Technical Report A

Number 74

Computer Laboratory

Hardware verification by formal proof

Mike Gordon

August 1985

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

August 19, 1985

Hardware Verification by Formal Proof

Mike Gordon
Computer Laboratory

Corn Exchange Street

Cambridge CB2 3QG

Abstract

The use of mathematical proof to verify hardware designs is explained and mo-
tivated. The hierarchical verification of a simple n-bit CMOS counter is used as
an example. Some speculations are made about when and how formal proof will

becomeé used in industry.

Hardware Verification by Formal Proof

The last twenty years have seen considerable progress in getting computers to
generate mathematical proofs. Some of the resulting techniques are now being

successfully applied to the problem of verifying that hardware designs meet their

specifications.

What is verification by formal proof?
The idea of hardware verification by formal proof is not new. A traditional

example is the use of Boolean algebra (see Figure 1).

A formal proof consists of a sequence of lines each of which is either a hypothesis
or derived from previous lines. The final line of the proof is the theorem proved.
As an example, consider the following circuit:

a —
b NAND NAND ¢

Below is a formal proof that the specification ¢ =a A b is correctly implemented ‘

by this circuit. (The justification of each line is given in square brackets.)

1. ¢ = NAND(NAND(a,), NAND(a, b)) [From the above circuit|
2. NAND(a,b) == ~(a A b) [Definition of NAND]
3. ¢ =~((~(a A B)) A(~(a AB))) ' [Substituting 2 into 1]
4. c=-(-(anb)) [By 3 and the law z A z = 1]
S.c=aAb [By 4 and the law ~—z = 1]

Figure 1: A formal proof using Boolean algebra

The important difference between conventional hardware description languages
and mathematical formalisms like Boolean algebra is that the latter support formal
reasoning.

A deéign methodology employing formal verification entails:

1. Writing a high-level specification (sometimes called a “requirements speci-
fication”).

2. Designing an implementation (e.g. a circuit diagram).

3. Proving mathematically that the design meets its specification.

In the example in Figure 1, the high-level specification is ¢ = a A b, the im-
plementation uses two NAND-gates connected as in the diagram, and the proof
consists of the five steps shown. The proof in this example could be done on the
back of an envelope, but proofs of real devices can be thousands of lines long and

the only feasible way of generating them is by computer.

1

Although the language of Boolean functions is adequate for specifying simple
combinational circuits, it is not really suitable for more complicated systems which
use a variety of data types (words, numbers, efc.) and have time dependent -

behaviour.
To make verification by proof feasible for real systems it is thus necessary to
provide two things:
1. A high-level mathematical formalism for writing speqiﬁcatio‘ns'
2. Tools for mechanizing the production of correctness proofs.

A computer system that provides these is VERIFY developed by Harry Barrow of
Schlumberger Palo Alto Research. VERIFY has been used to prove correct quite
complex devices including an arithmetic unit containing over 18,000 transistors.

Using predicate logic for specification and verification
Predicate logic is one of several formal systems being investigated as a basis
for specification and verification. Its use is illustrated in Figures 2 to 7. Figure 2

shows a behavioural specification of an n-bit counter in a version of predicate logic

called higher-order logic. (See Figure 3 for the meaning of the notation used.)

reset

COUNT

out

COUNT(r)(reset,out) =)
Vi. VAL(n)(out(t+1)) = (reset(t) — 0] (VAL(n)(out(t))+1)MOD2"+)

Figure 2: Specification of an n-bit counter

Functions like COUNT in Figure 2 take a sequence of arguments. COUNT itself
denotes a function which when applied to a number n yields a predicate COUNT(n)
representing the behaviour of an n-bit counter. The predicate COUNT(n) can then
be applied to a pair (reset, out) to yield a truth value (f.e. T or F). In this example
reset and out are functions from times (represented by numbers) to words. Such
functions represent possible ‘histories of values’ occurring at the input and output
of the counter. For example, out(5) represents the word output by the counter
at time 5, and out(5)(3) is bit 3 of this word (time and bit positions are counted

from 0, so bit 3 is the fourth bit, etc.).

* “P A Q" means “P and Q".

» “P D Q" means “P implies Q”.

¢ “P = Q" means “P il and only if Q" (i.e. (P D Q) A(Q D P)).
e “Vt. P[t]” means “P[f] is true for all values of ¢”,

o “3t. P[t]" means “P[t] is true for some value of ¢,

e (P =1, |t,) equals t, if P=T and equals t, if P=F.

e “VAL(n}f” denotes the number represented by the (n+1)-bit word whose
8 bit is f(i) (where i runs from 0 to n),

» “WORD(n)m” is defined by the equation VAL(n}(WORD(n)m) = m.

* “m MOD n” denotes the remainder after dividing n into m.

- Figure 3: Notation used in the examples

The idea of the specification in Figure 2 is that COUNT(n)(reset, out) should
equal T if and only if reset and out correspond to possible histories of values
occurring at the input and output of the counter — f.e. if the number denoted
by the word occurring at out at time £+1 is one plus the value at out at time ¢
(except that if reset is asserted at time £ then 0 is output at out at t+1).

Figure 4 shows a diagram of an implementation of the counter, together with

behavioural specifications of its components.

[i reset

S
INIT Fa
2 INC

DEL

out
INIT(n)(reset, py,p2) = V. p2(t) = (reset(t) — WORD(n)0 | py(£))

DEL(p,, out) = Vt. oul(t+1) = py(t)

INC(n)(out, p,) = Vt. VAL(n)(p(t)) = (VAL(r)(out(t)) + 1)MOD2"+

Figure 4: An implementation of the counter

This implementation is specified at the register-transfer level, a level at which
clock lines are implicit. At a lower level the delay element DEL might be imple-
mented by a clocked D-type register with an explicit clock line; setup and hold
times would then have to be represented. This lower level is not elaborated here,

but it can also be modelled in predicate logic,

In Figure 5 there is an outline proof that the implementation of the counter is

correct.

