primitive commands and local functions

The programming languages we consider in this dissertation are parameterised by a set

Seq of primitive sequential commands. We define their semantics using forward predicate

transformers, which transform predicates over program states represented by elements

of a separation algebra Σ. Namely, a forward predicate transformer fC for a command

C maps pre-states to states obtained by executing C from a pre-state. As shown by

Calcagno et al. [15], for separation logic to be sound, forward predicate transformers for

primitive commands of the programming language have to behave in a local way with

respect to the structure present in Σ. The following definition formalises this condition.

Definition 2.3 (Local function). For a separation algebra (Σ, ∗), a function f : Σ →

P(Σ)⊤ is local if for any states σ1, σ2 ∈ Σ such that σ1 ∗ σ2 is defined, we have

f(σ1 ∗ σ2) ⊑ f(σ1) ∗ {σ2}.
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The pointwise lifting of a function f : Σ → P(Σ)⊤ to P(Σ)⊤ is a function f : P(Σ)⊤ →

P(Σ)⊤ defined as follows: for p ∈ P(Σ)⊤

f(p) =





⊔
{f(σ) | σ ∈ p}, if p 6= ⊤;

⊤, if p = ⊤.

Predicate transformers we consider in this dissertation are obtained from functions f :

Σ → P(Σ)⊤ by pointwise lifting to P(Σ)⊤. Note that, if a function f : Σ → P(Σ)⊤ is

local, then for the corresponding transformer f : P(Σ)⊤ → P(Σ)⊤ we have

∀p, q ∈ P(Σ)⊤. f(p ∗ q) ⊑ f(p) ∗ q. (2.1)

We say that the predicate transformer is local when it satisfies this property.

Definition 2.3 is a concise way of formulating two conditions that the soundness of

separation logic relies on [83]: if f : Σ → P(Σ)⊤ is the meaning of a command C, then

(safety monotonicity) if executing C from a state σ1∗σ2 results in an error f(σ1∗σ2) =

⊤, then executing C from a smaller state σ1 also produces an error: ⊤ ⊑ f(σ1)∗{σ2}

implies f(σ1) = ⊤;

(frame property) if executing C from a state σ1 does not produce an error, then exe-

cuting C from a larger state σ1 ∗ σ2, has the same effect and leaves σ2 unchanged:

in this case we usually have f(σ1 ∗ σ2) = f(σ1) ∗ {σ2}.

The requirement of locality rules out commands that can check if a cell is allocated in

the heap other than by trying to access it and faulting if it is not allocated. For example,

consider D = RAM = P(States)⊤ and the pointwise lifting to P(States)⊤ of the following

function f : States → P(States)⊤:

f(s, h, i) =




{(s, h′, i)}, if h(10)↓ ;

{(s, h, i)}, otherwise,

where h′ is identical to h except it is undefined at 10. The function f defines the forward

predicate transformer for a command that disposes of the cell at the address 10 if it is

allocated and acts as a no-op if it is not. The function f is not local: take p = JempK and

q = Jemps ∧ 10 7→0K, then f(p ∗ q) = f(Jemps ∧ 10 7→0K) = JempK and

f(p) ∗ q = f(JempK) ∗ Jemps ∧ 10 7→0K = JempK ∗ Jemps ∧ 10 7→0K = Jemps ∧ 10 7→0K,

hence, the inequality f(p ∗ q) ⊑ f(p) ∗ q does not hold.

As we now illustrate, the predicate transformers corresponding to common heap-

manipulating commands are local.
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Examples of local functions. Let E, F range over expressions without logical vari-

ables and B over Boolean expressions:

x ∈ Vars

E, F ::= NULL | x | E + F | . . .

B ::= E = F | E 6= F | . . .

The set SeqRAM defined below contains primitive sequential commands often used in

heap-manipulating programs:

SeqRAM ::= skip no-op

| x = E assignment

| x = [E] memory read

| [E] = F memory write

| x = new allocation

| delete E deallocation

| assume(B) assume B holds

Here square brackets denote pointer dereferencing. The assume(B) command acts as a

filter on the state space of programs—B is assumed to be true after assume(B) is executed.

We define the forward predicate transformers fC : RAM → RAM for primitive

commands SeqRAM over the separation domain RAM using the transition relation

;: SeqRAM×States×(States∪{⊤}) shown in Figure 2.3. The transformers are pointwise

liftings to RAM of functions fC : States → RAM defined as follows: for σ ∈ States

fC(σ) =
⊔{

{|σ′}| | C, σ ; σ′
}
.

It is not difficult to show that for each primitive command C ∈ SeqRAM the function fC

is local.

Note that the set States contains program states with permissions for variables less

than 1. Such states are not usually encountered during a program’s execution, but are

used in separation logic to interpret assertions representing parts of complete states. To

define a logic with assertions interpreted over the domain RAM and prove it sound, we

have to define the behaviour of primitive sequential commands on these states (e.g., as

above) and ensure that the commands satisfy the locality condition on them. Once the

soundness of the logic is established, the information about permissions can be erased from

the model of states used to define program semantics without changing the meaning.
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skip, (s, h, i) ; (s, h, i)

x = E, (s[x : (u, 1)], h, i) ; (s[x : (JEKs[x:(u,1)], 1)], h, i)

x = [E], (s[x : (u, 1)], h[w : Cell(b)], i) ; (s[x : (b, 1)], h[w : Cell(b)], i), w = JEKs[x:(u,1)]

[E] = F, (s, h[JEKs : Cell(u)], i) ; (s, h[JEKs : Cell(JF Ks)], i)

x = new, (s[x : (u, 1)], h, i) ; (s[x : (b, 1)], h[b : Cell(w)], i), if h(b)↑

delete E, (s, h[JEKs : Cell(u)], i) ; (s, h, i), if h(JEKs)↑

assume(B), (s, h, i) ; (s, h, i), if JBKs = true

assume(B), (s, h, i) 6; if JBKs = false

C, (s, h, i) ; ⊤, otherwise

Figure 2.3: Transition relation for primitive commands SeqRAM. ⊤ indicates that the

command faults. 6; is used to denote that the command does not fault, but gets stuck.

We assume a function JBKs ∈ {true, false} that evaluates a Boolean expression B with

respect to the stack s.

2.1.3 Sequential separation logic

Abstract formulation. We consider a version of sequential separation logic that is a

Hoare logic for a programming language with the following syntax:

C ::= Seq primitive sequential command

| C; C sequential composition

| C + C non-deterministic choice

| C∗ looping

parameterised with a set Seq of primitive sequential commands. When Seq includes the

assume command, the standard commands for conditionals and loops can be defined in

this language as syntactic sugar:

if B then C1 else C2 = (assume(B); C1) + (assume(¬B); C2)

and

while B do C = (assume(B); C)∗; assume(¬B)

Note that we do not provide a command for declaring variables: permissions for them

have to be supplied in the program’s initial state.

Abstract separation logic, which we present here, does not prescribe a particular model

of states for programs in the above language. Therefore, we assume

• a separation algebra (Σ, ∗) representing program states;

• local functions fC : Σ → P(Σ)⊤ defining the semantics of primitive sequential

commands C ∈ Seq,

out of which we construct
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fC(JP K) ⊑ JQK
{P} C {Q}

Prim
{P} C1 {Q} {Q} C2 {R}

{P} C1; C2 {R}
Seq

{P} C1 {Q} {P} C2 {Q}

{P} C1 + C2 {Q}
Choice

{P} C {P}

{P} C∗ {P}
Loop

{P1} C {Q1} {P2} C {Q2}

{P1 ∨ P2} C {Q1 ∨ Q2}
Disj

{P1} C {Q1} {P2} C {Q2}

{P1 ∧ P2} C {Q1 ∧ Q2}
Conj

P1 ⇒ P2 {P2} C {Q2} Q2 ⇒ Q1

{P1} C {Q1}
Conseq

{P} C {Q}

{P ∗ R} C {Q ∗ R}
Frame

Figure 2.4: Proof rules of sequential separation logic

• a concrete separation domain (D,⊑,
⊔

,⊥,⊤, ∗, e) such that D = P(Σ)⊤;

• local forward predicate transformers fC : D → D.

We assume that the algebra Σ is such that the corresponding domain D has a unit element.

Here and in the future, the predicate transformers are obtained from the corresponding

functions by pointwise lifting. We further assume an assertion language for denoting

elements of the domain D distinct from ⊤, including ∨, ∧, ⇒, and ∗ connectives with the

expected interpretation, and the assertion emp denoting the empty state e. Tautological

assertions are those whose meaning is Σ. We denote with JP K ∈ D\{⊤} the meaning of

the formula P in the domain D. By choosing a particular algebra Σ, functions fC , and an

assertion language, we can obtain concrete instantiations of the abstract logic presented

here.

The judgements of sequential separation logic are Hoare triples {P} C {Q}, and the

proof rules are summarised in Figure 2.4. Most of the proof rules are standard rules

of Hoare logic. We have a single axiom for primitive commands (Prim), which allows

any pre- and postconditions consistent with the predicate transformer for the command.

This axiom is usually specialised to several syntactic versions in concrete instances of the

logic. The conjunction rule (Conj) is useful for combining the results of two proofs; the

disjunction rule (Disj) for doing case splits.

Informally, a judgement {P} C {Q} in separation logic means that, if the program C

is run from an initial state satisfying P , then it is safe (i.e., it does not dereference any

invalid pointers), and the final state (if the program terminates) satisfies Q. Lying behind

this interpretation is a semantics of commands which results in a memory fault when

accessing memory locations not guaranteed to be allocated, as formalised in the locality

condition from Section 2.1.2. Thus, the validity of {P} C {Q} ensures that P describes

all the memory (except that which gets freshly allocated) that may be accessed during
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the execution of C—the footprint of C. Such interpretation of Hoare triples validates the

frame rule of separation logic (Frame), which states that if P ensures C’s footprint is

allocated, then executing C in the presence of additional memory R results in the same

behaviour, and C does not touch the extra memory. Thus, the logic implements the

principle of local reasoning [57]:

To understand how a program works, it should be possible for reasoning and

specification to be confined to the cells that the program actually accesses.

The value of any other cell will automatically remain unchanged.

It is local reasoning and its technical formulation, the frame rule, that allows giving simple

proofs to heap-manipulating programs in separation logic.

Logical variables. We say that a separation algebra Σ is an algebra with logical vari-

ables, if for some separation algebra Σ′ we have Σ = Σ′ × Ints and the ∗ operation on Σ

is defined as follows:

(σ1, i1) ∗ (σ2, i2) = (σ1 ∗ σ2, i1 ∗ i2),

where the set of interpretations Ints and ∗ on interpretations are defined in Section 2.1.1.

Given a function f : Σ′ → P(Σ′)⊤ on the underlying algebra without logical variables, we

can lift it to a function f : Σ → P(Σ)⊤ on the algebra with logical variables as follows:

f(σ, i) =





f(σ) × {i}, if f(σ) 6= ⊤;

⊤, if f(σ) = ⊤.

When Σ is an algebra with logical variables, we can extend the assertion language

with quantifiers:

P ::= . . . | ∃X. P | ∀X. P

where the satisfaction relation is defined as follows:

(σ, i) |= ∃X. P ⇔ ∃u ∈ Values. (σ, i[X : u]) |= P

(σ, i) |= ∀X. P ⇔ ∀u ∈ Values. (σ, i[X : u]) |= P

When the functions fC defining the semantics of primitive sequential commands are

lifted from functions on the underlying algebra without logical variables, we can soundly

extend separation logic with the following two proof rules for manipulating logical vari-

ables:
{P} C {Q}

{∃X. P} C {∃X. Q}
Exists

{P} C {Q}

{∀X. P} C {∀X. Q}
Forall

Note that the algebra States used to construct the domain RAM is an algebra with

logical variables and that the corresponding assertion language contains ∃ and ∀ (the

latter defined as ¬∃¬), whose semantics is consistent with the above definition. The

functions fC for commands C ∈ SeqRAM defined in Section 2.1.2 satisfy the condition

required for the soundness of Exists and Forall.
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{emp} skip {emp}
Skip

{x, O 
 X = E ∧ emph} x = E {x, O 
 x = X ∧ emph}
Assn

{x, O 
 X = E ∧ X 7→Y } x = [E] {x, O 
 x = Y ∧ X 7→Y }
Lookup

(O 
 E 7→ ) ⇒ F = F

{O 
 E 7→ } [E] = F {O 
 E 7→F}
Mutate

{x 
 emph} x = new {x 
 x7→ }
New

{O 
 E 7→ } delete E {O 
 emph}
Delete

{O 
 B ∧ emph} assume(B) {O 
 B ∧ emph}
Assume-T

{O 
 ¬B ∧ emph} assume(B) {false}
Assume-F

Figure 2.5: Axioms for primitive commands SeqRAM

A logic for the domain RAM. The abstract version of the logic presented above can

be specialised to a logic for the domain RAM as follows. Consider the assertion language

for RAM presented in Section 2.1.1 and let the set of primitive sequential commands

Seq = SeqRAM (Section 2.1.2). In this case the axiom Prim of abstract separation logic

can be instantiated to several syntactic versions, for different commands from SeqRAM

(Figure 2.5). The axioms are the same as in [66, 62] modulo treating variables as resource

in heap-manipulating commands. In the axioms and the following, O ranges over asser-

tions of the form π1x1, . . . , πkxk, i.e., we use O to supply the permissions for variables

necessary for executing the command. We also allow O to be empty, in which case we

interpret O 
 P as emps ∧P . The following theorem shows that the axioms in Figure 2.5

are valid instances of Prim.

Theorem 2.4. The axioms for primitive commands SeqRAM are sound with respect to

the corresponding predicate transformers over the domain RAM: for any axiom {P} C {Q}

we have fC(JP K) ⊑ JQK.

The proof is an adaptation of the proofs from [45, 62] to our setting.

Note that, in accordance with the principle of local reasoning, the axioms are local

in the sense that they mention only the cells that the command actually accesses. In

26



the case when extra memory is present, we can apply their global versions, obtained by

closing them under the frame rule. For example, for New we have

{(x 
 emph) ∗ P} x = new {(x 
 x7→ ) ∗ P}

Additionally, from the rules in Figure 2.4 and axioms Assume-T and Assume-F we can

derive proof rules for if and while commands:

P ⇒ B = B {P ∧ B} C1 {Q} {P ∧ ¬B} C2 {Q}

{P} if B then C1 else C2 {Q}
Cond

P ⇒ B = B {P ∧ B} C {P}

{P} while B do C {P ∧ ¬B}
While

The premiss P ⇒ B = B ensures that the variables mentioned in B are in the stack of

the precondition: P ⇒ B = B is false in a state for which this is not the case.

2.1.4 Concurrent separation logic

We now consider a variant of concurrent separation logic [56] for a concurrent program-

ming language with static locks and threads, in which programs consist of a parallel

composition C1 ‖ . . . ‖ Cn of n threads C1, . . . , Cn that use m locks ℓ1, . . . , ℓm for synchro-

nisation. The code of threads is written in the language of Section 2.1.3 extended with

(syntactically scoped) critical regions over the available locks:

C ::= . . . | acquire(ℓk); C; release(ℓk)

We assume that primitive commands of the sequential subset of the language are executed

atomically.

Concurrent separation logic achieves modular reasoning about programs in this lan-

guage by partitioning the program state (variables and the heap) into several disjoint

parts: thread-local parts (one for each thread) and protected parts (one for each free lock,

i.e., a lock that is not held by any thread). A thread-local part can only be accessed by the

corresponding thread. To access the part protected by a lock, a thread has to acquire the

lock first. It is important to note that this partitioning is not a part of the program itself,

but is enforced by proofs in the logic to enable modular reasoning. For such a partitioning

to exist, the program has to satisfy what O’Hearn terms the Ownership Hypothesis [56]:

“A code fragment can access only those portions of state that it owns”. In other words,

the program has to admit a notion of ownership of state parts by threads and locks. The

ownership relation is not required to be static, i.e., the logic permits ownership transfer

of variables and heap cells between areas owned by different threads and locks.

The benefit of this view of the program state for modular reasoning is that, while

reasoning about a given thread, one does not have to consider the local states of other

threads, since these local states cannot influence its behaviour. To reason modularly
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about parts of the state protected by locks, the logic associates with every lock ℓk an

assertion Ik—its resource invariant—that describes how the part of the state protected

by the lock looks when the lock is free. For example, when D = RAM, a resource invariant

for a lock can state that the lock protects a cyclic doubly-linked list with a sentinel node

pointed to by the variable h:

h 
 ∃X, Y. h.Back 7→X ∗ h.Fwd7→Y ∗ h.Data 7→ ∗ dll(Y, h, h, X).

For any given thread, resource invariants restrict how other threads can change the pro-

tected state, and hence, allow reasoning about the thread in isolation.

The judgements of concurrent separation logic are of the form I ⊢ {P} C {Q}, where

C is a command in the code of a thread, P and Q describe the local state of the thread

before and after executing C, and I is a vector of resource invariants Ik for the locks used

in the program. The proof rules of sequential separation logic are adapted to the new

setting by prefixing every triple in them with I ⊢.

When a thread acquires a lock, it gets the ownership of its resource invariant. This is

formalised in the logic with the following axiom:

I ⊢ {emp} acquire(ℓk) {Ik}
Acquire

Before releasing the lock, the thread must re-establish the corresponding resource invari-

ant. After the lock is released, the thread gives up the ownership of its resource invariant,

as follows from the following axiom:

I ⊢ {Ik} release(ℓk) {emp}
Release

As usual, we can obtain global versions of the axioms Acquire and Release by closing

them under the frame rule:

I ⊢ {P} acquire(ℓk) {P ∗ Ik}

I ⊢ {P ∗ Ik} release(ℓk) {P}

The original concurrent separation logic also considers nested parallel compositions,

handled with the following proof rule:

I ⊢ {P1} C1 {Q1} I ⊢ {P2} C2 {Q2}

I ⊢ {P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}
Par

We do not consider nested parallel compositions in this dissertation, but in Chapter 6

we show how to handle dynamic thread creation, a more general programming construct

than parallel composition.

Brookes [12] gives a denotational semantics for concurrent separation logic based on

action traces (later generalised and simplified in [11, 39, 15]), and shows that the logic is
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sound provided resource invariants Ik are precise and the ∗ operation is cancellative. The

famous Reynolds’s counterexample [56] demonstrating the need for this restriction involves

the conjunction rule (Conj). However, to date it has been an open question whether

concurrent separation logic without the conjunction rule is sound when the restriction on

resource invariants is dropped: Brookes’s whole proof depends on precision of resource

invariants. In Chapter 3, we give a positive answer to this question and demonstrate

the connections between such a non-standard variant of the logic and a class of program

analyses.

We do not use Brookes’s semantics in this dissertation; in Section 3.2 we present a

simple interleaving-based operational semantics for the concurrent programming language

considered here that is sufficient for our purposes.

2.2 Abstract interpretation

In this dissertation, by program analyses we mean analyses based on abstract interpre-

tation [20]. Here we provide the necessary background from abstract interpretation for

sequential programs.

As is usual in program analysis literature, we abstract away from a particular syntax

of the programming language and represent sequential programs by their control-flow

graphs (CFG). A CFG over a set Prim of primitive commands is defined as a tuple

(N, T, start, end), where N is the set of program points, T ⊆ N × Prim × N the control-

flow relation, start and end distinguished starting and final program points. Throughout

this dissertation we assume, without loss of generality, that control-flow relations have no

edges leading to start or going out of end. We note that a command in the language of

Section 2.1.3 or the code of a thread in the language of Section 2.1.4 can be translated to

a CFG.

Consider a program S in the language of Section 2.1.3 with a CFG (N, T, start, end)

over the set of primitive commands Seq. We assume

• a set Σ of program states;

• functions fC : Σ → P(Σ)⊤ defining the semantics of primitive sequential commands

C ∈ Seq,

out of which we construct

• a domain (D,⊑,
⊔

,⊥,⊤) such that D = P(Σ)⊤;

• forward predicate transformers fC : D → D.

In abstract interpretation literature D is usually referred to as a concrete domain, and

the predicate transformers fC as concrete transfer functions. We define the operational
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semantics of the program by the transition relation →S: (N ×Σ)× (N × (Σ∪{⊤})) trans-

forming pairs of program points and states. It is defined as the least relation satisfying

the following rules:

(v, C, v′) ∈ T fC({σ}) < ⊤ σ′ ∈ fC({σ})

v, σ →S v′, σ′

(v, C, v′) ∈ T fC({σ}) = ⊤

v, σ →S v′,⊤

We denote with →∗
S the reflexive and transitive closure of →S.

Consider p0 ∈ D representing the set of initial states of the program S. The collecting

semantics of the program S is a function R(p0) : N → D that for every program point

gives the set of states reachable at this point when the program executes from an initial

state in p0:

R(p0, v) =
⊔{

σ | start, σ0 →
∗
S v, σ ∧ {σ0} ⊑ p0

}
.

The collecting semantics can alternatively be defined as the least fixed point of the func-

tional F(p0) : (N → D) → (N → D), that takes a function G and produces a function G̃

as follows: F(p0)(G) = G̃, where G̃(start) = p0 and for every program point v′ ∈ N\{start}

G̃(v′) =
⊔

(v,C,v′)∈T

fC(G(v)).

That is, to compute reachable states at any program point (except for the initial one) we

consider all the edges in the CFG of the program that lead to this point and take the join

of the predicate transformers for the commands at these edges with respect to the states

at the source program points. The functional F(p0) is monotone under the pointwise

extension of ⊑, hence, by Tarski’s fixed-point theorem it has least fixed point lfp(F(p0)).

It is then easy to show that R(p0) ⊑ lfp(F(p0)).
1

Program analyses based on abstract interpretation typically compute over-

approximations of the collecting semantics, using its characterisation as a fixed point.

One way to construct an abstract interpretation is to devise

• an abstract domain (D♯,⊑,
⊔

,⊥,⊤) representing abstract states of the program;

• a monotone concretisation function γ : D♯ → D giving the meaning of abstract

states in the concrete domain D;

• abstract transfer functions f ♯
C : D♯ → D♯ defining the abstract semantics of sequen-

tial commands C ∈ Seq

1We have an inequality instead of an exact equality here because the operational semantics stops

executing the program when it encounters an error ⊤, whereas this is not the case for the characterisation

of the collecting semantics defined here.
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such that the abstract transfer functions over-approximate the concrete ones:

∀C ∈ Seq. ∀p ∈ D♯. fC(γ(p)) ⊑ γ(f ♯
C(p)). (2.2)

Note that we use the same symbols for the order, bottom and top elements, and the join

operator for both abstract and concrete domains. Elements of the abstract domain con-

cisely represent potentially infinite sets of concrete states, and abstract transfer functions

compute approximate effects of program commands. This allows a program analysis to

compute an over-approximation of the meaning of a program as described below.

Some frameworks of abstract interpretation also require an abstraction function α :

D → D♯ defining an abstract state representing a given set of concrete states such that

α and γ form a Galois connection [20]. As the concretisation function alone is sufficient

to formulate all our constructions and results, we do not require α here. For simplicity,

we also do not consider the use of widening [20] and assume that all the necessary over-

approximation of the effect of commands is done by the abstract transfer functions.

Let p♯
0 ∈ D♯ be an element of the abstract domain representing the set of initial states

of the program S. Given the ingredients listed above, we can set up a program analysis

on S that computes the abstract states reachable from p♯
0 in the abstract semantics of

S defined by the abstract transfer functions. The analysis is defined by the functional

F ♯(p♯
0) : (N → D♯) → (N → D♯) that takes a function G♯ and produces a function

G̃♯ as follows: F ♯(p♯
0)(G

♯) = G̃♯, where G̃♯(start) = p♯
0 and for every program point

v′ ∈ N\{start}

G̃♯(v′) =
⊔

(v,C,v′)∈T

f ♯
C(G♯(v)).

The result of the analysis is a fixed-point of the functional F ♯(p♯
0). In particular, when

the abstract transfer functions are continuous, we can compute the least fixed point of

F ♯(p♯
0) iteratively as follows:

lfp(F ♯(p♯
0)) =

∞⊔

k=0

(F ♯(p♯
0))

k(λv.⊥).

The abstract domain and transfer functions are usually set up in such a way that the

computation defined by this equation converges after a finite number of steps. Let R♯(p♯
0)

be a fixed point of F ♯(p♯
0). Using the condition (2.2), it is easy to show that R♯(p♯

0)

over-approximates the collecting semantics:

R(γ(p♯
0)) ⊑ γ(R♯(p♯

0)),

where γ and ⊑ are lifted to N → D♯ pointwise. This establishes the soundness of the

analysis with respect to the concrete semantics.

Using this soundness statement, we can check safety properties of the program S as

follows. Let safe♯ ∈ D♯ be an element of the abstract domain, whose concretisation γ(safe♯)
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represents the set of safe states of the program S. According to the above soundness

statement, to check that the program may not reach an unsafe state, it is sufficient to

check that ∀v ∈ N. (R♯(p♯
0))(v) ⊑ safe♯. In particular, in this way we can check invariance

properties. A wider class of safety properties can be reduced to this by instrumenting

the program with a monitor [78]. Additionally, the information about reachable states

computed by the analysis can also be used to enable compiler optimisations.

2.2.1 Examples of abstract domains

In this dissertation, we are mostly interested in heap analyses, which determine the struc-

ture of the heap during the execution of a program. These analyses typically do not main-

tain information about the data stored in heap-allocated data structures, tracking only the

shapes the data structures take; for this reason, they are often called shape analyses. The

crucial difference between heap analyses and more shallow analyses for heap-manipulating

programs, such as pointer analyses, is that the former aim to be precise in the presence

of deep heap update—alteration of linked data structures after traversing them for an

arbitrary distance. Heap analyses can be used to verify a number of safety properties

(including memory safety, data-structure integrity, the absence of memory leaks, and the

absence of assertion violations) and have been successfully used as a key ingredient in

methods for verifying liveness properties (e.g., [4, 8, 35]).

Many heap analyses have been proposed in recent years. In this section we do not aim

to give a comprehensive survey; rather, we briefly describe the abstract domains for heap

analysis we refer to in the following chapters. We have adapted the original presentations

of the domains to use variables as resource, i.e., to use concrete domains similar to the

domain RAM in Section 2.1.1.

IntDom: interval domain [19]. Before describing abstract domains for heap analysis,

we give an example of a very simple domain for determining numerical properties of

programs without dynamically allocated memory. Consider the programming language

of Section 2.1.3 with Seq = {skip, x = E, assume(B)}. The interval domain is used to

determine ranges of values that variables can take during the execution of a program. We

define the set Σ of concrete states as follows:

Values = {. . . ,−1, 0, 1, . . .}

Vars = {x, y, . . .}

Σ = Vars ⇀fin Values

Let the concrete domain D = P(Σ)⊤. The concrete transfer functions fC : D → D

are defined in the same way as the functions over the domain RAM (Section 2.1.2). Let

Intervals be the set of intervals of the form [a, b], where a ∈ Values∪ {−∞}, b ∈ Values∪

{+∞}, and a ≤ b. The interval abstract domain is defined as IntDom = (Vars ⇀fin
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Intervals) ∪ {⊤}, i.e., a non-error element of the domain determines a range of possible

values for some of the program variables. The order on the domain is as follows:

∀p1, p2 ∈ IntDom\{⊤}. p1 ⊑ p2 ⇔ (dom(p1) = dom(p2) ∧

∀x ∈ Vars. p1(x) = [a1, b1] ∧ p2(x) = [a2, b2] ⇒ a2 ≤ a1 ∧ b1 ≤ b2)

and ∀p ∈ IntDom. p ⊑ ⊤. Finally, we define the concretisation function γ : IntDom → D.

For p ∈ IntDom\{⊤} let

γ(p) = {s | dom(s) = dom(p) ∧ ∀x ∈ Vars. p(x) = [a, b] ⇒ a ≤ s(x) ≤ b}

and let γ(⊤) = ⊤. See [19] for the definition of abstract transfer functions for commonly

used expressions E and B. Since our concrete domain treats variables as resource, concrete

and abstract transfer functions on the domain have to return ⊤ on a state that does not

have permissions for all the variables accessed by the command.

SLL: a domain for singly-linked lists [24]. This is a domain for heap analysis that

represents the heap structure using formulae of separation logic’s assertion language. In

the following chapters we use the domain to give example instantiations of our analyses,

and thus present it here in detail.

Consider the programming language of Section 2.1.3 with D = RAM (Section 2.1.1),

Seq = SeqRAM (Section 2.1.2), and the concrete transfer functions defined in Section 2.1.2,

where we restrict expressions and Boolean expressions as follows:

x ∈ Vars

E, F ::= NULL | x

B ::= E = F | E 6= F

Domains based on separation logic are typically specialised for a particular class of data

structures the program manipulates. Technically, this specialisation is done by selecting

a subset of the assertion language with inductive predicates used to describe the desired

class of data structures.

The analysis we describe here represents sets of concrete program states with sets of

symbolic heaps P given by the following grammar:

x ∈ Vars

X ∈ LVars

E, F ::= NULL | x | X

O ::= ~x

P ::= true | P ∧ P | E = E

S ::= emph | S ∗ S | E 7→E | ls(E, E) | true

Q ::= P ∧ S

P ::= O 
 ∃ ~X. Q
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Symbolic heap formulae contain a variable ownership assertion O (Section 2.1.1) with

total permissions for all variables in it, a Boolean formula P built from = and ∧, which

is insensitive to the heap, and a spatial formula S that expresses heap shape. Formulae

are considered up to symmetry of =, permutations across ∧ and ∗ (e.g., P ∧ B0 ∧ B1

and P ∧ B1 ∧ B0 are equated), permutations of variables in the lists O and ~X, renaming

existentially quantified variables, unit laws for true and emph, idempotency of · ∗ true

(e.g., true ∗ true and true are equated), adding or removing consequences of equalities

present in the pure part, and interchanging equal (due to the equalities in the pure part)

variables in the spatial part. So, x, y, z, v 
 x = y ∧ y = z ∧ ls(v, x) and x, y, z, v 
 x =

y ∧ y = z ∧ x = z ∧ ls(v, y) are considered equal. We denote the set of symbolic heaps

with SH and define the abstract domain as follows: SLL = P(SH)⊤.

The concretisation function is defined using the interpretation of assertions in Sec-

tion 2.1.1: for P ∈ SH we let γ(P ) = JP K and lift it to SLL pointwise. Recall that ls(E, F )

describes non-empty acyclic singly-linked lists. The assertion true in the spatial part of

a symbolic heap signals a possible memory leak.

Abstract transfer functions are defined by the analysis in terms of the symbolic ex-

ecution relation ;, the rearrangement relation →֒E , and the abstraction relation →֒.

The definition of these relations poses several types of questions about symbolic heaps:

entailment of an equality

(O 
 Q) ⊢ (O 
 E = F ),

or of a disequality

(O 
 Q) ⊢ (O 
 E 6= F ),

inconsistency

(O 
 Q) ⊢ false,

or testing if some location is guaranteed to be allocated

(O 
 Q) ⊢ (O 
 E 7→ ∗ true).

We also sometimes ask the negations of these questions. Decision procedures for these

queries are defined in [24]. For the domain SLL they are simple and almost syntactic

checks that do not require calling a sophisticated theorem prover. Before applying any

of the relations to a symbolic heap O 
 ∃ ~X. Q, the transfer functions check that the

necessary permissions for variables accessed by the command are in O.

The symbolic execution relation ; (Figure 2.6) captures the effect of executing a prim-

itive command from a symbolic heap. Each individual concrete state can be expressed

exactly by a symbolic heap, i.e., there is a subset of symbolic heaps which are simply

different syntax for concrete states. In the usual concrete semantics, each command only

accesses a small portion of the state that forms its footprint. From this perspective, sym-

bolic execution expresses the usual concrete semantics of commands in terms of symbolic
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O 
 ∃ ~X. Q
skip
; O 
 ∃ ~X. Q

O 
 ∃ ~X. Q
x=E
; O 
 ∃ ~X, Y. x = E[Y/x] ∧ Q[Y/x]

O 
 ∃ ~X. Q
x=new
; O 
 ∃ ~X, Y, Z. Q[Y/x] ∗ x7→Z

O 
 ∃ ~X. Q
assume(E=F )

; O 
 ∃ ~X. Q ∧ E = F, if (O 
 Q) 6⊢ (O 
 E 6= F )

O 
 ∃ ~X. Q
assume(E 6=F )

; O 
 ∃ ~X. Q, if (O 
 Q) 6⊢ (O 
 E = F )

and (O 
 Q) 6⊢ false

O 
 ∃ ~X. Q ∗ E 7→F
delete E

; O 
 ∃ ~X. Q

O 
 ∃ ~X. Q ∗ E 7→F
x=[E]
; O 
 ∃ ~X, Y. x = F [Y/x] ∧ (Q ∗ E 7→F )[Y/x]

O 
 ∃ ~X. Q ∗ E 7→F0
[E]=F
; O 
 ∃ ~X. Q ∗ E 7→F

Figure 2.6: Symbolic Execution ;. Here Y and Z are fresh in the corresponding symbolic

heaps.

O 
 ∃ ~X. Q ∗ F 7→F0 →֒E O 
 ∃ ~X. Q ∗ E 7→F0, if (O 
 Q) ⊢ (O 
 E = F )

O 
 ∃ ~X. Q ∗ ls(F, F0) →֒E O 
 ∃ ~X. Q ∗ E 7→F0, if (O 
 Q) ⊢ (O 
 E = F )

O 
 ∃ ~X. Q ∗ ls(F, F0) →֒E O 
 ∃ ~X, Y. Q ∗ E 7→Y ∗ ls(Y, F0),

if (O 
 Q) ⊢ (O 
 E = F ) and Y is fresh

O 
 ∃ ~X. Q →֒E ⊤, if (O 
 Q) 6⊢ (O 
 E 7→ ∗ true)

Figure 2.7: Rearrangement →֒E

heaps, where the footprint of the command is expressed as one of the formulae that is

alternate syntax for a concrete state.

Symbolic execution does not operate on arbitrary pre-states. For instance, its defi-

nition for x = [E] requires that the source heap cell be explicitly known. In order to

put symbolic heaps into the form required for symbolic execution of a command, we use

the rearrangement relation →֒E (Figure 2.7) that transforms an arbitrary symbolic heap,

via case analysis, into a set of symbolic heaps where the footprint of the next command

is concrete. When rearrangement fails to reveal the required location E, it indicates a

potential memory safety violation and returns ⊤.

Abstraction →֒ (Figure 2.8) then takes the symbolic heaps resulting from symbolic

execution and maps them into a finite subdomain of symbolic heaps, ensuring that fixed-

point computations converge. Abstraction is accomplished by certain separation logic

implications that rewrite a symbolic heap to a logically weaker one. We call a symbolic

heap P canonical if it is maximally abstracted, i.e., P 6 →֒. A canonicalisation function

can is defined in [24]. This function is based on a fixed sequence of abstraction axiom

applications, and transforms a symbolic heap to a canonical symbolic heap abstracting

it, i.e., P →֒∗ can(P ) and can(P ) 6 →֒. A key property of the abstract domain SLL is that

the set of consistent and canonical symbolic heaps {P | P 6⊢ false ∧ P 6 →֒} over a finite
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O 
 ∃ ~X, Y. Q →֒ O 
 ∃ ~X. Q

O 
 ∃ ~X, Y. Q ∧ Y = E →֒ O 
 ∃ ~X. Q[E/Y ]

O 
 ∃ ~X, Y. Q ∗ H0(E, Y ) ∗ H1(Y, F ) →֒ O 
 ∃ ~X. Q ∗ ls(E, NULL),

if (O 
 Q) ⊢ (O 
 F = NULL)

O 
 ∃ ~X, Y. Q ∗ H0(E, Y ) ∗ H1(Y, F0) ∗ H2(F1, F2) →֒ O 
 ∃ ~X. Q ∗ ls(E, F0) ∗ H2(F1, F2),

if (O 
 Q) ⊢ (O 
 F0 = F1)

O 
 ∃ ~X, Y. Q ∗ H(Y, E) →֒ O 
 ∃ ~X. Q ∗ true

O 
 ∃ ~X, Y, Z. Q ∗ H0(Y, Z) ∗ H1(Z, Y ) →֒ O 
 ∃ ~X. Q ∗ true

Figure 2.8: Abstraction →֒. Here H(E, F ) stands for either E 7→F or ls(E, F ), and Y and

Z do not occur other than where explicitly indicated.

number of unquantified variables is finite.

For a command C (respectively, an ownership assertion O), let vars(C) (respectively,

vars(O)) be the set of program variables occurring in C (respectively, O). We define

abstract transfer functions as pointwise liftings of the following functions f ♯
C : SH → SLL.

For C ∈ {skip, x = E, x = new, assume(E = F ), assume(E 6= F )} we let

f ♯
C(P0) =

{
⊤, if vars(C) 6⊆ vars(O);

{can(P1) | P0
C
; P1}, otherwise;

for C ∈ {x = [E], [E] = F, delete E} we let

f ♯
C(P0) =

{
⊤, if vars(C) 6⊆ vars(O) or P0 →֒E ⊤;

{can(P2) | ∃P1. P0 →֒E P1 ∧ P1
C
; P2}, otherwise.

For example, suppose we want to compute the value of the transfer function for the

command x = [x] on the symbolic heap x 
 ls(x, NULL). The rearrangement phase will

transform the heap into two symbolic heaps x 
 x7→NULL and x 
 ∃X. x7→X ∗ ls(X, NULL)

thereby making the information that x is allocated in the heap explicit. The symbolic

execution phase will then symbolically simulate the effect of the command on the heaps

producing x 
 x = NULL ∧ emph and x 
 ∃X, Y. x = X ∧ Y 7→X ∗ ls(X, NULL). Finally,

the abstraction phase will leave the first heap unchanged and will canonicalise the second

heap to x 
 true ∗ ls(x, NULL). Hence, the value of the transfer function is {(x 
 x =

NULL ∧ emph), (x 
 true ∗ ls(x, NULL))}.

The soundness of abstract transfer functions is justified as follows. Symbolic execution

follows the global versions of axioms in Figure 2.5 (i.e., the axioms closed under the frame

rule), and rearrangement and abstraction use valid separation logic implications. Thus,

it is not difficult to show that for any symbolic heap P if f ♯
C(P ) < ⊤, then the triple{

P
}

C
{∨

{P ′ | P ′ ∈ f ♯
C(P )}

}
is derivable in sequential separation logic for the domain

RAM. It is then possible to prove (2.2) by structural induction on the derivation using

Theorem 2.4 and locality of concrete transfer functions fC .
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CDS: a domain for composite data structures [2]. This separation logic-based

domain handles composite list-based data structures typically found in device drivers and

other systems-level programs. Examples of such data structures include “cyclic doubly-

linked lists of acyclic singly-linked lists” and “singly-linked lists of cyclic doubly-linked

lists with back-pointers to head nodes”. The programming language and the concrete

domain are the same as for SLL. The analysis uses symbolic heaps P specified by the

following grammar:

x ∈ Vars

X ∈ LVars

E, F ::= NULL | x | X

O ::= ~x

P ::= true | P ∧ P | E = E | E 6= E

S ::= emph | S ∗ S | E 7→E | ls Λ (E, E, E, E) | true

Q ::= ∃ ~X. P ∧ S

Λ ::= λ[X, X, X]. Q

P ::= O 
 Q

We write Λ[E1, E2, E3] for the symbolic heap obtained by instantiating the parameters of

Λ: (λ[X1, X2, X3]. Q)[E1, E2, E3] = Q[E1/X1, E2/X2, E3/X3].

