Technical Report A

Number 730

Computer Laboratory

Adaptive evaluation
of non-strict programs

Robert J. Ennals

August 2008

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

(© 2008 Robert J. Ennals

This technical report is based on a dissertation submitted
June 2004 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Kings College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Most popular programming languages atact. In a strict language, the binding of a variable
to an expression coincides with the evaluation of the exgioas

Non-strict languages attempt to make life easier for pnognars by decoupling expression
binding and expression evaluation. In a non-strict languagvariable can be bound to an
unevaluated expression, and such expressions can be @aiesed just like values in a strict
language. This separation allows the programmer to dealaegiable at the point that makes
most logical sense, rather than at the point at which itsevedkknown to be needed.

Non-strict languages are usually evaluated using a teakriglled Lazy Evaluation. Lazy
Evaluation will only evaluate an expression when its valsikmown to be needed. While
Lazy Evaluation minimises the total number of expressimatuated, itimposes a considerable
bookkeeping overhead, and has unpredictable space bahavio

In this thesis, we present a new evaluation strategy whicltalleOptimistic Evaluation.
Optimistic Evaluation blends lazy and eager evaluationeurtde guidance of an online pro-
filer. The online profiler observes the running program anddies which expressions should
be evaluated lazily, and which should be evaluated eag@féyshow that the worst case per-
formance of Optimistic Evaluation relative to Lazy Evaloatcan be bounded with an upper
bound chosen by the user. Increasing this upper bound atteevgrofiler to take greater risks
and potentially achieve better average performance.

This thesis describes both the theory and practice of OgtiicnEvaluation. We start by
giving an overview of Optimistic Evaluation. We go on to pesformal model, which we use
to justify our design. We then detail how we have impleme@gtimistic Evaluation as part of
an industrial-strength compiler. Finally, we provide esipeental results to back up our claims.

Acknowledgments

First of all, | would like to thank my supervisor, Simon Paytdones, who has provided in-
valuable support, inspiration, and advice. Enormous thamist go to Alan Mycroft, who has
acted as my lab supervisor. | am also extremely gratefuhfesupport of Microsoft Research,
who have provided me not only with funding and equipment dish with a supervisor, and a
building full of interesting people.

| would also like to thank Jan-Willem Maessen and Dave Sedtt provided suggestions
on this thesis, and Manuel Chakravarty, Karl-Filip FaxEergus Henderson, Neil Johnson,
Alan Lawrence, Simon Marlow, Greg Morisett, Nick Netheesdilenrik Nilsson, Andy Pitts,
Norman Ramsey, John Reppy, Richard Sharp, and Jeremy Swlgerhave provided useful
suggestions during the course of this work.

This work builds on top of years of work that many people haueipto the Glasgow
Haskell Compiler. 1 would like to thank all the people at GJaw, at Microsoft, and elsewhere,
who have worked on GHC over the years. Special thanks must §orton Marlow, who was
always able to help me when | ran into deep dark corners in € @intime system.

Contents

1

Introduction 9
1.1 LazyEvaluation 9
1.2 Mixing Eager and Lazy Evaluation 10
1.3 OptimisticEvaluation e 12
1.4 StructureofthisThesis 13
1.5 Contributions 13
Overview 14
Optimistic Evaluation 15
2.1 Switchable LetExpressions e . 16
2.2 Abortion e
2.3 Chunky Evaluation 17
2.4 Probability of a Nested Speculation beingUsed 19
25 ExceptionsandErrors. e 20
2.6 Unsafe lnput/Output 20
Online Profiling 22
3.1 TheNeedforProfiing, 22
3.2 G00dNESS e e
3.3 CalculatingWastedWork e 24
3.4 BurstProfiling. 28

23

6

CONTENTS

Theory

Semantics

41 ASimpleLanguage
4.2 Operational Semantics
4.3 Denotational Semantics
44 Soundness

A Cost Model for Non-Strict Evaluation

5.1 WhyWe Needa CostModel
52 CostGraphs o oo
5.3 Producing a Cost View fora Program
5.4 RulesforEvaluation

5.5 An Operational Semantics

5.6 Denotational Meanings of Operational States

Deriving an Online Profiler

6.1 CategorisingWork
6.2 Blame
6.3 Bounding Worst Case Performance
6.4 BurstProfiling.

Implementation

The GHC Execution Model

71 TheHeap
7.2 TheStack
7.3 Evaluating Expressions
7.4 Implementing the EvaluationRules
7.5 OtherDetails

Switchable Let Expressions

8.1 Speculative Evaluationofalet.
8.2 FlatSpeculation
8.3 Semi-Tagging
8.4 Problems with Lazy Blackholing

30

CONTENTS 7

9 Online Profiling 128
9.1 Runtime State for Profiling 128
9.2 Implementing the EvaluationRules 132
9.3 HeapProfiling 371
9.4 FurtherDetails e 139

10 Abortion 143
10.1 Whento Abort 314
10.2 Howto Abort 514

11 Debugging 149
11.1 Howthe Dark SideDolt 150
11.2 Failingto Debug Lazy Programs 0., 151
11.3 Eliminating Tail Call Elimination 151
11.4 Optimistic Evaluation e 152
11.5 HsDebug 153

IV Conclusions 154

12 Results 155
12.1 Howthe Testswere CarriedOut 156
12.2 Performance e 157
12.3 Profiling e 59
12.4 MEtriCS o o e e 716
125 Semi-Tagging o o o e 172
12.6 HeapUsage 0 e e 317
12.7 Miscellanea 176

13 Related Work 181
13.1 Static Hybrid Strategies e . 182
13.2 EagerHaskell 187
13.3 Speculative Evaluation for Multiprocessor Paradlali. 189
13.4 Speculation for Uniprocessor Parallelism 191
13.5 Modelsof Cost 931
13.6 Profiling 96l
13.7 Debuggers for Non-StrictLanguages ceien o ... 197
13.8 Reducing SpaceUsage i i i i i 199

13.9 Other Approachesto Evaluation 200

8 CONTENTS
14 Conclusions 202
A Proof that Meaning is Preserved 205
A.1 Evaluation PreservesMeaning vt iiiann . 205
A.2 Abortion PreservesMeaningo 208
B Proof that Costed Meaning is Preserved 211
B.1 Lemmas e e e 211
B.2 Proof of Soundness for EvaluationRules 212
B.3 Proof of Soundness for AbortionRules 214
C Proof that programWork predicts workDone 216
C.1 Preliminaries e e 216
C.2 Proof for Evaluation Transitions 217
C.3 Proof for Abortion Transitions e 220
D Example HsDebug Debugging Logs 221

CHAPTER 1

Introduction

Avoiding work is sometimes a waste of time.

Non-strict languages are elegant, but they are also slownm@ic Evaluation is an imple-
mentation technique that makes them faster. It does thisimgua mixture of Lazy Evaluation
and Eager Evaluation, with the exact blend decided by amempliofiler.

1.1 Lazy Evaluation

Lazy Evaluation is like leaving the washing-up until latéryou are never going
to use your plates again then you can save considerable tirmebwashing them
up. In the extreme case you may even avoid washing up a phtestbo dirty that
it would have taken an infinite amount of time to get clean.

However, if you are going to need to use your plates agaim &ving the washing
up until later will waste time. By the time you eventually ché® use your plates,
the food on them will have stuck fast to the plate and will takeger to wash off.
You will also have to make space in your kitchen to hold allwlashing up that
you have not yet done.

Non-strict languages aim to make life easier for progransnbgrremoving the need for a
programmer to decide if and when an expression should baateal. If a programmer were to
write the following:

let z = Fin F’

9

10 Chapter 1. Introduction

then a strict language such as C [KR88] or ML [MTHM97] wouldate thdet expression
eagerly It would evaluate thé’ to a value, bind: to this value, and then evaluat.

By contrast, a non-strict language such as Haskell [P88 or Clean [BVEVLP87, NSVEP91]
will not require thatF' be evaluated untit is known to be needed. Non-strict languages are usu-
ally evaluated using an evaluation strategy callady Evaluatiort If the evaluator evaluates
theletlazily then it will bind x to a description of how to evaluate, only evaluatingt if x is
found to be needed.

In a strict language, theet declaration does not just say whatmeans—it also says that
x should be evaluated now. This forces the programmer to @eelat a point at which it is
known thatF is needed; otherwise the work done to evaluatmight be wasted. Howevehe
best point forr to be evaluated might not be the most logical placeiddo be declared Pro-
grammers are forced to make a compromise between elegamedfiarency in their placement
of declarations.

Non-strict languages avoid this problem by distinguistiatyveen the point at which a vari-
able is declared and the point at which it is evaluated. Itgsied that this gives programmers
more freedom, and allows them to write more elegant progrinas they would in a strict
language [Hug89].

Unfortunately, this beauty comes at a cost. If the evalustarot going to evaluate an
expression immediately, then it must create a data strictascribing how to produce the
value later. Producing this data structure takes time aadespAs a result of this, non-strict
languages are usually significantly slower than strict leaggs.

1.2 Mixing Eager and Lazy Evaluation

Rather than leaving all the washing up until later, or washump everything now,
it might be best to wash up some plates now, but leave somepdétes for later.

| might decide to wash up the plates that | know | am going tadrteenorrow.

Alternatively, | might wash up only those plates which | kraoerfairly clean and

so won't take very long to wash up.

Unfortunately, it can be difficult to know for certain that &fe will definitely be
needed or that it will definitely be easy to clean. | may hawalusy favourite plate
every day this year, but if | got hit by a bus tomorrow then | ldawever need to
use it again. Similarly, although my plate has always beesy¢a wash up in the
past, | can’'t be sure that it won’t be impossible to wash up time.

1The only non-lazy implementation of a non-strict languabehich we are aware is Eager Haskell, which we
discuss in Section 13.2.

1.2. Mixing Eager and Lazy Evaluation 11

Proportion of Let Evaluations Speculated

100% =
90% B —
80% — o ——
70% — — ——
60% — — —

50% — — —
40% — — —
30% O - -
20% - - -
10% — — —
0% e e e L B B B L B L B DL ‘

- ,

2

2

Figure 1.1 : Percentage of lazy let evaluations left behind by GHC'’s strictness analyser that we
believe should be evaluated eagerly

esl

60|md4
6|euMsA ‘ ‘ ‘

euuR
1dsq
S)ureNSU0d
ssaidwod
wisoup
Ajsnep

piny

wos|ny
qaiweh
TwyeldAn
|opuew

bdy

Byl

al1ayds
Jasred

woje

9|ndas

One way to for an implementation to avoid the cost of Lazy E&tbn is to simply not use
it. If F is very cheap to evaluate, or is always needed, then it iss&ealuater at the point at
which it is declared. We can thus arrange to use Eager Evatuatsuch cases, and save Lazy
Evaluation for the cases where it necessary.

It is all very well to say “we will only use Lazy Evaluation whet necessary”, but how
does a language implementation find out where Lazy Evaluatém be safely replaced by
Eager Evaluation?

Most existing compilers for non-strict languages use acséaalysis called strictness anal-
ysis (Section 13.1.2) to find expressions that are guardniteke needed. Another approach
is cheapness analysis (Section 13.1.3) which finds expresshat are guaranteed to be cheap
to evaluate.

While both these analyses work well they, like all undecidaiatic analyses, are limited by
the need to be conservative. If a static analysis decidegalaae an expression eagerly, then
the analysis must be 100% sure that the expression is ellkapor needed. If the expression
turned out to be expensive and unnecessary, then this cause ¢he program to execute much
more slowly than otherwise, or perhaps even to not termifdtis requirement to be conserva-
tive can be very frustrating. Often one will have an expr@s#nat one is “pretty sure” could be
safely evaluated eagerly, but because one is not 100% seitgaario evaluate it lazily. A further
problem is that such analyses miss expressions that arallysised and usually cheap”.

In practice this conservatism causes static analyses ilg Bmluate many more expres-
sions than necessary. Figure 1.1 summarises the propoftiany let evaluations left behind
by GHC's [PHH"93] strictness analyser [PP93] that our profiler believesikhbe evaluated
eagerly. This graph is explained in more detail in Sectiod 12

2In this introductory chapter, we are fairly sloppy in digfinshing between static program expressions and
dynamic expression instances. We will be more formal irrlelbepters.

12 Chapter 1. Introduction

Static analyses, and other approaches to mixed eageritaltyaion are discussed in more
depth in Chapter 13. The implementation of Lazy Evaluatsogiscussed further in Chapter 7.

1.3 Optimistic Evaluation

Perhaps a better approach is to wash up “optimistically”. days go by, | learn

which plates are likely to be easy to wash up and which onebkalg to be needed
again. | will soon learn that, while paper plates are usuallyt needed again, my
favourite dinner plate usually is. If a plate turns out to kedher to wash up than |

expected then | can stop washing it up and move onto somedlsiag

In this thesis, we introduce Optimistic Evaluation, a newleation strategy for non-strict
programs. Optimistic Evaluation avoids the curse of coregesm by using an online profiler to
decide how best to blend lazy and eager evaluation, rathantking a static analysis. Evdet
expression is compiled such that it can evaluate eitherrgage lazily, depending on the state
of a dynamically changing structure called thgeculation configuratianAn online profiler
monitors the behaviour of the program as it runs, and updhe&especulation configuration to
take account of what it has seen.

Optimistic Evaluation is @peculative evaluation strateghf evaluates expressions without
knowing whether their values are needed or whether evaluatill have to be aborted. When
Optimistic Evaluation evaluates the right hand didéalet eagerly, we say that it ispeculat-
ing thelet, and refer to the evaluation of the right hand side apeculationor aspeculative
evaluation

Unlike a static analysis, Optimistic Evaluation is not cemnvative. An expression will be
evaluated eagerly if the profiler judges that this watbbably make the program go faster,
rather than only if this willdefinitelynot make the program go slower. If the profiler makes a
bad decision, and causes the program to attempt to eageilllya¢® an expensive expression,
then the profiler will spot that the evaluation has gone ortdorlong, and arrange for it to be
aborted (more details in Section 2.2).

The purpose of this thesis is to explore the concept of OptimEvaluation, develop the
theory behind it, demonstrate that it can be practicallylengented, and show that it gives
considerable (approx 20%) performance improvementsvelat the best performing compiler
previously available.

3For the expressiorét = = E in £’ we say thatr is thebinder, E is theright hand sideandE’ is thebody:
While these terms are quite widespread, they can be cogfbisicause, although the right hand side is written to
the right of the binder, it is written to the left of the body.

1.4. Structure of this Thesis 13
1.4 Structure of this Thesis

This thesis is divided into four parts:

e Partl: An overview of Optimistic Evaluation
e Partll: The theory behind Optimistic Evaluation
e Partlll: The implementation of Optimistic Evaluation in the Glasgdaskell Compiler

e Part IV: Performance results, related work, and conclusions.

All terms defined in this thesis can be found in the index.

1.5 Contributions

This thesis makes the following contributions:

e We introduce Optimistic Evaluation, a novel approach tdwating non-strict programs,
which dynamically explores the space between Lazy Evaloaind Eager Evaluation
(Chapter 2).

e We give a concrete semantics for Optimistic Evaluation ammgthat it is sound with
respect to Lazy Evaluation (Chapter 4).

e We give a novel cost semantics for non-strict programs aodepthat this semantics cor-
rectly models the costs experienced by a conventional tpeed semantics (Chapter 5).

e We use this cost model to motivate the design of an onlinelpr@fChapter 6).

e We show that, given certain safe assumptions, we can ge&#mat such a profiler can
bound the worst case performance of Optimistic Evaluatieiative to Lazy Evaluation.
This is an important property if Optimistic Evaluation iste used as a “plug-in” replace-
ment for Lazy Evaluation. (Chapter 6).

e We describe a real, practical implementation of OptimiBt@luation that is able to cor-
rectly execute arbitrary Haskell programs. (Part Ill)

e We demonstrate significant performance increases (apf¥#) 2ompared to our base-
line compiler. Given that our compiler has been tuned forynasars and is was itself the
fastest compiler available for the Haskell language, thia tonsiderable achievement.
(Chapter 12)

e Optimistic Evaluation opens up a considerable design spéfehave explored part of
this space, and have compared several different appraaches

Part |

Overview

14

CHAPTER 2

Optimistic Evaluation

Optimistic Evaluation consists of several componentstbate together to produce a function-
ing system:

e Eachlet expression can evaluate either eagerly or lazily (Secti@h 2Vhich of these
it does depends on the state of a run-time adjustalitch one for eachiet expression.
The set of all such switches is known as #ipeculation configuratian

e If the evaluator decides that a speculation has gone on édotay then it willabortthe
speculation. The evaluator will resume by evaluating theybaf thelet that spawned
the aborted speculation. (Section 2.2).

e Recursively generated structures such as infinite listbeayenerated iohunkf several
elements, thus reducing the cost of laziness, while avgidiraluating too much of the
structure in one go. (Section 2.3).

¢ Online Profilinglearns whichlets are expensive to evaluate, or are rarely used (Chap-
ter 3). The profiler modifies the speculation configuratiortted expensive and rarely
usedlet definitions are not speculated.

A more formal treatment of these concepts is provided in @rap while more implemen-
tation details are provided in Chapter 8.

15

16 Chapter 2. Optimistic Evaluation

2.1 Switchable Let Expressions

Our compiler reduces the full Haskell language to a restmicgtubset in which all complex
expressions must be bound byt expressions (Section 4.1). Eab#t expression takes the
following form:

letz = Fin F’

Such alet can be evaluated either eagerly or lazily:
e Eager: EvaluateF immediately. Bindr to the value that' evaluates to.

e Lazy: Do not evaluatdr immediately. Bindz to athunkin the heap, containing all the
information needed to evaluatelater.

Our implementation decides at runtime whether to evalugiigenlet eagerly or lazily: The
code generator translates th& expression above into code that behaves logically like the
following:
if (switchagy # 0){
x :=result of evaluating”
telse{
x :=thunk to compute” when demanded

}

evaluater'’

Our current implementation associates steic switch(in this caseswitch,s;) with eachlet.
There are many other possible choices. For example, for @ifumlike map, which is used

in many different contexts, it might be desirable for thetstvito take the calling context into
account. We have not explored these context-dependenbpities because the complexity
costs of dynamic switches seem to overwhelm the uncertaieflte. In any case, GHC'’s
aggressive inlining tends to reduce this particular pnoblé/e discuss such switches further in
Section 4.2.2. If£ was large, then this compilation scheme could result in ¢boat because
two blocks of code are generated for We explain ways to avoid this problem in Section 8.1.6.

If a let is evaluated eagerly, then we say that lbeis speculatedwe refer to the time
spent evaluating the right hand side of ibé as aspeculationwe say that the speculation was
spawnedy thelet, and we say that thiet is thesourceof the speculation.

Lif strictness analysis is applied beforehand, then shrhexpressions may be hard-coded as eager.

2.2. Abortion 17
2.2 Abortion

Optimistic Evaluation aims to improve performance by eatihg expressions eagerly even
when it does not know for sure that they will be cheap or neédéah obvious consequence
of this strategy is that it will sometimes evaluate expr@ssithat are expensive and unneeded.
It is essential that the evaluator has a way to recover frooh snistakes in order to avoid
non-termination; this is the role afbortion

If the evaluator detects that a speculation has been goirigranlong time, then it aborts
all active speculations (they can of course be nested)mesguafter thelet that started the
outermost speculatioh.

Detecting when a speculation has been running for too longoeadone in several ways;
the choice is not important, so long as it imposes minimatto¥ads on normal execution. One
approach is to have periodic sample points which look at thie ©f the running program. If
a speculation remains active for two consecutive sampletpthen the evaluator considers the
speculation to have gone on for too long. Our real implentemtas more complicated, is
discussed in Section 10.1.

There are also several ways in which a speculation can béealbdDur current scheme is
similar to the suspension system used for handling asynolisexceptions in Haskell [MPMRO1].
A suspension is created in the heap containing the stateafttbrted speculation. If the result
of this speculation is found to be needed, then the speoualatill be unfrozen and resumed
from the point where it left off. The implementation of abort is described in detail in Sec-
tion 10.2. Abortion turns out to be a fairly rare event, soded not need to be particularly
efficient (see the statistics in Section 12.4.3).

Abortion alone is enough to guarantee correctnass that the program will deliver the
same results as its lazy counterpart. Indeed, previous Ydskussed in Section 13.2) has
evaluated a non-strict language using only eager evaluatial abortion. Howeveabortion
alone is not sufficient to guarantee reasonable performasfoe that we need online profiling,
which we describe in Chapter 3.

2.3 Chunky Evaluation

Programs in non-strict languages ofter work with infiniteéadstructures [Hug89]. Chunky
Evaluation is a feature of Optimistic Evaluation that alfosuch structures to be evaluated in
chunks giving better performance than if they were evaluatedelyteagerly or entirely lazily.

2We formalise the concepts oheapandneededn Chapter 6.
3|t is not always necessary to abort all active speculatiSes. Section 6.3.1.

18 Chapter 2. Optimistic Evaluation

Figure 2.1 : Results of evaluating rest eagerly, lazily, or chunkily

Consider the following Haskell program, which generateménite stream of integers.
intsn =mn:ints (n+ 1)

In the core language used by our compiler, function argusmean only be variables. This
example will thus be desugared to the following:

nts n =
letn/ =n+1 in
let rest = ints n’ in

(n : rest)

The functionints generates an infinite list of integers, starting fremLet us assume that the
first million elements of this list are needed. Howst be evaluated? Figure 2.1 illustrates sev-
eral alternatives. If the evaluator always evaluatas eagerly then it will callints recursively
forever and so will not terminate. However always evaluatust lazily is not very good either.
In this case, the evaluator will have to bear the overheadeztimg one million thunks, even
though all but one of them describe evaluations that areateed

A better alternative is what we cathunky evaluation Under chunky evaluationest is
evaluated eagerlyp to some limiand then evaluated lazily. Hest is set to evaluate chunkily
thenints will produce its result list in chunks. Consider the case melibe list is generated in
chunks of4 elements. Chunky Evaluation @iits will only recurse4 levels deep and so will
terminate; howevet times fewer thunks will be created.

The size of the chunks used by chunky evaluation is set by rbigy and can adapt ac-
cording to dynamic demand. The profiler aims to set the chiz&ksuch that performance is
maximised. The chunk size will thus increase if more elesmant used and decrease if fewer
elements are used.

This chunky behaviour can be useful even for finite lists #natentirely needed. Non-strict
programmers often use a generate-and-filter paradigmingebn laziness to avoid creating
a very large intermediate list. Even if the compiler knewt ttinee intermediate list would be
completely evaluated, it would sometimes be a bad plan toateit eagerly as the intermediate

2.4. Probability of a Nested Speculation being Used 19

data structure might be too big to fit in the cache or even tddig in main memory. In such
cases, Chunky Evaluation will give much better performgsee Section 13.1.2).

Our compiler implements chunky evaluation by limiting thepth to which speculation may
be nested. The code forlat now behaves semantically like the following (replacing toee
given in Section 2.1):

if(SpecDepth < limitog;){
SpecDepth := SpecDepth + 1
x:=value of £
SpecDepth := SpecDepth — 1
}else{
x:=thunk forE
}

evaluater’

where SpecDepth is the number of nested speculations that we are currensigeénand
limitos; 1S an integerepth limitthat determines how deeply this particulat can be spec-
ulated.

2.4 Probability of a Nested Speculation being Used

We can justify depth limited speculation by appealing torguaitive notion of probability. We
can label evenjet in a program with the probability that its right hand sidelvoié needed,
given that its body is needed. If speculative evaluatiomsrasted, then we multiply their
probabilities together. Consider the following program:

fr=lety=gaxrinFk
gr =letz=hzin F’

Imagine that the probabilities forandz are% and% respectively. What then is the probability
of the right hand side of being needed, given th&t is needed? This is the probability that
is needed, given thaf is needed, and thatis needed, given thdt’ is needed. If we assume
that these two probabilities are independent, then we cdtiptyithem together, givin@.

In practice, things are not so simple. The probabilitiesyfand > are unlikely to be inde-
pendent and so the compound probability is unlikely to becéyxaqual to the product of the
two; however the intuitive principle of more deeply nestpdailations being less likely to be
needed than less deeply nested ones does seem to hold. Arsiotibn of probability is used
to justify task priorities in several parallel systems (8et13.3).

20 Chapter 2. Optimistic Evaluation

2.5 Exceptions and Errors

It is important that Optimistic Evaluation deals correatlith exceptions and errors. Consider
the following function:
fa=
let
y = error “urk”
in
if x then y else 12
In Haskell, theerror function prints an error message and halts the programniytic Evalua-
tion may evaluatg without knowing whethey is actually needed. It is obviously unacceptable
to print "urk" and halt the program because Lazy Evaluation would not dofthais False.
The same issue applies to exceptions of all kinds, includingle-by-zero and black-hole de-
tection [MLP99].

In GHC, error raises a catchable exception, rather than halting the ano@fPRH 99]. The
exception-dispatch mechanism tears frames off the statikerconventional way. The only
change needed is to modify this existing dispatch mechatosecognise a speculative-return
frame, and return to it with a thunk that will re-raise the epiton. Alet thus behaves rather
like acatch statement, preventing exceptions raised by speculatalea@ion of its right hand
side from escaping. This concept is formalised in Secti@n 4.

2.6 Unsafe Input/Output

Optimistic Evaluation is only safe because Haskell puge language: evaluation has no side
effects, and thus evaluation order does not affect thetrealprogram. Input/Output is safely

partitioned using th&0 monad [Wad95, PW93, Wad97], so there is no danger of spaailat
computations performing 1/0. However, Haskell program®sestimes make use of impure 1/0,

using the “functionunsafePerformIO. This “function“ has the following type signature:

unsafePerformlIO : 10 o — «

We initially believed that speculation afusafePerformIO was safe. Our argument was that,
by using theunsafePerformIO function, one was asserting that the 10 behaved like a pure
function and could be evaluated at any time without affectime semantics of the program.
However, while speculatingnsafePerformlIO is indeed safe, aborting it is not. Consider the

2.6. Unsafe Input/Output 21

following example?
let x = unsafePerformIO (do

acquire_lock(lock)
y « use locked object
release_lock(lock)

return y
in

This example binds to the result of an imperative procedure in the IO Monad. Tingarative
procedure acquires a lock, does some work, and then relgeskesk. It is not safe to abort the
procedure while it is holding the lock because this wouldtpatsystem into a state in which the
lock was held by a suspended computation. There is no gt a suspended computation
will ever be resumed and thus the lock may never be releasadsifgy a deadlock.

A similar problem is that code which expects to be executemhetally can find itself being
interleaved with other 10. Consider the following example:

let © = unsafePerformIO (do
writelORef ref 1
v «— readlORef ref

return v

in

In this example, the imperative procedure writes the value an imperative reference and
then reads this value back again. If the program has onlygesthread of execution, then we
would expectr to always have the value However, ifunsafePerformlIO is speculated, then
it may be suspended between the calkiatc/ORef and the call toreadlORef. By the time
the procedure is is resumed, another procedure may havemaidifferent value te, causing
a value other tham to be returned.

It is for these reasons that Optimistic Evaluation does Hotwauses ofunsafePerformIO
inside speculative evaluations. Any speculation whicarafits to callunsafe PerformIO will
abort immediately.

4This example useso-notationPey01]. The indented lines after tde keyword are imperative commands in
the 1O Monad.

CHAPTER 3

Online Profiling

Optimistic Evaluation saves pennies by risking pounds.hEseculation saves the relatively
small cost of creating a thunk, but risks the potentially dvegst of evaluating an unneeded
expression. The purpose of the online profiler is to enswakttte pennies saved outweigh the
(hopefully few) pounds wasted.

In this chapter we give a rough overview of how online profjliworks. A more detailed
theoretical analysis is given in Chapter 6 while more dgtail practical implementation are
given in Chapter 9.

3.1 The Need for Profiling

While abortion ensures that all speculations must termaijniatdoes not ensure that evalua-
tion is efficient. It turns out that with the mechanisms diéxsxt so far, some programs run
faster, but some run dramatically slower. For exampledhestraints program from the
NoFib benchmark suite [Par92] runs over 150 times slowect{@e 12.3.1). Detailed inves-
tigation shows that these programs build many moderatghgresive thunks that are seldom
used. These thunks are too cheap to trigger abortion, betrtheless aggregate to waste mas-
sive amounts of time (and space).

One obvious solution is this: trigger abortion very quicfyer starting a speculative eval-
uation, thereby limiting the size of a speculation and tihm#ing wasted work. Unfortunately,
this would ignore the large proportion (See Section 12 dfSpeculations that are moderately
expensive, but whose values are almost always needed. ld\atso restrict chunky evaluation
because a chunk can be fairly expensive.

22

3.2. Goodness 23

\Speculation Depth

\4

Goodness

Figure 3.1: The speculation depth for a let depends on its estimated goodness

If the evaluator is to exploit such opportunities, it neaglbave an accurate estimate of the
amount of work that is actually being wasted by speculatioa ket, taking into account not

only the costs of speculations, but also which speculatwesctually needed. This is the role
of our online profiler.

3.2 Goodness

For eachlet in the program, our profiler maintains an estimate ofgii®dness Goodness is
defined as:

goodness = saved Work — wasted Work

where saved Work is the amount of work that has been saved so far by specultiebpt

and wasted Work is the amount of work wasted so far by speculatinglifte Going back to
our previous analogyaved Work is the pennies that have been saved anskted Work is the
pounds that have been wasted.

In practice it is not possible to know at runtime exactly howatm work has been wasted
by speculation of det as the profiler cannot know exactly which of the expressivatuated
so far will turn out to be needed. It is however possible fa piofiler to cheaply compute an
overestimate ofvasted Work, and thus a safe underestimatejobdness.

We start by describing an idealised implementation in whichet expressions are profiled

all of the time and in which a counter is maintained for evieity holding the current estimate
of its goodness.

3.2.1 Using Goodness to Guide Speculation

If the evaluator has an estimate of the goodnesslet ahen it can use this to guide its specu-
lation of thatlet. Figure 3.1 gives a possible function from goodness to dpBou depth limit
(Section 2.3). As the estimated goodness hftancreases, we increase the depth limit and so

24 Chapter 3. Online Profiling

speculate it more. Similarly, as the estimated goodness$aifdecreases we decrease the depth
limit and so speculate it less.

Once the goodness oflat falls below a defined cutoff point, tHet will become entirely
lazy and will waste no more work. This allows us to place a lobom the amount of work that
alet can waste before it becomes entirely lazy, as we explainéhi@e6.3.3.

3.2.2 Calculating Saved Work

Every time alet is speculated, the evaluator saves the work required tad lmél manage a
thunk. The evaluator keeps track of the work saved in this yaynaintaining asaved Work
counter for eachiet and incrementing this counter every time tbe is speculated.

By speculating det, the evaluator may also change the amount of work that theagar
collector has to do. We discuss this in Section 9.3.

3.3 Calculating Wasted Work

Speculation of &et will waste work if the right hand side of tHet would not have been needed
by Lazy Evaluation. Our calculation of wasted work reliestba concepts ofentureslocal
work, andblame which we describe in the following subsections.

3.3.1 Ventures

We use the termrentureto refer to the region of time during which work was done toduoe
a value for a particular heap bindiAgTo understand this concept, it may help to consider the
following example:

let © =
lety = E, in
let z = E, in
E,

in

If z, y andz are all speculated, then the evaluation of this expressithcontain the ventures
illustrated in Figure 3.2. The ventures fgiand > take place during the venture for When a
venture starts, it will place a return frame on the stacls ttame will remain on the stack until
the venture completes. If ventures are nested then we @ralid/entures with a return frame

10f course, if thdet is itself evaluated inside another speculation thenlisamight not otherwise have been
speculated. This issue is addressed in Section 3.3.5.

3.3. Calculating Wasted Work 25

venture spawned by x venture spawned by z

venture spawned by y | ! Ventures for x and z are
I active at this fpomt.
0

% [NKN We venture 1or z IS curren
& N\ N

\4

Time

Figure 3.2 : A venture represents the time during which work is done to produce a value for a
particular binding

on the stack to bactiveand consider the innermost venture todugrent In Figure 3.2 the
return frame for the current venture is shaded.

Every venture is either the unigueot venturewhich computes the return value for the
program, aspeculatiorwhich is speculatively evaluating the right hand side téta or athunk
venturewhich is evaluating a thunk whose value was demanded by engénture. In this
thesis, we will often write %", to mean “a venture that is producing a value for the rightcha
side of thelet identified by the binder”.

3.3.2 Work

We use the ternworkto refer to any reasonable measure of execution cost, suthesr heap
allocation® We discuss a formal model of work in Chapter 5 and practicaasueement of
work in Chapter 9.

3.3.3 Local Work

Thelocal workdone in a venture is a measure of the work done by the ventxckiding any
work done in enclosed ventures. All work done in the lifetiof@ program is included in the
local work of exactly one venture. In Figure 3.2 the local kvof a venture is the area of that
venture that is shaded.

3.3.4 Blame

The blamefor a venture is the amount of work that the profiler has chdsesssign to that
venture. Like local work, all work done in the lifetime of aggram is included in the blame of
exactly one venture. Unlike local work, blame may be movdd/ben ventures as the program
runs. If work is known to be needed by Lazy Evaluation, theniikt be blamed on the root

2By “produce a value”, we mean “to evaluate it to weak head rabform”.

3By “heap allocation” we mean the total number of bytes of mgnadlocated during the lifetime of the
program. Haskell, like most purely functional languages to allocate a new heap cell for every value produced
and so allocates heap almost continually.

26 Chapter 3. Online Profiling

demabnx\

Figure 3.3 : When y demands z, z's blame is passed to y

blame

venture, otherwise it will be blamed on the first speculatidmose execution required that the
work be done. Thevasted Work counter that we maintain for eadéx is the sum of the blames
for all ventures that were spawned from thet.

Blame behaves like a linear object [Wad90b, Bak95, TWM95Lah be passed between
ventures, but cannot be duplicated or deleted. If the redudtventure is needed by another
venture then the blame of the demanded venture will be tearesf to the demanding venture.
The justification for this is that the work done in the demahdenture was necessary in order
to produce the result for the demanding venture. If the tesfuh venture has not been used
by any other venture, then its blame will be the sum of thellaak for that venture and any
other work that was blamed on that venture while it executed.

To illustrate how blame works, consider the following praxgr (illustrated by Figure 3.3):

let x = F in
lety=2+1 in
4

If z andy are both speculated then the local work done to evaluetéhe work done to evaluate
E, while the local work done to evaluagas simply the work required to perform an addition.
When speculation of completes, the profiler will initially assume that its was needed, and
blamex for the evaluation ofy. Wheny is speculated, it will demand the value gfcausing
the profiler to transfer all blame frominto y. When the program completes, the blame:for
will be zero, and the blame farwill be the work required to evaluaté plus the work required
to do an addition.

Our blame allocation system can attribute more blame to tuvethan is “fair’. Consider
the following example (illustrated by Figure 3.4):

3.3. Calculating Wasted Work 27

blame

AN

Figure 3.4 : z’s blame is passed to y rather than to the root computation and so is incorrectly
regarded as being wasted

Figure 3.5 : 2’s blame will be passed to either y or z depending on evaluation order.

let z = F in

lety=2+1 in

x
The local work forx is blamed ony and so is considered to be wasted. But in fadg needed
by the root venture, so the “real” work wasted by speculatjrig tiny (just incrementing a
value). Fortunately it is safe to overestimate the amountark wasted, so we simply accept
this approximation.

Similarly, the blame assigned to a venture will depend orotlder of evaluation. Consider
the following example (illustrated in Figure 3.5):

let x = F in
lety=2+1 in
let z=2+1 in
Y

If y andz are both speculated thgnwill demandx beforez does and sg will be blamed for
x’'s work rather thare. This seems unfair ag and z have the same definition. However, this
does not affect the safety of our profiler, and so again we lsiagcept it.

For a more rigorous definition of work and blame, refer to Gaap. For more details of
the implementation of this technique, refer to Chapter 9.

28 Chapter 3. Online Profiling

3.3.5 The Cost of a Let

It is important that the cost of evaluating an enclok&dexpression should include the cost of
building a thunk for thatet, even if thatlet was actually speculated. Consider for example:

let z =
lety=1+2in
3

in

If y is speculated then the work required to build a thunk has baeed; however it is spec-
ulation of y that has saved the work and not speculation:.ofWheny is speculated it will
increment itssaved Work counter to record the fact that the work was saved. If the @ostal-
uatingz did not include the thunk cost then this saving would be ceditvice, causing the
profiler to overestimate goodness.

To illustrate what can go wrong if this principle is not folled, consider the following
example:

fa=
lety=fzin3

Evaluatingy speculatively is clearly bad. It will lead to an expensive@gdation which is not
needed. Any safe profiling strategy should thus decrgagmodness whenever it is speculated.

Consider however what would happen if a naive profiler assuthat a call tof did not
incur the cost of building a thunk fagy. In this case, the wasted work fgrwould only be the
work required to callf and then immediately returh However this work is likely to be less
than the work that will be added to tkeved Work counter wheny is speculated. As a resulit,
will appear to be saving more work than it was wasting, andssgaodness would increase.

By contrast, a correct profiler would ensure that the workedow f included the cost of
building a thunk fory, even ify was speculated. This work would cancel out the work recorded
as saved and so ensure thdtad negative goodness.

3.4 Burst Profiling

It would be inefficient to profile every speculation that tguéce, so we instead profile arandom
selection of speculations. The runtime of a program is égidp into a series gferiods Each
period starts at Aoundary pointand lasts until the next boundary point. Any speculatioas th
start during a period are considered to belong to that pefibd is illustrated in Figure 3.6.

A random selection of periods is profiled. When a period idijga, all speculations that

3.4. Burst Profiling 29

: start BB end B :/ start C c end:C/start D 5 end D/sta?rt E
i N NN i
| | N NN A
\ BNz

Stack

Tim'e Elapsed

IL
>

Figure 3.6 : Every computation belongs to exactly one profile period

* Profile start Profile end

N]
B e m O/
; I\ S

Time Elapsed

Stack

>
>

Figure 3.7 : Only those computations that start during a profiled period will be profiled.

belong to that period will be profiled (Figure 3.7). If evergripd has a probability of being
profiled, then it follows that every speculation also hasabpbility p of being profiled.

The burst profiler assumes that the program behaves in the wasmnwhen being profiled
as it does when it is not being profiled. It is thus able to bujida reasonable estimate of the
goodness of anyet. Over time, it becomes increasingly unlikely thatea can be wasting
work while having a positive estimated goodness. In thetias runtime tends to infinity, the
estimate of relative goodness produced by burst profilirmulshbe the same as the estimate
that would be produced by a continuous profiler. This cormecg is accelerated if the profiler
starts off by profiling everything, and gradually backs affitegains confidence (Section 9.4.3).

While burst profiling does not make it impossible for Optitiigvaluation to perform very
badly relative to Lazy Evaluation, it does make it vanisihynglikely that it will do so.

Part Il

Theory

30

CHAPTER 4

Semantics

In this chapter we present a formal model of Optimistic Egtitn. This model provides an
insight into the way that Optimistic Evaluation works, areh&s as the basis for the more
detailed models of Chapters 5 and 6.

e We start, in Section 4.1, by describing a simple non-stasglage. This is the language
that we work with for the rest of the thesis.

¢ In Section 4.2, we give a small-steperational semanticr our language. This seman-
tics describes not only evaluation, but also abortion. Véeis@art 111 that this semantics
corresponds very closely to our real implementation of @siic Evaluation.

¢ In Section 4.3, we give a denotational semantics for ourdagg. This semantics pro-
vides a high-level model of evaluation that is independéetaluation strategy.

e Finally, in Section 4.4, we prove that the operational semarmf Section 4.2 is sound
with respect to the denotational semantics of Section #1185 proving that Optimistic
Evaluation will always produce the same results as Lazyuaiain.

31

32

Chapter 4. Semantics

Expression E = x variable
| Cuxo...2p constructor application
| case Eof Py...P, case analysis
| letx=FEinF' thunk creation
| Az.E function abstraction
| Fz function application
| exn exception or error
| n integer constant
| zoa primitive operation
Alternatives P = Cuxg...z, = F
ValueEzp V. = Cap...op | Az E|exn |n

Figure 4.1 : Terms of a simple language

4.1 A Simple Language

The language we work with is Haskell [PHA9]. While the externally-visible Haskell lan-
guage is very complex, it can be reduced into the simple fauangin Figure 4.1, and that is
the language our theory deals with. This language is sirtoléine augmente@ore [TtGTO1]
language which GHC uses internally and also to A-normal ffif8DF93]. Key points to note
are the following:

A variablez is a local variable bound by an enclosileg, case or A expression.

Eachlet is required to have a unique binder This allows us to refer to et by its
binder.

Functions and constructors are always applied to variatdéser than to expressions. It
follows thatlet is the only point at which a thunk might be createdd#se expression
scrutinises an arbitrary expressifibut it does not first build a thunk.). This restriction
does not limit the expressiveness of the language becdesegpression can be used to
give a name to an argument of a function or constructor.

We represent booleans using the nullary constructong and False.

@ ranges over primitive operations, such-as—, /,==, < etc. The arguments of a
primitive operation must be integers.

Exceptions and errors (see Section 2.5) are handled exaxtiescribed in [PRFDI].
An exceptionexn is considered to be a value, rather than a control operator.

4.2. Operational Semantics 33

e let is not recursive. That i& cannot make reference 1o If recursion is desired, then
the user can define a fixed point function within the langudga. exampleY can be
written as:

Y = M. lety=(Az.letz=zzin fz)inyy

In the real language used by our compiler, recurkste are of course allowed; however
omitting them simplifies our formal presentation. In partas, it avoids us having to deal
with speculations that demand their own values.

4.2 Operational Semantics

We describe program execution using a small step operagensantics. This semantics speci-
fies the sequence of states that the virtual machine willfp@ssagh as execution proceeds. The
main transition relation,—, takes the form:

S—>2 S,

meaning that the virtual machine will transform the stétento the stateS’ in one step, un-
der speculation configuration. The speculation configuration is updated sporadicallyhay t
profiler, rather than by the the evaluation rutes.

The semantics we present is similar to the STG Machine [Hey®2 to the semantics for
Lazy Evaluation given by Sestoft [Ses97], being lower lgkiah Sestoft, but higher level than
the STG Machine. Unlike Sestoft, we evaluate expressionsfévences to values, rather than
to values themselves. This allows us to be precise aboutdberes that are present in the heap.
While this leads to a semantics that is more complex tharofssit causes our semantics to be
a very accurate model of our real implementation; this isartgmt, given that we are interested
in modelling performance.

In the subsections that follow, we formalise Optimistic Exadion in more detail. In Sec-
tion 4.2.1 we explain the structure of the program statdn Section 4.2.2 we give the rules
that define the evaluation relation=~’. In Section 4.2.4 we use the evaluation relatien’ to
define a semantics fairounded speculatiorin Section 4.2.3 we give a semantics for abortion.
Finally, in Section 4.2.5 we define the restricted languageis used for the rest of Part Il.

4.2.1 The Program State

The structure of program states is given in Figure 4.2 andnsneented on below:

We give a semantics for this profiler in Section 6.2.5.

34 Chapter 4. Semantics
State S e s Program state with heap, command, and stack
Command ¢ E evaluatel
Va returna
@a demand the value af
Heap T {a; — K}
Closure K V) value closure, with valu¥&’
a) indirection, with indirecteex
thunk, with bodyFE
all suspended stack frame
Stack s [] empty stack

fis stack with topmost framg

Frame: f {z}FE speculative return frame
#Hux update frame
l local frame

LocalFrame 1 {P;}y Case Match

Qa Function application
Ba Primop, awaiting first argument
nod Primop, awaiting second argument

Config % {z; — N} Speculation configuration.

Figure 4.2 : Syntactic forms for states

e [represents thheap The heap is a function mappimgap referencew closures If I'

maps a heap referenegto a closure(, thenK describes how one can obtain a value for

a. A closure is either @&alue closureathunk anindirection or asuspended stack frame

— The value of a value closufg/|) is V.

— The value of an indirectiof) is the value of the closure referenceddy

— The value of a thunl is the value one obtains by evaluatifg

— The value of a suspended stack frame is discussed in Secfich 4

Runtime expressions may contain heap references in pla@giables. We writd”[a/]
to denote the expression formed by replacing all instanteeeorariabler with the heap
referencey, using a capture avoiding substitution.

e ¢ represents aommand The command says what the program is currently doing. If the

command isF then the program is evaluating the expressionif the command is7a
then the program is returning, which is a reference to a value. If the commandis
then the program is demanding the valuevof

4.2. Operational Semantics 35

e s is astackof stack frameg (c.f. [Gus98]), each of which represents work still to be
done.

— A speculative return frameontains work that should be done once a speculation
has been completed or aborted. If the virtual machine retiara speculative return
frame,{z} E, it will bind z to the result of the speculation and then evaluate

We define thespeculation depthf a state to be the number of speculations that are
active, or equivalently, the number of speculative retuamies on the stack.

— An update framaepresents a thunk that needs to be updated with its valuke If
virtual machine returns to an update framgy, it will replace the thunk with an
indirection to its value.

— A case return frameontains a set afase alternatives. If the virtual machine returns
to a case return frame,{ P, }y, it will select the appropriate alternativé};, and
evaluate it.

— A function application frameontains an argument to pass to the returned function.
If the returned value is not a function then the program vaill. f

— A primop framegives the state of a partially applied primitive operatitithe stack
frame is Pz’ then the primop is waiting for its first argument. If the dtdcame is
‘n@®’ then the first argument evaluatedriand the primop is waiting for its second
argument.

A subset of stack frames al@cal frames Local frames describe work to be done within
the current venture (see Section 3.3.1) while other stachds represent venture bound-
aries. We develop these ideas further in Chapters 5 and de\ttiai letterf can refer to
any kind of stack frame, the lettécan only refer to a local frame.

e Y represents thepeculation configuratian maps alet (identified by its binder) to its
depth limit the maximum speculation depth at which it can be speculdfetie let is
always lazy then the depth limit will b&

4.2.2 Evaluation Transitions

The transition rules fo— are given in Figure 4.3. The first ten rules describe conveati
Lazy Evaluation (cf. [Ses97]) while the last two describe@pation:

e Rule(VAL)evaluates a valu¥ by creating a value closufg/)) in the heap and returning
a reference to it.

