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Abstract

Traditionally, concurrent data structures are protected bya single mutual exclusion lock
so that only one thread may access the data structure at any timelhis coarse-grained
approach makes it relatively easy to reason about correctnessitlit severely limits paral-
lelism. More advanced algorithms instead perform synchronisah at a ner grain. They
employ sophisticated synchronisation schemes (both blockingdinon-blocking) and are
usually written in low-level languages such as C.

This dissertation addresses the formal veri cation of such algithms. It proposes
techniques that are modular (and hence scalable), easy for grammers to use, and yet
powerful enough to verify complex algorithms. In doing so, it mkes two theoretical and
two practical contributions to reasoning about ne-grainedconcurrency.

First, building on rely/guarantee reasoning and separation fgic, it develops a new
logic, RGSep, that subsumes these two logics and enables simptedular proofs of ne-
grained concurrent algorithms that use complex dynamicallgllocated data structures and
may explicitly deallocate memory. RGSep allows for ownergitbased reasoning and own-
ership transfer between threads, while maintaining the expressness of binary relations
to describe inter-thread interference.

Second, it describes techniques for proving linearisabilitghe standard correctness
condition for ne-grained concurrent algorithms. The main poof technique is to introduce
auxiliary single-assignment variables to capture the lineaation point and to inline the
abstract e ect of the program at that point as auxiliary code.

Third, it demonstrates this approach by proving linearisabity of a collection of con-
current list and stack algorithms, as well as providing the rst orrectness proofs of the
RDCSS and MCAS implementations of Harris et al.

Finally, it describes a prototype safety checker, Smallfoot®, for ne-grained concur-
rent programs that is based on RGSep. SmallfootRG proves simpsafety properties for
a number of list and stack algorithms and veri es the absence ofemory leaks.
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Chapter 1

Introduction

Parallelism has always been a challenging domain for procesaochitecture, program-
ming, and formal methods. Traditionally, a data structure (sub as a tree or a hashtable)
is made concurrent by protecting it with a single mutual exclsion lock so that only one
thread may access the data structure at any time. This approachakes it relatively
easy to reason about correctness, but it severely limits paralh, negating some of the
bene ts of modern multicore and multiprocessor systems.

Instead, there is a growing trend trying to perform synchronideon between threads
at a ner grain, so that multiple threads can update di erent parts of the data structure
at the same time. In order to achieve this, algorithms use sophiséited locking schemes
(such as hand-over-hand locking), and non-blocking desigmselving compare-and-swap
(CAS) instructions and helping. There are already many such abgithms within the
research community and they are getting adopted quite widely the form of concurrent
libraries such agava.util.concurrent J?

As a paradigm, ne-grained concurrency is rather complicateand error-prone. Since
e ciency is a prime concern, the programmers use low-level higuages (such as C) and
avoid established abstractions, such as garbage collection, &ese of their runtime costs.
Synchronisation between competing threads takes place at aer grain than the invari-
ants that are supposed to be preserved, thereby breaking absttiaa, a well-known good
programming practice. Consequently, modular reasoning abtoume-grained concurrency
Is extremely di cult.

Being able to reason about such programs modularly is crucialSince most ne-
grained concurrent programs are part of standard libraries, evwwould like to prove their
correctness once and for all, and not need to repeat the proaich time they are used.
Most existing proof techniques (e.g. invariants [4], reduain [16, 28, 76], ownership [48,
49, 50], concurrent separation logic [58, 11, 8, 65]) are toongle to deal with ne-grain

Lhttp://java.sun.com/j2se/1.5.0/docs/api/javalutil/c oncurrent/package-summary.html
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concurrency. More advanced techniques (e.g. temporal logb7, 54], simulation [25, 18])
are too general and complicated, and usually not modular.

Rely/guarantee [51] is the probably the most suitable of the ésting techniques. It is
compositional in the sense that we can compose proofs of a progi®eomponents to get
a proof for the entire program, but it isnot modular. We cannot give a speci cation and
a proof that is reusable in every valid usage context. This is bause the speci cation of
a component must know which variables the other components ygast to say that the
component does not interfere with those variables. Since moste-grained concurrency
Is in library code, modularity is needed rather than just comgsitionality.

This dissertation describes a framework that makes reasoningali ne-grained con-
current algorithms tractable. It is based on a combination ofely-guarantee reasoning,
separation logic, linearisability, and auxiliary variables.

A key observation is that binary relations are necessary for degaung the interface
between threads of a concurrent system. Invariants are usefblt they are too weak and
inexpressive in practice. More complex descriptions such as teistate automata and
temporal properties are usually unnecessary. This observatignot new: at least Jones
and Lamport have made it before, but it seems to have been negfied.

A second observation is that reasoning about concurrent progre is very similar to
reasoning about modular sequential programs. A sequential pragn with modules is
essentially a coarse-grained concurrent program with one logkr module. Veri cation of
these two classes of programs raises almost the same issues. The paladi erence is that
the di cult issues appear much earlier in concurrent programshan they do in modular
sequential programs. As a result, most of the ndings described imis dissertation apply
equally to modular sequential programs.

Finally, saying that some state is private to one thread/compoant is di erent than
saying that other threads/components cannot write to that stae. The former entails the
latter, but the converse implication does not hold. For examp, a component can deallo-
cate its private state without consulting the other threads. If however, other components
can see (but not update) this state, then we cannot deallocaté without consulting
them because another component may be accessing it concurrgnfAgain, this observa-
tion is hardly original, but it has been ignored by many verication methods including
rely/guarantee.

1.1 Contributions and dissertation outline

The main contribution of this dissertation is the developmenbf a new logic, RGSep, that
subsumes rely/guarantee and separation logic. RGSep enablen@e, modular proofs
of ne-grained concurrent algorithms that use complex dynamally allocated data struc-
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tures and may explicitly deallocate memory. It permits reasting based on ownership
and ownership transfer between threads, while maintaining thexpressiveness of binary
relations to describe inter-thread interference.

Here is the outline of the dissertation:

Chapter 2 explains some of the terminology in concurrency amaltlines existing
veri cation techniques. It de nes common notation, and give a detailed, uniform
introduction to rely/guarantee and to the various versions bseparation logic.

Chapter|3 describes the core of RGSep, proves its soundness, aresents a proof of
a ne-grained concurrent list algorithm that explicitly disposes (frees) nodes when
they are no longer accessible.

Chapter/4 addresses peripheral issues related to RGSep, such asmwatability needs
to be checked, and presents some extensions for further moditiar

Chapter 5 discusses linearisability, the standard correctnessqreérement for ne-
grained concurrent algorithms, and describes techniques fproving that an algo-
rithm is linearisable.

The veri cation techniques are demonstrated by linearisalitly proofs of a collection
of concurrent list and stack algorithms, as well as the RDCSS andCAS imple-
mentations of Harris et al. [34], which are the core componenbf their software
transactional memory (STM) implementation.

Chapter[6 describes SmallfootRG, a prototype safety checkearf ne-grained con-
current programs that is based on RGSep. The tool proves simpdafety properties
for a number of list and stack algorithms and veri es the absenaaf memory leaks.

10



Chapter 2

Technical background

This chapter summarises the terminology and notation used thughout the disser-
tation and provides a uniform introduction to rely/guarantee and separation logic, the
program logics that this work is based on.

The chapter starts with Xx2.1 giving an overview of shared memory concurrency and
introducing some of the terminology associated with it. Nextx2.2 describes a simple
parallel programming language, GPPL, syntactic conventi®) proof terminology and no-
tation. The following sections §2.3 andx2.4) constitute the main part of this chapter,
as they describe rely/guarantee and separation logic respeiy. Finally, X2.5 discusses
related proof methods and2.6 concludes by comparing the various approaches.

2.1 Shared memory concurrency

A concurrent system consists of a number girocesseswhich execute mostly indepen-
dently of one another, but occasionallyinteract with each other. Depending on the
circumstances, inter-process interaction may or may not be desble. Useful interaction
is also known ascommunication, whereas undesirable interaction is callemhterference

There are two main forms of communication between processes: regthmemory and
channels. In a channel-based system processes interact by sendalges to channels and
receiving values from channels. In a shared memory system procesateract by reading
from and writing to a shared memory location. This dissertatiorfocuses on the latter
model.

A thread is a process in a shared-memory system. Some systems havgeal number
of threads; other systems permit new threads to be created at ritme. Some languages
restrict the creation of threads to a nested way: a thread i®rked into subthreads; when
all subthreads terminate, they argoined together in one thread. Other languages do not
force a nested thread structure. Instead, a new thread can lspawnedat any time; the
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newly created thread executes in parallel and vanishes whenterminates. Often each
thread has an identi er, a unique number that distinguishes ifrom other threads. Some
algorithms assume that threads have identi ers, Even if an algithm does not mention
thread identi ers, introducing thread identi ers may assist in its veri cation (for example,

seex3.5).

The schedulerdecides which process is to execute on which processor. Sclerdulvere
traditionally distinguished into preemptive and non-preempive depending on whether
they can stop (preempt) an executing process in order to selecta@her process to run, or
whether each process must voluntarily yield control to the scheler every so often. Now,
most schedulers are preemptive.

Typically, schedulers provide few guarantees that a threadhat is ready to execute will
be selected for execution. Aveakly fair scheduler ensures that at any time, if a thread
Is ready to execute for an in nitely long time sequence, evemlly it will be allowed to
execute. Astrongly fair scheduler ensures that from any time onwards, if a thread is
able to execute in nitely often, then it will eventually get executed. Weak fairness is
easy to realise using a round-robin scheduler, but guaranteeiaggong fairness is di cult
and impractical. Fairness guarantees that eventually a thea will run, and hence receive
unbounded time (modulo Zeno), but does not specify how oftem for how long the thread
will run.

2.1.1 Synchronisation

In a shared-memory system, some threads asgnchronised if they agree on the order
that some events will happen. In order to reach this agreemerihe threads communicate
with each other using the available primitive operations pnaded by the hardware. For
instance, the hardware could provide mutual exclusion locksn{utexes), atomic memory
reads or writes, CAS (compare and swap), or memory barriers.

Blocking synchronisation Blocking synchronisation refers to a programming style
using mutual exclusion locks (mutexes) to arrange inter-threhsynchronisation. Mutual
exclusion is a simple protocol where each shared resource has g keeping track of
whether it is being used or not.

When a thread wants to use a shared resource, it atomically chedkat it is not in use
and updates the resource's ag to denote that it is now being ude If the resource was
in use, then the thread waits (blocks) until that resource becoes available; otherwise, it
goes on to use that resource. When it has nished working with theesource, it updates
the resource's ag to say that it is now free.

Because mutual exclusion negates parallelism, programmerg to lock only the rel-
evant parts of a shared data structure and use more permissive lowk schemes. Hence,
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algorithms employ techniques such as inherited locking anddk coupling, and use more
sophisticated schemes such as MRSW (multiple readers, single wr)tlocks.

There is a great number of problems associated with mutexes: dézck, livelock,
starvation, priority inversion, convoy e ect. As Harris et al. [35] put it, \locks do not
compose.” Nevertheless, their use is ubiquitous.

Non-blocking synchronisation Instead of using locks, more advanced algorithms em-
ploy other primitive operations such as atomic memory readsnd writes, or CAS. Using
these operations does not make an algorithm "non-blockingyoiding locks does not make
an algorithm “lock-free." The terms "non-blocking' and "kkk-free' have a technical mean-
ing relating to the progress an algorithm makes towards congtdlon. In fact, mutexes can
be encoded even with a minimal set of non-blocking primitives.

A synchronisation technique isnon-blockingif it somehow achievegrogresseven if
some threads of the system are descheduled or fail. Itwait-free [42] if it ensures that
all running threads make progress even when other threads uncarbitrary delay. It is
lock-freeif it ensures that whenever at least one thread is running then s thread makes
progress. It isobstruction-free [43] if it guarantees progress for any thread that eventually
executes in isolation.

Herlihy [42] reduced the existence of wait-free algorithms @ consensus problem and
showed that concurrency primitives such as test-and-set wereataveak to implement wait-
free algorithms, whereas other primitives |notably CAS| are u niversal. This means that
any sequential algorithm can be turned into a wait-free algghm by using only CAS for
synchronisation.

Compare and swap Among the more complex operations, the most common one is
compare and swap CAS takes three arguments: a memory address, an expected value
and a new value. It atomically reads the memory address and tfdontains the expected
value, it updates it with the new value; otherwise, it does ndting:

bool CAS(value_t *addr, value_t exp, value_t new) {

atomic {
if (*addr == exp) { *addr = new; return true; }
else { return false; }

}

}

Various more elaborate versions of CAS have been proposed, susiDEAS (double
CAS) [31], DWCAS (double-width CAS, i.e. 64bit CAS on 32bit archiectures), MCAS
(multiple CAS, i.e. N-way CAS), andkCSS k-compare single-swap), but are not so widely
available. In any case, they can be constructed from single CAS.
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Race conditions A race condition occurs when two threads try to access the same
shared location at the same time and at least one of the accesses wrde. This is
problematic if reading and writing that memory location is rot atomic. If a thread reads
some memory location while it is been updated by another thrdait may read a corrupted
value containing parts of the old value and parts of the new Wae. Similarly, if two updates
to the same location happen at the same time, then the nal valuef the location might
be a mixture of the two values written.

When, however, the relevant memory accesses are atomic, raocaditions are e ec-
tively a synchronisation technique and can be exploited to bigi synchronisation primitives
such as mutexes. For example, Peterson's algorithm [66] implents mutual exclusion be-
tween two threads using atomic reads and writes. With Lampors' bakery algorithm [53],
even a single bit atomic read/write su ces to implement mutual exclusion.

Software Transactional Memory Transactional Memory is a programming abstrac-
tion introduced by Herlihy [44] for hardware, and then by Shav and Touitou [70] for
software. Following the implementation of Harris and Fraser @, STM has become quite
popular for its simple and e ective interface: The programmewrites an atomic block,
and for an observer outside of the block the blocks' memory opéans appear to have
executed atomically.

STM may be implemented by a two-phase locking protocol, or menften by optimistic
schemes. In the latter case there are severe restrictions in whattians the program is
allowed to perform within atomic blocks. In particular, as tke implementation may have
to roll-back any statement within the transaction, externallyy observable e ects such as
I/O are banned.

STM implementations are usually quite complex and it is quitdikely that they con-
tain subtle bugs. Indeed, most STM implementations do not behavas expected if the
memory is not statically partitioned to transactional and nontransactional [36]. This dis-
sertation tackles the veri cation of the sort of algorithms usd in STM implementations
(for example, MCAS inx5.3.4).

Memory consistency  Traditionally, concurrency can be given an interleaving seam-
tics, and it is assumed that aligned single word reads and writeseaexecuted atomically
by the hardware. This model, also known as strong consistency,seimes that each thread
observes shared memory operations happening in the same order.

Unfortunately, most modern processors do not conform to this medtl because their
caches can cause memory operations to be reordered, and hedlicerent threads can
witness shared operations happen in di erent orders. Processaspporting weaker con-
sistency models have special ‘'memory barrier' instructions taish the cache and thereby
recover an interleaving semantics.

14



This dissertation assumes that parallel composition of threadsak an interleaving
semantics. Although not entirely realistic, the use of interleamg semantics is almost
universal in concurrency veri cation.

2.2 Proof terminology & notation

Programming language In order to provide a uniform presentation to rely/guarantee
and the various versions of separation logic, we consider théldaing minimal imperative
programming language, GPPL (standing for Generic Parallel ®gramming Language).
Let C stand for commands,c for basic commands (e.g. assignmentslg for boolean
expressions, ande for normal integer expressions. Command<;, are given by the
following grammar:

C .= skip Empty command
C Basic command
C1;Cy Sequential composition
C,+GC, Non-deterministic choice
C Looping
hCi Atomic command
C.kC» Parallel composition
c:= assumé) Assume condition
x:=E Variable assignment

GPPL is parametric with respect to the set of basic commands an&k@essions. In
Section 2.4, we will see a particular set of basic commands, b@wleand integer expres-
sions. The basic commana@ssumgB) checks whetherB holds: if B is true, it reduces to
skip, otherwise it diverges (loops forever). Since this dissertati discusses only partial
correctnessassumgB) is a convenient way to encode conditionals and while loops:

if (B) C, else C, gt (assumgB); C,) + (assumg B); Cy,)

while (B) C &' (assuméB); C) ;assumg B)

Similarly, we can encode (conditional) critical regions a®llows:

atomic C %" rCi

atomic (B) C %' hassuméB); Ci
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(skip' Co); (Seal) ¢ i (skip+(ciC)y; o)
C; ! skip; °
Cho1l Cy,; ! CY 0
(C1+ Cz), ( ) (ClkCz), | (C](_)kCZ), 0 (Pal’l)
(ChOZ) C,: | CQ, 0
C1+ C ; 2y 24
( 2) (CKC): | (CkCD: 0 (Par2 )
Assume
assumeB); ( : (kipkskip), 1 skip:  (ar3)

Figure 2.1: Small-step operational semantics of GPPL.

Figure [2.1 contains the small-step operational semantics of GR. Since we treat
composition as interleaving, the semantics are pretty straigforward. Con gurations of
the system are just pairs C; ) of a command and a state; and we have transitions from
one con guration to another.

According to Atom , atomic commands execute all the commands in its bod¢, in
one transition. In the premise,!  stands for zero or moré transitions. There is an issue
as to what happens when the bod of atomic command does not terminate. According
to the semantics of Figure 2.1, no transition happens at all. Tik cannot be implemented,
because one would e ectively need to solve the halting problen8o, more realistically,
one should add a rule saying that iC diverges thenhCi may diverge. In the context of
this dissertation, the body of atomic commands will always be short instruction, such
as a single memory read or write or a CAS, which always terminate

The other rules are pretty straightforward. We use the ruldPar3 instead of the rule
(Ckskip); ! C; because it simpli es the statements of the lemmas ix3.3.

Finally, instances of GPPL will have rules for each primitivecommand, c. These
primitive commands, ¢, need not execute atomically. As a convention, if the correoess
of an algorithm depends on some primitive command's atomic esution, then this com-
mand will be enclosed in angle brackets$ci. This way, the algorithms make explicit any
atomicity requirements they have.

Variables  First, we must distinguish betweenlogical variables andprogram variables.
Logical variables are used in assertions, have a constant valuedanay be quanti ed over.
Program variables appear in programs, and their values can bbanged with assignments.
An auxiliary variable [62] is a program variable that does not exist in the program
itself, but is introduced in order to prove the program's comectness. Auxiliary variables
do not a ect the control- ow or the data- ow of the outputs, bu t play an important role
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in reasoning: they allow one to abstract over the program couetts of the other threads,
and are used to embed the speci cation of an algorithm in its imipmentation. Since they
do not physically get executed, they can be grouped with the gvious or the next atomic
instruction into one atomic block.

The simplest form of auxiliary variable is ahistory variable: a variable introduced to
record some information about the past program state that is ngireserved in the current
state. There is also the dual concept of prophecyvariable that Abadi and Lamport [1]
introduced to capture a nite amount of knowledge about the diture execution of the
program.

Auxiliary variables are also known as dummy variables or ghosaxiables, but the last
term is ambiguous. A ghost variable is also a logical variable usén the precondition and
postcondition of a Hoare triple in order to relate the initial and the nal values of some
program variables. For clarity, it is better to avoid this tem altogether. The collection
of all auxiliary variables is known asauxiliary state, whereasauxiliary code stands for the
introduced assignment statements to the auxiliary variables.

Relations  The rely/guarantee speci cations use binary relations on st&s in order to
specify how the state may change by (part of) a program. Here is ammary of the
relational notation.

PredicatesP of a single state describe a set of system states, whereas binary relations
describe a set of actions (i.e. transitions) of the system. These dveo-state predicates
that relate the state just after the action to the state just before the action, which s
denoted ad . Similarly, let (x and x denote the value of the program variablex before
and after the action respectively.

Given a single-state predicatd®, we can straightforwardly de ne a corresponding two-
state predicate, which require$® to hold in the new state , but places no constraint on
the old state( . We denote this relation by simply overloadingP. Similarly, we shall
write QD for the two-state predicate that is formed by requiringP to hold in the old state
( and which places no requirement on the new state

Relational notation abbreviates operations on predicatesf two states. So, for ex-
ample P N Q is just shorthand for ((; ): P((; )N Q((; ). Relational composition
of predicates describes exactly the intended behaviour ofdrsequential composition of
sequential programs.

Pl ) Eo:pl; )rQ; )
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The program that makes no change to the state is described exigcby the identity
relation,

o; ) = (=)

Finally, the familiar notation R (re exive and transitive closure) represents any nite
number of iterations of the program described byR. It is de ned by:

R ¥ID R _(R:R)_(R:R:R)_

2.3 Rely/guarantee reasoning

Rely/guarantee is a compositional veri cation method for sheed memory concurrency
introduced by Jones [51]. Jones's insight was to describe irfierence between threads
using binary relations. In fact, Jones also had relational postaditions because procedure
speci cations typically relate the state after the call to thestate before the call.

Other researchers [72, 77, 68], in line with traditional Hoaregic, used postconditions
of a single state. With single-state postconditions, we can still spiéy such programs, but
we need to introduce a (ghost) logical variable that ties togker the precondition and the
postcondition. Usually, the proof rules with single-state postealitions are simpler, but
the assertions may be messier, because of the need to introduceo@ghlogical variables.

Whether the postcondition should be a single-state predicate @ binary relation
Is orthogonal to the essence of rely-guarantee method, whichdescribing interference,
but nevertheless important. In this section, following Jone$51] we shall use relational
postconditions. In the combination with separation logic, fosimplicity, we shall fall back
to postconditions of a single state.

There is a wide class of related veri cation methods (e.g. [565, 2, 40, 41, 23]), which
are collectively known as assume-guarantee. These methodsediin their application
domain and interference speci cations.

Owicki-Gries

The Rely/Guarantee method can be seen as a compositional versiof the Owicki-Gries
method [62]. In her PhD, Owicki [61] came up with the rst tractable proof method
for concurrent programs. A standard sequential proof is perfiored for each thread; the
parallel rule requires that each thread does not “interferevith the proofs of the other
threads.

fPigCi Qg  fP.gCfQxg  (Y)
fPL " Pog CikC, TQ1 ™ Q20

(Owicki-Gries )
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where ) is the side-condition requiring that C,; does not interfere with the proof ofC,
and vice versa. This means that every intermediate assertion taeen atomic actions in
the proof outline of C, must be preserved by all atomic actions o€; and vice versa.
Clearly, this is a heavy requirement and the method is not copositional.

Speci cations

Rely/guarantee reasoning [51] is a compositional method bases the Owicki-Gries
method. The speci cations consist of four component®(R; G; Q).

The predicatesP and Q are the pre-condition and post-condition They describe the
behaviour of the thread as a whole, from the time it starts to tk time it terminates
(if it does). The pre-condition P, a single-state predicate, describes an assumption
about the initial state that must hold for the program to make sese. The post-
condition Q is a two-state predicate relating the initial state (just befoe the program
starts execution) to the nal state (immediately after the pragram terminates). The
post-condition describes the overall e ect of the program tohte state.

R and G summarise the properties of the individual atomic actions iroked by the
environment (in the case ofR) and the thread itself (in the case ofG). They are
two-state predicates, relating the state( before each individual atomic action to

, the one immediately after that action. Therely condition R models all atomic
actions of the environment, describing the interference thprogram can tolerate
from its environment. Conversely, theguarantee conditionG models the atomic
actions of the program, and hence it describes the interferem that it imposes on
the other threads of the system.

There is a well-formedness condition on rely/guarantee speagtions: the precondition
and the postcondition must be stable under the rely condition, kich means that they
are resistant to interference from the environment. Colemama Jones [17] have stability
as an implicit side-condition at every proof rule. This is, hoaver, unnecessary. Here,
following Prensa [68], we will check stability only at the atont block rule. (There are
futher possibilities as to where stability is checked: these Whe presented in Section 4.1.)

De nition 1  (Stability) . A binary relation Q is stable undera binary relation R if and

only if (R;Q)) Qand(Q;R)) Q.

The de nition says that doing an environment step before or aéir Q should not make
Q invalid. Hence, by induction, if Q is stable, then doing any number of environment
transitions before and afterQ should not invalidate Q. For single state predicates, these
checks can be simpli ed, and we get the following lemma.
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Lemma 2. A single state predicateP is stable undera binary relation R if and only if

eO)y~RrE )y P

When two threads are composed in parallel, the proof rules naige that the guarantee
condition of the one thread implies the rely condition of thether thread and vice versa.
This ensures that the component proofs do not interfere withagh other.

Proof rules

We turn to the rely/guarantee proof rules for GPPL, the simpleprogramming language
introduced in X2.2. Let C sazg (P; R; G; Q) stand for the judgement that the command
C meets the speci cation P; R; G; Q).

The rst rule allows us to weaken a speci cation. A stronger speaation is possibly
more desirable but more di cult to meet. A speci cation is wealened by weakening its
obligations (the postcondition and the guarantee conditionand strengthened by weaken-
Ing its assumptions (the precondition and the rely condition) When developing a program
from its speci cation, it is always valid to replace the specication by a stronger one.

C sake (P;R; G; Q)
P P R R G) G° Q) Q°
C saks (P2R%G%Q9

(RG-Weaken )

The following rule exploits the relational nature of the postondition and allows us to
strengthen it. In the postcondition, we can can always assume ththe precondition held
at the starting state, and that the program's e ect was just some #gbitrary interleaving
of the program and environment actions.

C sazs (P;R; G; Q)

(RG-AdjustPost )
C sake (P;RiG;Q” P A (G_R) )

Then, we have a proof rules for each type of comman@, The rules for skip, se-
guential composition, non-deterministic choice and loopingre straightforward. In the
sequential composition rule, note that the total e ect,Qq; Q>, is just the relational com-
position of the two postconditions.

(RG-Skip )
skip sakg (true; R; G;ID)
Ci sake (P4, R; G; (Q1 7 P2))
C,sa P2 R; G;
2 Sake (P2 Q2) (RG-Seq)

(C1; Cy) sake (P1;R; G; (Q1;Q2))
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C: sake (P;R;G; Q)
C; sake (P;R;G; Q)

(C1+ Cy) sake (P;R; G; Q)

(RG-Choice )

C sake (P;R; G;(Q" P))
C saks (P;R;G;Q)

(RG-Loop )

The rules for atomic blocks and parallel composition are moreteresting. The atomic
rule checks that the speci cation is well formed, namely thaP and Q are stable under
interference fromR, and ensures that the atomic action satis es the guarantee cottibn G
and the postconditionQ. BecauseCi is executed atomically, we do not need to consider
any environment interference within the atomic block. Thatis why we checkC with the
identity rely condition.

(P;R)) P (RIQ) Q@ (R)) Q
C sakg (P;ID; Trug; (Q ™ G))

hCi sake (P;R; G; Q)

(RG-Atomic )

When composing two threads in parallel, we require that eacthtead is immune to
interference by all the other threads. So, the threa; can get interfered by the thread
C, or by environment of the parallel composition. Hence, its relgondition must account
for both possibilities, which is represented aR _ G,. Conversely,C,'s rely condition is
R _ G;. Initially, the preconditions of both threads must hold; at the end, if both threads
terminate, then both postconditions will hold. This is becase both threads will have
established their postcondition, and as each postcondition isadtle under interference, so
both will hold for the entire composition. Finally, the total guarantee isG; _ G,, because
each atomic action belongs either to the rst thread or the secwl.

Ci sake (P; (R _ G2);G1; Q1)
C, sare (P; (R _ G1); G2, Q2)

(C1kCy) sake (P;R; (G1_ G2);(Q1 " Q2))

(RG-Par )

Soundness and completeness

In line with the rest of the dissertation this section presented tg/guarantee proof rules
for partial correctness. There is an alternative rule for logpthat proves environment-
independent termination. If the proof of the termination ofa thread depends on the the
termination of its environment, we quickly run into circular reasoning, which is generally
unsound. Abadi and Lamport [2] gave a condition under which sudtircular reasoning is
sound, and showed that all safety proofs trivially satisfy this aadition.
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Prensa [68] formalised a version of rely/guarantee rules (with single-state postcon-
dition) in Isabelle/HOL and proved their soundness and relativecompleteness. More
recently, Coleman and Jones [17] presented a structural prooff soundness for the rules
with relational postconditions.

The rely/guarantee rules are intentionally incomplete: tley model interference as
a relation, ignoring the environment's control ow. Hence, hey cannot directly prove
properties that depend on the environment's control ow. Negrtheless, we can introduce
auxiliary variables to encode the implicit control ow constaints, and use these auxiliary
variables in the proof. Modulo introducing auxiliary variales, rely/guarantee is complete.
The various completeness proofs [68] introduce an auxiliavgiriable that records the entire
execution history. Of course, introducing such an auxiliary véable has a global e ect on
the program to be veri ed. Therefore, the completeness resulfioes not guarantee that a
modular proof can be found for every program.

2.4 Separation logic

Separation logic [69, 47] is a program logic with a built-in @tion of a resource, and is
based on the logic of bunched implications (BI) [59]. Its maiapplication so far has been
reasoning about pointer programs that keep track of the mempithey use and explicitly
deallocate unused memory.

As separation logic is a recent development, there are variousrsions of the logic
with complementary features, but there is not yet a standard uform presentation of all
these. The survey paper by Reynolds [69] is probably the bestiiatluction to separation
logic, but does not describe some of the more recent developmse@.g. permissions, and
‘variables as resource’) that are mentioned below.

Below we will consider an abstract version of separation logic urenced by Calcagno,
O'Hearn, and Yang [13]. By instantiating this abstract separatn logic, we can derive
the various existing versions of separation logic.

2.4.1 Abstract separation logic

Resources are elements of a cancellative, commutative, partmonoid (M; ;u), where
the operator represents the addition of two resources. Adding two resourcesaipartial
operation because some models forbid having two copies of thensaresource; hence,
m m might be unde ned. Clearly enough, addition is commutativeand associative and
has an identity element: the empty resourcel. It is also cancellative, because we can
subtract a resource from a larger resource that contains it.

These properties are expressed in the following de nition of @source algebra.
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De nition 3. A resource algebra(M; ;u) consists of a setM equipped with a partial
binary operator : M M *M and a distinguished element 2 M, such that for all
mq; my; mz 2 M the following properties hold:

m u=u m=m (identity element)
(mgy my) mzg=mg (M mj3) (associativity)
m; Ma=mMm, mMy (commutativity)

(dened(m; my)*m; my,=m; m3) =) mp,=m3z (cancellation)

The restriction on having one unit elementu can be relaxed to a setJ M of unit
elements such that for allm 2 M, there existsu 2 U suchthatm u=u m= m and
forall u®2 Unfug, m u%is unde ned.

The structure of the commutative monoid induces a partial ordr, v , de ned as follows,

d
mvm (6 m*m,=m; m°

Informally, m; is smaller thanm, if it contains fewer resources. From the de nition,u is
the smallest element of the set, that i8Sm: uv m.

In order that reasoning about resources makes sense, the semantit programs must
respect resources. Separation logic requires that every commdaC obeys the following
two locality conditions:

De nition 4  (Locality).
If (C;s; s)! fault, then(C;s;)! fault.

If (C;s1 s)! (skip;sy), then either there exists such that(C;s;) !  (skip;s9)
ands,=s s, orC;s;! fault.

The rst property is equivalent to safety monotonicity, which says that a non-faulting
program on a small states; also does not fault on a larger states; s. The second is
the frame property of commands: when a command that runs succesbf with state s;
Is executed with a larger states; s, it does not depend on the additional states and it
does not modifys.

It is su cient that all primitive commands, c, have the locality property. Then, by
construction, all larger programs will have the locality prperty.