The predicate ls Λ (E1, F1, F2, E2) represents a segment of a generic doubly-linked list,

where the shape of each node in the list is described by the first parameter Λ, and some

links between this segment and the rest of the heap are specified by the other parameters.

Parameters E1 and E2 denote the (externally visible) memory locations of the first and

the last nodes of the list segment. The analysis maintains the links from the outside to

these exposed cells, so that the links can be used, say, to traverse the segment. Usually,

E1 denotes the address of the “root” of a data structure representing the first node, such

as the head of a singly-linked list. The common use of E2 is similar. Parameters F1 and

F2 represent links from the first and last nodes of the list segment to the outside, which

the analysis decides to maintain.

The formal definition of ls is similar to the definition of dll in Section 2.1.1. For a

parameterised symbolic heap Λ, ls Λ (E1, F1, F2, E2) is the least predicate such that

ls Λ (E1, F1, F2, E2) ⇔ (F2 = E1 ∧ F1 = E2 ∧ emph) ∨

(∃X. (Λ[E1, F1, X]) ∗ ls Λ (X, E1, F2, E2)),

where X is chosen fresh. A list segment is empty, or it consists of a node described by an

instantiation of Λ and a tail satisfying ls Λ (X, E1, F2, E2). The generic list predicate can

express a variety of data structures:
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• When Λs is λ[X, Y, Z]. (X.Next 7→Z), the formula ∃Y, U. ls Λs (X, Y, Z, U) describes

a (possibly empty and possibly cyclic) singly-linked list segment from X to Z.

• A doubly-linked list segment dll(X, Y, Z, U) is expressed by ls Λd (X, Y, Z, U), where

Λd is λ[X, Y, Z]. (X.Back 7→Y ∗ X.Fwd 7→Z ∗ X.Data 7→ ).

• Finally, if Λ is

λ[X, Y, Z]. ∃U, V. (X.Next 7→Z ∗ X.Back 7→U ∗ X.Fwd 7→V ∗ X.Data 7→ ∗

ls Λd (V, X, X, U)),

then ∃Y, Z. ls Λ (X, Y, NULL, Z) describes a singly-linked list of cyclic doubly-linked

lists, where each singly-linked list node is the sentinel node of the cyclic doubly-

linked list.

The abstract transfer functions for the domain are defined in [2]. The analysis pre-

sented there synthesises new parameterised spatial predicates from old predicates using

information found in the abstract states visited during its execution. The new predicates

can be defined using instances of the generic list predicate in combination with previ-

ously synthesised predicates, thus allowing the abstract domain to handle a variety of

complex data structures. We note for the future that the theorem prover for entailments

P1 ⊢ P2 between symbolic heaps used by the transfer functions is incomplete for this

domain (whereas it is complete for SLL).

Complex abstract domains based on separation logic, such as CDS, often use non-

standard widening operators [21] that remove redundant separation logic formulae from

abstract states using a theorem prover. Hence, these domains do not always fit into the

simple abstract interpretation framework used in this dissertation. Our constructions and

proofs can be easily adjusted to accommodate the widening operators.

DLL: a domain for doubly-linked lists. We can specialise the CDS domain to pro-

grams manipulating doubly-linked lists by restricting the spatial part of symbolic heaps

as follows:

S ::= emph | S ∗ S | E 7→E | dll(E, E, E, E) | true

The dll predicate denotes possibly empty doubly-linked lists (Section 2.1.1) and can be

represented using the generic list predicate as described above.

Domains based on shape graphs. Some abstract domains for heap analysis represent

the shapes of data structures in memory using graph-like structures called shape graphs.

Like domains based on separation logic, these domains are typically specialised for a

particular class of data structures. Examples include a domain by Manevich et al. for

singly-linked lists [49] and a domain by Lev-Ami et al. for a wider range of data structures,

including singly- and doubly-linked lists, and binary trees [48].
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TVLA is a parametric framework for heap analysis based on abstract interpreta-

tion [72]. Its abstract domain represents the structure of the heap using 3-valued logical

structures. The framework can be instantiated in different ways by varying the predicates

used in the 3-valued logic.
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Chapter 3

Static locks

The straightforward way to analyse a concurrent heap-manipulating program automat-

ically is to enumerate the interleavings of executions of its threads [80]. Unfortunately,

this approach leads to state-space explosion and unscalability. Our goal is to create a

heap analysis for concurrent programs that is scalable, sound, and accurate. We do so

by constructing a heap analysis that avoids enumerating interleavings. In this chapter,

we propose a novel framework for constructing thread-modular program analyses, which

is particularly suitable for heap analyses due to the locality exhibited by the semantics

of heap manipulation (Section 3.3). Our framework is parametric in the sequential heap

analysis domain and can be instantiated with any abstract separation domain, i.e., an ab-

stract domain with a separating conjunction-like operation defined on it. We give several

examples of abstract separation domains (Section 3.3.1) and present an instantiation of

the framework with a sequential heap analysis based on separation logic (Section 3.3.2).

In this chapter, we demonstrate the main ideas behind the analysis on a simple con-

current programming language with static locks and threads introduced in Section 2.1.4.

The subsequent chapters deal with more advanced language features.

Our analysis is inspired by concurrent separation logic: it infers a resource invariant

associated with each lock that describes the part of the heap protected by the lock and

has to be preserved by every thread. For any given thread, the resource invariant restricts

how other threads can interfere with it. Thus, if resource invariants are known, analysing

a concurrent program does not require enumerating interleavings and can be done using

a sequential heap analysis. The challenge is to infer the resource invariants.

A resource invariant describes two orthogonal kinds of information: it simultaneously

carves out the part of the heap protected by the lock and defines the possible shapes that

this part can have during program execution. We show that, if we specify the borders

of the part of the heap protected by a lock (i.e., the former kind of information), then

we can compute the shape of the part (i.e., the latter kind of information) by repeatedly

performing heap analysis on each individual thread, but not on the whole program—

performing the analysis thread-modularly. The analysis is able to establish that the
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program being analysed is memory safe, does not leak memory, and does not have data

races.

We specify the borders of the part of the heap protected by a lock with entry points—

program variables such that the part of the heap protected by the lock can be defined

as everything that is reachable from them. Fortunately, we find that entry points can be

inferred by existing automatic tools [63, 73, 17]. Moreover, the soundness of our analysis

does not depend on the particular association of locks and entry points: the analysis can

be used with any association.

We show that our analysis can be viewed as generating proofs in a variant of concur-

rent separation logic without the conjunction rule and the restriction that the resource

invariants be precise (Section 3.5). We also prove the soundness of the analysis and both

the standard and our variants of the logic in a uniform framework, thereby resolving the

open question about the soundness of concurrent separation logic without the conjunction

rule and the precision restriction (Section 3.4).

3.1 Thread-modular heap analysis by example

Consider the programming language of Section 2.1.4 in the case when Seq = SeqRAM

(Section 2.1.2). In our examples throughout the dissertation, we extend programming

languages with additional C-like syntax, in particular, C structures. We assume that

each field in a structure takes one memory cell. We also use generalisations of new and

delete that allocate and deallocate several memory cells at once.

The example program in Figure 3.1 represents a typical pattern occurring in systems

code, such as Windows device drivers. In this case two concurrently executing threads

are accessing the same cyclic doubly-linked list protected by a lock ℓ. The list is accessed

via a sentinel head node pointed to by a variable h, which is also protected by the lock.

In this example thread1 adds nodes to the head of the list and thread2 removes nodes

from the head of the list. The procedure initialise can be used to initialise the list

before spawning the threads.

When applied to this code, our analysis establishes that the area of the heap protected

by the lock—its resource invariant—has the shape of a cyclic doubly-linked list and that

the program is memory safe (i.e., it does not dereference invalid pointers), does not leak

memory, and has no data races (including races on heap cells).

The analysis uses the domain DLL of Section 2.2.1 as the domain of the underlying

sequential heap analysis. It first calls a tool for analysing correlations between locks and

program variables, such as [63, 73, 17], to determine that the variable h is protected by the

lock ℓ. The variable h becomes an entry point associated with the lock ℓ: the part of the

heap protected by the lock is reachable from the entry point. The analysis is performed

iteratively. On each iteration, we analyse the code of each thread and discover symbolic
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1: struct NODE {

2: NODE *Back;

3: NODE *Fwd;

4: int Data;

5: };

6: LOCK ℓ;

7: NODE *h;

8:

9: thread1() {

10: int data;

11: NODE *n;

12:

13: while (nondet()) {

...

14: acquire(ℓ);

15: n = new NODE;

16: n->Data = data;

17: n->Fwd = h->Fwd;

18: n->Back = h;

19: h->Fwd = n;

20: n->Fwd->Back = n;

21: release(ℓ);

...

22: }

23: }

24: thread2() {

25: int data;

26: NODE *n;

27:

28: while (nondet()) {

...

29: acquire(ℓ);

30: n = h->Fwd;

31: if (n != h) {

32: n->Back->Fwd = n->Fwd;

33: n->Fwd->Back = n->Back;

34: data = n->Data;

35: delete n;

36: }

37: release(ℓ);

...

38: }

39: }

40:

41: initialise() {

42: h = new NODE;

43: h->Back = h;

43: h->Fwd = h;

44: }

Figure 3.1: Example program. nondet() represents non-deterministic choice.

heaps describing new shapes the part of the heap protected by each lock can take—new

disjuncts in its resource invariant. On the next iteration each thread is re-analysed taking

the newly discovered disjuncts into account. This loop is performed until no new disjuncts

in the resource invariant are discovered, i.e., until we reach a fixed point on the value of

the resource invariant. Note that the particular order of the iteration is not important for

the soundness of the analysis. In the example below we chose an order that is convenient

to illustrate how the analysis works.

As a first step, we run the underlying sequential heap analysis on the initialise

function to determine the initial approximation

I0 = h 
 h.Back 7→h ∗ h.Fwd 7→h ∗ h.Data 7→
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of the resource invariant associated with the lock ℓ. The initial states of the threads in

this case are emp.

First iteration. We run the underlying sequential heap analysis on the code of thread1

with the treatment for acquire and release commands described below. The analysis

performs a fixed-point computation to determine the reachable states at all program

points in thread1. Suppose the analysis reaches line 14 with an abstract state p. Upon

acquiring the lock ℓ the thread gets ownership of the part of the heap protected by the

lock. We mirror this in the analysis by ∗-conjoining the current approximation I0 of the

resource invariant associated with the lock ℓ to the current state p yielding p ∗ I0. The

analysis of the code in lines 15–20 starting from this state then gives us the state

p1 = p ∗ (h, n 
 h.Back 7→n ∗ h.Fwd 7→n ∗ h.Data 7→ ∗ n.Back 7→h ∗ n.Fwd 7→h ∗ n.Data 7→ )

at line 21. Upon releasing the lock ℓ the thread has to give up the ownership of the part

of the heap protected by the lock. This means that the analysis has to split the current

heap p1 into two parts, one of which becomes the local heap of the thread (the part of

the heap that the thread owns) and the other is added as a new disjunct to the resource

invariant. We compute the splitting in the following way: the part of the heap reachable

from the entry points associated with the lock ℓ becomes a new disjunct in the resource

invariant and the rest of the heap becomes the local state of the thread. Intuitively, when

a thread modifies pointers to a heap cell so that it becomes reachable from the entry

points associated with a lock, the cell becomes protected by the lock and a part of its

resource invariant. In this way, we discover a new disjunct

I1 = h 
 ∃X. h.Back 7→X ∗ h.Fwd 7→X ∗ h.Data 7→ ∗ X.Back 7→h ∗ X.Fwd 7→h ∗ X.Data 7→

in the resource invariant and a new state p reachable right after line 21. Note that since

the variable n is a local variable of thread1, we existentially quantify its value in I1. We

continue to run the fixed-point computation defined by the underlying sequential heap

analysis starting from the state p. The processing of lines 14 and 21 is the same as before,

i.e., we use the same approximation I0 of the resource invariant and get the same disjunct

I1. We stop when the underlying heap analysis reaches a fixed point. One new disjunct

I1 of the resource invariant has been discovered.

We now analyse the code of thread2. Whenever the analysis reaches line 29 with an

abstract state q, we conjoin the current approximation I0 of the resource invariant to the

state q yielding q ∗ I0 and analyse the code in lines 30–36 starting from this state. This

gives us the state

q1 = q ∗ (h 
 h.Back 7→h ∗ h.Fwd 7→h ∗ h.Data 7→ )

at line 37. We again take the part of the heap reachable from h as a new disjunct in the

resource invariant and let the rest of the heap be a new local state of the thread. In this

44



case the new disjunct in the resource invariant is the same as the starting one I0, so, no

new disjuncts in the resource invariant are discovered.

Second iteration. On the previous iteration we found a new disjunct I1 in the resource

invariant associated with the lock ℓ. This means that whenever a thread acquires the

lock ℓ, it can get the ownership of a piece of heap with this new shape. To account for

this in the analysis we now consider this possibility for all acquire(ℓ) commands in the

program and perform the analysis on the threads starting from the resulting new states.

In thread1 we obtain a new state p∗ I1 at line 15. The analysis of the code in lines 15–20

in this case gives us the state

p2 = ∃X. p ∗ (h, n 
 h.Back 7→X ∗ h.Fwd 7→n ∗ h.Data 7→ ∗

n.Back 7→h ∗ n.Fwd 7→X ∗ n.Data 7→ ∗ X.Back 7→n ∗ X.Fwd 7→h ∗ X.Data 7→ )

at line 21. Again, the part of the heap reachable from h forms a new disjunct in the

resource invariant. To ensure convergence we abstract it before adding to the resource

invariant: the abstraction procedure of the underlying sequential heap analysis abstracts

the heap that has two cells n and X connected in a doubly-linked list to an arbitrary

doubly-linked list giving us a new disjunct in the resource invariant:

I2 = h 
 ∃X, Y. h.Back 7→X ∗ h.Fwd 7→Y ∗ h.Data 7→ ∗ dll(Y, h, h, X).

A similar procedure for thread2 again gives us the state q1 at line 37. No new disjuncts

in resource invariants are discovered while analysing this thread.

Third iteration. We propagate the newly discovered disjunct I2 of the resource invari-

ant to acquire commands. The new state p ∗ I2 at line 15 gives rise to the state

p3 = ∃X, Y. p ∗ (h, n 
 h.Back 7→X ∗ h.Fwd7→n ∗ h.Data 7→ ∗

n.Back 7→h ∗ n.Fwd 7→Y ∗ n.Data 7→ ∗ dll(Y, n, h, X))

at line 21. Splitting it into the part reachable from h and the part unreachable from

h and abstracting the former again gives us the resource invariant I2 and the state p.

Propagating the new disjunct in the resource invariant to line 29 yields the state

q2 = ∃X, Y. q ∗ (h 
 h.Back 7→X ∗ h.Fwd 7→Y ∗ h.Data 7→ ∗ dll(Y, h, h, X))

at line 37. Splitting this state again does not result in new disjuncts in the resource

invariant being discovered.

No new disjuncts in resource invariants were discovered on this iteration, hence, we

have reached a fixed point. The resource invariant for the lock ℓ computed by the anal-

ysis is given by the set of symbolic heaps {I0, I1, I2}, i.e., the invariant is I0 ∨ I1 ∨ I2.

Furthermore, the program is memory safe.
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(v, C, v′) ∈ T C ∈ Seq fC({σ}) < ⊤ σ′ ∈ fC({σ})

pc[k : v], σ →S pc[k : v′], σ′

(v, C, v′) ∈ T C ∈ Seq fC({σ}) = ⊤

pc[k : v], σ →S pc[k : v′],⊤

(v, acquire(ℓj), v
′) ∈ T j ∈ Free(pc[k : v])

pc[k : v], σ →S pc[k : v′], σ

(v, release(ℓj), v
′) ∈ T

pc[k : v], σ →S pc[k : v′], σ

Figure 3.2: Operational semantics of concurrent programs with static locks and threads

3.2 Programming language and semantics

Throughout this chapter we fix a program S = C1 ‖ . . . ‖ Cn in the concurrent pro-

gramming language of Section 2.1.4 consisting of n threads C1, . . . , Cn that use m locks

ℓ1, . . . , ℓm for synchronisation. It is technically convenient for us to represent each thread

Ck by its CFG (Nk, Tk, startk, endk) over the set of primitive commands

Seq ∪ {acquire(ℓk) | k = 1..m} ∪ {release(ℓk) | k = 1..m},

where Seq is a fixed set of primitive sequential commands. Let N =
⋃n

k=1 Nk and T =⋃n
k=1 Tk be the set of program points and the control flow relation of the program S,

respectively.

As in Section 2.1.4, we assume a concrete separation domain (D,⊑,
⊔

,⊥,⊤, ∗, e),

constructed out of a separation algebra Σ, and monotone and local forward predicate

transformers fC : D → D for C ∈ Seq, constructed out of the corresponding local

functions on Σ.

The interleaving operational semantics of the program S is defined by a transition

relation →S that transforms pairs of program counters (represented by mappings from

thread identifiers to program points) and program states:

→S: (({1, . . . , n} → N) × Σ) × (({1, . . . , n} → N) × (Σ ∪ {⊤})).

Note that since the critical regions formed by acquire and release commands are syn-

tactically scoped in our programming language, we can determine the set Free(pc) of

indices of free locks at every program counter pc, i.e., the set of locks that are not held by

any thread. The relation →S is defined by the rules in Figure 3.2. Note that, according

to our semantics, primitive sequential commands are executed atomically. Also, a thread

that tries to acquire the same lock twice deadlocks.

Let us denote with pc0 the initial program counter [1 : start1] . . . [n : startn] and with

pcf the final one [1 : end1] . . . [n : endn]. We say that the program S is safe when run
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from an initial state σ0 ∈ Σ, if it is not the case that pc0, σ0 →∗
S pc,⊤ for some program

counter pc.

3.3 Constructing thread-modular heap analyses

We now show how to construct a thread-modular heap analysis for the programming lan-

guage of Section 2.1.4 from a given heap analysis for the sequential subset of the language

satisfying certain conditions. As can be seen from the illustrative example in Section 3.1,

in our thread-modular heap analysis we have to split abstract heaps into disjoint parts.

For this to be possible, the underlying sequential abstract domain has to have a sepa-

rated structure that allows for performing such splittings. The formal condition sufficient

to ensure this is that the abstract domain be a separation domain (Definition 2.2). We

therefore specialise the framework of abstract interpretation presented in Section 2.2 to

this case. In the setting of Section 3.2, we assume given:

• an abstract separation domain (D♯,⊑,
⊔

,⊥,⊤, ∗♯, e♯) representing abstract states of

the program;

• a monotone concretisation function γ : D♯ → D;

• abstract transfer functions f ♯
C : D♯ → D♯ defining the abstract semantics of primitive

sequential commands C ∈ Seq

such that

• abstract transfer functions over-approximate the concrete ones:

∀C ∈ Seq. ∀p ∈ D♯. fC(γ(p)) ⊑ γ(f ♯
C(p)); (3.1)

• the abstract operation of separate combination over-approximates the concrete one:

∀p, q ∈ D♯. γ(p) ∗ γ(q) ⊑ γ(p ∗♯ q). (3.2)

Note that we do not require that the abstract transfer functions be local or monotone.

We call an abstract interpretation constructed in such a way an abstract interpretation

with state separation.

We now define a thread-modular analysis on the program S = C1 ‖ . . . ‖ Cn. To

simplify presentation, when defining the analysis in this chapter we assume that the

heap at the beginning of the program’s execution consists of only initialised shared data

structures and, furthermore, that we are given a sequential initialisation routine for the

data structure protected by every lock.1 By running the underlying sequential heap

1 We lift this simplifying assumption in Chapter 6 when we add dynamic thread creation to our

programming language.
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F ♯(I0)(G♯, I♯) = (G̃♯, Ĩ♯), where

• G̃♯(startk) = e♯, k = 1..n;

• G̃♯(v′) =
⊔

(v,C,v′)∈T

g♯
C(G♯(v))

for every program point v′ ∈ N\{startk | k = 1..n}, where

g♯
C(p) =






f ♯
C(p), if C ∈ Seq;

p ∗♯ I♯
k, if C is acquire(ℓk);

ThreadLocalk(p), if C is release(ℓk);

• Ĩ♯
k = I0

k ⊔
⊔

(v,release(ℓk),v′)∈T

Protectedk(G
♯(v)) for every lock ℓk.

Figure 3.3: Thread-modular analysis

analysis on every initialisation routine, we can determine an element of the abstract

domain I0
k ∈ D♯ describing the initial state of the data structure protected by every lock

ℓk, k = 1..m. We denote with I0 the vector of I0
k , k = 1..m.

The main idea of the analysis is to infer the part of the state protected by each

lock—its resource invariant. Resource invariants are computed incrementally during the

analysis, therefore, for each lock ℓk the analysis maintains the current approximation

I♯
k ∈ D♯ of the corresponding resource invariant. We denote with I♯ the vector of such

approximations. In addition, for every program point v ∈ N in the CFG of a thread the

analysis maintains the part G♯(v) ∈ D♯ of the abstract program state owned by the thread

at the program point v—its local state. Formally, the analysis operates on the domain

D̂♯ = (N → D♯) × (D♯)m.

The thread-modular analysis is defined using the functional F ♯(I0) : D̂♯ → D̂♯, pa-

rameterised by the vector I0 ∈ (D♯)m, that takes a pair (G♯, I♯) and produces a pair

(G̃♯, Ĩ♯) as shown in Figure 3.3. The result of the analysis is defined as a fixed point

of the functional F ♯(I0). According to the definition of F ♯(I0), the initial local state of

every thread is just the abstract denotation of the empty heap e♯, in accordance with our

simplifying assumption. We take I0
k as the initial approximation of the resource invariant

I♯
k. The treatment of sequential commands and control flow in the analysis is standard

(see Section 2.2).

The interesting part of the analysis is the treatment of acquiring and releasing locks.

When a thread acquires a lock ℓk, it obtains the current approximation of the correspond-

ing resource invariant—the current approximation of the resource invariant is ∗♯-conjoined

with the current local state of the thread to yield a new local state. This corresponds

to the global Acquire axiom of concurrent separation logic. The treatment of release
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mimics the global Release axiom: when a thread releases the lock ℓk, its current local

state is split into two parts, one of which goes to the resource invariant and the other one

becomes the new local state of the thread. The analysis is parameterised by functions

ThreadLocalk : D♯ → D♯ and Protectedk : D♯ → D♯ for each k = 1..m that determine this

splitting. The function ThreadLocalk determines the part of the state that becomes the

local state of the thread and the function Protectedk the part that goes to the resource in-

variant. We require that these functions soundly split the state, i.e., that the combination

of the parts of the splitting over-approximate the state being split:

∀p ∈ D♯. γ(p) ⊑ γ(ThreadLocalk(p)) ∗ γ(Protectedk(p)). (3.3)

A computation of a fixed point of the functional F ♯(I0) would analyse each thread

accumulating possible values of resource invariants during the analysis. Each time a new

possible value of a resource invariant associated with a lock is discovered, it would have

to be propagated to every acquire command for the lock. Hence, each thread is analysed

repeatedly, but separately, without exploring the set of interleavings. In this sense the

analysis defined by F ♯(I0) is thread-modular. Note also that after the analysis splits the

state at a release command, it loses correlations between the parts of the state that

become local states of the thread and the parts that go to the resource invariant. This

loss of precision is similar to the one observed in thread-modular model checking [30].

3.3.1 Examples of abstract separation domains

Some of the abstract domains presented in Section 2.2.1 can be formulated as abstract

separation domains.

Interval domain can be turned into a separation domain by defining ∗ in the following

way:

∀p1, p2 ∈ IntDom\{⊤}. p1 ∗ p2 = p1 ⊎ p2;

∀p ∈ IntDom. p ∗ ⊤ = ⊤ ∗ p = ⊤.

The concrete transfer functions on the domain are local when defined as noted in Sec-

tion 2.2.1.

Domains based on separation logic (SLL, CDS, DLL) are separation domains with

∗ on symbolic heaps defined as follows:

(O1 
 ∃ ~X1. P1 ∧ S1) ∗ (O2 
 ∃ ~X2. P2 ∧ S2) = (O1 ∗ O2 
 ∃ ~X1, ~X2. (P1 ∧ P2) ∧ (S1 ∗ S2))

and lifted to the domains pointwise. As noted in Section 2.1.2, the corresponding concrete

transfer functions are local.
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Domains based on shape graphs can be formulated as separation domains with ∗

defined using the union of shape graphs. However, we cannot use these domains as they

are presented in [49, 48], since to define the functions ThreadLocalk and Protectedk we

have to be able to split shape graphs creating dangling pointers across splittings. The

abstract representation of [49, 48] does not allow dangling pointers, but can be extended

to allow special unusable pointers. These are pointers such that no information about

them is preserved by the analysis and dereferencing them results in an error.2 Adding

them preserves the finiteness of the domains. Both dangling pointers resulting from the

delete command and pointers from the part of the heap computed by Protectedk into the

part of the heap computed by ThreadLocalk can be modelled in the abstract representation

by unusable pointers.

TVLA is an example of an abstract domain for heap analysis that does not have a

straightforward representation as a separation domain with local transfer functions. Thus,

we cannot in general use TVLA in our framework.

3.3.2 A heuristic for determining heap splittings

Our thread-modular analysis is parameterised by the functions ThreadLocalk and

Protectedk that determine heap splittings upon releasing the lock ℓk. Any splitting sat-

isfying (3.3) is sound, but choosing a wrong one may lead the analysis to be imprecise.

For example, if we transfer a part of the heap that the programmer intended to be owned

by a thread to a resource invariant, a later access to this part by the thread will lead the

analysis to signal a potential memory-safety violation, represented by the corresponding

transfer function returning ⊤. Conversely, if we leave a part of the heap intended to be

protected by a lock in the local state of a thread, the analysis will not be able to justify

the safety of a later access to this part by another thread holding the lock.

We observe that in many programs the part of the heap protected by a lock can be

defined as the set of memory cells reachable via pointers from a given set of variables

and that these variables are also protected by the lock. For example, this is the case

when a lock protects a cyclic singly-linked list with a sentinel head node pointed to

by a given variable. We call such variables the entry points for the corresponding lock

and denote their set with Entryk. Assuming that we are given Entryk for every lock

ℓk, a reasonable heuristic for determining heap splitting in this situation is defined by

Protectedk(p) computing the part of the heap represented by p reachable from the entry

points (recall that in the analysis Protectedk computes the part of the heap that goes into

the resource invariant). The rest of the heap becomes the result of ThreadLocalk. The

intuition is that modifying pointers to a heap cell such that it moves into the part of the

heap defined by Protectedk means that it becomes protected by the corresponding lock

2 This was suggested to us by Tal Lev-Ami.
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and a part of its resource invariant. Conversely when a thread modifies pointers so that

a memory cell becomes inaccessible from the entry points of a lock, this signifies that it

should be moved from the lock’s resource invariant into the thread’s local state.

The set of program variables protected by a lock forms a reasonable guess for the set

of entry points associated with the lock. The set of entry points can then be inferred

using, e.g., tools (both static and dynamic) for analysing correlations between locks and

variables that determine the set of locks that are held consistently each time a variable is

accessed [63, 73, 17]. In more complex cases the entry points can be given by the user as

annotations. Note that the soundness of our analysis does not depend on the particular

association of locks and entry points: the analysis can be used with any association.

We now give the definitions of the functions ThreadLocalk and Protectedk for the

separation domains mentioned in Section 3.3.1.

Interval domain. For p ∈ IntDom\{⊤}, Protectedk(p) just selects the intervals for

variables in Entryk from p, and ThreadLocalk(p) returns the rest. Additionally, we let

Protectedk(⊤) = ThreadLocalk(⊤) = ⊤.

Domains based on separation logic. For these domains, instead of computing reach-

ability precisely, ThreadLocalk and Protectedk compute its approximation—reachability in

the formula. We illustrate its definition using SLL as an example.

Let S be the spatial part of a symbolic heap in the SLL domain and U be a set of

expressions. Let V be the minimal set of expressions such that

U ∪ {F | ∃E, S1. E ∈ V ∧ S = H(E, F ) ∗ S1} ⊆ V.

Here H(E, F ) stands for either E 7→F or ls(E, F ). We denote the part of S reachable from

U with Reach(S, U) and define it as the ∗-conjunction of the following set of formulae:

{S1 | ∃E, F, S2. E ∈ V ∧ S = S1 ∗ S2 ∧ S1 = H(E, F )}.

Let Unreach(S, U) be the formula consisting of all ∗-conjuncts from S that are not in

Reach(S, U).

Consider a symbolic heap O 
 ∃ ~X. P∧S. To take the equalities in P into account while

computing the part of S reachable from the entry points we require that the variables in S

be chosen so that for each equivalence class generated by the equalities in P at most one

variable from this equivalence class is present in S (with preference given to unquantified

variables over quantified ones, and to entry points over other variables). We then define

Protectedk(O 
 ∃ ~X. P ∧ S) = can(O ∩ Entryk 
 ∃ ~X, ~Y . (P ∧ Reach(S, Entryk))

[~Y /(vars(P ∧ Reach(S, Entryk))\Entryk)]) (3.4)
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and

ThreadLocalk(O 
 ∃ ~X. P ∧ S) =

can(O\Entryk 
 ∃ ~X, ~Z. (P ∧ Unreach(S, Entryk))[~Z/Entryk]) (3.5)

for fresh ~Y , ~Z and lift Protectedk and ThreadLocalk to SLL pointwise. Note that, according

to this definition, the ownership of the entry points themselves is also transferred into the

shared state. It is easy to see that the functions defined in this way satisfy (3.3).

For example, consider a symbolic heap P = (x, y, z 
 ls(x, y) ∗ ls(y, NULL) ∗ z7→y), and

assume that Entryk = {x}. In this case,

Protectedk(P ) = can(x 
 ∃Y. ls(x, Y ) ∗ ls(Y, NULL)) = (x 
 ls(x, NULL))

and ThreadLocalk(P ) = (y, z 
 z7→y). Note that this splitting breaks the pointer y from

the local part of the heap into the shared part: y is a dangling pointer in ThreadLocalk(P ).

Domains based on shape graphs. In this case, the functions ThreadLocalk and

Protectedk can be easily defined using reachability in shape graphs.

Note that due to efficiency considerations, for domains more complex than SLL (such

as CDS and DLL) the heuristic based on reachability from the entry points is used only

to inform design choices in the implementation of ThreadLocalk and Protectedk. Their

implementation for such domains uses incomplete theorem provers for entailments be-

tween symbolic heaps, which may result in the splitting computed by ThreadLocalk and

Protectedk differing from the expected one. This may lead the analysis to be overly im-

precise (e.g., to signal false memory errors), but preserves soundness, since the analysis

can use any functions ThreadLocalk and Protectedk satisfying (3.3).

Such flexibility is allowed by the fact that the functions ThreadLocalk and Protectedk

are defined in the abstract domain, not the concrete one. Thus, it is possible for their

implementation to compute semantically different splitting for two distinct abstract states

representing the same set of concrete states. We can disallow this by requiring that

ThreadLocalk : D♯ → D♯ and Protectedk : D♯ → D♯ over-approximate corresponding

functions ThreadLocalck : D → D and Protectedc

k : D → D defined in the concrete domain:

∀p ∈ D♯. ThreadLocalck(γ(p)) ⊑ γ(ThreadLocalk(p)) (3.6)

and

∀p ∈ D♯. Protectedc

k(γ(p)) ⊑ γ(Protectedk(p)). (3.7)

However, such conditions are not required for the soundness of the analysis. We return

to this point in Section 5.6.

We have implemented an instantiation of our framework with the domain DLL in

a prototype tool. Preliminary experiments on concurrent heap-manipulating code from

Windows device drivers (reported in [34]) confirm the efficiency of the analysis.
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The reader may now revisit the example in Section 3.1 to check how it corresponds to

the formal definition of the analysis given in this section.

3.4 Soundness

As we noted before, processing of acquire and release commands in the analysis mimics

the corresponding axioms of concurrent separation logic. It is thus tempting to try to

justify the soundness of the analysis by showing that its results can be compiled into

concurrent separation logic, following Lee et al. [46]. Such a method of proving soundness

has an additional benefit that it paves the way for the results of the analysis to be used in

theorem proving or proof-carrying code systems [54]. Namely, the proof in the program

logic produced by the analysis can be used as a certificate justifying to the code consumer

that the result of the analysis is correct. Unfortunately, the thread-modular analysis does

not produce proofs in concurrent separation logic, since the resource invariants computed

by the analysis are not guaranteed to be precise for the following reasons.

Consider an instantiation of the analysis with one of the abstract domains based on

separation logic (Section 3.3.1). As we noted in Section 2.1.1, precision is not preserved

by disjunction: (emps ∧ 10 7→ )∨ emp is not precise, although (emps ∧ 10 7→ ) and emp are.

We use disjunction in the analysis to compute resource invariants, since the join operator

in abstract domains based on separation logic over-approximates disjunction. Moreover,

the definitions of commonly used inductive predicates include disjunctions that can lead

to imprecision: e.g., h 
 ∃X. dll(h, X, h, X) is imprecise. The presence of existential

quantification in the abstract domain also gives rise to symbolic heaps such as h 
 ls(h, ),

which are imprecise. However, note that the resource invariant computed in the example

of Section 3.1 is precise.

Thus, although the thread-modular analysis is inspired by concurrent separation logic,

this is not its underlying logic. As we show in Section 3.5 below, the analysis can be viewed

as generating proofs in a variant of concurrent separation logic without the conjunction

rule and the precision restriction. To establish the soundness of the analysis and the

corresponding logic without performing two separate proofs, we define a thread-local

interpretation of every thread in the program that annotates its program points with

elements from the concrete domain describing its local state. This implicitly records the

decisions about heap splittings at release commands that could be taken by a run of the

analysis or a proof in the logic. We show that the thread-local interpretation is sound in

a certain sense with respect to the interleaving operational semantics (Section 3.4.1). To

prove the soundness of the thread-modular analysis, we then show that its results generate

an instance of the thread-local interpretation (Section 3.4.2). To prove the soundness of

the logic, we define the notion of validity of Hoare triples for commands with respect

to the thread-local interpretation and then prove the soundness of all the proof rules
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(Section 3.4.1). In addition, we show that the success of the thread-modular analysis on a

program or the provability of a program in our logic implies that the program is data-race

free (Section 3.4.4).

3.4.1 Thread-local interpretation and Parallel Decomposition

Lemma

In the setting of Section 3.2 we define a semantic proof as a triple (C, G, I), where

• C is a command with a CFG (N, T, start, end) over the set of primitive commands

Seq ∪ {acquire(ℓk) | k = 1..m} ∪ {release(ℓk) | k = 1..m};

• G : N → D maps program points of C to semantic annotations;

• I ∈ Dm is a vector of resource invariant denotations Ik ∈ D, k = 1..m

such that for all edges (v, C ′, v′) ∈ T

• if C ′ ∈ Seq, then

fC′(G(v)) ⊑ G(v′); (3.8)

• if C ′ is acquire(ℓk), then

G(v) ∗ Ik ⊑ G(v′); (3.9)

• if C ′ is release(ℓk), then

G(v) ⊑ G(v′) ∗ Ik. (3.10)

Note that the elements of D assigned to program points by the semantic annotation

mapping G in this definition are similar to label invariants in proof systems for unstruc-

tured control flow [22]. Inequalities (3.8), (3.9), and (3.10) are semantic counterparts of

the axioms Prim and the global versions of Acquire and Release, respectively. The

thread-local interpretation of a command is given by its semantic proof. In Sections 3.4.2

and 3.4.3 we show how to extract semantic proofs for threads in the program from proofs

in the logic or results of the analysis.

The core of our proofs of soundness consists of establishing the so-called Separation

Property [56]: at any time, the state of the program can be partitioned into that owned

by each thread and each free lock. Its formalisation in the original proof of soundness

of concurrent separation logic is called the Parallel Decomposition Lemma [12]. The

following lemma formalises the property in the case when the local states of threads are

defined by semantic proofs, which shows the soundness of our thread-local interpretation

with respect to the operational semantics of Section 3.2.
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Lemma 3.1 (Parallel Decomposition Lemma). Assume semantic proofs

(Ck, Gk, I), k = 1..n. If σ0 ∈ Σ is such that

{σ0} ⊑

(
n
⊛

k=1
Gk(startk)

)
∗

(
⊛

k∈{1,...,m}
Ik

)
, (3.11)

then, whenever pc0, σ0 →
∗
S pc, σ, we have

{|σ}| ⊑

(
n
⊛

k=1
Gk(pc(k))

)
∗

(
⊛

k∈Free(pc)
Ik

)
. (3.12)

Proof. We prove the statement of the theorem by induction on the length of the derivation

of σ in the operational semantics of the program S. In the base case (3.12) is equivalent

to (3.11). Suppose now that

pc0, σ0 →
∗
S pc[j : v], σ →S pc[j : v′], σ′.

Then (v, C, v′) ∈ T for some atomic command C. We have to show that if

{σ} ⊑

(
n
⊛

k=1
Gk((pc[j : v])(k))

)
∗

(
⊛

k∈Free(pc[j:v])
Ik

)
, (3.13)

then

{|σ′}| ⊑

(
n
⊛

k=1
Gk((pc[j : v′])(k))

)
∗

(
⊛

k∈Free(pc[j:v′])
Ik

)
. (3.14)

There are three cases corresponding to the type of the command C.