36

Chapter 4. Semantics

Evaluate a value constant:

(VAL) ,v;s
Demand the value of a closure:

(VAR) [a;ss
(DEM1) Fa— (V)];@a;s
(DEM2) [a— (d)];@a; s
(DEM3) ['a— El;0a;s

(RESUME) [a — o2l @05 s

(UPD) [Vs (#a' : s)

Function Application:
(APP1) I''E ;s
(APP2) [a — (Az.E)]; Va; (Qa' : s)
Case Expression:
(CASE1) I';case E of {P;}y;s

(CASE2) Tla = (C {ai}s)]; vas ({Pi}g < 5)

Primitive Operation:

(OP1) ia®ass
(OP2) [la— (n)]; Vas (B @ s)
(OP3) [la — (n')]; va/s (n® : s)
Exception:
(EXN1) [a — (exn))]; Va; (Qa : s)
(EXN2) Tla— (exn)]; va; (P :)
(EXN3) ['a— (exn))]; Va; (n@®n' : s)
(EXN4) ['[a— (exn))]; Va; (@' : s)

Lazy Evaluation of a let:

(LAZY) ['(let v = Fin E'); s

Speculative Evaluation of alet:
(SPEC1) [';(let v = Fin E'); s

(SPEC2) [ve; ({z}E - s)

Cla— (V]]; Va; s
wherea is fresh

I''ea;s

Cla— (V]]; Va; s

llo— ()] @a'; 5

E; (#a: s)
[ed; (1: #a:s)
Ie/ = (a)]; Vas s

E;(Qa: s)

[a— (\x.E)]; E[d//x]; s

I B ()5 5

Pla = (C {ai}g))]; E{cu/zi}]; s
whereP, = C {z;}{ — FE

['; @a; (Do : s)

Lo = (n]]; @d/; (n : s)

Ll = (n/)[in@n';s

['a— E]; E'la/z]; s
if X(x) < specDepth(s)
anda is fresh

I E, ({z}E 2 s)
if X(x) > specDepth(s)

I Ela/zl; s

Figure 4.3 : Operational semantics: evaluation

4.2.

Operational Semantics 37

Rule (VAR)evaluates a heap referenedy demanding the value of the closure it refer-
ences.

Rule (DEM1) demands the value of a value closure. A value closure isajréaly
evaluated, s¢DEM1) returns immediately.

Rule (DEMZ2) demands the value of an indirection by demanding the valtieeoflosure
that the indirection points to.

Rule (DEM3) demands the value of a thunk by evaluating its body. The timirdmoved

from the heap, and an update frame is pushed. When evaluidtibe thunk body com-
pletes, the update frame will trigger rui{&gJPD) which will replace the thunk with an
indirection to its value, allowing the result of the evaloatto be shared.

Rules(DEM1) and (DEM2) could be subsumed into ruf®EM3) by considering the
value closurd|V/|) to be the thunk” and the indirectior{«) to be the thunkv. However,
such a virtual machine would create unnecessary closutkp@sh unnecessary update
frames. The inclusion of rule®EM1) and (DEM2) also mirrors the behaviour of our
real implementation.

Rule(RESUMEYesumes a suspended evaluation. This rule is discussedtinité.2.3.

Rule (APP1)evaluates a function applicatidn « by evaluating the functio&’ and plac-
ing a function application frame on the stack. When evatunatif the function completes,
the function application frame will trigger an applicatiohrule (APP2) causing the re-
turned function to be applied to.

Rule (CASE1l)evaluates a&ase expression by evaluating the scrutinee and pushing the
case alternatives on the stack. When evaluation of the scrutnegpletes, ruléCASE?2)
will evaluate the appropriaiease alternative.

Rule(OP1)evaluates a primitive operation by pushing a primop franteevaluating the
first argument. When the first argument is evaluated, (@QR2) will evaluate the second
argument. When both arguments are evaluated, (R3) will perform the primitive
operation.

If an exception is raised, then rulé8XN1) (EXN2) (EXN3) and(EXN4)unwind the
stack until a speculative return frame is reached.

2This language has no catch expressions and thus no catcedrafihis corresponds to the behaviour of
Haskell, in which pure expressions can raise exceptionadiutatch them; exceptions can only be caught in the
10 Monad [Wad95, PW93, Wad97].

38 Chapter 4. Semantics

('"EXP) I E;s ~ Ta— E];0a;s
('RET) I'Va;s ~~ Tooss
(ISPEC) T;o«; ({z}E :s) ~ TI;E[a/x];s
(UPD) Tj@q;(#a':s) ~ Do’ — (a)];@a;s

('ABORT) Iieas(l:s) ~ Dd — alll;od;s
wherea’ is fresh

Figure 4.4 : Operational semantics : abortion

The last three rules implement thet construct. RuléLAZY)evaluates théet using con-
ventional Lazy Evaluation, creating a thunk for the righbéiaide of thdet. Rules(SPEC1)
and (SPEC2)implement speculative evaluation. The semantics choosegelen the two ap-
proaches based on the valuesXiifr) and specDepth(s), whereX(z) is the depth limit forz
andspecDepth(s) is the current speculation depth.

e Rule(LAZY)is used if the depth limitZ(x), is less than or equal to the current specula-
tion depthspecDepth(s). The rule builds a thunk in the heap, binds to «, and then
evaluates the body of tHet.

e Rule(SPEC1)s used if¥(z) is greater than the current speculation dep#aDepth(s).
The rule begins speculative evaluation of the right-hade &. A speculative return
continuation is pushed, causing the body ofliktieto be evaluated once speculative eval-
uation of the right hand side has completed.

e Rule (SPEC2)is used once the speculation completes. The rule bindsthe returned
reference and proceeds to evaluatelttebody. It should be noted that neith GPEC1)
nor (SPEC2)llocate any closures in the heap.

4.2.3 Abortion Transitions

The process of abortion is described by theules given in Figure 4.2.3. These rules allow a
program to back out of a speculation which has turned out todexpensive:

e Rule('EXP)creates a thunk in the heap for the current expression. Ulass rather like
rule (VAL), except that ruléVAL) turns a value into a value closure, while rglEXP)
turns an arbitrary expression into a thunk.

4.2. Operational Semantics 39

Iie;s —y I8

(RUN) Lie;s;t vy IM:dist+1
if t < MAXTIME andspecDepth(s) > 0
Iie;s —y I8
(RESET) Iie;sit vy 15650
if specDepth(s) =0
. e ~ VN B)
(ABORT) ;¢ s I css

Iie;sit sy V8t
if t > MAXTIME andspecDepth(s) > 0

Figure 4.5 : Operational semantics : bounded speculation

¢ Rule ('RET) converts a return commang, into a demand command)z. Like rule
('EXP)then only purpose of this rule is to simplify the state in @egion for other rules.

¢ Rule (!SPEC)starts evaluating the body oflat, despite the fact that its right hand side
has not finished evaluating. This rule captures the essdratsodion.

¢ Rule ('UPD) removes an update frame from the stack, binding its updatetg a par-
tially evaluated result.

¢ Rule !{ABORT)removes a local frame from the stack and moves it to a suspenki-
sure in the heap, together with the identifier If the value of this suspension frame is
demanded then rulRESUME)will place the frame back onto the stack and demand
again.

4.2.4 Bounded Speculation

As discussed in Section 2.2, Optimistic Evaluation will alamy speculation that goes on for
too long. To formalise this, we introduce a new transitidatien, ~:

e Gn [N N By
[eysit sy T8t

The components of the state are the same asfer except that we add a new component
representing thepeculation time The speculation time is the number of steps that have been
taken since the virtual machine last started evaluatingidpgvely. The rules for bounded
speculation are given in Figure 4.5. If the program has b&atuating speculatively for less
than MAXTIME steps then rul€RUN)evaluates it as normal. If the program stops speculating
then rule(RESETY)esets to 0. If the program evaluates speculatively for more tWhat X TIME
steps then rul@ABORT)will apply abortion transitions until all speculations ledyeen aborted.
We give an improved version of this semantics in Sectionl6.3.

40 Chapter 4. Semantics

4.2.5 Exceptions and Case Statements

The language presented in Section 4.1 includes exceptimhsaae statements. In the seman-
tics given in Figure 4.3 we showed that neither of these pogeeal problems for Optimistic
Evaluation.

In the chapters that follow, we will work with a simplified lgnage that has neithenase
statements, nor exceptions. The revised expression fatmigsthe following:

Expression E == «x variable
| letz = FEin E’ thunk creation
| A\z.E function abstraction
| FEx function application
| n integer constant
| zo@a primitive operation
ValueEzp V= Xz.E|n

The stack frames remain the same, exceptdhs¢ return frames are removed.

Neithercase statements nor exceptions increase the expressivendss lafniguage: both
features can be encoded using the features of this simpldigglage. By removing these
features from the language, we are able to reduce the size grbofs and semantic models
that we present in subsequent chapters. We claim that intiogcase or exceptions would
present no significant problems.

4.3 Denotational Semantics

While an operational semantics formalises the way in whigtogram executes, it does not give
a clear view of what a program actually means. This purpobetiger served by a denotational
semantics. Our denotational semantics makes no referentte torder of evaluation or to
whether expressions are evaluated or not. It thus allows psesent a considerably simpler
model of what our language means.

Perhaps more critically, by proving that our operationahaetics is sound with respect to
our denotational semantics, we can demonstrate that algatigg evaluation order by means of
the speculation configuration has no effect on the meaning of the program (Section 4.4.1).

The semantics we give here is influenced by that used by Lawmgflau93], and the work
of Abramsky [Abr90] and Ong [Ong88].

4.3. Denotational Semantics 41

4.3.1 Semantic Functions

We introduce semantic functio®—], C[—], H[-], K[-]. S[-] and M[—] that map the
syntactic objects of Section 4.2 to their semantic meanings

Expression — Env — Value
Command — Env — Value

[-] : Heap — Env — Env

[-] : Closure — Env — Value

[-] : Stack — Env — Value — Env

[-1 LocalFrame — Env — Value — Value

M[-] : State — Value

where Value and Env are defined in Sections 4.3.2 and 4.3.4 respectively. Thesargic
functions can be understood as follows:

e £[E], is the value that the expressi@hwould evaluate to in the environmemnt
e C[c], is the value that the commamdvould return in the environment

e H[I'], is the environment containing the meanings of the bindingké head". Each
binding is has its meaning taken relative to the environment

e K[K], is the value that the closut€ would evaluate to in the environmemnt

e S[s], v is the environment containing the meanings of the bindingké stacks, given
that the values has been returned to it. This environment will contain a imigdor the
return value and a binding for each update frame in the stack.

e L[], vis the value that the local stack frarhevould produce ifv was returned to it.

e M[I';¢; s] is the value that the virtual machine staié ¢; s" would terminate with if
executed.

We explain the significance of each semantic function in nadetail in the following sec-
tions.

42 Chapter 4. Semantics

4.3.2 Values

The domain of semantic values is defined to be the minimatisolto the following domain
equation®

Value = (Value — Value) U Z U {1} U {T}

A semantic value is either a function from a value to a valmeingeger, the bottom value
1, or the top valuerl. | is used to denote non-termination or an undefined value;ewhik
used to denote aoverdefinedvalue?

We define an improvement orderifgon values. We consider all values to be an improve-
ment onL and consideiT to be an improvement on all values. A function is an improveme
on another function if all possible results are improveraent

vCo Y w=1) v (' =T) V Vawlz) Co'(z)

4.3.3 ldentifiers

An identifier (Id) is either a local variabler) or a heap reference]. The denotational seman-
tics does not distinguish between the two, considering ttie abstract symbols that can be
mapped to values. Within the denotational semantics, Wewsile = to refer to an identifier,
irrespective of whether it is a variable of a heap reference.

4.3.4 Environments

An environmenp is a function that maps identifiers to their values:

Env dof Id — Value

If an environment does not contain a binding for an identifierthen p(z) will be L. If p
contains several conflicting meanings for an identifiehenp(z) will be T. We write (z; —
v1, T2 — vy, ...) to denote the environment that magsto vy, z, to v, etc, and that maps all
other identifiers taL. We write p[x — v] to denote the environment that is likebut which
mapsz to v.

3For the purposes of this semantics, we are not interestewidistinction between a non terminating value
(©2) and a function that does not terminate for any argument{). It is assumed that user-visible values will be
integers.

4t is possible to formulate a semantics withauthowever one then has to be a little more careful in dealing
with situations in which least upper bounds are undefined.

4.3. Denotational Semantics 43

We provide an improvement orderingon environments. We considgrto be an improve-
ment onp if every value mapped to by is an improvement on the corresponding value mapped
to by p:

pCp = Vo p(z) C ()

We write p LI p’ to denote the least upper bound of the environmerdad . The least
upper bound is always defined:dfandp’ contain conflicting bindings for an identifierthen
pUp willmapztoT.°

4.3.5 Meanings of Expressions

The semantic functiod[—] takes a syntactic expressi@ghand an environment and maps
them to the value thaf would terminate with in the environmept We define€[—] as follows:

E[-] : Expression — Env — Value

Elz], = plz)

Elet r = Ein E'], = E[E]welr),)
Ea-E], = AE[E]pfpni
ElE «l, = €[E], (p(2))
Elz @27, = p(x) D p(')

We write & to denote the mathematical function represented>byn our model of functions
1(v) = LandT(v) = T. All primitive operators® are required to behave similarly. We thus
observe thaf [—] is continuous and monotonic with respecpto

Theorem 4.3.1 (Equivalent Identifiers)
We assert that if two identifiers andz’ have the same meaning in the environmettien we
can freely substitute’ for = in an expressiorly without changing the meaning éf in p.

p(z) = p(x') = E[BL /], = E[E],

Theorem 4.3.2 (Unused Identifiers)
We similarly assert that if a identifieris not mentioned in the expressi@ghthen the meaning
of F is unaffected by the presence of a binding for this identifighe environmenp.

v g vars(E) = E[E], = E[E])

5T values should never occur in a well-formed program.

44 Chapter 4. Semantics

4.3.6 Meanings of Commands and Closures

The denotational semantics does not distinguish betweamamds and expressions. The form
of a command is merely a direction to the virtual machinertglit what to do next, and so is
ignored by the denotational semantics. We can thus trwigfine a semantic functiofj—]
that gives meanings to commands:

C[[Vx]]p = 5[[$]]p
C[[@x]]p = 5[[$]]p
ClE]l, = ¢£[E],

The denotational meaning of a closure is similarly trivighlue closures and indirections
have the same meanings as their corresponding expressiofesthe meaning of a suspension
is the meaning of the stack frame, using fe-] function defined is Section 4.3.8:

KV, = €lvl,
Kl(#)], = £lz],
Klz2fl, = LI, p(x)

4.3.7 Meanings of Heaps

Meanings are given to heaps using the semantic funéipr]. H[I'], is the environment
formed by evaluating all the closureslinunder the environment. If a heapl’ mapsz to a
closureK thenH[I'], will map z to K[K],,.

H[-] : Heap — Env — Env

Hlzy — Ey, ... ,zn— Ey], = (21— K[E1],, ... 20 — K[E,],)

We observe thak{[—] is continuous and monotonic with respecpto

4.3.8 Meanings of Stacks

The meaning of a stack is similar to the meaning of a heap. &hmmastic functionS[—] takes
a stacks an environmenp and a value» and maps them to the environment that is produced by
returningv and performing all the updates on the stack:

S[-] : Stack — Env — Value — Env

4.3. Denotational Semantics 45

S, v = (e~)

SH{a}E :s],v = S[s], E[E] o)
S[#z:s],v = S[s],v U(z+v)
S R PRC = Slsl, (£[1, v)

This definition deserves some explanation:

e The empty stack behaves like an update frame for the resthegirogram. It defines a
mapping frone (the identifier for the program restiito the value returned.

e A speculative return frame returns the value of e body, F, to the stack. Note that
there is no requirement thatbe non-L; this reflects the real behaviour of Optimistic
Evaluation, in which a non-terminating speculation will &gorted and its suspension
will be returned to the speculation frame.

e An update frame creates a binding from its updatee to themeduwalue.

e If the topmost frame is a local frame, then we use the semantation £]—] to produce
a new value, and return that. We define the semantic fungtjerj as follows:

L[] : LocalFrame — Env — Value — Value

Loz, 0 = o (o)
L[n®],n" = nén
Clod,n = ndp)

R}

We observe tha$[—] is continuous and monotonic with respecptand also with respect
tow.

4.3.9 Meanings of States

Given the meaning of a heap, a command, and a stack, we caogardkde meaning of a
complete program state, as defined is Section 4.2.1. Theingeat[T'; ¢; s] of a stateT’; ¢; s’

is the value that that state would terminate with if execut@&d obtain this return value we
construct an environment containing all bindings held ia keap,I’, and the stacks, and
select the value for from this environment:

M][-] : State — Value

ML e8] = (pp. H[T], U S[s], Clcl,) €

5The reason for this choice of symbol is revealed in Secti@rB5.

46 Chapter 4. Semantics

Here, i is the least fixed point operator. It selects the least enuenty (as defined by-)
such that:

p=H[I, v S[s], Clc,
The purpose of the fixed point is to allow recursive bindingsigen the heap and stack.

Theorem 4.3.3 (Extension of the Heap)
We observe that the meaning of a state is preserved if thelheagxtended with a binding for
a new identifier::

x ¢ vars(I') Az ¢ vars(s) Az ¢ vars(c) = M|z — Kl;¢; 8] = M| ¢; 9]

wherevars is the set of all identifiers (variables and heap identifiereiptioned in its argument.

4.4 Soundness

If we are to use Optimistic Evaluation as a drop in replacarf@mmlLazy Evaluation then it is
essential that Optimistic Evaluation always gives the segselts as Lazy Evaluation. In order
to do this, it must be boteoundandcomplete

Sound: If a program terminates with a value, that value will be thmeaalue that the program
would have terminated with under Lazy Evaluation.

Complete: If a program would terminate under Lazy Evaluation, theniit also terminate
under Optimistic Evaluation.

In this section, we prove that Optimistic Evaluation is stu@€ompleteness is a corollary
of the informal efficiency proof given in Section 6.3.3.

Theorem 4.4.1 (Soundness)

Lazy Evaluation is a special case of Optimistic Evaluataising when: maps alllet identi-
fiers to0. It is thus sufficient to prove that, for any given start stétere is only one result that
Optimistic Evaluation can return, irrespective of spettataconfiguration. That is:

0B [] =5 Tsvas[] A B E[] —5 v [] = Elalwry = E[2 T
We prove the following stronger property:

Iies —y Idid = MTiegs] = M9

"We believe that it should be possible to prove this more fdligmiaowever we have not, as yet, done so.

4.4. Soundness 47

If — preserves the meaning of a state, then any final state mustdaane meaning as the
initial state. Given that no initial state can have more tbae meaning, it must be the case
that all terminal states have the same meaning. Given teatntaning of a terminal state is
the meaning of the value returned, it must be the case thabsdiible terminal states return the
same value.

The proof of this property is given in Appendix A. We proceede-wise, demonstrating
that the property holds for all rules defining’ and ‘~".

CHAPTER 5

A Cost Model for Non-Strict Evaluation

Although the speculation configuratidhhas no effect on the value that a program produces, it
does have an effect on the amount of time needed for this valoe produced.

In this chapter we give a denotational semantics that fasesilthe cost of evaluating an
expression. The costs given by this semantics are indepentlevaluation strategy but relate
closely to real evaluation costs—allowing such costs taaséyederived. This cost model forms
the basis of the online profiling techniques that we descénléghapter 6.

This Chapter is structured as follows:

In Section 5.1 we explain why we need a cost model.

e In Section 5.2 we define the concept of a cost graph.

e In Sections 5.3 and 5.4 we explain how one can create a cqst f§paa program.

¢ In Section 5.5 we introduce an operational semantics theppkérack of the amount of
work it has done.

e In Section 5.6 we give denotational meanings to the statéiseofosted operational se-

mantics and demonstrate that our denotational cost moderately models the costs
experienced by the operational semantics.

48

5.1. Why We Need a Cost Model 49

M units of work

Result B

N units of work

Figure 5.1 : Comparing Optimistic Evaluation to Lazy Evaluation

5.1 Why We Need a Cost Model

The aim of Optimistic Evaluation is to evaluate non-stricigrams faster than Lazy Evaluation.
It is thus important to be able to prove that the performari€@ptimistic Evaluation will never
be significantly worse than that of Lazy Evaluation. Doinig tlirns out to be somewhat tricky.

5.1.1 The Challenges Faced by the Online Profiler

It is easy to see that there are some choices fair which Optimistic Evaluation will be slower
than Lazy Evaluation. For example, if our program is:

let x = expensive in 3

then any speculation configuratidithat chooses to speculates likely to be slower than Lazy
Evaluation. Similarly, it is easy to see that there are sohwoces ofY for which Optimistic
Evaluation will outperform Lazy Evaluation. For exampleyur program is:

letz=14+2inx+1

then any speculation configuratidithat chooses to speculates likely to be faster than Lazy
Evaluation.

What is not easy is to tell, at runtime, whether the currehtevéor 3 is outperforming Lazy
Evaluation, and how can be changed so as to improve performance. This is thehtasthe
online profiler faces.

If we are allowed to run a program to completion, then it isygdassee how compares to
Lazy Evaluation; we simply run the program with run it with Lazy Evaluation, and compare
the amount of work done (Figure 5.1). However the online faofloes not have this luxury; it
cannot wait until the program has terminated before adjg&ii once the program has finished,
it is too late to make it run faster. The profiler thus needsdeeha way of estimating the

50 Chapter 5. A Cost Model for Non-Strict Evaluation

let z = <expensive> in

let y=x+3 in
let 2z =2+3 in
letp=y+ 2 in

<rest of program>

Figure 5.2 : A simple program

performance oE relative to Lazy Evaluation, without actually performirrgetLazy Evaluation,
and without waiting for the program to finish.
This job of the profiler is made yet harder by the fact that:

e Itis essential that the profiler does not believe thad outperforming Lazy Evaluation if
itis in fact performing significantly worse than Lazy Evdiioa.

e The profiler has to work with very limited information. In pigular, it does not know for
sure which of its computations will turn out to be needed.

e The profiler must itself impose a very low overhead on the moyg lest the costs of
profiling outweigh the benefits of Optimistic Evaluation.

In order to do all of this, it is necessary that we have a goatktstanding of the costs of
non-strict programs. In particular, it is necessary thahaee a solid cost model which we can
use to justify and verify our online profiler.

5.1.2 The Problems with Simple Cost Models

How much does it cost to evaluatet 3?

The obvious answer would be that the cost of an evaluationesitimber of steps taken
to perform it; however this turns out to behave poorly for +srict languages. Consider the
program in Figure 5.2:

e How expensive ig? If = is already evaluated thenwill be cheap to evaluate—because
it only needs to perform an integer addition. Howevey; i$ unevaluated, thepwill be
expensive—because it needs to evaluabefore it can produce a result.

e How expensive ig? It seems sensible thatshould have the same costi@gdut, if x is
unevaluated, then one gfandz will look at x first and so appear more expensive.

e How expensive i$? Can | obtain the cost gfby combining the costs af andz?

e Finally, isp’s value actually needed? Should this affect its cost?

5.2. Cost Graphs 51

@<=0) <+——— 00t
[let x]

lety]

[let z]
<rest of program>

[let p]

Figure 5.3 : Cost graphs illustrate the dependencies between computations

demand edge: [y]Q—[XlQ i [X]

[y] demands [x]'s value

] I |
value edge: O=’O :

[y] demands [x]'s value !
and [y] has the same value as [X]
________________________ !
MQ (] !
eager edge: -=-» !
y would do x under eager evaluation

' x has value 42

Figure 5.4 : Key: Edges can be demand edges, value edges, or eager edges

In this chapter we give a new, denotational, cost semarica hon-strict language, that
takes full account of sharing. The cost model is compositiothe cost of an evaluation is
obtained by combining the costs of its sub-fragments. FEeuntiore the semantics is independent
of evaluation strategy, so it can describe the cost of Eagafuition, Lazy Evaluation, or
anything in between.

5.2 Cost Graphs

In our cost semantics, the meaning of a prograsnits cost graph For example, we can
represent the costs involved in evaluating the program fragare 5.2 using the cost graph
shown in Figure 5.3.

A cost graph gives an unrolled trace of the computationsdhatbe done by the program.
Each node represents a computation that takes one unit@finth produces a value. An arrow
from a node to a node’ denotes the fact that the computatiadepends on the value produced
by the computatior’. If the arrow is thick, then the value produced bis the same as that

For the purposes of this chapter, a program is a closed esipres

52 Chapter 5. A Cost Model for Non-Strict Evaluation

produced by’'. If the arrow is dashed, then the dependency only existsrufalger Evaluation.
We refer to plain links aslemand edgeghick links asvalue edgesind dashed links asager
edges This is illustrated in Figure 5.4.

Computation nodes are classified inedue nodesinddependent nodes

¢ A value nodas labelled with the value it produces, and does not havesliokany other
node. Such a node represents a computation that placesesivahe program heap.

e A dependent nodis not labelled with a value; instead it has a value edge tigki to
another node. A dependent node may also have demand edgeagarcedges.

The graph in Figure 5.3 tells us thatdoes one unit of work (to perform an addition) and
depends omny, z and a computation that creates(avalue. We can similarly see thatand »
both demand the value af and also depend on computations that produtard ab.

The graph also tells us the values that computations prodiéecan see thai has the
value10, andy andz are both5. In order to find the value far, we must follow a long chain
of value edges, eventually reaching a value node holding some cost graphs, the chain of
value edges leading from a dependent node may be infinitdidrcase, the value of the node
is L, representing non-termination.

In this graph we have annotated nodes with variable iderstife.g. [z]). In reality, we
must distinguish multiple instantiations of the same \@daso we need a more refined naming
scheme. We discuss such a scheme in Section 5.2.3.

5.2.1 Work Sets

Given a cost graph, we can represent the work required tomped particular evaluation using
a subset of the nodes in the cost graph. Such a set is knowwak set

The work required to evaluate a computation lazily is theo$@bdes in the cost graph that
are reachable from that computation’s node using only vahgedemand edges. Figure 5.5 and
Figure 5.6 illustrate the work required to evaluatendy respectively.

The work required to evaluate several computations is tienust the work required to do
each computation on its own. Figure 5.7 illustrates the weduired to evaluate bothandz
lazily.

If work has already been done, or must be done later, then wewatract it. Figure 5.8
illustrates the work required to evaluateexcluding the work required to evaluate

5.2. Cost Graphs

53

<+—— root
[let x]

lety]

[let z]
<rest of program>

[let p]

[let z]
<rest of program>

[let p]

[let Z]
<rest of program>

[let p]

Figure 5.7 : Work required evaluate both y and z lazily

54 Chapter 5. A Cost Model for Non-Strict Evaluation

[let Z]
<rest of program>

[let p]

Figure 5.8: Work required evaluate = given that y has already been evaluated, or must be
evaluated later

Figure 5.10 : Work required to evaluate [1et z] entirely lazily

5.2. Cost Graphs 55

<+—— root
[let x]

[lety]

[let Z]
<rest of program>

[let p]

[let Z]
<rest of program>

[let p]

Figure 5.12 : Extra work required to evaluate [1et z] eagerly, if we know that [y] is needed by
<rest of program>

We can also use work sets to compare evaluation strategopsefs.9 illustrates the work
required to evaluatelet z' eagerly. This is the set of all computations reachable ffoat
z', including computations reachable by eager edges. We campare this with Figure 5.10
which shows the work required to evalualet z’ lazily. By subtracting the lazy work from
the eager work, we can obtain the extra work required by Hagaluation, which we illustrate
in Figure 5.11. If it turns out thaj is needed by<rest of program>’, then we can subtract
the work required fog, and so the extra work will be that shown in Figure 5.12.

The key point to note is that work is just a set of nodes. We aka tinions, intersections,
differences, or do anything else that we might want to do witiet.

Chapter 5. A Cost Model for Non-Strict Evaluation

WI = N DL

Figure 5.13 : To combine two graphs, we must know which nodes are equivalent.

5.2.2 Useful Properties of Cost Graphs

Cost graphs give us a number of useful properties:

e The cost of any evaluation within a program is fully desdaiiilby the cost graph for the
program.

e The work required for any evaluation can be represented absetsof the nodes in the
cost graph for the program.

e The number of nodes in a work set corresponds directly todnaxer of steps that would
be needed to perform that evaluation in a low-level openatisemantics, as we show in
Section 5.5.

e Work sets can be easily manipulated, allowing one to add abttact work in a compo-
sitional way.

e Cost graphs are independent of any particular evaluatiategty> For example, the cost
graph in Figure 5.3 is independent of whethey andz were evaluated previously.

5.2.3 Giving Names to Computations

If we are to compare work sets or take their unions and intéises, then it is important that
we have a standard naming scheme for nodes.

Consider the example shown in Fig.5.13. In this example wetiempting to combine the
work set for evaluating with the work set for evaluating, creating the work set for evaluating
both» ands. In order to do this, we need to know which nodes in the two segigesent the
same computation. If two sets share a subcomputation tieemiportant that the combined set
preserves this sharing. It is equally important that wotk de not consider a computation to be
shared if it was in fact repeated. We prevent such problengnbuyring thaevery computation
within a program has a single, unique name

We assign every computation in a program a name that is agsifin and e tokens (cf.
contexts from context semantics [Mai03]). A new name candesitucted by prefixing an

2Provided that the strategy is a sequential hybrid of lazy eagler evaluation. Parallel strategies are not
currently supported, nor are strategies that can perfoduatéons under lambdas.

5.2. Cost Graphs 57

WA

Figure 5.14 : Names form a tree

existing name with additional tokens. We say that a nammeéescendeffom a name’ if i’ is a
suffix of . It can be helpful to visualise hames as representing pwoiitisn a tree, as illustrated
in Figure 5.14.

We see in Section 5.3 tha{l) The semantic function that produces a cost graph for an
evaluation is passed a root nant@at it can use to create unique names for the computations it
defines; andg2) the name of a computation represents the location it woutd lrethe program
text if all function calls were statically expanded. We seeSection 5.5 that the name of
a computation also represents that point at which it wouldatld be evaluated in a strict
language: if a nam#& descends from a namigthen:’ would be a subcomputation 6fn a strict
language.

Formally, a computation nam@éjame, is a finite string ob ande tokens:

Name % {o,e}*

The Work required by an evaluation is the set of computations thastgerformed: 4

Work % P(Name)

5.2.4 Formalising Cost Graphs and Cost Views

In the classical graph modelcast graphs a 6-tuple(N,,, N4, E,, Eq, E., {), where:

N, C Name is a set of value nodes
Ny C Name is a set of dependent nodes
E, € (Ng — Name) isthe value edges
E4 C (Ng x Name) is a set of demand edges
E. C (Ng x Name) is a set of eager edges
¢ € (N, — Value) gives values to value nodes

3Names uniquely identify computation nodes; indeed it isveairent to think of the set of nodes as actually
being a subset aVame.
4P (Name) is thepower sebf Name. This is the set of all subsets dfame.

58 Chapter 5. A Cost Model for Non-Strict Evaluation

Note that a cost graph can be an open graph: a node may havgathatllinks to a name
that is not a node in the graph. Open graphs arise as a resudhetermination, as we describe
in Section 5.4.3.

For the purposes of our semantics, it is convenient to wotk partialviewsof the program
cost graph, which contain information about only a subsehefnodes in the complete cost
graph. We represent @ost view(C'V') as a function which maps a node onto its value, its
immediately reachable nodes, or

CV = Name — (Value U (Name x P(Name) x P(Name)) U {L})

A cost view~ will map a computation nameto _L if either i is not a computation in the
cost graph, ory knows nothing about. If v knows thati is a value node then(i) will be
its value (discussed in Section 5.3.3).7lknows that; is a dependent node therf:) will be
(7, d, e) wherei’ is the destination of the value edge fropandd ande are sets containing the
destinations of the demand edges and eager edgesifregspectively. We say defines: if
v(i) # L. We say thaty is acomplete vievif it defines every node in the cost graph.

It is helpful to present the correspondence between cophgrand cost views more for-
mally: Given a cost graptV,, Ny, E,, Eq4, E., ¢), and a set of computation namBs the cost
view v that defines only those computations/ins:

1 ifi¢gD Vv i¢(N,UN,)
v(2) = < £(3) ifieD A i€N,
(By(i),{i' | (i,i) € B}, {i' | (i,i") € E.}) ifieD A i€ Ny

Given a complete cost viewthe cost graph it represents is:

No= i | (imv)en)

Ne = {i | (im(@hde)en)

Ee = AG@7) | (i—=(de)) e}

E;, = {(4,7") | (i~ (", d,e)) ey N €d}
E. = A7) | (i— (", de)ey ANi e}
6= {i=v) | ((mv)eny

We define an improvement orderingon cost views. This is the standard ordering on partial
functions:
YE4 <= Vie Name. v(i) =L V v(i) =+ (i)

We defineLl to be the least upper bound operator according to this argleri

5In practice, the cost views combined withwill always have disjoint domains.

5.2. Cost Graphs 59

We define|i|, to be the value produced by the computatipin the cost viewy. |—|
follows value edges until it finds a value:

|—] : Name — CG — Value,

v if (i —v)eny
lily = S 17], if (i (i,d,e)) €y
L if(i— L) eqy

If the chain of value dependencies fraris infinite, then|i|. will be L.

5.2.5 The Real Cost of an Evaluation Strategy

An evaluation strategyefines a hybrid of lazy and eager evaluation. We defife-@egy, U,
to be the set of computations that should be evaluated gagerl

Strategy < P(Name)

If + € ¥ theni depends on the computations reachable by its eager edgesllass those
reachable by its value or demand edges, otherwimaly depends on those nodes reachable
by its value or demand edges. Lazy Evaluation correspontisetempty sef), while Eager
Evaluation corresponds to the set of all computation naiiese.

Given a complete cost graphand a strategy, the functionYW{—} defines the work
required to produce values for the computations in théxset

W{-} : P(Name)— CV — Strategy — Work
WAD}, = D U W{U realDeps(y,V,)}

jed
{iYyudUue if(j— (i,de)) ey AN jET
realDeps(v,¥,j) = < {i}ud if (j— (i,d,e)) ey N jgWw

0 otherwise

If evaluation would not terminate, then the resulting wagk\sill be infinite.
We define a functiomrogram Work that gives the work required to evaluate the program
defined by the cost view, using the strategy:

programWork(y, ¥) = W{{e}}}

60 Chapter 5. A Cost Model for Non-Strict Evaluation

In Section 5.6.5 we prove that this function correctly diss the work that would be done
by an operational semantics when evaluating a program.

By comparing the work sets for different evaluation strasgwe can see how well they
perform. We explore this concept in more detail in Chapterléere we use it to motivate the
design of an online profiler.

5.3 Producing a Cost View for a Program

In this Section we present a denotational semantics thaupes a complete cost view for the
a program. This cost view contains all computations thatpassibly take place during the
evaluation of the program.

The language we work with is that presented in Section 4.2.5.

5.3.1 Cost View Producers

We find it convenient to work with the notion ofc@st view producefC'VP). We define &C'VP

as follows:
def

CVP = Name — CV — CV
A cost view producer is a function that will produce a new aostv +' if it is given:
e a computation nameto use as the source for all namesyin

e a complete cost graphthat defines every computation that can possibly take prattesi
program.

By defining the typeC'VP it becomes possible for the types of our semantic functions t
resemble those of the semantics from Chapter 4, WithP taking on the role thatalue had
previously.

5.3.2 Meanings of Expressions

The semantic functio&[—] gives cost view meanings to expressions:
El-] :: Ezpression — Locals — CVP

We write E[ET}; v as shorthand fof [E] (i 7. This denotes the cost view for the expression
E where:

e (is alocal environment that maps local variables to compratames.

def
Locals = Var — Name

5.3. Producing a Cost View for a Program 61

e ; is the root name to used for nodes in the resulting view.

e v is a complete cost view for the program (generated by a fix@ut)po
The result ofé,’[[E]]g ~v is a cost viewy’ with the following properties:

e -/ defines a computation node with the naine

e The value ofi corresponds to the meaning of the expression under a coonahlazy
semantics [Lau93, Abr90, Ong88].

¢ All nodes defined in/ have names that are descended fidiwe say thaty’ is rooted at
7).

e Every node defined in’ represents a computation that would take plade were evalu-
ated in a strict language. The computations performed toatea thunk will be defined
in the cost view for the thunk’s definition, and not in the castv for the thunk’s user.

e Some nodes may have dependencies on nodes that are not defifiebut which are
defined iny. Suchdangling dependenciesan be resolved by combiningwith a view
that defines the node depended on.

¢ If a computation would not be performed during lazy evalaf £ then its node will
not be reachable fromvia demand or value edges.

e 7/ may be infinite; this will be the case if eager evaluatioroivould not terminate.

5.3.3 Values

Now that we have explained the structure of evaluation ke iit is possible to explain the
structure of values. In the simple language we are workinly,\aiValue is either an integer, or
a function.

Value = 7Z U (Name — CVP)

If v is a function value, then we can create a cost view produc@abging it the name of the
computation that produced its argument. This cost view gpeedwill produce a cost view for
the evaluation of the function’s body.

For convenience, we use the shorthafd)’ ~ to mean|:|, j k . This finds the value of
i within v and applies it to an argumeptgiving a cost view producer to which it passes a root
namek and a complete cost view If 7], is L or an integer, then the result will be the empty
view, mapping everything td .

6|f the value is an integer, it will be the same integer. Ralgfunctions is somewhat harder.

62 Chapter 5. A Cost Model for Non-Strict Evaluation

5.4 Rules for Evaluation

In this section we give the rules that defifip-]. These rules are summarised in Fig.5.15.

5.4.1 Variables

gﬁ(VAR)

i
<node referenced by var> |
[var]

Elxlyy = (i (82,0.0)

The cost view for a variable defines a single node. This is a dependent node that repsesent
the computation that looks up the valueaofThe value edge links to the node thais bound
to in the environmeng.

Note that the dependent node will depend on a node that isdfioted (maps tal) in the
new cost view. This reflects the fact that the computatioh thaferences would already be
evaluated in a strict language, and so would not form partoévaluation.

5.4.2 Lambda Expressions

?(LAM) i
@

EPxElyy = (i A E[E]ppms)

The cost view for a lambda expression also defines a singke. Adds node holds a function
value as described in Section 5.3.3. We wé{é’]s,.; as shorthand fof[E] B[z — j], or
equivalently\i v.€ [[E]]g[% a7

When the function is given an argument najriewill extend the local environment to map
x to j and partially apply the semantic functiéij—] to give a cost view producer for its body.
We see an example of this in Section 5.4.7.

5.4. Rules for Evaluation 63

5.4.3 Function Application

‘wPp) o oi

[<func>]

[<body>[var/x]]
if oi =# \x.<body>}

[<func> var]

ElE x]]lﬁ v = (i (ei,{oi},0)) U é’[[E]]gZ ~v U]:(oi)zg Y

This rule is perhaps the most complex. To build the cost viavitie application of an ex-
pression¥ to an argument, we combine the cost views for evaluationfofind for application
of E’s function value tor, adding a new node which connects them.

We will describe the three parts of this view individually:

o E[E]Y ~ is the cost view for the evaluation of the function expresdib This evaluation
is given the namei.

° f(oi)zé o Y is the cost view for application of the function value to thiguament 5 =’
We make use of the functiai(—) (defined in Section 5.3.3) and name the evaluation

o,

e (i — (ei,{0i},())) defines the computation that produces a valuefbx*. The value of
‘E x’is that of the evaluated function body:}, however the application also depends on
the evaluation of the functiorv{). Note the lack of a direct dependency on the function
argument—as one would expect for a non-strict language.

The choice of which sub-evaluation to name witnd which withe is arbitrary. All that
matters is that both sub-evaluations are given names tBaedd from and that neither name
Is a descendant of the other.

What happens if evaluation & does not terminate? In this case no function application
computations can take place afid—) will produce the empty cost view. will thus have a
value dependency on a node that does not exist and the comaiag cost graph will be open.

64 Chapter 5. A Cost Model for Non-Strict Evaluation

5.4.4 Let expressions

\
\

i
[let x = <rhs> in <body

{(LET) oi oi
[<rhs>O, [<body>foilx]] |

Ellet v = Ein By = (i (o, 0,{ci})) U E[E]F v U E[EHuoq

The meaning of det expression is similar to the meaning of a function applarati To
build the cost view for det expression, we combine the cost views for the body and rightih
side of thelet, together with a new node connecting them. We will desctileethree parts of
this view individually:

o E[E]Y ~ is the cost view for the evaluation of the right hand side efltit. This evalua-
tion is named:.

o 5[[E’]]g[%oﬂ v is the view for the evaluation of thet body, and is nameei. The local
environments is extended to map to the name of the right hand side. The view for the
body may thus contain dependencies-on

e (i+— (oi,0,{oi})) defines the computation that evaluatesléte The value of thdet is
that of the its bodydi). Note that the evaluation oflat links to its right hand side with
an eager edge rather than a demand edge, reflecting the dad&aber Evaluation will
force the right hand side to be evaluated, but Lazy Evaloatidl not.

5.4. Rules for Evaluation 65

5.4.5 Integers and Primitive Operations

NT) |
NG

(OP) @ <node referenced by x>
<node referenced by x>

! if value of x is n, value of X' isn’

X ® x] andn’=n® n’

Elzoalyy = (i (o0, {fz,02},0)u (O[] |8z, [82],)

The meaning of an integer constant is simply a value nodeagang that integer. A prim-
itive operation depends on its arguments, and takes itevatum the node produced by the
O[-] function. O[—] gives meanings to primitive operators as follows:

(i— (vd)) fv£L Av #L

o] vv =
() otherwise

If evaluation of one of the integer arguments does not tegimithen the computation that
produces the result cannot take place. The cost graph wallle open, indicating that the pri-
mop application depends on a computation that cannot taloe pinder any evaluation strategy.

5.4.6 The Meaning of a Program

We define a semantic functioh[—] that produces a complete cost view for the top level eval-

uation of a program.

P[-] : Eaxpression — CV

PIE] = iElED;
A program does not depend on the results of any computatigfirsed elsewhere. We can thus
produce a complete cost view for it by using a fixed point tatieeknow between the cost view
produced by [—] and the cost view demanded 8y—]. We know that a least fixed point must
exist becausé€[—] is continuous and monotonic with respectjto

This fixed point is not strictly necessary. A computation oaty depend on computations

that would have been performed before it under Eager EvaluatVe previously produced a
semantics that did not use a fixed point, instead passing ewvenputation a cost view defining
the computations that would be performed before it undereE&yaluation. Although this

66 Chapter 5. A Cost Model for Non-Strict Evaluation

iLET) OD 'Y :"A(‘APP) oj
[<rhs> q [<body>[o i/X]] [<func>] [<body>[var/x]]
N if oi = \x.<body>
i i
[let x = <rhs> in <body i [<func> var]
':EOP) <node referenced by x> J(LAM) i gf(INT) i
@ <node referenced by x>] l\X-X]@ [n]@
i if value of x is n, value of X’ is n’ ~‘.‘(V/'\R) i
[x iop X] and n” =niop n’ [var]Oz' <node referenced by var>
Elalyy = (i (B2,0,0)
EPaElyy = (i N E[Elgpmry) |
ElBalyy = (im (o0, {oi},0)) U E[E)G v U F(oi),) v
Ellet e =Ein By = (i (0,0, {oi})) U EENF 7 U E[ET5, 00
Ellyy = (i-m) |
Elr@asy = (i (oi,{Bx,B2},0) U (O[] |5l |Ba],)

Figure 5.15: The semantics of expressions, summarised graphically and formally

semantics worked, we found it to be significantly more curebere than the semantics we
present here, particularly when giving meanings to opemnatistates (Section 5.6.4).

5.4.7 An Example

Supposécta = (y — i) andE = Az.y z, then
E[EY; v = (' Aj ko (k= (ok, {ok},0),0k > (i,0,0)) U F(ok);*)

This example demonstrates the denotations of functior@jcapion, and variables. The
cost view defines only one node, which creates the functiaote that the function does not
itself have a dependency enbecause evaluating the function does not require evaluafii;
however, any cost view produced by application of the funrctiill contain a dependency an
because applying the function does require evaluatian of

5.5 An Operational Semantics

As we claimed in our introduction, cost graphs are indepehaieevaluation strategy, but relate
closely to the costs incurred by a real implementation. Wealestrate this by means of an
operational semantics. This operational semantics isypetexised by an evaluation strategy
allowing it to model any blend of lazy and eager evaluation.

5.5. An Operational Semantics 67

State S = T;cs program state with computation trace, command and stack
Command ¢ = Ep>i evaluateF to produce a closure with nane
@1 demand the value af
Vi return; to the top of the stack
Trace T = {i;+— K;}j computationtrace mapping names to closures
Closure K == (V) value closure
i,d,e) indirection toi, demand edge$ eager edges
E thunk—an unevaluated expression
i/l suspended stack frame, returning /. From abortion.
Stack s =[] empty stack
Ex>i:s Eager return - evaluatg ati, then return te
(1,7) : s Local frame - dd ati, then return to
LocalFrame 1 == Qi Apply returned function to argument
nd Perform operatiom onn and returned value.
D1 Perform operatiom on returned value and

Figure 5.16 : Syntactic forms for states

For each unit of computation done by the operational semwsraiclosure is added tacam-
putation trace In Section 5.6.4 we prove that the closures in the compurtétace map directly
onto a subset of the work predicted by thegram Work function defined in Section 5.2.5.

5.5.1 An Operational Semantics for Cost

We define a transition relation——’ between program states, parameterised by an evaluation
strategy U’. Figure 5.16 describes the form of states while Figure Bit&s the rules defining
‘H,'

The semantics we present is very similar to the low-levela#ios that we presented in
Section 4.2. The key differences are the following:

¢ We evaluate expressiomsplace placing the result in a specified location. The command
‘ E >4’ instructs the virtual machine to evaluateand to place the result in a closure with
name #i’. One notable consequence of this is that we do not need tagdames”™—
thunks are simply replaced by their values.

e Our states contain eomputation tracel” rather than a heap. A computation trace is
very similar to a heap, but contains mappings from companatames to closures, rather
than from heap identifiers to closures. A computation tramdains a closure for every
computation that has taken place, and thus will contain netsures than would be
necessary in a heap.