Assertions  Separation logic assertions are given by the following gramma

P;Q:= truejfalsejPrimP jP*"QjP _QjP) QjP, Qj: P
jempjP QjP QjP ~Q
jOX: P j8x: P
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m;i F g true 0 always

m;i F g false 0 never

miFstP"Q 0 (m;iFstP)N (M;i FsL Q)

m;i FstP_Q 0 (m;i FstP)_(m;i FsL Q)

miFssP) Q (MiFsLP) =) (MifFs Q)

miFsP, Q (miFstP) 0  (mifFsQ)

m;ijfFe : P 0 (m;i FsLP)

m;i FsLemp 0 m=u

miFs P Q 0 9 mumax(my me=m)” (myifFs P)”N (Myi FsL Q)
miFssP Q 0 8 mmx((m m=m)”(MmyiFsP)=) (MyifFEs Q)
miEssP ~Q 0 9 mmax(my m=my)” (MyiFs P)” (M2i Fs Q)
m;i FgL OX: P 0 9 v2val(m;(i]f x7!'vg) Fs.P)

m;i FgL 8x: P 0 8 v2val(m;(i]f x7!'vg) Fs.P)

Figure 2.2: Semantics of separation logic assertions

The rst line lists the connectives of classical propositional gic, while the second
line contains the new assertion forms pertinent to Bl [59]: entyp state (emp), separating
conjunction ( ), magic wand ( ), and septraction ( ~). Finally, the assertions include
rst order quanti cation.

The Kripke semantics of the logic are given in Figure 2.2. A meadl consists of an
element of a resource algebrar{ 2 M) and an interpretation for the logical variables
(i : Logvar* Val). The well-known operators™, _,) ,, , and: have their standard,
classical meaning.

emp asserts that the resource is empty; namelyn = u, where u is the identity
element ofM .

P Q states that the resource can be divided into two disjoint partsn; and m,

such that m; satises P and m, satis es Q. This is also known as multiplicative
conjunction. There is also an iterated version of separating iguinction, which will

be denoted as™~; ; , P def P, ::: Py

P Q asserts that for all disjoint resource extensions satisfyirfg, the combination
of the resource and the extension satis e®.

P ~ Q is satis ed by the di erence between two resources, the bigger ersatisfying
Q and the smaller one satisfying®. Septraction can be de ned in terms of magic
wand,P ~Q ( : (P : Q). This operator does not generally appear in papers
discussing separation logic, but will be used extensively in thigssertation?

1 Similar operators have been previously used in context logic [78] and ambieribgic. In context
logic, septraction corresponds toJ , whereas in ambient logic it corresponds to fusion [ ). The name
“septraction’ is due to Matthew Parkinson.
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There are a few classes of assertions have useful additional prtips. Pure asser-
tions do not specify the resourcenf), but only the interpretation of logical variables ().
Intuitionistic assertions specify a lower bound on the resource: if a resouncesatis es
an intuitionistic assertion P, then any bigger resourcan® satis es P. Exact assertions
specify exactly one resource. Given precise assertionP, for any resourcem, there is at
most one sub-resource oh that satises P.

De nition 5  (Pure assertions) An assertion P is pure if and only if
8imimy: (My;i Fs P) 0 (mgi Fsi P).

De nition 6  (Intuitionistic assertions). An assertion P is intuitionistic if and only if
8imm% mv m° (m;i Es . P) =) (M%i FsL P).

De nition 7  (Exact assertions) An assertion P is (strictly) exact if and only if
8imimy: (My;i Fs. P) N (Mg;i Fst P) =) my= my.

De nition 8 (Precise assertions)An assertion P is preciseif and only if
gimmmmy: myv mAmyv m™ (mgi Est P)N (Mgi EsL P) =) mg = my.

Precise assertions are very important for concurrent separatidogic (seex2.4.3).

Proof rules

In separation logic, programs are speci ed by Hoare triple$,Pg C fQg, which have a
fault-avoidance partial correctness interpretation. Thigmeans that if the preconditionP
holds for the initial state, then the commandC executes properly without faults (such
as accessing unallocated memory). Moreover,Gf terminates, the postconditionQ holds
for the nal state.

The novelty of separation logic is its frame rule:

"stfPgC Qg
‘SLfP RngQ Rg

(SL-Frame )

This rule says that if a commandC safely executes in an initial state satisfyind® and
produces a nal state satisfyingQ, then it also executes safely if additional resourci
is present. The commandC, if it terminates, will not use the additional resourceR
and, hence,R will still exist at the end. The soundness of the frame rule reliesn using
separating conjunction () to express disjointness of resources. Proving its soundness,
however, is not at all obvious, because the additional state may restrict the possible
executions ofC. For instance, if C allocates some new resource, then the existenceRof
restricts the resource allocator not to return a resource alrdg present inR.

The following proof rules are the standard Floyd-Hoare rule®f the empty program,
sequential composition, non-deterministic choice, and loops.
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SL-Ski
“sL fPgskip fPg ( P)

"stfPgCyfQg "s fQQ C, fRg

(SL-Seq)
\SLngcl;CZng

“s fPQCyf st fPgCyf

st TPgC.1Qg s.TPgC21Qg (SL-Choice )
fPgCi+ C,fQg
"o fPgCTP

stTPgCThg (SL-Loop )

" fPgC fPg

It is always valid to prove a stronger speci cation that the onaequired. To weaken a
speci cation, we either strengthen the precondition or weakethe postcondition.

P% P "s.fPgC Qg Q) Q°
“s fPYC QY

Finally, here are the rules for disjoint concurrency. These les state that if two threads
require disjoint resources to execute (cf. the meaning of septing conjunction), then they
can execute safely in parallel. If and when both terminate, eh thread will have own
some resource, which will be disjoint from the other thread's seurce. Hence, at the
postcondition, we can use separating conjunction to combineehwo postconditions.

(SL-Conseq )

"stfPgC Qg
‘SLng I”leQg

(SL-DisjAtomic )

Ts TP Ci TQuQ “sL TP C FQ20
"o fP1 PgCikC Q1 Q20

(SL-Par )

If one accepts that the program<Ckskip and C are equivalent, then the frame rule
can be derived fromPar and Skip. Alternatively, if we are given the frame rule, we can
derive Skip from the simpler axiomfempg skip fempg by applying the frame rule.

2.4.2 Instances of abstract separation logic

The de nitions of GPPL and abstract separation logic were panmaetric with respect to
primitive commandsc and primitive assertionsPrimP respectively. Below we will consider
concrete instantiations for these primitive commands and ass@mns.

Let (heap-reading) expressionk be given by the grammar,

E:=xjxjnj[E]JE+EJE E]:::
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These consist of program variables, logical variables, constamsemory dereferences, and
arithmetic operations. The syntax E] indicates that we are reading the value stored at
memory locationE. In the examples, wherk points to some data structure with elds, we
shall useE: eld as shorthand for E + o set_of( eld )]. Having expressions with memory
dereferences in assertions is somewhat problematic. Hence, wee pure expressionse,
to be those expressions that do not dereference memory; that is,

er=Xjxjnjet+eje ej:::
Boolean expression®3, that appear in programs are
B:=B"BjB_Bj:BJE=EJjE<E JE E]j:::

Boolean expressions do not, in general, belong to the grammdragsertions because they
can contain expressions with memory dereferences. Instead wa da ne two mappings
from boolean expressions into assertions:) (def(B) is the weakest assertion guaranteeing
that the evaluation of B is de ned (enough resources are available)ii | assiB) is the
assertion equivalent toB .

Finally, primitive commands, ranged over byc, are given by the following grammar:

c:= assumé) Assume boolean condition
X:=e Variable assignment
X :=[€] Memory read
[e] = e Memory write

x := new) Allocate memory cell
dispose (e) Deallocate memory cell

Heaps First, consider the standard stack and heap model. This is the tml and the
most widely used model for separation logic, but it is somewhat veed in its treatment
of stack variables (for details, see discussion at the end of this seq).

Assume we have two xed countably in nite sets: VarNameconsisting of variable
names, andLoc consisting of locations (addresses in the heap). L¥al stand for the set
of values, and de ne the resource algebra; ;U) to be

M

(@varName* Val) (Loc* Val)

(s1;h1)(s2; h): (s1:hy] hy) ifs; = sp;
- unde ned ifs; 6 s,
U= f(s;;)]s2 VarName* Valg

The rst component of M is known as the stack, and the second as the heap. Primitive
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assertions in this model are:
PrimP = e 7'eje=ejeb6eje<eje ]
The rst assertion says that the heap consists of exactly one memorell with address
e; and contentse,. The other assertions are equalities and inequalities betwe@ure
expressions.
In terms of the Kripke model, their semantics is:

(s;hyiFse 7 e (* dom(h) = fle]sig » h([edsi)=[e]si
s;hyiFae=e ( [elsi=[e]si
s;hyiFee6e ( [elsi6lel]si

where [E] si evaluates the pure expressioa in the stack s and the interpretation i.

It is customary {but not necessary{ to takeLocto be the set of positive integers. This
way we can reason about programs that involve pointer arithntie. Hence, we can de ne
the following shorthand notation for describing multiple adacent cells.

e7! (e;e; 0 6) e e (e+tl)7'e ::: (e+tn 1)7!e,
For clarity, sometimes we use eld notation. Assume we have a nitset of eld names
and a mapping from eld names to o sets in the structure they degibe and that objects
are allocated at aligned memory addresses. We shall use the follaywshorthand notation.

e, 7! f:eld=exqg gt (eitosetof(eld)) 7! e;™ (emod objsize= 0)

e7!f:eld =¢e;:::;:eld ,=eg & e7lf:eld,=eig ::: e7!f:eld, =e\Q

Finally, we write an underscore () in the place of an expression whose value we do not
care about. Formally, this is existential quanti cation. For example,e 7! _ stands for
Ox:e 7! x wherex 2 fv(e).

We turn to the axioms for the stack & heap model of separation lagg They are known
as the small axioms, because they deal with the smallest heap a edtby command. If
there is more heap present, the frame rule says that it remainsa ected.

Variable assignment are treated by the standard Hoare axiom, wieeQ[e=x] substi-
tutes e for all occurrences ok in Q.

fQlex]gx = efQg
To write to a heap cell that cell must exist in the heap:
fe7! gle:= ’fe7! €Y
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Similarly, to read a cell E], separation logic requires the thread owns the cell; its
contents are copied into variablex; the cell's contents are unchanged; afterwards,
the thread still owns it. (The logical variabley is used to handle the case whex
occurs ine.)

fezyre7l zgx:=[gfy 7' z" x= zg

cons(e;;:::;&,) allocates a new block oh heap cells. The heap is initially empty;
at the end, it contains the new block of cells.

dispose (e) deallocates a heap cell. The heap initially contains the ktédeing dis-
posed; after disposal it is no longer contained in the heap.

fe7! _gdispose (e) fempg

Permissions Permissions arose as an extension to the standard heap model, talde
read-sharing between parallel threads. Boyland [10] de nedhaarly model. Then, Bornat
et al. [8] provided a general model for permissions and two insizes of that model, and
Parkinson [63] gave a generic instance of that model, which ovame some shortcomings
of the earlier instances of the model. Here, | will present an albatt model of permissions
that encompasses all the previous models.

A permission algebraK; ;>)is aresource algebra with a top element but without its
unit element. Intuitively,  adds two disjoint permissions> represents full permission,
and there is no zero' permission. In the de nition belowK, stands forK ]f?g and
implies that ? 2 K.

De nition 9. A permission algebra(K; ;>) consists of a setK, a binary operation
(K, K»)! K,, and a distinguished element 2 K such that(K,; ;?) is a
resource algebra, and for alk 2 K, , kv > .

Examples of permissions algebras are:

1. Fractional permissions: Numbers in (] with addition as and 1 as>. All other
numbers in (Q 1) are partial permissions.

2. Counting permissions: Integers with O being full permissionnd

8
Zundened ifk; Ok, O

ki ko= _undened if (kl 0_ Ko O) Nkit+t ko< O

© ke + ko otherwise
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In this model, 1 is aread permission, whereas positive numbersk;tindicate that
k read permissions have been removed.

3. Non-empty subsets of a countable s& with disjoint union as and A as>.

To model a heap with permissions, it is best to extend to act on permission-value
pairs and on functions of typeLoc* (Perm Val).
8
S (ks ko;vi) if vi= vo andde ned(k; ko)

(ki;vi) (K2 v2) & . .
- unde ned otherwise

The operator on functions (h; hy) is de ned if and only if hy(a) hy(a) is de ned
for all a2 (dom(hy) \ dom(hy)). If hy h, is de ned, it has domaindom(h;) [ dom(h,)
with the following values:

8
Zhi(@) hy(a) if a2 (dom(hy)\ dom(hy))
(hy hy)@ T _hy(a) if a2 (dom(h;) ndom(h,))
* hy(a) if a2 (dom(hy) ndom(h,))

As expected, adding two heaps is de ned whenever for each Itoa their overlap, both
heaps store the same value and permissions that can be added tbget The result is a
heap whose permissions for the location in the overlap is just tlseim of the individual
heaps.

Now, we can de ne a resource algebraA; ;U) as follows:

M = (8VarName* val) (Loc* (Perm Val)

(s1;h1)(s2;h): (s1:hy hy) if 51 = sp;

" unde ned if 5,6 s,
U= f(s;;)js2 VarName* Valg

Primitive assertions in the permissions model are:
PrimP ::= el‘}‘! ejee=6eje<e;

The rst assertion says that the heap consists of exactly one memocgll with address
e;, accounting gure k, and contentse,. Usually k is a constant, but in some cases, it
might be a pure expression. In terms of the Kripke model, the rstassertion means:

def

(s;hyiFsien e (™ dom(h) = fleddsg h(ey) = ([Kk]si; [e] si)
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Aside: Variables as resource Unfortunately, the two models mentioned above are
somewhat awed in their treatment of the stack. Because the operator divides only the
heap and not the stack, the primitive commandsg, do not satisfy the locality property
(Def.|4). Hence, the frame rule $L-Frame ) is unsound and requires a side-condition for
soundness: \The frameR must not contain any variables modi ed by the commandC."
The parallel composition rule GL-Par ) also requires a side-condition, but it is trickier.
It su ces, however, that all stack variables are local, and theyare never shared between
threads or their speci cations.

The \variables as resource” model [9, 64] avoids these side-diions by treating
program variables in a similar way to the heap. Separating camction ( ) splits variable
ownership as well as heap ownership. By default each assertiomevgome portion of the
variables it mentions and there are special assertions that spigcthe variable ownership
exactly.

For simplicity, we will not use the \variables as resource" mode Instead, whenever a
global variable x is shared between two threads, we will treat it as a heap cell stat at
the xed address &. This way, we avoid any side-conditions oisL-Par .

2.4.3 Concurrent separation logic

The proof rules ofx2.4.1 did not permit sharing of resources among threads. Hences w
cannot reason about parallel programs involving inter-thregd communication.

Concurrent separation logic [58] overcomes this limitatioby introducing resource in-
variants. The proof rules now have the form] "5 fPg C fQg, whereJ is a precise
separation logic assertion representing an invariant that is tre about the program sepa-
rately from the precondition and postcondition. The intenton is that J holds at all times
during execution of the program except when a thread is insidm atomic block.

One can viewJ " g fPg C fQg as a simple rely/guarantee statement. The command
C relies onJ holding each time it enters an atomic command. In response, itigrantees
that it will not access the resourcel only within atomic commands and that it will make
J hold each time it exits an atomic command.

Concurrent separation logic has the following rule for atormicommands, which grants
threads temporary access to the invariant), within an atomic command.

emp g fP JgCfQ Jg J is precise
J ‘SLng mlng

(SL-Atomic )

The following rule allows us to take some local statdR, and treat it as shared state
for the duration of the commandC.
J R g fPgCfQg R is precise

- (SL-ResFrame )
J sofP RgCfQ Rg
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Ownership transfer

The SL-Atomic rule combines the local state with the resource invariant on &y to the
atomic block, and takes them apart on exit. The state put backn the invariant does not
need to be the same as the state that was initially taken out. Ife domains of these
two states dier, we have a transfer of ownership. For exampleoasider the following
invariant:

J E (x7 0 listy)) _(x 7! 1)

where list(y) is some predicate describing a linked list starting at addresg. In this

example, x is essentially a mutual exclusion lock. When it is unlocked, theesource
contains the shared listlist(y). When it is locked, the thread that acquired the lock owns
the list. Writing to [ X] moves the ownership ofist(y) from the writer to the resource or

vice versa:
J " 5. fempg atomic ([x] = 0) f[x] :=1g flist(y)g

J " s flist(y)g atomic f[x]:=0g fempg

Soundness

There are various proofs of soundness for concurrent separatiogic. Brookes [11, 12]
gave a trace semantics for a simple programming language anayed the soundness of
concurrent separation logic for the stack and heap model, fone¢ permissions model, and
for the variables-as-resource model. Hayman [37] presented ameialative semantics based
on Petri nets and proved the soundness of the logic in that modeRecently, Calcagno et
al. [13] proved the soundness of a more abstract version of coment separation logic.

2.5 Other proof methods

Invariants

Invariants [4] are the simplest way to reason about a concurreslystem. A single-state
assertion is invariant throughout a program if it holds initidly and it is preserved by all
atomic actions of the program. To prove a property? about a state of the program, one
simply establishes a suitable program invariand that entails the property P. Invariant-
based reasoning is modular, becausedJfis invariant throughout C; and C,, then it is
invariant throughout C;kC,.

The problem is that any non-trivial property P depends on control ow, and hence the
invariant J must encode this control ow. This can be achieved by using aukry vari-
ables or control predicates, but both methods are unsatisfaciobecause the invariant's
size grows rapidly.
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Resource invariants

Concurrent separation logic has the notion of a resource invant, an invariant that is
associated with a mutual exclusion lock. Resource invariants, \wever, are not pertinent
to separation logic: they are a more general concept.

Resource invariants encode a common protocol whereby the Homwns some state.
When the lock is not currently acquired, the resource invari@ holds. When a thread
acquires a lock, it knows that the resource invariant held atte moment of the acquisition.
Thereafter, it may invalidate the resource invariant provied that it restores the resource
invariant when it releases the lock.

Of course, resource invariants are just a special case of normabanants, as the
following encoding demonstrates:

Invariant = :::” (lockNotAcquired) Resourcelnvariani)

Therefore, they su er from the same problems as normal invamés do. For moderately
complex algorithms, a lot of auxiliary state is needed to expss control- ow information
and their size grows rapidly. Resource invariants are often ubségether with a syntactic
restriction or ownership-based system that ensures that threadsgserve the resource
invariant when the lock is not acquired. Such restrictions gtoit the modular structure
of some programs removing many trivial implications, but do noaddress the inherent
limitations of using invariants to describe shared state.

Ownership

In ownership-based systems, each object is ‘owned' by another edijor by a thread,
and only the object's owner is allowed to access it. The ownef an object need not be
xed; it can change over time. For example, we can let mutualxlusion locks own some
resources. When a thread locks a mutex, it also acquires the owstap of the resources
the mutex protects; it returns the ownership back to the mutex \wen it releases the lock.
One can see Separation Logic as an instance of ownership.

Spec# [5] is a object-oriented programming language that spprts ownership-based
veri cation. Each object has an auxiliary eld storing its current owner. Assertions are
written in classical rst order logic, but may refer only to objects owned by the current
component. Hence, local reasoning is possible. Spec# also ensltlee user to specify
object invariants and has an auxiliary boolean eld per objet recording whether the
object invariant holds for that object. The built-in operations pack and unpack set that
eld and check the invariant.

Jacobs et al. [49, 50] extended this methodology to handlegsémistic coarse-grained
concurrency. Shared state is owned by a lock. When a lock is atgd, the ownership
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of the protected state is transferred to the thread that acqued the lock. There is also a
simple mechanism for preventing deadlock based on staticallgsagned lock levels.
Ownership properties can also be enforced by a type system basedtloa calculus
of capabilities [21]. Grossman [32] extended Cyclone with tgpsafe multi-threading and
locking based on capabilities. Similar work was done by Micrd$s Vault project [22, 26].

2.6 A comparison

Global versus local reasoning In Hoare logic [46], assertions describe properties of
the wholememory, and hence speci cations, such d$ g C f Qg, describe a change of the
whole memory. This is inherentlyglobal reasoning Anything not explicitly preserved in
the speci cation could be changed, for examplex = 4gy:=5 fx = 4g. Herey is allowed
to change, even though it is not mentioned in the speci cationThe same is true for most
of the other traditional methods: temporal logics, Owicki-Gies, rely/guarantee.

The situation is di erent in separation logic and in the other avnership-based ap-
proaches. Assertions describe properties pért of the memory, and hence speci cations
describe changes tpart of the memory. The rest of the memory is guaranteed to be un-
changed. This is the essence tical reasoning speci cations describe only the memory
used by a command. With local reasoning, we can reason about ipgadent modules
independently.

In Spec#, the splitting of the state is determined by auxiliary\owner" elds. In Sepa-
ration Logic, the assertions themselves describe their footptiand separating conjunction
ensures that two assertions describe separate parts of the statehi§ makes separation
logic theoretically nicer, but potentially harder to mechaise.

Relations versus invariants Binary relations are much better in describing concurrent
systems and interfaces between components of a sequential systham invariants. For
example, consider a variablex whose value may increase but never decrease, namely
X (x. If we read x twice, we know that the second time we will have read a larger or
equal value to the one read the rst time. Proving this with invariants requires auxiliary
state. Introduce an auxiliary variabley, initially containing 1 , and the rst time we
read x assign the value read toy. Then we can use the invarianix y to complete the
proof.

Invariants are just a special case of relations; they may still besaful in simpler
examples. The power of Jones's rely/guarantee and Lamport'sLA is that they use
relations where their competitors used invariants.

In Chapter (3, we will bring together the local reasoning and bary relations, thereby
marrying the modularity of separation logic and the expressivess of Rely/Guarantee.
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Chapter 3

Combining rely/guarantee and
separation logic

This chapter describes RGSep, a new logic that marries relydgrantee reasoning
and separation logic. It subsumes the two proof systems that it isased on. Any
rely/guarantee or concurrent separation logic proof can beneoded as an RGSep proof;
moreover, some proofs are much easier in RGSep than in either agpion logic or
rely/guarantee alone.

This chapter presents the basic elements of RGSep and provessbundness based on
an instrumented operational semantics. As an example, Sectiotb3roves the safety of
a concurrent linked list algorithm that has ne-grained lockng and deallocates memory
explicitly. The various adaptations and extensions to RGSewill be discussed in the next
chapter.

3.1 The combined logic

3.1.1 Local and shared state assertions

The total state, , of the system consists of two components: the local stateand the
shared states. Abstractly, | and s are elements of a resource algebr®( ;u) (see Def! 3
in X2.4) such thatl sis de ned. More concretely, one can think of each componentade
as a partial nite function from locations to values (cf. theheap model inx2.4). In this
model,| sis de ned if and only if the domains of the two states are disjoin then, the
total state is simply the union of the two disjoint states. The resorce algebra model is,
however, more general and permits other instantiations sucls germissions.

We could easily specify a state using two assertions, one describig local state
and another describing the shared state. This approach, howeyéas some drawbacks:
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speci cations are longer, meta-level quanti cation is neeell to relate the values in the
local and the shared parts of the state, and extending this setiy to a domain with
multiple disjoint regions of shared state is clumsy.

Instead, we consider a uni ed assertion language that describesth the local and the
shared state. Here is the syntax of our assertions:

p;q;r:= P Local assertion
P] Shared assertion
P q Separating conjunction
P~ q Normal conjunction
P_q Disjunction
8x: p Universal quanti cation
ox: p Existential quanti cation

whereP stands for any separation logic assertion (de ned i®2.4). We will often call[P]
assertions as boxed assertions. Note, however, that boxes are nadalities in the usual
sense as they cannot be nested.

Formally, the semantics of assertions are given in terms of a ke structure (;s;i)

wherel;s 2 M, | sis dened, andi : Logvar* Valis a mapping from logical variables
to values.

s s def Lo

l;s;i F resep P 0 i FsLP

l;sii FresepP] 0™ (1= U)" (s;iFsP)

l;S;1 FresepP1 P2 Odeé [l (1= 11 )™ (4S50 FresepPr) ® (I2; 81 F rasep P2)
o A def R N SR

l;S;i FrosepP1 P2 (0 (I;S;i FresepPr) ® (I;S; 1 F rosepP2)

l;S;1 FrosepP1 _ P2 (I;s;1 FresepPr) _ (I S;1 F resepP2)

l;S; 1 F resep8X: P Odeé vi(ls;[i j X 7' V] FresepP)

l;S; 1 F resep 9X: P ()deé vi(l;s;[i j X 71 V] F resepP)

def
0

Note that the de nition of  splits the local state, but not the shared state. We say that

Is multiplicative over the local state, but additive over theshared state. In particular,
Pl Q 0 P A Q] The semantics of shared assertionf], could alternatively be
presented withoutI=u. This results in an equally expressive logic, but the de nition
above leads to shorter assertions in practice.

RGSep formulas include the separation logic formulas and alead the de nition of
some separation logic operators (~, , 9 and 8) to act on RGSep assertions. This
overloading is intentional and justi ed by the following Lenma (writing LocaP for the
rst RGSep assertion kind):
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Lemma 10 (Properties of local assertions)

Loca(false) () false
(Loca(P) Loca(Q)) ( LocalP Q)
(Loca(P)* Loca(Q)) (  Loca(P " Q)
(Loca(P) _LocalQ)) () Loca(P Q)

(9x: Loca(P)) 0 Loca(9x: P)
(8x: Loca(P)) ( Loca(8x: P)

These follow directly from the semantic de nitions. Because othis lemma, we can
reduce the notational overhead by making th&ocalimplicit. This should not cause any
confusion, because according to Lemma/10, the RGSep operatmd the separation logic
operators coincide for local assertions.

Finally, the grammar disallows top-level negations so that b@d assertions only ap-
pear in positive positions. This assists in de ning stability (see3.1.3). It not a severe
restriction because (a) top-level negations do not arise in ptce, and (b) if we give the
usual semantics to negation then, Loca(P) () Loca(: P)and:[P] 0 [ P]_: emp.

3.1.2 Describing interference

The strength of rely/guarantee is the relational descriptiorof interference between parallel
processes. Instead of using relations directly, RGSep describet®iference in terms of
actionsP  Q that describe the changes performed to the shared state. Thessemble
Morgan's speci cation statements[57], andP and Q will typically be linked with some
existentially quanti ed logical variables. (We do not need tomention separately the set
of modi ed shared locations, because these are all included fh) The meaning of an
action P Q is that it replaces the part of the shared state that satis esP prior to
the action with a part satisfying Q without changing the rest of the shared state. For
example, consider the following action:

X7'M XT'N*"N M (Incremeny

It species that the value in the heap cellx may be changed, but its value is never
decremented. The logical variable® and N are existentially bound with scope ranging
over both the precondition and the postcondition. In this adbn, the heap footprints of
the precondition and of the postcondition both consist of the lation x. The footprints
of the precondition and the postcondition, however, need ndie the same. When they
are di erent, this indicates a transfer of ownership betweenhe shared state and the local
state of a thread. For instance, consider a simple lock with two epations: /Acquirewhich
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P Q26G

(PP eF),(?CtG (G-Exact ) m (G-Axiom )
(P Q G
P Q G | _
G-Sub FstP9 P FaQ)Q
Ple=d Q=) G o) oy g (6-Cons)

Figure 3.1. Rules and axioms for an action allowed by a guarae.

changes the lock bit from 0 to 1, and removes the protected a@gj, list (y), from the
shared state; andReleasavhich changes the lock bit from 1 to 0, and puts the protected
object back into the shared state. We can represent these two op&ons formally as

(x7'0) list(y) x7!'1 (Acquirg
x7'1 (x7!'0) list(y) (Release

An action P Q represents the modi cation of some shared state satisfying to
some state satisfyingQ. Its semantics is the following relation:

de

[P QI ¥ f(s1 sois2 So)j9it (s1i FsP)” (s2i FsLQ)g

It relates some initial shared states; satisfying the preconditionP to a nal state s,
satisfying the postcondition. In addition, there may be some digjnt shared state sy
which is not a ected by the action. In the spirit of separation bgic, we want the action
speci cation as ‘small' as possible, describingy and s, but not sy, and use the frame
rule to perform the same update on a larger state. The existentiguanti cation over the
interpretation, i, allows P and Q to have shared logical variables, such &4 and N in
Increment

RGSep represents the rely and guarantee conditions as sets di@s. The relational
semantics of a set of actions is the re exive and transitive closel of the union of the
semantics of each action in the set. This allows each action tarr any number of times

in any interleaved order with respect to the other actions.

|
n

[P, Py Qn] = P Ql
i=1
As a sanity condition, we can require that the assertion® and Q appearing in an
action P Q are precise This sanity condition is not strictly necessary, but its use is
justi ed by the side-condition of the atomic rule in x3.1.4. In practice,P and Q are not
only precise, but often alscexact (see Def 7 inX2.4).
A speci cation, P;  Q is allowed by a guarantees if its e ect is contained in G.
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Deniton11. (P Q) G (™ [P Ql [Gl

Figure(3.1 provides derived rules to be used in proof&-Cons is similar to the rule
of consequence, but the second implication is reverseég) Q°

Contexts in actions The speci cations of some examples become clearer if we extend
actionsP  Q with a context F with the following semantics:

[P QprovidedF] € [P QI[P F Q F]
This de nition ensures that the context F is not changed by the action. IfF is an exact
assertion, then P Q provided FJ=[P F Q F]. Every extended action in this
dissertation will actually have the contextF be an exact assertion or an assertion that
can trivially be made exact by dropping an existential quantcation.

3.1.3 Stability of assertions

Rely/guarantee reasoning requires that every pre- and postwdition in a proof is stable
under environment interference. A separation logic assertié@is stable under interference
of arelationR if and only if wheneverS holds initially and we perform an update satisfying
R, then the resulting state still satis es S.

De nition 12  (Stability) . semstablé€S;R) if and only if for all s, s®and i such that
s;iFscSand(s;s?) 2 R, thens®i Fg S.

This is the same de nition as inX2.3, but makes the interpretationi of the logical
variables explicit. By representing the interferenc® as a set of actions, we can reduce
stability to a simple syntactic check.

Lemma 13 (Checking stability).
semstablgS;[P Q) ifandonlyif Fs . (P ~S) Q)) S.
semstablgP; (R, [ R») ) if and only if semstabldS; R;) and semstabl€S; R,).

Informally, the rst property says that if from a state that satis esS, we remove the
part of the state satisfyingP, and replace it with some state satisfyin@, then this should
imply that S holds again. In the case when the action cannot run, because itads no
sub-state ofS satisfying P, then P~ S is false and the implication holds trivially. An
assertionS is stable under interference of a set of actior® if and only if it is stable under
interference by every action inR.

RGSep forbids interference on the local state, but permits terference on the shared
state. Hence, given an RGSep assertion, only the parts of it thaedcribe the shared state
may be a ected by interference. We shall say that an RGSep assent is (syntactically)
stable underR, if all the boxed assertions it contains are stable undeR.
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De nition 14. Let p stable undeR be de ned by induction onp as follows

P stable undeR always holds.

[P] stable under if and only if (P;R)) P.

Forop:= j~j_ ,let(pLopp,) stable under if and only if p; stable undeR and
p. stable undeR.

For Q::= 8j9, let (Qx: p) stable undeR if and only if p stable undeR.

If an assertion is syntactically stable, then it is also semantidglstable in the following
sense:

Lemma 15. If pstable undeR, I;s;i Fresepp and (s;s9 2 R, then |;s%i Erasepp-

The converse is not true. For example, consider a relatidR that writes an arbitrary
value to x without changing the rest of the heap. Then9n: x 7! n| is stable underR,
whereas the assertion®n: x 71 n* n 0 and [9n: x 7! n™ n> Q| are not. Therefore,
9n: x 7' n"n 0_[9n: x 7! n™ n> 0]is not syntactically stable although it is seman-

tically equivalent to [9n: x 7! n|.

3.1.4 Speci cations and proof rules

Speci cations of a commandC are quadruples p; R; G; g), where

The precondition p describes the set of initial states in whiclC might be executed
(both its local and shared parts).

The rely R is a relation (i.e. a set of actions) describing the interfereeccaused by
the environment.

The guaranteeG is a relation describing the changes to the shared state, caused b
the program.

The postcondition g describes the possible resulting local and shared states, should
the execution ofC terminate.

The judgement™ C sat (p; R;G; 0 says that any execution ofC from an initial state
satisfying p and under environment interferenceR (i) does not fault (e.g. accesses unal-
located memory), (i ) causes interference at mosg, and, (iii ) if it terminates, its nal
state satis esq.

