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Abstract

Traditionally, concurrent data structures are protected bya single mutual exclusion lock

so that only one thread may access the data structure at any time.This coarse-grained

approach makes it relatively easy to reason about correctness, but it severely limits paral-

lelism. More advanced algorithms instead perform synchronisation at a �ner grain. They

employ sophisticated synchronisation schemes (both blocking and non-blocking) and are

usually written in low-level languages such as C.

This dissertation addresses the formal veri�cation of such algorithms. It proposes

techniques that are modular (and hence scalable), easy for programmers to use, and yet

powerful enough to verify complex algorithms. In doing so, it makes two theoretical and

two practical contributions to reasoning about �ne-grainedconcurrency.

First, building on rely/guarantee reasoning and separation logic, it develops a new

logic, RGSep, that subsumes these two logics and enables simple,modular proofs of �ne-

grained concurrent algorithms that use complex dynamicallyallocated data structures and

may explicitly deallocate memory. RGSep allows for ownership-based reasoning and own-

ership transfer between threads, while maintaining the expressiveness of binary relations

to describe inter-thread interference.

Second, it describes techniques for proving linearisability, the standard correctness

condition for �ne-grained concurrent algorithms. The main proof technique is to introduce

auxiliary single-assignment variables to capture the linearisation point and to inline the

abstract e�ect of the program at that point as auxiliary code.

Third, it demonstrates this approach by proving linearisability of a collection of con-

current list and stack algorithms, as well as providing the �rst correctness proofs of the

RDCSS and MCAS implementations of Harris et al.

Finally, it describes a prototype safety checker, SmallfootRG, for �ne-grained concur-

rent programs that is based on RGSep. SmallfootRG proves simple safety properties for

a number of list and stack algorithms and veri�es the absence of memory leaks.
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Chapter 1

Introduction

Parallelism has always been a challenging domain for processorarchitecture, program-

ming, and formal methods. Traditionally, a data structure (such as a tree or a hashtable)

is made concurrent by protecting it with a single mutual exclusion lock so that only one

thread may access the data structure at any time. This approachmakes it relatively

easy to reason about correctness, but it severely limits parallelism, negating some of the

bene�ts of modern multicore and multiprocessor systems.

Instead, there is a growing trend trying to perform synchronisation between threads

at a �ner grain, so that multiple threads can update di�erent parts of the data structure

at the same time. In order to achieve this, algorithms use sophisticated locking schemes

(such as hand-over-hand locking), and non-blocking designs involving compare-and-swap

(CAS) instructions and helping. There are already many such algorithms within the

research community and they are getting adopted quite widelyin the form of concurrent

libraries such asjava.util.concurrent .1

As a paradigm, �ne-grained concurrency is rather complicated and error-prone. Since

e�ciency is a prime concern, the programmers use low-level languages (such as C) and

avoid established abstractions, such as garbage collection, because of their runtime costs.

Synchronisation between competing threads takes place at a �ner grain than the invari-

ants that are supposed to be preserved, thereby breaking abstraction, a well-known good

programming practice. Consequently, modular reasoning about �ne-grained concurrency

is extremely di�cult.

Being able to reason about such programs modularly is crucial.Since most �ne-

grained concurrent programs are part of standard libraries, we would like to prove their

correctness once and for all, and not need to repeat the proof each time they are used.

Most existing proof techniques (e.g. invariants [4], reduction [16, 28, 76], ownership [48,

49, 50], concurrent separation logic [58, 11, 8, 65]) are too simple to deal with �ne-grain

1http://java.sun.com/j2se/1.5.0/docs/api/java/util/c oncurrent/package-summary.html
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concurrency. More advanced techniques (e.g. temporal logic [67, 54], simulation [25, 18])

are too general and complicated, and usually not modular.

Rely/guarantee [51] is the probably the most suitable of the existing techniques. It is

compositional in the sense that we can compose proofs of a program's components to get

a proof for the entire program, but it isnot modular. We cannot give a speci�cation and

a proof that is reusable in every valid usage context. This is because the speci�cation of

a component must know which variables the other components use, just to say that the

component does not interfere with those variables. Since most �ne-grained concurrency

is in library code, modularity is needed rather than just compositionality.

This dissertation describes a framework that makes reasoning about �ne-grained con-

current algorithms tractable. It is based on a combination ofrely-guarantee reasoning,

separation logic, linearisability, and auxiliary variables.

A key observation is that binary relations are necessary for describing the interface

between threads of a concurrent system. Invariants are useful,but they are too weak and

inexpressive in practice. More complex descriptions such as �nite-state automata and

temporal properties are usually unnecessary. This observationis not new: at least Jones

and Lamport have made it before, but it seems to have been neglected.

A second observation is that reasoning about concurrent programs is very similar to

reasoning about modular sequential programs. A sequential program with modules is

essentially a coarse-grained concurrent program with one lockper module. Veri�cation of

these two classes of programs raises almost the same issues. The practical di�erence is that

the di�cult issues appear much earlier in concurrent programsthan they do in modular

sequential programs. As a result, most of the �ndings described in this dissertation apply

equally to modular sequential programs.

Finally, saying that some state is private to one thread/component is di�erent than

saying that other threads/components cannot write to that state. The former entails the

latter, but the converse implication does not hold. For example, a component can deallo-

cate its private state without consulting the other threads. If, however, other components

can see (but not update) this state, then we cannot deallocate it without consulting

them because another component may be accessing it concurrently. Again, this observa-

tion is hardly original, but it has been ignored by many veri�cation methods including

rely/guarantee.

1.1 Contributions and dissertation outline

The main contribution of this dissertation is the developmentof a new logic, RGSep, that

subsumes rely/guarantee and separation logic. RGSep enables simple, modular proofs

of �ne-grained concurrent algorithms that use complex dynamically allocated data struc-

9



tures and may explicitly deallocate memory. It permits reasoning based on ownership

and ownership transfer between threads, while maintaining theexpressiveness of binary

relations to describe inter-thread interference.

Here is the outline of the dissertation:

� Chapter 2 explains some of the terminology in concurrency andoutlines existing

veri�cation techniques. It de�nes common notation, and gives a detailed, uniform

introduction to rely/guarantee and to the various versions of separation logic.

� Chapter 3 describes the core of RGSep, proves its soundness, and presents a proof of

a �ne-grained concurrent list algorithm that explicitly disposes (frees) nodes when

they are no longer accessible.

� Chapter 4 addresses peripheral issues related to RGSep, such as when stability needs

to be checked, and presents some extensions for further modularity.

� Chapter 5 discusses linearisability, the standard correctness requirement for �ne-

grained concurrent algorithms, and describes techniques forproving that an algo-

rithm is linearisable.

The veri�cation techniques are demonstrated by linearisability proofs of a collection

of concurrent list and stack algorithms, as well as the RDCSS andMCAS imple-

mentations of Harris et al. [34], which are the core components of their software

transactional memory (STM) implementation.

� Chapter 6 describes SmallfootRG, a prototype safety checker for �ne-grained con-

current programs that is based on RGSep. The tool proves simplesafety properties

for a number of list and stack algorithms and veri�es the absenceof memory leaks.
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Chapter 2

Technical background

This chapter summarises the terminology and notation used throughout the disser-

tation and provides a uniform introduction to rely/guarantee and separation logic, the

program logics that this work is based on.

The chapter starts with x2.1 giving an overview of shared memory concurrency and

introducing some of the terminology associated with it. Next,x2.2 describes a simple

parallel programming language, GPPL, syntactic conventions, proof terminology and no-

tation. The following sections (x2.3 and x2.4) constitute the main part of this chapter,

as they describe rely/guarantee and separation logic respectively. Finally, x2.5 discusses

related proof methods andx2.6 concludes by comparing the various approaches.

2.1 Shared memory concurrency

A concurrent system consists of a number ofprocesses, which execute mostly indepen-

dently of one another, but occasionallyinteract with each other. Depending on the

circumstances, inter-process interaction may or may not be desirable. Useful interaction

is also known ascommunication, whereas undesirable interaction is calledinterference.

There are two main forms of communication between processes: shared memory and

channels. In a channel-based system processes interact by sending values to channels and

receiving values from channels. In a shared memory system processes interact by reading

from and writing to a shared memory location. This dissertationfocuses on the latter

model.

A thread is a process in a shared-memory system. Some systems have a �xed number

of threads; other systems permit new threads to be created at run-time. Some languages

restrict the creation of threads to a nested way: a thread isforked into subthreads; when

all subthreads terminate, they arejoined together in one thread. Other languages do not

force a nested thread structure. Instead, a new thread can bespawnedat any time; the
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newly created thread executes in parallel and vanishes when it terminates. Often each

thread has an identi�er, a unique number that distinguishes itfrom other threads. Some

algorithms assume that threads have identi�ers, Even if an algorithm does not mention

thread identi�ers, introducing thread identi�ers may assist in its veri�cation (for example,

seex3.5).

The schedulerdecides which process is to execute on which processor. Schedulers were

traditionally distinguished into preemptive and non-preemptive depending on whether

they can stop (preempt) an executing process in order to select another process to run, or

whether each process must voluntarily yield control to the scheduler every so often. Now,

most schedulers are preemptive.

Typically, schedulers provide few guarantees that a thread that is ready to execute will

be selected for execution. Aweakly fair scheduler ensures that at any time, if a thread

is ready to execute for an in�nitely long time sequence, eventually it will be allowed to

execute. A strongly fair scheduler ensures that from any time onwards, if a thread is

able to execute in�nitely often, then it will eventually get executed. Weak fairness is

easy to realise using a round-robin scheduler, but guaranteeingstrong fairness is di�cult

and impractical. Fairness guarantees that eventually a thread will run, and hence receive

unbounded time (modulo Zeno), but does not specify how often or for how long the thread

will run.

2.1.1 Synchronisation

In a shared-memory system, some threads aresynchronised, if they agree on the order

that some events will happen. In order to reach this agreement, the threads communicate

with each other using the available primitive operations provided by the hardware. For

instance, the hardware could provide mutual exclusion locks (mutexes), atomic memory

reads or writes, CAS (compare and swap), or memory barriers.

Blocking synchronisation Blocking synchronisation refers to a programming style

using mutual exclusion locks (mutexes) to arrange inter-thread synchronisation. Mutual

exclusion is a simple protocol where each shared resource has a ag keeping track of

whether it is being used or not.

When a thread wants to use a shared resource, it atomically checks that it is not in use

and updates the resource's ag to denote that it is now being used. If the resource was

in use, then the thread waits (blocks) until that resource becomes available; otherwise, it

goes on to use that resource. When it has �nished working with theresource, it updates

the resource's ag to say that it is now free.

Because mutual exclusion negates parallelism, programmers try to lock only the rel-

evant parts of a shared data structure and use more permissive locking schemes. Hence,
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algorithms employ techniques such as inherited locking and lock coupling, and use more

sophisticated schemes such as MRSW (multiple readers, single writer) locks.

There is a great number of problems associated with mutexes: deadlock, livelock,

starvation, priority inversion, convoy e�ect. As Harris et al. [35] put it, \locks do not

compose." Nevertheless, their use is ubiquitous.

Non-blocking synchronisation Instead of using locks, more advanced algorithms em-

ploy other primitive operations such as atomic memory reads and writes, or CAS. Using

these operations does not make an algorithm `non-blocking';avoiding locks does not make

an algorithm `lock-free.' The terms `non-blocking' and `lock-free' have a technical mean-

ing relating to the progress an algorithm makes towards completion. In fact, mutexes can

be encoded even with a minimal set of non-blocking primitives.

A synchronisation technique isnon-blocking if it somehow achievesprogresseven if

some threads of the system are descheduled or fail. It iswait-free [42] if it ensures that

all running threads make progress even when other threads incur arbitrary delay. It is

lock-freeif it ensures that whenever at least one thread is running then some thread makes

progress. It isobstruction-free[43] if it guarantees progress for any thread that eventually

executes in isolation.

Herlihy [42] reduced the existence of wait-free algorithms toa consensus problem and

showed that concurrency primitives such as test-and-set were too weak to implement wait-

free algorithms, whereas other primitives |notably CAS| are u niversal. This means that

any sequential algorithm can be turned into a wait-free algorithm by using only CAS for

synchronisation.

Compare and swap Among the more complex operations, the most common one is

compare and swap. CAS takes three arguments: a memory address, an expected value

and a new value. It atomically reads the memory address and if it contains the expected

value, it updates it with the new value; otherwise, it does nothing:

bool CAS(value_t *addr, value_t exp, value_t new) {

atomic {

if (*addr == exp) { *addr = new; return true; }

else { return false; }

}

}

Various more elaborate versions of CAS have been proposed, such as DCAS (double

CAS) [31], DWCAS (double-width CAS, i.e. 64bit CAS on 32bit architectures), MCAS

(multiple CAS, i.e. N -way CAS), andkCSS (k-compare single-swap), but are not so widely

available. In any case, they can be constructed from single CAS.

13



Race conditions A race condition occurs when two threads try to access the same

shared location at the same time and at least one of the accesses is awrite. This is

problematic if reading and writing that memory location is not atomic. If a thread reads

some memory location while it is been updated by another thread, it may read a corrupted

value containing parts of the old value and parts of the new value. Similarly, if two updates

to the same location happen at the same time, then the �nal valueof the location might

be a mixture of the two values written.

When, however, the relevant memory accesses are atomic, race conditions are e�ec-

tively a synchronisation technique and can be exploited to build synchronisation primitives

such as mutexes. For example, Peterson's algorithm [66] implements mutual exclusion be-

tween two threads using atomic reads and writes. With Lamport's bakery algorithm [53],

even a single bit atomic read/write su�ces to implement mutualexclusion.

Software Transactional Memory Transactional Memory is a programming abstrac-

tion introduced by Herlihy [44] for hardware, and then by Shavit and Touitou [70] for

software. Following the implementation of Harris and Fraser [33], STM has become quite

popular for its simple and e�ective interface: The programmer writes an atomic block,

and for an observer outside of the block the blocks' memory operations appear to have

executed atomically.

STM may be implemented by a two-phase locking protocol, or more often by optimistic

schemes. In the latter case there are severe restrictions in what actions the program is

allowed to perform within atomic blocks. In particular, as the implementation may have

to roll-back any statement within the transaction, externally observable e�ects such as

I/O are banned.

STM implementations are usually quite complex and it is quitelikely that they con-

tain subtle bugs. Indeed, most STM implementations do not behave as expected if the

memory is not statically partitioned to transactional and non-transactional [36]. This dis-

sertation tackles the veri�cation of the sort of algorithms used in STM implementations

(for example, MCAS inx5.3.4).

Memory consistency Traditionally, concurrency can be given an interleaving seman-

tics, and it is assumed that aligned single word reads and writes are executed atomically

by the hardware. This model, also known as strong consistency, ensures that each thread

observes shared memory operations happening in the same order.

Unfortunately, most modern processors do not conform to this model because their

caches can cause memory operations to be reordered, and hencedi�erent threads can

witness shared operations happen in di�erent orders. Processorssupporting weaker con-

sistency models have special `memory barrier' instructions to ush the cache and thereby

recover an interleaving semantics.
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This dissertation assumes that parallel composition of threads has an interleaving

semantics. Although not entirely realistic, the use of interleaving semantics is almost

universal in concurrency veri�cation.

2.2 Proof terminology & notation

Programming language In order to provide a uniform presentation to rely/guarantee

and the various versions of separation logic, we consider the following minimal imperative

programming language, GPPL (standing for Generic Parallel Programming Language).

Let C stand for commands,c for basic commands (e.g. assignments),B for boolean

expressions, andE for normal integer expressions. Commands,C, are given by the

following grammar:

C ::= skip Empty command

c Basic command

C1; C2 Sequential composition

C1 + C2 Non-deterministic choice

C � Looping

hCi Atomic command

C1kC2 Parallel composition

c ::= assume(B) Assume condition

x := E Variable assignment

: : :

GPPL is parametric with respect to the set of basic commands and expressions. In

Section 2.4, we will see a particular set of basic commands, boolean and integer expres-

sions. The basic commandassume(B) checks whetherB holds: if B is true, it reduces to

skip , otherwise it diverges (loops forever). Since this dissertation discusses only partial

correctness,assume(B) is a convenient way to encode conditionals and while loops:

if (B ) C1 else C2
def= ( assume(B); C1) + ( assume(: B); C2)

while (B) C def= ( assume(B); C)� ; assume(: B)

Similarly, we can encode (conditional) critical regions asfollows:

atomic C def= hCi

atomic (B) C def= hassume(B); Ci
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(skip ; C2); � ! C2; �
(Seq1)

C1; � ! C0
1; � 0

(C1; C2); � ! (C0
1; C2); � 0 (Seq2)

(C1 + C2); � ! C1; �
(Cho1 )

(C1 + C2); � ! C2; �
(Cho2 )

B(� )

assume(B); � ! skip ; �
(Assume)

C � ; � ! (skip + ( C; C � )) ; �
(Loop )

C; � ! � skip ; � 0

hCi ; � ! skip ; � 0 (Atom )

C1; � ! C0
1; � 0

(C1kC2); � ! (C0
1kC2); � 0 (Par1 )

C2; � ! C0
2; � 0

(C1kC2); � ! (C1kC0
2); � 0 (Par2 )

(skip kskip ); � ! skip ; �
(Par3 )

Figure 2.1: Small-step operational semantics of GPPL.

Figure 2.1 contains the small-step operational semantics of GPPL. Since we treat

composition as interleaving, the semantics are pretty straightforward. Con�gurations of

the system are just pairs (C; � ) of a command and a state; and we have transitions from

one con�guration to another.

According to Atom , atomic commands execute all the commands in its body,C, in

one transition. In the premise,! � stands for zero or more! transitions. There is an issue

as to what happens when the bodyC of atomic command does not terminate. According

to the semantics of Figure 2.1, no transition happens at all. This cannot be implemented,

because one would e�ectively need to solve the halting problem. So, more realistically,

one should add a rule saying that ifC diverges thenhCi may diverge. In the context of

this dissertation, the body of atomic commands will always be ashort instruction, such

as a single memory read or write or a CAS, which always terminates.

The other rules are pretty straightforward. We use the rulePar3 instead of the rule

(Ckskip ); � ! C; � because it simpli�es the statements of the lemmas inx3.3.

Finally, instances of GPPL will have rules for each primitivecommand, c. These

primitive commands, c, need not execute atomically. As a convention, if the correctness

of an algorithm depends on some primitive command's atomic execution, then this com-

mand will be enclosed in angle brackets,hci . This way, the algorithms make explicit any

atomicity requirements they have.

Variables First, we must distinguish betweenlogical variables andprogram variables.

Logical variables are used in assertions, have a constant value, and may be quanti�ed over.

Program variables appear in programs, and their values can bechanged with assignments.

An auxiliary variable [62] is a program variable that does not exist in the program

itself, but is introduced in order to prove the program's correctness. Auxiliary variables

do not a�ect the control-ow or the data-ow of the outputs, bu t play an important role
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in reasoning: they allow one to abstract over the program counters of the other threads,

and are used to embed the speci�cation of an algorithm in its implementation. Since they

do not physically get executed, they can be grouped with the previous or the next atomic

instruction into one atomic block.

The simplest form of auxiliary variable is ahistory variable: a variable introduced to

record some information about the past program state that is notpreserved in the current

state. There is also the dual concept of aprophecyvariable that Abadi and Lamport [1]

introduced to capture a �nite amount of knowledge about the future execution of the

program.

