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Abstract

Most popular programming languages arestrict. In a strict language, the binding of a variable

to an expression coincides with the evaluation of the expression.

Non-strict languages attempt to make life easier for programmers by decoupling expression

binding and expression evaluation. In a non-strict language, a variable can be bound to an

unevaluated expression, and such expressions can be passedaround just like values in a strict

language. This separation allows the programmer to declarea variable at the point that makes

most logical sense, rather than at the point at which its value is known to be needed.

Non-strict languages are usually evaluated using a technique called Lazy Evaluation. Lazy

Evaluation will only evaluate an expression when its value is known to be needed. While

Lazy Evaluation minimises the total number of expressions evaluated, it imposes a considerable

bookkeeping overhead, and has unpredictable space behaviour.

In this thesis, we present a new evaluation strategy which wecall Optimistic Evaluation.

Optimistic Evaluation blends lazy and eager evaluation under the guidance of an online pro-

filer. The online profiler observes the running program and decides which expressions should

be evaluated lazily, and which should be evaluated eagerly.We show that the worst case per-

formance of Optimistic Evaluation relative to Lazy Evaluation can be bounded with an upper

bound chosen by the user. Increasing this upper bound allowsthe profiler to take greater risks

and potentially achieve better average performance.

This thesis describes both the theory and practice of Optimistic Evaluation. We start by

giving an overview of Optimistic Evaluation. We go on to present formal model, which we use

to justify our design. We then detail how we have implementedOptimistic Evaluation as part of

an industrial-strength compiler. Finally, we provide experimental results to back up our claims.
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CHAPTER 1

Introduction

Avoiding work is sometimes a waste of time.

Non-strict languages are elegant, but they are also slow. Optimistic Evaluation is an imple-

mentation technique that makes them faster. It does this by using a mixture of Lazy Evaluation

and Eager Evaluation, with the exact blend decided by an online profiler.

1.1 Lazy Evaluation

Lazy Evaluation is like leaving the washing-up until later.If you are never going

to use your plates again then you can save considerable time by not washing them

up. In the extreme case you may even avoid washing up a plate that is so dirty that

it would have taken an infinite amount of time to get clean.

However, if you are going to need to use your plates again, then leaving the washing

up until later will waste time. By the time you eventually need to use your plates,

the food on them will have stuck fast to the plate and will takelonger to wash off.

You will also have to make space in your kitchen to hold all thewashing up that

you have not yet done.

Non-strict languages aim to make life easier for programmers by removing the need for a

programmer to decide if and when an expression should be evaluated. If a programmer were to

write the following:

let x = E in E ′

9



10 Chapter 1. Introduction

then a strict language such as C [KR88] or ML [MTHM97] would evaluate thelet expression

eagerly. It would evaluate theE to a value, bindx to this value, and then evaluateE ′.

By contrast, a non-strict language such as Haskell [PHA+99] or Clean [BvEvLP87, NSvEP91]

will not require thatE be evaluated untilx is known to be needed. Non-strict languages are usu-

ally evaluated using an evaluation strategy calledLazy Evaluation.1 If the evaluator evaluates

theletlazily then it will bindx to a description of how to evaluateE, only evaluatingE if x is

found to be needed.

In a strict language, thelet declaration does not just say whatx means—it also says that

x should be evaluated now. This forces the programmer to declare x at a point at which it is

known thatE is needed; otherwise the work done to evaluateE might be wasted. However,the

best point forx to be evaluated might not be the most logical place forx to be declared. Pro-

grammers are forced to make a compromise between elegance and efficiency in their placement

of declarations.

Non-strict languages avoid this problem by distinguishingbetween the point at which a vari-

able is declared and the point at which it is evaluated. It is argued that this gives programmers

more freedom, and allows them to write more elegant programsthan they would in a strict

language [Hug89].

Unfortunately, this beauty comes at a cost. If the evaluatoris not going to evaluate an

expression immediately, then it must create a data structure describing how to produce the

value later. Producing this data structure takes time and space. As a result of this, non-strict

languages are usually significantly slower than strict languages.

1.2 Mixing Eager and Lazy Evaluation

Rather than leaving all the washing up until later, or washing up everything now,

it might be best to wash up some plates now, but leave some other plates for later.

I might decide to wash up the plates that I know I am going to need tomorrow.

Alternatively, I might wash up only those plates which I knoware fairly clean and

so won’t take very long to wash up.

Unfortunately, it can be difficult to know for certain that a plate will definitely be

needed or that it will definitely be easy to clean. I may have used my favourite plate

every day this year, but if I got hit by a bus tomorrow then I would never need to

use it again. Similarly, although my plate has always been easy to wash up in the

past, I can’t be sure that it won’t be impossible to wash up this time.

1The only non-lazy implementation of a non-strict language of which we are aware is Eager Haskell, which we
discuss in Section 13.2.
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Figure 1.1 : Percentage of lazy let evaluations left behind by GHC’s strictness analyser that we
believe should be evaluated eagerly

One way to for an implementation to avoid the cost of Lazy Evaluation is to simply not use

it. If E is very cheap to evaluate, or is always needed, then it is safeto evaluatex at the point at

which it is declared. We can thus arrange to use Eager Evaluation in such cases, and save Lazy

Evaluation for the cases where it necessary.

It is all very well to say “we will only use Lazy Evaluation when it necessary”, but how

does a language implementation find out where Lazy Evaluation can be safely replaced by

Eager Evaluation?

Most existing compilers for non-strict languages use a static analysis called strictness anal-

ysis (Section 13.1.2) to find expressions that are guaranteed to be needed.2 Another approach

is cheapness analysis (Section 13.1.3) which finds expressions that are guaranteed to be cheap

to evaluate.

While both these analyses work well they, like all undecidable static analyses, are limited by

the need to be conservative. If a static analysis decides to evaluate an expression eagerly, then

the analysis must be 100% sure that the expression is either cheap or needed. If the expression

turned out to be expensive and unnecessary, then this could cause the program to execute much

more slowly than otherwise, or perhaps even to not terminate. This requirement to be conserva-

tive can be very frustrating. Often one will have an expression that one is “pretty sure” could be

safely evaluated eagerly, but because one is not 100% sure one has to evaluate it lazily. A further

problem is that such analyses miss expressions that are “usually used and usually cheap”.

In practice this conservatism causes static analyses to lazily evaluate many more expres-

sions than necessary. Figure 1.1 summarises the proportionof lazy let evaluations left behind

by GHC’s [PHH+93] strictness analyser [PP93] that our profiler believes should be evaluated

eagerly. This graph is explained in more detail in Section 12.4.4.

2In this introductory chapter, we are fairly sloppy in distinguishing between static program expressions and
dynamic expression instances. We will be more formal in later chapters.
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Static analyses, and other approaches to mixed eager/lazy evaluation are discussed in more

depth in Chapter 13. The implementation of Lazy Evaluation is discussed further in Chapter 7.

1.3 Optimistic Evaluation

Perhaps a better approach is to wash up “optimistically”. Asdays go by, I learn

which plates are likely to be easy to wash up and which ones arelikely to be needed

again. I will soon learn that, while paper plates are usuallynot needed again, my

favourite dinner plate usually is. If a plate turns out to be harder to wash up than I

expected then I can stop washing it up and move onto somethingelse.

In this thesis, we introduce Optimistic Evaluation, a new evaluation strategy for non-strict

programs. Optimistic Evaluation avoids the curse of conservatism by using an online profiler to

decide how best to blend lazy and eager evaluation, rather than using a static analysis. Everylet

expression is compiled such that it can evaluate either eagerly, or lazily, depending on the state

of a dynamically changing structure called thespeculation configuration. An online profiler

monitors the behaviour of the program as it runs, and updatesthe speculation configuration to

take account of what it has seen.

Optimistic Evaluation is aspeculative evaluation strategy. It evaluates expressions without

knowing whether their values are needed or whether evaluation will have to be aborted. When

Optimistic Evaluation evaluates the right hand side3 of a let eagerly, we say that it isspeculat-

ing the let, and refer to the evaluation of the right hand side as aspeculationor aspeculative

evaluation.

Unlike a static analysis, Optimistic Evaluation is not conservative. An expression will be

evaluated eagerly if the profiler judges that this willprobably make the program go faster,

rather than only if this willdefinitelynot make the program go slower. If the profiler makes a

bad decision, and causes the program to attempt to eagerly evaluate an expensive expression,

then the profiler will spot that the evaluation has gone on fortoo long, and arrange for it to be

aborted (more details in Section 2.2).

The purpose of this thesis is to explore the concept of Optimistic Evaluation, develop the

theory behind it, demonstrate that it can be practically implemented, and show that it gives

considerable (approx 20%) performance improvements relative to the best performing compiler

previously available.

3For the expression ‘let x = E in E′’ we say thatx is thebinder, E is theright hand side, andE′ is thebody.
While these terms are quite widespread, they can be confusing because, although the right hand side is written to
the right of the binder, it is written to the left of the body.
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1.4 Structure of this Thesis

This thesis is divided into four parts:

• Part I: An overview of Optimistic Evaluation

• Part II: The theory behind Optimistic Evaluation

• Part III: The implementation of Optimistic Evaluation in the GlasgowHaskell Compiler

• Part IV: Performance results, related work, and conclusions.

All terms defined in this thesis can be found in the index.

1.5 Contributions

This thesis makes the following contributions:

• We introduce Optimistic Evaluation, a novel approach to evaluating non-strict programs,

which dynamically explores the space between Lazy Evaluation and Eager Evaluation

(Chapter 2).

• We give a concrete semantics for Optimistic Evaluation and prove that it is sound with

respect to Lazy Evaluation (Chapter 4).

• We give a novel cost semantics for non-strict programs and prove that this semantics cor-

rectly models the costs experienced by a conventional operational semantics (Chapter 5).

• We use this cost model to motivate the design of an online profiler (Chapter 6).

• We show that, given certain safe assumptions, we can guarantee that such a profiler can

bound the worst case performance of Optimistic Evaluation,relative to Lazy Evaluation.

This is an important property if Optimistic Evaluation is tobe used as a “plug-in” replace-

ment for Lazy Evaluation. (Chapter 6).

• We describe a real, practical implementation of OptimisticEvaluation that is able to cor-

rectly execute arbitrary Haskell programs. (Part III)

• We demonstrate significant performance increases (approx 20%) compared to our base-

line compiler. Given that our compiler has been tuned for many years and is was itself the

fastest compiler available for the Haskell language, this is a considerable achievement.

(Chapter 12)

• Optimistic Evaluation opens up a considerable design space. We have explored part of

this space, and have compared several different approaches.



Part I

Overview
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CHAPTER 2

Optimistic Evaluation

Optimistic Evaluation consists of several components thatcome together to produce a function-

ing system:

• Eachlet expression can evaluate either eagerly or lazily (Section 2.1). Which of these

it does depends on the state of a run-time adjustableswitch, one for eachlet expression.

The set of all such switches is known as thespeculation configuration.

• If the evaluator decides that a speculation has gone on for too long then it willabort the

speculation. The evaluator will resume by evaluating the body of thelet that spawned

the aborted speculation. (Section 2.2).

• Recursively generated structures such as infinite lists canbe generated inchunksof several

elements, thus reducing the cost of laziness, while avoiding evaluating too much of the

structure in one go. (Section 2.3).

• Online Profiling learns whichlets are expensive to evaluate, or are rarely used (Chap-

ter 3). The profiler modifies the speculation configuration sothat expensive and rarely

usedlet definitions are not speculated.

A more formal treatment of these concepts is provided in Chapter 4, while more implemen-

tation details are provided in Chapter 8.

15



16 Chapter 2. Optimistic Evaluation

2.1 Switchable Let Expressions

Our compiler reduces the full Haskell language to a restricted subset in which all complex

expressions must be bound bylet expressions (Section 4.1). Eachlet expression takes the

following form:

let x = E in E ′

Such alet can be evaluated either eagerly or lazily:

• Eager: EvaluateE immediately. Bindx to the value thatE evaluates to.

• Lazy: Do not evaluateE immediately. Bindx to a thunkin the heap, containing all the

information needed to evaluateE later.

Our implementation decides at runtime whether to evaluate agiven let eagerly or lazily.1 The

code generator translates thelet expression above into code that behaves logically like the

following:
if(switch237 6= 0){

x := result of evaluatingE

}else{

x := thunk to computeE when demanded

}

evaluateE ′

Our current implementation associates onestatic switch(in this caseswitch237) with eachlet.

There are many other possible choices. For example, for a function like map, which is used

in many different contexts, it might be desirable for the switch to take the calling context into

account. We have not explored these context-dependent possibilities because the complexity

costs of dynamic switches seem to overwhelm the uncertain benefits. In any case, GHC’s

aggressive inlining tends to reduce this particular problem. We discuss such switches further in

Section 4.2.2. IfE was large, then this compilation scheme could result in codebloat because

two blocks of code are generated forE. We explain ways to avoid this problem in Section 8.1.6.

If a let is evaluated eagerly, then we say that thelet is speculated, we refer to the time

spent evaluating the right hand side of thelet as aspeculation, we say that the speculation was

spawnedby thelet, and we say that thelet is thesourceof the speculation.

1If strictness analysis is applied beforehand, then somelet expressions may be hard-coded as eager.
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2.2 Abortion

Optimistic Evaluation aims to improve performance by evaluating expressions eagerly even

when it does not know for sure that they will be cheap or needed.2 An obvious consequence

of this strategy is that it will sometimes evaluate expressions that are expensive and unneeded.

It is essential that the evaluator has a way to recover from such mistakes in order to avoid

non-termination; this is the role ofabortion.

If the evaluator detects that a speculation has been going onfor a long time, then it aborts

all active speculations (they can of course be nested), resuming after thelet that started the

outermost speculation.3

Detecting when a speculation has been running for too long can be done in several ways;

the choice is not important, so long as it imposes minimal overheads on normal execution. One

approach is to have periodic sample points which look at the state of the running program. If

a speculation remains active for two consecutive sample points then the evaluator considers the

speculation to have gone on for too long. Our real implementation is more complicated, is

discussed in Section 10.1.

There are also several ways in which a speculation can be aborted. Our current scheme is

similar to the suspension system used for handling asynchronous exceptions in Haskell [MPMR01].

A suspension is created in the heap containing the state of the aborted speculation. If the result

of this speculation is found to be needed, then the speculation will be unfrozen and resumed

from the point where it left off. The implementation of abortion is described in detail in Sec-

tion 10.2. Abortion turns out to be a fairly rare event, so it does not need to be particularly

efficient (see the statistics in Section 12.4.3).

Abortion alone is enough to guarantee correctness; i.e. that the program will deliver the

same results as its lazy counterpart. Indeed, previous work(discussed in Section 13.2) has

evaluated a non-strict language using only eager evaluation and abortion. Howeverabortion

alone is not sufficient to guarantee reasonable performance—for that we need online profiling,

which we describe in Chapter 3.

2.3 Chunky Evaluation

Programs in non-strict languages ofter work with infinite data structures [Hug89]. Chunky

Evaluation is a feature of Optimistic Evaluation that allows such structures to be evaluated in

chunks, giving better performance than if they were evaluated entirely eagerly or entirely lazily.

2We formalise the concepts ofcheapandneededin Chapter 6.
3It is not always necessary to abort all active speculations.See Section 6.3.1.
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Figure 2.1 : Results of evaluating rest eagerly, lazily, or chunkily

Consider the following Haskell program, which generates aninfinite stream of integers.

ints n = n : ints (n + 1)

In the core language used by our compiler, function arguments can only be variables. This

example will thus be desugared to the following:

ints n =

let n′ = n + 1 in

let rest = ints n′ in

(n : rest)

The functionints generates an infinite list of integers, starting fromn. Let us assume that the

first million elements of this list are needed. Howrest be evaluated? Figure 2.1 illustrates sev-

eral alternatives. If the evaluator always evaluatesrest eagerly then it will callints recursively

forever and so will not terminate. However always evaluating rest lazily is not very good either.

In this case, the evaluator will have to bear the overhead of creating one million thunks, even

though all but one of them describe evaluations that are needed.

A better alternative is what we callchunky evaluation. Under chunky evaluationrest is

evaluated eagerlyup to some limitand then evaluated lazily. Ifrest is set to evaluate chunkily

thenints will produce its result list in chunks. Consider the case where the list is generated in

chunks of4 elements. Chunky Evaluation ofints will only recurse4 levels deep and so will

terminate; however4 times fewer thunks will be created.

The size of the chunks used by chunky evaluation is set by the profiler and can adapt ac-

cording to dynamic demand. The profiler aims to set the chunk size such that performance is

maximised. The chunk size will thus increase if more elements are used and decrease if fewer

elements are used.

This chunky behaviour can be useful even for finite lists thatare entirely needed. Non-strict

programmers often use a generate-and-filter paradigm, relying on laziness to avoid creating

a very large intermediate list. Even if the compiler knew that the intermediate list would be

completely evaluated, it would sometimes be a bad plan to evaluate it eagerly as the intermediate
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data structure might be too big to fit in the cache or even to bigto fit in main memory. In such

cases, Chunky Evaluation will give much better performance(see Section 13.1.2).

Our compiler implements chunky evaluation by limiting the depth to which speculation may

be nested. The code for alet now behaves semantically like the following (replacing thecode

given in Section 2.1):
if(SpecDepth < limit237){

SpecDepth :=SpecDepth + 1

x := value ofE

SpecDepth :=SpecDepth− 1

}else{

x := thunk forE

}

evaluateE ′

whereSpecDepth is the number of nested speculations that we are currently inside and

limit237 is an integerdepth limit that determines how deeply this particularlet can be spec-

ulated.

2.4 Probability of a Nested Speculation being Used

We can justify depth limited speculation by appealing to an intuitive notion of probability. We

can label everylet in a program with the probability that its right hand side will be needed,

given that its body is needed. If speculative evaluations are nested, then we multiply their

probabilities together. Consider the following program:

f x = let y = g x in E

g x = let z = h x in E ′

Imagine that the probabilities fory andz are 1
2

and 3
4

respectively. What then is the probability

of the right hand side ofz being needed, given thatE is needed? This is the probability thaty

is needed, given thatE is needed, and thatz is needed, given thatE ′ is needed. If we assume

that these two probabilities are independent, then we can multiply them together, giving3
8
.

In practice, things are not so simple. The probabilities fory andz are unlikely to be inde-

pendent and so the compound probability is unlikely to be exactly equal to the product of the

two; however the intuitive principle of more deeply nested speculations being less likely to be

needed than less deeply nested ones does seem to hold. A similar notion of probability is used

to justify task priorities in several parallel systems (Section 13.3).
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2.5 Exceptions and Errors

It is important that Optimistic Evaluation deals correctlywith exceptions and errors. Consider

the following function:
f x =

let

y = error “urk”

in

if x then y else 12

In Haskell, theerror function prints an error message and halts the program. Optimistic Evalua-

tion may evaluatey without knowing whethery is actually needed. It is obviously unacceptable

to print "urk" and halt the program because Lazy Evaluation would not do that if x is False.

The same issue applies to exceptions of all kinds, includingdivide-by-zero and black-hole de-

tection [MLP99].

In GHC,error raises a catchable exception, rather than halting the program [PRH+99]. The

exception-dispatch mechanism tears frames off the stack inthe conventional way. The only

change needed is to modify this existing dispatch mechanismto recognise a speculative-return

frame, and return to it with a thunk that will re-raise the exception. A let thus behaves rather

like acatch statement, preventing exceptions raised by speculative evaluation of its right hand

side from escaping. This concept is formalised in Section 4.2.

2.6 Unsafe Input/Output

Optimistic Evaluation is only safe because Haskell is apure language: evaluation has no side

effects, and thus evaluation order does not affect the result of a program. Input/Output is safely

partitioned using theIO monad [Wad95, PW93, Wad97], so there is no danger of speculative

computations performing I/O. However, Haskell programs sometimes make use of impure I/O,

using the “function”unsafePerformIO. This “function“ has the following type signature:

unsafePerformIO : IO α→ α

We initially believed that speculation ofunsafePerformIO was safe. Our argument was that,

by using theunsafePerformIO function, one was asserting that the IO behaved like a pure

function and could be evaluated at any time without affecting the semantics of the program.

However, while speculatingunsafePerformIO is indeed safe, aborting it is not. Consider the
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following example:4

let x = unsafePerformIO (do

acquire lock(lock)

y ← use locked object

release lock(lock)

return y

)

in

. . .

This example bindsx to the result of an imperative procedure in the IO Monad. The imperative

procedure acquires a lock, does some work, and then releasesthe lock. It is not safe to abort the

procedure while it is holding the lock because this would putthe system into a state in which the

lock was held by a suspended computation. There is no guarantee that a suspended computation

will ever be resumed and thus the lock may never be released—causing a deadlock.

A similar problem is that code which expects to be executed atomically can find itself being

interleaved with other IO. Consider the following example:

let x = unsafePerformIO (do

writeIORef ref 1

v ← readIORef ref

return v

)

in

. . .

In this example, the imperative procedure writes the value1 to an imperative reference and

then reads this value back again. If the program has only a single thread of execution, then we

would expectx to always have the value1. However, ifunsafePerformIO is speculated, then

it may be suspended between the call towriteIORef and the call toreadIORef . By the time

the procedure is is resumed, another procedure may have written a different value tor, causing

a value other than1 to be returned.

It is for these reasons that Optimistic Evaluation does not allow uses ofunsafePerformIO

inside speculative evaluations. Any speculation which attempts to callunsafePerformIO will

abort immediately.

4This example usesdo-notation[Pey01]. The indented lines after thedo keyword are imperative commands in
the IO Monad.
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Online Profiling

Optimistic Evaluation saves pennies by risking pounds. Each speculation saves the relatively

small cost of creating a thunk, but risks the potentially huge cost of evaluating an unneeded

expression. The purpose of the online profiler is to ensure that the pennies saved outweigh the

(hopefully few) pounds wasted.

In this chapter we give a rough overview of how online profiling works. A more detailed

theoretical analysis is given in Chapter 6 while more details on practical implementation are

given in Chapter 9.

3.1 The Need for Profiling

While abortion ensures that all speculations must terminate, it does not ensure that evalua-

tion is efficient. It turns out that with the mechanisms described so far, some programs run

faster, but some run dramatically slower. For example theconstraints program from the

NoFib benchmark suite [Par92] runs over 150 times slower (Section 12.3.1). Detailed inves-

tigation shows that these programs build many moderately-expensive thunks that are seldom

used. These thunks are too cheap to trigger abortion, but nevertheless aggregate to waste mas-

sive amounts of time (and space).

One obvious solution is this: trigger abortion very quicklyafter starting a speculative eval-

uation, thereby limiting the size of a speculation and thus limiting wasted work. Unfortunately,

this would ignore the large proportion (See Section 12.4.5)of speculations that are moderately

expensive, but whose values are almost always needed. It would also restrict chunky evaluation

because a chunk can be fairly expensive.

22
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Figure 3.1 : The speculation depth for a let depends on its estimated goodness

If the evaluator is to exploit such opportunities, it needs to have an accurate estimate of the

amount of work that is actually being wasted by speculation of a let, taking into account not

only the costs of speculations, but also which speculationsare actually needed. This is the role

of our online profiler.

3.2 Goodness

For eachlet in the program, our profiler maintains an estimate of itsgoodness. Goodness is

defined as:

goodness = savedWork − wastedWork

wheresavedWork is the amount of work that has been saved so far by speculatingthe let

andwastedWork is the amount of work wasted so far by speculating thelet. Going back to

our previous analogy,savedWork is the pennies that have been saved andwastedWork is the

pounds that have been wasted.

In practice it is not possible to know at runtime exactly how much work has been wasted

by speculation of alet as the profiler cannot know exactly which of the expressions evaluated

so far will turn out to be needed. It is however possible for the profiler to cheaply compute an

overestimate ofwastedWork , and thus a safe underestimate ofgoodness.

We start by describing an idealised implementation in whichall let expressions are profiled

all of the time and in which a counter is maintained for everylet, holding the current estimate

of its goodness.

3.2.1 Using Goodness to Guide Speculation

If the evaluator has an estimate of the goodness of alet, then it can use this to guide its specu-

lation of thatlet. Figure 3.1 gives a possible function from goodness to speculation depth limit

(Section 2.3). As the estimated goodness of alet increases, we increase the depth limit and so
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speculate it more. Similarly, as the estimated goodness of alet decreases we decrease the depth

limit and so speculate it less.

Once the goodness of alet falls below a defined cutoff point, thelet will become entirely

lazy and will waste no more work. This allows us to place a bound on the amount of work that

a let can waste before it becomes entirely lazy, as we explain in Section 6.3.3.

3.2.2 Calculating Saved Work

Every time alet is speculated, the evaluator saves the work required to build and manage a

thunk. The evaluator keeps track of the work saved in this wayby maintaining asavedWork

counter for eachlet and incrementing this counter every time thelet is speculated.1

By speculating alet, the evaluator may also change the amount of work that the garbage

collector has to do. We discuss this in Section 9.3.

3.3 Calculating Wasted Work

Speculation of alet will waste work if the right hand side of thelet would not have been needed

by Lazy Evaluation. Our calculation of wasted work relies onthe concepts ofventures, local

work, andblame, which we describe in the following subsections.

3.3.1 Ventures

We use the termventureto refer to the region of time during which work was done to produce

a value for a particular heap binding.2 To understand this concept, it may help to consider the

following example:
let x =

let y = Ey in

let z = Ez in

Ex

in

. . .

If x, y andz are all speculated, then the evaluation of this expression will contain the ventures

illustrated in Figure 3.2. The ventures fory andz take place during the venture forx. When a

venture starts, it will place a return frame on the stack; this frame will remain on the stack until

the venture completes. If ventures are nested then we consider all ventures with a return frame

1Of course, if thelet is itself evaluated inside another speculation then thatlet might not otherwise have been
speculated. This issue is addressed in Section 3.3.5.
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venture spawned by y

venture spawned by zventure spawned by x
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Ventures for x and z are
active at this point.
The venture for z is current

Figure 3.2 : A venture represents the time during which work is done to produce a value for a
particular binding

on the stack to beactiveand consider the innermost venture to becurrent. In Figure 3.2 the

return frame for the current venture is shaded.

Every venture is either the uniqueroot venturewhich computes the return value for the

program, aspeculationwhich is speculatively evaluating the right hand side of alet, or athunk

venturewhich is evaluating a thunk whose value was demanded by another venture. In this

thesis, we will often write “x”, to mean “a venture that is producing a value for the right hand

side of thelet identified by the binderx”.

3.3.2 Work

We use the termwork to refer to any reasonable measure of execution cost, such astime or heap

allocation.3 We discuss a formal model of work in Chapter 5 and practical measurement of

work in Chapter 9.

3.3.3 Local Work

The local workdone in a venture is a measure of the work done by the venture, excluding any

work done in enclosed ventures. All work done in the lifetimeof a program is included in the

local work of exactly one venture. In Figure 3.2 the local work of a venture is the area of that

venture that is shaded.

3.3.4 Blame

The blamefor a venture is the amount of work that the profiler has chosento assign to that

venture. Like local work, all work done in the lifetime of a program is included in the blame of

exactly one venture. Unlike local work, blame may be moved between ventures as the program

runs. If work is known to be needed by Lazy Evaluation, then itwill be blamed on the root

2By “produce a value”, we mean “to evaluate it to weak head normal form”.
3By “heap allocation” we mean the total number of bytes of memory allocated during the lifetime of the

program. Haskell, like most purely functional languages, has to allocate a new heap cell for every value produced
and so allocates heap almost continually.
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x
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demand
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Figure 3.3 : When y demands x, x’s blame is passed to y

venture, otherwise it will be blamed on the first speculationwhose execution required that the

work be done. ThewastedWork counter that we maintain for eachlet is the sum of the blames

for all ventures that were spawned from thatlet.

Blame behaves like a linear object [Wad90b, Bak95, TWM95]. It can be passed between

ventures, but cannot be duplicated or deleted. If the resultof a venture is needed by another

venture then the blame of the demanded venture will be transferred to the demanding venture.

The justification for this is that the work done in the demanded venture was necessary in order

to produce the result for the demanding venture. If the result of a venture has not been used

by any other venture, then its blame will be the sum of the local work for that venture and any

other work that was blamed on that venture while it executed.

To illustrate how blame works, consider the following program (illustrated by Figure 3.3):

let x = E in

let y = x + 1 in

4

If x andy are both speculated then the local work done to evaluatex is the work done to evaluate

E, while the local work done to evaluatey is simply the work required to perform an addition.

When speculation ofx completes, the profiler will initially assume that its was not needed, and

blamex for the evaluation ofE. Wheny is speculated, it will demand the value ofx, causing

the profiler to transfer all blame fromx into y. When the program completes, the blame forx

will be zero, and the blame fory will be the work required to evaluateE plus the work required

to do an addition.

Our blame allocation system can attribute more blame to a venture than is “fair”. Consider

the following example (illustrated by Figure 3.4):
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Figure 3.4 : x’s blame is passed to y rather than to the root computation and so is incorrectly
regarded as being wasted

root
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blame
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Figure 3.5 : x’s blame will be passed to either y or z depending on evaluation order.

let x = E in

let y = x + 1 in

x

The local work forx is blamed ony and so is considered to be wasted. But in fact,x is needed

by the root venture, so the “real” work wasted by speculatingy is tiny (just incrementing a

value). Fortunately it is safe to overestimate the amount ofwork wasted, so we simply accept

this approximation.

Similarly, the blame assigned to a venture will depend on theorder of evaluation. Consider

the following example (illustrated in Figure 3.5):

let x = E in

let y = x + 1 in

let z = x + 1 in

y

If y andz are both speculated theny will demandx beforez does and soy will be blamed for

x’s work rather thanz. This seems unfair asy andz have the same definition. However, this

does not affect the safety of our profiler, and so again we simply accept it.

For a more rigorous definition of work and blame, refer to Chapter 6. For more details of

the implementation of this technique, refer to Chapter 9.
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3.3.5 The Cost of a Let

It is important that the cost of evaluating an enclosedlet expression should include the cost of

building a thunk for thatlet, even if thatlet was actually speculated. Consider for example:

let x =

let y = 1 + 2 in

3

in

. . .

If y is speculated then the work required to build a thunk has beensaved; however it is spec-

ulation of y that has saved the work and not speculation ofx. Wheny is speculated it will

increment itssavedWork counter to record the fact that the work was saved. If the costof eval-

uatingx did not include the thunk cost then this saving would be counted twice, causing the

profiler to overestimate goodness.

To illustrate what can go wrong if this principle is not followed, consider the following

example:
f x =

let y = f x in 3

Evaluatingy speculatively is clearly bad. It will lead to an expensive speculation which is not

needed. Any safe profiling strategy should thus decreasey’s goodness whenever it is speculated.

Consider however what would happen if a naive profiler assumed that a call tof did not

incur the cost of building a thunk fory. In this case, the wasted work fory would only be the

work required to callf and then immediately return3. However this work is likely to be less

than the work that will be added to thesavedWork counter wheny is speculated. As a result,y

will appear to be saving more work than it was wasting, and so its goodness would increase.

By contrast, a correct profiler would ensure that the work done by f included the cost of

building a thunk fory, even ify was speculated. This work would cancel out the work recorded

as saved and so ensure thaty had negative goodness.

3.4 Burst Profiling

It would be inefficient to profile every speculation that tookplace, so we instead profile a random

selection of speculations. The runtime of a program is divided up into a series ofperiods. Each

period starts at aboundary pointand lasts until the next boundary point. Any speculations that

start during a period are considered to belong to that period. This is illustrated in Figure 3.6.

A random selection of periods is profiled. When a period is profiled, all speculations that
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Figure 3.6 : Every computation belongs to exactly one profile period
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Figure 3.7 : Only those computations that start during a profiled period will be profiled.

belong to that period will be profiled (Figure 3.7). If every period has a probabilityp of being

profiled, then it follows that every speculation also has a probabilityp of being profiled.

The burst profiler assumes that the program behaves in the same way when being profiled

as it does when it is not being profiled. It is thus able to buildup a reasonable estimate of the

goodness of anylet. Over time, it becomes increasingly unlikely that alet can be wasting

work while having a positive estimated goodness. In the limit, as runtime tends to infinity, the

estimate of relative goodness produced by burst profiling should be the same as the estimate

that would be produced by a continuous profiler. This convergence is accelerated if the profiler

starts off by profiling everything, and gradually backs off as it gains confidence (Section 9.4.3).

While burst profiling does not make it impossible for Optimistic Evaluation to perform very

badly relative to Lazy Evaluation, it does make it vanishingly unlikely that it will do so.
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Theory
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CHAPTER 4

Semantics

In this chapter we present a formal model of Optimistic Evaluation. This model provides an

insight into the way that Optimistic Evaluation works, and serves as the basis for the more

detailed models of Chapters 5 and 6.

• We start, in Section 4.1, by describing a simple non-strict language. This is the language

that we work with for the rest of the thesis.

• In Section 4.2, we give a small-stepoperational semanticsfor our language. This seman-

tics describes not only evaluation, but also abortion. We see in Part III that this semantics

corresponds very closely to our real implementation of Optimistic Evaluation.

• In Section 4.3, we give a denotational semantics for our language. This semantics pro-

vides a high-level model of evaluation that is independent of evaluation strategy.

• Finally, in Section 4.4, we prove that the operational semantics of Section 4.2 is sound

with respect to the denotational semantics of Section 4.3, thus proving that Optimistic

Evaluation will always produce the same results as Lazy Evaluation.

31
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Expression E ::= x variable
| C x0 . . . xn constructor application
| case E of P0 . . . Pn case analysis
| let x = E in E ′ thunk creation
| λx.E function abstraction
| E x function application
| exn exception or error
| n integer constant
| x⊕ x′ primitive operation

Alternatives P ::= C x0 . . . xn → E

ValueExp V ::= C α0 . . . αn | λx.E | exn | n

Figure 4.1 : Terms of a simple language

4.1 A Simple Language

The language we work with is Haskell [PHA+99]. While the externally-visible Haskell lan-

guage is very complex, it can be reduced into the simple form given in Figure 4.1, and that is

the language our theory deals with. This language is similarto the augmentedCore [TtGT01]

language which GHC uses internally and also to A-normal form[FSDF93]. Key points to note

are the following:

• A variablex is a local variable bound by an enclosinglet, case or λ expression.

• Eachlet is required to have a unique binderx. This allows us to refer to alet by its

binder.

• Functions and constructors are always applied to variables, rather than to expressions. It

follows thatlet is the only point at which a thunk might be created (Acase expression

scrutinises an arbitrary expressionE, but it does not first build a thunk.). This restriction

does not limit the expressiveness of the language because alet expression can be used to

give a name to an argument of a function or constructor.

• We represent booleans using the nullary constructorsTrue andFalse.

• ⊕ ranges over primitive operations, such as+,−, /, ==, < etc. The arguments of a

primitive operation must be integers.

• Exceptions and errors (see Section 2.5) are handled exactlyas described in [PRH+99].

An exceptionexn is considered to be a value, rather than a control operator.
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• let is not recursive. That isE cannot make reference tox. If recursion is desired, then

the user can define a fixed point function within the language.For example,Y can be

written as:

Y ≡ λf. let y = (λx. let z = x x in f z) in y y

In the real language used by our compiler, recursivelets are of course allowed; however

omitting them simplifies our formal presentation. In particular, it avoids us having to deal

with speculations that demand their own values.

4.2 Operational Semantics

We describe program execution using a small step operational semantics. This semantics speci-

fies the sequence of states that the virtual machine will passthrough as execution proceeds. The

main transition relation,−→, takes the form:

S −→Σ S ′

meaning that the virtual machine will transform the stateS into the stateS ′ in one step, un-

der speculation configurationΣ. The speculation configuration is updated sporadically by the

profiler, rather than by the the evaluation rules.1

The semantics we present is similar to the STG Machine [Pey92] and to the semantics for

Lazy Evaluation given by Sestoft [Ses97], being lower levelthan Sestoft, but higher level than

the STG Machine. Unlike Sestoft, we evaluate expressions toreferences to values, rather than

to values themselves. This allows us to be precise about the closures that are present in the heap.

While this leads to a semantics that is more complex than Sestoft’s, it causes our semantics to be

a very accurate model of our real implementation; this is important, given that we are interested

in modelling performance.

In the subsections that follow, we formalise Optimistic Evaluation in more detail. In Sec-

tion 4.2.1 we explain the structure of the program stateS. In Section 4.2.2 we give the rules

that define the evaluation relation ‘−→’. In Section 4.2.4 we use the evaluation relation ‘−→’ to

define a semantics forbounded speculation. In Section 4.2.3 we give a semantics for abortion.

Finally, in Section 4.2.5 we define the restricted language that is used for the rest of Part II.

4.2.1 The Program State

The structure of program states is given in Figure 4.2 and is commented on below:

1We give a semantics for this profiler in Section 6.2.5.
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State S ::= Γ; c; s Program state with heap, command, and stack

Command c ::= E evaluateE
| Oα returnα
| }α demand the value ofα

Heap Γ ::= {αi 7→ Ki}
n
0

Closure K ::= (|V |) value closure, with valueV
| 〈(α)〉 indirection, with indirecteeα
| E thunk, with bodyE
| α∠l suspended stack frame

Stack s ::= [ ] empty stack
| f : s stack with topmost framef

Frame: f ::= {x}E speculative return frame
| #x update frame
| l local frame

LocalFrame l ::= {Pi}
n
0 Case Match

| @α Function application
| ⊕α Primop, awaiting first argument
| n⊕ Primop, awaiting second argument

Config Σ ::= {xi 7→ N}n0 Speculation configuration.

Figure 4.2 : Syntactic forms for states

• Γ represents theheap. The heap is a function mappingheap referencesto closures. If Γ

maps a heap referenceα to a closureK , thenK describes how one can obtain a value for

α. A closure is either avalue closure, a thunk, anindirection, or asuspended stack frame.

– The value of a value closure(|V |) is V .

– The value of an indirection〈(α)〉 is the value of the closure referenced byα.

– The value of a thunkE is the value one obtains by evaluatingE.

– The value of a suspended stack frame is discussed in Section 4.2.3.

Runtime expressions may contain heap references in place ofvariables. We writeE[α/x]

to denote the expression formed by replacing all instances of the variablex with the heap

referenceα, using a capture avoiding substitution.