First, we have the familiar speci cation weakening rule:

R R%p) p°
' Csat (p® R® G® G’ G
(P ) €) 4 (Weaken )
"~ Csat (p;R;G;0
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From separation logic, RGSep inherits the frame rule: If a pgyam runs safely with
initial state p, it can also run with additional state r lying around. Since the program
runs safely withoutr, it cannot access the additional state; hence, is still true at the
end. Since the framer, may also specify the shared state, thErame rule checks thatr
is stable under interference from both the program and its emonment. Otherwise, they
may invalidate r during their execution. In the simple case when does not mention the
shared state, the stability check is trivially satis ed.

" Csat (p;R;G;0 r stable undefR[ G)

(Frame )
"Csat(p nR;G;q 1)
We also have the other standard structural rules@onj , Disj , Ex, All ).
© Csat (p;R;G; 0 x 2 fv(q;C;R; G
" Csat (p2; R; G; " Csat (p;R; G;
(P2 q) (Disj) (p a) (EX)
" Csat (p1_p2R;G;0) * Csat (9% p;R;G; 0
" Csat (p;R;G;q) x 2 fv(p;C;R; G)
" Csat (p;R;G; " Csat (p;R;G;
(p ) (Conj ) (p a) Al )
" Csat (p;R; G i) ' Csat (p;R;G;8x: Q)

Then, there is a proof rule for each construct in the languagé.he rules for the empty
program, sequential composition, non-deterministic choicand loops are completely stan-
dard. Similarly to Frame , Skip checks that the precondition,p, is stable under the rely,
R. Because the empty program does not change the state,is trivially stable under
interference from the program itself.

p stable undeR _ " Csat (p;R;G;p
_ (Skip) (Loop)
" skipsat (p;R;G;p) © C sat (p;R;G;p)
" Cysat (p;R;Gr) " Cisat (p;R;G; 0
" Cyrsat (rR;G; " Cysat (p;R;G;
2 sat ( D (Seq) 2 sat (p 9 (Choice )
" (Cy;Cy) sat (p;R; G50 " (Ci+ Cy) sat (p;R; G0

For primitive commands, ¢, that do not access the shared state, we adopt the separa-
tion logic rules. We have the following rule scheme:

"stfPgcfQg
" csat (P;R;G;Q)

(Prim)

The parallel composition rule of RGSep is very similar to the pallel composition rule
of rely/guarantee. Its crucial di erence is that the precomition and postcondition of the
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composition are the separating conjunction () of the preconditions and postconditions
of the individual threads. In essence, this is the normal conjation of the shared state
assertions, and the separating conjunction of the local state assens (cf. the semantics
of in x3.1.1).

" Cpsat (p;R[ G2 Gy )
T Cysat (p;R[ G162 )

T (CikCy) sat (pr p;R;Gi[ Goyan )

As the interference experienced by threa@; can come fromC, or from the environment
of the parallel composition, we have to ensure that both inteefencesR[ G,) are allowed.
Similarly C, must be able to tolerate interference fronC, and from the environment,R.
The most complex rule is that of atomic commandshCi. Instead of tackling the
general case directly, it is easier if we have two rules. The rstute checks that the
atomic block meets its speci cation in an empty environmentand then checks that the
precondition and the postcondition are stable with respect tohe actual environment,R.
This reduces the problem from an arbitrary rely condition toan empty rely condition.

(Par )

“hCi sat (p;;;G; 9
p stable undeR  stable undeR
“hCi sat (p;R;G;0

(AtomR )

The second rule is somewhat trickier. Here is a rst attempt:

"Csat(P P%;;;Q0 @9 (P Q G
“hCi sat (P] P%;;G;Q Q9

Within an atomic block, we can access the shared stafe], but we must check that
changing the shared state fronP from Q is allowed by the guaranteeG. This rule is
sound, but too weak in practice. It requires that the criticalregion changes theentire
shared state fromP to Q and that the guarantee condition allows such a change. We
can extend the rule by allowing the region to change onlpart of the shared stateP into
Q, leaving the rest of the shared stateK) unchanged, and checking that the guarantee
permits the small change® Q.

P;Qprecise ~Csat(P P%;;;Q QY (P Q) G
"hCisat (P_F| P%;;GR _F| Q9
Precision For soundness, the rule requires thaP and Q are precisé assertions and

that all branches of the proof use the sante and Q for the same atomic region. Without
this requirement, the logic admits the following erroneouderivation:

(Atom )

!Precise assertions were de ned in2.4.1 (Def.[8).
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P=Q%x7!1 andP:=F=Q=emp Atom F=x7!'1 andP=Q=P%=Q%emp Atom
rskipi sat (X704 ;;G;lemg x7!11) hskipi sat (x7'1};;; G;x7!'1)) Coni
tekipi sat (x 7! 1];;;G;(emg x 7! 1)~ x 71 1) onl

skipi sat (x 7! 1;; ; G;false)

Semantically, this speci cation is satis ed only if hskipi never terminates! Precision
is a technical requirement inherited from concurrent sepatian logic. It ensures that the
splitting of the resultant state into local and shared portionss unambiguous.

The CONCUR 2007 paper [75] has a di erent stability requirementlt requires that
the entire shared postcondition Q F in this rule) is precise. Ensuring thatP and Q are
precise is typically trivial becauseP and Q describe the small update performed b,
whereasQ F may be a much larger and complex assertion.

Weaken

Atomic rule in the CONCUR'07 paper Instead of the two rulesAtomR and Atom ,
the CONCUR'07 paper [75] has the following proof rule:
P Q) G " Csat (P° P%;;;;Q% Q% stable undeR
FV(POY\f yg=; j=s.P) P° F  FsQ® F) Q  [Q]stable undeR

"hCi sat (9y: P] P%R;G;9y:[Q] Q%
(Atomic )
This rule is derivable by applying the rulesAtomR , Conseq, Ex, and Atom . In the
other direction, Atom is derivable from this complex rule, butAtomR is not.

* Csat (P° P%;:G;Q° Q% (P° QY G
“hCisat (P° F] P%;;G/Q° F|] Q%
(Imp) “hCi sat (9y:[P] P%;;G;[Q] Q%
(Stab) “hCi sat (9y: P] P%;;G;9y:[Q] Q%
“hCi sat (9y: P] P%R;G;9y:[Q] Q%
In the derivation, (Stab) stands for[9y:P| stable undeR and Q] stable undeR, and (Imp)
stands forFV (P°J\f yg=;,FscP) P° F,andF5 Q% F) Q.

Atom

Ex
Conseq
AtomR

3.2 Operational semantics

The exposition below follows the abstract semantics for sepaia logic presented ink2.4.
Let (M; ;u) be aresource algebra and ldtand s range over elements d¥1 . These stand
for the local state, the shared state, and local state of other thads respectively.

RGSep explicitly deals with the separation between a threaslown state and the shared
state. The semantics keep track of this separation: states are wttured and consist of
these two components.
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oracle q(s;l2) = (1%s9 oracle o(s;l2) = undef
(C:(I s;u)) * (skip;(I2;u)) (C;(I s;u)) * (skip:(l;u))  (C;(1 s;u)) ' fault
(FCip Q;(l;s))!s (skip ; (1% s9) (FCip Q;(l;s))!s fault (KCip Q;(l;s))!i fault

c(l;19 (1%s) 2 States (:9 12 ¢(1;19) R(s;sY (I;sY 2 States
(c:(s)! T (skip:(1%9)  (ci(is)! T fault  (Ci(ls)!T (Ci(lis9)

(C; )!E (C1; 9
(skip ; C; )!'; (C; ) (c;c )!': (C1;C% 9 (Ci+ Cy )!E (Cy )

(Cy+ Cy; )!E (Cai ) (C; )!j (skip + (C;C ); ) (skip kskip )!E (skip; )

(Cui ) (Cf: 9 (C2i )1 (C% 9 (C: ) fault
(C1kCy; )!E (CkC2; 9 (CikCy; )!E (CikCS 9 (C:Cy; )!E fault

(C: )!z fault (C; )!S fault

(CKCy: )!';* fault  (CokC: )!'z fault

Figure 3.2: Operational semanticsCon g reduces toCong, Cong{ o Cong,

def

De nition 16. States = f(l;s)jl2M~*s2 M ™ (I s)is denedg

Let range over these structured states, and overload the operatorto act on struc-
tured states, , as follows:

De nition 17. (I3;s1)  (I2;s2) is dened as (11 |lp;s;1) if s; = sp; otherwise it is
unde ned.

Figure 3.2 contains a semantics of GPPL that keeps track of theplitting of the state
into its two components: | and s. If we ignore the splitting of the state, we get back
the standard semantics o2.2. Con gurations are eitherfault or a pair of a command
and a structured state, C; ). A reduction step, Con g ! R Con g,, goes fromCon g,
to Con g, with possible environment interferenceRr and a label . The label indicates
whether this is a program action,p, or an environment action,e. Finally,! R s the
re exive and transitive closure of " ; it stands for zero or more" reductions.
In the semantics, atomic commandd,Ci, are annotated with preciseassertionsP and
Q to specify how to split the state between shared and local when &Rrg from the block.
In concurrent separation logic, the resource invariant deoss the splitting between local
and shared state. Instead, RGSep decides the splitting using theBeand Q as an oracle.

44



The function oracle o:M M*M M which determines the splitting is de ned as:

8
% (1%so s2); if there existss; suchthats='s; spands; Fg P
oracle o(s;l) = and1=1° s5 s,ands;Fs Q

- unde ned; otherwise

As P and Q are precises;, So, S, and |°are uniquely determined, and hence the function
oracle o is well de ned.

Consider the semantics of atomic blocks (rst three rules in Figre [3.2). All three
rules combine the local state with the shared statel ( s% and execute the command
C under no interference {). If executing the commandC successfully returns the local
state |,, the rst rule uses the oracle to determine how to split the resuihg local state
into a new shared and local state,|? s%. The other two rules handle the cases where the
program fails in the evaluating the body, or the oracle failo nd a splitting of I,.

An alternative approach in formalising the semantics of atomiblocks would be to
combine only the part of the shared state that satis ed® with the local state inside the
atomic block. This second approach is closer to the proof rulelsut relies much more
heavily on the annotationP Q.

The next three rules govern primitive commandsg, and environment transitions.
Primitive commands are represented as subsetsif M such that the locality properties
ofX2.4.1 hold. The primitive commandc executes correctly, if it runs correctly by accessing
only the local state. Otherwise,c fails. Its execution does not a ect the shared and
environment states. An environment transition can happen anytine and a ects only the
shared state and the environment state, provided that the sharestate change is described
by the rely relation, R; the local state is unchanged.

The remaining rules deal with the standard language construgt sequential composi-
tion, non-deterministic choice, loops, and parallel compogin. Note that the semantics

R

has the reduction €kip kskip; )! R (skip; ) instead of the reduction €kip kC; )!
p p
(C; ) and its symmetric version. This simpli es stating Lemma 23 inX3.3.

3.3 Soundness

A program C, executing in an initial state and an environment satisfyingR, guarantees
G if and only if it does not fail and all its shared-state changes safy G. Formally, this
is de ned by induction on the length of the tracen as follows:

De nition 18 (Guarantee). (C; ;R ) guarantees G odeé n: (C; ;R ) guarantees , G,
where(C; (I; s); R) guarantees , G holds always; andC; (I;s); R) guarantees ., G holds
if and only if whenever(C:(I:s))! © Con g, then there existC? 1° s°such that
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1. Cong = (C%(1%s%);
2. (C%(1%s9; R) guarantees , G; and
3.if =p,then(s;sH) 2 G.H

A program C satis es the speci cation (p; R; G; ) if and only if all executions that
satisfy its assumptions about the initial state and the environn& interference also satisfy
its guarantee and its postcondition.

De nition 19. F C sat (p;R; G; g if and only if wheneverl; s;i Frgsepp, then
1. (C;(l;s); R) guarantees G; and
2. if (C;(I;s)) ¥ (skip; (1Y), then 1% 2 F resep -

The reduction rules satisfy the usual locality properties of s@pation logic and permit
the rely condition to be weakened.

Lemma 20 (Locality).

11 (C;(l 1%s)) T (C%(I5:s2)), then either (C:(13;s1)) © fault or there exists an
19 such that(C; (I3;sy)) © (C%(1%s)) and 9 0= .

2. 1f (C; (11 1%sy)) R fault, then (C; (Ig;s)) R fault.
3.1 (C: )R (C® 9andR RO then(C; )IF (C® 9
The next lemma follows directly from De nition (18 and from Leanma|20.
Lemma 21. If (C; ;R ) guarantees G, then
(C; %R) guarantees G;
If R° R, then (C; ;R 9 guarantees G; and
If G G° then(C; ;R) guarantees G°

The soundness of the logic follows by a structural induction onhe commandC.
Using the following lemmas, we decompose the proof into simplerr{g First, since the
rely condition is re exive and transitive, executing an atonc command introduces the
following cases:

Lemma 22. If C is an atomic commandhCi or a primitive commandc, then

2The proof rules of X3.1, the operational semantics of¥3.2 and the de nitions and lemmas of this
section have been formalised in Isabelle/HOL. The proofs of the lemmas and theems in these three
sections have been mechanically checked.
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R R

C 90 (C ) (GH

R
e

(C; )

R

(C; ¥F faut 0 9 °(c; y"° (C; 09!;* fault

(Ci Y™ (skip; 9 09  ©%(C; ¥ 7 (Ci " (skip; BT (skip; 9

In a parallel composition, C;kC,, if we have the guarantee of the two commands,
then (1) we have the guarantee of their parallel compositiorgnd (2) if the composition
can make a reduction, then the two commands can also make thaduction given an
extended rely condition.

Lemma 23. If (Cy; 1;(R[ G)) guarantees G; and (C,; ,;(R[ Gi)) guarantees G,
and 4 > = , then

(C1kCy; ;R ) guarantees G; [ Gy;
if (C1kCy; ) ° (CCY 9, then there exist 9, 9such that(Cy; 1)!"'%% (C% 9,
(Coi '™ (CE D and ¢ 9= °

This lemma relies on Lemma 20 and on the de nition ofjuarantees . The proof is
relatively straighforward and is included below for comple&ness.

Proof of Lemma 23. For the rst part, we do an induction on n to prove that for all n, Cy,
Co, Iy, I, ands, if (Cy; (I1;8); R[ G,)guarantees G; and (Cy; (I2;s); R[ G;) guarantees
Gg, then (C.kCy; (11 12;5);R) guarantees ,, G [ G»

The base case is trivial. For then + 1 case, consider the possible reductions 6fkC,.

Environment transition: (C1kCy; (I4 Iz;s))!: (C1kCo; (11 15;89) and R(s; D).
Hence, Cl;(ll;s))!': (Ci; (11;89) and (cz;(lz;s))!': (Cs: (I:89). The conclusion
follows from the induction hypothesis.

Case 6kipkskip; ) E (skip; ). Trivial: follows from the induction hypothesis.

R

C: makes a program transition: C1; (I I5;9))! . (C% (1% s9). Hence from locality

(Lemmal20), Cy; (I l5;8)! © fault or there exists|? such that 1°= 19 I, and
p

(Cui (1)) (CE:(19;8Y).

As (Cy; (I1;8); R[ Gy) guarantees Gy, the rst case is ruled out. Moreover, we get

that (s;s9 2 G; and (C% (1%;s9; R[ G,)guarantees G;. Therefore, Cy; (I2;s9) "

(Cy; (I2;89) and (Cy; (I;89; R [ G,) guarantees Gs.

From the induction hypothesis, CkCy; (12 1,;s9) guarantees , G1 [ G,. Also,

(s;s) 2 Gy Gi[ G,. Therefore C1kCy; (19 15;89) guarantees ,,; G1[ G, as

required.

e
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C, makes a program transition. Symmetric.

C, or C, fail. These cases cannot arise because;((I1;s); R[ G,) guarantees G;
and (Cy; (l2;8); R[ G;p) guarantees G.,.

For the second part, we do an induction om to prove that for all n, Cy, Cy, |4, |5,
ands, if (Cy; (l1;8); R[ Gy) guarantees Gy, and (Cy; (I2;s); R[ G;) guarantees G,, and
(CikCo; (11 1z;9))! R (CKCE: (1% 9), then there exist 12, 19 such that 19 19 = [°and
(Cy: (11:9)) 1R n (€9 (19: 9) and (Cy: (I2:8)) 1REC* 0 (CY: (19: €9).

The base case is trivial. For then + 1 case, consider the possible transitions &;kC,
that could lead to CXkCY. There are three cases to consider.

Environment transition: (CikCp; (11 1 s))! ¥ (CikCo (11 12:s%) and R(s; s%.
e
Hence, Cy; (11;9))! © (Cy;(11;8%) and (Cz; (I2;8)! © (Ca; (I5;8%). The conclusion
e e
then follows from the induction hypothesis.
C. makes a program transition: C1:(I; ;s © (C%(1995%).
p
From Lemma/20 and Ci;(l1;s);R[ G,) guarantees G, there existsl{°such that
(C1; (115 9))! E (C(199s%), Gi(s;s", and (CY(199s%; R [ G,) guarantees G;.

R
e

From the induction hypothesis, there exist?, 19 such that (C% (12s%) 1< 2 n (C9; (19; 59,
(Cp; (120509) 1RL G n (0 (19;89), and 19 19 = I°

Thus, (C1: (11;9) 171 %2 0+ (C% (19:9) and (C; (I2;9)) 17 &+t (C9: (1% <9), as re-
quired.

Therefore, Cy; (I2;8%)! = (Cy; (I2;8%) and (Cy; (I5;s"; R[ G,) guarantees G,.

C, makes a program transition. Symmetric. O
The following two lemmas govern sequential composition:

Lemma 24. If (Cy; ;R ) guarantees G and for all ©such that(Cy; Y ° (skip; 9,
(C,; ®R) guarantees G, then (Cy;C,; ;R ) guarantees G.

Lemma 25. If (C1:Cy; )" (skip: 9, then there exists ®such that(Cy; ) ° (skip: 9
and (C; 9" (skip; .

A simple way to prove the frame rule is to derive it from the rule for parallel compo-
sition and the empty command. To do so, we nee@ and Ckskip to be observationally
equivalent. The following Lemma makes that explicit.

Lemma 26. (C; ) (C® 9 ( (Ckskip; ¥~ (C%skip; 9.
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The lemmas presented so far depend only on the operational seti@sof GPPL, and
are independent of the proof rules. The following lemma, hower, is about the proof
rules. It says that for every specication @;R;G;q that a program meets, there is a
stronger stable speci cation p% R; G; ) that it also satis es.

Lemma 27. If © C sat (p;R; G;0), then there existp® and ¢ such thatFresepP) P°
p°stable undeR, Fresepd®) 0, ¢°stable undeR, and* C sat (p°R; G; ).

Proof. By induction on the proof rules.

Weaken : Applying the induction hypothesis to the premise of the rule,liere exist
stable p®and g*°such thatp®) p?¢®®) o° and® C sat (pR;G; . Sincep) p°
and o) ¢, thesep®and g*satisfy the required assertion.

Frame : From the induction hypothesis, there exist stabl@®and ¢°such thatp) p°,
®°) g and’ Csat (p°%R;G;d). Asr is stable underR, p° r and ® r meet our
requirements.

Skip, Atom , AtomR , Prim : The preconditions and the postconditions of these
rules are already stable.

Loop : From the induction hypothesis,p is stable underR. Hence, takep’= ¢°= p.

Seq: From the induction hypothesis onC;, there exist stablep® and o such that
p) p% ) g and’ C; sat (p%R;G;). Hence, applyingWeaken , we get
* Cy sat (p°% R; G; g). Similarly, from the induction hypothesis forC, and Weaken ,
there exists a stabler® such thatr®) r and® C, sat (q;R;G;r9. Hence, from
Seq, * (Cy;Cy) sat (p% R; G;r9 as required.

Choice : From the induction hypotheses, there exist stable,;, qi, p2, ¢ such that
P) P, &) G Cisat (puR;Ga), p) P2y &) 6 Cosat (PR Giq).
From Weaken ,~ Cysat (p1” p2;R;G; o _ @) and ™ C, sat (p1” p2;R; G, _ ).
From Choice , ~ (C; + Cy) sat (p1” p2; R; G;on _ @), as required.

Par : From the induction hypotheses, there exist stablg?, of, p3, ¢ such that
p) P )  Cisat (puR[ Gz Guic) p2) P &) &~ Cosat (2RI
Gi; Gz2; o). Hence, takep®= (p? pf), and = (of of).

Disj , Conj , Ex, All : Follows from induction hypotheses, by applyingVeaken
and the relevant rule, because b and g are stable thenp”™ g, p_ g, 9x: p, and 8x: p
are stable. O

At last, here is the proof of soundness of RGSep.
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Theorem 28 (Soundness) If = C sat (p;R;G; ), thenF C sat (p;R; G; 0).

Proof. The proof is by induction on the proof rules, by proving the soumess of each rule
separately.

Atom :
P; Q precise "Csat(P P%;:;Q Q@9 (P Q)
"hCip gsat(P_F] P%;GRQ _F] Q9

It su ces to consider three possible reduction sequences (Lemm&)2 Moreover,
sinceR = ;, we can ignore the environment actions. Therefore, we can asxithat
l;s;i | P%and (WCip o;(l;s))! p Con g and prove that there exist|® s°
such that Cong = (skip;(1%s%) and (s;s%) 2 G and 1%s%i Q°

G
(Atom )

L. [P Q] G assumption

22 Csat(P P%;;;;Q Q9 assumption

3 IisjiF PO assumption

4. sjiFs (P F)andl;i Fg P from 3

5 s=s5 spands;;iFs P andsyi Fs  F from 4, elim9

6. | siiifFs P PO from 4, 5

7. (C;(I s1;;);;) guarantees ; from 6

8 (C;(I s;;);;)guarantees ; from 5, 7, Lem 21

If we consider the reductions oC;(l s;;);; in the environment;, we have three
possibilities:

{ (C;(I s;;)) does not terminate.
{ (C:(1 s;;)) " fault
{ (€0 sy (skip;(125)).

In the rst case, hCi does not reduce; hence there is nothing to prove. The second
case is ruled out because of (10). Hence, we are left we the thiabe:

9 (C;(1 s ) (skip;(l25)
10 (C;(I s133)) " (skip;(19;; )~ 12=19 so from 8, 9, Lem 20, elim9

1L 1%iFstQ Q° from 2, 9

12 19=s;, I1%nds,;i Fs . QandI®iE Q° from 11, elim9
13 1, =19 g s, from 10, 12
14 oracle of(s;l)=so S from 5, 12, 13

We now proceed by case analysis on the possible reduction rules.eTvo faulting
rules do not apply, because from 10 we know the body cannot faand from 16 we
know oracleo oos; l2) is de ned. Hence, the only applicable rule is:
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oracle o(s;l2) =(1%s9
(C;(1 s;u) - (skip;(I2; )
(hCip Q;(I;s))!s (skip; (1% %)

Therefore, we can further assume thaf® s°= 1, ands®= s, s,.

15 19 (sq sp)= 1 assumption
16; 0= |9 from 13, 15, cancellation

17 |0, (So Sz);i F RGSep QOO from 5, 12, 16
18 (s1 So;S2 So) 2 [P° QY from 5, 12
19 (s1 So;S2 Sp)2 G from 18, 1

We have shown properties 17 and 19, as required.

AtomR : It suces to consider three possible reduction sequences (Lemni?).
Moreover, asp and q are stable underR, we can ignore the environment actions.
Hence, we can assumks;i F p and (Cipo qo; (l;S))! E Cong and prove that
there exist1%s%s.t. Cong = (skip;(1%s%) and (s;s%) 2 G and 1%s%i E g, which
follows directly from E hCi sat (p;;; G;0).

Prim : Again, it su ces to consider three possible reduction sequencesgmmal 22).
Assume ;i Fresep P, and prove () (c; ;R) guarantees G and (ii) if (c; ) R
(skip; 9, then i Frosep Q-

To prove (i), assume ¢; )! E (c; 9! : Cong and prove exists %such that
Cong =(skip; and ( ¢ %92 G. Let(l;s)= and (1%s) = ° By the rst
reduction, we know!l = 1% and asP only depends on local state, then® = P.

Therefore,Con g is not a fault, and hence %= (1%s%:so ( ¢ % 2 G.

To prove (ii ), assume ¢; ) : (c; 9 i (skip; ) : (skip; 99 By construction,

we know %i Eg Q. Let (199s%9€Py = and (1909900¢9%P = 000 hence|%0= |00
Therefore, %% Ergsep Q as required.

Skip: Trivial.

Disj, Conj , Ex, All : Trivial.

Par : Follows from Lemma 23.

Seq: Follows from Lemmas 24 and 25.
Weaken : Follows from Lemmas 20 and 21.

Loop : The proof of this rule also assumes that both C sat (p;R;G;p) and
C sat (p;R; G; p). By induction on n, rst prove that 8n: C" sat (p;R;G;p).
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Base case:C° £’ skip. Since® C sat (p;R;G;p), according to Lemma 27,p is
stable underR. Hence, asSkip is sound, CO°sat (p;R;G;p).

Inductive step: C"*! %ef (C;C") Applying the Seq rule,

ind. hypothesis
C sat (p;R; G;p) C" sat (p;R;G; p)
C™ sat (p;R; G;p)

Seq

Hence, foLr alin, C" sat (p; R; G; p). Finally, by the Choice rule, the same follows
forC = c".

n

Frame : As C and Ckskip are equivalent with respect to the operational semantics
(cf. Lemmal 26), we can derive the frame rule from the paralletle:

r stable undeR|[ G
Csat (p;R;G; 0 skipsat (R [ G;;;r)
(Ckskip) sat (p r,R;G;q )
Csat(p rR;G;q r)

Skip
Par

3.4 Encodings of SL and RG

Separation logic (without resource invariants) and rely/gueantee are trivial special cases
of RGSep. This is best illustrated by the parallel compositionule:

" Cypsat (p;R[ G2 Gy )
T Cysat (p;R[ G162 )

T CikCysat (p1 P2 R;Gi[ G @)

(Par )

When all the state is shared, we get the standard rely/guarantemile. In this case,
as the local state is empty, we gep; P2 () pr*ppanday @ () " .
Formally, one can encodé C saks (P;R;G;Q) as™ C sat (P} R; G;@).

When all the state is local, we get the separation logic rules. iff8e there is no

shared state, we do not need to describe its evolutiorR and G are simply the
identity relation.)

Formally, one can encodé 5, fPgC fQgas™ C sat (P;;;;;Q).

Deriving the proof rules of rely/guarantee and separation ffic from their encodings in
RGSep is straightforward, and omitted.
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Resource invariants Encoding full concurrent separation logic [58] in RGSep is sim
larly quite easy. The resource invariant] is simply threaded through the assertions, and
the rely and guarantee conditions assert that it remains una&ed by interference. For-
mally, encode] "5 fPgCfQgas™ Csat (P U R;R; Q [J), whereR=1fJ Jg.

Again the proof is straightforward, but for demonstration let s derive the concurrent
separation logic rule for atomic blocks§L-Atomic ).

Csat(J P;;:fJ JgJ Q) Jprecise (J J) fJ Jg Z—Axmm
iCisat (_emp Pi;;f]  Jg[_emg Q) o
hCi sat (J] P;;;fJ  Jg[H] Q)
Now, apply rule AtomR , where ) is the previous proof tree.
Fse@ ~J) J) J Fss@ ~J) J) J
J]stable undefd  Jg J]stable undefd  Jg
P stable undefJ Jg Q stable undefJ Jg () AomR
om

“hCisat (3] P;f3  Jgfd Jg[H] Q)
Hence, we have derived the concurrent separation logic rule fastomic commands:

g fP JgCfQ Jg J is precise
J ‘SLng i‘CIng

(SL-Atomic )

3.5 Example: lock-coupling list

This section demonstrates a ne-grained concurrent linkeddt implementation of a mu-
table set data structure. Instead of having a single lock for thenére list, there is one
lock per list node.

Locks Here is the source code for locking and unlocking a node:

lock (p) f atomic(p:lock = 0)f p:lock :=td; gg
unlock (p) f atomic f p:lock := 0; g g

The simplest implementation forlock is to use a conditional critical region, which is just
syntactic sugar for an atomic block whose body starts with an assurmemmand (see2.2).
These locks store the identi er of the thread that acquired thdock: tid represents the
thread identi er of the current thread. Storing thread iderti ers is not necessary for the
algorithm's correctness, but it facilitates the proof. Simarly, unlock uses anatomic
block to indicate that the write to p.lock must be done indivisibly.

The following three predicates represent a node in the list: YINs(X;Vv;y) represents
a node at locationx with contents v and tail pointer y and with the lock status set tos;
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locate (e) f removde) f add(e) f
local p ;c; local x ;y;z; local x ;y;z;
p := Head (x;y) := locate (e); (x;z) := locate (e);
lock (p); if (y:value = ¢e) f if (z:value 6 e) f
C := p:next; lock (y); y := new Nodg;
while (c:value < e) f Z = y:next; y:lock = 0;
lock (c); x:next = z, y:value = e;
unlock (p); unlock (x); y:next := z;
p:=c; dispose (y); x:next :=vy;
C := p:next; gelse f g
lock (c); unlock (x); unlock (x);
g g g
return (p;c); g
g

Figure 3.3: Source code for lock coupling list operations.

(2) U(x;v;y) represents an unlocked node at locatior with contents v and tail pointer
y; and (3) L{(x;v;y) represents a node locked with thread identi ert. We will write
N _(x;v;y) for a node that may or may not be locked.

Ns(X; V;y) L ox7f ‘lock=s; :value=v; :next=yg
ucvy) £ No(xviy)
Li(X;V;y) def Ne(X;v;y) M t> 0

The thread identi er parameter in the locked node is require to specify that a node can
only be unlocked by the thread that locked it.

t2TAUXvV;Nn) Lix;v;n) (LocKk
t2T"L(x;v;n)  U((X;v;n) (Unlock

TheLock andUnlockactions are parameterised with a set of thread identi ersT. This
allows us to use the actions to represent both relies and guatees. In particular, we
take a thread with identi er tid to have the guarantee withT = ftid g, and the rely to
use the complement on this set.

From the Atomic rule, we can derive the following rules for the lock primitigs.
(Arguably, these speci cations are not as simple as one might hep Chapter/ 4 describes
variant proof rules that enable much simpler speci cations folock and unlock .)

P stable underR Q stable underR
P) N(p;v;n) F Lia(p;vin) F) Q
" lock (p) sat (P} R; G;[Q)
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P stable underR Q stable underR
P) Li(p;v;n) F U(piv;n) F) Q
" unlock (p) sat (P, R; G;[Q)

(Unlock )

The Algorithm Now we build a ne-grained concurrent linked list implementaion of
a set using the lock mechanism we have de ned. The list has opets add, which adds
an element to the set, andemove which removes an element from the set. Traversing
the list useslock coupling the lock on one node is not released until the next node is
locked. Somewhat like a person climbing a rope \hand-over-hd,” you always have at
least one hand on the rope.

Figure [3.3 contains the source code. An element is added to the bg inserting it
in the appropriate position while holding the lock of its preious node. It is removed by
redirecting the previous node's pointer while both the presus and the current node are
locked. This ensures that deletions and insertions can happeoncurrently in the same
list. The algorithm makes two assumptions about the list: (1) it $ sorted; and (2) the
rst and last elements have sentinel valuesl and +1 respectively. This allows us to
avoid checking for the end of the list.

First, consider the action of adding a node to the list. Here is ancéion that ignores
the sorted nature of the list:

t2 T2 L(x;u;n)  Le(X;u;m) A U(m;v;n)

To add an element to the list, we must have locked the previous de, and then we can
swing the tail pointer to the added node. The added node must havthe same tail as
previous node before the update.

To ensure that the sorted order of the list is preserved, the actuaction must be
speci ed with respect to the next node as well. We ensure the vauve add is between
the previous and next values.

(t2T)N(u<v<w)” (L(x;u;n)  Ns(n;w;y))

(Inser)
Li(x;u;m)  U(m;v;n) Ng(n,w;y)

The nal permitted action is to remove an element from the list The action speci es
that to remove noden from the list, both n and the previous node X) must be locked.
The tail of the previous node is then updated to the removed wie's tail, m.

