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Abstract

We propose a method for interactive deformation of large detail meshes. Our
method allows the users to manipulate the mesh directly using freely-selected han-
dles on the mesh. To best preserve surface details, we introduce a new surface
representation, the skin-detached surface. It represents a detail surface model as
a peeled “skin” added over a simplified surface model. The “skin” contains the
details of the surface while the simplified mesh maintains the basic shape. The de-
formation process consists of three steps: At the mesh loading stage, the “skin” is
precomputed according to the detail mesh and detached from the simplified mesh.
Then we deform the simplified mesh following the nonlinear gradient domain mesh
editing approach to satisfy the handle position constraints. Finally the detail “skin”
is remapped onto the simplified mesh, resulting in a deformed detail mesh. We in-
vestigate the advantages as well as the limitations of our method by implementing
a prototype system and applying it to several examples.

1 Introduction

The field of mesh deformation has attracted a lot of attention throughout recent years, and
a variety of techniques have been developed and widely used in movie production, mesh
editing tools and game engines. Existing mesh deformation techniques include: free-form
deformation (FFD) [1, 2], RBF-based mesh deformation [3], curve-based deformation [4,
5], skeleton deformation [6], physical simulation [7] and gradient domain deformation. The
computational load and memory consumption of all these approaches grow tremendously
as the complexity of the mesh increases. With the development of 3D scanning techniques,
people are becoming more and more critical about the detail level of 3D meshes, but it
is difficult to edit and deform large meshes interactively using these methods on common
PCs. In addition, except for gradient domain deformation, these techniques have one
common limitation: the abundant geometry details present in the mesh might be seriously
distorted in large scale deformation.

To achieve interactive editing of large detail meshes while preserving the geometric
details, we propose a skin-detached mesh deformation scheme based on a new surface
representation, the skin-detached surface. To put it simply, the skin-detached surface
representation decomposes the mesh into a simplified surface and a group of displacement
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Figure 1: The workflow of skin-detached mesh deformation.

detail coefficients, allowing global deformations with fine-scale detail preservation. This
representation is inspired by the key idea of displacement mapping, which was originally
used for accelerating the rendering process of fine-scale detail on a mesh.

The whole deformation process is depicted in Figure 1. The main computational load
of our skin-detached deformation scheme lies in extracting the displacement coefficients
from the original surface in the precomputation step, and it is actually the simplified
surface on which the deformation is applied, thus high performance and interactive editing
on common PCs can be achieved using our method. In addition, our method completely
seperates the detail preservation mechanism from the mesh deformation process, resulting
in an advantage that it can be easily combined with different mesh deformation approaches
to satisfy various types of requirements while preserving the mesh detail.

In summary, there are two main contributions in this paper: 1. We introduce a new
surface representation, skin-detached surface. This representation separates the details
of the surface from the basic shape, and can be easily applied to efficient manipulation
or animation of large detail meshes. The main challenge of designing the skin-detached
surface representation lies in the diversity of mesh topologies. 2. We propose an efficient
surface deformation scheme based on our surface representation, which integrates the
strengths of the state-of-the-art deformation techniques and multiresolution techniques
to achieve both detail-preserving deformation and high performance.

2 Background

Among the various existing mesh deformation approaches, gradient domain mesh defor-
mation appears to be the one which can best represent the state-of-the-art deformation
solutions. While the other deformation approaches have the common limitation of detail
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distortion, the gradient domain mesh deformation directly encodes the geometric details
in differential coordinates, the so called Laplacian coordinates. By preserving the com-
puted Laplacian coordinates, the mesh details can be well preserved during deformation.
Another advantage of gradient domain mesh deformation is that it provides an intuitive
way of mesh editing. The users can directly drag the handles on the mesh to desired po-
sitions to deform the mesh. By casting the detail preservation as an energy minimization
problem, the deformation can be propagated through the mesh to achieve high quality
deformation result.

Many researchers have contributed in improving gradient domain mesh deformation.
The existing techniques can be categorized into two classes: linearization methods and
nonlinear optimization techniques. Linearization methods dominated in the early stage
development. This class generally includes Poisson mesh editing [8], harmonic propaga-
tion methods [9, 10], Laplacian mesh editing [11, 12, 13], as-rigid-as possible (ARAP) [14]
methods, volume graph laplacian [15] and multi-grid deformation algorithm [16]. Nonlin-
ear methods tackle the limitation of solving large rotation in lineariazation methods by
automatically deriving the rotation from pure translation, which reduces the user burden
significantly. Current nonlinear methods include subspace gradient deformation [17], dual
Laplacian coordinates method [18] and subdivision surface deformation method [19].