• c represents acommand. The command says what the program is currently doing. If the

command isE then the program is evaluating the expressionE. If the command isOα

then the program is returningα, which is a reference to a value. If the command is}α

then the program is demanding the value ofα.
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• s is a stackof stack framesf (c.f. [Gus98]), each of which represents work still to be

done.

– A speculative return framecontains work that should be done once a speculation

has been completed or aborted. If the virtual machine returns to a speculative return

frame,{x}E, it will bind x to the result of the speculation and then evaluateE.

We define thespeculation depthof a state to be the number of speculations that are

active, or equivalently, the number of speculative return frames on the stack.

– An update framerepresents a thunk that needs to be updated with its value. Ifthe

virtual machine returns to an update frame,#x, it will replace the thunk with an

indirection to its value.

– A case return framecontains a set ofcase alternatives. If the virtual machine returns

to a case return frame,{Pi}
n
0 , it will select the appropriate alternative,Pj, and

evaluate it.

– A function application framecontains an argument to pass to the returned function.

If the returned value is not a function then the program will fail.

– A primop framegives the state of a partially applied primitive operation.If the stack

frame is ‘⊕x’ then the primop is waiting for its first argument. If the stack frame is

‘n⊕’ then the first argument evaluated ton and the primop is waiting for its second

argument.

A subset of stack frames arelocal frames. Local frames describe work to be done within

the current venture (see Section 3.3.1) while other stack frames represent venture bound-

aries. We develop these ideas further in Chapters 5 and 6. While the letterf can refer to

any kind of stack frame, the letterl can only refer to a local frame.

• Σ represents thespeculation configuration. Σ maps alet (identified by its binder) to its

depth limit: the maximum speculation depth at which it can be speculated. If the let is

always lazy then the depth limit will be0.

4.2.2 Evaluation Transitions

The transition rules for−→ are given in Figure 4.3. The first ten rules describe conventional

Lazy Evaluation (cf. [Ses97]) while the last two describe speculation:

• Rule(VAL)evaluates a valueV by creating a value closure(|V |) in the heap and returning

a reference to it.
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Evaluate a value constant:
(VAL) Γ; V ; s −→Σ Γ[α 7→ (|V |)];Oα; s

whereα is fresh

Demand the value of a closure:
(VAR) Γ; α; s −→Σ Γ;}α; s

(DEM1) Γ[α 7→ (|V |)];}α; s −→Σ Γ[α 7→ (|V |)];Oα; s

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s −→Σ Γ[α 7→ 〈(α′)〉];}α′; s

(DEM3) Γ[α 7→ E];}α; s −→Σ Γ; E; (#α : s)

(RESUME) Γ[α 7→ α′∠l];}α; s −→Σ Γ;}α′; (l : #α : s)

(UPD) Γ;Oα; (#α′ : s) −→Σ Γ[α′ 7→ 〈(α)〉];Oα; s

Function Application:
(APP1) Γ; E α; s −→Σ Γ; E; (@α : s)

(APP2) Γ[α 7→ (|λx.E|)];Oα; (@α′ : s) −→Σ Γ[α 7→ (|λx.E|)]; E[α′/x]; s

Case Expression:
(CASE1) Γ; case E of {Pi}

n
0 ; s −→Σ Γ; E; ({Pi}

n
0 : s)

(CASE2) Γ[α 7→ (|C {αi}
n
0 |)];Oα; ({Pi}

n
0 : s) −→Σ Γ[α 7→ (|C {αi}

n
0 |)]; E[{αi/xi}

n
0 ]; s

wherePk = C {xi}
n
0 → E

Primitive Operation:
(OP1) Γ; α⊕ α′; s −→Σ Γ;}α; (⊕α′ : s)

(OP2) Γ[α 7→ (|n|)];Oα; (⊕α′ : s) −→Σ Γ[α 7→ (|n|)];}α′; (n⊕ : s)

(OP3) Γ[α′ 7→ (|n′|)];Oα′; (n⊕ : s) −→Σ Γ[α′ 7→ (|n′|)]; n ⊕̃n′; s

Exception:
(EXN1) Γ[α 7→ (|exn|)];Oα; (@α′ : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN2) Γ[α 7→ (|exn|)];Oα; ({Pi}
n
0 : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN3) Γ[α 7→ (|exn|)];Oα; (n⊕ n′ : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN4) Γ[α 7→ (|exn|)];Oα; (⊕α′ : s) −→Σ Γ[α′ 7→ (|exn|)];Oα; s

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s −→Σ Γ[α 7→ E]; E ′[α/x]; s

if Σ(x) ≤ specDepth(s)
andα is fresh

Speculative Evaluation of alet:
(SPEC1) Γ; (let x = E in E ′); s −→Σ Γ; E; ({x}E ′ : s)

if Σ(x) > specDepth(s)

(SPEC2) Γ;Oα; ({x}E : s) −→Σ Γ; E[α/x]; s

Figure 4.3 : Operational semantics: evaluation
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• Rule (VAR)evaluates a heap referenceα by demanding the value of the closure it refer-

ences.

• Rule (DEM1) demands the value of a value closure. A value closure is already fully

evaluated, so(DEM1) returns immediately.

• Rule(DEM2)demands the value of an indirection by demanding the value ofthe closure

that the indirection points to.

• Rule(DEM3)demands the value of a thunk by evaluating its body. The thunkis removed

from the heap, and an update frame is pushed. When evaluationof the thunk body com-

pletes, the update frame will trigger rule(UPD) which will replace the thunk with an

indirection to its value, allowing the result of the evaluation to be shared.

• Rules (DEM1) and (DEM2) could be subsumed into rule(DEM3) by considering the

value closure(|V |) to be the thunkV and the indirection〈(α)〉 to be the thunkα. However,

such a virtual machine would create unnecessary closures and push unnecessary update

frames. The inclusion of rules(DEM1) and (DEM2) also mirrors the behaviour of our

real implementation.

• Rule(RESUME)resumes a suspended evaluation. This rule is discussed in Section 4.2.3.

• Rule(APP1)evaluates a function applicationE α by evaluating the functionE and plac-

ing a function application frame on the stack. When evaluation of the function completes,

the function application frame will trigger an applicationof rule (APP2), causing the re-

turned function to be applied toα.

• Rule (CASE1)evaluates acase expression by evaluating the scrutinee and pushing the

case alternatives on the stack. When evaluation of the scrutineecompletes, rule(CASE2)

will evaluate the appropriatecase alternative.

• Rule(OP1)evaluates a primitive operation by pushing a primop frame and evaluating the

first argument. When the first argument is evaluated, rule(OP2)will evaluate the second

argument. When both arguments are evaluated, rule(OP3) will perform the primitive

operation.

• If an exception is raised, then rules(EXN1), (EXN2), (EXN3), and(EXN4)unwind the

stack until a speculative return frame is reached.2

2This language has no catch expressions and thus no catch frames. This corresponds to the behaviour of
Haskell, in which pure expressions can raise exceptions butnot catch them; exceptions can only be caught in the
IO Monad [Wad95, PW93, Wad97].
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(!EXP) Γ; E; s  Γ[α 7→ E];}α; s

(!RET) Γ;Oα; s  Γ;}α; s

(!SPEC) Γ;}α; ({x}E : s)  Γ; E[α/x]; s

(!UPD) Γ;}α; (#α′ : s)  Γ[α′ 7→ 〈(α)〉];}α; s

(!ABORT) Γ;}α; (l : s)  Γ[α′ 7→ α∠l];}α′; s
whereα′ is fresh

Figure 4.4 : Operational semantics : abortion

The last three rules implement thelet construct. Rule(LAZY)evaluates thelet using con-

ventional Lazy Evaluation, creating a thunk for the right hand side of thelet. Rules(SPEC1)

and(SPEC2)implement speculative evaluation. The semantics chooses between the two ap-

proaches based on the values ofΣ(x) andspecDepth(s), whereΣ(x) is the depth limit forx

andspecDepth(s) is the current speculation depth.

• Rule (LAZY)is used if the depth limit,Σ(x), is less than or equal to the current specula-

tion depthspecDepth(s). The rule builds a thunkα in the heap, bindsx to α, and then

evaluates the body of thelet.

• Rule(SPEC1)is used ifΣ(x) is greater than the current speculation depthspecDepth(s).

The rule begins speculative evaluation of the right-hand side E. A speculative return

continuation is pushed, causing the body of thelet to be evaluated once speculative eval-

uation of the right hand side has completed.

• Rule (SPEC2)is used once the speculation completes. The rule bindsx to the returned

reference and proceeds to evaluate thelet body. It should be noted that neither(SPEC1)

nor (SPEC2)allocate any closures in the heap.

4.2.3 Abortion Transitions

The process of abortion is described by the rules given in Figure 4.2.3. These rules allow a

program to back out of a speculation which has turned out to betoo expensive:

• Rule(!EXP)creates a thunk in the heap for the current expression. This rule is rather like

rule (VAL), except that rule(VAL) turns a value into a value closure, while rule(!EXP)

turns an arbitrary expression into a thunk.
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(RUN)
Γ; c; s −→Σ Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; t + 1
if t ≤ MAXTIME andspecDepth(s) > 0

(RESET)
Γ; c; s −→Σ Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; 0
if specDepth(s) = 0

(ABORT)
Γ; c; s  Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; t
if t > MAXTIME andspecDepth(s) > 0

Figure 4.5 : Operational semantics : bounded speculation

• Rule (!RET) converts a return command,Oα, into a demand command,}x. Like rule

(!EXP) then only purpose of this rule is to simplify the state in preparation for other rules.

• Rule (!SPEC)starts evaluating the body of alet, despite the fact that its right hand side

has not finished evaluating. This rule captures the essence of abortion.

• Rule (!UPD) removes an update frame from the stack, binding its updatee,x′, to a par-

tially evaluated result.

• Rule (!ABORT)removes a local frame from the stack and moves it to a suspension clo-

sure in the heap, together with the identifierx. If the value of this suspension frame is

demanded then rule(RESUME)will place the frame back onto the stack and demandx

again.

4.2.4 Bounded Speculation

As discussed in Section 2.2, Optimistic Evaluation will abort any speculation that goes on for

too long. To formalise this, we introduce a new transition relation,y:

Γ; c; s; t yΣ Γ′; c′; s′; t′

The components of the state are the same as for−→, except that we add a new componentt,

representing thespeculation time. The speculation time is the number of steps that have been

taken since the virtual machine last started evaluating speculatively. The rules for bounded

speculation are given in Figure 4.5. If the program has been evaluating speculatively for less

thanMAXTIME steps then rule(RUN)evaluates it as normal. If the program stops speculating

then rule(RESET)resetst to0. If the program evaluates speculatively for more thatMAXTIME

steps then rule(ABORT)will apply abortion transitions until all speculations have been aborted.

We give an improved version of this semantics in Section 6.3.1.
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4.2.5 Exceptions and Case Statements

The language presented in Section 4.1 includes exceptions and case statements. In the seman-

tics given in Figure 4.3 we showed that neither of these pose any real problems for Optimistic

Evaluation.

In the chapters that follow, we will work with a simplified language that has neithercase

statements, nor exceptions. The revised expression form isthus the following:

Expression E ::= x variable

| let x = E in E ′ thunk creation

| λx.E function abstraction

| E x function application

| n integer constant

| x⊕ x′ primitive operation

ValueExp V ::= λx.E | n

The stack frames remain the same, except thatcase return frames are removed.

Neithercase statements nor exceptions increase the expressiveness of the language: both

features can be encoded using the features of this simplifiedlanguage. By removing these

features from the language, we are able to reduce the size of the proofs and semantic models

that we present in subsequent chapters. We claim that introducingcase or exceptions would

present no significant problems.

4.3 Denotational Semantics

While an operational semantics formalises the way in which aprogram executes, it does not give

a clear view of what a program actually means. This purpose isbetter served by a denotational

semantics. Our denotational semantics makes no reference to the order of evaluation or to

whether expressions are evaluated or not. It thus allows us to present a considerably simpler

model of what our language means.

Perhaps more critically, by proving that our operational semantics is sound with respect to

our denotational semantics, we can demonstrate that changing the evaluation order by means of

the speculation configurationΣ has no effect on the meaning of the program (Section 4.4.1).

The semantics we give here is influenced by that used by Launchbury [Lau93], and the work

of Abramsky [Abr90] and Ong [Ong88].
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4.3.1 Semantic Functions

We introduce semantic functionsE [[−]], C[[−]], H[[−]], K[[−]], S[[−]] andM[[−]] that map the

syntactic objects of Section 4.2 to their semantic meanings:

E [[−]] : Expression → Env → Value

C[[−]] : Command → Env → Value

H[[−]] : Heap → Env → Env

K[[−]] : Closure → Env → Value

S[[−]] : Stack → Env → Value → Env

L[[−]] : LocalFrame → Env → Value → Value

M[[−]] : State → Value

whereValue andEnv are defined in Sections 4.3.2 and 4.3.4 respectively. These semantic

functions can be understood as follows:

• E [[E]]ρ is the value that the expressionE would evaluate to in the environmentρ.

• C[[c]]ρ is the value that the commandc would return in the environmentρ.

• H[[Γ]]ρ is the environment containing the meanings of the bindings in the heapΓ. Each

binding is has its meaning taken relative to the environmentρ.

• K[[K]]ρ is the value that the closureK would evaluate to in the environmentρ.

• S[[s]]ρ v is the environment containing the meanings of the bindings in the stacks, given

that the valuev has been returned to it. This environment will contain a binding for the

return value and a binding for each update frame in the stack.

• L[[l]]ρ v is the value that the local stack framel would produce ifv was returned to it.

• M[[Γ; c; s]] is the value that the virtual machine state ‘Γ; c; s’ would terminate with if

executed.

We explain the significance of each semantic function in moredetail in the following sec-

tions.
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4.3.2 Values

The domain of semantic values is defined to be the minimal solution to the following domain

equation:3

Value = (Value → Value) ∪ Z ∪ {⊥} ∪ {>}

A semantic value is either a function from a value to a value, an integer, the bottom value

⊥, or the top value>. ⊥ is used to denote non-termination or an undefined value; while> is

used to denote anoverdefinedvalue.4

We define an improvement orderingv on values. We consider all values to be an improve-

ment on⊥ and consider> to be an improvement on all values. A function is an improvement

on another function if all possible results are improvements:

v v v′ def
= (v = ⊥) ∨ (v′ = >) ∨ ∀x.v(x) v v′(x)

4.3.3 Identifiers

An identifier (Id ) is either a local variable (x) or a heap reference (α). The denotational seman-

tics does not distinguish between the two, considering bothto be abstract symbols that can be

mapped to values. Within the denotational semantics, we will write x to refer to an identifier,

irrespective of whether it is a variable of a heap reference.

4.3.4 Environments

An environmentρ is a function that maps identifiers to their values:

Env
def
= Id → Value

If an environmentρ does not contain a binding for an identifierx thenρ(x) will be ⊥. If ρ

contains several conflicting meanings for an identifierx thenρ(x) will be >. We write(x1 7→

v1, x2 7→ v2, . . .) to denote the environment that mapsx1 to v1, x2 to v2 etc, and that maps all

other identifiers to⊥. We writeρ[x 7→ v] to denote the environment that is likeρ but which

mapsx to v.

3For the purposes of this semantics, we are not interested in the distinction between a non terminating value
(Ω) and a function that does not terminate for any argument (λx.Ω). It is assumed that user-visible values will be
integers.

4It is possible to formulate a semantics without>, however one then has to be a little more careful in dealing
with situations in which least upper bounds are undefined.
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We provide an improvement orderingv on environments. We considerρ′ to be an improve-

ment onρ if every value mapped to byρ′ is an improvement on the corresponding value mapped

to byρ:

ρ v ρ′ def
= ∀x. ρ(x) v ρ′(x)

We write ρ t ρ′ to denote the least upper bound of the environmentsρ andρ′. The least

upper bound is always defined: ifρ andρ′ contain conflicting bindings for an identifierx then

ρ t ρ′ will map x to>.5

4.3.5 Meanings of Expressions

The semantic functionE [[−]] takes a syntactic expressionE and an environmentρ and maps

them to the value thatE would terminate with in the environmentρ. We defineE [[−]] as follows:

E [[−]] : Expression → Env → Value

E [[x]]ρ = ρ(x)

E [[let x = E in E ′]]ρ = E [[E ′]]ρ[x 7→E[[E]]ρ]

E [[λx.E]]ρ = λv.E [[E]]ρ[x 7→v]

E [[E x]]ρ = E [[E]]ρ (ρ(x))

E [[x⊕ x′]]ρ = ρ(x) ⊕̃ ρ(x′)

We write ⊕̃ to denote the mathematical function represented by⊕. In our model of functions

⊥(v) = ⊥ and>(v) = >. All primitive operators⊕̃ are required to behave similarly. We thus

observe thatE [[−]] is continuous and monotonic with respect toρ.

Theorem 4.3.1 (Equivalent Identifiers)

We assert that if two identifiersx andx′ have the same meaning in the environmentρ then we

can freely substitutex′ for x in an expressionE without changing the meaning ofE in ρ.

ρ(x) = ρ(x′) ⇒ E [[E[x′/x]]]ρ = E [[E]]ρ

Theorem 4.3.2 (Unused Identifiers)

We similarly assert that if a identifierx is not mentioned in the expressionE then the meaning

of E is unaffected by the presence of a binding for this identifierin the environmentρ.

x /∈ vars(E) ⇒ E [[E]]ρ = E [[E]]ρ[x 7→v]

5> values should never occur in a well-formed program.
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4.3.6 Meanings of Commands and Closures

The denotational semantics does not distinguish between commands and expressions. The form

of a command is merely a direction to the virtual machine telling it what to do next, and so is

ignored by the denotational semantics. We can thus trivially define a semantic functionC[[−]]

that gives meanings to commands:

C[[Ox]]ρ = E [[x]]ρ

C[[}x]]ρ = E [[x]]ρ

C[[E]]ρ = E [[E]]ρ

The denotational meaning of a closure is similarly trivial.Value closures and indirections

have the same meanings as their corresponding expressions,while the meaning of a suspension

is the meaning of the stack frame, using theL[[−]] function defined is Section 4.3.8:

K[[(|V |)]]ρ = E [[V ]]ρ

K[[〈(x)〉]]ρ = E [[x]]ρ

K[[x∠f ]]ρ = L[[f ]]ρ ρ(x)

4.3.7 Meanings of Heaps

Meanings are given to heaps using the semantic functionH[[−]]. H[[Γ]]ρ is the environment

formed by evaluating all the closures inΓ under the environmentρ. If a heapΓ mapsx to a

closureK thenH[[Γ]]ρ will map x toK[[K]]ρ.

H[[−]] : Heap → Env → Env

H[[x1 7→ E1, . . . , xn 7→ En]]ρ = (x1 7→ K[[E1]]ρ, . . . , xn 7→ K[[En]]ρ)

We observe thatH[[−]] is continuous and monotonic with respect toρ.

4.3.8 Meanings of Stacks

The meaning of a stack is similar to the meaning of a heap. The semantic functionS[[−]] takes

a stacks an environmentρ and a valuev and maps them to the environment that is produced by

returningv and performing all the updates on the stack:

S[[−]] : Stack → Env → Value → Env
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S[[[ ]]]ρ v = (ε 7→ v)

S[[{x}E : s]]ρ v = S[[s]]ρ E [[E]]ρ[x 7→v]

S[[#x : s]]ρ v = S[[s]]ρ v t (x 7→ v)

S[[l : s]]ρ v = S[[s]]ρ (L[[l]]ρ v)

This definition deserves some explanation:

• The empty stack behaves like an update frame for the result ofthe program. It defines a

mapping fromε (the identifier for the program result6) to the value returned.

• A speculative return frame returns the value of thelet body,E, to the stack. Note that

there is no requirement thatv be non-⊥; this reflects the real behaviour of Optimistic

Evaluation, in which a non-terminating speculation will beaborted and its suspension

will be returned to the speculation frame.

• An update frame creates a binding from its updatee to the returned value.

• If the topmost frame is a local frame, then we use the semanticfunctionL[[−]] to produce

a new value, and return that. We define the semantic functionL[[−]] as follows:

L[[−]] : LocalFrame → Env → Value → Value

L[[@x]]ρ v = v (ρ(x))

L[[n⊕]]ρ n′ = n ⊕̃n′

L[[⊕x]]ρ n = n ⊕̃ ρ(x)

We observe thatS[[−]] is continuous and monotonic with respect toρ and also with respect

to v.

4.3.9 Meanings of States

Given the meaning of a heap, a command, and a stack, we can produce the meaning of a

complete program state, as defined is Section 4.2.1. The meaningM[[Γ; c; s]] of a state ‘Γ; c; s’

is the value that that state would terminate with if executed. To obtain this return value we

construct an environment containing all bindings held in the heap,Γ, and the stack,s, and

select the value forε from this environment:

M[[−]] : State → Value

M[[Γ; c; s]] = (µ ρ. H[[Γ]]ρ t S[[s]]ρ C[[c]]ρ) ε

6The reason for this choice of symbol is revealed in Section 5.2.3.
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Here,µ is the least fixed point operator. It selects the least environmentρ (as defined byv)

such that:

ρ = H[[Γ]]ρ t S[[s]]ρ C[[c]]ρ

The purpose of the fixed point is to allow recursive bindings between the heap and stack.

Theorem 4.3.3 (Extension of the Heap)

We observe that the meaning of a state is preserved if the heapΓ is extended with a binding for

a new identifierx:

x /∈ vars(Γ) ∧ x /∈ vars(s) ∧ x /∈ vars(c) ⇒ M[[Γ[x 7→ K]; c; s]] =M[[Γ; c; s]]

wherevars is the set of all identifiers (variables and heap identifiers)mentioned in its argument.

4.4 Soundness

If we are to use Optimistic Evaluation as a drop in replacement for Lazy Evaluation then it is

essential that Optimistic Evaluation always gives the sameresults as Lazy Evaluation. In order

to do this, it must be bothsoundandcomplete:

Sound: If a program terminates with a value, that value will be the same value that the program

would have terminated with under Lazy Evaluation.

Complete: If a program would terminate under Lazy Evaluation, then it will also terminate

under Optimistic Evaluation.

In this section, we prove that Optimistic Evaluation is sound. Completeness is a corollary

of the informal efficiency proof given in Section 6.3.3.7

Theorem 4.4.1 (Soundness)

Lazy Evaluation is a special case of Optimistic Evaluation,arising whenΣ maps alllet identi-

fiers to0. It is thus sufficient to prove that, for any given start state, there is only one result that

Optimistic Evaluation can return, irrespective of speculation configuration. That is:

∅; E; [ ] −→∗
Σ Γ;Ox; [ ] ∧ ∅; E; [ ] −→∗

Σ′ Γ′;Ox′; [ ] ⇒ E [[x]]H[[Γ]] = E [[x′]]H[[Γ′]]

We prove the following stronger property:

Γ; c; s −→Σ Γ′; c′; s′ ⇒ M[[Γ; c; s]] = M[[Γ′; c′; s′]]

7We believe that it should be possible to prove this more formally; however we have not, as yet, done so.
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If −→ preserves the meaning of a state, then any final state must have same meaning as the

initial state. Given that no initial state can have more thanone meaning, it must be the case

that all terminal states have the same meaning. Given that the meaning of a terminal state is

the meaning of the value returned, it must be the case that allpossible terminal states return the

same value.

The proof of this property is given in Appendix A. We proceed case-wise, demonstrating

that the property holds for all rules defining ‘−→’ and ‘ ’.



CHAPTER 5

A Cost Model for Non-Strict Evaluation

Although the speculation configurationΣ has no effect on the value that a program produces, it

does have an effect on the amount of time needed for this valueto be produced.

In this chapter we give a denotational semantics that formalises the cost of evaluating an

expression. The costs given by this semantics are independent of evaluation strategy but relate

closely to real evaluation costs—allowing such costs to be easily derived. This cost model forms

the basis of the online profiling techniques that we describein Chapter 6.

This Chapter is structured as follows:

• In Section 5.1 we explain why we need a cost model.

• In Section 5.2 we define the concept of a cost graph.

• In Sections 5.3 and 5.4 we explain how one can create a cost graph for a program.

• In Section 5.5 we introduce an operational semantics that keeps track of the amount of

work it has done.

• In Section 5.6 we give denotational meanings to the states ofthe costed operational se-

mantics and demonstrate that our denotational cost model accurately models the costs

experienced by the operational semantics.

48
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Result A

Start

Result B

Lazy

Optimistic

N units of work

M units of work

Figure 5.1 : Comparing Optimistic Evaluation to Lazy Evaluation

5.1 Why We Need a Cost Model

The aim of Optimistic Evaluation is to evaluate non-strict programs faster than Lazy Evaluation.

It is thus important to be able to prove that the performance of Optimistic Evaluation will never

be significantly worse than that of Lazy Evaluation. Doing this turns out to be somewhat tricky.

5.1.1 The Challenges Faced by the Online Profiler

It is easy to see that there are some choices ofΣ for which Optimistic Evaluation will be slower

than Lazy Evaluation. For example, if our program is:

let x = expensive in 3

then any speculation configurationΣ that chooses to speculatex is likely to be slower than Lazy

Evaluation. Similarly, it is easy to see that there are some choices ofΣ for which Optimistic

Evaluation will outperform Lazy Evaluation. For example, if our program is:

let x = 1 + 2 in x + 1

then any speculation configurationΣ that chooses to speculatex is likely to be faster than Lazy

Evaluation.

What is not easy is to tell, at runtime, whether the current value forΣ is outperforming Lazy

Evaluation, and howΣ can be changed so as to improve performance. This is the task that the

online profiler faces.

If we are allowed to run a program to completion, then it is easy to see howΣ compares to

Lazy Evaluation; we simply run the program withΣ, run it with Lazy Evaluation, and compare

the amount of work done (Figure 5.1). However the online profiler does not have this luxury; it

cannot wait until the program has terminated before adjustingΣ: once the program has finished,

it is too late to make it run faster. The profiler thus needs to have a way of estimating the
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let x = <expensive> in

let y = x + 3 in

let z = x + 3 in

let p = y + z in

<rest of program>

Figure 5.2 : A simple program

performance ofΣ relative to Lazy Evaluation, without actually performing the Lazy Evaluation,

and without waiting for the program to finish.

This job of the profiler is made yet harder by the fact that:

• It is essential that the profiler does not believe thatΣ is outperforming Lazy Evaluation if

it is in fact performing significantly worse than Lazy Evaluation.

• The profiler has to work with very limited information. In particular, it does not know for

sure which of its computations will turn out to be needed.

• The profiler must itself impose a very low overhead on the program, lest the costs of

profiling outweigh the benefits of Optimistic Evaluation.

In order to do all of this, it is necessary that we have a good understanding of the costs of

non-strict programs. In particular, it is necessary that wehave a solid cost model which we can

use to justify and verify our online profiler.

5.1.2 The Problems with Simple Cost Models

How much does it cost to evaluatex + 3?

The obvious answer would be that the cost of an evaluation is the number of steps taken

to perform it; however this turns out to behave poorly for non-strict languages. Consider the

program in Figure 5.2:

• How expensive isy? If x is already evaluated theny will be cheap to evaluate—because

it only needs to perform an integer addition. However, ifx is unevaluated, theny will be

expensive—because it needs to evaluatex before it can produce a result.

• How expensive isz? It seems sensible thatz should have the same cost asy; but, if x is

unevaluated, then one ofy andz will look at x first and so appear more expensive.

• How expensive isp? Can I obtain the cost ofp by combining the costs ofy andz?

• Finally, isp’s value actually needed? Should this affect its cost?
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[x]

[y] [z]

3 3
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[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.3 : Cost graphs illustrate the dependencies between computations

value edge: 
[y] [x]

[y] demands [x]’s value

demand edge: 
[y] [x]

[y] demands [x]’s value

and [y] has the same value as [x]

eager edge: 
[y] [x]

y would do x under eager evaluation

42
[x]

x has value 42

Figure 5.4 : Key: Edges can be demand edges, value edges, or eager edges

In this chapter we give a new, denotational, cost semantics for a non-strict language, that

takes full account of sharing. The cost model is compositional: the cost of an evaluation is

obtained by combining the costs of its sub-fragments. Furthermore the semantics is independent

of evaluation strategy, so it can describe the cost of Eager Evaluation, Lazy Evaluation, or

anything in between.

5.2 Cost Graphs

In our cost semantics, the meaning of a program1 is its cost graph. For example, we can

represent the costs involved in evaluating the program fromFigure 5.2 using the cost graph

shown in Figure 5.3.

A cost graph gives an unrolled trace of the computations thatcan be done by the program.

Each node represents a computation that takes one unit of time and produces a value. An arrow

from a nodei to a nodei′ denotes the fact that the computationi depends on the value produced

by the computationi′. If the arrow is thick, then the value produced byi is the same as that

1For the purposes of this chapter, a program is a closed expression.
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produced byi′. If the arrow is dashed, then the dependency only exists under Eager Evaluation.

We refer to plain links asdemand edges, thick links asvalue edgesand dashed links aseager

edges. This is illustrated in Figure 5.4.

Computation nodes are classified intovalue nodesanddependent nodes:

• A value nodeis labelled with the value it produces, and does not have links to any other

node. Such a node represents a computation that places a value in the program heap.

• A dependent nodeis not labelled with a value; instead it has a value edge linking it to

another node. A dependent node may also have demand edges andeager edges.

The graph in Figure 5.3 tells us thatp does one unit of work (to perform an addition) and

depends ony, z and a computation that creates a10 value. We can similarly see thaty andz

both demand the value ofx, and also depend on computations that produce a3 and a5.

The graph also tells us the values that computations produce. We can see thatp has the

value10, andy andz are both5. In order to find the value forx, we must follow a long chain

of value edges, eventually reaching a value node holding2. In some cost graphs, the chain of

value edges leading from a dependent node may be infinite. In this case, the value of the node

is⊥, representing non-termination.

In this graph we have annotated nodes with variable identifiers (e.g. [x]). In reality, we

must distinguish multiple instantiations of the same variable, so we need a more refined naming

scheme. We discuss such a scheme in Section 5.2.3.

5.2.1 Work Sets

Given a cost graph, we can represent the work required to perform a particular evaluation using

a subset of the nodes in the cost graph. Such a set is known as awork set.

The work required to evaluate a computation lazily is the setof nodes in the cost graph that

are reachable from that computation’s node using only valueand demand edges. Figure 5.5 and

Figure 5.6 illustrate the work required to evaluatez andy respectively.

The work required to evaluate several computations is the union of the work required to do

each computation on its own. Figure 5.7 illustrates the workrequired to evaluate bothy andz

lazily.

If work has already been done, or must be done later, then we can subtract it. Figure 5.8

illustrates the work required to evaluatez, excluding the work required to evaluatey.
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[let y]
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Figure 5.5 : Work required to evaluate z lazily

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.6 : Work required to evaluate y lazily
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Figure 5.7 : Work required evaluate both y and z lazily
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[let y]

[let z]

[let p]

root

5 5
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Figure 5.8 : Work required evaluate z given that y has already been evaluated, or must be
evaluated later
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Figure 5.9 : Work required to evaluate [let z] entirely eagerly
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Figure 5.10 : Work required to evaluate [let z] entirely lazily
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Figure 5.11 : Extra work required to evaluate [let z] eagerly rather than lazily
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[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.12 : Extra work required to evaluate [let z] eagerly, if we know that [y] is needed by
<rest of program>

We can also use work sets to compare evaluation strategies. Figure 5.9 illustrates the work

required to evaluate ‘let z’ eagerly. This is the set of all computations reachable from‘let

z’, including computations reachable by eager edges. We can compare this with Figure 5.10

which shows the work required to evaluate ‘let z’ lazily. By subtracting the lazy work from

the eager work, we can obtain the extra work required by EagerEvaluation, which we illustrate

in Figure 5.11. If it turns out thaty is needed by ‘<rest of program>’, then we can subtract

the work required fory, and so the extra work will be that shown in Figure 5.12.

The key point to note is that work is just a set of nodes. We can take unions, intersections,

differences, or do anything else that we might want to do witha set.



56 Chapter 5. A Cost Model for Non-Strict Evaluation

[r]
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[s]
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[r]
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?or

[r]
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42

or

[s]

Figure 5.13 : To combine two graphs, we must know which nodes are equivalent.

5.2.2 Useful Properties of Cost Graphs

Cost graphs give us a number of useful properties:

• The cost of any evaluation within a program is fully described by the cost graph for the

program.

• The work required for any evaluation can be represented as a subset of the nodes in the

cost graph for the program.

• The number of nodes in a work set corresponds directly to the number of steps that would

be needed to perform that evaluation in a low-level operational semantics, as we show in

Section 5.5.

• Work sets can be easily manipulated, allowing one to add and subtract work in a compo-

sitional way.

• Cost graphs are independent of any particular evaluation strategy.2 For example, the cost

graph in Figure 5.3 is independent of whetherx, y andz were evaluated previously.

5.2.3 Giving Names to Computations

If we are to compare work sets or take their unions and intersections, then it is important that

we have a standard naming scheme for nodes.

Consider the example shown in Fig.5.13. In this example we are attempting to combine the

work set for evaluatingr with the work set for evaluatings, creating the work set for evaluating

both r ands. In order to do this, we need to know which nodes in the two setsrepresent the

same computation. If two sets share a subcomputation then itis important that the combined set

preserves this sharing. It is equally important that work sets do not consider a computation to be

shared if it was in fact repeated. We prevent such problems byensuring thatevery computation

within a program has a single, unique name.

We assign every computation in a program a name that is a string of ◦ and• tokens (cf.

contexts from context semantics [Mai03]). A new name can be constructed by prefixing an

2Provided that the strategy is a sequential hybrid of lazy andeager evaluation. Parallel strategies are not
currently supported, nor are strategies that can perform reductions under lambdas.
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i

i

i

i i i i

i ii ii ii i

Figure 5.14 : Names form a tree

existing name with additional tokens. We say that a namei is descendedfrom a namei′ if i′ is a

suffix of i. It can be helpful to visualise names as representing pointswithin a tree, as illustrated

in Figure 5.14.

We see in Section 5.3 that:(1) The semantic function that produces a cost graph for an

evaluation is passed a root namei that it can use to create unique names for the computations it

defines; and(2) the name of a computation represents the location it would have in the program

text if all function calls were statically expanded. We see in Section 5.5 that the name of

a computation also represents that point at which it would itwould be evaluated in a strict

language: if a namei′ descends from a namei, theni′ would be a subcomputation ofi in a strict

language.

Formally, a computation name,Name, is a finite string of◦ and• tokens:

Name
def
= {◦, •}∗

TheWork required by an evaluation is the set of computations that it has performed:3 4

Work
def
= P(Name)

5.2.4 Formalising Cost Graphs and Cost Views

In the classical graph model, acost graphis a 6-tuple(Nv, Nd, Ev, Ed, Ee, `), where:

Nv ⊂ Name is a set of value nodes

Nd ⊂ Name is a set of dependent nodes

Ev ∈ (Nd → Name) is the value edges

Ed ⊂ (Nd × Name) is a set of demand edges

Ee ⊂ (Nd × Name) is a set of eager edges

` ∈ (Nv → Value) gives values to value nodes

3Names uniquely identify computation nodes; indeed it is convenient to think of the set of nodes as actually
being a subset ofName.

4P(Name) is thepower setof Name. This is the set of all subsets ofName.
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Note that a cost graph can be an open graph: a node may have an edge that links to a name

that is not a node in the graph. Open graphs arise as a result ofnon-termination, as we describe

in Section 5.4.3.

For the purposes of our semantics, it is convenient to work with partialviewsof the program

cost graph, which contain information about only a subset ofthe nodes in the complete cost

graph. We represent acost view(CV ) as a function which maps a node onto its value, its

immediately reachable nodes, or⊥:

CV = Name → (Value ∪ (Name × P(Name)× P(Name)) ∪ {⊥})

A cost viewγ will map a computation namei to ⊥ if either i is not a computation in the

cost graph, orγ knows nothing abouti. If γ knows thati is a value node thenγ(i) will be

its value (discussed in Section 5.3.3). Ifγ knows thati is a dependent node thenγ(i) will be

(i′, d, e) wherei′ is the destination of the value edge fromi, andd ande are sets containing the

destinations of the demand edges and eager edges fromi respectively. We sayγ definesi if

γ(i) 6= ⊥. We say thatγ is acomplete viewif it defines every node in the cost graph.

It is helpful to present the correspondence between cost graphs and cost views more for-

mally: Given a cost graph(Nv, Nd, Ev, Ed, Ee, `), and a set of computation namesD, the cost

view γ that defines only those computations inD is:

γ(i) =



















⊥ if i /∈ D ∨ i /∈ (Nv ∪Nd)

`(i) if i ∈ D ∧ i ∈ Nv

(Ev(i), {i
′ | (i, i′) ∈ Ed}, {i

′ | (i, i′) ∈ Ee}) if i ∈ D ∧ i ∈ Nd

Given a complete cost viewγ the cost graph it represents is:

Nv = {i | (i 7→ v) ∈ γ}

Nd = {i | (i 7→ (i′, d, e)) ∈ γ}

Ed = {(i, i′) | (i 7→ (i′, d, e)) ∈ γ}

Ed = {(i, i′) | (i 7→ (i′′, d, e)) ∈ γ ∧ i′ ∈ d}

Ee = {(i, i′) | (i 7→ (i′′, d, e)) ∈ γ ∧ i′ ∈ e}

` = {(i 7→ v) | (i 7→ v) ∈ γ}

We define an improvement orderingv on cost views. This is the standard ordering on partial

functions:

γ v γ′ ⇐⇒ ∀i ∈ Name. γ(i) = ⊥ ∨ γ(i) = γ′(i)

We definet to be the least upper bound operator according to this ordering.5

5In practice, the cost views combined witht will always have disjoint domains.



5.2. Cost Graphs 59

We definebicγ to be the value produced by the computationi, in the cost viewγ. b−c

follows value edges until it finds a value:

b−c : Name → CG → Value⊥

bicγ =



















v if (i 7→ v) ∈ γ

bi′cγ if (i 7→ (i′, d, e)) ∈ γ

⊥ if (i 7→ ⊥) ∈ γ

If the chain of value dependencies fromi is infinite, thenbicγ will be ⊥.

5.2.5 The Real Cost of an Evaluation Strategy

An evaluation strategydefines a hybrid of lazy and eager evaluation. We define aStrategy , Ψ,

to be the set of computations that should be evaluated eagerly.