(t2T)M (v<1)M (Le(xun)  Le(nsvim))  Le(xu;m) (Remov

We de ne | (T) as the four actions given abovet.ock [Unlock|Insertand Remove These
are depicted in Figure 3.4.1 (ftg) allows the threadt: (i) to lock an unlocked node, if)
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V ] _ r - H | V ] _ r - H | LOC@
oo Locked o
V| = n V| —t=— n (Unlock
locked ~~~~°~ "0~
u = w — Yy ul o, W[ —— Y u<v<w (Insen)
Locked S Locked -
ﬁlj
ul , Cm ul = m | v< +1 (Remov
Cockeday Locked ~~ °
Y
Locked

Figure 3.4: Pictorial representation of the actions

to unlock a node that it had locked, {ii ) to insert a node in the list immediately after
a node that it had locked, and {v) if two adjacent nodes in the list are locked by, to
remove the second node from the list by swinging a pointer past it-or a thread with
thread identi er t, take R = | (ftg) and G = | (ftg).

We can use separation to describe the structure of the shared list. h& following
predicate,Is(x; A;y), describes a list segment starting at locatior with the nal tail value
of y, and with contents A. We write for the empty sequence andfor the concatenation
of two sequences.

def

Is(x;A;y) = (x=y~ A= ~emp

_(9vzB:x6 y* A=vB N(x;v;z) Is(z;B;y))

Because of separation logic, we do not need any reachabilityegicates. Instead, the "list
segment' predicate is simply a recursively de ned predicate. He de nition above ensures
that the list does not contain any cycles.

The algorithm works on sorted lists with the rst and last values eing 1 and +1
respectively. We de nes(A) to represent this restriction on a logical listA.

8
sorted() & < true if (A= )_(A=a)
- (a<b)” sorted(b:B) if (A=abB)

s(A) e (9B:A =1 B +1 )" sorted(A) ™ emp

Figures[3.5 and 3.6 contain the proof outlines ofocate , add, and remove The
outline presents the intermediate assertions in the proof. Rirer, we must prove that
every shared state assertion is stable under the rely. These proafsolve reasoning
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locate (e) f

local p ;c;t;

9A: Is(HeadA;nil) s(A)* 1 <e

p := Head

9zB: Is(Head ;p) N(p;1 :Z),, _
Is(Z;B; nil) s(1 B) ©

lock (p);
.PB:lIs(Head ;p) L(p;1 ;Z),

9 Isz:Bnil) s(1 B) 1 o<e

hc := p:next;i

OB: Is(Head ; p) L(p; 1 ;c) L
Is(c;B:nil) s(1 B) 1 <e

h := c:value;i

9u: 9ABZ: Is(HeadA;p) L(p;u;c)

"I N(c;t;Z) Is(c;B;nil) s(Aut B)
while (t < e)f

9ABZ: Is(HeadA;p) L(p;u;c)

Nu<e

u: N(c;t;Z) Is(c;B;nil) s(Aut B)A us<entt<e
lock (c);
_9AB: Is(HeadA;p) L(p;u;c)
uz: L(c;t;Z) Is(Z;B;nil) s(Aut B)At <€
unlock (p);
_9AB: Is(HeadA;c) L(c;t;Z)
91 Is(z:B: nil) s(At B) “tee
p:=c
_9AB: Is(HeadA;p) L(p;u;Z)
MZ 1 1s(z:B: nil) (A uB) tu<e
hc := p:next;i
_9AB: Is(HeadA;p) L(p;u;c)
u: Is(c; B; nil) s(A uB) tus<e
h := c:value;i
[9ABZ: Is(HeadA; p) L(p;u;c)
M N(et:2) Is(z;B:nil) s(AutB) U<
g
_9ABZ: Is(HeadA;p) L(p;u;c)
VTN (ev;z) Is(Z;Binil) s(AuvB) Y4<ete Vv

return (p;c);

g
Figure 3.5: Outline veri cation of locate .
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add(e) f local x ;y;z;t;
9A: Is(HeadA;nil) s(A)"1 <e
(x;z) := locate (e);
.9ZAB: Is(HeadA;x) L(x;u;z) N(z;v;Z)[, A
duv: Is(Z;B; nil) s(AuvB) usete v
ht = z:value;i if (t 6 e)f
.[9ZAB: Is(HeadA;x) L(x;u;z) N(z;v;Z) . A
duv: Is(Z;B; nil) s(AuvB) useresv
y = cons(0; e; 2);
Quv: 9ZAB: Is(HeadA;x) L(x;u;z) N(z;v;2Z)

Is(Z;B; nil) s(AuvB) Uly:ez)"u<ete<v
hx:next = y;i
uv: ]92AB: Is(HeadA; x) L(x;u;y) N(y;e;Z) Is(Z;B;nil) s(A ueB)\
g
unlock (x);
9v: [9A: Is(HeadA; nil)  s(A)|
g

removge) f local x ;y;z;t;
9A: Is(HeadA;nil) s(A)*1 <ete<+1
(x;y) = locate (e);
.9ZAB: Is(HeadA;x) L(x;u;y) N(y;v;Z) N N
UV 15z B: nil)  s(A uv B) us<ete vies<+l
h = ywvalue;i if (t =¢)f
.[9ZAB: Is(HeadA;x) L(x;u;y) N(y;e;Z)|,
MU is(z:B: nil)  S(A ueB) e<+l
lock (y);
_[9ZAB: Is(HeadA;x) L(x;u;y) L(y;e; Z)|,
MU Is(z:B: nil) (A ueB) e<+l
hz := y:next;i
_9AB: Is(HeadA;x) L(x;u;y) L(y;e;z),
u: Is(z;B;nil) s(AueB) e<+l
hx:next = z;i
u: ]9AB: Is(HeadA;x) L(x;u;z) Is(z;B;nil) s(Au B)\ L(y;e; z)
unlock (x);
9A: Is(Head A; nil)  s(A)| L(y;e;z)
dispose (y);
gelse f 9u: 9ZAB: Is(HeadA;x) L(x;u;y) Is(y;B;nil) s(A uB)
unlock (x); g
9A: Is(Head A; nil)  s(A)|
g

Figure 3.6: Outline veri cation of add and remove
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about the septraction operator ( ~); they are long, but straightforward. Since Chapter 6
describes how they can be automated, it is unnecessary to presémtm here. For an
example of such a proof, please see [74].

Theorem 29. The lock coupling algorithm is safe, and maintains the sodeature of the
list.

3.6 Related work (SAGL)

Concurrently with this work, Feng, Ferreira and Shaol [27] mposed a di erent combi-
nation of rely/guarantee and separation logic, SAGL. Both RGep and SAGL partition
memory into shared and private parts, but there are some notabbl erences:

Assertion language  SAGL has di erent assertions for the local state and for the shade
state. As it has multiple regions of shared state, it has a di erdrassertion for each region.
On the contrary, RGSep has a uni ed assertion language that dedzes both the local
and the shared state. Hence, in RGSep, we can write an assertiontthaks the local and
the shared state. We can also do the same in SAGL, but we need quasdtion at the
meta-level.

Rely/guarantee representation In SAGL, the rely and guarantee conditions are rela-
tions and stability checks are semantic implications. RGSepplvever, provides convenient
syntax for writing down these relations, and reduces the semaatimplication into a simple
logic implication (see Lemma 13x3.1.3).

Separation logic inclusion SAGL is presented as a logic for assembly code, and was
not intended to be applied at di erent abstraction levels. In his presentation, it does
not have separation logic as a proper subsystem, as it lacks thersfard version of the
frame rule [69]. This means that it cannot prove the usual sepation logic speci cation

of procedures such asopy_tree [60]. It should be possible to extend SAGL to include
the frame rule for procedures, but such extension is by no meansvious.

In contrast, RGSep subsumes separation logic [69], as well as $irgyle-resource variant
of concurrent separation logic [58]. Hence, the same proofs rilaéfor a single resource)
go through directly in RGSep (for procedures see Chapter 4).f©ourse, the real interest
in these logics is the treatment of additional examples, such &k coupling, that neither
separation logic nor rely/guarantee can handle tractably.

Atomicity assumptions In SAGL, every primitive command is assumed to be atomic.
RGSep instead requires one to specify what is atomic; everytigi else is considered non-
atomic. In RGSep, non-atomic commands cannot update sharedat, so we only need
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stability checks when there is an atomic command. On the othérand, SAGL must check
stability after every single command.

With this all being said, there are remarkable similarities biveen RGSep and SAGL.
That they were arrived at independently is perhaps encouragy as to the naturalness of
the basic ideas.
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Chapter 4

Practical use of RGSep

Chapter 3 introduced RGSep, a logic that combines rely/guantee and separation
logic. This enabled us to prove that lock-coupling list presees the sorted list structure
and does not leak memory (se€8.5). Proving the same property in concurrent separation
logic is extremely di cult, if at all possible. In this chapter, we will consider peripheral
issues, which are important in the practical application of RG&p.

x/4.1 considers three variant proof systems that attach the staltiy checks to di erent
proof rules. The last of these systemsnid stability, enables programs consisting of
a single atomic block to be speci ed concisely.

x|4.2 contains additional rules for checking that a program setes its guarantee
condition. These rules facilitate reasoning about programsitiv complex atomic
actions such as CAS.

x|4.3 observes that the standard proof rules for procedures anajher-order separa-
tion logic carry across to RGSep. Moreover, we can de ne mylie disjoint regions
of shared state and statically scoped interference.

x14.3.3 sketches an extension to actions with a local guard resting when an action
can be applied. This extension permits us to reason about locksthout having to
introduce thread identi ers.

Finally, observes that non-atomic accesses to shared memory can baté@ as
sequences of atomic accesses. It presents generic encondingsdieratomic reads
and writes, and derives two proof rules for non-atomic reads.
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4.1 When to check stability

When it comes to stability checks, the proof rules of Chapter|/3ra too conservative.
They check that assertions are stable on the entries and the exibf atomic blocks, at
the frame rule and at the Skip axiom. Hence, given a sequence of atomic commands
each intermediate assertion is checked for stability twice: oa at the exit of an atomic
command and at the entry of its successor.

Here, we shall see three alternative proof systems with slightly drent properties.
Instead of requiring that all assertions are stable by construan, we can also assign a
meaning to unstable assertions. There are two sensible choices: astable assertion
could stand either for the strongest stable assertion it entails dor the weakest stable
assertion that it is entailed by. This is represented in the fatwing de nitions:

De nition 30 (Weakest stable stronger assertion)

wssa(d)) o
wssag(q) stable undeR; and

for all p, if pstable undeR andp) q, thenp) wssa(Q).

De nition 31  (Strongest stable weaker assertion)

p) sswa(p);
sswa(p) stable undeR; and

for all g, if gstable undeR andp) g, thensswa(p)) q.

Given a binary relationR : M M, wssg(p) stands for the weakest assertion that is
stronger than p and whose description of the shared state is stable under Dually, let
sswa(p) be the strongest assertion that is weaker thap and stable underR.

It is easy to see that for everyp and R, wssa (p) and sswa(p) are well de ned: Both
true and false are stable underR; and for everyp, and p,, if p; and p, are both stable
under R, then so arep; * p, and p; _ po.

These de nitions provide the semantic basis for the followingitree new proof systems.

Early stability (at the forks of parallel composition and the exits of atomic locks):
Csates(P;R;G: 9 (™8 R° R: C sat (wssao(p); R® G; wssao(Q))

Late stability (at the exits of atomic blocks and at the joins of parallel comosition):
C sat s (p;R; G; 0 ()deé R R: C sat (sswao(p); R% G; sswao(0))

Mid stability  (at sequencing and at the forks and the joins of parallel compition):
C satws (p;R:G;9 (™B R° R: C sat (wssao(p); R® G; sswao(q))

Since stability depends on the rely condition and during thenpof the rely condition can
be strengthened according to th&/eaken rule, the de nitions quantify over all stronger
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rely conditions R®. The fourth combination, C sat (sswao(p); R% G; wssao(q)), places a
stronger requirement onC than (p; R; G; g), but because of Lemma 27 of3.3 it gives rise
to the same proof rules a€ sat (p;R;G;0).

Lemma 32. (8R° R: C sat (sswao(p);R;G;wssao(q))) =) C sat (p;R;G;0).
Proof. Apply the Weaken rule, asp) sswao(p) and wssao(q) ) Q. ]

The rest of this section presents the proof rules for early, latand mid stability and
proves their soundness. In order to carry out these soundness pgyoive shall use the
following properties ofwssa(.) and sswa ().

Lemma 33 (Properties of weakest stable stronger assertions)

wssa(p) 0 p
(p) o =) (wssa(p)) wssa(q)
wssa(p ) (0  wssa(p) wssa(q)

Lemma 34 (Properties of strongest stable weaker assertions)

sswa(p) 0 p
(p) 9 =) (sswa(p)) sswa(q)
sswa(p g ()  sswa(p) sswa(q)

4.1.1 Early stability checks

One way to avoid duplicating the stability checks is to check ability on the forks of
parallel compositions and only on the exits of atomic blocks. he test at the fork of
parallel compositions ensures that the rst assertion in a proofutline is stable. And
since shared assertions are only modi ed by atomic commands, theecks at the exits of
atomic commands ensures that all the other assertions in the grboutline are stable.

Figure (4.1 contains the relevant proof rules. The di erencerdm the standard proof
rules is evident in the rst two rules: E-AtomR  drops the stability check onP], whereas
E-Par now checks thatp; and p, are stable. The other proof rules are more standard.
Unlike Skip, E-Skip does not have the awkward stability check orp. The rules E-
Seq, E-Weaken , E-Loop , and E-Choice are the same as in the standard semantics.
Finally, we can weaken the frame ruleE-Frame ) so that it does not check stability if
the command contains no atomic blocks. This stronger frame wilis not admissible in
the standard semantics.

Theorem 35 (Soundness) If © C sates (p; R; G; 0 then C sates(p;R;G;0).
Proof. By induction on the proof rules.
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T Cpsates(pR[ G2 Gy h) p; stable undeR [ G,
T Corsates(p2; R[ G1; G ) p, stable undeR [ G;

- E-Par
CikCy sates (p1 p2;R;Ga[ Goion ) ( )
g stable undeR P;Qprecise ¢ Q) G
* C sates (p;; ;G 0) " Csates(P P%5;55Q Q9
E-AtomR At
" hCi sates (p;R; G; 9 (EAOMR ) e sates (P_F] P%;;G;[Q F] Q9 (Aom )
© Csat 'R; G;
_ (E-Skip ) : ss(PRGP e loop)
skip sat s (p; R; G; p) C sates(p;R;G;p
" Crsates (p;R; G;r) © Crsates(p;R; G; 0
T Cpsates (T R; G; T C, sat 'R; G; _
‘ 2 Sates ( a) (E-Seq) ‘ 2 Sates (p ) (E-Choice )
(C1;Cy) sates (P;R; G; 0) (C1+Cy) sates (p; R; G; 0
R R% p) ¢ " Csates (p;R; G; 9)
G° G ) g r stable unde(R[ G)
* C sates (P2 R% G o) _ C contains ndi
R (E-Weaken ) - (E-Frame )
C sates (p;R;G; ) Csates(p 1,R;G;q )

Figure 4.1: Early stability proof rules

(E-AtomR ): The proof proceeds as for the usual semantics, buissao(_) removes
needing to check that the precondition is stable.

(Atom ) and (Prim ): The proof is the same as for the usual semantics.
(E-Skip ): Trivial, as wss4p) is preserved by environment interference.
(E-Par ): Follows from Lemma 23.

(E-Seq): Follows from Lemmas 24 and 25.

(E-Weaken ): Follows from Lemmas 20 and 21, because the early stability sem
tics quanti es over allR® R.

(E-Loop ): The proof is the same as for the usual semantics.

(E-Frame ): As C and Ckskip are equivalent with respect to the operational se-
mantics (cf. Lemmal 26), we can derive the frame rule from theapallel rule. We
consider two cases separately. ifstable undeR|[ G, abbreviated to (y) below, then
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T Crsatis(pR[ Gy, G ) ¢, stable undeR [ G,
T Corsatis(po;R[ G1; G ) o stable undeR [ G;

- L-Par
CikCysatis(pr p2sR;Gi[ Goiop @) ( )
p stable undeR P;Qprecise ¢ Q) G
" hCi sat.s (p;;; G; Q) " Csats(P P%:5:Q Q9
L-AtomR At
"hCi satis (p;R; G; 9 (L-AomR ) S satis (P_F] P%;;Gi[Q F] Q) om )
© Csat 'R; G;
S (L-Skip ) : s (PR Gip) (L-Loop )
skip sat s (p; R; G; p) C satis(p;R;G:p
© Cysatis(p;R;G;r) " Crsatis(p;R; G0
" Cysat s (rR;G; © C, sat 'R; G; _
‘ 2 sats ( a) (L-Seq) \ 2 sats (p ) (L-Choice )
(C1; Cy) sat s (p;R; G; 0 (C1+Cy) sat s (p;R; G; 0
R R% p) p° " Csatis(p;R;G; 9
G° G ) g r stable unde(R[ G)
* Csat.s(p% R%G% _ C contains ndi
R (L-Weaken ) < (L-Frame )
C satis (p;R; G; 0 Csatis(p nR;G;q r)

Figure 4.2: Late stability proof rules

F Csates(p;R;G; 0

F Csates(wssa(p);R;G;q)  F skipsates(nR[ G;iir)  (y)
F (Ckskip) sates (wssa(p) L R;G;q r)

F (Ckskip) sates(p ;R;G;q )
F Csategs(p nR;G;q 1)

If C does not contain critical regions, we can always také = ;. In this case,

F Csategs (p;R;;; Q) F skipsates(nR;;;r)
F C satgs(wssa(p);R;;;0) | skip sat gs(wssa(r);R;;;r)
F (Ckskip) satgs (wssa(p) wssa(r);R;;;q r)
F (Ckskip) sates(p n;R;;;q r)
F Csates(p rR;;;q 1)
F Csates(p nR;G;q )

4.1.2 Late stability checks

Figure[4.2 contains the “late stability' proof rules. In this sgtem, the atomic rule (-
AtomR ) requires that the precondition is stable, but avoids chechkg that the postcon-
dition is stable. The stability of the postcondition arises as a noof obligation of the
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© Cysatws (P R[ G2;Gi;1)  po; o Stable undeR [ G
T Corsatys (p2; R[ G1;Go; )  po; @ Stable undeR [ G,

" (CikCy) satys (pr P2sR;G1[ Goron )

P;Qprecise " Csatys(P P%;;;;Q Q) (P Q)
“hCi satys (P_F| PSR;G;[Q F] Q9

© Cysatys (p;R; G; 0
< : - Cysat 'R;G; :
skip sat us (p; R; G;p) (M-Skip ) X (Cl+202) ::tiﬂz (p'R'Ccl);'q) (M-Choice )

(M-Par )

(M-Atom )

r stable undeR

0 0
~ Cysatys (p;R;G; 1) R R P) P
" Cp satys (1;R; G;q) & 6 &) a
: (M-Seq) C satys (p% R% G% o)
(Cy; C2) satus (p;R; G 0) (M-Weaken )

" Csatys (p;R; G; 0

p stable undeR
- Csat (p;R;G;p)
© C satus (p;R;G;p)

" Csatus (p;R; G; 0
(M-Loop ) r stable undefR[ G)
_ C contains nch.i

" Csatws(p 1 R;G;q r)

(M-Frame )
Figure 4.3: Mid stability proof rules

surrounding program. For instance, if there is a following ataic block, then from the se-
guence rule, the postcondition must imply the (stable) precontion of that atomic block.
Otherwise, if it is the nal postcondition of a thread, thenL-Par checks that it is stable.

The other proof rules (-Skip , L-Seq, L-Loop , L-Choice , L-Weaken , and L-
Frame ) are the same as those for early stability.

Theorem 36 (Soundness)If ° C sat s (p;R;G; 0, then C sat s (p;R;G;Q.

The proof is analogous to the proof of Theorem 35.

4.1.3 Mid stability checks

Figure (4.3 contains the proof rules with the mid stability cheks. Unlike all the other
proof systems seen so far, the mid stability rule for atomic commds (M-Atom ) does
not require any assertions to be stable. Instead, we check statyilat sequential compo-
sition and the forks and joins of parallel composition. Sincebps involve sequencing of
commands, we also need to check that the loop invariantis stable under interference.
Because mid stability delays checking stability to the sequemg) operator, it enables
atomic operations to have much simpler speci cations. For exgnte, consider thelock
and unlock commands fronx3.5. Using the mid stability rules, we can derive the following
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much simpler speci cations:

" lock (x) satus (N_(x;v;n) F|;;f(LocRg;|Lia (X;Vv;n) F)
;75 f(UnlocRg; N _(x;v;n)  F)

" unlock (x) satus (Lia (X;v;n) F

These speci cations are not as concise as possible: they still hdlke explicit shared
frame F. This suggests that one could perhaps extend RGSep with anotheperator
suchthatP] [Q] 0 [P Q] and have an additional framing rule with the operator.

Lemma 37. If pstable undeR and g stable undeR, then
() Csatys (p;R;G;09 ( C sat (p;R;G; 0, and
(i) * Csatys (p;R;G;9 (°  Csat (p;R;G; Q).

Proof. (i) Trivial, as for all R® R, wssao(p) = p and sswao(q) = ¢.

(i) The =) direction is a straightforward induction on the mid stability proof rules; all
cases are trivial. To prove thg = direction, do an induction on the standard proof rules.
CaseSeq: From Lemmal27,9r% (r®) r)~ (r stable undeR)" ° C; sat (p;R;G;r9.

From the Weaken rule, we also have' C, sat (r®R;G;q). From the induction hy-

pothesis,” C; satys (p;R;G;r9 and ° C, satys (r®R;G;q). Therefore, by M-Seq,

" (Cy;Cy) satys (p; R; G; 0. The other cases are trivial. ]

Theorem 38 (Soundness)If = C satys (p; R; G;0), then C satys (p;R;G;0), i.e. for
allR® R, C sat (wssao(p); R%G;sswao(0)).

Proof. By induction on the proof rules. Prove each rule separately.
M-Skip : Trivial, as wssao(p) is preserved by environment interference.

Prim : Follows directly from Lemmal 37 and the standard semantics, & and Q
are stable underR.

M-Weaken : Trivial.

M-Atom :

For notational convenience in the following proof, lePy: Pi| = wssao(9y: P F))
and = sswao(Q F). (Since[] describes only the shared statewssao([]) can

be written as a top-level boxed assertion.)
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N OO RAEWDN R

<

O N ®DNR

1
2
3
4
)
6
7
8
9

10

(P Q) G
C satws (P P%;;::Q° Q%
Csat (P P%;;;;Q% Q%
(P1) P® F)"(Q) Qi F)
stable undeR
stable undeR

hCi sat (9y: Pi] P%R%G;9y: Q%
hCi sat (wssao(9y: P° F| P%;RS%G;
Sswao(9Y: Q%)

-Par :

C, satus (p1; R[ G2;G1;th)
C, satus (p2; R[ G1; G2 )

. p1; h Stable undeR [ G,
. p2; @ Stable undeR [ G,

Cisat (pi;R[ G2, Gy, )
C, sat (po; R[ Gi1; Gy, )
(ClkC2) sat (p1

PR G )

assumption

assumption

from 3, Lemmal 37
Def.[30 and 31

Def.[30

Def.[31

from 1, 4, 5, 6, 7,Atomic

from 7, Lemmas 33| 34

assumption
assumption
assumption
assumption

from 1, 3, Lem[37

from 2, 4, Lem|37

from 5, 6, Par , Thm

(C1kC,) sat (wssao(pr po); R% G;sswao(tp ) from 7, Weaken , Thm

CaseC; contains ndhi.

Cy satys (p; R[ G2; Gy au)
C, satys (P2;R[ Gi; Ga; @)
p1; & Stable undeR [ G,
C, contains nchi
Cisatus (p1; R[ G2 tn)
C, satys (p2; R; G2; i)
Cy sat (pi;RY[ Go;; th)

C, sat (wssao(pz); R% Ga; sswa (k)

assumption
assumption
assumption
assumption

from 1, 4

from 2, M-Weaken
from 3, 5

from 6

(C1kC,) sat (pr wssao(p2); R% G; o sswao(qp)) from 5, 6, Par , Thm 28
(C1kC,) sat (wssao(p: p2); R% G;sswao(tp ) from 9, Lem[33, Lem 34

CaseC, contains ndvi. Symmetric.

M-Seq:

1:

Cy satws (p;R; G;1)
C, satus (;R; G;q)
r stable undeR
C: sat (wssao(p); R%G;r)
C, sat (r;R% G; sswao(Q))

(C1; Cy) sat (wssao(p); R% G; sswao(0))
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assumption
assumption
assumption

from 1, 3

from 2, 3

from 4, 5, Seq, Thm 28



| Rules | Pessimistic| Early | Late |  Mid

Skip p { {

Seq { { q
Choice { { {

Loop { { p

Par { P P2 | Chi G | P1iP2; Ghi %
Atomic p;q q {

Table 4.1: Stability checks at a glance

M-Loop :

1: ° Csatys (p;R;G;p) assumption

2. pstable undeR assumption

3. * Csat (p;R%G;p) from 1, 2

4. C sat (p;R%G;p) from 3, Loop , Thm [28

5. C sat (wssad(p); R%G;sswao(p)) from 2, 4
M-Frame : Do a case split on the disjunction in the premise.

Caser stable undeR [ G.

1:  Csatys (p;R;G;p) assumption

2. r stable unde(R[ G) assumption

3. C sat (wssao(p); R% G; sswao(q)) from 1

4:  Csat (wssao(p) I R%G;sswao(q) r) from 3, Frame , Thm 28

5. r stable undeR° from 2, asR® R

6: wssao(p) r ( wssago(p ) from 5, Lemmal 33

7: sswao(q 1) ( sswao(qQ) r from 5, Lemmal 34

8  Csat (wssao(p r);R%G;sswao(q r)) from4,6,7

CaseC contains ndhii.
C satys (p;R; G; 9 assumption

C contains ndhi assumption

C satys (p;R;; ;0 from 1, 2
C sat (wssao(p); R® ; ; sswao(0)) from 3

from 4, Frame
from 5, Weaken
from 6, Lem[33,/34

]

C sat (wssgo(p) wssao(r); R% G;sswao(q) wWssao(r))
C sat (wssao(p) wssao(r); R% G; sswao(q) sswao(r))
C sat (wssao(p r);R%G;sswad(q r))

4.1.4 The stability lattice

Table 4.1 summarises the stability checks done by each of the fqaroof systems we have
met. Evidently the mid-stability rules appear more complex lhan the other three proof
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Figure 4.4: Stability lattice

systems, but this complexity makes them more powerful.
With the mid stability rules, we can prove strictly more speci cdions than with either
of the other systems. To prove this assertion, rst prove the folloing theorem.

Theorem 39.

Csates(p;R;G;9 =) Csatus (p;R;G; 9,
Csatis(p;R;G;09 =) Csatys (p;R;G;0),
Csat (p;R;G;9 =) Csats(p;R;G;0), and
Csat (p;R;G;9 =) Csates(p;R;G; 9.

This states that (i) mid stability is at least as powerful as early stability and lae stabil-
ity and that (i) all the variant systems enable us to prove at least as many specations
as the standard system. Proving this theorem consists of straightivard inductions over
the proof rules.

In addition, we can prove that™ hx := x + 1i satys (x = X|;R;R;x = X +1]) where
R=fx7'N x7! N+1g. This speci cation, however, does not hold in any of the other
systems because the precondition and the postcondition are urist& Hence, the mid
stability rules one can prove strictly more speci cations thareither of the other systems.
Similarly, we can specify an atomic commandi) with a stable precondition and an
unstable postcondition, or {i ) with an unstable precondition and a stable postcondition.
Thus, we can show that early and late stability are incomparablén strength and that
the standard system is the weakest of all.

These results are presented in Figure 4.4. An arrow fro to B in the diagram says
that the proof systemA can prove fewer speci cations tharB.

In addition, if the precondition is stable, then sat and satgs are equivalent, and so
are sat,s and satys . Dually, if the postcondition is stable, then sat and sat s are
equivalent, and so aresatgs and satys . If both the precondition and the postcondition
of a speci cation are stable, then provability is the same for &four systems.

Theorem 40.
(a) If pstable undeR, then

Csat (p;R;G;0 ( C sates (p; R; G; 0, and
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Csatis(p;R;Gig ( ~  Csatus (B;R;G; 9.

(b) If gstable undeR, then

Csat (p;R;G;0 ( Csats (p;R;G; 0, and
Csates(p;R;G;9 0~ Csatus (P R;G: Q).

Proof outline. The =) directions follow from Theorem 39. Fol = directions, take each
case separately and do an induction on the proof rules of the lnighand side. Each case
can be transformed to an application of the respective rule ofi¢ left hand side using the
additional assumption p stable undeR or g stable undeR. In some cases, we also need
to use the relevant consequence rul&eaken , L-Weaken , etc.). m

4.2 Satisfying the guarantee

So far, each time we want to reason about an atomic block, we muste theAtom rule.
We have to invent anP°  QPthat represents what the atomic block does and satis es
the guarantee. (In the semantics, the atomic block is actuallgnnotated with this action.)
When the body of the atomic block is large, guessing this actianight be di cult.

Since, however, the progranC,i;hC,i has strictly more behaviours thanhCy; Csi,
if we prove that hC,i;hC,i satis es the guarantee, thenhCy; C,i will also satisfy the
guarantee. The hope is that proving the former might be easi¢han proving the latter
by applying the Atom rule directly.

The following rules formalise this kind of reasoning.

“hCi sat (p;;;G;p)

A-Ski A-Loo
“hskipi sat (p;;; G;p) ( > “hC i satys (p;;;G;p) ( P)
“hCii sat (p;;; G0 “hCii sat (p;;;G; 9
"hC,i sat (q;;;G;r “hC,i sat (p;;; G;
2l sat (q ) (A-Seq) 2l sat (pi;:Gi ) (A-Choice )
"hCy; Ci sat (p;;;G;r) “hCy+ Cii satys (p;;; G; q)

The rulesA-Seq, A-Loop andA-Choice are also valid if we replace by an arbitrary
rely R (A-Skip would also need to test thatp is stable). However, applying these rules
with any R other than ; would be unwise because it adds useless stability checks in the
middle of atomic blocks. Instead, one rst appliesAtomR to check stability, and then
applies the \A-" rules with R = ; and Atom to complete the proof.

For example, consider the following program, a slight genersétion of CAS (compare
and swap):

CADX:0:C) ¥ ht :=[x]; if (t = o) fCyi

71



If [X] = o, it executesC atomically; otherwise it does nothing. The invented nam&€AD
stands forcompare and do We can derive the following two rules.

“hCisat (p x7'o truef;;;G;q t 2vargp;C)

(Cad)
" CAlX;0;C) sat (p [x7!_ truef;;;G;(p"t 6 0) _(q" t = 0))
F rosepP) true  pstableundeR g stable undeR
Fresepp [x7'0 true]) p° “hCisat(p%;;G;q t 2vargp;C) (Cad2)
a

* CAIx;0;C) sat (p;R;G;(p"t 6 0)_ ("t = 0))

The second rule is an immediate corollary ofad , AtomR , and Conseq . These de-
rived rules simplify the veri cation of algorithms involving CAS (for example, se@5.3.1).
Derivation of Cad. If we remove the syntactic sugarCAIX; o; C) becomes

ht :=[x]; ((assumé& = 0); C) + assumé 6 0))i:

First, prove that

t 2var{p;C) " hCisat(p [x7lo truej;;G;0q)

“hCi sat (p (emp™t = 0);;;G;q (emp™t = 0)) Frag‘jnse
“hCi sat (p (emp~ t = 0);::Gi(P 1 6 0)_ (4"t = 0)) |
and that
" assum@ = o) sat (emp;;;G;emp”t = 0) PAr;m
“hassumé = o)i sat (emp;;;G;emp”t = 0) om
Frame

“hassum@ =o)i sat (p 7't truef;;;G;p (emp*t=0))

Hence, applyingA-Seq, the rst branch of the conditional becomes:

“hassum@ = o); Ci sat (p 7!t truef;;;G;(p"t 6 0)_ (g™t = 0))

The second branch of the conditional is:

Prim
Atom
Frame

© assum@ 6 o) sat (emp;;;G;emp”*t 6 0)
“hassumé 6 o)i sat (emp;;;G;emp”t 6 0)
“hassum@ 6 o)i sat (p;;;G;p (emp”t 6 0))

“hassumé@ 6 o)i sat (p 7't truef;;;G;(p"t 6 0) _(q"t = 0))

Hence, from ruleA-Choice we get that (assum@ = 0); Ci + hassum@ 6 0)i) satis es

Conseq
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(p x7't truej;;G;(p"t 6 0) _ (g™t = 0)). Moreover,

G-Exact (x7!b X7'b) 2 G “ht :=[x]i sat (x7'b;;;G;x7!'b" b= 1) Z;rrr:]

=[x]i sat (x7'b true];;;G;x7'b true|] (b=t " emp)) c
onseq

- [ sat GID Toel;;G ob: (b=t~ emp)
“ht _[x]. sat (9b:571b_true;; G 9b (b=t ~ emp)

Conse
ht = [x]| sat (X7!_ true;;G; X7t true) . g
“ht =i sat (p X71__true),;;Gip ame
Finally, apply rule A-Seq to derive the required conclusion. O

4.3 Modularity

4.3.1 Procedures

Reasoning about procedures is orthogonal to rely/guarantaeasoning. We shall allow
mutually recursive function de nitions, but for simplicity assume they have no parameters.
This is su ciently general because, if necessary, parametersrce passed through a stack
implemented in the heap.