In recent years, with the development of 3D scanning techniques, highly detail surface
models are becoming commonplace. This directly results in the emergence of an issue
with current deformation techniques, i.e., how to achieve detail-preserved deformation for
large meshes with high performance. To the best of our knowledge, this problem has
not been solved well yet. To tackle this problem, our method combines the strengths of
gradient domain techniques and multiresolution techniques to achieve visually pleasing
deformation and high performance. Our method is similar in spirit to the displacement
mapping technique.

Displacement mapping was introduced by Cook [20] as a rendering technique in com-
puter graphics. It utilizes a texture or height map to produce an effect where the actual
geometric position of points over the surface are displaced. The idea of displacement map-
ping is widely used in multiresolution techniques, of which one representative technique
is displaced subdivision surfaces [21]. In this technique, Lee et al. enhanced the expres-
sive power of integrating displacement mapping into the subdivision framework. Based
on Lee’s work, Zhou et al. [19] proposed a GPU-based method for interactive deforma-
tion of subdivision surfaces, which upgrades the performance of the previous deformation
methods. The difference between our deformation method and Zhou’s method is that we
maintain the original topology of the mesh and can recover the mesh details accurately.
There are several advantages of maintaining the original topology of mesh: 1. The users
can save the current deformation for further edit. 2. For textured models, the texture
coordinates can be preserved after the deformation is applied. 3. The deformation results
can be easily used for mesh interpolation or animation. In addtion, the simplified mesh
in our method has much lower complexity than the subdivision surfaces in Zhou’s [19],
which endows our method with higher performance.

3 Method overview

As depicted in Figure 1, our method consists of the following steps:
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e Mesh simplification (O — S) After loading the original mesh into memory,
the first step of processing is simplifying the mesh. This step is done by system
automatically without user’s intervention. The simplified mesh will then be used
for “skin” coefficients computation as well as actual shape deformation.

e Skin coefficients computation (O © S — D) Computing “skin” coefficients
of the original mesh based on the simplified mesh is a nontrivial task. The main
challenge lies here is that all the geometric relationships of different meshes should be
taken into consideration to make our method as general as possible. In the following
sections, we investigate whether it is possible to handle all of the situations using
automatic computation, and describe some exceptional cases which are out of the
capability of our algorithm.

e User-directed mesh deformation (S — S’) The users can directly manipu-
late the handles on the mesh in this step to achieve their desirable results. We
employ the nonlinear gradient domain deformation technique to respond to users’
input, deforming the mesh according to the position constraints and the volumetric
constraint.

e Detail mesh reconstruction (S’ ® D — O’) After each iteration of the user’s
manipulation, we reconstruct the details of the mesh by composing the precomputed
“skin” coefficients and the simplified mesh, obtaining the deformed detail mesh. This
step is basically a reverse of the “skin” computation step.

In the following sections, we elaborate each step of our method with more technical
details.

3.1 Mesh simplification

To obtain the nude mesh without “skin” on it, we first simplify the original mesh to a

Figure 2: (a): The original Armadillo. (b): The simplified model using only quadric error.
(c): The simplified model by our system, note the claws and ears are better simplified.



coarse level. We simplify the original mesh using a sequence of edge collapse transfor-
mations prioritized according to the quadric error metric which was first proposed by
Garland and Heckbert [22].

To handle the case in which one vertex has multiple set of displacement coefficients
(see the next section), we restrict some of the candidate edge collapses. We set the main
objective as ensuring that the resulting simplified mesh should have a locally similar
space of normals with the original mesh. We borrow the 1-ring neighborhood test method
introduced by Aaron et al. [21] for this task. If the test fails on any face in the 1-ring
neighborhood, the edge collapse transformation is denied.

Figure 2(b) and Figure 2(c) give the simplified meshes of Armadillo model (Figure
2(a)) without and with 1-ring neighborhood test respectively. The original Armadillo
contains 345,944 triangles while the simplified meshes contain only 1,000 triangles each.