Case 1. C ∈ Seq. In this case Free(pc[j : v]) = Free(pc[j : v′]). Let

r =


 ⊛

1≤k≤n,
k 6=j

Gk(pc(k))


 ∗

(
⊛

k∈W
Ik

)
, (3.15)

where W = Free(pc[j : v]) = Free(pc[j : v′]). Then

{|σ′}| ⊑ fC({σ}) definition of →S

⊑ fC(Gj(v) ∗ r) (3.13)

⊑ fC(Gj(v)) ∗ r fC is local

⊑ Gj(v
′) ∗ r (3.8)

Case 2. C is acquire(ℓi). In this case i ∈ Free(pc[j : v]) and i 6∈ Free(pc[j : v′]). Let

r be defined by (3.15) with W = Free(pc[j : v]) \ {i} = Free(pc[j : v′]). Then

{|σ′}| ⊑ {σ} definition of →S

⊑ Gj(v) ∗ Ii ∗ r (3.13)

⊑ Gj(v
′) ∗ r (3.9)

Case 3. C is release(ℓi). In this case i 6∈ Free(pc[j : v]) and i ∈ Free(pc[j : v′]). Let

r be defined by (3.15) with W = Free(pc[j : v]) = Free(pc[j : v′]) \ {i}. Then

{|σ′}| ⊑ {σ} definition of →S

⊑ Gj(v) ∗ r (3.13)

⊑ Gj(v
′) ∗ Ii ∗ r (3.10)

In all cases we get inequalities equivalent to (3.14), which completes the induction. 2
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3.4.2 Soundness of the analysis

We are now in a position to state and prove the soundness of the thread-modular analysis

of Section 3.3 with respect to the operational semantics of Section 3.2. The following the-

orem formalises the Separation Property for local states and resource invariants computed

by the analysis.

Theorem 3.2 (Soundness of the analysis). Assume I0 ∈ (D♯)m. Let (G♯, I♯) be a

fixed point of the functional F ♯(I0). If σ0 ∈ Σ is such that

{σ0} ⊑

(
n
⊛

k=1
γ(e♯)

)
∗

(
⊛

k∈{1,...,m}
γ(I0

k)

)
, (3.16)

then, whenever pc0, σ0 →
∗
S pc, σ, we have

{|σ}| ⊑

(
n
⊛

k=1
γ(G♯(pc(k)))

)
∗

(
⊛

k∈Free(pc)
γ(I♯

k)

)
. (3.17)

Proof. We show that the results of the analysis generate an instance of the thread-local

interpretation of Section 3.4.1. For k = 1..n we define G♯
k as the restriction of G♯ to

program points in Nk and define γ(G♯
k) : Nk → D as follows: ∀v. γ(G♯

k)(v) = γ(G♯
k(v)).

Let Ij = γ(I♯
j ) and let I be the vector of Ij, j = 1..m. We now show that (Ck, γ(G♯

k), I)

is a semantic proof. Take an edge (v, C, v′) ∈ Tk. We consider three cases corresponding

to the type of the command C.

For C ∈ Seq, from (3.1) and the definition of F ♯(I0) we get

fC(γ(G♯
k(v))) ⊑ γ(f ♯

C(G♯
k(v))) ⊑ γ(G♯

k(v
′)),

which is equivalent to (3.8). In the case when C is acquire(ℓj), from (3.2) we similarly

get

γ(G♯
k(v)) ∗ γ(I♯

j) ⊑ γ(G♯
k(v) ∗♯ I♯

j) ⊑ γ(G♯
k(v

′)),

which is equivalent to (3.9). Finally, for the case when C is release(ℓj), from (3.3) we

get

γ(G♯
k(v)) ⊑ γ(ThreadLocalj(G

♯
k(v))) ∗ γ(Protectedj(G

♯
k(v))) ⊑ γ(G♯

k(v
′)) ∗ Ij

which is equivalent to (3.10).

Thus, (Ck, γ(G♯
k), I), k = 1..n are indeed semantic proofs. By the definition of F ♯(I0)

we have G♯
k(startk) = e♯ and I0

j ⊑ I♯
j . Hence, from (3.16) it follows that

{σ0} ⊑

(
n
⊛

k=1
γ(e♯)

)
∗

(
⊛

k∈{1,...,m}
γ(I0

k)

)
⊑

(
n
⊛

k=1
γ(G♯

k(startk))

)
∗

(
⊛

k∈{1,...,m}
γ(I♯

k)

)
.

Applying Lemma 3.1, we then get

{|σ}| ⊑

(
n
⊛

k=1
γ(G♯

k(pc(k)))

)
∗

(
⊛

k∈Free(pc)
γ(I♯

k)

)
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as required. 2

The proof of the theorem allows us to justify the requirements we imposed in the

construction of the thread-modular analysis in Section 3.3: (3.1), (3.2), and (3.3) ensure

correct processing of sequential commands, acquire, and release, respectively.

Note that not only does Theorem 3.2 restrict initial and final states of the program, but

it also provides information about states at the intermediate points in the computation

(and so do soundness theorems for other analyses in this dissertation). This is because,

unlike triples in Hoare logics, fixed points computed by analyses carry information about

intermediate states, which can be used, e.g., to enable compiler optimisations.

We can reformulate the soundness statement given by Theorem 3.2 in a way that

is more usual for program analyses based on abstract interpretation (Section 2.2). Let

D̂ = Nn → D and let R ∈ D̂ be the collecting semantics of the program S:

R(pc) =
⊔

{σ | pc0, σ0 →
∗
S pc, σ and σ0 satisfies (3.16)}.

Following the statement of the theorem, we can define a concretisation function γ̂ : D̂♯ →

D̂ for the results of the thread-modular analysis as follows:

γ̂(G♯, I♯)(pc) =

(
n
⊛

k=1
γ(G♯(pc(k)))

)
∗

(
⊛

k∈Free(pc)
γ(I♯

k)

)
.

Then inequality (3.17) can be rewritten as

R ⊑ γ̂(G♯, I♯),

which shows that the collecting semantics is over-approximated by the concretisation of

the results of the analysis.

The soundness statement can be used to check safety properties as described in Sec-

tion 2.2. In particular, we can check memory safety as follows. As was noted in Section 2.1,

we usually use the greatest element ⊤ of the concrete domain to denote an error state

after a memory-safety violation. If the concretisation function γ satisfies

∀p ∈ D♯. γ(p) = ⊤ ⇒ p = ⊤, (3.18)

then ⊤ in the abstract domain is the unique pre-image under γ of ⊤ in the concrete

domain and, hence, can also be used to denote the error state. We therefore say that the

analysis succeeds if its result (G♯, I♯) is such that G♯(v) < ⊤ for every program point v

and I♯
k < ⊤ for every lock ℓk. We denote this with (G♯, I♯) < ⊤. As an easy consequence

of Theorem 3.2, we get that the success of the analysis implies that the program analysed

is memory safe.

Corollary 3.3 (Memory safety). Under the conditions of Theorem 3.2, if the concreti-

sation function γ satisfies (3.18) and (G♯, I♯) < ⊤, then the program S is safe when run

from initial states σ0 satisfying (3.16).
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3.4.3 Soundness of the logic

We assume the setting of Sections 2.1.3 and 2.1.4.

Theorem 3.4 (Soundness of the logic). Assume I ⊢ {Pk} Ck {Qk} for k = 1..n,

where either

• the resource invariants in I are precise and the ∗ operation is cancellative; or

• Conj is not used in the derivation of the triples.

Then for any σ0 ∈ Σ such that

σ0 ∈

(
n
⊛

k=1
JPkK

)
∗

(
m
⊛

k=1
JIkK

)
, (3.19)

the program S is safe when run from σ0, and whenever pc0, σ0 →
∗
S pcf , σ, we have

σ ∈

(
n
⊛

k=1
JQkK

)
∗

(
m
⊛

k=1
JIkK

)
. (3.20)

To prove Theorem 3.4, we first define a notion of validity of Hoare triples with respect

to the thread-local interpretation of Section 3.4.1 and prove the soundness of the proof

rules in this interpretation. Soundness of the logic with respect to the concrete semantics

is then an easy consequence of Lemma 3.1.

Definition 3.5. I � {P} C {Q} if there exists a semantic proof (C, G, JIK) such that

G(start) ⊑ JP K and G(end) ⊑ JQK, where start and end are the starting and the final

program points of the CFG of C.

We say that an inference rule is sound with respect to the thread-local interpretation

if it preserves validity of judgements (as defined by the relation � above).

Lemma 3.6. The axioms Prim, Acquire, and Release are sound with respect to the

thread-local interpretation.

Lemma 3.7. The rules Seq, Choice, Loop, and Conseq are sound with respect to

the thread-local interpretation.

We omit straightforward proofs of Lemmas 3.6 and 3.7 and proceed to prove the soundness

of the rules Frame, Disj, and Conj. To this end, we show that we can construct semantic

proofs for the conclusions of these rules out of semantic proofs for their premisses. This

is essentially a semantic counterpart of a standard proof that these rules are admissible

in the logic including the global Acquire and Release axioms, i.e., that a derivation

using these rules can be converted into a derivation that does not use them. By using

semantic proofs instead of derivations in our proof system, we avoid having to deal with

the syntactic form of the proof rules in the logic and the control-flow constructs in our

programming language.
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Lemma 3.8. (i) For any r ∈ D, if (C, G, I) is a semantic proof, then so is (C, G′, I),

where ∀v. G′(v) = G(v) ∗ r.

(ii) If (C, G1, I) and (C, G2, I) are semantic proofs, then so is (C, G′, I), where

∀v. G′(v) = G1(v) ⊔ G2(v).

(iii) If (C, G1, I) and (C, G2, I) are semantic proofs, then so is (C, G′, I), where

∀v. G′(v) = G1(v) ⊓ G2(v), provided the resource invariant denotations in I are

precise and the ∗ operation is cancellative.

Proof. Consider an edge (v, C ′, v′) in the CFG of the command C. When C ′ ∈ Seq,

inequality (3.8) follows from the fact that the predicate transformer fC′ is local, and

distributes over ⊔ and ⊓ (the latter is true by construction of transformers defined by

pointwise lifting from Σ). We omit the easy case when C ′ is acquire(ℓk). Suppose now

that C ′ is release(ℓk). We consider every case in the lemma in turn.

(i) Using the definition of G′, we get

G′(v) = G(v) ∗ r ⊑ G(v′) ∗ Ik ∗ r = G′(v′) ∗ Ik.

(ii) The ∗ operation distributes over ⊔:

∀p1, p2, q ∈ D. (p1 ⊔ p2) ∗ q = (p1 ∗ q) ⊔ (p2 ∗ q).

Hence,

G′(v) = G1(v)⊔G2(v) ⊑ (G1(v
′)∗Ik)⊔ (G2(v

′)∗Ik) = (G1(v
′)⊔G2(v

′))∗Ik = G′(v′)∗Ik.

(iii) It is easy to check that if ∗ is cancellative, then for a precise q ∈ D and any

p1, p2 ∈ D we have

(p1 ⊓ p2) ∗ q = (p1 ∗ q) ⊓ (p2 ∗ q). (3.21)

Thus, in this case we get

G′(v) = G1(v)⊓G2(v) ⊑ (G1(v
′)∗Ik)⊓ (G2(v

′)∗Ik) = (G1(v
′)⊓G2(v

′))∗Ik = G′(v′)∗Ik.

In all cases we get (3.10), which completes the proof. 2

Corollary 3.9. The rules Frame and Disj are sound with respect to the thread-local in-

terpretation. So is Conj when the resource invariants in I are precise and the ∗ operation

is cancellative.

Lemma 3.10. If I ⊢ {P} C {Q} and the restrictions on the derivation from Theorem 3.4

hold, then I � {P} C {Q}.

The proof is by induction on the derivation of I ⊢ {P} C {Q} using Lemmas 3.6 and 3.7

and Corollary 3.9.

59



Proof of Theorem 3.4. By Lemma 3.10, I � {Pk} Ck {Qk} for k = 1..n, hence, by Def-

inition 3.5, there exist semantic proofs (Ck, Gk, JIK), k = 1..n such that Gk(startk) ⊑ JPkK
and Gk(endk) ⊑ JQkK. Consider a state σ0 satisfying (3.19). Let I = JIK in Lemma 3.1,

then (3.11) is fulfilled. We have Gk(endk) < ⊤, from which it follows that ∀v. Gk(v) < ⊤.

Therefore, for any pc and σ such that pc0, σ0 →
∗
S pc, σ, from (3.12) we get {|σ}| < ⊤, i.e.,

S is safe when run from σ0. Now letting pc = pcf and using (3.12), we get (3.20). 2

As follows from Theorem 2.4, Lemma 3.10, and hence, Theorem 3.4 also hold for

the specialisation of the logic to the domain RAM (Section 2.1.3), i.e., when D = RAM,

Seq = SeqRAM, and proofs use the syntactic versions of the axiom Prim from Figure 2.5.

Reynolds’s counterexample. Note that (3.21) does not hold in general for imprecise

q, thus, the proof of Lemma 3.8 may not be extended to show the soundness of the

conjunction rule in the case of imprecise resource invariants. The intuitive reason for

the unsoundness of the conjunction rule in this case is that imprecise resource invariants

allow splitting the heap at a release command in different ways in different branches

of the proof. Thus, in the two premises of Conj there may be different understanding

of what the splitting of the global heap into thread-local and protected parts should

be. Trying to ∧-conjoin two such judgements about the local state of a thread then

leads to inconsistency. For completeness, we now reproduce Reynolds’s counterexample

demonstrating the unsoundness [56]. Consider the instantiation of the logic for the domain

RAM and a program consisting of a single thread executing the code

acquire(ℓ); skip; release(ℓ)

We denote with one the assertion emps∧10 7→ . Let Iℓ = emps. First, we have the following

derivation (we elide the premises of the rule of consequence dealing with implications

between assertions):

Skip
I ⊢ {emps} skip {emps}

Conseq
I ⊢ {(emp ∨ one) ∗ emps} skip {emp ∗ emps}

Acquire,Release,Seq
I ⊢ {emp ∨ one} acquire(ℓ); skip; release(ℓ) {emp}

Then, from the conclusion of this proof, we can construct two derivations:

I ⊢ {emp ∨ one} acquire(ℓ); skip; release(ℓ) {emp}
Frame

I ⊢ {(emp ∨ one) ∗ one} acquire(ℓ); skip; release(ℓ) {emp ∗ one}
Conseq

I ⊢ {one} acquire(ℓ); skip; release(ℓ) {one}

and
I ⊢ {emp ∨ one} acquire(ℓ); skip; release(ℓ) {emp}

Conseq
I ⊢ {one} acquire(ℓ); skip; release(ℓ) {emp}
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Applying the conjunction rule and simplifying using the rule of consequence, we get:

I ⊢ {one ∧ one} acquire(ℓ); skip; release(ℓ) {emp ∧ one}
Conseq

I ⊢ {one} acquire(ℓ); skip; release(ℓ) {false}

For this proof, (3.19) is satisfied by a state σ0 with the empty stack and the heap containing

an allocated cell at the address 10. However, (3.20) is not satisfied by any state σ, even

though pc0, σ0 →∗
S pc

f
, σ0. Hence, the soundness of the logic is violated. The reason is

that here we are combining two derivations of which the first one says that the cell at the

address 10 is kept by the thread and the second one that its ownership is transferred to

the part of the heap protected by the lock.

Logical variables. Assume that Σ is an algebra with logical variables, i.e., Σ = Σ′×Ints,

and that the functions fC for C ∈ Seq are lifted from functions on Σ′ (Section 2.1.3). In

this case, we can add to the logic the rules Exists and Forall. We say that p ∈ D

does not depend on the interpretation of logical variables, if p = ⊤, or p 6= ⊤ and for

any (σ′, i) ∈ p and i′ ∈ Ints we have (σ′, i′) ∈ p. For the rules to be sound in concurrent

setting, we have to require that the denotations of resource invariants do not depend on

interpretations (in the case of the domain RAM this is satisfied if resource invariants do

not contain free logical variables). For the soundness of Forall, we have to require

additionally that the resource invariants be precise and the ∗ operation be cancellative.

For a logical variable X let Exists(X) : D → D, respectively, Forall(X) : D → D be the

semantic counterparts of existential, respectively, universal quantification of X, defined

as follows:

Exists(X, p) =




{(σ′, i) | ∃u ∈ Values. (σ′, i[X : u]) ∈ p}, if p 6= ⊤;

⊤, if p = ⊤;

Forall(X, p) =




{(σ′, i) | ∀u ∈ Values. (σ′, i[X : u]) ∈ p}, if p 6= ⊤;

⊤, if p = ⊤.

The proof of soundness of Exists and Forall with respect to the thread-local inter-

pretation is done by establishing the following analogue of Lemma 3.8.

Lemma 3.11. Under the above conditions, for any logical variable X and resource in-

variants I that do not depend on interpretations:

(i) If (C, G, I) is a semantic proof, then so is (C, G′, I), where ∀v. G′(v) =

Exists(X, G(v)).

(ii) If (C, G, I) is a semantic proof, then so is (C, G′, I), where ∀v. G′(v) =

Forall(X, G(v)), provided the resource invariant denotations in I are precise and

the ∗ operation is cancellative.
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The proof is similar to that of Lemma 3.8.

It follows that Theorem 3.4 holds for the logic extended with the rules Exists and

Forall, subject to the conditions given above.

3.4.4 Data-race freedom

Consider the case when Σ = States, D = RAM (Section 2.1.1) and Seq = SeqRAM

(Section 2.1.2). We prove that in this case the success of the thread-modular analysis on

a program or the provability of a program in our logic implies that the program has no

data races (both on stack variables and on heap cells).

For a state σ ∈ Σ let accesses(C, σ), respectively, writes(C, σ) be the set of variables

and locations that a primitive sequential command C ∈ SeqRAM may access (i.e., read,

write, or dispose), respectively, write to or dispose, when run from the state σ according

to the semantics of commands SeqRAM defined in Figure 2.3.

Definition 3.12 (Interfering commands). Commands C ′ and C ′′ from SeqRAM in-

terfere with each other when executed from the state σ, denoted with C ′ ⊲⊳σ C ′′, if

accesses(C ′, σ) ∩ writes(C ′′, σ) 6= ∅

or

writes(C ′, σ) ∩ accesses(C ′′, σ) 6= ∅.

Given this formulation of interference, the usual notion of data races is formulated as

follows.

Definition 3.13 (Data race). The program S has a data race when run from an initial

state σ0 ∈ Σ if for some i, j, and pc such that i 6= j, pc(i) = vi, and pc(j) = vj

and state σ ∈ Σ such that pc0, σ0 →∗
S pc, σ, there exist CFG edges (vi, C

′, v′
i) ∈ Ti and

(vj , C
′′, v′

j) ∈ Tj in the control-flow relations of threads i and j labelled with commands C ′

and C ′′ from SeqRAM such that

C ′, σ 6; ⊤; C ′′, σ 6; ⊤; C ′ ⊲⊳σ C ′′. (3.22)

We first prove that the existence of an instance of the thread-local interpretation for a

program (as defined in Lemma 3.1) such that all local states and resource invariants are

distinct from ⊤ implies that the program is data-race free.

Lemma 3.14. Under the conditions of Lemma 3.1 with D = RAM and Seq = SeqRAM,

if (G, I) < ⊤, where G =
⊎n

k=1 Gk, then the program S has no data races when run from

initial states σ0 satisfying (3.11).
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Proof. Suppose the contrary: there exist i, j, and pc such that i 6= j, pc(i) = vi,

and pc(j) = vj , a state σ such that pc0, σ0 →∗
S pc, σ, CFG edges (vi, C

′, v′
i) ∈ Ti, and

(vj , C
′′, v′

j) ∈ Tj labelled with commands C ′ and C ′′ from SeqRAM such that (3.22) holds.

By Lemma 3.1, σ ∈ r ∗ G(vi) ∗ G(vj) for some r. Hence,

σ = σ0 ∗ σ1 ∗ σ2, (3.23)

where

σ0 ∈ r, σ1 ∈ G(vi), σ2 ∈ G(vj). (3.24)

Since (G, I) < ⊤, it follows that fC′(G(vi)) < ⊤ and fC′′(G(vj)) < ⊤. From this

and (3.24) we obtain fC′(σ1) ⊑ fC′(G(vi)) < ⊤. So, fC′(σ1) < ⊤ and, analogously,

fC′′(σ2) < ⊤. Hence, C ′, σ1 6; ⊤ and C ′′, σ2 6; ⊤. From this and the fact that C ′ ⊲⊳σ C ′′

using the definition of ∗ and the predicate transformers for primitive sequential commands,

we easily get that σ1 ∗σ2 is undefined, which contradicts (3.23). The intuition behind this

is that from C ′, σ1 6; ⊤ and C ′′, σ2 6; ⊤ it follows that both σ1 and σ2 should have the

full permission for the same variable or location accessed by C ′ and C ′′, which makes the

state σ1 ∗ σ2 inconsistent. 2

As corollaries of Lemma 3.14, we easily get data-race freedom theorems for our logic

and analysis.

Corollary 3.15 (Data-race freedom: analysis). Under the conditions of Theo-

rem 3.2 with D = RAM and Seq = SeqRAM, if the concretisation function γ satis-

fies (3.18) and (G♯, I♯) < ⊤, then the program S has no data races when run from initial

states σ0 satisfying (3.16).

Corollary 3.16 (Data-race freedom: logic). Under the conditions of Theorem 3.4

with D = RAM and Seq = SeqRAM, the program S has no data races when run from

initial states σ0 satisfying (3.19).

3.5 Certificate generation

We now show that the thread-modular analysis of Section 3.3 can be viewed as generating

proofs in a variant of concurrent separation logic without the conjunction rule and the

precision restriction. Similar correspondence can be established for other pairs of logics

and analyses in this dissertation. We present a detailed construction only in this section.

The details of proof generation follow the existing work on proof-producing program

analysis for simpler domains [74].

In the setting of Sections 2.1.3 and 2.1.4 We assume an assertion language L for

denoting elements of the concrete separation domain D distinct from ⊤, equipped with a

proof system for deriving tautological assertions, i.e., assertions denoting Σ. In the case
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when D = RAM, we can use the assertion language presented in Section 2.1.1 and an

adaptation of the proof systems from [66] or [3]. We assume that the assertion language

includes implication ⇒, separating conjunction ∗, and the assertion emp with the expected

interpretation. We assume that the proof system for the assertion language includes a

rule for the transitivity of implication and the following rules:

P1 ⇒ P2 Q1 ⇒ Q2

P1 ∗ P2 ⇒ Q1 ∗ Q2
(3.25)

emp ∗ P ⇔ P
(3.26)

We consider a variant of the logic with a set of axioms for primitive commands formu-

lated using the assertion language L that are sound with respect to the concrete predicate

transformers fC . For the case of the domain RAM, we can take the axioms for primitive

commands SeqRAM in Figure 2.5.

We make several assumptions about the ingredients of the analysis. First, we assume

that the analysis is equipped with a translation function tr : D♯\{⊤} → L that for a given

abstract state tr(p) defines a formula in the language L representing its concretisation:

Jtr(p)K = γ(p). We assume further that the analysis is equipped with a proof-producing

component that constructs proofs of the following judgements in the formal system for L:

tr(I♯) ⊢ {tr(p)} C {tr(f ♯
C(p))}, (3.27)

tr(p) ⇒ tr(p ⊔ q), (3.28)

tr(p) ∗ tr(q) ⇒ tr(p ∗♯ q), (3.29)

tr(p) ⇒ tr(Protectedk(p)) ∗ tr(ThreadLocalk(p)), k = 1..m (3.30)

for any p, q ∈ D♯, I♯ ∈ (D♯)m, and C ∈ Seq. Note that the formulae and the triple are

semantically valid, as follows from (3.1), (3.2), and (3.3). The implementation of transfer

functions and the join operator in abstract domains based on separation logic is usually

done via proof search in a particular proof system [3, 81]. This search procedure can thus

be instrumented to construct the required proofs.

We now show that, under the above assumptions, we can construct a proof of the

program in our logic with assertions in L from a successful run of the thread-modular

analysis. Let (G♯, I♯) be the result of the analysis as defined in Section 3.3. We first

construct derivations of the triples

tr(I♯) ⊢ {tr(e♯)} Ck {tr(G♯(endk))}, k = 1..n. (3.31)

We first show that for any CFG edge (v, C, v′) ∈ T we can derive

tr(I♯) ⊢ {tr(G♯(v))} C {tr(G♯(v′))}. (3.32)

We consider three cases depending on the command C.
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Case 1. C is a primitive command. Then G♯(v′) = f ♯
C(G♯(v))⊔p for some p ∈ D♯ and

the derivation is constructed as follows:

(3.27)
tr(I♯) ⊢ {tr(G♯(v))} C {tr(f ♯(G♯(v)))}

(3.28)
tr(f ♯(G♯(v))) ⇒ tr(G♯(v′))

Conseq
tr(I♯) ⊢ {tr(G♯(v))} C {tr(G♯(v′))}

Case 2. C is acquire(ℓj). Then G♯(v′) = (I♯
j ∗

♯ G♯(v))⊔p for some p ∈ D♯ and, hence,

we can derive

(3.29)
tr(I♯

j) ∗ tr(G♯(v)) ⇒ tr(I♯
j ∗

♯ G♯(v))
(3.28)

tr(I♯
j ∗

♯ G♯(v)) ⇒ tr(G♯(v′))

tr(I♯
j) ∗ tr(G♯(v)) ⇒ tr(G♯(v′))

where the last rule used is the transitivity of implication. Denoting the above derivation

with (*), the derivation of the required triple is as follows:

(**)

Acquire
tr(I♯) ⊢ {emp} acquire(ℓj) {tr(I

♯
j)}

Frame
tr(I♯) ⊢ {emp ∗ tr(G♯(v))} acquire(ℓj) {tr(I

♯
j) ∗ tr(G♯(v))} (*)

Conseq
tr(I♯) ⊢ {tr(G♯(v))} acquire(ℓj) {tr(G♯(v′))}

where (**) is tr(G♯(v)) ⇒ emp ∗ tr(G♯(v)), derived from (3.26).

Case 3. C is release(ℓj). Then G♯(v′) = ThreadLocalj(G
♯(v)) ⊔ p and I♯

j =

Protectedj(G
♯(v)) ⊔ q for some p, q ∈ D♯. Hence, we can derive

(3.30)
tr(G♯(v)) ⇒ tr(Protectedj(G

♯(v))) ∗ tr(ThreadLocalj(G
♯(v)))

and

(3.28)
tr(Protectedj(G

♯(v))) ⇒ tr(I♯
j)

(3.28)
tr(ThreadLocalj(G

♯(v))) ⇒ tr(G♯(v′))
(3.25)

tr(Protectedj(G
♯(v))) ∗ tr(ThreadLocalj(G

♯(v))) ⇒ tr(I♯
j) ∗ tr(G♯(v′))

From the last two derivations by the transitivity of implication we get tr(G♯(v)) ⇒ tr(I♯
j )∗

tr(G♯(v′)). Denoting the derivation of this fact with (*), the required triple is derived as

follows:

(*)

Release
tr(I♯) ⊢ {tr(I♯

j)} release(ℓj) {emp}
Frame

tr(I♯) ⊢ {tr(I♯
j) ∗ tr(G♯(v′))} release(ℓj) {emp ∗ tr(G♯(v′))} (**)

Conseq
tr(I♯) ⊢ {tr(G♯(v))} release(ℓj) {tr(G♯(v′))}

where (**) is emp ∗ tr(G♯(v)) ⇒ tr(G♯(v)), derived from (3.26).

Given the derivations of triples (3.31), it is easy to construct derivations for

triples (3.32) using the rules for control-flow constructs—Seq, Choice, and Loop. This

completes certificate generation.

65



3.6 Related work

The heap analysis for concurrent programs presented by Yahav [80] relies on abstracting

program interleaving and thus does not scale well.

A number of analyses have been developed to detect races in multithreaded programs,

both automatic (e.g., [73, 17, 53, 63, 52]) and requiring user annotations (e.g., [29, 9, 36]).

To the best of our knowledge all of the automatic tools are either overly imprecise or un-

sound in the presence of deep heap update. The analyses that require annotations, which

are usually based on type systems, preclude ownership transfer; besides, the annotations

required by them are often too heavyweight. In contrast, our analysis handles ownership

transfer and requires lightweight annotations that can be inferred by existing automatic

tools. Some of the techniques for race detection (including [63, 73, 17]) provide infor-

mation about which locks protect which variables. Such techniques are complementary

to ours—they can be used to discover entry points for resource invariants needed by our

analysis.

Since the thread-modular analysis presented in this chapter was published [34], there

have been several proposals of alternative analyses for heap-manipulating concurrent pro-

grams.

Vafeiadis [76] proposed an analysis inspired by ours, but based on RGSep [77]—a

combination of rely-guarantee reasoning and separation logic that uses relations, rather

than invariants, to describe interference (discussed further in Section 4.7). The logic

and the analysis can be used to reason modularly about fine-grained and non-blocking

concurrent programs, which typically do not satisfy O’Hearn’s Ownership Hypothesis.3

Manevich et al. [50, 5] proposed an alternative approach to modular analysis for fine-

grained and non-blocking concurrency, based on the notion of heap decomposition. Their

analysis maintains several views of the global heap, each giving precise information about

the local state of a thread and the shared state, and very coarse information about the

rest of the heap. In contrast with our analysis and the one by Vafeiadis [76], different

views may maintain information about overlapping parts of the heap. At every step of the

analysis, several views of the global leap are combined to yield a more precise view, the

command of a thread is executed on the combination, and the result is again decomposed

into multiple views. Whereas an analysis based on the approach described here signals

a false error if the splitting of the heap is guessed incorrectly, the analysis of Manevich

et al. [50] in this situation becomes less efficient, in the worst case degenerating into

interleaving enumeration. The analysis is based on TVLA [72] and is parameterised with

predicates that TVLA uses to compute views and information defining the composition of

views for every command. Appropriate instantiations have been devised for certain fine-

3 Fine-grained synchronisation protects different parts of the same shared data structure with different

locks. Non-blocking synchronisation does not use locks at all, relying instead on alternative low-level

synchronisation techniques, usually, atomic compare-and-swap (CAS) instructions.
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DATA buf;

bool full = false;

LOCK ℓ;

put(DATA x) {

bool flag = true;

while (flag) {

acquire(ℓ);

if (!full) {

buf = x;

full = true;

flag = false;

}

release(ℓ);

}

}

get(DATA *y) {

bool flag = true;

while (flag) {

acquire(ℓ);

if (full) {

*y = buf;

full = false;

flag = false;

}

release(ℓ);

}

}

Figure 3.4: Definitions of put and get

DATA x;

x = new();

put(x);

DATA y;

get(&y);

delete y;

DATA x;

x = new();

put(x);

delete x;

DATA y;

get(&y);

(a) (b)

Figure 3.5: A single-element buffer (a) with ownership transfer (b) without ownership

transfer. The operations put and get are defined in Figure 3.4.

grained and non-blocking algorithms, however, there are no instantiations available for

coarse-grained programs transferring the ownership of memory cells between threads, such

as the one in Figure 3.1. In contrast, the analysis presented here is parameterised with

heuristics determining ownership transfer of memory cells among threads; the splitting

into local and shared heap is then computed automatically. In summary, the approach

taken by Manevich et al. [50] yields analyses that are more flexible than the one presented

here, but less efficient and requiring more user input.

The fact that our analysis uses a pre-defined heuristic to split the heap at every

release command may lead it to signal false memory errors. Consider the two programs

in Figure 3.5 (adapted from [56]), where the global variables and the operations put

and get are defined in Figure 3.4. We can prove that threads C in both programs
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satisfy {emp} C {emp}, hence, the programs are memory safe. However, although the

programs are similar, their proofs require different resource invariants for the lock ℓ:

buf, full 
 (full ∧ buf 7→ ) ∨ (¬full ∧ emph) for program (a) and buf, full 
 emph

for program (b). Intuitively, in (a) the first thread transfers the ownership of the cell

allocated at the address x to the second thread via the buffer, and in (b) it does not. In

O’Hearn’s words, “ownership is in the eye of the asserter” [56]:

Transfer of ownership is not something that is determined operationally.

Whether we transfer the storage associated with a single address, a segment,

a linked list, or a tree depends on what we want to prove. Of course, what we

can prove is constrained by code outside of critical regions.

In particular, ownership is a global property of the program. Since our analysis decides

on ownership transfer locally at every release command, for any choice of ThreadLocalk

and Protectedk it will not be able to establish the safety of the command delete x in one

of the programs (a) and (b).

Calcagno et al. [14] have recently proposed an analysis for resource invariant inference

that makes decisions about ownership transfer by considering all critical regions in the

program. Their analysis also relies on ad hoc design decisions, albeit different in nature

from the ones we have to make here.

The conjunction rule is hard to keep sound in settings other than concurrency. For

example, its soundness in the logic for information hiding in heap-manipulating pro-

grams [58] relies on the requirement of precision of module invariants. Similar issues

come up in logics for concurrency that use relations instead of invariants to describe in-

terference, such as RGSep [77]. We conjecture that the techniques used in this dissertation

to establish the soundness of logics without conjunction rule and additional restrictions

can be used to obtain similar results in other settings.

The use of abstract interpretation with state separation is not limited to the analysis

of concurrent programs: for example, in Chapter 5 we show that it can be used to scale

up interprocedural analyses. In fact, apart from the author’s publication on the subject

with Josh Berdine, Byron Cook, and Mooly Sagiv [34], the idea of using generic abstract

domains with a ∗-like operation has been independently arrived at by Dino Distefano,

Peter O’Hearn and Hongseok Yang and, separately, Noam Rinetzky. A similar framework

has been also proposed by Retert and Boyland [65].
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Chapter 4

Storable locks

Concurrent separation logic and the corresponding program analysis presented in Chap-

ter 3 suffer from a common limitation: they assume a bounded number of non-aliased

and pre-allocated locks and, hence, cannot be used to reason about concurrency primitives

present in modern languages and libraries (e.g., POSIX threads [44]) that use unbounded

numbers of storable locks dynamically allocated and destroyed in the heap.

Reasoning about storable locks is challenging. The issue here is not that of expressivity,

but of modularity: storable locks can be handled by building a global invariant describing

the shared memory as a whole, with all locks allocated in it. However, in this case

the locality of reasoning is lost, which kicks back in global invariants containing lots of

auxiliary state, proofs being extremely complex, and program analyses for discovery of

global invariants being infeasible. Recent efforts towards making proofs in this style of

reasoning modular [27, 77] use rely-guarantee reasoning to simplify the description of the

global invariant and its possible changes (see Section 4.7 for a detailed comparison of such

techniques with our work).

We want to preserve concurrent separation logic’s local reasoning, even for programs

that manipulate storable locks. To this end, in this chapter we propose a new logic

(Section 4.1), based upon separation logic, and a corresponding analysis (Section 4.6) that

treat storable locks along with the data structures they protect as resources, assigning

invariants to them and managing their dynamic creation and destruction. The challenges

of reasoning about storable locks were (quite emotionally) summarised by Bornat et al. [7]:

...the idea of semaphores in the heap makes theoreticians wince. The

semaphore has to be available to a shared resource bundle:1 that means a

bundle will contain a bundle which contains resource, a notion which makes

everybody’s eyes water.

Less emotionally, storable locks are analogous to storable procedures in that, unless one

is very careful, they can raise a form of Russell’s paradox, circularity arising from what

1Here the term “resource bundle” is used to name what we, following O’Hearn’s original paper [56],

call “resource invariant”.
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Landin called knots in the store. Storable locks can do this by referring to themselves

through their resource invariants, and here we address this foundational difficulty by

cutting the knots in the store with an indirection.

Our approach to reasoning about storable locks is to represent a lock in the assertion

language by a handle whose denotation cuts knots in the store. A handle certifies that a

lock allocated at a certain address exists and gives a thread owning the handle a permis-

sion to (try to) acquire the lock. Using the mechanism of permissions [10, 7], the handle

can be split among several threads that can then compete for the lock. Furthermore, a

handle carries some information about the part of the program state protected by the

lock (its resource invariant), which lets us mediate the interaction among threads, just

as in the original concurrent separation logic. Handles for locks can be stored inside re-

source invariants, thereby permitting reasoning about the situation described in the quote

above. In this way we extend the ability of concurrent separation logic to reason locally

about programs that are consistent with the Ownership Hypothesis to the setting with

storable locks. As we show in Section 4.2, the class of such programs contains programs

with coarse-grained synchronisation and some, but not all, programs with fine-grained

synchronisation, including examples that were posed as challenges in the literature. Due

to relatively complicated semantic structures needed to interpret handles, in this chapter

we interpret the assertion language of the logic with respect to a single model (instead of

a class of models, as in Chapter 3), which we define in Section 4.3.

We prove the logic sound with the same method we used in Section 3.4 for proving the

soundness of the logic for static locks (Section 4.5). In particular, the scheme of the corre-

sponding thread-modular analysis is obtained directly from the thread-local interpretation

used in the proof of the logic. However, in the case of storable locks even formulating the

soundness statement is non-trivial as we have to take into account resource invariants for

locks not mentioned directly in the local states of threads. As in Chapter 3, we prove the

soundness of two variants of the logic: one that requires resource invariants of locks to be

precise, but includes the conjunction rule, and one that omits the rule and the restriction.

4.1 A logic for storable locks

We extend the programming language of Section 2.1.3 with the following commands:

C ::= . . . | init(E) | finalise(E) | acquire(E) | release(E)

where E ranges over expressions (Section 2.1.2). As before, we assume that each program

consists of a parallel composition of several threads. Synchronisation is performed using

locks, which are dynamically created and destroyed in the heap.

The acquire(E) and release(E) commands try to acquire, respectively, release the

lock allocated at the address E. Locks have the semantics of binary semaphores, i.e.,

we allow a thread distinct from the one that acquired a lock to release it. The technical
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development in this chapter can be adjusted to the case when locks have the semantics

of mutexes, i.e., when a lock can only be released by the thread that acquired it ([32]

provides such treatment). The init(E) command converts a location allocated at the

address E to a lock. After the completion of init(E), the lock is held. The finalise(E)

command converts the lock into an ordinary heap cell containing an unspecified value

provided that the lock at the address E is held.

As in concurrent separation logic, with each lock we associate a resource invariant—a

formula that describes the part of the heap protected by the lock. To deal with unbounded

numbers of locks, we assume that each lock has a sort that determines its invariant.

Formally, we assume a fixed set A of function symbols with positive arities representing

lock sorts, and with each A ∈ A of arity k and parameters L, ~X we associate a formula

IA(L, ~X) containing k free logical variables specified as parameters—the resource invariant

for the sort A. The meaning of the first parameter is fixed as the address at which the

lock is allocated. Other parameters can have arbitrary meaning. We denote with Ak the

set of lock sorts of arity k.

We extend the assertion language of Section 2.1.1 with two extra forms:

P ::= . . . | πLockA(E, ~F ) | HoldA(E, ~F )

An assertion of the form LockA(E, ~F ), where A ∈ A, is a handle for the lock of the sort A

allocated at the address E. It can be viewed as an existential permission for the lock: a

thread having LockA(E, ~F ) knows that the heap cell at the address E is allocated and is

a lock, and can try to acquire it. The assertion LockA(E, ~F ) does not give permissions for

reading from or writing to the cell at the address E. Moreover, it does not ensure that

the part of the heap protected by the lock satisfies the resource invariant until the thread

successfully acquires the lock. We allow using LockA(E, ~F ) with fractional permissions

(Section 2.1.1), writing πLockA(E, ~F ). The intuition behind the permissions is that a

handle for a lock with the full permission 1 can be split among several threads, thereby

allowing them to compete for the lock. A thread having a permission for the handle less

than 1 can acquire the lock; a thread having the full permission can in addition finalise the

lock. We abbreviate 1LockA(E, ~F ) to LockA(E, ~F ). Assertions in the code of threads can

also use a special form HoldA(E, ~F ) to represent the fact that the lock at the address E

is held by the thread in the surrounding code of the assertion. The assertion HoldA(E, ~F )

also ensures that the cell at the address E is allocated and is a lock of the sort A with

the parameters ~F .

