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Abstract:

The Cambridge Distributed System, based on the Cambridge Ring local
area network, includes.a heterogeneous collection of machines known as the
processor bank. These machines may run network servers or may be loaded
with services and allocated to users dynamically. The machines and the
variety of services they can support (e.g. different operating systems, com-
pilers, formatters) are viewed as resources available to other components of
the distributed system.

By using a processor bank, two fundamental limitations of the personal
computer approach to distributed computing can be overcome: responsiveness
for computation-intensive tasks is not limited by the single, personal machine
because tasks may expand into processor bank machines as necessary; and
applications are not limited to the operating system or languages available on
the personal computer because all of the systems and languages which run on
processor bank machines are at the user’s disposal, both for implementing
new applications and importing programs from other systems. Resource
management is seen as one of four areas which must be addressed to realize
these advantages.

The resource management system must match client requirements for
resources to those resources which are available on the network. To do this, it
maintains two data bases: one contains information describing existing
resources, and the other contains information indicating how to obtain
resources from servers or have them constructed from existing subresources
by fabricators. The resource management system accepts resource require-
ments from clients and picks from the alternatives in these data bases the
“best’’ match (as defined by the resource management policy).

The resource management issues addressed include: resource description,
location and allocation, construction, monitoring and reclamation, authentica-
tion and protection, and policy. The design and implementation of two
resource management servers is discussed.
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1. Introduction

1.1. Thesis

In a centralized computer system, there is a single operating system which
understands and controls the available resources such as processor cycles,
memory, files, and attached periphefals. The basic resources of concern in a
traditional operating system are of one of a small number of types, each of
which is managed by a very specialized program. These programs (e.g.
schedulers, virtual memory systems, ﬁlihg systems) have been highly tailored
to provide rapid allocation and good utilization of the resources. To achieve

acceptable performance, they must often be included in the system kernel.

Commonality

Resources in a distributed system are varied and prolific. Hence there is
an overriding desire to have a single framework for their management. 1Many
of the mechansims for managing different types of resources are common and
thus should not have to be duplicated. Additionally, having all of the informa-
tion about available resources conveniently available in a consistent form
makes it possible to have a policy incorporating multiple types and instances

of resources.

" The thesis of this dissertation is that there is sufficient commonality in the
requirements for the rﬁanagement of resources that they can eﬁectivel‘y be
collected into a resource management system. This minimizes the require-
ment for resource management mechanisms to be provided individually in
external components, thus easing the introduction of new types of resources
into the system. It also enforces a consistent interface for offering, request-
ing, and conversing about resources, thﬁs reducing the number of interfaces a
program must understand to manipulate different resources. The cost of such

generality is loss of the ability to tailor highly the management of resources




with the result that they are less efficiently utilized. It is claimed that such

cost is far outweighed by the advantages.

"~ Overview

The issues of resource management include:

« description of resources - so that clients may offer, request, or otherwise
converse about a wide variety of resources in a consistent manner;

« location and allocation - to match requests for resources with those which
are available on the network;

» construction - the higher level resources in which users are generally
interested must be provided by combining or augmenting the raw, lower
level ones; ' '

« monitoring and reclamation - to detect resources inaccessible as a result
of a crash so that they may be reclaimed or appropriate parties may be
notified for cleanup or recovery;

o authentication and protection - clients requesting resources must be
ensured that the resources received are authentic, Whﬂe resources (or their .
providers) must be ensured they are allocated only to clients pnvﬂeged to
use them; and

« management policy - policy guides the decision among alternatives for
allocation, construction, and preemption, as well as whether requests
should be granted at all.

Also of interest are:

« considerations of optimization - including reservations of resource sub-
components before construction, and maintenance of a pool of spare
resources likely to be requested;

« instantiation of the resource management system - the distributed system
must be bootstrapped through the level of the resource management sys-
tem before its facilitiés can be used;

. related work or alternatives - different approaches to resource manage-
ment; and

« integration into the distributed system - different uses of the resource
management system.

All of these topics are discussed in this dissertation, in approximately the

above order,
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1.2. Background

The setting for this research is the Cambridge Distributed Computing Sys-
tern [Needham 82] based on the Cambridge Ring local area network [Wilkes79]
(see figure 1.1). The system inciudes a few dedicated machines running net-
work s.ervicevs' and several traditional timesharing systems, but its main com-
puting power is préVided by the heterogeneous collection of machines known
‘as the iprocessor bank. These fnachines may run network services or they may
be allocated to run user applications. All these functions, and the machines on
which they run are viewed as system-wide resources for which management

must be provided.

Processor Bank Systems

The processor bank machines are commonly used to run one of two local
operating systems, Tripos or Mayflower. They are also used to run network ser-

vices, such as the Tripos Filing Machine mentioned below.

Tripos is a pqrtable operating system for minicomputers written in and
thoroughly oriented towards the language BCPL. It is a multi-tasking, message
based, single user system. Tripos is available on processor bank Computer
Automation LSI4s and Motorola 68000s. As these have no local discs, Tripos
keeps its files on the network fileservers, and as they have no directly attached
terminals, Tripos accesses terminals through a terminal concentrator server.
It has been the primary operating system for systems research in the Labora-

tory. [Richards 79, Knight 82]

The Tripos Filing Machine server imposes a Tripos filing system structure
on the objects provided By the network fileservers. It accepts Tripos filing sys-
tem commands from clients, and specifies to the fileservers operations on
fileserver files and indices. It provides caching and read ahead, thereby reduc-
ing the overall load on the fileservers and improving response time to clients. ‘
Also, the filing system code in the Tripos operating system is reduced to a stub

which interacts with the filing machine. [Richardson 84, TriposFM 83]

The Mayflower operating system is a multi-tasking, monitor based operat-

ing system which runs on the processor bank 68000s. It is a preferred
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Figure 1.1. The Cambridge Distributed System

language system: the kernel interfaces are at the bit and byte level, but most
of the library support is based on the CLU language [Liskov81] which has been
extended with concurrency and synchronization primitives, as well as with
remote procedure calls for cross machine communication. It is part of Project

Mayflower, which is developing an environment to facilitate distributed
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programming. [Mayflower 84, CLURPC 84]

There are a number of other systems available for the processor bank
machines. These include: a restricted version of Tripos for undergraduates, a
mail feader/composer and daemon for the Ring mail system, a garbage collec-
t‘or for the ‘File Servers, a semi-automatic Wirewrap system, an account dae-

mon for the Tripos Filing Machine, and a Ti‘ipos Mail Server.

Dedicated Network Servers

Services are run on dedicated machines if there is some expensive or spe-
cial purpose hardware necessary, as with a printserver or a fileserver, or if
there are special requirements for location or irﬁtialization, as with a
nameserver or an authentication server. Some of these machines may be
included in the processor bank, noting their special hardware or importance,
so that the services they run may be instantiated and monitored using the

standard processor bank mechanisms.

The Cambridge Name Server translates.a textual service or machine name
into an absolute Ring address. In a distributed system, services may be moved
from one machine to another and machines may be moved to new positions on
the network. The Name Server provides an indirection so that service or
machine locations may be changed without having to change the code of their

clients.

The Cambridge ‘‘universal'’ File Servers provide files and indices (lists of
file pointers and other indices) on which clients can impose their own filing sys-
tems. Atomic file updates are provided for ‘‘special’ files. There are currently
filing systems for Tripos, the Cambridge CAP computer (running a capability-
based time.sharing system), Mayflower, and several of the small servers. [Bir-

rell 80, Dion 81]

The Active Object Table (AOT) service provides mechanisms for authentica-
tion and protection. It issues widsets for peqple or services when they become
active in the distributed system. For ‘example, a uidset will be created when a
user's password is presented to the AOT by the service to whom he typed it at

login, or when a service is loaded. A uidset contains 64 bit unique identifiers
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for the object’s name, its type (e.g. user or service), an access key, and a con-
trol key. If appropriate parts of the uidset are included in a request to a ser-
vice, the service can authentically determine the identity of the client (or the
client on whose :behalf he is acting) as well as what privileges the client

possesses. [Girling 8:2]

The Ancillae are loading services used to hide the details of loading proces-
sors. There is one for each type of processor in the processor bank. An Ancilla
will accept a reque'st to load a file from the Ancilla filing system (kept on the
File Servers) into a named machine. It will also accept a request to reset a

named machine (equivalent to pushing the "reset’’ button).

There aré several Print Servers whiéh control the various printers, includ-
~ing dne for a laser printer which accepts the intermediate codes of several for-
matters as well as simple character streams or bitmaps. Spooling for the Print
Servers is providea by the Spooler, a small server which buffers client docu-

ments on the File Servers until the appropriate printer is available.

The Boot Server is responsible for. bootstrapping the distributed system

after shutdown, and for reloading low level services if they crash.

Terminals and Workstations

Terminals are connected to the Ring through Terminal Concentrator
servers, up to eigh£ per concentrator. A user may have connections from his
terminal to multiple machines, from which he may select one for interaction at
a time. A connection to a service may be opened by specifying the name of the
desired service to the concentrator monitor program. No screen management

is provided for interaction via the different connections. [0dy84]

Preferably, the user should be able to view the system from a small per-
sonal workstation on his desk. This home machine would manage a screen and
network connections, and pfbvide an interface to the rest of the world.
Through this interface the user could access the resources of network services
as well as the raw computing cycles provided by the processor bank machines.
Xerox Dandelion workstations running the Xerox Development Environment

[XDE 84] are currently being integrated inté the system.
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1.3. The Processor Bank Philosophy

Organization

Combutérs of various types and‘ sizes are collected into a pool. Most of
these will be available' to support services on demand, though some may be
reserved for dedicated servers. User requirements for a service may be
accommodated by loading the service dynamically on one or more processor
bank machines allocatéd fo;' the request. Alternatively, the required service
may already be loaded on a processor bank machine and can be allocated
directly. In the Cambridge distributed system the processor bank does not
incorporate all of the available computing power, so user requirements may

also be satisﬁed by services external to the processor bank.

The processor bank is viewed as consisting of a number of small to medium
scale corr'lputers,jsuch as Motorola 68000s and Digital Equipment Corporation
Vaxes, a few large“.mainframes, and several special purpose machines. This
allows all of the users access to a very large amount of computing power which
may be shared between them. The prototype Cambridge processor bank is
necessarily somewhat scaled down. It includes Z80s, LSI4s, and 68000s, withv

MicroVAXes currently being integrated. .

Alternative Philosophies

The processor bank philosophy contrasts sharply with that of dedicated
personal computers. With the latter, each user is provided with a powerful per-
sonal machine on which he does almost all of his work. This computer is con-
nected to a high speed local area network over which it communicates with
other computers and servers, much in the same way as the user's small per-
sonal workstation in the processor bank scenario. The two approaches differ in
where most of the work is carried out: in the user's personal computer or in

processor bank machines.

With the personal computer apprdach, the display and discs are attached
to the processor performing the user’s task, thus allowing high bandwidth

communication among these components. Their separation, which occurs with




the processor bank approach, may result in decreased performance depending
on task distribution and interfaces. (Requirements for avoiding this are dis-
cussed in the ‘‘Research Topics'' section below.) The personal computer
approach also has the édvantage that t;he user is guaranteed availability of his

machine.

Traditional timesharing systems enjoy the benefits of file and environment
sharing. Retaining these advantages after distribution is difficult, but it has
béen done (e.g. in Locus [Popek 81]). The primary problem with timesharing
systems is thét they suffer degradation under load, with the accompanying
unpredictable response times. The processor bank approach has a number of
potential advantages over both the personal‘computer and the timesharing

system approaches, some harder to realize than others.

Potential Advantages

Users' requirements for computing power vary considerably. The proces-
sor bank approach allows the requirements of the task being performed to be
matched to the attributes (e.g. speed, size, specialized hardware) of the
machine used. It is not necessary to provide each user with a machine capable
of handling the largest task that user will execute. Instead, users can be given
a modestly powerful machine capable of managing a screen and coordinating
interaction with user tasks, and major work may be executed by an appropri-

ate machine selected from the processor bank.

Because the processor bank contains different types of machines it may
support a wide variety of operating systems, languages, and tools. This facili-
tates importing existing software. Witness to the importance of this capability
is the popularity of Unix, much of which derives from its plethora of available
applications. It also allows the programmer to choose the most appropriate

language and system for implementing new applications.

The processor bank facilitates the acquisition of multiple machines for a
single user. Thus if a user wishes to accomplish several tasks concurrently or
a single task which can be executed across multiple machines, he may experi-

ence a reduction in the real time required to accomplish them. Rather than
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multiplexing all of the user’s tasks on one machine, they may be farmed out to

multiple processors.

Because the computing power of the system is allocated on a per request
basis, the apparent aggregate power of the system is greater than if machines
were statically allocated to users. The alternate perspective is that fewer
machines are required to provide the same degree of service to users, though
any guarantee about machine availability becomes probabilistic with high

dependenée on the allocation policy.

The processor bank consists of racks of components: processors, memory,
and network interfaces connected by back planes. Some of the machines have
local discs. Others have no directly connected peripherals other than the net-
work, and rely on network servers (which can utilize expensive peripherals
more cost effectively) to satisfy peripheral requirements. By eliminating the
need for peripherals, casing, and cooling fans for each machine, the cost of the
individual computers is greatly reduced. By collecting the computers
together, cooling and humidity control as well as power requirements are cen-
tralized and thus more easily handled. By placing the machines in a room
separate from users, the problem of noise abatement is removed. (Some of
these advantages may be accrued with personal computers if the processors
and discs may be placed in, for example, the basement, leaving only the

displays in users' offices.)

Research Topics

There are a number of research topics which must be considered before all
of the above advantages of the processor bank philosophy can be realized.
This dissertation addresses only the first of those listed below. The remainder

are either under exploration or as yet unexplored at Cambridge.

There must be some management of the machines in the processor bank
and the services which they can support. Though the processor bank provides
the potential for matching tasks to appropriate available machines, some ser-
vice must actually perform the matching. Though the processor bank allows

multiple machines to be allocated to a user, some service must actually
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coordinate allocations. As users will be more interested in the services which
processor bank machines can support than in the raw machines, some service
must construct these higher level resources. These requirements are

addressed in this dissertation.

Remote access to the user's screen and input devices must be provided so
that programs running in processor bank machines may interact with the user
in much the same way as a program running in a user’s personal computer
could. The difficulty is that the network is in between, thus reducing the
bandwidth. The virtual screen interface must be chosen to short circuit the
critical functions (e.g. mouse cursor update, menu handling) in the worksta-
tion, yet to notify the program of requests made by the user which affect that
program's display (e.g. change of window size). The protocol must be language
and system indep‘endent: cross language, type checked remote procedure call

(RPC) is a preferred option.

There must be a program in the user’'s workstation that coordinates his
tasks running on different machines in the network. It must translate require-
ments expressed by the user into requests for processor bank resources.
These resources must be instructed as to their purpose, data must be routed
between them as appropriate, and they must be monitored for failure or

errors.

A user’'s files must reside primarily on network fileservers, as there is no
single machine on which most programs accessing the files will run. These files
must bé readily accessible to the processor bank machines as well as to the
user's workstation. The network ﬁlesefvers and the systems running on both

the procéssor bank machines and the workstation must support this approach.




2. An Initial Solution

The initial need for resource management came with the arrival of the pro-
cessor bank. A Resource Manager server was built to satisfy the requirements
as perceived at that time. This chapter discusses the initial system and its
evolution, and then gives a historical view of the problems and further require-

ments.

2.1. The First Resource Manager

In the summer of 1980 Cambridge had six LSI4s in the processor bank. We
ran the Tripos operating system, which was originally desigﬁed for machines
with directly connected terminals and discs. The terminal driver and filing
system had been modiﬁ.ed so that these resources could be accessed across
the network. .The Tripos‘ file handler imposed a filing system structure on files
and indices provided in the Cambridge File Server. The virtual terminal
handler would accept Cambridge virtual terminalvprotocol (VTP) opens on a

particular port.

Terminals were connected to the Ring through a terminal concentrator. A
user could direct the terminal concentrator to open a terminal stream to one
~of the Triposes by stating the machine name of one of the machines thought to
be running Tripos. At this point, the terminal concentrator would retrieve the
station number associated with the specified machine from the nameserver,
and then make a connection to that machine. If the machine was running Tri-
pos and there was no one logged in, then the connection would be accepted
and the user would be asked to log in. Otherwise, the connection would fail and

the user would try another machine.

The Tripos operating systems running in the machines crashed frequently
in the early days. (Tripos has no memory protection, and it and most of its
applications are written in BCPL, a non-typed language.) If a user noticed that

a Tripos had crashed he would set about rebooting it. This involved pushing




the reset button on the dead machine, obtaining a running Tripos, and
instructiﬁg it to load a small bootstrap program into the dead machine. This
bootstrap program would then read the full Tripos system from the fileserver.
If there was no Tripos system running, then the single machine which had
floppy discs was used; the bootstrap program was read off of floppy disc via a
program in PROM. Detecting a crashed system was not difficult for the user to
whom the system was allocated - his terminal connection died. However, a sys-
tem which crashed when not allocated or during allocation, or which was left
by the user on whom it crashed was only detected if a user became suspicious
when he could not obtain a system. He determined if any of the machines were
dead by asklng all the other users which machines they were currently using.

This was practlcal only because all of the terminals were in one room.

There was clearly a need for some management of these systems, so that
users would not have to successively try the known machines until an available
one was found, so that machines could be reloaded for each user request as
Tripos is an unprotected operating system, and so that crashed systems could

be detected.

Andrew Herbert wrote a Resource Manager that knew about the six

1 It would search a table of

machines and how to load programs into them.
machine states until it found an available machine which could run the
requested system (only Tripos was available at that time), ask the Ancilla to
load this machine, and then allocate it to the user. This Resource Manager
(RM 1) would accept VTP open requests from the terminal concentrator and
then hold the open VTP stream in abeyance while the system was loaded. The

loaded system would then open a second stream into Resource Manager, at

which point RM would r‘eplug2 the two streams.

RM I Evolved

The processor bank and the Cambridge Distributed System grew, and

Resource Manager grew with them. Replug was replaced by reverse

'The author took over the responsibility for RM that October (1980).

2Rtepl'ug was a facility of the byte stream protocol at that time which allowed an interven-
ing party to notify the remote ends of two streams that the streams were being reset, and that
further communication should take place on the given station and port.
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connection, a second type of processor was added to the processor bank, and
the one Ring was replaced by two Rings linked by a bridge. The initial six LSI4s
" in the processor bank became 38 machines including LSI4s, 68000s, the Rain-
bow high resolution display, and a Canon laser printer. The single

configuration of Tripos became 12 conﬁgurations of 8 different systems.

RM I was written in Alg6168C, initially to run in a Z80 with 32K bytes of RAM.
Because of the lack of code space and the increased size of internal tables as “
the size of the processor bank grew, Resource Manager was functionally split
into a Session Manager (which understood VTP streams and could provide a
terminal interface for making enquiries and specifying particular systems) and
kthe Resource Manager proper (which understood the machines and systems
available, and could contact the Ancilla to have them loaded). RM éontinued to
evolve over the next couple of years, and a number of experimental
modifications were made, some of which wére discarded. It is described below

in its.final form.

2.2. Facilities Provided

When RM is initialized, it has a number of known machines to manage.
Each is endowed with attributes (from a fixed set of 16) which define the pro-
perties of the machine, such as its processor type, how much memory it has,
and what peripherals are attached. There is a fixed allocation order of
machinés intended fo cherish those with more valuable attributes. FKach
machiné has an associated Ancilla which can be instructed to load code into

the machine.

RM has knowledge of several different systems which it can load into
machines to be allocated to the client. Each system consists of one or more
load configurations maﬁching Ancilla filenames with machine attributes
required to run them, thus allowing a given system to be available on different
types of machines. The client may also describe his own system by giving an
Ancilla filename to be loaded and the machine attributes required to run-it. A
client request includes a system name or description, the desired machine

attributes, and an allocation time for which the machine is required.