3.2 Skin-detached surface representation

A skin-detached surface representation consists of a simplified mesh and a group of dis-
placement coefficients (see Figure 3). The large green triangle is one of the triangles in
the simplified bunny mesh, and the blue mesh above it is the corresponding part of the
detail bunny. Each vertex of the detail mesh is displaced from a specific point (the black
points) on the simplified triangle along the normal direction of the triangle.

Figure 3: Vertices’ displacements from the coarse level triangle of the simplified mesh.

We define a set of displacement coefficients for a specific vertex V as:

e Triangle index This parameter stores the index of the simplified triangle in which
the vertex V falls along the normal direction. To put it iconically, it is the piece of
flesh where the “skin” point V' attaches.

e UVW coordinates UVW coordinates supply the information of where the drop-
point (the black points in Figure 3) lies in the simplified triangle. Suppose P;, Ps, P3
are the three sequenced vertices of the simplified triangle, then we can compute the
coordinates of the droppoint by V' =u- P, +v- P, +w - Ps.
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e Distance The distance between the vertex V' and the point of fall V’. Given the

distance d and the triangle normal n, we can reconstruct the original vertex position
by V=V'+d-n.

Note that our method maintains the original topology of the mesh in the displace-
ment coefficients which is different from the displaced subdivision surfaces, therefore the
reconstruction of the detail mesh using our method is absolutely accurate.

Figure 3 shows only the ideal relationship between the detail mesh and the simplified
triangle, but the situation can be much more complex in practice. Therefore we study the
diverse relationships between vertices of the detail mesh and triangles of the simplified
mesh, and conclude them into three categories as following.

Case one

Figure 4 shows the 2D view of the first case. It is the ideal case that the vertex V of
the detail mesh falls within one and just one triangle of the simplified mesh. It is the same
case as shown in Figure 3. The normal volume is a volume that is swept by the translated
triangle along its normal direction. The vertex V of the detail mesh lies in and only in
the normal volume of triangle 3. This case is the simplest case, and the displacement
coefficient of the vertex V' can be computed straightforwardly.

Normal Volume

Detailed Mesh @V

° 2 ® 3 9,

1
®  Simplified Mesh @ 2 PY

Figure 4: First case: The vertex falls within one and only one triangle along the triangle’s
normal (2D view).

Figure 5 shows the 3D view of the first case. Calculating the set of displacement
coefficients for vertex V' can be cast as a problem of Ray/Triangle intersection. We denote
the triangle AP, P, Py as T" and the plane in which T lies as m. To get the intersection
of R and T, we first need to determine the intersection of R and 7. In order to obtain
the UVW coordinates of vertex V' during the intersection computation, we use a method
that first computes the parametric coordinates of the intersection point in the plane m,
and then determines whether the intersection point lies in or out of the triangle 7. The
parametric equation of plane 7 is given by:

V(S,t):Pl—l—s-(Pg—Pl)—l—t'(Pg—Pl):P1+Sﬁ+t’f1, (1)

where s and ¢ are real numbers, and @ = (P, — P;) and v = (P; — Py) are edge vectors
of T. A point V' = V(s,t) is in the triangle 7" when s > 0, ¢t > 0, and s +¢ < 1. So,
given V', we just have to find the (s,t) coordinate for it, and then check these inequalities
to verify inclusion in 7. Further, a point V' = V(s,t) is on an edge of T if one of the
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Figure 5: 3D view of the first case.

conditions s = 0, t = 0, or s + ¢ = 1 is true (each condition corresponds to one edge).
Also, the three vertices are given by: P, = V(0,0), P, = V/(1,0), and P; = V(0, 1).

To solve for (s,t), we use a 3D generalization of Hill's “perp-dot” product [23]. For
plane 7 with a normal vector n, and any vector a in the plane (i.e., a satisfies n-a = 0),
the generalized perp operator on w is: a~ = n x a. We use this generalized perp operator
to solve the plane’s parametric equation for the intersection point V'. Put w = V' — Py,
we want to solve the equation: w = s-u +t- 0 for s and ¢t. Take the dot product of both
sides with 9+ to get: -9+ = st - 0+ +td - 01 = st - 9, and solve for s. Similarly, taking
the dot product with @, we can solve for t. We get:

@0t W (A x D) WAt b (A x 4)
S=—FT =", t=——7T=—"T—""+. (2)
w0t u-(nxo) v-ut - (nxa)