68 Chapter 5. A Cost Model for Non-Strict Evaluation
(VAL) T:Viiys —g T[i—V];Viss
(VAR) T;i'>i;s —g Tli— (7,0,0)];@;s
(DEM1) Tlis (V] @iis —g Tli v (V] 9o
(DEM2) Tl (i, d,e)];@i;s —g Tlir (i’ d,e)];oi;s
(DEM3) Tli— El;@i;s —y T;ED>i;s
(APP1) T;Ei'>i;s —g Tlir (ei,{oi},0)]; E>o0i; ((Q, ei):s)
(APP2) T[i' — (Az.E)];vi;((Qi",i):s) —g T[' — (Az.E)]; Ei"/x] > 1;s;
(OP1) Tijek>iss —w Tlim (o0, {j,k}, 0)]; @f; (B, #i) : 5)
(OP2) Tlj = (n); vy (@k,i) - 5) —w Tlj— (n)]; @k; ((nd, 1) : s)
(OP3) Tk — (n')]; VE; (n®,4) : 5) —¢ Tk (0])];nd&n' >i;s
(LAZY) T;(letx=FEin E')>i;s —y [z — ﬁoz (),{0i}),0i — EJ;
E'[oi/x] > ei; s fidu
(SPEC1) Ti(letx=Ein F')>i;s —y T[i— (ei,0, {oz})] > oi;
((E'[oi/x] > oi) : 5)
ifieW
(SPEC2) T;vi'y(E>i:s) —yg T,E>i;s

Figure 5.17 : Operational semantics for costed evaluation

The evaluation strategy is dictated By When evaluating det expression, the virtual
machine may choose to apply either r@lAZY)or rule (SPEC1) depending on whether the
current computation namas in the setb.

Like the denotational semantics, the operational sensunses strings of ando tokens to
name its computations and thus also its closures. This nia&asier to relate the operational
semantics to the denotational semantics. These namesloouighlaced by arbitrary identifiers
without affecting the operational behaviour.

We can extend this semantics with a set of additional rule®gin Fig.5.18) that define
abortion transitions. These transitions behave like thertadm semantics of Section 4.2.3,
adapted to take account of cost.

5.5.2 How Commands Relate to the Cost Graph

Evaluation, as defined by the operational semantics of Ei§ut7, is a depth-first exploration
of the cost graph for the program being evaluated. The etrafustrategy determines which
edges are followed by this exploration.

5.5. An Operational Semantics 69

('"EXP) T;Eris —y Tli— E];@i;s
('SPEC) T;eiE>j:s —y T;ED>j;s
(IABORT) T;0i;(l,j):s —g T[jr iZl];®);s
(IRESUME) T[j — i/l];®j;s —w T;®i;(l,7):s

Figure 5.18 : Operational semantics for costed abortion

{(APP1) ©i -~ o -~
H 1 1 H
{ v ' [<body>[var/X]]

[<func>] < ‘ i
0 if oi =" \x.<body>:

i
[<func> var]

Figure 5.19 : Evaluation commands walk over the cost graph, doing work

The Program State

The computation tracd’ records all computations that have been visited/perforscetar.
Value closures represent value computations that havepmréormed and dependent closures
represent dependent computations that have been perforfiinethks represent computations
that have been put off until later, and suspensions repr@seas of the cost graph that have
been partially explored.

The current command says what the program is doing currently, and the stadcords
parent nodes whose edges have not yet been completely edplorthe illustrations given in
this section, solid circles represent computations the ieeen performed and dashed circles
represent computations that have not yet been performe@ pksgram evaluates, it converts
dashed circles to solid circles.

Evaluation Commands

Evaluation commands explore new nodes, and do the desevitidd The evaluation command
E > i does the work corresponding to the computati@nd records that it has done this by
adding a closure t@'. The evaluation command will then proceed to explore anicdm that
the node has. If there are several children, then it will esgthe leftmost child, and add a stack
frame tos to remind it to explore the other children later. This isshitated by Figure 5.19, in
which rule(APP1)explores its function evaluation child.

70 Chapter 5. A Cost Model for Non-Strict Evaluation

o -~
\

)

wPP2) o

[<func>] _ ! [<body>[var/x]]}

if of = \x.<body>
i
[<func> var]

Figure 5.20 : Return commands return to a previously unexplored edge

ALAZY) .

;7 "~_. Thunk "
\ \
1 Oil’ N ‘\ .il/ s\
P L \ i
([<rhs>} _ /'k') v __'[<body>[oi/x]]
|", S - |
[let x = <rhs> in <body£/®

Figure 5.21 : Thunks represent areas of the cost graph that the virtual machine chose to not
explore until later

Return Commands

Return commands return to a partially explored node storetth® stack and explore its unex-
plored children. This is illustrated in Figure 5.20 in whialie (APP2)in which the program
returns to a function application frame, and evaluates tluky lof the function.

Thunks

Thunks represent parts of the cost graph that the virtuahmadas chosen to not explore until
later. This is illustrated by Figure 5.21 in which r(lleAZY)creates a thunk to represent the
fact that it has not explored the area of the cost graph reptieg) the right hand side of thet.

Demand Commands

Demand commands attempt to find a value for a closure. Théywfolalue edges until they
find a value or a previously unexplored part of the cost grapti@nk). If a previously unex-
plored area is found, then they used an evaluation commagxptore it. This is illustrated by
Figure 5.22.

5.5.3 Work Done by a Program

We consider the work done by a program to be the evaluatiositrans it has performed; return
transitions and demand transitions are considered to be A& we saw in Section 5.5.2, every
evaluation transition performed is recorded in the comjputdracel” as either a value closure

5.6. Denotational Meanings of Operational States 71

(INDl) i (IND2) i (IND3) ’,"\

o/g» &

Figure 5.22 : Demand commands follow value edges until they find either a value, or a previ-
ously unexplored part of the cost graph

or a dependent closure. We can thus define the funetiotDone which maps a state of the
operational semantics to the set of computations that ipegermed so far:

workDone : Trace — Work
workDone(T) = {i| (i—(V]))eT Vv (i~ (i de))eT}

In Section 5.6.5 we prove that the work done so far, as desthlyworkDone, will be a subset
of that that can take place during a complete program evatuyats predicted byrogram Work
(Section 5.2.5).

5.6 Denotational Meanings of Operational States

We can give a denotational meaning to states of the opeedtsmantics. The meaning of a
state is the complete cost view for the program that the dipaia semantics is evaluating. This
cost view will define a superset of the computations desdrnib¢he computation trace.

In Section 5.6.4, we prove that this meaning is preserved-bytransitions. This demon-
strates that our denotational semantics accurately mtuelsost graph explored by our opera-
tional semantics.

In Section 5.6.5 we will use this result to prove that the wdokie by a program executed
using strategy? will always be a subset of the work describedibygram Work for that strat-
egy. This demonstrates that our denotational semanticsathyr predicts the cost of evaluating
a program using a given strategy, as defined by the operatenentics.

5.6.1 Costed Meaning of a Runtime Value:

The operational semantics uses substitutions to replata&bles with names. We handle this
by treating computation names like local variables, an@mding 5 to map all names onto
themselves:

72 Chapter 5. A Cost Model for Non-Strict Evaluation

5.6.2 Costed Meaning of a Stack:

We define a semantic functiafi]—] that gives a meaning to a stack, given the complete cost
view v and the name of the computation that produced the return value:

S[-] : Stack — CV — Name — CV
SUE®S):sl,i = €l U SIsl, ;
SOk J): slyi = FG)i 7 U Skl
S[n®,j) : slyi = (O[®) n lil,) U S[s], j
S[(®k,j) : s]y i = (Ol&F lily [k]y) U S[sly
S[HH]’YZ = ()

The cost view for a stack is the least upper bound of the cestss/for all evaluations defined
on the stack.
5.6.3 Costed Meaning of a Computation Trace:

We define a semantic functidh[—] that gives a meaning to a computation trace:
T[-] : Trace — CV — CV
Tliv e Ki,ooip = K]y = E[K] v U .o LELKL] v

The cost view for a computation trace is the least upper badilkde cost views for all of the
closures in the trace. The semantic funct#dr-] is extended to give meanings to indirections,
value closures, and stack suspension closures as follows:

Gy = (- (o)
EAEN v = EDE]
Ly = Sl : [l

Thunks are expressions, and so are dealt with by the rules givSection 5.3.

5.6.4 Costed Meaning of a State:

We define a semantic functiom![—] that gives meanings to program states:

M[-] : State — CV

MIT:Evi;s] = pyT[T], U
M[T;@i,s] = py.T[T], U (S[s], 9)
M[T;vi,s] = py.T[T], U '

5.6. Denotational Meanings of Operational States 73

The complete cost view for a state is the least upper bourtteafdst views for the computation
trace, the stack, and the current expression (if there is one

Theorem 5.6.1 (Soundness)
The meaning of a state as definedb¥[—], is the complete cost view for the program that the
virtual machine is evaluating.

0 B[] —"Tic;s = M[T;¢; 8] = P[E]

We can easily observe that[0; £; []] = P[E], so this amounts to proving that the mean-
ing of a state is preserved by the transition rules fer":

Tic;s — T':d5s = M|T;¢;s] = M[T'; ;6]
A proof of this is given in Appendix B.

5.6.5 Work that Will be Done by a State

We can define a functiopending Work that maps a program state to the work that the program
has yet to do, but which it will do before it finishependingWork takes as its arguments a
program state, and the strategy that is being used to eeadhmprogram:

pendingWork . State — Strategy — Work
pendingWork(T; c;s,¥) = W{C{C}US{S}}%{HT;QS}]

This definition makes use of the functiof§— } andS{—} that find thepending computa-
tionsof a command and a stack respectively. The pending compnsadire those computations
that the program is planning to produce values for in thertutl{ — } is defined as follows:

c{E>i} = {i}
C{ei} = {i}
c{vi} = 0

For convenience, we restrict ourselves to a subset of oguksge in which there are no primitive
integer operation$.S{—} is thus defined as follows:

S{Er>i:s} = {i}uS{s}
S{(Qk,17) : s} {i} USq{s}
s{iy =0

"Primitive integer operations complicate the proof f@BORT)and(RESUME)n Appendix C.

74 Chapter 5. A Cost Model for Non-Strict Evaluation

Theorem 5.6.2 (Correct Work Done)

If the definitions given in this Chapter are correct, then wauld like it to be the case that,
for any state that can arise in the operational semantiesytitk done so far, unioned with the
pending work is a subset of the work predictedpoygram Work:

0, E>e[] —* Tie;8 =
workDone(T) U pendingWork(T; ¢; s, V) C programWork(M[T; c; s], ¥)

In Appendix C we prove that this theorem does indeed hold. raltary of this theorem is that
the work done by a completed state is a subset of the workgieetlby the cost graph:

hE>e[] — Tyvi[] =
workDone(T) C programWork(M[T'; c; s], V)

The relation is a subset relation rather than equality bezaibortion can cause a program
to not do work that it was planning to do. We would like to beeatd prove that this relation
will be an equality if no abortion transitions are appliedafortunately, we have not yet been
able to produce a proof of this property for tfizEM2) rule

8\We think wealmosthave a proof, but it is not yet in a good enough state for us bigtuit. The proof relies
on a more exact definition glending Work that is non-intersecting withvorkDone.

CHAPTER 6

Deriving an Online Profiler

In this chapter, we explain how the cost model described &p@HT 5 can be used to justify and
verify the design of an online profiler for Optimistic Evatica.

e We start, in Section 6.1, by categorising the work done byogam. We give definitions
of wasted workand saved work allowing us to formally state how much of the work
done by a program execution was unnecessary, and how muéhwasrdondor free
From these concepts, we are able to develop the concegmioainess-a measure of the
performance difference between the current evaluati@tegty and Lazy Evaluation.

e We continue, in Section 6.2, by formalising the concepilafnegiven in Section 3.3.4.

¢ In Section 6.3, we explain how the concept of blame can be asé#uk basis for an online
profiler which bounds the worst case performance of OptimEBtaluation relative to
Lazy Evaluation.

e Finally, in Section 6.4, we show how we can reduce the overloé@nline profiling by
only profiling a small proportion of ventures.

This chapter aims to act as a bridge between the formal codehwod Chapter 5 and the
low-level implementation of Chapter 9. This chapter is tbassiderably less mathematically
rigorous than Chapter 5, but considerably more mathentigtragorous than Chapter 9.

75

76 Chapter 6. Deriving an Online Profiler

6.1 Categorising Work

Not all work is equal.

Some of the work done by a program mawested—meaning that it would not have been
done by Lazy Evaluation. Optimistic Evaluation will wastenk whenever it speculatively
evaluates an expression that would not be evaluated undgribhaluation.

Similarly, some of the work done by a program maysb&ed—meaning that meaning that
Optimistic Evaluation has managed to perform the work withnocurring the costs that Lazy
Evaluation would have incurred. When Optimistic Evaluatpeculates the right hand side of
alet, it saves the work done to create a thunk. If work has been,dotehas not been saved,
then we say the work has bedane-at-a-cost

The goodnesof a program state is the difference between the amount ok wWat was
wasted and the amount of work that was saved. Equivalenbilythe difference between the
amount of time that Optimistic Evaluation has taken, andam®unt of time that would be
taken by Lazy Evaluation to do the same amount of useful wirthe goodness is positive,
then the current evaluation strategy is outperforming LEazgluation, while negative goodness
indicates that the current evaluation strategy is doingse¢inan Lazy Evaluation.

The aims of the online profiler can be expressed in terms ofigess:

1. It imposes a lower bound on the worst case goodness of agmnogfate, thus bounding
the worst case performance of Optimistic Evaluation redetio Lazy Evaluation.

2. Given the first constraint, it attempts to maximise averggodness and thus maximise
average performance.

6.1.1 Wasted Work

Thewasted worlof a program state is the work that has been done so far, bahwyould not
be performed at any point by Lazy Evaluation of the same rogiWe can formally define the
wasted work of a program state by taking the set of all comjmurta performed by the program
execution so far, and subtracting all computations thatlevba performed by Lazy Evaluation
of the program:

wastedWork —: State — Work
wastedWork(T; ¢;s) = workDone(T) \ lazyWork(T'; c; s)

We illustrate this definition graphically in Figure 6.1.

6.1. Categorising Work 77

ﬁomputations performed so far \

Wasted Work /User” Work Work still needing to be doD
done so far done so far

O O ~ O
QQQQOQQQQ
_ O 0~)50 0

Work that has not been done k(:omputations that would be performed by /

and is not needed Lazy Evaluation

O O

Figure 6.1 : A computation is wasted if it would not have been performed by Lazy Evaluation

We definelazy Work, the work done by Lazy Evaluation, using thegram Work function
from Section 5.2.5:

lazyWork . State — Work
lazyWork(T; c;s) = programWork(M][T;c; s],0)

6.1.2 Saved Work

If a program is evaluated to completion, then the work donedipyimistic Evaluation will
always be a superset of the work done by Lazy Evaluation. Memthis does not mean that
Optimistic Evaluation will always perform worse than Lazyaltuation. Optimistic Evaluation
may have been able to do some computationgree that would have taken time under Lazy
Evaluation. We refer to the set of computations that have peeformed for free as theaved
work

In our simplified model, saved work arises wheletaexpression is speculated (using rule
(SPEC1). By speculating det expression, Optimistic Evaluation avoids the cost of bogd
a thunk and so we consider it to have saved the computatioth&bidet evaluation. With
reference to the definitions of Section 5.2.5, we can defiaestived work of a program to be
the intersection of the work done so far with the ®eif all computations that will be speculated
if encountered.

savedWork —: State — Strateqy — Work
savedWork(L; ¢; s,V) = workDone(T) N W

Operationally, we can obtain the set of saved work by addiseyvad work fieldF to states.
F contains the names of all computations that have been saviad hefF’ field is ignored by

78 Chapter 6. Deriving an Online Profiler

ﬁomputations performed so far \

Work done so far /Work saved Work that might be save$
that was not saved so far the future

O O ~ O
QQQQOQQQQ
_ O 0~)50 0

Work that has not been done Computations that will be speculated, and thus
and would not be saved &aved, if they are performed /

O 00

Figure 6.2 : A computation is saved if has been speculated

all rules excep(SPEC1)which adds its computation name to the Bet

(SPEC1) T;(letz=FEin E')>i;8;F —y
I'[i — (o7,0)]; E > oi; (E'[oi/x] > i) : s; F U {i}
ifieVv

The saved work of such an extended state is simplyitgeld. We can observe that this is
equivalent to the previous definition.

6.1.3 Goodness

Thegoodnes®f a program state is a measure of how well Optimistic Evadnats performing
relative to Lazy Evaluation. It is defined to be the differetetween the amount of work that
the program has done-at-a-ci@std the amount of work that would be done-at-a-cost by Lazy
Evaluation to do the same amount of useful work. This is thewarhof work that has been
saved, minus the amount of work that has been wasted:

goodness : State — Strateqy — 7
goodness(I'; c;s; V) = | savedWork(I'; ¢; s, W)) -) wasted Work(I; ¢; s)

To understand why this definition makes sense, it is helpfebinsider the goodness of an
individual computation. From the definitions given in theyous sections, we can see that
every computation performed by the program is either wastetbt wasted, and either saved
or not saved (Figure 6.3):

!Recall that a computation is considered tadome-at-a-cosf it has been done and its cost was not saved.

6.1. Categorising Work 79
Work done so far

/ / Saved\\

N

Wasted but not saved Saved and wastgd Saved but not wasted
Q Neither wasted nor saved

\Wasted 6 Q Q Q
N _/

Figure 6.3 : Each computation done so far can be wasted, saved, both, or neither

Wasted but not saved: This computation was not needed, and took time to perforne.gtiod-
ness of the computation is thusl.

Saved but not wasted: This computation was done for free, but would have taken tinaer
Lazy Evaluation. The goodness of the computation is thus

Wasted and saved: This computation was not needed, but took no time to perfditne. good-
ness of the computation is thQs

Neither wasted nor saved: This computation took one unit of time, and would have takes o
unit of time under Lazy Evaluation. The goodness of the caatmn is thug).

We can see that saved and wasted computations cancel eaclootheading to the defini-
tion of goodness given above.

6.1.4 Using Goodness

By calculating goodness at runtime, an online profiler cagpkigack of how well Optimistic
Evaluation is doing. If the goodness is negative, then QOptimEvaluation is wasting more
work that it is saving, and so the profiler should decreaséetred of speculation in an attempt
to reduce the amount of waste taking place. If the goodnepesgive, then speculation is
saving more work than it is wasting, and so the profiler cameiase the level of speculation
in an attempt to save more work. If the goodness falls belowea-specified cutoff point then
evaluation will be made entirely lazy, ensuring that thedyoess cannot decrease any further.
A possible relationship between goodness and specula&iehik illustrated by Figure 6.4.

80 Chapter 6. Deriving an Online Profiler

T

»
»

Goodness
cutoff goodness full goodness max goodness

Figure 6.4 : The level of speculation depends on the current estimate of goodness, ensuring
that goodness should never fall below a pre-determined cutoff point.

6.1.5 Underestimating Goodness

It is not necessary for a profiler to know the exact goodnessmbgram state. All that is re-
quired is that the profiler is able to produce a safe undenesti of goodness. If the goodness is
underestimated, then the profiler will be overly cautioud evaluate the program more lazily
than necessary. In the worst case, Optimistic Evaluatidirdecide that speculation is entirely
counterproductive and will revert to Lazy Evaluation. Thdime profiler is only required to
ensure that the program does not run significantly slower ith&ould under Lazy Evaluation.
It is not required to ensure that performance is within aipaldr bound of the optimal evalu-
ation strateg$. Thus, while an overestimate of goodness would be unsafenderestimate is
acceptable.

Although it is acceptable for the profiler to underestimatedness, it is desirable for it to
underestimate goodness by as little as possible, so asitbla@iog unnecessarily cautious.

6.2 Blame

If we discover that some work was wasted, it is useful to kmdwthe wasted work was done.
In this section, we present a semantics in which every wasbeaputation isblamedon a
speculation—thus formalising the concept of blame intozablin Section 3.3.3. We go on, in
Section 6.2.5 to show that blame can be used as the basis éoiliae profiler.

6.2.1 An Informal Overview of Blame

Every computation performed by a program is blamed on etiteroot venture, or exactly
one speculation. If a computation is blamed on the root ventthen that means that the

2By which we mean the optimal blend of lazy and strict evahratiThe term ‘Optimal Evaluation’ is more
commonly used to refer to something else—as we discuss tin8e3.9.2.

6.2. Blame 81

<>i|et X @[root]

r < >[|et yl

<res of program>

Figure 6.5 : All computations are part of the local work for exactly one venture

computation was definitely not wasted. If a computation &®d on a speculation, then this
means that the computation may have been wasted, and thiephafs chosen to blame the
work on that speculation. The sum of all work blamed on spmuis is guaranteed to be an
overestimate of the wasted work of the program state.

Our profiler passes blame between ventures as the progranlfunventurer is found to
be needed by a ventugethen any blame that had been attributed twill be passed tg. It is
thus the case that a speculation can only be blamed for witiik ifiot yet known to be needéd.

6.2.2 Ventures

In terms of a cost graph, a venture is a computation that pexia value for the right hand
side of alet. A venture is a speculation if was performed before it wasaknto be needed.
The local work of a venture is the work that can be reachedtijré&om that venture, without
having to go through any other ventures. We say that a ventlgenands a venturéif any of
the computations in the local work 6flemand’'.

These concepts are illustrated in Figure 6.5, which extémelsost graph of Section 5.2. In
this figure, each venture is marked with a circle and a loopasvd around the local work for
each venture.

6.2.3 Relating Blame to a Cost Graph

We can illustrate the allocation of blame to ventures usirdglaane graph A blame graph
consists of a number of disconnectddme treeseach of which is rooted at either a speculation
or the root venture. If a speculation has no edges linking tioein itsblameis the number of
computations reachable from it; otherwise its blame is.zero

3This is the reason why a thunk venture cannot be blamed fok;veothunk venture is needed by the venture
that demanded the value of the thunk.

82 Chapter 6. Deriving an Online Profiler

Cost graph for program Blame graph for work done so far

Iyl

blamed for 12 computations blamed for 2 computations so far

Figure 6.6 : A blame graph contains a subset of the nodes and edges of the cost graph

The computations and edges in a blame graph are a subsesefftrdhe cost graph of the
program. The computations are those that have been done sdfke the edges are a subset
of those in the cost graph, chosen such that no node has naoretie node linking to it. As a
program executes, we can maintain a blame graph descrhengytfiler’s current allocation of
blame to speculations. Whenever a computation is doneadtdsd to the blame graph, together
with as many of its value and demand edges as can be addeditédngsing any node to have
more than one edge linking to it.

In Figure 6.6 we illustrate a typical blame graph, togethigh s corresponding cost graph.
We can see that every node and edge in the blame graph is alsenpin the cost graph. In
Figure 6.7 we illustrate the effect of adding a new compatatiode to a blame graph. In this
example the new node depends on the root nedef a blame tree, causing that blame tree to
be subsumed by the blame tree containing the new node. @exily, the blame attributed to
s is passed t@.

The work blamed on speculations is a superset ofuth&ed Work of the program state.
This follows from the fact that every computation done sagdslamed on either a speculation
or the root venture, and the fact that a computation can oalplamed on the root venture
if it is reachable from the root venture by value and demankisli If the profiler also has an
accurate measure of saved work then it can use the blame @rapbduce an underestimate of
the goodness of the current state.

6.2. Blame 83

Qo ® Qo ®

[s] [s] no blame
add new node

|
O ® . O

PIQ) O)

blame =2 blame=7

Figure 6.7 : When a new node is added to the blame graph, it may cause one blame tree to be
subsumed by another one

6.2.4 Per Let Goodness

Our main motivation for blaming computations on venturdsa it allows us to assign a good-
ness to each individudét in the program. The goodness ofeg is the amount of work saved
by thelet, minus the work blamed on ventures spawned byltat\We define &oodnessMap
I1, to be a mapping frortet identifiers to integer goodness values:

GoodnessMap © -z

The sum of all goodness in the goodness map is guaranteed do baderestimate of the
goodness of the program state.

6.2.5 An Operational Semantics for Blame

Figure 6.8 gives the rules for an operational semantickeggts track of blame. This semantics
is based on the low-level semantics of Section 4.2 and sotaiafa head’ rather than a
computation trac&’. States are now of the following form:

;e 8, B 11
where:
e ['isaheap, mapping heap identifiers to closures, as beforexi#ad the type of closures
to includecosted indirectionsA costed indirection holds the result of a speculation that

has work blamed on it. If a blame graph is drawn for the progstate, then each blame
tree corresponds to a costed indirection in the heap.

84 Chapter 6. Deriving an Online Profiler

Evaluate a value constant:
(VAL) Vs, B;IT — Taw— V];Va;s; B+ 1;11
whereq is fresh

Demand the value of a closure:

(VAR) INays; B I — TIeass; B+ 1511
(DEM1) Cla— (V])];0qa;8;B;I1 — Tla— (V)]; Va;s; B; 1T
(DEM2) la - (a)];0a;8,B; 11 — Taw (d)];@d;s; B; 11
(DEM3) lla— El;0a;8;,B;11 — T E; (#a:s); B; 11

(UPD) [y Vo, (#a 2 s); B I — Td — (a)]; Va; B; 1T
Function Application:

(APP1) I Ea;8,B;1 — T E;(Qa:s); B+ 1;11

(APP2) Tla+— (Az.E)];Va;(Qa':s); B;I1 — Tla— (\x.E))]; Eld//x];s; B; 11

Lazy Evaluation of a let:
(LAZY) [(let z = Ein E');s; B;11 — Tlaw— E]; E'la/x];s; B+ 1;11
if goodToLim(11(x)) < specDepth(s)
whereq is fresh

Speculative Evaluation of alet:

(SPEC1) ['letx = Fin E');s;, B — T E; (({«}E B—|-1) :5);0
IT [z — II(z) + 1]
if goodToLim(I1(x)) > specDepth(s)
(SPEC2) U0 (}E.B) B — T v Bl Bl o) i
I Mz v T(z) — B]

whereo’ is fresh
Demand the value of a costed indirection:
(CST) [a— B'{d)];0a;5,B — Tlar— (¢)];0d;s; B+ B
I]z — 1l(z) + B’

Figure 6.8 : Operational semantics with blame

6.2. Blame 85

Costed indirections are written as:
B{a)”

whereB is the amount of work blamed on the speculations a heap reference for the

result of the speculation, andis the identifier for thdet that spawned the speculation.

e s is a stack. Stack frames are similar to those used in the doel-semantics of Sec-
tion 4.2; however speculative return frames are extendedntain the blame accumu-
lated so far by the enclosing speculation. Stack frameshaiseds follows:

Stack s = [] Empty stack
| ({=}E,B):s Speculative return
| #a:s Thunk update
| Qa:s Lazy return

e B aninteger count of the amount of work that has been blameldeaurrent speculation
so far.

e Il is a goodness map, recording the goodness that is curressilyreed to eacket in the
program.

The semantics ensures tHafz) is always the total amount of work saved by ventures
spawned byt, minus the total amount of work blamed on speculations spavayx.

If the current speculation demands the result of a costackicttbn in the heap (ruléCST),
then the costed indirection is replaced by a simple indivaand its blame is transferred to the
current speculation. Referring to the blame graph, thigjiswvalent to adding an edge linking
the current speculation to the blame tree represented lgosted indirection, as illustrated by
Figure 6.7.

Whenever the cost semantics of Section 5.5 would add a neavtnde computation trace,
the semantics of Figure 6.8 will increment the current blanblaming the current speculation
for the work.

Whenever a speculation starts, ry#PEC1)adds one unit of goodness to the goodness
count for the spawninget. This reflects the fact that the venture saved one computaiio
avoiding building a thunk. As discussed in Section 3.3.% (BPEC1)blames the enclosing
venture for the work needed to build a thunk, even though akimas not been built.

Whenever a speculation completes, r(BEC2)subtractsB units of goodness from the
goodness count far. This records the fact th& computations have been blamed on a venture
spawned byr. If the blame for these computations is later transferredwehere, thelCST)
will add B to the goodness count far, thus ensuring that the goodness dfeé accurately
reflects the blame currently attributed to ventures spavinosa that let.

3By which we mean the blame tree that was current before tinecfraas pushed.

86 Chapter 6. Deriving an Online Profiler

6.2.6 Directing Evaluation with Goodness

Rather than using a speculation configurattoror an evaluation strategy to chose when
to speculate det expression, the semantics of Figure 6.8 instead uses thinges magl.
We assume the existence ofjaodness weighting functippood To Lim, that maps goodness
counts to speculation depth limits. This is equivalent thnileg the speculation configuration
3] as follows:

Y(z) = goodToLim(II(z))

goodToLim can be any function, provided that there is some minimum gessl/INGOODNESS
such thayood ToLim will be zero for any goodness beldW/NGOODNESS, and provided that
there is no goodness for whigtaod To Lim will be greater thanAXDEPTH . That is:

Vz. (2 < MINGOODNESS = goodToLim(z) = 0)
Vz. goodToLim(z) < MAXDEPTH

6.3 Bounding Worst Case Performance

The blame semantics of Section 6.2 ensures that no new gpieagl will be started for &et

if the goodness of thdkt is less thanMINGOODNESS. However this is not sufficient to
impose a lower bound on the goodness that can be attributeltoa venture may start while
the goodness of &t is high, and then do a large amount of wasted work, causingge la
amount of goodness to be subtracted fromltte

If we are to place a lower bound on the goodness that can gmnasksio det then we must
not only place restrictions on when new speculations candeged, but also place restrictions
on the amount of work that can be blamed on the active spéunsat

In this section we explain how we such a limit can be imposead, fow this allows us to
guarantee a bound on the worst case performance of Optir&igtiluation.

6.3.1 Bounded Speculation with Blame

In Section 4.2.4 we gave a semanticsfounded speculatigmvhich ensures that no more than
MAXTIME steps of speculative evaluation can be performed beforgiabdakes place. We
can refine this semantics so that it instead places a limiheratnount of blame that can be
assigned to active speculations. The rules for this refieathstics are given in Figure 6.3.1.

The rule(RUN) performs an evaluation step only if that evaluation stepmat cause more
than MAXBLAME units of work to be blamed on active speculations. This rudées use of

6.3. Bounding Worst Case Performance 87

Iie;s; B I — IV:d:8 B 1T

(RUN) F, C; S; B7H ~ F/;C/; S/;B/;H/
if B’ + activeBlame(s') < MAXBLAME
or specDepth(s") =0
(ABORT) _Lics Bl ~ IMicis BLIV

ie;s; B;II ~ 1V:d;6; B 1T
if rule (RUN)could not be applied

Figure 6.9 : Operational semantics of blame bounded speculation

a functionactive Blame that sums the blame for all active ventures recorded on duk st

_ 0 if specDepth(s) =0
activeBlame(({z}E,B) : s) =
B + activeBlame(s) otherwise
activeBlame(#a : s) = activeBlame(s)
activeBlame(l : s) = activeBlame(s)

activeBlame([]) = 0

Recall that the blame fiel® in a speculative return frame contains the blame accuntiaiéar
for the enclosing venture. We thus do not count the blamelatato the outermost speculative
return frame as this will be the blame accumulated so far byrdlot venture—which is not a
speculation.

If rule (RUN)cannot be applied, then r({@BORT)will apply abortion transitions until the
(RUN)rule can be applied again.

It is important that we limit blame rather than evaluatiogpst or local work. If we limited
evaluation steps, then it would be possible for a speculdbcaccumulate a lot of blame by
demanding the results of previous ventures. When the vertumpleted, this blame would be
subtracted from the goodness of the spawn#tg It is also important that the side condition
is on the blame after the transition rather than the blamerbehe transition. It is possible
for a venture to accumulate a large amount of blame in one e the(CST)rule, thus
testing the blame before a transition would allow a ventoradcumulate significantly more
than MAXBLAME units of blame.

6.3.2 Abortion

The bounded speculation semantics presented in Sectidh Bakes use of the abortion re-
lation given in Figure 6.10. The rules in Figure 6.10 are éiyghe same as those given in
Section 4.2.3, but have been extended to keep track of blame.

88 Chapter 6. Deriving an Online Profiler

abort a speculation:
('EXP) IYE; s; B; I~ TDlaw— El;0a;s; B; 11
('RET) I';vVa;s; B; 11~ TI';ea;s; B; 11
(ISPEC) TIjeo;({z}E,B'):s; ~ Ta/ = B()]; Bl /x]; s;
B;11 B[z — II(z) — B — Baport)
whereq’ is fresh

('UPD) [ea;#a' - s; B 1T~ T — (a)]; @a;s; B; 11

('ABORT) oo l:s; B 1T~ Do — all];od;s; B; 11
whereq is fresh

resume a suspended evaluation:

(RESUME) T'a+— oZl;0a;s; B;11 — T #a: s; B 11

Figure 6.10 : Operational semantics : abortion with blame

The only rule to have changed significantl{!'SPEC) which blames any work accumulated
so far on thdet that spawned that venture. The abortion system also blamedsttfor B,
units of work, representing the work done to perform the aaboitself.

6.3.3 Worst Case Performance

We can tell from rule(SPEC)in the semantics of Section 6.2.5, and the restrictions en th
definition of bad To Lim given in Section 6.3.1, that a new speculation can only batedefor a
let if the goodness for thdet is less tham/INGOODNESS.

The minimum goodness that can be attributed letas thusMINGOODNESS minus the
maximum amount of goodness that can be subtracted froniéhdly speculations that were
started before the goodness of the reached/INGOODNESS.

We saw in Section 6.3.1 that the maximum amount of blame @rabe attributed to active
speculations iId/AXBLAME. If every one of these ventures is aborted, then the costaf ab
tion would beMAXDEPTH X Bo.* Itis thus the case that the minimum goodness that can
be attributed to anet is MINGOODNESS — MAXBLAME — (MAXDEPTH X Baport)-

There are a finite number &t expressions in a program. It is thus the case that a bound on
the goodness attributable to any dee will also give a bound on the total goodness attributed

4Recall thatMAXDEPTH is the maximum number of speculations that can be activegfisedi by Sec-
tion 6.2.6.

6.4. Burst Profiling 89

to all lets. In Section 6.2.3 we showed that this will be an underesémfthe goodness of the
program state.

In Section 6.1.3 we argued that the goodness of a programistah accurate measure of
the performance difference between Optimistic Evaluagiot Lazy Evaluation. We thus have
a bound on the worst case performance of Optimistic Evaloatelative to Lazy Evaluation.

This is exactly what the profiler is intended to do!

6.3.4 Variants on the Worst Case Bound

The user has quite a lot of control over the worst case pedoombound. IMINGOODNESS
and MAXSPEC are fixed constants then the minimum goodness will be lowgreifnumber
of let expressions in the program is increased. This anomaly cdixdxk by arranging for
MINGOODNESS and MAXSPEC to be inversely proportional to the numberlet expres-
sions in the program.

MINGOODNESS and MAXSPEC do not have to be constants either. Indeed, it can be
useful forMINGOODNESS to be expressed as a proportion of the total runtime of thgrpro,
causing the worst case performance to be a fixed percentagershan Lazy Evaluation, rather
than taking a fixed amount of extra time.

6.4 Burst Profiling

It is not practical to profile a program all of the time; the dwead would be too great. In this
section we formalise the concepthirst profiling as introduced in Section 3.4. Burst Profiling
profiles a program for only a small proportion of its runtinbeit still allows goodness to be
accurately estimated.

6.4.1 Periods

Burst profiling divides the runtime of a program up into aegf distinct periods. Each period
starts at éboundary pointand lasts until the next boundary point. Any speculatios start
during a period are considered to belong to that period. Bhiustrated in Figure 6.11 in
which speculations are rectangles, and the shading of allspen indicates the period that it
belongs to.

A random selection of periods is profiled. When a period idijga, all speculations that
start during that period will be profiled (Figure 6.12). Ifegy period has a probability of
being profiled, then it follows that every speculation alss h probability of being profiled.
Given that the goodness of the program is the sum of the gaesdifethe all speculations, it

90 Chapter 6. Deriving an Online Profiler

: start BB end B :/ start C c end:C/start D 5 end D/sta?rt E
i N NN i
| | N NN A
\ BNz

Stack

Tim'e Elapsed

IL
>

Figure 6.11 : Every speculations belongs to exactly one profile period

* Profile start Profile end

. |-
B NN
; AN N

Time Elapsed

Stack

»
»

Figure 6.12 : Only those speculations that start during a profiled period will be profiled.

follows that the measured goodness should, on averagetilmes the goodness that would be
measured if profiling was always enabled.
The burst profiler aims to calculate the following:

e An overestimate of the number of computations that tookeptharing profiled periods
and were wasted (as defined by Section 6.1.1)

e An exact count of the number of computations that took plagcend profiled periods and
were saved (as defined by Section 6.1.2)

From these, it aims to underestimate the goodness of thdeargfart of the program’s
execution. By dividing this goodness by the number of comfpons profiled, it is possible
to calculate thaelative goodnessf the program. If we assume that profiled computations
behave, on average, in the same way as unprofiled compgatiwan the relative goodness of
the profiled computations should be a good estimate of tlaivelgoodness of the program
execution. The profiler can thus estimate the goodness @irtiggam execution by multiplying
the relative goodness by the total number of computatiorfsimeed.

6.4.2 Operational Semantics

Figure 6.13 gives the rules for burst profiling. This sent@nis a combination of the rules from
the blame profiling semantics of Section 6.2 and the unptblEmantics of Section 4.2. The
evaluation relation— is parameterised by a profiling switgh If p is ‘on’ then the profiling
rules are used, while, f is ‘off” then the unprofiled rules are used.

6.4. Burst Profiling

91

Evaluate a value constant:

(VAL) I'Vis; Byl —, Tlaw— V];Vass; B+ 111

Demand the value of a closure:

wherea is fresh

(VAR) oy s; B I —) T 0a;s; B + 1511
(DEM1) Tla= (V)ea;s; BT —, Tlaw (V)] Va;s; By
(DEM2) la— (¢)];@a;s8B;I1 —, Ta— (¢)];@d;s; B;11
(DEM3) Ia— El;0a;s;B;11 —, I[E;#a:s;B;1l

(UPD) IyVa;#a' @ s; B 11—, To — (a)]; Va; B; 11

Function Application:

(APP1) I'Eays; Bl —, [TE,Qa:s;B+ 110
(APP2) Tla+— (Az.E)|;Va;@d :s;B; I —, Tar— (Az.E)]; Eld/z];s; B; 11

Lazy Evaluation of a let:

(LAZY) I'(letz=FEin E');s;B;Il —, Ta— E;}E

'la/z]; 85 B+ 1511

if goodToLim(11(x)) < specDepth()

Unprofiled Speculative Evaluation of alet:

whereq is fresh

(SPEC1N) Iy(let x = Ein E');8; B;11 —g¢ [E;({z}E' :s); B+ 1;10
if goodToLim(I1(x)) > specDepth(s)
(SPEC2N) I;va; {2}E :s); By —, T Ea/z);s; B; 11
Profiled Speculative Evaluation of alet:
(SPEC1P) I'(let z = Fin E');s; B; —on E;({z}E',B+1):5);0;
I1 H[m — II(z) + 1]
if goodToLim(I1(x)) > specDepth(s)
(SPEC2P) Uyvas (2}, B) :s) B —, Tla’ = Bla))s Bla'/al; 5; B
IT [z +— TI(z) — B]

Demand the value of a costed indirection:

whereq/ is fresh

(CSTN) Ila— B{(«¢)];0a;s;B;11 —, TI'la— B(d)*];0d;s; B;11
if —~profiled(s)
(CSTP) lla = B(d) ;@05 —p Tla— (a)];@ad;s;
B:1I B+ B[z 1(z) + B

If profiled(s)

Figure 6.13 : Operational semantics for Burst Profiling

92 Chapter 6. Deriving an Online Profiler

The stacks can contain two types of speculative return frame, one fgrezglation that is
being profiled and one for a speculation that is not being lpchfiThese are the speculative
return frames from Sections 6.2 and 4.2 respectively:

Stack s = [] empty stack
| ({z}E,B):s speculative return (profiled)
| {z}FE:s speculative return (unprofiled)
| F#a:s Thunk update
| Qa:s lazy return

The ruleg(CSTN)and(CSTP)make use of a functioprofiled that looks at the stack and deter-
mines whether the current speculation is being profiled:

profiled : Stack — B

profiled([]) = true

profiled({z}F : s) = false
profiled(({z}F,B) :s) = true
profiled(#a = s) = profiled(s)

profiled(Qa : s) = profiled(s)

The rules behave as follows:

e Most of the rules behave just like they did in the blame prdfdemantics of Section 6.2.

As we explain in Section 9.1.1 the blame courfas implemented using a counter which
increments automatically as the program executes. Thaavimachine thus increments
the current blame countét even when the current speculation is not being profiled.

e When a speculation starts, the virtual machine has a chbtemaules to apply(SPEC1P)
is used if the current period is profiled, otherw{S®EC1N)s used. RuldSPEC1P)e-
haves like(SPEC1)in the profiled semantics of Section 6.2, wh{@PEC1N)behaves
like (SPEC1)in the original unprofiled semantics of Section 4.2.

If an unprofiled speculation is nested inside a profiled sjadicun then the profiled spec-
ulation will be blamed for any local work done by the unprafilgpeculation. This can
cause the profiler to overestimate wasted work, but thatasvat.

e When a speculation completes, the virtual machine agairal@m®ice of two rules. If
the speculation was profiled, then it ends W{BPEC2P) otherwise it will end with
(SPEC2N)Again, these are the rules from Section 6.2 and Section 4.2.

6.4. Burst Profiling 93

4

N N\ |

Stack

v

Time Elapsed

Figure 6.14 : If an unprofiled speculation uses a costed indirection then there is nowhere for
the cost to be passed to

(CSTN) I'[a+— B{(d)*];00;5; —, Da— (¢/)]; @a/; chainProf (B, s);
B; B’ 11
if —~profiled(s)

Figure 6.15 : Chain profiling uses this revised version of (CSTN)

e To demand a costed indirection, the evaluator apg(=TN)or (CSTP) (CSTP)is ap-
plied if the current speculation is profiled, otherw{§&STN)is applied. These rules are
discussed further in Section 6.4.3.

6.4.3 Profile Chaining

If some speculations are profiled and others are not, whatidt@ppen when the result of a
profiled speculation is used by an unprofiled speculations $huation is illustrated by Fig-
ure 6.14.

If a profiled speculationy, demands the result of an unprofiled speculatignhen we can
transfer blame fromy to =, as described in Section 6.2.3. However; is not profiled, there
will be no blame counter for blame to be transferred into.hi@ $emantics of Figure 6.13 we
deal with this problem by ignoring any demands made by uriptb&ipeculations. While this
strategy is entirely safe, it turns out (see results in $acti2.3.7) that there are performance
advantages to adopting a strategy that wedadlining

If a profiled speculationy, demands the result of an unprofiled speculatiotmen it seems
unfair to continue to blameg for wasting its work when the work was neededsbyWhat we
would like to be able to dois to pass this blame t&ince we cannot pass work to an unprofiled
speculation, we need to turninto a profiled speculation. We can do this by repladi@&TN)
with the rule given in Figure 6.15.

This new rule uses a functiarhainProf that converts the current speculation into a profiled
speculationchainProf is defined as follows:

94 Chapter 6. Deriving an Online Profiler

chainProf : N — Stack — Stack
chainProf (B,[]) = error! no frame to profile

chainProf (B,{z}E :s) = ({z}E,B):s
chainProf (B, ({z}E,B') : s) = error! already profiled
chainProf (B, #a : s) = #a: chainProf (B, s)
chainProf (B,Qa : s) = Qa : chainProf (B, s)

chainProf walks down the stack until it finds the return frame for thereat unprofiled specu-
lation. We know that such a stack frame must exist bec@@S&N)is only applied ifprofiled(s)
is false. WherchainProf finds this frame, it converts it into a profiled speculaticanfie. The
current blameB is stored in this frame, causing the blame counter to be nedtehen the
speculation completes.

Since the current speculation is now profil@dSTN)can now blame it for the work attached
to z. Note that we take care to avoid crediting the newly profileelcsilation with saving work.
This is because the work saved by the speculation did notgdiaee during a profiled period,
and so should not be included in the saved work count destib8ection 6.4.1.

We describe our implementation of profile chaining in moredlen Section 9.4.1. We
discuss its performance impact in Section 12.3.7.

Part Il

Implementation

95

CHAPTER [/

The GHC Execution Model

Optimistic Evaluation is implemented as an extension of@&C compiler. Thus, in order
to explain how Optimistic Evaluation is implemented, it iscessary to first explain how the
GHC execution model works and how it relates to the semartdibais we have presented. This
chapter only gives a very brief overview of the workings of GHhe real GHC implementation
Is significantly more complex than that described here. &waishing to discover more about
the workings of GHC are encouraged to read the many paperdiaia been written about
it [PHHT93, PMR99, San95b, PP93, PL91, Pey92, Pey91]. A more detaiterial on the
compilation of non-strict functional languages in genesaal be found in [PL92].

In this chapter, be describe the way that GHC works by compatito the semantics of
Section 4.2, with the parts specific to speculative evabnattmoved. This semantics is a very
close match to the way that GHC actually works.

e In Section 7.1 we describe the structure of the GHC heap, =pldia how it relates to
the heap used by the formal semantics of Section 4.2.

e In Section 7.2 we describe the structure of the GHC stackeaplthin how it corresponds
to the stack used by the formal semantics of Section 4.2.

e In Section 7.3 we describe the code generated by GHC, andieXpbw it corresponds
to the commands and evaluation rules used by the formal deasanh Section 4.2.

96

7.1. The Heap 97

Static Info Table Dynamic Heap

| tag=2 _info pir_

L.Pe 7 cons _payload_

L Size=3 _payload _

: entry code 1, payload

! : info ptr Closures start here
payload

Static Info Table _E)é_ch?é&_

| fype = thunk, _info pr_ =

| sze=2 | _payload_ S

, entry code : payload addresses

I A R increase

! | payload downwards

Figure 7.1 : Structure of Heap Closures

7.1 The Heap

In the formal semantics of Section 4.2, the héajg a function mapping heap reference$o
closuresk. In GHC, the heap is a continuous block of membu.closurekK is a sequence of

words in the heap, and a heap referenega pointer to the start of the closure that it references.

