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Abstract

Comparison of graph structures is a frequently encountered problem across a
number of problem domains. Comparing graphs requires a metric to discriminate
which features of the graphs are considered important. The spectrum of a graph
is often claimed to contain all the information within a graph, but the raw spec-
trum contains too much information to be directly used as a useful metric. In this
paper we introduce a metric, the weighted spectral distribution, that improves on
the raw spectrum by discounting those eigenvalues believed to be unimportant and
emphasizing the contribution of those believed to be important.

We use this metric to optimize the selection of parameter values for generating
Internet topologies. Our metric leads to parameter choices that appear sensible
given prior knowledge of the problem domain: the resulting choices are close to the
default values of the topology generators and, in the case of the AB generator, fall
within the expected region. This metric provides a means for meaningfully opti-
mizing parameter selection when generating topologies intended to share structure
with, but not match exactly, measured graphs.

1 Introduction

In this paper we present a metric, weighted spectral distribution, for comparing graphs
based on the distribution of their internal structure. Graph comparison is a problem that
occurs in many branches of computing, from vision to speech processing to systems. The
metric we present differs from existing graph-matching techniques which seek to identify
graphs which share common clusters, i.e., are similar. Instead, our metric is designed
specifically for situations where the graphs being compared are in general dis-similar
but can be expected to share, in some sense, a common structure. For example, when
generating synthetic workloads from trace data described as a graph, the generated graphs
should not match the original trace data exactly but should share some common structure
with them. Situations where this is encountered include workload generation, e.g., as in
Magpie [2], and Internet topology generation.

We specifically focus on the latter problem domain in this paper, addressing the prob-
lem of generating synthetic topologies designed to mimic the structure of the Internet.
The Internet topology’s structure is not easy to characterize. In the core there is a full
mesh formed between various tier-1 Internet Service Providers (ISPs). However, at the
edges there are a huge number of smaller ISPs and customer networks which connect
through upstream providers. These smaller ISPs and customer networks may have only
one upstream provider, or may have many for resilience and performance reasons. This
rich and varied structure makes it difficult for researchers to provide a single model, and
hence a single metric, that captures all the characteristics of various topologies. Many at-
tempts to capture one or even several characteristics have been made, resulting in several
topology generators which each synthesize Internet-like topologies using different models
and parameters. Unfortunately, little or no guidance is available on how to set these
parameters, with the default values subjectively chosen by the original authors usually
being used.

Using our metric, we compare five different topology generators and a measurement
of the existing Internet’s AS (Autonomous System) topology. Empirical evidence from
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this comparison shows that the weighted spectral distribution is consistent with expected
results. Using our metric we are also able to give optimum parameter settings for these
topology generators with respect to the measured AS data and the weighted spectral
distribution.

In summary, we present three contributions in this paper: (i) a metric for comparing
the structure of graphs that reveals important characteristics such as in what way two
graphs differ; (ii) a comparison of the outputs of five major Internet topology genera-
tors and a measured dataset; (iii) optimal parameterizations under our metric of these
topology generators with respect to the measured dataset.

2 Background

Graph analysis is typically concerned with determining the relationships among the ver-
tices of a graph, and its various applications can be broadly classified as topology tuning,
graph matching and cluster determination, examples of which will now be discussed.

Topology tuning is the problem domain we are concerned with here, namely adjust-
ing parameters used to generate topologies with the aim of generating topologies “close
enough” to some representative. Graph spectra have not been used for this purpose be-
fore, although Hanna [8] uses graph spectra for numerical comparison of architectural
spaces in large building plans. By defining space as a graph, they show that the spectra
of two plan types can be effectively used to judge the effects of global vs. local changes,
and hence the edit distances, to the plans. Hanna believes spectra are a reliable metric
for capturing the local relationships and can be used to guide optimization algorithms for
reproducing plans.

Alternatively, graph matching is concerned with the comparison of two or more graphs
to determine which clusters in the graphs are related. For example, Luo and Hancock [10]
compare several images of an object taken at different angles and determine the corre-
spondence between them by representing the images as graphs. Their technique seeks
to maximize the likelihood that groups of vertices in one graph correspond to those in
another. However, the aim of this work differs from ours as it seeks to identify the edges
between specific nodes and clusters.