Facilitiel '

Allocated machines are monitored using a dead man’s handle mechanism.
For this mechanism, each allocated machine has an associated refresh time
(on the order of minutes) within which the loaded system must contact RM
with a request that this time be extended. While this mechanism can be fooled
by software which crashes in part but continues to refresh, such machines will

eventually be reclaimed when the overall allocation time elapses.

There are typically 350 to 400 requests to RM for systems per weekday.
The majority of these are from users wishing to use the mail system or one of
the operating systems available on the processor bank machines. RM's clients
also include the File Servers requesting a Garbage Collector, the Mail System
requesting a Mail Daemon, and the Pointing Machine controller requesting a

Wirewrap ‘system, among others.

2.3. Additional Facilities Desired

The first Resource Manager was designed to éupport the original Cambridge
Model Distributed System [CMDS80] in which machines from the processor
bank were allocated as personal computers for the duration of a login session.
Except for the lack of preloading to reduce user wait time, it met this aim well.
However, as the potential of the processor bank philosophy was more fully
exploited and as there was a need to incorporate resources outside of the pro-

cessor bank, the limitations of the design goals became apparent.

Multiple Level Resources

RM I had a simple view of resources. It could manage a fixed number of
machines, loading a memory image into them before allocation. This proved a
limitation on several occasions. There was no concept of a resource as a multi-
ple level object, so a command running on an operating system could only be
accommodated as a resource by linking the command with the o.s. imagé.
Each system had to be stored as a fully linked image, thus losing the advan-
tages of délayed binding: .

« considerable space was reqtiired to store all network systems;

« the images had to be relinked if there was a new version of any included
code, e.g. libraries;
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« there could be no sharing of code;

» the elegance of abstraction which late binding provides was lost (i.e.
abstract interfaces which were provided with a new and faster implementa-
tion would not automatically be incorporated into the prelinked system);
and :

» no common parts of systems (e.g. operating system kernels) could be
preloaded without compromising the choice for the final level of the
resource.

We experimented with a three level resource for file transfer. A special
“support”’ version of the Tripos operating system was loaded via RM and then
itself determined the particular command to execute based upon the function
code for the requested resource. This function code was originally obtained
from the nameserver and was passed to the opérating system by RM. The
approach was inelegant as it depended on the nameserver having an entry for
each such service which had to be coordinated with a table known to the
operating system, and on RM's passing the function code in an obscure
manner. The service eventually fell into disﬁse, largely because of the time
required for the operating system to be loaded, to initialize, and then to exe-

cute the command.

Dynamically Available Resources

The first Resource Manager could not accommodate any systems outside of
those available on the fixed set of processor bank machines. This meant that
resources from CAP, such as terminal sessions or file transfer service, or from
RSX, such as bootserver sessions or the terminal information service, couldn't

be offered through RM in a manner consistent with processor bank resources.

The resource management system should support the concept of resources
as objects offered by components of the distributed system to other network
clients. They, or offers to provide them upon request, may become available

and be retracted dynamically.

Redirection to Existing Resources

It should be possible to direct clients to existing resources. This was not
possible in RM I as there was a one-to-one relationship between client requests

and machines loaded. This shortcoming was most painfully realized by users




waiting typically from 12 to 25 seconds in the early days for a machine to be
allocated, to be loaded with an entire operating system, and possibly for that
operating system to run a command. (This time was later reduced to 5 to 15
- seconds by improving Ancilla, the machine loading service.) Had there been
the ability to indiréct users to existing resources, the machines of the proces-
sor bank could have been preloaded with popular systems. This would also

have improved the three level resource experiment described above.

Without redirection, there could be no shared servers. Initially there was
such a shortage of machines that an edit server which could support three ses-
sions was written to ease the situation. Unfortunately, RM could load the
server when the first request arrived but could not point any further clients at

it.

2.4. Onward

Armed with better knowledge of the requirements of a resource manage-
ment system, a second Resource Manager was designed and implemented.
Experience with the first RM proved invaluable in defining the required func-
tionality, and in formulating a number of test cases against which to judge

design and implementation alternatives.

RM I was approximately 3700 lines of Algol68C source code which was com-
piled f:br a 780. It was supported by a combination of Algol and assembly run-
time libraries including a simple coroutine system and network protocol
drivers. As of this writing, RM 1I is approximately 10,000 lines of an extended
version of CLU which provides processes, monitors, and CLU RPCs. It is com-
piled for a 68000, and runs on the Mayflower operating system. Most of the
functions are available as CLU RPCs, and an increasing number are available as
standard Cambridge SSP (Single Shot Protocol) messages. There is a user ter-
minal interface with a simple command executive which provides most of the

RPC functions as well as a number of system manager facilities.




3. Resource Description

If resources of a wide variety are to be viewed in a consistent manner, then

some scheme for description of these resources must be agreed.

3.1. Definition

In the Cambridge distributed syStem, control of resources internal to the
componénts of the system is still relegated to the individual components. For
example, the management of f)rocessor 'cycles. local memory, and peripherals
is the responsibility of the operating systems running on the individual
machines. The resources of new interest are the high level ones available
among components of the distributed system, such as a filing system session
from a file server, a compiler servi‘ce, a raw machine, or an operating system

instance.

linking

service

| operating
system

operating

edit edit

session session -
operating operating

\ / system system

edit _~\ /N
server 0.8, f.s. f.s. 0.8.
I kernel conn conn kernel
operating | VAN
yste I machine I I fileserver | ITnachine |

Figure 3.1. Example Resources

A resource may be built upon one or more subresources, with such layer-

ing extending for multiple levels. For example, a linking service may be

-




supported by an operating system which in turn runs on a machine [figure 3.1].
Fach of these is a resource in its own right, but there are dependence relations
among them. These relations form an acyclic graph, which is linear in this

example.

Another example resourvce would be a server, such as a printer server, or
an instance of a particular ovperating system running on a machine. Resources
might share supporting components, such as two edit sessions, both supported
by an edit server which is running on an operating system. A more compli-
cated example might be a compiler supported by two operating system
instances, one for the front end and the other for the back end. Each of these
might be composed from an operating system kernel (running on a machine),

and a file system connection from a fileserver.

Complexity

One might question whether or not the suggested complexity of resources
is necessary. Alternative approaches [Locus83, Accent 81, RSExec 73] have
considered resources as files or i)rocesses on remote hosts. However, these
have assumed that all communicating hosts will be running the same systems,
and that such systems will be bootstrapped external to the mechanisms
managing the said resources. This is not the case at Cambridge where com-
munication among heterogeneous machines, languages, and operating systems
is held to be important, and the bboting of such systems is handled by the

same mechanisms that construct client level resources.

Users and other clients are often interested in high level objects, such as
compilers and operating systems, rather than low level ones directly available
" on the network, such as machines and loading services. Unless support is pro-
vided for such objects by the resource management system, clients must have
the knowledge and provide the mechanism to construct the higher level

resources they need from the basic ones.
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Resource Information

.~ The information used to describe resources is summarized in figure 3.2,
and explained in more detail through the rest of this chapter and in later
chapters. Of greatest interest in this chapter is the functionality of resources,

éspeciﬁed by attributes.; -

Resource factors are discussed in the “‘Policy’’ chapter, section 8.3. They
have not been implemented. When satisfying a resource request, these factors
are used to decide among the alternatives (existing resources and methods for

constructing new ones) which provide the functionality specified by the client.

Allocation information, of which there may be multiple sets if there are
multiple allocations of the resource, is discussed in the “‘Location and Alloca-

tion" chapter, section 4.3.

. , Data for . Properties for Allocation
Functionality Factors Access Structure Allocation Information
¢ Class ¢ Quality o Network o List of e To Be Allocated | o Status
Attribute ¢ Allocation Address Supporters | § goygable e Time Left
¢ Qualifying Time e Authentication | e Listof .
Attributes Cost Information Dependants | * Replenishable | ¢ User
¢ Los e Support (may be multiple
¢ Comm, Delay Multiple allocations)

Figure 3.2. Resource Information

3.2. Attributes

Class and Qualifying Attributes

The functionalify of a resource is described by a set of one or more atiri-
butes. Each resource has a class attribute, which gives the basic type of the
resource, such as 68000, MicroVAX, or Mail Server. Additionally, a resource
may have a number of qualifying attributes which specify further information,
such as a periphéral attached to a machine, a particular processor model, an
option provided by a service, a facility available on an operating system, etc.
Examples are floppy disc unit, MicroVAX II, 2 Mbytes [of memory], or 68000

obj code [for a compiler]. Several example attribute sets are given below.
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Attributes are used by Resource Manager in matching client resource
requirements to resources which are available. No interpretation is placed by
RM on attributes; rather it compares those possessed by resources with those
request;ed by clients, attempting to provide a resource with a superset of the
ones requested. This lack of interpretation supports the generality sought in
managing resources. It greatly facilitates adding new attributes, and thus

resources, to the system.

Subresource Attributes

When searching for a resource with particular attributes, the attributes of
‘subresources are also scanned. This allows clients to see, and consequently
specify, some of the structure of resources they desire. For example [figure
3.3], a CLU compiler running on Mayflower on a 68000 and producing object
code for a VAX (i.e. a cross compiler) will have real attributes CLU Compiler
and VAX obj code, but will also appear to have the attributes of its
subresources, Mayflower, 68000, and 2 Mb.

resource attributes (real & subresource)
CLU Compiler

prodgcing
VAX object code CLU Compiler, VAX obj code, Mayflower, 68000, 2Mb
Mayflower OS Mayflower, 68000, 2Mb

68000 68000, 2Mb
w/2Mb memory
Unix, MicroVax, MicroVaxIl, 4Mb
Mict;lo\l’?ix
mode ‘o fop

w/4Mb memory MicroVax, MicroVaxIl, 4Mb

Figure 3.3. Resource Attribute Examples

Though this approach does not provide unique attribute sets for all
different resources, it is unlikely to be a problem in practice because of the
nature of resources: it does not make sense for a machine to appear both at

the top and bottom layers of a multiple level resource. The advantage. is that




Attributes 21

the description of structured resources is much simpler. A client which
requires Unix running on a MicroVAX need only specify the two attributes Uniz
and Micro VAX in a resource request, without regard to where they occur in the
overall structure. Whether or not this simplification will prove to be a limita-

tion remains to be seen as RM comes into extended use.

The alternative is for clients to describe a desired resource as a tree in
which each node is labeled by one or more attributes. This seems needlessly
- complex as clients are generally interested in the attributes of only a few com-
ponents. It also requires that clients have knowledge of the full structure of

the resource rather than just the components in which they are interested.

Attribute Ordering

There are groups of attributes, such as processor models or memory sizes,
which are related by an ordering. Knowledge of such orderings is important to
RM so that it can understand that a request for a particular attribute may be
satisfied by an attribute which is g'reate'r in the ordering. For example, an
151430 will suffice for a request for an LSI4/10, or 2 Mbytes [of memory] will
suffice for a request for 512 Kbytes. Attribute orderings change on an infre-
quent basis and may be entered by system managers. Attributes not belonging
to an ordering (the default for new attributes) may hot be substituted by or for
any other attributes, nor will substitutions be made for attributes specified as

“exact’' by the client.

An alternative would be to allow a name and value for each attribute.
These values could or could not be ordered. Thus the attribute groups above
(LSI4 and bytes of memory) would become attributes with associated values
(4710, 4/30 and 512K, 2M, _respeétively). There might be a limited number of
data types allowed for the values: integers, strings, and enumerated types.
However, considering that the values for an attribute are generally sparse,
that the type for each value would have to be defined and subsequently
checked, and that clients would have to specify these name-value structures in

each transaction, it is not believed the added complexity would be warranted.
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An approach similar to this alternative was taken in Spice [Dannenberg 82].
However, there the set of understood attributes was fixed, the system was sin-
gle language so there was no difficulty with value types, and the resources of
concern were lbwef level ones (e.g. file pages, seconds of cpu time) for which

exact values are more important.

Neither of these approaches to ordering has been implemented.

Representation

In the Cambridge Distributed System, 64 bit unique identifiers (UIDs) are
used for naming. There are permanently assigned UIDs for all objects, includ-
ing machines, people, servers, and systems [Girling 83]. These UIDs are chosen

from a global name space which is centrally adminstered by system managers.

Each attribute is represented internally and communicated around the
Ring as one of these 64 bit UIDs. They are read from and displayed to the user
as readable strings, using the small server Mercator to perform the necessary

mapping.

3.3. Data for Resource Access

As resources are objects available to network clients, they must be
accessed via network service interfaces. Often the resource will provide the
service interface itself, as in the case of an operating system or mail server.
Alternatively, a supporting layer may provide the interface, as in the case of an
operating system providing the interface support for a compiler. Resource
Manager makes no real distinction: each resource has an associated interface

through which it can be accessed.

Address and Authentication Information

To access a resource, a client must know the resource’'s network address
and optionally some authentication information which is expected to accom-
pany requests. The network address will have been uniquely assigned to the
resource of concern. At Cambridge, a network address consists of a station,

port, and function code. The station will be the machine in which the resource
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resides. The port identifies the service interface, and is generally constant for
that service interface. The function code is used to determine the exact
resource. There may be one function code for each type resource, or more

than one if several resources of the same type are available.

Authentication information ma&r also be required in a request as a kind of
capability. This is generally the uidset for the resource or a 64 bit access
token. These are discussed in the chapter on “Protection and Authentication

- Issues"’, sectionl9.4. It should suffice to say that the resource management
system will disclose a resource's authentication information only to a client to
" whom it is allocating the resource (for which privileges will have been checked)

or to appropriately privileged system managers.

3.4. Resource Structure

The structure among different resource components is indicated by lists
for each resource of all those resources on which it is directly built (its sup-
porters), and all those which are built directly on it (its dependants). These
lists are the arcs to and from surrounding nodés in the resource graph. The
list of dependants may vary over time, but the list of supporters may not. In
the current implementation, a resource is assumed to become unusable if any
of its supporters fails. If this is a severe restriction, thé resource may acquire
its replaceable supporters directly from RM, in which case they will just be

resources it uses rather than part of its resource definition.!

These lists are used whenever it is necessary to traverse the resource
graph. Such uses include: determining which other resources will be affected
when a resource fails (section 7.4); scanning subresources, recursively, for
attributes (discussed above); altering the allocation status of a resource when
a dependant's status is altered (section 4.3); and determining what clients are
allowed authentication information for access to debugging interfaces some

time after the initial allocation (section 9.4). -

'The advantage in being part of the resource definition is that, if Resource Manager is con-
structing the resource, it can ensure that all of the supporting resources are available before
instantiating the resource and returning it to the client. Otherwise, the resource might be al-
located to the client, only to find that some of the resources it requires are not available.




4. Location and Allocation

4.1. Location

Generally, before a client can access a network resource or service it must
determine the location of the resource. This may be done either by broadcast-
ing a request for the desired resource or by requesting its address from some

indirection (or resource directory) service.

Broadcasting

A client may broadcast the description of a desired resource and await a
response from sofneone who is willing to provide the resource, or possibly from
the resource itself volﬁnteering its use. The client will decide which offer to
consider further and there may be additional negotiation between client and
provider before the client is allowed to use the resource. This approach has
been adopted in Spice [Dannenberg82]. Such an approach anticipates that
providers of resources will always be present to respond to resource requests.
It is an effective alternative for distributed systems in which the same operat-
ing system runs on all machines, e.g. Locus [Popek 81], or in which servers are

static.

Broadcasting resource requests is inappropriate at Cambridge where
resources are heterogeneous, multiple level objects. A machine may be loaded
with several different operating systems at different times. A client may
request a high level resource without having to specify the machine or operat-
ing system on which it runs. Thus, a broadcast approach is precluded because
an intermediate level resource may not be present to respond to a request for

a resource which it supports.

A second difficulty in broadcasting is propagating requests across gate-
ways. Generally, the network protocols will handle the difficulties of broad-

casting over bridges (e.g. avoiding infinite propagation around loops), but




cannot on their own know whether to forward over gateways. This problem is
addressed in Boggs' dissertation on bfoadcasting in an internetwork [Boggs 82]
in which the ability of gateways to broadcast on any directly connected net-

work is exploited to program an expanding ring broadcast.

Indirection

Thé alternative to broadcasting to locate a resource is to request its
address from an "indirection” service. Knowledge of the location of resources
ina distljibuted system is initially distributed. If an indirection service is to be
used, this information must be logically céntralized (though the service itself

'may be distributed and replicated).

Binding

Users generally have minimal interést in raw machines, but are more
interested in the systems and services which they can run. The establishment
of these services and the location of them by users raises several issues of
bmdlng Tbe,_timé,,,at which bi?,dihé?_,ﬁ??,,ﬁ??},,de affects the flexibility of the
system as well as its complexity. Statically bound services reside in dedicated
machines, and their locations are fixed. Dynamically bound services may be
brought into existence only when they are needed, and may subsequently

disappear.

This spectrum of binding times encompasses a wide range of computing
philosophies which have a substantial impact on the habits of use of the sys-
tem. Toward one end of the spectrum, static network services are bound to
machines practically at the start of day. The service to address mappings may
be eﬁ'ecti\rely cached by clients. Somewhere in the middle lies the original
Cambridge Model Distributed System, in which users are allocated a personal
computer for the duration of a l.ogin session. All of the user’'s commands will
be executed in that machine. Toward the opposite end of this spectrum is an
approach being investigated by Project Mayflower at Cambridge. Commands
the user types to the system may be farmed out dynamically to separate pro-
cessors. The Resource Manager provides support for this full range of binding

times.
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Static Re sources

For resources or services which are static, location information is stable.
It may be entered into a table and altered on an infrequent basis by system
managers. The service which satisfies requests for ‘‘name to address’ map-

pings by querying such a table is generally called a nameserver.

The Cambridge Name Server maps

service name - machine address + subaddress (port and function code),
as weli as

machine name -» machine address.
In programs, services are asked for by service name. Thus, clients ask almost
exclusively for the sérvice to address mapping. The Name Server’'s address is
well RnoWn and may be written into program code. It is a relatively simple,
small server which must be very robust as the Ring world cannot survive

without it.

Dynamic Resources

Indirection to dynamically instantiated services requires a varying collec-
-tion of name to address mappings. There must be some policy to determine
who may insert and remove mappings, and some mechanisms for enforcing
this. If there are resources intended only for particular clients or groups, it

must be possible to restrict the disclosure of their addresses.

In the first version of the Resource Manager there was a sort of ‘'reverse
indirection” as the dynamically instantiated resource requested during initiali-
zation the address of the client with which it was to make contact. This con-
tact was genérall&r a stream connection into the terminal concentrator control-
ling the user’s terminal. While this was satisfactory for the initial design aims,
it could not support sharing or preloading of resources because the resource

expected to contact a client only upon initialization.

The second version of the Resource Manager better addresses these
requirements for dynamic resources. Its approach to resource location is dis-

cussed later in this chapter.
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4.2. Allocation

Locating a network résource involves determining an address at which it
can be accessed. If the service at that address is willing to handle any request
it is sent, then providing location information is sufficient. Clients may
approach a static or dynamic indirection service with some description of the
réqﬁired resource, and will receive back an address for the resource. They
may then send requests to that address. Any restriction of access is provided

" by the service or resource itself.

Alterﬁatively, it may be appropriate for the indirection service to provide
some restricfion of access; This may simply be a binary decision of whether to
give the ‘address to the requesting client, or it may also involve tracking the
use of the resource and reclaiming it later. In such a case, the resource is
allocated to the client for some period of time. During this time, the client is
assumed to have exclusive access to the resource. When the client returns the
resource it may be appropriate to reallocate it, depending upon whether it can

recover from the previous allocation.

Because dynamic resources generally are intended to exist only tem-
porarily, there should be some attempt to determine when they are no longer
required or have expired, so that they or their supporting subresources may
be reclaimed. Additionally, because dynamic resources often are instantiated
for a particular client, there should be some concept of allocation of that
resource to the client. Resource Manager accommodates resources for which
full allocation is appropriate, as well as those for which simple indirection is

sufficient.

4.3. The Resource Repository

Resource Manager maintains two data bases about resources available on
the network. One, the Resource Repository, contains information about exist-
ing resources. The other, the Action Catalogue, contains information about
constructing new resources. Following presentations of these two data bases
(in this section and section 5.3), there is a discussion of their use in matching

client requirements for resources to resources available on the network (in
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chapter 8).