Auxiliary variables are also known as dummy variables or ghost variables, but the last

term is ambiguous. A ghost variable is also a logical variable used in the precondition and

postcondition of a Hoare triple in order to relate the initial and the �nal values of some

program variables. For clarity, it is better to avoid this term altogether. The collection

of all auxiliary variables is known asauxiliary state, whereasauxiliary code stands for the

introduced assignment statements to the auxiliary variables.

Relations The rely/guarantee speci�cations use binary relations on states in order to

specify how the state may change by (part of) a program. Here is a summary of the

relational notation.

PredicatesP of a single state� describe a set of system states, whereas binary relations

describe a set of actions (i.e. transitions) of the system. These aretwo-state predicates

that relate the state � just after the action to the state just before the action, which is

denoted as(�� . Similarly, let (�x and x denote the value of the program variablex before

and after the action respectively.

Given a single-state predicateP, we can straightforwardly de�ne a corresponding two-

state predicate, which requiresP to hold in the new state� , but places no constraint on

the old state(�� . We denote this relation by simply overloadingP. Similarly, we shall

write
(�
P for the two-state predicate that is formed by requiringP to hold in the old state

(�� and which places no requirement on the new state� .

P((�� ; � ) def= P(� )
(�
P((�� ; � ) def= P((�� )

Relational notation abbreviates operations on predicatesof two states. So, for ex-

ample P ^ Q is just shorthand for � ((�� ; � ): P((�� ; � ) ^ Q((�� ; � ). Relational composition

of predicates describes exactly the intended behaviour of the sequential composition of

sequential programs.

(P; Q)((�� ; � ) def= 9�: P ((�� ; � ) ^ Q(�; � )
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The program that makes no change to the state is described exactly by the identity

relation,

ID((�� ; � ) def= ((�� = � ):

Finally, the familiar notation R� (reexive and transitive closure) represents any �nite

number of iterations of the program described byR. It is de�ned by:

R� def= ID _ R _ (R; R) _ (R; R; R) _ � � �

2.3 Rely/guarantee reasoning

Rely/guarantee is a compositional veri�cation method for shared memory concurrency

introduced by Jones [51]. Jones's insight was to describe interference between threads

using binary relations. In fact, Jones also had relational postconditions because procedure

speci�cations typically relate the state after the call to thestate before the call.

Other researchers [72, 77, 68], in line with traditional Hoarelogic, used postconditions

of a single state. With single-state postconditions, we can still specify such programs, but

we need to introduce a (ghost) logical variable that ties together the precondition and the

postcondition. Usually, the proof rules with single-state postconditions are simpler, but

the assertions may be messier, because of the need to introduce (ghost) logical variables.

Whether the postcondition should be a single-state predicate ora binary relation

is orthogonal to the essence of rely-guarantee method, which is describing interference,

but nevertheless important. In this section, following Jones[51] we shall use relational

postconditions. In the combination with separation logic, forsimplicity, we shall fall back

to postconditions of a single state.

There is a wide class of related veri�cation methods (e.g. [56, 15, 2, 40, 41, 23]), which

are collectively known as assume-guarantee. These methods di�er in their application

domain and interference speci�cations.

Owicki-Gries

The Rely/Guarantee method can be seen as a compositional version of the Owicki-Gries

method [62]. In her PhD, Owicki [61] came up with the �rst tractable proof method

for concurrent programs. A standard sequential proof is performed for each thread; the

parallel rule requires that each thread does not `interfere' with the proofs of the other

threads.

f P1g C1 f Q1g f P2g C2 f Q2g (y)

f P1 ^ P2g C1kC2 f Q1 ^ Q2g
(Owicki-Gries )
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where (y) is the side-condition requiring that C1 does not interfere with the proof ofC2

and vice versa. This means that every intermediate assertion between atomic actions in

the proof outline of C2 must be preserved by all atomic actions ofC1 and vice versa.

Clearly, this is a heavy requirement and the method is not compositional.

Speci�cations

Rely/guarantee reasoning [51] is a compositional method basedon the Owicki-Gries

method. The speci�cations consist of four components (P; R; G; Q).

� The predicatesP and Q are thepre-condition and post-condition. They describe the

behaviour of the thread as a whole, from the time it starts to the time it terminates

(if it does). The pre-condition P, a single-state predicate, describes an assumption

about the initial state that must hold for the program to make sense. The post-

condition Q is a two-state predicate relating the initial state (just before the program

starts execution) to the �nal state (immediately after the program terminates). The

post-condition describes the overall e�ect of the program to the state.

� R and G summarise the properties of the individual atomic actions invoked by the

environment (in the case ofR) and the thread itself (in the case ofG). They are

two-state predicates, relating the state(�� before each individual atomic action to

� , the one immediately after that action. Therely condition R models all atomic

actions of the environment, describing the interference theprogram can tolerate

from its environment. Conversely, theguarantee conditionG models the atomic

actions of the program, and hence it describes the interference that it imposes on

the other threads of the system.

There is a well-formedness condition on rely/guarantee speci�cations: the precondition

and the postcondition must be stable under the rely condition, which means that they

are resistant to interference from the environment. Coleman and Jones [17] have stability

as an implicit side-condition at every proof rule. This is, however, unnecessary. Here,

following Prensa [68], we will check stability only at the atomic block rule. (There are

futher possibilities as to where stability is checked: these will be presented in Section 4.1.)

De�nition 1 (Stability) . A binary relation Q is stable undera binary relation R if and

only if (R; Q) ) Q and (Q; R) ) Q.

The de�nition says that doing an environment step before or after Q should not make

Q invalid. Hence, by induction, if Q is stable, then doing any number of environment

transitions before and afterQ should not invalidate Q. For single state predicates, these

checks can be simpli�ed, and we get the following lemma.
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Lemma 2. A single state predicateP is stable undera binary relation R if and only if

(P((�� ) ^ R((�� ; � )) ) P(� ).

When two threads are composed in parallel, the proof rules require that the guarantee

condition of the one thread implies the rely condition of theother thread and vice versa.

This ensures that the component proofs do not interfere with each other.

Proof rules

We turn to the rely/guarantee proof rules for GPPL, the simpleprogramming language

introduced in x2.2. Let C satRG (P; R; G; Q) stand for the judgement that the command

C meets the speci�cation (P; R; G; Q).

The �rst rule allows us to weaken a speci�cation. A stronger speci�cation is possibly

more desirable but more di�cult to meet. A speci�cation is weakened by weakening its

obligations (the postcondition and the guarantee condition) and strengthened by weaken-

ing its assumptions (the precondition and the rely condition). When developing a program

from its speci�cation, it is always valid to replace the speci�cation by a stronger one.

C satRG (P; R; G; Q)

P0 ) P R0 ) R G ) G0 Q ) Q0

C satRG (P0; R0; G0; Q0)
(RG-Weaken )

The following rule exploits the relational nature of the postcondition and allows us to

strengthen it. In the postcondition, we can can always assume that the precondition held

at the starting state, and that the program's e�ect was just some arbitrary interleaving

of the program and environment actions.

C satRG (P; R; G; Q)

C satRG (P; R; G; Q ^
(�
P ^ (G _ R)� )

(RG-AdjustPost )

Then, we have a proof rules for each type of command,C. The rules for skip , se-

quential composition, non-deterministic choice and loopingare straightforward. In the

sequential composition rule, note that the total e�ect,Q1; Q2, is just the relational com-

position of the two postconditions.

skip satRG (true; R; G; ID)
(RG-Skip )

C1 satRG (P1; R; G; (Q1 ^ P2))

C2 satRG (P2; R; G; Q2)

(C1; C2) satRG (P1; R; G; (Q1; Q2))
(RG-Seq )
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C1 satRG (P; R; G; Q)

C2 satRG (P; R; G; Q)

(C1 + C2) satRG (P; R; G; Q)
(RG-Choice )

C satRG (P; R; G; (Q ^ P))

C � satRG (P; R; G; Q� )
(RG-Loop )

The rules for atomic blocks and parallel composition are moreinteresting. The atomic

rule checks that the speci�cation is well formed, namely thatP and Q are stable under

interference fromR, and ensures that the atomic action satis�es the guarantee condition G

and the postconditionQ. BecausehCi is executed atomically, we do not need to consider

any environment interference within the atomic block. Thatis why we checkC with the

identity rely condition.

(P; R) ) P (R; Q) ) Q (Q; R) ) Q

C satRG (P; ID; True; (Q ^ G))

hCi satRG (P; R; G; Q)
(RG-Atomic )

When composing two threads in parallel, we require that each thread is immune to

interference by all the other threads. So, the threadC1 can get interfered by the thread

C2 or by environment of the parallel composition. Hence, its relycondition must account

for both possibilities, which is represented asR _ G2. Conversely,C2's rely condition is

R _ G1. Initially, the preconditions of both threads must hold; at the end, if both threads

terminate, then both postconditions will hold. This is because both threads will have

established their postcondition, and as each postcondition is stable under interference, so

both will hold for the entire composition. Finally, the total guarantee isG1 _ G2, because

each atomic action belongs either to the �rst thread or the second.

C1 satRG (P; (R _ G2); G1; Q1)

C2 satRG (P; (R _ G1); G2; Q2)

(C1kC2) satRG (P; R; (G1 _ G2); (Q1 ^ Q2))
(RG-Par )

Soundness and completeness

In line with the rest of the dissertation this section presented rely/guarantee proof rules

for partial correctness. There is an alternative rule for loops that proves environment-

independent termination. If the proof of the termination ofa thread depends on the the

termination of its environment, we quickly run into circular reasoning, which is generally

unsound. Abadi and Lamport [2] gave a condition under which suchcircular reasoning is

sound, and showed that all safety proofs trivially satisfy this condition.
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Prensa [68] formalised a version of rely/guarantee rules (witha single-state postcon-

dition) in Isabelle/HOL and proved their soundness and relativecompleteness. More

recently, Coleman and Jones [17] presented a structural proofof soundness for the rules

with relational postconditions.

The rely/guarantee rules are intentionally incomplete: they model interference as

a relation, ignoring the environment's control ow. Hence, they cannot directly prove

properties that depend on the environment's control ow. Nevertheless, we can introduce

auxiliary variables to encode the implicit control ow constraints, and use these auxiliary

variables in the proof. Modulo introducing auxiliary variables, rely/guarantee is complete.

The various completeness proofs [68] introduce an auxiliaryvariable that records the entire

execution history. Of course, introducing such an auxiliary variable has a global e�ect on

the program to be veri�ed. Therefore, the completeness resultdoes not guarantee that a

modular proof can be found for every program.

2.4 Separation logic

Separation logic [69, 47] is a program logic with a built-in notion of a resource, and is

based on the logic of bunched implications (BI) [59]. Its mainapplication so far has been

reasoning about pointer programs that keep track of the memory they use and explicitly

deallocate unused memory.

As separation logic is a recent development, there are variousversions of the logic

with complementary features, but there is not yet a standard uniform presentation of all

these. The survey paper by Reynolds [69] is probably the best introduction to separation

logic, but does not describe some of the more recent developments (e.g. permissions, and

`variables as resource') that are mentioned below.

Below we will consider an abstract version of separation logic inuenced by Calcagno,

O'Hearn, and Yang [13]. By instantiating this abstract separation logic, we can derive

the various existing versions of separation logic.

2.4.1 Abstract separation logic

Resources are elements of a cancellative, commutative, partial monoid (M; � ; u), where

the operator � represents the addition of two resources. Adding two resources isa partial

operation because some models forbid having two copies of the same resource; hence,

m � m might be unde�ned. Clearly enough, addition is commutativeand associative and

has an identity element: the empty resourceu. It is also cancellative, because we can

subtract a resource from a larger resource that contains it.

These properties are expressed in the following de�nition of a resource algebra.
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De�nition 3. A resource algebra(M; � ; u) consists of a setM equipped with a partial

binary operator � : M � M * M and a distinguished elementu 2 M , such that for all

m1; m2; m3 2 M the following properties hold:

m � u = u � m = m (identity element)

(m1 � m2) � m3 = m1 � (m2 � m3) (associativity)

m1 � m2 = m2 � m1 (commutativity)

(de�ned(m1 � m2) ^ m1 � m2 = m1 � m3) =) m2 = m3 (cancellation)

The restriction on having one unit elementu can be relaxed to a setU � M of unit

elements such that for allm 2 M , there existsu 2 U such that m � u = u � m = m and

for all u0 2 U n f ug, m � u0 is unde�ned.

The structure of the commutative monoid induces a partial order, v , de�ned as follows,

m1 v m2
def() 9 m0: m2 = m1 � m0:

Informally, m1 is smaller thanm2 if it contains fewer resources. From the de�nition,u is

the smallest element of the set, that is8m: u v m.

In order that reasoning about resources makes sense, the semantics of programs must

respect resources. Separation logic requires that every command C obeys the following

two locality conditions:

De�nition 4 (Locality) .

� If (C; s1 � s) ! � fault , then (C; s1) ! � fault .

� If (C; s1 � s) ! � (skip ; s2), then either there existss0
2 such that(C; s1) ! � (skip ; s0

2)

and s2 = s � s0
2, or C; s1 ! � fault .

The �rst property is equivalent to safety monotonicity, which says that a non-faulting

program on a small states1 also does not fault on a larger states1 � s. The second is

the frame property of commands: when a command that runs successfully with state s1

is executed with a larger states1 � s, it does not depend on the additional states and it

does not modifys.

It is su�cient that all primitive commands, c, have the locality property. Then, by

construction, all larger programs will have the locality property.

Assertions Separation logic assertions are given by the following grammar,

P; Q ::= true j false j PrimP j P ^ Q j P _ Q j P ) Q j P , Q j : P

j emp j P � Q j P �� Q j P � ~ Q

j 9x: P j 8x: P
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m; i j= SL true () always
m; i j= SL false () never
m; i j= SL P ^ Q () (m; i j= SL P) ^ (m; i j= SL Q)
m; i j= SL P _ Q () (m; i j= SL P) _ (m; i j= SL Q)
m; i j= SL P ) Q () (m; i j= SL P) =) (m; i j= SL Q)
m; i j= SL P , Q () (m; i j= SL P) () (m; i j= SL Q)
m; i j= SL : P () : (m; i j= SL P)
m; i j= SL emp () m = u
m; i j= SL P � Q () 9 m1m2: (m1 � m2 = m) ^ (m1; i j= SL P) ^ (m2; i j= SL Q)
m; i j= SL P �� Q () 8 m1m2: ((m1 � m = m2) ^ (m1; i j= SL P)) =) (m2; i j= SL Q)
m; i j= SL P � ~ Q () 9 m1m2: (m1 � m = m2) ^ (m1; i j= SL P) ^ (m2; i j= SL Q)
m; i j= SL 9x: P () 9 v 2 Val: (m; (i ] f x 7! vg) j= SL P)
m; i j= SL 8x: P () 8 v 2 Val: (m; (i ] f x 7! vg) j= SL P)

Figure 2.2: Semantics of separation logic assertions

The �rst line lists the connectives of classical propositional logic, while the second

line contains the new assertion forms pertinent to BI [59]: empty state (emp), separating

conjunction (� ), magic wand (�� ), and septraction (� ~ ). Finally, the assertions include

�rst order quanti�cation.

The Kripke semantics of the logic are given in Figure 2.2. A model consists of an

element of a resource algebra (m 2 M ) and an interpretation for the logical variables

(i : LogVar* Val). The well-known operators^ , _, ) , , , and : have their standard,

classical meaning.

� emp asserts that the resource is empty; namelym = u, where u is the identity

element ofM .

� P � Q states that the resource can be divided into two disjoint partsm1 and m2

such that m1 satis�es P and m2 satis�es Q. This is also known as multiplicative

conjunction. There is also an iterated version of separating conjunction, which will

be denoted as~ 1� i � n Pi
def= P1 � : : : � Pn .

� P �� Q asserts that for all disjoint resource extensions satisfyingP, the combination

of the resource and the extension satis�esQ.

� P � ~ Q is satis�ed by the di�erence between two resources, the bigger one satisfying

Q and the smaller one satisfyingP. Septraction can be de�ned in terms of magic

wand, P � ~ Q () : (P ��: Q). This operator does not generally appear in papers

discussing separation logic, but will be used extensively in this dissertation.1

1 Similar operators have been previously used in context logic [78] and ambientlogic. In context
logic, septraction corresponds toJ , whereas in ambient logic it corresponds to fusion (/ ). The name
`septraction' is due to Matthew Parkinson.
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There are a few classes of assertions have useful additional properties. Pure asser-

tions do not specify the resource (m), but only the interpretation of logical variables (i ).

Intuitionistic assertions specify a lower bound on the resource: if a resourcem satis�es

an intuitionistic assertion P, then any bigger resourcem0 satis�es P. Exact assertions

specify exactly one resource. Given aprecise assertionP, for any resourcem, there is at

most one sub-resource ofm that satis�es P.

De�nition 5 (Pure assertions). An assertion P is pure if and only if

8im 1m2: (m1; i j= SL P) () (m2; i j= SL P).

De�nition 6 (Intuitionistic assertions). An assertion P is intuitionistic if and only if

8imm 0: m v m0^ (m; i j= SL P) =) (m0; i j= SL P).

De�nition 7 (Exact assertions). An assertion P is (strictly) exact if and only if

8im 1m2: (m1; i j= SL P) ^ (m2; i j= SL P) =) m1 = m2.

De�nition 8 (Precise assertions). An assertion P is preciseif and only if

8imm 1m2: m1 v m ^ m2 v m ^ (m1; i j= SL P) ^ (m2; i j= SL P) =) m1 = m2.

Precise assertions are very important for concurrent separation logic (seex2.4.3).

Proof rules

In separation logic, programs are speci�ed by Hoare triples,f Pg C f Qg, which have a

fault-avoidance partial correctness interpretation. Thismeans that if the preconditionP

holds for the initial state, then the commandC executes properly without faults (such

as accessing unallocated memory). Moreover, ifC terminates, the postconditionQ holds

for the �nal state.

The novelty of separation logic is its frame rule:

` SL f Pg C f Qg

` SL f P � Rg C f Q � Rg
(SL-Frame )

This rule says that if a commandC safely executes in an initial state satisfyingP and

produces a �nal state satisfyingQ, then it also executes safely if additional resourceR

is present. The commandC, if it terminates, will not use the additional resourceR

and, hence,R will still exist at the end. The soundness of the frame rule relieson using

separating conjunction (� ) to express disjointness of resources. Proving its soundness,

however, is not at all obvious, because the additional stateR may restrict the possible

executions ofC. For instance, if C allocates some new resource, then the existence ofR

restricts the resource allocator not to return a resource already present in R.

The following proof rules are the standard Floyd-Hoare rules for the empty program,

sequential composition, non-deterministic choice, and loops.
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` SL f Pg skip f Pg
(SL-Skip )

` SL f Pg C1 f Qg ` SL f Qg C2 f Rg

` SL f Pg C1; C2 f Rg
(SL-Seq )

` SL f Pg C1 f Qg ` SL f Pg C2 f Qg

f Pg C1 + C2 f Qg
(SL-Choice )

` SL f Pg C f Pg

` SL f Pg C � f Pg
(SL-Loop )

It is always valid to prove a stronger speci�cation that the onerequired. To weaken a

speci�cation, we either strengthen the precondition or weaken the postcondition.