Strategy
def
= P(Name)

If i ∈ Ψ then i depends on the computations reachable by its eager edges, aswell as those

reachable by its value or demand edges, otherwisei only depends on those nodes reachable

by its value or demand edges. Lazy Evaluation corresponds tothe empty set∅, while Eager

Evaluation corresponds to the set of all computation namesName.

Given a complete cost graphγ and a strategyΨ, the functionW{{−}} defines the work

required to produce values for the computations in the setD:

W{{−}} : P(Name)→ CV → Strategy →Work

W{{D}}Ψγ = D ∪ W{{
⋃

j∈d

realDeps(γ, Ψ, j)}}Ψγ

realDeps(γ, Ψ, j) =



















{i} ∪ d ∪ e if (j 7→ (i, d, e)) ∈ γ ∧ j ∈ Ψ

{i} ∪ d if (j 7→ (i, d, e)) ∈ γ ∧ j /∈ Ψ

∅ otherwise

If evaluation would not terminate, then the resulting work set will be infinite.

We define a functionprogramWork that gives the work required to evaluate the program

defined by the cost viewγ, using the strategyΨ:

programWork(γ, Ψ) = W{{{ε}}}Ψγ
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In Section 5.6.5 we prove that this function correctly describes the work that would be done

by an operational semantics when evaluating a program.

By comparing the work sets for different evaluation strategies, we can see how well they

perform. We explore this concept in more detail in Chapter 6,where we use it to motivate the

design of an online profiler.

5.3 Producing a Cost View for a Program

In this Section we present a denotational semantics that produces a complete cost view for the

a program. This cost view contains all computations that canpossibly take place during the

evaluation of the program.

The language we work with is that presented in Section 4.2.5.

5.3.1 Cost View Producers

We find it convenient to work with the notion of acost view producer(CVP ). We define aCVP

as follows:

CVP
def
= Name → CV → CV

A cost view producer is a function that will produce a new costview γ′ if it is given:

• a computation namei to use as the source for all names inγ′

• a complete cost graphγ that defines every computation that can possibly take place in the

program.

By defining the typeCVP it becomes possible for the types of our semantic functions to

resemble those of the semantics from Chapter 4, withCVP taking on the role thatValue had

previously.

5.3.2 Meanings of Expressions

The semantic functionE [[−]] gives cost view meanings to expressions:

E [[−]] :: Expression → Locals → CVP

We writeE [[E]]iβ γ as shorthand forE [[E]] β i γ. This denotes the cost view for the expression

E where:

• β is a local environment that maps local variables to computation names.

Locals
def
= Var ⇀ Name
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• i is the root name to used for nodes in the resulting view.

• γ is a complete cost view for the program (generated by a fixed point).

The result ofE [[E]]iβ γ is a cost viewγ′ with the following properties:

• γ′ defines a computation node with the namei.

• The value ofi corresponds to the meaning of the expression under a conventional lazy

semantics [Lau93, Abr90, Ong88].6

• All nodes defined inγ′ have names that are descended fromi (We say thatγ′ is rooted at

i).

• Every node defined inγ′ represents a computation that would take place ifE were evalu-

ated in a strict language. The computations performed to evaluate a thunk will be defined

in the cost view for the thunk’s definition, and not in the costview for the thunk’s user.

• Some nodes may have dependencies on nodes that are not definedin γ′, but which are

defined inγ. Suchdangling dependenciescan be resolved by combiningγ with a view

that defines the node depended on.

• If a computation would not be performed during lazy evaluation of E then its node will

not be reachable fromi via demand or value edges.

• γ′ may be infinite; this will be the case if eager evaluation ofE would not terminate.

5.3.3 Values

Now that we have explained the structure of evaluation a little, it is possible to explain the

structure of values. In the simple language we are working with, aValue is either an integer, or

a function.

Value = Z ∪ (Name → CVP)

If v is a function value, then we can create a cost view producer bypassing it the name of the

computation that produced its argument. This cost view producer will produce a cost view for

the evaluation of the function’s body.

For convenience, we use the shorthandF(i)k
j γ to meanbicγ j k γ. This finds the value of

i within γ and applies it to an argumentj, giving a cost view producer to which it passes a root

namek and a complete cost viewγ. If bicγ is⊥ or an integer, then the result will be the empty

view, mapping everything to⊥.

6If the value is an integer, it will be the same integer. Relating functions is somewhat harder.
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5.4 Rules for Evaluation

In this section we give the rules that defineE [[−]]. These rules are summarised in Fig.5.15.

5.4.1 Variables

[var]
<node referenced by var>

i(VAR)

E [[x]]iβ γ = (i 7→ (β x, ∅, ∅))

The cost view for a variablex defines a single node. This is a dependent node that represents

the computation that looks up the value ofx. The value edge links to the node thatx is bound

to in the environmentβ.

Note that the dependent node will depend on a node that is not defined (maps to⊥) in the

new cost view. This reflects the fact that the computation that x references would already be

evaluated in a strict language, and so would not form part ofx’s evaluation.

5.4.2 Lambda Expressions

[\x.x]

i(LAM)
fun

E [[λx.E]]iβ γ = (i 7→ λj . E [[E]]β[x 7→j])

The cost view for a lambda expression also defines a single node. This node holds a function

value as described in Section 5.3.3. We writeE [[E]]β[x 7→j] as shorthand forE [[E]] β[x 7→ j], or

equivalently,λi γ.E [[E]]iβ[x 7→j] γ.

When the function is given an argument namej it will extend the local environment to map

x to j and partially apply the semantic functionE [[−]] to give a cost view producer for its body.

We see an example of this in Section 5.4.7.
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5.4.3 Function Application

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP) i

if i \x.<body>*

E [[E x]]iβ γ = (i 7→ (•i, {◦i}, ∅)) t E [[E]]◦iβ γ t F(◦i)•i(β x) γ

This rule is perhaps the most complex. To build the cost view for the application of an ex-

pressionE to an argumentx, we combine the cost views for evaluation ofE and for application

of E’s function value tox, adding a new node which connects them.

We will describe the three parts of this view individually:

• E [[E]]◦iβ γ is the cost view for the evaluation of the function expression E. This evaluation

is given the name◦i.

• F(◦i)•i(β x) γ is the cost view for application of the function value to the argument ‘β x’.

We make use of the functionF(−) (defined in Section 5.3.3) and name the evaluation

•i.

• (i 7→ (•i, {◦i}, ∅)) defines the computation that produces a value for ‘E x’. The value of

‘E x’ is that of the evaluated function body (•i), however the application also depends on

the evaluation of the function (◦i). Note the lack of a direct dependency on the function

argument—as one would expect for a non-strict language.

The choice of which sub-evaluation to name with◦ and which with• is arbitrary. All that

matters is that both sub-evaluations are given names that descend fromi and that neither name

is a descendant of the other.

What happens if evaluation ofE does not terminate? In this case no function application

computations can take place andF(−) will produce the empty cost view.i will thus have a

value dependency on a node that does not exist and the corresponding cost graph will be open.
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5.4.4 Let expressions

[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LET) i i

E [[let x = E in E ′]]iβ γ = (i 7→ (•i, ∅, {◦i})) t E [[E]]◦iβ γ t E [[E ′]]•i
β[x 7→◦i] γ

The meaning of alet expression is similar to the meaning of a function application. To

build the cost view for alet expression, we combine the cost views for the body and right hand

side of thelet, together with a new node connecting them. We will describe the three parts of

this view individually:

• E [[E]]◦iβ γ is the cost view for the evaluation of the right hand side of the let. This evalua-

tion is named◦i.

• E [[E ′]]•i
β[x 7→◦i] γ is the view for the evaluation of thelet body, and is named•i. The local

environmentβ is extended to mapx to the name of the right hand side. The view for the

body may thus contain dependencies on◦i.

• (i 7→ (•i, ∅, {◦i})) defines the computation that evaluates thelet. The value of thelet is

that of the its body (•i). Note that the evaluation of alet links to its right hand side with

an eager edge rather than a demand edge, reflecting the fact that Eager Evaluation will

force the right hand side to be evaluated, but Lazy Evaluation will not.
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5.4.5 Integers and Primitive Operations

[n]

i(INT)
n

E [[n]]iβ γ = (i 7→ n)

[x      x’]

i

(OP)
n’’

<node referenced by x>

<node referenced by x’>

if value of x is n, value of x’ is n’
and n’’ = n     n’

E [[x⊕ x′]]iβ γ = (i 7→ (•i, {β x, β x′}, ∅)) t (O[[⊕]]•i bβ xcγ bβ x′cγ)

The meaning of an integer constant is simply a value node containing that integer. A prim-

itive operation depends on its arguments, and takes its value from the node produced by the

O[[−]] function.O[[−]] gives meanings to primitive operators as follows:

O[[⊕]]i v v′ =







(i 7→ (v ⊕̃ v′)) if v 6= ⊥ ∧ v′ 6= ⊥

() otherwise

If evaluation of one of the integer arguments does not terminate then the computation that

produces the result cannot take place. The cost graph will thus be open, indicating that the pri-

mop application depends on a computation that cannot take place under any evaluation strategy.

5.4.6 The Meaning of a Program

We define a semantic functionP[[−]] that produces a complete cost view for the top level eval-

uation of a program.
P[[−]] : Expression → CV

P[[E]]
def
= µγ.E [[E]]ε

∅
γ

A program does not depend on the results of any computations defined elsewhere. We can thus

produce a complete cost view for it by using a fixed point to tiethe know between the cost view

produced byE [[−]] and the cost view demanded byE [[−]]. We know that a least fixed point must

exist becauseE [[−]] is continuous and monotonic with respect toγ.

This fixed point is not strictly necessary. A computation canonly depend on computations

that would have been performed before it under Eager Evaluation. We previously produced a

semantics that did not use a fixed point, instead passing every computation a cost view defining

the computations that would be performed before it under Eager Evaluation. Although this
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[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LET)

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP)

[var]
<node referenced by var>

i(VAR)

i i i

[\x.x]

i(LAM)
fun

if i \x.<body>*

[n]

i(INT)
n

[x iop x’]

i

(OP)
n’’

<node referenced by x>

<node referenced by x’>

if value of x is n, value of x’ is n’
and n’’ = n iop n’

E [[x]]iβ γ = (i 7→ (β x, ∅, ∅))
E [[λx.E]]iβ γ = (i 7→ λj . E [[E]]β[x 7→k])
E [[E x]]iβ γ = (i 7→ (•i, {◦i}, ∅)) t E [[E]]◦iβ γ t F(◦i)•i(β x) γ

E [[let x = E in E ′]]iβ γ = (i 7→ (•i, ∅, {◦i})) t E [[E]]◦iβ γ t E [[E ′]]•i
β[x 7→◦i] γ

E [[n]]iβ γ = (i 7→ n)
E [[x⊕ x′]]iβ γ = (i 7→ (•i, {β x, β x′}, ∅)) t (O[[⊕]]•i bβ xcγ bβ x′cγ)

Figure 5.15 : The semantics of expressions, summarised graphically and formally

semantics worked, we found it to be significantly more cumbersome than the semantics we

present here, particularly when giving meanings to operational states (Section 5.6.4).

5.4.7 An Example

Supposebeta = (y 7→ i) andE = λx.y x, then

E [[E]]i
′

β γ = (i′ 7→ λj k γ′.(k 7→ (•k, {◦k}, ∅), ◦k 7→ (i, ∅, ∅)) t F(◦k)•kj γ′)

This example demonstrates the denotations of functions, application, and variables. The

cost view defines only one node, which creates the function. Note that the function does not

itself have a dependency oni, because evaluating the function does not require evaluation of i;

however, any cost view produced by application of the function will contain a dependency oni,

because applying the function does require evaluation ofi.

5.5 An Operational Semantics

As we claimed in our introduction, cost graphs are independent of evaluation strategy, but relate

closely to the costs incurred by a real implementation. We demonstrate this by means of an

operational semantics. This operational semantics is parameterised by an evaluation strategyΨ

allowing it to model any blend of lazy and eager evaluation.



5.5. An Operational Semantics 67

State S ::= T ; c; s program state with computation trace, command and stack

Command c ::= E B i evaluateE to produce a closure with namei
| }i demand the value ofi
| Oi returni to the top of the stack

Trace T ::= {ij 7→ Kj}
n
0 computation trace mapping names to closures

Closure K ::= (|V |) value closure
| 〈(i, d, e)〉 indirection toi, demand edgesd, eager edgese.
| E thunk—an unevaluated expression
| i∠l suspended stack frame, returningi to l. From abortion.

Stack s ::= [ ] empty stack
| E B i : s Eager return - evaluateE at i, then return tos
| (l, i) : s Local frame - dol at i, then return tos

LocalFrame l ::= @ i Apply returned function to argumenti.
| n⊕ Perform operation⊕ onn and returned value.
| ⊕i Perform operation⊕ on returned value andi.

Figure 5.16 : Syntactic forms for states

For each unit of computation done by the operational semantics, a closure is added to acom-

putation trace. In Section 5.6.4 we prove that the closures in the computation trace map directly

onto a subset of the work predicted by theprogramWork function defined in Section 5.2.5.

5.5.1 An Operational Semantics for Cost

We define a transition relation ‘−→’ between program states, parameterised by an evaluation

strategy ‘Ψ’. Figure 5.16 describes the form of states while Figure 5.17gives the rules defining

‘−→’.

The semantics we present is very similar to the low-level semantics that we presented in

Section 4.2. The key differences are the following:

• We evaluate expressionsin place, placing the result in a specified location. The command

‘EB i’ instructs the virtual machine to evaluateE and to place the result in a closure with

name ‘i’. One notable consequence of this is that we do not need “update frames”—

thunks are simply replaced by their values.

• Our states contain acomputation traceT rather than a heapΓ. A computation trace is

very similar to a heap, but contains mappings from computation names to closures, rather

than from heap identifiers to closures. A computation trace contains a closure for every

computation that has taken place, and thus will contain moreclosures than would be

necessary in a heap.
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(VAL) T ; V B i; s −→Ψ T [i 7→ V ];Oi; s

(VAR) T ; i′ B i; s −→Ψ T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s

(DEM1) T [i 7→ (|V |)];}i; s −→Ψ T [i 7→ (|V |)];Oi; s

(DEM2) T [i 7→ 〈(i′, d, e)〉];}i; s −→Ψ T [i 7→ 〈(i′, d, e)〉];}i′; s

(DEM3) T [i 7→ E];}i; s −→Ψ T ; E B i; s

(APP1) T ; E i′ B i; s −→Ψ T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; ((@ i′, •i) : s)

(APP2) T [i′ 7→ (|λx.E|)];Oi′; ((@ i′′, i) : s) −→Ψ T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s;

(OP1) T ; j ⊕ k B i; s −→Ψ T [i 7→ 〈(•i, {j, k}, ∅)〉];}j; ((⊕k, •i) : s)

(OP2) T [j 7→ (|n|)];Oj; ((⊕k, i) : s) −→Ψ T [j 7→ (|n|)];}k; ((n⊕, i) : s)

(OP3) T [k 7→ (|n′|)];Ok; ((n⊕, i) : s) −→Ψ T [k 7→ (|n′|)]; n ⊕̃n′ B i; s

(LAZY) T ; (let x = E in E ′)B i; s −→Ψ T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E];
E ′[◦i/x]B •i; s

if i /∈ Ψ

(SPEC1) T ; (let x = E in E ′)B i; s −→Ψ T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i;
((E ′[◦i/x]B •i) : s)

if i ∈ Ψ

(SPEC2) T ;Oi′; (E B i : s) −→Ψ T ; E B i; s

Figure 5.17 : Operational semantics for costed evaluation

The evaluation strategy is dictated byΨ. When evaluating alet expression, the virtual

machine may choose to apply either rule(LAZY)or rule (SPEC1), depending on whether the

current computation namei is in the setΨ.

Like the denotational semantics, the operational semantics uses strings of• and◦ tokens to

name its computations and thus also its closures. This makesit easier to relate the operational

semantics to the denotational semantics. These names couldbe replaced by arbitrary identifiers

without affecting the operational behaviour.

We can extend this semantics with a set of additional rules (given in Fig.5.18) that define

abortion transitions. These transitions behave like the abortion semantics of Section 4.2.3,

adapted to take account of cost.

5.5.2 How Commands Relate to the Cost Graph

Evaluation, as defined by the operational semantics of Figure 5.17, is a depth-first exploration

of the cost graph for the program being evaluated. The evaluation strategyΨ determines which

edges are followed by this exploration.
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(!EXP) T ; E B i; s −→Ψ T [i 7→ E];}i; s

(!SPEC) T ;}i; E B j : s −→Ψ T ; E B j; s

(!ABORT) T ;}i; (l, j) : s −→Ψ T [j 7→ i∠l];}j; s

(!RESUME) T [j 7→ i∠l];}j; s −→Ψ T ;}i; (l, j) : s

Figure 5.18 : Operational semantics for costed abortion

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP1) i

if i \x.<body>*

Figure 5.19 : Evaluation commands walk over the cost graph, doing work

The Program State

The computation traceT records all computations that have been visited/performedso far.

Value closures represent value computations that have beenperformed and dependent closures

represent dependent computations that have been performed. Thunks represent computations

that have been put off until later, and suspensions represent areas of the cost graph that have

been partially explored.

The current commandc says what the program is doing currently, and the stacks records

parent nodes whose edges have not yet been completely explored. In the illustrations given in

this section, solid circles represent computations that have been performed and dashed circles

represent computations that have not yet been performed. Asa program evaluates, it converts

dashed circles to solid circles.

Evaluation Commands

Evaluation commands explore new nodes, and do the describedwork. The evaluation command

E B i does the work corresponding to the computationi and records that it has done this by

adding a closure toT . The evaluation command will then proceed to explore any children that

the node has. If there are several children, then it will explore the leftmost child, and add a stack

frame tos to remind it to explore the other children later. This is illustrated by Figure 5.19, in

which rule(APP1)explores its function evaluation child.
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[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP2) i

if i \x.<body>*

Figure 5.20 : Return commands return to a previously unexplored edge

[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LAZY)

i i

Thunk

Figure 5.21 : Thunks represent areas of the cost graph that the virtual machine chose to not
explore until later

Return Commands

Return commands return to a partially explored node stored on the stack and explore its unex-

plored children. This is illustrated in Figure 5.20 in whichrule (APP2) in which the program

returns to a function application frame, and evaluates the body of the function.

Thunks

Thunks represent parts of the cost graph that the virtual machine has chosen to not explore until

later. This is illustrated by Figure 5.21 in which rule(LAZY)creates a thunk to represent the

fact that it has not explored the area of the cost graph representing the right hand side of thelet.

Demand Commands

Demand commands attempt to find a value for a closure. They follow value edges until they

find a value or a previously unexplored part of the cost graph (a thunk). If a previously unex-

plored area is found, then they used an evaluation command toexplore it. This is illustrated by

Figure 5.22.

5.5.3 Work Done by a Program

We consider the work done by a program to be the evaluation transitions it has performed; return

transitions and demand transitions are considered to be free. As we saw in Section 5.5.2, every

evaluation transition performed is recorded in the computation traceT as either a value closure
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(IND1) i

i

(IND2) i’
V

i

(IND3)

i

Figure 5.22 : Demand commands follow value edges until they find either a value, or a previ-
ously unexplored part of the cost graph

or a dependent closure. We can thus define the functionworkDone which maps a state of the

operational semantics to the set of computations that it hasperformed so far:

workDone : Trace →Work

workDone(T ) = {i | (i 7→ (|V |)) ∈ T ∨ (i 7→ 〈(i′, d, e)〉) ∈ T}

In Section 5.6.5 we prove that the work done so far, as described byworkDone, will be a subset

of that that can take place during a complete program evaluation, as predicted byprogramWork

(Section 5.2.5).

5.6 Denotational Meanings of Operational States

We can give a denotational meaning to states of the operational semantics. The meaning of a

state is the complete cost view for the program that the operational semantics is evaluating. This

cost view will define a superset of the computations described in the computation trace.

In Section 5.6.4, we prove that this meaning is preserved by−→ transitions. This demon-

strates that our denotational semantics accurately modelsthe cost graph explored by our opera-

tional semantics.

In Section 5.6.5 we will use this result to prove that the workdone by a program executed

using strategyΨ will always be a subset of the work described byprogramWork for that strat-

egy. This demonstrates that our denotational semantics correctly predicts the cost of evaluating

a program using a given strategy, as defined by the operational semantics.

5.6.1 Costed Meaning of a Runtime Value:

The operational semantics uses substitutions to replace variables with names. We handle this

by treating computation names like local variables, and extendingβ to map all names onto

themselves:

E [[i′]]iβ = (i 7→ (i′, ∅, ∅))
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5.6.2 Costed Meaning of a Stack:

We define a semantic functionS[[−]] that gives a meaning to a stack, given the complete cost

view γ and the namei of the computation that produced the return value:

S[[−]] : Stack → CV → Name → CV

S[[(E B j) : s]]γ i = E [[E]]j
∅

γ t S[[s]]γ j

S[[(@ k, j) : s]]γ i = F(i)j
k γ t S[[s]]γ j

S[[(n⊕, j) : s]]γ i = (O[[⊕]]j n bicγ) t S[[s]]γ j

S[[(⊕k, j) : s]]γ i = (O[[⊕]]j bicγ bkcγ) t S[[s]]γ j

S[[[ ]]]γ i = ()

The cost view for a stack is the least upper bound of the cost views for all evaluations defined

on the stack.

5.6.3 Costed Meaning of a Computation Trace:

We define a semantic functionT [[−]] that gives a meaning to a computation trace:

T [[−]] : Trace → CV → CV

T [[i1 7→ K1, . . . , in 7→ Kn]]γ = E [[K1]]
i1
∅

γ t . . . t E [[Kn]]in
∅

γ

The cost view for a computation trace is the least upper boundof the cost views for all of the

closures in the trace. The semantic functionE [[−]] is extended to give meanings to indirections,

value closures, and stack suspension closures as follows:

E [[〈(j, u)〉]]iβ γ = (i 7→ (j, u))

E [[(|λx.E|)]]iβ γ = E [[λx.E]]iβ γ

E [[j∠f ]]iβ γ = S[[(f, i) : []]]γ j

Thunks are expressions, and so are dealt with by the rules given in Section 5.3.

5.6.4 Costed Meaning of a State:

We define a semantic functionM[[−]] that gives meanings to program states:

M[[−]] : State → CV

M[[T ; E B i; s]] = µγ.T [[T ]]γ t (S[[s]]γ i) t E [[E]]i
∅

γ

M[[T ;}i, s]] = µγ.T [[T ]]γ t (S[[s]]γ i)

M[[T ;Oi, s]] = µγ.T [[T ]]γ t (S[[s]]γ i)
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The complete cost view for a state is the least upper bound of the cost views for the computation

trace, the stack, and the current expression (if there is one).

Theorem 5.6.1 (Soundness)

The meaning of a state as defined byM[[−]], is the complete cost view for the program that the

virtual machine is evaluating.

∅; E; [ ] −→∗ T ; c; s ⇒ M[[T ; c; s]] = P[[E]]

We can easily observe thatM[[∅; E; [ ]]] = P[[E]], so this amounts to proving that the mean-

ing of a state is preserved by the transition rules for ‘−→’:

T ; c; s −→ T ′; c′; s′ ⇒ M[[T ; c; s]] =M[[T ′; c′; s′]]

A proof of this is given in Appendix B.

5.6.5 Work that Will be Done by a State

We can define a functionpendingWork that maps a program state to the work that the program

has yet to do, but which it will do before it finishes.pendingWork takes as its arguments a

program state, and the strategy that is being used to evaluate the program:

pendingWork : State → Strategy →Work

pendingWork(T ; c; s, Ψ) = W{{C{{C}} ∪ S{{s}}}}Ψ
M[[T ;c;s]]

This definition makes use of the functionsC{{−}} andS{{−}} that find thepending computa-

tionsof a command and a stack respectively. The pending computations are those computations

that the program is planning to produce values for in the future. C{{−}} is defined as follows:

C{{E B i}} = {i}

C{{}i}} = {i}

C{{Oi}} = ∅

For convenience, we restrict ourselves to a subset of our language in which there are no primitive

integer operations.7 S{{−}} is thus defined as follows:

S{{E B i : s}} = {i} ∪ S{{s}}

S{{(@k, i) : s}} = {i} ∪ S{{s}}

S{{[]}} = ∅

7Primitive integer operations complicate the proof for(!ABORT)and(RESUME)in Appendix C.
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Theorem 5.6.2 (Correct Work Done)

If the definitions given in this Chapter are correct, then we would like it to be the case that,

for any state that can arise in the operational semantics, the work done so far, unioned with the

pending work is a subset of the work predicted byprogramWork :

∅; E B ε; [ ] −→∗ T ; c; s ⇒

workDone(T ) ∪ pendingWork(T ; c; s, Ψ) ⊆ programWork(M[[T ; c; s]], Ψ)

In Appendix C we prove that this theorem does indeed hold. A corollary of this theorem is that

the work done by a completed state is a subset of the work predicted by the cost graph:

∅; E B ε; [ ] −→∗ T ;Oi; [ ] ⇒

workDone(T ) ⊆ programWork(M[[T ; c; s]], Ψ)

The relation is a subset relation rather than equality because abortion can cause a program

to not do work that it was planning to do. We would like to be able to prove that this relation

will be an equality if no abortion transitions are applied. Unfortunately, we have not yet been

able to produce a proof of this property for the(DEM2) rule.8

8We think wealmosthave a proof, but it is not yet in a good enough state for us to publish it. The proof relies
on a more exact definition ofpendingWork that is non-intersecting withworkDone.



CHAPTER 6

Deriving an Online Profiler

In this chapter, we explain how the cost model described in Chapter 5 can be used to justify and

verify the design of an online profiler for Optimistic Evaluation.

• We start, in Section 6.1, by categorising the work done by a program. We give definitions

of wasted workandsaved work, allowing us to formally state how much of the work

done by a program execution was unnecessary, and how much work was donefor free.

From these concepts, we are able to develop the concept ofgoodness—a measure of the

performance difference between the current evaluation strategy and Lazy Evaluation.

• We continue, in Section 6.2, by formalising the concept ofblamegiven in Section 3.3.4.

• In Section 6.3, we explain how the concept of blame can be usedas the basis for an online

profiler which bounds the worst case performance of Optimistic Evaluation relative to

Lazy Evaluation.

• Finally, in Section 6.4, we show how we can reduce the overhead of online profiling by

only profiling a small proportion of ventures.

This chapter aims to act as a bridge between the formal cost model of Chapter 5 and the

low-level implementation of Chapter 9. This chapter is thusconsiderably less mathematically

rigorous than Chapter 5, but considerably more mathematically rigorous than Chapter 9.

75
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6.1 Categorising Work

Not all work is equal.

Some of the work done by a program may bewasted—meaning that it would not have been

done by Lazy Evaluation. Optimistic Evaluation will waste work whenever it speculatively

evaluates an expression that would not be evaluated under Lazy Evaluation.

Similarly, some of the work done by a program may besaved—meaning that meaning that

Optimistic Evaluation has managed to perform the work without incurring the costs that Lazy

Evaluation would have incurred. When Optimistic Evaluation speculates the right hand side of

a let, it saves the work done to create a thunk. If work has been done, and has not been saved,

then we say the work has beendone-at-a-cost.

The goodnessof a program state is the difference between the amount of work that was

wasted and the amount of work that was saved. Equivalently, it is the difference between the

amount of time that Optimistic Evaluation has taken, and theamount of time that would be

taken by Lazy Evaluation to do the same amount of useful work.If the goodness is positive,

then the current evaluation strategy is outperforming LazyEvaluation, while negative goodness

indicates that the current evaluation strategy is doing worse than Lazy Evaluation.

The aims of the online profiler can be expressed in terms of goodness:

1. It imposes a lower bound on the worst case goodness of a program state, thus bounding

the worst case performance of Optimistic Evaluation relative to Lazy Evaluation.

2. Given the first constraint, it attempts to maximise average goodness and thus maximise

average performance.

6.1.1 Wasted Work

Thewasted workof a program state is the work that has been done so far, but which would not

be performed at any point by Lazy Evaluation of the same program. We can formally define the

wasted work of a program state by taking the set of all computations performed by the program

execution so far, and subtracting all computations that would be performed by Lazy Evaluation

of the program:

wastedWork : State →Work

wastedWork(T ; c; s) = workDone(T ) \ lazyWork(T ; c; s)

We illustrate this definition graphically in Figure 6.1.
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Computations performed so far

Computations that would be performed by
Lazy Evaluation 

Wasted Work Useful Work Work still needing to be done
done so fardone so far

Work that has not been done
and is not needed

Figure 6.1 : A computation is wasted if it would not have been performed by Lazy Evaluation

We definelazyWork , the work done by Lazy Evaluation, using theprogramWork function

from Section 5.2.5:

lazyWork : State →Work

lazyWork(T ; c; s) = programWork(M[[T ; c; s]], ∅)

6.1.2 Saved Work

If a program is evaluated to completion, then the work done byOptimistic Evaluation will

always be a superset of the work done by Lazy Evaluation. However this does not mean that

Optimistic Evaluation will always perform worse than Lazy Evaluation. Optimistic Evaluation

may have been able to do some computationsfor free that would have taken time under Lazy

Evaluation. We refer to the set of computations that have been performed for free as thesaved

work.

In our simplified model, saved work arises when alet expression is speculated (using rule

(SPEC1)). By speculating alet expression, Optimistic Evaluation avoids the cost of building

a thunk and so we consider it to have saved the computation forthat let evaluation. With

reference to the definitions of Section 5.2.5, we can define the saved work of a program to be

the intersection of the work done so far with the setΨ of all computations that will be speculated

if encountered.

savedWork : State → Strategy →Work

savedWork(Γ; c; s, Ψ) = workDone(T ) ∩ Ψ

Operationally, we can obtain the set of saved work by adding asaved work fieldF to states.

F contains the names of all computations that have been saved so far. TheF field is ignored by
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Computations performed so far

Computations that will be speculated, and thus
saved, if they are performed 

Work done so far Work saved Work that might be saved in 
so farthat was not saved

Work that has not been done
and would not be saved

the future

Figure 6.2 : A computation is saved if has been speculated

all rules except(SPEC1), which adds its computation name to the setF :

(SPEC1 ) Γ; (let x = E in E ′)B i; s; F −→Ψ

Γ[i 7→ 〈(•i, ∅)〉]; E B ◦i; (E ′[◦i/x]B •i) : s; F ∪ {i}

if i ∈ Ψ

The saved work of such an extended state is simply itsF field. We can observe that this is

equivalent to the previous definition.

6.1.3 Goodness

Thegoodnessof a program state is a measure of how well Optimistic Evaluation is performing

relative to Lazy Evaluation. It is defined to be the difference between the amount of work that

the program has done-at-a-cost1and the amount of work that would be done-at-a-cost by Lazy

Evaluation to do the same amount of useful work. This is the amount of work that has been

saved, minus the amount of work that has been wasted:

goodness : State → Strategy → Z

goodness(Γ; c; s; Ψ) =
∣

∣

∣ savedWork(Γ ; c; s ,Ψ)
∣

∣

∣
−

∣

∣

∣ wastedWork(Γ ; c; s)
∣

∣

∣

To understand why this definition makes sense, it is helpful to consider the goodness of an

individual computation. From the definitions given in the previous sections, we can see that

every computation performed by the program is either wastedor not wasted, and either saved

or not saved (Figure 6.3):

1Recall that a computation is considered to bedone-at-a-costif it has been done and its cost was not saved.
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Saved

Wasted

Saved and wasted Saved but not wastedWasted but not saved

Neither wasted nor saved

Work done so far

Figure 6.3 : Each computation done so far can be wasted, saved, both, or neither

Wasted but not saved: This computation was not needed, and took time to perform. The good-

ness of the computation is thus−1.

Saved but not wasted:This computation was done for free, but would have taken timeunder

Lazy Evaluation. The goodness of the computation is thus1.

Wasted and saved:This computation was not needed, but took no time to perform.The good-

ness of the computation is thus0.

Neither wasted nor saved:This computation took one unit of time, and would have taken one

unit of time under Lazy Evaluation. The goodness of the computation is thus0.

We can see that saved and wasted computations cancel each other out, leading to the defini-

tion of goodness given above.

6.1.4 Using Goodness

By calculating goodness at runtime, an online profiler can keep track of how well Optimistic

Evaluation is doing. If the goodness is negative, then Optimistic Evaluation is wasting more

work that it is saving, and so the profiler should decrease thelevel of speculation in an attempt

to reduce the amount of waste taking place. If the goodness ispositive, then speculation is

saving more work than it is wasting, and so the profiler can increase the level of speculation

in an attempt to save more work. If the goodness falls below a user-specified cutoff point then

evaluation will be made entirely lazy, ensuring that the goodness cannot decrease any further.

A possible relationship between goodness and speculation level is illustrated by Figure 6.4.
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Figure 6.4 : The level of speculation depends on the current estimate of goodness, ensuring
that goodness should never fall below a pre-determined cutoff point.

6.1.5 Underestimating Goodness

It is not necessary for a profiler to know the exact goodness ofa program state. All that is re-

quired is that the profiler is able to produce a safe underestimate of goodness. If the goodness is

underestimated, then the profiler will be overly cautious and evaluate the program more lazily

than necessary. In the worst case, Optimistic Evaluation will decide that speculation is entirely

counterproductive and will revert to Lazy Evaluation. The online profiler is only required to

ensure that the program does not run significantly slower than it would under Lazy Evaluation.

It is not required to ensure that performance is within a particular bound of the optimal evalu-

ation strategy2. Thus, while an overestimate of goodness would be unsafe, anunderestimate is

acceptable.

Although it is acceptable for the profiler to underestimate goodness, it is desirable for it to

underestimate goodness by as little as possible, so as to avoid being unnecessarily cautious.

6.2 Blame

If we discover that some work was wasted, it is useful to knowwhy the wasted work was done.

In this section, we present a semantics in which every wastedcomputation isblamedon a

speculation—thus formalising the concept of blame introduced in Section 3.3.3. We go on, in

Section 6.2.5 to show that blame can be used as the basis for anonline profiler.

6.2.1 An Informal Overview of Blame

Every computation performed by a program is blamed on eitherthe root venture, or exactly

one speculation. If a computation is blamed on the root venture, then that means that the

2By which we mean the optimal blend of lazy and strict evaluation. The term ‘Optimal Evaluation’ is more
commonly used to refer to something else—as we discuss in Section 13.9.2.
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Figure 6.5 : All computations are part of the local work for exactly one venture

computation was definitely not wasted. If a computation is blamed on a speculation, then this

means that the computation may have been wasted, and the profiler has chosen to blame the

work on that speculation. The sum of all work blamed on speculations is guaranteed to be an

overestimate of the wasted work of the program state.

Our profiler passes blame between ventures as the program runs. If a venturex is found to

be needed by a venturey then any blame that had been attributed tox will be passed toy. It is

thus the case that a speculation can only be blamed for work ifit is not yet known to be needed.3

6.2.2 Ventures

In terms of a cost graph, a venture is a computation that produces a value for the right hand

side of alet. A venture is a speculation if was performed before it was known to be needed.

The local work of a venture is the work that can be reached directly from that venture, without

having to go through any other ventures. We say that a venturei demands a venturei′ if any of

the computations in the local work ofi demandi′.

These concepts are illustrated in Figure 6.5, which extendsthe cost graph of Section 5.2. In

this figure, each venture is marked with a circle and a loop is drawn around the local work for

each venture.

6.2.3 Relating Blame to a Cost Graph

We can illustrate the allocation of blame to ventures using ablame graph. A blame graph

consists of a number of disconnectedblame trees, each of which is rooted at either a speculation

or the root venture. If a speculation has no edges linking to it then itsblameis the number of

computations reachable from it; otherwise its blame is zero.

3This is the reason why a thunk venture cannot be blamed for work; a thunk venture is needed by the venture
that demanded the value of the thunk.
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Figure 6.6 : A blame graph contains a subset of the nodes and edges of the cost graph

The computations and edges in a blame graph are a subset of those for the cost graph of the

program. The computations are those that have been done so far, while the edges are a subset

of those in the cost graph, chosen such that no node has more than one node linking to it. As a

program executes, we can maintain a blame graph describing the profiler’s current allocation of

blame to speculations. Whenever a computation is done, it isadded to the blame graph, together

with as many of its value and demand edges as can be added without causing any node to have

more than one edge linking to it.

In Figure 6.6 we illustrate a typical blame graph, together with its corresponding cost graph.

We can see that every node and edge in the blame graph is also present in the cost graph. In

Figure 6.7 we illustrate the effect of adding a new computation node to a blame graph. In this

example the new node depends on the root node,s, of a blame tree, causing that blame tree to

be subsumed by the blame tree containing the new node. Operationally, the blame attributed to

s is passed top.

The work blamed on speculations is a superset of thewastedWork of the program state.

This follows from the fact that every computation done so faris blamed on either a speculation

or the root venture, and the fact that a computation can only be blamed on the root venture

if it is reachable from the root venture by value and demand links. If the profiler also has an

accurate measure of saved work then it can use the blame graphto produce an underestimate of

the goodness of the current state.



6.2. Blame 83

blame = 2

[p]

5
4 1

[s]

5 [z]

[p]

5
4 1

[s]

5

blame = 4

blame = 7

no blame
add new node

Figure 6.7 : When a new node is added to the blame graph, it may cause one blame tree to be
subsumed by another one

6.2.4 Per Let Goodness

Our main motivation for blaming computations on ventures isthat it allows us to assign a good-

ness to each individuallet in the program. The goodness of alet is the amount of work saved

by thelet, minus the work blamed on ventures spawned by thatlet. We define aGoodnessMap,

Π, to be a mapping fromlet identifiers to integer goodness values:

GoodnessMap
def
= Id → Z

The sum of all goodness in the goodness map is guaranteed to bean underestimate of the

goodness of the program state.