Our logic extends sequential separation logic (Section 2.1.3) with the axioms for lock-

manipulating commands shown in Figure 4.1. The judgements of the logic are of the form

I ⊢ {P} C {Q}, where I maps lock sorts from the set A to the corresponding resource

invariants. Since we treat locks as binary semaphores, in our logic resource invariants can

contain Hold-facts, which can then be transferred between threads. As in Chapter 3, we

consider two variants of the logic: one that includes the conjunction rule, but requires
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(O 
 E 7→ ) ⇒ ~F = ~F

I ⊢ {O 
 E 7→ } init(E) {O 
 LockA(E, ~F ) ∗ HoldA(E, ~F )}
Init

(O 
 E 7→ ) ⇒ ~F = ~F

I ⊢ {O 
 E 7→ } initA,~F (E) {O 
 LockA(E, ~F ) ∗ HoldA(E, ~F )}
Init′

I ⊢ {O 
 LockA(E, ~F ) ∗ HoldA(E, ~F )} finalise(E) {O 
 E 7→ }
Finalise

I ⊢ {(O 
 πLockA(L, ~X)) ∧ L = E}

acquire(E)

{(O 
 πLockA(L, ~X) ∗ HoldA(L, ~X)) ∗ IA(L, ~X)}

Acquire

I ⊢ {((O 
 HoldA(L, ~X)) ∗ IA(L, ~X)) ∧ L = E} release(E) {O 
 emph}
Release

Figure 4.1: Proof rules for lock-manipulating commands

resource invariants to be precise (with respect to the model we define in Section 4.3), and

one that drops the rule and the restriction.

Initialising a lock (Init) converts a cell in the heap at the address E to a lock. Upon

the completion of init(E) the thread that executed it gets both the ownership (with the

full permission) of the handle LockA(E, ~F ) for the lock and the knowledge that the lock

is held, represented by HoldA(E, ~F ). For the init command to be safe, the stack must

contain the variables mentioned in E and ~F , hence, the premiss (O 
 E 7→ ) ⇒ ~F = ~F

additionally requires that variables be contained in O. In the variant of the logic with

the conjunction rule, the sort of the lock that is being created and its parameters have to

be chosen consistently for each init command. We can enforce this by annotating each

init command with the sort A and the parameters ~F , the latter defined by arbitrary

expressions over program variables2 (Init′).

Finalising a lock results in it being converted into an ordinary cell. To finalise a lock

(Finalise) a thread has to have the full permission for the handle LockA(E, ~F ) associated

with the lock. Additionally, the lock has to be held, i.e., HoldA(E, ~F ) has to be in the

local state of the thread.

A thread can acquire a lock if it has a permission for the handle of the lock. As in

concurrent separation logic, acquiring a lock (Acquire) results in the resource invariant of

the lock (with appropriately instantiated parameters) being ∗-conjoined to the local state

of the thread. The thread also obtains the corresponding Hold fact, which guarantees that

the lock is held. Acquiring the same lock twice leads to a deadlock, which is enforced by

2 This can be generalised to the case when ~F depend on the heap.

72



HoldA(E, ~F ) ∗HoldA(E, ~F ) being inconsistent in our model of the assertion language (see

Section 4.3). Conversely, a thread can release a lock (Release) only if the lock is held,

i.e., the corresponding Hold fact is present in the local state of the thread. Note that since

Hold ensures the existence of the lock, we do not require a Lock fact in the precondition

of Release. Upon releasing the lock the thread gives up both this knowledge and the

ownership of the resource invariant associated with the lock. The fact that resource

invariants can claim ownership of program variables complicates the axioms Acquire

and Release. For example, in the postcondition of Acquire we cannot put IA(L, ~X)

inside the expression after 
 as it may claim ownership of variables not mentioned in O.

This requires us to use a logical variable L in places where the expression E would have

been expected.

4.2 Examples of reasoning

We first show (in Example 1 below) that straightforward application of rules for lock-

manipulating commands allows us to handle programs in which locks protect parts of the

heap without other locks allocated in them. We then present two more involved examples

of using the logic, which demonstrate how extending the logic with storable locks has

enabled reasoning more locally than was previously possible in some interesting cases

(Examples 2 and 3). As in Section 3.1, we use a C-like language for our examples. We

defer the definition of the formal model of the assertion language to Section 4.3, appealing

to the informal explanations given in the previous section.

Example 1: A simple situation. Figure 4.2 shows a proof outline for a program

with a common pattern: a lock-field in a structure protecting another field in the same

structure. We use a lock sort R with the invariant

IR(L) = emps ∧ L.Data 7→ .

The proof outline shows how the “life cycle” of a lock is handled in our proof system:

creating a cell, converting it to a lock, acquiring and releasing the lock, converting it to

an ordinary cell, and disposing the cell. For simplicity we consider a program with only

one thread. 2

Example 2: “Last one disposes”. This example was posed as a challenge for local

reasoning by Bornat et al. [7]. The program in Figure 4.3 represents a piece of multicasting

code: a single packet p (of type PACKET) with Data inside the packet is distributed to

M threads at once. For efficiency reasons instead of copying the packet, it is shared

among threads. A Count of access permissions protected by Lock is used to determine

when everybody has finished and the packet can be disposed of. The program consists
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struct RECORD {

LOCK Lock;

int Data;

};

main() {

RECORD *x;

{x 
 emph}

x = new RECORD;

{x 
 x 7→ ∗ x.Data 7→ }

initR(x);

{x 
 x.Data 7→ ∗ LockR(x) ∗ HoldR(x)}

x->Data = 0;

{x 
 x.Data 7→0 ∗ LockR(x) ∗ HoldR(x)}

release(x);

{x 
 LockR(x)}

// ...

{x 
 LockR(x)}

acquire(x);

{x 
 x.Data 7→ ∗ LockR(x) ∗ HoldR(x)}

x->Data++;

{x 
 x.Data 7→ ∗ LockR(x) ∗ HoldR(x)}

release(x);

{x 
 LockR(x)}

// ...

{x 
 LockR(x)}

acquire(x);

{x 
 x.Data 7→ ∗ LockR(x) ∗ HoldR(x)}

finalise(x);

{x 
 x 7→ ∗ x.Data 7→ }

delete x;

{x 
 emph}

}

Figure 4.2: A simple example of reasoning in the logic
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struct PACKET { LOCK Lock; int Count; DATA Data; };

PACKET *p;

thread() {

{(1/M)p 
 (1/M)LockP (p, M)}

acquire(p);

{(1/M)p 
 ∃X. 0 ≤ X < M ∧ p.Count 7→X ∗ p.Data 7→ ∗ ((X + 1)/M)LockP (p, M) ∗

HoldP (p, M)}

// ...Process data...

p->Count++;

{(1/M)p 
 ∃X. 1≤X≤M∧p.Count 7→X∗p.Data 7→ ∗(X/M)LockP (p, M)∗HoldP (p, M)}

if (p->Count == M) {

{(1/M)p 
 p.Count 7→M ∗ p.Data 7→ ∗ LockP (p, M) ∗ HoldP (p, M)}

// ...Finalise data...

finalise(p);

{(1/M)p 
 p.Count 7→M ∗ p.Data 7→ ∗ p7→ }

delete(p);

} else {

{(1/M)p 
 ∃X. 1 ≤ X < M ∧ p.Count 7→X ∗ p.Data 7→ ∗ (X/M)LockP (p, M) ∗

HoldP (p, M)}

release(p);

}

{(1/M)p 
 emph}

}

initialise() {

{p 
 emph}

p = new PACKET;

{p 
 p7→ ∗ p.Count 7→ ∗ p.Data 7→ }

p->Count = 0;

{p 
 p7→ ∗ p.Count 7→0 ∗ p.Data 7→ }

initP(p);

// ...Initialise data...

{p 
 p.Count 7→0 ∗ p.Data 7→ ∗ LockP (p, M) ∗ HoldP (p, M)}

release(p);

{p 
 LockP (p, M)}

}

Figure 4.3: Proof outline for the “Last one disposes” program
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of a top-level parallel composition of M calls to the procedure thread. Here M is a

constant assumed to be greater than 0. For completeness, we also provide the procedure

initialise that can be used to initialise the packet and thereby establish the precondition

of the program.

To prove the program correct, the resource invariant for the lock at the address p

has to contain a partial permission for the handle of the same lock. This is formally

represented by a lock sort P with the resource invariant

IP (L, M) = emps ∧ ∃X. X < M ∧ L.Count 7→X ∗ L.Data 7→ ∗

((X = 0 ∧ emph) ∨ (X ≥ 1 ∧ (X/M)LockP (L, M))).

Initially the resource invariant contains no permissions of this kind and the handle

LockP (p, M) for the lock is split among M threads (hence, the precondition of each thread

is (1/M)p 
 (1/M)LockP (p, M)). Each thread uses the handle to acquire the lock and

process the packet. When a thread finishes processing and releases the lock, it transfers

the permission for the handle it owned to the resource invariant of the lock. The last

thread to process the packet can then get the full permission for the lock by combining

the permission in the invariant with its own one and can therefore dispose of the packet.

2

Example 3: Lock coupling list. We next consider a fine-grained implementation of

a singly-linked list with concurrent access, whose nodes store integer keys. The program

(Figures 4.4 and 4.5) consists of M operations add and remove running in parallel. The

operations add and remove an element with the given key to or from the list. Traversing

the list uses lock coupling: the lock on one node is not released until the next node

is locked. For the purposes of this example, we assume that the set of values stored

in ordinary memory cells Values = {-INF, . . . , 0, . . . , INF}, so that INF is the biggest

representable integer. The list is sorted and its first and last nodes are sentinel nodes

that have values -INF, respectively, INF. It is initialised by the code in the procedure

initialise. We only provide a proof outline for the procedure locate (Figure 4.4),

which is invoked by other procedures to traverse the list. We use lock sorts H (for the

head node) and N (for all other nodes) with the following invariants:

IH(L) = emps ∧ ∃X, V ′. L.Val 7→-INF ∗ L.Next 7→X ∗ LockN (X, V ′) ∧ -INF < V ′;

IN(L, V ) = emps ∧ ((L.Val 7→V ∗ L.Next 7→NULL ∧ V = INF) ∨

(∃X, V ′. L.Val 7→V ∗ L.Next 7→X ∗ LockN (X, V ′) ∧ V < V ′)).

In this example, the resource invariant for the lock protecting a node in the list holds a han-

dle for the lock protecting the next node in the list. The full permission for LockN(X, V ′)

in the invariants above essentially means that the only way a thread can lock a node is

by first locking its predecessor: here the invariant enforces a particular locking policy. 2
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locate(int e) {

NODE *prev, *curr;

{O 
 -INF < e ∧ (1/M)LockH(head)}

prev = head;

{O 
 -INF < e ∧ prev = head ∧ (1/M)LockH(head)}

acquire(prev);

{O 
 ∃V ′. -INF < e ∧ -INF < V ′ ∧ (1/M)LockH(head) ∗ HoldH(prev) ∗

∃X. prev.Val 7→-INF ∗ prev.Next 7→X ∗ LockN(X, V ′)}

curr = prev->Next;

{O 
 ∃V ′. -INF < e ∧ -INF < V ′ ∧ (1/M)LockH(head) ∗ HoldH(prev) ∗

prev.Val 7→-INF ∗ prev.Next 7→curr ∗ LockN(curr, V ′)}

acquire(curr);

{O 
 ∃V ′. -INF < e∧-INF < V ′∧(1/M)LockH(head)∗LockN (curr, V ′)∗HoldH(prev)∗

HoldN(curr, V ′) ∗ prev.Val 7→-INF ∗ prev.Next 7→curr ∗ curr.Val 7→V ′∗

((curr.Next 7→NULL∧V ′ = INF)∨(∃X, V ′′. curr.Next 7→X ∗LockN (X, V ′′)∧V ′ < V ′′))}

while (curr->Val < e) {

{O 
 ∃V, V ′. V ′ < e ∧ (1/M)LockH(head) ∗ LockN(curr, V ′) ∗ HoldN(curr, V ′) ∗

(HoldH(prev) ∧ V = -INF ∨ HoldN(prev, V )) ∗ prev.Val 7→V ∗ prev.Next 7→curr ∗

∃X, V ′′. curr.Val 7→V ′ ∗ curr.Next 7→X ∗ LockN(X, V ′′) ∧ V < V ′ < V ′′}

release(prev);

{O 
 ∃X, V ′, V ′′. V ′ < e ∧ V ′ < V ′′ ∧ (1/M)LockH(head) ∗ HoldN(curr, V ′)∗

curr.Val 7→V ′ ∗ curr.Next 7→X ∗ LockN(X, V ′′)}

prev = curr;

curr = curr->Next;

{O 
 ∃V, V ′. V < e ∧ V < V ′ ∧ (1/M)LockH(head) ∗ HoldN (prev, V )∗

prev.Val 7→V ∗ prev.Next 7→curr ∗ LockN(curr, V ′)}

acquire(curr);

{O 
 ∃V, V ′. V < e ∧ V < V ′ ∧ (1/M)LockH(head) ∗ HoldN (prev, V ) ∗

HoldN(curr, V ′)∗LockN (curr, V ′)∗prev.Val 7→V ∗prev.Next 7→curr∗curr.Val 7→V ′∗

((V ′ = INF∧curr.Next 7→NULL)∨∃X, V ′′. curr.Next 7→X∗LockN(X, V ′′)∧V ′ < V ′′)}

}

{O 
 ∃V, V ′. V < e ≤ V ′ ∧ (1/M)LockH(head) ∗ HoldN (prev, V ) ∗ HoldN(curr, V ′) ∗

LockN(curr, V ′) ∗ prev.Val 7→V ∗ prev.Next 7→curr ∗ curr.Val 7→V ′ ∗

((V ′ = INF∧ curr.Next 7→NULL)∨∃X, V ′′. curr.Next 7→X ∗ LockN (X, V ′′)∧ V ′ < V ′′)}

return (prev, curr);

}

Figure 4.4: Proof outline for a part of the lock coupling list program. Here O is e, prev,

curr, (1/M)head.
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struct NODE {

LOCK Lock;

int Val;

NODE *Next;

};

NODE *head;

initialise() {

NODE *last;

last = new NODE;

last->Val = INF;

last->Next = NULL;

initN,INF(last);

release(last);

head = new NODE;

head->Val = -INF;

head->Next = last;

initH(head);

release(head);

}

add(int e) {

NODE *n1, *n2, *n3;

NODE *result;

(n1, n3) = locate(e);

if (n3->Val != e) {

n2 = new NODE;

n2->Val = e;

n2->Next = n3;

initN,e(n2);

release(n2);

n1->Next = n2;

result = true;

} else {

result = false;

}

release(n1);

release(n3);

return result;

}

remove(int e) {

NODE *n1, *n2, *n3;

NODE *result;

(n1, n2) = locate(e);

if (n2->Val == e) {

n3 = n2->Next;

n1->Next = n3;

finalise(n2);

delete n2;

result = true;

} else {

release(n2);

result = false;

}

release(n1);

return result;

}

Figure 4.5: Lock coupling list program. The procedure locate is shown in Figure 4.4.

We were able to present modular proofs for the programs above because they satisfied

the Ownership Hypothesis: in each case we could associate with every lock a part of the

heap such that a thread accessed the part only when it held the lock, that is, the lock

owned the part of the heap. We note that we would not be able to give modular proofs to

programs that do not obey this policy, for instance, to optimistic list [40, Section 9.6]—

another fine-grained implementation of the list from Example 3 in which the procedure

locate first traverses the list without taking any locks and then validates the result by

locking two candidate nodes and re-traversing the list to check that they are still present

and adjacent in the list. We discuss methods for reasoning about such programs in

Section 4.7.

4.3 Model of the assertion language

We modify the model States of separation logic’s assertions presented in Section 2.1.1 as

shown in Figure 4.6. As before, assertion language formulae denote sets of triples of a

stack, a heap, and an interpretation. However, in contrast to the domain of Section 2.1.1,

here cells in the heap can be of two types: ordinary cells (Cell) and locks (Lock). A lock

is associated with a sort, a list of parameters of its resource invariant (corresponding to
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Values = {. . . ,−1, 0, 1, . . .}

Perms = (0, 1]

Locs = {1, 2, . . .}

Vars = {x, y, . . .}

LVars = {X, Y, . . .}

Stacks = Vars ⇀fin (Values × Perms)

LockPerms = [0, 1]

LockVals = {L, F, U}

Heaps = Locs ⇀fin

(
Cell(Values) ∪

⋃
k≥0

(Lock(Ak+1 × Valuesk × LockVals × LockPerms)\

Lock(Ak+1 × Valuesk × {U} × {0}))

)

Ints = LVars → Values

States = Stacks × Heaps × Ints

Figure 4.6: Model of the assertion language

the arity of the sort), a value, and a permission from [0, 1]. The permission 0 is used to

represent the existential permission for a lock that is carried by HoldA(E, ~F ). The values

of locks are interpreted as follows: L means that the lock is held, F that the lock is free,

and U that the status of the lock is undefined. The value U is not encountered in the states

obtained in the operational semantics, but is used for interpreting formulae representing

parts of complete states. Additionally, the semantics of formulae and commands never

encounter locks of the form Lock(A, ~w, U, 0) for any A and ~w, hence, the definition of

Heaps removes them to make the ∗ operation on states cancellative.

One may be tempted to allow locks to refer to resource invariants directly in the model,

i.e., to define Heaps as

Heaps = Locs ⇀fin

(
Cell(Values) ∪

⋃
k≥0

(Lock(P(States) × LockVals × LockPerms)\

Lock(P(States) × {U} × {0}))

)

(4.1)

(of course, this model would require a richer assertion language). Unfortunately, such

a recursive definition leads to the set-theoretic paradox mentioned at the beginning of

this chapter: the equations defining the model have no solutions in sets because the

cardinality of P(States) is strictly bigger than the cardinality of States. In the model of

Figure 4.6, Heaps is not defined recursively, but instead uses an indirection through A,

whose elements are associated with resource invariants, and hence indirectly to Heaps. It

is this indirection that deals with the foundational circularity issue raised by locks which

may refer to themselves and makes the definition of the model well-formed. We discuss
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the pros and cons of this solution in Section 4.7.

We turn the set States into a separation algebra by defining the ∗ operation as follows.

We first define ∗ on values of locks in the following way:

U ∗ U = U, a ∗ U = U ∗ a = a, a ∗ b is undefined, (4.2)

where a, b ∈ {L, F}. Note that L ∗ L is undefined as it arises in the cases when a thread

tries to acquire a lock twice (recall that we specify that a thread deadlocks in this case).

For s1, s2 ∈ Stacks let

s1 ♮ s2 ⇔ (∀x. s1(x)↓∧s2(x)↓⇒

(∃u, π1, π2. s1(x) = (u, π1) ∧ s2(x) = (u, π2) ∧ π1 + π2 ≤ 1)).

If s1 ♮ s2, then we define

s1 ∗ s2 = {(x, (u, π)) | (s1(x) = (u, π) ∧ s2(x)↑) ∨ (s2(x) = (u, π) ∧ s1(x)↑) ∨

(s1(x) = (u, π1) ∧ s2(x) = (u, π2) ∧ π = π1 + π2)};

otherwise s1 ∗ s2 is undefined. For h1, h2 ∈ Heaps let

h1 ♮ h2 ⇔ (∀u. h1(u)↓ ∧ h2(u)↓ ⇒ (∃A, b1, b2, π1, π2, ~w. (b1 ∗ b2)↓ ∧ π1 + π2 ≤ 1 ∧

h1(u) = Lock(A, ~w, b1, π1) ∧ h2(u) = Lock(A, ~w, b2, π2))).

If h1 ♮ h2, then we define

h1 ∗ h2 = {(u,Cell(b)) | h1(u) = Cell(b) ∨ h2(u) = Cell(b)} ∪ {(u,Lock(A, ~w, b, π)) |

(h1(u) = Lock(A, ~w, b, π) ∧ h2(u)↑) ∨ (h2(u) = Lock(A, ~w, b, π) ∧ h1(u)↑)

∨ (h1(u) = Lock(A, ~w, b1, π1) ∧ h2(u) = Lock(A, ~w, b2, π2) ∧ π = π1 + π2 ∧ b = b1 ∗ b2)};

otherwise h1 ∗h2 is undefined. For (s1, h1, i1) ∈ States and (s2, h2, i2) ∈ States we then let

(s1, h1, i1) ∗ (s2, h2, i2) = (s1 ∗ s2, h1 ∗ h2, i1 ∗ i2),

where ∗ on interpretations is defined in Section 2.1.1.

Since, in our logic, assertions cannot state the fact that a particular lock is free, they

are actually interpreted over a set of local states Statesl ⊆ States that is defined as in

Figure 4.6, but with LockVals = {L, U}. States containing locks with the value F are

used to formulate the soundness theorem for the logic. The satisfaction relation for the

assertion language formulae is defined by extending the one in Figure 2.2 with clauses for

the new forms:

(s, h, i) |= πLockA(E, ~F ) ⇔ JEKs,i↓ ∧ J~F Ks,i↓ ∧ JπKs,i↓ ∧

h = [JEKs,i : Lock(A, J~F Ks,i, U, JπKs,i)] ∧ 0 < JπKs,i ≤ 1

(s, h, i) |= HoldA(E, ~F ) ⇔ JEKs,i↓ ∧ J~F Ks,i↓ ∧ h = [JEKs,i : Lock(A, J~F Ks,i, L, 0)]
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Let D = P(States)⊤ and Dl = P(Statesl)
⊤ be the separation domains constructed out of

the separation algebras States and Statesl, respectively.

We say that p ∈ P(States) depends only on logical variables ~Y , if for any (s, h, i) ∈ p,

u ∈ Values, and Z 6∈ ~Y we have (s, h, i[Z : u]) ∈ p. Let Dl[~Y ] be the set of elements of

Dl\{⊤} that depend only on ~Y . We denote with InvMaps the set of semantic resource

invariant mappings—functions I : A → Dl\{⊤} such that for any A ∈ A we have

IA ∈ Dl[~Y ], where ~Y are the parameters of A (and the free variables of the corresponding

resource invariant). The denotation of a resource invariant mapping I is a semantic

resource invariant mapping JIK ∈ InvMaps that for every lock sort A ∈ A gives the

denotation JIKA of the corresponding resource invariant. For I ∈ InvMaps we let

IL
A(u, ~w) = {(s, h, i) | (s, h, i[L : u][ ~X : ~w]) ∈ IA ∗ ({[ ]}×{[u : Lock(A, ~w, L, 0)]}×Ints)};

IF
A(u, ~w) = {(s, h, i) | (s, h, i[L : u][ ~X : ~w]) ∈ IA ∗ ({[ ]}×{[u : Lock(A, ~w, F, 0)]}×Ints)},

where L, ~X are the parameters of A.

4.4 Semantics

Throughout the rest of this chapter we fix a program S = C1 ‖ . . . ‖ Cn. As the model of

program states in the operational semantics we take the set States from Figure 4.6, but

with

Heaps = Locs ⇀fin

(
Cell(Values) ∪

⋃
k≥0

(Lock(LockVals × LockPerms)\

Lock({U} × {0}))

)
.

We call states defined in this way concrete and denote the set of them with Statesc. Note

that states in Statesc do not contain lock sorts and lock parameters: these are introduced

by the logic and are not present in the states of the operational semantics we define here.

However, as in the rest of this dissertation, we leave permissions and interpretations of

logical variables in the states. As usual, we also consider the domain Dc = P(Statesc)
⊤

constructed out of the set Statesc. Let β : States → Statesc be the function that erases

the information about lock sorts and lock parameters from concrete states. We lift it to

D pointwise.

To define the semantics of primitive sequential commands, we assume local functions

fC : States → D for C ∈ Seq such that

∀ξ1, ξ2 ∈ States. β(ξ1) = β(ξ2) ⇒ β(fC(ξ1)) = β(fC(ξ2)). (4.3)

Intuitively, (4.3) states that the functions fC are insensitive to lock sorts and lock pa-

rameters recorded in the states from States: running a command C on two states with
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init(E), (s, h[JEKs : Cell(u)], i) ; (s, h[JEKs : Lock(L, 1)], i)

finalise(E), (s, h[JEKs : Lock(L, 1)], i) ; (s, h[JEKs : Cell(u)], i)

acquire(E), (s, h[JEKs : Lock(F, π)], i) ; (s, h[JEKs : Lock(L, π)], i)

acquire(E), (s, h[JEKs : Lock(L, π)], i) 6;

release(E), (s, h[JEKs : Lock(L, π)], i) ; (s, h[JEKs : Lock(F, π)], i)

C, (s, h, i) ; ⊤, otherwise

Figure 4.7: Transition relation on Statesc for lock-manipulating commands. ⊤ indicates

that the command faults. 6; is used to denote that the command does not fault, but gets

stuck.

different instrumentation and erasing the instrumentation in the results yields identical

states. The Prim axiom of the logic is formulated using the transformers fC . When the

set of primitive sequential commands Seq = SeqRAM (Section 2.1.2), the functions fC

defined using the transition relation ; in Figure 2.3:

∀ξ ∈ States. fC(ξ) =
⊔{

{|ξ′}| | C, ξ ; ξ′
}

are local and satisfy (4.3). Note that the axioms in Figure 2.5 are sound with respect to the

transformers defined in this way. Out of fC : States → D for C ∈ Seq we can construct

functions gC : Statesc → Dc defining the effect of primitive sequential commands on

concrete states:

∀σ ∈ Statesc. gC(σ) = β(fC(β−1(σ))).

We lift the functions fC and gC to predicate transformers pointwise. We note for the

future that (4.3) implies

∀p ∈ D. β(fC(p)) = gC(β(p)). (4.4)

Our semantics considers the commands from the set Seq atomic. Therefore, for each

atomic command

C ∈ Seq ∪ {init(E), finalise(E), acquire(E), release(E)}

we consider the transition relation ; shown in Figure 4.7. Let (Nk, Tk, startk, endk) be

the CFG of thread k over the set of primitive commands

Seq ∪ {init(E), finalise(E), acquire(E), release(E)}

and let N =
⋃n

k=1 Nk and T =
⋃n

k=1 Tk. As in the case of static locks, the interleaving

operational semantics of the program S is given by a transition relation

→S: (({1, . . . , n} → N) × Statesc) × (({1, . . . , n} → N) × (Statesc ∪ {⊤}))

defined by the rules in Figure 4.8. We adopt the same definitions of the initial and the

final program counters, and the safety of programs as in Section 3.2.

In our proofs of soundness and formulation of an analysis, we use additional predicate

transformers for lock-manipulating commands:
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(v, C, v′) ∈ T C ∈ Seq gC({σ}) < ⊤ σ′ ∈ gC({σ})

pc[k : v], σ →S pc[k : v′], σ′

(v, C, v′) ∈ T C ∈ Seq gC({σ}) = ⊤

pc[k : v], σ →S pc[k : v′],⊤

(v, C, v′) ∈ T C 6∈ Seq C, σ ; σ′

pc[k : v], σ →S pc[k : v′], σ′

Figure 4.8: Operational semantics of concurrent programs with storable locks. The tran-

sition relation ; is defined in Figure 4.7.

initA,~F (E), (s, h[JEKs : Cell(u)], i) ; (s, h[JEKs : Lock(A, J~F Ks, L, 1)], i)

finalise(E), (s, h[JEKs : Lock(A, ~w, L, 1)], i) ; (s, h[JEKs : Cell(u)], i)

acquire(E), (s, h[JEKs : Lock(A, ~w, F, π)], i) ; (s, h[JEKs : Lock(A, ~w, L, π)], i)

acquire(E), (s, h[JEKs : Lock(A, ~w, L, π)], i) 6;

release(E), (s, h[JEKs : Lock(A, ~w, L, π)], i) ; (s, h[JEKs : Lock(A, ~w, F, π)], i)

C, (s, h, i) ; ⊤, otherwise

Figure 4.9: Transition relation on States for lock-manipulating commands. ⊤ indicates

that the command faults. 6; is used to denote that the command does not fault, but gets

stuck.

• We define functions gC : Statesc → D for

C ∈ {init(E), finalise(E), acquire(E), release(E)}

using the transition relation ; in Figure 4.7:

∀σ ∈ Statesc. gC(σ) =
⊔{

{|σ′}| | C, σ ; σ′
}

and let ginit
A, ~F

(E) = ginit(E).

• We define functions fC : States → D for

C ∈ {initA,~F (E), finalise(E), acquire(E), release(E)}

using the transition relation ; in Figure 4.9:

∀ξ ∈ States. fC(ξ) =
⊔{

{|ξ′}| | C, ξ ; ξ′
}
.

Note that the functions fC defined in this way are local.

We lift all the functions defined above to predicate transformers. Note that (4.4) holds

for C ∈ {initA,~F (E), finalise(E), acquire(E), release(E)}.
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{x, y 
 x7→ ∗ y 7→ }

initA,y(x);

initB,x(y);

{x, y 
 LockA(x, y) ∗HoldA(x, y) ∗ LockB(y, x) ∗HoldB(y, x)}

release(x);

{x, y 
 LockA(x, y) ∗ HoldB(y, x)}

release(y);

{x, y 
 emph}

IA(X, Y ) = emps ∧ LockB(Y, X) and IB(X, Y ) = emps ∧ LockA(Y, X)

Figure 4.10: A pathological situation

4.5 Soundness of the logic

As it stands now, the logic allows some unpleasant situations to happen: in certain cases

the proof system may not be able to detect a memory leak. Figure 4.10 shows an example

of this kind. We assume defined lock sorts A and B with invariants IA(X, Y ) and IB(X, Y ).

In this case the knowledge that the locks at the addresses x and y exist is lost by the proof

system: the invariant for the lock x holds the full permission for the handle of the lock

y and vice versa, hence, local states of the threads are then left without any permissions

for the locks whatsoever.

Situations such as the one described above make the formulation of the soundness

statement for our logic non-trivial. We first formulate a soundness statement (Theo-

rem 4.1) showing that every final state of a program can be obtained as the ∗-conjunction

of the postconditions of threads and the resource invariants for the free locks allocated

in the state, where we existentially quantify the set of free locks, their sorts and parame-

ters. Note that here a statement about a state uses the information about the free locks

allocated in the same state. We then put restrictions on resource invariants that rule

out situations similar to the one shown in Figure 4.10 and formulate another soundness

statement (Theorem 4.4) in which the set of free locks in a final state is computed solely

from the postconditions of threads.

We remind the reader that we distinguish between states States, local states Statesl

(Section 4.3), and concrete states Statesc (Section 4.4), and the corresponding domains

D, Dl, and Dc. Let LockParams =
⋃

k≥0(Ak+1 × Locs × Valuesk) be the set of tuples

of lock sorts and values of the corresponding lock parameters. We say that a state from

Statesc is complete if permissions associated with all the locks allocated in it are equal to

1 and their values to F or L. Note that according to the semantics in Section 4.4, if σ0 is

complete and pc0, σ0 →∗
S pc, σ, then σ is also complete. The first soundness theorem is

formulated as follows.

84



Theorem 4.1 (Soundness of the logic: variant I). Suppose I ⊢ {Pk} Ck {Qk} for

k = 1..n, where either

• the resource invariants in I are precise, the ∗ operation is cancellative, and Init′ is

used instead of Init in the derivation of the triples; or

• Conj and Forall are not used in the derivation of the triples.

Then for any complete state σ0 ∈ Statesc such that for some W0 ⊆ LockParams

σ0 ∈ β

((
n
⊛

k=1
JPkK

)
∗

(
⊛

(A,u,~w)∈W0

JIKF
A(u, ~w)

))
,

the program S is safe when run from σ0, and whenever pc0, σ0 →∗
S pcf , σ, for some

W ⊆ LockParams we have

σ ∈ β

((
n
⊛

k=1
JQkK

)
∗

(
⊛

(A,u,~w)∈W
JIKF

A(u, ~w)

))
.

Note that by the definition of JIKF
A(u, ~w), the locks from W in the conclusion of the theorem

are free in the state σ. We give the proof of the theorem in Section 4.5.1 below. We note

that an analogue of the data-race freedom theorem for static locks (Corollary 3.16) also

holds for storable locks.

We now proceed to formulate a soundness statement in which the component

⊛(A,u,~w)∈W JIKF
A(u, ~w) from Theorem 4.1 representing the resource invariants for free locks

in the final state is obtained directly from the thread postconditions Qk. To this end, we

introduce an auxiliary notion of closure. Intuitively, closing a state from States amounts

to ∗-conjoining it to the invariants of all free locks whose handles are reachable via re-

source invariants from the handles present in the state. For a state ξ ∈ States let Free(ξ),

respectively, Unknown(ξ) be the subset of LockParams consisting of sorts and parameters

of locks allocated in the state that have value F, respectively, U.

Definition 4.2 (Closure). For I ∈ InvMaps and p ∈ P(States) let r ∈ P(States) be

the least predicate such that

p ∪

{
ξ1 ∗ ξ2 | ξ1 ∈ r ∧ ξ2 ∈ ⊛

(A,u,~w)∈Unknown(ξ1)
IF

A(u, ~w)

}
⊆ r.

The closure 〈p〉I of p is the set of states from r that do not contain locks with the value

U.

In general, the closure is not guaranteed to add invariants for all the free locks allocated

in the state. For example, the closure of the postcondition of the program in Figure 4.10

still has an empty heap while in the final states obtained by executing the operational

semantics there are locks allocated at addresses x and y. The problem is that there may

exist a “self-contained” set of free locks (containing the locks at the addresses x and y
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in our example) such that the corresponding resource invariants hold full permissions for

all the locks from the set. Local states of threads are then left without any permissions

for the locks in the set, and hence, closure is not able to reach to their invariants. The

following condition on resource invariants ensures that this does not happen.

Definition 4.3 (Admissibility of resource invariants). Resource invariants in I ∈

InvMaps are admissible if there do not exist non-empty set W ⊆ LockParams and state

ξ ∈ ⊛(A,u,~w)∈W IL
A(u, ~w) such that for all (A, u, ~w) ∈ W the permission associated with the

lock at the address u in ξ is 1.

A resource invariant mapping I is admissible when its denotation JIK is. Revisiting

Example 3 of Section 4.2, we can check that any state satisfying the closure of JO 


(1/M)H(head)K represents an acyclic sorted list starting at head. It is easy to check that

resource invariants for the set of lock sorts {R, P, H, N} from Section 4.2 are admissible

whereas those for {A, B} from this section are not. The admissibility of N is due to the

fact that IN implies sortedness of lists built out of resource invariants for N , hence, the

invariants cannot form a cycle.

We can now formulate the second soundness statement that lets us check the absence

of memory leaks.

Theorem 4.4 (Soundness of the logic: variant II). Suppose I ⊢ {Pk} Ck {Qk} for

k = 1..n and the restrictions on the derivations from Theorem 4.1 hold. Suppose further

that either at least one of Qk is intuitionistic or the resource invariants in I are admissible.

Then for any complete state σ0 ∈ Statesc such that

σ0 ∈ β

(〈
n
⊛

k=1
JPkK

〉

JIK

)
,

the program S is safe when run from σ0, and whenever pc0, σ0 →
∗
S pcf , σ, we have

σ ∈ β

(〈
n
⊛

k=1
JQkK

〉

JIK

)
.

Proof. Let I = JIK. Consider a complete state σ0 ∈ β (〈⊛n
k=1 JPkK〉I). From

the definition of closure it follows that for some W0 ⊆ LockParams we have σ0 ∈

β
(
(⊛n

k=1 JPkK) ∗
(
⊛(A,u,~w)∈W0 I

F
A(u, ~w)

))
. Then by Theorem 4.1 the program S is safe

when run from σ0 and if pc0, σ0 →
∗
S pc

f
, σ, then for some ξ ∈ States we have σ = β(ξ) and

ξ ∈ (⊛n
k=1 JQkK) ∗

(
⊛(A,u,~w)∈Free(ξ) I

F
A(u, ~w)

)
. Hence, by the definition of closure, we have

ξ ∈ ξ1 ∗ ξ2 where ξ1 ∈ 〈⊛n
k=1 JQkK〉I and ξ2 ∈ ⊛(A,u,~w)∈W IF

A(u, ~w) for some W ⊆ Free(ξ).

If one of Qk is intuitionistic, then from this it directly follows that σ ∈ β (〈⊛n
k=1 JQkK〉I).

Suppose now that W 6= ∅ and the resource invariants for lock sorts mentioned in W

are admissible. Consider any (A, u, ~w) ∈ W . The state σ is complete, therefore, the

permission associated with the lock at the address u in ξ is 1. Besides, since W ⊆ Free(ξ),
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the value associated with u in ξ is F. Hence, if the permission associated with u in ξ2

were less than 1, then u would have to be allocated in ξ1 with a non-zero permission and

the value U, which would contradict the definition of closure (a state in a closure cannot

contain locks with the value U). So, for any (A, u, ~w) ∈ W the permission associated with

u in ξ1 is 1, which contradicts the admissibility of resource invariants for lock sorts used

in the proof of the program. Therefore, W = ∅, which implies σ ∈ β (〈⊛n
k=1 JQkK〉I). 2

Note that for garbage-collected languages we can use the intuitionistic version of the

logic [45] (i.e., one in which every assertion is intuitionistic) and, hence, do not have to

check admissibility. Also, admissibility does not have to be checked if we are not interested

in detecting memory leaks, as then Theorem 4.1 can be used.

4.5.1 Proof of soundness

The proof is done according to the method of Section 3.4. As in that case, we prove

the soundness of the logic with the aid of a thread-local interpretation formulated using

semantic proofs—triples (C, G, I), where

• C is a command with a CFG (N, T, start, end) over the set of primitive commands

Seq ∪ {init(E), initA,~F (E), finalise(E), acquire(E), release(E)};

• G : N → Dl maps program points of C to semantic annotations;

• I ∈ InvMaps is a semantic resource invariant mapping

such that for all edges (v, C ′, v′) ∈ T

• if C ′ ∈ Seq ∪ {initA,~F (E), finalise(E)}, then

fC′(G(v)) ⊑ G(v′), (4.5)

where fC′ for C ′ ∈ {initA,~F (E), finalise(E)} are defined in Section 4.4;

• if C ′ is acquire(E), then

G(v′) 6= ⊤ ⇒ G(v) 6= ⊤∧ ∀ξ ∈ G(v). ∃s, h, i, u, A, ~w, b, π.