P0 ) P ` SL f Pg C f Qg Q ) Q0

` SL f P0g C f Q0g
(SL-Conseq )

Finally, here are the rules for disjoint concurrency. These rules state that if two threads

require disjoint resources to execute (cf. the meaning of separating conjunction), then they

can execute safely in parallel. If and when both terminate, each thread will have own

some resource, which will be disjoint from the other thread's resource. Hence, at the

postcondition, we can use separating conjunction to combine the two postconditions.

` SL f Pg C f Qg

` SL f Pg hCi f Qg
(SL-DisjAtomic )

` SL f P1g C1 f Q1g ` SL f P2g C2 f Q2g

` SL f P1 � P2g C1kC2 f Q1 � Q2g
(SL-Par )

If one accepts that the programsCkskip and C are equivalent, then the frame rule

can be derived fromPar and Skip . Alternatively, if we are given the frame rule, we can

derive Skip from the simpler axiomf empg skip f empg by applying the frame rule.

2.4.2 Instances of abstract separation logic

The de�nitions of GPPL and abstract separation logic were parametric with respect to

primitive commandsc and primitive assertionsPrimP respectively. Below we will consider

concrete instantiations for these primitive commands and assertions.

Let (heap-reading) expressionsE be given by the grammar,

E ::= x j x j n j [E ] j E + E j E � E j : : :
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These consist of program variables, logical variables, constants,memory dereferences, and

arithmetic operations. The syntax [E] indicates that we are reading the value stored at

memory locationE. In the examples, whenE points to some data structure with �elds, we

shall useE:�eld as shorthand for [E + o�set of(�eld )]. Having expressions with memory

dereferences in assertions is somewhat problematic. Hence, we de�ne pure expressions,e,

to be those expressions that do not dereference memory; that is,

e ::= x j x j n j e+ e j e � e j : : :

Boolean expressions,B , that appear in programs are

B ::= B ^ B j B _ B j : B j E = E j E < E j E � E j : : :

Boolean expressions do not, in general, belong to the grammar of assertions because they

can contain expressions with memory dereferences. Instead we can de�ne two mappings

from boolean expressions into assertions: (i ) def(B ) is the weakest assertion guaranteeing

that the evaluation of B is de�ned (enough resources are available). (ii ) assn(B) is the

assertion equivalent toB .

Finally, primitive commands, ranged over byc, are given by the following grammar:

c ::= assume(B) Assume boolean condition

x := e Variable assignment

x := [ e] Memory read

[e] := e Memory write

x := new() Allocate memory cell

dispose (e) Deallocate memory cell

Heaps First, consider the standard stack and heap model. This is the initial and the

most widely used model for separation logic, but it is somewhat awed in its treatment

of stack variables (for details, see discussion at the end of this section).

Assume we have two �xed countably in�nite sets: VarNameconsisting of variable

names, andLoc consisting of locations (addresses in the heap). LetVal stand for the set

of values, and de�ne the resource algebra (M; � ; U) to be

M = ( VarName* Val) � (Loc* Val)

� =

8
<

:
� (s1; h1)(s2; h2): (s1:h1 ] h2) if s1 = s2;

unde�ned if s1 6= s2

U = f (s; ; ) j s 2 VarName* Valg

The �rst component of M is known as the stack, and the second as the heap. Primitive
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assertions in this model are:

PrimP ::= e1 7! e2 j e1 = e2 j e1 6= e2 j e1 < e2 j e1 � e2 j � � �

The �rst assertion says that the heap consists of exactly one memorycell with address

e1 and contents e2. The other assertions are equalities and inequalities between pure

expressions.

In terms of the Kripke model, their semantics is:

(s; h); i j= SL e1 7! e2
def() dom(h) = f [[e1]] s ig ^ h([[e1]] s i) = [[ e2]] s i

(s; h); i j= SL e1 = e2
def() [[e1]] s i = [[ e2]] s i

(s; h); i j= SL e1 6= e2
def() [[e1]] s i 6= [[ e2]] s i

where [[e]] s i evaluates the pure expressione in the stack s and the interpretation i .

It is customary {but not necessary{ to takeLoc to be the set of positive integers. This

way we can reason about programs that involve pointer arithmetic. Hence, we can de�ne

the following shorthand notation for describing multiple adjacent cells.

e 7! (e1; e2; : : : ; en ) def= e 7! e1 � (e+ 1) 7! e2 � : : : � (e+ n � 1) 7! en

For clarity, sometimes we use �eld notation. Assume we have a �niteset of �eld names

and a mapping from �eld names to o�sets in the structure they describe and that objects

are allocated at aligned memory addresses. We shall use the following shorthand notation.

e1 7! f :�eld = e2g def= ( e1+ o�set of(�eld )) 7! e2 ^ (e mod obj size= 0)

e 7! f :�eld 1= e1; : : : ; :�eld n= eng def= e 7! f :�eld 1= e1g � : : : � e 7! f :�eld n= eng

Finally, we write an underscore () in the place of an expression whose value we do not

care about. Formally, this is existential quanti�cation. For example, e 7! stands for

9x: e 7! x wherex =2 fv(e).

We turn to the axioms for the stack & heap model of separation logic. They are known

as the small axioms, because they deal with the smallest heap a�ected by command. If

there is more heap present, the frame rule says that it remains una�ected.

� Variable assignment are treated by the standard Hoare axiom, where Q[e=x] substi-

tutes e for all occurrences ofx in Q.

f Q[e=x]g x := e f Qg

� To write to a heap cell that cell must exist in the heap:

f e 7! g [e] := e0 f e 7! e0g
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� Similarly, to read a cell [e], separation logic requires the thread owns the cell; its

contents are copied into variablex; the cell's contents are unchanged; afterwards,

the thread still owns it. (The logical variable y is used to handle the case whenx

occurs ine.)

f e = y ^ e 7! zg x := [ e] f y 7! z ^ x = zg

� cons(e1; : : : ; en ) allocates a new block ofn heap cells. The heap is initially empty;

at the end, it contains the new block of cells.

f empg x := cons(e1; : : : ; en ) f x 7! (e1; : : : ; en )g

� dispose (e) deallocates a heap cell. The heap initially contains the cell being dis-

posed; after disposal it is no longer contained in the heap.

f e 7! g dispose (e) f empg

Permissions Permissions arose as an extension to the standard heap model, to enable

read-sharing between parallel threads. Boyland [10] de�ned an early model. Then, Bornat

et al. [8] provided a general model for permissions and two instances of that model, and

Parkinson [63] gave a generic instance of that model, which overcame some shortcomings

of the earlier instances of the model. Here, I will present an abstract model of permissions

that encompasses all the previous models.

A permission algebra (K; � ; > ) is a resource algebra with a top element but without its

unit element. Intuitively, � adds two disjoint permissions,> represents full permission,

and there is no `zero' permission. In the de�nition below,K ? stands for K ] f?g and

implies that ? =2 K .

De�nition 9. A permission algebra(K; � ; > ) consists of a setK , a binary operation

� : (K ? � K ? ) ! K ? , and a distinguished element> 2 K such that (K ? ; � ; ? ) is a

resource algebra, and for allk 2 K ? , k v > .

Examples of permissions algebras are:

1. Fractional permissions: Numbers in (0; 1] with addition as � and 1 as> . All other

numbers in (0; 1) are partial permissions.

2. Counting permissions: Integers with 0 being full permission, and

k1 � k2 =

8
>>><

>>>:

unde�ned if k1 � 0 ^ k2 � 0

unde�ned if (k1 � 0 _ k2 � 0) ^ k1 + k2 < 0

k1 + k2 otherwise
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In this model, � 1 is a read permission, whereas positive numbers, +k, indicate that

k read permissions have been removed.

3. Non-empty subsets of a countable setA with disjoint union as � and A as > .

To model a heap with permissions, it is best to extend� to act on permission-value

pairs and on functions of typeLoc* (Perm� Val).

(k1; v1) � (k2; v2) def=

8
<

:
(k1 � k2; v1) if v1 = v2 and de�ned(k1 � k2)

unde�ned otherwise

The operator � on functions (h1 � h2) is de�ned if and only if h1(a) � h2(a) is de�ned

for all a 2 (dom(h1) \ dom(h2)). If h1 � h2 is de�ned, it has domaindom(h1) [ dom(h2)

with the following values:

(h1 � h2)(a) def=

8
>>><

>>>:

h1(a) � h2(a) if a 2 (dom(h1) \ dom(h2))

h1(a) if a 2 (dom(h1) n dom(h2))

h2(a) if a 2 (dom(h2) n dom(h1))

As expected, adding two heaps is de�ned whenever for each location their overlap, both

heaps store the same value and permissions that can be added together. The result is a

heap whose permissions for the location in the overlap is just thesum of the individual

heaps.

Now, we can de�ne a resource algebra (M; � ; U) as follows:

M = ( VarName* Val) � (Loc* (Perm� Val))

� =

8
<

:
� (s1; h1)(s2; h2): (s1:h1 � h2) if s1 = s2;

unde�ned if s1 6= s2

U = f (s; ; ) j s 2 VarName* Valg

Primitive assertions in the permissions model are:

PrimP ::= e1
k7! e2 j e1 = e2 j e1 < e2

The �rst assertion says that the heap consists of exactly one memorycell with address

e1, accounting �gure k, and contentse2. Usually k is a constant, but in some cases, it

might be a pure expression. In terms of the Kripke model, the �rstassertion means:

(s; h); i j= SL e1
k7! e2

def() dom(h) = f [[e1]] sg ^ h(e1) = ([[ k]] s i; [[e2]] s i)
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Aside: Variables as resource Unfortunately, the two models mentioned above are

somewhat awed in their treatment of the stack. Because the� operator divides only the

heap and not the stack, the primitive commands,c, do not satisfy the locality property

(Def. 4). Hence, the frame rule (SL-Frame ) is unsound and requires a side-condition for

soundness: \The frameR must not contain any variables modi�ed by the commandC."

The parallel composition rule (SL-Par ) also requires a side-condition, but it is trickier.

It su�ces, however, that all stack variables are local, and theyare never shared between

threads or their speci�cations.

The \variables as resource" model [9, 64] avoids these side-conditions by treating

program variables in a similar way to the heap. Separating conjunction ( � ) splits variable

ownership as well as heap ownership. By default each assertion owns some portion of the

variables it mentions and there are special assertions that specify the variable ownership

exactly.

For simplicity, we will not use the \variables as resource" model. Instead, whenever a

global variable x is shared between two threads, we will treat it as a heap cell stored at

the �xed address &x. This way, we avoid any side-conditions onSL-Par .

2.4.3 Concurrent separation logic

The proof rules ofx2.4.1 did not permit sharing of resources among threads. Hence, we

cannot reason about parallel programs involving inter-thread communication.

Concurrent separation logic [58] overcomes this limitationby introducing resource in-

variants. The proof rules now have the formJ ` SL f Pg C f Qg, where J is a precise

separation logic assertion representing an invariant that is true about the program sepa-

rately from the precondition and postcondition. The intention is that J holds at all times

during execution of the program except when a thread is insidean atomic block.

One can viewJ ` SL f Pg C f Qg as a simple rely/guarantee statement. The command

C relies onJ holding each time it enters an atomic command. In response, it guarantees

that it will not access the resourceJ only within atomic commands and that it will make

J hold each time it exits an atomic command.

Concurrent separation logic has the following rule for atomic commands, which grants

threads temporary access to the invariant,J , within an atomic command.

emp ` SL f P � Jg C f Q � Jg J is precise

J ` SL f Pg hCi f Qg
(SL-Atomic )

The following rule allows us to take some local state,R, and treat it as shared state

for the duration of the commandC.

J � R ` SL f Pg C f Qg R is precise

J ` SL f P � Rg C f Q � Rg
(SL-ResFrame )
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Ownership transfer

The SL-Atomic rule combines the local state with the resource invariant on entry to the

atomic block, and takes them apart on exit. The state put back in the invariant does not

need to be the same as the state that was initially taken out. If the domains of these

two states di�er, we have a transfer of ownership. For example, consider the following

invariant:

J def= ( x 7! 0 � list(y)) _ (x 7! 1)

where list(y) is some predicate describing a linked list starting at addressy. In this

example, x is essentially a mutual exclusion lock. When it is unlocked, theresource

contains the shared listlist(y). When it is locked, the thread that acquired the lock owns

the list. Writing to [ x] moves the ownership oflist(y) from the writer to the resource or

vice versa:
J ` SL f empg atomic ([x] = 0) f [x] := 1g f list(y)g

J ` SL f list(y)g atomic f [x] := 0g f empg

Soundness

There are various proofs of soundness for concurrent separation logic. Brookes [11, 12]

gave a trace semantics for a simple programming language and proved the soundness of

concurrent separation logic for the stack and heap model, for the permissions model, and

for the variables-as-resource model. Hayman [37] presented an alternative semantics based

on Petri nets and proved the soundness of the logic in that model. Recently, Calcagno et

al. [13] proved the soundness of a more abstract version of concurrent separation logic.

2.5 Other proof methods

Invariants

Invariants [4] are the simplest way to reason about a concurrentsystem. A single-state

assertion is invariant throughout a program if it holds initially and it is preserved by all

atomic actions of the program. To prove a propertyP about a state of the program, one

simply establishes a suitable program invariantJ that entails the property P. Invariant-

based reasoning is modular, because ifJ is invariant throughout C1 and C2, then it is

invariant throughout C1kC2.

The problem is that any non-trivial property P depends on control ow, and hence the

invariant J must encode this control ow. This can be achieved by using auxiliary vari-

ables or control predicates, but both methods are unsatisfactory because the invariant's

size grows rapidly.
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Resource invariants

Concurrent separation logic has the notion of a resource invariant, an invariant that is

associated with a mutual exclusion lock. Resource invariants, however, are not pertinent

to separation logic: they are a more general concept.

Resource invariants encode a common protocol whereby the lock owns some state.

When the lock is not currently acquired, the resource invariant holds. When a thread

acquires a lock, it knows that the resource invariant held at the moment of the acquisition.

Thereafter, it may invalidate the resource invariant provided that it restores the resource

invariant when it releases the lock.

Of course, resource invariants are just a special case of normal invariants, as the

following encoding demonstrates:

Invariant = : : : ^ (lockNotAcquired) ResourceInvariant)

Therefore, they su�er from the same problems as normal invariants do. For moderately

complex algorithms, a lot of auxiliary state is needed to express control-ow information

and their size grows rapidly. Resource invariants are often used together with a syntactic

restriction or ownership-based system that ensures that threads preserve the resource

invariant when the lock is not acquired. Such restrictions exploit the modular structure

of some programs removing many trivial implications, but do not address the inherent

limitations of using invariants to describe shared state.

Ownership

In ownership-based systems, each object is `owned' by another object or by a thread,

and only the object's owner is allowed to access it. The owner of an object need not be

�xed; it can change over time. For example, we can let mutual exclusion locks own some

resources. When a thread locks a mutex, it also acquires the ownership of the resources

the mutex protects; it returns the ownership back to the mutex when it releases the lock.

One can see Separation Logic as an instance of ownership.

Spec# [5] is a object-oriented programming language that supports ownership-based

veri�cation. Each object has an auxiliary �eld storing its current owner. Assertions are

written in classical �rst order logic, but may refer only to objects owned by the current

component. Hence, local reasoning is possible. Spec# also enables the user to specify

object invariants and has an auxiliary boolean �eld per object recording whether the

object invariant holds for that object. The built-in operations pack and unpack set that

�eld and check the invariant.

Jacobs et al. [49, 50] extended this methodology to handle pessimistic coarse-grained

concurrency. Shared state is owned by a lock. When a lock is acquired, the ownership
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of the protected state is transferred to the thread that acquired the lock. There is also a

simple mechanism for preventing deadlock based on statically-assigned lock levels.

Ownership properties can also be enforced by a type system based onthe calculus

of capabilities [21]. Grossman [32] extended Cyclone with type-safe multi-threading and

locking based on capabilities. Similar work was done by Microsoft's Vault project [22, 26].

2.6 A comparison

Global versus local reasoning In Hoare logic [46], assertions describe properties of

the wholememory, and hence speci�cations, such asf Pg C f Qg, describe a change of the

whole memory. This is inherentlyglobal reasoning. Anything not explicitly preserved in

the speci�cation could be changed, for examplef x = 4g y:=5 f x = 4g. Here y is allowed

to change, even though it is not mentioned in the speci�cation. The same is true for most

of the other traditional methods: temporal logics, Owicki-Gries, rely/guarantee.

The situation is di�erent in separation logic and in the other ownership-based ap-

proaches. Assertions describe properties ofpart of the memory, and hence speci�cations

describe changes topart of the memory. The rest of the memory is guaranteed to be un-

changed. This is the essence oflocal reasoning; speci�cations describe only the memory

used by a command. With local reasoning, we can reason about independent modules

independently.

In Spec#, the splitting of the state is determined by auxiliary\owner" �elds. In Sepa-

ration Logic, the assertions themselves describe their footprint and separating conjunction

ensures that two assertions describe separate parts of the state. This makes separation

logic theoretically nicer, but potentially harder to mechanise.

Relations versus invariants Binary relations are much better in describing concurrent

systems and interfaces between components of a sequential systemthan invariants. For

example, consider a variablex whose value may increase but never decrease, namely

x � (�x . If we read x twice, we know that the second time we will have read a larger or

equal value to the one read the �rst time. Proving this with invariants requires auxiliary

state. Introduce an auxiliary variabley, initially containing �1 , and the �rst time we

read x assign the value read toy. Then we can use the invariantx � y to complete the

proof.

Invariants are just a special case of relations; they may still be useful in simpler

examples. The power of Jones's rely/guarantee and Lamport's TLA is that they use

relations where their competitors used invariants.

In Chapter 3, we will bring together the local reasoning and binary relations, thereby

marrying the modularity of separation logic and the expressiveness of Rely/Guarantee.
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Chapter 3

Combining rely/guarantee and

separation logic

This chapter describes RGSep, a new logic that marries rely/guarantee reasoning

and separation logic. It subsumes the two proof systems that it is based on. Any

rely/guarantee or concurrent separation logic proof can be encoded as an RGSep proof;

moreover, some proofs are much easier in RGSep than in either separation logic or

rely/guarantee alone.

This chapter presents the basic elements of RGSep and proves its soundness based on

an instrumented operational semantics. As an example, Section 3.5 proves the safety of

a concurrent linked list algorithm that has �ne-grained locking and deallocates memory

explicitly. The various adaptations and extensions to RGSepwill be discussed in the next

chapter.

3.1 The combined logic

3.1.1 Local and shared state assertions

The total state, � , of the system consists of two components: the local statel, and the

shared states. Abstractly, l and s are elements of a resource algebra (M; � ; u) (see Def. 3

in x2.4) such that l � s is de�ned. More concretely, one can think of each component state

as a partial �nite function from locations to values (cf. theheap model inx2.4). In this

model, l � s is de�ned if and only if the domains of the two states are disjoint; then, the

total state is simply the union of the two disjoint states. The resource algebra model is,

however, more general and permits other instantiations such as permissions.

We could easily specify a state using two assertions, one describing the local state

and another describing the shared state. This approach, however, has some drawbacks:
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speci�cations are longer, meta-level quanti�cation is needed to relate the values in the

local and the shared parts of the state, and extending this setting to a domain with

multiple disjoint regions of shared state is clumsy.