Since the intersection is computed many times, we want better performance than the
cross products used in Equation 2. Therefore we apply the left association identity (for
any three vectors a, b, ¢, we have (a X b) x ¢ = (a-c)b— (b- ¢)a.) to the above equations,
resulting in:

it =nxa=(x0)x 0= (t-0)0— (& 0)u, (3)
bt =hx 0= (tx0)x0=(0-0)0— (0-0)h (4)

Then we can compute s and t using only dot products as:

(@-0)? = (u-u)(v-0) (@-0)?2 = (a-u)(v-0)
where the two denominators are the same and only need to be calculated once. Since we
precompute and store the normal vectors for all triangles when the mesh is first loaded,
this ray/triangle intersection algorithm would not compute a cross product at all, making
it very efficient. After obtaining the (s,t), we can simply compute the UVW coordinates
byu=1—-s—t,v=s,w=t. The triangle indexr and distance coefficients are very easy
to obtain.

Case two

Figure 6 shows the 2D view of the second case. In this case, the vertex V does not fall
within any triangle. This case usually happens when the vertex V is near to a summit

5 — . t= (5)
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Figure 6: Second case: The vertex does not fall within any triangle (2D view).

of the mesh. It is more complex than the first case since it is not clear which simplified
triangle should be associated with the vertex V.

To deal with this case, we tested several ways of selecting one associated triangle for
V, e.g., associating the vertex with one of the closest triangles, but none of them results
in visually pleasing deformation. Therefore we adopt a strategy that associates the vertex
V' with multiple triangles. We first traverse over the simplified mesh to find the vertex
P5 which is the closest to vertex V (see Figure 7), then we associate vertex V' with all the
neighbour triangles of vertex Ps.

As illustrated in Figure 7, we take the highlighted triangle AP, P, Py (T) as an example.
First, we emit a ray from vertex V' along the normal direction of 7', and compute the
intersection point V' on the extended plane of T' (the big blue triangle in Figure 7) by
applying the same Ray/Triangle intersection scheme introduced in case one. The only
difference with the first case is that the intersection vertex V' must lie outside of T,
therefore it must be one of the following cases: s < 0 ort < 0, or s+t > 1. But
it does not affect our computation, and we can still compute the UVW coordinates by
u=1—s—t,v=sw =t In this way, we associate vertex V with triangle 7", and
the other neighbour triangles are associated in the same way, resulting in multiple set
of displacement coefficients for one vertex. When the simplified mesh is deformed, the
deformed position of vertex V is determined by all these associated triangles.

Figure 7: 3D view of the second case.
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Case Three

Figure 8 shows the 2D view of the third case. In this case, vertex V falls within
multiple triangles along their normals. This case usually happens when the vertex v is
near to a concave part of the mesh. It is actually the general case of the first case, and
we only need a scheme for selecting triangles to associate.

We first compute the displacement coefficients for each of the triangles within which
the vertex V falls. Then we sort these triangles according to their corresponding distance
coefficients. Note that the distance coefficient is a signed value, therefore we sort the
coefficients by just their absolute values. Suppose the shortest distance of all these trian-
gles is d,,;n, We then associate vertex V' with all of the triangles which have the distance
coefficient less than 2 x d,,;,. The rest of the computation is the same with the first case,
and we also store multiple sets of displacement coefficients for one vertex like the second
case.

V
W

Detailed Mesh

L 1 L ®
2
Simplified Mesh

Figure 8: Third case: The vertex falls within multiple triangles along their normals (2D
view).

3.3 Dual laplacian mesh deformation

To ease the users’ manipulation of mesh deformation, we employ the dual Laplacian mesh
deformation technique proposed by Au et al. [18]. The dual Laplacian method encodes
both the local parameterization and geometric details in the dual mesh domain, thus it
can reduce the distortion caused by large angle deformation or the translations of handles.