For each resource in the public pool RM maintains an entry in its Resource
Repository containing information necessary to manage the resource. RM

searches this table when trying to satisfy an incoming resource request.

Information About Resources

A Resource Repository entry contains the description of a resource as
presented in chapter 3, ‘‘Resource Description’. This information consists of
the functionality (class .and qualifying attributes), data for access (network
address and authentication information), structure (lists of supporters and
dependants), properties for allocation (to be allocated, reusable, replenish-
able, and support multiple), and current allocation (status, allocation time
left, and user inforrnatién) of the resource. Figure 4.1 gives three (related)

entry examples fdr a CLU compiler, Mayflower operating system, and 68000.

Resource Status

The Resource Repository entry includes the current use status, which is
used to determine whether or not the resource's current status makes it eligi-
ble for a particular allocation. There are three basic states: free, worm, and
allocated. Free resources have a status which makes them eligible for any
allocation. Resources with status worm are slightly more protected. A worm
segment may be reclaimed at any time, however Resource Manager will
attempt to allocate a resource which is free before allocating a worm one.
Additionally, a resource which is running a worm will not be reallocated to run

a different worm.

There are two modifiers to these three states. One indicates that a partic-
ular resource supports a resource of one of the other states. For example, if
we have a Mayflower OS which is free, then the machine on which it is running
is marked supporting free. The Mayflower OS is said to be preloaded onto the
machine. If this operating system is allocated to a user, the machine is then

marked as supporting allocated.
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1. | CLU Compiler

2. | Mayflower OS

3.
CLU Mayflower
Compiler 0.S. 68000

class & attrs: 1.] CLU compiler 2.| Mayflower 3.] 68000

Mayflower 68000

68000
netaddress: Carver:20:0 Carver:30:5 Carver:17:3
authinfo: {FF01A783..., {FF011908..., 83EAT381...

810488A2..., 19AE0421...,

FF053DES..} FF0182C3...}
supporters: #2 #3
dependants: #1 #2
to be alloc: yes yes yes
reusable: no yes no
replenishable: yes no yes
support multi; no (n.a.) yes no
status: allocated supp allocated supp allocated
alloc tm left: 10 minutes
user info: G S Murchiston

Figure 4.1. Resource Respositdry Entry Examples

The second modifier is that of reserved. This is an intermediate state
which Resource Manager uses to lock resources while it is deciding which
actions it must obéy to construct a reciuested resource. Reserved resources
are, in general, ineligible for allocation. An exception to this is those resources

which may support multiple resources simultaneously.

Allocation Time and User

For each resource which is allocated to a user (or other client) there is an
allocation time remaining. This field is decremented by Resource Manager and
upon its expiry, the resource is reclaimed. There is also a certain amount of
user information kept, primarily for listing and (potentially) for accounting

purposes.
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Recognizing Dynamically Instantiated Resources

Any time Resource Manager has a resource constructed, it will make an
entry into its Repository before aliocating the resource. Some of the fields for
this entry - the attributes, network address, and authentication information -
will have been 'returned by the service which did the construction. The
remaining fields either will have been indicated in the information on how to
construct the resource, or for fields such as allocation time, will have been

pro#ided by the client in the request.

Enter_.Resource = proc (class: uID, % descr of resource
attrs: ARRAV{UID],
net.addr: ADDR,
auth: AUTH.INFO,
to.be_alloc: BOOL, % properties of res
support.multi: BooL,
reusable: BOOL,
teplenishable: HANDLE, % resource (in Repos) from whom

. % replacement may be obtalned;
% If null, res not replenishable
client_auth: UIDSET)

signals (invalid_uidset, % of client
not_authorized(uio), ¥ insufficient privilege to enter
% [resource with] given attr
bad_replen) % bad handle for service from
% whom to replenish resource

Specification 4.1. Procedure for Entering Resource into RM

It is also possible for any service on the network to provide a resource
through the resource management system by passing information about the
resource to Resource Manager. The procedure for doing this is given in
specification 4.1. For example, a file system server could upon initialization
register the five file system sessions it was willing to provide with Resource
Manager, and replenish these sessions as users abandoned them. This is in
contrast to the scheme in section 5.3, where accommodation of a service

willing to provide a resource on demand is discussed.

Private Repositories

Resource Manager will maintain private repositories for clients. They may

specify certain of these resources to be used in satisfying a particular
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resource request. In this way clients may utilize the resource construction
and management provided by RM to provide a consistent view for both general
and private resources. There is a separate mechanism, using privileges, for

providing ‘‘group’’ access to resources (section 9.3).

For .exarnple, a Mayflower command executjve in a user's workstation may
farm out any ‘‘difficult’’ commands (e.g. compilation, text formatting) to other
processors running the Mayflower kernel. When it determines that it needs a
CLU compiler, it may approach RM for one. RM might load a Mayflower kernel
and ask it for a CLU compiler, which it would then return to the Mayflower exe-
cutive in the workstation. Preloading (section 10.1) would keep this from being

prohibitively expensive.

It might be that, rather than obtaining a Mayflower kernel from RM for
each corﬁmand, the executive would obtain two or three Mayflower kernels and
register them with RM as private resources. Then requests for compilers, etc.
could be made to RM specifyirig that these pri(rate resources be used. The exe-
cutive would still make requests directly to RM, and have the benefit of its con-

| struction knowledge, but would bé guaranteed use of these two or three
machines in its private cache. If the Mayflower kernel was able to support
more than one command, then requests to RM beyond the number of machines
in the cache would result in multiple commands being executed on each ker-

nel.

Private repositories have not been implemented.




5. Construction

Constructing resources may involve loading code into raw machines, link-
ing code into operating systems, or notifying programs that they are to

cooperate as parts of a distributed application.

5.1. Division of Work -

The thesis of this dissertation, that resources and the requirements for
their management can be viewed in a sufficiently general way as to allow them
to be collectively managed, favors providing the functionality for resource con-
struction in the resource mahagement system rather than in external provid-
ers of resources. This simplifies the intfoduction of new types of resources
into the system by reducing the functions which must be implemented in a
provider, possibly requiring only an addition to a table in the resource manage-
ment system. It also provides a central collection of information which could

be used to guide decisions about construction alternatives.

However, the tasks of resource construction are varied and require special-
ized knowledge, e.g. of loading protocols or the way in which internal resources
of an operating system are combined to produce a user terminal session.
Incorporating all such knowledge into the resource management system
‘directly is infeasible because its code would have to be changed each time a
new type of resource‘ was added to the system. It is also undesirable because
providers of resources may wish to retain some degree of control over those

they offer to network clients.

As a compromise, a subset of construction tasks and information has been
incorporated into Resource Manager with the remainder left to providers
(servers and fabricators) of the resources. The subset was chosen to meet the

most common and general requirements.
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Management by Providers

Providers may perform some of their own management. For example, a
tivrne sharing systerﬁ such as Unix or the CAP operating system, which was wil-
ling to offer sessions through the resource management system. might keep
track of available internal memory, the number of sessions currently sup-
ported, the number of processes running, etc. They might use these facts to
determine whether to allocate another session when one is required. Actually
making this decision is a specialized process requiring knowledge of available
internal resources and therefore not appropriate to implementation in the

Resource Manager.
5.2. Providers of Resources

Servers and Fabricators

Servers are a familiar concept in distributed systems. They offer remote
functions such as filing, name-to-address translation, printing, electronic mail,
and authentication. Servers are a potential source of resources for allocation

via the Resource Manager.

Fabricators augment or combine existing resources to construct target
resources., They are a generalization of the Ancillae used by the first Resource
Manager, which were used to hide the loading characteristics particular to
different processor types and to structure the system. Thus, RM did not have
to be changed if a new type of processor was added to the Processor Bank.
Instead, a new Ancilla was implemented. This allowed a clean separation of

function between machine allocation and machine loading.

A fabricator may be as simple as an Ancilla, loading a memory image into a
given machine to produce the target system. Alternatively, it may be sophisti-
cated enough to link the base operating system determined by the target
class, and the modules deternﬁined by the target attributes, with any libraries

resulting from a library scan, and to load this into the given machine.

There are no rigid differences between fabricators and servers. In fact, in

the code they are generally referred to collectively as fab_servs. However, it is
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useful to have some intuitive understanding of th¢ notional differences. Both
are viewed as capable of providing a target resource when presented with zero
or more existing resources. However, fabricators generally require that the
client provide at least one resource which is used in the construction. For
example, the Ancilla expects a machine which it can load to produce the target
system. Servers tend to use only their internal resources to provide the target
resource, and they directly suppoft the target resource. Fabricators tend to
be associated with the resources they use in construction, rather than the
resulting's.ervices. For example, a 68000 Ancilla is capable of providing any
one of a multiplicity of resources when given a 68000. On the dther hand,
servers tend to be associated with the resources which they provide, such as

an edit server which provides edit sessions.

Interfaces

A request to a fabricator or server [specification 5.1] includes the class and
qualifying attributes of the target resource. It also gives its intended use
(free/preloaded, worm, allocated).. The request also includes the descriptions,
addresses, and authentication information of any required existing resources.
The server or fabricator is expected to combine these existing resources, pos-
sibly along with some of its internal resdurces, to provide the target resource.
Authentication information is included in the request, from which the fabrica-

tor or server can determine whether the request is authorized.

Res_Request = proc (class: uip, . % description of target
attrs: ARRAY[UID], % resource
intended.use: ALLOC_STATE,
reqd.resources: ARRAY[RECORD[class: uip,

attrs: ARRAY{UID],
net.addr: ADDR,
auth: AUTH_INFOJ],

request_auth: AUTH.INFO) % fab_serv or requestor

returns (ARRAY[UID), % full set of atiributes

ADDR, % network address
AUTHINFO, % resource uldset (or token)
uiD) #% dead man's handle

signals (falled(INT, STRING)) % Index of resource which
% falled, and explanation

Specification 5.1. Resource Request to Server or Fabricator
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The reply inclﬁdes the attributes, address, and authentication information
of the target r__esource. The attributes may be a superset of those requested.
- Also included is the dead man’s handlé, which is part of the mechanism used in
monitoring (disvcussed in section 7.2). Resource Manager uses this interface
when obtaining resources from servers or fabricators, but it may be used by

any authorized client.

5.3. Actions and the Action Catalogue

A resource action describes how a resource can be assembled or con-
structed from components with thé assistance of a server or fabricator.! The
action describes how server and fabricator interfaces, as discussed above, can
be used, as well as giving static information about the resulting resource '(e.g.
whether it is reusable). The collection of all resource actions is called the
Action Catalogue. When RM is trying to satisfy a resource request, it will first
search its Resource Repository to find if the resource already exists. If this

j'sre‘éféhiféiviér, it will conéulﬂ‘/t the Catalogue rfror’rplans indicatiﬂg alternative wéysméwf

obtaining the resource.

Structure of Resources

Resources have a multiple level structure. It is natural to describe this
structure recursively: a resource depends upon a particular set of supporting
resources, which may in turn depend upon other resources. Each resource
action expresses the structural dependency between two levels of the

resource.

Resources supported by several layers are described by more than one
resource action. For example, an edit server supported by Tripos running on
anvLSI4 is described by two actions (see figure 5.1): one indicating the depen-
dence of the edit server on the Tripos, and the other of the Tripos on the LSI4.
Additionally, there may be multiple actions required at a particular (sub)level,
for example one each to provide the ABC kernel and the filing system session

for an ABC operating system.

'In the next chapter it is shown how these actions may be combined to form a blueprint or
plan for construction which may then be executed to obtain the target resource.
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LSI4

Edit Server
1. 2. l LSI4 Ancilla I

result server or other reqd
resource fabricator resources
1.| Edit Server Tripos [nonej
2.] Tripos LSI4 Ancilla LS4
3. ABCO.S. ABC Kernel F.S. Session
4. Tripos 68000 Ancilla 68000

I ABC Operating System ]
3. / \ 4.

| ABC Kernel | ! F.S. Session | | 68000 l

Figure 5.1. Simplified Resource Action Examples

' 68000 Ancilla I

If a resource ma'y be constructed in different ways, then there will be mul-
tiple resource actions for it. For example, there are two alternative actions for

Tripos: one for LSI4s and one for 68000s.

Method of‘ Construction

Besides indicating the subresources on which a resource depends,
resource actions specify a fabricator or server which can construct that
_resource. If the aftributes for a fabricator or server are specified, then any
resource with those attributes will do. In this case, it is Resource Manager's
responsibility to find an appropriate server or fabricator. It may do this by
looking in the Resource Repository or by searching for an action which it can

obey to construct the server or fabricator.

Alternatively, the action may specify a particular fabricator or server to
be used. This would be the result of a service approaching the Resource
Manager and offering to provide resources upon request. In this case, the
server/fabricator field contains the handle for the particular resource in the

Repository.
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When Resource Manager wishes to obey a resource action, it must first
obtain the server or fabricator, and also obtain any required resources listed.
Obtaining these resources may be a recursive process. Resource Manager then
contacts the fabricator or server, handing it the required resources and
requirements for the target resource, and expecting in return the target
resource. The required attributes for the target resource may be a subset of
those listed as available in the action. This allows the action to indicate the
full range éf attributes available, while allowing the fabricator or server to pro-
vide only those necessary for a particular request. The attributes of the
resulting resduf‘ce may be a superset of those requested. This allows Resource
Manager to ask for the minimum attributes it requires, yet to record the

actual attributes acquired.

Description of Resulting Resource .

For each resource resulting from executing a resource action, Resource
Manager makes an entry in the Resource Repository. The attributes, address,
and authentication information will be those indicated by the fabricator or
server. The attributes will be checked when allocation is made to ensure the
client has the necessary privileges. The use status will depend upon the reason

for which RM had the resource created.

The remainder of the information for the Repository entry is static for the
particular class of resource and is indicated in the resource action. It includes
whether the fabricator/server supports the resulting resource (other required
resources are assumed to). This is used in constructing the list of supporting
resources. It also includes the properties for allocation of the resulting
resource (to be allocated, reusable, replenishable, and support multiple) as
discussed in section 3.5. These are used in deciding whether the resource is

eligible for subsequent allocation or indirection requests.

Figure 5.2 shows examples which include the fields mentioned in the last
paragraph. The five actions shown might be used in constructing a CLU com-
piler “from scratch'’, i.e. using only primitive resources entered by system
managers or the Boot Server (discussed in section 10.2). Assumé that only the

Machine Server and Z80 Loader exist initially. Action 5 might be executed to
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CLU Compiler

) Lzso Loader

rMachine Server
result server or fabricator other reqd. properties for allocation
| awrsornandie |, | | 0| ekt | B |
1. | CLU Compiler ]| Mayflower yes yes no yes no
2. 1 Mayflower 68000 Ancilla no | 68000 yes yes no yes
3. | 68000 Machine Server | no yes no yes no
4. | 68000 Ancilla 780 Loader no | Z80 no - - -
5. | Z80 Machine Server | no yes no yes no

Figure 5.2. Resource Action Examples

obtain a Z80 from the Machine Server so that action 4 could be executed to
construct a 68000 Ancilla with the assistance of the Z80 Loader. RM would then
return to the Machine Server in executing action 3 to obtain a 68000. Follow-
ing that, it would execute action 2, approaching the 68000 Ancilla and asking it
to load the obtained 68000 with the Mayflower operating system. Finally, it
would execute action 1, asking the Mayflower operating system for the address
of a CLU compilerv(interface). The mechanisms for determining and executing
this sequence are discussed in the next chapter. (Generally, some of these
resources would aiready exist, either because they are reusable or from

preloading, so RM would not have to execute all of these steps at once.)

Creating New Actions

There are resource actions in the Catalogue describing how to build the

well known resources in the system. These are generally entered by system
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managers and are relatively static.’® The fabricator or server for such actions
is usually indicated by attributes, rather than being a specific service, so that
any resource with those attributes will do. The procedure for entering

resource actions is given in specification 5.2.

Enter_Action = proc (class: uD, % descr of resource.
attrs: ARRAY[UID], % actlon produces
fab_serv: ONEOF[class: uip,

specific: HANDLE],
ress._to.acquire: ARRAY[RECORD[class: UID,
attrs:  aRRAv[uID!|]],
fabserv_supports: BooL,

to_be.alloc: gooL, % properties of
support.multi: BOOL, % resource which
reusable: BOOL, % action produces
replenishable: BOOL, % " "
client_auth: UIDSET)

signals (invalid_uidset, % of client

not_authorized{uin)) ¥% insufficient priv to enter
‘ % [action for ] given attr

Specification 5.2. Procedure for Entering Action into RM

It is also possible for any service on the network which is willing to provide
a resource on demand to register such an offer with RM in the form of a
resource action. For example, the CAP operating system could enter an action
to indicate its willingness to consider the provision of terminal sessions or file
transfer service upon request. In such a case, the fabricator or server for the
action would be the service making the offer. This scheme is in contrast to the
one discussed in section 4.3, where a service wishing to provide a resource to
the network without having to consider specific requests for it may simply give

the resource to RM to manége.

®The Action Catalogue is included in the state saved to secondary store, so it will survive
Resource Manager failures.




6. Matching Requests to Resources

This chapter discusses in some detail the algorithms used to match client
requirements for resources to resources available on the network. It attempts
to tie together the implementation covered in the last two chapters, and is
rather specific to the functions provided by the Resource Repository and the

Action Catalogue.

6.1. Overview

Requests are matched to 'available resources based on (in order of impor-
tance): |

» functionality,

» status eligibility, and

s factors differentiating instances with similar functionality.
Available resources include existing ones (those in the Resource Repository)
and ones which can be constructed or obtained from existing ones by execut-

ing one or more resource actions (in the Action Catalogue).

First, the chosen resource must provide the functionality required by the
client. As attributes are used to describe functionality, this means that the
resource's attribute set (including subresource attributes) must be a superset
of those requested by the client. The class attribute is the most important as
it distinguishes the existing resources and resource actions which merit

further consideration.

For existing resources, the c’,‘omplete attribute sets are known and can be
checked for the required functionality at this stage. For resource actions, the
available attributes for the top level resource are known, but attributes for
subresources will not be known ﬁntil later. Thus, this part of the restriction
must be deferred. This problem arises because clients see a flat attribute set
for a structured resource - though an irnportaht simplification for clients, it

complicates the implementation considerably.
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Next, candidate resources are checked for status eligibility - their
intended use (e.g. allocated to client, running worm segment) must not clash
with their current use. If a top level resource is being sought, then the
intended use will be that which the client specified. If a subresource for a can-
didate action is being sought, the intended status will be either for allocation
(to RM) of a non-supporting fabricator/server or to ‘‘support’ the intended
status for the action resource. Eligibility depends on the current status of the
resource and its properties for [relallocation, as compared with the intended

status.

All alternatives remaining after the above restrictions have been applied
satisfy the expressed client requirements. Resource management policy must
decide among them. The current implementation emphasizes minimum
time/delay for allocation. The chapter on "Policy”, section 8.3, proposes
several factors differentiating resource instances to be compared in making

this'final choice.

Request and Reply Contents

Basically, requests arrive for a resource specifying a set of attributes. The
reply to this request is an address and authentication information for a

resource possessing these attributes.

Obtain_Resource = proc (class:
attrs:
intended.use:
alloc.time:
client_auth:

returns (ARRAY[UID],
ADDR,
AUTH_INFO)

uiID,
ARRAY[UID),
ALLOC _STATE,
INT,

UIDSET)

% full set of attributes
% network address
% resource uidset (or token)

signals (not_available)

Specification 8.1. Procedure for Obtaining Resource from RM

In more detail [specification 6.1], the request for a resource includes the

class and qualifying attributes required, the intended use, the time for which

the resource will be required, and the uidset of the requesting client. The

class and attributes

describe the resource.

The intended use indicates
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whether the resource will be allocated tp a user or other client, whether it will
run a worm segment, or whether this is just a request for preloading. RM com-
pares this with the allocation status of existing resources to determine their
eligibility for allocation for the request. The allocation time determines the
limit of time for Which the client may retain the resource. The allocation time
is ignored if the resource is not to be allocated (i.e. if its address is just given
out). The client's uidset is checked for validity and to détermine if he has the

necessary privileges for the requested resource.