Instead, we consider a uni�ed assertion language that describes both the local and the

shared state. Here is the syntax of our assertions:

p; q; r ::= P Local assertion

P Shared assertion

p � q Separating conjunction

p ^ q Normal conjunction

p _ q Disjunction

8x: p Universal quanti�cation

9x: p Existential quanti�cation

whereP stands for any separation logic assertion (de�ned inx2.4). We will often call P

assertions as boxed assertions. Note, however, that boxes are not modalities in the usual

sense as they cannot be nested.

Formally, the semantics of assertions are given in terms of a Kripke structure (l; s; i )

wherel; s 2 M , l � s is de�ned, and i : LogVar* Val is a mapping from logical variables

to values.

l; s; i j= RGSep P def() l; i j= SL P

l; s; i j= RGSep P def() (l = u) ^ (s; i j= SL P)

l; s; i j= RGSep p1 � p2
def() 9 l1; l2: (l = l1 � l2) ^ (l1; s; i j= RGSep p1) ^ (l2; s; i j= RGSep p2)

l; s; i j= RGSep p1 ^ p2
def() (l; s; i j= RGSep p1) ^ (l; s; i j= RGSep p2)

l; s; i j= RGSep p1 _ p2
def() (l; s; i j= RGSep p1) _ (l; s; i j= RGSep p2)

l; s; i j= RGSep 8x: p def() 8 v: (l; s; [i j x 7! v] j= RGSep p)

l; s; i j= RGSep 9x: p def() 9 v: (l; s; [i j x 7! v] j= RGSep p)

Note that the de�nition of � splits the local state, but not the shared state. We say that

� is multiplicative over the local state, but additive over theshared state. In particular,

P � Q () P ^ Q. The semantics of shared assertions,P , could alternatively be

presented without l= u. This results in an equally expressive logic, but the de�nition

above leads to shorter assertions in practice.

RGSep formulas include the separation logic formulas and overload the de�nition of

some separation logic operators (� , ^ , _ , 9 and 8) to act on RGSep assertions. This

overloading is intentional and justi�ed by the following Lemma (writing LocalP for the

�rst RGSep assertion kind):

36



Lemma 10 (Properties of local assertions).

Local(false) () false

(Local(P) � Local(Q)) () Local(P � Q)

(Local(P) ^ Local(Q)) () Local(P ^ Q)

(Local(P) _ Local(Q)) () Local(P _ Q)

(9x: Local(P)) () Local(9x: P )

(8x: Local(P)) () Local(8x: P )

These follow directly from the semantic de�nitions. Because of this lemma, we can

reduce the notational overhead by making theLocal implicit. This should not cause any

confusion, because according to Lemma 10, the RGSep operatorsand the separation logic

operators coincide for local assertions.

Finally, the grammar disallows top-level negations so that boxed assertions only ap-

pear in positive positions. This assists in de�ning stability (seex3.1.3). It not a severe

restriction because (a) top-level negations do not arise in practice, and (b) if we give the

usual semantics to negation then,: Local(P) () Local(: P) and : P () : P _: emp.

3.1.2 Describing interference

The strength of rely/guarantee is the relational descriptionof interference between parallel

processes. Instead of using relations directly, RGSep describes interference in terms of

actions P  Q that describe the changes performed to the shared state. These resemble

Morgan's speci�cation statements [57], andP and Q will typically be linked with some

existentially quanti�ed logical variables. (We do not need tomention separately the set

of modi�ed shared locations, because these are all included inP.) The meaning of an

action P  Q is that it replaces the part of the shared state that satis�esP prior to

the action with a part satisfying Q without changing the rest of the shared state. For

example, consider the following action:

x 7! M  x 7! N ^ N � M (Increment)

It speci�es that the value in the heap cell x may be changed, but its value is never

decremented. The logical variablesM and N are existentially bound with scope ranging

over both the precondition and the postcondition. In this action, the heap footprints of

the precondition and of the postcondition both consist of the location x. The footprints

of the precondition and the postcondition, however, need notbe the same. When they

are di�erent, this indicates a transfer of ownership between the shared state and the local

state of a thread. For instance, consider a simple lock with two operations: Acquirewhich
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P exact

(P  P) � G
(G-Exact )

(P  Q) � G

(P[e=x]  Q[e=x]) � G
(G-Sub )

(P  Q) 2 G

(P  Q) � G
(G-Axiom )

(P  Q) � G
j= SL P0) P j= SL Q0) Q

(P0  Q0) � G
(G-Cons )

Figure 3.1: Rules and axioms for an action allowed by a guarantee.

changes the lock bit from 0 to 1, and removes the protected object, list (y), from the

shared state; andReleasewhich changes the lock bit from 1 to 0, and puts the protected

object back into the shared state. We can represent these two operations formally as

(x 7! 0) � list (y)  x 7! 1 (Acquire)

x 7! 1  (x 7! 0) � list (y) (Release)

An action P  Q represents the modi�cation of some shared state satisfyingP to

some state satisfyingQ. Its semantics is the following relation:

[[P  Q]] def= f (s1 � s0; s2 � s0) j 9i: (s1; i j= SL P) ^ (s2; i j= SL Q)g

It relates some initial shared states1 satisfying the precondition P to a �nal state s2

satisfying the postcondition. In addition, there may be some disjoint shared state s0

which is not a�ected by the action. In the spirit of separation logic, we want the action

speci�cation as `small' as possible, describings1 and s2 but not s0, and use the frame

rule to perform the same update on a larger state. The existential quanti�cation over the

interpretation, i , allows P and Q to have shared logical variables, such asM and N in

Increment.

RGSep represents the rely and guarantee conditions as sets of actions. The relational

semantics of a set of actions is the reexive and transitive closure of the union of the

semantics of each action in the set. This allows each action to run any number of times

in any interleaved order with respect to the other actions.

[[P1  Q1; : : : ; Pn  Qn ]] =

 
n[

i =1

[[Pi  Qi ]]

! �

As a sanity condition, we can require that the assertionsP and Q appearing in an

action P  Q are precise. This sanity condition is not strictly necessary, but its use is

justi�ed by the side-condition of the atomic rule in x3.1.4. In practice,P and Q are not

only precise, but often alsoexact (see Def. 7 inx2.4).

A speci�cation, P1  Q1 is allowed by a guaranteeG if its e�ect is contained in G.
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De�nition 11. (P  Q) � G def() [[P  Q]] � [[G]].

Figure 3.1 provides derived rules to be used in proofs.G-Cons is similar to the rule

of consequence, but the second implication is reversed,Q ) Q0.

Contexts in actions The speci�cations of some examples become clearer if we extend

actions P  Q with a context F with the following semantics:

[[P  Q provided F ]] def= [[ P  Q]] \ [[P � F  Q � F ]]

This de�nition ensures that the context F is not changed by the action. IfF is an exact

assertion, then [[P  Q provided F ]] = [[ P � F  Q � F ]]. Every extended action in this

dissertation will actually have the contextF be an exact assertion or an assertion that

can trivially be made exact by dropping an existential quanti�cation.

3.1.3 Stability of assertions

Rely/guarantee reasoning requires that every pre- and post-condition in a proof is stable

under environment interference. A separation logic assertionS is stable under interference

of a relationR if and only if wheneverS holds initially and we perform an update satisfying

R, then the resulting state still satis�esS.

De�nition 12 (Stability) . semstable(S; R) if and only if for all s, s0 and i such that

s; i j= SL S and (s; s0) 2 R, then s0; i j= SL S.

This is the same de�nition as in x2.3, but makes the interpretationi of the logical

variables explicit. By representing the interferenceR as a set of actions, we can reduce

stability to a simple syntactic check.

Lemma 13 (Checking stability).

� semstable(S;[[P  Q]]) if and only if j= SL ((P � ~ S) � Q) ) S.

� semstable(P; (R1 [ R2)� ) if and only if semstable(S; R1) and semstable(S; R2).

Informally, the �rst property says that if from a state that satis� esS, we remove the

part of the state satisfyingP, and replace it with some state satisfyingQ, then this should

imply that S holds again. In the case when the action cannot run, because there is no

sub-state ofS satisfying P, then P � ~ S is false and the implication holds trivially. An

assertionS is stable under interference of a set of actionsR if and only if it is stable under

interference by every action inR.

RGSep forbids interference on the local state, but permits interference on the shared

state. Hence, given an RGSep assertion, only the parts of it that describe the shared state

may be a�ected by interference. We shall say that an RGSep assertion is (syntactically)

stable underR, if all the boxed assertions it contains are stable underR.
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De�nition 14. Let p stable underR be de�ned by induction onp as follows

� P stable underR always holds.

� P stable underR if and only if (P; R) ) P.

� For op ::= � j ^ j _ , let (p1 opp2) stable underR if and only if p1 stable underR and

p2 stable underR.

� For Q ::= 8 j 9, let (Qx: p) stable underR if and only if p stable underR.

If an assertion is syntactically stable, then it is also semantically stable in the following

sense:

Lemma 15. If p stable underR, l; s; i j= RGSep p and (s; s0) 2 R, then l; s0; i j= RGSep p.

The converse is not true. For example, consider a relationR that writes an arbitrary

value to x without changing the rest of the heap. Then,9n: x 7! n is stable underR,

whereas the assertions9n: x 7! n ^ n � 0 and 9n: x 7! n ^ n > 0 are not. Therefore,

9n: x 7! n ^ n � 0 _ 9n: x 7! n ^ n > 0 is not syntactically stable although it is seman-

tically equivalent to 9n: x 7! n .

3.1.4 Speci�cations and proof rules

Speci�cations of a commandC are quadruples (p; R; G; q), where

� The precondition p describes the set of initial states in whichC might be executed

(both its local and shared parts).

� The rely R is a relation (i.e. a set of actions) describing the interference caused by

the environment.

� The guaranteeG is a relation describing the changes to the shared state, caused by

the program.

� The postcondition q describes the possible resulting local and shared states, should

the execution ofC terminate.

The judgement ` C sat (p; R; G; q) says that any execution ofC from an initial state

satisfying p and under environment interferenceR (i ) does not fault (e.g. accesses unal-

located memory), (ii ) causes interference at mostG, and, (iii ) if it terminates, its �nal

state satis�es q.

First, we have the familiar speci�cation weakening rule:

R � R0 p ) p0

` C sat (p0; R0; G0; q0) G0 � G q0 ) q

` C sat (p; R; G; q)
(Weaken )
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From separation logic, RGSep inherits the frame rule: If a program runs safely with

initial state p, it can also run with additional state r lying around. Since the program

runs safely without r , it cannot access the additional state; hence,r is still true at the

end. Since the frame,r , may also specify the shared state, theFrame rule checks thatr

is stable under interference from both the program and its environment. Otherwise, they

may invalidate r during their execution. In the simple case whenr does not mention the

shared state, the stability check is trivially satis�ed.

` C sat (p; R; G; q) r stable under(R [ G)

` C sat (p � r; R; G; q � r )
(Frame )

We also have the other standard structural rules (Conj , Disj , Ex , All ).

` C sat (p1; R; G; q)

` C sat (p2; R; G; q)

` C sat (p1 _ p2; R; G; q)
(Disj )

` C sat (p; R; G; q1)

` C sat (p; R; G; q2)

` C sat (p; R; G; q1 ^ q2)
(Conj )

x =2 fv(q; C; R; G)

` C sat (p; R; G; q)

` C sat (9x: p; R; G; q)
(Ex )

x =2 fv(p; C; R; G)

` C sat (p; R; G; q)

` C sat (p; R; G;8x: q)
(All )

Then, there is a proof rule for each construct in the language.The rules for the empty

program, sequential composition, non-deterministic choice,and loops are completely stan-

dard. Similarly to Frame , Skip checks that the precondition,p, is stable under the rely,

R. Because the empty program does not change the state,p is trivially stable under

interference from the program itself.

p stable underR

` skip sat (p; R; G; p)
(Skip )

` C1 sat (p; R; G; r)

` C2 sat (r; R; G; q)

` (C1; C2) sat (p; R; G; q)
(Seq)

` C sat (p; R; G; p)

` C � sat (p; R; G; p)
(Loop )

` C1 sat (p; R; G; q)

` C2 sat (p; R; G; q)

` (C1 + C2) sat (p; R; G; q)
(Choice )

For primitive commands,c, that do not access the shared state, we adopt the separa-

tion logic rules. We have the following rule scheme:

` SL f Pg c f Qg

` c sat (P; R; G; Q)
(Prim )

The parallel composition rule of RGSep is very similar to the parallel composition rule

of rely/guarantee. Its crucial di�erence is that the precondition and postcondition of the
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composition are the separating conjunction (� ) of the preconditions and postconditions

of the individual threads. In essence, this is the normal conjunction of the shared state

assertions, and the separating conjunction of the local state assertions (cf. the semantics

of � in x3.1.1).

` C1 sat (p1; R [ G2; G1; q1)

` C2 sat (p2; R [ G1; G2; q2)

` (C1kC2) sat (p1 � p2; R; G1 [ G2; q1 � q2)
(Par )

As the interference experienced by threadC1 can come fromC2 or from the environment

of the parallel composition, we have to ensure that both interferences (R[ G2) are allowed.

Similarly C2 must be able to tolerate interference fromC1 and from the environment,R.

The most complex rule is that of atomic commands,hCi . Instead of tackling the

general case directly, it is easier if we have two rules. The �rst rule checks that the

atomic block meets its speci�cation in an empty environment,and then checks that the

precondition and the postcondition are stable with respect to the actual environment,R.

This reduces the problem from an arbitrary rely condition toan empty rely condition.

` hCi sat (p;; ; G; q)

p stable underR q stable underR

` hCi sat (p; R; G; q)
(AtomR )

The second rule is somewhat trickier. Here is a �rst attempt:

` C sat (P � P0; ; ; ; ; Q � Q0) (P  Q) � G

` hCi sat (P � P0; ; ; G; Q � Q0)

Within an atomic block, we can access the shared stateP , but we must check that

changing the shared state fromP from Q is allowed by the guaranteeG. This rule is

sound, but too weak in practice. It requires that the criticalregion changes theentire

shared state fromP to Q and that the guarantee condition allows such a change. We

can extend the rule by allowing the region to change onlypart of the shared stateP into

Q, leaving the rest of the shared state (F ) unchanged, and checking that the guarantee

permits the small changeP  Q.

P; Q precise ` C sat (P � P0; ; ; ; ; Q � Q0) (P  Q) � G

` hCi sat (P � F � P0; ; ; G; Q � F � Q0)
(Atom )

Precision For soundness, the rule requires thatP and Q are precise1 assertions and

that all branches of the proof use the sameP and Q for the same atomic region. Without

this requirement, the logic admits the following erroneousderivation:
1Precise assertions were de�ned inx2.4.1 (Def. 8).
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P= Q0= x7! 1 and P0= F = Q= emp
Atom

hskip i sat (x7! 1; ; ; G; emp � x7! 1)
F = x7! 1 and P= Q= P0= Q0= emp

Atom
hskip i sat (x7! 1; ; ; G; x7! 1)

Conj
hskip i sat (x 7! 1; ; ; G; (emp � x 7! 1) ^ x 7! 1)

Weaken
hskip i sat (x 7! 1; ; ; G; false)

Semantically, this speci�cation is satis�ed only if hskip i never terminates! Precision

is a technical requirement inherited from concurrent separation logic. It ensures that the

splitting of the resultant state into local and shared portions is unambiguous.

The CONCUR 2007 paper [75] has a di�erent stability requirement. It requires that

the entire shared postcondition (Q � F in this rule) is precise. Ensuring thatP and Q are

precise is typically trivial becauseP and Q describe the small update performed byC,

whereasQ � F may be a much larger and complex assertion.

Atomic rule in the CONCUR'07 paper Instead of the two rulesAtomR andAtom ,

the CONCUR'07 paper [75] has the following proof rule:

(P0  Q0) � G ` C sat (P0 � P00; ; ; ; ; Q0 � Q00) 9y:P stable underR

FV (P00) \ f yg = ; j= SL P ) P0 � F j= SL Q0 � F ) Q Q stable underR

` hCi sat (9y: P � P00; R; G; 9y: Q � Q00)
(Atomic )

This rule is derivable by applying the rulesAtomR , Conseq , Ex , and Atom . In the

other direction, Atom is derivable from this complex rule, butAtomR is not.

(Stab)

(Imp)

` C sat (P0 � P00; ; ; G; Q0 � Q00) (P0  Q0) � G
Atom

` hCi sat (P0 � F � P00; ; ; G; Q0 � F � Q00)
Ex

` hCi sat (9y: P � P00; ; ; G; Q � Q00)
Conseq

` hCi sat (9y: P � P00; ; ; G; 9y: Q � Q00)
AtomR

` hCi sat (9y: P � P00; R; G; 9y: Q � Q00)

In the derivation, (Stab) stands for 9y:P stable underR and Q stable underR, and (Imp)

stands forFV (P00) \ f yg = ; , j= SL P ) P0 � F , and j= SL Q0 � F ) Q.

3.2 Operational semantics

The exposition below follows the abstract semantics for separation logic presented inx2.4.

Let (M; � ; u) be a resource algebra and letl and s range over elements ofM . These stand

for the local state, the shared state, and local state of other threads respectively.

RGSep explicitly deals with the separation between a thread's own state and the shared

state. The semantics keep track of this separation: states are structured and consist of

these two components.
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oracleP  Q(s; l2) = ( l0; s0)

(C; (l � s; u)) ;�! � (skip ; (l2; u))

(hCi P  Q ; (l; s)) R�!
p

(skip ; (l0; s0))

oracleP  Q(s; l2) = undef

(C; (l � s; u)) ;�! � (skip ; (l2; u))

(hCi P  Q ; (l; s)) R�!
p

fault

(C; (l � s; u)) ;�! � fault

(hCi P  Q ; (l; s)) R�!
p

fault

c(l; l 0) ( l0; s) 2 States

(c;(l; s)) R�!
p

(skip ; (l0; s))

(:9 l0: c(l; l 0))

(c;(l; s)) R�!
p

fault

R(s; s0) ( l; s0) 2 States

(C; (l; s)) R�!
e

(C; (l; s0))

(skip ; C; � ) R�!
p

(C; � )

(C; � ) R�!
p

(C1; � 0)

(C; C0; � ) R�!
p

(C1; C0; � 0) (C1 + C2; � ) R�!
p

(C1; � )

(C1 + C2; � ) R�!
p

(C2; � ) (C � ; � ) R�!
p

(skip + ( C; C � ); � ) (skip kskip ; � ) R�!
p

(skip ; � )

(C1; � ) R�!
p

(C0
1; � 0)

(C1kC2; � ) R�!
p

(C0
1kC2; � 0)

(C2; � ) R�!
p

(C0
2; � 0)

(C1kC2; � ) R�!
p

(C1kC0
2; � 0)

(C; � ) R�!
p

fault

(C; C2; � ) R�!
p

fault

(C; � ) R�!
p

fault

(CkC2; � ) R�!
p

fault

(C; � ) R�!
p

fault

(C2kC; � ) R�!
p

fault

Figure 3.2: Operational semantics:Con�g1 reduces toCon�g2 Con�g1
��!
R

Con�g2

De�nition 16. States def= f (l; s) j l 2 M ^ s 2 M ^ (l � s) is de�nedg

Let � range over these structured states, and overload the operator� to act on struc-

tured states, � , as follows:

De�nition 17. (l1; s1) � (l2; s2) is de�ned as (l1 � l2; s1) if s1 = s2; otherwise it is

unde�ned.