Figure 7.1 illustrates a typical GHC heap. In this figure ealg in the dynamic heap (clo-
sures) are drawn with bold outlines while static objectsdravn with dotted outlines. All
closures in GHC have the same basic form in the heap, irrégpexd whether they represent
values, thunks or something else; the first word of the clsitheinfo pointer, and the other
words are known as thgayload The info pointer serves two purposes:

¢ It points to the end of thmfo table The info table is a static structure that contains useful

information about the closure.

e It points to the beginning of thentry code This is the code that should be executed in
order to force the closure to evaluate to a value. If the csialready a value then this
code will be a stub that returns immediately to the caller.

The info table contains a number of fields, including thedwihg:

¢ type: What kind of thing the closure is. E.g.fanction, thunk or condructedvalue.

¢ size:How many words there are in the closure payload.

¢ layout: Information for the garbage collector (we will omit this irost of our diagrams)

It the following subsections, we explain how each closupetgiescribed in Section 4.2 is
represented in the GHC heap.

IActually, it is divided into sub-blocks, but we such detaite unimportant.

98 Chapter 7. The GHC Execution Model

Cons 3[] =] Cons_info

tail ptr
)

Figure 7.2 : Heap Representation of Constructed Values

7.1.1 Constructed Values

(C ag...aym)

Figure 7.2 illustrates the way that GHC represents a coctsiilvalue in the heap: the info table
describes the static constructdrand the payload is arguments. .. «,,. The entry code for
a constructor will simply return to the caller; there is neddor any work to be done as the
constructor is already fully evaluated.

In this figure, and in the other figures used in this chapterywwee a number (e.g3) as
shorthand for a pointer to a closure representing that numbe

7.1.2 Function Closures

In the formal semantics, a function closure is a valuely that has been formed by substituting
heap references for the free variables of a statically de:fimection?

Figure 7.3 illustrates the way that GHC represents a funatiosure in the heap: the info
table describes the static function, and the closure pdytoatains the heap references that
have been substituted for the free variables of that funct#iofunction closure is a valde and
so the entry code will do nothing; however the info table alsatains a pointer to the body
code for the static function, which can be used to apply thetfan to arguments.

Function calling conventions are discussed in Sectior27.3.

2The operational semantics would have been a closer mattheoeal implementation if it had used environ-
ments rather than substitutions. We chose not to do thisisedamade the semantics generally more complicated.

3i.e. a weak head normal form

4This is a simplification. The real implementation is more ptex than this; however the difference is unim-
portant.

7.1. The Heap 99

M. fx1 M. fxy
[infoprr L fun code ptr___ ————» function body code
o)) jary=1__ !
Jypezfun !
(Size=1 !
Ax. fx2 /: return i
| infoptr : !
2 (=y) : :

Figure 7.3 : Heap Representation of Functions

f (Just 3) 4
info ptr
EE
_4_1_"(;3_/5 ________ f (Justx)y
e = thunk
f (Just1) 2 :_§|_z_e“=_? _________ :
| infoptr —»: entry code :
1 (=x) ! :
2 =) | |

Figure 7.4 . Heap Representation of Thunks

7.1.3 Thunks

E

In the formal semantics, a thunk is an expresdibthat has been formed by substituting heap
references for the free variables of a static expression.

Figure 7.4 illustrates the way that GHC represents thunkkerheap. The info table de-
scribes the static expression, while the payload contdiesheap references that have been
substituted for its free variables. The entry code for a khwiill read the bindings for its free
variables from the closure payload and then evaluate theesgjon, as we describe in Sec-
tion 7.4.2.

7.1.4 Indirections

(a)

Indirections take the form illustrated in Figure 7.5. Thetfivord points to the standard info ta-
ble for indirections and the second wordi¢theindirecteepointer). When a thunk is evaluated
to a value, its closure will be overwritten with an indirextito that value.

100 Chapter 7. The GHC Execution Model

Before evaluation

thunk_info

After Evaluation

IND_info / value_info
indirectee

Figure 7.5 : Overwriting a thunk with an indirection

7.1.5 Blackholes

GHC has a special kind of closure that it callslackhole A blackhole represents a thunk that
is currently being evaluated. We see in Section 7.4.2 tHatktis overwritten with a blackhole
when it is entered and see in Section 7.4.2 that this blaekkaverwritten with an indirection
to a value once the thunk has been fully evaluated.

The heap representation of a blackhole is very simple. Tiogoiminter points to the standard
black hole info table and there is no payload.

7.2 The Stack

In the formal semantics, the stack can contain frames ofath@fing forms:

{P;}4 Case Match

Qo Application

#a Thunk update

Do Primop, awaiting first argument

nd Primop, awaiting second argument

Figure 7.6 illustrates the way that GHC implements its stdé¢le GHC stack is very similar
in structure to the GHC heap; it is a continuous block of mgneontaining a sequence of stack
frames. Each stack frame corresponds directly to a stankefia the semantics. The structure
of a stack frame is very similar to that of a heap closure; ttst Word points to an info table
describing the stack frame, and the rest of the words cagyd#ta associated with the stack
frame. The stack pointép points to the start of the topmost stack frame. Local vaeisibhay
be stored in the stack space ab&ye®

5In the real implementatior§p points to the topmost occupied word in the stack and thud i@ébles are
belowSp. However we find that it is easier to describe the impleméentat we instead say th&p points to the
topmost stack frame.

7.2. The Stack 101

Static Info Table Dynamic Stack

-------- I I
layout = ... | local x | +<— Local vars

I size =3 ! infoptr | «— Sp
:- -- -t- -- -t ----- 3 / - E);i;/I(;E;(-]I- Topmost stack frame

entry ptr &~ | _Payload. {}
' payload

PP N [—
Static Info Table payload stacks grow
:_ layout = ... : info ptr upwards

____________] bt
'L type = update payload
"""""" 1 —/

] size=1 | info ptr U
I entry ptr ! :
[L i et gl addresses increase

payload downwards
_________ Other frames

payload /

Base of stack

Figure 7.6 : Structure of Stack Frames

In the following sections, we explain how each stack framscdbed in Section 4.2 is
represented in the GHC stack.

7.2.1 Case Return Frames

{P:}e

For any given case return frame, all of the alternati{/£5 must correspond to constructors
from the same data-type. GHC divides data-types into twegmates. Large data-typesre
those that have more than a given number of constructorEéypmore than 8), whilesmall
data-typesare those that have less than that number of constructorall 8ata-types are typi-
cally the most common, due largely to the fact that lists amoldans are both small data-types.

GHC has two return conventions for constructors, knowmigsct returnsand vectored
returns Direct returns are used for large data-types, while vectoeturns are used for small
data-types.

Direct Returns

Direct returns are illustrated in Figure 7.7. Each caseradtéve is compiled into a separate
block of code. The entry code for the case return frame walaxie the constructor tag of the
value returned and jump to the block of code for whichevee @iernative is appropriate.

102 Chapter 7. The GHC Execution Model

Dynamic stack frame Static info Alternatives

Cx->x+2 Cx—>x+y

|IDx->x+3 IDx—>x+2 X+y
info ptr :_type =ret

o \\\\\\\\\\‘fsue=2

____________ L____________.|
3 I iftag=C

: goto alt_1

1 else
i S i | goto alt 2

Figure 7.7 : Direct Returns

Dynamic stack frame Static vtbl Alternatives
Cx->x+2 Cx—>x+y

[Dx->x+3 |[IDx->x+z X+y
voT P 1T v oode T

Figure 7.8 : Vectored Returns

Vectored Returns

Vectored returns are illustrated in Figure 7.8. Rather theanng a single entry point, the info
table has a vector of pointers to the alternatives. If th@rnetode knows the constructor of the
value it is returning, then it can retrieve the relevant metaddress from this vector and return
do it directly—avoiding the extra test and branched regliog a direct return.

For reasons of simplicity, the rest of this chapter assuimegsal returns are direct returns.

7.2.2 Application Frames
Qa

Application frames are illustrated by Figure 7.9. GHC akoan application frame to contain
more than one argument. A set of standard info tables aradadyeach holding a different
number of arguments. An application frame will have the iaflole appropriate for the number
of argument being passed, and will have the passed arguaeitts payload. We discuss the
entry code for an application frame in Section 7.4.3.

7.3. Evaluating Expressions 103

(@1):(@2):s
(@1) :s ap_2_info
ap_1 info 1
T 2

Figure 7.9 : Application Frame

#a 1S « (heap object)

update_info / blackhole_info
o (updatee) unk

=

Figure 7.10: Update Frame

7.2.3 Update Frames

#a
Figure 7.10 illustrates the way that GHC implements updat@és. The first word of the stack
frame points to a standard info table shared by all updatedsa and the second word holds
(theupdateepointer).

7.2.4 Primitive Operation Frames

These frames are implemented in exactly the same way as tBitatncase frames.

7.3 Evaluating Expressions

In the formal semantics, the state contains a comnaamidich tells the virtual machine what it
should be doing. In the GHC implementation, the commandpsesented by thaastruction
pointer, which points to a block of code that will carry out that conmda

e For an evaluation comman, the instruction pointer will point to a block of code that
will evaluateF, given the local bindings on the stack.

e For areturn commandc, the instruction pointer will point to some code that wiltum
« to the topmost stack frame.

104 Chapter 7. The GHC Execution Model

module := {defn} module with definitions

defn = codelabel {absg¢ code block within a module
| datalabel {literal} data block

absc = Ival:=rval assignment
| branchrvallabel conditional branch
| jump rval unconditional jJump
rval ::= literal explicit constant
| label code label
| primop{rval;}j primitive operation applied to args
| Ival
lval = reg aregister
| global data label
| Ival[offset indirect with offset
reg = Sp the stack pointer
| Hp the heap pointer
| Node the node pointer

Figure 7.11: Abstract C

e For a demand comman@c, the instruction pointer will point to a some code that will
find the value otv.

If, in the semantics, the following transition would takegé:
Iie;s — I8

Then, for any GHC runtime state that correspondd e, s), executing the code pointed to by
the instruction pointer will cause the GHC runtime stataam$form into one that corresponds
to (I'; /5 ¢).

7.3.1 Abstract C

GHC compiles each static expression in the source progrenaiblock of code that will eval-
uate instances of that expression. For exampley will compile into a block of code that will
evaluate expressions of the formt- y given that the stack contains the heap referencescthat
andy are bound to.

Rather than compiling directly to native machine code, GH@piles static expressions
to a low level intermediate language callgdstract C A simplified form of abstract C is pre-

7.4. Implementing the Evaluation Rules 105

sented in Figure 7.11. Most of this should be fairly selflaxatory. TheNode register is a
distinguished register used in various calling and retunmmventions. The&Sp register always
points to the topmost stack frame , and He register always points to the next free word in
the heaps.

7.3.2 Calling Conventions

Several standard calling conventions are used, which wimedltelow:

e When we jump to the entry code for a closuMNpde points to the closure.

e When we jump to the body code for a functidipde points to the function closure and
all function arguments are provided on the stack, alfyve
If the function has no free variables th&fode need not be set.

e When we return to a stack franlode points to the value being returned, &g points
to the stack frame being returned to.

7.4 Implementing the Evaluation Rules

Every expression is compiled into code that will evaluatg #xpression according to the Lazy
Evaluation subset of the rules given in Section 4.2. In tHeviong subsections, we explain
how each of these rules is implemented in GHC.

7.4.1 Evaluate a Value Constant

A value V' compiles to code that builds a representation of that valibe heap, and returns
it to the topmost return frame. For example, the lambda egwa\xy.x + vy + p + ¢ might
compile to the following code (rul@/AL)):

6\We see in Section 10.1.2 that we need to regularly check lledfip andSp register do not point past the
ends of the heap or stack respectively. We ignore such gétathis chapter.

106 Chapter 7. The GHC Execution Model

Code forhzy.z +y + p + q:
Hp[0] := 2574 info this is function 2574

Hpll]:=p save free variables
Hp(2]:=¢

Node:=Hp

Hp:=Hp+3

jump Sp|0] return it

The compiler will also generate an info table describingfthmetion:

Info table for\zy.x +y + p + ¢:

data :
2574 _body address of body code
2 arity (two arguments)
FUN type (a function)
2 size (two free vars)
code 2574_info :
jump Spl0] already a value

code 2574 body :
code to evaluate the function body

Similarly, the constructed expressiéhz y might compile to the following code:

Code forC z y:
Hp|0] := C_info create constructed value in the heap
Hpll] ==z
Hp[2]:=y
Node:=Hp
Hp:=Hp+3
jump Spl0] return it

The info table forC' (C_info) will have been created when the declaration for thestrmctor
was compiled.

7.4. Implementing the Evaluation Rules 107

7.4.2 Demand the Value of a Closure

A variablex compiles to code that demands the value of the closure refedeby that variable.
It does this by jumping to the entry code for the closure ((M&R):

Code to evaluate:
Node: ==z loadz into Node
jump Node[0] enter the closure

The entry code for a closure will behave like one of the r{2EM1), (DEM2), (DEM3),
depending on the type of closure.

If the closure is a value, then the entry code will return anfeito itself (rule(DEM1)):

Entry code for a valuéV')) (direct return):

jump Sp|0] returnNode (which points to us)

If the closure is an indirection, then the entry code willegrihe indirectee (rul@EM2)):

Entry code for an indirectiofiz):
Node :=Node[l] loadx into Node
jump Node|0] enterx

If the closure is a thunk, then the entry code will push an tpffame, save any bindings
from the thunk, overwrite the thunk with a black hole, anditlegaluate the thunk body (rule
(DEM3)):

108 Chapter 7. The GHC Execution Model

Entry code for a thunlg:
Sp:=Sp —2 push an update frame onto the stack
Sp|0] :=update_info
Sp|[1] :=Node
Sp[—2] :=Node][1] save local bindings from the thunk

Nodel0] := blackhole_info overwrite the thunk with a blackhole

code to evaluat®

In the semantics, we represent blackholing by removing iheig from the heap.

When control eventually returns to the update frame, it axtbrwrite its updatee with the
value returned to it (rulUPD)):’

Return code for an update frame (updato):
Sp|1][0] :=ind_info overwrite updatee with an indirection
Sp[1][1] :=Node

jump Sp|0] return

"The real GHC implementation is rather complex here as antafidane can be returned to with either a direct
return or a vectored return.

7.4. Implementing the Evaluation Rules 109

7.4.3 Function Application

A function application® x compiles to code that will evaluaté to a function, and then apply
this function tox. The generated code will push a function application fraanel, then execute
the code to evaluat® (rule (APP1):8

Code to evaluaté&’ x:
Sp:=Sp —2 push an application frame
Sp[0] :=ap_1_info
Sp[l] ==z

code forE

When a function closure is returned to the application fraimereturn code will check that
the function expects the number of arguments provided (gd&se one). If it does, then the
return code will jump to the body code for the function. Thasresponds to ruléAPP2)

Return code for an application frame with one argumentl(agfo):
branchif (Node|0][arity] # 1) arity_stuff check the arity

Sp:=Sp +2 pop the frame

jump Node[0] call the function

Once the info pointer for the application frame has been pdpthe arguments will be in
their correct positions ready for a function call; thereasreed for the arguments to be copied.

We do not discuss what the code at astyff does. Interested readers are encouraged to
refer to Marlow and Peyton Jones [MP03]. We also omit a lottbéodetails that make the real
implementation more efficient, but also significantly mooenplex.

8This function application model is known as eval/apply [N3RO

110 Chapter 7. The GHC Execution Model

7.4.4 Case Expression

A case expressioncase F of {P;}; compiles to code that will evaluate terutineeE and
then match the result against the alternativeB irit does this by pushing ease return frame
and then executing the code fbr(rule (CASE1):°

Code for case E of {P;}j:
Sp:=Sp — (1 4 env_size_1234) push acase return frame
Sp|0] := expr1234_ret_info
Sp(1]:=7;Sp[2] :=7... (vars live in{ P;})

code to evaluat®

When a reference to a constructed value is returned todke return frame, it will select
one of its alternatives and jump to the code for that altéregtule (CASEZ2). The alternative
is selected by referring to the constructor tag in the cl@'sunfo table. For a direct return, the
code will resemble the followinéf

Return code for @ase frame (exprl234et, direct return):
Sp:=Sp + (1 + env_size_1234) pop thecase frame

branchif (Node[0][tag] = 1) 1234_alt_1 jump to the correct alternative
branchif (Node[0][tag] = 2) 1234_alt_2

In this case the constructor alternatives will have beenpslenh to the blocks 1234lt 1,
1234alt 2,

7.4.5 Exceptions

If an exception is raised, a special RTS routine is calledis Toutine walks down the stack,
tearing frames off as it goes. The behaviour of this routineeiry similar to that described by
rules(EXN1)(EXN2)(EXN3) and(EXN4)

%n this example, we writ@ to represent the location of a free variable.
10Recall that the first word of a closur®pde[0]) points to the info table.

7.4. Implementing the Evaluation Rules 111

7.4.6 Lazy Evaluation of a Let

A let expressiofet x = F in E’ compiles to code that will build thunkfor E in the heap,
and then execute the code fbf:

Code forlet z = F in E';

Hp[0] := 4573 info Create a thunk in the heap
Hp[1]:=? (free variables)

Hp|2]:=?

Sp[—1]:=Hp save address as a local var

Hp:=Hp + (1 + env_size_4573) moveHp to next free word

code forE’

We will also generate an info table and entry code for thekhtihe entry code will behave
as described is Section 7.4.2, and the info table will be asrdeed in Section 7.1.3.

GHC has various special cases for compiliagexpressions. In particular, if the right hand
side of alet is already a value then GHC will build a representation of tralue in the heap
rather than building a thunk that will evaluate it. The codmerated will thus resemble that
given in Section 7.4.1, followed by the code fbt.

7.4.7 Summary

Code blocks are generated for the following things:

e Alternatives of a case
¢ Right hand side of et expression (thunk)

e Function body

Heap is allocated in the following places:

e Creating a value (rul@/AL))

e Creating a thunk for et (rule (LAZY)

112 Chapter 7. The GHC Execution Model
7.5 Other Detalils

7.5.1 Garbage Collection

The GHC heap is garbage collected. At periodic intervatsgdrbage collector sweeps through
the heap and throws away any closures that are no longeraiglachin order to determine
what is reachable, the garbage collector needs to know wWigltts in a closure’s payload are
pointers, rather than literal values. This informationns@ded in a specidhyoutfield in the
closure info table.

7.5.2 Lazy Blackholing

As with any garbage collected system, one must take carestorethat a closure is considered
to be garbage if it is not reachable by program execution. antiqular, it is important that
pointers held in a thunk closure are not considered to behedde while the thunk is being
evaluated. This is the purposes of GHC's blackholing [J¢n92

The simplest approach to blackholinggager blackholingThis is the strategy described in
Section 7.4.2. With eager blackholing, a thunk blackhdtgslfias soon as it is entered.

The standard GHC implementation takes an alternative apjprcknown asazy blackhol-
ing [MP98]. Lazy blackholing does not blackhole a thunk whers ientered. Instead, it waits
until garbage collection time, and then blackholes evemnkithat is pointed to by an update
frame on the stack. The motivation for this is that, by onlgdiholing thunks at garbage
collection time, it reduces the number of blackholing ofieres that must be done.

Unfortunately, as we explain in Section 8.4, lazy blackinglurns out to interact very badly
with Optimistic Evaluation. We thus disable it in our versiof GHC.

CHAPTER 8

Switchable Let Expressions

Now that we have explained how the GHC execution model wavkescan explain how Opti-
mistic Evaluation extends this:

e We begin, in Section 8.1 by describing the way that we implarswitchabldet expres-
sions.

e In Section 8.2, we describiélat Speculation an alternative implementation technique
that we have also implemented.

e In Section 8.3, we describ®emi-Tagging an implementation technique that improves
the performance atase expressions. While the idea of semi-tagging has been pedpos
before [PMR99], it is far more effective under Optimisticdhvation than under Lazy
Evaluation.

¢ Finally, in Section 8.4, explain why lazy blackholing irdets badly with Optimistic Eval-
uation.

Online profiling and abortion are discussed in Chapters 9l@&méspectively.

113

114 Chapter 8. Switchable Let Expressions

Dynamic stack frame Static info Speculation Configuration
{xX}(fx23):s {X}fxyz)
o o depth imit pr—> 23 |
2=y] Y€ = specres
3G etz
: entry code

—_———_——- ——

< < i

Figure 8.1 : Speculative return frame

8.1 Speculative Evaluation of a Let

Section 7.4 described the implementation of GHC by compaitito the a restricted form of
the semantics of Section 4.2. That subset corresponds joExaduation, and differs from the
full semantics in the following ways:

¢ It omits the ruleSPEC1)and(SPEC2)}hat implement speculative evaluation.
¢ It omits the speculation configuration parametdrom the evaluation relation.

¢ It omits the side condition on rulAZY)that causes the rule to only be applied if the
speculation configuration says it should.

e It does not include speculative return framres £.

¢ It does not make use of the speculation depth functijenDepth.

In the subsections that follow, we describe the way in whiehhave added each of these
features to GHC.

8.1.1 Speculation Return Frames

In Section 7.2 we described how GHC represeiatse return frames, application frames, and
update frames. RulgSPEC1)and(SPEC2)make use of an additional kind of return frame,
which we call aspeculative return framevritten:

{z}E

The representation of a speculative return frame is verplgifsee Figure 8.1); the info table
contains the code faf, and a pointer to depth limitvariable (see Section 8.1.3). The payload
of the stack frame contains bindings for any free varg'in

8.1. Speculative Evaluation of a Let 115

8.1.2 The specDepth Function

Rules(LAZY)and(SPEC2)make use of a functiospec Depth that counts the number of active
speculations (defined in Section 4.2.2). While it would begilale to implementpecDepth
as a function that walks down the stack and counts the nunfbgpezulative return frames
found, this would not be efficient. Instead, we maintain dgloegisterSpecDepth, that we
increment and decrement whenever we push or pop speculedioes.

Speculative return frames are not just there to provide sangpto return to. The abortion
and profiling systems both rely on the fact that there willahe/be a speculation frame frame
on the stack if speculation is taking place. It is thus imgottthat we avoid optimisations
that might prevent a speculation frame being be pushed whecutation starts. Consider the

following example:
let

x = case f yof
True — True
False — gy
in
E
A naive compiler might think that it could wait until the caédl ¢ before pushing a return frame
for thelet. Unfortunately, this would cause the call fdo take place with no speculative return
frame on the stack. If the call tb did not terminate then the abortion system would not realise
that it was part of a speculation and so would not abort it.

8.1.3 The Speculation Configuration

In the formal semantics, the speculation configuratiois a function that mapket identifiers
to speculatiordepth limitss In the implementation, the depth limit for eakdt is represented
as a static global variable. The info table for a speculattern includes a pointer to the depth
limit for the let.

One might wonder why the depth limit is not itself in the in&tote. This is because the info
table has to live in code space, in order to be placed diréefgre the entry code, while the
depth limit needs to be placed in data space so that it can itemwto by the online profiler
without causing the instruction cache to be flushed.

IMany operating systems require the use of a system call fmpratect to make code writable.

116 Chapter 8. Switchable Let Expressions

(LAZYX) I';let e = Ein E'; s —y I'aw— E];Va; ({z}E @ s)
if X(z) < specDepth(s)
anda is fresh

Figure 8.2 : An alternative lazy rule for let expressions

8.1.4 Rules (LAZY) (SPEC1)and (SPEC2)

Rule (SPEC1)evaluates the right hand side olet speculatively, while ruldLAZY)builds a
thunk for it. The virtual machine choses which rule to apphgéd on the current speculation
depth and speculation configuration.

For convenience, our implementation of Lazy Evaluationdvels as if(LAZY)were re-
placed with the rul€LAZY X)from Figure 8.2.(LAZYX)pushes a speculative return frame but
immediately returns to #. While the end result is the same, this approach turns out tema
implementation easier. In particular, it makes it easiertfe lazy and speculative code to
share one version of the code for tle¢ body, £’. One can observe thétAZY X)followed by
(SPEC2)s equivalent tdLAZY)

The first thing alet does is push a return frame, increment8igecDepth so as to keep
it consistent with the number of speculation frames on tlaekst Thelet then compares
SpecDepth with its depth limit to see whether it should evaluate spaitwely or lazily (rules
(SPEC1)and(LAZYX):

Code to evaluatket = = F in E’ (expression id is 3562):

Sp:=Sp — (1 + env_size) push a speculative return frame
Sp[0] := 3562_ret_info

Sp(l]:=7; Sp[2]:="7;... (save vars live int’)
SpecDepth := SpecDepth + 1 incrementSpecDepth

branchif (SpecDepth > 3562_limit) 3562_lazy branch to lazy code
jump 3562 _spec or speculative code

The lazy code builds a thunk for the right hand side ofltiteand then immediately returns
to the speculative return frame (rleAZY X1):

°Note that unlike every rule presented previously, this a#a return a reference to something other than a
value. This has knock-on effects throughout the runtimeéesysas one can no longer assume that a returned
reference always points to a value.

8.1. Speculative Evaluation of a Let 117

Code for the lazy branch oflat (3562lazy:

Hp|0] := 3562_thunk_info build a thunk in the heap
Hp(1]:=7; Hp[2]:=7;... (save vars live i)
Node:=Hp

Hp :=Hp + (1 + env_size)

jump Sp|0] return the thunk

The speculative code (356pec) will be the code to evaluate(rule (SPEC1).

When control returns to the speculative return frame, it pob itself off the stack, decre-
mentSpecDepth, and evaluate the body of thet (rule (SPEC2):

Return code for a speculative return franje } £
Sp:=Sp + (1 + env_size) pop the frame

SpecDepth := SpecDepth — 1 decremenSpecDepth

code to evaluaté’ (z isin Node)

In the real implementation, there are additional compiesiinvolving heap/stack checking
and direct/vectored returns; however these are not ptlgunteresting and so we do not
discuss them here.

8.1.5 Not All Let Expressions are Speculated

As with normallet expressions (Section 7.4.6), if the right hand side leftas already a value,
we simply build a representation of that value in the heap@minue. There is no need to
have separate lazy and speculative versions in this case.

Our current implementation also avoids speculating reeeilgt expressions, because, if
the right hand side of &t is speculated, then there is no thunk to which the binder ean b
bound during evaluation of the right hand side. In such gabescode generated will be the
same as for Lazy Evaluation.

3This will actually be a direct jump to 3562t info.

118 Chapter 8. Switchable Let Expressions

let X = <rhs> in <body>

[evaluate rhs (free vars in heaa)
Speculative Branch

1

1
1
\

SpecDepth > depthlimit

Speculative

evaluate rhs (free vars on stagk) -
° create thunk] thunk info ptr

e | |)-EE L
eventually return to stack top free var 2

Shared return point

[evaluate body (x in NodeJ

l

Figure 8.3 : Flow diagram for evaluation of a let expression

8.1.6 Avoiding Code Explosion

The entire process of evaluatinglet is summarised by Figure 8.3. Note that the code to
evaluate the right hand sideis duplicated, but the code to evaluate the bétys shared.

The reason for the duplication of the right hand side is tovalihe compiler to specialise
the two blocks of code relative to the environment in whiakythre used. In particular the lazy
code will expect to find its free variables in the payload ofasuare pointed to bNode, while
the speculative code will expect to find its free variablestenstack and in registers.

It is important that the size of a duplicated expression & kenall, otherwise there can be
a potentially exponential increase in code size. ConsimlegXample the following program:

let v = (let y = (let z = E; in E,) in Es) in B,

If we were to duplicate everet right hand side, then we would compitg 8 times. If we had
another layer of nesting, then the inner expression woulddoepiled 16 times (Figure 8.4).
While such programs are not often written by programmees; ttan often appear as the result
of inlining, or other compiler optimisations. Even withowtstedlet expressions, duplicat-
ing the right hand side of eveigt can almost double the code size if there are a ldicof
expressions with large right hand sides. This is clearlyegirdble.

8.2. Flat Speculation 119

lazy < lazy =— :s:pi ¢

lazy < spec—_ ls,p c
spec< lazy —— Spec
spec—=—_ '%Z c

lazy < lazy =— :s:pi v

spec < spec—— §c

spec< lazy < G
spec——laz

spec

Figure 8.4 : Uncontrolled duplication of code leads to an explosion in code size

In practice, it is only worth duplicating an expression iistvery small indeed (e.g. an
integer addition). For larger expressions, we use an esjme$ifting transformation to convert
the right hand side of thket into function call. For example, iF is a large expression and has
free variableg andz then we will make the following transformation:

let t = Fin F’
\
letx=fyzin F
wheref yz=F

We generate a new functighwhose body igZ and whose arguments are the free variables
of E. We transform thdet expression so that its right hand side is a call to this fmc{and
thus a small expression). This transformation can be cersitito be a special case of lambda
lifting [Joh85] for functions with no arguments.

In the extreme case, we can apply this transformation toitie hand side of everlet
expression, resulting in the evaluation scheme describ&ection 8.2.

8.2 Flat Speculation

If the transformation described in Section 8.1.6 is appleedverylet expression, then alkt
expressions will be of the following form:

letz=fy ... y,in £

This allows us to implement switchaldlet expressions very differently, using a technique
that we callFlat Speculation We have implemented both Flat Speculation and the teckniqu
described in Section 8.1; we compare their performancecti@@el2.7.1.

120 Chapter 8. Switchable Let Expressions

8.2.1 Evaluating a Let Expression Speculatively

Under Flat Speculation, the code generated by the compitaaliet expression assumes that
thelet will always be evaluated speculatively.l8t expression thus compiles to the following
code:

Code to evaluatket = = f y; ... y, in E’ (expression id is 3562):

Sp:=Sp — (1 + env_size) push a speculative return frame
Sp[0] := 3562_ret _info
Sp(1]:=7;Sp[2] :=7;. .. (save vars live int')

SpecDepth := SpecDepth + 1 incrementSpecDepth
Sp[—1]:=v1; Sp[—2]:=ys;... put arguments on the stack

jump f_body call f

The info table for the speculative return frame will contiree extra field$:

e rhsfun: The function that thidet calls (in this casg)
e argcount: The number of arguments the function required

e jmpaddr: The address of theimp instruction in memory.

8.2.2 Evaluating a Let Expression Lazily

If the profiler decides to switch tHet to being evaluated lazily, then it will overwrite the call to
f with a call to the standard function ajpgzy_N, whereN is the number of arguments passed
to f. This code modification is extremely simple; all the profiias to do is find the address of
f inthe jump instruction and overwrite it with the addresshaf appropriatep_lazy function.
While this write to code will probably cause an instructiachke flush and thus considerable
cost, these writes are extremely rare, and so the amortosgdscnegligible.

Theap_lazy function finds the info table for the speculative return feaom the top of the
stack and uses theéisfun field to build a speciafunction application thunkising a standard
info tableap_N_info, wherelN is the number of function arguments:

41t actually has some others as well, which we do not discuss he

8.2. Flat Speculation 121

Code forap_lazy_2:

Hp|0] := ap_2_info create a function application thunk
Hp[1] :=Sp[0][rhsfun] (the functionf)

Hp|2] :=Sp[—2] (arguments)

Hp(3] :=Sp[—1]

Node:=Hp

Hp:=Hp+4

jump Sp|0] return this thunk

The entry point for a function application thunk is very simplt simply pushes an update
frame, copies its arguments onto the stack, blackholesithkt and then jumps to the function
entry point:

Code forap_2_ret:

Sp:=Sp —2 push an update frame

Sp[0] := update_info

Sp|[1] :=Node

Sp[—2] :=Node[2] put the arguments onto the stack

Nodel0] := blackhole_info blackhole the thunk

jump Node][l] jumpto f

8.2.3 Chunky Entry Points

If the profiler wants théet to be speculated only up to a certain depthen it will overwrite the
call to f with a call to the standard functicipp_chunky_N, whereN is the number of function
arguments. Thep_chunky function tests the current speculation depth against thehdemit
for thelet (referenced from the info table) and then decides whethealtg’ or ap_lazy N:

5This is the usual case for the system described in Section 8.1

122 Chapter 8. Switchable Let Expressions

Code forap_chunky_2:
branchif (SpecDepth > Sp|0][limit][0]) ap_lazy_2 evaluate lazily
jump Spl0][rhsfun] evaluate speculatively

In flat speculation, the depth limit forlat is a member of the following sét:
{0,1,..., MAXDEPTH} U {c0}

If the depth limit isoo then thelet will always be speculated and the code for the will
jump directly tof. If the depth limit isO then thelet will never be speculated and the code
for thelet will jump to ap_lazy_N. For all other depth limits, the code for thet will jump to
ap_chunky_N.

8.3 Semi-Tagging
A typical program will evaluate a large number of expressiofthe following form:

case z of {P;}{

Not only are such expressions frequently written by the gogner, but they are also gen-
erated as a result of desugaring other expressions witkicampiler. For example, record
field selection and addition of boxed integers both reduasat® expressions that scrutinise a
variable.

8.3.1 Scrutinising Variables in Normal GHC

In Section 7.4.4 we saw that GHC normally implements suchiesgions by pushing a return
frame and then entering the closure referenced.by

Normal GHC code forcase z of {P;}{:
Sp :=Sp — (1 + env_size) push acase return frame
Sp[0] := 1234 _ret_info
Sp[l]:=7; Sp[2]:=7; ...

Node:=zx enter closure for;
jump Node|0]

8Infinity is represented internally ad AXDEPTH + 1.

8.3. Semi-Tagging 123

If = refers to a value, then the entry point fomwill immediately return to thease return
frame. In such cases the whole process of pushing an retammefand entering will have
been pointless.

8.3.2 Scrutinising Variables with Semi-Tagging

If « will usually be a value, then it may be more efficient to tesetherx is a value before
entering it. This leads to the following code:

Value-testing code forcase x of {P,}{:
Sp:=Sp — (1 + env_size) push acase return frame
Sp[0] := 1234 _ret_info
Sp[l]:=7; Sp[2]:=7; ...
Node:==x

branchif (ISVALUE(x)) 1234_ret_info return immediately if a value

jump Node|0] otherwise enteg

For a constructed value this code will perform two brancloes to test whether it is eval-
uated, and then one 234_ret_info to see what constructor it is. We can combine these two
together by treating a thunk as if it was a constructed valitie tive tagUNEVAL.

Semi-Tagged code fotase x of {P;}{:
Node:=z
branchif (Node|0][tag] = UNEVAL) 1234_normcase normalcase evaluation

branchif (Node|0][tag] = 1) 1234_alt_1 directcase alternative
branchif (Node|0][tag] = 2) 1234_alt_2

If the value is not evaluated, then we jumplzB4 normcase which contains the code from
Section 8.3.1. This technique will cause a moderate inergasode size as the compiler must
generate tag-branching code both inline, and in the retamd. The real implementation also
has to take care to ensure that both blocks of branching dade focal variables in the same
locations.

124 Chapter 8. Switchable Let Expressions

poirllter
/ \

I
address tag

Figure 8.5 : Semi-tagging uses the least significant bits of the address to store tag information

If x is not a value, then semi-tagging will be slower than GHC’smad implementation;
however, ifz is a value, then semi-tagging will be faster. Optimistic lgation increases the
likelihood thatx will be evaluated and so makes semi-tagging a more appddiag Indeed,
we give results in Section 12.5 that demonstrate that, affhesemi-tagging is not worthwhile
under Lazy Evaluation, it is worthwhile under Optimisticehvation.

8.3.3 Storing the Tag in the Address

The simplest way to implement semi-tagging is to store thestractor tag in the info table of
every constructor and every thunk. However this still reggian indirect read from the closure
info table in order to find the tag. A slightly more efficientapach is to encode the tag in the
address of the closure (Figure 8.5). Closure info tablesavays aligned to word boundaries
and so, on a 32 bit architecture, the bottom two bits of theestdwill thus always be zero. If
the closure data-type has three or fewer constructors tresetbits can be used to encode the
constructor:

00 unevaluated or unknown

01 avalue with constructor 1

10 avalue with constructor 2

11 avalue with constructor 3 or greater

If the data-type has more than three constructors then we lonis at the tag in the info
table in order to distinguish between constructors witmidiers greater than 3.

These tags impose very little additional overhead. Thermigseed to clear the tags in a
closure pointer before reading from it or entering it. If ameeading a field from a constructed
value then one will know what constructor it is and so be abkdjust the offset to take account
of that. Similarly, one will only enter a closure if one hasealdy tested that its tag ®EVAL,;
however th&JNEVAL tag is00, and so the address will be untagged.

All that is required is that we maintain the following invanits:

e When a value is returne®Node is correctly tagged
e When a closure is entereMode is untagged

¢ All pointers are either untagged or correctly tagged

8.4. Problems with Lazy Blackholing 125

update_info

updatee \
return info thunk_info

payload

update_info

updatee

return info

update_info

updatee

return info

= <

Figure 8.6 : Lazy blackholing can cause several update frames to reference the same closure

8.4 Problems with Lazy Blackholing

In Section 7.5.2 we described the concept of lazy blackokmd remarked that it interacted
poorly with Optimistic Evaluation. In this Section we exiplavhy.

8.4.1 Finite Depth Looping

Consider the following prograrh:

let © =
let y = case x of
Just z — Cons 1 z
in Just y

in ...

What happens ifj is speculated, but is not speculated? If blackholing is lazy, then the thunk
for z will repeatedly enter itself, pushing a series of updatenéra onto the stack for the same
closure. This is illustrated in Figure 8.6.

If this looping continues indefinitely, then the programIvaventually run out of stack,
causing the runtime system to spot the long-running loopomgputation and abort it. In this
case, the duplicate update frames will never be enteredaanotking particularly bad happens.

"Note that thdet for z is recursive, and thus cannot be speculated (Section 8tibwever thdet for y is not
recursive, and so can be speculated.

126 Chapter 8. Switchable Let Expressions

“rjstinfo__ | —>fconsinfo
pointer to 'y 1)

pointer to y

Figure 8.7 : This is what we would expect = to evaluate to

X —»1 Just_info / Cons_info Cons_info Cons_info R
pointer to 'y 1 1 1 !
pointer to y pointer to y pointertoy f 2

Figure 8.8 : Lazy blackholing can cause loss of sharing

However, if chunky evaluation is used thgmill only be speculated to a finite depth. At some
point, the inner evaluation af will decide not to speculatg and will instead return the value
Just y. The program will return through several update framesh edovhich attempts to
update the same value.

This can cause several problems:

e Various parts of the GHC runtime (particularly the genenadil garbage collector [SP93])
can no longer assume that a thunk will only be overwrittemait indirection once.

e There can be a loss of sharing (Section 8.4.2).

¢ Values may be overwritten with indirections to themseh&sction 8.4.3).

8.4.2 Loss of Sharing

If the program was evaluated lazy, then we would expeoteventually evaluate to the structure
illustrated in Figure 8.7, however, if we are speculatingnd are blackholing lazily, then we
may end up with the structure illustrated in Figure 8.8. Rathan having one closure fgiwe
have several.

Every timex is entered, it will create a new speculation forThis speculation will enter
again. When an evaluation ofreturns, the speculation fgrwill evaluate to a cons containing
the previous closure fay, rather than itself.

8.4.3 Indirection Loops

Consider the situation illustrated in Figure 8.9. The fraahéhe top of the stack is an update
frame, however another update frame has already overwtltte updatee with an indirection.
What would happen if a garbage collection were to take platg@spoint?

8.4. Problems with Lazy Blackholing 127

value_info
stack [payioad]
update_info
[updatee |—— [IND_info
[indirectee |

= <

Figure 8.9 : If garbage collection strikes here, we could be in trouble.

stack

update_info

updatee] value_info

i

payload
Figure 8.10 : Short-circuiting indirections causes problems

When garbage collecting, normal behaviour is to replacepamyter to an indirection with
a pointer to the indirectee. If we do this with the state inUF&8.9, then we end up with the
state illustrated in Figure 8.10.

When control returns to the update frame it will overwrite tralue with an indirection to
another value. If the new value is the same as the old valuettigeupdate frame will overwrite
it with an indirection to itself—causing chaos. If the oldwais a static value, then it may be
in read-only memory, in which case the program will fail wétlsegmentation fault.

These problems could probably be fixed. One plausible swlwtiould be for the garbage
collector to remove from the stack any update frame whosedcige is not a thunk. However
solving all of the problems with lazy blackholing adds calesable complexity to our imple-
mentation for very little performance benefit. We have thiglenthe decision to remove lazy
blackholing from GHC, reverting instead to eager blackipliThe performance implications
of this decision are analysed in Section 12.7.5.

CHAPTER 9

Online Profiling

In this chapter we describe our implementation of onlin€fifing, explaining how the im-
plementation described in Chapter 8 can be extended sa tingdlements the burst profiling
semantics given in Section 6.4.2.

e We start, in Section 9.1, by describing the way in which th#irae state can be extended
to support online profiling.

e In Section 9.2, we explain how we can extend the compiler ttegge code that can
profile itself.

e In Section 9.3, we discuss ways that heap residency can eted.

e Finally, in Section 9.4, we explore various technical dstai

9.1 Runtime State for Profiling

The burst profiling semantics of Section 6.4.2 extends théme state in several ways:
e The runtime state contains a blame cofnt
e The runtime state contains a goodness fiap
e The heap can contain costed indirectidhgy)”.

e The stack can contain profiled speculation frarffes F, B).

128

9.1. Runtime State for Profiling 129

In the subsections that follow, we describe how we have a@é@eti of these features to
GHC, causing it to implement the full blame profiling semesitof Section 6.4.2. The burst
profiling semantics also introduces additional rules, Whie describe in Section 9.2.

9.1.1 The Blame count B

In the formal semantics of Section 6.4.2 the program statéagus an integer couns, repre-
senting the amount of work that should be blamed on the cuvesriure.

Heap usage as a measure of Work

In Section 3.3.2 we said that work could be measured usingeaspnable measure of execution
cost. It turns out that the heap allocation is a convenierdasue of work. This is for the
following reasons:

¢ Itallows much finer grain measurements than would be passiibh any OS time counter.
This is very important, given that a typical speculationugejsmall (See Section 12.4.5).

¢ It can be calculated very cheaply, by simply looking atkhe register.

e The heap usage of a speculation seems to be a reasonablriaggian to its time usage
(See Section 12.4.2).

¢ It makes it easier for the profiler to bound heap usage as wellested time (See Sec-
tion 9.3).

e Itis easy to arrange that all recursive function calls @tedeap, and thus that any long-
running computation must allocate heap.

If the processor provides suitable instructions then warkiostead be measured as an exact
cycle-count. We discuss this in Section 9.4.4.

Representing Blame using Heap Usage

We represent the blame count@ras the difference between the heap poilgr and a base
variableBlameBase:
B = Hp — BlameBase

To add work toB, we subtract it fronBlameBase. To saveB, we simply calculateB and
store it as an integer. To sBtto a particular valués’, we setBlameBase to Hp — B’. When
heap is allocated? will increase automatically, reflecting the fact that wodslbeen done.

130 Chapter 9. Online Profiling

max depth limit _

initial depth limit. _

v

|
|
I
T
! Goodness :
min goodness saturation goodness

Figure 9.1 : The speculation level for a let is a function of its recorded goodness

9.1.2 The Goodness Map II

In the formal semantics, the goodness mkis a function that maps eadét identifier z to its
integer goodness. In the implementation, the goodnesd msjimplemented in the same way
as the speculation configuration (Section 8.1.3). A s@icdness counterariable is created
for everylet, and the info table for a speculative return contains a poiiat this variable.

Rather than applyingoodToLim to the goodness every time a speculation depth limit is
needed, the depth limit variables are updated only when tloellmess might have changed.
Figure 9.1 illustrates a typicalood ToLim function. This function is parameterised by four
constants:

min goodness: How bad the goodness can get before the depth limit becomesnd evalu-
ation becomes entirely lazy.

saturation goodness:The level of goodness beyond which the speculation levpkstcreas-
ing.

max depth limit: The maximum speculation depth limit that is allowed.

initial depth limit: The speculation limit corresponding to zero goodness. iEhitse specula-
tion level that everyet has when a program starts.

The limit function does not have to be the shape illustrateigure 9.1. This is just one
choice in a large design space. We have chosen to use this sbaguse it can be implemented
efficiently. We discuss the effect of the tuning parameteiSaction 12.3.5.

1Unless a persistent speculation configuration is used—esetios 9.4.3.

9.1. Runtime State for Profiling 131

(B)<a indirectee closure
costed indirection -

~ infoptr ____

N _c.J_p_t.r_ - payload 1

o (indirectee)p— p---------
__________ payload 2

B (blame)

X (source) ———» info table for source let

Figure 9.2 : Heap representation of a costed indirection

9.1.3 Costed Indirections B{(«a)”

In the formal semantics, a costed indirection describesablt of a previous venture:
B{a)*

whereB is the blame associated with the ventures a reference to the result produced by the
venture, and is the identifier for thdet that spawned the venture.

Figure 9.2 illustrates the way that we represent a costadercttbn in the heap. The first
word points to a standard info table shared by all costedaction closures, the second word
containsa (a pointer), the third word contain8 (an integer), and the fourth word contains
a pointer to the info table for thket that spawned the venture)(We see how such costed
indirections are created in Section 9.2.2.

9.1.4 Profiled Speculation Frames ({z}FE, B)

In the formal semantics, a profiled speculation frame is ekdtame of the following form:
({z}E, B)

wherez is the identifier for thdet that spawned the venturég; is the body code for théet,
and B is the blame accumulated so far for the enclosing venture.

Figure 9.3 illustrates the way that profiled speculatiomiea are represented on the stack.
The stack layout is the same as that of an unprofiled specnl&time, except that the info
pointer points to the generic info tabpeofile_info rather than to the info table for tHet.
The info table for thdet is stored on a separgpeofile stacktogether with the blam®&. While
this representation is somewhat awkward, it allows the lgrafd transform speculation frames
between their profiled and unprofiled states without distgthe rest of the stack. We see the
usefulness of this in Sections 9.2.1 and 9.4.1.