RM's reply contains the full attributes, network address, and authentica-
tion information of the resulting resource. The full set of attributes is given
because the allocated resource 'rnay have attributes of which the client may
take advantage though they were not included in the resource request. The
network address indicates where the client should send requests to the
resource. Generally, the authentication information must accompany requests

to the resource as a capability for the right to use it.

6.2. Blueprints

As RM séarches for a resource it builds a blueprint or plan for construc-
tion. A blueprint may be a resource node, pointing directly to an available
resource in the Resource Repository. Alternatively, it may be an action node,
pointing to an action for the resource and a list of blueprints for required

subresources.
' The Need for Blueprints

Required Resources Available

Resource Manager uses blueprints largely as an optimization. It wants to
be fairly certain that a particular plan for construction will succeed before

actually beginning such construction.

Suppose, for example, that a BCPL compiler was a sought resource and
there were two actions for one (see figure 6.1): the first indicating that a BCPL
compiler could be obtained from a Tripos operating system instance, the

second indicatihg that one could be obtained from a Unix operating system
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result server or other reqd
resource fabricator resources
BCPL Compiler  Tripos [none]
BCPL Compiler  Unix [none]
Tripos Tripos Kernel Tripos FM sess
Tripos Kernel 68000 Ancilla 68000

Figure 6.1. Simplified Actions for BCPL Compiler

instance. If Resqurce Manager were to begin obeying the first action, it might
discover that it heeded a Tripos Kernel and a Tripos Filing Machine session. It
could obtain the Tripos Kernel by asking an Ancilla to load an available
machine. Once it had obtained this, it would try to obtain the Tripos Filing
Machine session. If however, there were none available, and no actions for
obtaining one, Resource Manager would back off and try the other action for
the BCPL compiler which told it to obtain ‘a Unix instance. Suppose a Unix
instance was available in the Repository. RM could approach the Unix instance

and request'a BCPL compiler.

The attempt to satisfy the first action failed because a Filing Machine ses-
sion was not available. Unfortunately, Resource Manager had already under-
taken communication with the Ancilla, and waited for it to load the determined
machine. This would have involved several seconds of elapsed time which was
unnecessary because the information was available to determine that that
action could not succeed. Blueprints are used to avoid following such blind

alleys.

© Attribute Requirements Satisfied

Blueprints are élso used to ensure that the attribute requirements will be
satisfled. Because resource.attribute sets have been flattened, it is not possi-
ble to tell whether a resource and all of its subresources will provide a super-
set of the requested attributes until all these subresources are known. Using
blueprints, the attributes provided by each subresource are removed from the
required attribute set. If the subresource is represented as an action node,

then the attributes it contributes will be the intersection of the required
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attributes and those the action can provide. This intersection is recorded in
the action node for inclusion in the request to the fabricator or server. If the
required attribute set is empty when the full structure of the blueprint is

known, then all of the attributes have been matched.

Description

A blueprint is a tree, each node of which represents a resource (example in
figure 6.2). The root node is for the resource requested by the client. The leaf
nodes are all resource nodes pointing to existing resources in the Repository.
‘The iﬁtermediate nodes are action nodes corresponding to actions to be
obeyed. The children of action nodes correspond to the required subresources

in the action.

Blueprints are recursively assembled, and assembly continues until
resource nodes have been reached. The structure of the blueprint reflects
part of the structure which the resulting resource will have. The remaining
structure is evident in the resources corresponding to resource nodes. Blue-
prints must contain information necessary for their execution in case they are
determined to be satisfactory. Resource nodes simply point to corresponding -
resources in the Repository. Reservations for these resources will be held by

the particular blueprint.

Action nodes contain a pointer to the corresponding action, a list of blue-
prints for obtaining the required resources, and a list of which of the possible
attributes that this action can provide are needed. The list of required
resources will include a fabricator or server, and zero or more subresources.
An action node would also contain the intended allocation status of the result-

ing resource.

The example blueprint in figure 6.2 is for obtaining a distributed XYZ com-
piler in which the front and back ends run.on separate machines. In this
"~ example, there is only one free 68000 in the Repository so the other is to be
obtained from a Machine Server. Once the second machine has been obtained,
the Ancilla will be approached to load each machine separately with the PQR

operating system, then one of these will be approached (and given the address
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action node
target attrs: XYZ Compiler
action: <XYZ Compiler on two PQR O.S.>
result attrs: XYZ Compiler, PQR 0.8., 68000, PQR 0.S., 68000
intended status: | allocated to client
reqd resources: fab pserv .
action node actionn
target attrs: PQR O.S. target attrs: PQRO.S.
action: <PQR O.S. into 68000 > action: <PQR O.8S. into 68000 >
result attrs: PQR O.S., 68000 result attrs: PQR O.S., 68000
intended status: | support allocated intended status: | support allocated
reqd resources: /. fab o\serv reqd resources: f@o serv ‘
res node res nod. action nod.

ptr to 68000 in Repository;
reserved to  support
allocated res

Repository;
fabricator

ptr to 68000 Ancilla in
reserved as

Corresponding

Resource
Scenario
68000
Ancilla
I 68000 l lMachine Server

Figure 6.2. Example Blueprint for an XYZ Compiler

target attrs:
action:
resultatirs:
intended status:

reqd resources:

68000

< 68000 from mc server >

68000

support allocated

fab ¢serv

resnode vy

ptr to machine server in
Repository; reserved as
server

and authentication information of the other) to produce an XYZ compiler.

There are resource nodes for the existing resources which will be used - the

68000, the Ancilla, and the Machine Server - and action nodes for the rerhain—

ing components of the structure.

Reservations

As resource nodes are added to the blueprint, reservations are made for

the corresponding resource. The reservation indicates the intended status and

the request for which it is made.
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Reservations are used to prevent a resource from being allocated between
'the time a resource node is created and the blueprint is executed, as well as
from being allocated twice in incompatible ways for the same blueprint. The
intended status indicated in the reservation is used to avoid the incompatible

uses.

A particular resource may have more than one reservation. For example,
an independent fabricator or server may be multiply reserved if it is capable of
handling multiple client requests. However, in the current implementation a

resource may be reserved for only one intended status at a time.

6.3. Assembling Blueprints

There may be several ways of constructing a target resource given the
existing resources and actions. Each of these alternatives has a corresponding
blueprint. For example, there may be several instances of a required resource
in the public pool and there may be several actions for obtaining it. If each
alternative for each node is considered to form a multibranch alternative tree,
then iteration of blueprints is accomplished by traversal of this tree. The
order of this traversal forms part of the allocation policy and is the subject of

the remainder of this section.

Existing reséurces are allocated in preference to building new ones. Exist-
ing resources can always be allocated more quickly than new ones can be
obtained for allocation. This provides the quickest response to the user
request, possibly at the expense of providing a lower quality resource. If there
is a great disparity in the quality of resources in a particular class, and this is
important to clients, then an extra attribute indicating the quality may be
used so that a client may specify his preference/requirements for quality. It is

not believed this will be a serious problem.

The policy of allocating existing resources in preference to building new
ones also avoids the unnecessary proliferation of resources of which there are
already usable instances, even though it may be possible to construct slightly
superior ones. This is important because new resources can often be created

only by reclaiming others, which could lead to a form of thrashing if successive
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requests had alternate intentions for a particular (superior) subresource.
Different fabricators which run on the same type of machine are particularly
susceptible to this as fabricators are generally idle and thus eligible for recla-

mation.

The remainder of this section discusses the alternative blueprints tree and
the algorithm for its traversal. The reader who does not require more detail

may wish to skip to section 6.4.

Alternative Blueprints Tree

The tree whose travefsal produces alternative blueprints (which are them-
selves trees) has both alternative and conjunctive nodes. Wherever a resource
is required, either by the client or for use in a resource action, there is an
alternative node - a node whose branches are alternatives from which one
must be chosen. Wherever there is a resource action, and one or more
resources must be assembled, there is a conjunciive node - a node whose
branches must all be satisfied. The leaf nodes of the tree represent existing

resources in the Repository.

Figure 6.3 gives an alternative blueprints tree for a CLU Compiler. It is an
extension of the example discussed in section 5.3 (pp. 38-9), which the reader
may wish to reviéw. This is a fairly restricted example in that there is only one
action for each fesource class. If there was an action for a CLU Compiler on
" Unix, then there would be an additional branch from node A4 with its

corresponding subtree.

A blueprint is basically a partial image of this tree which, from the root,
follows one of éach of the brahches .frofn alternative nodes and all of the
branches from conjunctive nodes until leaf nodes are reached. The image for
the example discussion in section 5.3, in wHich only the Machine Server and
780 Loader existed initially, is traced by the dotted line. Alternative nodes
with more than one branch (4, D, H, M, and S) give rise to multiple blueprints.
As such, they do not appear in the blueprints. Conjunctive nodes (C, G, J, P,
and X) appear as action nodes in the blueprints, and leaf nodes appear as

resource nodes.
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v Q CLU Compiler Alternative Node: \] @ Reqd. Res.

Conjunctive Node: N @ Resource

Action
E A CLU Compileron
Mayﬂower 0.S.
 CLU Compiler Resource Node:

@ Silver
Existing Resource

@ Addr (stn nama)

\Y2 Q Mayflower O.S. Legend

Mayflower on
e 68000 by 68000 Anc

Mayflower Mayflower
@ Green @ Blue

\% G 68000 Ancilla \Y Q 68000

68000 Anc 68000 68000 68000 68000
@ Anc.68 . . @Red @ Green (@Blue @ Gold

\Y2 @ 780 Loader \V) @ 780 \Y e Machine Server

68000Anc on 68000 from
A a 780 byZ80Loader A McSerfL;er

] 0] Ae) %o, 2]

280 Loader 780 780 : Mc Server
@ BootServ @ Roger @ Andy H @ Carver

A\ @) Machine Server .
[2]

Mc Server
@ Carver

Figure 6.3. Example Alternative Blueprints Tree

Traversal Algorithm

Walking the tree to produce blueprints is not a standard traversal problem
(in which the goal is to visit each leaf node exactly once) because of alternative
nodes. For each branch of each alternative node appropriate parts of the rest
of the tree are scanned, resulting in multiple visitation of many nodes. For
example, node S will be visited once for each alternative of nodes H and M.

However, the policy to use existing resources before constructing new ones
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does impose a form of breadth first traversal - we would like to descend as few
levels as possible since each walk through a conjunctive node implies construc-

tion.

At each level, all combinations of resource Branches are considered before
any action ones are. Because this must apply across a level, it cannot be
accomplished by recursive application of single autonomous scanning routines
at each node which simply consider their alternative resource branches before
their alternative action branches. Instead, control is applied from parent con-
junctive nodes to make two separate passes over each alternative node for its

resource and action alternatives.

Considering existing resources before resource actions ensures, for exam-
ple, that an existing Mayflower system (resource node E or F) will be used in
preference to loading one on a 68000 (action node G and resource node 7T, U, V,
or W), but it says nothing about which of the existing 68000s is to be preferred.
The order in‘which resource and action alternatives are considered is dis-

cussed below.

Order of Resource Nodes

Resources in the Repository are kept ih ordered lists based upon their eli-
gibility for ’alloéation. There is one list for each class. When scanning for
resource nodes, each element in the list for the required class is simply con-
sidered in turn, until either the resource is acceptable or the allocation poten-

tial of the remaining resources is lower than that which is required.

Eligibility for allocation is determined by the current allocation status of
a resource, including reservations, in conjunction with its properties for alloca-
tion. The ordering of eligibility attempts to allocate first resources which are
free, then reusable/replenishable ones which have been preloaded (that is, are
supporting free resources), failing that reusable/replenishable ones which afe
running worm segments, and finally ones which are already supporting
resources allocated to clients and can support multiple resources. In the pre-
vious example, it is this ordering which would cause a requirement for a 68000

to consider nodes T and W (assuming they are free) before U and V (which are
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preloaded, assuming the Mayflower systems of nodes E and F are free).
Because of reservations, this. ordering is only partial: one resource might be
eligible for a particular intended status while another is not, yet vice versa for

a different intention.

In addition to checking allocation eligibility of the resource, RM must
ensure that the client has sufficient pfivileges to be allocated a resource with

the attributes possessed (discussed in section 9.3).

Minimal Search Time

The reason for ordering the resource lists was to keep the search time for
a resource of a particular class to a minimum. :With ordered resource lists, the
first resource with a status eligible for the intended status is the “‘most eligi-
ble’* resource available. If that is unacceptable because it lacks the required
attributes or has attributes for which the ‘client does not have the necessary
privilege, then the 'next resource with a status eligible for the intended status
is the next most eligible, etc. The ordering seemed particularly important in
view of the fact that the number of times a scan is repeated is exponential with

the number of components of the target resource.

Whether or not the decision to keep resources ordered was correct is
unclear. - The status cluster, which incorporates the ordering functions, was
greétly complicated as a result. It is the largest and most complex cluster in
RM. Changing a resource's status requires changing its position in the list.
Considering that in practice the number of resources of a particular class and
the number of components in a target resource are often small, the time taken
to consider each resource for each search iteration may have been acceptable.
However, much of the current cornplexity is in calculating the factors to com-
pare resources for eligibility. This calculation would still be required, though

its frequency would be slightly less.

Order of Action Nodes

RM considers actions in the order in which they appear in the Action

Catalogue. This order is static and is preset by system managers to yield the
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more desirable resource assemblies first. No attempt was made to dynami-
cally reorder actions because it is in general not possible to determine factors
such as fabrication time and quality of resulting service. There is some discus-

sion of how this might be done in section 8.3.

An Alternative to Special Traversal

The traversal of the alternative blueprints tree is designed to produce the
“best’’ blueprint first so that it may be executed, and only if it fails need the
next best' blueprint be producéd, etc. An alternative is to create all of the
blueprints for a particular resource, and then decide among them. This was
considered infeasible because of the complexity it would introduce in reserva-
tions énd of the large nurﬁbér of blueprints for even a relatively simple

resource.

For example, suppose that for a desired resource of which there are no
free instances in the Repository, there is one resource action indicating it can
be constructed from two 68000s by a 68000 Ancilla. Assume there are eight eli-
gible 88000s, one 68000 Ancilla, one resource action describing how to con-
struct a 68000 Ancilla from a Z80, and two eligible Z80s. There would be 56
combinations of 68000s (8x7) times 3 choices for an Ancilla, or 168 blueprints.
The reservation system would héve to understand that a particular 68000 could
be reserved only once within a blueprint but multiply by different blueprints
fdr the same client request, though hot by different blueprints for different

client requests.

6.4. Execution

Once an acceptable blueprint has been completely assembled, RM
attempts to execute it from the bottom upward. RM confirms the reservations
for resource nodes then contacts the fabricator or server péssing it informa-
tion about the existing and required resources, and expecting information .
about the required resource in return. For this newly created resource, an
éntry is made in the Repository. If the resource is a top level resource, it is

then allocated to the client.
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Failure Recovery

If blueprint execution fails because a resource fails during fabrication,
then resources which have already been acquired for the action being obeyed
are released. Otherwise, the failure was in confirming a reservation for a
resource. In either case, any parts of the blueprint depending on the failed
resource are dismantled. The particular resource which failed is added to the
;ngd resources list for this request so ;hat no attempt will be made to reuse it at

a later stage in the current request.

At this point, there will be a number of suspended resource and action
node scans, one. for each resource required at each level. These are succes-
sively resumed and will check to see if they yielded the offending resource, in
which cése they will move on to the next alternative. If they did not yield the
offending resource, then they will terminate as some earlier node in the tree
.has yielded it and must be replaced. When the scan yielding the failed
resource is reached, then reconstruction of the blueprint beyond that point
will bé attemptea. If this attempt is successful, RM will try to execute the new

blueprint in the same manner.




7. Monitoring and Reclamation

7.1. Requirements

Once created, a resource should be monitored so its failure can be
detected. Once allocated, several additional changes in status should be
noted: the client may inform the resource management system that it has
‘finished with the resource; the overall allocation time for the resource may
éxpire; or a higher priority request for the resource may arrive (leading to
preemption). All of these events indicate that the resource will shortly be
reclaimed. Notification of these events and of the actual reclamation should

be provided for interested parties.

The user or designer may be interested in the failure of a resource so that
the resource can be debugged. Othér cornponehts of the client task for which
‘the resource was allocated may be interested in its failure, expiry of its overall
allocation time, or its preemption so they can reconfigure or can replace the
resource. The resource management system is interested in these events so
that it can adjust its internal tables and cause the resource to be reclaimed at
the appropriate time. The provider of a resource may be interested in its
failure so that it can rectify the problem, possibly calling it to the attention of
system managers. The provider may also be interested in an indication of rec-

lamation so it can reset or replace the resource.

When a resource is allocated, an allocation time is specified by the client
after which the resource may be reclaimed. This is primarily to recover
resources which the client has neglected to return or whose failure was not
detected when it occurred. Depending on the type of resource, the resource
management system may make- it available for reallocation or cause it to be

reclaimed.

Mechanisms to support monitoring and notification were designed for

Resource Manager. Because they were felt to be useful elsewhere in the
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distributed system, two small servers, known as the Aliveness Server and Event
Notification ‘Server, were postulated to support these abstractions. These
servers currently reside in the same machine as Resource Manager though
their CLU RPC interfaces (and similar SSP interfaces) are available as network
services. Communication with them by Resource Manager and between the two

servers is via RPCs.

The remainder of this chapter describes the mechanisms for monitoring

and notification, as well as how they are used in reclamation and preemption.

7.2. Aliveness Monitoring

The Aliveness Server keeps track of which services or resources are run-
ning, or stopped but of interesf to another service (e.g. a debugger). This is
done using a dead man’s handle rnechanism‘in which a small refresh time
(generally on the order of minutes) is associated with each object. The object,
or a client acting on its behalf, must contact the Aliveness Server within the
time limit and request that this time be extended. If the timer expires, the
object is assumed to have died and an expire event is sent to the Event

Notification Server indicating expiry of the given object.

Once an object is believed to have expired, the Alivéness Server will wait a
nominal time (two minutes) and, if the refresh is not resumed (e.g. by a
debugger), will then issue a reclaim event for that object. The time between
the expire and reclaim events may be used for cleanup or recovery by an

interested party (the user, a parent task, etc.).

Starting a Dead Man’s Handle

Start_DMH = proc (handle: uD, % THE dead man's handle
name: SEQUENCE[STRING], % name of the assoclated object
init_time: INT, % initial refresh time
client_auth: UIDSET) % as authenticator of ''name"

signals (handle_in_use)

Specification 7.1. Aliveness Server Procedure for Starting Dead Man's Handle

A dead man's handle is started [specification 7.1] by presenting a 64 bit

UID which will act as the handle to be shaken, a sequence of strings naming the
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object (e.g. resource class and address), an initial timeout, and a uidset for the

client starting the handle. The handle should be random/secret as it will act -

as a sort of capability for extending the refresh time or forceably expiring it.
The sequence of strings naming the object will be sent to the Event Notification
Server as arguments for the ezpire and reclaim events. The authenticity of

this name is guaranteed by the client’s uidset.

7.3. Event Notifiéation \

The Event Notification Servér will notify interested parties when an event
~ occurs (e.g. a resource has failed to refresh a dead man's handle). The con-
cept of asynchronous cross process signals as it occurs in operating systems is
not dissimilar to the Notification Server events: issuing a ‘‘wait’’ is similar to
régistering interest in an event, énd the resulting '‘notify’’ is similar to the

notification callback.

Registering Interest

Any client may register interest in an event by giving [specification 7.2]:
the event's narﬁe and arguments, optionally the service from which the event
must be triggered and the service which must have provided the qualiﬁcdtion
(if different from the triggering agent), a timeout for the interest, an SSP call
"or CLU RPC to be made when the event occurs, and an indication of how
imperative it is that such notification succeeds (try once, try reasonably, or

try until success).