Figure 3.2 contains a semantics of GPPL that keeps track of thesplitting of the state

� into its two components: l and s. If we ignore the splitting of the state, we get back

the standard semantics ofx2.2. Con�gurations are eitherfault or a pair of a command

and a structured state, (C; � ). A reduction step, Con�g 1
R�!
�

Con�g 2, goes fromCon�g 1

to Con�g 2 with possible environment interferenceR and a label � . The label indicates

whether this is a program action,p, or an environment action, e. Finally, R�! � is the

reexive and transitive closure of R�!
�

; it stands for zero or moreR�!
�

reductions.

In the semantics, atomic commands,hCi , are annotated withpreciseassertionsP and

Q to specify how to split the state between shared and local when exiting from the block.

In concurrent separation logic, the resource invariant decides the splitting between local

and shared state. Instead, RGSep decides the splitting using theseP and Q as an oracle.
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The function oracleP  Q : M � M * M � M which determines the splitting is de�ned as:

oracleP  Q(s; l) =

8
>>><

>>>:

(l0; s0 � s2); if there existss1 such that s = s1 � s0 and s1 j= SL P

and l = l0 � s0 � s2 and s2 j= SL Q

unde�ned; otherwise

As P and Q are precise,s1, s0, s2 and l0 are uniquely determined, and hence the function

oracleP  Q is well de�ned.

Consider the semantics of atomic blocks (�rst three rules in Figure 3.2). All three

rules combine the local state with the shared state (l � s0) and execute the command

C under no interference (; ). If executing the commandC successfully returns the local

state l2, the �rst rule uses the oracle to determine how to split the resulting local state

into a new shared and local state, (l0; s0). The other two rules handle the cases where the

program fails in the evaluating the body, or the oracle failsto �nd a splitting of l2.

An alternative approach in formalising the semantics of atomicblocks would be to

combine only the part of the shared state that satis�esP with the local state inside the

atomic block. This second approach is closer to the proof rules,but relies much more

heavily on the annotationP  Q.

The next three rules govern primitive commands,c, and environment transitions.

Primitive commands are represented as subsets ofM � M such that the locality properties

of x2.4.1 hold. The primitive commandc executes correctly, if it runs correctly by accessing

only the local state. Otherwise,c fails. Its execution does not a�ect the shared and

environment states. An environment transition can happen anytime and a�ects only the

shared state and the environment state, provided that the shared-state change is described

by the rely relation, R; the local state is unchanged.

The remaining rules deal with the standard language constructs: sequential composi-

tion, non-deterministic choice, loops, and parallel composition. Note that the semantics

has the reduction (skip kskip ; � ) R�!
p

(skip ; � ) instead of the reduction (skip kC; � ) R�!
p

(C; � ) and its symmetric version. This simpli�es stating Lemma 23 inx3.3.

3.3 Soundness

A program C, executing in an initial state � and an environment satisfyingR, guarantees

G if and only if it does not fail and all its shared-state changes satisfy G. Formally, this

is de�ned by induction on the length of the tracen as follows:

De�nition 18 (Guarantee). (C; �; R ) guarantees G def() 8 n: (C; �; R ) guarantees n G,

where(C; (l; s); R) guarantees 0 G holds always; and(C; (l; s); R) guarantees n+1 G holds

if and only if whenever(C; (l; s)) R�!
�

Con�g, then there existC0, l0, s0 such that
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1. Con�g = ( C0; (l0; s0)) ;

2. (C0; (l0; s0); R) guarantees n G; and

3. if � = p, then (s; s0) 2 G.2

A program C satis�es the speci�cation (p; R; G; q) if and only if all executions that

satisfy its assumptions about the initial state and the environment interference also satisfy

its guarantee and its postcondition.

De�nition 19. j= C sat (p; R; G; q) if and only if wheneverl; s; i j= RGSep p, then

1. (C; (l; s); R) guarantees G; and

2. if (C; (l; s)) R�! � (skip ; (l0; s0)) , then l0; s0; i j= RGSep q.

The reduction rules satisfy the usual locality properties of separation logic and permit

the rely condition to be weakened.

Lemma 20 (Locality) .

1. If (C; (l1 � l0; s1)) R�! � (C0; (l2; s2)) , then either (C; (l1; s1)) R�! � fault or there exists an

l0
2 such that(C; (l1; s1)) R�! � (C0; (l0

2; s2)) and � 0
2 � � 0 = � 2.

2. If (C; (l1 � l0; s1)) R�! � fault , then (C; (l1; s1)) R�! � fault .

3. If (C; � ) R�! � (C0; � 0) and R � R0, then (C; � ) R0

�! � (C0; � 0)

The next lemma follows directly from De�nition 18 and from Lemma 20.

Lemma 21. If (C; �; R ) guarantees G, then

� (C; � � � 0; R) guarantees G;

� If R0 � R, then (C; �; R 0) guarantees G; and

� If G � G0, then (C; �; R ) guarantees G0.

The soundness of the logic follows by a structural induction on the commandC.

Using the following lemmas, we decompose the proof into simpler parts. First, since the

rely condition is reexive and transitive, executing an atomic command introduces the

following cases:

Lemma 22. If C is an atomic commandhCi or a primitive command c, then

2The proof rules of x3.1, the operational semantics ofx3.2 and the de�nitions and lemmas of this
section have been formalised in Isabelle/HOL. The proofs of the lemmas and theorems in these three
sections have been mechanically checked.
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� (C; � ) R�! � (C; � 0) () (C; � ) R�!
e

(C; � 0)

� (C; � ) R�! � fault () 9 � 00: (C; � ) R�!
e

(C; � 00) R�!
p

fault

� (C; � ) R�! � (skip ; � 0) () 9 � 00� 000: (C; � ) R�!
e

(C; � 00) R�!
p

(skip ; � 000) R�!
e

(skip ; � 0)

In a parallel composition, C1kC2, if we have the guarantee of the two commands,

then (1) we have the guarantee of their parallel composition;and (2) if the composition

can make a reduction, then the two commands can also make that reduction given an

extended rely condition.

Lemma 23. If (C1; � 1; (R [ G2)) guarantees G1 and (C2; � 2; (R [ G1)) guarantees G2

and � 1 � � 2 = � , then

� (C1kC2; �; R ) guarantees G1 [ G2;

� if (C1kC2; � ) R�! � (C0
1kC0

2; � 0), then there exist� 0
1, � 0

2 such that(C1; � 1) R[ G2���! � (C0
1; � 0

1),

(C2; � 2) R[ G1���! � (C0
2; � 0

2), and � 0
1 � � 0

2 = � 0.

This lemma relies on Lemma 20 and on the de�nition ofguarantees . The proof is

relatively straighforward and is included below for completeness.

Proof of Lemma 23. For the �rst part, we do an induction on n to prove that for all n, C1,

C2, l1, l2, and s, if (C1; (l1; s); R [ G2) guarantees G1 and (C2; (l2; s); R [ G1) guarantees

G2, then (C1kC2; (l1 � l2; s); R) guarantees n G1 [ G2

The base case is trivial. For then + 1 case, consider the possible reductions ofC1kC2.

� Environment transition: (C1kC2; (l1 � l2; s)) R�!
e

(C1kC2; (l1 � l2; s0)) and R(s; s0).

Hence, (C1; (l1; s)) R�!
e

(C1; (l1; s0)) and (C2; (l2; s)) R�!
e

(C2; (l2; s0)). The conclusion

follows from the induction hypothesis.

� Case (skip kskip ; � ) R�!
p

(skip ; � ). Trivial: follows from the induction hypothesis.

� C1 makes a program transition: (C1; (l1 � l2; s)) R�!
p

(C0
1; (l0; s0)). Hence from locality

(Lemma 20), (C1; (l1 � l2; s)) R�!
p

fault or there existsl0
1 such that l0 = l0

1 � l2 and

(C1; (l1; s)) R�!
p

(C0
1; (l0

1; s0)).

As (C1; (l1; s); R [ G2) guarantees G1, the �rst case is ruled out. Moreover, we get

that ( s; s0) 2 G1 and (C0
1; (l0

1; s0); R [ G2) guarantees G1. Therefore, (C2; (l2; s0)) R�!
e

(C2; (l2; s0)) and (C2; (l2; s0); R [ G1) guarantees G2.

From the induction hypothesis, (C0
1kC2; (l0

1 � l2; s0)) guarantees n G1 [ G2. Also,

(s; s0) 2 G1 � G1 [ G2. Therefore (C1kC2; (l0
1 � l2; s0)) guarantees n+1 G1 [ G2, as

required.
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� C2 makes a program transition. Symmetric.

� C1 or C2 fail. These cases cannot arise because (C1; (l1; s); R [ G2) guarantees G1

and (C2; (l2; s); R [ G1) guarantees G2.

For the second part, we do an induction onn to prove that for all n, C1, C2, l1, l2,

and s, if (C1; (l1; s); R [ G2) guarantees G1, and (C2; (l2; s); R [ G1) guarantees G2, and

(C1kC2; (l1 � l2; s)) R�! n (C0
1kC0

2; (l0; s0)), then there exist l0
1, l0

2 such that l0
1 � l0

2 = l0 and

(C1; (l1; s)) R[ G2���! n (C0
1; (l0

1; s0)) and (C2; (l2; s)) R[ G1���! n (C0
2; (l0

2; s0)).

The base case is trivial. For then + 1 case, consider the possible transitions ofC1kC2

that could lead to C0
1kC0

2. There are three cases to consider.

� Environment transition: (C1kC2; (l1 � l2; s)) R�!
e

(C1kC2; (l1 � l2; s00)) and R(s; s00).

Hence, (C1; (l1; s)) R�!
e

(C1; (l1; s00)) and (C2; (l2; s)) R�!
e

(C2; (l2; s00)). The conclusion

then follows from the induction hypothesis.

� C1 makes a program transition: (C1; (l1 � l2; s)) R�!
p

(C00
1 ; (l00; s00)).

From Lemma 20 and (C1; (l1; s); R [ G2) guarantees G1, there existsl00
1 such that

(C1; (l1; s)) R�!
p

(C00
1 ; (l00

1; s00)), G1(s; s00), and (C00
1 ; (l00

1; s00); R [ G2) guarantees G1.

Therefore, (C2; (l2; s00)) R�!
e

(C2; (l2; s00)) and (C2; (l2; s00); R [ G1) guarantees G2.

From the induction hypothesis, there existl0
1, l0

2 such that (C00
1 ; (l00

1; s00)) R[ G2���! n (C0
1; (l0

1; s0)),

(C2; (l00
2; s00)) R[ G1���! n (C0

2; (l0
2; s0)), and l0

1 � l0
2 = l0.

Thus, (C1; (l1; s)) R[ G2���! n+1 (C0
1; (l0

1; s0)) and (C2; (l2; s)) R[ G1���! n+1 (C0
2; (l0

2; s0)), as re-

quired.

� C2 makes a program transition. Symmetric.

The following two lemmas govern sequential composition:

Lemma 24. If (C1; �; R ) guarantees G and for all � 0 such that (C1; � ) R�! � (skip ; � 0),

(C2; � 0; R) guarantees G, then (C1; C2; �; R ) guarantees G.

Lemma 25. If (C1; C2; � ) R�! � (skip ; � 00), then there exists� 0 such that(C1; � ) R�! � (skip ; � 0)

and (C2; � 0) R�! � (skip ; � 00).

A simple way to prove the frame rule is to derive it from the rules for parallel compo-

sition and the empty command. To do so, we needC and Ckskip to be observationally

equivalent. The following Lemma makes that explicit.

Lemma 26. (C; � ) R�! � (C0; � 0) () (Ckskip ; � ) R�! � (C0kskip ; � 0).
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The lemmas presented so far depend only on the operational semantics of GPPL, and

are independent of the proof rules. The following lemma, however, is about the proof

rules. It says that for every speci�cation (p; R; G; q) that a program meets, there is a

stronger stable speci�cation (p0; R; G; q0) that it also satis�es.

Lemma 27. If ` C sat (p; R; G; q), then there existp0 and q0 such that j= RGSep p ) p0,

p0 stable underR, j= RGSep q0 ) q, q0 stable underR, and ` C sat (p0; R; G; q0).

Proof. By induction on the proof rules.

� Weaken : Applying the induction hypothesis to the premise of the rule, there exist

stablep00and q00such that p0 ) p00, q00) q0, and ` C sat (p00; R; G; q00). Sincep ) p0

and q0 ) q, thesep00and q00satisfy the required assertion.

� Frame : From the induction hypothesis, there exist stablep0and q0such that p ) p0,

q0 ) q, and ` C sat (p0; R; G; q0). As r is stable underR, p0 � r and q0 � r meet our

requirements.

� Skip , Atom , AtomR , Prim : The preconditions and the postconditions of these

rules are already stable.

� Loop : From the induction hypothesis,p is stable underR. Hence, takep0 = q0 = p.

� Seq: From the induction hypothesis onC1, there exist stablep0 and q0 such that

p ) p0, q0 ) q, and ` C1 sat (p0; R; G; q0). Hence, applyingWeaken , we get

` C1 sat (p0; R; G; q). Similarly, from the induction hypothesis forC2 and Weaken ,

there exists a stabler 0 such that r 0 ) r and ` C2 sat (q; R; G; r0). Hence, from

Seq, ` (C1; C2) sat (p0; R; G; r 0) as required.

� Choice : From the induction hypotheses, there exist stablep1, q1, p2, q2 such that

p ) p1, q1 ) q, ` C1 sat (p1; R; G; q1), p ) p2, q2 ) q, ` C2 sat (p2; R; G; q2).

From Weaken , ` C1 sat (p1 ^ p2; R; G; q1 _ q2) and ` C2 sat (p1 ^ p2; R; G; q1 _ q2).

From Choice , ` (C1 + C2) sat (p1 ^ p2; R; G; q1 _ q2), as required.

� Par : From the induction hypotheses, there exist stablep0
1, q0

1, p0
2, q0

2 such that

p1 ) p0
1, q0

1 ) q1, ` C1 sat (p1; R [ G2; G1; q1), p2 ) p0
2, q0

2 ) q2, ` C2 sat (p2; R [

G1; G2; q2). Hence, takep0 = ( p0
1 � p0

2), and q0 = ( q0
1 � q0

2).

� Disj , Conj , Ex , All : Follows from induction hypotheses, by applyingWeaken

and the relevant rule, because ifp and q are stable thenp^ q, p_ q, 9x: p, and 8x: p

are stable.

At last, here is the proof of soundness of RGSep.
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Theorem 28 (Soundness). If ` C sat (p; R; G; q), then j= C sat (p; R; G; q).

Proof. The proof is by induction on the proof rules, by proving the soundness of each rule

separately.

� Atom :

P; Q precise ` C sat (P � P0; ; ; ; ; Q � Q0) (P  Q) � G

` hCi P  Q sat (P � F � P0; ; ; G; Q � F � Q0)
(Atom )

It su�ces to consider three possible reduction sequences (Lemma 22). Moreover,

sinceR = ; , we can ignore the environment actions. Therefore, we can assume that

l; s; i j= P � F � P0 and (hCi P  Q; (l; s)) ;�!
p

Con�g and prove that there exist l0; s0

such that Con�g = ( skip ; (l0; s0)) and (s; s0) 2 G and l0; s0; i j= Q � F � Q0.

1: [[P  Q]] � G assumption

2: � C sat (P � P0; ; ; ; ; Q � Q0) assumption

3: l; s; i j= P � F � P0 assumption

4: s; i j= SL (P � F ) and l; i j= SL P0 from 3

5: s = s1 � s0 and s1; i j= SL P and s0; i j= SL F from 4, elim-9

6: l � s1; i j= SL P � P0 from 4, 5

7: (C; (l � s1; ; ); ; ) guarantees ; from 6

8: (C; (l � s; ; ); ; ) guarantees ; from 5, 7, Lem 21

If we consider the reductions ofC; (l � s; ; ); ; in the environment ; , we have three

possibilities:

{ (C; (l � s; ; )) does not terminate.

{ (C; (l � s; ; )) ;�! � fault

{ (C; (l � s; ; )) ;�! � (skip ; (l2; ; )).

In the �rst case, hCi does not reduce; hence there is nothing to prove. The second

case is ruled out because of (10). Hence, we are left we the third case:

9: (C; (l � s; ; )) ;�! � (skip ; (l2; ; ))

10: (C; (l � s1; ; )) ;�! � (skip ; (l0
2; ; )) ^ l2 = l0

2� s0 from 8, 9, Lem 20, elim-9

11: l0
2; i j= SL Q � Q0 from 2, 9

12: l0
2 = s2 � l00and s2; i j= SL Q and l00; i j= Q0 from 11, elim-9

13: l2 = l00� s0 � s2 from 10, 12

14: oracleP  Q(s; l2) = s0 � s2 from 5, 12, 13

We now proceed by case analysis on the possible reduction rules. The two faulting

rules do not apply, because from 10 we know the body cannot fail, and from 16 we

know oracleP 0 Q0(s; l2) is de�ned. Hence, the only applicable rule is:
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oracleP  Q(s; l2) = ( l0; s0)

(C; (l � s;u)) ;�! � (skip ; (l2; u))

(hCi P  Q; (l; s)) R�!
p

(skip ; (l0; s0))

Therefore, we can further assume thatl0 � s0 = l2 and s0 = s0 � s2.

15: l0 � (s0 � s2) = l2 assumption

16: l0 = l00 from 13, 15,� cancellation

17: l0; (s0 � s2); i j= RGSep Q � F � Q00 from 5, 12, 16

18: (s1 � s0; s2 � s0) 2 [[P0  Q0]] from 5, 12

19: (s1 � s0; s2 � s0) 2 G from 18, 1

We have shown properties 17 and 19, as required.

� AtomR : It su�ces to consider three possible reduction sequences (Lemma22).

Moreover, asp and q are stable underR, we can ignore the environment actions.

Hence, we can assumel; s; i j= p and (hCi P 0 Q0; (l; s)) R�!
p

Con�g and prove that

there exist l0; s0 s.t. Con�g = ( skip ; (l0; s0)) and (s; s0) 2 G and l0; s0; i j= q, which

follows directly from j= hCi sat (p;; ; G; q).

� Prim : Again, it su�ces to consider three possible reduction sequences (Lemma 22).

Assume�; i j= RGSep P, and prove (i ) (c; �; R ) guarantees G and (ii ) if ( c; � ) R�! �

(skip ; � 0), then � 0; i j= RGSep Q.

To prove (i ), assume (c; � ) R�!
e

(c; � 0) R�!
p

Con�g and prove exists� 00 such that

Con�g = ( skip ; � 00) and (� 0; � 00) 2 G. Let (l; s) = � and (l0; s0) = � 0. By the �rst

reduction, we knowl = l0, and as P only depends on local state, then� 0 j= P.

Therefore,Con�g is not a fault, and hence� 00= ( l00; s0); so (� 0; � 00) 2 G.

To prove (ii ), assume (c; � ) R�!
e

(c; � 0) R�!
p

(skip ; � 00) R�!
e

(skip ; � 000). By construction,

we know � 00; i j= SL Q. Let (l00; s00; e00) = � 00and (l000; s000; e000) = � 000, hencel00= l000.

Therefore,� 000; i j= RGSep Q as required.

� Skip : Trivial.

� Disj , Conj , Ex , All : Trivial.

� Par : Follows from Lemma 23.

� Seq: Follows from Lemmas 24 and 25.

� Weaken : Follows from Lemmas 20 and 21.