6.2.5 An Operational Semantics for Blame

Figure 6.8 gives the rules for an operational semantics thatkeeps track of blame. This semantics

is based on the low-level semantics of Section 4.2 and so maintains a heapΓ rather than a

computation traceT . States are now of the following form:

Γ; c; s; B; Π

where:

• Γ is a heap, mapping heap identifiers to closures, as before. Weextend the type of closures

to includecosted indirections. A costed indirection holds the result of a speculation that

has work blamed on it. If a blame graph is drawn for the programstate, then each blame

tree corresponds to a costed indirection in the heap.
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Evaluate a value constant:
(VAL) Γ; V ; s; B; Π −→ Γ[α 7→ V ];Oα; s; B + 1; Π

whereα is fresh

Demand the value of a closure:
(VAR) Γ; α; s; B; Π −→ Γ;}α; s; B + 1; Π

(DEM1) Γ[α 7→ (|V |)];}α; s; B; Π −→ Γ[α 7→ (|V |)];Oα; s; B; Π

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s; B; Π −→ Γ[α 7→ 〈(α′)〉];}α′; s; B; Π

(DEM3) Γ[α 7→ E];}α; s; B; Π −→ Γ; E; (#α : s); B; Π

(UPD) Γ;Oα; (#α′ : s); B; Π −→ Γ[α′ 7→ 〈(α)〉];Oα; B; Π

Function Application:
(APP1) Γ; E α; s; B; Π −→ Γ; E; (@α : s); B + 1; Π

(APP2) Γ[α 7→ (|λx.E|)];Oα; (@α′ : s); B; Π −→ Γ[α 7→ (|λx.E|)]; E[α′/x]; s; B; Π

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s; B; Π −→ Γ[α 7→ E]; E ′[α/x]; s; B + 1; Π

if goodToLim(Π(x)) ≤ specDepth(s)
whereα is fresh

Speculative Evaluation of alet:
(SPEC1) Γ; (let x = E in E ′); s; B −→ Γ; E; (({x}E ′, B + 1) : s); 0

Π Π[x 7→ Π(x) + 1]
if goodToLim(Π(x)) > specDepth(s)

(SPEC2) Γ;Oα; (({x}E, B′) : s); B −→ Γ[α′ 7→ B〈α〉x]; E[α′/x]; s; B′;
Π Π[x 7→ Π(x)− B]

whereα′ is fresh

Demand the value of a costed indirection:
(CST) Γ[α 7→ B′〈α′〉x];}α; s; B −→ Γ[α 7→ 〈(α′)〉];}α′; s; B + B′

Π Π[x 7→ Π(x) + B′]

Figure 6.8 : Operational semantics with blame
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Costed indirections are written as:

B〈α〉x

whereB is the amount of work blamed on the speculation,α is a heap reference for the

result of the speculation, andx is the identifier for thelet that spawned the speculation.

• s is a stack. Stack frames are similar to those used in the low-level semantics of Sec-

tion 4.2; however speculative return frames are extended tocontain the blame accumu-

lated so far by the enclosing speculation. Stack frames are thus as follows:

Stack s ::= [ ] Empty stack

| ({x}E, B) : s Speculative return

| #α : s Thunk update

| @α : s Lazy return

• B an integer count of the amount of work that has been blamed on the current speculation

so far.

• Π is a goodness map, recording the goodness that is currently assigned to eachlet in the

program.

The semantics ensures thatΠ(x) is always the total amount of work saved by ventures

spawned byx, minus the total amount of work blamed on speculations spawned byx.

If the current speculation demands the result of a costed indirection in the heap (rule(CST)),

then the costed indirection is replaced by a simple indirection and its blame is transferred to the

current speculation. Referring to the blame graph, this is equivalent to adding an edge linking

the current speculation to the blame tree represented by thecosted indirection, as illustrated by

Figure 6.7.

Whenever the cost semantics of Section 5.5 would add a new node to the computation trace,

the semantics of Figure 6.8 will increment the current blameB, blaming the current speculation

for the work.

Whenever a speculation starts, rule(SPEC1)adds one unit of goodness to the goodness

count for the spawninglet. This reflects the fact that the venture saved one computation by

avoiding building a thunk. As discussed in Section 3.3.5, rule (SPEC1)blames the enclosing

venture for the work needed to build a thunk, even though a thunk has not been built.

Whenever a speculation completes, rule(SPEC2)subtractsB units of goodness from the

goodness count forx. This records the fact thatB computations have been blamed on a venture

spawned byx. If the blame for these computations is later transferred elsewhere, then(CST)

will add B to the goodness count forx; thus ensuring that the goodness of alet accurately

reflects the blame currently attributed to ventures spawnedfrom that let.
3By which we mean the blame tree that was current before the frame was pushed.
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6.2.6 Directing Evaluation with Goodness

Rather than using a speculation configurationΣ or an evaluation strategyΨ to chose when

to speculate alet expression, the semantics of Figure 6.8 instead uses the goodness mapΠ.

We assume the existence of agoodness weighting function, goodToLim, that maps goodness

counts to speculation depth limits. This is equivalent to defining the speculation configuration

Σ as follows:

Σ(x) = goodToLim(Π(x))

goodToLim can be any function, provided that there is some minimum goodnessMINGOODNESS

such thatgoodToLim will be zero for any goodness belowMINGOODNESS , and provided that

there is no goodness for whichgoodToLim will be greater thanMAXDEPTH . That is:

∀z. (z ≤ MINGOODNESS ⇒ goodToLim(z) = 0)

∀z. goodToLim(z) ≤ MAXDEPTH

6.3 Bounding Worst Case Performance

The blame semantics of Section 6.2 ensures that no new speculations will be started for alet

if the goodness of thatlet is less thanMINGOODNESS . However this is not sufficient to

impose a lower bound on the goodness that can be attributed toa let: a venture may start while

the goodness of alet is high, and then do a large amount of wasted work, causing a large

amount of goodness to be subtracted from thelet.

If we are to place a lower bound on the goodness that can be assigned to alet then we must

not only place restrictions on when new speculations can be created, but also place restrictions

on the amount of work that can be blamed on the active speculations.

In this section we explain how we such a limit can be imposed, and how this allows us to

guarantee a bound on the worst case performance of Optimistic Evaluation.

6.3.1 Bounded Speculation with Blame

In Section 4.2.4 we gave a semantics forbounded speculation, which ensures that no more than

MAXTIME steps of speculative evaluation can be performed before abortion takes place. We

can refine this semantics so that it instead places a limit on the amount of blame that can be

assigned to active speculations. The rules for this refined semantics are given in Figure 6.3.1.

The rule(RUN)performs an evaluation step only if that evaluation step will not cause more

thanMAXBLAME units of work to be blamed on active speculations. This rule makes use of
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(RUN)
Γ; c; s; B; Π −→ Γ′; c′; s′; B′; Π′

Γ; c; s; B; Π y Γ′; c′; s′; B′; Π′

if B′ + activeBlame(s′) ≤ MAXBLAME

or specDepth(s′) = 0

(ABORT)
Γ; c; s; B; Π  Γ′; c′; s′; B′; Π′

Γ; c; s; B; Π y Γ′; c′; s′; B′; Π′

if rule (RUN)could not be applied

Figure 6.9 : Operational semantics of blame bounded speculation

a functionactiveBlame that sums the blame for all active ventures recorded on the stack:

activeBlame(({x}E, B) : s) =







0 if specDepth(s) = 0

B + activeBlame(s) otherwise

activeBlame(#α : s) = activeBlame(s)

activeBlame(l : s) = activeBlame(s)

activeBlame([]) = 0

Recall that the blame fieldB in a speculative return frame contains the blame accumulated so far

for the enclosing venture. We thus do not count the blame attached to the outermost speculative

return frame as this will be the blame accumulated so far by the root venture—which is not a

speculation.

If rule (RUN)cannot be applied, then rule(ABORT)will apply abortion transitions until the

(RUN)rule can be applied again.

It is important that we limit blame rather than evaluation steps or local work. If we limited

evaluation steps, then it would be possible for a speculation to accumulate a lot of blame by

demanding the results of previous ventures. When the venture completed, this blame would be

subtracted from the goodness of the spawninglet. It is also important that the side condition

is on the blame after the transition rather than the blame before the transition. It is possible

for a venture to accumulate a large amount of blame in one stepusing the(CST)rule, thus

testing the blame before a transition would allow a venture to accumulate significantly more

thanMAXBLAME units of blame.

6.3.2 Abortion

The bounded speculation semantics presented in Section 6.3.1 makes use of the abortion re-

lation given in Figure 6.10. The rules in Figure 6.10 are largely the same as those given in

Section 4.2.3, but have been extended to keep track of blame.
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abort a speculation:

(!EXP) Γ; E; s; B; Π  Γ[α 7→ E];}α; s; B; Π

(!RET) Γ;Oα; s; B; Π  Γ;}α; s; B; Π

(!SPEC) Γ;}α; ({x}E, B′) : s;  Γ[α′ 7→ B〈α〉x]; E[α′′/x]; s;
B; Π B′; Π[x 7→ Π(x)−B −Babort]

whereα′ is fresh

(!UPD) Γ;}α; #α′ : s; B; Π  Γ[α′ 7→ 〈(α)〉];}α; s; B; Π

(!ABORT) Γ;}α; l : s; B; Π  Γ[α′ 7→ α∠l];}α′; s; B; Π
whereα is fresh

resume a suspended evaluation:

(RESUME) Γ[α 7→ α′∠l];}α; s; B; Π −→ Γ;}α′; l; #α : s; B; Π

Figure 6.10 : Operational semantics : abortion with blame

The only rule to have changed significantly is(!SPEC), which blames any work accumulated

so far on thelet that spawned that venture. The abortion system also blames thelet for Babort

units of work, representing the work done to perform the abortion itself.

6.3.3 Worst Case Performance

We can tell from rule(SPEC)in the semantics of Section 6.2.5, and the restrictions on the

definition ofbadToLim given in Section 6.3.1, that a new speculation can only be created for a

let if the goodness for thatlet is less thanMINGOODNESS .

The minimum goodness that can be attributed to alet is thusMINGOODNESS minus the

maximum amount of goodness that can be subtracted from thatlet by speculations that were

started before the goodness of thelet reachedMINGOODNESS .

We saw in Section 6.3.1 that the maximum amount of blame that can be attributed to active

speculations isMAXBLAME . If every one of these ventures is aborted, then the cost of abor-

tion would beMAXDEPTH ×Babort.4 It is thus the case that the minimum goodness that can

be attributed to anylet is MINGOODNESS −MAXBLAME − (MAXDEPTH × Babort).

There are a finite number oflet expressions in a program. It is thus the case that a bound on

the goodness attributable to any onelet will also give a bound on the total goodness attributed

4Recall thatMAXDEPTH is the maximum number of speculations that can be active, as defined by Sec-
tion 6.2.6.



6.4. Burst Profiling 89

to all lets. In Section 6.2.3 we showed that this will be an underestimate of the goodness of the

program state.

In Section 6.1.3 we argued that the goodness of a program state is an accurate measure of

the performance difference between Optimistic Evaluationand Lazy Evaluation. We thus have

a bound on the worst case performance of Optimistic Evaluation, relative to Lazy Evaluation.

This is exactly what the profiler is intended to do!

6.3.4 Variants on the Worst Case Bound

The user has quite a lot of control over the worst case performance bound. IfMINGOODNESS

andMAXSPEC are fixed constants then the minimum goodness will be lower ifthe number

of let expressions in the program is increased. This anomaly can befixed by arranging for

MINGOODNESS andMAXSPEC to be inversely proportional to the number oflet expres-

sions in the program.

MINGOODNESS andMAXSPEC do not have to be constants either. Indeed, it can be

useful forMINGOODNESS to be expressed as a proportion of the total runtime of the program,

causing the worst case performance to be a fixed percentage slower than Lazy Evaluation, rather

than taking a fixed amount of extra time.

6.4 Burst Profiling

It is not practical to profile a program all of the time; the overhead would be too great. In this

section we formalise the concept ofburst profiling, as introduced in Section 3.4. Burst Profiling

profiles a program for only a small proportion of its runtime,but still allows goodness to be

accurately estimated.

6.4.1 Periods

Burst profiling divides the runtime of a program up into a series of distinct periods. Each period

starts at aboundary pointand lasts until the next boundary point. Any speculations that start

during a period are considered to belong to that period. Thisis illustrated in Figure 6.11 in

which speculations are rectangles, and the shading of a speculation indicates the period that it

belongs to.

A random selection of periods is profiled. When a period is profiled, all speculations that

start during that period will be profiled (Figure 6.12). If every period has a probabilityp of

being profiled, then it follows that every speculation also has a probabilityp of being profiled.

Given that the goodness of the program is the sum of the goodness of the all speculations, it
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Figure 6.11 : Every speculations belongs to exactly one profile period
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Figure 6.12 : Only those speculations that start during a profiled period will be profiled.

follows that the measured goodness should, on average, bep times the goodness that would be

measured if profiling was always enabled.

The burst profiler aims to calculate the following:

• An overestimate of the number of computations that took place during profiled periods

and were wasted (as defined by Section 6.1.1)

• An exact count of the number of computations that took place during profiled periods and

were saved (as defined by Section 6.1.2)

From these, it aims to underestimate the goodness of the profiled part of the program’s

execution. By dividing this goodness by the number of computations profiled, it is possible

to calculate therelative goodnessof the program. If we assume that profiled computations

behave, on average, in the same way as unprofiled computations, then the relative goodness of

the profiled computations should be a good estimate of the relative goodness of the program

execution. The profiler can thus estimate the goodness of theprogram execution by multiplying

the relative goodness by the total number of computations performed.

6.4.2 Operational Semantics

Figure 6.13 gives the rules for burst profiling. This semantics is a combination of the rules from

the blame profiling semantics of Section 6.2 and the unprofiled semantics of Section 4.2. The

evaluation relation−→ is parameterised by a profiling switchp. If p is ‘on’ then the profiling

rules are used, while, ifp is ‘off ’ then the unprofiled rules are used.
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Evaluate a value constant:
(VAL) Γ; V ; s; B; Π −→p Γ[α 7→ V ];Oα; s; B + 1; Π

whereα is fresh

Demand the value of a closure:
(VAR) Γ; α; s; B; Π −→p Γ;}α; s; B + 1; Π

(DEM1) Γ[α 7→ (|V |)];}α; s; B; Π −→p Γ[α 7→ (|V |)];Oα; s; B; Π

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s; B; Π −→p Γ[α 7→ 〈(α′)〉];}α′; s; B; Π

(DEM3) Γ[α 7→ E];}α; s; B; Π −→p Γ; E; #α : s; B; Π

(UPD) Γ;Oα; #α′ : s; B; Π −→p Γ[α′ 7→ 〈(α)〉];Oα; B; Π

Function Application:
(APP1) Γ; E α; s; B; Π −→p Γ; E; @ α : s; B + 1; Π

(APP2) Γ[α 7→ (|λx.E|)];Oα; @ α′ : s; B; Π −→p Γ[α 7→ (|λx.E|)]; E[α′/x]; s; B; Π

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s; B; Π −→p Γ[α 7→ E]; E ′[α/x]; s; B + 1; Π

if goodToLim(Π(x)) ≤ specDepth(s)
whereα is fresh

Unprofiled Speculative Evaluation of alet:
(SPEC1N) Γ; (let x = E in E ′); s; B; Π −→off Γ; E; ({x}E ′ : s); B + 1; Π

if goodToLim(Π(x)) > specDepth(s)

(SPEC2N) Γ;Oα; ({x}E : s); B; Π −→p Γ; E[α/x]; s; B; Π

Profiled Speculative Evaluation of alet:
(SPEC1P) Γ; (let x = E in E ′); s; B; −→on Γ; E; (({x}E ′, B + 1) : s); 0;

Π Π[x 7→ Π(x) + 1]
if goodToLim(Π(x)) > specDepth(s)

(SPEC2P) Γ;Oα; (({x}E, B′) : s); B −→p Γ[α′ 7→ B〈x〉x
′

]; E[α′/x]; s; B′;
Π Π[x 7→ Π(x)− B]

whereα′ is fresh

Demand the value of a costed indirection:
(CSTN) Γ[α 7→ B′〈α′〉x];}α; s; B; Π −→p Γ[α 7→ B′〈α′〉x];}α′; s; B; Π

if ¬profiled(s)

(CSTP) Γ[α 7→ B′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; s;
B; Π B + B′; Π[x 7→ Π(x) + B′]

if profiled(s)

Figure 6.13 : Operational semantics for Burst Profiling
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The stacks can contain two types of speculative return frame, one for a speculation that is

being profiled and one for a speculation that is not being profiled. These are the speculative

return frames from Sections 6.2 and 4.2 respectively:

Stack s ::= [ ] empty stack

| ({x}E, B) : s speculative return (profiled)

| {x}E : s speculative return (unprofiled)

| #α : s Thunk update

| @α : s lazy return

The rules(CSTN)and(CSTP)make use of a functionprofiled that looks at the stack and deter-

mines whether the current speculation is being profiled:

profiled : Stack → B

profiled([ ]) = true

profiled({x}E : s) = false

profiled(({x}E, B) : s) = true

profiled(#α : s) = profiled(s)

profiled(@α : s) = profiled(s)

The rules behave as follows:

• Most of the rules behave just like they did in the blame profiled semantics of Section 6.2.

As we explain in Section 9.1.1 the blame counterB is implemented using a counter which

increments automatically as the program executes. The virtual machine thus increments

the current blame counterB even when the current speculation is not being profiled.

• When a speculation starts, the virtual machine has a choice of two rules to apply.(SPEC1P)

is used if the current period is profiled, otherwise(SPEC1N)is used. Rule(SPEC1P)be-

haves like(SPEC1)in the profiled semantics of Section 6.2, while(SPEC1N)behaves

like (SPEC1)in the original unprofiled semantics of Section 4.2.

If an unprofiled speculation is nested inside a profiled speculation then the profiled spec-

ulation will be blamed for any local work done by the unprofiled speculation. This can

cause the profiler to overestimate wasted work, but that is allowed.

• When a speculation completes, the virtual machine again hasa choice of two rules. If

the speculation was profiled, then it ends with(SPEC2P), otherwise it will end with

(SPEC2N). Again, these are the rules from Section 6.2 and Section 4.2.
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Figure 6.14 : If an unprofiled speculation uses a costed indirection then there is nowhere for
the cost to be passed to

(CSTN) Γ[α 7→ B′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; chainProf (B, s);
B; Π B′; Π

if ¬profiled(s)

Figure 6.15 : Chain profiling uses this revised version of (CSTN)

• To demand a costed indirection, the evaluator applies(CSTN)or (CSTP). (CSTP)is ap-

plied if the current speculation is profiled, otherwise(CSTN)is applied. These rules are

discussed further in Section 6.4.3.

6.4.3 Profile Chaining

If some speculations are profiled and others are not, what should happen when the result of a

profiled speculation is used by an unprofiled speculation. This situation is illustrated by Fig-

ure 6.14.

If a profiled speculation,x, demands the result of an unprofiled speculation ,y, then we can

transfer blame fromy to x, as described in Section 6.2.3. However, ifx is not profiled, there

will be no blame counter for blame to be transferred into. In the semantics of Figure 6.13 we

deal with this problem by ignoring any demands made by unprofiled speculations. While this

strategy is entirely safe, it turns out (see results in Section 12.3.7) that there are performance

advantages to adopting a strategy that we callchaining.

If a profiled speculation,x, demands the result of an unprofiled speculation,y then it seems

unfair to continue to blamey for wasting its work when the work was needed byx. What we

would like to be able to do is to pass this blame tox. Since we cannot pass work to an unprofiled

speculation, we need to turnx into a profiled speculation. We can do this by replacing(CSTN)

with the rule given in Figure 6.15.

This new rule uses a functionchainProf that converts the current speculation into a profiled

speculation.chainProf is defined as follows:
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chainProf : N→ Stack → Stack

chainProf (B, [ ]) = error ! no frame to profile

chainProf (B, {x}E : s) = ({x}E, B) : s

chainProf (B, ({x}E, B′) : s) = error ! already profiled

chainProf (B, #α : s) = #α : chainProf (B, s)

chainProf (B, @α : s) = @α : chainProf (B, s)

chainProf walks down the stack until it finds the return frame for the current unprofiled specu-

lation. We know that such a stack frame must exist because(CSTN)is only applied ifprofiled(s)

is false. WhenchainProf finds this frame, it converts it into a profiled speculation frame. The

current blameB is stored in this frame, causing the blame counter to be restored when the

speculation completes.

Since the current speculation is now profiled,(CSTN)can now blame it for the work attached

to x. Note that we take care to avoid crediting the newly profiled speculation with saving work.

This is because the work saved by the speculation did not takeplace during a profiled period,

and so should not be included in the saved work count described in Section 6.4.1.

We describe our implementation of profile chaining in more detail in Section 9.4.1. We

discuss its performance impact in Section 12.3.7.
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Implementation
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CHAPTER 7

The GHC Execution Model

Optimistic Evaluation is implemented as an extension of theGHC compiler. Thus, in order

to explain how Optimistic Evaluation is implemented, it is necessary to first explain how the

GHC execution model works and how it relates to the semantic models we have presented. This

chapter only gives a very brief overview of the workings of GHC; the real GHC implementation

is significantly more complex than that described here. Those wishing to discover more about

the workings of GHC are encouraged to read the many papers that have been written about

it [PHH+93, PMR99, San95b, PP93, PL91, Pey92, Pey91]. A more detailed tutorial on the

compilation of non-strict functional languages in generalcan be found in [PL92].

In this chapter, be describe the way that GHC works by comparing it to the semantics of

Section 4.2, with the parts specific to speculative evaluation removed. This semantics is a very

close match to the way that GHC actually works.

• In Section 7.1 we describe the structure of the GHC heap, and explain how it relates to

the heap used by the formal semantics of Section 4.2.

• In Section 7.2 we describe the structure of the GHC stack, andexplain how it corresponds

to the stack used by the formal semantics of Section 4.2.

• In Section 7.3 we describe the code generated by GHC, and explain how it corresponds

to the commands and evaluation rules used by the formal semantics of Section 4.2.
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Closures start here

info ptr

payload

payload

payload

info ptr

payload

payload
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info ptr
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payload

Dynamic HeapStatic Info Table

type = cons
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Static Info Table
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size = 2

entry code

entry code

addresses 
increase
downwards

Figure 7.1 : Structure of Heap Closures

7.1 The Heap

In the formal semantics of Section 4.2, the heapΓ is a function mapping heap referencesα to

closuresK. In GHC, the heap is a continuous block of memory.1 A closureK is a sequence of

words in the heap, and a heap referenceα is a pointer to the start of the closure that it references.

Figure 7.1 illustrates a typical GHC heap. In this figure, objects in the dynamic heap (clo-

sures) are drawn with bold outlines while static objects aredrawn with dotted outlines. All

closures in GHC have the same basic form in the heap, irrespective of whether they represent

values, thunks or something else; the first word of the closure is theinfo pointer, and the other

words are known as thepayload. The info pointer serves two purposes:

• It points to the end of theinfo table. The info table is a static structure that contains useful

information about the closure.

• It points to the beginning of theentry code. This is the code that should be executed in

order to force the closure to evaluate to a value. If the closure is already a value then this

code will be a stub that returns immediately to the caller.

The info table contains a number of fields, including the following:

• type: What kind of thing the closure is. E.g. afunction, thunk or constructedvalue.

• size: How many words there are in the closure payload.

• layout: Information for the garbage collector (we will omit this in most of our diagrams)

It the following subsections, we explain how each closure type described in Section 4.2 is

represented in the GHC heap.

1Actually, it is divided into sub-blocks, but we such detailsare unimportant.
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True =

Cons 3 [] =

True_info

Cons_info

3

tail ptr

[]_info[] =

Figure 7.2 : Heap Representation of Constructed Values

7.1.1 Constructed Values

(|C α0 . . . αn|)

Figure 7.2 illustrates the way that GHC represents a constructed value in the heap: the info table

describes the static constructorC and the payload is argumentsα0 . . . αn. The entry code for

a constructor will simply return to the caller; there is no need for any work to be done as the

constructor is already fully evaluated.

In this figure, and in the other figures used in this chapter, wewrite a number (e.g.3) as

shorthand for a pointer to a closure representing that number.

7.1.2 Function Closures

(|λx.E|)

In the formal semantics, a function closure is a valueλx.E that has been formed by substituting

heap references for the free variables of a statically defined function.2

Figure 7.3 illustrates the way that GHC represents a function closure in the heap: the info

table describes the static function, and the closure payload contains the heap references that

have been substituted for the free variables of that function. A function closure is a value3 , and

so the entry code will do nothing; however the info table alsocontains a pointer to the body

code for the static function, which can be used to apply the function to arguments.4

Function calling conventions are discussed in Section 7.3.2.

2The operational semantics would have been a closer match forthe real implementation if it had used environ-
ments rather than substitutions. We chose not to do this because it made the semantics generally more complicated.

3i.e. a weak head normal form
4This is a simplification. The real implementation is more complex than this; however the difference is unim-

portant.
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Figure 7.4 : Heap Representation of Thunks

7.1.3 Thunks

E

In the formal semantics, a thunk is an expressionE that has been formed by substituting heap

references for the free variables of a static expression.

Figure 7.4 illustrates the way that GHC represents thunks inthe heap. The info table de-

scribes the static expression, while the payload contains the heap references that have been

substituted for its free variables. The entry code for a thunk will read the bindings for its free

variables from the closure payload and then evaluate the expression, as we describe in Sec-

tion 7.4.2.

7.1.4 Indirections

〈(α)〉

Indirections take the form illustrated in Figure 7.5. The first word points to the standard info ta-

ble for indirections and the second word isα (theindirecteepointer). When a thunk is evaluated

to a value, its closure will be overwritten with an indirection to that value.
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thunk_info

arg

value_info

arg 1

IND_info

indirectee

Before evaluation

After Evaluation

arg 2

Figure 7.5 : Overwriting a thunk with an indirection

7.1.5 Blackholes

GHC has a special kind of closure that it calls ablackhole. A blackhole represents a thunk that

is currently being evaluated. We see in Section 7.4.2 that a thunk is overwritten with a blackhole

when it is entered and see in Section 7.4.2 that this blackhole is overwritten with an indirection

to a value once the thunk has been fully evaluated.

The heap representation of a blackhole is very simple. The info pointer points to the standard

black hole info table and there is no payload.

7.2 The Stack

In the formal semantics, the stack can contain frames of the following forms:

{Pi}
n
0 Case Match

@α Application

#α Thunk update

⊕α Primop, awaiting first argument

n⊕ Primop, awaiting second argument

Figure 7.6 illustrates the way that GHC implements its stack. The GHC stack is very similar

in structure to the GHC heap; it is a continuous block of memory containing a sequence of stack

frames. Each stack frame corresponds directly to a stack frame in the semantics. The structure

of a stack frame is very similar to that of a heap closure; the first word points to an info table

describing the stack frame, and the rest of the words carry the data associated with the stack

frame. The stack pointerSp points to the start of the topmost stack frame. Local variables may

be stored in the stack space aboveSp.5

5In the real implementation,Sp points to the topmost occupied word in the stack and thus local variables are
belowSp. However we find that it is easier to describe the implementation if we instead say thatSp points to the
topmost stack frame.
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Figure 7.6 : Structure of Stack Frames

In the following sections, we explain how each stack frame described in Section 4.2 is

represented in the GHC stack.

7.2.1 Case Return Frames

{Pi}
n
0

For any given case return frame, all of the alternatives{Pi} must correspond to constructors

from the same data-type. GHC divides data-types into two categories. Large data-typesare

those that have more than a given number of constructors (typically more than 8), whilesmall

data-typesare those that have less than that number of constructors. Small data-types are typi-

cally the most common, due largely to the fact that lists and booleans are both small data-types.

GHC has two return conventions for constructors, known asdirect returnsand vectored

returns. Direct returns are used for large data-types, while vectored returns are used for small

data-types.

Direct Returns

Direct returns are illustrated in Figure 7.7. Each case alternative is compiled into a separate

block of code. The entry code for the case return frame will examine the constructor tag of the

value returned and jump to the block of code for whichever case alternative is appropriate.
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Figure 7.7 : Direct Returns
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Figure 7.8 : Vectored Returns

Vectored Returns

Vectored returns are illustrated in Figure 7.8. Rather thanhaving a single entry point, the info

table has a vector of pointers to the alternatives. If the return code knows the constructor of the

value it is returning, then it can retrieve the relevant return address from this vector and return

do it directly—avoiding the extra test and branched required for a direct return.

For reasons of simplicity, the rest of this chapter assumes that all returns are direct returns.

7.2.2 Application Frames

@α

Application frames are illustrated by Figure 7.9. GHC allows an application frame to contain

more than one argument. A set of standard info tables are provided, each holding a different

number of arguments. An application frame will have the infotable appropriate for the number

of argument being passed, and will have the passed argumentsas its payload. We discuss the

entry code for an application frame in Section 7.4.3.
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Figure 7.9 : Application Frame
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Figure 7.10 : Update Frame

7.2.3 Update Frames

#α

Figure 7.10 illustrates the way that GHC implements update frames. The first word of the stack

frame points to a standard info table shared by all update frames, and the second word holdsα

(theupdateepointer).

7.2.4 Primitive Operation Frames

These frames are implemented in exactly the same way as direct returncase frames.

7.3 Evaluating Expressions

In the formal semantics, the state contains a commandc which tells the virtual machine what it

should be doing. In the GHC implementation, the command is represented by theinstruction

pointer, which points to a block of code that will carry out that command:

• For an evaluation commandE, the instruction pointer will point to a block of code that

will evaluateE, given the local bindings on the stack.

• For a return commandOα, the instruction pointer will point to some code that will return

α to the topmost stack frame.
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module ::= {defn} module with definitions

defn ::= codelabel: {absc} code block within a module
| data label: {literal} data block

absc ::= lval := rval assignment
| branch rval label conditional branch
| jump rval unconditional jump

rval ::= literal explicit constant
| label code label
| primop{rval i}n0 primitive operation applied to args
| lval

lval ::= reg a register
| global data label
| lval[offset] indirect with offset

reg ::= Sp the stack pointer
| Hp the heap pointer
| Node the node pointer

Figure 7.11 : Abstract C

• For a demand command}α, the instruction pointer will point to a some code that will

find the value ofα.

If, in the semantics, the following transition would take place:

Γ; c; s −→ Γ′; c′; s′

Then, for any GHC runtime state that corresponds to(Γ, c, s), executing the code pointed to by

the instruction pointer will cause the GHC runtime state to transform into one that corresponds

to (Γ′; c′; s′).

7.3.1 Abstract C

GHC compiles each static expression in the source program into a block of code that will eval-

uate instances of that expression. For examplex + y will compile into a block of code that will

evaluate expressions of the formx + y given that the stack contains the heap references thatx

andy are bound to.

Rather than compiling directly to native machine code, GHC compiles static expressions

to a low level intermediate language calledabstract C. A simplified form of abstract C is pre-
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sented in Figure 7.11. Most of this should be fairly self-explanatory. TheNode register is a

distinguished register used in various calling and return conventions. TheSp register always

points to the topmost stack frame , and theHp register always points to the next free word in

the heap.6

7.3.2 Calling Conventions

Several standard calling conventions are used, which we outline below:

• When we jump to the entry code for a closure,Node points to the closure.

• When we jump to the body code for a function,Node points to the function closure and

all function arguments are provided on the stack, aboveSp.

If the function has no free variables thenNode need not be set.

• When we return to a stack frame,Node points to the value being returned, andSp points

to the stack frame being returned to.

7.4 Implementing the Evaluation Rules

Every expression is compiled into code that will evaluate that expression according to the Lazy

Evaluation subset of the rules given in Section 4.2. In the following subsections, we explain

how each of these rules is implemented in GHC.

7.4.1 Evaluate a Value Constant

A valueV compiles to code that builds a representation of that value in the heap, and returns

it to the topmost return frame. For example, the lambda expressionλxy.x + y + p + q might

compile to the following code (rule(VAL)):

6We see in Section 10.1.2 that we need to regularly check that theHp andSp register do not point past the
ends of the heap or stack respectively. We ignore such details in this chapter.
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Code forλxy.x + y + p + q:

Hp[0] := 2574 info this is function 2574

Hp[1] := p save free variables

Hp[2] := q

Node :=Hp

Hp :=Hp + 3

jump Sp[0] return it

The compiler will also generate an info table describing thefunction:

Info table forλxy.x + y + p + q:

data :

2574 body address of body code

2 arity (two arguments)

FUN type (a function)

2 size (two free vars)

code 2574 info :

jump Sp[0] already a value

code 2574 body :

code to evaluate the function body

Similarly, the constructed expressionC x y might compile to the following code:

Code forC x y:

Hp[0] := C info create constructed value in the heap

Hp[1] := x

Hp[2] := y

Node :=Hp

Hp :=Hp + 3

jump Sp[0] return it

The info table forC (C info) will have been created when the declaration for the constructor

was compiled.
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7.4.2 Demand the Value of a Closure

A variablex compiles to code that demands the value of the closure referenced by that variable.

It does this by jumping to the entry code for the closure (rule(VAR)):

Code to evaluatex:

Node := x loadx into Node

jump Node[0] enter the closure

The entry code for a closure will behave like one of the rules(DEM1), (DEM2), (DEM3),

depending on the type of closure.

If the closure is a value, then the entry code will return a pointer to itself (rule(DEM1)):

Entry code for a value(|V |) (direct return):

jump Sp[0] returnNode (which points to us)

If the closure is an indirection, then the entry code will enter the indirectee (rule(DEM2)):

Entry code for an indirection〈(x)〉:

Node :=Node[1] loadx into Node

jump Node[0] enterx

If the closure is a thunk, then the entry code will push an update frame, save any bindings

from the thunk, overwrite the thunk with a black hole, and then evaluate the thunk body (rule

(DEM3)):
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Entry code for a thunkE:

Sp :=Sp− 2 push an update frame onto the stack

Sp[0] := update info

Sp[1] :=Node

Sp[−2] :=Node[1] save local bindings from the thunk

Sp[−1] :=Node[2]

. . .

Node[0] := blackhole info overwrite the thunk with a blackhole

code to evaluateE

In the semantics, we represent blackholing by removing the binding from the heap.

When control eventually returns to the update frame, it willoverwrite its updatee with the

value returned to it (rule(UPD)):7

Return code for an update frame (updateinfo):

Sp[1][0] := ind info overwrite updatee with an indirection

Sp[1][1] :=Node

jump Sp[0] return

7The real GHC implementation is rather complex here as an update frame can be returned to with either a direct
return or a vectored return.
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7.4.3 Function Application

A function applicationE x compiles to code that will evaluateE to a function, and then apply

this function tox. The generated code will push a function application frame,and then execute

the code to evaluateE (rule (APP1)):8

Code to evaluateE x:

Sp :=Sp− 2 push an application frame

Sp[0] := ap 1 info

Sp[1] :=x

code forE

When a function closure is returned to the application frame, the return code will check that

the function expects the number of arguments provided (in this case one). If it does, then the

return code will jump to the body code for the function. This corresponds to rule(APP2):

Return code for an application frame with one argument (ap1 info):

branchif (Node[0][arity] 6= 1) arity stuff check the arity

Sp :=Sp + 2 pop the frame

jump Node[0] call the function

Once the info pointer for the application frame has been popped, the arguments will be in

their correct positions ready for a function call; there is no need for the arguments to be copied.

We do not discuss what the code at aritystuff does. Interested readers are encouraged to

refer to Marlow and Peyton Jones [MP03]. We also omit a lot of other details that make the real

implementation more efficient, but also significantly more complex.

8This function application model is known as eval/apply [MP03].
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7.4.4 Case Expression

A case expressioncase E of {Pi}
n
0 compiles to code that will evaluate thescrutineeE and

then match the result against the alternatives inP . It does this by pushing acase return frame

and then executing the code forE (rule (CASE1)):9

Code for case E of {Pi}
n
0 :

Sp :=Sp− (1 + env size 1234) push acase return frame

Sp[0] := expr1234 ret info

Sp[1] :=?;Sp[2] :=? . . . (vars live in{Pi}
n
0 )

code to evaluateE

When a reference to a constructed value is returned to thecase return frame, it will select

one of its alternatives and jump to the code for that alternative (rule(CASE2)). The alternative

is selected by referring to the constructor tag in the closure’s info table. For a direct return, the

code will resemble the following:10

Return code for acase frame (expr1234ret, direct return):

Sp :=Sp + (1 + env size 1234) pop thecase frame

branchif (Node[0][tag ] = 1) 1234 alt 1 jump to the correct alternative

branchif (Node[0][tag ] = 2) 1234 alt 2

...

In this case the constructor alternatives will have been compiled to the blocks 1234alt 1,

1234alt 2, . . . .

7.4.5 Exceptions

If an exception is raised, a special RTS routine is called. This routine walks down the stack,

tearing frames off as it goes. The behaviour of this routine is very similar to that described by

rules(EXN1),(EXN2),(EXN3), and(EXN4).

9In this example, we write? to represent the location of a free variable.
10Recall that the first word of a closure (Node[0]) points to the info table.
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7.4.6 Lazy Evaluation of a Let

A let expressionlet x = E in E ′ compiles to code that will build athunkfor E in the heap,

and then execute the code forE ′:

Code forlet x = E in E ′:

Hp[0] := 4573 info Create a thunk in the heap

Hp[1] :=? (free variables)

Hp[2] :=?

. . .

Sp[−1] :=Hp save address as a local var

Hp :=Hp + (1 + env size 4573) moveHp to next free word

code forE ′

We will also generate an info table and entry code for the thunk. The entry code will behave

as described is Section 7.4.2, and the info table will be as described in Section 7.1.3.

GHC has various special cases for compilinglet expressions. In particular, if the right hand

side of alet is already a value then GHC will build a representation of this value in the heap

rather than building a thunk that will evaluate it. The code generated will thus resemble that

given in Section 7.4.1, followed by the code forE ′.

7.4.7 Summary

Code blocks are generated for the following things:

• Alternatives of a case

• Right hand side of alet expression (thunk)

• Function body

Heap is allocated in the following places:

• Creating a value (rule(VAL))

• Creating a thunk for alet (rule (LAZY))
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7.5 Other Details

7.5.1 Garbage Collection

The GHC heap is garbage collected. At periodic intervals, the garbage collector sweeps through

the heap and throws away any closures that are no longer reachable. In order to determine

what is reachable, the garbage collector needs to know whichfields in a closure’s payload are

pointers, rather than literal values. This information is encoded in a speciallayoutfield in the

closure info table.

7.5.2 Lazy Blackholing

As with any garbage collected system, one must take care to ensure that a closure is considered

to be garbage if it is not reachable by program execution. In particular, it is important that

pointers held in a thunk closure are not considered to be reachable while the thunk is being

evaluated. This is the purposes of GHC’s blackholing [Jon92].

The simplest approach to blackholing iseager blackholing. This is the strategy described in

Section 7.4.2. With eager blackholing, a thunk blackholes itself as soon as it is entered.