ξ = (s, h[u : Lock(A, ~w, b, π)], i) ∧ JEKs = u ∧ {ξ} ∗ IL
A(u, ~w) ⊑ G(v′); (4.6)

• if C ′ is release(E), then

G(v′) 6= ⊤ ⇒ G(v) 6= ⊤ ∧ ∀ξ ∈ G(v). ∃s, h, i, u, A, ~w, π.

ξ = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧ ξ ∈ G(v′) ∗ IL
A(u, ~w); (4.7)
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• if C ′ is init(E), then

G(v′) 6= ⊤ ⇒ G(v) 6= ⊤ ∧ ∀ξ ∈ G(v). ∃s, h, i, u, b, A, ~w.

ξ = (s, h[u : Cell(b)], i) ∧ JEKs = u ∧ (s, h[u : Lock(A, ~w, L, 1)], i) ∈ G(v′). (4.8)

Note that we treat annotated and unannotated versions of the init command differently,

since in the former case we need to record the fact that the command behaves consistently

with the annotation in the semantic proof. The definition of validity I � {P} C {Q} with

respect to the thread-local interpretation repeats Definition 3.5.

As before, inequalities (4.5)–(4.8) mimic the corresponding axioms, in particular, the

axioms are sound with respect to the thread-local interpretation. Additionally, the in-

equalities are crafted in such a way that an analogue of Lemma 3.8 holds for the semantic

proofs defined here (Lemma 4.7 below), which allows us to justify the soundness of the

rules Frame, Disj, and Conj.

The following analogue of Lemma 3.1 establishes a correspondence between the thread-

local interpretation and the global semantics of Section 4.4.

Lemma 4.5 (Parallel Decomposition Lemma). Assume semantic proofs

(Ck, Gk, I), k = 1..n. If a complete state σ0 ∈ Statesc is such that for some

W0 ⊆ LockParams

{σ0} ⊑ β

((
n
⊛

k=1
Gk(startk)

)
∗

(
⊛

(A,u,~w)∈W0

IF
A(u, ~w)

))
, (4.9)

then, whenever pc0, σ0 →
∗
S pc, σ, for some W ⊆ LockParams we have

{|σ}| ⊑ β

((
n
⊛

k=1
Gk(pc(k))

)
∗

(
⊛

(A,u,~w)∈W
IF

A(u, ~w)

))
. (4.10)

Proof. We prove the statement of the theorem by induction on the length of the derivation

of σ. In the base case (4.10) is equivalent to (4.9). Suppose now that

pc0, σ0 →
∗
S pc[j : v], σ →S pc[j : v′], σ′.

Then (v, C, v′) ∈ T for some atomic command C. We have to show that if for some

W ⊆ LockParams

{σ} ⊑ β

((
n
⊛

k=1
Gk((pc[j : v])(k))

)
∗

(
⊛

(A,u,~w)∈W
IF

A(u, ~w)

))
, (4.11)

then for some W ′ ⊆ LockParams

{|σ′}| ⊑ β

((
n
⊛

k=1
Gk((pc[j : v′])(k))

)
∗

(
⊛

(A,u,~w)∈W ′

IF
A(u, ~w)

))
. (4.12)

There are three cases corresponding to the type of the command C.
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Case 1. C ∈ Seq ∪ {initA,~F (E), finalise(E)}. Let

r =



 ⊛
1≤k≤n,

k 6=j

Gk(pc(k))



 ∗

(
⊛

(A,u,~w)∈V
IF

A(u, ~w)

)
, (4.13)

where V = W . Then

{|σ′}| ⊑ gC({σ}) definition of →S

⊑ gC(β(Gj(v) ∗ r)) (4.11)

= β(fC(Gj(v) ∗ r)) (4.4)

⊑ β(fC(Gj(v)) ∗ r) fC is local

⊑ β(Gj(v
′) ∗ r) (4.5)

which is equivalent to (4.12) with W ′ = W .

Case 2. C is acquire(E). Given (4.11), we can assume that

{σ} ⊑ β({ξ} ∗ IF
A(u, ~w) ∗ r), (4.14)

where

{ξ} ⊑ Gj(v), (4.15)

ξ = (s, h[u : Lock(A, ~w, U, π)], i), JEKs = u, (A, u, ~w) ∈ W , and r is defined by (4.13)

with V = W\{(A, u, ~w)}; otherwise the right-hand side of (4.12) is ⊤. Then

{|σ′}| ⊑ gC({σ}) definition of →S

⊑ gC(β({ξ} ∗ IF
A(u, ~w) ∗ r)) (4.14)

= β(fC({ξ} ∗ IF
A(u, ~w) ∗ r)) (4.4)

= β({ξ} ∗ IL
A(u, ~w) ∗ r) definition of fC

⊑ β(Gj(v
′) ∗ r) (4.6) and (4.15)

which is equivalent to (4.12) with W ′ = W\{(A, u, ~w)}.

Case 3. C is release(E). We can assume that

{σ} ⊑ β({ξ} ∗ r), (4.16)

where (4.15) holds, ξ = (s, h[u : Lock(A, ~w, L, π)], i), JEKs = u, (A, u, ~w) 6∈ W , and r is

defined by (4.13) with V = W ; otherwise the right-hand side of (4.12) is ⊤. Then

{|σ′}| ⊑ gC({σ}) definition of →S

⊑ gC(β({ξ} ∗ r)) (4.16)

= β(fC({ξ} ∗ r)) (4.4)

⊑ β(fC(Gj(v
′) ∗ IL

A(u, ~w) ∗ r)) (4.7) and (4.15)

= β(Gj(v
′) ∗ IF

A(u, ~w) ∗ r) definition of fC

which is equivalent to (4.12) with W ′ = W ∪ {(A, u, ~w)}.

89



Case 4. C is init(E). We can assume that

{σ} ⊑ β({(s, h[u : Cell(b)], i)} ∗ r), (4.17)

where (s, h[u : Cell(b)], i) ∈ G(v), JEKs = u, and r is defined by (4.13) with V = W ;

otherwise the right-hand side of (4.12) is ⊤. Then by (4.8)

{(s, h[u : Lock(A, ~w, L, 1)], i)} ⊑ G(v′) (4.18)

for some A and ~w. We have:

{|σ′}| ⊑ gC({σ}) definition of →S

⊑ gC(β({(s, h[u : Cell(b)], i)} ∗ r)) (4.17)

= β({(s, h[u : Lock(A, ~w, L, 1)], i)} ∗ r) definition of gC

⊑ β(G(v′) ∗ r) (4.18)

which is equivalent to (4.12) with W ′ = W . 2

Lemma 4.6. The axioms Prim, Init, Init′, Finalise, Acquire, and Release are

sound with respect to the thread-local interpretation.

To justify the soundness of the rules Frame, Disj, and Conj, we have to establish

an analogue of Lemma 3.8.

Lemma 4.7. (i) For any r ∈ D, if (C, G, I) is a semantic proof, then so is (C, G′, I),

where ∀v. G′(v) = G(v) ∗ r.

(ii) If (C, G1, I) and (C, G2, I) are semantic proofs, then so is (C, G′, I), where

∀v. G′(v) = G1(v) ⊔ G2(v).

(iii) If (C, G1, I) and (C, G2, I) are semantic proofs, then so is (C, G′, I), where

∀v. G′(v) = G1(v) ⊓ G2(v), provided the resource invariants in I are precise, the

∗ operation is cancellative, and all init commands in C are annotated with lock

sorts and parameters.

Proof. Take an edge (v, C ′, v′) in the CFG of the command C. We only consider the

case when C ′ is release(E) (the others are treated analogously).

(i) Suppose (4.7) holds. We have to show that (4.7) also holds for G = G′. To this

end, assume G′(v′) 6= ⊤, then G(v′) 6= ⊤ and r 6= ⊤. By (4.7), we have G(v) 6= ⊤, thus,

G′(v) 6= ⊤. Consider ξ ∈ G(v)∗ r. We have ξ = ξ1 ∗ ξ2, where ξ1 ∈ G(v) and ξ2 ∈ r. Since

G(v′) 6= ⊤, from (4.7) we get

ξ1 = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧ ξ1 ∈ G(v′) ∗ IL
A(u, ~w).

Then

ξ = (s′, h′[u : Lock(A, ~w, L, π)], i) ∧ JEKs′ = u ∧ ξ ∈ G(v′) ∗ r ∗ IL
A(u, ~w)
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as required.

(ii) Suppose (4.7) holds for G = G1 and G = G2. We have to show that (4.7) also

holds for G = G′. Assume G′(v′) 6= ⊤, then G1(v
′) 6= ⊤ and G2(v

′) 6= ⊤. By (4.7), we

have G1(v) 6= ⊤ and G2(v) 6= ⊤, thus, G′(v) 6= ⊤. Consider ξ ∈ G1(v) ⊔ G2(v), then

either ξ ∈ G1(v) or ξ ∈ G2(v). Since G1(v
′) 6= ⊤ and G2(v

′) 6= ⊤, from (4.7) for G = G1

and G = G2 we get

ξ = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧

(ξ ∈ G1(v
′) ∗ IL

A(u, ~w) ∨ ξ ∈ G2(v
′) ∗ IL

A(u, ~w)),

which entails ξ ∈ (G1(v
′) ⊔ G2(v

′)) ∗ IL
A(u, ~w) as required.

(iii) Suppose (4.7) holds for G = G1 and G = G2. Assume G′(v′) 6= ⊤, then either

G1(v
′) 6= ⊤ or G2(v

′) 6= ⊤. By (4.7), we have G1(v) 6= ⊤ or G2(v) 6= ⊤, thus, G′(v) 6= ⊤.

Suppose first that G1(v
′) 6= ⊤ and G2(v

′) 6= ⊤ and consider ξ ∈ G1(v) ⊓ G2(v), then

ξ ∈ G1(v) and ξ ∈ G2(v). From (4.7) for G = G1 and G = G2 we get

ξ = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧

ξ ∈ G1(v
′) ∗ IL

A(u, ~w) ∧ ξ ∈ G2(v
′) ∗ IL

A(u, ~w).

Since IL
A(u, ~w) is precise and the ∗ operation is cancellative, this entails ξ ∈ (G1(v

′) ⊓

G2(v
′)) ∗ IL

A(u, ~w) as required.

Assume now that G1(v
′) 6= ⊤ and G2(v

′) = ⊤. From (4.7) for G = G1 we get

ξ = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧ ξ ∈ G1(v
′) ∗ IL

A(u, ~w).

Since G1(v
′) = G1(v

′) ⊓ ⊤, this entails ξ ∈ (G1(v
′) ⊓ G2(v

′)) ∗ IL
A(u, ~w) as required. The

case when G1(v
′) = ⊤ and G2(v

′) 6= ⊤ is treated analogously. 2

We note that an analogue of Lemma 3.11 justifying the soundness of the rules Exists

and Forall holds for semantic proofs introduced here (in the case of Forall only under

the assumptions of Lemma 4.7(iii)). We can now formulate an analogue of Lemma 3.10,

ensuring soundness of the logic with respect to the thread-local interpretation.

Lemma 4.8. If I ⊢ {P} C {Q} and the restrictions on the derivation from Theorem 4.1

hold, then I � {P} C {Q}.

The proof is done by induction on the derivation of the triple using Lemmas 4.6 and 4.7,

and analogues of Lemmas 3.7 and 3.11. The proof of Theorem 4.1 then literally repeats

the proof of Theorem 3.4 with Lemma 4.8 used instead of Lemma 3.10. As in the case

of static locks, Theorem 3.4 also holds when derivations use axioms in Figure 2.5 for

commands from SeqRAM.
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4.6 Deriving the analysis

From the logic presented in this chapter and its thread-local interpretation defined in

Section 4.5.1, we can derive a scheme of a thread-modular analysis for concurrent programs

with storable locks similar to the one of Chapter 3.

Analysis formulation. We assume an abstract interpretation with state separation

(Section 3.3) with an abstract separation domain D♯
l
, the local concrete domain Dl of

Section 4.3, a concretisation function γ : D♯
l
→ Dl, and abstract transfer functions f ♯

C :

D♯
l
→ D♯

l
for C ∈ Seq over-approximating the corresponding predicate transformers

fC : D → D of Section 4.4:

∀p ∈ D♯
l
. fC(γ(p)) ⊑ γ(f ♯

C(p)). (4.19)

We further assume a set of lock sorts A with fixed arities and parameters. We denote with

InvMaps♯ the set of abstract resource invariant mappings—functions I♯ : A → D♯ such

that for any A ∈ A we have γ(I♯
A) ∈ Dl[~Y ], where ~Y are the parameters of A. We lift the

concretisation function γ to InvMaps♯ as follows: for any A ∈ A we let (γ(I♯))A = γ(I♯
A).

Thus, γ(I♯) ∈ InvMaps. We also assume that the join operator on D♯
l

is such that

∀p, q ∈ D♯
l
. γ(p) ∈ Dl[~Y ] ∧ γ(q) ∈ Dl[~Y ] ⇒ γ(p ⊔ q) ∈ Dl[~Y ]. (4.20)

This ensures that computing the join of two approximations of the resource invariant for

a lock sort yields an approximation of the invariant for the same lock sort.

The analysis operates on the domain D̂♯ = (N → D♯
l
) × InvMaps♯, where the first

component gives the local states of the threads and the second the resource invariants

for the corresponding lock sorts. It is defined by the functional F ♯ : D̂♯ → D̂♯ in Fig-

ure 4.11. The overall scheme of the analysis is similar to that of the analysis for static

locks (Figure 3.3), except now the transfer functions g♯
C follow the treatment of commands

in the thread-local interpretation of Section 4.5.1. The analysis is parameterised by the

following functions defining processing of init, acquire, release, and finalise:

• f ♯
C : D♯

l
→ D♯

l
for C = init(E), such that an analogue of (4.8) holds:

∀p ∈ D♯
l
. γ(f ♯

C(p)) 6= ⊤ ⇒ p 6= ⊤ ∧ ∀ξ ∈ p. ∃s, h, i, u, b, A, ~w.

ξ = (s, h[u : Cell(b)], i) ∧ JEKs = u ∧ (s, h[u : Lock(A, ~w, L, 1)], i) ∈ γ(f ♯
C(p)).

• f ♯
C : D♯

l
→ D♯

l
for C = finalise(E), such that (4.19) holds for fC defined in

Section 4.4.

• f ♯
C : InvMaps♯ × D♯

l
→ D♯

l
for C = acquire(E) satisfying an analogue of (4.6):

∀p ∈ D♯
l
. γ(f ♯

C(p, I♯)) 6= ⊤ ⇒ p 6= ⊤∧ ∀ξ ∈ p. ∃s, h, i, u, A, ~w, b, π.

ξ = (s, h[u : Lock(A, ~w, b, π)], i) ∧ JEKs = u ∧ {ξ} ∗ (γ(I♯))A(u, ~w) ⊑ γ(f ♯
C(p, I♯)).
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F ♯(G♯, I♯) = (G̃♯, Ĩ♯), where

• G̃♯(startk) = e♯, k = 1..n;

• G̃♯(v′) =
⊔

(v,C,v′)∈T

g♯
C(G♯(v))

for every program point v′ ∈ N\{startk | k = 1..n}, where

g♯
C(p) =






f ♯
C(p), if C ∈ Seq ∪ {init(E), finalise(E)};

f ♯
C(I♯, p), if C is acquire(E);

ThreadLocalE(p), if C is release(E);

• Ĩ♯
A =

⊔
(v,release(E),v′)∈T

ProtectedE(G♯(v), A) for every lock sort A ∈ A.

Figure 4.11: Thread-modular analysis for concurrent programs with storable locks

This function would typically be constructed using the ∗♯ operation on the abstract

separation domain D♯
l
.

• A family of functions ThreadLocalE : D♯
l
→ D♯

l
and ProtectedE : D♯

l
→ (A → D♯

l
)

for every expression E defining the processing of release(E). The part of the heap

given by ProtectedE(p, A) is added to the resource invariant for the lock sort A.

The part given by ThreadLocalE(p) becomes the new local state of the thread. We

require that ThreadLocalE and ProtectedE split the state soundly, formalised using

an analogue of (4.7):

∀p ∈ D♯
l
. γ(ThreadLocalE(p)) 6= ⊤ ⇒ p 6= ⊤ ∧ ∀ξ ∈ p. ∃s, h, i, u, A, ~w, π.

ξ = (s, h[u : Lock(A, ~w, L, π)], i) ∧ JEKs = u ∧

ξ ∈ γ(ThreadLocalE(p)) ∗ (γ(ProtectedE(p)))A(u, ~w).

We also require that ∀p ∈ D♯
l
. γ(ProtectedE(p, A)) ∈ Dl[~Y ], where ~Y are the param-

eters of A, i.e., that ProtectedE produces an approximation of the resource invariant

for the corresponding lock sort.

As in Chapter 3, we assume, for simplicity, that the initial local state of every thread

is the empty heap. Note also that we do not require initial approximations of resource

invariants, since in our programming language data structure initialisation code is a part

of the code of threads.

A heuristic for determining heap splittings. A typical pattern in coarse-grained

programs is for locks to be stored in structures, where some fields in a structure point

to the data structure protected by the lock and are themselves protected by it. Usually,
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locks in the structures of the same type protect the same kind of data structures and,

hence, can be assigned the same resource invariant. Moreover, parameterising resource

invariants only with the address of the lock is enough for verifying memory safety of a wide

range of programs (the general case is useful for handling dynamic thread creation; see

Section 6.3). We can thus guess lock sorts out of type annotations in the program being

analysed. In the pattern described above we call the fields pointing to the protected data

structure the entry fields for the corresponding lock sort. Entry fields can be inferred

by tools such as Locksmith [63]. We can then define ProtectedE(p, A) as computing

the part of p reachable from the entry fields in the structure containing the lock at the

address E, assuming the lock has the sort A; otherwise, ProtectedE(p, A) can return

⊥. ThreadLocalE(p) is then the rest of p. ProtectedE(p, A) also has to check that the

corresponding Hold-fact is present in p.

Note that for the thread-modular analysis to handle linked data structures storing

locks (e.g., a singly-linked list, where each node contains a pointer to a cyclic doubly-

linked list and a lock protecting it), the underlying sequential heap analysis has to be

able to summarise such data structures regardless of the sorts of the locks stored in them.

An adaptive heap analysis, such as CDS (Section 2.2.1), is suitable for this purpose.

Soundness. To simplify stating the soundness of the analysis, we assume that the

concretisation γ(e♯) of the unit element of D♯
l

does not contain any allocated locks.

Theorem 4.9 (Soundness of the analysis: variant I). Let (G♯, I♯) be a fixed point

of the functional F ♯ (then from (4.20) it follows that γ(I♯) ∈ InvMaps). If a complete

state σ0 ∈ Statesc is such that

{σ0} ⊑ β

(
n
⊛

k=1
γ(e♯)

)
,

then whenever pc0, σ0 →
∗
S pc, σ, for some W ⊆ LockParams we have

{|σ}| ⊑ β

((
n
⊛

k=1
γ(G♯(pc(k)))

)
∗

(
⊛

(A,u,~w)∈W
(γ(I♯))F

A(u, ~w)

))
.

The proof is similar to the proof of Theorem 3.2. As in that case, we can show that the re-

sult of the analysis generates an instance of the thread-local interpretation of Section 4.5.1

with the local states γ(G♯) and the semantic resource invariant mapping γ(I♯).

We note that analogues of Corollaries 3.3 and 3.15 can be proved using the above

soundness theorem, thus, we can use the analysis to check memory safety and data-race

freedom of programs. Theorem 4.9 does not allow us, however, to check the absence of

memory leaks as explained in Section 4.5. This can be done using the following theorem,

analogous to Theorem 4.4. Let us extend the definition of closure (Definition 4.2) to the

domain D by letting 〈⊤〉 = ⊤.
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Theorem 4.10 (Soundness of the analysis: variant II). Let (G♯, I♯) be a fixed point

of the functional F ♯ (then from (4.20) it follows that γ(I♯) ∈ InvMaps) and σ0 ∈ Statesc

a complete state such that

{σ0} ⊑ β

(
n
⊛

k=1
γ(e♯)

)
.

If pc0, σ0 →∗
S pc, σ and either γ(G♯(pc(k))) is intuitionistic for some k or the resource

invariants in γ(I♯) are admissible, then

{|σ}| ⊑ β

(〈
n
⊛

k=1
γ(G♯(pc(k)))

〉

γ(I♯)

)
.

The proof is the same as for Theorem 4.4.

Admissibility is a semantic condition and is hard to check automatically. For coarse-

grained programs, we can check the following condition implying admissibility. Given

a resource invariant mapping, let us define a directed graph with lock sorts as vertices,

where there is an edge from A to B if the resource invariant for the lock sort A may contain

a handle for a lock of the sort B. If the graph is acyclic, then the resource invariants are

admissible. The existence of an edge between two lock sorts in the graph can be easily

checked in abstract domains for heap analysis based on separation logic (Section 2.2.1).

4.7 Related work

An advantage of the logic for storable locks presented in this chapter is its simple se-

mantics, which, additionally, yields a scheme of the corresponding program analysis. A

disadvantage of the logic is that we cannot use it to give specifications to code that is

generic in resource invariants, since we always have to name the sort of every lock an

assertion talks about. This problem has been resolved by Hobor et al. [43], who suggested

a logic for storable locks with a more powerful assertion language. Their semantics uses

step-indexing to resolve the paradox arising in (4.1), however, this solution drastically

complicates the semantics of the logic and its proof of soundness.

Leino and Müller [47] have recently proposed a logic for storable locks that is vir-

tually identical to the one presented here, but encoded into the first-order logic of the

Boogie program verifier [1]. They use the logic as a basis for an assertion-based verifier

of concurrent programs.

Locks that our logic reasons about are not re-entrant: a thread that tries to acquire the

same lock twice deadlocks. Haack et al. [38] have extended the logic to handle re-entrant

locks.

Feng et al. [27] and Vafeiadis and Parkinson [77, 75] have recently suggested combi-

nations of separation logic and rely-guarantee reasoning that, among other things, can be

used to reason about storable locks. One of them [77] served as a basis for an assertion

checker [16] and a heap analysis [76] (the latter discussed in Section 3.6). In [77] locks
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are not treated natively in the logic, but are represented as cells in memory holding the

identifier of the thread that holds the lock; rely-guarantee is then used to simplify rea-

soning about the global shared heap with locks allocated in it. The logic allows modular

reasoning about complex fine-grained concurrent algorithms (e.g., about the optimistic

list mentioned in Section 4.2), but loses the locality of reasoning for programs that al-

locate and deallocate many simple data structures protected by locks, which results in

awkward proofs. In other words, as the original concurrent separation logic, the logics

in [27, 77, 75] are designed for reasoning about the concurrent control of bounded numbers

of data structures whereas our logic is designed to reason about the concurrent control of

unboundedly many data structures that are dynamically created and destroyed. Ideally,

one wants to have a combination of both: a logic in which on the higher-level the rea-

soning is performed in a resource-oriented fashion and on the lower-level rely-guarantee

is applied to deal with complex cases. Designing such a logic is ongoing work [26, 25, 23].
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Chapter 5

Procedures

In this chapter we consider interprocedural heap analyses, which target programs with

(possibly recursive) first-order procedures. Interprocedural analyses for sequential pro-

grams usually compute procedure summaries that approximate the semantics of a pro-

cedure by associating representations of the program state at procedure entry to corre-

sponding result states at procedure exit. In program logics, the analogue of procedure

summaries are procedure specifications. For example, a proof of a program with proce-

dures in separation logic may use the procedure specification

{x, y 
 ls(x, NULL) ∗ ls(y, NULL)} append {x, y 
 ls(x, y) ∗ ls(y, NULL)}

for a procedure that destructively appends the list with the head pointed to by the global

variable x to the list with the head pointed to by the global variable y (we assume a

programming language with parameterless procedures; procedures with parameters are

represented as syntactic sugar by passing parameters via global variables). The benefit

of summaries for interprocedural program analysis is that, once a summary is computed,

it can be stored and subsequently reused if the procedure is called again in the same

calling context, thus making the analysis more efficient. The main obstacle to scaling

interprocedural analyses to larger and more complicated programs is the explosion in the

number of calling contexts the analysis has to consider. This problem is especially acute for

heap analyses because of large sizes of the corresponding abstract domains. We can avoid

the problem by performing context-insensitive analysis that computes a single summary

for each procedure, joining the result states for all calling contexts. Unfortunately, for

heap analysis this leads to overly imprecise results—in this case we need the analysis to

be context-sensitive.

One way to reduce the number of calling contexts in heap analyses is to perform

localisation at procedure calls, i.e., to pass only the relevant part of the program state

to the procedure [67]. For example, the procedure append may be called in two different

contexts, described by the formulae

x, y, u 
 ls(x, NULL) ∗ ls(y, NULL) ∗ ls(u, NULL)
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and

x, y, v 
 ls(x, NULL) ∗ ls(y, NULL) ∗ v7→NULL,

where u and v are local variables of the callers. When the procedure is called in the first

context, we can:

• split the heap into a local heap describing the part relevant to the procedure (e.g.,

x, y 
 ls(x, NULL) ∗ ls(y, NULL)) and a frame (e.g., u 
 ls(u, NULL));

• analyse the procedure on the local heap obtaining x, y 
 ls(x, y) ∗ ls(y, NULL) as the

post-heap;

• conjoin the post-heap with the frame yielding the resulting heap x, y, u 
 ls(x, y) ∗

ls(y, NULL) ∗ ls(u, NULL).

From the perspective of separation logic, this corresponds to applying the frame rule over

the procedure call:

{x, y 
 ls(x, NULL) ∗ ls(y, NULL)} append {x, y 
 ls(x, y) ∗ ls(y, NULL)}

{x, y, u 
 ls(x, NULL) ∗ ls(y, NULL) ∗ ls(u, NULL)}

append

{x, y, u 
 ls(x, y) ∗ ls(y, NULL) ∗ ls(u, NULL)}

When the same algorithm is performed in the second context with the local heap x, y 


ls(x, NULL) ∗ ls(y, NULL) and the frame v 
 v 7→NULL, we are able to reuse the results of

analysing the procedure in the first context.

Note that the choice of the splitting of the heap into a local heap and a frame is not

important for soundness: any splitting is sound, but if too small a local heap is chosen,

the analysis will discover a false memory safety error while analysing the procedure. One

possible way to split the heap is to take as the local heap the part reachable from the

actual parameters of the procedure and the global variables [67], which in our desugaring

of parameter passing corresponds to just global variables (this is how the heap splittings

in the above examples are obtained). Note that this heuristic may sometimes carve out

too big a local heap, making the analysis less efficient: e.g., passing only x, y 
 ls(x, NULL)

is sufficient for most implementations of append. However, it works well in practice.

In this chapter, we develop a framework for constructing context-sensitive interproce-

dural analyses with localisation for sequential programs out of intraprocedural analyses

operating on arbitrary abstract separation domains (Section 5.3) that generalises the

Reps-Horwitz-Sagiv (RHS) algorithm for interprocedural analysis [64]. This extends the

existing work on interprocedural analysis of sequential heap-manipulating programs using

RHS-based analyses [67, 70, 31, 81], which so far has considered only particular abstract

domains or localisation schemes. We also present an instantiation of our framework with

an abstract domain based on separation logic, which at the time of its publication [31]
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outperformed earlier interprocedural heap analyses [70, 69] and has since been used as a

component in other analyses [81].

In Section 5.2, we propose an abstract version of separation logic for programs with

procedures, where local procedure environments and global heaps are represented by ar-

bitrary separation algebras. Our interprocedural analysis can be viewed as generating

proofs in the logic, so that the localisation step corresponds to the frame rule as described

above. We give two proofs of soundness to the logic. The first one is an elegant proof

using standard techniques that establishes the soundness of the whole logic, including the

conjunction rule, by computing the best predicate transformer corresponding to the pro-

cedure specifications used in the proof of a program (Section 5.2.1). The second is a novel

proof that avoids computing the transformer at the price of being more complicated and

not being able to establish the soundness of the conjunction rule (Section 5.2.2). However,

unlike the former proof, this one can be adapted to concurrent setting even when resource

invariants may be imprecise and the conjunction rule does not hold (Section 5.4.1). This

allows us to show that our interprocedural analysis can soundly be composed with the

thread-modular analysis of Chapter 3 (Section 5.4.2).

The simple treatment of procedure calls described above may not always be sufficient.

Suppose we call append in the context

x, y, u, v 
 ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) ∗ ls(v, x),

where x and y are global variables, and u and v are local variables of the caller. According

to the above heuristic for heap splitting, the local heap should contain the data structure

described by ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) and the global variables x and y, and the

frame should contain ls(v, x) and the local variables u and v. In this splitting, we have

pointers x and u between the local heap and the frame, which are called cutpoints [67]. If

we want to know that, after append terminates, x still points into the list with the head v,

and u into the one with the head x, our analysis has to treat cutpoints specially. From the

perspective of program logics, what we need is a specification for append parameterised

by logical variables denoting the values of the cutpoints:

{x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)}

append

{x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, y) ∗ ls(y, NULL)}

This specification can then be adapted to the calling context using the rules Frame,

Exists, and Conseq as shown in Figure 5.1.1 We can mirror this treatment in the

analysis by replacing cutpoints with logical variables and storing their values in the local

heap or the frame. Upon computing the effect of the procedure on the local heap, we

1 We use these rules to replace Y and Z with the program variables u and x because our assertion

language treats variables as resource [62] (the benefit being that our proof rules do not contain side

conditions). In the standard Hoare logic we would just use the substitution rule [42].
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{x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)}

append

{x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, y) ∗ ls(y, NULL)}

{(x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)) ∗ (u, v 
 u = Y ∧ ls(v, Z))}

append

({x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, y) ∗ ls(y, NULL)) ∗ (u, v 
 u = Y ∧ ls(v, Z))}

{∃Y, Z. (x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)) ∗ (u, v 
 u = Y ∧ ls(v, Z))}

append

{∃Y, Z. (x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, y) ∗ ls(y, NULL)) ∗ (u, v 
 u = Y ∧ ls(v, Z))}

{x, y, u, v 
 ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) ∗ ls(v, x)}

append

{x, y, u, v 
 ls(x, u) ∗ ls(u, y) ∗ ls(y, NULL) ∗ ls(v, x)}

Figure 5.1: Adapting a procedure specification to a calling context using the rules Frame,

Exists, and Conseq

can eliminate the logical values, replacing them with cutpoints. In the above example,

this yields the local heap x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL), and the frame

u, v 
 u = Y ∧ ls(v, Z). Note that generic summaries constructed in this way can be

reused in calling contexts with the same configuration of cutpoints. For example, we can

also use the above specification of append in the context

x, y, u, v, w 
 ls(x, w) ∗ ls(w, NULL) ∗ ls(y, NULL) ∗ u7→w ∗ v7→x,

where u, v, and w are local variables of the caller.

Treating cutpoints in the way described above is maximally precise. However, there is a

problem that for recursive procedures it may result in the number of free logical variables

denoting them growing unboundedly, causing the analysis to diverge. A solution is to

abstract cutpoints beyond some bounded number using valid implications such as

(x, y, u, v 
 ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) ∗ ls(v, x)) ⇒

(x, y, u, v 
 ∃Y, Z. ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL) ∗ ls(v, Z)).

In this manner, we can treat bounded numbers of cutpoints. In the above example,

this results in the local heap x, y 
 ∃Y. ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL) and the frame

u, v 
 ∃Z. ls(v, Z).

The initial version of the interprocedural analysis we develop in Section 5.3 abstracts

away all the cutpoints. In Section 5.5, we prove the soundness of the rule Exists in our

logic and construct interprocedural analyses for sequential and concurrent programs that
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are able to treat cutpoints precisely. As before, the proof of soundness of the logic and the

analysis is complicated by the need to consider the case of imprecise resource invariants.

5.1 Programming language and semantics

Programming language. We extend the programming language of Section 2.1.3 with

the parameterless procedure call command:

C ::= . . . | f

Programs in the extended language have the form

f0 {local ~x0 in C0} . . . fl {local ~xl in Cl}

where f0 is the top-level procedure. We consider only well-formed programs in which the

names of all procedures declared are distinct and all procedures called are declared. We

also require that no procedure calls f0.

For simplicity of presentation our procedures do not return values and do note take

parameters, as results and parameters can be passed to a procedure via specially des-

ignated global variables. For example, if the set Seq of primitive sequential commands

contains the assignment command, a call f(E) to a procedure

f(y) {local ~x in C}

can be encoded in our language as

z = E; f

where z is a fresh variable and the procedure declaration is

f {local ~x, y in y = z; z = nondet(); C}

The command z = nondet() assigns z a non-deterministically chosen value. We add it so

that the analyses we construct in this chapter did not have to track the irrelevant value

of the variable z after the procedure f reads it into a local variable.

Let us fix a program S of the above form. We represent every procedure body Ci,

i = 0..l with its CFG (Ni, Ti, starti, endi) over the set of primitive commands Seq∪{fi | i =

0..l} and let N =
⋃l

i=0 Ni and T =
⋃l

i=0 Ti. Without loss of generality, we require that

the CFGs be deterministic for procedure calls, i.e., for any v ∈ N there must exist at most

one procedure-call edge starting from v and at most one procedure-call edge ending at v.

Thus, for an edge (v, fi, v
′) ∈ T we can define call(v′) = v and calledc(v) = calledr(v′) = i.

We also define proc(v) = k if v ∈ Nk. For a procedure-call edge (v, fi, v
′) we call v the

call point, v′ the return point, starti the starting point, and endi the final point.
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Model of program states. The logic for programs with procedures we present here

is abstract: as in Chapter 3, the technical development is done with respect to a class

of models of program states. Namely, we assume a separation algebra Σe representing

mutable procedure environments that store local variables and an algebra Σ representing

the heap and the global variables. We define a separation algebra on Σe × Σ by lifting

∗ to Σe × Σ componentwise. Let De = P(Σe)
⊤, D = P(Σ)⊤, and D2 = P(Σe × Σ)⊤ be

the separation domains constructed out of the separation algebras Σe, Σ, and Σe × Σ,

respectively. We assume that Σe and Σ are such that De and D have unit elements ee and

e. Then (ee, e) is the unit element for D2. For p ∈ D2\{⊤} let env(p) = {η | ∃σ. (η, σ) ∈ p},

state(p) = {σ | ∃η. (η, σ) ∈ p}, Env(p) = env(p)× e, and State(p) = ee × state(p). We also

let env(⊤) = Env(⊤) = state(⊤) = State(⊤) = ⊤. For σ ∈ Σ let lift(σ) = ee × {σ}. We

lift lift to D pointwise.

We assume a function InitEnv that for any declaration of local variables ~x gives the

set of the procedure environments InitEnv(~x) ∈ P(Σe) storing only these variables with

arbitrary values. Let Lvei = InitEnv(~xi) (i = 0..l) be the set of initial environments of fi

and Lvi = Lvei × e be the corresponding element of the domain D2 with an empty heap.

Example model. Let us partition the set of program variables Vars into two disjoint

subsets: LocalVars and GlobalVars. We let Σ = States (Figure 2.1) with Vars replaced

by GlobalVars and let Σe = LocalVars ⇀fin (Values × Perms), where the ∗ operation on

Σe is defined in the same way as the ∗ operation on stacks in Section 2.1.1. We can then

let InitEnv(~x) be the set of all total functions from the set of variables ~x to Values × {1}.

Let the domain RAM2 = P(Σe × Σ)⊤.

Program semantics. A command in the body of a procedure can access both the

environment of the procedure and the heap. Correspondingly, we assume given local

functions fC : Σe × Σ → D2 defining the semantics of primitive sequential commands

C ∈ Seq, which we lift to predicate transformers fC : D2 → D2 pointwise. For example,

we can construct fC : Σe ×Σ → D2 for C ∈ SeqRAM (Section 2.1.2) and the algebras Σe

and Σ defined above using the following transition relation →֒:

C, (η, s, h, i) →֒ (η′, s′, h′, i) ⇔ C, (η ⊎ s, h, i) ; (η′ ⊎ s′, h′, i)

C, (η, s, h, i) →֒ ⊤ ⇔ C, (η ⊎ s, h, i) ; ⊤

where the relation ; is defined in Figure 2.3. To this end, for ξ ∈ Σe × Σ we let

fC(ξ) =
⊔{

{|ξ′}| | C, ξ →֒ ξ′
}
.

We denote with A+ (respectively, A∗) the set of all non-empty (respectively, possibly

empty) sequences of elements of the set A. In the future, we use · to concatenate sequences

and omit it where this does not cause confusion. We also often interpret elements of A
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(v, C, v′) ∈ T C ∈ Seq fC({(η, σ)}) < ⊤ (η′, σ′) ∈ fC({(η, σ)})

c · v, (α · η, σ) →S c · v′, (α · η′, σ′)
(5.1)

(v, C, v′) ∈ T C ∈ Seq fC({(η, σ)}) = ⊤

c · v, (α · η, σ) →S c · v′,⊤
(5.2)

(v, fi, v
′) ∈ T η′ ∈ Lvei

c · v, (α, σ) →S c · v′ · starti, (α · η′, σ)
(5.3)

c · v · endi, (α · η, σ) →S c · v, (α, σ)
(5.4)

Figure 5.2: Operational semantics of sequential programs with procedures

as sequences of length 1. We define the semantics of the program S by the transition

relation

→S ⊆ (N+ × (Σ+
e
× Σ)) × (N+ × ((Σ+

e
× Σ) ∪ {⊤}))

in Figure 5.2, which transforms triples of

• sequences of return points for the procedures that have been called but have not

yet returned ending with the program counter of the currently executing procedure

(call-stacks);

• sequences of procedure environments for the procedures on the call-stack; and

• heaps.

An initial state of the program S is a state of the form (η0, σ0) ∈ Σe ×Σ = Σ1
e
×Σ, where

η0 ∈ Lve0. We say that the program S is safe when run from an initial state (η0, σ0), if it

is not the case that start0, (η0, σ0) →
∗
S c,⊤ for some call-stack c.

5.2 Abstract separation logic with procedures

We adapt abstract separation logic presented in Section 2.1.3 to our programming lan-

guage as follows. The judgements of the new logic are of the form Γ ⊢ {P} C {Q}, where

Γ is a procedure context—a set of procedure specifications of the form {P ′} fi {Q′}.

Formulae of the assertion language are now interpreted with respect to Σe ×Σ, i.e., they

restrict both the current procedure environment and the heap. We assume that the asser-

tion language contains an assertion truee such that JtrueeK = Σe×e. For a declaration of

local variables ~x, we denote with Vars(~x) an assertion such that JVars(~x)K = InitEnv(~x)×e.

For example, the assertion language for the domain RAM2 = P(Σe × Σ)⊤ defined in

Section 5.1 is the same as for the domain RAM (Section 2.1.1). However, now its formulae

are interpreted with respect to an environment η ∈ Σe, as well as a stack, a heap, and an

interpretation (s, h, i) ∈ Σ:

(η, s, h, i) |= P ⇔ (η ⊎ s, h, i) |= P,
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where the later |= corresponds to the notion of validity defined in Section 2.1.1. In this

case Vars(~x) is ~x 
 emph. Note that the axioms in Figure 2.5 are sound for the domain

RAM2 and the corresponding transformers defined in Section 5.1.