1. Translating the diagram in Figure 4 into logic gives:

3py po. INIT(n)(reset, py, p2) A DEL(p,, 0ut) A INC(n)(out,p,)

2. Substituting in the definitions of INIT, DEL and INC results in:

3p1 p2. (VE. pa(t) = (resel(t) — WORD(n)0 | ps(£))) A
{Vt. out(t+1) = po(t)) A
(VE. VAL(r)(p: (1)) = (VAL(n)(out(t)) + 1)MOD2"+1)

3. Routine formal manipulations yield:
Vi. VAL(n)(out(t+1)) = (reset(t) — 0 | (VAL(n)(out(t)) + 1)MOD2"+1)

4. This is equal to COUNT(n)(reset, out), the behavioural specification of the
counter in Figure 2.

Figure 5: Outline correctness proof of the counter implementation

Figure 6 shows an implementation of the incrementer INC. Mathematical in-
duction on n can be used to formally prove that this implementation meets the
behavioural specification of INC in Figure 4. The proof is too long to be shown

here, but it is not difficult and is easily generated by computer.

i(n) #{n—1) i(1) i(0)

AND o

v, WV,

o(n) o{n—1} o(1) o(0)

This circuit can be represented in logic by defining:

INCIMP(n)(t,0) =
((n=0) — INV(i(0), 0(0)) |
de. XOR(i(n), ¢, 0(n}) A INC_SLICE(n~1)(4, 0, c))

Where INC_SLICE is defined by:
INC_SLICE{n)(i, 0, cout) =

((n=0) — INV(5(0), o(0)) A (cout = $(0)) |
Je. XOR(¥(n), ¢,0(r) A AND(i(n), ¢, cout) A INC_SLICE(n—1)(¢, 0,¢))

Figure 6: An implementation of INC

4

Finally, in Figure 7, a CMOS circuit implementing the exclusive-or gate used in

Figure 6 is verified.

Voo T 1. From the circuit diagram:
Jp. PTRAN(1,, T,p) A NTRAN(i;,p,F) A
[PTRAN(iz, 1;,0) A NTRAN(i,,0,p)
) H 2. By the definition of NTRAN and PTRAN:
3
l Ip. (¢ D (p=T)) A (D (p=F) A
r (~iz > (=) A (23 (o=1)
17} 0
u 3. Boolean algebra and laws for equality give:
p . 3 »
Ip. (p=~i1) A (0=~(i;=1))
—” 4. Moving 3 inwards yields:
' (3p. p= ’11‘1) A (0 = —‘({1=i2))
= F
5. Hence 0 = —(i,=1,).
Figure 7: Formal verification of a CMOS exclusive-or gate

Although the example outlined in Figures 2 to 7 is simple, it does illustrate an
important point, namely that formal specification and verification can be done
hierarchically.

When should formal verification be used?

Formal verification is expensive and currently it may only be only worthwhile
for systems whose failure would result in disaster (e.g. loss of life, destruction of
costly equipment, or recall of a mass produced product). Examples include aircraft
control systems, nuclear reactor monitors, satellite systems, medical devices and
chips in automobiles.

It has been suggested that aircraft that fly-by-wire should only get air worthiness
certificates if critical parts of their control systems have been formally proved
correct. Until recently this was not considered practical, but a group at RSRE
have proved correct a complete processor. This establishes that real systems can

be formally verified and so contractors will no longer be able to claim that doing

it is impossible.

As designs get larger and more complicated, the cost of conventional verification
methods appears to grow faster than the cost of formal methods. It might thus
actually be cheaper to verify VLSI designs by formal proof than by standard CAD
techniques like simulation. This is especially plausible for complex single chip
systems containing a lot of hard wired logic (e.g. RISC machines).

Verification engineering

The first commercially available formal verification systems will probably handle
simple designs fully automatically, but may require manual guidance for more
complicated ones. For example, the proofs shown in Figures 1, 6 and 7 could be
generated automatically, but the inductive proof of the circuit in Figure 6 might
require manual guidance. A new kind of expert (a ‘verification engineer’) will be
needed for the production of complex correctness proofs. Such people are likely
to be in short supply and may well work on a consulting basis. .System designers
will verify in-house those parts of their designs which can be done automatically.
The few complicated parts of the proof that require a specialist might then be

contracted out to a ‘verification shop’.
Current research

Several university groups in the UK are aétively researching hardware specifica-
tion and verification. Keith Hanna at the University of Kent is developing a system
called VERITAS which can be used to mechanize the sort of proofs described in
this article. At the University of Edinburgh, George Milne is working on a cir-
cuit calculus called CIRCAL. He has implemented some tools for animating formal
speciﬁcaﬁions. CIRCAL is particularly approi)riate for analysing low-level timing
behaviour. At Cambridge, the hardware verification group is studying several

formalisms including higher-order logic and temporal logic.
References
1. H. Barrow. Proving the Correctness of Digital Hardware Designs. VLSI
Design, Volume 5, Number 7, July 1984.

2. F. K. Hanna and N. Daeche. Specz'ﬁcdtion and Vertfication using Higher-
Order Logic. Proceedings of the 7th International Conference on Computer

Hardware Design Languages. Tokyo, 1985.

3. G. J. Milne. CIRCAL: A calculus for circuit description. Integration, Vol-
ume 1, Numbers 2 & 3, October 1983. |