Register_RPC = proc (on_occurrence: uip, % the event of interest
args: SEQUENCE[STRING), % qualifiers on that event
triggered._by: uinz, % who must trigger It
args.by: uioz, % who must have given args
within: INT, ‘ % mins till interest expires
notif_factor: IMPERATIVENESS, % how Imperative notif is
rpc.proc: REMOTEPROCTYPE (TOKEN[ANY]),
rpc.arg: - TOKEN[ANY]) % RPC for notification

Specification 7.2, Notification Server Procedure for Registering RPC Interest

When an event is triggered, the calls for all matching interests will be made

asynchronously. Because anyone can claim that events have occurred, a client




Event Notification 57

‘r'egister_ing an interest méy indicate the party who must trigger the event.
Then only authenticéted claims by the specified party will cause the RPC or
SSP call to be rnade.i (If the arguments describing the event originated from a
third pavrty,y that party may also be specified. For example, a client may be
interested in the event {expire "Tripos' "@Green:30:1''}, indicating that the
Tripos on the machine named Green has failed to refresh its dead man's han-
dle, only if it comes from the Alivéness Server, and only if the arguments **Tri-

pos'' and "'@Green:30:1'"" came from Resource Manager.)

Naming Fvents

Events are named by a 64 bit unique identifier (representing e.g. expire or
reclaim) and a sequernce of string arguments giving successive qualifications of
that event. Strings were chosen as the type of the qualifying arguments
because of the variety of data which must be represented - the (mapped) UID
for “Tripos’, the station/port/function code address ‘'Green:30:1"", the month

“Apr’', and the number *'1984", etc.

When an event occurs, its name and arguments are checked against
registered interests. There is a match not only if the name and arguments are
equal, but also if the names are equal and the interest arguments are a prefix
. of the event ones. Thus, interest in the reclamation of any 68000 {reclaim
“'68000"'] would be triggered by the event {reclaim *68000" ‘“@Red:23:0"’{, and
interest in {clock_time '*1984"" *Apr’’ "02'{ would be triggered by the event
{clock_time “1984" “Apr’’ 02" *'00" 00"} (clock_time events are generated by

the Event Notification Server every minute).

In addition to the communication of public events, such as clock_time,
expire, and reclaim, the Event Notification Server may be used to communi-
cate private events by using a random/secret UID and not publishing that UID

td the world at large.

Notification Calls

The interested client may have specified an SSP call (address, and argu-

ments as a sequence of bytes) or an RPC (remote procedure taking a single
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token' ‘argument, and the value for the token) to be made if the event
occurred. Th&ugh this SSP or RPC will generally be made back to the
interested client, it may be destined for a third party. For example, the File
Server may register an SSP destined for RM (to initiate a File Server garbage
collection) when the clock event for 2AM the next morning occurs. If authenti-
cation is involved, e.g. the SSP/RPC arguments include a uidset, it is up to the
client to ensure that the authentiéation information remains valid until the

call is triggered.

7.4. Use for Resources .

When Resource Manager obtains a new resource - receiving it from a pro-
vider, requesting it from a server, or having it constructed by a fabricator - it
initiates a dead man’s handle in the Aliveness Server. (Part of) the resource’s
authentication information is used as the handle, and the resource’s class and
address (e.g. 'Tripos’ “@Brown:30:1"') are used as the name. The resource or
its server is responsible for refreshing the dead man’'s handle timeout. If the
timeout expires, the Aliveness Server will notify the Event Notification Server
of the expire event for the resource, and two minutes later of the reclaim
event. Resource Manager registers interest in the expire and reclaim events

for each resource.

Intent to Reclaim

Because reséurces are structured, the failure or reclamation of one
resource may affect others. If the expire event for a resource is triggered, RM
will trigger the to be reclaimed event for the resource, as well as its depen-
dants and any supporting resources which are not reusable. Any party
interested in the fact that a resource will shortly be reclaimed should have
registered an interest in this event. This may include the user or designer who
will take up the refresh of the dead man's handle while he debugs the
resource, or if the resource is a component of a distributed task, a parent,

sibling, or child which wishes to commence a cleanup or recovery operation.

"The token cluster associates CLU objects with one word tokens which may be passed to
remote machines, and the objects retrieved when the tokens are returned.
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This same sequence of actions will be triggered by RM if the overall alloca-
tion time for a resource expires. In certain caseks it may be appropriate for
the resource itself to register interest in when it is to be reclaimed. For exam-
ple, an operating system might do this so it could notify the user of imminent

termination of his session.

Reclamation

Resource Manager basically reclaims resources by throwing them away. If
a reclaim event for a resource is triggered, RM will delete the entries for the
resource, its dependants, and iﬁs non-reusable supporters from the Repository.
It will also go to the Aliveness Server and force the reclaim event to be trig-
gered for the dependent and supporting resources. (It can do this because it
knows their dead man’s handle values.) This results in the notification of par-

ties interested in the reclamation of these resources.

Providers of resources may wish to register interest in the reclaim event.
For example, a machine server may wish to reset the physical machiné and
note in its tables that this machine is available to RM. A filing system server -
may wish to close channels and reclaim memory allocated for a session

resource and create and enter a new free session into Resource Manager.

7.5. Use in Preemption

Preemption is the forceable reclamation of a resource due to a higher
priority request for it arriving. The advantages and disadvantages of preemp-
tion are discussed in the chapter on ‘‘Policy'’, section 8.3. Although no policy
for preemption has been decided or implemented, its possible implementation

is discussed here as it is a form of reclamation.

The Event Notification Server provides the basic mechanism needed for
notification of preemption. When Resource Manager decided to preempt a
resource, it could generate a preempt event indicating which resource it
intended to preempt. It would then wait some nominal time (possibly 30
seconds) before generating a reclaim event and actually reclaiming the

resource. Any service which wished to perform a cleanup operation for a
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resource should have registered an interest in that resource's preemption.
This would allow Resource Manager to notify all interested parties with one

action that a resource was about to be preempted.

Examples of interest in preemption and the resulting actions which might
be taken follow. An operating system, such as Unix or Tripos, might register
an interest in its own preemption. If it received notification that it was about
to be preempted, it could notify the user that he should clean up and logofi
within 30 secoh.ds.' In the case of a compiler service, notification of imminent
preemption might result in a consistent intermediate result being prepared
and written to disc. If the resource was part of a distributed task, its parent
might register an interest so that it could reallocate the resource's subtask,
possibly at a later time. In the case of a worm segment, no interest would be
registered as a worm is capable of recovering from a failure/reset at any point

- of one of its segments.




8. Policy

Resource management policy guides decisions concerning the recognition,

construction, allocation, and reclamation of resources.

8.1. Introduction

The thesis of this dissertation is that sufficient commonality exists in the
requirements for the management of resources that they can be collected
effectively into a resource management system, thus minimizing the require-
ment for resoﬁrce management mechanisms in individual components. The

implementation of resource management policy severely tests this thesis.

In ‘operating systems, policy for the management of internal resources
such as memory and processor cycles, is generally highly tailored for
efficiency: the resources must be allocated quickly as the time for which they
are required is often short, and there must be small space overhead as the
resources themselves are relatively small. Such tailoring is less important
when ‘phe‘ resources are of a higher level, and thus inherently larger and held

for longer intervals.

Provide Several Policies

The policy requirements for different classes of resources will vary. Rather
than providing a single policy encompassing all of these requirements, several
policies are provided, with the application of appropriate ones to sp‘eciﬁc
classes. If these general purpose policies are insufficient for some particular
class of resource, then a separate server may be provided which enforces the

required policy for that class.

Additionally, individual resources or the servers providing them may
enforce a limited form of policy of their own, e.g. checking access control lists,
placing a limit on the time or memory the user is allowed, etc. However, these

policies may be based only on local information (as opposed to information
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about the allocation of all of the resources available on the network) unless

other resources or servers are contacted explicitly.

In this research, the primary emphasis of implementation was on providing
the basic mechanisms for a resource management system rather than on
deciding and implementing management policy. Inevitably, to make Resource
Manager usable and to determine its viability as a resource management sys-
tem sofne policy has been enforced. A presentation of this implementation is

followed by a speculative discussion of alternatives and extensions.
8.2. Current.Implementation

Allocation and Construction Order

Currently, existing resources are always allocated before an attempt is
made to construct new ones. This policy emphasizes fast response time to the

user's request as the construction of resources may take considerable time.

The ordering for allocation of existing resources is based upon an ordering
of status: free < preloaded < worm < user. Whether a resource is eligible for

allocation depends on its status as compared with the intended status

reusable and replenishable. For example, a resource running a worm segment
would not be used for preloading though it would, if it was reusable, be used to

support a resource to be allocated to a user.

The policy for the sharing of resources is that a resource will be allocated
on a shared basis only for an intended status the same as its current status,
and only if no more appropriate resource exists. The implementation uses the
above ordering and information associated with each resource indicating

whether it may support multiple users.

The order of consideration of actions for constructing a resource of a par-
ticular class is static. It may be adjusted by system managers, either to pro-
vide the higher quality construction first or to delay the allocation of scarce‘

subresources. No attempt is made to dynamically reorder actions.




Current Implementation 63

Allocation Restrictions1

The restriction of allocation of resources of a particular class or with par-
ticular attributes is accomplished by associating privileges (registered against
clients in the AQT Privilege Manager) with the class or attribute to which
access is to be restricted. Two privilege lists are kept for this allocation re—”
striction. One associates the right to have a resource with a partictﬂar class or |
attribute allocated directly. For example, this list might have research stajf
privilege associated with the class of an operating system to be allocated only
to reéea‘rch staff. The other associates the right to use a resource with a par-
ticular class or attribute as a subresource of the resource to be allocated. For
example, the attribute Mayflower machine (for machines belonging to the
Mayflower group) might Be registered in this list as requiring clients to have
Mayflower privilege before one of these machines would be used in construct-

ing a resource for them.

Restriction to the authentication information allowing access to the debug-
ging interface for a resource is discussed fully in section 9.5, ‘'Capabilities for
Debugging’'. The currently implemented compromise is lahrv;éuysto allow a user
access to the authentication information to debug a resource which he has
been allocated. Additionally, a privilege list is kept associating privileges with
attributes so that the maintainer of a particular service or reéource may

debug it at any time.

8.3. Alternatives and Extensions

The policy of éllocating existing resources before constructing new ones is
not always desirable. A low quality existing resource may be allocated in
preference to constructing a much higher quality resource though the user
has to wait for its construction. As suggested previously, if there is great
disparity between the quality of different instances of a resource, then it may
be appropriate to have low quality and high quality attributes. However, the

suggestion of resource factors given below presents a better continuum.

'A detailed discussion of restriction by privileges is given in chapter 9, ‘'Authentication
and Protection'. An overview is provided here as it is part of the implemented policy.
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The policy for sharing is that no resource will be shared if there is another
free instance of it. This could result in several instances being allccated to sin-
gle users though the resource could reasonably support more, thus unneces-
sarily consuming a number of subresources to the exclusion of other require-
ments for them. At the other extreme, if there is only one instance of the
resource then it will continue to be shared (péssibly overloading it) when more

instances could be constructed.

Caution and Motivation

When considering alternatives and extensions to the current, relatively
simple policy it is important to remember two points. First, no amount of
resource rﬁanagement policy can compensate for a lack of resources - scarce
is scarce. The problems introduced by having too few resources to operate
“reasonably’’ are not being pursued in this research. Second, mazrimum utili-
zation of the system is not a primary goal due to the effort required to achieve

it and to the decrease in responsiveness to users which would result.

Overcoming Personal Computer Limitations

A major contribution of the personal computer approach to distributed
computing, including the original Cambridge Model Distributed System, has
been that throughput of the éystern has not taken priority over fast and
predictable response to users. This has been accomplished by not sharing
machines - a user's tasks may affect each other but generally not those of
other users. However, responsiveness is still limited by the single machine -
witness the delay in recompiling and linking a medium to large program. The
processor bank approach attempts to overcome this limit by providing easy
access to multiple machines when tasks demand. Unfortunately, demand
would probably always outstrip supply if the personal computer approach was
simply extended to multiple machines, allowing users to monopolize a number

of machines with long-lived, largely idle sessions.
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Transaction vs. Session Programs

Two patterns of program behavior are of interest. Transaction oriented
programs, such as compilers, linkers, and text formatters, are short-lived and
c.p.u. intensive. It is reasonable to assign an entire machine to each such task
and to allow it: to run to completion without intervention. Session oriented
programs, such as text or graphics editors, APL sessions, and Lisp sessions,
generally run for long periods of time and are interactive. Long existence and
low c.p.u. utilization dictate that a session program be run in the user’s work-

station or in a shared processor bank machine.

If session programs can be used primarily to collect task state and to wait
for user input, and can execute [remote] transaction pfograrns for their inten-
sive computation, then performance on shared machines should be acceptable.
Howevef, this may not always be feasible, either because of the amount of
state which would have to be transferred to the transaction program, or
because the program was imported from another system and is not easily

modified to achieve the required behavior.

The current implementation of Resource Manager can cope with transac-
tion versus session resources. For example, a compiler to run on Unix might
require a resource with attributes {Uniz, for transaction}, while an APL or

‘ login session would require {Uniz, for session). Resources with the for t7'ans—
iv action attribute would have the support multiple property set to FALSE so they
would not be shared, while resources with the for session attribute would have
it set to TRUE. .Further support must be provided to decide whether to add
another session to a shared resource, and if so to which one, or to construct a

new resource because the existing ones should not be more heavily loaded.

Resource Factors

Several factors may be used to indicate the variance in instances of
resources of a particular class. Applied to existing resources and actions for
constructing new ones, these factors could be used in determining the most

appropriate way of satisfying a resource request. These factors include:
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» quality - a somewhat nebulous concept (difficult to quantify) used to order
instances based on their performance or usefulness; particularly a prob-
lem for shared resources for which it varies even after allocation;

« allocation time - the approximate time which will elapse between deciding
how to obtain the resource and its being ready to allocate;

« cost - the charge for use of the resource (for accounting); and

« communication delay - an indication of the ‘‘remoteness’ of a resource
accessed through bridges or gateways.

Tt should be stressed that these factors need to be only approximately correct;

it is their relative (rather than absolute) values which are important.

Determination of Faclors

The calculaiion of factors has been kept simple and uniform as it must be
made at allocation time. Factors filter upward from basic resources to client
level ones. At each level, contributions for that level are added to the values

from supporting resources (diminished according to their importance).

For an existing resource, the factors are recorded in its Repository entry,
having been calculated when the resource was created. For example, the allo-
cation time for an existing resource is zero; the cost for use of a machine

might be a constant known by the machine server.

For a resource action, the contributions to each factor for that layer are
recorded in the Catalogue entry. For example, the time for execution of an
action (either statically approximated, or dynamically determined by noting
the time required for its execution in the past) would be its contribution to the
allocation time factor. Also recorded in the Catalogue entry are fixed percen-
tages indicating the contribution to each factor from each subresource. These
reflect the “importance’’ of the subresources for each factor - a supporting
- resource which played little part in the overall resource would contribute little
in terms of quality, while its allocation time would still have to be considered in
total. Once the subresources are known (when the blueprint has been con-
structed) the value of each factor is calculated as the sum of the layer contri-
bution and the inner product of the percentages with the values for

subresources.
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Use of Factors

When considering alternative blueprints for a resource, some linear combi-
nation of the factors, whose formula was constant for all resources, could be
‘used to decide among them. Very simple client restrictions (e.g. ‘'minimum
allocation time’' or ‘‘no more than this cost’’) might also be allowed. Because
it rhay be infeasible to assemble all of the blueprints and then compare them
[section 6.3], it may be necessary to prune the tree by choosing the *‘best”
branch at each alternative node. This would introduce problems with local
optimizations and with backtracking if the chosen branch failéd during blue-

print execution,

Consideration of the allocation time and quality factors would replace the
current policy of always allocating existing resources before constructing new
ones. Consideration of the quality factor, possibly along with optimum and
minimum values might provide a form of load balancing, replacing the current
policy for sharing. The optimum and minimum values might vary dynamically
‘with overall system load to ensure higher quality resources during periods of

low utilization. Resource factors merit further consideration.

Policy Language

An alternative to providing a small number of fixed policies which must
apply to all resources is to introduce a policy language to express predicates
which must remain satisfied when a particular class of resource is to be allo-
cated. The current allocation states of resources, including which resources
they support, whether they are shared, etc. would be available so that policies
spanning several types of resources could be implemerited. This would allow
policy such as ‘‘at most three 68000s are to run student systems at any one
time' to be implemented. Time of day, day of week, current system load, etc.

might also be available.

This scheme allows a form of individuaﬂy tailored policy for resources
which can change dynamically without altering Resource Manager code. All the
required information is currently available in Resource Manager, but how much

should be made available in the policy language and the form which it should
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take is unclear without further consideration. As a policy language would

require major effort, it is hoped it will not be necessary.

Preemption

Preemption is the forceable reclamation of a resource due to a higher
priority reduirement for it or one of its subresources. Preemption may be
necessary to achieve a form of load balancing in the face of increasing load, or
so that clients may acquire rhultiple f'esources without concern for having
more than their share. Without preemption, the resource management system
may have to implement a rather conserVafive allocation policy or have to pro-
vide an unfairly balanced service to users. Preemption should not be used in
an overloaded system to reclaim resources only to reallocate them to other

similar clients - it could lead to thrashing.

It is desirable to allocate session oriented resources sparsely on a lightly
loaded system. However, as the load increases, it may be necessary to
contract the set of machines running session resources by assigning several
pe‘r?"rﬂachine. It is also desirable for clients to be able to acquire as many
transaction resources as they need (e.g. for compiling multiple modules),
without excluding other clients ‘from having any. Because of the bursty
nature of transaction computations, this is less likely to be a problem thah3

the contraction of session machines.

Without resource migration, which is very hard in a heterogeneous system
and provides little return on effort, one must reclaim resources or wait for
them to finish their task. Reclaiming session oriented resources is feasible if
they are allocated directly to users (often the case) who can be expected to
execute commands to save the necessary state before reclamation. Reclaim-
ing other session reéources or transaction resources is less desirable as the

resource and/or program controlling its use must cope with the preemption.

Mechanisms available for notification of preemption were discussed in sec-
tion 7.5. A simple policy would be to begin the preemption, with five minutes
notification, of a “lightly loaded’’ session resource if it prevented a request for

a transaction resource from succeeding. If client hogging of transaction
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resources proved a problem, clients could be restricted to one or two
resources with no preemption, but be allowed more on the understanding they

could be preempted with 30 seconds notice.

Miscellaneous Extensions

In certain situations, it is known in advance that a resource will be needed
at a certain time for a certain period. Accommodating these situations would
require scheduled allocation on the part of Resource Manager. With standard
“sign up'' scheduling, a particular resource instance is reserved for the
specified time and no other allocation or reservation which would overlap it will
be made. Because the supply of resources varies dynamically and because
there may be several ways of providing a resource, such an approach would be
unnecessarily restrictive in the Cambridge system. An alternative would be to
allow a resource under scheduied reservation to be allocated if there was an
alternate way of satisfying the scheduled resource requirement. However, an
optimal allocation could require that a number of resource schedules be

shuffled. It is unclear how useful a scheduled allocation facility would be.

Accounting, both for the purpose of charging clients for resources used

and for limiting allocation of resources has not been considered.




9. Protection and Authentication

Protection must be provided for two parties. Clients requesting resources"
must be ensured that the resources they receive are authentic, that is, that
the resources match their descriptions. The actual resources, or their provid-
ers, must be ensured that they are allocated only to clients who have the right

to use them.

9.1. Inherent Protection

If resources are in‘separate physical or virtual machines, and can be
accessed solely via public interfaces, a resource can ensure that its internal
data is accessed only through routines it provides. Such a programming dis-
cipline is certainly possible in a centralized system and its use is becoming far
more widespread. However, in a distributed system it is enforced by the fact
that components are separate: resources can only communicate via message
or procedural requests to interfaces. A service may require that such requests
be authenticated and can check that the authenticated client has ceftain

privileges before granting the request.

Because resources are instantiated by the resource management system
and subsequently allocated to clients, the services can refine themselves
before permitting client access. For example, the Tripos operating system,
which is not memory protected, is initially loaded with full access to the root of
its filing system. However, before it will accept ahy user commands or execute
any user code it reduces this access as appropriate for the user, deleting the

more privileged root access from its memory [Knight 82].