The proof rules of separation logic (Figure 2.4) are adapted to the new setting by

prefixing every triple in them with Γ ⊢. Additionally, we have the following procedure

call axiom:

Γ, {P} fi {Q} ⊢ {P} fi {Q}
ProcCall

At the moment we do not consider the rules Exists and Forall (see Section 5.5). A

proof of the program S is given by triples

Γ ⊢ {P ∗ Vars(~xi)} Ci {Q ∗ truee} for every {P} fi {Q} ∈ Γ. (5.5)

Note that we place no requirements on the environment of a procedure in its postcondition,

since the corresponding rule (5.4) of the operational semantics discards the environment

upon return from the procedure.

We say that p ∈ D2 has an empty environment, if p = ⊤ or p ⊆ ee × p′ for some

p′ ⊆ Σ. We require that in the above proof the denotations of pre- and postconditions in

the specifications have an empty environment. This requirement prevents a caller from

passing a part of its local environment to the callee.

Our aim in the rest of this section is to prove the following theorem stating the

soundness of abstract separation logic with procedures.

Theorem 5.1 (Soundness of the logic). Given a proof (5.5) of the program S, where

{P0} f0 {Q0} ∈ Γ, suppose (η0, σ0) ∈ JP0 ∗ Vars(~x0)K. Then the program S is safe when

run from the initial state (η0, σ0), and whenever start0, (η0, σ0) →∗
S end0, (η, σ), we have

lift(σ) ⊆ JQ0K.

As noted at the beginning of this chapter, we give two proofs of the theorem: a

simpler proof that establishes the soundness of the whole logic (Section 5.2.1) and a more

complicated one that establishes Theorem 5.1 under the assumption that the conjunction

rule is not used in the proof of the program (Section 5.2.2). We use the latter proof to

establish the soundness of our interprocedural analysis (Section 5.3) and to show that the

logic and the analysis are sound when combined with the corresponding logic and analysis

for static locks (Section 5.4). The technical core of the former proof is essentially the same

as in the proof of soundness of proof rules for information hiding in heap-manipulating

programs [58]. We give it here, first, to establish the soundness of the conjunction rule

in the logic for procedures we propose and, second, to illustrate the difference between

the two proofs. In particular, in Section 5.4 we explain why the standard proof does not

generalise to concurrent programs in the case of imprecise resource invariants.

We make use of the following auxiliary notions. A semantic procedure context E for

a set of procedures {f0, . . . , fl} is a (possibly infinite) multiset of semantic specifications,
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each of the form {p} fi {q}, where i ∈ {0, . . . , l} and p, q ∈ D2 have an empty environment.

We typically represent a semantic procedure context by indexing its specifications with

elements of a set R:

E =
{
{pj

i} fi {q
j
i } | i = 0..l, j ∈ specs(i)

}
, (5.6)

where specs(i) ⊆ R gives the indices of the specifications for fi. Note that, given a

procedure context Γ used in a proof of a program, we can construct a semantic proce-

dure context containing the semantic specification {JP K} fi {JQK} for every specification

{P} fi {Q} in Γ.

We define an operation

⊙ : (Σ∗
e
× Σ) × (Σ∗

e
× Σ) ⇀ Σ∗

e
× Σ

as follows:

(α1, σ1) ⊙ (α2, σ2) = (α1α2, σ1 ∗ σ2)

and lift it to the operation ⊙ : P(Σ∗
e
×Σ)⊤ ×P(Σ∗

e
×Σ)⊤ → P(Σ+

e
×Σ)⊤ in the expected

way. In the following we use elements of Σe × Σ as arguments of ⊙, interpreting them

as elements of Σ∗
e
× Σ, where the sequence of environments is of length 1. We define the

iterated version of the lifted ⊙:

k⊙

i=1

pi = ((({e} × e) ⊙ p1) ⊙ . . .) ⊙ pk,

where e is the empty sequence.

5.2.1 Soundness of the logic with the conjunction rule

Consider the proof (5.5) of the program S. Let E be the semantic procedure context

constructed out of the procedure context Γ, which we represent in the form (5.6) with

R = N.

Given the specifications for a procedure fi in E , it is possible to construct the best

(in the sense of [15]) local function gi : Σ → D defining the meaning of the procedure

consistent with the specifications, which describes how the procedure can change the

global heap.2 We define gi as follows: for σ ∈ Σ we let

gi(σ) =
l{

state(qj
i ) ∗ {σ

′} | σ ∈ state(pj
i ) ∗ {σ

′} ∧ σ′ ∈ Σ ∧ j ∈ specs(i)
}

. (5.7)

Informally, to compute the effect of the procedure fi on a heap σ, we consider all the

ways in which σ can be split into a part satisfying a precondition of fi and a frame, and

take the meet of the corresponding postconditions combined with the frames. Thus, we

compute the smallest set of possible outcomes of executing the procedure consistent with

2 Calcagno et al. [15] call it best local action.
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the specifications. It is easy to show that the functions constructed in this way are local.

Let ~g be the vector of gi, i = 0..l. We lift gi to D2 pointwise.

The idea of the proof of Theorem 5.1 we present here is to show that the functions

gi constructed above over-approximate the denotational semantics of procedures in the

program and then to establish a connection between gi and the operational semantics of

the program. We now define the denotational semantics of the procedures, given by a

vector in (Σ → D)l+1.

Consider an approximation ~f : (Σ → D)l+1 of the meaning of the procedures in the

program. We first define the meaning of the commands Ci (i = 0..l) in the case when

the meaning of the procedures called by Ci is given by ~f . This is defined by the function

Ri(~f) : D2×Ni → D2 such that Ri(~f, p, v) gives the set of states reachable at the program

point v when executing Ci from an initial state satisfying p. Its formal definition is similar

to the fixed-point characterisation of collecting semantics in Section 2.2, with the effect of

a procedure call command fi determined by fi. Namely, consider a functional Fi(~f, p) :

(Ni → D2) → (Ni → D2) defined as follows: Fi(~f, p)(G) = G̃ where G̃(starti) = p and for

every program point v′ ∈ Ni\{starti}

G̃(v′) =
⊔

(v,C,v′)∈Ti

Post(C, G(v)),

where Post(C) = fC for C ∈ Seq and Post(fi) is the pointwise lifting to D2 of the

corresponding function:

Post(fi, (η, σ)) =




{η} × fi(σ), if fi(σ) 6= ⊤;

⊤, if fi(σ) = ⊤.

The definition of Post(fi) reflects the fact that a callee may not change the local environ-

ment of the caller. We can then define Ri(~f, p, v) = (lfp(Fi(~f, p)))(v).

The standard definition of the denotational semantics of procedures [79] is adapted to

our setting as follows. Consider the functional G : (Σ → D)l+1 → (Σ → D)l+1 defined as

follows: G(~f) = ~f ′, where for any σ ∈ Σ and i = 0..l

f ′
i(σ) = state(Ri(~f, lift(σ) ∗ Lvi, endi)).

The denotational semantics ~f = lfp(G) is the least fixed point of G under the pointwise

extension of the order on D.

We now proceed to show that the functions gi over-approximate the denotational

semantics of the procedures in the program, i.e., ~f ⊑ ~g. The following lemma shows the

soundness of the proof (5.5) with respect to the interpretation of Ci defined by Ri(~g).

Lemma 5.2. ∀i = 0..l, j ∈ specs(i). State(Ri(~g, pj
i ∗ Lvi, endi)) ⊑ qj

i .

The proof is similar to that of Lemma 3.10. The soundness of the rule ProcCall follows

from the fact that gi(state(p
j
i )) ⊑ state(qj

i ). The rules Disj and Conj are sound because
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gi distribute over ⊔ and ⊓. The soundness of Frame follows from the locality of gi. In

particular, we note for the future that Ri(~g, ·, endi) is local:

∀i = 0..l. ∀p, q ∈ D2. Ri(~g, p ∗ q, endi) ⊑ Ri(~g, p, endi) ∗ q. (5.8)

We show that ~f ⊑ ~g using Park induction, i.e., by establishing that G(~g) ⊑ ~g. This

follows from the following lemma stating that the meaning of the body of a procedure

computed using the transformers ~g to interpret procedure calls is at least as precise as

that given by the corresponding transformer.

Lemma 5.3. ∀i = 0..l. ∀σ ∈ Σ. state(Ri(~g, lift(σ) ∗ Lvi, endi)) ⊑ gi(σ).

Proof. Consider i, j, and σ′ such that

σ ∈ state(pj
i ) ∗ {σ

′}. (5.9)

It is sufficient to prove that state(Ri(~g, lift(σ) ∗ Lvi, endi)) ⊑ state(qj
i ) ∗ {σ

′}. Indeed:

state(Ri(~g, lift(σ) ∗ Lvi, endi)) ⊑ state(Ri(~g, pj
i ∗ lift(σ′) ∗ Lvi, endi)) (5.9)

⊑ state(Ri(~g, pj
i ∗ Lvi, endi)) ∗ {σ

′} (5.8)

⊑ state(qj
i ) ∗ {σ

′} Lemma 5.2

2

Using the above lemma, we can connect the over-approximation of the denotational

semantics of procedures given by gi to the operational semantics of Section 5.1.

Lemma 5.4. Suppose η0 ∈ Lve0, σ0 ∈ Σ, and start0, (η0, σ0) →∗
S v1 . . . vk, ζ. Then there

exists a sequence ξt ∈ (Σe × Σ) ∪ {⊤} for t = 0..k such that

ξ0 = (η0, σ0); {|ξt}| ⊑ Rit(~g, State({|ξt−1}| ) ∗ Lvit , call(vt)), t = 1..(k − 1);

{|ξk}| ⊑ Rik(~g, State({|ξk−1}| ) ∗ Lvik , vk), (5.10)

where it = proc(vt), t = 1..k, and

{|ζ}| ⊑

(
k−1⊙

t=1

Env({|ξt}| )

)
⊙ {|ξk}| . (5.11)

In the statement of the lemma, ξt for t = 1..(k− 1) define the state of the program at the

points in the execution where the procedure fit+1 is called; ξk then gives the state at the

current call-stack. We use Rit+1 to compute the effect of executing a procedure until the

next procedure on the call-stack is called.
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Proof of Lemma 5.4. We prove the lemma by induction on the length of the derivation

of the state ζ . Here we show only the most interesting case—that of procedure return (5.4).

Consider a transition in the operational semantics of the form

v1 . . . vk−1endik , (η1 . . . ηk−1ηk, σ) →S v1 . . . vk−1, (η1 . . . ηk−1, σ)

and assume a sequence ξt, t = 0..k satisfying (5.10) and (5.11) for ζ = (η1 . . . ηk−1ηk, σ).

Suppose ξt 6= ⊤ for t = 1..(k − 1) (the converse case is trivial). Then

{(ηk−1, σ)}⊑ Env({ξk−1}) ∗ State({|ξk}| ) (5.11)

⊑ Env({ξk−1}) ∗ State(Rik(~g, State({ξk−1}) ∗ Lvik , endik)) (5.10) for ξk

⊑ Env({ξk−1}) ∗ lift(gik(state({ξk−1}))) Lemma 5.3

= Post(fik , {ξk−1}) definition of Post

= Post(fik , Rik−1
(~g, State({ξk−2}) ∗ Lvik−1

, call(vk−1))) (5.10) for ξk−1

⊑ state(Rik−1
(~g, State({ξk−2}) ∗ Lvik−1

, vk−1)) definition of Rik−1

Let ξ′k−1 = (ηk−1, σ), then the sequence ξ0, ξ1, . . . , ξk−2, ξ
′
k−1 is the required one. 2

Proof of Theorem 5.1. Let j0 be the index of the specification {P0} f0 {Q0} in E .

Partial correctness follows from Lemmas 5.2 (for i = 0, j = j0) and 5.4. Suppose now that

the program S is unsafe when run from (η0, σ0) ∈ JP0∗Vars(~x0)K. Then (η0, σ0) ∈ pj0
0 ∗Lv

j0
0

and start0, (η0, σ0) →
∗
S v1 . . . vk,⊤. By Lemma 5.4, for some u we have Riu(~g, State(ξu−1)∗

Lviu , vu) = ⊤, hence Rik(~g, State(ξk−1) ∗ Lvik , endik) = ⊤ by the definition of Rik . We now

show by induction on t that Rit(~g, State(ξt−1) ∗ Lvit , endit) = ⊤ for t = u, u − 1, . . . , 1.

Assume that 2 ≤ t ≤ u and Rit(~g, State(ξt−1) ∗ Lvit , endit) = ⊤. Then by Lemma 5.3

we have git(state(ξt−1)) = ⊤. It is easy to show that this entails Rit−1(~g, State(ξt−2) ∗

Lvit−1, endit−1) = ⊤, which completes the induction. Letting t = 1 in the induction

hypothesis, we now get R0(~g, State(ξ0) ∗ Lv0, end0) = ⊤, which contradicts Lemma 5.2 for

i = 0, j = j0. 2

5.2.2 Soundness of the logic without the conjunction rule

Our second proof of soundness is done with the aid of a procedure-local interpretation of

the body of each procedure, defined using semantic proofs. Given a set of specification

indices R and a set of procedures {f0, . . . , fl}, here we define a semantic proof as a tuple

(C, G, E , µ), where

• C is a command with a CFG (N, T, start, end) over the set of primitive commands

Seq ∪ {f0, . . . , fl};

• G : N → D2 maps program points of C to semantic annotations;

• E is a semantic procedure context of the form (5.6) for the given set of indices R;
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• µ : N ×R → D2 is a mapping such that for an edge (v, fi, v
′) ∈ T , µ(v′, j) gives the

frame for the jth specification of the procedure called at v

such that for all edges (v, C ′, v′) ∈ T

• if C ′ ∈ Seq, then

fC′(G(v)) ⊑ G(v′); (5.12)

• if C ′ is fi, then

G(v) ⊑
⊔

j∈specs(i)

pj
i ∗ µ(v′, j) (5.13)

and

G(v′) ⊒
⊔

j∈specs(i)

qj
i ∗ µ(v′, j). (5.14)

Inequalities (5.13) and (5.14) represent a semantic counterpart of the axiom

ProcCall closed under the applications of the rules Frame and Disj (so that we could

establish an analogue of Lemma 3.8(i,ii) justifying the soundness of these rules). The pre-

and postconditions in the inequalities are put into a normal form, where the frame for

every specification is given by µ. As we show below, we can always extract a semantic

proof of this form from a proof of a procedure that does not use the conjunction rule.

The following lemma establishes the soundness of a proof of the program S, given in

terms of procedural-local semantic proofs with respect to its operational semantics.

Lemma 5.5 (Soundness of the procedure-local interpretation). Consider a se-

mantic procedure context E of the form (5.6) for some set of indices R. Assume se-

mantic proofs (Ci, G
j
i , E , µ(i, j)) for i = 0..l, j ∈ specs(i),3 where Gj

i (starti) ⊒ pj
i ∗ Lvi and

State(Gj
i (endi)) ⊑ qj

i , and take j1 ∈ specs(0). If (η0, σ0) ∈ Lve0 × Σ is such that

{(η0, σ0)} ⊑ Gj1
0 (start0), (5.15)

then whenever start0, (η0, σ0) →∗
S v1 . . . vk, ζ, for some j2, . . . , jk such that jt ∈ specs(it),

t = 2..k we have

{|ζ}| ⊑

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ Gjk

ik
(vk), (5.16)

where it = proc(vt), t = 1..k.

Informally, the lemma establishes that for any state at a given call-stack there exist

specifications for the procedures on the call-stack such that the state can be obtained by

combining the frames for the specifications in the corresponding semantic proofs and the

current procedure-local state.

3 Thus, here µ is a function that, given indices of a procedure and its summary, produces the µ-

component of the corresponding semantic proof.
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Proof of Lemma 5.5. We prove the statement of the lemma by induction on the

length of the derivation of ζ in the operational semantics of the program S. In the

base case (5.16) is equivalent to (5.15). Suppose now that start0, (η0, σ0) →∗
S v1 . . . vk, ζ ,

and (5.16) holds. We consider three cases corresponding to the next rule of the operational

semantics applied in the computation.

Case 1. Rules (5.1) and (5.2): primitive sequential command. We have

v1 . . . vk−1vk, (η1 . . . ηk−1ηk, σ) →S v1 . . . vk−1v
′
k, ζ

′

and (vk, C, v′
k) ∈ T , C ∈ Seq. It is sufficient to show that

{|ζ ′}| ⊑

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ Gjk

ik
(v′

k). (5.17)

This holds trivially if µ(it, jt, vt, jt+1) = ⊤ for some t. Otherwise, from (5.16) it follows

that

{(ηk, σ)} ⊑ Gjk

ik
(vk) ∗ lift(σ′′) (5.18)

for some σ′′ ∈ Σ such that (η1 . . . ηk−1, σ
′′) ∈

⊙k−1
t=1 µ(it, jt, vt, jt+1). Then

fC({(ηk, σ)}) ⊑ fC(Gjk

ik
(vk) ∗ lift(σ′′)) (5.18)

⊑ fC(Gjk

ik
(vk)) ∗ lift(σ′′) fC is local

⊑ Gjk

ik
(v′

k) ∗ lift(σ′′) (5.12)

If ζ ′ = ⊤, then fC({(ηk, σ)}) = ⊤. From the above it then follows that Gjk

ik
(v′

k) = ⊤,

which entails (5.17). If ζ ′ 6= ⊤, then ζ ′ = (η1 . . . ηk−1η
′
k, σ

′) and {(η′
k, σ

′
k)} ⊑ fC({(ηk, σ)}).

Together with the above, this again entails (5.17).

Case 2. Rule (5.3): procedure call. In this case

v1 . . . vk−1vk, (η1 . . . ηk−1ηk, σ) →S v1 . . . vk−1v
′
kstartik+1

, (η1 . . . ηk−1ηkηk+1, σ),

ηk+1 ∈ Lveik+1
, and (vk, fik+1

, v′
k) ∈ T . It is sufficient to show that for some jk+1 ∈

specs(ik+1) we have

{(η1 . . . ηkηk+1, σ)} ⊑

((
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ µ(ik, jk, v

′
k, jk+1)

)
⊙ G

jk+1

ik+1
(startik+1

).

(5.19)

By (5.13), we have

Gjk

ik
(vk) ⊑

⊔

t∈specs(ik+1)

(pt
ik+1

∗ µ(ik, jk, v
′
k, t)).

From this and (5.16), we get

{(η1 . . . ηk, σ)} ⊑

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙




⊔

t∈specs(ik+1)

(pt
ik+1

∗ µ(ik, jk, v
′
k, t))


 .
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Thus, there exists jk+1 ∈ specs(ik+1) such that

{(η1 . . . ηk, σ)} ⊑

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ (p

jk+1

ik+1
∗ µ(ik, jk, v

′
k, jk+1)).

Since G
jk+1

ik+1
(startik+1

) ⊒ p
jk+1

ik+1
∗Lvik+1

, p
jk+1

ik+1
has an empty environment, and ηk+1 ∈ Lveik+1

,

this entails (5.19).

Case 3. Rule (5.4): procedure return. In this case k ≥ 2, vk = endik , and

v1 . . . vk−1endik , (η1 . . . ηk−1ηk, σ) →S v1 . . . vk−1, (η1 . . . ηk−1, σ).

It is sufficient to show that

{(η1 . . . ηk−1, σ)} ⊑

(
k−2⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ G

jk−1

ik−1
(vk−1). (5.20)

Since k ≥ 2, from (5.16) we get

{(η1 . . . ηk−1ηk, σ)} ⊑

((
k−2⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ µ(ik−1, jk−1, vk−1, jk)

)
⊙ Gjk

ik
(endik).

Then

{(η1 . . . ηk−1, σ)} ⊑

(
k−2⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ (µ(ik−1, jk−1, vk−1, jk) ∗ (State(Gjk

ik
(endik)))).

Since State(Gj
i (endi)) ⊑ qj

i , this entails

{(η1 . . . ηk−1, σ)} ⊑

(
k−2⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ (µ(ik−1, jk−1, vk−1, jk) ∗ qjk

ik
).

By (5.14), we have

µ(ik−1, jk−1, vk−1, jk) ∗ qjk

ik
⊑ G

jk−1

ik−1
(vk−1).

The last two inequalities entail (5.20). 2

Proof of Theorem 5.1. Consider a proof (5.5) of the program S. Let E be the semantic

procedure context constructed out of the procedure context Γ, which we represent in the

form (5.6) with R = N. We can show that from a derivation of a triple Γ ⊢ {P ∗

Vars(~xi)} Ci {Q ∗ truee} that does not use Conj we can construct a semantic proof

(Ci, G, E , µ) for some G and µ such that G(starti) = JP K ∗ Lvi, State(G(endi)) ⊑ JQK,
∀v. G(v) < ⊤, and ∀v, j. µ(v, j) < ⊤. This is done in the same way as in the proof

of Lemma 3.4, in particular, the soundness of the rules Frame and Disj is shown by

establishing an analogue of Lemma 3.8(i,ii).4 The set of semantic proofs constructed in

this way from (5.5) satisfies the conditions of Lemma 5.5. Theorem 5.1 is then an easy

consequence of this lemma. 2

4Note that we cannot establish the soundness of Conj in this way as Lemma 3.8(iii) does not hold

for procedure-local semantic proofs.
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5.3 Interprocedural analysis

To perform the interprocedural analysis using the treatment of procedure calls and re-

turns proposed at the beginning of this chapter, we adapt the Reps-Horwitz-Sagiv (RHS)

algorithm [64, 69] to use localisation and arbitrary abstract separation domains. We call

the analysis presented here the local RHS analysis.

Analysis formulation. We assume an intraprocedural analysis defined by

• a separation algebra (D♯
2, ∗

♯) of abstract states with a total ∗♯ operation and a unit

element e♯;

• a concretisation function γ : D♯
2 → D2;

• abstract transfer functions f ♯
C : D♯

2 → P(D♯
2)

⊤ for C ∈ Seq

such that

• abstract transfer functions over-approximate the concrete ones:

∀p ∈ D♯
2. fC(γ(p)) ⊑ γ(f ♯

C(p));

• the abstract operation of separate combination over-approximates the concrete one:

∀p, q ∈ D♯
2. γ(p) ∗ γ(q) ⊑ γ(p ∗♯ q).

The interprocedural analysis we present here uses the domain of sets of elements of D♯.

Therefore, out of the above we construct

• an abstract separation domain (P(D♯
2)

⊤,⊑,
⊔

,⊥,⊤, ∗♯, {e♯});

• a monotone concretisation function γ : P(D♯
2)

⊤ → D2;

• abstract transfer functions f ♯
C : P(D♯

2)
⊤ → P(D♯

2)
⊤ for C ∈ Seq

such that

∀p ∈ P(D♯
2)

⊤. fC(γ(p)) ⊑ γ(f ♯
C(p)) (5.21)

and

∀p, q ∈ P(D♯
2)

⊤. γ(p) ∗ γ(q) ⊑ γ(p ∗♯ q). (5.22)

We thus obtain an abstract interpretation with state separation with the abstract domain

P(D♯
2)

⊤ and the concrete domain D2.

For a set A ∈ P(D♯
2 ∪ {⊤}) let the function id(A) : (D♯

2 ∪ {⊤}) → P(D♯
2) be defined

as follows: id(A)(p) = {|p}| if p ∈ A and id(A)(p) = ∅ otherwise. Let pre ∈ D♯
2 be an

abstract element representing the set of initial states of the program S such that γ(pre)

has an empty environment. The local RHS analysis operates on the domain D̂♯ = N →

((D♯
2∪{⊤}) → P(D♯

2)
⊤) and is defined by the functional F ♯(pre) : D̂♯ → D̂♯ in Figure 5.3.

Its definition uses the following ingredients:
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F ♯(pre)(G♯) = G̃♯, where

• G̃♯(start0) = id({pre ∗♯ Lv
♯
0});

• G̃♯(v′, p) =
⊔

(v,C,v′)∈T

f ♯
C(G♯(v, p))

for every program point v′ ∈ N that is not a starting or return point;

• G̃♯(v′) = id
({

ProcLocali(q) ∗
♯ Lv

♯
i | i = calledc(v) ∧ p ∈ D♯

2 ∪ {⊤} ∧

((G♯(v, p) < ⊤ ∧ q ∈ G♯(v, p)) ∨ (G♯(v, p) = ⊤∧ q = ⊤))
})

for every starting point v′ ∈ N\{start0}, where i = proc(v′).

• G̃♯(v′, p) =
⊔
{State♯(G♯(endi, ProcLocali(q) ∗

♯ Lv
♯
i)) ∗

♯ {|Framei(q)}| |

(G♯(call(v′), p) < ⊤∧ q ∈ G♯(call(v′), p)) ∨ (G♯(call(v′), p) = ⊤∧ q = ⊤)}

for every return point v′ ∈ N , where i = calledr(v′).

Figure 5.3: Local RHS analysis

• The abstract state Lv
♯
i ∈ D♯

2, i = 0..l represents the initial environment of the

procedure fi:

Lvi ⊑ γ(Lv
♯
i). (5.23)

• The functions ProcLocali : D♯
2 → D♯

2 and Framei : D♯
2 → D♯

2 for i = 0..l determine

the splitting of the abstract state at a call point of the procedure fi: ProcLocali

determines the part of the state that is passed to the callee and Framei the part

that stays with the caller. We require that they split the state soundly:

∀p ∈ D♯
2. γ(p) ⊑ γ(ProcLocali(p)) ∗ γ(Framei(p)). (5.24)

We also require that γ(ProcLocali(p)) have an empty environment, since the owner-

ship of the local variables of the callee should not be transferred to the caller. We

lift ProcLocali and Framei to P(D♯
2)

⊤ pointwise.

• The function State♯ : D♯
2 → D♯

2 projects out the environment from the states in its

argument:

∀p ∈ D♯
2. State(γ(p)) ⊑ γ(State♯(p)). (5.25)

We lift State♯ to P(D♯
2)

⊤ pointwise.

The analysis tabulates a function G♯ ∈ D̂♯. Intuitively, for a state p1 ∈ D♯
2 ∪ {⊤} at

the starting point of the procedure containing the program point v, G♯(v, p1) ∈ P(D♯
2)

⊤

represents the abstract states p2 ∈ D♯
2∪{⊤} at the program point v such that there exists

an execution of a sequence of program statements between these two points transforming

p1 to p2. In the original RHS algorithm every such pair of states (p1, p2) is called a
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path edge. In the case when v is a final point, it is called a summary edge. The set

of all summary edges for a procedure starting from a given p1 forms a summary of the

procedure.

The treatment of ordinary program points in the definition of F ♯(pre) is standard,

except we compute transfer functions on states at a program point v separately for every

input state to the procedure containing v. The equation for a starting point propagates

the local parts of states at call points of the corresponding procedure (for any input state

to the caller) to starting points. The states at return points are obtained by considering

every state at the corresponding call point and by ∗♯-conjoining the postcondition for the

summary edge starting from the local part of the state to the frame. A computation of

a fixed point of F ♯(pre) would iteratively create new path and summary edges, analysing

each procedure only once for a given local heap.

A heuristic for determining heap splittings. As we noted at the beginning of this

chapter, one possible way to to split the heap at a call point of a procedure is to send to the

procedure all of the heap reachable from the global variables, including those holding the

values of the actual parameters [67].5 The definition of ProcLocalk and Framek according

to this heuristic is similar to the definition of Protectedk and ThreadLocalk for the thread-

modular analysis given in Section 3.3.2. We illustrate it using the example of the domain

SLL of Section 2.2.1.

Consider a variation of the domain where the assertions are interpreted with respect

to the example domain RAM2 of Section 5.1. Let D♯
2 be the set of symbolic heaps.

For a variable ownership assertion O let Globals(O), respectively, Locals(O) be the set of

global, respectively, local variables in O. The functions ProcLocalk and Framek are defined

by modifying equations (3.4) and (3.5) for Protectedk and ThreadLocalk, respectively.

Consider a symbolic heap O 
 ∃ ~X. P ∧ S. As before, we require that the variables in S

be chosen so that for each equivalence class generated by the equalities in P at most one

variable from this equivalence class is present in S, with preference given to unquantified

variables over quantified ones, and to global variables over others. We then let

ProcLocalk(O 
 ∃ ~X. P ∧ S) = can(Globals(O) 
 ∃ ~X, ~Y . (P ∧ Reach(S, Globals(O)))

[~Y /(vars(P ∧ Reach(S, Globals(O))) ∩ Locals(O))]) (5.26)

and

Framek(O 
 ∃ ~X. P ∧ S) =

can(Locals(O) 
 ∃ ~X, ~Z. (P ∧ Unreach(S, Globals(O)))[~Z/Globals(O)]) (5.27)

5 Actually, an analysis using this heuristic does not compute reachability from the global variables

holding the actual parameters of procedures other than the one called, since in our desugaring of parameter

passing (Section 5.1) we clear them immediately after use.
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for fresh ~Y , ~Z. It is easy to check that ProcLocalk and Framek defined in this way sat-

isfy (5.24). We also let Lv
♯
k = (~xk 
 emph) and

State♯(O 
 ∃ ~X. P ∧ S) = can(Globals(O) 
 ∃ ~X, ~Y . (P ∧ S)[~Y /Locals(O)])

for fresh ~Y .

The above definition of heap splitting abstracts away all the cutpoints (in Section 5.5.2

we define an analysis that treats cutpoints precisely). For example, consider the symbolic

heap

P = (x, y, u, v 
 ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) ∗ ls(v, x)),

where x and y are global and u and v are local. In this case

ProcLocalk(P ) = can(x, y 
 ∃Y. ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)) =

(x, y 
 ls(x, NULL) ∗ ls(y, NULL))

and Framek(P ) = (u, v 
 ∃Z. ls(v, Z)). Thus, the splitting breaks the pointers x and u

between the local heap and the frame.

Soundness. We prove the soundness of the analysis by showing that its results generate

an instance of the procedure-local interpretation introduced in Section 5.2.2: the set of

summary edges starting from a given abstract state form a procedure specification and

the set of path edges starting from the same state yield a corresponding semantic proof.

Let G♯ ∈ D̂♯ be a fixed point of F ♯(pre) and let R = D♯
2 ∪ {⊤}. We define specs(i) as the

set of local abstract states without initial procedure environments that are propagated to

the starting point of the procedure fi: specs(0) = {pre} and for i = 1..l

specs(i) =
{
ProcLocali(q) | i = calledc(v) ∧ p ∈ D♯

2 ∪ {⊤} ∧

((G♯(v, p) < ⊤∧ q ∈ G♯(v, p)) ∨ (G♯(v, p) = ⊤∧ q = ⊤))
}
.

We then define pr
i = γ(r) and qr

i = State(γ(G♯(endi, r∗
♯Lv

♯
i)))} for i = 0..l and r ∈ specs(i).

Since pr
i and qr

i have an empty environment, the analysis thus constructs a semantic

procedure context E of the form (5.6), where the specifications are indexed by the abstract

states used to obtain their preconditions. For i = 0..l and r ∈ specs(i) let Gr
i : Ni → D2

and µ(i, r) : Ni ×R → D2 be defined as follows:

Gr
i (v) = γ(G♯(v, r ∗♯ Lv

♯
i))

and if v is a return point, then

µ(i, r, v, r′) =
⊔{

γ(Framet(w)) | {|w}| ⊑ G♯(call(v), r ∗♯ Lv
♯
i) ∧ r′ = ProcLocalt(w)

}
,

where t = calledr(v); otherwise, µ(i, r, v, r′) is assigned an arbitrary value. Using (5.21)–

(5.25), it is easy to show that (Ci, G
r
i , E , µ(i, r)), i = 0..l, r ∈ specs(i) are semantic proofs
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satisfying the conditions of Lemma 5.5, i.e., Gr
i (starti) ⊒ pr

i ∗Lvi and State(Gr
i (endi)) ⊑ qr

i .

From this lemma we can derive a soundness statement for the local RHS analysis as follows.

Assume (η0, σ0) ∈ Σe × Σ is such that {(η0, σ0)} ⊑ γ(pre) ∗ Lv0 and start0, (η0, σ0) →
∗
S

v1 . . . vk, ζ . Then by Lemma 5.5 for some r1, . . . , rk such that rt ∈ specs(it), it = proc(vt),

t = 1..k, we have

{|ζ}| ⊑
k−1⊙

t=1

⊔
{γ(Frameit+1(w)) | {|w}| ⊑ G♯(call(vt), rt ∗

♯ Lv
♯
it) ∧

rt+1 = ProcLocalit+1(w)} ⊙ γ(G♯(vk, rk ∗
♯ Lv

♯
ik

)).

The inequality holds if and only if there exist w1, . . . , wk ∈ D♯ ∪ {⊤} such that

{|wt}| ⊑ G♯(call(vt), rt ∗
♯ Lv

♯
it
), t = 1..(k − 1); {|wk}| ⊑ G♯(vk, rk ∗

♯ Lv
♯
ik

);

rt+1 = ProcLocalit+1(wt), t = 1..(k − 1)

and

{|ζ}| ⊑

(
k−1⊙

t=1

γ(Frameit+1(wt))

)
⊙ γ(G♯(vk, rk ∗

♯ Lv
♯
ik

)).

Eliminating rt, we get that for some w1, . . . , wk ∈ D♯
2 ∪ {⊤} such that

{|w1}| ⊑ G♯(v1, pre ∗
♯ Lv

♯
i1
); {|wt}| ⊑ G♯(call(vt), ProcLocalit(wt−1) ∗

♯ Lv
♯
it
),

t = 2..(k − 1); {|wk}| ⊑ G♯(vk, ProcLocalik(wk−1) ∗
♯ Lv

♯
ik

), (5.28)

we have

{|ζ}| ⊑

(
k−1⊙

t=1

γ(Frameit+1(wt))

)
⊙ γ(wk). (5.29)

The abstract states wt for t = 1..(k − 1) give the local states for the procedures on the

call-stack at the point where the procedure fit is called; wk gives the local state at the

current point in the last procedure called. We have thus proved the following theorem

stating that for any concrete state reachable in the operational semantics of the program,

there exists an interprocedural path through the summary table computed by the analysis

such that the frames on the path together with the local state of the last procedure called

over-approximate the concrete state.

Theorem 5.6 (Soundness of the analysis). Let G♯ ∈ D̂♯ be a fixed point of F ♯(pre).

If (η0, σ0) ∈ Σe×Σ is such that {(η0, σ0)} ⊑ γ(pre)∗Lv0, then whenever start0, (η0, σ0) →
∗
S

v1 . . . vk, ζ, for some w1, . . . , wk ∈ D♯
2 ∪ {⊤} satisfying (5.28) we have (5.29).

We note that the soundness statement given by this theorem can be easily generalised

from providing an over-approximation of the collecting semantics of the program to pro-

viding an over-approximation of its trace semantics. Such a statement could be used, for

example, to enable compiler optimisations across procedure boundaries.
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5.4 Concurrent programs with procedures

We now show how the logic and the analysis presented in this chapter can be composed

with a logic and an analysis for concurrent programs. For technical simplicity we consider

the logic and the analysis for static locks presented in Chapter 3. The case of storable

locks is handled in a similar way.

Consider a concurrent program with procedures S of the form

f0 {local ~x0 in C0} . . . fl {local ~xl in Cl} in fmain1 ‖ . . . ‖ fmainn

Here fmain1, . . . , fmainn, 0 ≤ maint ≤ l, t = 1..n are top-level procedures in the correspond-

ing threads. Commands are in the language of Section 2.1.3 extended with the procedure

call command as well as critical regions over the locks ℓ1, . . . , ℓm:

C ::= . . . | f | acquire(ℓk); C; release(ℓk)

We assume that no procedure calls the top-level procedures.

We represent the body Ci of every procedure fi with its CFG (Ni, Ti, starti, endi) over

the set of primitive commands

Seq ∪ {fi | i = 0..l} ∪ {acquire(ℓk) | k = 1..m} ∪ {release(ℓk) | k = 1..m}

and let N =
⋃l

i=0 Ni and T =
⋃l

i=0 Ti. In the following we use Lvei, Lvi, proc, call, calledc,

calledr as defined in Section 5.1.

We define the semantics of the program S by the transition relation

→S ⊆ (({1, . . . , n} → N+) × (({1, . . . , n} → Σ+
e
) × Σ)) ×

(({1, . . . , n} → N+) × ((({1, . . . , n} → Σ+
e
) × Σ) ∪ {⊤}))

in Figure 5.4, which transforms triples of

• mappings from thread identifiers to call-stacks (program counters);

• mappings from thread identifiers to sequences of environments on the call-stack of

the corresponding thread; and

• heaps.

The semantics is a straightforward combination of the ones in Figures 5.2 and 3.2. As in

Figure 3.2, we rely on the fact that we can determine the set Free(pc) of indices of free

locks at every program counter pc ∈ {1, . . . , n} → N+.

Let us denote with pc0 the initial program counter pc0 = [1 : startmain1] . . . [n :

startmainn] and with pcf the final one [1 : endmain1] . . . [n : endmainn]. An initial state of the

program S is a state of the form ([1 : η1] . . . [n : ηn], σ0), where σ0 ∈ Σ and ηk ∈ Lvemaink,

k = 1..n. We say that the program S is safe when run from an initial state (g0, σ0), if it

is not the case that pc0, (g0, σ0) →
∗
S pc,⊤ for some program counter pc.
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(v, C, v′) ∈ T C ∈ Seq fC({(η, σ)}) < ⊤ (η′, σ′) ∈ fC({(η, σ)})

pc[k : c · v], (g[k : α · η], σ) →S pc[k : c · v′], (g[k : α · η′], σ′)

(v, C, v′) ∈ T C ∈ Seq fC({(η, σ)}) = ⊤

pc[k : c · v], (g[k : α · η], σ) →S pc[k : c · v′],⊤

(v, acquire(ℓj), v
′) ∈ T j ∈ Free(pc[k : c · v])

pc[k : c · v], (g[k : α · η], σ) →S pc[k : c · v′], (g[k : α · η], σ)

(v, release(ℓj), v
′) ∈ T

pc[k : c · v], (g[k : α · η], σ) →S pc[k : c · v′], (g[k : α · η], σ)

(v, fi, v
′) ∈ T η′ ∈ Lvei

pc[k : c · v], (g[k : α], σ) →S pc[k : c · v′ · starti], (g[k : α · η′], σ)

pc[k : c · v · endi], (g[k : α · η], σ) →S pc[k : c · v], (g[k : α], σ)

Figure 5.4: Operational semantics of concurrent programs with procedures

5.4.1 Logic

The logic for concurrent programs with procedures is obtained by combining the logics in

Sections 5.2 and 2.1.4. Its judgements are of the form Γ, I ⊢ {P} C {Q} with assertions

interpreted over the domain D2, and the proof rules are adapted straightforwardly. A

proof of the program S is given by triples

Γ, I ⊢ {P ∗ Vars(~xi)} Ci {Q ∗ truee} for every {P} fi {Q} ∈ Γ. (5.30)

As before, we require that pre- and postconditions of the specifications in Γ have an empty

environment. Additionally, we require the same of resource invariants, since environments

are local to procedure invocations and should not be transferred between threads.