First, extend the grammar of commands as follows:

Cu=
let proc,=C;;:::proc,=C, in C Procedure de nitions
proc Procedure call

The syntax declares multiple procedures together to permit ntual recursion.

The operational semantics now uses a context that maps procedunames to their
de nitions; for example = fproc, 7! Cy;:::;proc, 7! C,g. This context is just passed
around by the existing rules. Here are the additional rules forrpcedure de nitions and
procedure calls:

1 (G )!:j (co )

“(let 4inC; )T (let 4inC% ) " (let qinskip; )" (skip; )
p p

) N ) R

;1 (C) ) fault (proc) = C proc 2 dom( )

T (let 4inC; ) R fault " (proc; ) R (C; ) " (proc; ) R fault
p p p

where ; ; returns the union of and ; giving precedence to entries inj.
The proof rules are extended with a context of procedure spéecations. The rules
presented so far just pass around. When calling a procedure, weust check that the
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procedure has been de ned; otherwise the call might fail. Ifhe procedure has been
de ned, the procedure call meets any speci cation against wtih we have checked its
body.

(Call )
;proc sat (p; R;G; g ~ proc sat (p; R;G; 0
Handling mutual recursive procedure de nitions is completglstandard. Assuming all
the procedures have the required speci cations, we prove thatich body,C;, has the right
speci cation. Under the same assumptions, we nally check that theommandC has the
right speci cation.

;proc, sat (p1;R1;G1;an);:::proc, sat (pn;Rn;Gn;ith) ~ Ci sat (p1;R1;G1;ah)

;proc, sat (p1;R1;G1;a1);:::proc, sat (pn;Rn;Gnith) ~ Ch sat (pn:Rn;Gnith)
; proc, sat (p1;R1;G1;0h); 111 proc, sat (pn;Rn;Gn;th) ~ C sat (p;R;G;0)

. (Defn )
" (let proc, = Cq;:::proc, = C,in C) sat (p;R; G; 0

Proving the soundness of the extended logic is straightforwardFirst, extend the
de nitions in X3.3 with a context that is just passed around.

De nition 41  (Guarantee). (C; ;R) guarantees G if and only if for all n,

(C; ;R ) guarantees , G, where (C;(I;s;0); R) guarantees , G holds always; and
(C;(l;s;0); R) guarantees ,,,; G holds if, and only if, if (C; (I;s; 0! R Con g,

then there existC? 1° s®and o° such that

1. Cong =(C5(15s%0Y);
2. (C%(1%s% d%; R) guarantees ,, G; and
3.if =p,then(s;sH 2 G.
De nition 42. F Csat (p;R;G;0 if and only if for all , % if j p, then
1. (C; ;R) guarantees G; and
2.if  (C; YT (skip; 9, then °fE g

Similarly, extend all the lemmas inx3.3 with the context, , of procedure de nitions.
The additional e ort required to prove the extended lemmas mounts to just passing
around. Finally, de ne C sat (p;R;G; 0 by quantifying over all contexts that
satisfy .

De nition 43. Let C sat (p;R;G; g if and only if for all procedure contexts , if
(proc) sat ( proc) for all proc 2 dom() , then C sat (p;R; G; Q).
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Hence, we can state and prove soundness of the proof rules for pahaes:
Theorem 44 (Soundness) If ~ C sat (p;R;G;Q0), then C sat (p;R; G;0).

The proof is identical to the proof of Theorem 28, except thatve have to pass the pro-
cedure context () around and that we have to prove the soundness of the two addmnal
rules (Call and Defn ).

This extension is orthogonal to when the stability is checkedThe same proof rules
apply to early, late, and mid stability.

4.3.2 Multiple regions

Concurrent separation logic [58] has multiple resource namesch protecting a di erent
disjoint part of memory. Chapter/3 presented RGSep acting on angjle region of shared
state. This section extends RGSep to multiple regions of sharsthte.

Assume a countably in nite set of region name&egionNamand let %range over that
set. The assertions are the same as before, except that shared @xxassertions are
annotated with the name of the region they describe.

p;a;rz=PjPLip qjp) qj9x p

As before, states consist of three components: the local stalg, (the shared state §),
and the local state of the other threadsd). The di erence is that the shared state is no
longer an element of the separation algebid , but rather a mapping from region names
to M; in other words, s : RegionNamé M

def

. fl:o M ~ s 2 (RegionNamé& M
De nition 45.  States = (I;s;0) g J (Reg )

Ao 2dom(s) S(?) is de ned

Two states may be combined provided they agree on their shareagtds, have disjoint
local states, and identical total states.

Assertions simply ignore the third component of the state (the stat of the other
threads), and are de ned in terms of the local statelf, the shared state ), and an
interpretation (i) for the logical variables. The semantics of assertions does raftange
except for boxes:

def

;s;i FresepPhy, 0 (1= u)™ (s(%:i FsLP)

The operational semantics is mostly una ected. The transitiorelation changes from
R . R . . .
Cong,J  Cong,into Cong, Cong,, whereR is a mapping from region names to

rely conditions (binary relations onM ). In the operational semantics in Section 312, the
only rule that depends onR is the rule for environment transitions. This becomes:
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8%2 dom(R): R(%(s(%;sY%)  (I;s%0d") 2 States
(Ci(lisio)! " (Ci(1;s% )

The other semantic rules just pas® around as before.

Judgements are extended into C sat (p;R; G; q), whereR and G map region names
to rely and guarantee conditions respectively.

Here is a simple rule for atomic blocks that access a single sharedion :

* Csat (P° P%;;55Q% Q%
POstable undeR(%  QPstable undeR (%
PO Q=) P Q (P° Q)Y G%

“hCi sat (P, P®R;GQ], Q%

(Atomicl )

We can also de ne a slightly more complex rule that allows the sagmatomic blocks to
access state from multiple shared regions.

“Csat (P :::P? P9;;5Q7 Q0 QY
Postable undeR (%)  QPstable undeR (%)
P Q=) P Q (P° Q9 G (%

*hCi sat (0/Q e % PO?R;G;% e % Q%

In both these rules, the boxed assertions of the postcondition mulse precise asser-
tions.

(Atomicll )

Proving the soundness of this extension is not too di cult. First we must extend the
de nitions and the lemmas ofx3.3 to useR and G instead of R and G. For example,
De nition 18 |becomes:

De nition 46. (C; ; R) guarantees G ()def8 n: (C;; R) guarantees , G, where

(C;(l;s;0; R) guarantees , G holds always; andC; (I; s; 0); R) guarantees , ., G holds if,
and only if, if (C;(I;s;0))! © Con g, then there existC 1° s° o®such that

1. Cong =(C%(1%s%0Y);
2. (C%(1%s%0); R) guarantees , G; and
3. if = p, then for all %2 dom(G), (S(%;sA%) 2 G(%.

Proving this extension sound is almost identical to the soundnegsoof for the single
shared region. Again, we can delay checking stability and deewearly, late, and mid
stability proof rules.
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4.3.3 Local guards

In the lock-coupling list proof of x3.5, the mutexes recorded the thread identi er of the
thread which has acquired the lock. Although the actual impl@mentation may store a
single bit, it is customary in rely/guarantee proofs to add somauxiliary state to specify
which thread has acquired the lock. Hence, we can assert that grihe thread that has
acquired a lock can later release it.

This extension achieves the same e ect without needing to irdduce any auxiliary
state. We can instead use separation logic permissions. Locking alaaetains half the
permission for a node; unlocking a node restores the missing pessimn.

x 7' f:lock=0g x 7t slock=1g
x 7rf lock=1g x 7!f :lock=0g

Using these actions, when a thread acquires a lock, it gets a tok#irat (1) enables it to
release lock, i{ ) ensures that no other thread releases the lock. If the threadrfjets to
release the lock, this will show up as a memory leak: any provalprecise post-condition
will contain the token. The thread holding the token can also g@ss it to another thread
via some communication mechanism. Hence, it can delegate theolwtedge that the lock
is acquired and the responsibility that it is later released.

In this example, the local state of a thread plays quite a subtleole in controlling
interference. It acts as a token, a permission to perform a cam action, and as a guard,
a prohibition that the environment does some action.

In the operational semantics, an environment transition (see §ure|3.2, 6th rule)
requires that the resulting state is well formed, that the new sired state is disjoint from
the local state. In essence, the existence of the local staéstricts what the environment
can do (e.g. it cannot allocate an existing memory address).

Besides its prohibitive role as to what other threads can do,he local state has a
permissive role. Its presence allows a thread to do more actiahsn it would otherwise
be able to do (e.g. in some algorithms, a mutex can be unlockedlyby the thread that
locked it).

So far, our proof rules have ignored these two roles of the |bstate that are present
in the semantics. We can, however, extend our assertion language¢h guarded boxed
assertionsLjS|, wherelL is an assertion about the local state, whose presence is used in
the stability proof of S. Similarly, guarded actionsGj P  Q use the guardG to stand
for the local state that must be owned for the action to occur.

De nition 47. The assertion|LjS| is stable under interference fronG j P  Q if and
only if

(P ~S) Q) Sor:(P G L)or:(Q L)or:(S L)
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The three new cases are when the action cannot execute. Thedlostate that protects
the stability of a shared assertion cannot be updated directly lsause the shared assertion
might become unstable. Each time it is updated we need to reatkestability.

4.4 Non-atomic accesses to shared memory

The semantics, as presented so far, restricts accesses to shared megnwmbe atomic.
The only form of commands that can access shared state is the aioncommand, hCi.
However, it is well-known that non-atomic accesses can be simgld by a sequence of
multiple atomic accesses. For instance, we can encode a non-atoshared read as two
atomic reads, and a check that both reads returned the same valulf the values di er,
then we could have read a corrupted value; so we assign a randontugato x. Another
possibility is to forbid races altogether. In this case, if thewio values read di er, reading
just fails.

Race 3 corrupted value| Race 3 error
local temp; local temp;
hemp :=[€]i; hemp :=[€]i;
x:=[e]| h:=[e]i; hx :=[eli;
if (x 6 temp) if (x 6 temp)
X = nondet fault;

For both implementations of the non-atomic read, we can des the following rule:

P=(Q XT7'Y) [P] stable undeR x 2 fv(P)
“ x:=[€]sat (P|" e= X;R;G; P|*x=Y)

Given a stable assertiofP | assigning a constant valu&’ to the memory cell at address
e, we can read this cell non-atomically and get the valu¥. The logical variable X is
used because could mention x.

For the non-faulting implementation, we can derive a simpleule for racy reads. If
the shared state contains the memory cell at addressthen we can read¢]. We cannot,
however, assert anything about the value we read because a racadition could have
occurred.

P=(Q X7!') [P|stableundeR  x 2 fv(P)
* x:=[¢]sat (P]" e= X;R;G; [P)

Proof. In the following proof outlines, the boxed assertions are stableecause of the
assumption|P| stable undeR.
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n (0] n (0]

Q X 7TY]"e= X Q X7 ] e=X
H)cal temp; o H)cal temp; o
Q X71Y]re=X Q X7 Jre=X
Hemp =eli; o Hemp =eli; o

Q X7Y|he=XA"Ntemp=Y Q X7l J[re=X
Hx::[e]i; o p(::[e]i; o

Q X7Y|Ax=Y"x=temp

H (x 6 temp) fault; o H (x6tem@x:: nondet
Q X7Y|Ax=Y"x=temp

]

We can also encode non-atomic operations with side-e ects assaquence of atomic
operations that fails if a race condition occurred. For instace, a non-atomic write is
just a sequence of arbitrary atomic writes, which will eventudl write the entire value
provided that there were no con icting writes.

8 9
% docal t 1ty 1 %
t1 := nondet
o g BHeEl= ti; %.‘
- M, = [e]i; ’

% if (t,6 t,) fault; %
He] := €b;

[e] :=

More generally, given a non-atomic primitive command and a gable memory model,
we can devise an encoding into a sequence of atomic commands thuarantees the same
properties. Based on that encoding, we can derive custom proaoies.
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Chapter 5

Reasoning about linearisability

Linearisability is the standard correctness condition for negrained concurrent data
structure implementations. Informally, a procedure is linesable in a context if and
only if it appears to execute atomically in that context. A cocurrent data structure is
linearisable if all the operations it supports are linearisabl

Linearisability is widely used in practice because atomic codmn be speci ed much
more accurately and consicely than arbitrary code. For insta@, consider we want to
specify the following procedure, which increments the sharedriable x atomically:

inc() fintt ; doft := x;gwhile (: CAR&X;t;t +1)); g
Using the rely/guarantee proof rules, we can prove thainc() satis es the speci ca-
tions (x:N;x:(x ;G;x=N+1), (x N;x (x ;G;x N+1), (x N;Xx (x ;G;x N+1), and
(true; True; G; true), where G = (x (x ). Each of these four speci cations is useful in a
di erent context, but there is no single best speci cation we ca give to inc() .

A better way to specify inc() is to prove that it is observationally equivalent to
hx := x+1;1i. Then, using the mid-stability proof rules, we can derive the spgecation
(x = N; True; G; x = N+1), which encompasses the previous four speci cations.

This chapter, rst, de nes linearisability in two ways: the standard one due to Herlihy
and Wing [45], and an alternative one that is more suitable foveri cation. Then, we
shall consider how to prove linearisability, illustrated by lirearisability proof sketches of
a number of ne-grained algorithms. The chapter concludes bgiscussing related work.

5.1 De nition of linearisability

5.1.1 Historical de nition

Herlihy and Wing [45] de ne linearisability in terms of histories of 1/0 automata. A
history is a nite sequence of events describing the executiori a concurrent program.
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There are two types of events: invocations of methods and (nwhiing) responses. For each
invocation, there may or may not be a matching response later the sequence (depending
on whether the method call has returned or is still running); bt for each response, there
is a matching invocation earlier in the history. Hence, all noempty histories start with
an invocation event.

A history H induces an irre exive partial order<y on operations,

op. <y OpP; if and only if res(op,) precedesnv (op) in H.

Two operations that are unrelated by this order are said to beoncurrent.

A history H is sequentialif every invocation in H, except possibly the last, is imme-
diately followed by a matching response. Each response is imnegdly preceded by a
matching invocation. Or equivalently, a historyH is sequential, if and only if,<y is a
total order.

For a history H, completdH) is the maximal subsequence dfl consisting only of
invocations and matching responses. In other wordspmpletgH) is obtained fromH by
removing any unmatched invocations. A history idegal if it satis es all the internal data
invariants.

De nition 48. A history H is linearisable, if it can be extended (by appending zero or
more response events) to some histoky° such that:

completgH 9 is equivalent to some legal sequential histo8/
<y <s.

An object is linearisable if all its possible execution historiegre linearisable.

5.1.2 Alternative de nition

Herlihy and Wing [45] acknowledge that the rst de nition of linearisability is somewhat
“awkward' for veri cation. Instead, it is better to de ne under what conditions a method
Is linearisable, and to say that an object is linearisable if andnly if all its methods are
linearisable.

A method call is linearisable if it is observationally equivant to an atomic execution
of the method at some point between its invocation and its retm. Phrased di erently, a
method call is linearisable if there exists an instant betweeré invocation and the return
of the method at which the entire externally visible e ect of he method took place. The
instant when according to an external observer the entire e ¢©of the method takes place
is known as thelinearisation point of that method.

Of course, this de nition only makes sense in a context where thterms \externally
visible" and \atomic" are de ned. We consider them in the conte&t of a simple module
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that owns some private memory, inaccessible from outside the module. Aaxternally
visible e ect is any observable update to the global memory and the result ofcall to a
public method of the module. Similarly,atomic will be with respect to all public methods
on the module and with any code outside the module. When a moduimplements a
data structure and provides update and access methods, it is eft useful to de ne an
abstract version of the data structure and assume that it is globigl visible. Even though
it may not be visible directly, all its data would be availablethrough the module's access
methods.

5.1.3 Properties

Linearisability is a local notion: a history consisting of callso multiple separate objects
is linearisable if and only if it is linearisable with respect teeach of the objects separately.
Hence, we can partition the task of proving linearisability ancconsider one object at a
time.

In addition, linearisability enables concise speci cations: Bnearisable method is spec-
I ed by just the precondition and the postcondition of its linearisation point. Since all
interesting concurrency is hidden within the module, the métod can be given a simple
speci cation summarising its sequential e ect.

5.2 Proving linearisability

In theory, a method is linearisable if and only if modulo termmation it is equivalent to a
single atomic block performing its abstract operation. Theffere, to prove that a method
is linearisable it is su cient to be able to reason about progranequivalence in a possibly
restricted context.

The standard way for reasoning about program equivalence is tepresent programs
as transition systems and to de ne appropriate simulations betaen them. Unfortunately,
this approach is not practical. Transition systems and simulatin relations are unintuitive
to the average programmer. Wanting to reason about his C progm, the programmer
has to translate it to a di erent formalism (a transition system) and to de ne special
simulation relations between objects of that new system.

This complexity is, however, unnecessary. Proving linearisdity may be a special
case of proving program equivalence, but reasoning about thepecial case is much sim-
pler than about the general case. Instead, we can embed the spmtion within the
program as auxiliary code. Writing these annotations is a fan of programming, familiar
to the average programmer. As the examples xb.3 will demonstrate, most algorithms
require very few annotations. More advanced algorithms (e.RCDSS) require more aux-
iliary code, but still the designers of the algorithm should belde to come up with these
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annotations if they believe that their algorithm is correct

Before presenting further details, it is useful to recall how werove the correctness
of sequential programs. Assume we are given a low-level implensgidn (e.g. a sorted
linked list) and a high-level speci cation (e.g. a set of integs), and we want to prove that
the implementation conforms to the speci cation. First, assuméhat concrete program
and the abstract program operate on disjoint states: the concretand the abstract state
respectively. If not, we can rename the variables of either @gram to satisfy this condition.
Then, de ne an abstraction map that relates the concrete state to the abstract state.
Execute the two programs in sequence, and show that if the absttéon map holds initially,
it also holds when both programs end. For an object with multile methods, repeat this
process for each method of the object.

For concurrent programs, we can take a similar approach.

1. For each method, locate thdinearisation point as a point in the concrete source
code. The intended meaning is that when this program point isxecuted, it is a
valid linearisation point for the particular method call.

2. Embed the abstract operation as an atomic command at that pgram point.
3. De ne an abstraction mapthat relates the concrete and the abstract states.

4. Prove that if the abstraction map holds initially, then it holds continuously through-
out the program, and that the concrete method and the abstraanethod return the
same results.

Unfortunately, the rst step may fail. Sometimes, we cannot idetify the linearisation
point as as a point in the program's control- ow graph becaus& depends on future
behaviour.

Herlihy and Wing [45] gave an arti cial example of a concurreimgueue, whose lineari-
sation point could not be speci ed directly as a point in the sowe code. They went on
to reject this proof method and proposed a more elaborate metti whereby each legal
concrete state is mapped to a set of abstract states.

Their approach, however, is unnecessarily complex. Insteade whall introduce auxil-
lary variables to capture the location of the linearisation pint. The amount of auxiliary
state needed to carry out the proof of a program is a good measur the program's
synchronisation intricacy. For common synchronisation patters, there is a systematic
way of introducing such auxiliary state.

5.2.1 Single assignment variables

To prove that the embedded abstract operation at the linearigeon point was executed
exactly once, it is useful to have special variables that durinexecution get assigned at
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most one time. The proof technique is to introduce one such vahle per method, initially
unset, to assign to it at the linearisation point, and to have the pstcondition check that
the variable has been set. This ensures that the abstract opei@t was executed exactly
once, and, if the linking invariant is satis ed, the method is inearisable.

A write-once variable is a variable that at its de nition does not contain any value
and that dynamically gets assigned to at most once. Formally, wean de ne write-once
variables as an abstract data type with four operations:

Newingie : It creates a new, uninitialised write-once memory cell.
readsingle , Which returns the value stored in the write-once memory cell

write single © This has a precondition saying that the variable is uninitiised, so that
it cannot be assigned multiple times.

dispose singe : This simply deallocates a single-assignment variable.

These operations have speci cations:

fempg X = NeWinge ; fx 7 undefg
fy? z”e=yg X:=[€singe ; Ty z"x= 29
fe, 71 undefg [eidsinge = €; fer 71 exg
fe?!l g disposesinge (€); fempy

For convenience, we shall uselfinge notation for accessing the value stored in the write-
once memory locatiore. We will use the keywordsingle to declare such variables, and
we will omit the subscripts when they are obvious from the conké.

We can impose a syntactic restriction that assignments to a certaivrite-once variable
occur only together with the abstract operation at potentiallinearisation points. Hence,
if after the execution of a method that write-once variable &s been set, a linearisation
point was executed; moreover, the abstract operation took gide exactly once.

An alternative approach is to keep a counter per method call oating how many times
the abstract operation is executed (by a similar syntactic resitction). At the beginning
set the counter to 0, and at the end prove it contains 1. This appach is less convenient
because it requires more state to be carried around in the preof

5.2.2 Proof technique for a class of lock-free algorithms

Lock-free algorithms are a class of non-blocking algorithms which geidrof deadlock and
livelock, but not starvation. At all times, if some thread participating in the algorithm
Is scheduled, then global progress is made in the sense that soméstanding opera-
tion makes a non-Zeno step towards completion, even if some ¢lads have failed or are
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descheduled for arbitrarily long. Clearly, lock-free algithms cannot use locks to syn-
chronise between threads, because if one thread acquires a lacll then gets descheduled
and another thread waits for that lock, then no thread makes nogress.

Instead, a large class of lock-free algorithms splits the opémmn in two phases: The
thread executing a method, rst, announces its intention to prform operationk by atomi-
cally placing a record in memory; then, it proceeds to comgkethe operation. This record
contains all the information necessary in order to complete. Therefore, if another con-
current thread interferes with operationk, it will rst help the rst thread complete k
before performing its own operation. Therefore, the linemation point of a method call
Is not necessarily in the code of the method itself, because aneththread could have
intervened and nished o the operation on behalf of the calle

Typically, these algorithms create a record in the heap desbing the operation to be
performed. This descriptor record becomes visible to any infering thread so that they
can help' the outstanding method to nish. For the proof, it ishelpful to extend this
descriptor record with a single-assignment auxiliary eldAbsResult. (In algorithms that
do not have descriptor records, such as \lazy contains" [73], wartcintroduce an auxiliary
record containing just the eld AbsResult.) At each linearisation point, we perform the
abstract e ect of the operation, and assign its result teAbsResult. Then, we verify that:

fp~ d:AbsResult 71 undefg ConcreteOp¢l) f d:AbsResult 71 Result g;

which means that there was precisely one assignmentddAbsResult during the execution
of ConcreteOp¢l). By construction, we know that there is a one-to-one correspdence
between assignments td:AbsResult and linearisation points. This entails that the entire
abstract operation was executed precisely once at some momestveen the invocation
and the return of the concrete operation. Finally, the abstret and the concrete operations
return the same value; so, they have the same externally-visibbehaviour.

5.2.3 Proof technique for read-only methods

If a method does not have any side-e ects, we can employ a simpégaproach. All we need
to prove that there is a possible linearisation point. We can rak the requirement that the
abstract operation was executed exactly once to at least onc8ince the operation does
not have any side-e ects, executing it multiple times does natatter. This adjustment
often simpli es the annotations to such methods, as well as theoaesponding proofs.

5.2.4 Common annotation patterns

For each method call, we associate a descriptor record with oneld for each argument
of the method and one additional eld,AbsResult, which is assigned at the linearisation
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point. Calling a method implicitly allocates a new such recarin the heap. Within the
method's body, let the program variablethis ' point to that record.

For those algorithms that are passed a descriptor record as a parater, we do not
create a new record. Instead we extend the existing record widm AbsResult eld.

.....

given. The most common pattern is to writeLin yjs at the projected linearisation points.
Line, ..., (D) is a conditional linearisation point: if bholds, thene; up to e, are linearised;

otherwise, they're not.

o

ef

_____ = e;:AbsResult := AbsOpe,); :::; e,:AbsResult := AbsOpe,);
Lin e e, (B) & if  (B) fLiN 6,20,

..........

Finally, a very common idiom is for successful compare-and-swé@pAS) operations to
be linearisation points. Therefore, we annotate the CAS instrtions with the sequence
of operations whose linearisation points take place if the CAS successful.

CA§..e,(@;0;n) = h
bool b := CA%a;0;n);
Ling,.....e, (D);

return b ;

The angle bracketshCi denote that the commandC is executed atomically.

5.2.5 Prophecy variables

In some advanced algorithms, the location of the linearisatiopoint depends on unpre-
dictable future behaviour. For example, the linearisation pint of RDCSS (seex5.3.3) is
the read operation, but only if a later CAS succeeds.

Fortunately, we can circumvent this problem by introducingan auxiliary prophecy
variable. Prophecy variables, introduced by Abadi and Lampor[1l], are an analogue
to history variables and capture nite knowledge about the fture. Introducing such
prophecy variables is de nitively not intuitive, but Abadi and Lamport showed that it is
sound under some niteness conditions. A prophecy variable amats to an oracle that
guesses some condition about the future.

Here, we will be interested only in whether a certain future CAS sgeeds; so, a single
boolean prophecy variable is su cient (and it trivially satis es the required niteness
conditions).
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5.3 Examples

This section demonstrates the techniques described ¥5.2 by verifying a number of
ne-grained concurrent algorithms. Its aim is to show recurng auxiliary code patterns
rather than complete proofs. Hence, for brevity, most details W be omitted and only
proof sketches presented. Where more details are given, theewles act as further case
studies for RGSep. We shall consider the following algorithms:

1. concurrent stack implementations:
simple non-blocking stack
elimination-based non-blocking stack of Hendler et al. [39]

2. list-based set implementations:
lock-coupling list-based set
optimistic list-based set
lazy concurrent list-based set of Heller et al. [38]

3. restricted double-compare single-swap (RDCSS) of Harris dt {84]
4. multiple compare-and-swap (MCAS) of Harris et al. [34]

The hope is that the actual proof can be generated automatiltya from a program
annotated with the necessary auxiliary code and its rely and gwantee conditions. Such
an automatic tool has not yet been implemented: Chapter 6 dedges a less powerful
tool that can reason about the shape of memory-allocated datarsttures, but not about
their contents.

5.3.1 Stack algorithms

First, we shall consider two non-blocking stack algorithms. Bothlgorithms represent the
stack as a singly-linked list starting from a known addresS. The stack interface consists
of two operations,push and pop, with the following abstract implementations:

Abs push(e) ' hAbs:= e Abs AbsResult := g;i
Abs pop() " hcase (Abg)

j =) AbsResult := EMPTY

JVA=)f Abs:= A; AbsResult := v;g i

This pseudocode uses sequences and pattern matching notati@ve write for the empty

sequence, and\ B for the concatenation of sequences and B. Abs pushjust adds a new
element at the beginning of the sequencéibs pop rst checks if the sequence is empty.
If it is empty, it returns the reserved valueEMPT,Yotherwise, it removes the rst element
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class Cell fCell next ; value tdata;g | value pop () f
Cell S; Abs Cell t ;x;
dof
void push (value v) f h = S Lingis (t = null );i
Cellt ;x; if (t=null)
x := new Cell(); return EMPTY
x:data := v, X = t:next,
dof g while (: CAgis (&St ;x));
h:=Si return t :data;
x:next :=t; g
g while (2 CAis (&St;X));
g

Figure 5.1: Annotated simple stack implementation

from the sequence and returns it. Normally pushing a value doestnreturn anything,
but here we assume that\bs push(e) always returnse. This simpli es the speci cations
of the second stack algorithm.

Simple stack

Figure[5.1 contains a simple lock-free implementation of a wourrent stack. The stack is
stored as a linked list, and is updated by CAS instructions. The cadillustrates a common
design pattern in lock-free algorithms. Each methodi] reads the state's current value;
(i) computes an updated value depending on the value read; and { atomically updates
the state swapping the new value for its old value. If the state sachanged betweeni §
and (iii ) and has not been restored to its initial value, the CAS will fdj and we repeat
the algorithm until the CAS succeeds.

The highlighted code is the auxiliary code that is needed fohe linearisability proof. In
this case, the auxiliary code just consists of program annotatis de ning the linearisation
points. The linearisation point of pushis its CAS when it succeeds; the linearisation point
of pop is reading§, if it was empty, or the CAS, if that succeeds.

RGSep proof The proof is straightforward. To avoid "variables as resourcgs4], we
treat the shared global variablesS and Abs as memory cells at addresses&and &Abs
respectively. Any use ofSin the code is just a shorthand for [&]. We have two actions:
pushing an element onto the stack, and removing an element frotme stack.

&S7'ly &Abs7! A &Srix x7!Cel(v;y) &Abs7!vA (Push
&S7Ix x7!'Cellv;y) &Abs7! v A &S7ly x7!Cellv;y) &Abs7! A (Pop
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void push (value v) f
Cell t ;x;
AbsResult 7! undef Stackinv
x = new Cell();
x:data = v;
AbsResult 7 undef
x7!Cell(v;_) Stackinv
dof
AbsResult 7! undef
x7!'Cellv;_) Stackinv
it :=Si
x:next .= t;
AbsResult 7! undef
x7!Cell(v;t) Stackinv
g while (i CAkis (&S;t;X));
AbsResult 71 v Stackinv

value pop () f
Cell t ;x;temp
AbsResult 7! undef Stackinv
dof
ht = S Lingis (t = null );i
(t=null ~ AbsResult 71 EMPTY Stackinv)
_ (9x: AbsResult 71 undef K (x))
if (t =null) return EMPTY
9x: AbsResult 71 undef K (x)
X = t:next;
AbsResult 71 undef K (x)
¢ while (: CAgis (&S;t;X));
< 9v: AbsResult 71 v
OxA: &Abs7! A &ST7! x )
Isedx; null ;A) x7!Cellv;)) truef
temp:= t:data;
9v: AbsResult 71 temp Stacklinv
return temp ;

g

Il ©

Figure 5.2: Proof outline for the simple stack

These actions also push or pop a value from the abstract stack. Thu$,the concrete
and the abstract stack are equivalent at the beginning, they arstill equivalent after one
atomic operation. Formally, we can de ne the following list sgment predicate:

Isedx;y;A) £ (x=y~rA= 7 emp

_(x6 ynr9vzB: x7!Cellv;z) Isedz;y;B)" A=vB)

This represents a singly-linked list segment fronx until y, whose values form the se-
guenceA. We write A B for sequence concatenation and for the empty sequence. It
is straightforward to prove that the following assertion is stalke under the two possible

actions, (Push and (Pop).

Stacklinv def

9xA: &S7! x &Abs7! A lIsedx; null ;A) true|

Informally, this assertion says thatS points to the head of a list k) which represents
the sequence A) stored in Abs The \ true" conjunct indicates that there may be
other garbage nodes in the shared heap. This happens becausthefPop action: in its
postcondition, the cellx remains in the shared heap although it is not reachable fro®

Figure[5.2 shows the proof outline. Besides the invariant, thether crucial assertion
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about the shared state is:
I
IOxvAB: &Abs7! AvB &S7!x Isedx;t;A)
def

K(y) = t7!'Cellv;y) Iseqy;null ;B) true
_ (9xA: &Abs7! A &ST7! x Isedx;null ;A) t7!Cel(;;) true)

This asserts that either the cell pointed to byt is in the stack and the next cell isy, or
it is not in the stack but still in the shared state. This assertion isalso stable under the
two permitted actions/Pushand/Pop. Further, note that K (y) ) Stackinw.