The standard GHC implementation takes an alternative approach, known aslazy blackhol-

ing [MP98]. Lazy blackholing does not blackhole a thunk when it is entered. Instead, it waits

until garbage collection time, and then blackholes every thunk that is pointed to by an update

frame on the stack. The motivation for this is that, by only blackholing thunks at garbage

collection time, it reduces the number of blackholing operations that must be done.

Unfortunately, as we explain in Section 8.4, lazy blackholing turns out to interact very badly

with Optimistic Evaluation. We thus disable it in our version of GHC.



CHAPTER 8

Switchable Let Expressions

Now that we have explained how the GHC execution model works,we can explain how Opti-

mistic Evaluation extends this:

• We begin, in Section 8.1 by describing the way that we implement switchablelet expres-

sions.

• In Section 8.2, we describeFlat Speculation: an alternative implementation technique

that we have also implemented.

• In Section 8.3, we describeSemi-Tagging: an implementation technique that improves

the performance ofcase expressions. While the idea of semi-tagging has been proposed

before [PMR99], it is far more effective under Optimistic Evaluation than under Lazy

Evaluation.

• Finally, in Section 8.4, explain why lazy blackholing interacts badly with Optimistic Eval-

uation.

Online profiling and abortion are discussed in Chapters 9 and10 respectively.
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depth limit ptr 23

Speculation Configuration

Figure 8.1 : Speculative return frame

8.1 Speculative Evaluation of a Let

Section 7.4 described the implementation of GHC by comparing it to the a restricted form of

the semantics of Section 4.2. That subset corresponds to Lazy Evaluation, and differs from the

full semantics in the following ways:

• It omits the rules(SPEC1)and(SPEC2)that implement speculative evaluation.

• It omits the speculation configuration parameterΣ from the evaluation relation.

• It omits the side condition on rule(LAZY) that causes the rule to only be applied if the

speculation configuration says it should.

• It does not include speculative return frames{x}E.

• It does not make use of the speculation depth functionspecDepth.

In the subsections that follow, we describe the way in which we have added each of these

features to GHC.

8.1.1 Speculation Return Frames

In Section 7.2 we described how GHC representscase return frames, application frames, and

update frames. Rules(SPEC1)and(SPEC2)make use of an additional kind of return frame,

which we call aspeculative return frame, written:

{x}E

The representation of a speculative return frame is very simple (see Figure 8.1); the info table

contains the code forE, and a pointer to adepth limitvariable (see Section 8.1.3). The payload

of the stack frame contains bindings for any free vars inE.
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8.1.2 The specDepth Function

Rules(LAZY)and(SPEC2)make use of a functionspecDepth that counts the number of active

speculations (defined in Section 4.2.2). While it would be possible to implementspecDepth

as a function that walks down the stack and counts the number of speculative return frames

found, this would not be efficient. Instead, we maintain a global register,SpecDepth, that we

increment and decrement whenever we push or pop speculationframes.

Speculative return frames are not just there to provide something to return to. The abortion

and profiling systems both rely on the fact that there will always be a speculation frame frame

on the stack if speculation is taking place. It is thus important that we avoid optimisations

that might prevent a speculation frame being be pushed when speculation starts. Consider the

following example:
let

x = case f y of

True → True

False → g y

in

E

A naive compiler might think that it could wait until the callto g before pushing a return frame

for thelet. Unfortunately, this would cause the call tof to take place with no speculative return

frame on the stack. If the call tof did not terminate then the abortion system would not realise

that it was part of a speculation and so would not abort it.

8.1.3 The Speculation Configuration

In the formal semantics, the speculation configurationΣ is a function that mapslet identifiers

to speculationdepth limitss. In the implementation, the depth limit for eachlet is represented

as a static global variable. The info table for a speculativereturn includes a pointer to the depth

limit for the let.

One might wonder why the depth limit is not itself in the info table. This is because the info

table has to live in code space, in order to be placed directlybefore the entry code, while the

depth limit needs to be placed in data space so that it can be written to by the online profiler

without causing the instruction cache to be flushed.1

1Many operating systems require the use of a system call such asmprotect to make code writable.
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(LAZYX) Γ; let x = E in E ′; s −→Σ Γ[α 7→ E];Oα; ({x}E ′ : s)
if Σ(x) ≤ specDepth(s)
andα is fresh

Figure 8.2 : An alternative lazy rule for let expressions

8.1.4 Rules (LAZY), (SPEC1)and (SPEC2)

Rule (SPEC1)evaluates the right hand side of alet speculatively, while rule(LAZY)builds a

thunk for it. The virtual machine choses which rule to apply based on the current speculation

depth and speculation configuration.

For convenience, our implementation of Lazy Evaluation behaves as if(LAZY) were re-

placed with the rule(LAZYX)from Figure 8.2.(LAZYX)pushes a speculative return frame but

immediately returns to it.2 While the end result is the same, this approach turns out to make

implementation easier. In particular, it makes it easier for the lazy and speculative code to

share one version of the code for thelet body,E ′. One can observe that(LAZYX)followed by

(SPEC2)is equivalent to(LAZY).

The first thing alet does is push a return frame, incrementingSpecDepth so as to keep

it consistent with the number of speculation frames on the stack. Thelet then compares

SpecDepth with its depth limit to see whether it should evaluate speculatively or lazily (rules

(SPEC1)and(LAZYX)):

Code to evaluatelet x = E in E ′ (expression id is 3562):

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?; Sp[2] :=?; . . . (save vars live inE ′)

SpecDepth :=SpecDepth + 1 incrementSpecDepth

branchif (SpecDepth > 3562 limit) 3562 lazy branch to lazy code

jump 3562 spec or speculative code

The lazy code builds a thunk for the right hand side of thelet and then immediately returns

to the speculative return frame (rule(LAZYX1)):

2Note that unlike every rule presented previously, this rulecan return a reference to something other than a
value. This has knock-on effects throughout the runtime system, as one can no longer assume that a returned
reference always points to a value.
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Code for the lazy branch of alet (3562 lazy:

Hp[0] := 3562 thunk info build a thunk in the heap

Hp[1] :=?; Hp[2] :=?; . . . (save vars live inE)

Node :=Hp

Hp :=Hp + (1 + env size)

jump Sp[0] return the thunk3

The speculative code (3562spec) will be the code to evaluateE (rule (SPEC1)).

When control returns to the speculative return frame, it will pop itself off the stack, decre-

mentSpecDepth, and evaluate the body of thelet (rule (SPEC2)):

Return code for a speculative return frame ‘{x}E’:

Sp :=Sp + (1 + env size) pop the frame

SpecDepth :=SpecDepth− 1 decrementSpecDepth

code to evaluateE ′ (x is in Node)

In the real implementation, there are additional complexities involving heap/stack checking

and direct/vectored returns; however these are not particularly interesting and so we do not

discuss them here.

8.1.5 Not All Let Expressions are Speculated

As with normallet expressions (Section 7.4.6), if the right hand side of alet is already a value,

we simply build a representation of that value in the heap andcontinue. There is no need to

have separate lazy and speculative versions in this case.

Our current implementation also avoids speculating recursive let expressions, because, if

the right hand side of alet is speculated, then there is no thunk to which the binder can be

bound during evaluation of the right hand side. In such cases, the code generated will be the

same as for Lazy Evaluation.

3This will actually be a direct jump to 3562ret info.
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SpecDepth > depthlimit

thunk info ptr

free var 1

free var 2

evaluate rhs (free vars on stack)

eventually return to stack top

let x = <rhs> in <body>

evaluate body (x in Node)

Shared return point

evaluate rhs (free vars in heap)

Speculative Lazy

Speculative Branch

create thunk:

No Yes

Figure 8.3 : Flow diagram for evaluation of a let expression

8.1.6 Avoiding Code Explosion

The entire process of evaluating alet is summarised by Figure 8.3. Note that the code to

evaluate the right hand sideE is duplicated, but the code to evaluate the bodyE ′ is shared.

The reason for the duplication of the right hand side is to allow the compiler to specialise

the two blocks of code relative to the environment in which they are used. In particular the lazy

code will expect to find its free variables in the payload of a closure pointed to byNode, while

the speculative code will expect to find its free variables onthe stack and in registers.

It is important that the size of a duplicated expression is kept small, otherwise there can be

a potentially exponential increase in code size. Consider for example the following program:

let x = (let y = (let z = E1 in E2) in E3) in E4

If we were to duplicate everylet right hand side, then we would compileE1 8 times. If we had

another layer of nesting, then the inner expression would becompiled 16 times (Figure 8.4).

While such programs are not often written by programmers, they can often appear as the result

of inlining, or other compiler optimisations. Even withoutnestedlet expressions, duplicat-

ing the right hand side of everylet can almost double the code size if there are a lot oflet

expressions with large right hand sides. This is clearly undesirable.
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Figure 8.4 : Uncontrolled duplication of code leads to an explosion in code size

In practice, it is only worth duplicating an expression if itis very small indeed (e.g. an

integer addition). For larger expressions, we use an expression lifting transformation to convert

the right hand side of thelet into function call. For example, ifE is a large expression and has

free variablesy andz then we will make the following transformation:

let x = E in E ′

⇓

let x = f y z in E ′

wheref y z = E

We generate a new functionf whose body isE and whose arguments are the free variables

of E. We transform thelet expression so that its right hand side is a call to this function (and

thus a small expression). This transformation can be considered to be a special case of lambda

lifting [Joh85] for functions with no arguments.

In the extreme case, we can apply this transformation to the right hand side of everylet

expression, resulting in the evaluation scheme described in Section 8.2.

8.2 Flat Speculation

If the transformation described in Section 8.1.6 is appliedto everylet expression, then alllet

expressions will be of the following form:

let x = f y1 . . . yn in E ′

This allows us to implement switchablelet expressions very differently, using a technique

that we callFlat Speculation. We have implemented both Flat Speculation and the technique

described in Section 8.1; we compare their performance in Section 12.7.1.
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8.2.1 Evaluating a Let Expression Speculatively

Under Flat Speculation, the code generated by the compiler for a let expression assumes that

thelet will always be evaluated speculatively. Alet expression thus compiles to the following

code:

Code to evaluatelet x = f y1 . . . yn in E ′ (expression id is 3562):

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?;Sp[2] :=?; . . . (save vars live inE ′)

SpecDepth :=SpecDepth + 1 incrementSpecDepth

Sp[−1] := y1; Sp[−2] := y2; . . . put arguments on the stack

jump f body call f

The info table for the speculative return frame will containthree extra fields:4

• rhsfun: The function that thislet calls (in this casef )

• argcount: The number of arguments the function required

• jmpaddr: The address of thejump instruction in memory.

8.2.2 Evaluating a Let Expression Lazily

If the profiler decides to switch thelet to being evaluated lazily, then it will overwrite the call to

f with a call to the standard function applazy N, whereN is the number of arguments passed

to f . This code modification is extremely simple; all the profilerhas to do is find the address of

f in the jump instruction and overwrite it with the address of the appropriateap lazy function.

While this write to code will probably cause an instruction cache flush and thus considerable

cost, these writes are extremely rare, and so the amortised cost is negligible.

Theap lazy function finds the info table for the speculative return frame on the top of the

stack and uses therhsfun field to build a specialfunction application thunkusing a standard

info tableap N info, whereN is the number of function arguments:

4It actually has some others as well, which we do not discuss here.
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Code forap lazy 2:

Hp[0] := ap 2 info create a function application thunk

Hp[1] :=Sp[0][rhsfun] (the functionf )

Hp[2] :=Sp[−2] (arguments)

Hp[3] :=Sp[−1]

Node :=Hp

Hp :=Hp + 4

jump Sp[0] return this thunk

The entry point for a function application thunk is very simple. It simply pushes an update

frame, copies its arguments onto the stack, blackholes the thunk, and then jumps to the function

entry point:

Code forap 2 ret:

Sp :=Sp− 2 push an update frame

Sp[0] := update info

Sp[1] :=Node

Sp[−2] :=Node[2] put the arguments onto the stack

Sp[−1] :=Node[3]

Node[0] := blackhole info blackhole the thunk

jump Node[1] jump tof

8.2.3 Chunky Entry Points

If the profiler wants thelet to be speculated only up to a certain depth,5 then it will overwrite the

call tof with a call to the standard functionapp chunky N, whereN is the number of function

arguments. Theap chunky function tests the current speculation depth against the depth limit

for thelet (referenced from the info table) and then decides whether tocall f or ap lazy N:

5This is the usual case for the system described in Section 8.1.
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Code forap chunky 2:

branchif (SpecDepth > Sp[0][limit ][0]) ap lazy 2 evaluate lazily

jump Sp[0][rhsfun] evaluate speculatively

In flat speculation, the depth limit for alet is a member of the following set:6

{0, 1, . . . ,MAXDEPTH } ∪ {∞}

If the depth limit is∞ then thelet will always be speculated and the code for thelet will

jump directly tof . If the depth limit is0 then thelet will never be speculated and the code

for thelet will jump to ap lazy N. For all other depth limits, the code for thelet will jump to

ap chunky N.

8.3 Semi-Tagging

A typical program will evaluate a large number of expressions of the following form:

case x of {Pi}
n
0

Not only are such expressions frequently written by the programmer, but they are also gen-

erated as a result of desugaring other expressions within the compiler. For example, record

field selection and addition of boxed integers both reduce tocase expressions that scrutinise a

variable.

8.3.1 Scrutinising Variables in Normal GHC

In Section 7.4.4 we saw that GHC normally implements such expressions by pushing a return

frame and then entering the closure referenced byx.

Normal GHC code forcase x of {Pi}
n
0 :

Sp :=Sp− (1 + env size) push acase return frame

Sp[0] := 1234 ret info

Sp[1] :=?; Sp[2] :=?; . . .

Node := x enter closure forx

jump Node[0]

6Infinity is represented internally asMAXDEPTH + 1.
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If x refers to a value, then the entry point forx will immediately return to thecase return

frame. In such cases the whole process of pushing an return frame and enteringx will have

been pointless.

8.3.2 Scrutinising Variables with Semi-Tagging

If x will usually be a value, then it may be more efficient to test whetherx is a value before

entering it. This leads to the following code:

Value-testing code forcase x of {Pi}
n
0 :

Sp :=Sp− (1 + env size) push acase return frame

Sp[0] := 1234 ret info

Sp[1] :=?; Sp[2] :=?; . . .

Node := x

branchif (ISVALUE(x)) 1234 ret info return immediately if a value

jump Node[0] otherwise enterx

For a constructed value this code will perform two branches:one to test whether it is eval-

uated, and then one in1234 ret info to see what constructor it is. We can combine these two

together by treating a thunk as if it was a constructed value with the tagUNEVAL.

Semi-Tagged code forcase x of {Pi}
n
0 :

Node := x

branchif (Node[0][tag] = UNEVAL) 1234 normcase normalcase evaluation

branchif (Node[0][tag] = 1) 1234 alt 1 directcase alternative

branchif (Node[0][tag] = 2) 1234 alt 2

If the value is not evaluated, then we jump to1234 normcase which contains the code from

Section 8.3.1. This technique will cause a moderate increase in code size as the compiler must

generate tag-branching code both inline, and in the return frame. The real implementation also

has to take care to ensure that both blocks of branching code place local variables in the same

locations.
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tagaddress

pointer

Figure 8.5 : Semi-tagging uses the least significant bits of the address to store tag information

If x is not a value, then semi-tagging will be slower than GHC’s normal implementation;

however, ifx is a value, then semi-tagging will be faster. Optimistic Evaluation increases the

likelihood thatx will be evaluated and so makes semi-tagging a more appealingidea. Indeed,

we give results in Section 12.5 that demonstrate that, although semi-tagging is not worthwhile

under Lazy Evaluation, it is worthwhile under Optimistic Evaluation.

8.3.3 Storing the Tag in the Address

The simplest way to implement semi-tagging is to store the constructor tag in the info table of

every constructor and every thunk. However this still requires an indirect read from the closure

info table in order to find the tag. A slightly more efficient approach is to encode the tag in the

address of the closure (Figure 8.5). Closure info tables arealways aligned to word boundaries

and so, on a 32 bit architecture, the bottom two bits of the address will thus always be zero. If

the closure data-type has three or fewer constructors then these bits can be used to encode the

constructor:

00 unevaluated or unknown

01 a value with constructor 1

10 a value with constructor 2

11 a value with constructor 3 or greater

If the data-type has more than three constructors then we must look at the tag in the info

table in order to distinguish between constructors with identifiers greater than 3.

These tags impose very little additional overhead. There isno need to clear the tags in a

closure pointer before reading from it or entering it. If oneis reading a field from a constructed

value then one will know what constructor it is and so be able to adjust the offset to take account

of that. Similarly, one will only enter a closure if one has already tested that its tag isUNEVAL;

however theUNEVAL tag is00, and so the address will be untagged.

All that is required is that we maintain the following invariants:

• When a value is returned,Node is correctly tagged

• When a closure is entered,Node is untagged

• All pointers are either untagged or correctly tagged
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Figure 8.6 : Lazy blackholing can cause several update frames to reference the same closure

8.4 Problems with Lazy Blackholing

In Section 7.5.2 we described the concept of lazy blackholing, and remarked that it interacted

poorly with Optimistic Evaluation. In this Section we explain why.

8.4.1 Finite Depth Looping

Consider the following program:7

let x =

let y = case x of

Just z → Cons 1 z

in Just y

in . . .

What happens ify is speculated, butx is not speculated? If blackholing is lazy, then the thunk

for x will repeatedly enter itself, pushing a series of update frames onto the stack for the same

closure. This is illustrated in Figure 8.6.

If this looping continues indefinitely, then the program will eventually run out of stack,

causing the runtime system to spot the long-running loopingcomputation and abort it. In this

case, the duplicate update frames will never be entered and so nothing particularly bad happens.

7Note that thelet for x is recursive, and thus cannot be speculated (Section 8.1.5); however thelet for y is not
recursive, and so can be speculated.
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Figure 8.7 : This is what we would expect x to evaluate to
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Figure 8.8 : Lazy blackholing can cause loss of sharing

However, if chunky evaluation is used theny will only be speculated to a finite depth. At some

point, the inner evaluation ofx will decide not to speculatey and will instead return the value

Just y. The program will return through several update frames, each of which attempts to

update the same value.

This can cause several problems:

• Various parts of the GHC runtime (particularly the generational garbage collector [SP93])

can no longer assume that a thunk will only be overwritten with an indirection once.

• There can be a loss of sharing (Section 8.4.2).

• Values may be overwritten with indirections to themselves (Section 8.4.3).

8.4.2 Loss of Sharing

If the program was evaluated lazy, then we would expectx to eventually evaluate to the structure

illustrated in Figure 8.7, however, if we are speculatingy and are blackholing lazily, then we

may end up with the structure illustrated in Figure 8.8. Rather than having one closure fory we

have several.

Every timex is entered, it will create a new speculation fory. This speculation will enterx

again. When an evaluation ofx returns, the speculation fory will evaluate to a cons containing

the previous closure fory, rather than itself.

8.4.3 Indirection Loops

Consider the situation illustrated in Figure 8.9. The frameat the top of the stack is an update

frame, however another update frame has already overwritten the updatee with an indirection.

What would happen if a garbage collection were to take place at this point?
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Figure 8.9 : If garbage collection strikes here, we could be in trouble.
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Figure 8.10 : Short-circuiting indirections causes problems

When garbage collecting, normal behaviour is to replace anypointer to an indirection with

a pointer to the indirectee. If we do this with the state in Figure 8.9, then we end up with the

state illustrated in Figure 8.10.

When control returns to the update frame it will overwrite the value with an indirection to

another value. If the new value is the same as the old value then the update frame will overwrite

it with an indirection to itself—causing chaos. If the old value is a static value, then it may be

in read-only memory, in which case the program will fail witha segmentation fault.

These problems could probably be fixed. One plausible solution would be for the garbage

collector to remove from the stack any update frame whose indirectee is not a thunk. However

solving all of the problems with lazy blackholing adds considerable complexity to our imple-

mentation for very little performance benefit. We have thus made the decision to remove lazy

blackholing from GHC, reverting instead to eager blackholing. The performance implications

of this decision are analysed in Section 12.7.5.



CHAPTER 9

Online Profiling

In this chapter we describe our implementation of online profiling, explaining how the im-

plementation described in Chapter 8 can be extended so that it implements the burst profiling

semantics given in Section 6.4.2.

• We start, in Section 9.1, by describing the way in which the runtime state can be extended

to support online profiling.

• In Section 9.2, we explain how we can extend the compiler to generate code that can

profile itself.

• In Section 9.3, we discuss ways that heap residency can be controlled.

• Finally, in Section 9.4, we explore various technical details.

9.1 Runtime State for Profiling

The burst profiling semantics of Section 6.4.2 extends the runtime state in several ways:

• The runtime state contains a blame countB.

• The runtime state contains a goodness mapΠ.

• The heap can contain costed indirectionsB〈α〉x.

• The stack can contain profiled speculation frames({x}E, B).

128
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In the subsections that follow, we describe how we have addedeach of these features to

GHC, causing it to implement the full blame profiling semantics of Section 6.4.2. The burst

profiling semantics also introduces additional rules, which we describe in Section 9.2.

9.1.1 The Blame count B

In the formal semantics of Section 6.4.2 the program state contains an integer countB, repre-

senting the amount of work that should be blamed on the current venture.

Heap usage as a measure of Work

In Section 3.3.2 we said that work could be measured using anyreasonable measure of execution

cost. It turns out that the heap allocation is a convenient measure of work. This is for the

following reasons:

• It allows much finer grain measurements than would be possible with any OS time counter.

This is very important, given that a typical speculation is quite small (See Section 12.4.5).

• It can be calculated very cheaply, by simply looking at theHp register.

• The heap usage of a speculation seems to be a reasonable approximation to its time usage

(See Section 12.4.2).

• It makes it easier for the profiler to bound heap usage as well as wasted time (See Sec-

tion 9.3).

• It is easy to arrange that all recursive function calls allocate heap, and thus that any long-

running computation must allocate heap.

If the processor provides suitable instructions then work can instead be measured as an exact

cycle-count. We discuss this in Section 9.4.4.

Representing Blame using Heap Usage

We represent the blame counterB as the difference between the heap pointerHp and a base

variableBlameBase:

B = Hp−BlameBase

To add work toB, we subtract it fromBlameBase. To saveB, we simply calculateB and

store it as an integer. To setB to a particular valueB′, we setBlameBase to Hp−B′. When

heap is allocated,B will increase automatically, reflecting the fact that work has been done.
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Figure 9.1 : The speculation level for a let is a function of its recorded goodness

9.1.2 The Goodness Map Π

In the formal semantics, the goodness mapΠ is a function that maps eachlet identifierx to its

integer goodness. In the implementation, the goodness mapΠ is implemented in the same way

as the speculation configuration (Section 8.1.3). A staticgoodness countervariable is created

for everylet, and the info table for a speculative return contains a pointer to this variable.

Rather than applyinggoodToLim to the goodness every time a speculation depth limit is

needed, the depth limit variables are updated only when the goodness might have changed.

Figure 9.1 illustrates a typicalgoodToLim function. This function is parameterised by four

constants:

min goodness:How bad the goodness can get before the depth limit becomes zero and evalu-

ation becomes entirely lazy.

saturation goodness:The level of goodness beyond which the speculation level stops increas-

ing.

max depth limit: The maximum speculation depth limit that is allowed.

initial depth limit: The speculation limit corresponding to zero goodness. Thisis the specula-

tion level that everylet has when a program starts.1

The limit function does not have to be the shape illustrated in Figure 9.1. This is just one

choice in a large design space. We have chosen to use this shape because it can be implemented

efficiently. We discuss the effect of the tuning parameters in Section 12.3.5.

1Unless a persistent speculation configuration is used—see Section 9.4.3.
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Figure 9.2 : Heap representation of a costed indirection

9.1.3 Costed Indirections B〈α〉x

In the formal semantics, a costed indirection describes theresult of a previous venture:

B〈α〉x

whereB is the blame associated with the venture,α is a reference to the result produced by the

venture, andx is the identifier for thelet that spawned the venture.

Figure 9.2 illustrates the way that we represent a costed indirection in the heap. The first

word points to a standard info table shared by all costed indirection closures, the second word

containsα (a pointer), the third word containsB (an integer), and the fourth word contains

a pointer to the info table for thelet that spawned the venture (x). We see how such costed

indirections are created in Section 9.2.2.

9.1.4 Profiled Speculation Frames ({x}E, B)

In the formal semantics, a profiled speculation frame is a stack frame of the following form:

({x}E, B)

wherex is the identifier for thelet that spawned the venture,E is the body code for thelet,

andB is the blame accumulated so far for the enclosing venture.

Figure 9.3 illustrates the way that profiled speculation frames are represented on the stack.

The stack layout is the same as that of an unprofiled speculation frame, except that the info

pointer points to the generic info tableprofile info rather than to the info table for thelet.

The info table for thelet is stored on a separateprofile stack, together with the blameB. While

this representation is somewhat awkward, it allows the profiler to transform speculation frames

between their profiled and unprofiled states without disturbing the rest of the stack. We see the

usefulness of this in Sections 9.2.1 and 9.4.1.

Throughout the rest of this chapter, we will assume that the profile stack is a continuous

block of memory with a registerProfTop pointing to the topmost frame. In practice it may be

better to implement it as a linked list with cells allocated from the general heap.



132 Chapter 9. Online Profiling

s

profile info

2 (free var)

3 (free var)

stack

profile stack

specret info ptr

B (blame)

p

({x}(f x 2 3),B) : s Static info

type = specret

size = 2

{x}(f x y z)

entry code

depth limit ptr

23

goodness ptr 53

other stuff ...

s

Figure 9.3 : A profiled speculation frame contains its profiling information on a special profiling
stack.

9.2 Implementing the Evaluation Rules

The evaluation rules for the profiling semantics of Section 6.4.2 are significantly more complex

than those for the unprofiled semantics of of Section 4.2. In particular:

• Every rule that does work increments the blame countB

• The evaluation relation is parameterised by a profiling flagp.

• New rules are added to describe profiled speculation of alet.

• New rules are added for demanding the value of a costed indirection.

In the subsections that follow, we describe how these features can be added to the imple-

mentation described in Chapter 8.

9.2.1 Starting a Profiled Speculation

The semantics of Section 6.4.2 has three rules that describeevaluation of alet:

• (LAZY)describes lazy evaluation of alet

• (SPEC1N)describes unprofiled speculation of alet

• (SPEC1P)describes profiled speculation of alet

As in Section 8.1.4, we replace rule(LAZY)with the rule(LAZYX)from Figure 9.4. This

allows us to extend the code from Section 8.1.4 so that it performs a three way branch:2

2See Section 9.4.2 for a more efficient way to implement this branch.
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(LAZYX) Γ; (let x = E in E ′); s; B; Π −→p Γ[α 7→ E];Oα; ({x}E ′ : s); B; Π
if goodToLim(Π(x)) ≤ specDepth(s)

andα is fresh

Figure 9.4 : An alternative lazy rule for let expressions

Code to evaluatelet x = E in E ′:

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?; Sp[2] :=?; . . . (save vars live inE ′)

SpecDepth :=SpecDepth + 1 incrementSpecDepth

BlameBase :=BlameBase − thunkcost add thunk cost toB

branchif (PROFILING) maybe profile three-way branch

branchif (SpecDepth > 3562 limit) 3562 lazy

jump 3562 spec

If profiling is disabled, then thelet will behave exactly as described in Section 8.1.4, except

that it will add thunkcost to the current blame, to take account of the work thelet does to

allocate a thunk.3 In the semantics,thunkcost is always1; we explore the performance effect

of different values forthunkcost in Section 12.3.3.

If profiling is enabled, then thelet code will call the special runtime system function

maybe profile. If thelet should be speculated, thenmaybe profile jumps toprofile start,

otherwise it jumps directly to the lazy code (in this case3562 lazy). It finds a pointer to this

function in the info table for thelet, which has conveniently been left on the top of the stack.

We also take this opportunity to update the depth limit usingthe current goodness value:4

Code formaybe profile:

Sp[0][limit ][0] := goodToLim(Sp[0][goodness][0]) update depth limit

branchif (SpecDepth ≤ Sp[0][limit ][0]) profile start profile this speculation

jump Sp[0][lazycode] evaluate thelet lazily

3Recall that we can add work to the current blame by subtracting it from BlameBase (Section 9.1.1).
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profile

s

specret info

2 (free var)

3 (free var)

stack

{x}(f x 2 3) : s

conversion

s

profile info

2 (free var)

3 (free var)

stack

profile stack

specret info

B (blame)

({x}(f x 2 3),B) : s

profile stack

ps ps

Figure 9.5 : Speculation frames are converted into costed speculation frames

The functionprofile start converts the end state of rule(SPEC1N)into the end state of

rule (SPEC1P), thus causing the speculation to be profiled. It does the following things:

• Addsthunkcost to the local goodness. This represents the work saved by not performing

a thunk.

• Converts the unprofiled speculation frame ‘{x}E’ into the profiled speculation frame

‘({x}E, B)’. This is illustrated in Figure 9.5.

• Sets the current blameB to zero.

• Jumps to the speculative code for thelet (taken from the info table).

Code forprofile start:

Sp[0][goodness][0] := addthunkcost to goodness

Sp[0][goodness][0] + thunkcost

ProfTop :=ProfTop− 2 Convert to profiled frame

ProfTop[0] :=Sp[0] (specret info)

ProfTop[1] :=Hp−BlameBase (B)

Sp[0] := profile info (overwrite stack info table)

BlameBase :=Hp setB to zero

jump ProfTop[0][speccode] start speculating

4Recall that thegoodnessfield of an info table contains a pointer to a variable that contains the goodness, rather
than the goodness itself (Section 9.1.2).
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(SPEC2X) Γ;Oα; (({x}E, B′) : s); −→p Γ[α′ 7→ B〈α〉x];Oα′; ({x}E : s);
B; Π B′; Π[x 7→ Π(x)− B]

whereα′ is fresh

Figure 9.6 : An Alternative rule for completing a profiled speculation

9.2.2 Completing a Profiled Speculation

When a profiled speculation finishes, control will return to the genericprofile info entry

point. This code will behave as described by rule(SPEC2X)in Figure 9.6. We can observe that

rule (SPEC2X)followed by rule(SPEC2N)is equivalent to rule(SPEC2P).

Rule(SPEC2X)wraps the returned reference in a costed indirection, restores the saved value

of B, converts the profiled speculation frame back into an unprofiled speculation frame, updates

the goodness counter, and then returns the newly created costed indirection to the unprofiled

speculation frame:

Return code forprofile info:

Hp[0] := blamedesc info create a costed indirectionB〈α〉x

Hp[1] :=Node α (indirectee)

Hp[2] :=Hp−BlameBase B (blame)

Hp[3] :=ProfTop[0] x (source)

Node :=Hp

Hp :=Hp + 4

BlameBase :=Hp−ProfTop[1] restore blame to saved value

Sp[0] :=ProfTop[0] Convert to unprofiled frame

ProfTop :=ProfTop + 2

Sp[0][goodness][0] := subtractB from goodness

Sp[0][goodness][0]−Node[2]

jump Sp[0] return to unprofiled frame

9.2.3 Demanding a Costed Indirection

The entry code for a costed indirection behaves like rules(CSTN)and(CSTP). To decide which

of these rules to apply, the entry code must determine whether the current venture is being
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profiled. It does this by comparing the number of frames on theprofile stack withSpecDepth.

If we assume the existence of a profile stack base registerProfBot then we can obtain the

number of frames on the stack by dividing the size of the stackby the size of a stack frame. The

branch can be written as follows:

Entry code for a costed indirection:

branchif ((ProfBot−ProfTop)/2 < SpecDepth) not profiled

costind cstn

jump costind cstp profiled

If the current venture is not being profiled, then the entry code jumps tocostind cstn,

which behaves like rule(CSTN). Note that this code is identical to that used for a normal indi-

rection (Section 7.4.2:

Code forcostind cstn:

Node :=Node[1] demand indirecteeα

jump Node[0]

If the current venture is being profiled, then the the entry code jumps tocostind cstp,

which behaves like rule(CSTP). Any blame in the costed indirection is transferred into the

current venture. This blame is added to the goodness for the costed indirection’s source, and

the costed indirection is converted into a normal indirection. Once this is done, the costed

indirection enters the indirecteeα.

Code forcostind cstp:

BlameBase :=BlameBase −Node[2] addB′ to current blame

Node[3][goodness][0] := addB′ to goodness

Node[3][goodness][0] + Node[2]

Node[0] := ind info convert to a normal indirection

Node :=Node[1] enter indirectee

jump Node[0]

In Section 9.4.1 we extend this implementation to support profile chaining.
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9.3 Heap Profiling

The theory presented in Chapters 5 and 6 assumes that any difference in performance between

Optimistic Evaluation and Lazy Evaluation is due to different amounts of work being done

during evaluation. This neglects the effect ofheap residency: the amount of reachable data that

is present in the heap.

9.3.1 Why Heap Residency is Important

Garbage collection can take up a large proportion of a programs runtime (Section 12.6.4). It is

thus important that we take account of any effects that Optimistic Evaluation might have on the

cost of garbage collection. If the heap residency increasesmoderately, then the effects are not

particularly dramatic; most modern garbage collectors reduce their collection frequency as the

heap residency increases, ensuring that garbage collection takes up a fairly constant proportion

of runtime [App87, Wil92]. However this approach breaks down if the heap size increases

beyond the available physical memory. In this case, the program will slow down dramatically

because the garbage collector must wait for the virtual memory system to fetch pages from disk.

9.3.2 Bounding Extra Heap Residency

We have implemented a crude mechanism that bounds the extentto which Optimistic Evalua-

tion can increase the heap residency of a program. The garbage collector disables speculation

completely if the heap residency rises above a user-defined limit, MAXHEAP . In the worst

case, all heap allocation up to that point will have been due to speculation, and thus the max-

imum heap residency over the complete program run will be theresidency that the program

would have had under Lazy Evaluation, plusMAXHEAP .

The safety of this technique relies on the fact that Optimistic Evaluation cannot cause any

further increases in residency once speculation has been disabled. If the right hand side of a

let is evaluated speculatively, then every closure reachable from the result must either have

been allocated during the speculation or have been reachable from the free variables of the

expression evaluated. If thelet had instead been evaluated lazily, then the thunk produced

would have contained these same free variables. It thus follows that any extra closures made

reachable by a speculation must have been allocated during that speculation.

Although this approach is effective, it is somewhat brutal.Speculation can be disabled even

if it has not caused any increase in heap residency at all. It also incumbent on the user to set

MAXHEAP to an appropriate value, given the available memory on theirmachine. We believe

that it should be possible to produce a better solution than this; however we leave the design of

such a system for further work.
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9.3.3 Blaming A Let for Extra Heap Residency

Rather than waiting for the mechanism described in Section 9.3.2 to disable speculation com-

pletely, it can be beneficial to punishlet expressions that seem to be increasing heap residency.

One way to do this is to arrange that, whenever the garbage collector sees a costed indirec-

tion in the heap, it multiplies the attached blame by an appropriate scaling factor5 and subtracts

it from the goodness of thelet that produced it. It should be noted that this technique is purely

a heuristic and is not guaranteed to detect all additional heap residency. To see why, consider

the following example:

let x = allocate lots of heap in

let y = (case x of P z → True) in

(x, 4)

When x is speculated, it allocates a large number of closures in theheap, all of which are

reachable from its result. Wheny is speculated, it will demandx and take the blame forx’s

allocation. When the next garbage collection takes place, the garbage collector will not see any

costed indirections:x’s costed indirection will have been converted into a normalindirection,

andy’s costed indirection will not be reachable. The garbage collector will thus not be aware

that speculation has increased the heap residency.

We can envisage several ways in which this heuristic could beimproved. One way would

be to arrange that, when a costed indirection is demanded, itis not converted into a normal

indirection (Section 9.2.3), but is instead converted intoa special form of indirection that records

the fact that it was the result of a speculation. This would allow the garbage collector to calculate

the amount of heap that was reachable only through the results of speculations (c.f. [RR96b]).

9.3.4 Heap Wasted by Laziness

If a let is evaluated lazily rather than speculatively then it may continue to hold onto free

variables that would not have been referenced by the result of a speculative evaluation. It is very

difficult to accurately measure the effect that this has [RR96a], however we have experimented

with a rough approximation.

We extended the garbage collector to credit alet with a fixed amount of saved work every

time a thunk for thatlet was garbage collected. The motivation for this idea was that, if there

are a large number of thunks in the heap for a particularlet, then it may mean that these thunks

form a chain that would not have appeared under speculative evaluation (see Section 12.6). The

profiler thus adds some saved work to thelet that produced the thunks in an attempt to stop the

chain growing longer. We discuss the performance of this technique in Section 12.6.5.

5Which we discuss in Section 12.6.5
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(CSTN) Γ[α 7→ B′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; chainProf (B, s);
B; Π B′; Π

if ¬profiled(s)

Figure 9.7 : Chain profiling uses this revised version of (CSTN)

9.4 Further Details

In this section we explore various ways in which the implementation described in Sections 9.1

and 9.2 can be extended.

9.4.1 Profile Chaining

In Section 6.4.3 we presented the concept ofprofile chaining. Profile chaining replaces the

(CSTN)rule with the rule given in Figure 9.7. Under this rule, if a costed indirection is used

by an unprofiled speculation, it applies the functionchainProf to the stack, converting the

innermost speculation frame into a profiled speculation frame.

The functionchainProf is implemented as a runtime system function that walks down the

stack and converts the innermost speculation frame into a profiled speculation frame in the

manner described in Section 9.2.1.

If profile chaining was implemented exactly as described in the semantics then it could cause

a very large number of ventures to be profiled. Consider for example the following program:

f x =

let y = x + 1 in

if y > 1000 then 4 else f y

If speculation ofy is ever profiled, then chaining will cause every subsequent speculation ofy

to also be profiled. This will cause the program to run very slowly.

We avoid this problem by maintaining a limit on the number of chaining operations that any

given unit of blame can pass through before chaining stops. Achain countfield is added to

every costed indirection and every profiled speculation frame. Every time a costed indirection

is created, it will take on the chain count of the profiled speculation that created it. Every time

chainProf is applied, the chain count for the newly profiled speculation will be one greater than

that of the costed indirection that it used. If the chain count rises above a definedchain limit

then no further chaining operations will be applied and the costed indirection will revert to the

behaviour described in Section 9.2.3.