The soundness statement for the logic generalises Theorems 5.1 and 3.4.

Theorem 5.7 (Soundness of the logic). Consider a proof (5.30) of the program S,

where {Pt} fmaint {Qt} ∈ Γ, t = 1..n and either

• the resource invariants in I are precise and the ∗ operation is cancellative; or

• Conj is not used in the derivation of the triples.

Assume g0 ∈ {1, . . . , n} → Σe is such that g0(t) ∈ Lvemaint for t = 1..n, and σ0 ∈ Σ is

such that

lift(σ0) ⊆

(
n
⊛
t=1

JPtK
)
∗

(
m
⊛
t=1

JItK
)

.

Then the program S is safe when run from the initial state (g0, σ0), and whenever

pc0, (g0, σ0) →
∗
S pc

f
, (g, σ), we have

lift(σ) ⊆

(
n
⊛
t=1

JQtK
)
∗

(
m
⊛
t=1

JItK
)

.
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To prove the theorem, assume first that the resource invariants in I are precise and the ∗

operation is cancellative. In this case we can adapt the proof of soundness of sequential

logic with procedures given in Section 5.2.1 to concurrent setting. Let I = JIK. We extend

the definition of Ri in Section 5.2.1 with predicate transformers Post(C) for acquire and

release commands defining their thread-local semantics.6 The definition of the predicate

transformer for acquire(ℓk) follows the global Acquire axiom—upon acquiring a lock

the thread gets the ownership of the resource invariant associated with the lock:

Post(acquire(ℓk), p) = p ∗ Ik.

Consider now the command release(ℓk). According to the global Release axiom, upon

releasing a lock the thread has to give up the ownership of the part of its local state

satisfying the lock’s resource invariant. When the resource invariant Ik is precise there

may be at most one such part. Thus, when the ∗ operation is cancellative, we can define

the transformer as the pointwise lifting of the following function Post(release(ℓk)) :

Σe × Σ → D2 that removes the part of the state satisfying Ik and faults if no such part

exists:

Post(release(ℓk), ξ) =





{ξ\Ik}, if (ξ\Ik)↓ ;

⊤, otherwise.

The transformers for acquire and release defined in this way are local. It is easy to

check that Lemmas 5.2 and 5.3 hold with the newly defined Ri.

Note that Post(release(ℓk)) is not well-defined when Ik is imprecise, which makes it

impossible to adapt the proof of Section 5.2.1 to concurrent setting in this case. As we

show below, the proof of Lemma 5.5 provides an ingredient for a suitable induction hy-

pothesis that can be used when resource invariants may be imprecise to perform the proof

directly with respect to the operational semantics, without constructing a denotational

one.

We define the functions

νk : Σ+
e
× Σ → ({1, . . . , n} ⇀ Σ+

e
) × Σ, k = 1..n; ν0 : Σe × Σ → ({1, . . . , n} ⇀ Σ+

e
) × Σ

as follows:

νk(α, σ) = ([k : α], σ), k = 1..n; ν0(η, σ) = ([ ], σ)

and lift them pointwise to P(Σ+
e
× Σ)⊤ and P(Σe × Σ)⊤, respectively. Let the partial

operation ⋆ on ({1, . . . , n} ⇀ Σ+
e
) × Σ be defined as follows: (g1, σ1) ⋆ (g2, σ2) = (g1 ⊎

g2, σ1 ∗σ2). We lift ⋆ to P(({1, . . . , n} ⇀ Σ+
e
)×Σ)⊤ pointwise and use an iterated version

of the lifted ⋆:
k

⋆©
i=1

= ({[ ]} × e) ⋆ p1 ⋆ . . . ⋆ pk.

Theorem 5.7 follows from the following lemma.

6 The thread-local semantics we define here is similar to the local enabling relation in the Brookes’s

proof of soundness of concurrent separation logic [12].
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Lemma 5.8. If

{(g0, σ0)} ⊑

(
n

⋆©
t=1

νt(Lvmaint)

)
⋆ ν0

(
⊛

t∈{1,...,m}
It

)
,

then, whenever pc0, (g0, σ0) →
∗
S pc, ζ, we have

{|ζ}| ⊑

(
n

⋆©
t=1

νt(H(pc(t)))

)
⋆ ν0

(
⊛

t∈Free(pc)
It

)
(5.31)

for H : N+ → P(Σ+
e
× Σ)⊤ defined as follows:

H(v1 . . . vk) =

⊔
{(

k−1⊙

t=1

Env({|ξt}| )

)
⊙ {|ξk}| | ξt, t = 1..k satisfy (5.10) for ξ0 ∈ Lvmaini1

}
.

The lemma is a straightforward combination of Lemmas 3.1 and 5.4 (in particular, these

lemmas are its special cases). In the statement of the lemma H(v1 . . . vk) gives the set

of procedure-global, but thread-local states reachable when the corresponding thread is

at the call-stack v1 . . . vk, which are computed as in Lemma 5.4. The set of reachable

global states is then computed as in Lemma 3.1 with thread-local states given by H . We

omit the proof of the lemma and turn to the more interesting case of imprecise resource

invariants.

When the resource invariants I may be imprecise, the proof of Theorem 5.7 is obtained

by combining the proofs of soundness given in Sections 5.2.2 and 3.4.3 with the aid of the

following lemma, generalising Lemmas 5.5 and 3.1. In this case, the notion of semantic

proofs is a combination of procedure-local and thread-local semantic proofs: here we define

it as a tuple (C, G, E , µ, I) satisfying (5.12)–(5.14) and (3.9)–(3.10) for the corresponding

edges in the CFG of C.

Lemma 5.9 (Soundness of the intermediate interpretation). Consider a seman-

tic procedure context E of the form (5.6) for some set of indices R. Assume seman-

tic proofs (Ci, G
j
i , E , µ(i, j), I) for i = 0..l, j ∈ specs(i), where Gj

i (starti) ⊒ pj
i ∗ Lvi

and State(Gj
i (endi)) ⊑ qj

i , and take j1 ∈ R such that j1 ∈ specs(maint), t = 1..n. If

g0 ∈ {1, . . . , n} → Σe and σ0 ∈ Σ are such that g0(t) ∈ Lvemaint for t = 1..n and

{(g0, σ0)} ⊑

(
n

⋆©
t=1

νt(G
j1
maint(startmaint))

)
⋆ ν0

(
⊛

t∈{1,...,m}
It

)
,

then whenever pc0, (g0, σ0) →
∗
S pc, ζ, (5.31) holds for H : N+ → P(Σ+

e
× Σ)⊤ defined as

follows:

H(v1 . . . vk) =

⊔
{(

k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ Gjk

ik
(vk) | jt ∈ specs(it), it = proc(vt), t = 1..k

}
.
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Proof of Lemma 5.9. As usual, the proof is by induction on the length of the derivation

of ζ in the operational semantics of the program S. It largely consists of literally repeating

parts of proofs of Lemmas 3.1 and 5.5, therefore, here we present only the case of a

sequential command; the other cases are similar. Assume

pc0, (g0, σ0) →
∗
S pc[j : v1 . . . vk−1vk], (g, σ) →S pc[j : v1 . . . vk−1vk], ζ

′

and (vk, C, v′
k) ∈ T , C ∈ Seq. We need to show that if

{(g, σ)} ⊑

(
n

⋆©
t=1

νt(H((pc[j : v1 . . . vk−1vk])(t)))

)
⋆ ν0

(
⊛

t∈W
It

)
, (5.32)

then

{|ζ ′}| ⊑

(
n

⋆©
t=1

νt(H((pc[j : v1 . . . vk−1v
′
k])(t)))

)
⋆ ν0

(
⊛

t∈W
It

)
, (5.33)

where W = Free(pc[j : v1 . . . vk−1vk]) = Free(pc[j : v1 . . . vk−1v
′
k]). If H(pc(t)) = ⊤ for

some t 6= j, or It = ⊤ for some t ∈ W , then (5.33) is trivially true. Otherwise, from (5.32)

for some j1, . . . , jk such that jt ∈ specs(it), it = proc(vt), t = 1..k, we have

{(g(j), σ)} ⊑

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ (Gjk

ik
(vk) ∗ (lift(σ1)))

for σ1 ∈ Σ such that

{(g′, σ1)} ⊑


 ⋆©

1≤t≤n,
t6=j

νt(H(pc(t)))


 ⋆ ν0

(
⊛

t∈W
It

)
,

where g′ is identical to g except it is undefined at j. If µ(it, jt, vt, jt+1) = ⊤ for some t,

then H(v1 . . . vk−1v
′
k) = ⊤ and (5.33) holds trivially. Otherwise, let g(j) = η1 . . . ηk, then

{(ηk, σ)} ⊑ Gjk

ik
(v′

k) ∗ lift({σ1} ∗ {σ2}) for some σ2 ∈ Σ such that

(η1 . . . ηk−1, σ2) ∈
k−1⊙

t=1

µ(it, jt, vt, jt+1).

Continuing as in case 1 in the proof of Lemma 5.5, we get

fC({(ηk, σ)}) ⊑ Gjk

ik
(v′

k) ∗ lift({σ1} ∗ {σ2}).

If ζ ′ = ⊤, then fC({(ηk, σ)}) = ⊤. From the above it then follows that Gjk

ik
(v′

k) =

⊤. Thus, H(v1 . . . vk−1v
′
k) = ⊤, which entails (5.33). If ζ ′ 6= ⊤, then ζ ′ = (g′[j :

η1 . . . ηk−1η
′
k], σ

′) and {(η′
k, σ

′)} ⊑ fC({(ηk, σ)}). Together with the above, this entails

(η1 . . . ηk−1η
′
k, σ

′) ∈

(
k−1⊙

t=1

µ(it, jt, vt, jt+1)

)
⊙ (Gjk

ik
(v′

k) ∗ lift(σ1)),

which implies (5.33). 2
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F ♯(I0)(G♯, I♯) = (G̃♯, Ĩ♯), where

• G̃♯(startmaink) = id(Lv
♯
maink), k = 0..n;

• G̃♯(v′, p) =
⊔

(v,C,v′)∈T

g♯
C(G♯(v, p)), where

g♯
C(p) =






f ♯
C(p), if C ∈ Seq;

p ∗♯ I♯
k, if C is acquire(ℓk);

ThreadLocalk(p), if C is release(ℓk);

for every program point v′ ∈ N that is not a start or return point;

• G̃♯(v′) = id
({

ProcLocali(q) ∗
♯ Lv

♯
i | i = calledc(v) ∧ p ∈ D♯

2 ∪ {⊤} ∧

((G♯(v, p) < ⊤ ∧ q ∈ G♯(v, p)) ∨ (G♯(v, p) = ⊤∧ q = ⊤))
})

for every start point v′ ∈ N\{start0}, where i = proc(v′);

• G̃♯(v′, p) =
⊔
{State♯(G♯(endi, ProcLocali(q) ∗

♯ Lv
♯
i)) ∗

♯ {|Framei(q)}| |

(G♯(call(v′), p) < ⊤∧ q ∈ G♯(call(v′), p)) ∨ (G♯(call(v′), p) = ⊤∧ q = ⊤)}

for every return point v′ ∈ N , where i = calledr(v′).

• Ĩ♯
k = I0

k ⊔
⊔
{Protectedk(G

♯(v, q)) | q ∈ D♯ ∪ {⊤} ∧ (v, release(ℓk), v
′) ∈ T}

for every lock ℓk.

Figure 5.5: Interprocedural thread-modular analysis

5.4.2 Analysis

We assume the setting of Section 5.3. The interprocedural thread-modular analysis is

obtained by composing the analyses defined in Sections 5.3 and 3.3. The analysis operates

on the domain

D̂♯ = (N → ((D♯
2 ∪ {⊤}) → P(D♯

2)
⊤)) × (P(D♯

2)
⊤)m.

Given a vector I0 ∈ (P(D♯
2)

⊤)m of initial approximations of resource invariants, it is

defined by the functional F ♯(I0) : D̂♯ → D̂♯ in Figure 5.5. The analysis is a straightforward

combination of the analyses in Figures 5.3 and 3.3. In addition to the ingredients of the

local RHS analysis of Section 5.3, we parameterise it with functions ThreadLocalk : D♯
2 →

D♯
2 and Protectedk : D♯

2 → D♯
2 for k = 1..m defining the splitting of the state at release

commands. We require that they satisfy an analogue of (3.3) for the domain D2 and

that for any p ∈ D2 and k = 1..m, γ(Protectedk(p)) have an empty environment. We lift

ThreadLocalk and Protectedk to P(D♯
2)

⊤ pointwise.

Using Lemma 5.9, the soundness of the analysis is justified by combining the proofs
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in Sections 5.3 and 3.4.2. As before, the soundness statement is a combination of the

corresponding theorems for concurrent programs with static locks (Theorem 3.2) and for

sequential programs with procedures (Theorem 5.6).

Theorem 5.10 (Soundness of the analysis). Let (G♯, I♯) be a fixed point of F ♯(I0).

If

{(g0, σ0)} ⊑

(
n

⋆©
t=1

νt(Lvmaint)

)
⋆ ν0

(
⊛

t∈{1,...,m}
γ(I0

t )

)
,

then, whenever pc0, (g0, σ0) →
∗
S pc, ζ, we have

{|ζ}| ⊑

(
n

⋆©
t=1

νt(H(pc(t)))

)
⋆ ν0

(
⊛

t∈Free(pc)
γ(I♯

t )

)

for H : N+ → P(Σ+
e
× Σ)⊤ defined as follows:

H(v1 . . . vk) =
⊔
{(

k−1⊙

t=1

γ(Frameit+1(wt))

)
⊙ γ(wk) |

w1, . . . , wk ∈ D♯
2 ∪ {⊤} satisfy (5.28) for pre = e♯

}
.

5.5 Logical variables and cutpoints

In this section we prove the soundness of the proof rules for manipulating logical variables,

Exists and Forall, for programs with procedures and show how the interprocedural

analysis of Section 5.3 can handle cutpoints precisely using logical variables.

In the setting of Section 5.1, assume that Σ is an algebra with logical variables (Sec-

tion 2.1.3), i.e., Σ = Σ′ × Ints, then so is Σe ×Σ = (Σe ×Σ′)× Ints. We also assume that

P(Σ′) has a unit element e′ such that e′ × Ints = e. We require that the functions fC for

C ∈ Seq are lifted from functions on Σe × Σ′.

5.5.1 Logic

Consider the logic for sequential programs with procedures of Section 5.2. Under the

above conditions, the proof of Theorem 5.1 given in Section 5.2.1 can be easily extended

to the case when the logic contains the rules Exists and Forall: the functions gi can be

represented as lifted from local functions on Σ′, which allows us to establish Lemma 5.2

for the extended logic.

We now extend the proof of soundness given in Section 5.2.2 to the case when the

logic contains the rule Exists (as is the case with Conj, the proof cannot be extended to

prove the soundness of Forall). Later in this section, we use the new proof to establish

the soundness of Exists in the concurrent setting for the case when resource invariants

may be imprecise.
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Our goal is to reuse Lemma 5.5 and the notion of semantic proofs introduced in

Section 5.2.2. To prove the soundness of Exists, we would like to establish an ana-

logue of Lemma 3.11(i) that constructs a semantic proof for the conclusion of the rule

out of a semantic proof for its premiss. Unfortunately, the straightforward analogue of

Lemma 3.11(i) does not hold for semantic proofs considered here. Indeed consider the

derivation
ProcCall

Γ ⊢ {P} f {Q}
Frame

Γ ⊢ {P ∗ R} f {Q ∗ R}
Exists

Γ ⊢ {∃X. P ∗ R} f {∃X. Q ∗ R}

where Γ =
{
{P} f {Q}

}
.

We cannot in general represent ∃X. P ∗ R in the form P ∗ R′ and, hence, cannot

construct a semantic proof for the conclusion of Exists in this derivation over the se-

mantic procedure context corresponding to Γ out of a semantic proof for the premiss. The

solution is to use the semantic counterpart of the equivalence

∃X. P ∗ R ⇔
∨

u∈Values

(P [u/X] ∗ R[u/X]),

which allows us to construct a semantic proof over an extended semantic procedure con-

text that includes all variants of the summaries from Γ where values are substituted for

logical variables in all possible ways. Furthermore, we show below that out of such seman-

tic proofs we can construct semantic proofs justifying the specifications in the extended

procedure context. This set of semantic proofs can then be used in Lemma 5.5. Note

that, strictly speaking, such a proof is not analogous to a proof of the admissibility of

Exists, since we are effectively converting derivations for the whole program, not just for

the part of the derivation dealing with the command Exists is applied to. This is because

in the case of imprecise resource invariants we do not have a thread-local semantics of the

procedure call command validating Exists akin to the one we used in Section 5.2.1.

Before presenting the proof, we first give some auxiliary definitions. Let PartInts =

LVars ⇀ Values be the set of partial interpretations, giving values to some of logical

variables. For i ∈ Ints and τ ∈ PartInts, we denote with i[τ ] the interpretation i[τ ] such

that for any X ∈ LVars

(i[τ ])(X) =





τ(X), if τ(X)↓ ;

i(X), if τ(X)↑ .

We define the operation ⊕ : PartInts×PartInts → PartInts as follows: for any X ∈ LVars

(τ1 ⊕ τ2)(X) =





τ1(X), if τ1(X)↓ ;

τ2(X), if τ1(X)↑ and τ2(X)↓ ;

undefined, if τ1(X)↑ and τ2(X)↑ .
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The operation takes the union of two partial interpretations giving priority to the first

argument in cases of overlap. For p ∈ D2, X ∈ LVars, and τ ∈ PartInts let

Exists(X, p) =




{(ξ′, i) | ∃u ∈ Values. (ξ′, i[X : u]) ∈ p}, if p 6= ⊤;

⊤, if p = ⊤
(5.34)

and

Subst(τ, p) =




{(ξ′, i) | (ξ′, i[τ ]) ∈ p}, if p 6= ⊤;

⊤, if p = ⊤
(5.35)

be the semantic counterparts of existentially quantifying a logical variable and substituting

logical variables for their values, respectively. We extend Exists to sets of variables in the

expected way and define Exists and Subst on P(Σ+
e
×Σ)⊤ analogously. For the future, we

note the following properties of Exists and Subst:

∀τ1, τ2 ∈ PartInts. ∀p ∈ D2. Subst(τ1, Subst(τ2, p)) = Subst(τ2 ⊕ τ1, p); (5.36)

∀X ∈ LVars. ∀p ∈ D2. Exists(X, p) =
⊔

u∈Values

Subst([X : u], p). (5.37)

Consider a semantic procedure context E of the form (5.6) for some R. We construct

a new context E ′ out of it, consisting of summaries in E with logical variables in pre- and

postconditions substituted for values in all possible ways. Formally, let R′ = R×PartInts

and specs′(i) = specs(i) × PartInts for i = 0..l. We define

p
(j,τ)
i = Subst(τ, pj

i ), q
(j,τ)
i = Subst(τ, qj

i ), i = 0..l, (j, τ) ∈ specs′(i)

and

E ′ =
{
{p

(j,τ)
i } fi {q

(j,τ)
i } | i = 0..l, (j, τ) ∈ specs′(i)

}
. (5.38)

The proof of soundness of the logic with the rule Exists relies on the following lemma

establishing that:

(i) semantic proofs over the semantic procedure context E can be recast as semantic

proofs over the larger context E ′;

(ii) semantic proofs over E ′ are closed under substituting values for logical variables in

their semantic annotations;

(iii) semantic proofs over E ′ are closed under existentially qualifying logical variables in

their semantic annotations.

The latter statement is an analogue of Lemma 3.11(i).

Lemma 5.11. (i) If (C, G, E , µ) is a semantic proof, then so is (C, G, E ′, µ′), where

∀v, j, τ ′′. µ′(v, (j, τ ′′)) =





µ(v, j), if τ ′′ = [ ];

⊥, otherwise.
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(ii) For any τ ∈ PartInts, if (C, G, E ′, µ) is a semantic proof, then so is (C, G′, E ′, µ′),

where ∀v. G′(v) = Subst(τ, G(v)) and

∀v, j, τ ′′. µ′(v, (j, τ ′′)) =
⊔

{Subst(τ, µ(v, (j, τ ′))) | τ ′ ⊕ τ = τ ′′}.

(iii) For any X ∈ LVars, if (C, G, E ′, µ) is a semantic proof, then so is (C, G′, E ′, µ′),

where ∀v. G′(v) = Exists(X, G(v)) and

∀v, j, τ ′′. µ′(v, (j, τ ′′)) =
⊔

{Subst([X : u], µ(v, (j, τ ′))) | τ ′ ⊕ [X : u] = τ ′′}.

Proof. Consider an edge (v, C ′, v′) in the CFG of the command C. When C ′ ∈ Seq, in

all cases (5.12) for the new semantic proof follows from the fact that fC are lifted from

functions on Σe × Σ′. Consider the case when C ′ is fi. We show that (5.13) holds for

the new semantic proof in cases (ii) and (iii) (case (i) is easy and (5.14) is established

similarly).

(ii) Using the definition of G′ and µ′ and (5.36), we get:

G′(v) = Subst(τ, G(v))

⊑ Subst



τ,
⊔

(j,τ ′)∈specs′(i)

p
(j,τ ′)
i ∗ µ(v′, (j, τ ′))





=
⊔

(j,τ ′)∈specs′(i)

Subst(τ, p
(j,τ ′)
i ) ∗ Subst(τ, µ(v′, (j, τ ′)))

=
⊔

(j,τ ′)∈specs′(i)

p
(j,τ ′⊕τ)
i ∗ Subst(τ, µ(v′, (j, τ ′)))

=
⊔

(j,τ ′′)∈specs′(i)

p
(j,τ ′′)
i ∗ µ′(v′, (j, τ ′′))

(iii) In this case, using (5.37) we similarly obtain:

G′(v) = Exists(X, G(v))

⊑ Exists



X,
⊔

(j,τ ′)∈specs′(i)

p
(j,τ ′)
i ∗ µ(v′, (j, τ ′))





=
⊔

u∈Values

Subst


[X : u],

⊔

(j,τ ′)∈specs′(i)

p
(j,τ ′)
i ∗ µ(v′, (j, τ ′)




=
⊔

u∈Values

⊔

(j,τ ′)∈specs′(i)

p
(j,τ ′⊕[X:u])
i ∗ Subst([X : u], µ(v′, (j, τ ′)))

=
⊔

(j,τ ′′)∈specs′(i)

p
(j,τ ′′)
i ∗ µ′(v′, (j, τ ′′)))

2
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We can now modify the proof of Theorem 5.1 given in Section 5.2.2 to include the rule

Exists. Consider the proof (5.5) of the program S. As before, let E be the semantic proce-

dure context constructed out of the procedure context Γ represented in the form (5.6) with

R = N and let E ′ be defined by (5.38) with R′ = R× PartInts. Using Lemma 5.11(i,iii),

we can show that from a derivation of a triple Γ ⊢ {P ∗Vars(~xi)} Ci {Q∗truee} that does

not use Conj but possibly uses Exists, we can construct a semantic proof (Ci, G, E ′, µ)

for some G and µ such that G(starti) = JP K∗Lvi, State(G(endi)) ⊑ JQK, ∀v. G(v) < ⊤, and

∀v, j. µ(v, j) < ⊤. By Lemma 5.11(ii), for any τ ∈ PartInts from this semantic proof we

can construct a semantic proof (Ci, G
′, E ′, µ′) for some µ′, where ∀v. G′(v) = Subst(τ, G(v))

and hence, G′(starti) = Subst(τ, JP K)∗Lvi and State(G′(endi)) ⊑ Subst(τ, JQK). The set of

semantic proofs constructed in this way from (5.5) satisfies the conditions of Lemma 5.5,

which implies Theorem 5.1.

Concurrent setting. Consider the logic for concurrent programs with procedures (Sec-

tion 5.4.1), where the denotations of resource invariants do not depend on logical variables.

In the case where resource invariants are required to be precise and the ∗ operation can-

cellative, the proof of Theorem 5.7 given in Section 5.4.1 is adapted to the logic with the

rules Exists and Forall in the same way as the proof of Theorem 5.1 in Section 5.2.1

is adapted earlier in this section. In the case where resource invariants may be imprecise,

we can establish Theorem 5.7 for the logic with the rule Exists in the same way as Theo-

rem 5.1 earlier in this section. This relies on the fact that Lemma 5.11 holds for semantic

proofs introduced in Section 5.4.1.

5.5.2 Analysis

We now modify the local RHS analysis to give precise treatment to cutpoints.

Analysis formulation. Consider the local RHS analysis of Section 5.3. We additionally

parameterise it with two auxiliary functions:

• Cutpointsi : D♯
2 → P(LVars), i = 0..l such that Cutpointsi(p) returns the set of

logical variables to represent cutpoints arising at a call point of procedure fi when

the state at the call point is p. Let Cutpoints(⊤) = ∅.

• Exists♯ : P(LVars)×D♯
2 → D♯

2 such that Exists♯( ~X, p) over-approximates the meaning

of existentially qualifying the variables ~X in p:

∀p ∈ D♯
2. Exists( ~X, γ(p)) ⊑ γ(Exists♯( ~X, p)).

We lift Exists♯ to P(D♯
2)

⊤ pointwise.

We then replace condition (5.24) with

∀p ∈ D♯
2. γ(p) ⊑ Exists(Cutpointsi(p), γ(ProcLocali(p)) ∗ γ(Framei(p))). (5.39)
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The new analysis is defined by the functional in Figure 5.3 with the equation for return

points v′ ∈ N replaced by the following one:

G̃♯(v′, p) =
⊔

{Exists♯(Cutpointsi(q), State♯(G♯(endi, ProcLocali(q) ∗
♯ Lv

♯
i)) ∗

♯ {|Framei(q)}| )|

(G♯(call(v′), p) < ⊤∧ q ∈ G♯(call(v′), p)) ∨ (G♯(call(v′), p) = ⊤ ∧ q = ⊤)}, (5.40)

where i = calledr(v′). Intuitively, the analysis allows ProcLocali and Framei to introduce

logical variables denoting cutpoints that allow us to maintain pointers between the frame

and the local heap. After conjoining the postcondition of the procedure to the frame,

these variables are eliminated using Exists♯.

Determining heap splittings. To define ProcLocalk and Framek, we can use the same

heuristic as in Section 5.3, modified to account for the treatment of cutpoints. We il-

lustrate its implementation using the the example of the domain SLL. Again, consider a

variation of SLL where the assertions are interpreted with respect to the domain RAM2

of Section 5.1. We define ProcLocalk and Framek for this domain by modifying equa-

tions (5.26) and (5.27) to treat cutpoints precisely:

ProcLocalk(O 
 ∃ ~X. P ∧ S) =

can(Globals(O) 
 ∃ ~X. ((~Z = ~z) ∧ P ∧ Reach(S, Globals(O)))[~Y /~y]),

Framek(O 
 ∃ ~X. P ∧ S) =

can(Locals(O) 
 ∃ ~X. ((~Y = ~y) ∧ P ∧ Unreach(S, Globals(O)))[~Z/~z]),

and Cutpointsk(O 
 ∃ ~X. P ∧ S) = ~Y ∪ ~Z for fresh ~Y , ~Z, where

~y = vars(P ∧ Reach(S, Globals(O))) ∩ Locals(O)

and

~z = vars(P ∧ Unreach(S, Globals(O))) ∩ Globals(O).

Here ~Y record the values of cutpoints in the local heap; the frame asserts that they are

equal to the corresponding local variables of the caller. We also choose to track how

the caller changes the values of the global variables mentioned in the frame, thus, ~Z

record their values before the procedure called starts executing. It is easy to check that

ProcLocalk, Framek, and Cutpointsk defined in this way satisfy (5.39). We also define

Exists♯ as the existential qualifications of symbolic heaps:

Exists♯(~Y , (O 
 ∃ ~X. P ∧ S)) = can(O 
 ∃ ~X, ~Y . P ∧ S).

Again, consider the symbolic heap

P = (x, y, u, v 
 ls(x, u) ∗ ls(u, NULL) ∗ ls(y, NULL) ∗ ls(v, x)),
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where x and y are global, and u and v are local. In this case

ProcLocalk(P ) = (x, y 
 x = Z ∧ ls(x, Y ) ∗ ls(Y, NULL) ∗ ls(y, NULL)),

Framek(P ) = (u, v 
 u = Y ∧ ls(v, Z)), and Cutpointsk(P ) = {Y, Z}.

Note that for simplicity of presentation the above definition precisely handles only the

cutpoints that arise from tracking values of global variables and from stack sharing, i.e.,

in the situation when a location in the local heap is equal to the value of a local variable

of the caller. The other kind of cutpoints result from heap sharing, i.e., in the situation

when a location in the local heap is equal to the contents of a location in the frame and

distinct from the global variables and the local variables of the caller. Such cutpoints

are defined by quantified variables in the symbolic heap at the call-site, e.g., Z in the

heap x, u 
 ∃Z. ls(x, Z) ∗ ls(u, Z), where x is a global variable and u is a local variable of

the caller. This kind of cutpoints can be handled precisely in a similar fashion, i.e., by

replacing them with free logical variables. In the example, the local heap is x 
 ls(x, Z)

and the frame u 
 ls(u, Z).

To prevent the number of free logical variables introduced by the analysis from growing

unboundedly, we can easily combine the implementations of ThreadLocalk and Protectedk

given here and in Section 5.3 into one that abstracts all the cutpoints away (by computing

the splitting as in Section 5.3) if their number at the call point exceeds a predefined bound.

We observe that the pathological cases where the number of cutpoints grows unboundedly

while analysing recursive procedures is rarely encountered in practice (especially if dead

variable analysis is used to prevent our analysis from tracking the values of dead local

variables). Even when the number of cutpoints in a symbolic heap at the call point

exceeds the predetermined bound, our analysis is still able to obtain some information

(though not the most precise).

We have implemented an instantiation of the analysis presented here with the domain

SLL. Experimental results on list-manipulating programs are reported in [31].

Soundness. We derive the soundness statement for the analysis with cutpoints by mod-

ifying the proof of soundness for the analysis in Section 5.3 using the same ideas as in the

proof of soundness of the rule Exists given in Section 5.5.1.

As before, we show that the results of the analysis generate an instance of the

procedure-local interpretation introduced in Section 5.2.2. Let G♯ ∈ D̂♯ be a fixed point

of F ♯
pre. We define R, specs, pr

i , qr
i , E , and Gr

i as in Section 5.3, and R′, specs′, and E ′ as

in Section 5.5.1. For i = 0..l, r ∈ specs(i) let µ′(i, r) : Ni ×R′ → D2 be defined as follows:

if v is a return point, then

µ′(i, r, v, (r′, τ ′)) =
⊔{

Subst(τ ′, γ(Framet(w))) | {|w}| ⊑ G♯(call(v), r ∗♯ Lv
♯
i) ∧

r′ = ProcLocalt(w) ∧ Cutpointst(w) = dom(τ ′)
}
,
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where t = calledr(v); otherwise, µ(i, r, v, (r′, τ ′)) is assigned an arbitrary value. As before,

it is easy to show that (Ci, G
r
i , E

′, µ′(i, r)), i = 0..l, r ∈ specs(i) are semantic proofs such

that Gr
i (starti) ⊒ pr

i ∗ Lvi and State(Gr
i (endi)) ⊑ qr

i . By Lemma 5.11(ii) we have that

(Ci, G
(r,τ)
i , E ′, µ′′(i, (r, τ))), i = 0..l, r ∈ specs(i) are semantic proofs, where for all v we

have G
(r,τ)
i (v) = Subst(τ, Gr

i (v)) and

µ′′(i, (r, τ), v, (r′, τ ′)) =
⊔

{Subst(τ, µ′(i, r, v, (r′, τ ′′))) | τ ′′ ⊕ τ = τ ′}

=
⊔

{Subst(τ ′, γ(Framet(w))) | {|w}| ⊑ G♯(call(v), r ∗♯ Lv
♯
i) ∧

r′ = ProcLocalt(w) ∧ τ ′′ ⊕ τ = τ ′ ∧ Cutpointst(w) = dom(τ ′′)},

for t = calledr(v). In particular, G
(r,τ)
i (starti) ⊒ p

(r,τ)
i ∗ Lvi and State(G

(r,τ)
i (endi)) ⊑ q

(r,τ)
i .

Thus, the semantic proofs constructed in this way satisfy the conditions of Lemma 5.5.

Now assume {(η0, σ0)} ⊑ γ(pre) ∗ Lv0, and start0, (η0, σ0) →∗
S v1 . . . vk, ζ . By

Lemma 5.5, for some r1, . . . , rk and τ1, . . . , τk such that r1 = pre, τ1 = [ ], (rt, τt) ∈

specs′(it), it = proc(vt), t = 1..k, we have

{|ζ}| ⊑

(
k−1⊙

t=1

µ′′(it, (rt, τt), vt, (rt+1, τt+1))

)
⊙ Subst(τk, γ(G♯(vk, rk ∗

♯ Lv
♯
ik

))).

According to the definition of µ′′, this is the case if and only if for some w1, . . . , wk ∈

D♯∪{⊤} satisfying (5.28) and τ ′
2, . . . , τ

′
k ∈ PartInts such that τ ′

t+1⊕τt = τt+1, t = 1..(k−1)

and Cutpointsit+1
(wt) = dom(τ ′

t+1), t = 1..(k − 1) we have

{|ζ}| ⊑

(
k−1⊙

t=1

Subst(τt+1, γ(Frameit+1(wt)))

)
⊙ Subst(τk, γ(wk)).

Let τ ′
1 = [ ], then τt =

⊕t−1
j=0 τ ′

t−j , t = 1..k. Then we can transform the above inequality to

{|ζ}| ⊑

(
k−1⊙

t=1

Subst

(
t⊕

j=0

τ ′
t−j+1, γ(Frameit+1(wt))

))
⊙ Subst

(
k−1⊕

j=0

τ ′
k−j, γ(wk)

)
.

Let us define the sequence ut, t = 1..k as follows:

uk = γ(wk); ut−1 = Subst(τ ′
t , γ(Frameit(wt)) ⊙ ut), t = 2..k.

Then the above inequality is equivalent to {|ζ}| ⊑ u1. This holds for some τ ′
2, . . . , τ

′
k ∈

PartInts such that τ ′
t+1 ⊕ τt = τt+1, t = 1..(k − 1) and Cutpointsit+1

(wt) = dom(τ ′
t+1),

t = 1..(k − 1) if and only if {|ζ}| ⊑ z1, where z1 is defined using the sequence zt, t = 1..k:

zk = γ(wk); zt−1 = Exists(Cutpointsit(wt−1), γ(Frameit(wt)) ⊙ ut), t = 2..k. (5.41)

We have thus proved the following.
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Theorem 5.12 (Soundness of the analysis). Let G♯ ∈ D̂♯ be a fixed point of F ♯(pre).

If (η0, σ0) ∈ Σe×Σ is such that {(η0, σ0)} ⊑ γ(pre)∗Lv0, then whenever start0, (η0, σ0) →
∗
S

v1 . . . vk, ζ, for some w1, . . . , wk ∈ D♯
2 ∪ {⊤} satisfying (5.28) we have {|ζ}| ⊑ z1, where z1

is defined by (5.41).

The soundness statement is formulated as in Theorem 5.6, except now we existentially

quantify the logical variables denoting cutpoints at the points of their introduction.

Concurrent setting. The interprocedural thread-modular analysis with precise treat-

ment of cutpoints is defined by modifying the analysis of Section 5.4.2, replacing the

equation for return nodes in Figure 5.5 with (5.40) (we assume the ingredients introduced

in this section). The soundness of the analysis is formulated similarly to Theorem 5.10.

5.6 Related work

The results in this chapter build on several pieces of prior work: the proof rules for proce-

dures in Hoare logic [42], Reps-Horwitz-Sagiv algorithm [64], and the idea of localisation

in interprocedural analysis [67]. Our contributions are:

• to generalise these results and their prior usage in heap analysis [67, 70, 69, 31, 81, 82]

into a uniform framework that can be instantiated with different abstract domains

and localisation schemes;

• to develop modular reasoning methods for procedures in concurrent programs, in-

cluding the case when resource invariants may be imprecise.

As shown in [31], the instantiation of our framework with the domain SLL that we

presented in Section 5.3 yields a local interprocedural heap analysis that is more efficient

than earlier analyses based on TVLA [70, 69]. Splitting the heap at a procedure call

is delicate with the TVLA reachability-based representation as it significantly alters the

reachability information. A consequence of this is that accurate treatment of cutpoints

is expensive (e.g., [70] considers only programs without cutpoints, and [69] abstracts all

cutpoints into a single cutpoint). In abstract domains based on separation logic splitting

the heap is easy and (bounded numbers of) cutpoints can be represented by logical vari-

ables. An instantiation of our analysis with the domain CDS has been used and optimised

by Yang et al. [81, 82], who report experimental results on programs of up to 10k lines of

code.

Rinetzky et al. [67] were the first to use localisation in an interprocedural heap analysis,

passing the part of the heap reachable from the actual parameters to the callee. The proof

of soundness of their analysis handles only this particular localisation scheme defined in

the concrete domain (in our terminology, ProcLocalk and Framek have to satisfy analogues

of (3.6) and (3.7)). Our framework allows any localisation schemes defined in the abstract
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domain, thus allowing flexibility in the implementation of ProcLocalk and Framek (in

particular, they do not have to compute reachability precisely; cf. the discussion at the

end of Section 3.3.2).

As we mentioned at the beginning of this chapter, the localisation scheme based on

reachability from actual parameters and global variables is not optimal: sometimes the

local heap it computes contains more memory cells than what the procedure actually

accesses (i.e., more than its footprint), which leads to analysing the procedure more times

than necessary. Calcagno et al. [13] have recently proposed a more local interprocedural

analysis that discovers approximations to footprints of every procedure in a program and

employs a variant of the local RHS analysis.

There exist other approaches to interprocedural heap analysis that are not based on

the version of the RHS algorithm we use. For example, Rinetzky and Sagiv [68] explicitly

track the shape of the call-stack, and Guo et al. [37] modify the RHS algorithm to use

inductive recursion synthesis for constructing summaries.

To keep presentation simple, in this chapter we considered only parameterless proce-

dures. Proof rules for procedures with parameters in the case when variables are treated

as resource were proposed by Parkinson et al. [62]. Similar rules could be derived from

our proof rules for parameterless procedures and the desugaring of parameter passing we

use (Section 5.1).

132



Chapter 6

Threads

So far, concurrent programs in this dissertation consisted of a top-level parallel compo-

sition of several threads. In this chapter we consider dynamic thread creation, adding a

command for forking a new thread to the programming language with storable locks of

Chapter 4. We present a logic for modular reasoning about programs in this language and

a corresponding analysis, extending the logic and the analysis developed in Chapter 4.