Another advantage of having servers in separate machines in a distributed
system, and one of the arguments for the small server approach taken in the
Cambridge Distributed System, is that data and code space in memory for
different services are completely separate. Corruptions in one service cannot

directly affect a different service. [Needham 82]
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9.2. Protection in the Cambridge Distributed System

Uidsets and Privileges

Any object in the Cambridge system may be named by a 64 bit unique
identifier (UID). For example, each user, service, resource class, or resource
attribute has a permanently assigned unique identifier or PUID. When an
object is active, it has an associated widset registered in the Active Object
Table service. This uidset includes the name of the object (PUID), the name of
the authenticating agent (AUTY), an access key (TUID), and a control key
(TPUID). The access key is included in requests from the object to clients. The
control key is used to manipulate the uidset in the AOT: to extend its timeout,
to revoke it, and to enhance it with privileges. The access and control keys are

valid only for the duration of the particular activation of the object.

For example, user GSM with PUID FF02894DCD4E2DCF will have been
authenticated for a session on the Cambridge system by giving his name and
password to the User Authentication Service. Thus, his uidset will contain the
PUID of GSM as the name of the uidset, the PUID of the User Authentication

Service as the authenticator, and newly created access and control keys.

Authenticated requests to clients include the name, authenticator, and
access key UlDs from the uidset of the requesting object. (This triple is also
referred to as a uidset.) The client may authentically determine the identity
of the‘iject‘by checking the uidset with the AOT for validity. An alternative
use of the uidset is as a capability to access the object, in which case it is
passed from client to client and eventually back to the object with an access

request.

The Privilege Manager, another service related to AOT, keeps access lists
associating privileges (named by UIDs) with object name, authenticator }Sairs.
Any authentic object which is allowed a privilege may ask the privilege
manager to enhance its current uidset in the AOT with that privilegeA. Subse-
quently, clients may approach the Privilege Manager to determine whether a

given uidset has a particular privilege associated with it.
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Limitations

‘There are several limitations with these mechanisms as they are currently
provided. Some are due to the basic philosophy and others only to the imple-

mentation.

« For an object to prove that it is authentic to a service, it must pass that
service its PUID, TUID, and AUTY for the service to check with AOT. How-
ever, once the service has that triple, it can then authentically claim to
anyone else that it is the original object. ‘

« It is not possible for a user who is allowed a particular privilege to endow
that privilege to any uidset other than its own. Thus, a user cannot pass on
a privilege without giving away his uidset.

« Though users can enhance uidsets with privileges before passing them on,
they cannot refine the associated privileges, thus precluding operation
with minimal privilege.

Though these limitations are unfortunate, the available mechanisms do
provide a significant amount of protection if certain clients can be trusted.’ (In
any system there must be trust at some level, even if it is in the independent
party which verified that the code obeys its specification.) Because this is the
most widely used method of protection at Cambridge, and because my interest
was in building a resource management system rather than a protection sys-
tem, the AOT and its related services were accepted as is. A different approach
was taken by Yudkin who preferred to emphasize protection mechanisms in his

work on resource management [Yudkin 83].

9.3. Uidsets for Requests to RM

Most requests to RM from clients must be accompanied by uidsets from
which RM can vélidate that the client is bona fide and possesses certain
privileges. Uidsets must also be verified so that user information for requests
can be recorded authentically. This information is intended for accounting use

and for listing use of resources to users.

RM maintains p'mlvilege lists indicating which priviieges must be possessed

by clients making particular requests. For example, there is a list for RM

'A full capability mechanism as suggested in HYDRA [Wulf81] might provide more flexible
facilities but its enforcement would require a hardware capability unit in the network front
end of each machine.
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system manager functions indicating privileges required for statistics retrieval
and clearing, manual alteration of resource or action entries, changes to the

Repository or Action Catalogue, etc.

Entering Resources and Actions

Clients requesting resources of Resource Manager must be able to trust
the authenticity of the resource they are allocated.? Such authenticity is
guaranteed ultimately by system managers (people). This guarantee may pro-
pagate through programs which manufacture the resources to RM which can

then pass this guarantee to its clients.

Resource Manager maintains this assurance by ensuring that any client
which gives it a resource, or an indication of how to obtain one, has the
privilege to do so based upon the attributes of the resource. There is a
‘privilege list for entering resources into the Repository associating attributes
with the privileges required to enter resources possessing them. Thus RM can
accept, for example, Tripos instances only from those clients whom it trusts to
provide authentic Tripos insfances. There is a similar privilege list for entering

and deleting actions for resources with particular attributes.

Most attributes are public: the semantics associated with the 64 bit UIDs
are known. Programmers may write these UIDs into their code. It may be the
case that some clients wish to offer resources through Resource Manager, pos-
sibly to components of the same distributed task, which are not publically
known or available to other clients. In this case, random UIDs generated

privately may be used to provide protection.

Requesting Resources

Resource Manager keeps‘ two privilege lists indicating privileges which
clients must possess in order to use or to be allocated resources with p'articu—
lar attributes. The distinction between privilege for allocation and privilege to

use is necessary because a user may be allowed to use a resource, such as a

zAlternatively. the client and resource could mutually authenticate each other, though
this is a time consuming process. [Girling 83]
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Tripos Filing Machine, by virtue of the fact that it supports a resource which he
may be allocated, such as a Filing Machine Session, though he should not be

allocated the supporting resource, the entire Filing Machine, directly.

For example, people outside of the Laboratory will not be allocated a Tripos
because a client requesting a resource with attribute Tripos must have lab
privilege. As another example, the 68000 named Carver belongs to the
Mayflower group and has attribute Mayflower machine. 1t is registered in the
to use privilege list that a client must have Mayflower privilege to use
machines with attribute Mayflower machine. Thus, the machine Carver is
capable of supporting a Tripos by virtue of the fact that it is a 68000, but such

a Tripos would not be allocated to a non Ma)}ﬁower user.

9.4. Resource A.uthentication Information

At Cambridge, addressing and authentication are considered to be
separate. Knowledge of the address of a service does not necessarily imply the
right to use it. The addresses for static services are freely available from the
Name Server, and the subaddresses (port and function numbers) for dynamic
services generally remain constant across all instantiations. For requests
which must be authenticated, the client must present either its uidset or the
uidset or access token® for the service. Use by the service of the client uidset
is similar to its use by RM, as discussed in the previous section. Use of the ser-
vice or fesource uidset or token is as a sort of capability. The resource trusts
that its uidset or token has been returned in a request, having passed only

" among services allowed to access it.

Authentication and Construction

There are three considerations of authentication during resource con-
struction: authentication of the request to the fabricator or server, provision
of authentication information in using the required subresources, and creation

of authentication information for the resulting resource. The request includes

3An access token is a 84 bit value which may be appropriate for authentication if the full
generality and expense of a uidset is not required (e.g. for resources which are created, used,
and discarded quickly), or if the resource does not want its uidset passed to the client.
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the uidset or access token for the fabricator/server or the uidset of RM,
depending on the method in which the fab_serv prefers to operate. RM decides
what authentication information to include based on the Repository entry for

the fab_serv.

The second concern of authentication is when a fabricator is combining
required subresources. As it approaches a resource (e.g. to load it with code
or to tell it to cooperate with another resource) the fabricator must provide
authentication information in a manner similar to RM's providing it to the
fabricator. If the uidset or token for the resource is expected, this will have
been passed to the fabricator in the initial request, otherwise the fabricator

should include its own uidset.

Third, authentication information might have to be created for the new
lerés"oilrce,' depending upon which approach it chooses for authentication. This is
static for the resource class and will be known by the fabricator or server. If
the resource needs to communicate authentically with other network servicés,
then it will need a uidset. As the fab_serv is the component that must guaran-
tee the resource to be authentic (it understands how the resource is con-
structed), it is thé one which mﬁst create the uidset. If the resource expects
to restrict access to itself with a token, then the fab_serv must generate this
token. The newly created authentication information must be made available

to the resource, as well as returned to RM.

Capabilities for Debugging

Special attention must be given to debugging because:

« to debug a resource at a particular level, debugging facilities provided by
lower levels may have to be used;

« when debugging a resource, proprietary information associated w1th sup-
ported layers must be protected; and

« it may not be known at the time that a service is requested that access to
its debugging interface will be required.

When debugging, it is preferable to use facilities which understand the
abstraction being debugged. For example, a mail server should be debugged

utilizing the facilities provided by the mail server which understand the
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structure of the message queues and are able to inhibit and enable queue

SN P W

service, then
authorized access can be enforced by the service itself in the same way that it

dfdaemons. If there is suﬁ‘igient integrity to prb;iidé‘ .thi‘s Ie\‘fel'of

enforces access to other privileged commands. This does not involve the

resource management system.

Debugging a Supported Layer

If the layer being debugged has become too corrupt or it does not provide
sufficient debugging facilities, it may be'necessary to use the debugging facili-
ties of the supporting layer.4 For example, if an operating system has become
corrupt it may bé necessary to work at the bit and byte level by accessing the
machine's front end. The resource management system becomes involved
because, understanding the structure of the allocated resource, it knows the
address of the sﬁpporting resource. This sﬁbresour‘ce interface must ensure
that the client accesses only the data and process space of the dependant

applications for which the client can provide authentication information.

Debugging a Supporting Layer

When debugging a layer that supports other services, access to possibly
proprietary information contained in the data space of the supported
resources wquld be available through the debugging interface. Therefore, the
client must obtain permission from (i.e. authentication information for) all
supported services, not only at the next level but at any higher ievels.S For
example, the designer or maintainer of a database system supporting a payroll
package should not be allowed to debug the database system without permis-

sion from the manager of the payroll package.

*If each layer of a service provides a protected environment on which a supporting layer
can run, then errors of the supported layer cannot pass through this firewall to corrupt the
supporting layer. Though some interfaces still do not guard against requests which can cor-
rupt their internal state, such lack of caution is generally regarded as bad programming prac-
tice (or necessitated by performance constraints or lack of memory management hardware
and language type safety) and will not be of concern here.

®A domain approach as used in CAP [CAP 79] could be used within a layer to allow cross de-
bugging of domains, but could not be used to meet the above requirements because the de-
bugging facilities of one layer actually do have a hierarchical relation to the next.
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A designer or maintainer of a particular type of service will have a privilege
indicating the right to debug it. The resource management system, because it
understands the structure of resources, can accept from such a privileged
client a request to debug a resource of that type, along with the authentication
information for all supported resources, and return the information for the
desired debugging interface. A separate privilege list would be required to

determine privileges required to debug resources with particular attributes.

Current Implementation

In the current implementation, the authentication information for a
resource also provides access to its debugging interface. If a client has been
allocated a resource he has the right to debug it, and will be given the authen-
tication information to access any supporting resources. Some allowance of
this sort was necessary because several of our current systems do not provide
protected environments for supported ‘layers. If a client has the privilege to
debug a particular type of resource, he will be given access to that resource's
debugging facilities regardless of what other services it supports. This was for

simplicity.




10. Miscellany

This chapter discusses several miscellaneous aspects of resource manage-
ment: the preloading of resources, the bootstrapping of the Cambridge Distri-

buted System, and distribution.

10.1. Preloading

As part of Resource Manager's goal to respond to requests promptly, it will
keep a stock of free resources ready for immediate allocation by obtaining
resources from servers or fabricators ahead of time. This process is termed

preloading.

Preloading was found to be necessary because of the long time taken to
obtain or construct resources, and if they were services, for them to subse-
quently initialize. In the case of loading an operating system into a machine,
the actual time for loading code can be saved, as well as can the time for the
operating system to perform non user-specific initialization, such as setting up
its file system and obtaining the current time from the network clock. At Cam-
bridge, in the case of Tripos, these times initially combined to represent 12 to

25 seconds of idle user time.

10.1.1. Prediction

Because RM does not have unlimited resources from which to construct
spare, higher level ones, it must prepare those resources which it predicts will
be requested. This prediction is based currently on a record of past requests,

though it could include such factors as current time, day of week, etc.

Exact prediction of which resources will be requested next would depend
on knowledge of client behavior, which is generally not available. Therefore,
only an approximation can be attempted. Whether a requested resource has ‘
been preloaded does not affect whether the request will succeed: it only alters

the response time. Given these considerations, the decision of what to load
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would not seem to merit expensive analysis of the input data.

Using information in the request records, the Repository, and the Action
Catalogue, it might be possible to attempt some optimal combination of avail-
able free resources (e.g. the one giving the most preloaded resources). Such
effort does not seem worthwhile, as probably only a few resources will become

free at a time and interactions with fabricators or servers may fail.

Data and Analysis

Currently, the preloading module keeps a record of the past 40 satisfied
resource requests with the purpose of determining which resources were most
recently requested and in what relative quantities. Only requests which were
satisfied aré recorded so that client retries on failure do not distort the
figures. Requests specifying ihat private resources or actions be used should
not be recorded, but requests specifying optional use of these resources or

actions should be.

The current intention is to attempt to retain particular free resources in
the same ratio as they have been requested in the recent past. In analyzing
the request fecords, equal .weighting is given to all requests, though it‘ might be
more reasonable to use linear weighting to give priority to the more recent
requests‘. The expense of including some (exporiential) decay of requests over

time seems unnecessary.

The result of analysis is a list of which resources should be preloaded and
in what quantities. It reflects the ratio of resources in the request records,

less any free resources already available.

10.1.2. Construction

In addition to being notified of requirements given in successful resource
requests, the preloading module is notified when a resource becomes free or
when a new resource or action is entered, as these events may make it possible

to preload another resource.
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When tb Run

It is not feasible for the preload process to run as a background (low prior-
ity) job which is suspended when a client prbcess is started because it may
hold resource reservations preventing the client request from succeeding.
Ideally, the preload process should request resources at the earliest time when
such a request will complete before a user request intercedes. In the current

implementation, after being notified of one of the above events RM waits until
system activity has settled (i.e. there are no outstanding resource requests),
and then waits an additional nominal time (30 seconds) as resource requests
often come iﬁ groups. At this point it analyzes the data in the request records
to predict which resource, of which it does not already have sufficient free

instances, will next be requested.

Requests

Once the resources which should be preloaded are determined, RM succes-
sively places requests through the standard channels for them. It will indicate
that the status of the resulting resources will be free. If a request for a
resourcé of a partiéular type fails, no more requests for that type will be
attempted. If a client request for a resource is received, the preloading

activity is terminated as soon as reasonable.

This simple strategy for analysis of preloading data has proved satisfac-
tory; the vast majority of requests which can be satisfied are satisfied from the
preloaded pool. Unfortunately, the current situation is not very demanding
because almost all requests are for one of a handful of resources (one of the
Tripos variants or Mayflower) [section 12;1]. Whether it will perform as well as

the situation becomes more demanding remains to be seen.

10.2. Bootstrapping the Cambridge Distributed System

This section presents a somewhat idealized version of how the Cambridge
Distributed System could be brought into existence from a complete shut-
down. The concentration is on the relation of bootstrapping to resource

management. Such presentations are inevitably specific to the system being
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considered.

10.2.1. The Difficulty

There are two problems:

« services must be brought up in an order consistent with their critical
interdependence; and

« services must be instantiated authentically.

A minimal subset of services, and the approximate order in which the com-
ponents must be brought up, is: Name Server, File Server, Boot Server, AOT,
Ancilla, bridges/géteways, RM, Machine Server, Aliveness Server, Event
Notification SerVer, and terminal concentrator or user workstations. The world

initialization routine in the Boot Server handles most of this.

10.2.2. Services and Loading

Some servers self initialize, bootstrapping from PROM or their own discs.
The number of thése services is kept to a minimum to avoid unnecessarily
complicating the code (particularly of small servers) and because it ties
servers to particular machines. Most servers are loaded by other components
of the system. There must be a special mechanism for authenticating such

external loading until the authentication server is instantiated.

The Name Server and the File Servers

The Name Server is absolutely critical and must initialize first. Its pro-
gram and a few critical name table entries are in PROM, which it reads on
power up. The Name Server eventually reads its full static name table from a

File Server.

The File Servers bootstrap off of their own discs.

Authenticated Loading

‘In general, requests from fabricators to load machines will include a uidset
which the machine’s front end or PROM loading program will check with the
AOT for validity and with the PrivMan for an appropriate privilege. Such
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uidsets will generally be from the Boot Server or one of the Ancillae.

-When a client receives an address from the Name Server or Resource
Manager, it trusts that the code running at that address implements the ser-
vice or resource it requested. For the statically assigned services, authenti-
city is ensured by the machines themselves at load time by accepting load
requests only from services they trust to load the correct code. These
machines might check for specific privileges such as load encilla privilege or
load spooler privilege, or they might be less paranoid and check for a load
static server pﬂﬁilege. For the :dynarnically assigned services, authenticity is

ensured by Resource Manager. as discussed in section 9.3.

AOT and Related Services

The problem at the start of day with this scheme for authenticated loadiﬁg
is that the authentication services don’t exist. To overcome this, the require-
ment for checking a uidset must be satisfied in some alternate manner until
the AOT can be booted. When a load request is sent to AOT a ‘“‘system pass-
word'' replaces the TUID in the accompanying uidset. (A full uidset is used for
consistency with normal load requests.) The PROM for the AOT Z80 indicates
that when a load request arrives, rather than checking the given uidset with
the AOT, the TUID in the request should be compared with the UID in PROM. If
they match, the request will be accepted.

The Boot Server

It is the responsibility of the Boot Server to bring the Cambridge Distri-
buted System into existence. Most of the special cases of loading code for ini-
tialization are done by the Boot Server, either directly or through requests to
other servers which it has already booted. The most notable exceptions to this
are the Name Server, which the Bobt Server must access to find where to load
static services, and the File Server, from which the AOT must recover its stable

state before machines can be authentically loaded.

The uidset for the Boot Server may be persistent, that is have a timeout

which will survive distributed system failures. This would allow it to have a
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valid uidset whenever it initializes, and thus be able immediately to make
authenticated requests to other services. (The TUID of this uidset would be the
~ system password for AOT mentioned earlier.) Because it must pass a uidset to
any machine it wishes to load and because it is unwise to present a persistent
uidset to any service but the AOT, one of the first things the Boot Server should
do is to use this uidset to have the AOT create it a temporary uidset which it

can more safely distribute to machines.

The Boot Se}lrver must be implemented as a stand alone system. There
should be a backup Boot Server in case the primary one fails. There are no
dependencies on where the Boot Server resides; it must only possess the per-
sistent uidset meﬁtioned abbve; Server code (including that of the AOT) may
reside on the File Server where it can be accessed by any of the candidate

Boot Servers.

10.2.3. Initialization

This section briefly discusses the sequence of events which occur when

power returns to the distributed system after a complete shutdown.

Static Services

The Name Server boots off its PROM and attempts to read its full name
. table from the File Server. It backs off if this fails, retrying later. The File
Servers have a bootstrap program in PROM which loads the fileserver code
from disc. Once these have initialized, the Name Server request for its full
name table will succeed. The Boot Server ruhs on a stand alone system
(éurréntly a PDP11 running RSX or a VAX running Unix) and will initialize
according to the host operating system. It provides the Z80 loader, 6809

loader, and world initialization routine. '

The world initialization routine ifl the Boot Server looks up the address of
the AOT in the Name Server and attempts to obtain a temporary uidset using
its persistent one. If this succeeds, then the AQOT is functioning and it is prob-

'Aably the case that the Boot Server just crashed and rebooted but that the dis-

tributed system world is operating. Otherwise, the Boot Server should now
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authentically load several servers. However, before authenticated communica-

tion among network components can take place, the AQOT must be booted.

The Boot Server retrieves the AOT code from the File Server and sends a
load request to the AOT. When the AOT Z80 receives. the request, it compares
the accompanying TUID with the TUID in its PROM and, if they match, accepts
the code and begins execution. Once the AOT is loaded, it will read the values
of its internal tables from the File Servep. The Boot Server now obtains a tem-
porary uidset for i£self from the AOT, using its persistent one for authentica-

tion.