The dual mesh consists of the vertices located at the centroids of all the original
mesh faces, and the connectivity of these vertices is determined based on the original
face adjacency. Therefore the valence of dual mesh vertices will always be three for
a triangular mesh, which means the one-ring neighborhood of a vertex will always be
coplanar. Consequently the dual Laplacian coordinate of a vertex is exactly in the normal
direction of the triangle formed by the one-ring neighborhood. The advantage of this
is that it can avoid the so-called tangential drift effect. Precisely, a vertex ¢ can be
determined using:

O = Py + hatty = Y by gy + b, (6)
j€1,2,3
where p; is the normal projection of vertex ¢ onto the triangle Av;19; 90; 3 formed by its
one-ring neighborhood, h; is the signed height of vertex ¢ from the triangle, and n; is the
outward normal. Then p; is expressed by its barycentric coordinates w; ;. We can derive
the dual Laplacian coordinate of vertex i easily as:
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We can put it into the matrix form as LDV = § where L is the topological Laplacian
of the mesh [24], and D is the dual mesh construction matrix constructed from the vertex-
face incident matrix [25]. Let V* and % be the vertex coordinates matrix and the dual
Laplacian coordinates computed at interation k respectively. We iteratively update them
using two linear steps until convergence:

e Compute the new vertex position V*¥*+! with §* by solving the following linear least-
squares problem:

min|| LDVF = 68|12 4 [CVFH — %, (8)
where C'is a vector consists of 0 and 1 to represent which vertex is selected as handle
and p is the handles’ positional constraints.

e Update the dual Laplacian coordinates using:

Sk+1 _ ~k+1

: (9)

where 7; 7" is the unit normal of the triangle formed by one-ring neighborhood of
v;, computed using the V**! obtained above.

We set the termination condition as that the MSE (mean square error) of the vertex
positions between two successive iterations is less than a given threshold. When the
termination condition is satisfied, the algorithm stops and the deformed mesh is obtained.

3.4 Detail mesh reconstruction

The detail mesh reconstruction procedure is basically a reverse procedure of the skin-
detached surface computation, it is like wrapping the “skin” back onto the simplified
mesh after deformation is applied. Given a deformed simplified mesh and the displacement
coefficients for all the original vertices, we can efficiently compute the deformed position
of vertex V' of the detail mesh. For the first case, the deformed position of vertex V can
be calculated as:

‘/deformed:u'Pi,1+U'Pi,2+w'Pi,3+d'ﬁia (10)
where 7, (u, v, w) and d are the set of displacement coeflicients of vertex V. (P 1, P, 2, P, 3)
and n; are the three vertices and the normal of the triangle ¢ from the deformed simplified
mesh.
For both the second and the third cases, we adopt a weighted mean value scheme to
reconstruct the deformed vertex V. The weight of each set of displacement coefficients is
determined by the area of the corresponding simplified triangle:

Z?:l SAi(u'Pi,l + v 'PZ‘72 —l—’w-PZ‘,g—l—d-ﬁi)
Vdeformed = n ) (11)
Zi=1 SAi

where n stands for the count of corresponding triangles and Sa, is the area of the ith
corresponding triangle of the simplified mesh.
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4 Experiment

We implemented a prototype system of the described algorithm on a 3.0Ghz PC with
2GB of memory using OpenGL and C++. With this system, the users can directly select
vertices on the mesh as handles and manipulate them to achieve desirable deformation
results. We employed openmesh [26] as the basis of our system for the sake of efficiency.
Openmesh is a generic and efficient data structure for representing and manipulating
polygonal meshes. It wraps complex internal structure in an easy-to-use interface and
maximize the time efficiency as well as the memory usage. We embedded it in our system
easily by adding the properties of displacement coefficients to geometric element classes
in openmesh.

Figure 9: 1st column: Original detail meshes; 2nd column: Simplified meshes; 3rd column:
Deformed simplified meshes; 4th column: Detail mesh deformation results.

At the loading stage, the system first reads the mesh that needs to be deformed
into memory, and then it will do two things automatically: simplifying the mesh to a
certain coarse level (in our implementation, we set the default face count of the simplified
mesh as 1000. The users can change the number due to their specific requirements), then
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computing and storing the “skin” of the original mesh based on the simplified mesh. After
all these computations, the users can intuitively edit the large mesh. At each time the
users drop the handle, the system reconstructs the detail mesh according to the deformed
simplified mesh. Since the computation of mesh simplification, “skin” decomposition and
detail mesh reconstruction are hided in a black box, it appears to the users as if they are
editing the detail mesh directly.