We describe the performance effect of varying the chain limit in Section 12.3.7.
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9.4.2 Encoding the Profile Flag in SpecDepth

In Section 9.2.1 we used the following three way branch to decide how alet should be evalu-

ated:

Code for a three way branch:

branchif (PROFILING) maybe profile three-way branch

branchif (SpecDepth > 3562 limit) 3562 lazy

jump 3562 spec

In the common case of alet being speculated and unprofiled, this code will involve two

branches. We can reduce this to one branch by encoding the profiling flag inside the speculation

depth, giving a combinedSpecDepthProf register:

SpecDepthProf =







specDepth(s) if p is off

specDepth(s) + PROFILE ON if p is on

wherePROFILE ON is a large constant, greater than the maximum allowable speculation

depth. Given this encoding, we can retrieve the speculationdepth and profile flag as follows:

specDepth(s) = SpecDepthProf mod PROFILE ON

p =







on if SpecDepthProf > PROFILE ON

off otherwise

This encoding makes it possible for us to combine the test forspeculation and profiling as

follows:

Branch code for a burst-profiledlet expression:

branchif (SpecDepth ≤ 3562 limit) 3562 spec

branchif (SpecDepth < PROFILE ON ) 3562 lazy

jump maybe profile

This code will detect the most common case, speculated and unprofiled, with only one

branch.
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9.4.3 Warming up the Profiler

Variable-Frequency Profiling

Rather than having a fixed profiling frequency, it can be beneficial for the profiler to vary its

profiling frequency. Indeed our implementation varies its profiling frequency according to how

confident it is about its speculation configuration. The profiler starts out with no confidence

in its speculation configuration and so profiles every period. If a profiled period causes no

significant changes to the speculation configuration then the profiler will increase its confidence

and reduce its profiling frequency. If however a profiled period causes a significant change to

the speculation configuration (e.g. it found lots of wasted work) or a speculation was aborted,

then the profiler will fall back to profiling every period.

Warming up Gradually

Continuing this philosophy, nolet is allowed to execute speculatively in an unprofiled period

until it has been observed to behave well when being speculated during a profiled period. All

lets start with a depth limit of zero. Alet is not given a positive depth limit until the first time

it is profiled. When thelet is first profiled, themaybe profile function will set the depth limit

to the value corresponding to its goodness (See Section 9.2.1.

Persistent State

One way to reduce warm-up times is to make the speculation configuration for a program persis-

tent. When a program completes, its speculation configuration is written into a file in the users

home direction (e.g./home/rje33/.opteval/[progname]). If the program is run again, then

this speculation configuration will be reloaded and the warmup time can be avoided.

We implemented this persistent state scheme in a previous implementation of Optimistic

Evaluation and found that it had relatively little effect onlong-running programs, but signifi-

cantly improved the performance of programs that run for a very short time.6

9.4.4 Representing Blame as a Cycle Count

Rather than measuring work by heap usage, another alternative is to measure the number of

elapsed processor cycles. Some Intel processors provide aninstruction calledrdtsc [int97]

that allows a program to discover the number of processor cycles that have elapsed since the

processor was turned on.

6Unfortunately, it also upset several referees, who complained that, by using persistent state, our profiler could
not really be considered to be an “online profiler”. We thus decided to avoid giving benchmark results that used
this feature, and did not include this feature in subsequentimplementations.
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We have produced a version of our profiler that measures work usingrdtsc rather than with

heap allocation. There are several difficulties with this approach. One particular problem is that

it can be hard to distinguish between cycles that constitutethe work done by a speculation,

and cycles that took place in another process, if a context switch took place during the spec-

ulation. Another problem is that the number of cycles required for a speculation is extremely

unpredictable, making it quite hard for to debug the implementation or to track changes to its

performance. We discuss the performance ofrdtsc profiling in Section 12.7.2.
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Abortion

In this chapter we describe our implementation of abortion:

• In Section 10.1 we describe the way in which the runtime system decideswhena venture

should be aborted.

• In Section 10.2 we describehowa venture is aborted.

10.1 When to Abort

It is important that our runtime system limits the amount of time that a speculation can run for

before it is aborted. In this section we describe the way in which our implementation does this.

10.1.1 Sample Points

In Section 6.3.1 we presented a bounded speculation semantics that places a limit on the amount

of blame that can be accumulated by active speculations. In Section 6.3.3 we argued that this

semantics allows us to bound the worst case performance of a program.

The semantics of Section 6.3.1 assumes that all speculations are being profiled; however

the periodic profiling scheme described in Chapter 9 will only profile a small proportion of

speculations. We work around this problem by ensuring that all long-running speculations are

profiled. At periodic sample points, the runtime system walks down the stack and converts all

unprofiled speculation frames into profiled speculation frames. This uses the same mechanism

as described in Section 9.2.1. All profiled speculation frames created in this way will start off

being blamed for no work and will accumulate blame from that point onwards.

143
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The runtime system also uses this opportunity to check that the sum of all blame attributed

to active profiled speculations is less thanMAXBLAME , using a literal implementation of the

activeBlame function from Section 6.3.1.

10.1.2 Heap/Stack Checks

One detail of GHC that we have ignored so far is heap and stack checks. As we described in

Section 7.3.1, the GHC runtime maintains aHp register that points to the next free word in the

heap. Whenever the program wishes to create a closure in the heap, it allocates it a range of

addresses starting atHp and then adds the size of the closure toHp, so thatHp points to the

next free word once again. Unfortunately, heap is not an infinite resource; it is thus important

that a program check that there is heap available before it allocates a new closure. The same

issues apply to the stack pointerSp; it is essential that the program checks that there is stack

available before it attempts to push a new frame onto the stack.

In the code we gave in Chapters 7, 8, and 9 we omitted such heap and stack checks for rea-

sons of simplicity. However, a real program will include heap and stack checks at the beginning

of the entry code for every closure, return frame, or function. The stack check will compare

Hp andSp against the limit registersHpLim andSpLim. If the heap and stack pointers are

within safe limits, then the program will continue; however, if the heap and stack pointers are

outside safe limits then the program will call into the runtime system so that more heap or stack

can be allocated.

It is at these points that the runtime system ensures that allactive speculations are profiled,

and checks to see if abortion should take place.

10.1.3 Paused States

Before the program calls into the runtime system, it first puts its state into a standard form

known as apaused state. A paused state is one that can be correctly resumed by entering the

closure pointed to by theNode register (known as thecurrent closure). In the formal semantics,

a paused state is a state of the following form:

Γ;}α; s

whereα is a reference to thecurrent closure.

If a heap/stack check is at the beginning of the entry code fora closure, then the program is

already in a paused state, and so the program can call into theruntime system directly.

Things are slightly more complicated if the heap/stack check is at the beginning of the

entry code for a return frame. If Lazy Evaluation is implemented in the manner described

in Section 8.1.4 then it is not safe to simply replace a returncommandOα with a closure
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Figure 10.1 : Moving a stack frame into a suspension closure

demanding command}α asα may reference a thunk that should not be evaluated. We thus

push a special frame onto the stack that will returnα when it is returned to, and setNode to

point to a generic value closure that will return immediately when entered.

If a heap/stack check is at the beginning of the entry code fora function then the program

can pause itself by pushing a function application frame containing its arguments and setting

Node to point to the function that was just entered.

10.2 How to Abort

In this section we describe how the runtime system actually goes about aborting a speculation.

The implementation described here has much in common with the implementation that already

existed in GHC for the implementation of asynchronous exceptions [MPMR01]. In the subsec-

tions that follow, we describe our implementation of abortion by comparing it to the abortion

semantics of Section 6.3.2.

10.2.1 Pause a State: (!EXP) and (!RET)

As we described in Section 10.1.3, a program will pause itself before entering the runtime

system. The abortion system thus does not need to implement an equivalent of(!EXP) or

(!RET).

10.2.2 Suspend a Stack Frame: (!ABORT)

If the topmost stack frame is not a speculation frame or an update frame, then the contents of

the stack frame is transferred into asuspension closurein the heap. Figure 10.1 illustrates the

way that a suspension closureα∠l is implemented. The info table is the standard info table
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Figure 10.2 : Entering a suspension closure causes its contents to be copied onto the stack.

suspend info, the second word points to the returned closureα, and the rest of the payload

contains the stack framel.

The real implementation is rather more complex than this. Inparticular, it will group sev-

eral sequential stack frames together into one suspension closure rather than creating a new

suspension for every frame.

10.2.3 Resume a Suspended Stack Frame: (RESUME)

If a suspension closureα∠l is entered, then the entry code for the suspension closure will push

an update frame, copy its suspended stack framel back onto the stack, and then enter the closure

α. Abortion may create chains of suspension closures, linkedtogether by theirα fields. When

the suspension at the start of the chain is entered, this willcause all of the suspensions in the

chain to copy their frames back onto the stack. This is illustrated by Figure 10.2.

10.2.4 Abort an Update Frame: (!UPD)

If the topmost stack frame is an update frame then the abortion system behaves like rule(!UPD).

The closure referenced by the updateeα′ is overwritten with an indirection to the current closure

α. This is illustrated by Figure 10.3.
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Figure 10.3 : Aborting an update frame

If this is the outermost speculation frame we wish to abort:
(!END) Γ;}α; ({x}E, B′) : s;  Γ;Oα; ({x}E, B′) : s;

B; Π B; Π[x 7→ Π(x) + Babort]

If we wish to abort other speculation frames on the stack:
(!MORE) Γ;}α; ({x}E, B′) : s;  Γ[α′ 7→ B〈α〉x, α′′ 7→ E[α′/x]];}α′′; s;

B; Π B′; Π[x 7→ Π(x) + B + Babort]
whereα′ andα′′ are new

Figure 10.4 : Alternative rules for aborting a speculation frame

10.2.5 Abort a Profiled Speculation: (!SPEC)

The way the abortion system treats a speculation frame depends on whether the speculation

frame is the last speculation frame that needs to be aborted.The abortion system behaves as if

rule (!SPEC)was replaced with rules(!END) and(!MORE) from Figure 10.4. Neither of these

rules change the behaviour of abortion. Rule(!SPEC)is equivalent to(!END) followed by rule

(SPEC2)from the semantics of Section 6.4.2. Similarly, rule(!MORE) is equivalent to rule

(!SPEC)followed by rule(!EXP).

If the topmost stack frame describes the outermost speculation that needs to be aborted then

the abortion system will behave like rule(!END). It will subtractBabort from the goodness and

then return to the body of the speculatedlet. This will cause the program to continue with

whatever it was planning to do once the speculation had finished.

If there are other speculation frames below this one that also need to be aborted then the

abortion system will behave like rule(!MORE). It will update the goodness and create a costed

indirection in the same way as would be done if the speculation had completed normally (Sec-
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Figure 10.5 : Aborting a speculative return frame

tion 9.2.2). It will then addBabort to the blame to take account of the work done during abortion.

Finally, it will create a thunkα′′ in the heap, and set this to be the current closure.

Whenα′′ is entered, it will push an update frame onto the stack and then evaluate the body

E[α′/x] of the let. We illustrate the structure ofα′′ in Figure 10.5. The closureα′′ is very

similar to a suspension frame, as described in Section 10.2.2. The info pointer points to the

special info tablelazy susp info, the second word holds the costed indirection referenceα′

and the other words hold the speculative return frame{x}E.

If lazy susp info is entered, it will push an update frame, copy the speculation frame back

onto the stack, and then returnα′ to it. The behaviour is thus the same as ifα′′ was a thunk

whose body wasE[α′/x]. Note that, unlike a stack suspension,α′′ will not demand the value of

α′.

Every time a speculation frame is removed from the stack, thespeculation depth is reduced.

We thus take case to decrementSpecDepth whenever we remove a speculation frame from

the stack, and to incrementSpecDepth whenever we restore a speculation frame back onto

the stack. In particular, the code for a lazy suspension mustincrementSpecDepth before

copying its speculation frame back onto the stack, even though it returns to the speculation

frame immediately.
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Debugging

Debugging has long been recognised as one of the greatest weaknesses of lazy functional lan-

guages [Wad98]. Conventional (strict, imperative) languages almost invariably use the “stop,

examine, continue” paradigm (Section 11.1), but this approach does not work well for Lazy

Evaluation. This difficulty has led to fascinating researchin novel debugging techniques (Sec-

tion 13.7).

In this chapter, we argue that conventional debugging techniques have perhaps been dis-

missed too quickly. We demonstrate that Optimistic Evaluation, combined withtransient tail

framesallow conventional debugging techniques to be successfully applied. Optimistic Eval-

uation significantly reduces the number of thunks built, andthus also their confusing affect

on debugging, while transient tail frames allow tail-callsto be visible to the debugger without

affecting space complexity (Section 11.3).

We have implemented these ideas in HsDebug, an addition to the GHC tool set (Sec-

tion 11.5). Our debugger is, by design, “cheap and cheerful”. Its results are not as predictable,

nor as user-friendly, as those of (say) Hat [WCBR01]—but they come cheap. HsDebug can

debug an entirely un-instrumented program, and it can do a lot better if the compiler deposits

modest debug information (much like a conventional debugger). Furthermore, an arbitrary sub-

set of the program can be compiled with debug information—inparticular, the libraries need

not be.
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11.1 How the Dark Side Do It

A debugger has long been one of the standard tools that is provided with any strict, impera-

tive, programming language implementation. The vast majority of these debuggers follow a

“stop, examine, continue” model of debugging, as used by GDB[SP91]. Such debuggers are

characterised by the following features:

• The programmer can request that execution stop at abreakpoint. A breakpoint may cor-

respond to a point in the source code of the program. Alternatively, it may be the point at

which some logical property becomes true.

• When a program is in its stopped state, the programmer can examine the state of the

program. From this state, the programmer is able to obtain anunderstanding of how the

program came to be in the state that it is.

• The programmer can call functions within the program and candirectly manipulate the

program state.

• Once the programmer has finished examining the state and adjusting their breakpoints,

they can request that execution continues until the next breakpoint is hit.

One of the most important pieces of information that a debugger allows the programmer

to observe is the call stack. In a strict language, the nesting of frames on the call stack will

correspond directly to the nesting of function calls in the program source code. Consider the

following program:
f x = let y = 3 ‘div’ x in Just y

g = case f 0 of Just y → h y

If this program is executed eagerly, then the call stack willbe as illustrated in Figure 11.1.

When the division by zero error occurs, the stack will clearly show that this took place inside

the evaluation ofy, in the call tof made fromg. It is likely that the stack will also hold the

argument thatf was called with.
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Figure 11.1 : Strict Evaluation
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g h something deep within h

y div divZeroError

Figure 11.2 : Lazy Evaluation with Tail Call Elimination

11.2 Failing to Debug Lazy Programs

What happens if we try using this style of debugging for a non-strict functional language such

as Haskell [PHA+99]? If the same program given earlier were to be evaluated ina typical

lazy language implementation, then the call stack would be as illustrated in Figure 11.2. Lazy

Evaluation has scrambled the execution order and tail call elimination has removed stack frames

that would have provided useful information. The result is amess that is very difficult to debug

from.

This clash between “stop, examine, continue” debugging andnon-strict languages is con-

sidered to be so severe that, as far as we know, nobody has evermade a serious attempt to

implement such a debugger for a non-strict language. In manyways, this rejection of con-

ventional debugging models has been a good thing, as it has led to the development of several

extremely powerful alternative approaches (see Section 13.7). However, we believe that conven-

tional debugging techniques should not be written off. In the sections that follow, we explain a

series of tweaks to Lazy Evaluation that have allowed us to produce an effective “stop, examine,

continue” debugger for Haskell.

11.3 Eliminating Tail Call Elimination

One simple way to increase the amount of information available from stacks is to disable tail-

call elimination. This provides us with extra stack frames that tell us more about the call chain

that has taken place. This idea is not new; strict languages that implement tail call elimination
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Figure 11.3 : Tail call frames disappear if we have too many

often allow it to be disabled when a program is being debugged. For example, the CMU Com-

mon Lisp [Mac92] environment disables tail call elimination if the debug level is set greater

that “2”.

While turning off tail call elimination makes debugging easier, it will also cause some pro-

grams to use massively more stack space than they would otherwise use. A tail recursive loop

that would normally consume no stack space will now push a stack frame on every iteration.

Fortunately, there is no need for a program to fail with an “out of stack” error if it has a

stack full of tail call return frames. The only purpose of tail call return frames is decorative; it

is thus perfectly okay to delete them. Our solution is thus todelete all tail frames every time we

run out of stack or perform a garbage collection. Figure 11.3illustrates this concept.

It is important that we delete tail frames at a garbage collection, even if we are not short on

stack. This is because our tails frames record all the arguments passed to a call, and so may

be holding onto heap objects that would otherwise not be reachable. There are many ways in

which this could be refined: for example, we could arrange to only delete tail frames if stack use

or heap residency were above a pre-determined threshold, orwe could arrange to only delete a

selected subset of the tail frames.

11.4 Optimistic Evaluation

Disabling tail call elimination makes debugging significantly easier, but it does not quite bring

us to the point at which a “stop, examine, continue” debuggerbecomes usable. Lazy Evaluation

will still scramble the evaluation order, causing expressions to be evaluated on stacks that are

different to the stack in which the expression was defined.

Fortunately, Optimistic Evaluation causes a program to be evaluated largely eagerly, and so

significantly reduces the scrambling effect of Lazy Evaluation. When a program is being de-

bugged, it is likely that the programmer cares less about speed and more about clarity, compared
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to a normal execution. Optimistic Evaluation thus uses different default tuning parameters when

running in debug mode, causing it to have worse performance,but also causing it to use Lazy

Evaluation less often.

Although we have implemented our debugger on top of Optimistic Evaluation, the same

techniques could also be applied to Eager Haskell (Section 13.2).

11.5 HsDebug

HsDebug is a “stop, examine, continue” debugger for Haskell. It has been implemented as part

of GHC and currently lives on the Optimistic Evaluation branch in the GHC public CVS. While

HsDebug has a long way to go before it becomes as powerful a tool as GDB, it is already very

useful. The current feature set includes the following:

• Any program compilable with GHC can be debugged

• Breakpoints can be set in any Haskell function

• The original arguments of all calls on the stack can be inspected

• Closures on the heap can be pretty printed

• Functions and thunks can be pretty printed—giving their source location, and free vari-

ables.

• Exceptions can be intercepted

• The program can be single-stepped

All in all, HsDebug feels very similar to GDB and should feel familiar to anyone who is

already comfortable with GDB. HsDebug is currently very rough round the edges, and source

level debugging is currently incomplete, but it has alreadyshown itself to be a useful tool.

Programs compiled for HsDebug run slightly slower than normal. This is partly due to

the need to turn off some of the more confusing code transformations and partly due to the

extra overhead of pushing and removing tail frames. We discuss performance further in Sec-

tion 12.7.4.

We give a log from a real HsDebug session in Appendix D.
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Conclusions
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CHAPTER 12

Results

How well does Optimistic Evaluation work in practice? What is the performance effect of

adjusting the many tunable parameters? In this chapter we attempt to answer these questions.

• We start, in Section 12.1, by explaining how the tests described in this chapter were

carried out.

• In Section 12.2 we analyse the performance of our fastest version of Optimistic Evalua-

tion.

• In Section 12.3 we look at the online profiler, and explore theperformance effect of

several changes that can be made to it.

• In Section 12.4 we present various statistics that give an insight into the way that Opti-

mistic Evaluation works.

• In Section 12.5 we look at semi-tagging, and analyse its effect on both Optimistic Evalu-

ation and Lazy Evaluation.

• In Section 12.6 we look at the effect of Optimistic Evaluation on heap usage.

• Finally, in Section 12.7, we collect together various statistics that do not seem to belong

anywhere else.
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Figure 12.1 : Sizes of Benchmark Programs

12.1 How the Tests were Carried Out

In this section we explain how we carried out our tests. Section 12.1.1 discusses the benchmark

programs we used, while Section 12.1.2 explains the way in which we ran them.

12.1.1 The Benchmarks

The benchmarks programs we chose are a selection of the programs from the NoFib [Par92]

benchmark suite. NoFib is the standard benchmark suite for Haskell compilers and the programs

from this set have been used to evaluate the performance of a number of other systems. Most of

the programs we use are from thereal subset of the suite, with a few taken from thespectral

subset. For some graphs we have also added the GHC compiler itself. While GHC is not part

of NoFib, it is probably the biggest and most widely used Haskell program in existence and so

it is an interesting program to test.

Figure 12.1 shows the size of each of our benchmark programs.GHC is huge, at around

150,000 lines of code.anna is also fairly large, at 9,000 lines of code. The other programs are

significantly smaller, with an average of 935 lines of code each. Despite their small sizes, many

of these programs are quite realistic; indeed several of them are the kernels of large applications.

The default runtimes for the NoFib programs are very variable and typically very short. We

extended the input data for our chosen programs so that they all run for around fifteen seconds.

This gives our online profiler sufficient time to warm up and sogives a fairer impression of

performance. We could have achieved similar performance onsmaller benchmarks by using a

persistent speculation configuration, however we chose notto do this for the reasons outlined in

Section 9.4.3.

The programs we used as benchmarks were selected before any performance results had

been obtained for them. Programs were selected according tothe ease with which we could
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Figure 12.2 : Benchmark run-time relative to normal GHC

make them run for around fifteen seconds, and not based on any other criteria.1

12.1.2 The Testing Procedure

All tests were run on a machine with a 750Mhz Pentium III processor and 256Mbytes of mem-

ory. We ran each test once as a warm-up and then five more times.The published results are the

average of the five test runs. In order to makes the performance more consistent, we disabled

pre-emptive thread switching (using the-C0 flag to the runtime system).

Performance results are given as arelative runtime. This is the runtime of a benchmark,

expressed as a percentage of the runtime of the same benchmark with a different evaluator. In

most cases, runtimes will be expressed relative to our best performing version of Optimistic

Evaluation. If runtimes are expressed relative to a different evaluator, then this will be stated in

the subtitle of the graph.

12.2 Performance

12.2.1 Runtime

Figure 12.2 shows the effect that Optimistic Evaluation hason run time. The height of a column

in the graph represents the amount of time that that benchmark took to run under Optimistic

1The only exception to this isfem which we decided not to use because its performance was very variable
when evaluated using normal GHC.
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Figure 12.3 : Performance Overhead of Optimistic Evaluation, when Evaluating Entirely Lazily

Evaluation, expressed as a proportion of the time that the benchmark took to run under normal

GHC. The GHC compiler that we compare against is the version that our implementation of

Optimistic Evaluation forked from. Both compilers were runwith all optimisations enabled,

including a strictness analyser.

These results are very encouraging. The average speedup is just under 20% and several

programs speed up by 40% or more. Perhaps more critically, noprogram slows down by more

than 7%; indeed only one program slows down by more than 1% andonly three programs slow

down at all. We explore the reasons for these slowdowns in Section 12.2.2.

As one would expect, the results depend on the nature of the program. If a program has a

strict inner loop that the strictness analyser solves, thenwe have little room for improvement.

Similarly, if the inner loop in inherently lazy, then there is nothing we can do to improve things,

and indeed the extra overhead of having a branch on everylet will slow things down. In the

case ofrsa Optimistic Evaluation had virtually no effect becausersa spends almost all of its

time inside a library written inC.

12.2.2 The Overheads of Optimistic Evaluation

Optimistic Evaluation imposes considerable overheads on evaluation. The greatest of these is

the cost of doing a test and branch on everylet expression, but the cost of profiling is also sig-

nificant. Figure 12.3 shows the overhead imposed by these features. For each benchmark, the

respective column shows the extent to which that program slows down if it is compiled for Op-

timistic Evaluation, but is evaluated with a speculation configuration that evaluates everything

lazily. For convenience, the origin of this graph is placed at 100%. The height of a column is

thus the additional time taken.

As one would expect, all programs run more slowly than under normal GHC. The program

that runs slowest isparser; slowing down by over 30%. Given this poor baseline, the profiler

did well to achieve only a 7% slowdown forparser in Figure 12.2.
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Figure 12.4 : Increase in Code Size due to Optimistic Evaluation

12.2.3 Code Size

Figure 12.4 shows the effect that Optimistic Evaluation hason code size. Programs increase in

size significantly (36% on average). This is partly due to theneed to generate lazy and eager

versions of expressions, partly due to the effect of semi-tagging, and also partly due to various

aspects of the implementation that we have not described in this thesis (in particular, the way

we deal with vectored returns). We believe that this code bloat can be significantly reduced, but

have yet to demonstrate this.

12.3 Profiling

12.3.1 What Happens if We Turn Profiling Off?

Figures 12.5 and 12.6 illustrate the performance effect of turning off profiling. The height of

each column represents the amount of time taken when profiling is turned off, relative to the

amount of time taken when it is turned on. Although profiling is turned off, abortion is still

enabled; the evaluator thus behaves similarly to Eager Haskell (see Section 13.2).

As one can see, profiling is not always a win. Two programs speed up significantly if

profiling is turned off; these are programs for which the profiler was being overly cautious.

Similarly, four programs speed up slightly; these are programs for which the profiler was not

needing to do much and so was just wasting time.

At the other end of the spectrum, some programs slow down massively if the profiler is not

enabled.constraints slows down by a factor of over 150, whilefulsom, hpg andinfer also

slow down by large amounts.

Figure 12.7 shows the performance of unprofiled Optimistic Evaluation relative to normal

GHC. Although the average performance is a 34% slowdown, most of this is due to four pro-

grams. If we exclude the four slowest programs then we get an average speedup of 13%.
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Figure 12.5 : Performance Effect of Turning Profiling Off : Zoomed Out

Figure 12.6 : Performance Effect of Turning Profiling Off : Zoomed In

Figure 12.7 : Performance of Unprofiled Optimistic Evaluation, relative to Normal GHC
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Time Elapsed

Skip Count = 4
Profiled Periods Unprofiled Periods

Figure 12.8 : The Skip Countis the number of unprofiled periods that take place between con-
secutive profiled periods

12.3.2 How Often should We Profile?

Although our idealised model considers profiling to be random, our implementation is actually

periodic.2 The rate of profiling is governed by a variable called theskip count. The skip

countis the number of unprofiled periods that take place between consecutive profiled periods

(Illustrated by Figure 12.8). If the skip count is zero, thenall periods are profiled.

As we explained in Section 9.4.3, our profiler profiles a program at a variable rate. The

profiler thus has two variables that can be adjusted:

• Max Skip Count: The maximum allowed value for the skip count.

• Skip Count Increment: The amount that is added to the skip count if a profiled period

passes without any adjustment needing to be made to the speculation configuration.

Figure 12.9 shows the effect of varying the maximum skip count. The vertical axis is the

geometric mean of the relative runtimes of all the benchmarkprograms. Runtimes are taken

relative to the case in which the maximum skip count is 200 (the default value). We can see

from this graph that very low skip counts cause the program torun very slowly, because a large

proportion of time is taken up with profiling. If the program is profiled constantly (skip count

of zero) then the average performance is reduced by over 25%.

Figure 12.10 gives more detail. In this graph a separate curve is drawn for each benchmark.

There are too many benchmarks for it to be practical to give a key; however this graph should

give an impression of the general spread of results. We can see from this graph that most

programs have fairly consistent performance once the maximum skip count is greater than32.

The exceptions arebspt andparser which can slow down by as much as 11% for some values.

Figure 12.11 shows the effect of varying the skip count increment. The vertical axis is again

the geometric mean of the relative runtimes of all the benchmark programs, this time taken

relative to the case in which the skip count increment is3. There is less of a definite pattern

here; no reasonable value of skip count increment varies theperformance by more than 2.5%.

2Given that the profiling frequency is constantly varying, webelieve that it is unlikely that any program will
have a long term correlation with the profiler’s sampling behaviour.
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Figure 12.9 : Performance Effect of Adjusting the “max sample period” Tunable—geometric
mean

Figure 12.10 : Performance Effect of Adjusting the “max sample period” Tunable—all bench-
marks

Figure 12.11 : Performance Effect of Adjusting the “profiling backoff” Tunable—geometric mean
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Figure 12.12 : Performance Effect of Adjusting the “thunk cost” Tunable—geometric mean

Figure 12.13 : Performance Effect of Adjusting the “thunk cost” Tunable—all benchmarks

12.3.3 What should the Thunk Cost Be?

Thethunk costis the cost of building a thunk, as estimated by the profiler. The profiler will add

this amount to the goodness of alet every time Optimistic Evaluation avoids building a thunk

for that let (see Section 9.2.1). The thunk cost is expressed in bytes of heap allocation (see

Section 9.1.1 for the reasons why).

Figure 12.12 shows the effect of varying the thunk cost. If the thunk cost is too low, then

too little speculation takes place, and performance is reduced. However, if the thunk cost is too

high, then too much speculation takes place, too much work iswasted, and performance again

suffers. Note that Optimistic Evaluation outperforms LazyEvaluation even with a thunk cost

of zero. This is because alet that is always used will never accumulate any long-term badness

and so will still be speculated.

Figure 12.13 gives the curves for the individual benchmark programs. One can see that,

while some programs follow the trend in Figure 12.12 some areunaffected, or even speed up

as the thunkcost is increased. These are programs that are almost entirely strict, for which the
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Figure 12.14 : Performance Effect of Adjusting the “abortion cost” Tunable—geometric mean

Figure 12.15 : Performance Effect of Adjusting the “abortion cost” Tunable—all benchmarks

profiler is being overly conservative.

12.3.4 What should the Abortion Cost Be?

The abortion cost,Babort, is the cost incurred in aborting a venture, as estimated by the profiler.

The profiler will add this amount to the wasted work of alet every time a venture for thatlet

is aborted. As with the thunk cost, the abortion cost is expressed in bytes of heap allocation.

Figure 12.14 shows the effect of varying the abortion cost. If the abortion cost is very low

then too much abortion takes place and programs slow down. Once the abortion cost is greater

than around 100 there is relatively little effect. Figure 12.15 shows us that, while most programs

are largely insensitive to the abortion cost, provided thatit is above 100, a few programs can

vary their performance by up to 20%. We are not sure why some programs vary so much. A

limited investigation suggests that such programs often have a critical point where punishment

for an abortion may cause an importantlet to stop being speculated.
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Figure 12.16 : Performance Effect of Adjusting the “max depth limit” Tunable—geometric mean

12.3.5 What should the Maximum Allowed Speculation Depth Be ?

The “max depth limit” is the maximum depth to which anylet is allowed to speculate. This

value is one of the parameters used to determine how goodnessis mapped to a depth limit

(Section 9.1.2).

Figure 12.16 shows the effect that the maximum depth limit has on performance. If the

maximum depth limit is too low then speculation is overly constrained and performance suffers.

The exact choice of maximum depth limit does not seem to matter much so long as it is greater

than8.

12.3.6 What should the Initial Speculation Depth Be?

The “initial depth limit” is the depth limit that everylet has when a program starts, before any

profiling has taken place. Figure 12.17 shows the effect thatthis has on performance. If the

initial depth limit is zero, then no speculation can ever take place, and performance suffers.

Other choices of initial depth limit make relatively littledifference as the depth limit will be

quickly corrected by the profiler.

12.3.7 What should the Chain Limit Be?

In Section 9.4.1 we presented the idea ofprofile chaining, in which an unprofiled venture can

be turned into a profiled venture if it demands a costed indirection. In that section, we also

discussed the idea of achain limit which is a bound on the number of chaining operations that

any unit of blame can pass through. Figure 12.18 and 12.19 show the effect of varying the chain

limit. While a limit of 5 gives the best performance, it is hard to tell whether this isjust an

artifact of our selection of benchmarks; indeed there is no consistent pattern followed by all

benchmarks.
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Figure 12.17 : Performance Effect of Adjusting the “initial depth limit” Tunable—geometric mean

Figure 12.18 : Performance Effect of Adjusting the “chain length” Tunable—geometric mean

Figure 12.19 : Performance Effect of Adjusting the “chain length” tunable—all benchmarks
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Figure 12.20 : Performance Effect of Adjusting the MAXBLAME Tunable—geometric mean

Figure 12.21 : Performance Effect of Adjusting the MAXBLAME Tunable—geometric mean

12.3.8 How Quickly should We Abort?

Figures 12.20 and 12.21 illustrate the effect of varying theMAXBLAME value, as described in

Section 10.1. If abortion takes place too quickly then performance suffers, but the exact value

makes little difference, provided it is greater than around4000. As with most other variables,

the majority of benchmarks show little variation, however afew are quite sensitive to the choice

of MAXBLAME value.

12.4 Metrics

In this section we present various statistics that provide an insight into the way that Optimistic

Evaluation works.
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Figure 12.22 : Goodness compared to Real Speedup

Figure 12.23 : Rate of allocation

12.4.1 Goodness as an Estimate of Performance

The online profiler estimates the performance of OptimisticEvaluation using a metric called

goodness(see Chapter 6); but is this estimate accurate? Figure 12.22compares the real speedup

of each of our benchmarks with the total goodness, as measured by the profiler. The speedup is

calculated relative to the fully lazy evaluator of Figure 12.3.

We can see from Figure 12.22 that, while the goodness is far from being a perfect measure

of performance, it is usually pretty reasonable. The only programs whose performance estimate

is off by a large amount areinfer, atom andprolog. It is reassuring that in all these cases,

goodness underestimated, rather than overestimated performance. These results suggest that

our current profiler is estimating performance reasonably well, but that there is still room for

improvement.
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Figure 12.24 : Abortions per second

12.4.2 Heap Allocation as an Estimate of Work

The profiler uses heap allocation as an estimate of work done (Section 9.1.1), but is it a good

estimate? Figure 12.23 gives the allocation rates for each of our benchmarks, expressed in

bytes allocated per second of runtime. If heap allocation isa good estimate of runtime then

we would expect the allocation rate to be the same for all benchmarks. In practice it varies by

around a factor of five. Given that each of these allocation rates is the average allocation rate for

an entire program run, it is likely that the local allocationrate varies significantly more. This

suggests that, although measuring blame with heap allocation seems to work well in practice,

cycle counting (Section 12.7.2) is probably the more reliable approach.

12.4.3 How Common is Abortion?

Figure 12.24 gives figures for the rate of abortion for each ofour benchmarks. The benchmark

that aborts most frequently isconstraints, which aborts around 40 times a second. Most

programs abort significantly more rarely, with a mean of around 10 abortions per second.

12.4.4 How Much Speculation Takes Place?

Figure 12.25 shows the proportion oflet evaluations that are speculated for each of our bench-

marks. We can see that no benchmark speculates less than 30% of its let evaluations, and that,

on average, a program will speculate 62% of itslet evaluations.

12.4.5 What is the Distribution of Speculation Sizes?

Figures 12.26 and 12.27 show the distribution of blame and localwork (Section 3.3.3). In these

graphs, each group of columns represents a range of possiblesizes, and each column represents

the proportion of speculations that had blame or local work within that range, for a particular
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Figure 12.25 : Percentage of let evaluations that are speculated

Figure 12.26 : Distribution of Blame

benchmark. We can see from these graphs that very few speculations allocate more than 64

bytes locally, or accumulate more than 128 bytes of blame. Wecan also see that a significant

proportion of speculations allocate more than 32 bytes locally.

12.4.6 What Proportion of Speculations are Used?

Figure 12.28 shows the proportion of speculations that turnout to be needed, grouped by the

amount of work that was blamed on them. We can see that the vastmajority of speculations are

used, but that the profiler allows very cheap speculations tobe used more rarely than others.

One might worry that the last benchmark seems to only need a small proportion of its spec-

ulations. This benchmark issymalg, which only performs a total of425 speculations. This is

not sufficient to allow the profiler to warm up, or to waste morethan a tiny amount of work.
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Figure 12.27 : Distribution of Local Work

Figure 12.28 : Proportion of Speculations that were Needed

Figure 12.29 : Distribution of Speculation Depths at which Speculations Take Place
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Figure 12.30 : Distribution of Chain Lengths

12.4.7 How much Chunky Evaluation Takes Place?

Figure 12.29 shows the distribution of speculation depths at which speculations took place.

The horizontal axis is the speculation depth (see Section 8.1.2 while the vertical axis is the

proportion of speculations that took place at that depth. Each curve represents the behaviour of

a particular benchmark. We can see from this graph that the vast majority of speculations take

place at depths less than10, but also that a significant proportion of speculations takeplace at

depths greater than3.

12.4.8 How Long do Profile Chains Get?

Figure 12.30 shows the distribution of chain lengths (see Section 9.4.1) for the different bench-

marks. These tests were done with a chain limit of4. As we can see, many chains never last

for longer than one link, but once a chain has grown to length 2, it has a very good chance of

lasting to length 4 (or beyond if the chain limit is greater).

12.5 Semi-Tagging

12.5.1 What is the Performance Effect of Semi-Tagging?

Figure 12.31 shows the performance effect of semi-tagging on both Optimistic Evaluation and

Normal GHC. We can see that, while semi-tagging only improves the performance of Lazy

Evaluation by an average of 2%, it improves the performance of Optimistic Evaluation by an

average of 7%. Indeed, semi-tagging has a greater performance benefit for Optimistic Evalu-

ation on every benchmark exceptanna, fulsom, andsymalg. A significant proportion of the

speedup from Optimistic Evaluation is due to the fact that itallows semi-tagging to be more

effective.
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Figure 12.31 : Performance Effect of Semi-Tagging for both Optimistic Evaluation and Normal
GHC

Figure 12.32 : Percentage of Semi-Tagging Attempts that Find a Value

12.5.2 How Often does Semi-Tagging Succeed?

Figure 12.32 shows the success rate of semi-tagging for bothLazy Evaluation and Optimistic

Evaluation. As this graph shows, Optimistic Evaluation dramatically increases the proportion of

case scrutinees that turn out to be values. This explains the performance results in Figure 12.31.

12.6 Heap Usage

In this Section, we explore the effect of Optimistic Evaluation on heap usage.

12.6.1 Space Leaks

Some programs are extremely inefficient when executed lazily because they contain a space

leak. People often post such programs on thehaskell mailing list, asking why they are per-

forming badly. One recent example was a simple word countingprogram [Mau02]. The inner
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Figure 12.33 : Effect of Optimistic Evaluation on Heap Residency

loop (slightly simplified) was the following:

count :: [Char] -> Int -> Int -> Int -> (Int,Int)

count [] _ nw nc = (nw, nc)

count (c:cs) new nw nc =

case charKind c of

Normal -> count cs 0 (nw+new) (nc+1)

White -> count cs 1 nw (nc+1)

Every time this loop sees a character, it increments its accumulating parameternc. Under Lazy

Evaluation, a long chain of addition thunks builds up, with length proportional to the size of

the input file. By contrast, the optimistic version evaluates the addition speculatively, so the

program runs in constant space. Optimistic Evaluation speeds this program up so much that we

were unable to produce an input file that was both small enoughto allow the lazy implementa-

tion to terminate in reasonable time, and large enough to allow the optimistic implementation

to run long enough to be accurately timed!