The assertionK (y) is crucial for the safety of the algorithm. In order to prove bhat
pop is linearisable, we must ensure that when the CAS succeetlsiext = x. If between
the assignmentx := t:next and the following CAS, the nodet could have been popped
from the stack, the stack changed, and the node pushed back onto the top of the stack
(so that t:next 6 x), then the CAS would succeed, but would do something di erent
than poppingt from the stack. This is known as an ABA problem: the stack was in sta
A, then changed to state B, but the CAS does not distinguish betweestates A and B;
so it thinks it is still in state A. Note how the actions rule out this from happening:[Push
adds anew node to the shared state andPop leaves popped nodes in the shared state.
That is essentially why the assertiorK (y) is stable under the rely.

Now, consider the atomic blocks in more detail. Following thexact details below
is not central to understanding the algorithm or the linearishility proofs. It is just an
example of a RGSep proof that could be automatically generd by a moderate extension
of SmallfootRG (see Chapter 6 for more about mechanisation).

1. CASof push We have to prove the triple:

8 9
> (b” AbsResult 71 v Stackiny)=

b:= CAfis (&Sit;X); : b~ AbsResult 7 undef
- x7!'Cellv;t) Stackinv ’

AbsResult 71 undef
x7!Cel(v;t) Stackinv

Applying Cad (seex4.2), Ex, and Conseq reduces the problem to showing:

n o)
nAbsResuItf! undef x7!Cel(v;t) [9A: &S7!t &Abs7!A Isedt;null ;A) true]

AbsResult 71 undef x7!Celfv;t) [&S7't &Abs7! A Isedt;null ;A) true|
A1&S] = x; Abs push(v)i

nAbsRes,uItf!v &S7! x &Abs7! vA x7!Cellv;t) Isedt;null \';)A) true|
AbsResult 71 v OxA: &S7! x &Abs7! A lIsedx; null ;A) true]

(0]

Finally, apply the rule Atom with
P=&S7!'t &Abs7!A,
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Q=&S7!x &Abs7! vA x7!Cellv;t), and
F = Isedt;null ;A) true.

Note that the action P Q is an instance ofPush

2. CASof pop We have to prove the triple:

n 0
AbsResult 71 undef K (x)
é) = CApis (&St;X); |
. | | . .
2 bA9v: AbsResult 71 v OxA: &Abs7! A &S7! x Isedx; null ;A)
S pheadr! Cellv;_) true S
" (: b~ AbsResult 71 undef K (x))

IV ©

The proof is analogous to the previous case and proceeds by lgpy Cad, Ex, Conseq,
and nally Atom with

P=&S7!'t t7!Cellv;x) &Abs7!vA

Q=&S7!x t7!'Cellv;x) &Abs7! A

F = Isedpnext;null ;A) true

3. Reading Sin pop We must prove the following speci cation:

( ) ( )
AbsResult 71 undef (t = null ~ AbsResult 71 EMPTY StackInv)
Stackinv ©_(9x: AbsResult 71 undef K (x))

Apply Atomic with the following parameters:
fyg=; I
pO= Qo= (b™ &S7! null  &Abs7! )
_(bM&ST! x x7!Cellv;y) &Abs7! A)
P%= AbsResult 7! undef |
w. (b"t =null ~ AbsResult 71 EMPT)Y
Q= _ (: b~ t & null ~ AbsResult 7! undef)
F = (b” Isedx; null ;A) true) (: b™ Isedqy;null ;A) true)

(P Q9 G * Csat (P° P%:;::Q% Q% Qy:P| stable undeR
FV(PY\fyg=; j=«P) P°F FsQ® F) Q  [Q]stable undeR

“hCi sat (9y: P] P®R;G;9y:[Q] Q%
Note that we inserted the logical variableb to record whether the stack is empty or
not. The premises ofAtomic follow because:

P and Q are stable (proof omitted).
j=sLP) (P° F).
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j=s.(Q° F)) Q.
(P° Q% G. This holds becausd®= Q°and P%is exact.
The body of the atomic satis esfP? P% _fQ° Q%), namely:

)
(b~ &S7! null  &Abs7!  AbsResult 71 undef)

_(:bM&S7! x x7!Cellv;y) &Abs7! A AbsResult 71 undef)

t=[&S;

c’f (t = null ) [AbsResult] := Abs pop(); )
(bAt = null ~ &S7! null  &Abs7!  AbsResult 71 EMPT)Y
_Gbrt6null ~&ST7Ix x7!Cellv;y) &Abs7! A AbsResult 71 undef)

Therefore, we have proved thapush and pop have the following speci cations:

n 0 n 0
AbsResult 71 undef Stackinv push(v) AbsResult 71 v Stackinv
n 0 n 0

AbsResult 71 undef Stackinv x := pop() AbsResult 71 x Stackinv

with R = G = f(Push; (Popg. Furthermore, as AbsResult was written only at valid
linearisation points, these speci cations entail thatpush and pop are linearisable, hence
observationally equivalent (in any context that satis esR and does not accesS directly)
to the atomic operationsAbs push and Abs pop.

HSY elimination-based stack

Hendler, Shavit, and Yerushalmi [39] presented an improved \&on of a stack that per-
forms better on higher workloads. Figure 5.3 shows an adaptedrsion of their algorithm.
The highlighted bits in the algorithm is the auxiliary code reeded to specify and verify
the linearisability of the algorithm.

The implementation is moderately complex because it combiggwo algorithms: a
central singly-linked list, S, and an elimination layer. The elimination layer consists of
two global arrays: loc [1::threadNunj which has one element per thread storing a pointer
to a ThreadInfo record, andcoll [1::sizgd which stores the identi ers of the threads trying
to collide.

A push or a pop operation rst tries to perform the operation on the central sack
object, by doing a CAS to change the shared top-of-the-stack poér. If it is successful
then it is the linearisation point of the operation. Otherwiseif the CAS fails (because of
contention), the thread backs o to the elimination scheme. flthis scheme fails, it tries
again the top-of-the stack pointer and so on until one of the twschemes succeeds.

The elimination scheme works as follows: Threag rst announces its arrival at the
collision layer by writing its descriptor in the loc array. Then it selects a random slot in
the coll array, and it atomically reads that slot and overwrites it with its own identi er.
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class Cell fCell next ; value_t data ;g

class Threadinfo f

intid ; /Il thread identi er
int op ; /I PUSHor POP
value _t data ;

single int AbsResult ;g

Cell S;Abs // shared stack object(s)
ThreadInfo loc [1::threadNunj;
int coll [1:size ],

void StackOp(Threadinfo p)
int him ; pos;
while (true )f
if (TryStackOp(p)) return ;
Hoc [mypid := p;i
pos := GetPosition (p);
him := coll [pos];
while (: CA&&coll [pos]; him; mypid)
him := coll [pos];
if (1 him threadNumf
ThreadInfo g := loc [him];
if (génull ~ gid=him” q:0pé p:op)
if (CA%&loc [mypid; p; null ))
if (TryCollision (p;q))
return ;
else
continue ;
else

FinishCollision  (p); return ;

g
delay ();

if (: CA%&loc [mypid; p; null ))
FinishCollision  (p); return ;

/* Private methods */

bool TryStackOp(Threadinfo p)
Cell phead; pnext;
if (p:op= PUSH
phead:= S
pnext := new Cell(p:data; phead);
return CAS,(& S phead pnext);
else if (p:op= POR
hphead:= S Lin p(phead= null );i
if (phead= null )
p:data := EMPTY
return true ;
pnext := pheadnext;
if (CAJ&S phead pnext))
p:data := pheaddata;
return true ;
else
return false ;
bool TryCollision (Threadinfo p ;Q)
bool b;
if (p:op= PUSH
b= CApq(&loc [orid ]; 0; p);
else if (p:op= POP
b:= CAyp(&loc [g:id ]; g; null );
if (b) p:data := g:data;
return b ;
void FinishCollision  (Threadinfo p)
if (p:op= PO
p:data := loc [mypid:data;
Hoc [mypid := null ;i

Figure 5.3: Annotated HSY stack implementation

Now there are two possible scenarios depending on the value reauhf the coll

array.

If preads the identi er of another threadq executing an opposite operation, it attempts
to eliminate itself with it: First, it does a CAS to remove its enty from the loc array, so
that no other threads might eliminate themselves wittp, and then tries to removeq from
the loc array with another CAS. If this last CAS succeeds, then the two opations have
eliminated each other. This is the linearisation point of bdt the PUSH and the POP,



with the PUSHoperation happening immediately before th®OP. If the rst CAS failed,
this is because was eliminated by some other thread in the meantime; so we just ish
the collision and return.

Otherwise, the thread delays for a small amount of time in the lpe that some other
thread will collide with it. Then it does a CAS to remove its enty from the loc array. If
this CAS fails, p was eliminated by some other thread; so we just nish the collisioand
return. Otherwise we just go round the loop and try again the opation on the shared
top-of-the-stack pointer.

Linearisation points Following the methodology inx5.2.2, we introduced the auxiliary
\single-assignment” eld AbsResult, and annotated the linearisation points with assign-
ments to it. This algorithm has two types of linearisation paits. Those in TryStackOp

are quite standard and linearise the operatiop that is performed. On the other hand,
the compare-and-swaps idryCollision , if successful, linearise botlp and g, doing the

PUSHbefore thePOP.

Proof structure In this proof, we will exploit the modularity of RGSep to reasa sepa-
rately about the shared stack object stored it (code within TryStackOp) and separately
about the elimination scheme (the rest of the algorithm). The ene ts of this approach
are that:

The proof is simpler because the collision layer proof does naad not worry about
the shared stack, and vice versa.

The proof explains the elimination scheme orthogonally to #astack implementation.

The proof is more robust. If we change the implementation of ghcollision layer or
of the shared stack, we need to repeat only part of the proof.

Standard rely/guarantee cannot achieve this modularity irthe proof because interference
is global. Concurrent separation logic enables this modulgy, but it cannot tractably
carry out either of the subproofs.

In fact, we can decompose the collision layer proof further. Ehpart involving the
collision array is just an optimisation for selecting an identier that is likely to be waiting
for collision. Assigning any random value tdimis su cient for the safety of the algorithm.

The proofs use three disjoint regions of shared state (c#.3.2). Stack contains the
shared stack object and the abstract stack object;oc contains theloc [::] array together
with any ThreadInfo records that have become shared through that array. FinallyColl
just contains the coll [::] array.
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Predicates The proof uses the simplest case of fractional permissions (s2e4) with
just two fractions: 1/2 (for a read permission) and 1 (for a full pemission). Adding two

half permissions gives a full permissiorx i Vi X i Vo () X7V viNvg = Vs,
To describeThreadInfo records, we shall use the following predicates:

T(p;id; op;v;r) gef p7! Threadinfo f.id 1::Zid;.opl=:20p;.data =v;.AbsResult 2rg
Nid2 T" op2fPUSHPOPY
Tu(p;id; op; V) gt T(p; id; op; v;undef)

o

ef

Tr(p;id;op) & p7i Threadinfo f.id id;.op Zop g
Nid2 T op2f PUSHPORg

The predicate T(p;id; op;v;r) describes a record at address containing a valid thread
identi er (i.e. belonging to the set of all thread identi ers, T), a descriptor (PUSH or
POP) denoting which operation is performed, a data value and theesult of the abstract
operation at the linearisation point. The read permissions efe theid and op elds to
be shared. The predicatd y(p;id; op;V) just describes an operation before its linearisation
point. Finally, Tr(p;id;op contains the remaining permissions of &hreadinfo record.

These permissions are used to make the proof modular. At some peimnh the al-
gorithm both the central stack and the elimination layer needo know that a certain
Threadinfo recordp exists, but only one of the two components actually need to upta
its data and AbsResult elds. With this encoding, we give aT(p;_; _; _; .) permission to
the rst component and a Tr(p;_; ) to the second.

Central stack object The shared stack object proof is almost identical to the proof of
the simple stack in the beginning of this section. Again, we tregand Absas allocated in
the heap addresses &and &Absrespectively. The actions and the invariant are identical:

&S7ly &Abs7! A &Srix x7!Cel(v;y) &Abs7!vA (Push
&S7Ix x7!'Cellv;y) &Abs7! v A &S7ly x7!Cellv;y) &Abs7! A (Pop

As before, the invariant says thatAbs stores the sequence tha® represents. TheStack
subscript indicates the region described by the boxed assertion.

Stackinv E' OxA: &S7! x Abs7! A Isedx; null ;A) true]

Stack

For the function TryStackOp, we prove the following speci cation:

( ) )
Tu(p; mypid _; ) X := TryStackOp(p): (X"9v: T(p; mypld . v;Vv)  Stackinv)
Stackinv _ (0 x™ Ty(p; mypid _; ) Stackinv)
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bool TryStackOp(ThreadInfo p)
Tu(p; mypid _; ) Stackinv
Cell phead; pnext;
if (p:op= PUSH
Tu(p; mypid PUSH ) Stackinv
phead:= S
Tu(p; mypid PUSH ) Stackinv
pnext := new Cell(p:data; phead);
9d: Ty(p; mypid PUSHd) pnext7!Celld;phead Stackinv
Result := CA{& S phead pnext);
(Result ~9d: T(p; mypid PUSHd; d) Stackinv)
_ (: Result ™ Ty(p; mypid PUSH ) Stackinv)
return Result ;
else if (p:op= POP
Tu(p; mypid POP, ) Stackinv
hphead:= S Liny(phead= null ); i
(phead= null ~ T(p; mypid POP, ; EMPT)Y Stacklinv)
_ (Ty(p; mypid POP, ) K ()
if (phead= null )
T(p; mypid POP; _; EMPT)Y Stackinv
p:data := EMPTY
T(p; mypid POP, EMPTEMPT)Y Stackinv
return true ;
Tu(p; mypid POP, ) K ()
pnext := pheadnext;
Tu(p; mypid POP, ) K (pnext)
temp:= CAJ& S phead pnext);
temp” 9 v: T(p; mypid POP; ;v) Stackinv |phead?! Cellv; ) truel,
_ (: temp” Ty(p; mypid POP; ) Stackinv)
if (temp
9v: T(p; mypid POP; _;v) Stackinv |[phead’! Cellv;.) true
p:data := pheaddata;
9v: T(p; mypid POP,;v;v) Stackinv
return true
else
Tyu(p; mypid POP; ) Stackinv
return false

Stack

Figure 5.4: Proof outline of TryStackOp.
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This speci cation says that if the stack invariant holds initially and p has not been lin-
earised, then at the end,p will be linearised if and only if the function returnstrue.
Moreover, if the function returns true then p:data will contain the return value of the
abstract method call at the linearisation point.

Figure[5.4 shows the proof outline. The formul& (y) is the same as in the simple
stack proof and asserts that either the cell pointed to byheadis in the stack and the
next cell isy, or it is not in the stack (but still in the shared state). This avoids the ABA

problems discussed previously.

|
OXVAB: &Abs7! AvB &S7! x Isedx; pheadA)

K (y) % pheadr! Cellv;y) Isedy;null ;B) true
_ (9xA: &Abs7! A &ST7! x Isedx;null ;A) pheadr!Cell;) true)

Stack

Note that this proof does not mention the data structures of theslimination layer.

Elimination layer Similarly, the collision layer proof does not rely on the shadestack
implementation, except for the existence of abstract stack obgt, Abs It assumes that
the stack implementation cannot deallocatébs This is a trivial proof obligation because
only the auxiliary code can accesébs It amounts to the assertion/Abs7! _ truel,
which is implied by Stackinv and is trivially stable. This property can also be described
by an “existence' permission. In particular, while the elimirtéon layer knows something
about the Stack region, it does not modify it: its Gsgack = ; -

The proof uses fractional permissions in special manner. We ajwahave half of a
descriptor owned by the local state of a thread and half of it behging to the shared
state. When calling StackOp we rst put a Tr(_; _; ) permission of the argument in the
shared regionElim. This action initialises our logical splitting of the permissias.

emp  Tr(p;-;-) (Publish

Thereafter, all actions except fofPublishrespect this splitting and assign do not transfer
full ownership to either party, although they may swap which hles belong to the shared
state and which to the local state of a single thread.

A thread t 2 T e ectively owns the location loc [t] and all descriptors whose thread
identi er is t. It is allowed to place or remove a descriptor frontoc [t] provided that the
descriptor has been “published." This protocol ensures thatafthread ever reads a pointer
to a descriptor record from theloc array, the record is not deallocated afterwards.

loc[t] 7! - Tr(p;x;0p loc[t] 7' p T(p;x;0p;_;.) (Placg
loc[t] 7' p T(p;x;op;;-) loc[t] 7! null Tgr(p;X;0p (Removg
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Moreover, as a result of an elimination, thread can update a di erent entry, i, of the
loc array by overwriting an unlinearised operation by its own desiptor and linearising
both operations. If pushing a value, it must also make its descript available to the other
thread so that the POP can return the value that was pushed.

loc[i]7!' p Tu(p;i; PUSHV)"i 6t

loc[i] 7! null  T(p;i; PUSHV;V) (Elim))
loc[i] 7' p Tu(p;i;POP,x) Tgr(q;t;PUSH " i 6t
loc[i]7!' g T(p;i; POP;x;v) T(q;t;PUSHvV;V) (Elim2

Finally, there is an action that allows a thread to remove itdescriptor from the shared
state when it notices that it has been eliminated by another ttead:

T(p;t;op;_;) Tgr(p;t;op provided —~ (9v:loc[t] 7! v~ v E p) (NoticeElinm)
2T

The side-condition of this action requires thap does not occur in the location array. This
ensures that the representation invariant (de ned below) is stble under this action.

To de ne the representation invariant, we introduce the preatate my_loc(t) to describe
the properties of a single entryt of the loc array. The representation invariant is just the
separating conjunction of all entries in thdoc array:

" oc [t] 7! null

_9q:loc[t] 7t g Tu(a:t; )

_9qtloc[t] 7! q Tr(q;ZPOP)~ 16 t°

_9qvtloc[t] 7t g T(q;EPUSHV;V) "t 6 t°
J 0™~y mylodt) true

my _loc(t) ()

Note that my_loc(t) true (for all t9 and J are stable under the actions de ned so far.
Figures 5.5/ 5.6 and 5/7 contain the proof outlines diryCollision , FinishCollision
and StackOp respectively. The proof outline ofStackOp treats the code involving the

coll [::] array as simply assigning a random value to the variableim.

The most interesting case in the proof are the tw&CA$&loc [mypid; p; null ) oper-
ations in StackOp If they succeed, they simply do the actiorRemove If, however,
the CA®s fail then we know that we are in the second or third disjunct ofA. Hence,
loc [mypid 6 p and alsoloc [t] 6 p for all t 2 T nfmypidy sinceTr(p;:::) and T(p;:::)
are -conjoined with my_log(t9. Therefore, we can do &NoticeElimaction and remove our
descriptor from the shared state thereby gettingC as a postcondition.

Finally, the collision array (coll ) hardly a ects the safety of the algorithm. Itis trivial
to reason about it: the resource invariant™ j;1.size €Ol [i] 7! _ su ces.
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Dene x 67y =(9z: x7! z" z6 y). Let D = [&Abs7! _ truej,, -
Frame out: |~ w1 my_loc(t9 truel . Fix t.

bool TryCollision (ThreadInfo p ; Q)
bool b;
(loc[t] 7' g Tu(g;t;opy; ) true)
_(loc[t] 679 Tgr(q;t;op,) true)
if (p:op= PUSHf
(loc[t] 7' g Tu(g;t; POP, ) true)
_(loc[t] 679 Tgr(q;t; POP) true)
b:= CApq(&loc [q:id ]; g; p);
Ov: (b” [T(p; mypid PUSHV; V) truel. ~ Tr(p;t; PUSH)
_ (: b™ Ty(p; mypid PUSH )))
gelseif (p:op= PORf
(loc[t] 7' g Tu(g;t; PUSH ) true)
_(loc[t] 67'g Tgr(q;t; PUSH true)
b:= CAyp(&loc [q:id ]; g; null );
(bA9v: [T(q;t; PUSHV;Vv) truel .~ T(p; mypid POP; ;V))
_ (- b™ Ty(p; mypid POP; ))
if (b) p:data := g:.data;
9v: (b” T(p; mypid POP, v;V)) _ (: b” Ty(p; mypid POP; ))

D Tuy(p; mypid op; ) * op6op,

Elim

D Tu(p; mypid PUSH )

Elim

D Tu(p; mypid POP; )

Elim

gg(b/\ 9v: [T(p; mypid ;v;v) truel. — Tr(p;t; PUSI—))S
~ _(bM9v: T(p; mypid _; v;V)) _
" _ (0 b™ Ty(p;mypid ;) '
return b ;

Figure 5.5: Proof outline of TryCollision

Vé)id FinishCollision  (Threadinfo p)

9
< 9v: T(p; mypid PUSHV;V) |~ o1 my_loc(t) truel =
. Tl o .y foc[mypid 7t q T(q;-; PUSHV; V)

X Iavq: T(p; POP, _;
—>va (p mypld V) T t2Tnf mypidg my,loc(t) true Elim

if (p:op= POP
p:data := loc [mypid:data;
Hoc [mypid := null ;i
ov: T(p; mypid ;;v;V) |~ o7 my_loc(t) true

n o

Elim

Figure 5.6: Proof outline ofFinishCollision
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1

0
loc [mypid 7! p Tu(p; mypid opy; -)
_(9qv:loc [mypid 7! g T(d;;PUSHvV;Vv) T(p; mypid POP; ;v)A
_(9qv:loc [mypid 7! g Tr(q;-POP) T(p; mypid PUSHV;V)
=~ t2 (T nf mypidg) my,Ioc(t) true
loc [him] 7! g Ty(g; him;op; ) true
9¢> g6 g loc [him] 7! ¢® Tr(qg; him;op,) true 1
loc [mypid 7! g T(q;-; PUSHV;V)
- t2 (T nf mypidg) my,loc(t) true
_9v: T(p; mypid PUSHV;V) |~ o1 my_loc(t) true|
void StackOp(ThreadInfo p) f int him ;pos;
while (true )f
Tu(p; mypidop; ) [Tr(p;mypidop) JJ, ~ Stackinv
if (TryStackOp(p))
9v: T(p; mypid op;;v;v) [Tr(p; mypidop) J). ~ Stackinv
return ;
Tu(p;mypidop; ) [Tr(pimypidop) J]., ~ Stackjnv
Tu(p;mypidop; ) [Tr(p;mypidop) J|, =~ D
Hoc [mypid := p;i
Tr(p;mypidop) A D
him := nondet();
if (1 him threadNun) f
ThreadiInfo q := loc [him];
if (génull ™ qg:id =him” g:0p6 p:op)
op. 6 op ™ Tr(p;mypidop) A B D
if (CA%&loc [mypid;p;null ))
opL 6 opp ™ Ty(p; mypidop; ) B D
Tr(p;mypidop) I,
ifg (TryCollision  (p; q)) 9
< 9v: Tr(p; mypid op) =
]T(p mypid opy; v; V) true ‘J‘Flm Frame out Stacklnv

_ T(p;mypid opi; V; V) Flgim which is stable under
return :

else  Ty(p;mypid ;) [Tr(p; mypidop) J|
continue ;

else Stacklnv C
FinishCollision (p); return ;

Let A =

Elim

Let B =

Let C = @9vq:T(p; mypid POP; _; v)

Elim

Elim

Let D

Abs7!_  true Stack

= Gstack = ;

RStack [ GStack .

g
Tr(p; mypidop) A
delay ();

if (: CA&loc [mypid;p;null )) C
FinishCollision (p); return ;

Tu(p;mypid ) Pl ’
gg

Figure 5.7: Proof outline of StackOp
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locate (e) f add(e) f removge) f
local p ;c; local x ;y;z; local x ;vy;z;
p := Head (x;z) := locate (e); (x;y) := locate (e);
lock (p); if (z:value 6 e) f if (y:value =¢e) f
C := p:next; y := new Nodg; lock (y);
while (c:value < e) f y:lock = 0; Z = y:next,
lock (c); y:value = g x:next := z; LiN s ;
unlock (p); y:next := z, unlock (x);
p:=c; x:next :=vy; dispose (y);
C := p:next; g g else f Lin s ;
lock (c); Lin this ; unlock (x);
g unlock (x); g
return (p; c); g g
g

Figure 5.8: Lock-coupling list algorithm

5.3.2 List-based set algorithms

This collection of algorithms represent an integer set as a sed linked list with two

sentinel nodes at the two ends of the list, containing the valsel and +1 respectively.
The set is equipped with a lookup operatiorcontains and two destructive operations
add and removethat change the set's cardinality by one. Their speci cationsare given
by the following abstract code.

Abs contains (e) i Abs add(e) i Absremovde) i

AbsResult := (e 2 Abs); AbsResult := (e 2 Abs); AbsResult := (e 2 Abs);
[ Abs:= Abs[f eg; Abs:= Absn feg;
[ [

Pessimistic list (Lock-coupling list)

The rst algorithm (see Figure [5.8) is pessimistic in its concurnrgcy management: it
always locks a node before accessing libcate traverses the list usinglock coupling the
lock on some node is not released until the next one is locked, shat like a person
climbing a rope \hand-over-hand." The methodsadd and removecall locate to traverse
the list and lock the appropriate nodes; then they update the da structure locally.

In X3.5, we proved that this algorithm is safe, does not leak mempmand maintains the
structure of a sorted list. Here, we will prove that it is linearishle. To achieve this, we em-
bed the abstract implementationsAbs Addand Abs Removet the candidate linearisation
points and derive the post-conditionResult = AbsResult for add and remove

The proof is a direct adaptation of the proof inx3.5. First, introduce an auxiliary
variable Abs to hold the abstract set that the linked list represents. When a noal is
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locate (e) f add(e) f removge) f
local p ;c;s; local x ;vy;z; local x ;y;z;
while (true) f (x;2) := locate (e); (x;y) := locate (e);
p := Head if (z:value 6 e) f if (y:value =¢e) f
hc := p:next;i y := new Nodg; lock (y);
while (c:value < e) f y:lock = 0; hz := y:next;i
p:=c; y:value = e; hx:next = z;
hc := c:next;i y:next = z; Lin tis i
g hx:next = vy; unlock (y);
lock (p); Lin yis i gelse f
s := Head gelse f Lin s ;
while (s:value < e) Lin s ; g
hs := s:next;i g unlock (x);
if (s=c” p:next = c) unlock (x); g
return (p;c); g
else
unlock (p);
g9

Figure 5.9: Optimistic list-based set implementation

inserted or removed from the list, this is a linearisation pointand the (instrumented)
algorithm also updatesAbs Thread tid is allowed to perform the following actions:

U(xv;n)  Lia(Xvin) (Lock
Laa (;v;n) U (X v;n) (Unlock
Lig (X;u;n) &Abs7!' A Li(x;u;m) U(m;v;n) &Abs7! A[f vg
provided (U <v <w )" Ng(n;w;y) (Add)
Lig (X;u;n) Lig(n;v;m) &Abs7! A Lgg(X;u;m) &Abs7! Anfvg
providedv < +1 (Removeg

The assertions in the proof outlines are exactly the same asx8.5, provided we rede ne
the predicates(A) to also require that Abs contains the mapping of the sequenca to a
set:

s(A) ¥ 9B:A=1 B +1" sorted(A)” &Abs7! elemgB)

Optimistic list

Now consider the algorithm in Figure 5.9, which implement®cate di erently. The new

implementation is optimistic: it traverses the list without taking any locks, then locks
two candidate nodes, and re-traverses the list to check whethre nodes are still present
in the list and adjacent. If either test fails, the nodes are unkked and the algorithm is
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restarted.

While one thread has locked part of the list and is updating itanother thread may
optimistically traverse it. The success of the optimistic travesal clearly depends on some
properties of locked nodes (e.g., that they point to valid né¢ nodes). In particular,
updating the next eld of a shared node and reading theext eld of an unlocked node
must be both atomic. Otherwise, because of a possible race corutiti the read could
return a corrupted value.

The optimistic algorithm has the same linearisation points ashie lock-coupling algo-
rithm. The set of permitted actions is similar: we can lock, umck, add, and remove a
node. The actionsLock Unlock and|/Add are the same as for the lock coupling list. The
action Removeéis, however, di erent. Whereas in lock-coupling the node was removed
from the shared state, here it remains in the shared state, becausenay be accessed by
concurrent optimistic list traversals.

U(xvin)  Lia(X;vin) (Lock
Lia (X;vin) U (X;vin) (Unlock
Lig(X;u;n) &Abs7! A Lig(x;u;m) U(m;v;n) &Abs7! A[f vg
provided (u<v <w )" Ns(n;w;y) (Add)
Lig (X;u;n)  Lig(n;v;m) &Abs7! A Lig(X;u;m)  Lig(n;v;m) &Abs7! Anfvg
providedv < +1 (Removeg

Lazy list (lazy concurrent list-based set implementation)

The nal list algorithm we will consider is due to Heller et al. [8], and combines optimistic
and lazy concurrency techniques. Under common work loads, theilgorithm is more
e cient than the previous versions, because checking for memiship in the set avoids
locking. The concrete representation is the same as the one usgdhe earlier algorithms.
In addition, however, nodes have anarked eld, which is set when the node is deleted.

An element is added as before. An element is removed in two stagest, the node
is logically removed by setting themarked eld; then it is physically removed by redi-
recting reference elds. Concurrent membership tests travergbe list without checking
the marked ag. This ag is checked only when a candidate node is found. i&ilarly,
locate ignores the ag while traversing the list. When the method locees and locks the
two candidate nodes, itvalidates them by checking they are adjacent and unmarked. If
validation fails, the locate operation is restarted.

Becausecontains is completely wait-free, this algorithm crucially dependsn global
invariants, such as the list being sorted, whicimust hold at all times even when part of
the list is locked and local updates are performed. RGSep isagbat describing these.
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locate (e) :
while (true ) f
pred := Head
hcurr := pred:next;i
while (curr :val < e) f

add(e) :
(n1;n3) := locate (e);
if (n3:val 6 e) f
n2:= new Nodge);

pred := curr ; n2:next := ng,
hcurr := curr :next;i l:next := n2; Lin s i
g Result := true ;
lock (pred); gelse f
lock (curr); Result := false ; Lin s ;
if (:hpred:marked g
~:h curr :marked unlock (n1);
~Nhpred:nexti = curr ) unlock (n3);

return (pred;curr); return Result ;
else f

unlock (pred); removee) :

unlock (curr); g
g

contains (e) :
hLin s (e 2 Ab9); i

(n1;n2) := locate (e);
if (n2val = e) f
n2:marked:= true ; Lin s ;
foreach (p 2 OutOp3
Liny(p:arg, = €); i

hOutOps:= OutOpg f this g;i 3 := n2next;i
curr = Head ml:next := n3;i
while (curr :val < e) Result := true
hcurr := curr :next;i gelse f
hb := curr :marked Lin wis (: b);i Result := false ; LiN s ;
hOutOps:= OutOpsn fthis g;i g
if (b) unlock (n1);
return false ; unlock (n2);
else return Result ;

return curr :val = g;

Figure 5.10: Lazy concurrent list-based set implementation

Linearisation points The linearisation points ofadd and removeare annotated in the
source code. Just note that a successfidmoveis linearised at the point where the node
is logically deleted, not when it is physically removed fromhe list. Physically removing
the node from the list does not change the abstract set the list regsents; indeed, it can
be seen as an optimisation for improving future list accesses.

The linearisation point of contains is much subtler. If contains returnstrue, the last
assignment tocurr in the loop and the read of themarkedbit are both valid linearisation
points. If, however,contains returns false, the proof is more subtle. Here is an informal
argument which will motivate the formal proof.

Initially, when contains (e) starts executing, eithere is in the list or it is not. If e
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is not in the list, then clearly the linearisation point can be denti ed to be that initial
point. If e was in the list, then there exists a (unique) unmarked node that is reachable
from Headand contains the valuee.