Throughout the rest of this chapter, we will assume that tioéilp stack is a continuous
block of memory with a registdProfTop pointing to the topmost frame. In practice it may be
better to implement it as a linked list with cells allocateanfi the general heap.

132 Chapter 9. Online Profiling

{x}(fx23),B):s Static info
stack X} fxy2)
 profile info profile stack | other stuff ... !

r----°-=-°=°=°=°=°=° 11— - =
1 goodness ptr J‘—h 53 :

e - -
1

3 (free var) B (blame) depth limit ptrJ\
r--========-=" | R
|

p [o-===------- !
1
I

entry code !

Figure 9.3 : A profiled speculation frame contains its profiling information on a special profiling
stack.

9.2 Implementing the Evaluation Rules

The evaluation rules for the profiling semantics of Sectighdare significantly more complex
than those for the unprofiled semantics of of Section 4.2 ahtiqular:

e Every rule that does work increments the blame cagint
e The evaluation relation is parameterised by a profiling flag
e New rules are added to describe profiled speculationlef.a

e New rules are added for demanding the value of a costed otitire

In the subsections that follow, we describe how these featoan be added to the imple-
mentation described in Chapter 8.

9.2.1 Starting a Profiled Speculation

The semantics of Section 6.4.2 has three rules that dessrébeation of det:
e (LAZY)describes lazy evaluation oflat
e (SPEC1N)Yescribes unprofiled speculation ofea

e (SPEC1PYescribes profiled speculation ofet

As in Section 8.1.4, we replace ruleAZY)with the rule(LAZYX)from Figure 9.4. This
allows us to extend the code from Section 8.1.4 so that ibp@s a three way branch:

2See Section 9.4.2 for a more efficient way to implement thégoin.

9.2. Implementing the Evaluation Rules 133

(LAZYX) I';(let z = Fin F');s; B;Il —, Ta— E]|;Va; ({z}E :s); B;11
if goodToLim(I1(x)) < specDepth(s)
anda is fresh

Figure 9.4 : An alternative lazy rule for let expressions

Code to evaluateet + = F in E':

Sp:=Sp — (1 + env_size) push a speculative return frame
Sp[0] := 3562_ret_info

Sp(l]:=7; Sp[2]:=7;... (save vars live int'’)
SpecDepth := SpecDepth + 1 incrementSpecDepth
BlameBase := BlameBase — thunkcost add thunk cost ta@3

branchif (PROFILING) maybe_profile three-way branch

branchif (SpecDepth > 3562_limit) 3562 _lazy
jump 3562 _spec

If profiling is disabled, then thket will behave exactly as described in Section 8.1.4, except
that it will add thunkcost to the current blame, to take account of the work ke does to
allocate a thunR. In the semanticsthunkcost is alwaysl; we explore the performance effect
of different values forthunkcost in Section 12.3.3.

If profiling is enabled, then théet code will call the special runtime system function
maybe_profile. If thelet should be speculated, theaybe profile jumpstoprofile_start,
otherwise it jumps directly to the lazy code (in this c@562_1lazy). It finds a pointer to this
function in the info table for théet, which has conveniently been left on the top of the stack.
We also take this opportunity to update the depth limit ushegcurrent goodness valde:

Code formaybe_profile:
Sp|0][limit][0] := good ToLim(Sp|0][goodness][0]) update depth limit

branchif (SpecDepth < Sp|0][limit][0]) profile_start profile this speculation

jump Spl0][lazycode] evaluate thdet lazily

3Recall that we can add work to the current blame by subtrgétinom BlameBase (Section 9.1.1).

134 Chapter 9. Online Profiling

{X}(fx23):s {x}(fx23),B):s
stack profile stack
 specret i_n_fo_) conversion _Qr9f_i|§ _in_fg - profile stack
2 (ree van) |:> 2 (reevan) | [specretinfo
3 (free var) profile stack 3 (free var) B (blame)
s S s Sp

Figure 9.5 : Speculation frames are converted into costed speculation frames

The functionprofile_start converts the end state of r((§PEC1N)nto the end state of
rule (SPEC1P)thus causing the speculation to be profiled. It does thevatg things:

e Addsthunkcost to the local goodness. This represents the work saved byenfarming
a thunk.

e Converts the unprofiled speculation frame:} £’ into the profiled speculation frame
‘({=}E, B)'. This is illustrated in Figure 9.5.

e Sets the current blam@ to zero.

e Jumps to the speculative code for tle¢ (taken from the info table).

Code forprofile_start:
Sp|0][goodness][0] := addthunkcost to goodness
Sp|0][goodness|[0] + thunkcost

ProfTop :=ProfTop — 2 Convert to profiled frame
ProfTop|0] := Sp|0] (specret info)

ProfTop[l] :=Hp — BlameBase (B)

Sp|0] := profile_info (overwrite stack info table)
BlameBase := Hp setB to zero

jump ProfTop|0][speccode] start speculating

“Recall that thggoodness$ield of an info table contains a pointer to a variable thatams the goodness, rather
than the goodness itself (Section 9.1.2).

9.2. Implementing the Evaluation Rules 135

(SPEC2X) I'; Vo (({2}E,B') : s); —p Lo’ — Bla)®]; va/s ({2} £ s);
B;1I B[z +— II(z) — B]
whered’ is fresh

Figure 9.6 : An Alternative rule for completing a profiled speculation

9.2.2 Completing a Profiled Speculation

When a profiled speculation finishes, control will return e genericorofile_info entry
point. This code will behave as described by @®EC2X)n Figure 9.6. We can observe that
rule (SPEC2X)ollowed by rule(SPEC2N)s equivalent to ruléSPEC2P)

Rule(SPEC2X)wraps the returned reference in a costed indirection, restbe saved value
of B, converts the profiled speculation frame back into an unpbfipeculation frame, updates
the goodness counter, and then returns the newly creatéedcoslirection to the unprofiled
speculation frame:

Return code foprofile_info:

Hp|0] := blamedesc_info create a costed indirectidB(a)”
Hp[l] :=Node « (indirectee)

Hp|2] :=Hp — BlameBase B (blame)

Hp[3] := ProfTop|0] X (source)

Node:=Hp

Hp:=Hp +4

BlameBase := Hp — ProfTop][l] restore blame to saved value
Sp|0] :=ProfTop|0] Convert to unprofiled frame

ProfTop := ProfTop + 2

Sp|0][goodness][0] := subtractB from goodness
Sp|0][goodness]|[0] — Node|2]

jump Sp|0] return to unprofiled frame

9.2.3 Demanding a Costed Indirection

The entry code for a costed indirection behaves like r(@&TN)and(CSTP) To decide which
of these rules to apply, the entry code must determine wheltleecurrent venture is being

136 Chapter 9. Online Profiling

profiled. It does this by comparing the number of frames omtbéle stack wittSpecDepth.

If we assume the existence of a profile stack base regiatefBot then we can obtain the
number of frames on the stack by dividing the size of the dtgdke size of a stack frame. The
branch can be written as follows:

Entry code for a costed indirection:
branchif ((ProfBot — ProfTop)/2 < SpecDepth) not profiled
costind_cstn

jump costind_cstp profiled

If the current venture is not being profiled, then the entrgecumps tocostind_cstn,
which behaves like ruleCSTN) Note that this code is identical to that used for a normaitind
rection (Section 7.4.2:

Code forcostind_cstn:
Node:=Node[l] demand indirectee
jump Node|0]

If the current venture is being profiled, then the the entrglecpumps tocostind _cstp,
which behaves like ruldCSTP) Any blame in the costed indirection is transferred into the
current venture. This blame is added to the goodness fordbed indirection’s source, and
the costed indirection is converted into a normal indi@tti Once this is done, the costed
indirection enters the indirectee

Code forcostind_cstp:
BlameBase := BlameBase — Node|2] add B’ to current blame

Node[3][goodness|[0] := addB’ to goodness
Node[3][goodness|[0] + Node|2]

Node[0] := ind_info convert to a normal indirection
Node:=Node[l] enter indirectee
jump Node[0]

In Section 9.4.1 we extend this implementation to suppatfilerchaining.

9.3. Heap Profiling 137

9.3 Heap Profiling

The theory presented in Chapters 5 and 6 assumes that aesedd in performance between
Optimistic Evaluation and Lazy Evaluation is due to difftramounts of work being done
during evaluation. This neglects the effecthefap residencythe amount of reachable data that
is present in the heap.

9.3.1 Why Heap Residency is Important

Garbage collection can take up a large proportion of a progmaintime (Section 12.6.4). It is
thus important that we take account of any effects that QpticEvaluation might have on the
cost of garbage collection. If the heap residency increasm$erately, then the effects are not
particularly dramatic; most modern garbage collectorsicedheir collection frequency as the
heap residency increases, ensuring that garbage colig¢akes up a fairly constant proportion
of runtime [App87, Wil92]. However this approach breaks doivthe heap size increases
beyond the available physical memory. In this case, therarogyill slow down dramatically
because the garbage collector must wait for the virtual nmgisystem to fetch pages from disk.

9.3.2 Bounding Extra Heap Residency

We have implemented a crude mechanism that bounds the éatefich Optimistic Evalua-
tion can increase the heap residency of a program. The gadmdigctor disables speculation
completely if the heap residency rises above a user-defimey WAXHEAP. In the worst
case, all heap allocation up to that point will have been duspeculation, and thus the max-
imum heap residency over the complete program run will beréiselency that the program
would have had under Lazy Evaluation, plUsi XHEAP.

The safety of this technique relies on the fact that Optimisvaluation cannot cause any
further increases in residency once speculation has besabldd. If the right hand side of a
let is evaluated speculatively, then every closure reachabla the result must either have
been allocated during the speculation or have been realiavh the free variables of the
expression evaluated. If tHet had instead been evaluated lazily, then the thunk produced
would have contained these same free variables. It thusWslthat any extra closures made
reachable by a speculation must have been allocated dinangpeculation.

Although this approach is effective, it is somewhat brusgdeculation can be disabled even
if it has not caused any increase in heap residency at allsdtincumbent on the user to set
MAXHFEAP to an appropriate value, given the available memory on thathine. We believe
that it should be possible to produce a better solution thes however we leave the design of
such a system for further work.

138 Chapter 9. Online Profiling

9.3.3 Blaming A Let for Extra Heap Residency

Rather than waiting for the mechanism described in Secti8r2 %o disable speculation com-
pletely, it can be beneficial to punidét expressions that seem to be increasing heap residency.
One way to do this is to arrange that, whenever the garbatgrtml sees a costed indirec-

tion in the heap, it multiplies the attached blame by an appate scaling factdrand subtracts

it from the goodness of thiet that produced it. It should be noted that this technique ielgu

a heuristic and is not guaranteed to detect all additionap lresidency. To see why, consider
the following example:

let - = allocate lots of heap in

let y = (case z of P z — True) in
(z,4)

When x is speculated, it allocates a large number of closures irh#dap, all of which are
reachable from its result. Whenis speculated, it will demand and take the blame for’s
allocation. When the next garbage collection takes pléeegarbage collector will not see any
costed indirectionsz’s costed indirection will have been converted into a normdirection,
andy’s costed indirection will not be reachable. The garbagéctir will thus not be aware
that speculation has increased the heap residency.

We can envisage several ways in which this heuristic couluiipeoved. One way would
be to arrange that, when a costed indirection is demandeésinidt converted into a normal
indirection (Section 9.2.3), but is instead converted a$pecial form of indirection that records
the fact that it was the result of a speculation. This wouldathe garbage collector to calculate
the amount of heap that was reachable only through the sesidpeculations (c.f. [RR96b]).

9.3.4 Heap Wasted by Laziness

If a let is evaluated lazily rather than speculatively then it magticme to hold onto free
variables that would not have been referenced by the relsabpeculative evaluation. Itis very
difficult to accurately measure the effect that this has [Blg9however we have experimented
with a rough approximation.

We extended the garbage collector to credigtawith a fixed amount of saved work every
time a thunk for thatet was garbage collected. The motivation for this idea was thttere
are a large number of thunks in the heap for a partideigrthen it may mean that these thunks
form a chain that would not have appeared under speculatalaation (see Section 12.6). The
profiler thus adds some saved work to thethat produced the thunks in an attempt to stop the
chain growing longer. We discuss the performance of thisriegie in Section 12.6.5.

SWhich we discuss in Section 12.6.5

9.4. Further Details 139
(CSTN) I'[a+— B{d/)*]; 0058, —) F[/oz — ()]; ®@a’; chainProf (B, s);
if —~profiled(s)

B: B 1

Figure 9.7 : Chain profiling uses this revised version of (CSTN)

9.4 Further Detalls

In this section we explore various ways in which the impletaton described in Sections 9.1
and 9.2 can be extended.

9.4.1 Profile Chaining

In Section 6.4.3 we presented the conceppuifile chaining Profile chaining replaces the
(CSTN)rule with the rule given in Figure 9.7. Under this rule, if asted indirection is used
by an unprofiled speculation, it applies the functigrminProf to the stack, converting the
innermost speculation frame into a profiled speculatiomé&a

The functionchainProf is implemented as a runtime system function that walks dwen t
stack and converts the innermost speculation frame intooflg speculation frame in the
manner described in Section 9.2.1.

If profile chaining was implemented exactly as describetdi@semantics then it could cause
a very large number of ventures to be profiled. Consider fanmgle the following program:

fa=
lety=2+1in
if y > 1000 then 4 else f y

If speculation ofy is ever profiled, then chaining will cause every subsequestidation ofy
to also be profiled. This will cause the program to run verysjo

We avoid this problem by maintaining a limit on the numberlwdining operations that any
given unit of blame can pass through before chaining stopshain countfield is added to
every costed indirection and every profiled speculatiom&aEvery time a costed indirection
is created, it will take on the chain count of the profiled gpatton that created it. Every time
chainProf is applied, the chain count for the newly profiled specutatidl be one greater than
that of the costed indirection that it used. If the chain daiges above a definechain limit
then no further chaining operations will be applied and t&ted indirection will revert to the
behaviour described in Section 9.2.3.

We describe the performance effect of varying the chaintlim&ection 12.3.7.

140 Chapter 9. Online Profiling

9.4.2 Encoding the Profile Flag in SpecDepth

In Section 9.2.1 we used the following three way branch tod#elbow alet should be evalu-
ated:

Code for a three way branch:
branchif (PROFILING) maybe_profile three-way branch
branchif (SpecDepth > 3562 _limit) 3562_lazy
jump 3562_spec

In the common case of ket being speculated and unprofiled, this code will involve two
branches. We can reduce this to one branch by encoding tfiengréiag inside the speculation
depth, giving a combinefipecDepthProf register:

specDepth(s) if pisoff

SpecDepthProf =
specDepth(s) + PROFILE_ON if pison

where PROFILE_ON is a large constant, greater than the maximum allowableusgtéan
depth. Given this encoding, we can retrieve the speculalgmth and profile flag as follows:
specDepth(s) = SpecDepthProf mod PROFILE_ON
on if SpecDepthProf > PROFILE_ON
off otherwise

This encoding makes it possible for us to combine the tesspaculation and profiling as
follows:

Branch code for a burst-profilddt expression:
branchif (SpecDepth < 3562 _limit) 3562_spec
branchif (SpecDepth < PROFILE_ON) 3562 lazy

jump maybe_profile

This code will detect the most common case, speculated apbfiled, with only one
branch.

9.4. Further Details 141

9.4.3 Warming up the Profiler
Variable-Frequency Profiling

Rather than having a fixed profiling frequency, it can be beisffor the profiler to vary its
profiling frequency. Indeed our implementation varies itfiing frequency according to how
confident it is about its speculation configuration. The peofstarts out with no confidence
in its speculation configuration and so profiles every peritfda profiled period causes no
significant changes to the speculation configuration themptbfiler will increase its confidence
and reduce its profiling frequency. If however a profiled pertauses a significant change to
the speculation configuration (e.g. it found lots of wastexntkl)or a speculation was aborted,
then the profiler will fall back to profiling every period.

Warming up Gradually

Continuing this philosophy, ntet is allowed to execute speculatively in an unprofiled period
until it has been observed to behave well when being spescutiuring a profiled period. All
lets start with a depth limit of zero. Aet is not given a positive depth limit until the first time
itis profiled. When théet is first profiled, thenaybe _profile function will set the depth limit

to the value corresponding to its goodness (See Sectioh 9.2.

Persistent State

One way to reduce warm-up times is to make the speculatidigewation for a program persis-
tent. When a program completes, its speculation configurasi written into a file in the users
home direction (e.g/home/rje33/.opteval/ [progname]). If the program is run again, then
this speculation configuration will be reloaded and the waprithme can be avoided.

We implemented this persistent state scheme in a previopkementation of Optimistic
Evaluation and found that it had relatively little effect mmg-running programs, but signifi-
cantly improved the performance of programs that run forrg short time®

9.4.4 Representing Blame as a Cycle Count

Rather than measuring work by heap usage, another altriatto measure the number of
elapsed processor cycles. Some Intel processors providetction calledrdtsc [int97]
that allows a program to discover the number of processdesybat have elapsed since the
processor was turned on.

SUnfortunately, it also upset several referees, who compththat, by using persistent state, our profiler could
not really be considered to be an “online profiler”. We thusided to avoid giving benchmark results that used
this feature, and did not include this feature in subseqingpliementations.

142 Chapter 9. Online Profiling

We have produced a version of our profiler that measures wsingudtsc rather than with
heap allocation. There are several difficulties with thigrapch. One particular problem is that
it can be hard to distinguish between cycles that constthgework done by a speculation,
and cycles that took place in another process, if a conteittlswook place during the spec-
ulation. Another problem is that the number of cycles reggliifor a speculation is extremely
unpredictable, making it quite hard for to debug the impletaton or to track changes to its
performance. We discuss the performancedifsc profiling in Section 12.7.2.

CHAPTER 10

Abortion

In this chapter we describe our implementation of abortion:

¢ In Section 10.1 we describe the way in which the runtime systecidesvhena venture
should be aborted.

e In Section 10.2 we describ®wa venture is aborted.

10.1 When to Abort

It is important that our runtime system limits the amountiofe that a speculation can run for
before it is aborted. In this section we describe the way irclwvbur implementation does this.

10.1.1 Sample Points

In Section 6.3.1 we presented a bounded speculation sexs#mdk places a limit on the amount
of blame that can be accumulated by active speculationsedtidh 6.3.3 we argued that this
semantics allows us to bound the worst case performancerofyagm.

The semantics of Section 6.3.1 assumes that all specudagi@nbeing profiled; however
the periodic profiling scheme described in Chapter 9 willygmlofile a small proportion of
speculations. We work around this problem by ensuring th&brzg-running speculations are
profiled. At periodic sample points, the runtime system walkwn the stack and converts all
unprofiled speculation frames into profiled speculatiomia. This uses the same mechanism
as described in Section 9.2.1. All profiled speculation farareated in this way will start off
being blamed for no work and will accumulate blame from thr@hponwards.

143

144 Chapter 10. Abortion

The runtime system also uses this opportunity to check tigasam of all blame attributed
to active profiled speculations is less thaiall XBLAMFE, using a literal implementation of the
active Blame function from Section 6.3.1.

10.1.2 Heap/Stack Checks

One detail of GHC that we have ignored so far is heap and staegks. As we described in
Section 7.3.1, the GHC runtime maintainElp register that points to the next free word in the
heap. Whenever the program wishes to create a closure irety®g It allocates it a range of
addresses starting Bp and then adds the size of the closurddp, so thatHp points to the
next free word once again. Unfortunately, heap is not anitefiesource; it is thus important
that a program check that there is heap available beforéoitaies a new closure. The same
issues apply to the stack pointep; it is essential that the program checks that there is stack
available before it attempts to push a new frame onto théstac

In the code we gave in Chapters 7, 8, and 9 we omitted such Imebgtack checks for rea-
sons of simplicity. However, a real program will include peand stack checks at the beginning
of the entry code for every closure, return frame, or functidhe stack check will compare
Hp andSp against the limit registerHpLim andSpLim. If the heap and stack pointers are
within safe limits, then the program will continue; howewvéthe heap and stack pointers are
outside safe limits then the program will call into the romgi system so that more heap or stack
can be allocated.

It is at these points that the runtime system ensures thattide speculations are profiled,
and checks to see if abortion should take place.

10.1.3 Paused States

Before the program calls into the runtime system, it firstspitg state into a standard form
known as gpaused stateA paused state is one that can be correctly resumed by regtide
closure pointed to by thiode register (known as theurrent closurg. In the formal semantics,
a paused state is a state of the following form:

I''@a; s

wherea is a reference to theurrent closure

If a heap/stack check is at the beginning of the entry coda fdosure, then the program is
already in a paused state, and so the program can call intartiene system directly.

Things are slightly more complicated if the heap/stack khscat the beginning of the
entry code for a return frame. If Lazy Evaluation is implert®ehin the manner described
in Section 8.1.4 then it is not safe to simply replace a retmommandva with a closure

10.2. How to Abort 145

Node —— closurex Node——>] suspend_info / closurea

o100 Uy |pwloadl
 caseretinio payload 2

{P: payload 1

payload 2 :
ﬁ

Figure 10.1: Moving a stack frame into a suspension closure

demanding comman@a as« may reference a thunk that should not be evaluated. We thus
push a special frame onto the stack that will retarowvhen it is returned to, and s&ode to
point to a generic value closure that will return immediatghen entered.

If a heap/stack check is at the beginning of the entry code fonction then the program
can pause itself by pushing a function application frameaiaimg its arguments and setting
Node to point to the function that was just entered.

10.2 How to Abort

In this section we describe how the runtime system actualgs@bout aborting a speculation.
The implementation described here has much in common watintpblementation that already
existed in GHC for the implementation of asynchronous ettcap [MPMRO1]. In the subsec-
tions that follow, we describe our implementation of akmrtby comparing it to the abortion
semantics of Section 6.3.2.

10.2.1 Pause a State: ('EXP)and ('RET)

As we described in Section 10.1.3, a program will pausefitsefiore entering the runtime
system. The abortion system thus does not need to implemeatjaivalent of(!EXP) or
('RET).

10.2.2 Suspend a Stack Frame: (lABORT)

If the topmost stack frame is not a speculation frame or aratgfitame, then the contents of
the stack frame is transferred intesaspension closuri@ the heap. Figure 10.1 illustrates the
way that a suspension closutie’l is implemented. The info table is the standard info table

146 Chapter 10. Abortion

closurea
suspend_info
[cosure pr Node > cosurea
jnfoA____| \ | nfo A _____
payload 1 _ _ payload 1 _ | ap_stack_infg
payload 2 payload 2 | closure ptr
| update_info _ infoA _____
Node——» _s:u_sE)érld__in_f? updatee [payload 1
_c_Ic_)s_u_re_ ptr _i[lf_o_B_ _____ payload 2
o8 ____ | | payload3 _
| payload3 enter node payload 4 | ap_stack_info
payload 4 |j> | update_info _ / closure ptr __
updatee _igf_o_B_ _____
payload 3

: s : payload 4

Figure 10.2 : Entering a suspension closure causes its contents to be copied onto the stack.

suspend_info, the second word points to the returned closur@nd the rest of the payload
contains the stack franie

The real implementation is rather more complex than thigdrticular, it will group sev-
eral sequential stack frames together into one suspenkisuare rather than creating a new
suspension for every frame.

10.2.3 Resume a Suspended Stack Frame: (RESUME)

If a suspension closuke/! is entered, then the entry code for the suspension closlirpush

an update frame, copy its suspended stack frapaek onto the stack, and then enter the closure
«. Abortion may create chains of suspension closures, lindgéther by theiry fields. When
the suspension at the start of the chain is entered, thiaulse all of the suspensions in the
chain to copy their frames back onto the stack. This is ttatstl by Figure 10.2.

10.2.4 Abort an Update Frame: ('UPD)

If the topmost stack frame is an update frame then the albstistem behaves like rul{gJPD).
The closure referenced by the updatées overwritten with an indirection to the current closure
a. This is illustrated by Figure 10.3.

10.2. How to Abort 147

thunk_info |:> IND_info
payload indirectee)
Node— [cosurex] Node—»[Glosure x|

| update info__
updatetee x |:>
ﬁ

Figure 10.3: Aborting an update frame

If this is the outermost speculation frame we wish to abort:
('lEND) T';ea;({z}E,B'):s; ~ I';Va;({a}E,B) :s;
B; 11 B; [z +— II(x) + Babort]

If we wish to abort other speculation frames on the stack:
(IMORE) T;@a«;({z}E,B'):s; ~ TI'd+— B{a)* " — Eld/z]]; @a";s;
B; 11 B'; [z — II(z) + B + Babort]
wherea’ anda” are new

Figure 10.4 : Alternative rules for aborting a speculation frame

10.2.5 Abort a Profiled Speculation: (!SPEC)

The way the abortion system treats a speculation frame dspam whether the speculation
frame is the last speculation frame that needs to be aborteglabortion system behaves as if
rule (!SPEC)was replaced with rule@END) and(!MORE) from Figure 10.4. Neither of these
rules change the behaviour of abortion. RUEPEC)is equivalent tq!END) followed by rule
(SPEC2)from the semantics of Section 6.4.2. Similarly, r(I8IORE) is equivalent to rule
('SPEC)followed by rule('EXP).

If the topmost stack frame describes the outermost spéanldiat needs to be aborted then
the abortion system will behave like ru((&ND). It will subtract By, from the goodness and
then return to the body of the speculafied. This will cause the program to continue with
whatever it was planning to do once the speculation had gdish

If there are other speculation frames below this one that méd to be aborted then the
abortion system will behave like ru(®MORE). It will update the goodness and create a costed
indirection in the same way as would be done if the speculdtadl completed normally (Sec-

148

Chapter 10. Abortion

Node—»

lazysusp_info

= (B)<aX

costed indirection

Node——— closurea o’ (closure ptr) info ptr
specret_info « (indirectee)
E il BI------"-===-=--9 @ F-—=—=——=—==---
n [oX] payload 1 B
specretino f R ¥----------1 F-;-------
__________ payload 2 X (source)

{x} payload 1

payload 2 :
ﬁ

Figure 10.5: Aborting a speculative return frame

tion 9.2.2). It will then addB,;,,: to the blame to take account of the work done during abortion.
Finally, it will create a thunky” in the heap, and set this to be the current closure.

Whenca” is entered, it will push an update frame onto the stack and ¢kieluate the body
E[d'/z] of thelet. We illustrate the structure af” in Figure 10.5. The closure” is very
similar to a suspension frame, as described in SectionZ2.0-the info pointer points to the
special info tabldazy_susp_info, the second word holds the costed indirection refererice
and the other words hold the speculative return frgmjer.

If lazy_susp_info is entered, it will push an update frame, copy the speculditaone back
onto the stack, and then retu to it. The behaviour is thus the same asffwas a thunk
whose body wa#/[o//z]. Note that, unlike a stack suspensiafi,will not demand the value of
o,

Every time a speculation frame is removed from the stackspieeulation depth is reduced.
We thus take case to decrem@&yecDepth whenever we remove a speculation frame from
the stack, and to incremeBpecDepth whenever we restore a speculation frame back onto
the stack. In particular, the code for a lazy suspension mmgstmentSpecDepth before
copying its speculation frame back onto the stack, evenghaoureturns to the speculation
frame immediately.

CHAPTER 11

Debugging

Debugging has long been recognised as one of the greatelshessas of lazy functional lan-

guages [Wad98]. Conventional (strict, imperative) largrsaalmost invariably use the “stop,
examine, continue” paradigm (Section 11.1), but this apghodoes not work well for Lazy

Evaluation. This difficulty has led to fascinating researchovel debugging techniques (Sec-
tion 13.7).

In this chapter, we argue that conventional debugging fgcies have perhaps been dis-
missed too quickly. We demonstrate that Optimistic Evatumatcombined withtransient tail
framesallow conventional debugging techniques to be succegsdipiplied. Optimistic Eval-
uation significantly reduces the number of thunks built, #mgs also their confusing affect
on debugging, while transient tail frames allow tail-catide visible to the debugger without
affecting space complexity (Section 11.3).

We have implemented these ideas in HsDebug, an additionetdGtHC tool set (Sec-
tion 11.5). Our debugger is, by design, “cheap and cheerftd’results are not as predictable,
nor as user-friendly, as those of (say) Hat [WCBRO1]—buytbeme cheap. HsDebug can
debug an entirely un-instrumented program, and it can da laeltter if the compiler deposits
modest debug information (much like a conventional debdgdeirthermore, an arbitrary sub-
set of the program can be compiled with debug informationspdrticular, the libraries need
not be.

149

150 Chapter 11. Debugging
11.1 How the Dark Side Do It

A debugger has long been one of the standard tools that isdebwith any strict, impera-
tive, programming language implementation. The vast nitgjof these debuggers follow a
“stop, examine, continue” model of debugging, as used by GEB®P1]. Such debuggers are
characterised by the following features:

e The programmer can request that execution stopba¢akpoint A breakpoint may cor-
respond to a point in the source code of the program. Alteselgs it may be the point at
which some logical property becomes true.

e When a program is in its stopped state, the programmer camiegahe state of the
program. From this state, the programmer is able to obtavmaerstanding of how the
program came to be in the state that it is.

e The programmer can call functions within the program anddiegctly manipulate the
program state.

e Once the programmer has finished examining the state andtedjuheir breakpoints,
they can request that execution continues until the nesidp@nt is hit.

One of the most important pieces of information that a debugdjows the programmer
to observe is the call stack. In a strict language, the ngstfrframes on the call stack will
correspond directly to the nesting of function calls in thegsam source code. Consider the
following program:

fx= lety=3"'div zin Justy

g= case f0 of Justy— hy

If this program is executed eagerly, then the call stack kéllas illustrated in Figure 11.1.
When the division by zero error occurs, the stack will chgatiow that this took place inside
the evaluation ofy, in the call tof made fromg. It is likely that the stack will also hold the
argument thaf was called with.

11.2. Failing to Debug Lazy Programs 151

| div |

div HdineroError |

--- -'} something deep within h |

9 tn

Figure 11.2 : Lazy Evaluation with Tail Call Elimination

11.2 Failing to Debug Lazy Programs

What happens if we try using this style of debugging for a stiict functional language such
as Haskell [PHA99]? If the same program given earlier were to be evaluateal typical
lazy language implementation, then the call stack wouldsbdsstrated in Figure 11.2. Lazy
Evaluation has scrambled the execution order and tail kadireation has removed stack frames
that would have provided useful information. The resultisess that is very difficult to debug
from.

This clash between “stop, examine, continue” debuggingrammdstrict languages is con-
sidered to be so severe that, as far as we know, nobody hasnexk a serious attempt to
implement such a debugger for a non-strict language. In mways, this rejection of con-
ventional debugging models has been a good thing, as it tde ke development of several
extremely powerful alternative approaches (see Sectiof) 1dowever, we believe that conven-
tional debugging techniques should not be written off. skctions that follow, we explain a
series of tweaks to Lazy Evaluation that have allowed usddyre an effective “stop, examine,
continue” debugger for Haskell.

11.3 Eliminating Tail Call Elimination

One simple way to increase the amount of information avkal&dlom stacks is to disable tail-
call elimination. This provides us with extra stack framieatttell us more about the call chain
that has taken place. This idea is not new; strict langudggsrplement tail call elimination

152 Chapter 11. Debugging

°
°
[]
case return | N
= ©®
tail call s = ® &
N N .
NI 4
tail call >
. | case return
tail call
7 | case return
tail call ’
2,0 T T
. 7’ 7 []
tail call s E e §
= o E

case return ’

Figure 11.3: Tail call frames disappear if we have too many

often allow it to be disabled when a program is being debuggedexample, the CMU Com-
mon Lisp [Mac92] environment disables tail call eliminatid the debug level is set greater
that “2”.

While turning off tail call elimination makes debugging easit will also cause some pro-
grams to use massively more stack space than they wouldwtieense. A tail recursive loop
that would normally consume no stack space will now pushekdgtame on every iteration.

Fortunately, there is no need for a program to fail with ant“olustack” error if it has a
stack full of tail call return frames. The only purpose of tall return frames is decorative; it
is thus perfectly okay to delete them. Our solution is thusdiete all tail frames every time we
run out of stack or perform a garbage collection. Figure lllu8trates this concept.

It is important that we delete tail frames at a garbage ctitlaceven if we are not short on
stack. This is because our tails frames record all the argtsrmassed to a call, and so may
be holding onto heap objects that would otherwise not behadale. There are many ways in
which this could be refined: for example, we could arrangentg delete tail frames if stack use
or heap residency were above a pre-determined threshalek oould arrange to only delete a
selected subset of the tail frames.

11.4 Optimistic Evaluation

Disabling tail call elimination makes debugging signifitgreasier, but it does not quite bring
us to the point at which a “stop, examine, continue” debuypgeomes usable. Lazy Evaluation
will still scramble the evaluation order, causing expressito be evaluated on stacks that are
different to the stack in which the expression was defined.

Fortunately, Optimistic Evaluation causes a program tovaduated largely eagerly, and so
significantly reduces the scrambling effect of Lazy Evatuat When a program is being de-
bugged, itis likely that the programmer cares less abowdpad more about clarity, compared

11.5. HsDebug 153

to a normal execution. Optimistic Evaluation thus usesd#ht default tuning parameters when
running in debug mode, causing it to have worse performdndealso causing it to use Lazy
Evaluation less often.

Although we have implemented our debugger on top of OptimEBtaluation, the same
technigues could also be applied to Eager Haskell (Sec8az).1

11.5 HsDebug

HsDebug is a “stop, examine, continue” debugger for Haskdtlas been implemented as part
of GHC and currently lives on the Optimistic Evaluation brlam the GHC public CVS. While
HsDebug has a long way to go before it becomes as powerfull asd®DB, it is already very
useful. The current feature set includes the following:

e Any program compilable with GHC can be debugged

e Breakpoints can be set in any Haskell function

e The original arguments of all calls on the stack can be insggec
e Closures on the heap can be pretty printed

e Functions and thunks can be pretty printed—giving theirselocation, and free vari-
ables.

e Exceptions can be intercepted

e The program can be single-stepped

All'in all, HsDebug feels very similar to GDB and should feehfiliar to anyone who is
already comfortable with GDB. HsDebug is currently verygbuound the edges, and source
level debugging is currently incomplete, but it has alregldgwn itself to be a useful tool.

Programs compiled for HsDebug run slightly slower than redrnirhis is partly due to
the need to turn off some of the more confusing code trangiboms and partly due to the
extra overhead of pushing and removing tail frames. We dsperformance further in Sec-
tion 12.7.4.

We give a log from a real HsDebug session in Appendix D.

Part IV

Conclusions

154

CHAPTER 12

Results

How well does Optimistic Evaluation work in practice? Whatthe performance effect of
adjusting the many tunable parameters? In this chaptertempt to answer these questions.

e We start, in Section 12.1, by explaining how the tests desdrin this chapter were
carried out.

¢ In Section 12.2 we analyse the performance of our fastestoreof Optimistic Evalua-
tion.

e In Section 12.3 we look at the online profiler, and explore pleeformance effect of
several changes that can be made to it.

e In Section 12.4 we present various statistics that give aiglm into the way that Opti-
mistic Evaluation works.

¢ In Section 12.5 we look at semi-tagging, and analyse itseffe both Optimistic Evalu-
ation and Lazy Evaluation.

e In Section 12.6 we look at the effect of Optimistic Evaluatan heap usage.

e Finally, in Section 12.7, we collect together various stats that do not seem to belong
anywhere else.

155

156 Chapter 12. Results

Size of Benchmark Programs

10000
9000
8000
7000
6000
5000
40001
30001
2000
1000

Program Lines

]

nnnnnnnn

Ry ——

i

=

=

I

=
=

I

sy [

oyb
alayds Aj
wore]
sl

o
JaAoq 4:’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

euue
SJueNSUOD |
ssa1dwo:
Aysne| i
gaMwel
TwyeldAs)
|opuew Aj
by |
Jasred A:j
bojoud 4:|
s|ndas
blewAs

Figure 12.1: Sizes of Benchmark Programs

12.1 How the Tests were Carried Out

In this section we explain how we carried out our tests. $actP.1.1 discusses the benchmark
programs we used, while Section 12.1.2 explains the way iolwhe ran them.

12.1.1 The Benchmarks

The benchmarks programs we chose are a selection of theapnegrom the NoFib [Par92]
benchmark suite. NoFib is the standard benchmark suitedekéll compilers and the programs
from this set have been used to evaluate the performanceushber of other systems. Most of
the programs we use are from theal subset of the suite, with a few taken from #ygectral
subset. For some graphs we have also added the GHC comgdir While GHC is not part
of NoFib, it is probably the biggest and most widely used H#igirogram in existence and so
it is an interesting program to test.

Figure 12.1 shows the size of each of our benchmark progr&h&C is huge, at around
150,000 lines of codeanna is also fairly large, at 9,000 lines of code. The other progare
significantly smaller, with an average of 935 lines of codehe®espite their small sizes, many
of these programs are quite realistic; indeed several af tire the kernels of large applications.

The default runtimes for the NoFib programs are very vaealnid typically very short. We
extended the input data for our chosen programs so that theydor around fifteen seconds.
This gives our online profiler sufficient time to warm up andgsees a fairer impression of
performance. We could have achieved similar performancenmaller benchmarks by using a
persistent speculation configuration, however we chostordi this for the reasons outlined in
Section 9.4.3.

The programs we used as benchmarks were selected beforeedoynmnce results had
been obtained for them. Programs were selected accorditigetease with which we could

12.2. Performance 157

Performance of Optimistic Evaluation
vs normal ghc with all optimisations enabled

110% —
100% 7 — — — W
90% — i — 1] —
80% 11 —— — e — — —
°E’70%”******* — — — —
601 1 1 1 1t =1 —
S
¢ 50% T 1ttt ettt —
L 4%ttt it ettt —
%30%”**************** —
¢ 20—ttt —
100%+ — — — — 1 — 1 —
0% r——7" T T 1+ T+ 1" T+ 7T +*TT T 1T "‘’*T™ ‘’»™ '+ """’ "7 "7 ~"~"71T 7
© T o 000 =220 03 5T 5T VLT YT FAY
"2 389972558288 F38¢cs8Ks
o o — 0 AT o = =2 3 = @ Y 3 o =
s o 3 2 o = 0O o = S
Sl 5
@ 3
[
Benchmark

Figure 12.2 : Benchmark run-time relative to normal GHC
make them run for around fifteen seconds, and not based ortla@yaiterial

12.1.2 The Testing Procedure

All tests were run on a machine with a 750Mhz Pentium |1l pesog and 256Mbytes of mem-
ory. We ran each test once as a warm-up and then five more firhegublished results are the
average of the five test runs. In order to makes the perforenarare consistent, we disabled
pre-emptive thread switching (using theo flag to the runtime system).

Performance results are given asetative runtime This is the runtime of a benchmark,
expressed as a percentage of the runtime of the same berkchittaa different evaluator. In
most cases, runtimes will be expressed relative to our kersbrming version of Optimistic
Evaluation. If runtimes are expressed relative to a diffeevaluator, then this will be stated in
the subtitle of the graph.

12.2 Performance

12.2.1 Runtime

Figure 12.2 shows the effect that Optimistic Evaluationdrasun time. The height of a column
in the graph represents the amount of time that that ben¢htoek to run under Optimistic

1The only exception to this isem which we decided not to use because its performance was/agable
when evaluated using normal GHC.

158 Chapter 12. Results

Overhead of Optimistic Evaluation

133%
130%
128%
125%
123%
120%
118%
115% =
113%
110%
108%
105%
103%
100%

Relative Runtime

THH I

19hoq
euue |
wos|ny
qaweb
bdy
Jaut i
esl 4]
blewAs 4]

o
e
=
10

1dsq
Sjuressuod
ssaidwod
wisdin
Aysnep i
TwyieldAn
|opuew
EIE
Josted
woye
bojoid
d[ndas

Figure 12.3: Performance Overhead of Optimistic Evaluation, when Evaluating Entirely Lazily

Evaluation, expressed as a proportion of the time that thetraark took to run under normal
GHC. The GHC compiler that we compare against is the versiahdur implementation of
Optimistic Evaluation forked from. Both compilers were rwith all optimisations enabled,
including a strictness analyser.

These results are very encouraging. The average speedugt isnder 20% and several
programs speed up by 40% or more. Perhaps more criticallgragram slows down by more
than 7%; indeed only one program slows down by more than 1%alydhree programs slow
down at all. We explore the reasons for these slowdowns itiddet2.2.2.

As one would expect, the results depend on the nature of tigrgn. If a program has a
strict inner loop that the strictness analyser solves, themave little room for improvement.
Similarly, if the inner loop in inherently lazy, then theseriothing we can do to improve things,
and indeed the extra overhead of having a branch on deenyill slow things down. In the
case ofrsa Optimistic Evaluation had virtually no effect becausa spends almost all of its
time inside a library written irt.

12.2.2 The Overheads of Optimistic Evaluation

Optimistic Evaluation imposes considerable overheadsvaluation. The greatest of these is
the cost of doing a test and branch on evieityexpression, but the cost of profiling is also sig-
nificant. Figure 12.3 shows the overhead imposed by theserésa For each benchmark, the
respective column shows the extent to which that programssttown if it is compiled for Op-
timistic Evaluation, but is evaluated with a speculationfa@quration that evaluates everything
lazily. For convenience, the origin of this graph is placed@0%. The height of a column is
thus the additional time taken.

As one would expect, all programs run more slowly than undemal GHC. The program
that runs slowest iparser; slowing down by over 30%. Given this poor baseline, the pofi
did well to achieve only a 7% slowdown fparser in Figure 12.2.

12.3. Profiling 159

Increase in Code Size

Percentage In
== NN
o v ©O 1o wv
SEEEBEEBEBEEREBEEBEE
A A A
JaAoq ‘ ‘ ‘ ‘ ‘ ‘ ‘
[l T T [T T T [T

Sjulelisuo:
esl

ssa1dwo:
wi
pi
wos|
qalweﬁA
qulueld/u{
|]opuew }
6y |
JEN] }
aJaquA
Jasred |
wole
bojoid i
o|ndal)
6|Eu.1AsA

Figure 12.4 : Increase in Code Size due to Optimistic Evaluation

12.2.3 Code Size

Figure 12.4 shows the effect that Optimistic Evaluationdmasode size. Programs increase in
size significantly (36% on average). This is partly due tortbed to generate lazy and eager
versions of expressions, partly due to the effect of segugitay, and also partly due to various
aspects of the implementation that we have not describduisrttiesis (in particular, the way
we deal with vectored returns). We believe that this codatitan be significantly reduced, but
have yet to demonstrate this.

12.3 Profiling

12.3.1 What Happens if We Turn Profiling Off?

Figures 12.5 and 12.6 illustrate the performance effectifibhg off profiling. The height of
each column represents the amount of time taken when popfditurned off, relative to the
amount of time taken when it is turned on. Although profilisgurned off, abortion is still
enabled; the evaluator thus behaves similarly to Eageréflasiee Section 13.2).

As one can see, profiling is not always a win. Two programs épgesignificantly if
profiling is turned off; these are programs for which the peofivas being overly cautious.
Similarly, four programs speed up slightly; these are pmogg for which the profiler was not
needing to do much and so was just wasting time.

At the other end of the spectrum, some programs slow downivedhgd the profiler is not
enabledconstraints slows down by a factor of over 150, whif@1som, hpg andinfer also
slow down by large amounts.

Figure 12.7 shows the performance of unprofiled Optimistial&ation relative to normal
GHC. Although the average performance is a 34% slowdownt ofahis is due to four pro-
grams. If we exclude the four slowest programs then we gevarage speedup of 13%.

160 Chapter 12. Results

Effect of turning profiling off

Zoomed out: to show benchmarks with big performance changes

16000%
14000%
12000%
g 10000%
€ 8000%
T 6000%
B 4000%
& 2000%
0%t S B
E2FCcz o EFE3EEFSRE2 883
e p =3 QoG S = = 3a =B g 39 = 2
s 3 33 388 e s = S &
ER 5
1% 3
=
Benchmark
Figure 12.5: Performance Effect of Turning Profiling Off : Zoomed Out
Effect of turning profiling off
Zoomed in: To show benchmarks with small performance changes
400%
350%
o 300%
E
g 250%
4
o 200%
2
B 150% M
o
100% H =
el |] W
o A T a3 2 @ s 2 B 3 = e % 3 9 = 3
h 5 s 3 3 358 a0 s = e &
=l 5
@ A
Benchmark
Figure 12.6 : Performance Effect of Turning Profiling Off : Zoomed In
Performance of Unprofiled Optimistic Evaluation
Relative to Normal GHC
400%
350%
300%
v 250%
E
£ 200%
o
v 150%
= 100% - :l*
) L
50% H —
M R IRNERNTNRINNENREAE
§3F883eEF83:87588¢58¢8¢87%
a &5 ~ o3 v i S = =2 3 = e ¥ 3 o = 3
- s 3 3 F 352 0 s = SO &
ERR g
@ 3
=

Figure 12.7 : Performance of Unprofiled Optimistic Evaluation, relative to Normal GHC

12.3. Profiling 161

Skip Count = 4 Profiled Periods Unprofiled Periods

+—>

A\ 4

Time Elapsed

Figure 12.8 : The Skip Countis the number of unprofiled periods that take place between con-
secutive profiled periods

12.3.2 How Often should We Profile?

Although our idealised model considers profiling to be randour implementation is actually
periodic? The rate of profiling is governed by a variable called #kép count The skip
countis the number of unprofiled periods that take place betweareamutive profiled periods
(lllustrated by Figure 12.8). If the skip count is zero, ttadiperiods are profiled.

As we explained in Section 9.4.3, our profiler profiles a pangrat a variable rate. The
profiler thus has two variables that can be adjusted:

e Max Skip Count: The maximum allowed value for the skip count.

e Skip Count Increment: The amount that is added to the skip count if a profiled period
passes without any adjustment needing to be made to thelapeowconfiguration.

Figure 12.9 shows the effect of varying the maximum skip ¢odie vertical axis is the
geometric mean of the relative runtimes of all the benchnpadgrams. Runtimes are taken
relative to the case in which the maximum skip count is 206 (tefault value). We can see
from this graph that very low skip counts cause the prograrmrovery slowly, because a large
proportion of time is taken up with profiling. If the prograsprofiled constantly (skip count
of zero) then the average performance is reduced by over 25%.