Figure 9 shows the deformation results of four large detail mesh using our system.
The face counts of the original four meshes are 157K, 398K, 332K and 278K respectively.
With conventional gradient domain mesh deformation techniques, the computation of
these meshes would be complex and time-consuming. This makes the deformation work
quite difficult for the artists. But with our method, the artists can edit large meshes
interactively. For the four different models, we set the vertex number of the simplified
models to be different according to the complexity of their shapes. Specially, for the head
model, due to people’s sensibility to human facial detail, we simplified the model to 5,000
triangles. Our system achieved visually pleasing deformation results for these models.

During our experiment, we found that there are some exceptional cases in which our
method can not achieve correct deformation. Figure 10 gives a case with a human head
model. Figure 10(a) shows the original head model with mouth closed. Figure 10(b) and
10(c) show the deformed simplified model and the reconstructed detail model whereas
Figure 10(d) shows the desirable result. When we tried to drag the lower lip from the
upper lip, the shape of mouth was heavily distorted. The reason for this phenomenon is
that when we computed the skin-detached surface representation of the head model, some
vertices of the upper lip were mistakenly attached to the simplified lower lip, and vice
versa. Therefore, when we reconstructed the detail mesh of the head, these vertices were
determined by improper simplified triangles and then the distortion happened. Generally
speaking, when we want to split a group vertices that are close to each other, we need
to be careful enough about the computation of skin-detached surface representation. So
we believe that using only automatic method is not enough to cover all the situations for
this task.

Figure 10: (a) Original human head; (b) Deformed simplified model; (c¢) Reconstructed
detail model; (d) Desirable result.

Table 4 provides some performance statistics of the four examples shown in Figure
9. For these large models, traditional deformation methods typically take several seconds
or longer for a single manipulation of moving one handle, and take even longer for the
recomputation each time when the users change the handles. But we can see that our
skin-detached mesh deformation system can achieve real-time performance for all these
examples. The frame rates in the table were calculated when the handles are already
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Model HVimpiified | #Vietan | FPS | Precomputation Time
Elephant 700 157,160 | 86 21min
Max-Planck Head 5,000 398,043 | 34 64min
Armadillo 1,000 331,904 | 75 52min
Detail Bunny 500 277,804 | 92 44min

Table 1: Performance for the examples used in this paper, including the vertex numbers
of simplified meshes and detail meshes, the frame rates of deformation and the precom-
putation time cost.

selected and the user is manipulating certain handles. If the user adds new handles or
removes old handles, then we need to re-compute the inverse for some matrices and the
frame rate will decrease. But fortunately these matrices’ dimensions are proportional to
the vertex count of the simplified mesh, which is much smaller than the detail mesh. For
all the above examples, this recomputation process takes less than one second. The topo-
logical Laplacian and the dual mesh construction matrices are fixed during deformation
and are not affected by the handle selections.

Note that the real performance bottleneck of our method lies in the precomputation
step of generating skin-detached surface representation. In its last column, table 1 also
provides the precomputation time of each model. Although the precomputation takes
relatively long time for large models, it is acceptable since for each model we only need to
compute the skin-detached surface representation once, and we can save the displacement
coefficients for further usage. In addition, we believe that the performance of precompu-
tation can be improved by transferring the parallel computation onto GPU, which would
be an area for future work.

5 Conclusions and future work

We have described a method for interactive deformation of large detail mesh. With
our method, the user can directly manipulate large meshes using freely-selected surface
points as handles. The most important feature of our algorithm is that it combines the
strengths of the nonlinear gradient domain mesh deformation techniques and the multires-
olution techniques to achieve both visually pleasing deformation and high performance.
Specifically, by separating the detail recovering mechanism from the mesh deformation
procedure, our system achieves the advantage that it can be easily combined with different
mesh deformation approaches to satisfy various requirements. While significant compu-
tation is needed for large detail mesh deformation with traditional methods, our method,
designed with skin-detached surface representation, distributes the main computational
load to the precomputation step and achieves real-time performance on common PCs.
In mesh deformation, it is well known that designing an algorithm suitable for all
the topological structures of different meshes is nearly impossible. As illustrated in the
experiment section, there are still some limitations of our method. As a topic of future
research, we plan to explore the solution to the exceptional cases of our system. Besides,
our current system only supports triangular mesh deformation, and we are also interested
in developing techniques for multi-component models or non-manifold models. Another
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area for future work is improving the current performance of precomputation by applying
the parallel GPU computation to the skin-detached surface computation.
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