Next, the world initialization routine needs to load the 68000 Ancilla (a Z80)
before it can load RM. It looks up the address of Ancilla-68000 in the Name
Server énd has the Z80 loader (part of the Boot Server) load it, this time using
the' newly acquired temporary uidset for the Boot Server for authentication.
The 780 retrieves the Ancilla bootfile from the File Servers, creates and links in .
a uidset for Ancilla-68000, and sends the code to the Ancilla Z80. The Ancilla
780 PROM code will verify the uidset from the Boot Server and then check that
it has an appropriate privilege. If these checks succeed, then the load request

~will be accepted and the Ancilla will come into life.

The gddress for Resource Manager is looked up in the Name Server, and a
similar prdcedure to the one for booting Ancilla is followed to boot RM's 6809
network front end. Next, the Resource Manager itself is loaded by sending an
authenticated load request to the 68000 Ancilla, which obtains the RM code
from the File Servers, creates and links in a uidset for RM, and loads this into
RM by sending an authenticated load request to its 6809 front end. When RM
initializes, it will read its stable state from the File Server. Note that several
services have been brought into existence about which RM doesn't know but
should know. These include the Z80 and 6809 loaders, and the 68000 Ancilla.

The world initialization routine makes entries into RM for these fabricators.

There may be several more services which must be brought into existence
for the world to be in a usable state. The terminal concentrators are likely
candidates. The world initialization routine sends requests to RM for each of

these.
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Dynamically Instantiated Services

Now that RM is available, any other servers which are ppinted to by the
Name Server may be brought up by requests from the world initialization rou-
tine directly to RM. These services include Clock/Logger, Mercator, PostMan,
and Spooler. 'All of these actually could be brought up (on a dynamically allo-
cated machine) only when needed if Ring cliehts approached RM for these
resources rather than going directly to the Name Server. However, retrofitting

such a procedure to all the Ring software is infeasible.

Any other services for which clients approach RM, such as Mayflower or Tri-

pos, will be instantiated and allocated as required.

10.2.4. Failures

Hardware failure of dynamically allocated machines generally does not
require immediate intervention as the supported service will be reinstantiated
on a different machine when next requested. However, hardware failure of a
" static server such as the Name Server must be fixed. For processor bank
machines, this may generally be done by replacing CPU, memory, or Ring sta-
tion boards, or the coding plug (giving the station number) may be swapped to
a working machine. There should also be spare PROMs for the Name Server as

well as for the static services, such as AOT.

The Aliveness Server and the Event Notification Server (discussed in sec-
tions 7.2 and 7.3) are used heavily to detect failed services, and reboot them if
appropriate. Because RM starts a dead man'’s handle for all resources entered
into its Repository, all running code (except the Name Server and File Servers)
will shake dead men’s handles and their failure cén be detected. The Aliveness

Server shakes a dead man's handle with the world initialization routine.

The Resource Manager will have registered an RPC with the Event
Notification Server to be made for each resource which fails (as determined by
the Aliveness Server). If this call is made, RM simply deletes the entry for the
resource from its tables. For a dynamically instantiated resource, nothing else -
need be done as RM will reinstantiate it if another request for it arrives. For a

static resource (Ancillae, Pack Server, AOT, terminal concentrators, etc.) the
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world initialization routine will have registered an interest in the resource's
failure, giving .a resource request to be sent to RM to reinstantiate the

resource should such a failure occur:

10.3. Distribution

Resource Manager is a very important component of the distributed sys-
temm. Thus, provision must be made for its robustness, including the ability to
survive crashes. Distribution by replication and state saving were the two

alternatives considered.

The design and implementation for distribution were only partially com-
pleted. Other aspects of Resource Manager were felt to be more important,
particularly in view of the high reliability of machines and the network at Cam-
bridge, and of how hard it is to get distribution right. State saving, in which
copies of the Repository and Action Catalogue are kept up to date on network
fileservers, was implemented to allow recovery of state after a crash. Although
this is not as general as distribution, it is much simpler. However, distribution
is felt to be sufficiently important to merit a brief description of the plans

which were being implemented.

There would be several RMs active at once, each with a complete copy of
the Resource Repdsitory and Action Catalogue. Any request could be directed
to any RM and it would be satisfied by that RM, i.e. the client would not be
redirected. The RMs would reconfigure as necessary to compensate for lost
RMs and to accommodate new ones. Network partition could result in isolated
groups of RMs and resources; these groups would recombine when the network

is restored.

10.3.1. Controlling RMs

Each resource would be assigned a controlling RM, which would be respon-
sible for synchronizing any transactions involving the resource. Such transac-
tions would include entering and removing resources, allocating them to a
client or for use in fabrication, and changing a resource’s controller. Any time

an RM wished to undertake such a transaction, it would first contact the
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resource's controller. Before the controller could acknowledge completion of
the transaction it mﬁst inform n other RMs of the state change, where n is a
function of the reliability of RM and the netwofk, and of the required reliability
of the systern.1 The controlling RM.would try to notify the remaining RMs of
the state change aftér acknowledging the transaction. If any RM attempted a
transaction involving the resource before it was notified of the state change, it

would be negatively acknowledged by the controlling RM.

Initially, ar“esburce's controller would be the RM which created it or at
which it was entered. A RM wishing controllership of a resource would propose
the tr.ansfer to the resource's controller. All such proposals would probably be
accepted, though a suspicious or protective RM need not do so. The RMs would
attempt to keep a balanced resource distribution by requesting resoufces
from o'verendowed RMs if they had less than their share of resources. When a
new RM comes into existence it would request the Repository and Catalogue
state from the nearest RM and then proceed to request control of its share of

resources as described above,

10.3.2. Distribution and Reservations

Recall that when satisfying a resource request a blueprint containing nodes
for all the resources involved in the transaction is assembled, that reservations
are made for each existing resource to be used, and that only when a complete
plan is in hand is any construction begun. The choice of what and when to
communicate among RMs when satisfying a resource request is important. Too
much communication would cause unnecessary delays. There is little point in
conversing about'reser’vations as there seldom will be simultaneous requests to
different RMs requiring the same resource. The resource’'s controller will

ensure mutual exclusion if this does happen.

Thus, communication would be undertaken only when the blueprint had

been assembled and construction was to begin. It would be too expensive to

'Increasing m could compensate for a failure prone system. However, it would be unneces-
sary to make the resource management system more robust than the resources which it
manages or the paths through which they are accessed. In a local area network in which the
hardware and support systems could be made fairly reliable, n is likely to be 1.
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communicate individually with the controller of each resource or subresource
involved in the request, especially as each controller would then propagate the
state change of its resource to all other controllers. It would also be complex

to reverse all the allocations which had succeeded if one of them failed.

As a (necessary) optimization, allocation of all of the resources in a blue-
print would be handled as a smgle transaction coordmated by the originating
RM. Information about the required resources would be placed in a request
which would be sent to the contr‘ollers of all the involved resources, each of
which would confirm or deny the _allocation of its resources. If any allocation
was denied, the originating RM would send a similar block request to reverse
the successful allocations. At least n RMs would be notified synchronously by

the originating RM; the remaining would be notified asynchronously.

10.3.3. Failure and Recovery

The failure of a Resource Manager would be more complex because
resources would be left without a controller. In this case, an election would be
held according to a slightly modified version of the Bully Election Algorithm
[Garcia-Molina82] to determine who would inherit control of the orphan
resources. This algorithm is so named because the node with the highest node
identification number will force election of itself. When a Resource Manager
determined that another RM was down, it would call for an election with itself
as coordinator of the orphan resources. Responding to a two phase commit
protocol request, RMs with lower identification numbers would concede the

election while those with higher ones would refuse it and then start their own.

If the network partitioned there would be isolated groups of RMs and
resources. After elections, there would be one RM in each group which con-
sidered itself the controller of a particular resource. However, only the con-
troller and clients in the same partition as the resource would be able physi-
cally to access it. It would appear to others that the resource had died. When
the network rejoined, RMs would merge their state with that of ones which
were newly accessible, resolving controller conflicts by chosing the RM with the

higher identification number.




11. Other Approaches to Resource Management

in Distributed Systems

This chapter was not entitled ‘‘Related Work™ because, while all the work
described here deals with resource management in distributed systems, the
basic set of premises is generally rather different from those at Cambridge.
This chapter also includes a discussion of a major alternative I pursued and of

that pursued by a colleague of mine, Mark Yudkin.

1‘1.1. File and Process Resources

A number of distributed systems [Locus83, Jade 83, NSW77, RSEXEC 73]
consider only files and processes as the resources available among components
of the system. They provide different degrees of support for remote access to
files and for execution of processes on remote hosts. Most of these systems
are homogeneous in that each node runs the same system, either directly or
as a guest layer (though the underlying machines may be different). Such
homogeneity allows simpler and more intimate resource sharing at the cost of
excludir}g the use via the same mechanisms of resources available from other
systems. As such, the requirements for resource management in these sys-

tems are very different from those in the Cambridge system.

11.2. Object Based Systems

Several distributed systems [Eden83, Zahorjan85, Argus84, StarOS79,
Medusa 80] have provided support for objects which are similar to resources in
gthe Cambridge sense. FRach of these systems depends on a horno'gméneous

lenvironment.

Fden is a message based, object oriented system in which objects, as they
are relatively expensive (at least three processes each), are reserved for rea-

sonably high level abstractions (e.g. mailboxes). The location of an object on
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the network is transparent to clients, as in the Cambridge system, but it may
also change over time - an important feature as Eden objects are generally

rhore long lived than Cambridge resources.

An object of a particular type is created at a specified node, which defaults
to that of the type’s manager, by sending a ‘‘create’’ message to the appropri-
ate type manager object. (Creators of type manager objects must say expli-
citly where they are to be located.) During invocation, an existing object is
located by querying its type manager, whosé location is included in the capa-
bility for the object. Type managers are guaranteed to know the current loca-

tions of all objects of their type..

In Argus a distributed program is composed of guardians (e.g. mailers,
print spoolers) which encapsulate and control access to resources. They can
be created dynamically, with the programmer specifying the node at which the
guardian is to reside. A distributed catalog is proposed to allow late binding of

guardian names to one or more addresses.

The specification of a guardian is by a single name, which contrasts with
multiple attributes for a resource in the Cambridge resource management sys-
tem. Much of the need for monitoring, reclamation, and dynamic reinstantia-
tion of resources in the Cambridge system is subsumed in guardians by the use
of atomic actions and automatic recovery to providé resilence. A consistent
mechanism for both accessing existing guardians and having new ones created
dynamically, as there is for resources in the Cambridge system, could be pro-

vided by functionally extending the proposed catalog.

Task forbes in Star0S and Medusa (message based, object oriented sys-
tems for‘ the Cm* multi-microprocessor) are collections of concurrently exe-
cuting processes that cooperate to provide a single logical resource, such as a
concurrent compiler, an operating system, or a filing system. Their use bears
similarities to the use of Cambridge resources, with descriptor lists in Medusa
for providing addresses of remote utilities. However, the placement of
proéesses and objects within a task force is more important than in the loosely

coupled Cambridge Distributed System.
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11.3. Personal Computers

THe use of idle machines in a network of personal computers as available
resources has been proposed by Shoch and Hupp [Worms82] and Dannenberg
[Dannenberg 82]. In both of these systems, attention has been paid to the
autonomy of personal computers. Users must actively offer their machines for

use, and‘may reclaim them at any time.

In Shoch and Hupp’'s work, a worm program is composed of an optimal
number of segments, each running on a different machine. To obtain a new
segment, a worm broadcasts on a well known socket, and awaits a reply from a
consenting host upon whom it will then load the new segment. A worm must
retain sufficient distributed state (use of local discs is not allowed) to recover
from a segment's being aborted at any'time. This, along with the requirement
that a worm propagate itself, makes worms a rather limited class of applica-

tion.

Dannenberg has developed, in conjunction with the Spice project at CMU,
an operating system component known as the Butler. It will accept a
specification for a remote resource and a list of potential hosts to be tried in
turn. The specification includes the resource name (a string), a list of low level
subresources which must be available (an arbitrary collection of name, value
pairs), such as memory, cpu time, and disc pages, and a list of servers to whom
access will be required (strings). These are similar to the class, attributes, and

required subresources of an action in the Cambridge RM.

As a remote host, the Butler awaits an incoming request and consults its
policy database to determine whether it can meet the specified requirements.
This may involve checking the signature of t.he client with the Banker service
to authenticate the client and to determine numerical limits on privileges.
The AOT and PrivMan services are used similarly in the Cambridge system. The
Butler then monitors the execution of the guest program, notifying the client
Butler if the program exceeds its subresource limits‘ or if the host user

demands the return of his machine.

In this system, a resource is viewed basically as a command (with require-

ments for server access and internal resources) running in one of a number of
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machines suggested by the user. It depends upon a homogeneous environ-

ment: single machine type, single operating system, single language.

11.4. The Dynamic Nameserver Alternative

‘An alternative approach which I pursued involved incorporating manage-
ment functions into a dynamic nameserver (a server providing name to
address mappings'which change on a relatively frequent basis). This scheme

would have incorporated the static nameserver.

Initially, the dynamic nameserver would know the addresses of only a few
other services,.. such ..as. .the. aut,henticat.ioln..‘ser-ven -and...other . dynamic..
nameservers. As services came into existence, they would notify the dynamic
nameserver of any resource they were willing to provide, the address of this
resourcé, and some authentication information. For example, the network
ffont ends to machines might have a simple program in PROM which would con-
tact the dynamic nameserver on power up or reset, giving its machine attri-
butes and the network address on which it was willing to accept code to be
loaded (subject to the authentication token which it handed to the dynamic

nameserver being returned with the request).

Fabricators such as the Ancilla might enter names for Tripos and Malil,
stating that the result would be an address for further indirection. Thus, in
response to a request for the address of a Tripos, the client would receive the
address of the Ancilla with the indication that it was being redirected. The
client would then redirect its request to the Ancilla, and expect back a net-
work address for the target service. In satisfying such a request, the Ancilla
might have recursively called upon 'the dynamic nameserver to obtain the free

machine which it loaded to provide the target service.

The resource management functions of the dynamic nameserver would
include periodically contacting the registered resources to determine if they

were still alive, and removing entries for ones which failed to respond.

Another intended management function was to provide the quality of ser-
vice and allocation time factors as described in section 8.3. These factors

would be entered into the dynamic nameserver as part of resource
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registration. For bottom level resources, such as machines, they would be
constant. Fabricators and servers should be able to calculate these factors for
resources they offer based upon the construction involved and the value of the
factors for resources to be used in the construction. The fabricators and
servers could periodically check the availability of resources they would use in
construction and alter the corresponding entries in the dynamic nameserver.
Thus, if there were no machines available on Which Tripos could run, the Ancilla
could retract its offer to provide a Tripos. If only LSI4s were available, it could
reduce the quality of service parameter accordingly. As these factors would
only be hints, their accuracy would not be critical. Changes for factors for low

level resources would eventually trickle up to the entries for higher level ones.

This scheme was eventually abandoned for several reasons.

. Accommodatlng multiple level resources. required that either all of the
servers be present to make entries for resources which they could provide,
or lower level ones had to know all the possible resources which could be
supported by any resources they provided.

« Fabricators could not ensure they would be able to obtain multiple
required subresources for fabrication, particularly if two of the
subresources were of the same class. Reservations would have led to a
complex thread of execution through multiple machines with a consider-
able number of network messages being passed sequentially.

« Clients would have had to be prepared to redirect their requests.

« There was difficulty in deciding which attributes of the client request could
be satisfied by which levels.

« There was no central repository of information for use in making policy
decisions about resource allocations.

11.5. Rochester’s Intelligent Gateway

Rochester’s Intelligent Gateway (RIG) [Lantz82, Lantz80] is a distributed
system designed for a collection of heterogeneous machines interconnected by
networks of varying characteristics. RIG's emphasis is on inter-machine mes-
sage passing, remote pfocess management, and a general purpose intelligeﬁt
user interface with table driven command interpreters. RIG is particularly
interesting because it sﬁares some of the premises of the Cambridge Distri-
.buted System: a heterogeneous group of machines supporting different operat-

ing systems which are integrated to varying degrees, and resources being
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viewed as higher level objects available among system components.

Though both systems support similar servers (a nameserver, fileservers,
printservers, terminal concentrators, a resource/process manager, a logger,
and a clock service), in the Cambridge system these are provided as small
servers in separate machines but in RIG as server processes on each host.
Thu‘s, for a host to be fully integrated into the RIG environment, it not only
must support the RIG protocols for communication, but must provide a reason-
able complemént of these server processes. In the Cambridge system, only
the Ring protocols (SSP, BSP, VTP) need be provided for full integration, and
the host can then access servérs on the Ring in the way a RIG host accesses
the server processes which it supports. However, in the Cambridge system a
host is dependant on the Ring servers, whereas a RIG host is largely self sup-

porting and can run stand alone.

Processes as Resources

In RIG there are resource or process profiles which map keys such as *‘edi-
tor” into the associated code segments to be loaded. The local process
manager (one of the RIG server processes) takes such a string and returns the
process identifier of a newly created process running the associated code. This
is similar to old RM's mapping a name for a service into an Ancilla loadfile, hav-
ing the associated code loaded, and returning the name of the allocated

machine.

The process manager keeps a tree of spawned processes which it uses pri-
marily to avoid orphans. When a process dies, all of its subprocesses (both
local and remote) are notified and given a cleanup time, after which they will
be killed. Process managers are notified of the death of remote processes by
the network servers, whereupon they will notify any processes which have
registered interest in the remote process death (generally servers wishing to
release allocated resources). This mechanism is similar to that provided by
the Aliveness and Event Notiﬁcation servers in the Cambridge Resource
Manager except that in RIG, the interest is contained to one machine, there
are a small fixed set of events concerning process activity, and notification is

by a signal rather than by executing an arbitrary procedure.
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Service Location

Processes willing to provide a service (named by a unique string) send a
message indicating this to the nameserver in their host. Subsequently, when
the nameserver receives a request for a service, it returns the address of the
appropriate registered process. If the requested service is not in the
nameserver (i.e. not available on the local host), the local nameserver notifies
each network server that it should propagate the request on its associated net-
work. The remote network servers communicate with their respective
nameservers to determine which host, if any, provides the service, and the
resulting address is returned to the original requestor. If more than one host

offers the service, all "'bids’' but the first are ignored.

Similar function is provided by the Cambridge Resource Manager. Any ser-
vice may indicate a willingness to provide resources by entering one or more
actions, in which case they will be approached for the resource when needed in
the same sense as the RIG servers. However, with RM it would also be possible
to enter resources directly which would be like precreating processes [pro-
vided by servers] in RIG. Additionally, RM has a number of fixed actions for
standard resources. By contrast, the RIG equivalent to the fabricator or server
must exist and have registered a willingness to provide the resource. It is sug-
gested that the RIG nameserver could act as a canonical server, creating the

appropriate server process if none were already available.

11.6. Yudkin’s Resource Management System

A colleague of mine, Mark Yudkin, has concurrently developed a resource
management system for the Cambridge Distributed System [Yudkin 83].
Though starting from the same premises, our emphasis and goals were some-
what different. Authentication and security played a primary role in Yudkin's
work, and he considerably augmehted the current Ring authentication system
to achieve these. By contrast, I concentrated on the description, location, allo-
cation, and construction of resources. Such differences account for part of the
difference in resulting approaches, though much of it is simply because we felt
different solutions to be appropriate. I will give an overview of Yudkin's system

and point out areas where it differs from my approach.
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Overview

Yﬁdkin's proposed system consists of two primary types of services: the
Manciple and a number of Service Secretaries. The Manciple accepts resource
requests which it reroutes to the appropriate Service Secretaries. A request
includes a description of the desired resource and what access rights to it are
needed, as well as the client’s uidset or an access key. Once the requested
resource has been obtained from a Service Secretary, the Manciple uses this
authentication information to restrict the access rights in the capability for
the resource, and then passes the capability and resource address back to the
client. The Manciple determines the allowed rights based upon the client's
privileges as registered in the AOT Privilege Manager. The client may then
include this capability in his request to the resource, which will contact ‘the
Manciple to verify the capability and determine the client to whom the alloca-

tion was made and what rights he is allowed.