Figure 12.10 gives more detail. In this graph a separateedardrawn for each benchmark.
There are too many benchmarks for it to be practical to giveya Rowever this graph should
give an impression of the general spread of results. We carfreen this graph that most
programs have fairly consistent performance once the maxiskip count is greater tha2.
The exceptions anespt andparser which can slow down by as much as 11% for some values.

Figure 12.11 shows the effect of varying the skip count im@et. The vertical axis is again
the geometric mean of the relative runtimes of all the berasknprograms, this time taken
relative to the case in which the skip count incremeri.iSThere is less of a definite pattern
here; no reasonable value of skip count increment variepalfermance by more than 2.5%.

2Given that the profiling frequency is constantly varying, bedieve that it is unlikely that any program will
have a long term correlation with the profiler's samplingdebur.

162

Chapter 12. Results

130%

Effect of Max Skip Count on Performance
Geometric mean over all benchmarks

125%

120%

115%

110%

Relative Runtime

105% -

SN _

100%

95%

0

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Max skip count

Figure 12.9: Performance Effect of Adjusting the “max sample period” Tunable—geometric

mean

165%

Effect of Max Skip Count on Performance
Separate curve for each benchmark

160%

155%

150%

145%

140%

135%

130%

125%

120%
115%)
110%
105% i
100%

95%

Relative Runtime

90%

85%
0

T T T T T T T T T T T T 1
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Maximum skip count

Figure 12.10: Performance Effect of Adjusting the “max sample period” Tunable—all bench-

marks

103.0%
102.5%
102.0%
101.5%

101.0%

Relative Runtime

100.5%

100.0%

99.5%

Effect of Skip Count Increment on Performance

Geometric mean over all benchmarks

1 2 3 4 5 6 7 8 9

S B e B e A B e e e AN S m|
10 11 12 13 14 15 16 17 18 19 20
Skip Count Increment

Figure 12.11 : Performance Effect of Adjusting the “profiling backoff” Tunable—geometric mean

12.3. Profiling 163

Effect of Thunk Cost on Performance

Geometric mean over all benchmarks
115%

110%
105% \/\/_/
100%

T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180
Thunk Cost

Runtime relative to thunk cost of 40

Figure 12.12 : Performance Effect of Adjusting the “thunk cost” Tunable—geometric mean

Effect of Thunk Cost on Performance

Separate curve for each benchmark
200%

190% -+
180%
170%
160%
150%
140% +—
130% f}—+
120%
110% =
100%
90%
80%
70%
60%
50%

Runtime relative to thunk cost of 40

0 20 40 60 80 100 120 140 160 180
Thunk Cost

Figure 12.13: Performance Effect of Adjusting the “thunk cost” Tunable—all benchmarks

12.3.3 What should the Thunk Cost Be?

Thethunk costs the cost of building a thunk, as estimated by the profilee profiler will add
this amount to the goodness ofex every time Optimistic Evaluation avoids building a thunk
for thatlet (see Section 9.2.1). The thunk cost is expressed in bytesay hllocation (see
Section 9.1.1 for the reasons why).

Figure 12.12 shows the effect of varying the thunk cost. éf timunk cost is too low, then
too little speculation takes place, and performance isaeduHowever, if the thunk cost is too
high, then too much speculation takes place, too much wonlkaged, and performance again
suffers. Note that Optimistic Evaluation outperforms L&yaluation even with a thunk cost
of zero. This is becauselat that is always used will never accumulate any long-term basin
and so will still be speculated.

Figure 12.13 gives the curves for the individual benchmadgmms. One can see that,
while some programs follow the trend in Figure 12.12 someuaegfected, or even speed up
as the thunkcost is increased. These are programs thanaostadntirely strict, for which the

164 Chapter 12. Results

Effect of Abortion Cost on Performance
Geometric Mean over All Benchmarks

111%
110%
109% L

108%
107%
106 1
105% \
\
|

104%
103%
102% /\
101% V \\/\ /\\//\ /\.
100% \/ \\ I

I
99%

Relative Runtime

0 200 400 600 800 1000 1200
Abortion Cost

Figure 12.14 : Performance Effect of Adjusting the “abortion cost” Tunable—geometric mean

Effect of Abortion Cost on Performance
Separate Curve for each Benchmark
240%
230%
220%
210%
200%
190%
180%
170% =
160% —+
150% ‘ i
140% 1
130% v
120%
110%]
100%
90% T T T T T |
0 200 400 600 800 1000 1200
Abortion Cost

Relative Runtime

Figure 12.15 : Performance Effect of Adjusting the “abortion cost” Tunable—all benchmarks

profiler is being overly conservative.

12.3.4 What should the Abortion Cost Be?

The abortion costB.;,.., IS the cost incurred in aborting a venture, as estimatetidptofiler.
The profiler will add this amount to the wasted work died every time a venture for thaét
is aborted. As with the thunk cost, the abortion cost is esged in bytes of heap allocation.

Figure 12.14 shows the effect of varying the abortion cdsid abortion cost is very low
then too much abortion takes place and programs slow dowoe @ abortion cost is greater
than around 100 there is relatively little effect. Figurel®shows us that, while most programs
are largely insensitive to the abortion cost, provided thet above 100, a few programs can
vary their performance by up to 20%. We are not sure why sormgrams vary so much. A
limited investigation suggests that such programs ofter laecritical point where punishment
for an abortion may cause an importaet to stop being speculated.

12.3. Profiling 165

Effect of Max Depth Limit on Performance
Geometric mean over all benchmarks
130%

128% +
125%
123% +
120%
118% ++
115% 1
113% -+
110%
108% +—
105% N
103%
100%
98%

Relative Runtime

-
—.— e

0 8 16 24 32 40 48 56 64
Max Depth Limit

Figure 12.16 : Performance Effect of Adjusting the “max depth limit” Tunable—geometric mean

12.3.5 What should the Maximum Allowed Speculation Depth Be ?

The “max depth limit” is the maximum depth to which alt is allowed to speculate. This
value is one of the parameters used to determine how goodnesapped to a depth limit
(Section 9.1.2).

Figure 12.16 shows the effect that the maximum depth limst dva performance. If the
maximum depth limit is too low then speculation is overly stvained and performance suffers.
The exact choice of maximum depth limit does not seem to matteh so long as it is greater
thans.

12.3.6 What should the Initial Speculation Depth Be?

The “initial depth limit” is the depth limit that everlet has when a program starts, before any
profiling has taken place. Figure 12.17 shows the effectttiiathas on performance. If the
initial depth limit is zero, then no speculation can everetgkace, and performance suffers.
Other choices of initial depth limit make relatively litttifference as the depth limit will be
quickly corrected by the profiler.

12.3.7 What should the Chain Limit Be?

In Section 9.4.1 we presented the ideguadfile chaining in which an unprofiled venture can
be turned into a profiled venture if it demands a costed iotoa. In that section, we also
discussed the idea ofchain limitwhich is a bound on the number of chaining operations that
any unit of blame can pass through. Figure 12.18 and 12.19 steeffect of varying the chain
limit. While a limit of 5 gives the best performance, it is hard to tell whether thisiss an
artifact of our selection of benchmarks; indeed there is osistent pattern followed by all
benchmarks.

166

Chapter 12. Results

Effect of Initial Depth Limit on Performance

Geometric mean over all benchmarks

133%

130%

128%

125%

123%

120%

118%

115%

113%

110%

108%

Relative Runtime

105%

< P ——

103%

100%

98%

0 10 20 30 40 50 60 70

Initial Depth Limit

Figure 12.17 : Performanc

102.5%

e Effect of Adjusting the “initial depth limit” Tunable—geometric mean

Effect of Chain Limit on Performance
Geometric mean over all benchmarks

102.0% VAN //

Relative Runtime

99.5% T T T T T T T T
1

101.5% / -
101.0% \ /\/
100.5% \/

100.0%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chain Limit

Figure 12.18 : Performance Effect of Adjusting the “chain length” Tunable—geometric mean

Effect of Chain Limit on Performance
Separate curve for each benchmark

120%

115%

P _— ?
/ —— \ " YA —

110% +

105%

100% 4

Relative Runtime

95% 4~

90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chain Limit

Figure 12.19 : Performance Effect of Adjusting the “chain length” tunable—all benchmarks

12.4. Metrics 167

Effect of Abort Threshold on Performance
Geometric Mean over All Benchmarks

107%

106%

105%

104% ‘

103%

102% 7+
\l\ AN
% / N\

101%

Relative Runtime

100% e

99%

T T T T T T !
0 2000 4000 6000 8000 10000 12000 14000
Abort Threshold

Figure 12.20 : Performance Effect of Adjusting the MAXBLAME Tunable—geometric mean

Effect of Abort Threshold on Performance
Separate Curve for Each Benchmark

165% I
160%
155%
150%
145%
140%
135%
130%
125% i
ok Jr
110% T

A\
105% BB b L s

100% S —_—

Relative Runtime

95% ¥ = —
90% 4= =
85% + T T T T T T 1
0 2000 4000 6000 8000 10000 12000 14000
Abort Threshold

Figure 12.21 : Performance Effect of Adjusting the MAXBLAMEFE Tunable—geometric mean

12.3.8 How Quickly should We Abort?

Figures 12.20 and 12.21 illustrate the effect of varyingth®XBLAME value, as described in
Section 10.1. If abortion takes place too quickly then penfance suffers, but the exact value
makes little difference, provided it is greater than arod880. As with most other variables,
the majority of benchmarks show little variation, howevésa are quite sensitive to the choice
of MAXBLAME value.

12.4 Metrics

In this section we present various statistics that providaaight into the way that Optimistic
Evaluation works.

168 Chapter 12. Results

Goodness vs Real Speedup

‘D relative speedup [l relative goodness ‘

150%

125% i

100%

75%

50%

25%

Relative Runtime

3?

0%

-25%

13A0q
eUUR
1dsq
S)ulelISU0d
ssaidwod
wisoin
Aysnep
piny
wos|ny
gaaweb
TwyeldAn
|opuew
bdy

JET]
213yds
19ssed
woe
bojoid
dndai
esl
brewAs

Figure 12.22 : Goodness compared to Real Speedup

Rate of Allocation

MBytes per Second
D
o
Il Il Il Il Il } Il Il Il Il Il

=N
oo o
P

s | |
s
men | |

====H1111

19A0q
eUUR

1dsq
Surensuod
ssaidwod
wisoun
Ajsnep
wos|n}
galweb
TwyeldAn
|opuew
bdy

JET
ayds
J9sted
wole
bojoid
3ndas

esi
blewAs

Figure 12.23 : Rate of allocation

12.4.1 Goodness as an Estimate of Performance

The online profiler estimates the performance of OptimiBtaluation using a metric called

goodnesgsee Chapter 6); but is this estimate accurate? Figure t2r@pares the real speedup
of each of our benchmarks with the total goodness, as mahbyre profiler. The speedup is
calculated relative to the fully lazy evaluator of Figure3.2

We can see from Figure 12.22 that, while the goodness isdar breing a perfect measure
of performance, it is usually pretty reasonable. The onbgpeims whose performance estimate
is off by a large amount arenfer, atom andprolog. It is reassuring that in all these cases,
goodness underestimated, rather than overestimatedparice. These results suggest that

our current profiler is estimating performance reasonaldil, vout that there is still room for
improvement.

12.4. Metrics 169

Abortions per Second

40 —

35 |

30

ond

25

20

15+

Abortions per Sec

10+

:
|

esl 4]

BlewAs

T
nnnnnnnnn

wole 4]

12Aoq
euve |
1ds! i
Srensuo
ssaidwo: i
TwyiueldAs
|opuew 4]
bay ||
JETV} i
Qayds |
Jasted i
Bojoud [
andas i

Figure 12.24 : Abortions per second

12.4.2 Heap Allocation as an Estimate of Work

The profiler uses heap allocation as an estimate of work ddeetipon 9.1.1), but is it a good

estimate? Figure 12.23 gives the allocation rates for eAcduobenchmarks, expressed in
bytes allocated per second of runtime. If heap allocatioa ¢g@od estimate of runtime then
we would expect the allocation rate to be the same for all lnacks. In practice it varies by

around a factor of five. Given that each of these allocatitesrs the average allocation rate for
an entire program run, it is likely that the local allocati@te varies significantly more. This

suggests that, although measuring blame with heap altycagems to work well in practice,

cycle counting (Section 12.7.2) is probably the more rédi@pproach.

12.4.3 How Common is Abortion?

Figure 12.24 gives figures for the rate of abortion for eacbusfoenchmarks. The benchmark
that aborts most frequently isonstraints, which aborts around 40 times a second. Most
programs abort significantly more rarely, with a mean of atbliO abortions per second.

12.4.4 How Much Speculation Takes Place?

Figure 12.25 shows the proportionlet evaluations that are speculated for each of our bench-
marks. We can see that no benchmark speculates less thanf33%e6 evaluations, and that,
on average, a program will speculate 62% olétsevaluations.

12.4.5 What is the Distribution of Speculation Sizes?

Figures 12.26 and 12.27 show the distribution of blame aaal\ork (Section 3.3.3). In these
graphs, each group of columns represents a range of posgbt and each column represents
the proportion of speculations that had blame or local woitkiw that range, for a particular

170 Chapter 12. Results

Proportion of Let Evaluations Speculated

100%

90% B —
80% — o ——
70% — — ——
60% — — ——

50% — — ——
40% — — ——
30% O - -
20% - - -
10% — — —
0% +—L R B e e e o

- ,

2

2

Figure 12.25: Percentage of let evaluations that are speculated

euuR

1dsq i
S)ureNSU0d
ssaidwod
wisoup
Ajsnep
piny
wos|ny
qaiweh
TwyeldAn
|opuew
bdy
Byl
al1ayds
Jasred
woje

bojosd Aﬁ"]

9|ndas i
esl
brewAs

Distribution of Speculation Blame

100%
90%
80%
70%
60%
50%
40% H
30%
20%
10%

0%+

Proportion of Speculations

L TR LIl N P | I g

-31 32-63 64-127 128- 256- 512- 1024- 2048- 4096+
255 511 1023 2047 4095
Blame, in bytes

Figure 12.26 : Distribution of Blame

benchmark. We can see from these graphs that very few sgieaglallocate more than 64
bytes locally, or accumulate more than 128 bytes of blame c&ealso see that a significant
proportion of speculations allocate more than 32 bytedlpca

12.4.6 What Proportion of Speculations are Used?

Figure 12.28 shows the proportion of speculations that twtnto be needed, grouped by the
amount of work that was blamed on them. We can see that thenagstity of speculations are
used, but that the profiler allows very cheap speculatiobg tosed more rarely than others.

One might worry that the last benchmark seems to only needal proportion of its spec-
ulations. This benchmark isymalg, which only performs a total of25 speculations. This is
not sufficient to allow the profiler to warm up, or to waste mibran a tiny amount of work.

12.4. Metrics

171

100%
90%
80%
70%
60%
50%
40%

Proportion of Speculations

Distribution of Speculation Local Work

30%
20%
10%

0% -+

‘.ﬂﬁ]ml .

0-15 16-31 32-63 64-127 128- 256- 512- 1024- 2048- 4096+
255 511 1023 2047 4095

Local work, in bytes

Figure 12.27 : Distribution of Local Work

100%
90%
80%

60%
50%
40%
30%
20%
10%

Proportion of Speculations that were Needed

70% i

0%

Proportion of Speculations Needed

0-15 16-31 32-63 64-127 128- 256- 512- 1024- 2048- 4096+
255 511 1023 2047 4095

Blame assigned to speculation

Figure 12.28 : Proportion of Speculations that were Needed

100%
90%

60%

30%

Proportion of Speculations that Took Place at that Depth

80% H

50%

20% &
10% |
0%+—=

Distribution of Speculation Depths

A~

= o V\ T \/ U T T U T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Speculation Depth

Figure 12.29 : Distribution of Speculation Depths at which Speculations Take Place

172 Chapter 12. Results

Distribution of Chain Lengths

100%
90%
80% |
70% =
60% {—|

50% 1T—
40%
30%
20% '
0% : : L
0 1 2 3 4
Chain Length

Proportion of entries with that length

M

Figure 12.30 : Distribution of Chain Lengths

12.4.7 How much Chunky Evaluation Takes Place?

Figure 12.29 shows the distribution of speculation depthatdch speculations took place.
The horizontal axis is the speculation depth (see Sectibr? &hile the vertical axis is the
proportion of speculations that took place at that deptichEarve represents the behaviour of
a particular benchmark. We can see from this graph that tsiervajority of speculations take
place at depths less thaf, but also that a significant proportion of speculations fallaee at
depths greater thah

12.4.8 How Long do Profile Chains Get?

Figure 12.30 shows the distribution of chain lengths (se®i@®9.4.1) for the different bench-
marks. These tests were done with a chain limit.oAs we can see, many chains never last
for longer than one link, but once a chain has grown to lengiht#as a very good chance of
lasting to length 4 (or beyond if the chain limit is greater).

12.5 Semi-Tagging

12.5.1 What is the Performance Effect of Semi-Tagging?

Figure 12.31 shows the performance effect of semi-taggimigath Optimistic Evaluation and
Normal GHC. We can see that, while semi-tagging only impsotfee performance of Lazy
Evaluation by an average of 2%, it improves the performaricd@paimistic Evaluation by an

average of 7%. Indeed, semi-tagging has a greater perfaeranefit for Optimistic Evalu-

ation on every benchmark exceptna, fulsom, andsymalg. A significant proportion of the

speedup from Optimistic Evaluation is due to the fact thatldws semi-tagging to be more
effective.

12.6. Heap Usage 173

Effect of Semitagging on Performance
‘D Normal GHC [l Optimistic Evaluation ‘

110%
100% N
90%
80%
70% 1
60%
50% 1
40% |
30%
20% |
10% |
0% +

Relative Runtime

19A0q
eUUR
1dsq
Sjurelsuod
ssaidwod
wisin
Aysnep
piny
wos|n}
qaweb
TwyueldAn
|]opuew
bdy
Ijul
219yds
19ssed
woye
bojoid
9ndau
esl
brewAs

Benchmark

Figure 12.31: Performance Effect of Semi-Tagging for both Optimistic Evaluation and Normal
GHC

Semi-Tagging Success Rate
‘D Normal GHC [l Optimistic Evaluation ‘

100%
90%
80%
70%
60%
50% -
40%
30%
20%
10%

0%+

Proportion of Scrutinees that were Values

13hoq
euue
1dsq
SJUIeJISuod
ssaidwod
wisdun
TwyueldAn
Q1ayds
Jasied
woye
bojoid
9|ndais
es.
blewAs

Figure 12.32 : Percentage of Semi-Tagging Attempts that Find a Value

12.5.2 How Often does Semi-Tagging Succeed?

Figure 12.32 shows the success rate of semi-tagging forltasth Evaluation and Optimistic
Evaluation. As this graph shows, Optimistic Evaluatiomaaéically increases the proportion of
case scrutinees that turn out to be values. This explains thepeadnce results in Figure 12.31.

12.6 Heap Usage

In this Section, we explore the effect of Optimistic Evalaaton heap usage.

12.6.1 Space Leaks

Some programs are extremely inefficient when executedyldztause they contain a space
leak. People often post such programs onithekell mailing list, asking why they are per-
forming badly. One recent example was a simple word courgingram [Mau02]. The inner

174 Chapter 12. Results

Heap Residency

‘D Normal GHC [Optimistic Evaluation ‘

45000000
40000000
35000000
30000000
25000000
20000000
15000000
10000000
5000000
O,

Heap Residency in Bytes

T t
=
h=3
«Q

Figure 12.33: Effect of Optimistic Evaluation on Heap Residency

piny J
wos|ny
esl

S |
—

euue
1dsq
Ajisned

13hoq
SjuresIsuod
ssaidwod
an,LuEBA
TwyeldAn |
[opuew |
JETU]
a1ayds
J9ssed
woye
bojoid
9|ndai
BlewAs

loop (slightly simplified) was the following:

count :: [Char] -> Int -> Int -> Int -> (Int,Int)

(nw, nc)

count [] _ nw nc

count (c:cs) new nw nc
case charKind c of
Normal -> count cs O (nw+new) (nc+1)

White -> count cs 1 nw (nc+1)

Every time this loop sees a character, it increments itsraatating parametetc. Under Lazy
Evaluation, a long chain of addition thunks builds up, wehdth proportional to the size of
the input file. By contrast, the optimistic version evalgatiee addition speculatively, so the
program runs in constant space. Optimistic Evaluationdgp#@s program up so much that we
were unable to produce an input file that was both small enémghow the lazy implementa-
tion to terminate in reasonable time, and large enough tovalhe optimistic implementation
to run long enough to be accurately timed!

12.6.2 Heap Residency

Figure 12.33 illustrates the effect that Optimistic Evéiloiahas on heap residency: the maxi-
mum amount of data live in the heap during the program run.hssgraph illustrates, while
Optimistic Evaluation often reduces heap residency, tfeceis not particularly pronounced.
This suggests that, for the programs we have benchmarkedyetiormance improvements
achieved by Optimistic Evaluation are not due to removapaice leaks.

This is what one would expect: the programs in the NoFib date been written by expert
programmers, who can be assumed to have taken care to aaaid lgaks when writing their
programs. It thus seems likely that the programs that we hasmehmarked do not contain any
space leaks that Optimistic Evaluation could remove. Thesdot however mean that removal

12.6. Heap Usage 175

Heap Allocation
‘D Normal GHC [l Optimistic Evaluation

2000
1800
1600
1400
1200 - Wi
1000 - f {7
800 ~
600
400
200

Heap Allocation in MBytes

Jakoq
euue
1dsq
Surensuod
ssaidwod
wisaun
Ajisnep
piny
wos|ny
qaweb
TwpueldAn
|opuew
bdy

JEN]
al1ayds
J9ssed
woye
bojoid
sndas
es!
BlewAs

Figure 12.34 : Effect of Optimistic Evaluation on Heap Allocation

of space leaks in unimportant; while expert programmers bewble to avoid space leaks,

they are a common problem for novice programmers. It miglntazesting to see the effect of

Optimistic Evaluation on a corpus of programs written byxjperienced programmers and see
if the improvements are more pronounced.

Unlike most of our other graphs, Figure 12.33 shows absdiasp residency rather than
relative residency. This is to avoid programs lie andsphere distorting the overall picture,
despite the fact that their heap residency is negligible.

12.6.3 Heap Allocation

Figure 12.34 illustrates the effect that Optimistic Evéilia has on heap allocation: the total
amount of storage allocated during the program run, inalgiadnemory that was reclaimed
by the garbage collector. As the graph illustrates, Optimivaluation reduces the memory
allocation of every benchmark program we tested. This iabge it avoids allocating many of
the thunks that Lazy Evaluation would create in the heap.

12.6.4 Proportion of Time spent Garbage Collecting

Figure 12.35 shows the proportion of time spent in the gaglzadiector. As this graph illus-
trates, many benchmarks spend a large proportion of thainne in the garbage collector; thus
the amount of time spent garbage collecting is very impartdfe can also see from this graph
that Optimistic Evaluation has relatively little effect tme amount of time spent garbage col-
lecting; indeed it increases it by around 1% on average., Daisks up the conclusions drawn
form Figure 12.33: the performance benefits of OptimistialEation on this benchmark set do
not come from avoiding space leaks.

176 Chapter 12. Results

Time Spent Garbage Collecting

‘D Normal GHC [Optimistic Evaluation ‘

70%

60%

50% ‘

40%

30% -

20%
10%

0% =

19A0q
eUUR
1dsq
Slurensuod
ssaidwod
wisoun
Ayisnep
piny
wos|ny
go1web
TwyieidAn
[opuew
bdy
JET]
aJ1ayds
J9sied
woye
bojoid
a|ndal
esl
blewAs

Figure 12.35: Proportion of Time Spent Garbage Collecting

12.6.5 Heap Profiling

We implemented two heap profiling schemes, which we desariBection 9.3. Figures 12.36
and 12.37 illustrate the effect of a profiler extension thaiphes det every time a costed
indirection for thatlet is garbage collected. The horizontal axis is the factor byclihe
blame of a costed indirection is multiplied before beingtsatied from the goodness of list.
We can see that this extension does not gain much on averalyeafound 1.5%), but that it
can improve the performance of one prograthafusify) by 20%.

Figure 12.38 illustrates the performance of the secondlipm@fxtension described in Sec-
tion 9.3. This scheme adds a “lazy gc cost” to the goodnesslef avery time the garbage
collector collects a profiled thunk created for theat. This extension was found to always
cause a performance reduction, with the reduction inangeas the “lazy gc cost” increased.

12.7 Miscellanea

12.7.1 How Good is Flat Speculation?

In Section 8.2 we described an implementation techniquedlat Speculationlt is not fair to
compare our implementation of Flat Speculation directiheiur main implementation because
it was forked from an earlier version of GHC, it relied on pgtent speculation configurations
(Section 9.4.3), it used a different profiler, it used a défg semi-tagging mechanism, and it
was not stable enough to run the larger benchmarks. One eeevboobtain a rough idea of
its performance from Figure 12.39, which compares the perdince of Flat Speculation to the
performance of the GHC compiler that it forked from. Thisgrahows an average speedup of
around 20% (excludingordcount)—suggesting that Flat Speculation is roughly comparable
to our primary implementation technique.

12.7. Miscellanea 177

Effect of Heap Waste Profiling

Geometric mean over all benchmarks

102.0%
101.5% \ A
101.0%

100.5%

Relative Runtime

100.0%

99.5% T T T T T T T |
0 0.5 1 15 2 2.5 3 3.5 4

GC Cost Factor

Figure 12.36: Performance Effect of Adjusting the “garbage collection cost” Tunable—
geometric mean

Effect of Heap Waste Profiling

Separate curve for each benchmark

135%

130%

125%

120%
115%

110%

Relative Runtime

105%

100% =

95% T T T T T : : :
0 0.5 1 15 2 2.5 3 3.5 4

GC Cost Factor

Figure 12.37: Performance Effect of Adjusting the “garbage collection cost” Tunable—all
benchmarks

Effect of Lazy GC Cost

Geometric mean over all bencmarks
120%

118%
116%
114%
112%
110%
108%
106%
104% ///
102%
100% r~

98% : : : : : : : : : :

0 5 10 15 20 25 30 35 40 45 50
Lazy GC Cost

Relative Runtime

Figure 12.38 : Performance Effect of Adjusting the “lazy gc cost” Tunable—geometric mean

178 Chapter 12. Results

Performance of Flat Speculation

110%
100% — 1 —
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

s i |

Relative Runtime

—— | |

Sreibaul l

Tux |

T3-jo-subip
28-jo-suBIp |
g~ cdxa
sdxabas"uab
sulyered)
sawud l
[a/\a!s1aaqM4
ZBAB!S-|39L{M‘
wnodpiom | ‘ ‘
woye |
13Aoq)
wisoin
SurelIsuod
euue |

Figure 12.39 : Performance of Flat Speculation

Performance of RDTSC Profiling

vs Normal GHC
120% =

110%

80% -
70%
60% -
50%
40%
30%
20%
10%

0%

Relative Runtime
Il Il Il Il Il Il Il Il Il
N A I
T T T T T T T T T 1

mmmm— |

219yds

13A0q
euue |
1dsq |
SIURASUOD |
ssa1dwod |
wisou |
A};snepg
piny |
wosm;A
qu,unaBA
qulueldmf
|opuew |
.

JETU]

J9ssed
wore |

bojoud

d|ndal

esi
BlewAs i

Figure 12.40 : Performance of RDTSC Profiling

12.7.2 How Good is RDTSC Profiling?

Figure 12.40 shows the performancerdtsc profiling, as described in Section 9.4.4. The av-
erage performance improvement was 16%, compared to 20%ddreap allocation approach,;
however our implementation afitsc profiling is less mature than our implemenation of heap
profiling, and we believe that similar performance shoulétiainable with further work.

12.7.3 What Effect does Strictness Analysis Have?

Figure 12.41 shows the effect of strictness analysis on baty Evaluation and Optimistic
Evaluation. Somewhat surprisingly, strictness analysesss to bring about roughly the same
performance gains under Optimistic Evaluation as it doeeuhazy Evaluation. We are con-
fused by this result: we would expect strictness analysisaiee less effect under Optimistic
Evaluation as the two techniques would be trying to avoidsdmae thunks. We find it particu-
larly interesting that there are some benchmarks for whiattsess analysis has a greater effect
on Optimistic Evaluation than on Lazy Evaluation. We betid¢lvat this unexpected result may

12.7. Miscellanea 179

Effect of Strictness Analysis on Performance
‘D Normal GHC [l Optimistic Evaluation ‘

110%
100% -
90% 1

80%]

70% |

60% 1

50%

40%

30% |

20%]

10%

0%+

Relative Runtime

19A0q
euue
1dsq
Sjuessuod
ssaldwod
wisaun
Ajisned
piny
wos|ny
qaiweb
TwyieldAn
|]opuew
bd
Ryl
Q19yds
19sied
woye
bojoid
d[ndai
esi
blewAs

Figure 12.41 : Effect of Strictness Analysis on Performance

Performance Overhead of Tranisent Tail Frames

1100%
1000% B
900%
800% -
700% -
600% -
500% -
400% -
300% -
200% *
100%
0%

Relative Runtime

§

19A0q
eUUR

1dsq
Surensuod
ssaidwod
wisoun
Aysnep
piny
wos|ny
gaweb
TwiypueldAn
|lopuew
bdy

JET]
asayds
19sted
wole
3ndas

esl
blewAs

Figure 12.42 : Performance Overhead of Transient Tail Frames

be due to the effect that strictness analysis has on the GH@ispr: often quite complicated
transformations may be made to a program, based on strgdimesmation.

12.7.4 How Expensive are Transient Tail Frames?

In Section 11.3 we discussed transient tail frames, andagxgd how they make debugging
easier. Figure 12.42 shows the performance overhead Hraiént tail frames cause. The
average slowdown is 69%. This overhead can be significaedyaed if only part of a program
is compiled with transient tail frames.

One program runs over 10 times sloweFhis program contains a simple function that calls
itself recursively with a large number of arguments. Whads thnction executes normally, it
does not need to push anything on the stack at all; howeven vlexecutes with tail frames
enabled, it has to push a large frame on the stack for everysige call. We believe that it
should be possible to extend our implementation of tail #arto avoid being caught out by
functions such as this. One approach would be to detect suciidns statically and only push

180 Chapter 12. Results

Performance Effect of Eager Blackholing

110%

100% T T — * — =
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Relative run time
——t—f—f—f—+—f—+—
[[[[[[[[[
[[[[[[[[|
[[[[[[[[|
[[[[[[[[[]
[[[[[[[[[
[[[[[[[[[]
[[[[[[[[|
[[[[[[[[|
[[[[[[[[|
[[[[[[[[|
[[[[[[[[|
[[[[T T T 1
[[[[[[[|
[[[[[[[[|
[[[[T T [T 1
[[[[[[[[|
[[[[[[[[|
[[[[T T [T 1
[[[[[[[[|
T T T T T T T T T 1

J9A0q
eUUR
SureNSuU0d
ssaidwod i
wisaun i
Ayisnep
piny)
wos|ny
ga1web i
TwyierdAn
|opuew
JENI]
21ayds
J9sted
wole
bojoid |
3|ndai
13
blewAs

Figure 12.43 : Performance of Eager Blackholing relative to Lazy Blackholing

tail frames for them if explicitly requested by the prograsrmAlternatively, we could use a
static analysis to discover which arguments could haveditf from the previous recursive call,
and only include these in the tail frame. Another possiblevitxild be to push tail frames onto
a special circular stack, and thus only remember the lastlsl daus avoiding the overhead of
removing them during garbage collection.

12.7.5 Is Lazy Blackholing Worth the Extra Complexity?

In Section 8.4 we discussed Lazy Blackholing and explainky #vcauses problems for Opti-
mistic Evaluation. Figure 12.43 shows the performancecetiéturning off Lazy Blackholing
for Optimistic Evaluation: it actually speeds programs ypab average of 1%. These results
suggest that lazy blackholing is not worth the consideraktea complexity it entails.

The results with lazy blackholing enabled were obtainedgisin implementation that in-
cluded sulfficient fixes to allow all the benchmark programeutg however it is possible that
bugs such as those described in Section 8.4 may accountfar gbthe observed performance
difference.

3We previously [EP03a] reported that the worst performaneehad managed to provoke for transient tail-
frames was a factor ¢f slowdown. This was at an early stage in the development ofedaB, when we had not
tested many programs.

CHAPTER 13

Related Work

In this chapter, we describe previous work that has sinigarito the work presented in this
thesis.

e In Section 13.1 we discusStatic Hybrid Evaluation StrategiesThese are evaluation
strategies that, like Optimistic Evaluation, attempt tontine lazy and eager evaluation;
however, unlike Optimistic Evaluation, the choice of howet@luate eacket is made at
compile time, rather than at runtime.

¢ In Section 13.2 we discudsager Haskell Eager Haskell is an evaluation strategy that,
like Optimistic Evaluation, uses speculative evaluationniprove the performance of
non-strict programs. The main difference from our work @tthvhile we use an online
profiler to decide whicHet expressions to speculate, Eager Haskell speculatéstall
expressions.

¢ In Section 13.3 we discusipeculative Evaluation for Multiprocessor Parallelisvar-
ious language implementations have used speculativeai@iuo increase the number
of concurrent tasks in a program and so find work for idle pssoes to do. While Op-
timistic Evaluation tries to speculate small expressipasallel speculation strategies try
to speculate large expressions. This leads to very diffengoroaches.

e In Section 13.4 we discusSpeculative Evaluation for Uniprocessor Parallelisrii a
processor has a large number of instruction units then a b@nnpay perform speculative
operations on instruction units that would otherwise be.i#While these ideas could be
applied to non-strict languages, we are not aware of any watkdoes this.

181

182 Chapter 13. Related Work

e In Section 13.5 we discuss previous work that is similar # ¢bst model that we pre-
sented in Chapter 5. While many previous cost models have p@sented, we are not
aware of any other model that is high level, composable, atelta model any hybrid of
lazy and eager evaluation.

e In Section 13.6 we discuss previous work that has used profiliwhile much such
work exists, we are not aware of any previous work that had psefiling to direct the
evaluation of non-strict programs.

¢ In Section 13.7 we discuss previous debuggers for non:Eriguages and compare them
to the debugger described in Chapter 11. While many suchgdgdos have been written,
no previous work implements the stop-examine-continueghitét our debugger uses.

e In Section 13.8 we discuss previous work that has attemptedduce the amount of
space that non-strict programs require.

¢ Finally, in Section 13.9 we discuss evaluation stratedias are not hybrids of lazy and
eager evaluation.

13.1 Static Hybrid Strategies

Much previous work has attempted to combine Lazy Evaluatith Eager Evaluation, how-
ever most of this work has focused on static analyses ocsdatiotations, rather than a dy-
namic, adaptive strategies.

In the subsections that follow, we discuss Strictness Aattiais (Section 13.1.1), Strictness
Analysis (Section 13.1.2) and Cheapness Analysis (SetB8dh3).

13.1.1 Strictness Annotations

Strictness annotations are perhaps the simplest way of ioamgdazy and eager evaluation.
Rather than letting the language implementation decidehlvbxpressions should be evaluated
eagerly, the programmer gives this information expliailyheir program.

13.1. Static Hybrid Strategies 183

The ‘seq’ function

Haskell includes aeq ‘function’ that can be used to force the immediate evaluatd an
expression.

seg:a—b—b

seq forces evaluation of its first argument and then returnsatosd argumentseq is the
cause of much controversy in the Haskell community [Voi0Zr@2] due to the fact that it
breaks several laws that would otherwise hold for Haskeijpams.

Most other non-strict languages have similar construcisgkample Clean [BVEVLP87,
NSVEP91] has a speciaét! construct that evaluates its right hand side eagerly. BatskElll
and Clean also allow data types to include strictness irdition, causing an implicieq to be
applied to any closure whose value is placed in a strict field.

Laziness Annotations

Many strict languages allow one to use annotations to initedaziness. At the simplest level,
one can implement Lazy Evaluation in a strict language byesgnting a thunk as an object
with an evaluate method. At a slightly higher level, many strict languages provige-s
tactic sugar that makes it easy to embed Lazy EvaluationeXxample thelazy keyword in
O’Caml [LRVD98] ordelay andforce in Scheme [KCR98].

In practice, a typical non-strict program will only make @ssal use of laziness in a small
proportion of its expressions; it is thus fairly easy for agnammer to mark these expressions
as being lazy. Many people argue that laziness annotatrergoad style; if a program relies on
Lazy Evaluation, this should be a deliberate policy deaisiod thus should be made explicit in
the program text.

13.1.2 Strictness Analysis

Most compilers for non-strict languages make use of a statadysis calledstrictness Analysis
to determine which expressions should be evaluated eagstlictness Analysis attempts to
find expressions that are certain to be evaluated under Leal&tion and which can thus be
evaluated eagerly without risking poor performance or tesmination. There has been a lot of
work done on Strictness Analysis [Myc81, BHA86, MN92, WH&rd the technology is now
very mature.

184 Chapter 13. Related Work

Online Profiling vs Static Analysis

A strictness analyser has to be very careful because it adks if it makes a mistake. |If
Strictness Analysis were to mistakenly decide to evaluatexpensive unneeded expression
eagerly then the program could waste the total cost of allatians of that expression. Without
abortion or adaption there is no way for the system to rectreen a bad decision. Strictness
Analysis is thus forced to be very conservative.

By contrast, Optimistic Evaluation risks a lot less if it neala mistake. If Optimistic Evalu-
ation mistakenly decides to evaluate an expensive unneeghedssion eagerly, then the profiler
and abortion mechanism ensure that only a relatively smadluat of work can be wasted be-
fore the expression will revert to being evaluated lazilyisTallows Optimistic Evaluation to
be a lot more aggressive than Strictness Analysis.

Strictness Analysis can make Programs Slower

It should be noted that Strictness Analysis is not guaranteeémprove the performance of a
program. Consider for example the following program:

fo="1
fn= n:f(n—-1)
gll=0

g(x:xs)= 1+ g(xs)

main = g (f 1000000000)

The recursive calls tg are needed, and thus a strictness analyser may make themidage
ever, if f is evaluated eagerly thefi 1000000000 will build up an enormous structure in the
heap and so evaluation atain will require a lot of space. By contrast, ff was evaluated
lazily then the list producef and the list consumey would run in lock-step, causinguain

to run in constant space. If heap space is increased theaggdwllection time can increase
(Section 9.3.1) and so Strictness Analysis is likely to miak®program run more slowly.

As we explained in Section 9.3.2, we have implemented a craeehanism which we
believe should prevent this problem occurring with Optimi&valuation; however we believe
that further work is required in this area.

1This particular program can be simplified by deforestatiad90a, Wad84, GLP93], however not all such
programs can.

13.1. Static Hybrid Strategies 185

13.1.3 Cheapness Analysis

Cheapness Analysis [Myc80, Fax00] is another static aislgsthe same vein as Strictness
Analysis. Like Strictness Analysis, Cheapness Analys&@res the static text of a program
and attempts to find expressions that can be safely evalaatgtly. The key difference is that
while Strictness Analysis looks for expressions that arerguteed to be needed, Cheapness
Analysis looks for expressions that are guaranteed to bagpche

How it works

Isz+1 cheap to evaluate? It depends on whethisralready evaluated. if is an argumentto a
function then we may need to examine all calls to the funetiand that is not straightforward
in a higher-order program. Faxén solves this problem uaisgphisticated whole-program
flow analysis. Unfortunately, being a whole-program analyis causes problems for separate
compilation. These problems are probably soluble—for gdarhly compiling multiple clones
of each function, each suitable for a different evaluatiattggn—but they further complicate
the implementation. This is why we were not able to implenod®ap eagerness in GHC for
comparison purposes.

Dynamic Cheap Eagerness

A further development, Dynamic Cheap Eagerness [FaxOg&k agnore complicated analysis
to find cheap recursive functions and arrange for them tdlvathselves eagerly up to a certain
depth. The effect is very similar to the speculation depthitd used by Optimistic Evalua-
tion, however the limits are determined at compile time byagéis analysis, rather than being
determined at runtime by a profiler.

Performance

Faxén reports some promising speedups, generally in tigeera-25% relative to his baseline
compiler, but these figures are not directly comparable t8.0As Faxén is careful to point
out, (a) his baseline compiler is a prototype, (b) his stess analyser is “very simple”, and
(c) all his benchmarks are small. The improvements from @hess Analysis may turn out to
be less persuasive if a more sophisticated strictnessseraynd program optimiser were used,
which is our baseline. (Strictness Analysis does not recaiwhole-program flow analysis, and
readily adapts to separate compilation.)

186 Chapter 13. Related Work

Worst Case Performance

How cheap is cheap? Cheap Eagerness uses a fairly arbitraghold for deciding whether an
expression is cheap. Importantly, this threshold is caraioly greater than the cost of building
a thunk. If Cheap Eagerness eagerly evaluates a lot of chgmpssions that are not needed
then performance can be considerably worse than Lazy Bvatud his problem is made worse
by Dynamic Cheap Eagerness: although the body of a recudtsieéon may be cheap, this cost
must be multiplied by the number of times that the functioaliswed to call itself recursively.

It is of course possible to improve the worst case performdncreducing the threshold
below which an expression is considered to be cheap, anddugireg the depth to which a
recursive function is allowed to be called. However such ange will reduce the amount of
eager evaluation that can take place and will make the aggragormance worse.

13.1.4 Other Static Optimisations

There exist many other static optimisations that can imgtbe performance of non-strict pro-
grams. A patrticularly interesting example is the GRIN pecbjB0og99]. GRIN does a lot of
clever optimisations, but perhaps its most interestingmapation is its thunk inlining transfor-
mation. GRIN performs a whole-program flow analysis for agpam, attempting to discover
which thunks can be evaluated at any particular point. @emdior example the following
program:

fz= x+1

gy= letp=y+1 in
letg=y+2 in
(fp)+ (fa)

GRIN'’s flow analysis will realise that, inside the body fafx must be eithep or ¢. It will thus
translate this program into something rather like the foifey program:

fr casex of
ThunkP y —y+1+1
Thunk@Qy —y+2+1

gy let p= ThunkP y in
let ¢ = Thunk@ y in
(fp) + (fq)

We can see that the code for the thupks 1 andy + 2 has been inlined at the point at which
the thunks might be demanded. This optimisation, togetlitr thve further optimisations that

13.2. Eager Haskell 187

it enables, can significantly reduce the cost of Lazy Evaluat

Another interesting static optimisation is Wansbroughsage analysis [Wan02, WP99].
This uses an analysis similar to that used for linear typesd®Ub, Bak95, TWM95] to detect
thunks that can only be used at most once. If a thunk can be atsest once then the
implementation can avoid the cost of pushing and later exg@n update frame (Section 7.4.2).

13.2 Eager Haskell

Eager Haskell [Mae02b, Mae02a] was developed simultamgdug independently, from our
work. Its basic premise is identical: use Eager Evaluatoimiprove the performance of non-
strict programs, together with an abortion mechanism td loat when eagerness turns out to
be over-optimistic. The critical difference between Edgaskell and Optimistic Evaluation is
that while Optimistic Evaluation uses an online profiler exidle which expressions should be
evaluated eagerly, Eager Haskell evaluates everythingrigag

13.2.1 Code Generation

The code generated by Eager Haskell is largely the same dsl Wegenerated for a conven-
tional strict language such as ML [MTHM97]et expressions never evaluate lazily, and so
there is no need to generate any code for lazy thunks or taageneranches at the beginning
of let expressions.

13.2.2 Abortion

What distinguishes Eager Haskell from a conventional tstasguage implementation is its
abortion mechanism. Like Optimistic Evaluation, Eager kédisuses abortion to back out of
speculations that turn out to be too expensive; howevertbdian mechanism in Eager Haskell
is very different to that used by Optimistic Evaluation.

Optimistic Evaluation considers abortion to be a tool of tasort, using profiling as its pri-
mary mechanism for preventing wasteful speculation. Aslvesved in Section 12.4.3, abortion
is a rare event, taking place only if a speculation has bemmimg for a very long time. If spec-
ulations spawned by ket are frequently aborted then it is likely that the profiler lvaitoid
speculating thalet in the future.

By contrast, Eager Haskell uses abortion as its primary ar@sm for coping with wasteful
speculations. This leads to very different design choiéé®rtion in Eager Haskell is frequent
and periodic: once a given amount of heap has been alloatedgecution will be aborted. The
Eager Haskell abortion mechanism does not care how long etiwe &peculations have been
running for, or even whether the program is speculatinglatabortion is purely periodic.

188 Chapter 13. Related Work

The mechanism used for implementing abortion itself is alsxy different from that of
Optimistic Evaluation. While Optimistic Evaluation marmagabortion in the runtime system,
Eager Haskell instead puts the abortion code for an exmressithe expression code itself.
Once the abortion flag is set, any subsequent function céllireturn a suspension instead
of evaluating its body. If acase expression finds that its scrutinee is a suspension then it
will return a suspension itself. Similarly, a function aigption will return a suspension if the
function being applied evaluates to a suspension. Abodorinues right back to the root of
the stack. Once abortion has completed, evaluation isrtedthy forcing the suspension for
the root computation.

Eager Haskell has gone to considerable effort to make amovéry efficient. The abortion
check at the entry to a function is cunningly combined witlesls check, making it essentially
free. Similarly, various tricks are employed to allow laxgrinks of stack to be aborted and
restored without having to be repeatedly copied betweeme¢a@ and stack. Eager Haskell’s
abortion mechanism is thus considerably more efficient thainused by Optimistic Evaluation.

13.2.3 Chunky Evaluation

Eager Haskell's periodic abortion gives it a form of chunksleation, but with chunk sizes
being limited by abortion frequency rather than by specutatepth. To see the effect that
this has, consider a tree structure in which the first child nbde is always unneeded, but the
second child is always needed. Optimistic Evaluation wiikcgly learn to evaluate the second
child of a node chunkily but to evaluate the first child laziBy contrast, Eager Haskell will
always evaluate the tree in a depth first manner. It will fwltbe first child of a node and may
be aborted before it has a chance to evaluate the second child

13.2.4 Worst Case Performance

Eager Haskell is able to guarantee that, in the worst casd| iie only a constant factor slower
than Lazy Evaluation; however the constant factor invoigeglite large: Maessen reports that
theconstraints program from the NoFib suite slows down by a factor of over [N8e02a].
Bad behaviour such as this occurs when there are many ekpresbat are expensive and
unused; Eager Haskell will evaluate them all eagerly, arnius likely to spend a considerable
proportion of its time doing unnecessary work.