Techniques for cluster identification differ mainly in the choice of matrix associated
with a graph. Ng et al. [12] present an algorithm for determining the dominant clusters
in a graph by examining the eigenpairs of the normalized graph Laplacian. They suggest
that a graph with n-vertices may be represented in k < n-dimensions by choosing the first
k eigenvectors as ordered by the k smallest eigenvalues. The value of k is determined by
examining the eigenvalues of L, denoted by λi, i = 0, . . . , n−1. The eigenvector associated
with the first (non-zero) eigenvalue determines the largest clusters in the graph with
subsequent eigenvectors determining finer subclusters. If there exists an eigenvalues λi,
for which abs(1−λi+1) >> abs(1−λi) then λi+1 to λn−1 are clustered around 1, and this is
known as the spectral gap. The spectral gap represents eigenvalues which have little power
and can be thought of as representing noise or small variations in the graph structure.
Typically, the value of k is determined by examination of a plot of the eigenvalues and set
by the spectral gap. The n×k matrix of eigenvectors is then clustered using the k-means
clustering algorithm, although variations using other clustering algorithms exist.
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Graph spectra have also been used for characterization of Internet topologies. Gkant-
sidis et al. [6] perform a comparison of clustering coefficients by using the eigenvectors of
the k largest eigenvalues of adjacency matrices on BGP topology graphs. However, the
choice of k is arbitrary and those chosen are given equal importance. They consider the
rest of the spectrum as noise, despite works that have shown that the eigenvalues of the
adjacency matrix or the normalized Laplacian matrix can be used to accurately represent
a topology and some specific eigenvalues a measure of properties such as robustness of a
network to failures [15, 9].

Vukadinovic et al. [17] use the normalized Laplacian spectrum for analysis of AS
graphs, proposing it as a fingerprint for Internet-like graphs. Using the Inet [19] generator
and AS graphs extracted from BGP data, they obtain eigenvalues of the normalized
Laplacian matrix. They believe that the graph spectrum should be considered as an
essential metric when comparing graphs. We expand on this work by demonstrating how
an appropriate weighting of the eigenvalues can be used to reveal the structural differences
between two topologies.

We now present our metric, the weighted spectral distribution, before using it to
compare synthetic and measured topologies, and to optimize parameter selection for the
topology generators with respect to the measured topology.

3 Methodology

We now derive our metric, the weighted spectral distribution, relating it to another common
structural metric, the clustering coefficient, before showing how it characterises networks
with different mixing properties.

Denote an undirected graph as G = (V, E) where V is the set of vertices (nodes) and
E is the set of edges (links). The adjacency matrix of G, A(G), has an entry of one if two
nodes, u and v, are connected and zero otherwise

A(G)(u, v) =

{

1, if u, v are connected

0, if u, v are not connected
(1)

Let dv be the degree of node v and D = diag(sum(A)) be the diagonal matrix hav-
ing the degrees along its diagonal. Denoting by I the identity matrix (I)i,j = 1 if i =
j, 0 otherwise, the Normalised Laplacian L associated with graph G is constructed from
A by normalising the entries of A by the node degrees of A as

L(G) = I − D−1/2AD−1/2 (2)

or equivalently

L(G)(u, v) =















1, if u = v and dv 6= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(3)

As L is a real symmetric matrix there is an orthonormal basis of real eigenvectors
e0, . . . , en−1 (i.e., eie

T
j = 0, i 6= j and eie

T
i = 1) with associated eigenvalues λ0, . . . , λn−1.
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It is convenient to label these so that λ0 ≤ . . . ≤ λn−1. The set of pairs (eigenvectors and
eigenvalues of L) is called the spectrum of the graph. It can be seen that

L(G) =
∑

i

λieie
T
i (4)

The eigenvalues λ0, . . . , λn−1 represent the strength of projection of the matrix onto
the basis elements. This may be viewed from a statistical point of view [14] where each
λieie

T
i may be used to approximate A(G) with approximation error inversely proportional

to 1−λi. However, for a graph, those nodes which are best approximated by λieie
T
i in fact

form a cluster of nodes. This is the basis for spectral clustering, a technique which uses
the eigenvectors of L to perform clustering of a dataset or graph [11]. The first (smallest)
non-zero eigenvalue and associated eigenvector are associated with the main clusters of
data. Subsequent eigenvalues and eigenvectors can be associated with cluster splitting
and also identification of smaller clusters [13]. Typically, there exists what is called a
spectral gap in which for some k and j, λk ≪ λk+1 ≈ 1 ≈ λj−1 ≪ λj . That is, eigenvalues
λk+1, . . . , λj−1