If the node m never gets marked whilecontains (e) executes,contains (e) will nd
that node and returntrue. So, by contradiction, the nodem must have been marked (and
perhaps even physically removed) during the execution obntains (e).

This, however, does not mean thae will not be in the list at the next scheduling of
contains (e); indeed, another node containingg could have been added in the meantime.
But since marking a node and inserting a new node cannot be donteraically, there is a
point (just after the node was marked) where was not in the list. Take that point to be
the linearisation point.

To capture this point in a formal proof, we introduce an auxiary record for each
outstanding contains operation, and a global auxiliary variableOutOpscontaining the
set of all outstanding contains records. Each record contains three elds: the thread
identi er of the method invoking contains , the argumente of contains , and an initially
unset eld AbsResult for holding the result of the linearisable function. Ascontains is
a read-only operation, it is su cient that a linearisation point exists; it does not need to
be unique. The freedom to lineariseontains multiple times simpli es the auxiliary code
signi cantly.

Node predicates The nodes of this list algorithm consist of four eldslock , value,
next, and marked We use the following shorthand notation to describe nodes:

f

o
o

Ns(X; v;n) x 7' f :lock = s;:value = v;:next = n;:marked= g
Ms(X;Vv; n) ®' x 71f :lock = s;:value = v;:next = n;:marked= trueg
U(x;vin) = No(x;vin)
Lig (X;v;Nn) = Ngg(X;v;n) "~ tid 60

Actions  The actions are slightly more involved than for the previouslgorithms, be-
cause they also specify the operations a ecting the auxiliary ate. The actions for locking
a node, releasing a lock, and adding a node are standard:

U(x;vin)  Lia (X v;n) (Lock)
Lig (X;v;n)  U(X;v;n) (Unlock)

Lig (X;u;n) Abs7!' A Lig(x;u;m) U(m;v;n) Abs7! A[f vg
provided (u<v <w )" Ns(n;w;y) (Add)
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Physically removing a node from the list requires the node to bmarked; moreover, it
does not a ect the auxiliary state.

Lia (X;u;n)  Mygg(n;vim)  Lgg (5 u;m)  Myg (n;v; m)

providedv < +1 (Remove)

Marking a node is a more complex action, because it does seveaaks at once: () it
marks nodex; (ii ) it removesv from the abstract set; and (i ) it linearises all outstanding
contains (v) calls.

| [
Lig (X;v;n) Abs7! A Mg (X;v;n) Abs7! Anfvg.
~ cRs(c;v;)) ~OCZC Rs(c; v;false)
&OutOps7! B[ C

provided %b ~ s W:R (b;w;)"wé6 v& (Mark)
N1l o<v< +1

1

where Rs(c; v; w) represents a record foicontains (v) that currently has its AbsResult
set tow (w 2 f undef; false; trueQ):

Rs(c;v;w) &' ¢ 71 Record:threadid = s;:val = v;:AbsResult = wg
Finally, there is a symmetric action enabling a thread to addrad remove an outstanding
record of a containsé) it initiated.

(cZzB) " (&O0utOps7! B) (&OutOps7! B [f cg) R g (c;v;w)
(&OutOps7! B [f cg) R g (c;v;w) (cZB) " (&OutOps7! B)

5.3.3 Restricted double-compare single-swap (RDCSS)

Restricted double-compare single-swdRDCSSee Figure 5.11) is an intermediate abstract
operation de ned by Harris et al. [34] in their implementation of multiple compare-and-
swap (MCAS). RDCS%kes as an argument two addresses with their expected values
and one new value. If both addresses contain their expected was, then the new value
n, is stored at the second addresa,. The speci cation of RDCSERDCSSpec) requires
that this entire operation is atomic. It is restricted in the sese that the address space is
logically split in two disjoint domains, A and B. The rst address (a;) must belong to
A, whereas the second addresa, to B. Hence, any address passed as ancannot be
passed as am; in a later call to RDCS8&nd vice versa.

On A-type addresses, all the standard memory operations are pettad; whereas on B-
type addressed, only two operations are permittedRDCS&ad and RDCSSMNe can relax
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class Descriptor f

RDCS&ad(address_t a,) f

address_t ai;a; local r ;
word.t 0 1; 02; Ny; R1: h:=[ay];i
single word _t AbsResult; while (IsDesc(r)) f
single word t ry; g Complete(r);
R2 . hr :=[ay];i
RDCSSpec(Descriptord ) = h g
local r :=[d:ay]; returnr ;
if ([d:ai] = d:ioy ™ [a:ay] = d:0y) g
[d:a,] := diny;
resultr i RDCS®escriptor d ) f
local r ;
Completg(Descriptor d ) f Al: r := CAS(d:ay;d:0,;d);
local r ; while (IsDesc(r)) f
Cl: h:=[day];i Complete(r);
if (r=doy) A2 . r := CAS({d:ay; d:0,; d);
C2: CAS(d:ay; d; d:ny); g
else if (r = d:o,) Complete(d);
C3: CAS(d:ay;d;d:0y); returnr ;
g g

Figure 5.11: RDCSS implementation

this restriction by allowing standard atomic memory writes toB-type addresses provided
they do not interfere with the RDCSS implementation. These aditional operations,
actually used in MCAS, are formalised in the actiofiWriteB|

Each RDCSS8peration has a unique descriptor: this is a record in memorytaining
the parameters of the method call4,, o, a,, 0,, ny). For the sake of the proof, we add
two auxiliary elds ( AbsResult andr ;) to these descriptors.

The implementation of RDCSS$ises a variant of CAS, which instead of a boolean
indicating whether it succeeded, it returns the (old) value stred in the memory address:

value_t CAS1(value_t *addr, value_ t exp, value_t new) {
value t v;
atomic { v = *addr;
if (v == exp) *addr = new; }
return v;

}

Each RDCS% performed in two steps: rst, it places its descriptor at the mmory
addressa,. This essentially “locks' that location. Any thread that reads anemory location
and nds it contains a descriptor must either wait until the RDCSS operation completes
or complete it itself by calling the helper functionComplete RDCS&ad reads location
a, after committing any con icting outstanding RDCS8perations.
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The function call IsDesc(r) checks whetherr is a pointer to a descriptor or a normal
value. The implementation distinguishes between the two by serving one bit in the
representation of values. Hence, the implementatiolsDesc(r) can just check whether
the reserved bit is set.

Linearisation points The linearisation point of RDCSE among the lines Al, A2, and
Cl. If the CASes at Al or A2 encounter a di erent value ford:a;] that is not a descriptor,
then these are valid linearisation points becauseDCS#&ils at that point, returning r.
Therefore, we annotate A1 and A2 as follows:

hr := CAS(d:a,;d:0,;d); Ling(r 6 d:o,~: IsDesc(r)); i

If, however, the descriptord gets placed in §l:a;], then the linearisation point is within
Complete In fact it is line C1 provided that the CAS on line C2 or C3 succeis. Since
with “helping’, any thread can callComplete, the linearisation point is the line C1 of the
Completg(d) that succeeds in its CAS at C2 or C3. This linearisation point deends on
future behaviour (the success of a CAS) that is not known at therlearisation point. To
capture this formally, the proof will introduce a prophecy ariable. Note that C2 and/or
C3 are not valid linearisation points because the value ad:p;] could have changed since
last read at C1.

The linearisation point of RDCS&:ad is the last R1 or R2 line executed. The proof
annotates these lines as follows:

hr :=[ay]; Linyis (: IsDesc(r)); i

Descriptors  The predicate Dy(as; ay; 01; 02; ny; r») describes a valid RDCSS descriptor
stored at addresdd.

def

15

Da(ay1; az; 01; 02; N2; @; 12)
d7!'f :ay=a;; :0:=0p; :@=2ay; :0,=0p; :M=nNy; :AbsResult=a; r,=r,g
N(ag2 A)M (a2 2 B)  IsDesc(d) ~: IsDesc(o,) ~: IsDesc(ny)

It says that d must be an address of type “descriptor’, thah; must be a type A address
and that a, must be a type B address. Moreover, the values and n, must be normal
values (and not descriptors).

When the AbsResult eld is unde ned, r; is also unde ned. The following shorthand
notation describes such records:

o

Ug(ay; az; 01; 02;n2) E" Dy(ar; a; 0r; 0; y; undef; undef)
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Abstraction map Nodes of type A store normal values; their abstract value is simply
the value stored at the node. Nodes of type B, however, can stoiither a normal value or
a pointer to a descriptor. In the latter case, their abstract vale depends on whether the
described operation has "committed' or not. If it has ‘comntiéd’, that is if it has past
its linearisation point, then the abstract value is the one stard in itsr, eld. Otherwise,
if it is before the linearisation point, the abstract value is stl the recorded old value,o0,.

Let K (x) be the following assertion mapping the concrete value of ldgan x to its
abstract value.

Abgx] 7' v x 7! v~ IsDesc(v)
K (x) def (x2B)"9dvw: ?cp_ Abgx] 7' v x7!1'd Uqg(5Xx; 5v;))
_Abgx]7'w x7'd Dg(;X; 5V VW)

The overall invariant, RDCSS.Inv, asserts that () all the locations in A exist, (ii)
every location inB has a matching concrete and abstract values, andi() there may be
some more garbage state (completed RDCSS descriptors).

RDCSSInv & 9D: ~ x71 . ~ K(X) ~ 90, Dy(_; ;00 0 )

xX2A x2B x2D

Actions  The rst two actions describe what code outside the RDCSS modulis allowed
to do. It can write any value to A-type cells, and it can update Btype cells atomically
provided that both the old and the new value are not RDCSS degptors.

xX2A)ANXx7'v xT7'w (WriteA)
(x2B)"™: IsDesc(v)* x7'v  x 7' w”: IsDesc(w) (WriteB)

These actions together with the ones below form the rely conidin. They need not be
included in the guarantee because the algorithm itself does tnperform either of the
actions above. Nevertheless, the proof goes through whether imelude them in the
guarantee or not.

The next three actions describe what the algorithm itself doeand correspond very
closely to the code. The rst action allows a descriptor to be ped at a memory cell
provided it has a matching old value (cf. lines A1 and A2). The sead action allows
a descriptor to be removed if its linearisation point has beenassed (cf. lines C2 and
C3). The nal action involves only changes to the abstract sta and happens at the
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RDCSSInv| Ug(as; a; 01} 055 N5)

local r ;

dr := CAS(d:a,; d:0p; d); Ling(r 6 dio, " @ IsDesc(r)); i 9

< (r = ;" |[RDCSS.Inv * Dgy(as; a; 01; 0p; N2; ;)  truel) =
_(RDCSS.nv A Dy (5@, 5555 ) true| Ug(ag; ap; 0r; 03 Ny))

: _(: I1sDesc(r)™ r 6 0, ™ RDCSS.Inv Dd(al;az;ol;oz;nz;r;undef));
while (IsDesc(r)) f

Completg(r);

RDCSSInv] Ug(as; a; 01; 02; Ny)
hr := CAS(d:a,;d:0,;d); Ling(r 6 d:o,~: IsDesc(r)); i

g
(r = 0~ RDCSS.Inv  Dy(ay; 8; 01; 0; Np; ;) truel)
_(: IsDesc(r)™ r 8 0, RDCSS.Inv| Dg(ay;az; 01; 0z; N; 1 ; undef))

if (r=doy)f
(r = 0, [RDCSS.Inv " Dg¢(ay; @; 01; 025 Nz; ;) true))
Complete(d);
(r = 0" RDCSS.InV * Dy(ay; @z; 01; 0; N2; 0; ) true))
g

RDCSS.Inv| Dg(ay; ap; 01; 02; Np; 15 )
_|RDCSS.Inv * Dg(as; az; 01; 0p; N2; 15 ) true|
return r ;

Figure 5.12: RDCSS(dproof outline

linearisation point of RDCS@8.e. on someexecutions of line C1).

x7'v  x7'd Ug(ag;X;01;V;Ng) (PlaceD
X7'd Dg(ar;X;01;02;n2;8y) X 7'y Dg(as; X; 01; 0252 @;y) (Removel)
Absa] 7! 0 Ug(as; 01;a2;02;n2)  Absay] 7! X Dg(ag; 0r; @2; 02, N2; 02;X)  (LiN)

Note that all these actions preserve the abstraction maDCSS.Inv. We exploit the
symmetry of algorithm by having identical rely and guaranteeonditions.

Proof outline  The proof outlines of RDCS8nd RDCS$&ead are relatively straightfor-
ward. In the proof of the atomic sections in lines Al, A2, R1, and Rwe do a case split
depending on the value stored im,.

In contrast, verifying Complete is much more involved (see proof outline in Fig-
ure [5.13). The complexity arises because we have to specify thweérisation point,
which depends on future behaviour. To do so, we introducel®molean prophecy variable
futSucc . We assume there is an oracle that tells us whether the value dfd;] at the time
of the appropriate CAS below will bed or not, and hence whether the CAS will succeed or
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IRDCSS.Inv * Dgy(as; a; 01; 0p; N2; ;) true]
h
v .= [da];
guess futSucc;
assert (futSucc ) ([d:a2] = d));
if (futSucc)
d:AbsResult := RDCSSpec(d);
dir, := ABYd:ay]; i
< (: futSucc ~ [RDCSS.Inv * Dy(ay; a; 01; 0p; N2; ;) truel)
~_ (futSucc ™ v 6 0, RDCSS.Inv " Dy(as; az; 01; 0p; Ny; 0z; 0p) trueD_
" (futSucc ™ v= 0, RDCSS.Inv " Dgy(as; az; 01; 0p; Ny; 025 Ny) true\)’
if (v=doy)
h assert (futSucc , ([d:a2] = d));
CAS(d:a,; d; d:ny); i
else
h assert (futSucc , ([d:a2] = d));
CAS(d:ay; d; d:0,); |
IRDCSS.Inv * Dgy(ay; a; 01; 0p; N2; 0p; ) true|

11 ©

Figure 5.13: Complete(d) proof outline

not. Abadi and Lamport [1] proved that assuming the existence of sh an oracle is sound
under some niteness conditions, which are trivially satis ed bythis boolean prophecy
variable. The "guessed' value of the prophecy variable is sudhat the two introduced
assert commands immediately before the two compare-and-swap insttions succeed.

As RGSep does not have a modality to express properties abougtfuture, the proof
requires an additionalassert command just after theguess statement. We can justify
that this assert succeeds informally with a short proof by contradiction. Assumehe
assert at C1 does not hold. ThenfutSucc is true and [d:a;] 6 dat C1. Hence, §:a2] 6 d
at C2/C3 because (:a,] 6 d is stable under the rely condition. Therefore, as the asserts
at C2/C3 hold, futSucc is false which contradicts our assumption.

Now that we have established that all theassert statements are satis ed, we can
convert them to assumestatements, and the proof is straightforward.

5.3.4 Multiple compare-and-swap (MCAS)

Figure contains the implementation of multiple compa&-and-swap MCASdue to
Harris et al. [34] which has been annotated with the linearisetn points. Each MCAS
operation uses a fresh descriptor recordd) with its arguments, and a status ag which is
initially UNDECIDEDhe algorithm progresses by placing the descriptor in all the emory
locations g that contain the expected valueo; . If one of these contains a di erent value,
then MCAS%ails, and the status is changed td-AILED If we encounter the descriptor of
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class CASNDescriptor f
enumf UNDECIDEBUCCEEDERILER status ;
intk ;
address_tagq; :::; &
word.t 04; :::; Ok;
word_t nq; iiiong;
single bool AbsResult ;
g
MCASpec(CASNDescriptor cd) Qef
if ([cd:ay] = cd:iog ™ ::: " [cdiacgk] = €d:0cq:k])

[ca:acyk] == cdincgy;
AbsResult := true ;
else
AbsResult := false ;
[

void MCABCASNDescriptor cd) f
L: if (cd:status = UNDECIDED
s := SUCCEEDED
for (i := 1;i cdk;i++)

Al: hv .= RDCS& cd:status ; UNDECIDE:a ; cd:o; ; cd);
Lin ,q(: ISCASNDegw) * v 6 cd:o;  cd:AbsResult = undef); i
if (ISCASNDegqw))

if (v6 cd)
MCASnpl (v); goto L;
elseif (v 6 cd.o)
s := FAILEDbreak;
A2.  hLin y(cd:status = UNDECIDEDs = SUCCEEDED
CA®& cd:status ; UNDECIDE®); i
if (cd:status = SUCCEEDED

FL for (i :=1;i cdk;i++) CA%cd:a ;cd;cd:n);

else

F2 for (i := 1;i cdk;i++) CA%cd:a ;cd;cd.o);

g

Figure 5.14: MCAS implementation
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another concurrent invocation to MCASwe "help' that operation complete and restart
our own operation. (If we encounter our own descriptor, it daenot matter, it means
some other thread has "helped' us.) On exiting thiar loop successfully, we have placed
our descriptor on all relevant memory locations: then, we simplchange our state to
SUCCEEDHEW FAILED if one of the RDCS$perations failed). Finally, we update the
memory contents to their new or old values depending on whethMCASucceeded or not.

Similar to RDCSMCA®wst distinguish its descriptors from normal values. To do so,
the implementation reserves a second bit in the domain of valsi@nd calls the function
ISCASNDegqw) to test that bit.

Linearisation points Treating the RDCSS call as atomic, the linearisation pointsra

straightforward. If MCASucceeds, the CAS at lind2 is the linearisation point. If it fails,

the linearisation point is the RDCSS at lineAl that noticed that [cd:a;] 6 0;. Because
multiple threads could have noticed that theMCA%ailed, we take the linearisation point
be the time that this was rst noticed.

Predicates Let CD(s; k; addr; old; new;r) denote a valid MCAS descriptor with status
s, width k, an array addr of addresses, an arrapld of expected values, an arraypew

of new values, and abstract result. Valid descriptors have a few constraints on their
arguments: the three arrays must have lengtk, there must not be any duplicates in the
a array, and there is a correspondence between te&atus and AbsResult elds.

CDwq(s; k; addr; old; new; ) (™

cd 7! f :status =s; :k=k; :AbsResult=rg
~ 1 k(cd7!f ig=addr(i); :o;=old(i); :ni=new(i)g” addr(i) 2 A)

A (r=true , s= SUCCEEDED
A (r = undef) s= UNDECIDED

Abstraction map The abstraction map is straightforward. If an address containa
descriptor, then abstractly it holds the old value if the MCAS has not (yet) succeeded,
or the new value if the MCAS has succeeded. Informally, we can iter the following
abstraction map:

8
Sv if MEM[a] = v~ ISCASNDesw)

ABSa]l = _ cdo; if MEM[a] = cd” cda, = a” cdstatus 6 SUCCEEDED
- cdn; if MEM[a] = cd” cda = a” cdstatus = SUCCEEDED
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This abstraction map is a function because each eld of the descriptor cd contains a
di erent address.

Unfortunately, expressing this abstraction map in separation tgic is tricky. The prob-
lem is that a given descriptorcd may be needed to de ne the abstraction map of several
addresses. Therefore we cannot simply take the separate conjuoctof the abstraction
maps of all the addresses. Preferably, we would like a conneetithat treats the descrip-
tors additively and the addresses multiplicatively. We can sioiate this e ect using the
following pattern involving the magic wand:

def

De nition 49. HiQ (© P (P Q)

Informally, one can understand this formula as asserting tha® holds in the current
heap provided its context satis esP. This reading is justi ed by the following properties:

P hPiQ ( P Q

P ~HPiQ (0 P —Q
i2l i2l
Hence, we can represent the abstraction map as the following segieon logic assertion:

0 1
9v: x 7' v Abg[x] 7! v~ ISCASNDegqw)

)~ %_gvaoi: x 7! v hCD,(FAILED _;a;0;; ) * & = xiAbs(x] 7! o §
x2A@_9vaoi:x7! v hCD,(UNDECIDED_;a;0;_; )" a = xiAbg[x] 7! o
_9vani:x 7' v hCD,(SUCCEEDED; a; ;n; )™ a = xiAbg[x] 7! n;

J says that for each address in A, if x contains a concrete value then its abstract value
is the same as that concrete value. If, however, it contains askcriptor and the descriptor

Is in the context then x's abstract value isn; or o, depending on whether the MCAS has
succeeded. Finally, we separately have a collection of destwig D.

Actions  First, we have three actions that do not change the abstract stat

a(i) 7! o(i) a(i) 7! cd provided CD,4(UNDECIDEDK; a;0;n;r) (5.1)
a(i) 7' cd a(i) 7! n(i) provided CD.,(SUCCEEDEEX;a;0;n;r) (5.2)
a(i) 7' cd a(i) 7! o(i) provided CD.y(FAILEDK;a;0;n;r) (5.3)

These are performed by lines Al, F1, and F2 respectively.
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There are another three actions that change the elds of an ME&S descriptor.

CD.,(UNDECIDEDK; a; 0; n;undef)  CD,3s(UNDECIDEDK; a; 0; n;false ) (5.4)

CD,(UNDECIDEDKk; a;0;n;false )  CD.4(FAILED k; a; 0; n;false ) (5.5)
! !
CD.q(UNDECIDEDZK; a; 0; n;undef) CD.¢(SUCCEEDEEX; a; o; n;true ) (5.6)
~.(a 7! cd Abdga]7! o) ~.(a 7! cd Abdga] 7! n;) '

The rst is performed by line A1 when the RDCSS fails; the other tw are performed by
line A2.

Note how all these actions satisfy the rely condition of the impfeentation of RDCSS.
The rst three actions are just restricted versions ofWriteBl and the next three actions
are restricted versions ofVriteAl

Proof outline  Besides the abstraction map, the following important assertiois pre-
served by the rely condition:

K (m) gef CDc(s;a;0;n;r) (s= UNDECIDED) ~ & 7!cd Absg]7! o true)
1) m

This assertion is part of the loop invariant for the rst for loop of MCASt states that
if the status of the operation iSUNDECIDEDthen the rst m addresses in the descriptor
contain a pointer to the descriptor. Informally, this is stabé under the rely condition
because in order to remove a descriptor from a memory locatioaction|5.2 or5.3), the
status must be SUCCEEDEDr FAILED

5.4 Related work

This section brie y discusses the two alternative ways of proviplinearisability: reduction
and simulation.

Reduction-based techniques

A simple way to reason about atomicity is Lipton's theory of lefand right movers [55].
An action a is aright mover if in any execution trace wherea occurs immediately before
an action b of a di erent thread, we can swap the execution order o& and b without
changing the resulting state. Similarly, an action is d&eft mover if it left-commutes with
operations of other threads. Lock acquisitions are right movections, lock releases are
left movers; reading a variable is &oth mover provided there is no race condition on
that variable, otherwise it is an non-commutative atomic adgbn. A composite action is
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o

Let B; fef (x = UNDECIDED) a(j) 7' cd Abda(j)] 7! o(j) true).

void MCABCASNDescriptor cd) f
L: U~ CDw(;k;a;0;n;.) true
if (cd:status = UNDECIDED
s := SUCCEEDED
J A CDu( k;a;0;n;) true|r s = SUCCEEDED
for (i ==L cdkji++) f o
J 29x: CD(x;k;a;0;n;.) ~ 4 j<i Bj|* s= SUCCEEDED
hv := RDCS& cd:status ; UNDECIDER:a; ; cd:o; ; cd);

gLinca(: ISCASNDegw) * v & cd:o * cd:AbsResult = undef);i g
39xr CDa( ki 0inmr) ~ 1 j<i By ((v=o0 _v=cd) Bi)sz

N (IsCASNDesw) ) CD.(-; ;- - 2) true) B
2| ((: IsCASNDedw)*v6 0)) r = false )" J 3

N s = SUCCEEDED
if (ISCASNDegqw))
if (v6& cd)

MCASnpl (v); goto L;
elseif (v6 cdo)
J A CDu(s; k; a;0;n;false ) true]
s := FAILEDbreak;

(6]
J 29x: CD(x;k;a;0;n;) ~ 4 i Bj|* s= SUCCEEDED

n

g
s = SUCCEEDED [J "9x: CD(x;k;@;0;n;.) ~ 1 B;
_ s = FAILED” J "9 x: CDu(x; k; a; 0; n; false )|
hLin (g(cd:status = UNDECIDEDs = SUCCEEDED
CA%& cd:status ; UNDECIDE®D); i
g
J A CD.q(SUCCEEDEEX; a; 0; n;true )  true]
_ U~ CDy(FAILED k; a; 0; n;false ) true]
if (cd:status = SUCCEEDED
for (i := 1;i cdk;i++) CA%cd:a ;cd;cd:n;);
else
for (i ;== 1;i cdk;i++) CA%cd:a; ; cd; cd:o;);
J N CD,g(SUCCEEDEEX; a; 0; n;true )  true|
_J ~ CDy(FAILED k; a; 0; n;false ) true]
g

Figure 5.15: Proof outline for MCAS
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deemed atomic if it consists of a sequence of right mover actioris|llowed by a single
atomic action, followed by a sequence of left mover actions.

Cohen and Lamport [16] showed how reduction-based proofs cae done in TLA.
More recently, Flanagan and Qadeer [29, 28] have de ned a fg@nd e ect system, which
assigns atomicity e ects to expressions based on whether the egpsions are left or right
movers. So far, their work has been focused on a lock-based pagadand relies on a
separate race condition detector. Wang and Stoller [76] extéed Flanagan and Qadeer's
work to verify the atomicity simple algorithms using CAS and LL/CS. Their approach is
very good at verifying quickly the atomicity of simple algoihms that consist of a single
CAS loop, but it is limited to algorithms that conform to this rigid pattern.

Simulation-based techniques

Another approach to verifying concurrent algorithms is basedn I/O automata or UNITY.
The veri er must manually translate the algorithm to an automaon, and then prove that
this automaton is observationally equivalent to a simpler aimaton that represents the
speci cation. To do so, one constructs a forward or a backward sifation between the
two automata. Using these techniques, Doherty et al. [25] and Gah et al. [18] verify
a few simple stack and queue algorithms. In more complex cases, sastthe ‘lazy list'
algorithm [38] presented inx5.3.2, Colvin et al. [19] de ne an intermediate automaton
and combine forward and backward simulation.

This approach may be useful for small complex algorithms, but is unlikely to scale
for larger programs because it lacks modularity. Another wealkss of this method is the
manual translation of the algorithm into an 1/0 automaton. While this translation could
perhaps be automated, one still needs to prove that it is sound.
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Chapter 6

Mechanisation

A program logic, such as RGSep, can be mechanised at two levels:

By embedding it in a generic theorem prover (such as Isabelle, HOor Coq),
proving soundness of the logic and generating a useful reasongygtem.

By developing a specialised tool that checks that a program adtes to a speci cation
belonging to subset of the assertion language.

Here, the latter approach is followed. The result is a tool, Sni#ootRG, that takes a
lightly annotated program as its input and proves that it is @rrect with respect to its
user-supplied speci cation or reports an error. SmallfootRGsibased on Smallfoot [6],
a simple theorem prover that handles a subset of separation log@nd contains three
additional decision procedures: septraction elimination, syolic execution of atomic
commands, and stabilization. Had the former approach been folled, these procedures
would have been encoded as tactics in the theorem prover.

First, we will go over the three new decision procedures insiden8llifootRG: how to
eliminate the septraction operator (se&6.2.2), how to execute an atomic command on a
symbolic state (see6.4.2), and how to get a stable assertion implied by a given unstab
assertion (see6.4.3). Then, inx6.5 we will see how these procedures are applied as Small-
footRG veri es the lock-coupling list algorithm. Finally, X6.6 presents some experimental
results.

6.1 SmallfootRG assertions

SmallfootRG assertions are a subset of RGSep assertions chosen tdifate entailment
checking and symbolic execution. Recall that the state is splibto thread-local state and
shared state. Hence, the assertions specify a state consisting of tvaaps with disjoint
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domains: the local heap (visible to a single thread), and the sted heap (visible to all
threads). Normal formulae,P, specify the local heap, whereas boxed formula@], specify
the shared hea;&. Boxes cannot be nested.

SmallfootRG accepts assertions written in the following gramar:

A;B = e=ejebeje7! |lsedes;e)]junk
P;Q;R;S:: AjP_QjP QJP ~QjPe1;:::;en
p;q:= p_qjP [Q

whereeis a pure expression, an expression that does not depend on thepheall variables
starting with an Wderscore (e.g.,x) are implicitly existentially quanti ed \%the top level.
In the assertion \g\I/Di [Qi]), if X is the set of existential free variables of (P then
their scope is9X: ;(Pi  [Qi)).

The rst line contains the usual atomic assertions of separatiorogic: pure predicates
(that do not depend on the heap), heap cell(7! ), list segments (sede;; €)), and junk.
The formula e 7! asserts that the heap consists of a single memory cell with address
e and contents , where is a mapping from eld names to values (pure expressions);
Isede;; ;) says that the heap consists of an acyclic linked list segment stary at e;
and ending ate,; junk asserts the heap may contain inaccessible state. For notational
convenience, let pure assertions hold only on the empty heapechnically, e;=e, is an
abbreviation for the formula (e;=s.€;) * empwhere =g, is the usual de nition of equality
in separation logic. This way, we can writd® (e, = &) instead of P " (e =5, ).

The second line contains operators for building larger assetis:

Disjunction, P _ Q, asserts that the heap satis e or Q.

Separating conjunction,P  Q, asserts that the heap can be divided into two (dis-
joint) parts, one satisfying P and the other satisfyingQ.

Septraction( ~)isdenedashF(P ~ Q)09 hih,xh,=h hyandh; F P
and h, F Q. This operation is similar to subtraction or di erentiation, as it achieves
the e ect of subtracting heaph; satisfying P from the bigger heaph, satisfying Q.

The \dangling" operator, P p, asserts thatP holds and that all locations in the
setD are not allocated. This can be de ned in separation logic & (g,...e,) ()

PA ((EL 7 ) junk”™ A ((En 7' D) junk), but for analysis it is better treated
as a built-in assertion form, because it is much easier to analydsah * and : .

IMore generally, SmallfootRG supports multiple disjoint regions of sharedstate, and boxes are anno-
tated with the name %of the region: [P], (cf. ¥4.3.2). For clarity of exposition, this Chapter presents the
analysis with respect to a single resource, and omits the subscript.
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e7" Yo 0 e2D (e7! )
wheree2f e;;:::;e0 ot e e e e,
Isegj, (1,09 0 0  Isegi (er;e;D [ DI
P Qo 0 Ppo Qbp
P_Qpo 0 Pp_Qp

Figure 6.1: Elimination rules forP p.

Finally, the third line introduces P Q] the novel assertion of RGSep, which does not
exist in separation logic. It asserts that the shared state satis e® and that the local
state is separate and satis e$.

6.2 Entailment checking

Given a procedure that checks separation logic entailments,i$ relatively easy to extend
it to handle the dangling operator (p) and septraction ( ~): seex6.2.1 andx6.2.2 for
details.

Reasoning about assertions with boxes is straightforward. Firshassertions containing
boxes are always written in a canonical form, ;(P; [Qi)). Given an implication between
formulas in this form, we can essentially check implicationsetween normal separation
logic formulae, by the following lemma:

(P PY*"(Q Q)= (P Q P° QY

Furthermore, we can deduce fron @ all the heap-independent facts, such as 6 v,
which are consequences & Q, since shared and local states are always disjoint.

6.2.1 Reasoning about the dangling operator ( D)

Extending any separation logic theorem prover to handle theamgling operator (p) is
simple. As it distributes over disjunction () and separating conjunction (), it can be
eliminated from all terms (see Figure 6.1) except for those c@amning recursive predicates,
such aslseg Recursive predicates require the dangling sét to be passed as a parameter,

Isegj. (E1;E2;D) & (E1= Ez) _9x:E 7! (tI=X; ) p Iseg} (X;E2;D):

The list segment is subscripted with the name of the linking eld{l, and any common
elds, , that all the nodes in the list segment have. Being able to remdyar any common
elds is important for the lazy list algorithm (seex6.6) because its invariant involves
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a list segment where all the nodes are marked as deleted (havenarked eld set to 1).
We omit the subscript when the linking eld istl and is empty.

Note that the above de nition of Isegiis imprecise (cf. Def.(8 in x2.4): Iseg(E; E; ;)
describes both the empty heap and a cyclic list. So far progranmalyses based on separa-
tion logic [7, 24] have used precise list segments. Using imprecisé segments simpli es
the theorem prover, as the side-conditions for appending lisegments are not needed.
In contrast, frame inference (i.e. giverP and Q nd a frame R such thatP ~ Q R)
becomes harder as there may be multiple solutions. A precise Isggment,lsedE; E»),
IS just a special case of our imprecise list segmeftgeg(E;; E»; f E2Q).