� Loop : The proof of this rule also assumes that both̀ C sat (p; R; G; p) and

� C sat (p; R; G; p). By induction on n, �rst prove that 8n: � Cn sat (p; R; G; p).
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Base case:C0 def= skip . Since` C sat (p; R; G; p), according to Lemma 27,p is

stable underR. Hence, asSkip is sound,� C0 sat (p; R; G; p).

Inductive step: Cn+1 def= ( C; Cn ) Applying the Seq rule,

� C sat (p; R; G; p)
ind. hypothesis

� Cn sat (p; R; G; p)
Seq

� Cn+1 sat (p; R; G; p)

Hence, for alln, � Cn sat (p; R; G; p). Finally, by the Choice rule, the same follows

for C � =
L

n Cn .

� Frame : As C and Ckskip are equivalent with respect to the operational semantics

(cf. Lemma 26), we can derive the frame rule from the parallelrule:

� C sat (p; R; G; q)
r stable underR [ G Skip

� skip sat (r; R [ G; ; ; r )
Par

� (Ckskip ) sat (p � r; R; G; q � r )

� C sat (p � r; R; G; q � r )

3.4 Encodings of SL and RG

Separation logic (without resource invariants) and rely/guarantee are trivial special cases

of RGSep. This is best illustrated by the parallel composition rule:

` C1 sat (p1; R [ G2; G1; q1)

` C2 sat (p2; R [ G1; G2; q2)

` C1kC2 sat (p1 � p2; R; G1 [ G2; q1 � q2)
(Par )

� When all the state is shared, we get the standard rely/guaranteerule. In this case,

as the local state is empty, we getp1 � p2 () p1 ^ p2 and q1 � q2 () q1 ^ q2.

Formally, one can encodè C satRG (P; R; G; Q) as ` C sat (P ; R; G; Q).

� When all the state is local, we get the separation logic rules. (Since there is no

shared state, we do not need to describe its evolution:R and G are simply the

identity relation.)

Formally, one can encodè SL f Pg C f Qg as ` C sat (P; ; ; ; ; Q).

Deriving the proof rules of rely/guarantee and separation logic from their encodings in

RGSep is straightforward, and omitted.
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Resource invariants Encoding full concurrent separation logic [58] in RGSep is simi-

larly quite easy. The resource invariantJ is simply threaded through the assertions, and

the rely and guarantee conditions assert that it remains una�ected by interference. For-

mally, encodeJ ` SL f Pg C f Qg as ` C sat (P � J ; R; R; Q � J ), where R = f J  Jg.

Again the proof is straightforward, but for demonstration let us derive the concurrent

separation logic rule for atomic blocks (SL-Atomic ).

� C sat (J � P; ; ; f J  Jg; J � Q) J precise
G-Axiom

(J  J ) � f J  Jg
Atom

� hCi sat (J � emp � P; ; ; f J  Jg; J � emp � Q)

� hCi sat (J � P; ; ; f J  Jg; J � Q)

Now, apply rule AtomR , where (y) is the previous proof tree.

j= SL (J � ~ J ) � J ) J

J stable underf J  Jg

J � P stable underf J  Jg

j= SL (J � ~ J ) � J ) J

J stable underf J  Jg

J � Q stable underf J  Jg (y)
AtomR

` hCi sat (J � P; f J  Jg; f J  Jg; J � Q)

Hence, we have derived the concurrent separation logic rule for atomic commands:

` SL f P � Jg C f Q � Jg J is precise

J ` SL f Pg hCi f Qg
(SL-Atomic )

3.5 Example: lock-coupling list

This section demonstrates a �ne-grained concurrent linked list implementation of a mu-

table set data structure. Instead of having a single lock for the entire list, there is one

lock per list node.

Locks Here is the source code for locking and unlocking a node:

lock (p) f atomic (p:lock = 0) f p:lock := tid ; g g

unlock (p) f atomic f p:lock := 0; g g

The simplest implementation forlock is to use a conditional critical region, which is just

syntactic sugar for an atomic block whose body starts with an assumecommand (seex2.2).

These locks store the identi�er of the thread that acquired thelock: tid represents the

thread identi�er of the current thread. Storing thread identi�ers is not necessary for the

algorithm's correctness, but it facilitates the proof. Similarly, unlock uses anatomic

block to indicate that the write to p.lock must be done indivisibly.

The following three predicates represent a node in the list: (1) Ns(x; v; y) represents

a node at locationx with contents v and tail pointer y and with the lock status set tos;
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locate (e) f
local p ; c;
p := Head;
lock (p);
c := p:next ;
while (c:value < e) f

lock (c);
unlock (p);
p := c;
c := p:next ;
lock (c);

g
return (p; c);

g

remove(e) f
local x ; y; z;
(x; y) := locate (e);
if (y:value = e) f

lock (y);
z := y:next ;
x:next := z;
unlock (x);
dispose (y);

g else f
unlock (x);

g
g

add(e) f
local x ; y; z;
(x; z) := locate (e);
if (z:value 6= e) f

y := new Node();
y:lock := 0;
y:value := e;
y:next := z;
x:next := y;

g
unlock (x);

g

Figure 3.3: Source code for lock coupling list operations.

(2) U (x; v; y) represents an unlocked node at locationx with contents v and tail pointer

y; and (3) L t (x; v; y) represents a node locked with thread identi�ert. We will write

N (x; v; y) for a node that may or may not be locked.

Ns(x; v; y) def= x 7! f :lock=s; :value=v; :next= yg

U (x; v; y) def= N0(x; v; y)

L t (x; v; y) def= Nt (x; v; y) ^ t > 0

The thread identi�er parameter in the locked node is required to specify that a node can

only be unlocked by the thread that locked it.

t 2 T ^ U (x; v; n)  L t (x; v; n) (Lock)

t 2 T ^ L t (x; v; n)  U (x; v; n) (Unlock)

The Lock and Unlockactions are parameterised with a set of thread identi�ers,T. This

allows us to use the actions to represent both relies and guarantees. In particular, we

take a thread with identi�er tid to have the guarantee withT = f tid g, and the rely to

use the complement on this set.

From the Atomic rule, we can derive the following rules for the lock primitives.

(Arguably, these speci�cations are not as simple as one might hope. Chapter 4 describes

variant proof rules that enable much simpler speci�cations for lock and unlock .)

P stable underR

P ) N (p; v; n) � F

Q stable underR

L tid (p; v; n) � F ) Q

` lock (p) sat (P ; R; G; Q)
(Lock )
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P stable underR

P ) L tid (p; v; n) � F

Q stable underR

U (p; v; n) � F ) Q

` unlock (p) sat (P ; R; G; Q)
(Unlock )

The Algorithm Now we build a �ne-grained concurrent linked list implementation of

a set using the lock mechanism we have de�ned. The list has operationsadd, which adds

an element to the set, andremove, which removes an element from the set. Traversing

the list useslock coupling: the lock on one node is not released until the next node is

locked. Somewhat like a person climbing a rope \hand-over-hand," you always have at

least one hand on the rope.

Figure 3.3 contains the source code. An element is added to the set by inserting it

in the appropriate position while holding the lock of its previous node. It is removed by

redirecting the previous node's pointer while both the previous and the current node are

locked. This ensures that deletions and insertions can happenconcurrently in the same

list. The algorithm makes two assumptions about the list: (1) it is sorted; and (2) the

�rst and last elements have sentinel values�1 and +1 respectively. This allows us to

avoid checking for the end of the list.

First, consider the action of adding a node to the list. Here is an action that ignores

the sorted nature of the list:

t 2 T ^ L t (x; u; n)  L t (x; u; m) ^ U (m; v; n)

To add an element to the list, we must have locked the previous node, and then we can

swing the tail pointer to the added node. The added node must have the same tail as

previous node before the update.

To ensure that the sorted order of the list is preserved, the actual action must be

speci�ed with respect to the next node as well. We ensure the value we add is between

the previous and next values.

(t 2 T) ^ (u < v < w ) ^ (L t (x; u; n) � Ns(n; w; y))

 L t (x; u; m) � U (m; v; n) � Ns(n; w; y)
(Insert)

The �nal permitted action is to remove an element from the list. The action speci�es

that to remove noden from the list, both n and the previous node (x) must be locked.

The tail of the previous node is then updated to the removed node's tail, m.

(t 2 T) ^ (v < 1 ) ^ (L t (x; u; n) � L t (n; v; m))  L t (x; u; m) (Remove)

We de�ne I (T) as the four actions given above:Lock, Unlock, InsertandRemove. These

are depicted in Figure 3.4.I (f tg) allows the thread t: (i ) to lock an unlocked node, (ii )
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(Lock)v - n v
Locked

- n

(Unlock)v
Locked

- n v - n

(Insert)u
Locked

- w - y u
Locked

A
AU
v �

��

w - y u < v < w

(Remove)u
Locked

A
AU
v

Locked

�
��

m u
Locked

- m v < + 1

Figure 3.4: Pictorial representation of the actions

to unlock a node that it had locked, (iii ) to insert a node in the list immediately after

a node that it had locked, and (iv ) if two adjacent nodes in the list are locked byt, to

remove the second node from the list by swinging a pointer past it.For a thread with

thread identi�er t, take R = I (f tg) and G = I (f tg).

We can use separation to describe the structure of the shared list. The following

predicate,ls(x; A; y ), describes a list segment starting at locationx with the �nal tail value

of y, and with contents A. We write � for the empty sequence and� for the concatenation

of two sequences.

ls(x; A; y ) def= ( x = y ^ A = � ^ emp)

_ (9vzB: x 6= y ^ A = v�B � N (x; v; z) � ls(z; B; y))

Because of separation logic, we do not need any reachability predicates. Instead, the `list

segment' predicate is simply a recursively de�ned predicate. The de�nition above ensures

that the list does not contain any cycles.

The algorithm works on sorted lists with the �rst and last values being �1 and +1

respectively. We de�nes(A) to represent this restriction on a logical listA.

sorted(A) def=

8
<

:
true if (A = � ) _ (A = a�� )

(a < b) ^ sorted(b:B) if (A = a�b�B)

s(A) def= ( 9B: A = �1� B �+ 1 ) ^ sorted(A) ^ emp

Figures 3.5 and 3.6 contain the proof outlines oflocate , add, and remove. The

outline presents the intermediate assertions in the proof. Further, we must prove that

every shared state assertion is stable under the rely. These proofsinvolve reasoning

56



locate (e) f
local p ; c; t ;�
9A: ls(Head; A; nil) � s(A) ^ �1 < e

	

p := Head;�
9ZB: ls(Head; �; p) � N (p; �1 ; Z )
� ls(Z; B; nil) � s(�1� B )

^ �1 < e
�

lock (p);�
9Z:

9B: ls(Head; �; p) � L(p; �1 ; Z )
� ls(Z; B; nil) � s(�1� B )

^ �1 < e
�

hc := p:next ; i�
9B: ls(Head; �; p) � L(p; �1 ; c)
� ls(c; B; nil) � s(�1� B )

^ �1 < e
�

ht := c:value ; i�
9u:

9ABZ: ls(Head; A; p) � L(p; u; c)
� N (c; t ; Z ) � ls(c; B; nil) � s(A�u�t �B )

^ u < e
�

while (t < e) f�
9u:

9ABZ: ls(Head; A; p) � L(p; u; c)
� N (c; t ; Z ) � ls(c; B; nil) � s(A�u�t �B )

^ u < e ^ t < e
�

lock (c);�
9uZ:

9AB: ls(Head; A; p) � L(p; u; c)
� L(c; t ; Z ) � ls(Z; B; nil) � s(A�u�t �B )

^ t < e
�

unlock (p);�
9Z:

9AB: ls(Head; A; c) � L(c; t ; Z )
� ls(Z; B; nil) � s(A�t �B )

^ t < e
�

p := c;�
9uZ:

9AB: ls(Head; A; p) � L(p; u; Z)
� ls(Z; B; nil) � s(A�u�B )

^ u < e
�

hc := p:next ; i�
9u:

9AB: ls(Head; A; p) � L(p; u; c)
� ls(c; B; nil) � s(A�u�B )

^ u < e
�

ht := c:value ; i�
9u:

9ABZ: ls(Head; A; p) � L(p; u; c)
� N (c; t ; Z ) � ls(Z; B; nil) � s(A�u�t �B )

^ u < e
�

g�
9uv:

9ABZ: ls(Head; A; p) � L(p; u; c)
� N (c; v; Z) � ls(Z; B; nil) � s(A�u�v�B )

^ u < e ^ e � v
�

return (p; c);
g

Figure 3.5: Outline veri�cation of locate .
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add(e) f local x ; y; z; t ;�
9A: ls(Head; A; nil) � s(A) ^ �1 < e

	

(x; z) := locate (e);�
9uv:

9ZAB: ls(Head; A; x) � L(x; u; z) � N (z; v; Z)
� ls(Z; B; nil) � s(A�u�v�B )

^ u < e ^ e � v
�

ht = z:value ; i if (t 6= e) f�
9uv:

9ZAB: ls(Head; A; x) � L(x; u; z) � N (z; v; Z)
� ls(Z; B; nil) � s(A�u�v�B )

^ u < e ^ e < v
�

y = cons(0; e; z);�
9uv:

9ZAB: ls(Head; A; x) � L(x; u; z) � N (z; v; Z)
� ls(Z; B; nil) � s(A�u�v�B )

� U(y; e; z) ^ u < e ^ e < v
�

hx:next = y; i�
9uv: 9ZAB: ls(Head; A; x) � L(x; u; y) � N (y; e; Z ) � ls(Z; B; nil) � s(A�u�e�B )

	

g
unlock (x);�
9v: 9A: ls(Head; A; nil) � s(A)

	

g

remove(e) f local x ; y; z; t ;�
9A: ls(Head; A; nil) � s(A) ^ �1 < e ^ e < + 1

	

(x; y) = locate (e);�
9uv:

9ZAB: ls(Head; A; x) � L(x; u; y) � N (y; v; Z)
� ls(Z; B; nil) � s(A�u�v�B )

^ u < e ^ e � v ^ e < + 1
�

ht = y:value ; i if (t = e) f�
9u:

9ZAB: ls(Head; A; x) � L(x; u; y) � N (y; e; Z )
� ls(Z; B; nil) � s(A�u�e�B )

^ e < + 1
�

lock (y);�
9u:

9ZAB: ls(Head; A; x) � L(x; u; y) � L(y; e; Z )
� ls(Z; B; nil) � s(A�u�e�B )

^ e < + 1
�

hz := y:next ; i�
9u:

9AB: ls(Head; A; x) � L(x; u; y) � L(y; e; z)
� ls(z; B; nil) � s(A�u�e�B )

^ e < + 1
�

hx:next := z; i�
9u: 9AB: ls(Head; A; x) � L(x; u; z) � ls(z; B; nil) � s(A�u�B ) � L(y; e; z)

	

unlock (x);�
9A: ls(Head; A; nil) � s(A) � L(y; e; z)

	

dispose (y);
g else f

�
9u: 9ZAB: ls(Head; A; x) � L(x; u; y) � ls(y; B; nil) � s(A�u�B )

	

unlock (x); g�
9A: ls(Head; A; nil) � s(A)

	

g
Figure 3.6: Outline veri�cation of add and remove.
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about the septraction operator (� ~ ); they are long, but straightforward. Since Chapter 6

describes how they can be automated, it is unnecessary to presentthem here. For an

example of such a proof, please see [74].

Theorem 29. The lock coupling algorithm is safe, and maintains the sorted nature of the

list.

3.6 Related work (SAGL)

Concurrently with this work, Feng, Ferreira and Shao [27] proposed a di�erent combi-

nation of rely/guarantee and separation logic, SAGL. Both RGSep and SAGL partition

memory into shared and private parts, but there are some notabledi�erences:

Assertion language SAGL has di�erent assertions for the local state and for the shared

state. As it has multiple regions of shared state, it has a di�erent assertion for each region.

On the contrary, RGSep has a uni�ed assertion language that describes both the local

and the shared state. Hence, in RGSep, we can write an assertion that links the local and

the shared state. We can also do the same in SAGL, but we need quanti�cation at the

meta-level.

Rely/guarantee representation In SAGL, the rely and guarantee conditions are rela-

tions and stability checks are semantic implications. RGSep, however, provides convenient

syntax for writing down these relations, and reduces the semantic implication into a simple

logic implication (see Lemma 13,x3.1.3).

Separation logic inclusion SAGL is presented as a logic for assembly code, and was

not intended to be applied at di�erent abstraction levels. In this presentation, it does

not have separation logic as a proper subsystem, as it lacks the standard version of the

frame rule [69]. This means that it cannot prove the usual separation logic speci�cation

of procedures such ascopy tree [60]. It should be possible to extend SAGL to include

the frame rule for procedures, but such extension is by no means obvious.

In contrast, RGSep subsumes separation logic [69], as well as thesingle-resource variant

of concurrent separation logic [58]. Hence, the same proofs there (for a single resource)

go through directly in RGSep (for procedures see Chapter 4). Of course, the real interest

in these logics is the treatment of additional examples, such aslock coupling, that neither

separation logic nor rely/guarantee can handle tractably.

Atomicity assumptions In SAGL, every primitive command is assumed to be atomic.

RGSep instead requires one to specify what is atomic; everything else is considered non-

atomic. In RGSep, non-atomic commands cannot update shared state, so we only need
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stability checks when there is an atomic command. On the otherhand, SAGL must check

stability after every single command.

With this all being said, there are remarkable similarities between RGSep and SAGL.

That they were arrived at independently is perhaps encouraging as to the naturalness of

the basic ideas.
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Chapter 4

Practical use of RGSep

Chapter 3 introduced RGSep, a logic that combines rely/guarantee and separation

logic. This enabled us to prove that lock-coupling list preserves the sorted list structure

and does not leak memory (seex3.5). Proving the same property in concurrent separation

logic is extremely di�cult, if at all possible. In this chapter , we will consider peripheral

issues, which are important in the practical application of RGSep.

� x 4.1 considers three variant proof systems that attach the stability checks to di�erent

proof rules. The last of these systems,mid stability, enables programs consisting of

a single atomic block to be speci�ed concisely.

� x 4.2 contains additional rules for checking that a program satis�es its guarantee

condition. These rules facilitate reasoning about programs with complex atomic

actions such as CAS.

� x 4.3 observes that the standard proof rules for procedures and higher-order separa-

tion logic carry across to RGSep. Moreover, we can de�ne multiple disjoint regions

of shared state and statically scoped interference.

� x 4.3.3 sketches an extension to actions with a local guard restricting when an action

can be applied. This extension permits us to reason about lockswithout having to

introduce thread identi�ers.

� Finally, x4.4 observes that non-atomic accesses to shared memory can be treated as

sequences of atomic accesses. It presents generic encondings fornon-atomic reads

and writes, and derives two proof rules for non-atomic reads.
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4.1 When to check stability

When it comes to stability checks, the proof rules of Chapter 3 are too conservative.

They check that assertions are stable on the entries and the exits of atomic blocks, at

the frame rule and at theSkip axiom. Hence, given a sequence of atomic commands

each intermediate assertion is checked for stability twice: once at the exit of an atomic

command and at the entry of its successor.

Here, we shall see three alternative proof systems with slightly di�erent properties.

Instead of requiring that all assertions are stable by construction, we can also assign a

meaning to unstable assertions. There are two sensible choices: an unstable assertion

could stand either for the strongest stable assertion it entails orfor the weakest stable

assertion that it is entailed by. This is represented in the following de�nitions:

De�nition 30 (Weakest stable stronger assertion).