1 are approximately equal to one and are likely to represent noise in the
original dataset, i.e., links in a graph which do not belong to any particular cluster. It
is then usual to reduce the dimensionality of the data using an approximation based on
the spectral decomposition. However, in this paper we are interested in representing the
global structure of a graph (e.g., we are interested in the presence or absence of many small
clusters), which is essentially the spread of clustering across the graph. This information
is contained in all the eigenvalues of the spectral decomposition.

Let x = (x0, . . . , xn−1) be a vector. From (3) we see that

xLxT =
∑

uv∈E

(xu/
√

du − xv/
√

dv)
2 (5)

Now, the eigenvalues cannot be large because from (5) we obtain

xLxT ≤
∑

uv∈E

(xu/
√

du − xv/
√

dv)
2

+ (xu/
√

du + xv/
√

dv)
2

= 2
∑

u

x2
u = 2xxT (6)

and so λi = eiLeT
i ≤ 2. What is more, the mean of the eigenvalues is 1 because

∑

i

λi = tr(L) = n (7)

by (3), where tr(L) is the trace of L.
To summarize: the eigenvalues of L lie in the range 0 to 2 (the smallest being 0),

i.e., 0 = λ0 ≤ . . . ≤ λn−1 ≤ 2, and their mean is 1.
The distribution of the n numbers λ0, . . . , λn−1 contains useful information about

the network, as will be seen. In turn, information about this distribution is given by

1i.e., the eigenvalues at the centre of the spectrum.
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its moments in the statistical sense, where the N th moment is 1/n
∑

i(1 − λi)
N . These

moments have a direct physical interpretation in terms of the network, as follows. Writing
B for the matrix D−1/2AD−1/2, so that L = I −B, then by (3) the entries of B are given
by

(D−1/2AD−1/2)i,j =
Ai,j√
di

√

dj

(8)

Now the numbers 1 − λi are the eigenvalues of B = I − L, and so
∑

i(1 − λi)
N is just

tr(BN ). Writing bi,j for the (i, j)-th entry of B, the (i, j)-th entry of BN is the sum of
all products bi0,i1bi1,i2 . . . biN−1iN where i0 = i and iN = j. But bi,j , as given by (8), is
zero unless nodes i and j are adjacent. So we define an N -cycle in G to be a sequence of
vertices u1u2 . . . uN with ui adjacent to ui+1 for i = 1, . . . , N − 1 and with uN adjacent to
u1. (Thus, for example, a triangle in G with vertices set {a, b, c} gives rise to six 3-cycles
abc, acb, bca, bac, cab and cba. Note that, in general, an N -cycle might have repeated
vertices.) We now have

∑

i

(1 − λi)
N = tr(BN ) =

∑

C

1

du1
du2

. . . duN

(9)

the sum being over all N -cycles C = u1u2 . . . uN in G. Therefore,
∑

i(1−λi)
N counts the

number of N -cycles, normalised by the degree of each node in the cycle.
The number of N-cycles is related to various graph properties. The number of 2-cycles

is just (twice) the number of edges and the number of 3-cycles is (six times) the number
of triangles. Hence

∑

i (1 − λ)3 is related to the clustering coefficient, as discussed below.
An important graph property is the number of 4-cycles. A graph which has the minimum
number of 4-cycles, for a graph of its density, is quasi-random, i.e., it shares many of
the properties of random graphs, including, typically, high connectivity, low diameter,
having edges distributed uniformly through the graph, and so on. This statement is made
precise in [16] and [5]. For regular graphs, (9) shows that the sum

∑

i (1 − λ)4 is directly
to the number of 4-cycles. In general, the sum counts the 4-cycles with weights: for the
relationship between the sum and the quasi-randomness of the graph in the non-regular
case, see the more detailed discussion in [4, Chapter 5]. The right hand side of (9) can
also be seen in terms of random walks. A random walk starting at a vertex with degree
du will choose an edge with probability 1/du and at the next vertex, say v, choose an edge
with probability 1/dv and so on. Thus the probability of starting and ending randomly
at a vertex after N steps is the sum of the probabilities of all N -cycles that start and end
at that vertex. In other words exactly the right hand side of (9). As pointed out in [18],
random walks are an integral part of the Internet AS structure.