12.6.2 Heap Residency

Figure 12.33 illustrates the effect that Optimistic Evaluation has on heap residency: the maxi-

mum amount of data live in the heap during the program run. As this graph illustrates, while

Optimistic Evaluation often reduces heap residency, the effect is not particularly pronounced.

This suggests that, for the programs we have benchmarked, the performance improvements

achieved by Optimistic Evaluation are not due to removal of space leaks.

This is what one would expect: the programs in the NoFib suitehave been written by expert

programmers, who can be assumed to have taken care to avoid space leaks when writing their

programs. It thus seems likely that the programs that we havebenchmarked do not contain any

space leaks that Optimistic Evaluation could remove. This does not however mean that removal
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Figure 12.34 : Effect of Optimistic Evaluation on Heap Allocation

of space leaks in unimportant; while expert programmers maybe able to avoid space leaks,

they are a common problem for novice programmers. It might beinteresting to see the effect of

Optimistic Evaluation on a corpus of programs written by inexperienced programmers and see

if the improvements are more pronounced.

Unlike most of our other graphs, Figure 12.33 shows absoluteheap residency rather than

relative residency. This is to avoid programs likersa andsphere distorting the overall picture,

despite the fact that their heap residency is negligible.

12.6.3 Heap Allocation

Figure 12.34 illustrates the effect that Optimistic Evaluation has on heap allocation: the total

amount of storage allocated during the program run, including memory that was reclaimed

by the garbage collector. As the graph illustrates, Optimistic Evaluation reduces the memory

allocation of every benchmark program we tested. This is because it avoids allocating many of

the thunks that Lazy Evaluation would create in the heap.

12.6.4 Proportion of Time spent Garbage Collecting

Figure 12.35 shows the proportion of time spent in the garbage collector. As this graph illus-

trates, many benchmarks spend a large proportion of their runtime in the garbage collector; thus

the amount of time spent garbage collecting is very important. We can also see from this graph

that Optimistic Evaluation has relatively little effect onthe amount of time spent garbage col-

lecting; indeed it increases it by around 1% on average. This, backs up the conclusions drawn

form Figure 12.33: the performance benefits of Optimistic Evaluation on this benchmark set do

not come from avoiding space leaks.
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Figure 12.35 : Proportion of Time Spent Garbage Collecting

12.6.5 Heap Profiling

We implemented two heap profiling schemes, which we describein Section 9.3. Figures 12.36

and 12.37 illustrate the effect of a profiler extension that punishes alet every time a costed

indirection for thatlet is garbage collected. The horizontal axis is the factor by which the

blame of a costed indirection is multiplied before being subtracted from the goodness of itslet.

We can see that this extension does not gain much on average (only around 1.5%), but that it

can improve the performance of one program (clausify) by 20%.

Figure 12.38 illustrates the performance of the second profiling extension described in Sec-

tion 9.3. This scheme adds a “lazy gc cost” to the goodness of alet every time the garbage

collector collects a profiled thunk created for thatlet. This extension was found to always

cause a performance reduction, with the reduction increasing as the “lazy gc cost” increased.

12.7 Miscellanea

12.7.1 How Good is Flat Speculation?

In Section 8.2 we described an implementation technique calledFlat Speculation. It is not fair to

compare our implementation of Flat Speculation directly with our main implementation because

it was forked from an earlier version of GHC, it relied on persistent speculation configurations

(Section 9.4.3), it used a different profiler, it used a different semi-tagging mechanism, and it

was not stable enough to run the larger benchmarks. One can however obtain a rough idea of

its performance from Figure 12.39, which compares the performance of Flat Speculation to the

performance of the GHC compiler that it forked from. This graph shows an average speedup of

around 20% (excludingwordcount)—suggesting that Flat Speculation is roughly comparable

to our primary implementation technique.
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Figure 12.36 : Performance Effect of Adjusting the “garbage collection cost” Tunable—
geometric mean

Figure 12.37 : Performance Effect of Adjusting the “garbage collection cost” Tunable—all
benchmarks

Figure 12.38 : Performance Effect of Adjusting the “lazy gc cost” Tunable—geometric mean
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Figure 12.39 : Performance of Flat Speculation

Figure 12.40 : Performance of RDTSC Profiling

12.7.2 How Good is RDTSC Profiling?

Figure 12.40 shows the performance ofrdtsc profiling, as described in Section 9.4.4. The av-

erage performance improvement was 16%, compared to 20% for the heap allocation approach;

however our implementation ofrdtsc profiling is less mature than our implemenation of heap

profiling, and we believe that similar performance should beattainable with further work.

12.7.3 What Effect does Strictness Analysis Have?

Figure 12.41 shows the effect of strictness analysis on bothLazy Evaluation and Optimistic

Evaluation. Somewhat surprisingly, strictness analysis seems to bring about roughly the same

performance gains under Optimistic Evaluation as it does under Lazy Evaluation. We are con-

fused by this result: we would expect strictness analysis tohave less effect under Optimistic

Evaluation as the two techniques would be trying to avoid thesame thunks. We find it particu-

larly interesting that there are some benchmarks for which strictness analysis has a greater effect

on Optimistic Evaluation than on Lazy Evaluation. We believe that this unexpected result may
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Figure 12.41 : Effect of Strictness Analysis on Performance

Figure 12.42 : Performance Overhead of Transient Tail Frames

be due to the effect that strictness analysis has on the GHC optimiser: often quite complicated

transformations may be made to a program, based on strictness information.

12.7.4 How Expensive are Transient Tail Frames?

In Section 11.3 we discussed transient tail frames, and explained how they make debugging

easier. Figure 12.42 shows the performance overhead that transient tail frames cause. The

average slowdown is 69%. This overhead can be significantly reduced if only part of a program

is compiled with transient tail frames.

One program runs over 10 times slower.3 This program contains a simple function that calls

itself recursively with a large number of arguments. When this function executes normally, it

does not need to push anything on the stack at all; however when it executes with tail frames

enabled, it has to push a large frame on the stack for every recursive call. We believe that it

should be possible to extend our implementation of tail frames to avoid being caught out by

functions such as this. One approach would be to detect such functions statically and only push
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Figure 12.43 : Performance of Eager Blackholing relative to Lazy Blackholing

tail frames for them if explicitly requested by the programmer. Alternatively, we could use a

static analysis to discover which arguments could have differed from the previous recursive call,

and only include these in the tail frame. Another possible fixwould be to push tail frames onto

a special circular stack, and thus only remember the last N calls, thus avoiding the overhead of

removing them during garbage collection.

12.7.5 Is Lazy Blackholing Worth the Extra Complexity?

In Section 8.4 we discussed Lazy Blackholing and explained why it causes problems for Opti-

mistic Evaluation. Figure 12.43 shows the performance effect of turning off Lazy Blackholing

for Optimistic Evaluation: it actually speeds programs up by an average of 1%. These results

suggest that lazy blackholing is not worth the considerableextra complexity it entails.

The results with lazy blackholing enabled were obtained using an implementation that in-

cluded sufficient fixes to allow all the benchmark programs torun; however it is possible that

bugs such as those described in Section 8.4 may account for some of the observed performance

difference.

3We previously [EP03a] reported that the worst performance we had managed to provoke for transient tail-
frames was a factor of3 slowdown. This was at an early stage in the development of HsDebug, when we had not
tested many programs.



CHAPTER 13

Related Work

In this chapter, we describe previous work that has similarities to the work presented in this

thesis.

• In Section 13.1 we discussStatic Hybrid Evaluation Strategies. These are evaluation

strategies that, like Optimistic Evaluation, attempt to combine lazy and eager evaluation;

however, unlike Optimistic Evaluation, the choice of how toevaluate eachlet is made at

compile time, rather than at runtime.

• In Section 13.2 we discussEager Haskell. Eager Haskell is an evaluation strategy that,

like Optimistic Evaluation, uses speculative evaluation to improve the performance of

non-strict programs. The main difference from our work is that, while we use an online

profiler to decide whichlet expressions to speculate, Eager Haskell speculates alllet

expressions.

• In Section 13.3 we discussSpeculative Evaluation for Multiprocessor Parallelism. Var-

ious language implementations have used speculative evaluation to increase the number

of concurrent tasks in a program and so find work for idle processors to do. While Op-

timistic Evaluation tries to speculate small expressions,parallel speculation strategies try

to speculate large expressions. This leads to very different approaches.

• In Section 13.4 we discussSpeculative Evaluation for Uniprocessor Parallelism. If a

processor has a large number of instruction units then a compiler may perform speculative

operations on instruction units that would otherwise be idle. While these ideas could be

applied to non-strict languages, we are not aware of any workthat does this.

181
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• In Section 13.5 we discuss previous work that is similar to the cost model that we pre-

sented in Chapter 5. While many previous cost models have been presented, we are not

aware of any other model that is high level, composable, and able to model any hybrid of

lazy and eager evaluation.

• In Section 13.6 we discuss previous work that has used profiling. While much such

work exists, we are not aware of any previous work that has used profiling to direct the

evaluation of non-strict programs.

• In Section 13.7 we discuss previous debuggers for non-strict languages and compare them

to the debugger described in Chapter 11. While many such debuggers have been written,

no previous work implements the stop-examine-continue model that our debugger uses.

• In Section 13.8 we discuss previous work that has attempted to reduce the amount of

space that non-strict programs require.

• Finally, in Section 13.9 we discuss evaluation strategies that are not hybrids of lazy and

eager evaluation.

13.1 Static Hybrid Strategies

Much previous work has attempted to combine Lazy Evaluationwith Eager Evaluation, how-

ever most of this work has focused on static analyses or static annotations, rather than a dy-

namic, adaptive strategies.

In the subsections that follow, we discuss Strictness Annotations (Section 13.1.1), Strictness

Analysis (Section 13.1.2) and Cheapness Analysis (Section13.1.3).

13.1.1 Strictness Annotations

Strictness annotations are perhaps the simplest way of combining lazy and eager evaluation.

Rather than letting the language implementation decide which expressions should be evaluated

eagerly, the programmer gives this information explicitlyin their program.



13.1. Static Hybrid Strategies 183

The ‘seq’ function

Haskell includes aseq ‘function’ that can be used to force the immediate evaluation of an

expression.

seq : a→ b→ b

seq forces evaluation of its first argument and then returns its second argument.seq is the

cause of much controversy in the Haskell community [Voi02, Mar02] due to the fact that it

breaks several laws that would otherwise hold for Haskell programs.

Most other non-strict languages have similar constructs, for example Clean [BvEvLP87,

NSvEP91] has a speciallet! construct that evaluates its right hand side eagerly. Both Haskell

and Clean also allow data types to include strictness information, causing an implicitseq to be

applied to any closure whose value is placed in a strict field.

Laziness Annotations

Many strict languages allow one to use annotations to introduce laziness. At the simplest level,

one can implement Lazy Evaluation in a strict language by representing a thunk as an object

with an evaluate method. At a slightly higher level, many strict languages provide syn-

tactic sugar that makes it easy to embed Lazy Evaluation; forexample thelazy keyword in

O’Caml [LRVD98] ordelay andforce in Scheme [KCR98].

In practice, a typical non-strict program will only make essential use of laziness in a small

proportion of its expressions; it is thus fairly easy for a programmer to mark these expressions

as being lazy. Many people argue that laziness annotations are good style; if a program relies on

Lazy Evaluation, this should be a deliberate policy decision and thus should be made explicit in

the program text.

13.1.2 Strictness Analysis

Most compilers for non-strict languages make use of a staticanalysis calledStrictness Analysis

to determine which expressions should be evaluated eagerly. Strictness Analysis attempts to

find expressions that are certain to be evaluated under Lazy Evaluation and which can thus be

evaluated eagerly without risking poor performance or non-termination. There has been a lot of

work done on Strictness Analysis [Myc81, BHA86, MN92, WH87]and the technology is now

very mature.
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Online Profiling vs Static Analysis

A strictness analyser has to be very careful because it risksa lot if it makes a mistake. If

Strictness Analysis were to mistakenly decide to evaluate an expensive unneeded expression

eagerly then the program could waste the total cost of all evaluations of that expression. Without

abortion or adaption there is no way for the system to recoverfrom a bad decision. Strictness

Analysis is thus forced to be very conservative.

By contrast, Optimistic Evaluation risks a lot less if it makes a mistake. If Optimistic Evalu-

ation mistakenly decides to evaluate an expensive unneededexpression eagerly, then the profiler

and abortion mechanism ensure that only a relatively small amount of work can be wasted be-

fore the expression will revert to being evaluated lazily. This allows Optimistic Evaluation to

be a lot more aggressive than Strictness Analysis.

Strictness Analysis can make Programs Slower

It should be noted that Strictness Analysis is not guaranteed to improve the performance of a

program. Consider for example the following program:1

f 0 = []

f n = n : f(n− 1)

g [] = 0

g (x : xs) = 1 + g(xs)

main = g (f 1000000000)

The recursive calls tof are needed, and thus a strictness analyser may make them eager. How-

ever, if f is evaluated eagerly thenf 1000000000 will build up an enormous structure in the

heap and so evaluation ofmain will require a lot of space. By contrast, iff was evaluated

lazily then the list producerf and the list consumerg would run in lock-step, causingmain

to run in constant space. If heap space is increased then garbage collection time can increase

(Section 9.3.1) and so Strictness Analysis is likely to makethis program run more slowly.

As we explained in Section 9.3.2, we have implemented a crudemechanism which we

believe should prevent this problem occurring with Optimistic Evaluation; however we believe

that further work is required in this area.

1This particular program can be simplified by deforestation [Wad90a, Wad84, GLP93], however not all such
programs can.
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13.1.3 Cheapness Analysis

Cheapness Analysis [Myc80, Fax00] is another static analysis in the same vein as Strictness

Analysis. Like Strictness Analysis, Cheapness Analysis examines the static text of a program

and attempts to find expressions that can be safely evaluatedeagerly. The key difference is that

while Strictness Analysis looks for expressions that are guaranteed to be needed, Cheapness

Analysis looks for expressions that are guaranteed to be cheap.

How it works

Is x+1 cheap to evaluate? It depends on whetherx is already evaluated. Ifx is an argument to a

function then we may need to examine all calls to the function—and that is not straightforward

in a higher-order program. Faxén solves this problem usinga sophisticated whole-program

flow analysis. Unfortunately, being a whole-program analysis, it causes problems for separate

compilation. These problems are probably soluble—for example by compiling multiple clones

of each function, each suitable for a different evaluation pattern—but they further complicate

the implementation. This is why we were not able to implementcheap eagerness in GHC for

comparison purposes.

Dynamic Cheap Eagerness

A further development, Dynamic Cheap Eagerness [Fax01], uses a more complicated analysis

to find cheap recursive functions and arrange for them to callthemselves eagerly up to a certain

depth. The effect is very similar to the speculation depth limits used by Optimistic Evalua-

tion, however the limits are determined at compile time by a static analysis, rather than being

determined at runtime by a profiler.

Performance

Faxén reports some promising speedups, generally in the range 0-25% relative to his baseline

compiler, but these figures are not directly comparable to ours. As Faxén is careful to point

out, (a) his baseline compiler is a prototype, (b) his strictness analyser is “very simple”, and

(c) all his benchmarks are small. The improvements from Cheapness Analysis may turn out to

be less persuasive if a more sophisticated strictness analyser and program optimiser were used,

which is our baseline. (Strictness Analysis does not require a whole-program flow analysis, and

readily adapts to separate compilation.)
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Worst Case Performance

How cheap is cheap? Cheap Eagerness uses a fairly arbitrary threshold for deciding whether an

expression is cheap. Importantly, this threshold is considerably greater than the cost of building

a thunk. If Cheap Eagerness eagerly evaluates a lot of cheap expressions that are not needed

then performance can be considerably worse than Lazy Evaluation. This problem is made worse

by Dynamic Cheap Eagerness: although the body of a recursivefunction may be cheap, this cost

must be multiplied by the number of times that the function isallowed to call itself recursively.

It is of course possible to improve the worst case performance by reducing the threshold

below which an expression is considered to be cheap, and by reducing the depth to which a

recursive function is allowed to be called. However such a change will reduce the amount of

eager evaluation that can take place and will make the average performance worse.

13.1.4 Other Static Optimisations

There exist many other static optimisations that can improve the performance of non-strict pro-

grams. A particularly interesting example is the GRIN project [Boq99]. GRIN does a lot of

clever optimisations, but perhaps its most interesting optimisation is its thunk inlining transfor-

mation. GRIN performs a whole-program flow analysis for a program, attempting to discover

which thunks can be evaluated at any particular point. Consider for example the following

program:
f x = x + 1

g y = let p = y + 1 in

let q = y + 2 in

(fp) + (fq)

GRIN’s flow analysis will realise that, inside the body off , x must be eitherp or q. It will thus

translate this program into something rather like the following program:

f x case x of

ThunkP y → y + 1 + 1

ThunkQ y → y + 2 + 1

g y let p = ThunkP y in

let q = ThunkQ y in

(fp) + (fq)

We can see that the code for the thunksy + 1 andy + 2 has been inlined at the point at which

the thunks might be demanded. This optimisation, together with the further optimisations that
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it enables, can significantly reduce the cost of Lazy Evaluation.

Another interesting static optimisation is Wansbrough’s usage analysis [Wan02, WP99].

This uses an analysis similar to that used for linear types [Wad90b, Bak95, TWM95] to detect

thunks that can only be used at most once. If a thunk can be usedat most once then the

implementation can avoid the cost of pushing and later entering an update frame (Section 7.4.2).

13.2 Eager Haskell

Eager Haskell [Mae02b, Mae02a] was developed simultaneously, but independently, from our

work. Its basic premise is identical: use Eager Evaluation to improve the performance of non-

strict programs, together with an abortion mechanism to back out when eagerness turns out to

be over-optimistic. The critical difference between EagerHaskell and Optimistic Evaluation is

that while Optimistic Evaluation uses an online profiler to decide which expressions should be

evaluated eagerly, Eager Haskell evaluates everything eagerly.

13.2.1 Code Generation

The code generated by Eager Haskell is largely the same as would be generated for a conven-

tional strict language such as ML [MTHM97].let expressions never evaluate lazily, and so

there is no need to generate any code for lazy thunks or to generate branches at the beginning

of let expressions.

13.2.2 Abortion

What distinguishes Eager Haskell from a conventional strict language implementation is its

abortion mechanism. Like Optimistic Evaluation, Eager Haskell uses abortion to back out of

speculations that turn out to be too expensive; however the abortion mechanism in Eager Haskell

is very different to that used by Optimistic Evaluation.

Optimistic Evaluation considers abortion to be a tool of last resort, using profiling as its pri-

mary mechanism for preventing wasteful speculation. As we showed in Section 12.4.3, abortion

is a rare event, taking place only if a speculation has been running for a very long time. If spec-

ulations spawned by alet are frequently aborted then it is likely that the profiler will avoid

speculating thatlet in the future.

By contrast, Eager Haskell uses abortion as its primary mechanism for coping with wasteful

speculations. This leads to very different design choices.Abortion in Eager Haskell is frequent

and periodic: once a given amount of heap has been allocated,all execution will be aborted. The

Eager Haskell abortion mechanism does not care how long any active speculations have been

running for, or even whether the program is speculating at all—abortion is purely periodic.
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The mechanism used for implementing abortion itself is alsovery different from that of

Optimistic Evaluation. While Optimistic Evaluation manages abortion in the runtime system,

Eager Haskell instead puts the abortion code for an expression in the expression code itself.

Once the abortion flag is set, any subsequent function call will return a suspension instead

of evaluating its body. If acase expression finds that its scrutinee is a suspension then it

will return a suspension itself. Similarly, a function application will return a suspension if the

function being applied evaluates to a suspension. Abortioncontinues right back to the root of

the stack. Once abortion has completed, evaluation is restarted by forcing the suspension for

the root computation.

Eager Haskell has gone to considerable effort to make abortion very efficient. The abortion

check at the entry to a function is cunningly combined with a stack check, making it essentially

free. Similarly, various tricks are employed to allow largechunks of stack to be aborted and

restored without having to be repeatedly copied between theheap and stack. Eager Haskell’s

abortion mechanism is thus considerably more efficient thanthat used by Optimistic Evaluation.

13.2.3 Chunky Evaluation

Eager Haskell’s periodic abortion gives it a form of chunky evaluation, but with chunk sizes

being limited by abortion frequency rather than by speculation depth. To see the effect that

this has, consider a tree structure in which the first child ofa node is always unneeded, but the

second child is always needed. Optimistic Evaluation will quickly learn to evaluate the second

child of a node chunkily but to evaluate the first child lazily. By contrast, Eager Haskell will

always evaluate the tree in a depth first manner. It will follow the first child of a node and may

be aborted before it has a chance to evaluate the second child.

13.2.4 Worst Case Performance

Eager Haskell is able to guarantee that, in the worst case, itwill be only a constant factor slower

than Lazy Evaluation; however the constant factor involvedis quite large: Maessen reports that

theconstraints program from the NoFib suite slows down by a factor of over 100[Mae02a].

Bad behaviour such as this occurs when there are many expressions that are expensive and

unused; Eager Haskell will evaluate them all eagerly, and isthus likely to spend a considerable

proportion of its time doing unnecessary work.

Increasing the abortion frequency will reduce the amount ofwasted work, but it will also

increase the overheads, as the proportion of runtime taken up by abortion increases. It is thus the

case that, in order to achieve good performance on average, one must accept bad performance

in the worst case.

The worst case performance of Eager Haskell relative to LazyEvaluation is arguably unim-

portant. Rather than seeing Eager Haskell as a new way to evaluate existing Haskell programs,
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it is perhaps better to see Eager Haskell as a new language which is largely compatible with

Haskell, but which has different semantics. If a program is written with Eager Haskell in mind

then it is not hard to ensure that Eager Haskell will evaluateit efficiently. In particular, Eager

Haskell has support for laziness annotations that can be used by a programmer to mark ex-

pressions that should not be speculated. One might argue that annotating expressions that are

potentially expensive and unnecessary is good programmingstyle, regardless of the evaluation

strategy being used.

13.2.5 Average Performance

The average performance of Eager Haskell is considerably better than its worst case perfor-

mance but is, at least at present, inferior to that of Optimistic Evaluation. In Maessen’s the-

sis [Mae02b] he claims an average slowdown of 60% relative toGHC, compared with an aver-

age speedup of around 20% for Optimistic Evaluation.

It is likely that Eager Haskell could be made significantly faster. Unlike us, Maessen wrote

his compiler from scratch; it is thus considerably more primitive than ours and has many ways

in which it could be made significantly faster. It seems reasonable to assume that, for suitably

written programs, a more advanced implementation of Eager Haskell should be able to approach

the speed of a high-performance strict functional languages such as O’Caml [LRVD98].

In some benchmarks Eager Haskell achieves performance thatis better than Optimistic Eval-

uation; however one has to bear in mind that Optimistic Evaluation incurs considerable over-

heads in its switchablelet expressions and online profiler; both of which are essentialif the

worst case behaviour is to be bounded.

13.3 Speculative Evaluation for Multiprocessor Parallelism

The parallel programming community has been making use of speculation to exploit multiple

processors for a long time [Bur85]. There, the aim is to make use of spare processors by

arranging for them to evaluate expressions that are not (yet) known to be needed. There is a

large amount of work in this field, of which we can only cite a small subset.

13.3.1 Basic Principles

Optimistic Evaluation and Speculative Evaluation for Multiprocessor Parallelism look superfi-

cially very similar: both systems evaluate expressions without knowing that they are needed.

However there are important differences.

Under Optimistic Evaluation, every cycle spent in a speculative evaluation is a cycle that

could instead have been spent doing useful work. It is thus vitally important that the expression
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being speculated is actually needed. By contrast, speculative evaluation for multiprocessor

parallelism will typically perform speculative evaluations on processors that would otherwise

be idle. While such systems would prefer it if the expressions being speculated were needed,

the issue is far less pressing.

There is a similar dichotomy regarding the sizes of speculative evaluations. In Optimistic

Evaluation, each speculative evaluation saves the fairly-constant amount of work that would

be required to build a thunk, but potentially wastes the amount of work spent performing the

speculative evaluation. Optimistic Evaluation thus aims to perform a large number of small

speculations. By contrast, in a parallel setting, each speculative evaluation wastes the fairly-

constant amount of work required to fork a new process, but potentially-saves the amount of

work spent performing the speculative evaluation. Parallel systems thus aim to perform a small

number of large speculations.

These two differences cause multiprocessor speculation systems to be designed in very dif-

ferent ways to Optimistic Evaluation.

13.3.2 Making Speculation Efficient

A lot of work in the parallel community focuses on making parallel speculation efficient; how-

ever most of this work is inapplicable to Optimistic Evaluation.

One interesting example is Local Speculation. Local Speculation [MJG93, Cha98] does

some speculations on the local processor when it would otherwise be waiting. This avoids

the overhead of transferring work to another processor and allows shorter speculations to be

worthwhile.

Another strand of work attempts to aggregate tiny threads into larger, compound threads

that can be spawned together and thus share their thread startup costs [Tra88, SCG95]. In some

ways this is closer to our work: Lazy Evaluation is a bit like parallel evaluation scheduled on a

uniprocessor, while Eager Evaluation instead aggregates the thread for the right hand side of a

let into the thread for the body. However the issues addressed are very different; as Schauser

puts it “the difficulty is not whatcan be put in the same thread, but whatshouldbe ... given

communication and load-balancing constraints”. Furthermore, such thread partitioning systems

are static, whereas our approach is dynamic.

13.3.3 What To Speculate

Which expressions should be evaluated speculatively?

The simplest answer is to evaluate everything speculatively. This is the approach taken by

leniently evaluated dataflow languages such as Id [Nik91] and pH [NA01]. A lenient language

will evaluatelet x = E in E ′ by starting a new task forE and then evaluatingE ′. Eager
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Haskell (See Section 13.2 has its roots in the world of lenient languages, and can be seen as

being rather like a sequential implementation of pH.

Another approach is to provide an explicit language construct that lets the user specify

which expressions should be speculated. MultiLisp [Osb89,Hal85] allows expressions of the

form (future E) that specify that the expressionE should be evaluated in parallel with the

current task, in the hope that its value turns out to be useful[FF95].

Clearly some speculative tasks are more likely to be useful than others. There has thus been

considerable work on assigning priorities to tasks. At the simplest level, one can give specula-

tive tasks lower priorities than mandatory tasks, ensuringthat a speculative task never prevents

a mandatory task from running. Extensions of this include systems in which the priority of a

task takes into account user assigned priorities [Bur85], or the depth of speculation [Mat93], or

its reachability from other tasks [Par91, PD89].

We are not aware of any work in the parallel speculation community that uses online pro-

filing to decide which expressions should be speculated; however it is possible that an online

profiler might be useful for this purpose.

13.3.4 Abortion

Abortion is not essential in a parallel speculation system.If an unnecessary speculative task

does not terminate then the worst that can happen is that it blocks execution of lower priority

speculative tasks—it cannot cause the whole program to not terminate. Nevertheless, it is still

desirable for a speculative task to be aborted if it is certain that its result will not be needed. One

common approach is to use a garbage collector to find speculative tasks whose result closures

are not reachable from any other task [BH77, HK82, GP81].

13.4 Speculation for Uniprocessor Parallelism

Modern processors typically have a large number of instruction units which can execute in

parallel. If a compiler is not able to find mandatory work for all instruction units, then it may

choose to perform speculative work on instruction units that would otherwise be idle. Unlike

speculative evaluation for multiprocessors, such systemsaim to find small speculative tasks,

and, unlike Optimistic Evaluation, all work that we are aware of selects such tasks at compile

time.

Although we believe that these techniques could work well for non-strict languages, we are

not aware of any work that has done this.
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13.4.1 Speculation in Imperative Languages

Much work on uniprocessor speculation focuses on automatically extracting parallelism from

imperative programs. Rather than speculatively evaluating pure expressions, one instead spec-

ulatively performs imperative commands. The issues involved here are more complex than for

purely functional languages, as illustrated by the following program:

do C

if (B){

do C’

}

A compiler may be able to improve performance by executing the commandsC andC ′ simulta-

neously. In order for this to be sound, it must be the case thatC does not change any state read

byC ′ (data speculation) and thatC ′ would actually be executed by normal sequential evaluation

(control speculation). If either of these requirements turn out to be false, then the speculative

execution ofC ′ must bereverted, undoing any imperative actions it may have performed.

13.4.2 Scheduling Instructions

A compiler can schedule speculative tasks statically by interleaving speculative instructions

with mandatory ones. There has been particular interest in doing this for Intel’s IA64 [ia600]

processor, which has a large number of instruction units andno dynamic instruction reorder-

ing [LCH+03].

Simultaneous Multithreading architectures [TEL95, Gwe99, Eme99] allow multiple threads

to run simultaneously on one processor, all of which have access to the same instruction units.

Speculative Multithreading architectures [Kri99, MG99] extend this by providing hardware sup-

port for thread reversion and sequential dependencies between threads. Such architectures make

it much easier for a compiler to exploit multiple instruction units because the interleaving of

tasks is done dynamically by the processor, rather than statically by the compiler. Considerable

work has been done on compiling programs efficiently for sucharchitectures [BF02, PO03].

While offline profiling has been used to assist in the scheduling of uniprocessor paral-

lelism [BF02], we are not aware of any work that uses online profiling; indeed it seems unlikely

that online profiling would be worthwhile.



13.5. Models of Cost 193

13.4.3 IO Speculation

Some programs spend a large proportion of their time waitingfor pages to be loaded from disk.

The performance of such programs can be improved by speculatively executing the instructions

that should be performed once the page has loaded [CG99, FC03]. In this case, the hope is that

the speculative task will request pages that the mandatory task will need when it awakes, thus

allowing several pages to be fetched in parallel and reducing the effects of IO latency.

13.4.4 Branch Prediction

Perhaps the best known example of control speculation isbranch prediction[Smi81]. Branch

Prediction is a feature of most modern processors that speculatively evaluates the side of a

branch that the processor believes is most likely to be used.Although Branch Prediction is

normally carried out at runtime by the processor, it is also possible to do it using offline profil-

ing [FF92] or statically in the compiler [BL93].

13.5 Models of Cost

There has been much previous work on cost models. In this Section we discuss several previous

models of cost and compare them to the model that we presentedin Chapter 5

13.5.1 PSL Computation Graphs

Perhaps the most similar cost model to ours is thePSL Computation Graphsof Greiner and

Blelloch [GB99, GB96]. Computation graphs are used to analyse the cost of evaluating a pro-

gram using a data-driven parallel evaluation strategy. Nodes represent unit cost computations,

and edges represent sequential dependencies: If a nodex contains a link to a nodey then this

means thaty cannot start untilx has finished.

Every computation graph has two distinguished nodes, knownas thesourceandminimum

sink. Thesourcerepresents the start of the evaluation, while theminimum sinkrepresents the

computation that produces the result of the computation. When drawn graphically, subgraphs

are drawn as triangles in which the top corner links to the source and the bottom left corner is

linked to by the minimum sink. Unlike cost graphs, computation graphs contain only serialisa-

tion information: they do not contain values.

Figure 13.1 gives a computation graph for evaluation of the expressionE E ′, given thatE

evaluates toλx.E ′′. This graph contains subgraphs for the evaluation ofE, E ′ andE ′′. We can

see that when the evaluation starts, the virtual machine will do one unit of work (represented by

a black circle) and then start evaluation of both the function E and the argumentE ′. Once the

function has been evaluated to a value, the virtual machine will do another unit of work, and
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Figure 13.1 : A PSL Computation Graph for E E′, given that E evaluates to λx.E′′
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Figure 13.2 : A Cost Graph for let y = E′ in E y, given that E evaluates to λx.E′′

then start evaluation of the function bodyE ′′. The graph for the function body will be generated

with x bound to the minimum sink ofE ′. From this graph, one can see thatE andE ′ can be

done in parallel, but that some computations withinE ′′ may need to wait forE ′ to complete.

For comparison, Figure 13.2 shows a cost graph for the same program. We can see that there

are some similarities between cost graphs and Computation Graphs, but there are also significant

differences. Cost graphs describewhatcomputationsmusttake place; while computation graphs

describewhencomputationscan take place. The root node of a cost graph corresponds to both

the source and minimum sink of a computation graph. The correspondence between the two

approaches is illustrated by Figure 13.3 which shows the nodes from Figure 13.2 but with edges

similar to those used by a computation graph.

Unlike cost graphs, computation graphs do not distinguish between eager edges and demand

edges. Indeed, such a distinction does not make sense in their model as(i), their semantics

assumes that all computations in the computation graph are executed at some point, and(ii) ,

their semantics is data-driven rather than demand driven: acomputation is assumed to start as

soon as all the computations linking to it have finished. It isnot obvious whether computation

graphs could be easily adapted to describe a mixed eager/lazy evaluation strategy.

Another important difference between computation graphs and cost graphs is that a com-
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Figure 13.3 : Half-way between a Cost Graph and a Computation Graph

putation graph cannot be infinite. This makes sense for computation graphs as it is assumed

that every computation in the computation graph will be performed at some point; however it

makes them unsuitable for our purposes, in which infinite-cost evaluations must be represented.

Greiner and Blelloch present the semantics of computation graphs using a big-step operational

semantics which explicitly performs all computations. It is not clear whether this semantics

could be easily adapted to cope with infinite graphs.

13.5.2 Circuit Semantics

Circuit Semantics [Dan98, BD96] represent programs using directed graphs similar to those

commonly drawn in electronics. Contrary to what the name might suggest, these graphs are

acyclic. The basic idea is similar to that of PSL ComputationGraphs in that links represent

sequential dependencies between computational steps.2

Circuits are described only very informally, their main purpose being to graphically justify

a step-counting semantics for data-driven parallel evaluation. This semantics is then used to

compare the intensional expressiveness of various parallel operators.

13.5.3 Step Counting Models

Many previous models of cost work by instrumenting an evaluation semantics to include a count

of the number of steps taken by evaluation. Such models are sometimes referred to asprofiling

semantics. Sands [San95a] gives an operational semantics for cost anduses it to prove various

theorems about cost equivalence. Roe [Roe90] gives a denotational semantics that uses times-

tamps to calculate the number of parallel steps required to calculate an expression using Lenient

Evaluation. Rebon [RPHL02] and Rosendahl [Ros89] uses stepcounting to place bounds on

the time and space complexity of a program. Santos [San95b] uses a step-counting semantics

to define an ordering on expression costs which he uses to prove the efficiency of a number of

2And indeed, both concepts have emerged from Carnegie MellonUniversity, so the similarity is unsurprising.
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optimisations. Sansom [San94] uses a step-counting semantics to define the behaviour of an

offline execution profiler.

Unlike our Cost Graphs, such models are strongly tied to a particular evaluation strategy

and a usually not composable.

13.5.4 Other Cost Models

The cost graphs that we produce are in some ways similar to thegraphs used by graph re-

duction [Wad71, ET96], but graph reduction systems consider a graph to be an intermediate

data-structure used in evaluation. They do not attempt to define a unique graph that represents

the work done by an evaluation.

Wadler [Wad88] uses Strictness Analysis to determine that part of the result of a lazy ex-

pression that will be needed, and thus determine the cost of evaluating that expression.

13.5.5 Other Graphs

Our cost graphs bear similarities to the evaluation order independent structures produced by

various lazy debuggers [NS97, WCBR01], however we are usingthese structures for a very

different purpose.

Our cost graphs are also very similar to Dynamic Dependence Graphs [AH90]. Dynamic

Dependence Graphs are specific to a particular evaluation strategy, and we are not aware of any

formal model for them.

13.6 Profiling

Much work has been devoted to profilers and the way in which they can be used to direct

optimisations; indeed there are entire workshops dedicated to the subject [FDD01, RV04]. It is

only practical for us to cite a small subset of this work.

13.6.1 Sampled Profiling

The idea of profiling a program for only a small proportion of its execution has been around for

a long time. One of the best known examples is GProf [GKM83], which looks at a program at

a number of sample points and gathers statistics that tell the programmer where their program

is spending its time. Many other sampling profilers exist, including Digital’s DCPI [ABD+97],

and Mortonosi’s cache behaviour profiler [MGA93]. Other work avoids the overhead of profil-

ing almost completely by using a separate processor to profile a program while it runs [ZS01].

The idea of having code that can actively switch between profiled and unprofiled modes is

also well known. Arnold and Ryder [AR01] describe a system inwhich normal and profiled ver-
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sions are compiled for every code block. Normally, the program will run in an unprofiled mode,

but the runtime system can switch the program into profiled mode during profiling periods.

13.6.2 Feedback Directed Optimisation

Feedback Directed Optimisation [FDD01] is a widely used technique in static compilers. A pro-

gram is run in a special profiling mode, recording statisticsabout the behaviour of the program.

These statistics are then used by the compiler to make optimisation choices when compiling a

final version of the program. Many commercial compilers use this technique. In principle we

could do the same, compiling the configurationΣ into the program; we have not done so as this

would make it harder for us to adapt our evaluation strategy at runtime.

13.6.3 Online Profiling

Online Profiling is used in many existing language implementations, including several imple-

mentations for the Java [GM96] language [Sun01, BCF+99, Arn02]. One of the first imple-

mentations to use such techniques was for Self [H9̈5]. These systems use similar techniques to

Optimistic Evaluation, but do not apply them to laziness.

13.7 Debuggers for Non-Strict Languages

In Chapter 11 we described HsDebug: a debugger that is built on top of Optimistic Evaluation.

There has been much prior work on debugging of non-strict languages.

13.7.1 Tracing

Most previous work on debugging of Lazy programs has focusedon tracing. Systems such as

Freja [NS97, NS96, Nil01], Buddha [Pop98] and Hat [SR97, WCBR01] augment a program so

that it creates a trace as it executes. This trace gives a history of the evaluation that took place.

For each value (e.g.5), a link can be provided to the redex that evaluated to produce that value

(e.g.3 + 2)) and to the larger evaluation that this evaluation was partof (e.g.f(3)).