� wssaR(q) ) q;

� wssaR(q) stable underR; and

� for all p, if p stable underR and p ) q, then p ) wssaR(q).

De�nition 31 (Strongest stable weaker assertion).

� p ) sswaR(p);

� sswaR(p) stable underR; and

� for all q, if q stable underR and p ) q, then sswaR(p) ) q.

Given a binary relation R : M � M , wssaR(p) stands for the weakest assertion that is

stronger than p and whose description of the shared state is stable underR. Dually, let

sswaR(p) be the strongest assertion that is weaker thanp and stable underR.

It is easy to see that for everyp and R, wssaR(p) and sswaR(p) are well de�ned: Both

true and false are stable underR; and for everyp1 and p2, if p1 and p2 are both stable

under R, then so arep1 ^ p2 and p1 _ p2.

These de�nitions provide the semantic basis for the following three new proof systems.

Early stability (at the forks of parallel composition and the exits of atomic blocks):

� C satES (p; R; G; q) def() 8 R0 � R: � C sat (wssaR0(p); R0; G; wssaR0(q))

Late stability (at the exits of atomic blocks and at the joins of parallel composition):

� C satLS (p; R; G; q) def() 8 R0 � R: � C sat (sswaR0(p); R0; G; sswaR0(q))

Mid stability (at sequencing and at the forks and the joins of parallel composition):

� C satMS (p; R; G; q) def() 8 R0 � R: � C sat (wssaR0(p); R0; G; sswaR0(q))

Since stability depends on the rely condition and during the proof the rely condition can

be strengthened according to theWeaken rule, the de�nitions quantify over all stronger
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rely conditions R0. The fourth combination, C sat (sswaR0(p); R0; G; wssaR0(q)), places a

stronger requirement onC than (p; R; G; q), but because of Lemma 27 ofx3.3 it gives rise

to the same proof rules asC sat (p; R; G; q).

Lemma 32. (8R0 � R: � C sat (sswaR0(p); R; G; wssaR0(q))) = ) � C sat (p; R; G; q).

Proof. Apply the Weaken rule, asp ) sswaR0(p) and wssaR0(q) ) q.

The rest of this section presents the proof rules for early, late, and mid stability and

proves their soundness. In order to carry out these soundness proofs, we shall use the

following properties ofwssaR( ) and sswaR( ).

Lemma 33 (Properties of weakest stable stronger assertions).

� wssa; (p) () p

� (p ) q) =) (wssaR(p) ) wssaR(q))

� wssaR(p � q) () wssaR(p) � wssaR(q)

Lemma 34 (Properties of strongest stable weaker assertions).

� sswa; (p) () p

� (p ) q) =) (sswaR(p) ) sswaR(q))

� sswaR(p � q) () sswaR(p) � sswaR(q)

4.1.1 Early stability checks

One way to avoid duplicating the stability checks is to check stability on the forks of

parallel compositions and only on the exits of atomic blocks. The test at the fork of

parallel compositions ensures that the �rst assertion in a proof outline is stable. And

since shared assertions are only modi�ed by atomic commands, the checks at the exits of

atomic commands ensures that all the other assertions in the proof outline are stable.

Figure 4.1 contains the relevant proof rules. The di�erence from the standard proof

rules is evident in the �rst two rules: E-AtomR drops the stability check onP , whereas

E-Par now checks thatp1 and p2 are stable. The other proof rules are more standard.

Unlike Skip , E-Skip does not have the awkward stability check onp. The rules E-

Seq, E-Weaken , E-Loop , and E-Choice are the same as in the standard semantics.

Finally, we can weaken the frame rule (E-Frame ) so that it does not check stability if

the command contains no atomic blocks. This stronger frame rule is not admissible in

the standard semantics.

Theorem 35 (Soundness). If ` C satES (p; R; G; q) then � C satES (p; R; G; q).

Proof. By induction on the proof rules.
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` C1 satES (p1; R [ G2; G1; q1) p1 stable underR [ G2

` C2 satES (p2; R [ G1; G2; q2) p2 stable underR [ G1

` C1kC2 satES (p1 � p2; R; G1 [ G2; q1 � q2)
(E-Par )

q stable underR
` C satES (p;; ; G; q)

` hCi satES (p; R; G; q)
(E-AtomR )

` skip sat ES (p; R; G; p)
(E-Skip )

` C1 satES (p; R; G; r)
` C2 satES (r; R; G; q)

` (C1; C2) satES (p; R; G; q)
(E-Seq )

R � R0 p ) p0

G0 � G q0 ) q
` C satES (p0; R0; G0; q0)

` C satES (p; R; G; q)
(E-Weaken )

P; Q precise (P  Q) � G
` C satES (P � P0; ; ; ; ; Q � Q0)

`hCi satES (P� F � P0; ; ; G; Q� F � Q0)
(Atom )

` C satES (p; R; G; p)

` C � satES (p; R; G; p)
(E-Loop )

` C1 satES (p; R; G; q)
` C2 satES (p; R; G; q)

` (C1+ C2) satES (p; R; G; q)
(E-Choice )

` C satES (p; R; G; q)�
r stable under(R [ G)

_ C contains noh i

�

` C satES (p � r; R; G; q � r )
(E-Frame )

Figure 4.1: Early stability proof rules

� (E-AtomR ): The proof proceeds as for the usual semantics, butwssaR0( ) removes

needing to check that the precondition is stable.

� (Atom ) and (Prim ): The proof is the same as for the usual semantics.

� (E-Skip ): Trivial, as wssa(p) is preserved by environment interference.

� (E-Par ): Follows from Lemma 23.

� (E-Seq ): Follows from Lemmas 24 and 25.

� (E-Weaken ): Follows from Lemmas 20 and 21, because the early stability seman-

tics quanti�es over all R0 � R.

� (E-Loop ): The proof is the same as for the usual semantics.

� (E-Frame ): As C and Ckskip are equivalent with respect to the operational se-

mantics (cf. Lemma 26), we can derive the frame rule from the parallel rule. We

consider two cases separately. Ifr stable underR[ G, abbreviated to (y) below, then
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` C1 satLS (p1; R [ G2; G1; q1) q1 stable underR [ G2

` C2 satLS (p2; R [ G1; G2; q2) q2 stable underR [ G1

` C1kC2 satLS (p1 � p2; R; G1 [ G2; q1 � q2)
(L-Par )

p stable underR
` hCi satLS (p;; ; G; q)

` hCi satLS (p; R; G; q)
(L-AtomR )

` skip sat LS (p; R; G; p)
(L-Skip )

` C1 satLS (p; R; G; r)
` C2 satLS (r; R; G; q)

` (C1; C2) satLS (p; R; G; q)
(L-Seq )

R � R0 p ) p0

G0 � G q0 ) q
` C satLS (p0; R0; G0; q0)

` C satLS (p; R; G; q)
(L-Weaken )

P; Q precise (P  Q) � G
` C satLS (P � P0; ; ; ; ; Q � Q0)

`hCi satLS (P� F � P0; ; ; G; Q� F � Q0)
(Atom )

` C satLS (p; R; G; p)

` C � satLS (p; R; G; p)
(L-Loop )

` C1 satLS (p; R; G; q)
` C2 satLS (p; R; G; q)

` (C1+ C2) satLS (p; R; G; q)
(L-Choice )

` C satLS (p; R; G; q)�
r stable under(R [ G)

_ C contains noh i

�

` C satLS (p � r; R; G; q � r )
(L-Frame )

Figure 4.2: Late stability proof rules

j= C satES (p; R; G; q)

j= C satES (wssaR(p); R; G; q) j= skip sat ES (r; R [ G; ; ; r ) (y)
j= ( Ckskip ) satES (wssaR(p) � r; R; G; q � r )

j= ( Ckskip ) satES (p � r; R; G; q � r )

j= C satES (p � r; R; G; q � r )

If C does not contain critical regions, we can always takeG = ; . In this case,

j= C satES (p; R; ; ; q)

j= C satES (wssaR(p); R; ; ; q)

j= skip sat ES (r; R; ; ; r )

j= skip sat ES (wssaR(r ); R; ; ; r )
j= ( Ckskip ) satES (wssaR(p) � wssaR(r ); R; ; ; q � r )

j= ( Ckskip ) satES (p � r; R; ; ; q � r )

j= C satES (p � r; R; ; ; q � r )

j= C satES (p � r; R; G; q � r )

4.1.2 Late stability checks

Figure 4.2 contains the `late stability' proof rules. In this system, the atomic rule (L-

AtomR ) requires that the precondition is stable, but avoids checking that the postcon-

dition is stable. The stability of the postcondition arises as a proof obligation of the
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` C1 satMS (p1; R [ G2; G1; q1) p1; q1 stable underR [ G2

` C2 satMS (p2; R [ G1; G2; q2) p2; q2 stable underR [ G1

` (C1kC2) satMS (p1 � p2; R; G1 [ G2; q1 � q2)
(M-Par )

P; Q precise ` C satMS (P � P0; ; ; ; ; Q � Q0) (P  Q) � G

`hCi satMS (P� F � P0; R; G; Q� F � Q0)
(M-Atom )

` skip sat MS (p; R; G; p) (M-Skip )

r stable underR
` C1 satMS (p; R; G; r)
` C2 satMS (r; R; G; q)

` (C1; C2) satMS (p; R; G; q)
(M-Seq )

p stable underR
` C sat (p; R; G; p)

` C � satMS (p; R; G; p)
(M-Loop )

` C1 satMS (p; R; G; q)
` C2 satMS (p; R; G; q)

` (C1+ C2) satMS (p; R; G; q)
(M-Choice )

R � R0 p ) p0

G0 � G q0 ) q
` C satMS (p0; R0; G0; q0)

` C satMS (p; R; G; q)
(M-Weaken )

` C satMS (p; R; G; q)�
r stable under(R [ G)

_ C contains noh i

�

` C satMS (p � r; R; G; q � r )
(M-Frame )

Figure 4.3: Mid stability proof rules

surrounding program. For instance, if there is a following atomic block, then from the se-

quence rule, the postcondition must imply the (stable) precondition of that atomic block.

Otherwise, if it is the �nal postcondition of a thread, then L-Par checks that it is stable.

The other proof rules (L-Skip , L-Seq , L-Loop , L-Choice , L-Weaken , and L-

Frame ) are the same as those for early stability.

Theorem 36 (Soundness). If ` C satLS (p; R; G; q), then � C satLS (p; R; G; q).

The proof is analogous to the proof of Theorem 35.

4.1.3 Mid stability checks

Figure 4.3 contains the proof rules with the mid stability checks. Unlike all the other

proof systems seen so far, the mid stability rule for atomic commands (M-Atom ) does

not require any assertions to be stable. Instead, we check stability at sequential compo-

sition and the forks and joins of parallel composition. Since loops involve sequencing of

commands, we also need to check that the loop invariantr is stable under interference.

Because mid stability delays checking stability to the sequencing operator, it enables

atomic operations to have much simpler speci�cations. For example, consider thelock

andunlock commands fromx3.5. Using the mid stability rules, we can derive the following
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much simpler speci�cations:

` lock (x) satMS (N (x; v; n) � F ; ; ; f (Lock)g; L tid (x; v; n) � F )

` unlock (x) satMS (L tid (x; v; n) � F ; ; ; f (Unlock)g; N (x; v; n) � F )

These speci�cations are not as concise as possible: they still havethe explicit shared

frame F . This suggests that one could perhaps extend RGSep with another operator ��

such that P �� Q () P � Q, and have an additional framing rule with the�� operator.

Lemma 37. If p stable underR and q stable underR, then

(i) � C satMS (p; R; G; q) () � C sat (p; R; G; q), and

(ii) ` C satMS (p; R; G; q) () ` C sat (p; R; G; q).

Proof. (i ) Trivial, as for all R0 � R, wssaR0(p) = p and sswaR0(q) = q.

(ii ) The =) direction is a straightforward induction on the mid stability proof rules; all

cases are trivial. To prove the( = direction, do an induction on the standard proof rules.

CaseSeq: From Lemma 27,9r 0: (r 0 ) r ) ^ (r stable underR)^ ` C1 sat (p; R; G; r0).

From the Weaken rule, we also havè C2 sat (r 0; R; G; q). From the induction hy-

pothesis, ` C1 satMS (p; R; G; r0) and ` C2 satMS (r 0; R; G; q). Therefore, by M-Seq ,

` (C1; C2) satMS (p; R; G; q). The other cases are trivial.

Theorem 38 (Soundness). If ` C satMS (p; R; G; q), then � C satMS (p; R; G; q), i.e. for

all R0 � R, � C sat (wssaR0(p); R0; G; sswaR0(q)).

Proof. By induction on the proof rules. Prove each rule separately.

� M-Skip : Trivial, as wssaR0(p) is preserved by environment interference.

� Prim : Follows directly from Lemma 37 and the standard semantics, asP and Q

are stable underR.

� M-Weaken : Trivial.

� M-Atom :

For notational convenience in the following proof, let9y: P1 = wssaR0(9y: P � F )

and Q1 = sswaR0(Q � F ). (Since describes only the shared state,wssaR0( ) can

be written as a top-level boxed assertion.)
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1: (P0  Q0) � G assumption

2: � C satMS (P0 � P00; ; ; ; ; Q0 � Q00) assumption

3: � C sat (P0 � P00; ; ; ; ; Q0 � Q00) from 3, Lemma 37

4: (P1 ) P0 � F ) ^ (Q ) Q1 � F ) Def. 30 and 31

5: 9y: P1 stable underR Def. 30

6: Q1 stable underR Def. 31

7: � hCi sat (9y: P1 � P00; R0; G; 9y: Q1 � Q00) from 1, 4, 5, 6, 7,Atomic

8: � hCi sat (wssaR0(9y: P0 � F � P00); R0; G;

sswaR0(9y: Q0 � F � Q00)) from 7, Lemmas 33, 34

� M-Par :

1: � C1 satMS (p1; R [ G2; G1; q1) assumption

2: � C2 satMS (p2; R [ G1; G2; q2) assumption

3: p1; q1 stable underR [ G2 assumption

4: p2; q2 stable underR [ G1 assumption

5: � C1 sat (p1; R [ G2; G1; q1) from 1, 3, Lem 37

6: � C2 sat (p2; R [ G1; G2; q2) from 2, 4, Lem 37

7: � (C1kC2) sat (p1 � p2; R; G; q1 � q2) from 5, 6, Par , Thm 28

8: � (C1kC2) sat (wssaR0(p1� p2); R0; G; sswaR0(q1� q2)) from 7, Weaken , Thm 28

CaseC1 contains noh i .

1: � C1 satMS (p1; R [ G2; G1; q1) assumption

2: � C2 satMS (p2; R [ G1; G2; q2) assumption

3: p1; q1 stable underR [ G2 assumption

4: C1 contains noh i assumption

5: � C1 satMS (p1; R [ G2; ; ; q1) from 1, 4

6: � C2 satMS (p2; R; G2; q2) from 2, M-Weaken

7: � C1 sat (p1; R0 [ G2; ; ; q1) from 3, 5

8: � C2 sat (wssaR0(p2); R0; G2; sswaR(q2)) from 6

9: � (C1kC2) sat (p1� wssaR0(p2); R0; G; q1� sswaR0(q2)) from 5, 6, Par , Thm 28

10: � (C1kC2) sat (wssaR0(p1� p2); R0; G; sswaR0(q1� q2)) from 9, Lem 33, Lem 34

CaseC2 contains noh i . Symmetric.

� M-Seq :

1: � C1 satMS (p; R; G; r) assumption

2: � C2 satMS (r; R; G; q) assumption

3: r stable underR assumption

4: � C1 sat (wssaR0(p); R0; G; r ) from 1, 3

5: � C2 sat (r; R 0; G; sswaR0(q)) from 2, 3

6: � (C1; C2) sat (wssaR0(p); R0; G; sswaR0(q)) from 4, 5, Seq, Thm 28
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Rules Pessimistic Early Late Mid
Skip p { { {
Seq { { { q

Choice { { { {
Loop { { { p
Par { p1; p2 q1; q2 p1; p2; q1; q2

Atomic p; q q p {

Table 4.1: Stability checks at a glance

� M-Loop :

1: ` C satMS (p; R; G; p) assumption

2: p stable underR assumption

3: ` C sat (p; R0; G; p) from 1, 2

4: � C � sat (p; R0; G; p) from 3, Loop , Thm 28

5: � C � sat (wssaR0(p); R0; G; sswaR0(p)) from 2, 4

� M-Frame : Do a case split on the disjunction in the premise.

Caser stable underR [ G.

1: � C satMS (p; R; G; p) assumption

2: r stable under(R [ G) assumption

3: � C sat (wssaR0(p); R0; G; sswaR0(q)) from 1

4: � C sat (wssaR0(p) � r; R 0; G; sswaR0(q) � r ) from 3, Frame , Thm 28

5: r stable underR0 from 2, asR0 � R

6: wssaR0(p) � r () wssaR0(p � r ) from 5, Lemma 33

7: sswaR0(q � r ) () sswaR0(q) � r from 5, Lemma 34

8: � C sat (wssaR0(p � r ); R0; G; sswaR0(q � r )) from 4, 6, 7

CaseC contains noh i .

1: � C satMS (p; R; G; q) assumption

2: C contains noh i assumption

3: � C satMS (p; R; ; ; q) from 1, 2

4: � C sat (wssaR0(p); R0; ; ; sswaR0(q)) from 3

5: � C sat (wssaR0(p)� wssaR0(r ); R0; G; sswaR0(q)� wssaR0(r )) from 4, Frame

6: � C sat (wssaR0(p)� wssaR0(r ); R0; G; sswaR0(q)� sswaR0(r )) from 5, Weaken

7: � C sat (wssaR0(p � r ); R0; G; sswaR0(q � r )) from 6, Lem 33, 34

4.1.4 The stability lattice

Table 4.1 summarises the stability checks done by each of the four proof systems we have

met. Evidently the mid-stability rules appear more complex than the other three proof
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satMS

satES

q stable underR
99ssssssssss

satLS

p stable underR
eeKKKKKKKKKK

sat
p stable underR

eeLLLLLLLLLL q stable underR

99rrrrrrrrrr

Figure 4.4: Stability lattice

systems, but this complexity makes them more powerful.

With the mid stability rules, we can prove strictly more speci�cations than with either

of the other systems. To prove this assertion, �rst prove the following theorem.

Theorem 39.

� ` C satES (p; R; G; q) =) ` C satMS (p; R; G; q),

� ` C satLS (p; R; G; q) =) ` C satMS (p; R; G; q),

� ` C sat (p; R; G; q) =) ` C satLS (p; R; G; q), and

� ` C sat (p; R; G; q) =) ` C satES (p; R; G; q).

This states that (i ) mid stability is at least as powerful as early stability and late stabil-

ity and that ( ii ) all the variant systems enable us to prove at least as many speci�cations

as the standard system. Proving this theorem consists of straightforward inductions over

the proof rules.

In addition, we can prove that ` hx := x + 1i satMS (x = X ; R; R; x = X + 1 ) where

R = f x 7! N  x 7! N +1g. This speci�cation, however, does not hold in any of the other

systems because the precondition and the postcondition are unstable. Hence, the mid

stability rules one can prove strictly more speci�cations thaneither of the other systems.