The left hand side of Equation (9) provides an interesting insight into graph structure.
The right hand side is the sum of normalised N -cycles whereas the left hand side involves
the spectral decomposition. We note in particular that the spectral gap is diminished
because eigenvalues close to one are given a very low weighting compared to eigenvalues
far from one. This is important as the eigenvalues in the spectral gap typically represent
“random” links in the network and are not therefore important parts of the larger structure
of the network.

Next, we consider the well-known clustering coefficient. It should be noted that there
is little connection between the clustering coefficient, and cluster identification, referred
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to above. The clustering coefficient, γ(G), is defined as the average number of triangles
divided by the total number of possible triangles

γ(G) = 1/n
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (10)

where Ti is the number of triangles for node i and di is the degree of node i. Now
consider a specific triangle between nodes a, b and c. For the clustering coefficient, noting
that the triangle will be considered three times, once from each node, the contribution to
the average is

1

da(da − 1)/2
+

1

db(db − 1)/2
+

1

dc(dc − 1)/2
(11)

However, for the weighted spectrum (with N = 3), this particular triangle gives rise to
six 3-cycles and contributes

6

dadbdc

(12)

So, it can be seen that the clustering coefficient normalises each triangle according to
the total number of possible triangles while the weighted spectrum (with N = 3) instead
normalises using a product of the degrees. Thus, the two metrics can be considered to be
similar but not equal. Indeed, it should be noted that the clustering coefficient is in fact
not a metric in the strict sense. While two networks can have the same clustering coeffi-
cient they may differ significantly in structure. In contrast, the elements of

∑

i (1 − λ)3

will only agree if two networks are isomorphic.
We now formally define the weighted spectrum as the normalised sum of N -cycles as

W (G, N) =
∑

i

(1 − λi)
N (13)

However, calculating the eigenvalues of a large (even sparse) matrix is computationally
expensive. In addition, the aim here is to represent the global structure of a graph and so
precise estimates of all the eigenvalue values are not required. Thus, the distribution2 of
eigenvalues is sufficient. In this paper the distribution of eigenvalues f(λ = k) is estimated
using pivoting and Sylvester’s Law of Inertia to compute the number of eigenvalues that
fall in a given interval. A measure of the graph can then be constructed by considering
the distribution of the eigenvalues as

ω(G, N) =
∑

k∈K

(1 − k)Nf(λ = k) (14)

where the elements of ω(G, N) form the weighted spectral distribution:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)Nf(λ = k))} (15)

In addition, a metric can then be constructed from ω(G) for comparing two graphs,
G1 and G2, as

ℑ(G1, G2, N) =
∑

k∈K

(1 − k)N(f1(λ = k) − f2(λ = k))2 (16)

2The eigenvalues of a given graph are deterministic and so distribution here is not meant in a statistical
sense.
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Figure 1: Mean and standard deviations for WSD and spectrum for the AB model over
50 simulations.

where f1 and f2 are the eigenvalue distributions of G1 and G2 and the distribution of
eigenvalues is estimated in the set K of bins ∈ [0, 2]. Equation (16) satisfies all the
properties of a metric.

We consider 3 and 4 to be suitable values of N for the current application: N = 3
is related to the well-known and understood clustering co-efficient; and N = 4 as a 4-
cycle represents two routes (i.e., minimal redundancy) between two nodes. For other
applications, other values of N may be of interest.

The statistical properties of the WSD are examined empirically in Figure 1. This
plot was created by generating 50 topologies using the AB [1] generator with the (fixed)
optimum parameters determined in Section 4, but with different initial conditions. For
each run the spectral and weighted spectral distributions are recorded yielding 50 × 50
bin values which are then used to estimate standard deviations. As the underlying model
(i.e. the AB generator) is the same for each run, the structure might be expected to
remain the same and so a “structural metric” should be insensitive to random initial
conditions. As can be seen the standard deviation3 of the (unweighted) spectrum, σfλ

(λ),
is significantly higher at the centre of the spectrum, reflecting that the spectral gap
contains random connections. However, for the WSD, the standard deviation, σwsd, peaks
at the same point as the WSD; the noise in the spectral gap has been suppressed.