There is a separate Service Secretary for each type of resource available
in the system, which is responsible for providing instances of that type
resource. To satisfy a request, a Service Secretary might allocéte the resource
from a pool of available instances or contact the Manciple to acquire
subresources and combine them into the target resource, possibly with the
assistance of booters. The majority of policy for the allocation of resources of

a particular type resides in that type's Service Secretary.

A Service Secretary will accept a resource/service request only from the
Manciple. The request must include the resource name, attributes, and rights
for the desired resource as well as the Secretary’s access key which only the
Manciple knows. No information about the‘ user is given. The response must
include the resultiﬁg resource’s address, authentication information, aﬁd
access rights, as well as capabiiities for any subresources obtained (as the

Manciple retains the graph structure of resoufces).

When a client finishes with a resource, he will notify the Manciple which will
then notify the Service Secretaries of that resource and all subresources.
Though no provision is made for detecting the failure of a resource, Yudkin

postulates that the Service Secretaries could poll the resources and interact
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with an Event Notification Server (as I proposed) to notify appropriate parties.
Advantages and Disadvantages

Authentication and Protection

Yudkin's attention to authentication and protection is excellent. He
addresses the problem of rights associated with capabilities which can be res-
tricted or enhanced. More importantly, he addresses the problem in the
current system of authenticating clients by passing uidsets (thus giving the
recipient the ability to prove that ‘he is the client) by using the Manciple as a
trusted intermediary. This is a good scheme, though I believe it should be part
of the authentication (AOT) serviées rather‘ than part of the resource manage-
ment system. As it stands, resources obtained through the resource manage-
ment system do not have the user’'s uidset, and thus cannot interact with ser-
vices accessed outside of the resource management system. For example, Tri-
pos cannot send documents to the printer spooler because the spooler
requires the client's uidset. Forseeing this problem, Yudkin has suggested

that the user be required to handle such interactions directly.

Separation of Policy - Distribution of Function

The other main advantage of Yudkin's system is that the vast majority of
allocation policy for resources has been separated into the Service Secre-
taries. The Manciple enforces rights restriction based upon privileges pos-
sessed by the user, but otherwise it is completely up to the Service Secretaries
to decide upon allocation policy. The policy can be tailored to the resource
being provided. Unfortunately, Yudkin has failed to provide the Service Secre-
tary with any infofmation about the user for it to incorporate in policy deci-

sions, probably by oversight.

A more serioﬁs problem in this area is that the Service Secretary has only
local information upon which to base the allocation decision. For example, the
policy that only three of the 68000s may be allocated to run student systems,
such as the student version of Tripos or the student version of the mail system,

cannot be enforced as it requires information about the allocation of several
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types of resources and each Service Secretary has information about only one
type. In my resource management system, the allocation information about
all of the resources is available in the Resource Manager in a consistent form,
thus facilitating its inclusion in policy decisions (though a small number of pol-

icies must contend with all types of resources).

The unavailability of inforx -~ em is, I believe, its
biggest ﬁéw. The deciding factor in distribution seems to have been that policy
must be delegated to éeparate servers, with the consequences that there is no
central repository of information for making these decisions and a consider-
able arnoﬁnt of network communication must be carried out between the Man-

ciple and Service Secretaries.

The result is that it takes 27 se¢onds to obtain a Tripos resource.! Yudkin
staies that only five seconds of this fcime is spent loading code. The remainder
is spent in the Manciple, in the Service Secretaries, in the communication
between them, and in the communication with the Active Object Table. Yudkin
suggests that the> user '‘issue the request and do something else during the
half minute it takes to satisfy that request'. Unfortunately, this half minute
could be considerably increased if reservations were used or if more than a

simple two layer resource had to be fabricated.

Yudkin comments that preloading could be used to avoid this long alloca-
tion time. 1 disagree. The preloading would save only the five seconds of
actual machine loading; because each Service Secretary implements the policy
for its resource, the same communication paths between the Manciple and Ser-
vice Secretaries must be followed once the ultimate user of the resource is
known so that this information can be taken into account in the policy deci-
sion. Additionally, in his suggestion for preloading, Yudkin does not inform the
server or fabricator of the intended status for the resource. A server may not
be willing to provide a resource which will only be placed in a free pool, as it

may tie up internal resources of the server.

'By comparison, the times for obtaining a Tripos from RM 11 via RPC are:

« 7.8 seconds building resource from scratch (comparable to Yudkin's task - treating RM 1
as a machine server);

« 5.1 seconds with 68000 already in Repository; and

« < 0.1 seconds with Tripos preloaded onto a 68000.
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VIn his basic system, Yudkin has ignored any sort of reservations with the
result that time may be spent fabricating a subresource only to find that a co-
required subresource is unavailable. The reservation system which is eventu-
ally suggested would take place across Service Secretaries, increasing the

required network communication.

Service Secretaries

One of my goals was to explore the commonality of resource allocation pol-
icies and provide a general mechanism for allocation at the expense of indivi-
dually tailored ones. This makes it is very easy to handle new resources. Net-
work servers willing to provide them simply apprbach Resource Manager with
the resources or with an offer to provide them on demand. Actions can be
entered describing how to construct resources from existing subresources.
Yudkin opted for the more flexible approach of individual policies for each type
of resource available on the network, with the resulting cost that offering a

new type of resource requires implementing a Service Secretary for it.

Additionally, for Yudkin's scheme, a Service Secretary must be in
existence for each type of service on the network. To ensure this, Service
Secretaries are treated specially by the Manciple which interacts directly with
booting services to have them constructed. Yudkin has explicitly said that the
interfaces to booting services may be varied, with the result that the Manciple
must understand a number of booting service protocols for the different types

of machines on which the Service Secretaries are loaded.

Yudkin's system provides no way for providers of services to offer them to
the remainder of the community, although it could be done by extension of the

Manciple and Service Secretary interfaces.

Attribute Trees

For description of resources, Yudkin requires attribute trees reflecting the
resource structure. He admits that, due partly to the difficulty in passing this
information between the Manciple and Service Secretaries, severe restrictions

have been imposed in the irﬁplementation. I chose to flatten the attribute
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space so that users did not have to know about the structure of resources, with
the resulting restriction that some desired structure of resources could not be
specified. For example, it is impossible to request a particular compiler server
and specify that the front end is to run on a 68000 and the back end on an LSI4
if there are actions for providing the back and front ends on both 68000s and

LSI4s. Yudkin potentially does not have this restriction.




12. Use of Resource Manager

This chapter explains how I see the user interacting with Resource Manager
and the processor bank. Much of what is described doesn't involve Resource
Manager directly,‘buﬁ provides a setting in which it may be used. Some of this
work is already available, some is currently underway, either through my own
initiative or through Project Mayflower or the Programming Environments
Research Group, and some is only speculation. I anticipate that RM will con-

tinue to evolve as more and more of this work is completed.
12.1. Conventional Processor Bank Use

Providing Operating System Instances

The processor bank is largely used, as it has been historically, to provide
connections to dynamically instantiated operating systems. There are several
variant configurations for Tripos, both for LSI4s and 68000s. There is also a
configuration for Mayflower for 68000s. With the new MicroVax processor bank
(currently three MicroVax I's; 12 MicroVax II's to arrive this summer), Ultrix
should soon be added to this list of available operé\ting systems, as will VMS in

the longer term.

There is a Machine Server which keeps a list of the existing machines (LSI4
and 68000 based systems) with notations of which have been allocated to RM or
withdrawn for maintenance. There are resource actions in RM indicating the
class and attributes of machines which may be obtained from the Machine
Server. The Machine Server registers an interest in the expiry of any of its
allocated machines in the Event Notification Server. Upon such notification it
has the appropriate Ancilla reset the machine and then marks it as free. The

Machine Server is a Mayflower server written in CLU.
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Instantiating Static and Dynamic Servers

The 780 small servers are still reloaded by the>Boot Server after a crash or
when the Z80 reset button is pushed. Either event generally causes the Z80 to
branch to a fixed address in PROM memory which results in the Boot Server
being prodded. It would be possible for RM to instantiate these services, based
upon actions in its’IC‘atalogue, by using the Boot Server as a fabricator for 7280
services. As it would be infeasible to change all clients to request service
addresses from RM rather than the Name Server, these services should remain
static (using machine names as aitributes to determine location). The advan-
tage, aside from the elegance of consistency, would be that the Z80s which are

not statically assigned could be allocated dynamically by RM.

There are four major static servers running on processor bank machines
from the Machine Server: Resource Manager itself, the Canon Print Server, the
Tripos Filing Machine, and the Tripos Méil Server. The Print Server is static by
virtue of special hardware. The attribute Canon is associated with the Print

Server machine and is required by the Print Server resource action.

The Filing Machine and Mail Server could be instantiated dynamically (i.e.
in any appropriate free machine) except that clients approach the Name
Server for their addresses. For these services the machine names are attri-
butes of the machines, and are required by the Filing Machine and Mail Server
-actions. Currently, when they crash they are reloaded through RM by system
administrators. With minor modification they could, upon initialization, regis-
ter an interest in their own death with the Event Notification Server giving a

request to be sent to RM to reinstantiate them when such an event occurred.

Other Dynamic Services

There are several dynamic services available in addition to the operating
systems mentioned above. These include the Rainbow high resolution color
display system, a Wirewrap system requested by the Pointing Machine con-
troller, a Garbage Collector requested by the File Servers, an Accounting Dae-
mon requested by the Tripos Filing Machine, and a Mail Daemon requested by

the Postman server.
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12.2. Mayflower

Project Mayflower is developing an environment to facilitate distributed
programming. It is based on the CLU language which has been extended with
coﬁcurrency and Synchronization pfirnitives, as well as with remote procedure
calls for cross machine communication. The Resource Manager is used for the
naming, location, and construction of network resources. Present research
interests include: a distributed compilation system, debugging of distributed
programs, atomicity for abstract objects, and remote program access to bit

-mapped screens.

The location of Mayﬁowér services or of available Mayflower Operating Sys-
tems is done via Resource Manager. Remote module binding and configuration
are done under program control, rather than at compile or link time, thus per-
mitting a highly djnamic environment in which services may be fabricated on
demand. This late binding allows the Mayflower system to go to Resource
Manager to obtain the address of a remote service of the desired type, or to

have one fabricated.

One experiment will be for some of the commands which the user types
that may be CPU intensive (e.g. compilation or linking), not to be executed on
his home machine but to result in a call to Resource Manager for a compiler,
linker, etc. and a remote procedure call to be made to the resulting address to
Ieffect the action. For user applications which are not “installed' systems
about which the Resource Manager knows, the home machine might request a
Mayflower Operating System and specify to it the user’s code which should be
loaded and executed. Because Resource Manager does preloading, response to
the user request could be almost instantaneous if the system as a whole was

not too heavily loaded.

12.3. Visions of Sugarplums

In a distributed environment, the user may be executing several distinct
tasks using many processes spread across various processors. A likely future

scenario at Cambridge might involve a user working at a Dandelion workstation
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running the Xerox Development Environment (XDE)1 Most editing would be
done locally, as would tasks such as mail reading and calendar reminders. The
user rnéy access ‘ne’twork resources to perform tasks not supported on the
workstation or those sufficiently CPU intensive as to be more appropriately
executed elsewhere. For example, the user may have a connection to Unix to

access the wealth of applications it provides.

If the user was developing a Mayflower application, he might have connec-
tions to an interactive CLU compiler, a CLU linker/debugger, and a Mayflower
operating system running his application. The CLU cbmpiler would probably be
running under Unix on a processor bank MicroVAX, and compiling code for
68000s. After editing the source on his workstation the user would issue a
compilation command to the compiler. The source ﬁ1¢ would automatically be
recalled by the fileserver when it was requested by the compiler, and the com-
piler would store the results of the compilation on the fileserver where they
could be accessed by the linker or debugger. If the application was distri-
buted, a remote debugger (which runs under Mayflower on the 68000s) might

be used to debug the separate components.

The User Secretary is a command executive responsible for acquiring net-
work resources for the user, and subsequently assisting the user in coordinat-
ing and controlling them. Preferably, the User Secretary would run in the
workstation, though it will probably run on a remote Mayflower system because
of the support Mayflower provides for distributed applications. The Secretary
must determine what resources are needed, request them of the Resource
Manager, and contact the resulting resources as appropriate. For example, a
“print’”’ command might result in access to a print server being requested
from RM. The Secretary would pass the command arguments, which specify
the names of the ﬁies to be printed along with formatting information, to the

print server at the resulting address.

The interaction among tasks might be specified directly by the user if it
was very simple (e.g. 170 redirection and piping in the Unix C shell). Alterna-

tively, the coordination of resources might require task specific coordinator

IXDE is a Mesa based programming environment for the Xerox Network System.
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code in the Secjretary. For example in bringing a CLU program object file up to
date, the coordinator might begin with a consistency check based upon cluster
“procedure versions. If the distributed compilation system was used, one CLU
compiler (with access to the CLU Library Server) might be acquired from RM
on a non-preemptable basis, with several others on a preemptable basis. The
coordinator would assign files to the different compilers, and then monitor
their parallel exécution. If there were compilation errors, certain of the com-
pilations would have to be abandoned and the errors reported to the user. If
séme of the compilers were preempted, their compilations would have to be
reassigned. Upon successful compilation, the coordinator would request and

activate a CLU linker to produce the final program object file.

Files would take permanent residence on fileservers, with local store on
workstations and processor bank machines being used for caching. Files would
be stored and retrieved in entirety. If files were stored as structured, attri-
buted objects (viz. Tioga [Cedar]), remote systems might have to access them
through a filter. Directory servers would provide a directory structure for the
global ﬁling system, with indirection to appropriate fileservers at leaf nodes.
They would implement access control, locking, file versions, and filter

-specification.

Remote processes would have access to the bitmapped screen of the
workstation through a language independent interface. A call to a remote
resource might result in its opening one or more windows on the user’s screen.
For example, the interactive CLU compiler might initially open a command
executive window, and later open a separate window for error messages from
compilations. The workstation software would support facilities such as win-
dows, mouse handling, menus, command line /Vforrn parsing, and display of help
strings. Among other benefits, this shou}d encourage the use of more sophisti-

cated displays and interactions with the user.




'13. Summary and Conclusions

Thesis

The thesis of this dissertation is that sufficient commonality exists in the
requirements for the management of distributed system resources that they
can effectively be collected into a single resource management system. This
minimizes the requirement for resource management mechanisms to be pro-
vided individuélly in external components, enforces a consistent interface for
offering and requesting reéources, and centralizes information necessary to
implement policy incorporating multiple types and instances of resoﬁrces.
The cost of such generality is loss of the ability to tailor highly the manage-
ment of resources with the result that they are less efficiently utilized. It is

claimed that such cost is far outweighed by the advantages.

This research is concerned with high level resources available from com-
ponents-of the distributed system to users or other clients, such as an operat-
ing system, an edit session from an edit server, a compiler service, or a raw
machine. A resource may be built upon one or more subresources, with such
layering extending for multiple levels. For example, a compiler may run on an

operating system which in turn runs on a machine.

The Processor Bank Philosophy

Much of the need for resource management, including the need to con-
struct resources from subresources dynamically, stems from the use at Cam-
bridge of a processor bank: a heterogeneous collection of machines which may
be allocated on demand to run user services or network servers. A procéssor »
bank apprecach allows'all of the users access to a very large amount of comput-
ing power which may bé shared among them. Users may be allocated multiple
machines for distributed applications or for concurrent execution of distinct
tasks. Because the processor bank contains different types of machines it may

support a wide variéty of operating systerhs, languages, and tools. This
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facilitates importing existing software and allows the programmer to choose

the most abpropriate language and system for implementing new applications.

Two Resource Manager servers were built. The first was designed to sup-
port the original Cambridge Model Distributed System in which machines from
the processor bank were allocated as personal computers for the duration of a
login session. Given a system name, it could select an appropriate free
machine and rnerhory image from fixed lists, instruct a loading service to load
the image into the given machine, and respond to a request from the newly

loaded service with the location of the user's terminal.

The second Resource Manager, which is the major implementation effort
associated with this research, takes a more general view of resources as
objects available among components of the distributed system. It matches
client requirements for a resource to those resources which it has been given,

has been told are avallable or has been told how to construct, by other net-

work chents or by systern managers. It has been in experlmental use by PrOJect ‘

% Mayflower, but is not yet fully installed in the Cambridge distributed system.

Primary Resource Management Issues

The functionality of resources can be described by attributes choéen ffom
a global namespace. Each resource has a class attribute (such as CLU Com-
piler or 68000) and optionally several qualifying attributes (such as VAX obj
code for a compiler, or floppy disc drive for a machine). The description of a
resource .also includes: factors differentiating it from other instances with
similar functionality, data for accessing the resource, information about its
structure, properties governing its allocation, and information about its

current allocation.

Resource Manager maintains two data bases of information about
resources available on the network. The Resource Repository contains infor-
mation about all of the existing public resources. Repository entries are
created either by clients placing resources in the public pool, or by Resource
Manager after obtaining resources from servers or fabricators. The Action
Catalogue contains resource actions which indicate how Resource Manager

may obtain resources from servers or have them constructed from existing
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resources by fabricators. Each resource action describes the relation between
two levels of a resource; obtaining a multiple level resource may involve exe-
cuting several actions. Catalogué entries are created either by system
managers, or by servers or fabricators willing to provide resources to the com-

munity on demand.

In satisfying client requests for resources, Resource Manager must deter-
mine combinations of existing resources and resource actions which will pro-
vide suitable resources. To do this it builds one or more blueprints or plans
for construction. A blueprint may point dif‘ect,ly to a reserved resource in the
Resource Repository, or to a resource action and a list of blueprints for the
required subresources. Resource Manager must then decide améng these
alternatives according to some resource management policy. Blueprints allow
Resource Manager to be fairly certain that a particular plan for construction
will succeed, and to ensure that all attribute requirements are met, before

actually beginning construction.

There is a small set of general policies which are applied as appropriate to
different types of resources. These are triggered by résource allecation pro-
perties (to be allocated, reusable, replenishable, support mﬁltiple) which are
recorded in the Repository entries. Resource factors (quality, allo¢ation time,
cost, communication delay) are used to differentiate instances of a particular
type qf resource. The policy currently implemented utilizes a subset of these,
with emphasis on minimum allocation time. The area of policy is probably the
one I will pursue next, particularly the use of resource factors, preemption
(the mechanisms for which are the same as for reclamation), and load balanc-

ing.

Additional Topics

The monitoring and reclamation of resources is handled by two mechan-
isms: one monitors aliveness by accepting refreshes of short timeouts from
resources, and the other notifies interested parties when such timeouts expire
so that they may act appropriately. Resource Manager requests to be notified
of resource expiry so that it may delete the resource from its tables and adjust

entries of related resources accordingly.
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Authentication and protection mechanisms of the Cambridge distributed
system are used to restrict the allocation of resources, as well as the entry and
removal of resources or resource actions. Privilege lists within Resource
Manager match attributes of resources or actions to privileges required of

clients.

As part of Resource Manager's goal to respond to requests promptly, it
keeps a stock of free resources ready for immédiate allocation by obtaining
resources from servers or fabricators ahead of time. It analyzes recent client
requests for resources to determine which ones are likely to be the most popu-

lar.

When bootstrapping the distributed system, services must be brought up
in an order consistent with their critical interdependence and services must
be instantiated authentically. Special meéhanisms are used to bootstrap the
system through the level of Resource Manager, beyond which services can be

instantiated by RM on demand.

In Conclusion

Resource Manager goes a considerable way in attaining the advantages of
the processor bank philosophy. It provides a means of conversing about a wide
variety of resources in a consistent manner. It matches requests for network
resources to those which either already exist or can be constructed from exist-
ing ones. It detects and notifies appropriate parties of resource crashes. It
provides authentication and protection both for clients requesting resources
and for clients offering resources. And it‘provides resource information in a

consistent form for implementing policy.

There is scope for further exploration, particularly of resource manage-
ment policies. 1 anticipate that Resource Manager will continue to evolve as
more experience with it is gained and as more demanding use of the processor

bank is made.
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