As before, we have two variants of the logic—with and without the conjunction rule, with

the former variant placing restrictions on preconditions of threads.

Constructing the logic and the analysis for dynamic thread creation and proving them

sound uses the methods proposed in the previous chapters. Our goal here is to, first,

develop aids for reasoning about a more powerful programming construct than parallel

composition, and second, to show that the methods developed in this dissertation can be

applied to constructs other than the ones they were originally proposed for.

6.1 Programming language and semantics

Programming language. We extend the programming language of Section 2.1.3 with

the commands for manipulating storable locks of Chapter 4 and a command for forking

a thread:

C ::= . . . | init(E) | finalise(E) | acquire(E) | release(E) | fork(f)

where f is a procedure name. Programs in the language have the same form as those in

Chapter 5:

f0 {local ~x0 in C0} . . . fl {local ~xl in Cl}

The procedures fi are used to fork threads with f0 representing the top-level thread. We

assume that no thread forks f0.

As usual, we fix a program S of the above form and represent every procedure body

Ci, i = 0..l with its CFG (Ni, Ti, starti, endi) over the set of primitive commands Seq ∪

{init(E), finalise(E), acquire(E), release(E)} ∪ {fork(fi) | i = 0..l}. Let N =
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⋃l
i=0 Ni and T =

⋃l
i=0 Ti. We require that the CFGs be deterministic for fork commands

and let proc(v) = k if v ∈ Nk.

Note that for simplicity fork does not take any parameters to be passed to the thread.

In principle, the fork command with a parameter fork(f, E) for the procedure declaration

f(y) {local ~x in C}

can be encoded in our language as

acquire(l); z = E; fork(f)

with the procedure declaration being

f {local ~x, y in y = z; release(l); C}

Here z is a fresh variable and l is a pre-initialised lock meant to protect z. The lock is

used here to ensure mutual exclusion between threads writing parameters to and reading

parameters from z.

Note also that our language does not include a join command for joining a thread,

i.e., waiting for its termination. Such a command can be encoded as acquiring a lock

passed to the forked thread that it will release before completing.

Encoding parameter passing and thread joining in as described above has its disadvan-

tages (discussed below). However, the minimalistic language we consider here is sufficient

to illustrate our main points while keeping the presentation simple. See [33] for native,

but more complicated treatment. Proof rules for parameter passing and thread joining

could also be derived from the proof rules we present here and the above desugaring.

Model of program states. We consider the separation algebras States, Statesc, and

Statesl introduced in Sections 4.3 and 4.4 (and the corresponding domains), where we

partition program variables into global and local in the spirit of the example model of

program states RAM2 of Section 5.1:

Vars = LocalVars ⊎ GlobalVars.

The part of the stack in a state describing values of local variables is meant to represent

the local environment of the procedure running the code of the corresponding thread. We

describe local environments with elements of the separation algebra

Statese = LocalVars ⇀fin (Values × Perms),

with ∗ defined as the ∗ operation on stacks in Section 2.1.1. We denote with Statesh,

respectively, Statesh
c

the subsets of States, respectively, Statesc, whose stacks do not

contain local variables. We say that p ∈ P(States)⊤ has an empty environment if p ⊆

P(Statesh)⊤.

For a declaration of local variables ~x, we define the set of corresponding initial proce-

dure environments InitEnv(~x) ∈ P(Statese) to be the set of all total functions from the set

of variables ~x to Values×{1}. For i = 0..l let Lvei = InitEnv(~xi) and Lvi = Lvei× [ ]× Ints.

134



(v, C, v′) ∈ T C is not fork C, (η ⊎ s, h, i) ; (η′ ⊎ s′, h′, i)

pc[k : v], (g[k : η], (s, h, i)) →S pc[k : v′], (g[k : η′], (s′, h′, i))

(v, C, v′) ∈ T C is not fork C, (η ⊎ s, h, i) ; ⊤

pc[k : v], (g[k : η], (s, h, i)) →S pc[k : v′],⊤

(v, fork(fi), v
′) ∈ T η′ ∈ Lvei (pc[k : v])(j)↑

pc[k : v], (g[k : η], (s, h, i)) →S pc[k : v′][j : starti], (g[k : η][j : η′], (s, h, i))

Figure 6.1: Operational semantics of programs with storable locks and dynamic thread

creation. The relation ; is defined in Figure 4.7.

Program semantics. Let ThreadIDs = {1, 2, . . .}. We define the semantics of the

program S by the transition relation

→S ⊆ ((ThreadIDs ⇀fin N) × ((ThreadIDs ⇀fin Statese) × Statesh
c
))×

((ThreadIDs ⇀fin N) × (((ThreadIDs ⇀fin Statese) × Statesh
c
) ∪ {⊤}))

in Figure 5.2, which transforms triples of

• finite partial mappings from thread identifiers to program points (program counters);

• finite partial mappings from thread identifiers to local thread environments; and

• heaps.

An initial state of the program S is a state of the form ([1 : η0], σ0), where η0 ∈ Lve0

and σ0 ∈ Statesh
c
. The program S is safe when run from an initial state ([1 : η0], σ0), if

it is not the case that [1 : start0], ([1 : η0], σ0) →
∗
S pc,⊤. We say that a program counter

pc ∈ ThreadIDs ⇀fin N is final if ∀k. pc(k)↓⇒ ∃i. pc(k) = endi.

6.2 Logic

We extend the logic of Chapter 4 to handle dynamic thread creation as follows. The

judgements of the logic are now of the form Γ, I ⊢ {P} C {Q}, where Γ is a procedure

context (Section 5.2), and I a resource invariant mapping (Section 4.1). We require that

the denotations of pre- and postconditions in Γ and resource invariants in I have an empty

environment. Let truee be the assertion denoting Statese × [ ] × Ints.

A proof of the program S is given by triples

Γ ⊢ {P ∗ (~xi 
 emph)} Ci {Q ∗ truee} for every {P} fi {Q} ∈ Γ. (6.1)

The axiom for fork is as follows:

(Γ, {P} fi {Q}), I ⊢ {P} fork(fi) {emp}
Fork
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Upon creating a new thread executing the code of the procedure fi, the thread that

executed fork gives up ownership of the precondition of fi. As in Chapter 4, we consider

two variants of the logic—with the conjunction rule and without. In the variant of the

logic with the conjunction rule the part of the heap to be transferred to the forked thread

at every fork command has to be chosen consistently in all branches of the proof. We

enforce this by requiring that thread preconditions be precise and annotating each fork

command with the precondition P ( ~X) used and the values of all its free logical variables
~X, defined by expressions ~E over program variables.1 The axiom Fork is thus replaced

by

(Γ, {P ( ~X)} fi {Q}), I ⊢ {R ∗ P ( ~X) ∧ ~X = ~E} forkP ( ~X), ~E(fi) {R}
Fork′

In the axiom R is meant to supply the permissions for variables needed to evaluate ~E.

Aside on annotating fork. Note that in some situations it may be too restrictive to

require that the values of ~X in Fork′ be defined by expressions that do not contain free

logical variables. For example, consider the following application of Fork′:

Γ, I ⊢ {((u 
 X = u) ∗ R1(X)) ∗ P (X) ∧ X = u} forkP (X),u(f1) {(u 
 X = u) ∗ R1(X)}
(6.2)

where u is a local variable of the thread executing the fork command, P (X) is x 


ls(x, X) ∗ ls(X, NULL), x is a global variable, R1(X) is an arbitrary formula that may

contain free occurrences of X, and Γ contains {P (X)} f1 {Q1} for some Q1. Here the

parent thread passes the list pointed to by x to its child, while remembering that the list

contains the cell at the address u (thus, u behaves similarly to a cutpoint; see Chapter 5).

In this case we are able to annotate fork appropriately. However, if the child thread

wants to pass the data structure further on via a fork command while remembering that

it has a node at the address X, it will not be able to provide a corresponding expression

to annotate the command with:

Γ, I ⊢ {R2(X) ∗ P (X) ∧ X = ?} forkP (X),?(f2) {R2(X)}

assuming Γ contains {P (X)} f2 {Q2} for some Q2. Such situations can be handled if

we add to the logic the auxiliary variable elimination rule [60, 61] for local and global

variables, applied last in the proof of a program. Adding the statement a = u before the

former fork command, where a is a global auxiliary variable, we can again apply (6.2),

but with P (X) defined as x, a 
 ls(x, X)∗ ls(X, NULL)∧X = a and Γ changed accordingly.

To handle the latter fork command, we can then use the following instance of Fork′ for

the newly defined P (X) and Γ:

Γ, I ⊢ {R2(X) ∗ P (X) ∧ X = a} forkP (X),a(f2) {R2(X)}

1 This can be generalised to the case when ~E depend on the heap.

136



Thus, the auxiliary variable a serves as a witness that the value of the free logical variable

X can uniquely be determined from the program state. The fact that we cannot apply

the rule Exists over a program variable ensures that the same part of the heap is given

up at the fork command in all branches of the proof. A similar issue comes up in the

annotated version of the axiom for the init command (Init′, Section 4.1) and can be

resolved in the same way.

Example of reasoning. The main thread of the program in Figures 6.2–6.4 allocates

an array of n objects of the type DATA and creates n threads to process the objects. It

then waits for the termination of all the threads and deallocates the array. We use the

desugaring of parameter passing and thread joining presented in Section 6.1. The proof

assumes lock sorts P and J (used for parameter passing and thread joining, respectively)

with the following invariants:

IP (L) = paramData, paramJoinLock, (1/2)paramLock 
 emph;

IJ(L, X) = emps ∧ X 7→ .

Soundness. Theorem 4.1 stating the soundness of the logic for storable locks is adapted

to our setting as follows.

Theorem 6.1 (Soundness of the logic: variant I). Consider a proof (6.1) of the

program S, where {P0} f0 {Q0} ∈ Γ and either

• the resource invariants in I and the preconditions of the specifications in Γ are

precise, the ∗ operation is cancellative, and Init′ and Fork′ are used instead of

Init and Fork in the derivation of the triples; or

• Conj and Forall are not used in the derivation of the triples.

Suppose that η0 ∈ Lve0 and a complete state σ0 ∈ Statesh
c

is such that for some W0 ⊆

LockParams

σ0 ∈ β

(
JP0K ∗

(
⊛

(A,u,~w)∈W0

JIKF
A(u, ~w)

))
.

Then the program S is safe when run from ([1 : η0], σ0), and whenever [1 : start0], ([1 :

η0], σ0) →
∗
S pc, (g, σ), where pc is final, for some W ⊆ LockParams we have

σ ∈ β


JQ0K ∗


 ⊛

{k | pc(k)↓∧k 6=1}

⊔

{P} fproc(pc(k)) {Q}∈Γ

Exists(LVars, JQK)


 ∗

(
⊛

(A,u,~w)∈W
JIKF

A(u, ~w)

)

 ,

where Exists is defined by (5.34).
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LOCK *paramLock;

LOCK *paramData;

LOCK *paramJoinLock;

unsigned n;

{paramLock, paramData, paramJoinLock, n 
 emph}

main() {

DATA *data;

int i;

LOCK **joinLocks;

{O1 
 emph}

data = new DATA[n];

joinLocks = new (LOCK*)[n];

{O1 
 (⊛n−1
K=0 (data + K) 7→ ) ∗ (⊛n−1

K=0 (joinLocks + K) 7→ )}

// ...Initialise data...

{O1 
 (⊛n−1
K=0 (data + K) 7→ ) ∗ (⊛n−1

K=0 (joinLocks + K) 7→ )}

paramLock = new LOCK;

initP(paramLock);

{O1 
 (⊛n−1
K=0 (data + K) 7→ ) ∗ (⊛n−1

K=0 (joinLocks + K) 7→ ) ∗

LockP (paramLock) ∗ HoldP (paramLock)}

release(paramLock);

{O2 
 (⊛n−1
K=0 (data + K) 7→ ) ∗ (⊛n−1

K=0 (joinLocks + K) 7→ ) ∗ LockP (paramLock)}

for (i = 0; i < n; i++) {

{O2 
 i < n ∧ (⊛n−1
K=i (data + K) 7→ ) ∗ (⊛n−1

K=i (joinLocks + K) 7→ ) ∗

(⊛i−1
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock)}

joinLocks[i] = new LOCK;

initJ,data+i(joinLocks[i]);

{O2 
 i < n ∧ (⊛n−1
K=i (data + K) 7→ ) ∗ (⊛n−1

K=i+1 (joinLocks + K) 7→ ) ∗

(⊛i−1
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock) ∗

(∃X. (joinLocks + i) 7→X ∗ LockJ(X, data + i) ∗ HoldJ(X, data + i))}

acquire(paramLock);

{O1 
 i < n ∧ (⊛n−1
K=i (data + K) 7→ ) ∗ (⊛n−1

K=i+1 (joinLocks + K) 7→ ) ∗

(⊛i−1
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock) ∗

(∃X. (joinLocks + i) 7→X ∗ LockJ(X, data + i) ∗ HoldJ(X, data + i)) ∗

HoldP (paramLock)}

Figure 6.2: Proof outline for a program with dynamic thread creation (continued in

Figures 6.3 and 6.4). Here O1 is paramLock, paramData, paramJoinLock, n, data, i,

joinLocks and O2 is (1/2)paramLock, n, data, i, joinLocks.
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paramData = data+i;

paramJoinLock = joinLocks+i;

{O1 
 i < n ∧ (⊛n−1
K=i (data + K) 7→ ) ∗ (⊛n−1

K=i+1 (joinLocks + K) 7→ ) ∗

(⊛i−1
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock) ∗

(∃X. (joinLocks + i) 7→X ∗ LockJ(X, data + i) ∗ HoldJ(X, data + i)) ∗

HoldP (paramLock) ∧ paramData = data + i ∧ paramJoinLock = joinLocks + i}

fork(process);

{O2 
 i < n ∧ (⊛n−1
K=i+1 (data + K) 7→ ) ∗ (⊛n−1

K=i+1 (joinLocks + K) 7→ ) ∗

(⊛i
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock)}

}

{O2 
 (⊛n−1
K=0 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock)}

for (i = 0; i < n; i++) {

{O2 
 i < n ∧ (⊛i−1
K=0 (data + K) 7→ ) ∗ (⊛i−1

K=0 (joinLocks + K) 7→ ) ∗

(⊛n−1
K=i ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock)}

acquire(joinLocks[i]);

{O2 
 i < n ∧ (⊛i
K=0 (data + K) 7→ ) ∗ (⊛i−1

K=0 (joinLocks + K) 7→ ) ∗

(⊛n−1
K=i+1 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock) ∗

(∃X. (joinLocks + i) 7→X ∗ LockJ(X, data + i) ∗ HoldJ(X, data + i)) ∗

LockP (paramLock))}

finalise(joinLocks[i]);

delete joinLocks[i];

{O2 
 i < n ∧ (⊛i
K=0 (data + K) 7→ ) ∗ (⊛i

K=0 (joinLocks + K) 7→ ) ∗

(⊛n−1
K=i+1 ∃X. (joinLocks + K) 7→X ∗ LockJ(X, data + K)) ∗ LockP (paramLock) ∗

LockP (paramLock))}

}

{O2 
 (⊛n−1
K=0 (data + K) 7→ ) ∗ (⊛n−1

K=0 (joinLocks + K) 7→ ) ∗ LockP (paramLock)}

delete[n] data;

delete[n] joinLocks;

acquire(paramLock);

finalise(paramLock);

delete paramLock;

{O1 
 emph}

}

{paramLock, paramData, paramJoinLock, n 
 emph}

Figure 6.3: Proof outline for a program with dynamic thread creation (continued from

Figure 6.2, continued in Figure 6.4). Here O1 is paramLock, paramData, paramJoinLock,

n, data, i, joinLocks and O2 is (1/2)paramLock, n, data, i, joinLocks.
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{paramData, paramJoinLock, (1/2)paramLock 


paramData 7→ ∗ HoldP (paramLock) ∗ HoldJ(paramJoinLock, paramData)}

process() {

DATA *data;

LOCK *joinLock;

{(1/2)paramLock, paramData, paramJoinLock, data, joinLock 


paramData 7→ ∗ HoldP (paramLock) ∗ HoldJ(paramJoinLock, paramData)}

data = paramData;

joinLock = paramJoinLock;

{(1/2)paramLock, paramData, paramJoinLock, data, joinLock 


paramData 7→ ∗ HoldP (paramLock) ∗ HoldJ(paramJoinLock, paramData) ∧

data = paramData ∧ joinLock = paramJoinLock}

release(paramLock);

{data, joinLock 
 data 7→ ∗ HoldJ(joinLock, data)}

// ...Process data...

{data, joinLock 
 data 7→ ∗ HoldJ(joinLock, data)}

release(joinLock);

{data, joinLock 
 emph}

}

{emp}

Figure 6.4: Proof outline for a program with dynamic thread creation (continued from

Figures 6.2 and 6.3)

We give the proof of the theorem in Section 4.5.1 below. As is the case with Theorem 4.1,

this soundness statement does not allow us to prove the absence of memory leaks. This is

due to both examples of the kind shown in Figure 4.10 and the fact that the theorem does

not bound the number of threads that were forked during the execution of the program.

To ensure the absence of memory leaks, we can use the following analogue of Theorem 4.4.

Theorem 6.2 (Soundness of the logic: variant II). Consider a proof (6.1) of the

program S, where {P0} f0 {Q0} ∈ Γ and the restrictions on the derivations from

Theorem 6.1 hold. Suppose further that either Q0 is intuitionistic, or the postcondi-

tions of all the other specifications in Γ are truee and the resource invariants in I

are admissible. Then for any η0 ∈ Lve0 and a complete state σ0 ∈ Statesh
c

such that

σ0 ∈ β
(
〈JP0K〉JIK

)
, the program S is safe when run from ([1 : η0], σ0), and whenever

[1 : start0], ([1 : η0], σ0) →
∗
S pc, (g, σ), where pc is final, we have σ ∈ β

(
〈JQ0K〉JIK

)
.

The proof of is similar to that of Theorem 4.4. The requirement that the postcondition of

threads be truee requires every thread to either dispose of the thread-local data structures
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before completing, or to transfer their ownership to other threads using locks. Admissi-

bility of resource invariants then ensures that all the data structures in the final state are

accounted for. Note that this theorem does not allow us to prove the absence of memory

leaks due to undisposed system resources associated with threads: in practice, these are

typically disposed of only when the thread is joined, and our programming language does

not provide a join command. See [33] for an alternative formulation of the language and

the logic that allows detecting such memory leaks.

6.2.1 Proof of soundness

To prove Theorem 6.1, we combine the notions of semantic proofs of Sections 4.5.1

and 5.2.2. Given a set of specification indices R and a set of procedures {f0, . . . , fl},

here we define a semantic proof as a tuple (C, G, E , µ, I), where

• C is a command with a CFG (N, T, start, end) over the set of primitive

commands Seq ∪ {init(E), initA,~F (E), finalise(E), acquire(E), release(E)} ∪

{fork(fi) | i = 0..l} ∪ {forkP ( ~X), ~E(fi) | i = 0..l};

• G : N → Dl maps program points of C to semantic annotations;

• E is a semantic procedure context of the form

E =
{
{pj

i} fi {q
j
i } | i = 0..l, j ∈ specs(i)

}
, (6.3)

where specs(i) ⊆ R and pj
i , q

j
i ∈ Dl have an empty environment;

• µ : N ×R → Dl is a mapping such that for an edge (v, fi, v
′) ∈ T , µ(v′, j) gives the

frame for the jth specification of the procedure forked at v;

• I ∈ InvMaps is a semantic resource invariant mapping

such that for all edges (v, C ′, v′) ∈ T

• (4.5)–(4.8) hold for the corresponding commands C ′;

• if C ′ is fork(fi), then

G(v) ⊑
⊔

j∈specs(i)

pj
i ∗ µ(v′, j) (6.4)

and

G(v′) ⊒
⊔

j∈specs(i)

µ(v′, j). (6.5)

• if C ′ is forkP ( ~X), ~E(fi), then

G(v′) 6= ⊤ ⇒ G(v) 6= ⊤ ∧ ∀(s, h, i) ∈ G(v). ∃~u.

J ~EKs = ~u ∧ (s, h, i) ∈ G(v′) ∗ Subst([ ~X : ~u], JP ( ~X)K), (6.6)

where Subst is defined by (5.35).
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Similarly to Section 5.2.2, inequalities (6.4) and (6.5) represent a semantic counterpart

of the axiom Fork closed under the applications of the rules Frame and Disj. In fact,

the inequalities are a particular case of (5.13) and (5.14), where the postcondition of the

procedure is empty. Inequality (6.6) is a counterpart of the axiom Fork′. We treat the

annotated version of fork separately to record the fact that the precondition and the

values of logical variables are chosen according to the annotation.

We define the functions

νk : States → ((ThreadIDs ⇀fin Statese) × Statesh), k ∈ ThreadIDs;

ν0 : Statesh → ((ThreadIDs ⇀fin Statese) × Statesh)

as follows:

νk(s, h, i) = ([k : η], (s′, h, i)), k ∈ ThreadIDs; ν0(s, h, i) = ([ ], (s, h, i)),

where η ∈ Statese and s′ ∈ Statesh are such that η ⊎ s′ = s. Let the operation ⋆ on

(ThreadIDs ⇀fin Statese)×Statesh be defined as follows: (g1, ξ1)⋆(g2, ξ2) = (g1⊎g2, ξ1∗ξ2).

We also use pointwise liftings of νk, ν0, and ⋆ and an iterated version of the lifted ⋆.

Additionally, we lift the function β defined in Section 4.4 to P((ThreadIDs ⇀fin Statese)×

Statesh)⊤ in the obvious way.

Lemma 6.3 (Soundness of the intermediate interpretation). Consider a seman-

tic procedure context E of the form (6.3) for some set of indices R. Assume semantic

proofs (Ci, G
j
i , E , µ(i, j), I) for i = 0..l, j ∈ specs(i), where Gj

i (starti) ⊒ pj
i ∗ Lvi and take

j1 ∈ specs(0). If η0 ∈ Lve0 and a complete state σ0 ∈ Statesh
c

are such that for some

W0 ⊆ LockParams

{([1 : η0], σ0)} ⊑ β

(
ν1(G

j1
0 (start0)) ⋆ ν0

(
⊛

(A,u,~w)∈W0

IF
A(u, ~w)

))
,

then whenever [1 : start0], ([1 : η0], σ0) →∗
S pc, ζ, for some W ⊆ LockParams and ρ :

ThreadIDs → R such that

ρ(1) = j1 ∧ ∀k. pc(k)↓⇒ ρ(k) ∈ specs(proc(pc(k))),

we have

{|ζ}| ⊑ β

((
⋆©

{k | pc(k)↓}

νk(G
ρ(k)
proc(pc(k))(pc(k)))

)
⋆ ν0

(
⊛

(A,u,~w)∈W
IF

A(u, ~w)

))
.

Proof. We prove the lemma by induction on the length of the derivation of ζ in the

operational semantics of the program S. We consider only the case of the fork command,

since the others are dealt with in the same way as in the proof of Lemma 4.5. Thus, assume

[1 : start1], ([1 : η0, σ0]) →
∗
S pc[t : v], (g, σ) →S pc[t : v′][j : starti], (g[j : η], σ),
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(v, fork(fi), v
′) ∈ T , η ∈ Lvei, and (pc[t : v])(j)↑. Let proc(v) = u. Suppose that for some

W ⊆ LockParams and ρ : ThreadIDs → R such that ρ(1) = j1 and ∀k. pc(k)↓⇒ ρ(k) ∈

specs(proc(pc(k))), we have

{(g, σ)} ⊑ β(νt(G
ρ(t)
u (v)) ⋆ r), (6.7)

where

r =

(
⋆©

{k | pc(k)↓∧k 6=t}

νk(G
ρ(k)
proc(pc(k))(pc(k)))

)
⋆ ν0

(
⊛

(A,u,~w)∈W
IF

A(u, ~w)

)
.

It is sufficient to show that for some w ∈ specs(i)

{(g[j : η], σ)} ⊑ β(νt(G
ρ(t)
u (v)) ⋆ νj(G

w
i (starti)) ⋆ r).

From (6.4) and (6.7) we get

{(g, σ)} ⊑ β



νt




⊔

w∈specs(i)

pw
i ∗ µ(u, ρ(t), v′, w)



 ⋆ r



 .

Hence, for some w ∈ specs(i)

{(g, σ)} ⊑ β(νt(p
w
i ∗ µ(u, ρ(t), v′, w)) ⋆ r).

By (6.5), we then get

{(g, σ)} ⊑ β(νt(p
w
i ∗ Gρ(t)

u (v′)) ⋆ r).

Since η ∈ Lvei, Gw
i (starti) ⊒ pw

i ∗ Lvi and pw
i has an empty environment, from this we get

{(g[j : η], σ)} ⊑ β(νt(p
w
i ∗ G

ρ(t)
u (v′)) ⋆ νj(Lvi) ⋆ r)

⊑ β(νt(G
ρ(t)
u (v′)) ⋆ νj(Lvi ∗ pw

i ) ⋆ r)

⊑ β(νt(G
ρ(t)
u (v′)) ⋆ νj(G

w
i (starti)) ⋆ r)

as required. 2

Proof of Theorem 6.1. Consider the proof (6.1) of the program S. Let E be the

semantic procedure context of the form (6.3) constructed out of Γ.

Consider first the case of the logic with the conjunction rule. It is easy to show that

analogues of Lemmas 3.8 and 3.11 hold for semantic proofs of the form introduced in this

section where all init and fork commands are annotated. This allows us to show that

from a proof of Γ, I ⊢ {P ∗(~xi 
 emph)} Ci {Q∗truee}, we can construct a semantic proof

(Ci, G, E , µ, JIK) for some G and µ such that G(starti) = JP K ∗ Lvi, G(endi) ⊑ JQ ∗ trueeK
∀v. G(v) < ⊤, and ∀v, j. µ(v, j) < ⊤. The set of semantic proofs constructed in this way

from (6.1) satisfies the conditions of Lemma 6.3, which implies Theorem 6.1.

Consider now the case of the logic without the conjunction rule. In this case, we can

establish an analogue of Lemma 5.11. The statement of Theorem 6.1 is then reduced to

Lemma 6.3 in the same way as in the proof of the soundness of Exists in Section 5.5.1.2
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6.3 Deriving the analysis

We assume the setting of Section 4.6 and all the ingredients for the analysis defined there.

The analysis for our programming language is a simple extension of the one in Figure 4.11

that accounts for the fork command. The analysis processes it by splitting the state of

the current thread into two parts, one of which is transferred to the newly created thread,

and the other stays with the parent. As in the case of the interprocedural analysis of

Chapter 5, the splitting may introduce cutpoints. We therefore additionally parameterise

our analysis with ingredients similar to the ones used in the interprocedural analysis of

Section 5.5.2:

• The abstract state Lv
♯
i ∈ D♯

l
, i = 0..l represents the initial environment of the

procedure fi:

Lvi ⊑ γ(Lv
♯
i).

• The functions Cutpointsi : D♯
l
→ P(LVars), i = 0..l such that Cutpointsi(p) returns

the set of logical variables to represent cutpoints arising in the state p when the

procedure fi is forked. Let Cutpoints(⊤) = ∅.

• The functions Childi : D♯
l
→ D♯

l
and Parenti : D♯

l
→ D♯

l
for i = 0..l determine the

splitting of the abstract state when the procedure fi is forked: Childi determines

the part of the state that is passed to the newly created thread and Parenti the part

that stays with its parent. We require that they split the state soundly:

∀p ∈ D♯
l
. γ(p) ⊑ Exists(Cutpointsi(p), γ(Childi(p)) ∗ γ(Parenti(p))). (6.8)

We also require that γ(Childi(p)) have an empty environment.

Let pre ∈ D♯
l
be an abstract element representing the set of initial states of the program

S such that γ(pre) has an empty environment. The analysis operates on the domain

D̂♯ = (N → D♯
l
) × InvMaps♯ and is defined by the functional F ♯(pre) : D̂♯ → D̂♯ in

Figure 6.5.

A heuristic for determining heap splittings. When the program being analysed

is desugared from a program with fork passing parameters to the newly created thread,

we can define the functions Childk and Parentk similarly to the functions ProcLocalk and

Framek in the interprocedural analysis: the part of the heap reachable from the global

variables holding the actual parameters, along with the necessary permissions for the

lock protecting the parameters, is passed to the newly created thread (as described in

Section 6.1 and illustrated by the example in Figure 6.2). A typical pattern occurring in

code with dynamic thread creation is for several worker threads to synchronise access to a

shared data structure using a lock passed to them by the same parent thread. To handle

such situations, the straightforward implementation of Childk described above has to be
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F ♯(pre)(G♯, I♯) = (G̃♯, Ĩ♯), where

• G̃♯(start0) = pre ∗♯ Lv
♯
0;

• G̃♯(starti) =
⊔

(v,fork(fi),v′)∈T

Childi(G
♯(v)), i = 1..l;

• G̃♯(v′) =
⊔

(v,C,v′)∈T

g♯
C(G♯(v))

for every program point v′ ∈ N\{startk | k = 0..l}, where

g♯
C(p) =






f ♯
C(p), if C ∈ Seq ∪ {init(E), finalise(E)};

f ♯
C(I♯, p), if C is acquire(E);

ThreadLocalE(p), if C is release(E);

Parenti(p), if C is fork(fi);

• Ĩ♯
A =

⊔
(v,release(E),v′)∈T

ProtectedE(G♯(v), A) for every lock sort A ∈ A.

Figure 6.5: Thread-modular analysis for concurrent programs with storable locks and

dynamic thread creation

modified to pass only a fraction of the permission for every lock in the part of the heap

reachable from the actual parameters.

Since the postcondition of a thread in our desugaring of the join command is passed

to another thread via the invariant of the lock used to signal the thread’s termination,

the analysis has to initialise the lock appropriately, assigning a separate lock sort to every

symbolic heap representing a possible postcondition, and parameterising the invariant

with the values of cutpoints appearing in the thread’s precondition. The treatment of

init commands in the analysis is flexible enough to allow this. A realistic analysis

implementation would treat parameter passing and thread joining natively.

Soundness. The soundness of the analysis is stated by the following two theorems,

analogous to Theorems 4.1 and 4.4, which we can use in the cases when we are interested

in detecting memory leaks or not, respectively.

Theorem 6.4 (Soundness of the analysis: variant I). Let (G♯, I♯) be a fixed point

of the functional F ♯(pre). If η0 ∈ Lve0 and a complete state σ0 ∈ Statesh
c

are such that

for some W0 ⊆ LockParams

{([1 : η0], σ0)} ⊑ β

(
ν1(γ(pre ∗♯ Lv

♯
0)) ⋆ ν0

(
⊛

(A,u,~w)∈W0

(γ(I♯))F
A(u, ~w)

))
,
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then whenever [1 : start0], ([1 : η0], σ0) →
∗
S pc, ζ, for some W ⊆ LockParams, we have

{|ζ}| ⊑ β

(
ν1(γ(G♯(pc(1)))) ⋆

(
⋆©

{k | pc(k)↓∧k 6=1}

νk(Exists(LVars, γ(G♯(pc(k)))))

)
⋆

ν0

(
⊛

(A,u,~w)∈W
(γ(I♯))F

A(u, ~w)

))
.

Let us lift the notion of closure (Definition 4.2) to P((ThreadIDs ⇀fin Statese) ×

Statesh)⊤ as follows: for all I ∈ InvMaps, 〈⊤〉I = ⊤ and for all p ∈ P((ThreadIDs ⇀fin

Statese))

〈p〉I =
⊔{

{g} × 〈{σ}〉I | (g, σ) ∈ p
}
,

where the later occurrence of 〈·〉I corresponds to the notion of closure in Definition 4.2.

Theorem 6.5 (Soundness of the analysis: variant II). Let (G♯, I♯) be a fixed point

of the functional F ♯(pre), η0 ∈ Lve0, and a complete state σ0 ∈ Statesh
c

be such that

{σ0} ⊑ β
(
〈γ(pre)〉γ(I♯)

)
.

If [1 : start0], ([1 : η0], σ0) →∗
S pc, ζ, and either γ(G♯(pc(k))) is intuitionistic for some k

or the resource invariants in γ(I♯) are admissible, then

{|ζ}| ⊑ β



〈

ν1(γ(G♯(pc(1)))) ⋆

(
⋆©

{k | pc(k)↓∧k 6=1}

νk(Exists(LVars, γ(G♯(pc(k)))))

)〉

γ(I♯)


 .

Note that under the conditions of the theorem when γ(G♯(endi)) ⊑ JtrueeK for i = 1..l

and pc is final, we have

{|ζ}| ⊑ β




〈

ν1(γ(G♯(end0))) ⋆

(
⋆©

{k | pc(k)↓∧k 6=1}

νk(JtrueeK)
)〉

γ(I♯)



 ,

which allows us to check the absence of memory leaks by examining G♯(end0). We can

check admissibility using the approximate criterion given in Section 4.6.

6.4 Related work

Most existing program logics for concurrent programs consider parallel composition, a

less general programming construct than dynamic thread creation. The logics for storable

locks we discussed in Section 4.7 can also reason about dynamic thread creation. The

relationship of these logics to ours is as discussed in Section 4.7.

Feng and Shao [28] presented a rely-guarantee logic for reasoning about concurrent

assembly code with dynamic thread creation. They do not have an analogue of our rule
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for ownership transfer at fork commands. On a higher level, our logic for threads relates

to theirs in the same way as separation logic relates to rely-guarantee reasoning: the

former is good at describing ownership transfer, and the latter at describing interference.

Dodds et al. [25] have recently extended the logic proposed here to reason about

interference more flexibly. In their logic, assertions can contain tokens permitting or

prohibiting threads from modifying the shared state in a certain way. One can transfer

the ownership of such a token to a newly created thread in its precondition, thus allowing

the thread to modify the shared state as described by the token, and get the token back

upon the thread’s termination, thus ensuring that the environment does not modify the

shared state after that.
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Chapter 7

Conclusion

In this dissertation we have proposed logics and analyses for the verification of concur-

rent heap-manipulating programs. The logics and the analyses avoid the problem of

reasoning about all thread interleavings in concurrent programs using modular reasoning,

which results in tractable proofs and efficient tools. They also handle realistic program-

ming constructs, including those not addressed by prior work: storable locks, procedures,

and dynamically-created threads. Thus, our results provide the necessary ingredients for

building practical verification tools.

We have further shown that reasoning principles for concurrent heap-manipulating

programs one might want to use in manual and automatic reasoning differ in subtle

ways: all our logics come with non-standard variants that exclude the conjunction rule

in exchange for lifting the restrictions that are hard for automatic analyses to satisfy. In

this way, our work on program analyses has led to further insights into program logics.

Our results come with several caveats. First, while considering realistic programming

constructs, in this dissertation we did not tie ourselves to a particular concurrency library

so as not to clutter presentation. A specialisation of our logics to a particular program-

ming language or an implementation of our analyses has to fill in the missing details.

Second, we have mostly developed separate logics and analyses for every programming

construct considered, showing their compositions only in the cases of non-trivial interac-

tions between the constructs. This has an advantage that reasoning principles for every

construct are presented in a clean way. Composing all logics and analyses presented here

(e.g., to handle a language with storable locks, procedures, and threads) can be done

as illustrated in Section 5.4. Finally, throughout this dissertation we assumed a sequen-

tially consistent memory model, whereas modern processors and programming languages

exhibit weak memory models (see, e.g., [51, 59]). Most of these models, however, come

with a theorem establishing that a program satisfying a suitably specialised notion of

data-race freedom assuming a sequentially consistent memory model is executed on the

weak memory model as though the memory were sequentially consistent. Since all our

logics and analyses ensure data-race freedom, it should not be problematic to use them
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to reason about programs running on weak memory models.

We conclude by noting some directions of further research that our results suggest.

7.1 Future work

A unified logic for concurrent heap-manipulating programs. In this dissertation

we restricted ourselves to programs that satisfy O’Hearn’s Ownership Hypothesis, i.e.,

mostly to coarse-grained programs. As we discussed in Section 4.7, handling fine-grained

and non-blocking concurrency requires methods different from ours. Modern programs

use a mixture of synchronisation techniques, hence, one needs to unified logic to reason

about them. Developing such a logic is ongoing work [26, 25, 23].

Liveness properties. We have restricted ourselves to verifying safety properties. De-

veloping methods for verifying liveness properties of concurrent heap-manipulating pro-

grams has been the subject of our ongoing work [35, 18]. Note that safety properties

verified by our analyses are needed to support liveness proofs.

Other concurrency constructs. We have restricted ourselves to programs with shared

memory that use locks for synchronisation. We conjecture that our methods can be also

applied to shared-memory programs using monitors and message passing. On the other

hand, reasoning about distributed programs without shared memory will probably require

different approaches.

More robust invariant inference algorithms. As we discussed in Section 3.6, the

use of a fixed heuristic in the thread-modular analysis to decide the splitting of the heap

at release commands is not always satisfactory. It is certainly worth investigating more

principled approaches to resource invariant inference (Calcagno et al. [14] have made a

promising step in this direction).

Getting the conjunction rule back. The conjunction rule is useful for combining the

results of two proofs or two analyses. For example, the reduced product construction [55]

in abstract interpretation effectively uses it. Since resource invariants inferred by the

thread-modular analysis of Chapter 3 may be imprecise, one may wonder if there are

other ways to ensure the soundness of the conjunction rule other than requiring precision.

Intuitively, for the conjunction rule to be sound, proofs or runs of the analyses being

combined have to split the state in the same way at every release command in the

program. One way to enforce this for program analyses is to require that the analyses

being combined use the same heuristic defined in the concrete domain, i.e., satisfying (3.6)

and (3.7). This requirement can be enforced in the logic by adding a side condition to

the global version of the axiom Release ensuring that the state is split according to
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the heuristics ThreadLocalk and Protectedk. It is possible to prove the soundness of a

reduced product construction for the analysis of Chapter 3, and the soundness of the

corresponding logic including Conj and the global versions of Acquire and Release,

but excluding Frame. Unfortunately, the logic with both Conj and Frame is unsound,

since the function ThreadLocalk defined using reachability from the entry points is not

local: if a part of the heap reachable from the entry points is hidden using Frame and

then reattached to the new local state, the result will be incompatible with just applying

Release, since in this case the part will be given up. Thus, an analogue of Lemma 3.8(iii)

does not hold in this case. The situation is clearly unsatisfactory, since we need Frame to

process procedure calls in a local way (Section 5.4). There are several possible approaches

to restoring the soundness of Frame, such as requiring it not to frame out a part of the

heap that may be transferred to the protected state by Protectedk at a release command

inside the code Frame is being applied to. Ultimately, the appropriate solution seems to

depend on the concrete setting we are using the logic or the analysis in.
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