Once such a trace has been built up, it can be explored in many different ways. Hat allows

one to look at any object on the heap and find out how it came to becreated. Other work

allows evaluations to be observed in the order in which they would have taken place under

Eager Evaluation, creating a similar environment to a traditional debugger [NF92, NF94].

Hat and Buddha run the program to completion before exploring the debug trace. While this

simplifies the implementation, it makes debugging of IO awkward. In a traditional debugger,

one can step over IO actions and observe the effect that the actions have on the outside world.

This is made significantly more difficult if all actions take place before debugging starts; indeed,
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Pope [Pop98] says that it is assumed that Buddha will only be applied to the sub-parts of a

program that do not perform IO operations. Freja does betterin this respect by building its trace

while debugging.

One drawback of trace based debugging approaches is performance. If every evaluation is

to be logged, then a very large amount of information must be recorded. Not only does the

recording of such information take time—it also takes space. Freja works round this problem

by only storing a small amount of trace information and then re-executing the program if more

is needed, however this is quite tricky to implement, particular when IO is involved. There has

also been considerable work on reducing the amount of trace information generated for redex

trails [SR98].

HsDebug is definitely less powerful and less elegant than trace based debuggers. It is how-

ever simpler and faster, and does not require extra space.

13.7.2 Cost Centre Stacks

Cost Centre Stacks [MJ98, San94] extend a program so that it maintains a record of the call

chain that the current expression would have, were it being evaluated strictly. The information

obtainable from a cost centre stack is thus very similar to that available from the real stack

under Optimistic Evaluation, or the trail created by Freja.Cost Centre Stacks were developed

for use in profiling however it is plausible that a debugger could be written that made use of

them. Such a debugger could show the user the current cost-centre stack rather than the actual

execution stack, providing the user experience of strict evaluation, without having to actually

evaluate the program strictly. We believe that this approach may be worth exploring.

13.7.3 HOOD

HOOD [Gil00] can be seen as an extension of traditional “printf” debugging. The programmer

adds annotations to the program that allow intermediate program states to be observed. HOOD

goes a lot further than “printf” debugging by allowing lazy values and functions to be observed

only to the extent to which they have been used. A sophisticated viewer application [Rei01] al-

lows the programmer to view and manipulate traces resultingfrom an execution. While HOOD

is extremely powerful, the need to add manual annotations can make it awkward to use.

13.7.4 Time Travel Debugging

Time Travel Debuggers extend the “stop, examine, continue”model further by allowing the pro-

gram to run backwards to a breakpoint as well as forwards. Often one will find that the reason

for something going wrong is that part of the program state has become invalid. In such a case,

it can be extremely useful to run the program backwards from the point at which something
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went wrong, to the point at which the state became invalid. Examples of time travel debuggers

include the excellent O’Caml debugger [LRVD98] and the now sadly defunct SML/NJ debug-

ger [TA95, TA90]. Many of the features of Time Travel Debugging can also be achieved by

Tracing, and vice versa.

13.8 Reducing Space Usage

As we remarked in Section 12.6, some non-strict programs suffer from poor performance due to

space leaks. In this section we discuss previous work that has attempted to prevent such space

leaks.

13.8.1 Stingy Evaluation

Stingy Evaluation [vD89] is an evaluation strategy designed to reduce space leaks such as the

one described in Section 12.6. When evaluating alet expression, or during garbage collection,

the evaluator does alittle bit of work on the expression, with the hope of evaluating it,and

avoiding having to build a thunk. As with Eager Haskell, all expressions are eagerly evaluated,

however the amount of evaluation done before abortion is significantly smaller, with only very

simple evaluations allowed. Often this small amount of workwill not be useful, causing some

programs to run slower. Stingy evaluation was implemented in the LML [AJ89] compiler.

A more modest approach to the same problem is presented by Wadler [Wad87] who uses the

garbage collector to evaluate any record selector whose record constructor has become a value.

This avoids space leaks that can otherwise result if a recordconstructor contains links to other

closures that are not of interest to the selector. Sparud [Spa93] solves many cases of the same

problem by generating particularly clever code for patternmatches.

13.8.2 Heap Profiling

Rather than attempting to remove space leaks automatically, it is perhaps preferable to provide

the programmer with a profiler which allows the programmer tounderstand why the space leak

is occurring and which will show them how they might go about fixing it; this is the approach

taken by heap profilers [RR96b, RR96a, RW92]. These profilersare extremely sophisticated

and provide information that makes it fairly easy for a programmer to see which unevaluated

thunks are causing them to leak memory. Given this information, the programmer can add

annotations to their program to cause the offending expressions to be evaluated strictly.
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13.9 Other Approaches to Evaluation

This thesis explores the space between Lazy Evaluation and Eager Evaluation. However there

any many other evaluation strategies which do not fall into this space. In this Section, we discuss

two such evaluation strategies: partial evaluation, and optimal evaluation.

13.9.1 Partial Evaluation

Partial Evaluation[CD93, JGS93, PEP97], also known asProgram Specialisationis an evalu-

ation technique that can perform evaluation steps underneath lambda expressions. Consider the

following example:
f x y = case x of

Red → y + 1

Green → y + 4

g y = f Green y

A partial evaluator might partially evaluateg’s call tof , giving the following definition forg:

g y = y + 4

Partial evaluation at compile time is used in many optimising compilers for mainstream lan-

guages such as C. It is also frequently done at runtime by dynamically optimising compilers for

languages such as Java.

13.9.2 Optimal Lambda Reduction

Optimal Lambda Reduction [Lév78, Lév80, Lam90] is a fascinating approach to evaluation that

aims to maximise the amount of work that is shared by different applications of a function.

Consider the following lambda expression (taken from [Lam90]):

(λg.(g(g(λx.x))))

(λh.(

(λf.(f(f(λz.z))))

(λw.(h(w(λy.y))))))

If we are to evaluate this using normal graph reduction, thenthere are two possible redexes

in this expression.

Outer: Apply (λg.(g(g(λx.x)))) to the term beginningλh. . . .

Inner: Apply (λf.(f(f(λz.z)))) to the term beginningλw. . . .
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If we perform the outer reduction, then, wheng is applied twice, the inner reduction will

have to be applied twice to reduce the function body. This is because, while graph reduction

allows the sharing of terms, it does not allow the sharing of function bodies between functions

that have been applied to different arguments.

Performing the inner reduction wastes work too. In this case, the two applications off will

mean that we have to perform the application ofh twice. We can’t do the application ofh before

doing the other two reductions as the value ofh isn’t known until we have performed the outer

reduction. In this case, conventional graph reduction willduplicate work, irrespective of the

evaluation order chosen.

The essential problem here is that conventional graph reduction copies the body of a function

when the function is applied to an argument. This prevents the sharing of any reductions that

might take place in this function body.

Optimal Lambda Reduction gets round this problem by arranging for the bodies of functions

to be shared even after the function has been applied to several different arguments. This is

accomplished using a complex system offan insand fan outsthat arrange that variables in a

function body be seen as being bound to different things depending on where the function body

is being observed from.

While Optimal Reduction does minimise the number of beta reductions, it also introduces a

large amount of book-keeping complexity that significantlyreduces its efficiency. Asperti and

Chroboezek [AC97] have shown that it is possible to create animplementation of Optimal Re-

duction that is capable of outperforming implementations of strict and lazy languages for some

example programs. However the programs they use are quite unusual, and do not resemble the

kinds of programs that people typically write. It is hard to know whether Optimal Reduction is

capable of giving real performance increases for real programs. Asperti and Chroboezek sug-

gest that the availability of Optimal Reduction could causepeople to change their programming

style to favour styles of programming that would otherwise be impractically inefficient - just as

Lazy Evaluation has done in the past.
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Conclusions

In this chapter, we summarise the work described in this thesis, draw attention to its strengths

and shortcomings, and discuss further work.

Performance

Optimistic Evaluation improves the performance of the Haskell programs we tested by an av-

erage of 20% relative to the best performing compiler previously available. Moreover, it does

this without slowing any programs down by more than 7%. To putthis into context, recall that

Strictness Analysis improves performance by around 13% (Section 12.7.3), and that Optimistic

Evaluation achieves its 20% speedup relative to a compiler that already uses Strictness Analysis.

We believe that it should be possible to improve the performance of Optimistic Evaluation

further. In particular, we believe that we could achieve better performance if we designed a new

compiler specifically for Optimistic Evaluation, rather than extending GHC.

Worst Case Behaviour

Despite being an adaptive evaluation technique, the behaviour of Optimistic Evaluation is well

understood. Not only has it been demonstrated to be efficienton average, but, with the aid of

a new denotational semantics, we have shown that we can boundits worst case behaviour with

respect to a simplified cost model.

This does not mean that it is impossible that any program willgo slower than predicted by

this bound; our formal cost model is only approximate, and our profiler further approximates

this model. However we are confident that neither of these approximations will ever be wrong

202
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by more than a reasonable constant factor, and so believe that it is unlikely that any program

can slow down by an unreasonably large amount.

While Optimistic Evaluation can make some programs go slower, its worst case behaviour

is better than that of either Strictness Analysis or Cheapness Analysis, both of which are widely

accepted. Perhaps more relevantly, we are not aware of any other dynamically optimising lan-

guage implementation of similar complexity whose worst case behaviour is understood as well

as that of Optimistic Evaluation.

Predictability

One criticism that could be levied against Optimistic Evaluation is that its performance is fairly

unpredictable. Minor changes to a program, or even to its input data, can cause the profiler

to react in a different way, causing performance to change. This problem is not unique to

Optimistic Evaluation, but is a problem common to the majority of dynamically optimising

language implementations.

While Optimistic Evaluation can cause programs to execute significantly faster than they

would under Lazy Evaluation, we believe that it is unwise fora programmer to rely on this.

If it is absolutely essential for the efficient execution of aprogram that a particular expression

be evaluated eagerly, then we believe that the programmer should mark this with a strictness

annotation.

Complexity

While Optimistic Evaluation does give good performance results, it has to go to a lot of effort to

achieve this. Optimistic Evaluation is a very complex evaluation strategy to implement. Spec-

ulation, abortion, profiling, and semi-tagging are all complex ideas, all have knock-on effects

throughout the runtime system, and all are difficult to debugwhen they go wrong. Although

we had originally planned to merge Optimistic Evaluation into the main branch of GHC, it now

seems likely that we will not do this—it is simply too difficult to maintain.

Non-Strict Languages

Perhaps the biggest weakness of Optimistic Evaluation is that it is an implementation technique

for non-strict languages. During the course of this research, we have come to the conclusion

that, although non-strict languages seem superficially appealing, they are not, in general, a

good idea. While Lazy Evaluation is often useful, we do not believe that it is wise to make it

the default evaluation strategy for all expressions. Although much has been written about the

supposed expressive beauty of non-strict languages, most non-strict programs we have investi-

gated contain only a small number of expressions for which laziness is useful, and it is usually
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obvious which expressions these are.

We now believe that, if a program makes essential use of laziness, then this should be a

deliberate design decision, and the way in which laziness isused should be stated explicitly

in the program text. This makes techniques such as Optimistic Evaluation, Eager Haskell,

Strictness Analysis, and Cheapness Analysis redundant.

Summary

We have achieved what we set out to do: we have designed and implemented an evaluation

strategy that significantly improves the performance of non-strict programs. If one wishes to

evaluate non-strict programs fast, and one is prepared to expend considerable effort to do this,

then we believe Optimistic Evaluation is a good technique touse. The biggest question is

perhaps whether one should be implementing a non-strict language in the first place.



APPENDIX A

Proof that Meaning is Preserved

In this Appendix, we prove the property referred to in Section 4.4:

Γ; c; s −→Σ Γ′, c′; s′ ⇒ M[[Γ, c, s]] =M[[Γ′, c′, s′]]

We proceed casewise, showing that the property holds for allrules defining−→. For each rule,

we show that the left hand side (LHS ) of the rule has the same meaning as the right hand side

(RHS ) of the rule.

A.1 Evaluation Preserves Meaning

Case: (VAL)

LHS =M[[Γ; V ; s]]

=M[[Γ[α 7→ (|V |)]; V ; s]] freshα and Theorem 4.3.3

= µρ(H[[Γ[α 7→ (|V |)]]]ρ t S[[s]]ρ E [[V ]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ[α 7→ (|V |)]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofE [[−]] andH[[−]]

=M[[Γ[α 7→ V ];Oα; s]]

= RHS

Case: (VAR)

LHS =M[[Γ; α; s]]

=M[[Γ;}α; s]] defn ofM[[−]] andC[[−]]

= RHS

205
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Case: (DEM1)

LHS =M[[Γ[α 7→ (|V |)];}α; s]]

=M[[Γ[α 7→ (|V |)];Oα; s]] defn ofM[[−]] andC[[−]]

= RHS

Case: (DEM2)

LHS =M[[Γ[α 7→ 〈(α′)〉];}α; s]]

= µρ(H[[Γ[α 7→ 〈(α′)〉]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′]]ρ) t S[[s]]ρ E [[α
′]]ρ) ε defn ofE [[−]]

=M[[Γ[α 7→ 〈(α′)〉];}α′; s]] defn ofM[[−]]

= RHS

Case: (DEM3)

LHS =M[[Γ[α 7→ E];}α; s]]

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[E]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[E]]ρ) t S[[s]]ρ E [[E]]ρ) ε defn ofE [[−]]

= µρ(H[[Γ]]ρ t S[[#α : s]]ρ E [[E]]ρ) ε defn ofS[[−]]

=M[[Γ; E; #α : s]] defn ofM[[−]]

= RHS

Case: (RESUME)

LHS =M[[Γ[α 7→ α′∠l];}α; s]]

= µρ(H[[Γ[α 7→ α′∠l]]]ρ t (S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′∠l]]) t (S[[s]]ρ E [[α]]ρ)) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′∠l]]) t (S[[s]]ρ E [[α
′∠l]]ρ)) ε defn ofE [[−]]

= µρ(H[[Γ]]ρ t (S[[#α : s]]ρ E [[α
′∠l]]ρ)) ε defn ofS[[−]]

= µρ(H[[Γ]]ρ t (S[[#α : s]]ρ (L[[l]]ρ ρ(α′)))) ε defn ofE [[−]]

= µρ(H[[Γ]]ρ t (S[[l : #α : s]]ρ ρ(α′))) ε defn ofS[[−]]

=M[[Γ;}α′; l : #α : s]] defn ofM[[−]]

= RHS
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Case: (UPD)

LHS =M[[Γ;Oα; #α′ : s]]

= µρ(H[[Γ]]ρ t S[[#α′ : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn ofS[[−]]

= µρ(H[[Γ[α′ 7→ 〈(α)〉]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

=M[[Γ[α′ 7→ 〈(α)〉];Oα; s]] defn ofM[[−]]

= RHS

Case: (APP1)

LHS =M[[Γ; E α; s]]

= µρ(H[[Γ]]ρ t S[[s]]ρ E [[E α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t S[[s]]ρ (E [[E]]ρ ρ(α)) ) ε defn ofE [[−]]

= µρ(H[[Γ]]ρ t S[[@α : s]]ρ E [[E]]ρ) ε defn ofS[[−]]

=M[[Γ; E; @α : s]] defn ofM[[−]]

= RHS

Case: (APP2)

For convenience, let us define:

ρ′ = (α 7→ λv.E [[E]]ρ[x 7→v])

LHS =M[[Γ[α 7→ (|λx.E|)];Oα; @ α′ : s]]

= µρ(H[[Γ[α 7→ (|λx.E|)]]]ρ t S[[@ α′ : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[@ α′ : s]]ρ E [[α]]ρ) ε defn ofE [[−]] andH[[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (ρ(α) ρ(α′)) ε defn ofS[[−]] andE [[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (λv.E [[E]]ρ[x 7→v] ρ(α′)) ε defn ofρ andρ′

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (E [[E]]ρ[x 7→ρ(α′)]) ) ε beta reduction

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ E [[E[α′/x]]]ρ[x 7→ρ(α′)]) ε Theorem 4.3.1

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ E [[E[α′/x]]]ρ) ε Theorem 4.3.2

=M[[Γ[α 7→ (|λx.E|)]; E[α′/x]; s]] defn ofM[[−]] andH[[−]]

= RHS
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Case: (LAZY)

LHS =M[[Γ; let x = E in E ′; s]]

=M[[Γ[α 7→ E]; let x = E in E ′; s]] newα and Theorem 4.3.3

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[let x = E in E ′]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′]]ρ[x 7→E[[E]]ρ]) ε defn ofE [[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′[α/x]]]ρ[x 7→E[[E]]ρ]) ε Theorem 4.3.1 and defn ofH[[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′[α/x]]]ρ) ε Theorem 4.3.2

=M[[Γ[α 7→ E]; E ′[α/x]; s]] defn ofM[[−]]

= RHS

Case: (SPEC1)

LHS =M[[Γ; let x = E in E ′; s]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[let x = E in E ′]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E
′]]ρ[x 7→E[[E]]ρ]) ε defn ofE [[−]]

= µρ (H[[Γ]]ρ t S[[({x}E ′) : s]]ρ E [[E]]ρ) ε defn ofS[[−]]

=M[[Γ; E; ({x}E ′ : s)]] defn ofM[[−]]

= RHS

Case: (SPEC2)

LHS =M[[Γ;Oα; ({x}E) : s]]

= µρ (H[[Γ]]ρ t S[[({x}E) : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E]]ρ[x 7→E[[α]]ρ]) ε defn ofS[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E[α/x]]]ρ) ε Theorem 4.3.1

=M[[Γ; E[α/x]; s]] defn ofM[[−]]

= RHS

A.2 Abortion Preserves Meaning

We can similarly prove that all the rules defining ‘ ’ preserve the meaning of an expression

with respect toM[[−]]. Formally, we prove:

Γ; c; s Γ′; c′; s′ ⇒M[[Γ; c; s]] =M[[Γ′; c′; s′]]
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Case: (!EXP)

The proof for(!EXP) is almost identical to the proof for(VAL):

LHS =M[[Γ; E; s]]

=M[[Γ[α 7→ E]; E; s]] newα and Theorem 4.3.3

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofE [[−]] andH[[−]]

=M[[Γ[α 7→ E];}α; s]]

= RHS

Case: (!RET)

The proof for(!RET) is trivial:

LHS =M[[Γ;Oα; s]]

=M[[Γ;}α; s]] defn ofM[[−]]

= RHS

Case: (!SPEC)

The proof for(!SPEC)is almost identical to the proof for(SPEC2):

LHS =M[[Γ;}α; ({x}E) : s]]

= µρ (H[[Γ]]ρ t S[[({x}E) : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E]]ρ[x 7→E[[α]]ρ]) ε defn ofS[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E[α/x]]]ρ) ε Theorem 4.3.1

=M[[Γ; E[α/x]; s]] defn ofM[[−]]

= RHS

Case: (!UPD)

The proof for(!UPD) is almost identical to the proof for(UPD):

LHS =M[[Γ;}α; #α′ : s]]

= µρ(H[[Γ]]ρ t S[[#α′ : s]]ρE [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α]]ρ) t S[[s]]ρE [[α]]ρ) ε defn ofS[[−]]

= µρ(H[[Γ[α′ 7→ 〈(α)〉]]]ρ t S[[s]]ρE [[α]]ρ) ε defn ofH[[−]]

=M[[Γ[α′ 7→ 〈(α)〉];}α; s]] defn ofM[[−]]

= RHS
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Case: (!ABORT)

The proof for(!ABORT)is almost the reverse of the proof for(RESUME):
LHS =M[[Γ;}α; (l : s)]]

= µρ(H[[Γ]]ρ t (S[[l : s]]ρ ρ(α))) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (S[[s]]ρ (L[[l]]ρ ρ(α)))) ε defn ofS[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ L[[l]]ρ ρ(α)) t (S[[s]]ρ ρ(α′))) ε defn ofE [[−]] for newα′

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α∠l]]) t (S[[s]]ρ ρ(α′))) ε defn ofE [[−]]

= µρ(H[[Γ[α′ 7→ α∠l]]]ρ t (S[[s]]ρ ρ(α′))) ε defn ofH[[−]]

=M[[Γ[α′ 7→ α∠l];}α′; s]] defn ofM[[s]]

= RHS

Soundness of Bounded Evaluation

Having shown that−→ and are sound, it easy easy to see thaty must also be sound as every

y transition corresponds to either an−→ transition or an transition.



APPENDIX B

Proof that Costed Meaning is Preserved

In this appendix, we prove the property referred to in Section 5.6.4:

T ; c; s −→ T ′; c′; s′ ⇒ M[[T ; c; s]] =M[[T ′; c′; s′]]

We start with two important lemmas, and then proceed to show that the meaning of the state

is preserved by each rule defining ‘−→’.

B.1 Lemmas

Lemma B.1.1 (Following Indirections)

From the definitions ofS[[−]], F(−) , andb−c we can observe that:

γ(i) = (i′, d, e) ⇒ S[[s]]γ i = S[[s]]γ i′

Lemma B.1.2 (Substitution)

From the definition ofE [[−]] and the extension given in Section 5.6.1, we can observe that:

E [[E[i′/x]]]iβ γ = E [[E]]iβ[x 7→i′] γ

211
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B.2 Proof of Soundness for Evaluation Rules

Case: (VAL)

LHS =M[[T ; V B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[V ]]i
∅

γ defn ofM[[−]]

= µγ. T [[T [i 7→ V ]]] t (S[[s]]γ i) defn ofT [[−]]

=M[[T [i 7→ V ];Oi; s]] = RHS defn ofM[[−]]

Case: (VAR)

LHS =M[[T ; i′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[i′]]i
∅

γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (i′, ∅, ∅)) defn ofE [[−]] and Section 5.6.1

= µγ. T [[T [i 7→ 〈(i′, ∅, ∅)〉]]]γ t (S[[s]]γ i′) defn ofT [[−]] and Lemma B.1.1

=M[[T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s]] = RHS defn ofM[[−]]

Case: (DEM1)

LHS =M[[T [i 7→ (|V |)];}i; s]]

=M[[T [i 7→ (|V |)];Oi; s]] = RHS defn ofM[[−]]

Case: (DEM2)

LHS =M[[T [i 7→ 〈(i′, d, e)〉];}i; s]]

=M[[T [i 7→ 〈(i′, d, e)〉];}i′; s]] = RHS defn ofM[[−]] and Lemma B.1.1

Case: (DEM3)

LHS =M[[T [i 7→ E];}i; s]]

= µγ. T [[T [i 7→ E]]]γ t (S[[s]]γ i) defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]i
∅

γ defn ofT [[−]]

=M[[T ; E B i; s]] = RHS defn ofM[[−]]

Case: (APP1)

LHS =M[[T ; E i′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E i′]]i
∅

γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, {◦i}, ∅)) t E [[E]]◦i
∅

γ t F(◦i)•ii′ defn ofE [[−]]

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[s]]γ i) t E [[E]]◦i
∅

γ t F(◦i)•ii′ defn ofT [[−]]

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[s]]γ •i) t E [[E]]◦i
∅

γ t F(◦i)•ii′ Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[(@ i′, •i) : s]]γ ◦i) t E [[E]]◦i
∅

γ defn ofS[[−]]

=M[[T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; (@ i′, •i) : s]] = RHS defn ofM[[−]]
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Case: (APP2)

LHS =M[[T [i′ 7→ (|λx.E|)];Oi′; (@ i′′, i) : s]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t (S[[(@ i′′, i) : s)]]γ i′) defn ofM[[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t F(i′)i
i′′ γ t (S[[s]]γ i) defn ofS[[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t E [[E]]i(x 7→i′′) γ t (S[[s]]γ i) defn ofF(−) andT [[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t E [[E[i′′/x]]]i
∅

γ t (S[[s]]γ i) Lemma B.1.2

=M[[T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s]] = RHS defn ofM[[−]]

Case: (LAZY)

LHS =M[[T ; let x = E in E ′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]i
∅

γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i})) t E [[E]]◦i
∅

γ t E [[E ′]]•i
(x 7→◦i) γ defn ofE [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]]]γ t (S[[s]]γ i) t E [[E ′]]•i(x 7→◦i) γ defn ofT [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]]]γ t (S[[s]]γ i) t E [[E ′[◦i/x]]]•i
∅

γ Lemma B.1.2

=M[[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]; E ′[◦i/x]B •i; s]] = RHS defn ofM[[−]]

Case: (SPEC1)

LHS =M[[T ; let x = E in E ′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]i
∅

γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i})) t E [[E]]◦i
∅

γ t E [[E ′]]•i
(x 7→◦i) γ defn ofE [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ i) t E [[E]]◦i
∅

γ t E [[E ′]]•i
(x 7→◦i) γ defn ofT [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ i) t E [[E]]◦i
∅

γ t E [[E ′[◦i/x]]]•i
∅

γ Lemma B.1.2

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ •i) t E [[E]]◦i
∅

γ t E [[E ′[◦i/x]]]•i
∅

γ Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[(E ′[◦i/x]B •i) : s]]γ ◦ i) t E [[E]]◦i
∅

γ defn ofS[[−]]

=M[[T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i; (E ′[◦i/x]B •i) : s]] = RHS defn ofM[[−]]

Case: (SPEC2)

LHS =M[[T ;Oi′; E B i : s]]

= µγ. T [[T ]]γ t (S[[(E B i) : s]]γ i′) defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]i
∅

γ defn ofS[[−]]

=M[[T ; E B i; s]] = RHS defn ofM[[−]]
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Case: (OP1)

LHS =M[[T ; j ⊕ k B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[j ⊕ k]]i
∅

γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, {j, k}, ∅)) t (O[[⊕]]•i bjcγ bkcγ) defn ofE [[−]]

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[s]]γ i) t (O[[⊕]]•i bjcγ bkcγ) defn ofT [[−]]

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[s]]γ •i) t (O[[⊕]]•i bjcγ bkcγ) Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[(⊕k, •i) : s]]γ j) defn ofS[[−]]

=M[[T [i 7→ 〈(•i, {j, k}, ∅)〉];}j; (⊕k, •i) : s]] = RHS defn ofM[[−]].

Case: (OP2)

LHS =M[[T [j 7→ (|n|)];Oj; (⊕k, i) : s]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (S[[(⊕k, i) : s]]γ j) defn ofM[[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (O[[⊕]]i bjcγ bkcγ) t (S[[s]]γ i) defn ofS[[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (O[[⊕]]i n bkcγ) t (S[[s]]γ i) defn ofb−c andT [[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (S[[(n⊕, i) : s]]γ k) defn ofb−c andT [[−]]

=M[[T [j 7→ (|n|)];}k; (n⊕, i) : s]] = RHS defn ofM[[−]]

Case: (OP3)

LHS =M[[T [k 7→ (|n′|)];Ok; (n⊕, i) : s]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (S[[(n⊕, i) : s]]γ k) defn ofM[[−]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (O[[⊕]]i n bkcγ) t (S[[s]]γ i) defn ofS[[−]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (O[[⊕]]i n n′) t (S[[s]]γ i) defn ofb−c andT [[−]]

= µγ. T [[T [k 7→ (|n′|), i 7→ (|n ⊕̃n′|)]]]γ t (S[[s]]γ i) defn ofT [[−]] andO[[−]]

=M[[T [k 7→ (|n′|), i 7→ (|n ⊕̃n′|)];Oi; s]] = RHS defn ofM[[−]]

B.3 Proof of Soundness for Abortion Rules

Case: (!EXP)

LHS =M[[T ; E B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]i
∅

γ defn ofM[[−]]

= µγ. T [[T [i 7→ E]]]γ t (S[[s]]γ i) defn ofT [[−]]

=M[[T [i 7→ E];}i; s]] = RHS defn ofM[[−]]

Case: (!SPEC)

LHS =M[[T ;}i; E B j : s]]

=M[[T ;Oi; E B j : s]] = RHS defn ofM[[−]]
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Case: (!ABORT)

LHS =M[[T ;}i; (f, j) : s]]

= µγ. T [[T ]]γ t (S[[(f, j) : s]]γ i defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[(f, j) : []]]γ i) t (S[[s]]γ j) defn ofS[[−]]

= µγ. T [[T [j 7→ i∠f ]]]γ t t (S[[s]]γ j defn ofT [[−]]

=M[[T [j 7→ i∠f ];}j; s]] = RHS defn ofM[[−]]

Case: (!RESUME)

This is simply the inverse of the proof for(!ABORT).
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Proof that programWork predicts workDone

C.1 Preliminaries

In this appendix, we provide the proof referred to in Section5.6.5. That is, we prove:

∅; E B ε; [ ] −→∗ T ; c; s ⇒

workDone(T ) ∪ pendingWork(T ; c; s, Ψ) ⊆ programWork(M[[T ; c; s]], Ψ)

We prove this by induction over the number of−→ transitions that are applied. In the base

case, no−→ transitions are applied, andT ; c; s = ∅; E B ε; [ ]. The proof is thus trivial:

workDone(∅) ∪ pendingWork(∅; E B ε; [ ], Ψ)

= ∅ ∪ pendingWork(∅; E B ε; [ ], Ψ) defn ofworkDone

=W{{C{{E B ε}} ∪ S{{[ ]}}}}Ψ
M[[∅;EBε;[ ]]] defn ofpendingWork

=W{{{ε}}}Ψ
M[[∅;EBε;[ ]]] defn ofC{{−}} andS{{−}}

= programWork(M[[∅; E B ε; [ ]]]) defn ofprogramWork

The proof of the inductive step is rather harder. We know fromthe proof in Appendix B that

programWork(M[[T ; c; s]], Ψ) will be preserved by evaluation transitions. The inductivestep

thus amounts to showing that the union ofworkDone andpendingWork never increases. That

is:

∅; E B ε; [ ] −→∗ T ; c; s ∧ T ; c; s −→ T ′; c′; s′ ⇒

workDone(T ) ∪ pendingWork(T ; c; s)

⊆

workDone(T ′) ∪ pendingWork(T ′; c′; s′)

216
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We proceed casewise by showing that, this property holds forevery rule defining−→.

For convenience, we make the following standard definitionsfor each rule, where, in each

case,T ; c; s represents the old state, andT ′; c′; s′ represents the new state:

D = workDone(T ) the work done by the initial state

D′ = workDone(T ′) the work done by the final state

P = pendingWork(T ; c; s, Ψ) the pending work for the initial state

P ′ = pendingWork(T ′; c′; s′, Ψ) the pending work for the final state

γ = M[[T ; C; s]] = M[[T ′; c′; s′]] complete cost view (preserved by Appendix B

We now proceed to give the proof for each rule. Most of the the proofs follow the same

pattern and are fairly trivial. We give a detailed proof for the first rule, but give less detail in the

other rules.

C.2 Proof for Evaluation Transitions

Case: (VAL)

T ; V B i; s −→ T [i 7→ V ];Oi; s

In this caseγ is defined as:

γ =M[[T, V B i; s]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t E [[V ]]i
∅

γ defn ofM[[−]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t (i 7→ v) defn ofE [[−]] for some valuev

We can use this to prove that(VAL) preserves the union ofworkDone andpendingWork :

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D ∪ {i} ∪ W{{S{{s}}}}Ψγ defn ofW{{−}} andγ

= D′ ∪ W{{S{{s}}}}Ψγ defn ofworkDone

= D′ ∪ P ′ = RHS defn ofpendingWork

Case: (VAR)

T ; i′ B i; s −→ T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D ∪ {i} ∪ W{{{i′} ∪ S{{s}}}}Ψγ defnW{{−}} andγ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork
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Case: (DEM1)

T [i 7→ (|V |)];}i; s −→ T [i 7→ (|V |)];Oi; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D ∪ {i} ∪ W{{S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (DEM2)

T [i 7→ 〈(i′, d, e)〉];}i; s −→ T [i 7→ 〈(i′, d, e)〉];}i′; s

We are currently only able to prove that(DEM2) reduces the amount of work expected,

rather than that it preserves it, however we believe that, inthe absence of abortion,(DEM2)

should preserve expected work just like all the other evaluation rules do.

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

⊇ D ∪ W{{{i′} ∪ S{{s}}}}Ψγ defn ofW{{−}} andγ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (DEM3)

T [i 7→ E];}i; s −→ T ; E B i; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D′ ∪ {i} ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofworkDone

= D′ ∪ P ′ = RHS defn ofpendingWork andW{{−}}

Case: (APP1)

T ; E i′ B i; s −→ T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; (@ i′, •i) : s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D ∪ {i} ∪ W{{{◦i, •i} ∪ S{{s}}}}Ψγ defn ofW{{−}} andγ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (APP2)

T [i′ 7→ (|λx.E|)];Oi′; (@ i′′, i) : s −→ T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s

LHS = D ∪ W{{{i′, i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D ∪ {i′} ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofW{{−}} andγ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork
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Case: (LAZY)

We give rule(LAZY)in more detail, as it is more interesting than most other rules:

T ; let x = E in E ′ B i; s −→ T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]; E ′[◦i/x]B •i; s

i /∈ Ψ

In this case,γ is defined as:

γ =M[[T, let x = E in E ′ B i; s]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]i
∅

γ defn ofM[[−]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i}) t E [[E]]◦i
∅

γ t E [[E ′]]•i
∅

γ defn ofE [[−]]

We can use this to prove that(LAZY)preserves the union ofworkDone andpendingWork :

LHS = D ∪ P

= D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofC{{−}}

= D ∪ {i} ∪ W{{{•i} ∪ S{{s}}}}Ψγ defn ofW{{−}} andγ, giveni /∈ Ψ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (SPEC1)

T ; let x = E in E ′
B i; s −→ T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i; (E ′[◦i/x]B •i) : s

Rule(SPEC1)reuses the expansion ofγ that we gave for(LAZY):

LHS = D ∪ P

= D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofC{{−}}

= D ∪ {i} ∪ W{{{◦i, •i} ∪ S{{s}}}}Ψγ defn ofW{{−}} andγ, giveni ∈ Ψ

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (SPEC2)

T ;Oi′; E B i : s −→ T ; E B i; s

i ∈ Ψ

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork



220 Chapter C. Proof that programWork predicts workDone

C.3 Proof for Abortion Transitions

Case: (!EXP)

T ; E B i; s −→ T [i 7→ E];}i; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofpendingWork

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (!SPEC)

T ;}i; E B j : s −→ T ;Oi; E B j : s

As one would expect,(!SPEC)transitions can decrease the expected work set:

LHS = D ∪ W{{{i, j} ∪ S{{s}}}}Ψγ defn ofpendingWork

⊇ D ∪ W{{{j} ∪ S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (!ABORT)

M[[T ;}i; (f, j) : s]] −→ T [j 7→ i∠f ];}j; s

LHS = D ∪ W{{{i} ∪ S{{(f, j) : s}}}}Ψγ defn ofpendingWork

= D ∪ W{{{i, j} ∪ S{{s}}}}Ψγ defn ofS{{−}} andW{{−}}

⊇ D ∪ {i} ∪ W{{{j} ∪ S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn ofworkDone andpendingWork

Case: (!RESUME)

This is simply the inverse of the proof for(!ABORT).
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Example HsDebug Debugging Logs

In this appendix, we present some example debugging sessions using HsDebug. All the text

shown is real output from HsDebug. The program being debugged in each case is the following:

1: module Main (main,last’) where

2:

3: import System ( getArgs )

4:

5: main :: IO ()

6: main = do

7: [countstr] <- getArgs

8: let count = read countstr

9: let xs = [4*2, 5 ‘div‘ 0] ++ replicate count 42

10: print (head xs, last’ xs)

11:

12: last’ (x:xs) = last’ xs

13: last’ [x] = x

This program is based on an example given in the online documentation for Hat [HAT]. We

have altered the program slightly so as to make its behaviourdependent on program input, thus

preventing GHC from optimising the entire program away.

All the examples shown are debugging a binary that has been compiled with the-O2 flag to

GHC, turning on all optimisations.
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In all the examples, one can observe the following shortcomings in the current implementa-

tion of HsDebug:

• Source locations are sometimes a little wrong.

• Some function and closure names are messy ones made up by the compiler.

We intend to fix all of these problems, but we have not done so yet.

The log below shows how HsDebug can be used to find out where an exception is occurring:

bash-2.03$ hsdebug paperdemo2 3

(hsdebug) continue

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>

["paperdemo." ++ 0x402c7e94]

(hsdebug) where

locals = ()

args = (0x8099a43)

#0: Main.lvl3 at paperdemo.hs:12

update : 402c74c8

args = ()

#1: Main.last’ at paperdemo.hs:12

args = ([])

#2: Main.last’ at paperdemo.hs:12

args = ([S# 42])

#3: Main.last’ at paperdemo.hs:12

args = ([S# 42, S# 42])

#4: Main.last’ at paperdemo.hs:12

args = ([S# 42, S# 42, S# 42])

#5: Main.last’ at paperdemo.hs:12

args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#6: Main.last’ at paperdemo.hs:12

args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#7: P4lu at inlined "print"

#8: xs.s4kR at paperdemo.hs:9

env = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#9: Main.main at inlined "print"

env = ("3")
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catch frame : GHC.TopHandler.topHandler.info

startup code

end of stack

(hsdebug)

The next log shows how breakpoints can be used to observe the execution of a program. In

this case we are placing a breakpoint on the entry to thelast’ function:

bash-2.03$ hsdebug paperdemo 3

(hsdebug) b Main.last’

Breakpoint set at address 0x804929c

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42,

S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([])

(hsdebug) c

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>

["paperdemo." ++ 0x402c7e94]

(hsdebug)

In these logs, we can note the following:
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• The reference todemo.hs:9 should really be todemo.hs:10. This is a shortcoming of

our current source location information, which gives everything in the body of alet a

location corresponding to the start of thelet.

• 4*2 and5 ‘div‘ 0 have been hoisted up into top level closures by the compiler.The

compiler has called thema andlvl16. Such closures are not currently speculated by

Optimistic Evaluation.

• lvl33, P4lu andxs.s4kR are code blocks made up by the compiler. We intend to hide

these cryptic names in the future.

• Theargs line tells us the arguments that the function was called with. We can see that

the list of each call is the tail of the list of the previous call.

• Structures such as lists and integers are pretty printed automatically.

• Whenprint is inlined, its arguments get mixed up with the body ofprint and so are

given the srclocinlined "print". This is rather counter-intuitive, and we intend to

change this.

HsDebug has many features not covered in these logs. In particular, it can pretty print

closures in the heap and has special features to assist in debugging the GHC runtime system.
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[Lév80] Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. InTo H.B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, 1980.
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