Increasing the abortion frequency will reduce the amounwadted work, but it will also
increase the overheads, as the proportion of runtime tgkéy abortion increases. Itis thus the
case that, in order to achieve good performance on averaganast accept bad performance
in the worst case.

The worst case performance of Eager Haskell relative to Eaajuation is arguably unim-
portant. Rather than seeing Eager Haskell as a new way toageadxisting Haskell programs,

13.3. Speculative Evaluation for Multiprocessor Parallelism 189

it is perhaps better to see Eager Haskell as a new languagh wehiargely compatible with
Haskell, but which has different semantics. If a programrigten with Eager Haskell in mind
then it is not hard to ensure that Eager Haskell will evalita¢fficiently. In particular, Eager
Haskell has support for laziness annotations that can be lnsea programmer to mark ex-
pressions that should not be speculated. One might arguarnhatating expressions that are
potentially expensive and unnecessary is good programstyhe), regardless of the evaluation
strategy being used.

13.2.5 Average Performance

The average performance of Eager Haskell is consideralitgrian its worst case perfor-
mance but is, at least at present, inferior to that of OptimiSvaluation. In Maessen’s the-
sis [Mae02b] he claims an average slowdown of 60% relativeHi&, compared with an aver-
age speedup of around 20% for Optimistic Evaluation.

It is likely that Eager Haskell could be made significantlgtéa. Unlike us, Maessen wrote
his compiler from scratch; it is thus considerably more ptiira than ours and has many ways
in which it could be made significantly faster. It seems reabte to assume that, for suitably
written programs, a more advanced implementation of Eagekéll should be able to approach
the speed of a high-performance strict functional langsageh as O’Caml [LRVD98].

In some benchmarks Eager Haskell achieves performanas thetter than Optimistic Eval-
uation; however one has to bear in mind that Optimistic Eatidun incurs considerable over-
heads in its switchabl&t expressions and online profiler; both of which are esseiiittak
worst case behaviour is to be bounded.

13.3 Speculative Evaluation for Multiprocessor Parallelism

The parallel programming community has been making use exfigption to exploit multiple
processors for a long time [Bur85]. There, the aim is to make of spare processors by
arranging for them to evaluate expressions that are no} kpetvn to be needed. There is a
large amount of work in this field, of which we can only cite aadinsubset.

13.3.1 Basic Principles

Optimistic Evaluation and Speculative Evaluation for Njuibcessor Parallelism look superfi-
cially very similar: both systems evaluate expressionsiaut knowing that they are needed.
However there are important differences.

Under Optimistic Evaluation, every cycle spent in a spaordaevaluation is a cycle that
could instead have been spent doing useful work. It is thialyimportant that the expression

190 Chapter 13. Related Work

being speculated is actually needed. By contrast, speaulavaluation for multiprocessor
parallelism will typically perform speculative evaluat®on processors that would otherwise
be idle. While such systems would prefer it if the expressibeing speculated were needed,
the issue is far less pressing.

There is a similar dichotomy regarding the sizes of spemal@valuations. In Optimistic
Evaluation, each speculative evaluation saves the faohstant amount of work that would
be required to build a thunk, but potentially wastes the amhofi work spent performing the
speculative evaluation. Optimistic Evaluation thus aimgérform a large number of small
speculations. By contrast, in a parallel setting, eachidptiee evaluation wastes the fairly-
constant amount of work required to fork a new process, btértially-saves the amount of
work spent performing the speculative evaluation. Pdrsjlstems thus aim to perform a small
number of large speculations.

These two differences cause multiprocessor speculatstesyg to be designed in very dif-
ferent ways to Optimistic Evaluation.

13.3.2 Making Speculation Efficient

A lot of work in the parallel community focuses on making plespeculation efficient; how-
ever most of this work is inapplicable to Optimistic Evaioat

One interesting example is Local Speculation. Local Spemr [MJG93, Cha98] does
some speculations on the local processor when it would wikerbe waiting. This avoids
the overhead of transferring work to another processor dodisshorter speculations to be
worthwhile.

Another strand of work attempts to aggregate tiny threatts larger, compound threads
that can be spawned together and thus share their thretigpstasts [Tra88, SCG95]. In some
ways this is closer to our work: Lazy Evaluation is a bit likergllel evaluation scheduled on a
uniprocessor, while Eager Evaluation instead aggreghgethtead for the right hand side of a
let into the thread for the body. However the issues addressedeay different; as Schauser
puts it “the difficulty is not whatanbe put in the same thread, but wisltouldbe ... given
communication and load-balancing constraints”. Furtleeansuch thread partitioning systems
are static, whereas our approach is dynamic.

13.3.3 What To Speculate

Which expressions should be evaluated speculatively?

The simplest answer is to evaluate everything speculgtividiis is the approach taken by
leniently evaluated dataflow languages such as Id [Nik9dl]@# [NAOL]. A lenient language
will evaluatelet x = F in E’ by starting a new task foff and then evaluating’. Eager

13.4. Speculation for Uniprocessor Parallelism 191

Haskell (See Section 13.2 has its roots in the world of leniemguages, and can be seen as
being rather like a sequential implementation of pH.

Another approach is to provide an explicit language cogstiinat lets the user specify
which expressions should be speculated. MultiLisp [Osb&385] allows expressions of the
form (future E) that specify that the expressidn should be evaluated in parallel with the
current task, in the hope that its value turns out to be u$ef95].

Clearly some speculative tasks are more likely to be uskéu bthers. There has thus been
considerable work on assigning priorities to tasks. At flhgptest level, one can give specula-
tive tasks lower priorities than mandatory tasks, ensutiatja speculative task never prevents
a mandatory task from running. Extensions of this includgesys in which the priority of a
task takes into account user assigned priorities [Bur8@3h@depth of speculation [Mat93], or
its reachability from other tasks [Par91, PD89].

We are not aware of any work in the parallel speculation comtyuhat uses online pro-
filing to decide which expressions should be speculated;elhewit is possible that an online
profiler might be useful for this purpose.

13.3.4 Abortion

Abortion is not essential in a parallel speculation systéhan unnecessary speculative task
does not terminate then the worst that can happen is thatgkblexecution of lower priority
speculative tasks—it cannot cause the whole program tcenwminate. Nevertheless, it is still
desirable for a speculative task to be aborted if it is certaat its result will not be needed. One
common approach is to use a garbage collector to find spe®utasks whose result closures
are not reachable from any other task [BH77, HK82, GP81].

13.4 Speculation for Uniprocessor Parallelism

Modern processors typically have a large number of insnatinits which can execute in
parallel. If a compiler is not able to find mandatory work fdlriastruction units, then it may
choose to perform speculative work on instruction unit$ tauld otherwise be idle. Unlike
speculative evaluation for multiprocessors, such systmsto find small speculative tasks,
and, unlike Optimistic Evaluation, all work that we are agvaf selects such tasks at compile
time.

Although we believe that these techniques could work welhfan-strict languages, we are
not aware of any work that has done this.

192 Chapter 13. Related Work

13.4.1 Speculation in Imperative Languages

Much work on uniprocessor speculation focuses on autoaiBtiextracting parallelism from
imperative programs. Rather than speculatively evalgagiire expressions, one instead spec-
ulatively performs imperative commands. The issues irewlvere are more complex than for
purely functional languages, as illustrated by the follogyprogram:

doC

if (B){
do C’

}

A compiler may be able to improve performance by executiegimmandg’ andC’ simulta-
neously. In order for this to be sound, it must be the case(iiddes not change any state read
by C’ (data speculatiopand that”” would actually be executed by normal sequential evaluation
(control speculation If either of these requirements turn out to be false, ttenspeculative
execution ofC’ must bereverted undoing any imperative actions it may have performed.

13.4.2 Scheduling Instructions

A compiler can schedule speculative tasks statically bgrieaving speculative instructions
with mandatory ones. There has been particular interespimgdhis for Intel’s 1A64 [ia600]
processor, which has a large number of instruction unitsremdynamic instruction reorder-
ing [LCH*03].

Simultaneous Multithreading architectures [TEL95, Gwda®e99] allow multiple threads
to run simultaneously on one processor, all of which havesgto the same instruction units.
Speculative Multithreading architectures [Kri99, MG98{end this by providing hardware sup-
port for thread reversion and sequential dependenciesketthreads. Such architectures make
it much easier for a compiler to exploit multiple instructianits because the interleaving of
tasks is done dynamically by the processor, rather thaicaligtby the compiler. Considerable
work has been done on compiling programs efficiently for sarchitectures [BF02, POO03].

While offline profiling has been used to assist in the schadutif uniprocessor paral-
lelism [BFO2], we are not aware of any work that uses onliradijong; indeed it seems unlikely
that online profiling would be worthwhile.

13.5. Models of Cost 193

13.4.3 10 Speculation

Some programs spend a large proportion of their time wafongages to be loaded from disk.
The performance of such programs can be improved by spe@ija¢xecuting the instructions
that should be performed once the page has loaded [CG99 | H@GQBis case, the hope is that
the speculative task will request pages that the mandaaskywill need when it awakes, thus
allowing several pages to be fetched in parallel and redyitia effects of 10 latency.

13.4.4 Branch Prediction

Perhaps the best known example of control speculatitanasch predictiofSmi81]. Branch
Prediction is a feature of most modern processors that fgealy evaluates the side of a
branch that the processor believes is most likely to be ugdthough Branch Prediction is
normally carried out at runtime by the processor, it is algsgible to do it using offline profil-
ing [FF92] or statically in the compiler [BL93].

13.5 Models of Cost

There has been much previous work on cost models. In thisdBege discuss several previous
models of cost and compare them to the model that we presen@thpter 5

13.5.1 PSL Computation Graphs

Perhaps the most similar cost model to ours isRI$:. Computation Graphsf Greiner and
Blelloch [GB99, GB96]. Computation graphs are used to as®athe cost of evaluating a pro-
gram using a data-driven parallel evaluation strategy. ddadpresent unit cost computations,
and edges represent sequential dependencies: If ainooletains a link to a nodg then this
means thay cannot start untik has finished.

Every computation graph has two distinguished nodes, kramswthesourceandminimum
sink Thesourcerepresents the start of the evaluation, while tieimum sinkepresents the
computation that produces the result of the computationeMdrawn graphically, subgraphs
are drawn as triangles in which the top corner links to theaand the bottom left corner is
linked to by the minimum sink. Unlike cost graphs, computatjraphs contain only serialisa-
tion information: they do not contain values.

Figure 13.1 gives a computation graph for evaluation of tpression” E’, given thatt
evaluates toz. E”. This graph contains subgraphs for the evaluatioF' ofs’ and E”. We can
see that when the evaluation starts, the virtual machinewibne unit of work (represented by
a black circle) and then start evaluation of both the fumcfiband the argument’. Once the
function has been evaluated to a value, the virtual machitieleranother unit of work, and

194 Chapter 13. Related Work

EFE

Figure 13.1: A PSL Computation Graph for E E’, given that E evaluates to A\z.E"

[lety =E'in (Evy)

Figure 13.2: A Cost Graph for let y = E’ in FE y, given that E evaluates to \z.E”

then start evaluation of the function bodly/. The graph for the function body will be generated
with = bound to the minimum sink of’. From this graph, one can see tliaand £’ can be
done in parallel, but that some computations withihmay need to wait for2” to complete.

For comparison, Figure 13.2 shows a cost graph for the saogegon. We can see that there
are some similarities between cost graphs and ComputatephS, but there are also significant
differences. Cost graphs describlatcomputationsnusttake place; while computation graphs
describewhencomputationgantake place. The root node of a cost graph corresponds to both
the source and minimum sink of a computation graph. The spaedence between the two
approaches is illustrated by Figure 13.3 which shows thesi&rdm Figure 13.2 but with edges
similar to those used by a computation graph.

Unlike cost graphs, computation graphs do not distinguettvben eager edges and demand
edges. Indeed, such a distinction does not make sense imtbeel as(i), their semantics
assumes that all computations in the computation graphxaeuted at some point, arfd),
their semantics is data-driven rather than demand driveongutation is assumed to start as
soon as all the computations linking to it have finished. hasobvious whether computation
graphs could be easily adapted to describe a mixed eageefatuation strategy.

Another important difference between computation grapits@st graphs is that a com-

13.5. Models of Cost 195

[E"[9/X]]

[E]

[lety =E"in (Ey)

Figure 13.3: Half-way between a Cost Graph and a Computation Graph

putation graph cannot be infinite. This makes sense for ctatipn graphs as it is assumed
that every computation in the computation graph will be penfed at some point; however it
makes them unsuitable for our purposes, in which infinitet-egaluations must be represented.
Greiner and Blelloch present the semantics of computatiaphg using a big-step operational
semantics which explicitly performs all computations. dtniot clear whether this semantics
could be easily adapted to cope with infinite graphs.

13.5.2 Circuit Semantics

Circuit Semantics [Dan98, BD96] represent programs usirgcteéd graphs similar to those
commonly drawn in electronics. Contrary to what the namehinggiggest, these graphs are
acyclic. The basic idea is similar to that of PSL Computaf@naphs in that links represent
sequential dependencies between computational $teps.

Circuits are described only very informally, their main pose being to graphically justify
a step-counting semantics for data-driven parallel evi@oa This semantics is then used to
compare the intensional expressiveness of various ploaksators.

13.5.3 Step Counting Models

Many previous models of cost work by instrumenting an evadnasemantics to include a count
of the number of steps taken by evaluation. Such models anetsnes referred to gwofiling
semantics Sands [San95a] gives an operational semantics for cosisexlit to prove various
theorems about cost equivalence. Roe [Roe90] gives a dematbsemantics that uses times-
tamps to calculate the number of parallel steps requireditmultate an expression using Lenient
Evaluation. Rebon [RPHL02] and Rosendahl [Ros89] usesaiapting to place bounds on
the time and space complexity of a program. Santos [San%#y a step-counting semantics
to define an ordering on expression costs which he uses te pnevefficiency of a number of

2And indeed, both concepts have emerged from Carnegie Mélaversity, so the similarity is unsurprising.

196 Chapter 13. Related Work

optimisations. Sansom [San94] uses a step-counting sermaotdefine the behaviour of an
offline execution profiler.

Unlike our Cost Graphs, such models are strongly tied to Hqodarr evaluation strategy
and a usually not composable.

13.5.4 Other Cost Models

The cost graphs that we produce are in some ways similar tgréqehs used by graph re-
duction [Wad71, ET96], but graph reduction systems comsadgraph to be an intermediate
data-structure used in evaluation. They do not attemptfio@la unique graph that represents
the work done by an evaluation.

Wadler [Wad88] uses Strictness Analysis to determine thetqf the result of a lazy ex-
pression that will be needed, and thus determine the costtiaing that expression.

13.5.5 Other Graphs

Our cost graphs bear similarities to the evaluation orddependent structures produced by
various lazy debuggers [NS97, WCBRO01], however we are usiage structures for a very
different purpose.

Our cost graphs are also very similar to Dynamic Dependenmapt [AH90]. Dynamic
Dependence Graphs are specific to a particular evaluatiategy, and we are not aware of any
formal model for them.

13.6 Profiling

Much work has been devoted to profilers and the way in whicly ttean be used to direct
optimisations; indeed there are entire workshops dedidatéhe subject [FDDO1, RVO4]. It is
only practical for us to cite a small subset of this work.

13.6.1 Sampled Profiling

The idea of profiling a program for only a small proportiontsfexecution has been around for
a long time. One of the best known examples is GProf [GKM83Jiclw looks at a program at
a number of sample points and gathers statistics that glptbgrammer where their program
is spending its time. Many other sampling profilers existluding Digital's DCPI [ABD"97],
and Mortonosi’s cache behaviour profiler MGA93]. Other Wwaxoids the overhead of profil-
ing almost completely by using a separate processor to @@firogram while it runs [ZS01].
The idea of having code that can actively switch betweenlpb&nd unprofiled modes is
also well known. Arnold and Ryder [ARO1] describe a systemvlich normal and profiled ver-

13.7. Debuggers for Non-Strict Languages 197

sions are compiled for every code block. Normally, the paogwill run in an unprofiled mode,
but the runtime system can switch the program into profiledersuring profiling periods.

13.6.2 Feedback Directed Optimisation

Feedback Directed Optimisation [FDDO1] is a widely usethtggue in static compilers. A pro-
gram is run in a special profiling mode, recording statistiosut the behaviour of the program.
These statistics are then used by the compiler to make gattion choices when compiling a
final version of the program. Many commercial compilers ung technique. In principle we
could do the same, compiling the configuratidmto the program; we have not done so as this
would make it harder for us to adapt our evaluation stratégyrgime.

13.6.3 Online Profiling

Online Profiling is used in many existing language impleraBahs, including several imple-
mentations for the Java [GM96] language [Sun01, B&% Arn02]. One of the first imple-
mentations to use such techniques was for S€¥HHThese systems use similar techniques to
Optimistic Evaluation, but do not apply them to laziness.

13.7 Debuggers for Non-Strict Languages

In Chapter 11 we described HsDebug: a debugger that is buitipof Optimistic Evaluation.
There has been much prior work on debugging of non-strigjuages.

13.7.1 Tracing

Most previous work on debugging of Lazy programs has focusettacing. Systems such as
Freja [NS97, NS96, Nil01], Buddha [Pop98] and Hat [SR97, VIRDB] augment a program so
that it creates a trace as it executes. This trace gives@ist the evaluation that took place.
For each value (e.d), a link can be provided to the redex that evaluated to predhat value
(e.g.3 + 2)) and to the larger evaluation that this evaluation was qig(e.g. f(3)).

Once such a trace has been built up, it can be explored in mtagedt ways. Hat allows
one to look at any object on the heap and find out how it came toréated. Other work
allows evaluations to be observed in the order in which theuyld have taken place under
Eager Evaluation, creating a similar environment to a tragal debugger [NF92, NF9O4].

Hat and Buddha run the program to completion before exaidtie debug trace. While this
simplifies the implementation, it makes debugging of 10 aakiv In a traditional debugger,
one can step over 10 actions and observe the effect that tlttmadiave on the outside world.
This is made significantly more difficult if all actions takiape before debugging starts; indeed,

198 Chapter 13. Related Work

Pope [Pop98] says that it is assumed that Buddha will onlydmied to the sub-parts of a
program that do not perform IO operations. Freja does biettais respect by building its trace
while debugging.

One drawback of trace based debugging approaches is parfoenlf every evaluation is
to be logged, then a very large amount of information mustdeended. Not only does the
recording of such information take time—it also takes sp&aeja works round this problem
by only storing a small amount of trace information and thesexecuting the program if more
is needed, however this is quite tricky to implement, patdicwhen 10 is involved. There has
also been considerable work on reducing the amount of trdoemation generated for redex
trails [SR98].

HsDebug is definitely less powerful and less elegant thare bmsed debuggers. It is how-
ever simpler and faster, and does not require extra space.

13.7.2 Cost Centre Stacks

Cost Centre Stacks [MJ98, San94] extend a program so thaiittans a record of the call
chain that the current expression would have, were it bematuated strictly. The information
obtainable from a cost centre stack is thus very similar & #vailable from the real stack
under Optimistic Evaluation, or the trail created by Frefast Centre Stacks were developed
for use in profiling however it is plausible that a debuggaunldde written that made use of
them. Such a debugger could show the user the current cosectack rather than the actual
execution stack, providing the user experience of striatuation, without having to actually
evaluate the program strictly. We believe that this approaay be worth exploring.

13.7.3 HOOD

HOOD [GilO0] can be seen as an extension of traditional {pfridebugging. The programmer
adds annotations to the program that allow intermediatgrpro states to be observed. HOOD
goes a lot further than “printf” debugging by allowing lazglwes and functions to be observed
only to the extent to which they have been used. A sophisticaewer application [Rei01] al-
lows the programmer to view and manipulate traces resuitorg an execution. While HOOD
is extremely powerful, the need to add manual annotationsmeke it awkward to use.

13.7.4 Time Travel Debugging

Time Travel Debuggers extend the “stop, examine, contimeel further by allowing the pro-
gram to run backwards to a breakpoint as well as forwardserQdhe will find that the reason
for something going wrong is that part of the program statetderome invalid. In such a case,
it can be extremely useful to run the program backwards frieenpoint at which something

13.8. Reducing Space Usage 199

went wrong, to the point at which the state became invalicangpies of time travel debuggers
include the excellent O’Caml debugger [LRVD98] and the nadlg defunct SML/NJ debug-
ger [TA95, TA90]. Many of the features of Time Travel Debuggican also be achieved by
Tracing, and vice versa.

13.8 Reducing Space Usage

As we remarked in Section 12.6, some non-strict progranisrsuém poor performance due to
space leaks. In this section we discuss previous work tteatiampted to prevent such space
leaks.

13.8.1 Stingy Evaluation

Stingy Evaluation [vD89] is an evaluation strategy destjteereduce space leaks such as the
one described in Section 12.6. When evaluatingteexpression, or during garbage collection,
the evaluator does lkttle bit of work on the expression, with the hope of evaluatingaigd
avoiding having to build a thunk. As with Eager Haskell, albeessions are eagerly evaluated,
however the amount of evaluation done before abortion mwfgigntly smaller, with only very
simple evaluations allowed. Often this small amount of weiknot be useful, causing some
programs to run slower. Stingy evaluation was implemermetie LML [AJ89] compiler.

A more modest approach to the same problem is presented bgMfAtd87] who uses the
garbage collector to evaluate any record selector whosedeonstructor has become a value.
This avoids space leaks that can otherwise result if a remmmdtructor contains links to other
closures that are not of interest to the selector. SparudJ3solves many cases of the same
problem by generating particularly clever code for patteatches.

13.8.2 Heap Profiling

Rather than attempting to remove space leaks automatittaiyperhaps preferable to provide
the programmer with a profiler which allows the programmairtderstand why the space leak
is occurring and which will show them how they might go aboxity it; this is the approach
taken by heap profilers [RR96b, RR96a, RW92]. These profidezsextremely sophisticated
and provide information that makes it fairly easy for a pesgmer to see which unevaluated
thunks are causing them to leak memory. Given this inforomatthe programmer can add
annotations to their program to cause the offending exjmess$o be evaluated strictly.

200 Chapter 13. Related Work

13.9 Other Approaches to Evaluation

This thesis explores the space between Lazy Evaluation agdrEEvaluation. However there
any many other evaluation strategies which do not fall ihie$pace. In this Section, we discuss
two such evaluation strategies: partial evaluation, artohg evaluation.

13.9.1 Partial Evaluation

Partial Evaluation[CD93, JGS93, PEP97], also knownRsgram Specialisatiors an evalu-
ation technique that can perform evaluation steps unddrte@bda expressions. Consider the

following example:
fry= casex of

Red — y+1
Green — y + 4

gy= [Greeny
A partial evaluator might partially evaluagés call to f, giving the following definition fory:

gy=y-+4

Partial evaluation at compile time is used in many optingstompilers for mainstream lan-
guages such as C. It is also frequently done at runtime byrdigadly optimising compilers for
languages such as Java.

13.9.2 Optimal Lambda Reduction

Optimal Lambda Reduction [Lév78, Lév80, Lam90] is a fasting approach to evaluation that
aims to maximise the amount of work that is shared by diffeapplications of a function.
Consider the following lambda expression (taken from [Lain9

(Ag-(9(g(Az.7))))
(M

(AL (F(F(Az.2))))
(Aw.(h(w(ry.y))))))

If we are to evaluate this using normal graph reduction, there are two possible redexes
in this expression.

Outer: Apply (Ag.(g(g(Ax.z)))) to the term beginningh. . ..

Inner: Apply (Af.(f(f(Az.z)))) to the term beginningw. . ..

13.9. Other Approaches to Evaluation 201

If we perform the outer reduction, then, whens applied twice, the inner reduction will
have to be applied twice to reduce the function body. Thisisalbise, while graph reduction
allows the sharing of terms, it does not allow the sharingiotfion bodies between functions
that have been applied to different arguments.

Performing the inner reduction wastes work too. In this cdsetwo applications of will
mean that we have to perform the application ¢ivice. We can’t do the application éfbefore
doing the other two reductions as the valué.a$én’t known until we have performed the outer
reduction. In this case, conventional graph reduction duaiblicate work, irrespective of the
evaluation order chosen.

The essential problem here is that conventional graph texiumopies the body of a function
when the function is applied to an argument. This prevergssttaring of any reductions that
might take place in this function body.

Optimal Lambda Reduction gets round this problem by arranfpr the bodies of functions
to be shared even after the function has been applied toadelifferent arguments. This is
accomplished using a complex systenfari insandfan outsthat arrange that variables in a
function body be seen as being bound to different thingsmidipg on where the function body
is being observed from.

While Optimal Reduction does minimise the number of betacédns, it also introduces a
large amount of book-keeping complexity that significamégiuces its efficiency. Asperti and
Chroboezek [AC97] have shown that it is possible to createngtementation of Optimal Re-
duction that is capable of outperforming implementatioinstioct and lazy languages for some
example programs. However the programs they use are quituah and do not resemble the
kinds of programs that people typically write. It is hard twkv whether Optimal Reduction is
capable of giving real performance increases for real amogr Asperti and Chroboezek sug-
gest that the availability of Optimal Reduction could capseple to change their programming
style to favour styles of programming that would otherwisarhpractically inefficient - just as
Lazy Evaluation has done in the past.

CHAPTER 14

Conclusions

In this chapter, we summarise the work described in thisghdsaw attention to its strengths
and shortcomings, and discuss further work.

Performance

Optimistic Evaluation improves the performance of the Hdigkrograms we tested by an av-
erage of 20% relative to the best performing compiler prasip available. Moreover, it does
this without slowing any programs down by more than 7%. Tothistinto context, recall that
Strictness Analysis improves performance by around 13%ti@e12.7.3), and that Optimistic
Evaluation achieves its 20% speedup relative to a compiggraiready uses Strictness Analysis.

We believe that it should be possible to improve the perforreaf Optimistic Evaluation
further. In particular, we believe that we could achieveadrgterformance if we designed a new
compiler specifically for Optimistic Evaluation, ratheathextending GHC.

Worst Case Behaviour

Despite being an adaptive evaluation technique, the betawef Optimistic Evaluation is well
understood. Not only has it been demonstrated to be efficietverage, but, with the aid of
a new denotational semantics, we have shown that we can lisundrst case behaviour with
respect to a simplified cost model.

This does not mean that it is impossible that any programgailslower than predicted by
this bound; our formal cost model is only approximate, andpofiler further approximates
this model. However we are confident that neither of thesecxpations will ever be wrong

202

203

by more than a reasonable constant factor, and so believé thainlikely that any program
can slow down by an unreasonably large amount.

While Optimistic Evaluation can make some programs go sipiteeworst case behaviour
is better than that of either Strictness Analysis or ChespA@alysis, both of which are widely
accepted. Perhaps more relevantly, we are not aware of ary dgnamically optimising lan-
guage implementation of similar complexity whose worsedashaviour is understood as well
as that of Optimistic Evaluation.

Predictability

One criticism that could be levied against Optimistic Edilon is that its performance is fairly
unpredictable. Minor changes to a program, or even to itatid@ta, can cause the profiler
to react in a different way, causing performance to changkeis problem is not unique to
Optimistic Evaluation, but is a problem common to the m#&oaf dynamically optimising
language implementations.

While Optimistic Evaluation can cause programs to execiggeifcantly faster than they
would under Lazy Evaluation, we believe that it is unwise dgprogrammer to rely on this.
If it is absolutely essential for the efficient execution gfragram that a particular expression
be evaluated eagerly, then we believe that the programnoeldgimark this with a strictness
annotation.

Complexity

While Optimistic Evaluation does give good performanceiltssit has to go to a lot of effort to

achieve this. Optimistic Evaluation is a very complex eatilon strategy to implement. Spec-
ulation, abortion, profiling, and semi-tagging are all céexgdeas, all have knock-on effects
throughout the runtime system, and all are difficult to detmngn they go wrong. Although

we had originally planned to merge Optimistic Evaluatiotoithe main branch of GHC, it now

seems likely that we will not do this—it is simply too diffitub maintain.

Non-Strict Languages

Perhaps the biggest weakness of Optimistic Evaluatioraisttis an implementation technique
for non-strict languages. During the course of this redean® have come to the conclusion
that, although non-strict languages seem superficiallyealopg, they are not, in general, a
good idea. While Lazy Evaluation is often useful, we do ndigve that it is wise to make it

the default evaluation strategy for all expressions. Altjiomuch has been written about the
supposed expressive beauty of non-strict languages, ronsttrict programs we have investi-
gated contain only a small number of expressions for whizim&ss is useful, and it is usually

204 Chapter 14. Conclusions

obvious which expressions these are.

We now believe that, if a program makes essential use ofdaginthen this should be a
deliberate design decision, and the way in which lazinessésl should be stated explicitly
in the program text. This makes techniques such as Optoritstaluation, Eager Haskell,
Strictness Analysis, and Cheapness Analysis redundant.

Summary

We have achieved what we set out to do: we have designed arldnmapted an evaluation
strategy that significantly improves the performance of-switt programs. If one wishes to
evaluate non-strict programs fast, and one is preparedpenexconsiderable effort to do this,
then we believe Optimistic Evaluation is a good techniqueige. The biggest question is
perhaps whether one should be implementing a non-strigtikzge in the first place.

APPENDIX A

Proof that Meaning is Preserved

In this Appendix, we prove the property referred to in Setdos:
U8 —x V58 = ML, ¢ s] = M, d,s]

We proceed casewise, showing that the property holds foula defining—. For each rule,
we show that the left hand sidé K.S) of the rule has the same meaning as the right hand side
(RHS) of the rule.

A.1 Evaluation Preserves Meaning

Case: (VAL)
LHS = M[I; V; 5]
= M[l[a— (V]]; V;s] fresha and Theorem 4.3.3
= pp(H[lla — (V]]], U Slsl, €[V1,) e defn of M[-]

— (Mo (VD] U Slsl, €lal,) e defn of€[~] andH[-]
= M[la — V];Va; 5]
= RHS

Case: (VAR)

LHS = M[T; ;5]
= M[I';©0;5] defn of M[—] andC[]

205

206 Chapter A. Proof that Meaning is Preserved

Case: (DEM1)

LHS = M[I'ja — (V))]; ®@a; 5]
= M[l[a— (V)];Va;s] defnof M[—] andC[—]
= RHS

Case: (DEM2)

LHS = M[I'a — (&)]; @a; 5]
[Tle— ()]], U S[s], €[e],) € defn of M[—]

(H)
— up(HT], U (0= E[0],) U Slsl, €lal,) e def ofH[-]
= (R[], U (a—£&[a],) U S[s], E['],) e defnof[-]
= M[l[a — ()]; ©@; 5] defn of M[—]
= RHS

Case: (DEM3)

LHS = M[T'o — E]; ®a; 5]
= up(H[T[a — E)], U S[s], €]a],) € defn of M[—]

(
=pp(H[T], U (a— E[E],) U S[s], €]a],) e defnofH[-]
= (R[], U (a—E[E],) U S[sl, £[E],) € defnofE[—]
=pup(H[I], U S[#a:s], E[E],) € defn of S[—]
= M[T; E; #a : 5] defn of M[—]
= RHS
Case: (RESUME)
LHS = M[Il'a — o/ Zl]; ®c;]
= pp(H[Lja — o’Z1]], U (S[s], E]al,) € defn of M[—]
=pup(H[I], U (a— El’Zl]) U (S]s], €[a],)) € defn of H[—]
=up(H[I'], U (a— EJ’Zl]) u (S[s], £la’4l],)) € defn ofE]—]
=pup(H[I'], U (S[#a:s],E[¢'Z],)) e defn of S[—]
—pp(HIT], U (ST#a: 5], (C, o) defn of[]
— jp(HIT], U (SIL: #a s 5], pla’)) e defn of 5[]
= M[l;0d;51 : #a: s] defn of M[—]

I
=
3

A.l. Evaluation Preserves Meaning 207

Case: (UPD)

LHS = M[T; Vo, # : §]
(

= up(H[T], U S[#a’ :s], E[a],) ¢ defn of M[-]
=up(H[I], U (¢ &[a],) U S[s], Ela],) e defnofS[-]
= pp(H[l[e" = (a)]], U S[s], €lad,) € defn of H[-]
- M[[F[a — (a)]; Va;] defn of M[]
— RH

Case: (APP1)

LHS = M[T;, E o 5]
= up(H[I], U S[s], E[E a],) € defn of M[—]
~ p(HIT], U SEs], (ELF], pla))) defn ofe[]
=pp(H[I], U SlQa:s],E[E],) e defnofS[—]
= M[T; E;Qa : s] defn of M[—]
= RHS

Case: (APP2)

For convenience, let us define:

J = (@ M0E[E] o)

LHS = M[[F[aH(]Ax.ED];Va Qo :§]

= pup(H[la — (Az.E)]], U S[@ ' : 5], E]a],) e defn of M[—]

= pp(H[I], U p U S[[@ o :s], Elal,) € defn of &[—] andH[—]

= up(H[T], U p' U S[s], (p(a) p(c)) € defn of S[—] and&[—]
= pp(H[I], U p" 1 S[s], (Av.E[E]pu) p(a’)) € defn of p andp’

= pp(H[I], U p" U S[s], (E[E]pmptar))) € beta reduction

= pp(H[I], U p" U S[s], E[E[/)] pjmopary) € Theorem 4.3.1

=up(H[L], U p U S[s], E[E[//z]],) € Theorem 4.3.2

= M[la — (Az.E)]; E[d//x]; 5] defn of M[—] andH[—]

Il
=
&

208 Chapter A. Proof that Meaning is Preserved

Case: (LAZY)

LHS = M[I';let z = E'in E'; 5]
[Cla— E];let = E in E'; §] newa and Theorem 4.3.3

=M

= pup (H[I'[ow — E]], U S[s], E[let x = E in E'],) ¢ defn of M[—]

— p (Vo = E)l, U SIsl, € o eimry) e defmofe[-]

= pp (H[T[o — E]]],, Slsl, E[E [/ z]] poepey,) € Theorem 4.3.1 and defn @[]
= pup (H[I' o — El], U S[s], E[E [a/x]],) € Theorem 4.3.2

= M[l'a — E}; E'[a/x]; 5] defn of M[—]

= RHS

LHS = M[I';let x = E in E'; 5]
=pp (H[T], U S[s], E[let x = E in E'],) ¢ defn of M[—]
= pup (R[], U Slsl, E[E] pomersn,)) € defn of £]-]
~ o (HT], U SI{e}E) : 5], E[E],) ¢ defofS[-]
= M|, E; ({x}E' : 9)] defn of M[—]
= RHS

Case: (SPEC?2)

= pp (H[T]] S| {f}E) slp €[el,) € defn of M[-]
= pup (R[], U S[sl, E[E]poefar,) € defn of S[-]

= pp (H[I, U S[sl, E[E[a/x]],) € Theorem 4.3.1
= M[T'; E[a/x]; 8] defn of M[—]

A.2 Abortion Preserves Meaning

We can similarly prove that all the rules defining:* preserve the meaning of an expression
with respect toM[—]. Formally, we prove:

Diegs T s = M[Dye 8] = MY 58]

A.2. Abortion Preserves Meaning 209

Case: ('EXP)

The proof for(!EXP)is almost identical to the proof f@giAL):
LHS = M[T; E; §]
= M[I'[a — E]; E; $] newa and Theorem 4.3.3
= up(H[lfa — E)l, U S[s], E[E],) e defn of M[-]
= pp(H[l[a — E]], U S[s], £[a],) ¢ defnofE]—] andH[—]
= M[l[a — E]; ©aq; s]
= RHS

Case: ('RET)

The proof for(!RET)is trivial:
LHS = M[T'; Va; 5]
= M[I';@a;s] defn of M[—]
= RHS

Case: (ISPEC)

The proof for(!SPEC)is almost identical to the proof fgEPEC?2)
LHS = M[I'; @a; ({2} E) : 5]
= pip (W], U S[({2}E) : 51, €al,) ¢ defn of M[-]
= pup (R[], U S[sl, E[E]poefar,) € defn of S[-]
= pup (H[I, U S[sl, E[E[a/x]],) € Theorem 4.3.1
= M|I'; Ela/x]; 5] defn of M[—]
= RHS

Case: (IUPD)

The proof for(!UPD) is almost identical to the proof f¢tJPD):
LHS = M[T'; ©@a; #d - 6]

=up(H[I'], U S[#< :s],Ela],) € defn of M[—]
= (R[], U (o' = &[a],) U S[s],€[e],) e defnofS[-]

— (I — @)]], U Sls]Elel,) e defn of |-
= M[I[o/ — (a)]; ®a; 5] defn of M[—]

= RHS

210 Chapter A. Proof that Meaning is Preserved

Case: ('ABORT)

The proof forlABORT)is almost the reverse of the proof {fRESUME)
LHS = M[I'; @c; (1 : s)]

— jp(HIT], U (ST 8], ple)) € defn of M[-]

— jp(HIT], U (STsl, (£T, o)) € defn of S|
=pp(H[T], U (' — L[], p(e)) U (S[s], p(e))) e defn ofE[—] for newa’
= pup(H[T], U (o' — EJazl]) U (S[sl, p(’))) e defnofe][-]

— up(HITe’ = aZl], U (SIsl, pla))) € defn of [

= M[[[e/ — a/l]; ©d; s] defn of M[s]

= RHS

Soundness of Bounded Evaluation

Having shown that— and~~ are sound, it easy easy to see thamust also be sound as every
~ transition corresponds to either an- transition or an- transition.

APPENDIX B

Proof that Costed Meaning is Preserved

In this appendix, we prove the property referred to in Sechi®.4:
Tic;s — T8 = M|T;¢; 8] = M[T'; ;6]

We start with two important lemmas, and then proceed to shatthe meaning of the state
is preserved by each rule defining—".

B.1 Lemmas

Lemma B.1.1 (Following Indirections)
From the definitions o§[—], F(—) , and|—| we can observe that:

Ai) = (¥, d,e) = Slsl,i = S[sl, 7

Lemma B.1.2 (Substitution)
From the definition o€ [—] and the extension given in Section 5.6.1, we can observe that

EIEN el v = ElEl i 7

211

212 Chapter B. Proof that Costed Meaning is Preserved

B.2 Proof of Soundness for Evaluation Rules

Case: (VAL)

LHS = M[T;V 1>1i;]
=py. T[T), U (S[s], i) U E[V]y~ defn of M[-]

=uy. T[T~ V] U (S[s],) defn of T[]
= M|[T[i — V];Vi;s] = RHS defn of M[—]
Case: (VAR)

LHS = M|T;i > i; 5]
— . T[T, U (STsl,
— . T[T, U (STsl, 4
= py. T[Tl (i',0,0)]
= M[TT[i — (7, (Z)(Z))] @i';

E[Ty defn of M[—]
(i — (i',0,0)) defnof€]—] and Section 5.6.1
5 U (S[s]y) defn of 7[—] and LemmaB.1.1
s] = RHS defn of M[—]

\I=l_/_/

Case: (DEM1)
LHS = M[Ti — (V))]; @i; 5]
= M[Ti— (V)]; Vi;s] = RHS defn of M[—]
Case: (DEM2)
LHS = M[T|i — (¥, d,e)]; @i; 5]
= M|T[i— (¢,d,e)];oi;s] = RHS defn of M[—] and Lemma B.1.1
Case: (DEM3)
LHS = M[T[i — EJ; ®i; s]

= py. T[Tli = E]], U (S[s], 1) defn of M[]
=py. T[T], v (S[s]y i) U E[ETy v defnof T[]
— M[T; Et>i;s] = RHS defn of M[—]

Case: (APP1)
LHS = M[T;E i > i; 5]

=uy. T[T], U (S[s], i) U E[E T~ defn of M[—]
— . TITL, U (SIsly 9) U (i (oi, {oi}, 0)) U E[E]G 7 U F(oi) defn ofg]-]
— . TITfi o (i o)], U (STsl, 9) U ETET§ 4 U Floi)y defn of T[]
= py. T[T[i — (ei,{oi},0)]], U (S[s], i) U E[E]F v U]:(oz) LemmaB.1.1
= py. T[T[i— (o1, {oi},0)]], U (S[(@7,e5): 5], oz) U E[E]F defn of S[—]
M[T[i — (oi,{oi},0)]; E>o0i; (Q i ei) : s] = defn of M[—]

B.2. Proof of Soundness for Evaluation Rules

213

Case: (APP2)

LHS = M[T[i' — (Az.E)]; vi'; (Qi")i) : s
=py. T[Tl — (A z.E)]],
=py. T[T[— (Az.E)]],

Tl — (Az.E)]],

=wy. T[T[— (Az.E)]],

= M[TlV — (Mz.E|]; E

=wy. T

Case: (LAZY)

LHS = M[T;let x = E in E' > i; §]
U (S[s]y i) U E[let x = Ein E']j ~
U (Slsk,) U (i (01,0, oi}))
[z — (3,0, {0i}), 0i — E]],
T[i— (i, 0,{oi}),0i — EJ],

— MIT(i — (96,0, {oi}),oi — B}; E'[oi/z]

= wy. T[T},
=wy. T[T
=wy. T[T
=wy. T[T

Case: (SPEC1)

LHS = M[T;let x = E in E' > i; 5]

([[(@ i’ i): s)ly

[[["/56]]]@7 L
”/x] >i;s] = RHS

i)
(51, ©)

= . T[[T]]»y U (S[s]y i) U Eflet © = Ein BT v

=y T
= .
= py.
= .
= .

= M[TTi

Case: (SPEC2)

LHS = M|T;vi';Er>i: $]
=py. T[T], U
=py. T[T], U
= M|T;E>i;s] = RHS

U (S[s]y i) U (i (0d,0,{0i})) U
Tz — (o1, 0, {oi})]],
i (o0, {o1})
T[i — (ei,0,{oi})
T[T[i — (ei,0,{oi})]],
(6,0, {oi})]; E > o (E'[oi/] &

N N

S[s], i) U

|

S[(E'[oi/z]

(S[(Er>i):s
(S[s], ©) U E[E], v defn ofS[—]

defn of M[—]

defn of M[—]

defn of M[—]

defn of S[—]

defn of 7(—) and7[—]
LemmaB.1.2

defn of M[—]

U (S[sl, Z)
(S[s]

ElE]]@ v U E[E]]tz)’Y

U (S[sly 4 U 5[[E/]](%> oi) 1

U (S[s]y) U ELE[oi/2]I3" v
ei;s] = RHS

ELETG v U ELE)
Slsly i) U EIETF v U EMETG i)

) U ELETY v U E[Eei/]]f v
v oi) U E[E]G v U E[E[oi/x]]} v

> oi) : 5], o) U E[E] A
“i): 5] =

defn of M[—]
defn of][]
defn of 7[—]
LemmaB.1.2
defn of M[—]

defn of M[—]
defn of][]
defn of 7]
LemmaB.1.2
LemmaB.1.1
defn of S[—]
defn of M[—]

214 Chapter B. Proof that Costed Meaning is Preserved

Case: (OP1)

LHS =M|T;j @ k> i;s]
=uy. T[T], U (S[s], i) U E[j ® kL v defn of M[—]
=py. T[T, U (S[s]y i) U (i (od, {4, k},0)) U (O[@]* Lj], [k],) defnofE[-]
= py. T[T[i— (i, {5k}, 0)]], U (S[s], 9) L (O[@]* Lily Lk]5) defn of 7]
T[T[i v (o, {5, K} 0)]], U (S[s]y oi) U (O[®]* Lily [k],) LemmaB.1.1
[Iy

= p.

= py. T[TTi — (o1, {j, k},0)]], U (S[(Dk, ei) : 5], j) defn of 5[]

=M[T[i — (i, {j,k},0)]; ©7; (Dk, i) : s] = RHS defn of M[—].
Case: (OP2)

LHS = M[T[j — (n)]; Vi; (Dk,q) : 5]

= v TIT = (]l U (SI(@k,i) : 5], j) defn of M[]
— . T[T]j — ()], U (O[&] L), [k],) U (STsl, i) defn ofS[-]
=y TITj = (n)]l, U (O[&] n [k),) U (SIsl, i) defn of|~] and T[]
— 1. T[[T[qum U (Sl(ne,0) : 5], k) defn of |~ | and T[]

= M[T[j — (n)]; ©k; (n®,7) : s] = RHS defn of M[—]

Case: (OP3)

LHS = M[T[k — (n')]; Vk; (n®,1) : 5]
=y T[Tk — ()], U (S(ne,7) : s, k) defn of M[—]
= py. T[Tk — ()], U (O8] n [k],) U (S[s], i) defn ofS[-]
= py. T[Tk — (2D, u (O[@]' nn') U (S[sly i) defnof[—] and7[-]
= py. T[Tk (n'),i— (nd&n)]], U (S[s], 9) defn of 7[—] andO[—]
= M|Tk — (n'),i— (n®n')]; Vi;s] = RHS defn of M[—]

B.3 Proof of Soundness for Abortion Rules

Case: (IEXP)
LHS = M|T; E 1> i; s]
=uy. T[T], U (S[s], i) U E[E], ~ defnof M[-]
= uy. T[T[i — EH]’Y U (S[[S]]v i) defn of 7[—]
= M[T[i — E];@i;s] = RHS defn of M[—]

Case: (!SPEC)

LHS = M[T;@i; E> j : 5]
=M|T;Vi;E>j:s] = RHS defnofM[—]

B.3. Proof of Soundness for Abortion Rules

215

Case: ('ABORT)
LHS = M|T;®i;(f,7) : s

]
= py. TITL, U (SI(F.5) < sby i defn of M[-]
=y T[T], w (S[(f,) = I, 9) U (Sls]y j) defn ofS[-]
= py. T[T[j Hzéf]]]»y U (Slsly g defn of 7]
= M[T[j — iZf);@j;s] = RHS defn of M[—]

Case: ('RESUME)

This is simply the inverse of the proof fPABORT)

APPENDIX C

Proof that program Work predicts workDone

C.1 Preliminaries
In this appendix, we provide the proof referred to in Secbdh5. That is, we prove:

0;E>e[] —* Tie;s =
workDone(T) U pendingWork(T; ¢; s, V) C programWork(M[T; c; s], ¥)

We prove this by induction over the number-ef transitions that are applied. In the base
case, no— transitions are applied, aritt ¢; s = (); £ > ¢; []. The proof is thus trivial:

workDone(0) U pendingWork(0; E > ¢;[], ¥)

=0 U pendingWork(D; E > €[], ¥) defn of workDone
=W{C{E > e} U S{{H}}%[{@;EDE;HH defn of pending Work

= W{{e} Fppse defn ofC{—} andS{-}
= programWork(M][0; E t> € []]) defn of program Work

The proof of the inductive step is rather harder. We know ftbenproof in Appendix B that
program Work(M[T'; ¢; s], ¥) will be preserved by evaluation transitions. The inducttep
thus amounts to showing that the unionafrkDone and pending Work never increases. That
Is:

®7E|>€,H —* T;C;S A T;C;S—>T/;C/;S/ =
workDone(T') U pendingWork(T'; c; s)
-

workDone(T") U pendingWork(T"; ¢; s')

216

C.2. Proof for Evaluation Transitions 217

We proceed casewise by showing that, this property holdevery rule defining—.
For convenience, we make the following standard definittongach rule, where, in each
case/l’; ¢; s represents the old state, aht ¢’; s’ represents the new state:

D = workDone(T the work done by the initial state
D" = workDone(T") the work done by the final state
P = pendingWork(T;c;s, V) the pending work for the initial state
P = pendingWork(T";c; s,) the pending work for the final state
v = M[T;C;s] = M[T";;s'] complete cost view (preserved by Appendix B

We now proceed to give the proof for each rule. Most of the tluofs follow the same
pattern and are fairly trivial. We give a detailed proof floe first rule, but give less detail in the
other rules.