Another bene t of the dangling operator is that some proof ruls can be strengthened,
removing some causes of incompleteness. For instance, the falhgwapplication of the
proof rule for deallocating a memory cefiP  x7! g dispose(x) fPgcan be strengthened
by rewriting the precondition and obtainfP y, x7!_gdispose(x) fP 0.

6.2.2 Reasoning about septraction ( ~)

This section describes a few general properties of septractiand then shows how Small-
footRG reasons about this connective. Septraction can be ded in terms of the sepa-
rating implication () as follows:

P~Q(: (P : Q

This de nition, however, is useless for automated reasoning teuse negation is hard to
reason about in separation logic. In contrast, septraction hasunh nicer properties. The
following properties are direct consequences of the de rotis.

emp ~P () P
(P Q ~R) P ~(Q ~R)
P ~Q P ~(Q" (P true))

In addition, septraction distributes over _, and semi-distributes over®.

P ~Q_R (0 (P ~Q_(P ~R)
Q_R) ~P 0 (Q ~P)_(R ~P)
P ~Q*"R)=) (P ~Q"(P ~R)
Q*"R) ~P = (Q ~P)"(R ~P)

If P is exact the last two properties become equivalences.
If P isprecisethen(P ~ (P Q) =) Q.
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(e7' 1) ~ (7 2) 0 e1=€& 1 2
e7!(tl=e; ) ~ Isegi. o(e;&D)
60 e2D ' 0 Isegj oe;&;D) ¢ Isegi oe;€’D) ¢
e7n ) ~(P Q ( Pe (e ~Q
_ (e ~P) Qe
(e ) ~(P_Q) 0 (e7! ~P) _(e?! ~ Q)
P Q ~-R (0 P ~-(Q ~R)
P_Q ~R ¢ (P ~R)_(Q ~-R)

Figure 6.2: Elimination rules for septraction ( ~).

When we are septracting a single memory cel, 7! , then further properties hold:

(e7t ) ~P (e7! ) ~P)e
e7 ) ~Pp ((e7! ) ~P)p ezZD
(e7! ) ~(€7 %0 e=¢& ' O
et ) ~(P Q0 (((e? ) ~P) Qx)_(((e? ) ~Q) P )

(e7' ) ~emp false

ee .. e6e,;and
~ x2(dom( )\ dom( 9) (X)= x):

Intuitively, if we remove a memory cell fromP, the result does not contain the removed
cell. If we remove a memory cell fronP p, then D must not contain the address of the
memory cell; otherwise, the result is false. If we remove a memjocell from another
memory cell, the two memory cells must be identical and the relsing state is empty.
Removing a memory cell from a separating conjunction of two fimulae generates a case
split: the cell could belong either to the rst conjunct or to the second. This equivalence
Is reminiscent of the chain rule of di erentiation (‘% = g—){z + yg—f(). Finally, removing a
cell from the empty heap is impossible.

List segments and septraction mix very well. Removing a node froa list produces
two list segments: one from the beginning up to the removed noded one starting after
that node until the end of the list.

e7!(tl=e; ) ~lIsegi o(e;€) 0 e80 ' O Isegj o(e;a) e Isegi ofe;€) o

Hence, we can eliminate the septraction operator frol® ~ Q, provided that P and
Q belong to the fragment of separation logic accepted by SmaltitRG, and P does not
contain any Isegor junk predicates (see Figure 6.2). Had we allowed further inductive
predicates, such adreeE;), we would have needed an additional rule for computing
(E7" ) ~ tregEy).
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Aside: weakest precondition versus strongest postconditi on

Given an unknown commandC specied asfPg C fQg, P (Q R) is the weakest
safe precondition of executingC and deriving the postconditionR. Similarly, given a
preconditionR, providedR ) (P true),then Q (P ~ R)is the strongest postcondition
of executingC from an initial state satisfying R

Given an action P Q, there are two obvious ways to check that an assertioR
is stable under the action: we can either use the weakest precdrah or the strongest
postcondition formulation. If P is precise the two ways are equivalent:

(R*P true)) (P (Q R) (0 (P ~R) Q) R));

but the latter is generally easier to compute than the former.

6.3 Programs in SmallfootRG

SmallfootRG programs are written in an untyped toy languagevhose syntax resembles
C. ExpressionsE, consist of integer constantsnull (which is the same as 0), variables,
eld dereferences, and arithmetic operations (plus, minus,mes, divide, and logical xor).

E = nj null jvarj E ->field j E1+E2j E- Ezj El*Ezj Ell Ez] E."E,

Boolean expressionsB, consist of the boolean constantrue and false , equalities
and inequalities between expressions, and the short-cut evatioa &&and || operators.
There are no boolean variables, but their e ect can be simulatieby an integer variable
that holds either zero or non-zero.

B ::= true jfalse j E1::E2j E,.l= Ezj E1<:E2j E1<E2j E1>:E2j E.>E>
j B1&&B | B4| B>

Finally, commands,C, are given by the following grammar:

C ;= var=E;j E;->field= E,;j assuméB); | assert (B);jfCy:::Cng

jif (*)Cyelse C,jif (B) C, else C,
] while (*) C j while (B) C

These consist of assignments to variables or to eldgssumeand assert statements,
procedure calls, sequencing, conditionals, loops, and atomiodks. As expressions can
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contain multiple memory dereferences and the axioms of seption logic can cope only
with a single memory read at a time, we convert a complex expressiinto a sequence of
memory reads into fresh temporary variables followed by a sifdgexpression that does
not contain any memory dereferences. Similarly, we desugamgolex boolean expressions
into sequences of assignments aagdsumeor assert statements, taking care of the short-
circuit evaluation of &&and || . Procedure calls take two types of arguments: those before
the semicolon are passed by reference, those after the semicolen@assed by value. If
all arguments are to be passed by value, we can omit the semicoldme * in if(*) and
while(*) denotes non-deterministic choice.

Atomic blocks have an optional action annotation which is ugk by the symbolic
execution engine (se&6.4.2). An atomic block with a guardB is a conditional critical
region, which blocks untilB becomes true and then executes its body atomically. This is
just syntactic sugar foratomicfassuméB); Cag.

This syntax is largely inherited from Smallfoot with a few exénsions (multiple memory
dereferences in an expression, short-circuit evaluation,s¢ethan’, etc., non-deterministic
choice, and action annotations).

6.4 Reasoning about programs

6.4.1 Describing interference

Recall that RGSep abstracts interference by two relations: threly condition (R) and the
guarantee condition G), which are compactly represented as sets of actions (updates)
to the shared state. Because in many systems, every thread executes same code, we
assume that the rely and guarantee conditions of all threadseardentical up a parameter,
TID, representing the “current' thread.

SmallfootRG does not attempt to infer such actions; instead it qvides convenient
syntax for the user to de ne them. The declaratioraction name(params) [ P] [ Q] de-
nes the action P Q, giving it a name and some parameters. Formally, the parameter
are just existentially quanti ed variables whose scope extends/er both P and Q.

SmallfootRG uses the names and the parameters of the actiores minimise the an-
notation burden, and to simplify the guarantee checks. SmalibtRG requires the user to
annotate every command that changes the shared state with theame of the action it
performs and with concrete instantiations for the paramete: Hence, checking that the
command performs a permitted action is trivial.

For example, consider the following two action declarations:

action Lock(x) [X|->lk=0 ] [x|->Ik=TID]
action Unlock(x)  [x|->Ik=TID] [x|]->lk=0 ]
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Lock(x) takes a locationx whoselk eld is zero, and replaces it withTID, which stands
for the current thread identi er (which is unique for each thread and always non-zero).
Unlock(x) takes a locationx whoselk eld contains the current thread identi er ( TID)
and replaces it with zero. Crucially, the precondition and e postcondition delimit the
overall footprint of the action on the shared state. They asserthat the action does not
modify any shared state other than x.

As a guarantee condition for thread t, the action P Q (which may contain TID)
stands forP[t=TID]  QI[t=TID]. As arely condition for thread t, the same action means
(t60 t6t P[t=TID]) Q[.t=TID] wheret is a fresh existential variable.

6.4.2 Symbolic execution of atomic blocks

We discharge veri cation conditions by performing a form of aybolic execution [52, 7] on
symbolic states, and then check that the result implies the givemostcondition. Symbolic
heaps are formulae of the form

\A/
VA

Ar it Ap

Bii i Bin,

where eachA; and B;; is an atomic formula. TheA part of a symbolic heap describes
the local state of the thread, and theB part (inside the box) describes the shared part.
Disjunctions within boxed assertions represent more compactye result of stabilization,
and avoid duplicating the local part of the assertion for eachisjunct of the shared part.
Symbolic states are nite sets of symbolic heaps, representingein disjunction.

As commands can contain non-pure (accessing the heap) expressionguards and
assignments, SmallfootRG translates them into a series of reads temporary variables
followed by an assignment or a conditional that uses only pure gressions. For example,
assume(x->tl==0) would be translated totemp = x->tl; assume(temp==0), for a fresh
variable temp.

Except for atomic blocks, symbolic execution is pretty standak the shared compo-
nent is just passed around. For atomic blocks more work is heede@onsider executing
the atomic blockatomic(B) {C} as Act(x) starting from symbolic preconditionX .
Intuitively, the command is executed atomically when the aadition B is satis ed. The
annotation as Act(x) speci es that commandC performs shared actiorAct with the pa-
rameter instantiated with x. Suppose thatAct was declared asiction Act(x) [P] [Q]

Our task is to nd the postcondition in the following Hoare trip le:

fX [Slgatomic(B) C as Act(x); f g

Our algorithm consists of 4 steps, corresponding to the premisestioé¢ following inference
rule.
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fX Sgassume(B)fX P Fg
fX PgCfXg X Q Y stabilizeQ F)= R
fX [Slgatomic(B) C as Act(x); fY [Rlg

Step 1. Add shared stateS to the local state, and call the symbolic execution engine and
theorem prover to infer the frameF such that fX Sg assume(B)fX P Fag.
This step has the dual function of checking that the action's ggcondition P is
implied, and also inferring the leftover stateF, which should not be accessed during
the execution ofC The symbolic execution ofassume(B) removes cases wherB
evaluates to false. Note that the evaluation oB can access the shared state. If this
step fails, the action's precondition cannot be met, and we rept an error.

Step 2. Execute the body of the atomic block symbolically starting wit X P. Notice
that F is not mentioned in the precondition: because of the semantic§ Hoare
triples in separation logic, this ensures that comman@ does not access the state
described byF, as required by the speci cation ofAct.

Step 3. Call the theorem prover to infer the frameY such that X°* Q Y. As before,
this has the e ect of checking that the postconditionQ is true at the end of the
execution, and inferring the leftover stateY. This Y becomes the local part of the
postcondition. If the implication fails, the postcondition ofthe annotated action
cannot be met, and we report an error.

Step 4. Combine the shared leftovelF computed in the rst step with the shared post-
condition Q, and stabilize the resultQ F with respect to the execution of actions
by the environment as described iX6.4.1.

Read-only atomics  Atomic regions that do not write to the heap do not need an aabin
annotation. For such regions we can use the following simpli edtomic rule:

fSgCfXYy stab(X9= R  Cis read-only.
f[Slg atomic C f[R]g

6.4.3 Inferring stable assertions

Most often, the postcondition of a critical section obtained bysymbolic execution is not
stable under interference; therefore, we must nd a stable posindition which is weaker
than the original.

Assume for the time being that the rely contains a single actioAct with precondition
P and postconditionQ; later, we will address the general case. Mathematically, &fring
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a stable assertion from an unstable assertidd is a straightforward x-point computation
So=3S Sa=S_FP ~S) Q

where S, is the result of at mostn executions ofAct starting from S. This computation,
however, does not always terminate because the domain of aseers is in nite.

Instead, we can approximate the x-point by using abstract intepretation [20]. Take
the concrete domain to be the set of syntactic Smallfoot assenti®, and the abstract
domain to be a nite subset of normalised Smallfoot assertions th&ontain a bounded
number of existentially quanti ed variables. Both domains ae lattices ordered by impli-
cation, with true as> andfalseas?; _ is join.

We have a lossy abstraction function : Assertion! RestrictedAssertiothat con-
verts a Smallfoot assertion to a restricted assertion, and a comtisation function
RestrictedAssertioh Assertionwhich is just the straightforward inclusion (i.e., the iden-
tity) function. In our implementation, the abstraction function is computed by applying
a set of abstraction rules, an adaptation of the rules of Distefanet al. [24]. The details
are at the end of this section. Nevertheless, the technique is patetric to any suitable
abstraction function.

The x-point can be computed in the abstract domain as follows:

So= (S) St =S_ (P ~S) Q)

interleave the actions during the x-point computation, or to stabilize one action at a
time and repeat the process until we get an assert stable under alttions. The latter
strategy tends to reach the x-point quicker.

As an example, consider stabilizing the assertion 7! lk =0 y 7! Ik = TID with
the Lock and Unlock actions from x6.4.1. Before stabilizing, we replace variabl€ID in
the speci cation of the actions with a fresh existentially quati ed variable _tid, and add
assumptions_tid 6 0 and _tid 6 TID. The idea is that any thread might be executing
in parallel with our thread, and all we know is that the threadidenti er cannot be 0 (by
design choice) and it cannot b&'ID (becauseTID is the thread identi er of our thread).
In this case, stabilization involves the rst and third rules in Figure[6.2. In most cases,
an inconsistent assertion would be generated by adding one of tf@lowing equalities:
0=1,0= _tid, TID= _tid. The following x-point computation does not list those cases.
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So 0 (x7'1k=0 y7!'lk=TID)=x7!'1k=0 y7!Ik=TID
action lock
S 0 So_ (tidé0 tidé TID x7!Ik=_td y7!Ik=TID)
0 So_(tide0 _tideé TID x7!Ilk=_td y7! Ilk=TID)
( tdé TID x7'lk= _tid y7!'Ilk=TID
action lock
S, 0 S (tid°60 _tid°6 TID x 7! Ik=_tid° y 7! [k=TID)
0 S:_(tid°60 _tid°6 TID x 7! lk=_tid° y 7! Ik=TID)
0 (tdé TID x7'lk=td y7'Ik=TID)() S;
action unlock
S 0 S (x7'Ik=0 y7!Ik=TID)
0 S;_(x7'lk=0 y7!Ik=TID)
0 S
In this case, we do not need to stabilize with respect tock again, sinceunlock produced
no changes.

Adaptation of Distefano et al.'s abstraction

The domain of separation logic assertion®, is in nite because assertions can contain an
unbounded number of existentially quanti ed variables. Distéano et al. [24] proposed an
abstraction function that restricts the number of existentialvariables. Their insight was
to forbid assertions such ax 7! .y _y 7! z and to combine the two7! terms into a list
segment. Their abstract domain is nite, which is su cient to guarantee that x-point
computations terminate.

Assume that variable names are ordered and that existential vatles are smaller
than normal variables in this order. The following algoritm abstracts a formulaP =
(A1 :::A,) where eachA; is an atomic formula.

1. Rewrite all equalitiese; = e, so that e is a single variable, which is “smaller' than
all the variables ine,. This is always possible for simple equalities. If we get an
equality between more complex expressions, we can simply dromtlequality.

2. For each equalitye; = e, in P, substitute any other occurrences og; in P by e;; if
e, is an existential variable, discard the equality.

3. For eachA; describing a memory structure (i.e., a cell or a list segment) wke
starting address is an existential variable, nd all other terns that can point to that
address. If there are noneA; is unreachable; replace it withjunk. If there is only
one, then try to combine them into a list segment. If there are nitiple terms that
point to A, leave them as they are.
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To combine two terms into a list segment, use the following immation:

Ly ; 1(61;,X) D; Ly ; 2(7X;e2) D2 :) Iseg, 01\ z(el;ez) D1\ D2

whereLy . (e;;&) p islseq : (er;&) p ore 7! (I = e; ) e 6 D. Thisis a

generalisation of Distefano et al.'s rule, because our list segmerecord common
elds of nodes, and the seD of disjoint memory locations. In addition, because
our list segments are imprecise, we do not need Distefano et aside condition that

e is nil or allocated separately.

4. Put the formulae in a canonical order by renaming their egtential variables. This is
achieved by rst, ordering atomic formulas by only looking atheir shape, while ig-
noring the ordering between existential variables, and therenaming the existential
variables based on the order they appear in the ordered fornaul

Simply running this analysis as described above would forgeid much information and
could not prove even the simplest programs. This is because theadysis would abstract
x7'(lk=TID;tl=y) Ised.y;z) into IsedXx; z), forgetting that the node x was locked! To
avoid this problem, before starting the x-point calculation, replace existential variables
in such 7! assertions containing occurrences afID with normal variables to stop the
abstraction rules from ring. At the end of the x-point calcu lation, replace them back
with existential variables. Note that the number of normal varables does not increase
during the x-point computation and hence the analysis still erminates. Experiments
indicate that this simple heuristic gives enough precision inrpctice. In addition, turning
dead program variables into existential variables before stang the x-point calculation
signi cantly reduces the number of cases and speeds up the arsidy

6.5 Example: lock coupling list

This section demonstrates, by example, that SmallfootRG can nfy the safety of a ne-
grained concurrent linked list. This is the same algorithm asix3.5, but here we prove
a weaker property: that the algorithm does not access unallaied memory and does not
leak memory.

Figure(6.3 contains the annotated input to SmallfootRG. Nextwe informally describe
the annotations required, and also the symbolic execution otiotool. In the tool the
assertions about shared states are enclosed[in.. | brackets, rather than a box. For
example, in the assertiorx|->hd=9 * [y|->hd=10] , the cell at x is local whereas that at
y is shared.

Note that SmallfootRG calculates loop invariants with a standrd x-point computa-
tion using the same abstraction function as that for stabilizatn.
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action Lock(x) [X|->lk=0,t=_w ] [x|->Ik=TID,tl=_w]
action Unlock(x)  [X|->Ik=TID,tl=_w] [x|->Ik=0,tl=_w]
action Add(x,y) [X|->Ik=TID,tl=_w] [x|->Ik=TID,tl=y * y| ->tl=_ w]
action Remove(x,y) [X|->Ik=TID,tl=y*y|->Ik=TID,tl=_z]
[X|->Ik=TID,tl=_Z]

ensures: [al=0 * Iseg(a,0)]
init) f a =new(); a>tl = 0; a->k = 0; g

lock(x) f atomic(x->lk == 0) f x->lk = TID; g as Lock(x); g
unlock(x) f atomic f x->lk = 0; g as Unlock(x); g

requires: [al=0 * Iseg(a,0)] requires: [al=0 * Iseg(a,0)]
ensures: [a!=0 * Iseg(a,0)] ensures: [al=0 * Iseg(a,0)]
add(e) f local prev,currtemp; remove(e) f local prev,curr,temp;
prev = a; prev = a;
lock(prev); (@) lock(prev);
atomic f curr = prev->tl; g (b) atomic f curr = prev->tl; g
if (curr!=0) if (curr!=0)
atomic f temp = curr->hd; ¢ atomic f temp = curr->hd; ¢
while(curr!=0 && temp<e) f while(curr!=0 && templ=e) f
lock(curr); lock(curr);
unlock(prev); (c) unlock(prev);
prev: = curr, prev = curr;
atomic 1 curr = prev->tl 9 atomic f curr = prev->tl; g
if (curr!'=0) if (curr=0) ’
atomic f temp = curr->hd; g atom.ic f temp = curr->hd: g
g 9
:gmg_;lkze\g_o’ s E‘ (curr'=0)  f
temp->hd = e ;@ lock(curr);
temp->tl = curr: , attom.lc ]1‘ temp>; pr(iv->tl; Jg
- ot = : atomic f prev->tl = temp; g=
atom;(; fAdpdr(eerevt,ltemtpe)r;np’ g (e) . as Remove(prev,curr); ; (f)
unlock(prev); . dispose(curr);
g

unlock(prev);
g

Figure 6.3: Lock-coupling list. Annotations are in italic fon.

The rest of this section explains the highlighted parts of theeri cation

Executing an atomic block (a) To illustrate the execution of an atomic block, con-
sider the rst lock in the add function, following the rule in x6.4.2.

(Step 1) Execute the guard and nd the frame.
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prev==a * al=0 * Iseg(a,0)
assume(prev->lk == 0);
prev==a * al=0 * prev 7!lk:0,tl:_z * Iseg(_z,0)

The execution unrolls the list segment becaus#=0 ensures that the list is not empty.
Then, check that the annotated action's precondition holdshamely prev7!lk=0,tl= _w
(Recall that any variable starting with an underscore, such asw, is an existential variable
quanti ed across the pre- and post-condition of the action.) Te checking procedure
computes the leftover formula { theframe { obtained by removing cell prev. For this
atomic block the frame islseg( _z,0) . The frame is not used by the atomic block, and
hence remains true at the exit of the atomic block.

(Step 2) Execute the body of the atomic block starting with theseparate conjunction of
the local state and the precondition of the actionprev==a * al=0 * prev 7!lk:0,tl: z
* _w=z in total. At the end, we getprev==a * al=0 * prev 7!'Ik:TID,tl. z * w==z.

(Step 3) Try to prove that this assertion implies the postcondibn of the action plus
some local state. In this case, all the memory cells were consunidthe postcondition;
hence, when exiting the atomic block, no local state is left.

(Step 4) So far we have derived the postconditidprev?! (Ik =TID;tl =_z) Ised_z;0)|,
but we have not nished. We muststabilize the postcondition to take into account the
e ect of other threads onto the resulting state. Following the x-point computation of
6.4.3, compute a weaker assertion that is stable under interérce from all possible
actions of other threads. In this case, the initial assertion waaready stable.

Executing a read-only atomic block (b) | The next atomic block only reads the

shared state without updating it. Hence, no annotation is hecessaas this action causes
no interference. Symbolic execution proceeds normallyl@aking the code to access the
shared state. Again, when we exit the region, we need to stabilitee derived postcondi-

tion.

Stabilization (cD This case illustrates how stabilization forgets informationConsider
unlocking the prev node within the loop. Just before unlockingrev, we have the shared
assertion:

Iseda; prev) prev7!(Ik=TID;tl=curr) curr 7! (Ik=TID;tl=_z) Ised_z;0)]

This says that the shared state consists of a list segment froento prev, two adjacent
locked nodegprev and curr , and a list segment from._z to nil . Just after unlocking the
node, before stabilization, we get:

Iseda; prev) prev7!(lk=0;tl=curr) curr 7!'(Ik=TID;tI=_z) Ised_z;0)|
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Stabilization rst forgets that prev! Ik = 0, because another thread could have locked
the node; moreover, it forgets thatprev is allocated, because it could have been deleted
by another thread. The resulting stable assertion is:

Iseda; curr) curr 7! (Ik=TID;tI=_z) Ised_z;0)}

Local updates (d)  Next we illustrate that local updates do not need to consider the
shared state. Consider the code after the loop sdd. As tempis local, the creation of the

new cell and the two eld updates a ect only the local state. Tlese commands cannot
a ect the shared state. Additionally, astempis local state, we know that no other thread

can alter it. Therefore, we get the following symbolic execian:

[al=0 * Iseg(a,prev) * prev  7!Ik=TID,tl=curr * Iseg(curr,0)]
temp = new(); temp->lk = 0; temp->val = e; temp->tl = z;
[a!l=0 * Iseg(a,prev) * prev  7!'lk=TID,tl=curr * Iseg(curr,0)]
* temp7!1k=0,val=e,tl=curr

Transferring state from local to shared (e) | | Next we illustrate the transfer of state
from local ownership to shared ownership. Consider the atomicdak with the Addanno-
tation:

[al=0 * Iseg(a,prev) * prev 7' IK=TID,tl=curr * Iseg(curr,0)]
* temp7!1k=0,tl=curr
atomic f prev->tl = temp g as Add(prev,temp);
[a!l=0 * Iseg(a,prev) * prev  7!lk=TID,tI=temp
* temp7!tl=curr * Iseg(curr,0)]

We execute the body of the atomic block with the separate comuation of the local state
and the precondition of the action, sgorev 7! Ik=TID,tl=curr * temp 7!Ik=0,tl=curr

in total. At the end, we get prev7!k=TID,tl=temp * temp 7!lk=0,tl=prev and we try
to prove that this implies the postcondition of the action plis some local state. In this
case, all the memory cells were consumed by the postconditiorente, when exiting the
atomic block, no local state is left. Hence the cetempis transferred from local state to
shared state.

Transferring state from shared to local (f) | | This illustrates the transfer of state
from shared ownership to local ownership, and hence that sharecat can safely be
disposed. Consider the atomic block with &emovennotation.

[lseg(a,prev) * prev  7!'Ik=TID,tl=curr
* curr 7'Ik=TID,tl=temp * Iseg(temp,0)]
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| Program | LOC | LOA |Act |#lter |#Calls | Mem(Mb) | Time(s) |

lock coupling 50 9 4 365 3879 0.47 3.9
lazy list 58 16 6 246 8254 0.70 135
optimistic list 59 13 5 122 4468 0.47 7.1
blocking stack 36 7 2 30 123 0.23 0.06
Peterson 17 24 10 136 246 0.47 1.35

Table 6.1: Experimental results

atomic f prev->tl = temp; g as Remove(x,y);
[Iseg(a,prev) * prev  7!'Ik=TID,tl=temp * Iseg(temp,0)]
* curr 7!'Ik=TID,tl=temp

Removing the action's preconditionprev 7! [k=TID,tl=curr * curr  7!'Ik=TID,tl=temp ,

from the shared state leaves a frame d$eg(a,prev) * Iseg(temp,0) . Executing the

body givesprev7!k=TID,tI=temp * curr 7!lk=TID,tl=temp and we try to prove that

this implies the postcondition of the action plus some local ste. The action's post-
condition requiresprev 7! lk=TID,tl=temp , so the remainingcurr 7! Ik=TID,tl=temp is

returned as local state. This action has taken shared state, a&ssible by every thread,
and made itlocal to a single thread. Importantly, this means that the thread isfree to

dispose this memory cell as no other thread will attempt to acss it.

[Iseg(a,x) * x 7!'Ik=TID,tl=z * Iseg(z,0)] * y 7'k=TID,tl=z
dispose(y);
[lseg(a,x) * x 7!'Ik=TID,tl=z * Iseg(z,0)]
Summary This example has illustrated ne-grained locking, in particlar
dynamically allocated locks
non-nested lock/unlock pairs

disposal of memory (including locks)

Other examples SmallfootRG handles include optimistic readfrom shared memory and
lazy deletions.

6.6 Experimental results

SmallfootRG extends the separation logic tool called Smailbt [6]. The tests were ex-
ecuted on a Powerbook G4 1.33 GHz with 786MB memory running 0S»0.4.8. The
results are reported in Figure 6.1. For each example we reporthe number of lines of
code (LOC) and of annotation (LOA); the number of user-providé actions (Actions);
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the total number of iterations for all the x-point calculations for stabilization (#lter);
the number of calls to the underlying theorem prover during stilization (#Calls); the
maximum memory allocated during execution (Mem (Mb)) in megbytes, and the total
execution time (Time (S)) in seconds.

We have tested our tool on a number of ne-grained concurren@xamples. The rst
three (lock coupling, lazy list, optimistic list) all implemert the data structure of a set as
a singly linked list with a lock per node.

lock coupling The main part of the algorithm was described in Section 6.5. \\ém
traversing the list, locks are acquired and released in a \handr@r hand" fashion.

lazy list  An algorithm by Heller et al. [38], which traverses the list withoit ac-
quiring any locks; at the end it locks the relevant node and valates the node is
still in the list. Deletions happen in two steps: nodes are rst maeed as deleted,
then they are physically removed from the list.

optimistic list Similar to lazy list, it traverses the list without acquiring any
locks; at the end it locks the relevant node and re-traversesedHist to validate that
the node is still in the list.

The next two examples are simplerblocking stack simply acquires a lock before
modifying the shared stack; andPeterson [66] is a well-known mutual exclusion algo-
rithm.

We have a nal example of Simpson'dSlot [71], which implements a wait-free atomic
memory cell with a single reader and a single writer. This algithm has been veri ed
in both our tool, and Smallfoot. In our new tool it takes under4 minutes, while in the
original Smallfoot it took just under 25 minutes. Also, the specication of the invariant
for Smallfoot is over twice as long as the action speci catiofor SmallfootRGE

Program Lines of Annotation Time (s)
4Slot (SmallfootRG) 42 221
4Slot (Smallfoot) 80 1448

Smallfoot requires the same invariant about shared state at eyeprogram point. In
contrast, SmallfootRG calculates only the pertinent shared ates at each atomic block,
so when it enters an atomic block it does not need to consider asany possibilities
as Smallfoot. This example demonstrates that using binary i&ions instead of simply
invariants leads to shorter proofs.

Apart from the 4Slot algorithm, we believe our tool takes an acceptable amount of
time to verify the algorithms discussed in this section. Our exapies have demonstrated

2The speci cation for both could be simpli ed if Smallfoot directly supported ar rays in the assertion
language.
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the disposal of memory (lock-coupling list and blocking stack)the optimistic reading
of values and leaking memory (lazy and optimistic list algoritms), and classic mutual
exclusion problems (Peterson's and Simpson's algorithm).
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Chapter 7

Conclusion

7.1 Summary

The dissertation has covered three main topics:

a new logic, RGSep, that enables concise reasoning about neiged concurrency;

a set of techniques for proving linearisability demonstratedybproofs of important
practical algorithms such as MCAS;

a tool, SmallfootRG, based on RGSep that checks safety propexdt about ne-
grained concurrent algorithms operating on linked lists.

There are many topics that this dissertation did not address: Ieness, termination,
fairness, starvation|issues well known and widely discussed. It didnot consider dis-
tributed systems and the additional problems caused by commuation delays, process
or link failures, and security concerns.

At least, it has shown that reasoning about ne-grained shared-emory concurrency
can be done formally, concisely, modularly, and compositioiha And in some cases, even
automatically.

7.2 Future work

Dynamic modularity RGSep and separation logic both permit multiple disjoint re-
gions of shared state, but the number of regions is determinedastally. Recently, Gots-
man et al. [30] described a way of lifting this restriction in Smaration Logic thereby
permitting locks to be stored in the heap. Their work can probaly be recast to RGSep.
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Separation logic permissions [8] are also dynamic in nature. @&in drawback is that
they protect a single memory cell and enforce a very simple preqy: no writes happen to
that memory cell. If integrated with RGSep boxed assertions, peissions could enforce
much more complex properties. In addition, RGSep would gairogd dynamic modularity
and become ideal for reasoning about object-oriented langyes.

Liveness/termination Proving termination in a concurrent setting is another inter
esting open problem. Except for the simplest concurrent progms, termination of a
concurrent operation depends heavily on its environment dnoften on the scheduler's
fairness. Terminology such as "wait-free," “lock-free’, andbstruction-free' describe vari-
ous degrees of context-dependent termination. Judging frothe informal proofs of these
properties, their formal proofs will be global, but tractabé and, in fact, relatively easy.

Weak memory models Most proof methods, including RGSep, assume that parallel
composition has an interleaving semantics. This assumption id$a for the so called \weak
memory models" provided by modern processors. In these models, rthés no globally
consistent view of the shared state, and each thread may observetes to shared variables
happening in a di erent order. Is there a suitable logic for wvefying programs running in
weak memory models?

Tool support  This dissertation has already presented a prototype checker $&d on
RGSep demonstrating that automated reasoning about ne-graiconcurrency is possible.
There are a few limitations to the current version of Smallfa&®G, which can be resolved
in the future. Interference actions can be inferred, arithmtic can be taken into account.

But more importantly, tools should be developed to encompassé techniques for
proving linearisability and automating these proofs. This wil enable us to verify con-
current libraries involving intricate internal concurrercy, so that their users may safely
assume they expose a simple sequential interface. Proving lineability automatically is
not very di cult, because the respective hand-crafted proofsnvolve surprisingly simple
mathematics, and simple annotations can be used to determineethinearisation point.
The recent work by Amit et al. [3] is a promising step in that diretion.
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an accounting gure, a permission
local state

resource algebra

element of a resource algebra
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