4 Results and discussions

In this section we minimise the cost function defined in Equation 16 to obtain parameter
estimates for four Internet topology generators [7]: the Waxman model, the Albert and
Barabasi Model (AB), the Generalized Linear Preference model (GLP) and the Inet model.
These are compared with the Skitter dataset [3] and the Positive Feedback Preference
model (PFP), which has no parameters. In addition, we show that the spectrum on its
own, equivalent to p = 1, µ(λ) = 1, is not sufficient to obtain parameter estimates.

3Multiplied by a factor of ten for clarity.
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Figure 2: Grid of sum squared error, ℑ(G1, G2, 4), of weighted spectra for topology gen-
erators.

Figure 2 shows a plot of the weighted spectral distribution distance between the four
topology generators and the Skitter dataset, as a function of values of the topology gener-
ator parameters. Each grid (Figure 2(d) is a curve as Inet has only one parameter) shows
a quantile contour plot of the surface of the distances at different parameter values. It
is encouraging to note that the minima in each case lie close to the default values (see
Table 1). In addition, it is known that the behavior of the AB model splits into two
regions: exponential behavior and scale free behavior. The Internet is known to exhibit
scale free behavior, and the area of minimum distance lies in this area.

Figure 3 shows the weighted spectrum (each element that makes up the summation in
Equation 15) for the optimal values of the parameters calculated using the Nelder Meade
optimization algorithm. As can be seen the results are quite distinct, showing that no
single topology is capable of generating the same distribution of structure as the Skitter
data (it is in any case questionable that Skitter represents the actual Internet due to
inherent measurement difficulties). However, it is the way in which each topology differs
that is revealing. The Waxman model has peaks at 0.6, the closest peaks to 1 of all
the topologies examined. This implies that the Waxman topologies exhibit more random
behavior than desired, as expected. Alternatively the Inet topology correctly peaks at
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Table 1: Optimum parameter values for matching Skitter topology.
Waxman α = 0.08 (default=0.15) β = 0.08 (default=0.2) ℑmin = 0.0026

AB p = 0.2865 (default=0.6) q = 0.3145 (default=0.3) ℑmin = 0.0014
GLP p = 0.5972 (default=0.45) β = 0.1004 (default=0.64) ℑmin = 0.0021
Inet α = 0.1013 (default=0.3) − ℑmin = 0.0064
PFP − − ℑmin = 0.0014
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Figure 3: Comparison of the weighted spectra.

0.4, but exhibits too strong structure at this point. The best model is the PFP model
which is a non-linear model considered to be a good approximation to the actual Internet.
Table 1 confirms these results.
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Figure 4: Parameter grid for sum of absolute differences of AB spectrum CDF.

As an example of using the unweighted spectrum, the grid for the AB model is shown
in Figure 4. As can be seen there exists no minimum. This is because the unweighted
spectrum weights each eigenvalue equally and so random structure, mainly in the spectral
gap, makes the surface noisy. We show only the AB result here due to space constraints,
but a similar situation was found for all of the topology generators. We thus conclude
that the spectrum on its own is not sufficient to reveal the structure of the topologies.
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5 Conclusions

Comparison of graph structures is a frequently encountered problem across a number of
problem domains. To perform a useful comparison requires definition of a metric that
encodes which features of the graphs are considered important. Although the spectrum
of a graph is often claimed to be a way to encode a graph’s features, the raw spectrum
contains too much information to be useful on its own. In this paper we have introduced
a new metric, the weighted spectral distribution, that improves on the graph spectrum by
discounting those eigenvalues that are believed to be unimportant and emphasizing the
contribution of those believed to be important.

We use this metric to optimize the selection of parameter values of Internet topology
generation. The weighted spectral distribution was shown to be a useful metric in that
it leads to parameter choices that appear sensible given prior knowledge of the problem
domain: the resulting choices are close to the default values and, in the case of the AB
generator, fall within the expected region. In addition, as the metric is formed from
a summation it is possible to go further and identify which particular eigenvalues are
responsible for significant differences. Although it is currently difficult to assign specific
features to specific eigenvalues, it is hoped that this feature of our metric will be useful
in the future.
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