C.2 Proof for Evaluation Transitions

Case: (VAL)
T;Vii;s — Ti— V];Vi;s
In this casey is defined as:
v=M[T,V > i; 5]
=y . T[T], U (S[s], i) U E[V];~ defnof M[-]
=uy.T[T], U (S[s], i) U (i~ v) defnofE[—] for some value
We can use this to prove th@tAL) preserves the union aforkDone andpending Work:

LHS = D U W{{i} US{s}}) defn of pendingWork
=D U {i} U W{S{s}}] defnofw{-} andy

= D" U W{S{s}}} defn of workDone
=D U P = RHS defn of pending Work
Case: (VAR)

T;i'>i;8 — Tli— (I',0,0)];@;s

LHS =D U W{{i} US{s}}} defn of pending Work
=D U {i} UW{{{'}uS{s}}] defnw{-}andy
=D U P = RHS defn of workDone andpending Work

218 Chapter C. Proof that program Work predicts workDone

Case: (DEM1)
Tii— (V])]; @58 — T[i— (V)];Vi;s

LHS =D U W{{i}uS{s}}] defn of pendingWork
=D U {i} U W{S{s}}) defnofw{-}
=D'"U P = RHS defn of workDone andpending Work

Case: (DEM2)

Tli— (7', d,e)]; @i;5 — T[i— (i, d,€e)];@i';s

We are currently only able to prove thddEM2) reduces the amount of work expected,
rather than that it preserves it, however we believe thathénabsence of abortio(DEM?2)
should preserve expected work just like all the other etadnaules do.

LHS = D U W{{i} US{s}}) defn of pendingWork
oD U W{{i'}uS{s}}] defnofw{—} andy
=D U P = RHS defn of workDone andpending Work

Case: (DEM3)

Tli— El;@i;s — T;E>i;s

LHS = D U W{{i} US{s}}] defn of pending Work
=D" U {i} U W{{i}uS{s}}) defnofworkDone
=D U P = RHS defn of pending Work andW{—}

Case: (APP1)

T,Eir>i;s — Tlir— (ei,{ci},0)]; Er>o0i;(Q 7 ei):s

LHS = D U W{{i} US{s}}] defn of pending Work
=D U {i} U W{{oi,ei} US{s}} defnofW{-} andy
=D U P = RHS defn of workDone andpending Work

Case: (APP2)
Tl (Az.E)]; vi'; (Qd",i) : s — T[i' — (\v.E|)]; E[i" /2] > i; s

LHS = D U W{{i',i} US{s}}] defn of pending Work
=D U {I'} U W{i} US{s}}) defnofw{-} andy
=D U P = RHS defn of workDone andpending Work

C.2. Proof for Evaluation Transitions 219

Case: (LAZY)
We give rule(LAZY)in more detail, as it is more interesting than most otherstule
Tiletz=Ein E'>i;s — T[i+— (ei,0,{0i}),0i— E]; E'[oi/x] > ei; s
i ¢ v
In this caseyy is defined as:

vy=MI][T let x = Fin E' 1> i; 5]
=y . T[T], U (S[s], i) U E[let x = E'in E']j v defn of M[—]
=uy.T[T], U (S[s], i) U (i — (ei,0,{ci}) U E[E];' v U E[EL]5 v defn ofE[—]

We can use this to prove thdtAZY)preserves the union aforkDone andpending Work:

LHS=D U P
=D U W{{i} US{s}}} defn ofC{—}
=D U {i} U W{{ei} US{s}}] defnofW{—} and~, giveni ¢ ¥
=D U P = RHS defn of workDone andpending Work

Case: (SPEC1)
Tiletx=Ein E'>i;s — T[i— (ei,0),{oi})]; E > oi; (E'[oi/z] > i) : s

Rule (SPEC1lYyeuses the expansion gfthat we gave fo(LAZY)

LHS=D U P
=D U W{{i} US{s}}} defn ofC{—}
=D U {i} U W{{ci,ei} US{s}} defnofW{-} andy, giveni € ¥
=D U P = RHS defn of workDone andpending Work

Case: (SPEC?2)

T,Vi'Erxi:s — T;E>is
e v

LHS =D U W{{i}US{s}}) defn ofpendingWork
=D U P = RHS defn of workDone andpending Work

220 Chapter C. Proof that program Work predicts workDone

C.3 Proof for Abortion Transitions

Case: ('EXP)
T;Er>i;s — T[i— El;@i;s
LHS = D U W{{i} US{s}}) defn ofpendingWork
=D U P = RHS defn of workDone andpending Work
Case: (ISPEC)
T:eu,E>j:s — Ti;Vi; E>j:s
As one would expec{]SPEC)transitions can decrease the expected work set:
LHS =D U W{{i,j} US{s}}] defn ofpendingWork
oD U W{{j}uS{s}}) defnofw{-}
=D U P = RHS defn of workDone andpending Work
Case: (IABORT)
MIT;@i; (f,5) : sl — Tlj —iZfl; @535
LHS = D U W{{i} US{(f.j) : s}}) defn of pending Work

=D U W{{i,j}US{s}}y defn of S{—} andwW{—}
oD U {i} UW{{j}uS{s}}] defnofw{-}
=D U P = RHS defn of workDone andpending Work

Case: ('RESUME)

This is simply the inverse of the proof fPABORT)

APPENDIX D

Example HsDebug Debugging Logs

In this appendix, we present some example debugging sesssing HsDebug. All the text
shown is real output from HsDebug. The program being deldigpeach case is the following:

1: module Main (main,last’) where
2:

3: import System (getArgs)

4:

5: main :: I0 ()

6: main = do

7: [countstr] <- getArgs

8: let count = read countstr
9: let xs = [4%2, 5 ‘div‘ 0] ++ replicate count 42
10: print (head xs, last’ xs)
11:

12: last’ (x:xs) = last’ xs

13: last’ [x] = x

This program is based on an example given in the online dootatien for Hat [HAT]. We
have altered the program slightly so as to make its behadependent on program input, thus
preventing GHC from optimising the entire program away.

All the examples shown are debugging a binary that has beapited with the-02 flag to
GHC, turning on all optimisations.

221

222 Chapter D. Example HsDebug Debugging Logs

In all the examples, one can observe the following shortogsiin the current implementa-

tion of HsDebug:

e Source locations are sometimes a little wrong.

e Some function and closure names are messy ones made up lmntpéder.

We intend to fix all of these problems, but we have not done o ye

The log below shows how HsDebug can be used to find out whenecapton is occurring:

bash-2.03$ hsdebug paperdemo2 3

(hsdebug) continue

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>
["paperdemo." ++ 0x402c7e94]

(hsdebug) where

locals = ()
args = (0x8099a43)
#0: Main.1lvl3 at paperdemo.hs:12
update : 402c74c8
args = ()
#1: Main.last’ at paperdemo.hs:12
args = ([1)
#2: Main.last’ at paperdemo.hs:12
args = ([S# 42])
#3: Main.last’ at paperdemo.hs:12
args = ([S# 42, S# 42])
#4: Main.last’ at paperdemo.hs:12
args = ([S# 42, S# 42, S# 42])
#5: Main.last’ at paperdemo.hs:12
args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])
#6: Main.last’ at paperdemo.hs:12
args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])
#7: P4lu at inlined "print"
#8: xs.s4kR at paperdemo.hs:9

env = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#9: Main.main at inlined "print"

env = (||3||)

223

catch frame : GHC.TopHandler.topHandler.info
startup code

end of stack

(hsdebug)

The next log shows how breakpoints can be used to observedicateon of a program. In
this case we are placing a breakpoint on the entry ta #se ’ function:

bash-2.03$ hsdebug paperdemo 3

(hsdebug) b Main.last’

Breakpoint set at address 0x804929c

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42,
S# 42, S# 421)

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([1)

(hsdebug) c

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>
["paperdemo." ++ 0x402c7e94]

(hsdebug)

In these logs, we can note the following:

224 Chapter D. Example HsDebug Debugging Logs

e The reference tdemo.hs:9 should really be talemo.hs:10. This is a shortcoming of
our current source location information, which gives etieng in the body of alet a
location corresponding to the start of thet.

e 4x2 and5 ‘div‘ 0 have been hoisted up into top level closures by the compliee
compiler has called thema and1v116. Such closures are not currently speculated by
Optimistic Evaluation.

e 1v133, P41u andxs.s4kR are code blocks made up by the compiler. We intend to hide
these cryptic names in the future.

e Theargs line tells us the arguments that the function was called .witle can see that
the list of each call is the tail of the list of the previouslcal

e Structures such as lists and integers are pretty printexdratically.

e Whenprint is inlined, its arguments get mixed up with the bodypefint and so are
given the srclocinlined "print". This is rather counter-intuitive, and we intend to
change this.

HsDebug has many features not covered in these logs. Ircplari it can pretty print
closures in the heap and has special features to assistuggial the GHC runtime system.

Bibliography

[ABD*97]

[Abro0]

[AC97]

[AH90]

[AJS9]

[App87]

[ARO1]

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzirdreung, D. Sites,
M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuousilmg: Where
have all the cycles gone. Technical report, Digitial EquamtnCorporation Sys-
tems Research Center, July 1997.

Samson Abramsky. The lazy lambda calculus. In D. &nker, editorResearch
Topics in Functional Programmingrages 65-116. Addison-Welsey, Reading,
MA, 1990.

Andrea Asperti and Juliusz Chroboczek. Safe opesatdrackets closed forever
— optimizing optimal lambda-calculus implementatiodgplicable Algebra in
Engineering, Communication and Computi8¢6):437—468, 1997.

Hiralal Agrawal and Joseph R. Horgan. Dynamic pragrslicing. InProceed-
ings of the ACM SIGPLAN Conference on Programming Languaggdn and
Implementationpages 246—256, White Plains, NY, June 1990.

Lennart Augustsson and Thomas Johnsson. The chalamr+ML compiler.The
Computer Journal32(2):127-141, April 1989.

Andrew W. Appel. Garbage collection can be fastantstack allocationlnfor-
mation Processing Letter@5(4):275-279, 1987.

Matthew Arnold and Barbara G. Ryder. A framework feducing the cost of
instrumented code. IRroceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementat@2001.

225

226

BIBLIOGRAPHY

[Arn02]

[Bak95]

[BCF+99]

[BDY6]

[BFO2]

[BH77]

[BHAS6]

[BLO3]

[Bog99]

[Bur85]

[BVEVLP87]

[CDY3]

Matthew Arnold. Online Profiling and Feedback-Directed Optimization ofdav
PhD thesis, Rutgers, The State University of New Jerseyli2ct2002.

Henry G. Baker. 'use-once’ variables and lineaegltg — storage management,
reflection and multi-threadingACM SIGPLAN Noticespages 45-52, January
1995.

Michael G. Burke, Jong-Doek Choi, Stephen Fink, Davidve; Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, Vugranam C. SreedharinkhaSrinivasan,
and Jahn Whaley. The Jalapeno dynamic optimizing compleddva. InPro-
ceedings of the ACM Java Grande Confereri&99.

Stephen Brookes and Denis Dancanet. Circuit sermsatd intensional expres-
sivity. http://www-2.cs.cmu.edu/ ddr/, August 1996.

Anasue Bhowmik and Manoj Franklin. A general compifamework for spec-
ulative multithreading. IfProceedings of the ACM Symposium on Parallel Algo-
rithms and Architecture2002.

Henry G. Baker and Carl Hewitt. The incremental gadaollection of pro-
cesses. IProceedings of the Symposium on Al and Programming Language
1977.

Geoffrey L. Burn, Chris Hankin, and Samson Abramsgyrictness Analysis for
Higher-Order FunctionsScience of Computer Programming249-278, 1986.

Thomas Ball and James R. Larus. Branch predictionffee. In PLDI93
[PLD93], pages 300—313.

Urban Boquist.Code Optimisation Techniques for Lazy Functional Langsage
PhD thesis, Chalmers University of Technology, SwedenjlAB99.

F Warren Burton. Speculative computation, patfisite and functional program-
ming. IEEE Transactions on ComputerS-34(12):1190-1193, December 1985.

TH Brus, MCJD van Eckelen, MO van Leer, and MJ Rlager. Clean — a lan-
guage for functional graph rewriting. In G Kahn, editerpceedings of the 1997
Conference on Functional programming languages and coemnparchitecture
pages 364—-384. LNCS 274, Springer Verlag, September 1987.

Charles Consel and Olivier Danvy. Tutorial notes artial evaluation. In
POPL93 [POP93].

BIBLIOGRAPHY 227

[CG99]

[Chagsg]

[Dan9s]

[Eme99]

[EPO3a]

[EPO3D]

[EPMO3]

[ET96]

[Fax00]

[Fax01]

[FCO3]

[FDDO1]

Fay Chang and Garth A. Gibson. Automatic I/O hint gatien through spec-
ulative execution. IrProceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI'$@&bruary 1999.

Manuel M. T. Chakravarty. Lazy thread and task @oeah parallel graph reduc-
tion. In International Workshop of Implementing Functional Langeg Lecture
Notes in Computer Science. Springer Verlag, 1998.

Denis R. Dancanetntensional InvestigationsPhD thesis, School of Computer
Science, Carnegie Mellon University, October 1998.

Joel S. Emer. Simultaneous multithreading: Myt alpha’s performance. In
Microprocessor Forum1999.

Robert Ennals and Simon Peyton Jones. HsDebug :doefgulazy programs
by not being lazy (tool demo). IRroceedings of the ACM SIGPLAN Haskell
Workshop (Haskell’04)August 2003.

Robert Ennals and Simon Peyton Jones. Optimisatuation: An adaptive eval-
uation strategy for non-strict programs.Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming (ICF®QUppsala, August
2003. ACM.

Robert Ennals, Simon Peyton Jones, and Alan Mycraftost model for non-
strict evaluationUnpublished; Likely to be submitted somewhere s@603.

Hartmut Ehrig and Gabriele Taentzer. Computing bgpdr transformation: A
survey and annotated bibliograpHyEATCS: Bulletin of the European Associa-
tion for Theoretical Computer Science9, 1996.

Karl-Filip Faxén. Cheap Eagerness: Speculataduation in a lazy functional
language. InProceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP-00R000.

Karl-Filip Faxén. Dynamic Cheap EagernessPtaceedings of the 2001 Work-
shop on Implementing Functional Languag8pringer Verlag, 2001.

Keir Fraser and Fay Chang. Operating system 1/O dagon: How two in-
vocations are faster than one. Pnoceedings of the USENIX Annual Technical
ConferenceJune 2003.

ACM Workshop on Feedback Directed and Dynamic Optimiz¢&&DO), 2001.

228

BIBLIOGRAPHY

[FF92]

[FF95]

[FPCO3]

[FSDF93]

[GB96]

[GB99]

[Gil0O]

[GKM83]

[GLP93]

[GMO6]

[GP81]

[Gus98]

Joseph A. Fisher and Stefan M. Freudenberger. Rimgliconditional branch
directions from previous runs of a program. Pnoceedings of the Fifth Inter-
national Conference on Architectural Support for ProgramgnLanguages and
Operating Systems) SIGPLAN Notices1992.

Corman Flanagan and Matthias Felleisen. The sensaotifuture and its use in
program optimization. IfProceedings on the 22nd ACM Symposium on Princi-
ples of Programming Languaggsages 209-220, 1995.

ACM Conference on Functional Programming and Computer iecture
(FPCA'93), Cophenhagen, 1993. ACM.

Cormac Flanagan, Amr Sabry, Bruce Duba, and MadtRelleisen. The essence
of compiling with continuations. In PLDI93 [PLD93], page372-247.

John Greiner and Guy E. Blelloch. A provably time-@nt parallel implemen-
tation of full-speculation. IfProceedings of the 23rd ACM Symposium on Prin-
ciples of Programming Languaggsages 309-321, 1996.

John Greiner and Guy E. Blelloch. A provably time-@#nt parallel implemen-
tation of full-speculation.ACM Transactions on Programming Languages and
Systems (TOPLAS)1:240-285, 1999.

Andy Gill. Debugging haskell by observing intermatk data structures. In
Proceedings of the ACM SIGPLAN Haskell WorsHz0O0.

Susan L. Graham, Peter B. Kessler, and Marshall KKNEick. An execution
profiler for modular programsSoftware Practice and Experiencg:671-685,
August 1983.

Andy Gill, John Launchbury, and Simon L. Peyton JanA short cut to defor-
estation. In FPCA93 [FPC93], pages 223-232.

James Gosling and Henry McGilton. The Java Languager&ment: a White
Paper. Technical report, Sun Microsystems, 1996.

Dale H. Grit and Rex L. Page. Deleting irrelevent saiskan expression oriented
multiprocessor systenACM Transactions on Programming Languages and Sys-
tems (TOPLAS):49-59, January 1981.

Jorgen Gustavsson. A type-based sharing anatysigotiate avoidance and op-
timisation. InProceedings of the ACM SIGPLAN International Conference on

BIBLIOGRAPHY 229

[Gwe99]

[H95]

[Hal85]

[HAT]

[HK82]

[HO93]

[Hug89]

[i2600]
[int97]

[JGS93]

[Joh85]

[Jon92]

[KCR98]

Functional Programming (ICFP’98)volume 34(1) ofACM SIGPLAN Notices
Baltimore, 1998. ACM.

Linley Gwennap. MAJC gives VLIW a new twistMicroprocessor Reporyt
13(12), 1999.

Urs Holzle. Adaptive optimization for Self: reconciling high perfornce with
exploratory programmingPh.D. thesis, Computer Science Department, Stanford
University, March 1995.

Robert H Halstead. Multilisp - a language for comemt symbolic computation.
ACM Transactions on Programming Languages and Systé@s501-538, Oc-
tober 1985.

Hat - the haskell tracemttp://haskell.org/hat/.

Paul Hudak and Robert M. Keller. Garbage collectiom daask deletion in dis-
tributed systems. IRroceedings of the ACM Symposium on Lisp and Functional
Programming pages 168-178, August 1982.

Kevin Hammond and John T. O’Donnell, editorgzunctional Programming,
Glasgow 1993Workshops in Computing. Springer Verlag, 1993.

R. John M. Hughes. Why functional programming matt&éhe Computer Jour-
nal, 32(2):98-107, April 1989.

Intel. IA-64 Achitecture Software Developer’'s Manu2000.
Intel. Using the RDTSC instruction for Performance Monitoriag§97.

Neil D. Jones, Carsten K. Gomard, and Peter SesRaittial Evaluation and
Automatic Program GeneratiorPrentice Hall International, 1993.

Thomas Johnsson. Lambda lifting: transformingypams to recursive equations.
In Jean-Pierre Jouannaud, edith€&M Conference on Functional Programming
and Computer Architecture (FPCA'85yolume 201 ofLecture Notes in Com-
puter ScienceNancy, France, September 1985. Springer-Verlag.

Richard E. Jones. Tail recursion without spacedealournal of Functional
Programming2(1):73-79, January 1992.

Richard Kelsey, William Clinger, and Jonathan Regsvised report on the algo-
rithmic language Schem&IGPLAN Notices33(9):26—76, September 1998.

230 BIBLIOGRAPHY

[KR88] Brian W. Kernighan and Dennis M. RitchieThe C Programming Language
Prentice Hall, Englewood Cliffs, NJ, second edition, 1988.

[Kri99] Venkata S. Krishnan. Speculative Multithreading ArchitecturesPhD thesis,
Department of Computer Science, University of lllinois abbha-CHampaign,
1999.

[Lam90] John Lamping. An algorithm for optimal lambda cdiureduction. InConfer-
ence Record of the 17th Annual ACM Symposium on PrinciplBsogiramming
Languages1990.

[Lau93] John Launchbury. A natural semantics for lazy extain. In POPL93 [POP93].

[LCHT03] Jin Lin, Tong Chen, Wei-Chung Hsu, Roy Dz-Ching Ju, Ta# Ngai, Pen-
Chung Yew, and Sun Chan. A compiler framework for specutatinalysis and
optimizations. INPACM Conference on Programming Languages Design and Im-
plementation (PLDI'03)San Diego, California, June 2003. ACM.

[Lév78] Jean-Jacques LévyRéductions correctes et optimales dans le lambda-calcul.
PhD thesis, Université de Paris, 1978.

[Lév8O] Jean-Jacques Lévy. Optimal reductions in theddaacalculus. ITo H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formaii€a0.

[LRVD98] Xavier Leroy, Didier Rémy, Jérome Vouillon, drbamien Doligez.The Objec-
tive Caml system, documentation and user’'s guiidRIA, 1998. Available at
http://pauillac.inria.fr/ocaml/htmlman/.

[LS92] John Launchbury and Patrick Sansom, editéignctional Programming, Glas-
gow 1992 Workshops in Computing. Springer Verlag, 1992.

[Mac92] Robert A. MacLachlan (ed). CMU Common Lisp users oa@nTechnical report,
School of Computer Science, Carnegie Mellon Universitg2L9

[Mae02a] Jan-Willem Maessen. Eager Haskell: Resourcexiedl execution yields effi-
cient iteration. InThe Haskell Workshop, Pittsburgk002.

[Mae02b] Jan-Willem Maessendybrid Eager and Lazy Evaluation for Efficient Compila-
tion of Haskell PhD thesis, Massachusetts Institute of Technology, J082.2

[Mai03] Harry Mairson. From Hilbert spaces to Dilbert spsiceontext semantics made
simple. InProceedings of the 23rd International Conference on Foutioda of
Software Technology and Theoretical Computer Scie2@e3.

BIBLIOGRAPHY 231

[Mar02] Simon Marlow. State monads don’t respect the momadslin haskell. Mes-
sage posted to the Haskell mailing list: http://haskedlpipermail/haskell/2002-
May/009622.html, May 2002.

[Mat93] James S. MattsorAn effective speculative evaluation technique for paraile
percombinator graph reductionPh.D. thesis, Department of Computer Science
and Engineering, University of California, San Diego, ketry 1993.

[Mau02] Luke Maurer. Isn't this tail recursive? Messagetpdgo the Haskell mailing
list: http://haskell.org/ pipermail/haskell/2002-Mar609126.html, March 2002.

[MG99] Pedro Maruello and Antonio Gonzalez. Clustered sfsive multithreaded pro-
cessors. InProceedings of the International Conference on Supercaomgu
1999.

[MGA93] Margaret Martonosi, Anoop Gupta, and Thomas E. Asda. Effectiveness of
trace sampling for performance debugging tools. Phaceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Ctempystems
pages 248-259, 1993.

[MJ98] Richard G. Morgan and Stephen A. Jarvis. Profilingéascale lazy functional
programs.Journal of Functional Programmin@(3), May 1998.

[MJG93] Jim S. Mattson Jr and William G. Griswold. Local Spkdtive Evaluation for
Distributed Graph Reduction. In Hammond and O’Donnell [BD®ages 185—
192.

[MLP99] Andy Moran, Soeren Lassen, and Simon Peyton Jongstecise exceptions, co-
inductively. InProceedings of the 3rd International Workshop on Higher €rd
Operational Technigues in Semantiosimber 26 in Electronic Notes in Theoret-
ical Computer Science, pages 137-156. Elsevier, 1999.

[MN92] Alan Mycroft and Arthur Norman. Optimising compilah — lazy functional
languages. IfProceedings of the 19th Software Seminar (SOFSERD?2.

[MP98] Simon Marlow and Simon Peyton Jones. The new ghc/mugBme system.
Technical report, University of Glasgow, August 1998. Fnemw.haskell.org.

[MPO3] Simon Marlow and Simon Peyton Jones. Making a fastrycur
Push/enter vs eval/apply for higher-order languages. &bk at
http://research.microsoft.com/users/simonpj/, 2003.

232

BIBLIOGRAPHY

[MPMRO1] Simon Marlow, Simon Peyton Jones, Andrew Morang dohn Reppy. Asyn-

[MTHM97]

[Myc80]

[Myc81]

[NAO1]

[NF92]

[NF94]

[Nik91]

[Nil01]

[NS96]

[NS97]

chronous exceptions in Haskell. Rroceedings of the ACM Conference on Pro-
gramming Languages Design and Implementation (PLDI'QiBges 274-285,
Snowbird, Utah, June 2001. ACM.

Robin Milner, Mads Tofte, Robert Harper, and DawthcQueen.The Definition
of Standard ML (RevisedYhe MIT Press, 1997.

Alan Mycroft. The theory and practice of transfongicall-by-need into call-
by-value. InProceedings of the 4th International Symposium on Programgm
1980.

Alan Mycroft. Abstract Interpretation and optimising transformatiorigipplica-
tive programs PhD thesis, Edinburgh University, 1981.

Rishiyur S Nikhil and Arvind. Implicit Parallel Programming in pH Morgan
Kaufman, 2001.

Henrik Nilsson and Peter Fritzson. Algorithmic dglging for lazy functional
languages. In Maurice Bruynooghe and Martin Wirsing, editBroceedings
of the International Symposium on Programming Languagddmgpntation and
Logic Programming (PLILP '92)volume 631 olecture Notes in Computer Sci-
ence pages 385-399, Leuven, Belgium, August 1992.

Henrik Nilsson and Peter Fritzson. Algorithmic dgbing for lazy functional
languagesJournal of Functional Programming}(3):337-370, July 1994.

Rishiyur Sivaswami Nikhil. Id (version 90.1) langge reference manual. Tech-
nical Report CSG Memo 284-2, MIT Computation Structuresuprd 991.

Henrik Nilsson. How to look busy while being as lazg aver: The imple-
mentation of a lazy functional debuggelournal of Functional Programming
11(6):629-671, November 2001.

Henrik Nilsson and Jan Sparud. The evaluation depecgltree: an execution
record for lazy functional debugging. Technical reportpBement of Computer
and Information Science, Linkoping University, 1996.

Henrik Nilsson and Jan Sparud. The evaluation depeceltree as a basis for
lazy functional debuggingAutomated Software Engineering: An International
Journal 4(2):121-150, April 1997.

BIBLIOGRAPHY 233

[NSVEP91] Eric Nocker, Sjaak Smetsers, Marko van Eekelet Rinus Plasmeijer. Concur-
rent clean. In Leeuwen Aarts and Rem, edit®hgiceedings of the International
Symposium on Parallel Architectures and Languages EurBp&kE '91) vol-
ume 505, pages 202-219. Springer-Verlag, 1991.

[ONng88] Chih-Hao Luke OngThe Lazy Lambda Calculus: An Investigation in the Foun-
dations of Functional Programming PhD thesis, Imperial College, London,
1988.

[Osb89] Randy B. Osbourn&peculative computation in Multilis@?hD thesis, MIT Lab
for Computer Science, December 1989.

[Par91] Andrew S. Partridg&peculative Evaluation in Parallel Implementations ofy.az
Functional LanguagesPhD thesis, University of Tasmania, October 1991.

[Par92] Will D. Partain. Thaofib benchmark suite of Haskell programs. In Launchbury
and Sansom [LS92], pages 195-202.

[PD89] Andrew S. Partridge and Anthony H. Dekker. Specwaparallelism in a dis-
tributed graph reduction machine. Rroceedings of the Hawaii International
Conference on System Science339.

[PEP97] ACM SIGPLAN Symposium on Partial Evaluation and Semalased Program
Manipulation (PEPM ’97) volume 32 ofSIGPLAN NoticesAmsterdam, June

1997. ACM.

[Pey9l] Simon Peyton Jones. The spineless tagless G-neachsecond attempt. Tech-
nical report, Department of Computing Science, Universit§lasgow, February
1991.

[Pey92] Simon Peyton Jones. Implementing lazy functicaxadjlages on stock hardware:

The spineless tagless G-machideurnal of Functional Programmin@(2):127—
202, April 1992.

[Pey01] Simon Peyton Jones. Tackling the awkward squad:adionnput/output, con-
currency, exceptions, and foreign-language calls in Haskimn CAR Hoare,
M Broy, and R Steinbrueggen, editoriSngineering theories of software con-
struction, Marktoberdorf Summer School 200ATO ASI Series, pages 47-96.
IOS Press, 2001.

[PHAT99] SL Peyton Jones, RIJM Hughes, L Augustsson, D Barton, BeBow Burton,
J Fasel, K Hammond, R Hinze, P Hudak, T Johnsson, MP Jonesinthbury,

234 BIBLIOGRAPHY

E Meijer, J Peterson, A Reid, Colin Runciman, and PL Wadleepdtt on the
programming language Haskell %ttp: //haskell.org, February 1999.

[PHHT93] Simon Peyton Jones, Cordelia Hall, Kevin Hammond, WdttRin, and Philip
Wadler. The Glasgow Haskell Compiler: a technical overviewProceedings of
Joint Framework for Information Technology Technical Gaahce, Keelgpages
249-257. DTI/SERC, March 1993.

[PLI1] Simon Peyton Jones and John Launchbury. Unboxecdesas first class citi-
zens. InProceedings of the ACM Conference on Functional Progrargraimd
Computer Architecture (FPCA'91yolume 523 ofLecture Notes in Computer
Sciencepages 636—666, Boston, 1991. Springer Verlag.

[PL92] Simon Peyton Jones and David Lestémplementing functional languages: a
tutorial. Prentice Hall, 1992.

[PLD93] ACM Conference on Programming Languages Design and Impitien
(PLDI'93). ACM, June 1993.

[PMR99] Simon Peyton Jones, Simon Marlow, and Alastair R&ide stg runtime system
(revised). Technical report, Microsoft Research, Felyrd@09. Part of the GHC
source package.

[POO03] Manohar K. Prabhu and Kunle Olukotun. Using threackl speculation to sim-
plify manual parallelization. IProceedings of the 9th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programmin2003.

[POP93] 20th ACM Symposium on Principles of Programming Langua&€3PL 93).
ACM, January 1993.

[Pop98] Bernard Pope. Buddha: A declarative debugger fekéla Technical report,
Department of Computer Science, University of Melbournast®alia, June 1998.

[PP93] Simon Peyton Jones and Will Partain. Measuring tfecfeness of a simple
strictness analyser. In Hammond and O’'Donnell [HO93], g&f#—220.

[PRHT99] Simon Peyton Jones, Alastair Reid, CAR Hoare, Simon dWarand Fergus Hen-
derson. A semantics for imprecise exceptiong2ioceedings of the ACM Confer-
ence on Programming Languages Design and ImplementatibDI(®9), pages
25-36, Atlanta, May 1999. ACM.

[PW93] Simon Peyton Jones and Philip Wadler. Imperativetional programming. In
POPL93 [POP93], pages 71-84.

BIBLIOGRAPHY 235

[Rei01]

[Roe90]

[Ros89]

[RPHLO2]

[RR964]

[RRI6b]

[RVO04]

[RW92]

[San94]

[San95a]

[San95b]

[SCG95]

Claus Reinke. GHood — graphical visualisation andration of haskell object
observations. IfProceedings of the ACM SIGPLAN Haskell Worksi2jD1.

Paul Roe. Calculating lenient programs’ perforogan In Proceedings of the
Glasgow Worshop on Functional Programmji§90.

Mads Rosendahl. Automatic complexity analysis. Plnceedings of the 4th
International Conference on Functional Programming Laages and Computer
Architecture September 1989.

Alvaro J. Rebon Portillo, Kevin Hammand, and Hans-Woligaoidl. Cost anal-
ysis using automatic size and time inferencePtnceedings of the Workshop on
Implementing Functional LanguageSpringer Verlag, 2002.

Niklas Rojemo and Colin Runciman. Lag, drag, v@dd use: heap profiling

and space-efficient compilation revisited. Rroceedings of the ACM SIGPLAN
International Conference on Functional Programming (IC8#®), pages 34—41.

ACM, Philadelphia, May 1996.

Colin Runciman and Niklas Rojemo. New dimensiankseap profilingJournal
of Functional Programming6(4), September 1996.

4th Workshop on Runtime Verificatiddarcelona, Spain, 2004.

Colin Runciman and David Wakeling. Heap profiling aydunctional compiler.
In Launchbury and Sansom [LS92], pages 203-214.

Patrick M. Sansorizxecution profiling for non-strict functional languagé®.D.
thesis, University of Glasgow, September 1994.

David Sands. A naive time analysis and its theocpsf equivalencelournal of
Logic and Computatiorb(4), 1995.

André Santo€£ompilation by transformation in non-strict functionahiguages
Ph.D. thesis, Department of Computing Science, Glasgowelssity, September
1995.

Klaus E. Schauser, David E. Culler, and Seth C GeidsSeparation constraint
partitioning: a new algorithm for partitioning non-strjptograms into sequential
threads. IProceedings of the 22nd ACM Symposium on Principles of Rrogr

ming Languages (POPL'95pages 259-271. ACM, January 1995.

236

BIBLIOGRAPHY

[Ses97]

[Smi81]

[SPO1]

[SP93]

[Spa93]

[SR97]

[SR98]

[Sun01]

[TAQO]

[TAQ5]

[TEL95]

[Trass]

[TtGTO1]

[TWMO5]

Peter Sestoft. Deriving a lazy abstract machloarnal of Functional Program-
ming, 7(3), 1997.

James E. Smith. A study of branch prediction striaegin Proceedings of the
International Symposium on Computer Architeciur@81.

Richard M. Stallman and Roland H. Pesch. Using GDBu#lg to the GNU
source-level debugger, GDB version 4.0. Technical refpoge Software Foun-
dation, Cambridge, MA, 1991.

Patrick M. Sansom and Simon Peyton Jones. Geneabfarbage collection for
haskell. In FPCA93 [FPC93], pages 106-116.

Jan Sparud. Fixing some space leaks without a gartatector. In FPCA93
[FPC93], pages 117-124.

Jan Sparud and Colin Runciman. Tracing lazy funefimomputations using
redex trails. InPLILP, pages 291-308, 1997.

Jan Sparud and Colin Runciman. Complete and paeiilsx trails of functional
computationsLecture Notes in Computer Sciendd67:160-??, 1998.

Sun Microsystemd.he Java HotSpot Virtual machine, White Pagz001.

Andrew P. Tolmach and Andrew W. Appel. Debugging stard ML without
reverse engineering. IAroceedings of the 1990 ACM Conference on LISP and
Functional Programming, Niggpages 1-12, New York, NY, 1990. ACM.

Andrew P. Tolmach and Andrew W. Appel. A debugger ftarglard ML.Journal
of Functional Programmingb(2):155-200, 1995.

Dean Tullsen, Susan J. Eggers, and Henry M. LevyuBeneous multithreading:
Maximizing on-chip parallelism. liProceedings of the International Symposium
on Computer Architecturel 995.

Ken Traub.Sequential implementation of lenient programming langsagh.D.
thesis, MIT Lab for Computer Science, 1988.

Andrew Tolmach and the GHC Team. An external repngégtion for the ghc core
language. Available at http://haskell.org, 2001.

David N Turner, Philip Wadler, and Christian MossifOnce upon a type. In
Proceedings of the ACM Conference on Functional Progrargramd Computer
Architecture (FPCA’95)La Jolla, California, 1995. ACM.

BIBLIOGRAPHY 237

[vD89]

[Voi02]

[Wad71]

[Wad84]

[Wad87]

[Wad88]

[Wad90a]

[Wad90b]

[Wad95]

[Wad97]

[Wad9g]

[Wan02]

[WCBRO1]

Christina von Dorrien. Stingy evaluation. Licerngahesis, Chalmers University
of Technology, May 1989.

Janis Voiglaender. ‘seq‘ breaks the foldr/buildie. Message posted to the
Haskell mailing list: http://haskell.org/pipermail/hadl/2002-May/009653.html,
May 2002.

Christopher Wadswortlisemantics and Pragmatics of the lambda calcuRisD
thesis, University of Oxford, 1971.

Philip Wadler. Listlessness is better than lazn&schnical report, Programming
research group, Oxford University, January 1984.

Philip Wadler. Fixing a space leak with a garbagéectbr. Software - Practice
and Experiencel7(9):595-608, 1987.

Philip Wadler. Strictness analysis aids time asiglylnProceedings of the ACM
Sympossium on Principles of Programming Language88.

Philip Wadler. Deforestation: transforming piargs to eliminate treeg.heoret-
ical Computer Scien¢§3:231-248, 1990.

Philip Wadler. Linear types can change the worldi M. Broy and C. Jones,
editors,IFIP TC 2 Working Conference on Programming Concepts andrddg,
Sea of Galilee, Isragpages 347-359. North Holland, 1990.

Philip Wadler. Monads for functional programmintn J Jeuring and E Mei-
jer, editors Advanced Functional Programmingolume 925 olecture Notes in
Computer Sciencé&pringer Verlag, 1995.

Philip Wadler. How to declare an imperativkCM Computing Survey29(3),
1997.

Philip Wadler. Why no one uses functional langua@@&PLAN NoticesAugust
1998.

Keith WansbroughSimple Polymorphic Usage AnalysiBhD thesis, Computer
Laboratory, University of Cambridge, March 2002.

Malcom Wallace, Olaf Chitil, Thorsten Brehm, andli@ Runciman. Multiple-
view tracing for haskell: a new hat. Proceedings of the ACM SIGPLAN Haskell
Workshop2001.

238 BIBLIOGRAPHY

[WH87] Philip Wadler and John Hughes. Projections for stiess analysis. In G Kahn,
editor, Proceedings of the ACM SIGPLAN Conference on Functionat Pro
gramming Languages and Computer ArchitectiBeringer Verlag LNCS 274,
September 1987.

[Wil92] Paul R. Wilson. Uniprocessor garbage collectioohieiques. InProceedings of
the International Workshop on Memory Managem&aiint-Malo (France), 1992.
Springer-Verlag.

[WP99] Keith Wansbrough and Simon Peyton Jones. Once upotyeprphic type. In
26th ACM Symposium on Principles of Programming Languag@d?('99), San
Antonio, January 1999. ACM.

[Z2S01] Craig B. Zilles and Gurindar S. Sohi. A programmaladexcocessor for profiling.

In Proceedings of the International Symosium on High PerferceaComputer
Architecture January 2001.

Index

Symbols
O et e e 49
O 49
Ve e et e 26
L 2 59
) 59
o 26
) 59
Elaj/x] o 26
Eax.o oo 24
U e e e e 26, 34
D 2 24
N 24
et et e e 24, 34
D 26
L 51, 59
D e e 25-27
2 52
Y e e e 50
D e 34, 35
S 24
DO et e e 26
S 27
D 35
11 26, 27
Bla)® 77

() o 26
(T, d,€) v 59
QL 26
A 59
(V) e 26
P 34,50
A 34
S e 30
o 25,59
{z}E B) oo 77
FL 26, 27
{Z}E . 27
Py e 26, 27
A
abortion......................... 7,9,30
abstractC................... ... 96
active. ... 17
activeBlame 79
Alternatives ... 24
application........................ 24, 32
B
binder............ 4
blackhole 92
blame..................... 16,17,72,73
blamegraph.......................... 73

240 INDEX
blametree 73 currentclosurel 136
BlameBase........................ 121 currentventure o 17
body ... 4,26 OV i 50
boundary point.................... 20,81 CVP . e 52
bounded speculation.................. 78
branch prediction.................... 185 D
burst profiling.cooooevi... 20,81 dataspeculation..................... 184
define 50
C demand.......................... 26,73
Cov et e e 26 denotational semantics 23,32
CToo Ty 24 depthlimit................... 11, 27, 106
Cl-T 33,36 depth limits.......ovovieeeiinnn, 107
Cl=d o 65 directreturn.............oo... 93
Cas@.........vcvvviniiiiin e 24 go-Notation. 13
casereturnframe..................... 27 dONE-At-8-COSt. .+ e, 68
case Fof Py... P, .o, 24
chaincount............cooovvunn.... 131 E
chainlimit...................... 131, 157 E o 24, 26
chaining............................. 85 L[] 33, 35,52
chainProf o il 85 eager blackholing.................... 104
cheapness analysis................. 3,177 entrycodecoiiiiiiiiiin... 89
chunks ... 709 Bnu..ooiiii 34
chunky evaluation 10 environment.. ..., 34
Closure ..o, 26,99 eITOr. ..t 24
Closures. 26 evaluationstrategy.................... 51
Commandcccii .. 26, 59 EXCEPON. .. vt 24,32
command ... 20 eXD i 24
complete. ... 38 EIpressioneiiiiiiii... 24,32
completeview........................ 50
computationtrace..................... 59 F
CONfig. oo e 26 o 69
CONStIUCtOr. 24 26
control speculation................... 184 F(—=) v 53
O] ¢ 24 flatspeculation.................. 111, 168
costgraph................ooiiiiiin 49 Frame..........oeiiiiii 26
COSEVIEW ..ot 50 function abstraction................... 24
costview producer.................... 52 function applicationframe............. 27
costed indirection..................... 75 function application thunk............ 112

INDEX 241
G letz=FEinE 24
GHC .. 88 localframe....................... 26, 27
goodnesst 15, 68,70,160 localwork..................... 16, 17,73
GOOANESS . v v v ettt 70 LocalFrame, 26, 59
goodnesscounter.................... 122
goodness weighting function........... 78 M
GoodnessMapooiiiiinin... 75 MI=T e 33,64
goodToLim...................... 78,122 MAXBLAME «..o.vvnnininnnnnnn, 8
MAXDEPTHccccovuun.. 78
H MAXHEAP ... oo, 129
HI=] oo 33,36 MAXTIME, 31
Haskell 24 MINGOODNESS ... 78
Heap ..o 26 minimumsink. 185
heapo i 26, 89
heap references....................... 26 N
heapresidency 129 MPrrrrrrrrrrrrrrrrrreeseeeseee 24
HD . o 97 NOME 49
Node...........ooiiiiiiiiii... 97
I
b e e e e e 49 O
Tdo oo 34 Ol S7
indirectee............... ... 26,91 online profiling !
indirection.............. .o 26 Open graph...........oovenn 50
iNfO POIMET . o+ oo 89 operational semantics 23
infotable 89 overdefined, 34
instructionpointer 95 P
K P 24
Ko 26 D e e 82
KI=D oo 33 Pl=] oo 57
partial evaluation.................... 192
L payload................. 89
L 26 pending computations................. 65
LI=] oo 33,36 pendingWork 65
Large data-type....................... 93 periods ... 20
layout............. ... 89,104 powerset.........coiiiiiiiiiiiiinn.. 49
lazy blackholing..................... 104 primitive operation.................... 27
Lazy Evaluation....................... 2 primopframe......................... 27
lazyWork . ..ooouu e 69 profile chaining.............. 85, 131, 157

242 INDEX
profilestack......................... 123 speculation................... 4,8,17,73
profiled 84 speculation configuration............ 7,27
profiling semantics................... 187 speculationdepth..................... 27
ProfTop.........ccoiiiiiiiiiin. 123 speculationtime...................... 31
program specialisation 192 speculative evaluation.................. 4
programWork 0 . 51 speculative evaluation strategy 4
PSL Computation Graphs 185 speculative return frame 27,106

Stack 26,59

R stack.......... .o 27,92
relative goodness 82 stack frames. 27
relativeruntime...................... 149 Srate. .. 26, 59
reverted. ... 184 SEAEEGY + + v v v e e 51
rhsfun.........oooooonnn 112 strictness Analysis................... 175
righthandside......................... 4 strictnessanalysis...................... 3
rootventure 17 strictness annotations 174
S suspended stackframe 26

suspensionclosure................... 137
S 25,26 SWitCh 7
S ot e e e 26
S{=Y . 65 T
S[=] oo 33, 36, 64 T 61
SaAVed ...t 68 T[] e 64
savedwork.................. ... 69 thunk.................. 8, 24, 26, 62, 103
savedWork ..ot 15, 16, 69 thunkcost...................... 125, 155
SCIUtiNEE. . ..v et 102 thunkventure 17
semi-tagging ... 114 Trace.......ooveeiiiiiiiiieann, 59
SO e e e e e 175 transienttailframes.................. 141
SIZE ot 89 type............. 89
skipcount 153 U
small data-type.................oooeee 93 updateframe...................... 26, 27
SoUNd. ... 38

updatee. ... 95
SOUICE . . ittt it et 8,185
) TP 92,97 V
spawned 8 Ve 24
SpecDepth........................ 107 Value 34,53
specDepth ... 107 valueclosure......................... 26
speculated. ... 8 ValueExp 24,32
speculating...............ooiiiiiiea 4 wvariable.............. ... 24

243

INDEX
vectoredreturn....................... 93
VENIUIE . ..o 16, 73
W

W=} 51
wasted. ... 68
wastedwork................. ... 68
wastedWork oo i . 15, 68
Work .. 49
WOIK .o 17
workset............oiiiiiii 44