Similarly, we can specify an atomic command (i ) with a stable precondition and an

unstable postcondition, or (ii ) with an unstable precondition and a stable postcondition.

Thus, we can show that early and late stability are incomparablein strength and that

the standard system is the weakest of all.

These results are presented in Figure 4.4. An arrow fromA to B in the diagram says

that the proof systemA can prove fewer speci�cations thanB.

In addition, if the precondition is stable, then sat and satES are equivalent, and so

are satLS and satMS . Dually, if the postcondition is stable, then sat and satLS are

equivalent, and so aresatES and satMS . If both the precondition and the postcondition

of a speci�cation are stable, then provability is the same for all four systems.

Theorem 40.

(a) If p stable underR, then

� ` C sat (p; R; G; q) () ` C satES (p; R; G; q), and
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� ` C satLS (p; R; G; q) () ` C satMS (p; R; G; q).

(b) If q stable underR, then

� ` C sat (p; R; G; q) () ` C satLS (p; R; G; q), and

� ` C satES (p; R; G; q) () ` C satMS (p; R; G; q).

Proof outline. The =) directions follow from Theorem 39. For( = directions, take each

case separately and do an induction on the proof rules of the right hand side. Each case

can be transformed to an application of the respective rule of the left hand side using the

additional assumption p stable underR or q stable underR. In some cases, we also need

to use the relevant consequence rule (Weaken , L-Weaken , etc.).

4.2 Satisfying the guarantee

So far, each time we want to reason about an atomic block, we mustuse theAtom rule.

We have to invent anP0  Q0 that represents what the atomic block does and satis�es

the guarantee. (In the semantics, the atomic block is actuallyannotated with this action.)

When the body of the atomic block is large, guessing this actionmight be di�cult.

Since, however, the programhC1i ; hC2i has strictly more behaviours thanhC1; C2i ,

if we prove that hC1i ; hC2i satis�es the guarantee, thenhC1; C2i will also satisfy the

guarantee. The hope is that proving the former might be easierthan proving the latter

by applying the Atom rule directly.

The following rules formalise this kind of reasoning.

` hskip i sat (p;; ; G; p)
(A-Skip )

` hC1i sat (p;; ; G; q)

` hC2i sat (q;; ; G; r )

` hC1; C2i sat (p;; ; G; r )
(A-Seq )

` hCi sat (p;; ; G; p)

` hC � i satMS (p;; ; G; p)
(A-Loop )

` hC1i sat (p;; ; G; q)

` hC2i sat (p;; ; G; q)

` hC1 + C2i satMS (p;; ; G; q)
(A-Choice )

The rulesA-Seq , A-Loop and A-Choice are also valid if we replace; by an arbitrary

rely R (A-Skip would also need to test thatp is stable). However, applying these rules

with any R other than ; would be unwise because it adds useless stability checks in the

middle of atomic blocks. Instead, one �rst appliesAtomR to check stability, and then

applies the \A- " rules with R = ; and Atom to complete the proof.

For example, consider the following program, a slight generalisation of CAS (compare

and swap):

CAD(x; o; C) def= ht := [ x]; if (t = o) f Cgi
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If [x] = o, it executesC atomically; otherwise it does nothing. The invented nameCAD

stands forcompare and do. We can derive the following two rules.

` hCi sat (p � x7! o � true ; ; ; G; q) t =2 vars(p; C)

` CAD(x; o; C) sat (p � x7! � true ; ; ; G; (p ^ t 6= o) _ (q^ t = o))
(Cad )

j= RGSep p ) x7! � true � true p stable underR q stable underR

j= RGSep p � x7! o � true ) p0 ` hCi sat (p0; ; ; G; q) t =2 vars(p; C)

` CAD(x; o; C) sat (p; R; G;(p ^ t 6= o) _ (q^ t = o))
(Cad2 )

The second rule is an immediate corollary ofCad , AtomR , and Conseq . These de-

rived rules simplify the veri�cation of algorithms involving CAS (for example, seex5.3.1).

Derivation of Cad . If we remove the syntactic sugar,CAD(x; o; C) becomes

ht := [ x]; ((assume(t = o); C) + assume(t 6= o)) i :

First, prove that

t =2 vars(p; C) ` hCi sat (p � x7! o � true ; ; ; G; q)
Frame

` hCi sat (p � x7! o � true � (emp^ t = o); ; ; G; q � (emp^ t = o))
Conseq

` hCi sat (p � x7! t � true � (emp^ t = o); ; ; G; (p ^ t 6= o) _ (q^ t = o))

and that

Prim
` assume(t = o) sat (emp; ; ; G; emp^ t = o)

Atom
` hassume(t = o)i sat (emp; ; ; G; emp^ t = o)

Frame
` hassume(t = o)i sat (p � x7! t � true ; ; ; G; p � x7! t � true � (emp̂ t = o))

Hence, applyingA-Seq , the �rst branch of the conditional becomes:

` hassume(t = o); Ci sat (p � x7! t � true ; ; ; G; (p ^ t 6= o) _ (q^ t = o))

The second branch of the conditional is:

Prim
` assume(t 6= o) sat (emp; ; ; G; emp^ t 6= o)

Atom
` hassume(t 6= o)i sat (emp; ; ; G; emp^ t 6= o)

Frame
` hassume(t 6= o)i sat (p;; ; G; p � (emp^ t 6= o))

Conseq
` hassume(t 6= o)i sat (p � x7! t � true ; ; ; G; (p ^ t 6= o) _ (q^ t = o))

Hence, from ruleA-Choice we get that (hassume(t = o); Ci + hassume(t 6= o)i ) satis�es
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(p � x7! t � true ; ; ; G; (p ^ t 6= o) _ (q^ t = o)). Moreover,

G-Exact
(x7! b  x7! b) 2 G

Prim
` ht := [ x]i sat (x7! b;; ; G; x7! b^ b= t )

Atom
` ht := [ x]i sat (x7! b� true ; ; ; G; x7! b� true � (b= t ^ emp))

Conseq
` ht := [ x]i sat (x7! b� true ; ; ; G; 9b: x7! b� true � (b= t ^ emp))

Ex
` ht := [ x]i sat (9b: x7! b� true ; ; ; G; 9b: x7! b� true � (b= t ^ emp))

Conseq
` ht := [ x]i sat (x7! � true ; ; ; G; x7! t � true )

Frame
` ht := [ x]i sat (p � x7! � true ; ; ; G; p � x7! t � true )

Finally, apply rule A-Seq to derive the required conclusion.

4.3 Modularity

4.3.1 Procedures

Reasoning about procedures is orthogonal to rely/guaranteereasoning. We shall allow

mutually recursive function de�nitions, but for simplicity assume they have no parameters.

This is su�ciently general because, if necessary, parameters can be passed through a stack

implemented in the heap.

First, extend the grammar of commands as follows:

C ::= : : :

let proc1= C1; : : : procn= Cn in C Procedure de�nitions

proc Procedure call

The syntax declares multiple procedures together to permit mutual recursion.

The operational semantics now uses a context that maps procedure names to their

de�nitions; for example � = f proc1 7! C1; : : : ; procn 7! Cng. This context is just passed

around by the existing rules. Here are the additional rules for procedure de�nitions and

procedure calls:

�; � 1 ` (C; � ) R�!
p

(C0; � )

� ` (let � 1 in C; � ) R�!
p

(let � 1 in C0; � ) � ` (let � 1 in skip ; � ) R�!
p

(skip ; � )

�; � 1 ` (C; � ) R�!
p

fault

� ` (let � 1 in C; � ) R�!
p

fault

� (proc) = C

� ` (proc; � ) R�!
p

(C; � )

proc =2 dom(� )

� ` (proc; � ) R�!
p

fault

where�; � 1 returns the union of � and � 1 giving precedence to entries in� 1.

The proof rules are extended with a context � of procedure speci�cations. The rules

presented so far just pass � around. When calling a procedure, we must check that the

73



procedure has been de�ned; otherwise the call might fail. If the procedure has been

de�ned, the procedure call meets any speci�cation against which we have checked its

body.

� ; proc sat (p; R; G; q) ` proc sat (p; R; G; q)
(Call )

Handling mutual recursive procedure de�nitions is completely standard. Assuming all

the procedures have the required speci�cations, we prove thateach body,Ci , has the right

speci�cation. Under the same assumptions, we �nally check that thecommandC has the

right speci�cation.

� ; proc1 sat (p1;R1;G1;q1); : : : procn sat (pn ;Rn ;Gn ;qn ) ` C1 sat (p1;R1;G1;q1)
...

� ; proc1 sat (p1;R1;G1;q1); : : : procn sat (pn ;Rn ;Gn ;qn ) ` Cn sat (pn ;Rn ;Gn ;qn )

� ; proc1 sat (p1;R1;G1;q1); : : : procn sat (pn ;Rn ;Gn ;qn ) ` C sat (p;R;G;q)

� ` (let proc1 = C1; : : : procn = Cn in C) sat (p; R; G; q)
(Defn )

Proving the soundness of the extended logic is straightforward. First, extend the

de�nitions in x3.3 with a context � that is just passed around.

De�nition 41 (Guarantee). � � (C; �; R ) guarantees G if and only if for all n, � �

(C; �; R ) guarantees n G, where � � (C; (l; s; o); R) guarantees 0 G holds always; and

� � (C; (l; s; o); R) guarantees n+1 G holds if, and only if, if � � (C; (l; s; o)) R�!
�

Con�g,

then there existC0, l0, s0 and o0 such that

1. Con�g = ( C0; (l0; s0; o0)) ;

2. � � (C0; (l0; s0; o0); R) guarantees n G; and

3. if � = p, then (s; s0) 2 G.

De�nition 42. � j= C sat (p; R; G; q) if and only if for all � , � 0, if � j= p, then

1. � � (C; �; R ) guarantees G; and

2. if � � (C; � ) R�! � (skip ; � 0), then � 0 j= q.

Similarly, extend all the lemmas inx3.3 with the context, � , of procedure de�nitions.

The additional e�ort required to prove the extended lemmas amounts to just passing�

around. Finally, de�ne � � C sat (p; R; G; q) by quantifying over all contexts � that

satisfy �.

De�nition 43. Let � � C sat (p; R; G; q) if and only if for all procedure contexts� , if

� � � (proc) sat �( proc) for all proc 2 dom(�) , then � � C sat (p; R; G; q).
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Hence, we can state and prove soundness of the proof rules for procedures:

Theorem 44 (Soundness). If � ` C sat (p; R; G; q), then � � C sat (p; R; G; q).

The proof is identical to the proof of Theorem 28, except thatwe have to pass the pro-

cedure context (� ) around and that we have to prove the soundness of the two additional

rules (Call and Defn ).

This extension is orthogonal to when the stability is checked.The same proof rules

apply to early, late, and mid stability.

4.3.2 Multiple regions

Concurrent separation logic [58] has multiple resource names,each protecting a di�erent

disjoint part of memory. Chapter 3 presented RGSep acting on a single region of shared

state. This section extends RGSep to multiple regions of sharedstate.

Assume a countably in�nite set of region namesRegionNameand let %range over that

set. The assertions are the same as before, except that shared (boxed) assertions are

annotated with the name of the region they describe.

p; q; r ::= P j P % j p � q j p ) q j 9x: p

As before, states consist of three components: the local state (l), the shared state (s),

and the local state of the other threads (o). The di�erence is that the shared state is no

longer an element of the separation algebraM , but rather a mapping from region names

to M ; in other words, s : RegionName* M .

De�nition 45. States def=

(

(l; s; o)

�
�
�
�
�

f l; og � M ^ s 2 (RegionName* M )

^ (l � o �
J

� 2 dom(s)) s(%)) is de�ned

)

Two states may be combined provided they agree on their shared states, have disjoint

local states, and identical total states.

Assertions simply ignore the third component of the state (the state of the other

threads), and are de�ned in terms of the local state (l), the shared state (s), and an

interpretation ( i ) for the logical variables. The semantics of assertions does notchange

except for boxes:

l; s; i j= RGSep P %
def() (l = u) ^ (s(%); i j= SL P)

The operational semantics is mostly una�ected. The transitionrelation changes from

Con�g 1
R�!
�

Con�g 2 into Con�g 1
R�!
�

Con�g 2, whereR is a mapping from region names to

rely conditions (binary relations onM ). In the operational semantics in Section 3.2, the

only rule that depends onR is the rule for environment transitions. This becomes:
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8%2 dom(R): R(%)(s(%); s0(%)) ( l; s0; o0) 2 States

(C; (l; s; o)) R�!
e

(C; (l; s0; o0))

The other semantic rules just passR around as before.

Judgements are extended intò C sat (p;R ; G; q), whereR and G map region names

to rely and guarantee conditions respectively.

Here is a simple rule for atomic blocks that access a single shared region� :

` C sat (P0 � P00; ; ; ; ; Q0 � Q00)

P0 stable underR(%) Q0 stable underR(%)

P0  Q0 =) P  Q (P0  Q0) � G (%)

` hCi sat (P %� P00; R ; G; Q%� Q00)
(AtomicI )

We can also de�ne a slightly more complex rule that allows the same atomic blocks to

access state from multiple shared regions.

` C sat (P0
1 � : : : P0

n � P00; ; ; ; ; Q0
1 � : : : Q0

n � Q00)

8i:

 
P0

i stable underR(%i ) Q0
i stable underR(%i )

P0
i  Q0

i =) Pi  Qi (P0
i  Q0

i ) � G (%i )

!

` hCi sat (P1 %1
� : : : � Pn %n

� P00; R ; G; Q1 %1
� : : : � Qn %n

� Q00)
(AtomicII )

In both these rules, the boxed assertions of the postcondition mustbe precise asser-

tions.

Proving the soundness of this extension is not too di�cult. First, we must extend the

de�nitions and the lemmas ofx3.3 to useR and G instead of R and G. For example,

De�nition 18 becomes:

De�nition 46. (C; �; R) guarantees G def() 8 n: (C; �; R) guarantees n G, where

(C; (l; s; o); R) guarantees 0 G holds always; and(C; (l; s; o); R) guarantees n+1 G holds if,

and only if, if (C; (l; s; o)) R�!
�

Con�g, then there existC0, l0, s0, o0 such that

1. Con�g = ( C0; (l0; s0; o0)) ;

2. (C0; (l0; s0; o0); R) guarantees n G; and

3. if � = p, then for all %2 dom(G), (s(%); s0(%)) 2 G(%).

Proving this extension sound is almost identical to the soundnessproof for the single

shared region. Again, we can delay checking stability and derive early, late, and mid

stability proof rules.
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4.3.3 Local guards

In the lock-coupling list proof of x3.5, the mutexes recorded the thread identi�er of the

thread which has acquired the lock. Although the actual implementation may store a

single bit, it is customary in rely/guarantee proofs to add someauxiliary state to specify

which thread has acquired the lock. Hence, we can assert that only the thread that has

acquired a lock can later release it.

This extension achieves the same e�ect without needing to introduce any auxiliary

state. We can instead use separation logic permissions. Locking a node retains half the

permission for a node; unlocking a node restores the missing permission.

x 7! f :lock=0g  x
1=2
7! f :lock=1g

x
1=2
7! f :lock=1g  x 7! f :lock=0g

Using these actions, when a thread acquires a lock, it gets a tokenthat ( i ) enables it to

release lock, (ii ) ensures that no other thread releases the lock. If the thread forgets to

release the lock, this will show up as a memory leak: any provable precise post-condition

will contain the token. The thread holding the token can also pass it to another thread

via some communication mechanism. Hence, it can delegate the knowledge that the lock

is acquired and the responsibility that it is later released.

In this example, the local state of a thread plays quite a subtlerole in controlling

interference. It acts as a token, a permission to perform a certain action, and as a guard,

a prohibition that the environment does some action.

In the operational semantics, an environment transition (see Figure 3.2, 6th rule)

requires that the resulting state is well formed, that the new shared state is disjoint from

the local state. In essence, the existence of the local staterestricts what the environment

can do (e.g. it cannot allocate an existing memory address).

Besides its prohibitive role as to what other threads can do, the local state has a

permissive role. Its presence allows a thread to do more actionsthan it would otherwise

be able to do (e.g. in some algorithms, a mutex can be unlocked only by the thread that

locked it).

So far, our proof rules have ignored these two roles of the local state that are present

in the semantics. We can, however, extend our assertion languagewith guarded boxed

assertionsLjS, where L is an assertion about the local state, whose presence is used in

the stability proof of S. Similarly, guarded actionsG j P  Q use the guardG to stand

for the local state that must be owned for the action to occur.

De�nition 47. The assertionLjS is stable under interference fromG j P  Q if and

only if

(P � ~ S) � Q ) S or : (P � G � L) or : (Q � L) or : (S � L)
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The three new cases are when the action cannot execute. The local state that protects

the stability of a shared assertion cannot be updated directly because the shared assertion

might become unstable. Each time it is updated we need to recheck stability.

4.4 Non-atomic accesses to shared memory

The semantics, as presented so far, restricts accesses to shared memory to be atomic.

The only form of commands that can access shared state is the atomic command,hCi .

However, it is well-known that non-atomic accesses can be simulated by a sequence of

multiple atomic accesses. For instance, we can encode a non-atomic shared read as two

atomic reads, and a check that both reads returned the same value. If the values di�er,

then we could have read a corrupted value; so we assign a random value to x. Another

possibility is to forbid races altogether. In this case, if the two values read di�er, reading

just fails.

Race =) corrupted value Race =) error

x := [ e]

local temp;

htemp := [ e]i ;

hx := [ e]i ;

if (x 6= temp)

x := nondet;

local temp;

htemp := [ e]i ;

hx := [ e]i ;

if (x 6= temp)

fault ;

For both implementations of the non-atomic read, we can derive the following rule:

P = ( Q � X 7! Y) P stable underR x =2 fv(P)

` x := [ e] sat (P ^ e = X; R; G; P ^ x = Y)

Given a stable assertionP assigning a constant valueY to the memory cell at address

e, we can read this cell non-atomically and get the valueY. The logical variable X is

used becausee could mention x.

For the non-faulting implementation, we can derive a simple rule for racy reads. If

the shared state contains the memory cell at addresse, then we can read [e]. We cannot,

however, assert anything about the value we read because a race condition could have

occurred.

P = ( Q � X 7! ) P stable underR x =2 fv(P)

` x := [ e] sat (P ^ e = X; R; G; P )

Proof. In the following proof outlines, the boxed assertions are stablebecause of the

assumptionP stable underR.
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n
Q � X 7! Y ^ e = X

o

local temp;n
Q � X 7! Y ^ e = X

o

htemp := [ e]i ;n
Q � X 7! Y ^ e = X ^ temp = Y

o

hx := [ e]i ;n
Q � X 7! Y ^ x = Y ^ x = temp

o

if (x 6= temp) fault ;n
Q � X 7! Y ^ x = Y ^ x = temp

o

n
Q � X 7! ^ e = X

o

local temp;n
Q � X 7! ^ e = X

o

htemp := [ e]i ;n
Q � X 7! ^ e = X

o

hx := [ e]i ;n
Q � X 7!

o

if (x 6= temp) x := nondet;n
Q � X 7!

o

We can also encode non-atomic operations with side-e�ects as asequence of atomic

operations that fails if a race condition occurred. For instance, a non-atomic write is

just a sequence of arbitrary atomic writes, which will eventually write the entire value

provided that there were no conicting writes.

[e] := e0 def=

8
>>>>>>>><

>>>>>>>>:

local t 1; t 2;
0

B
B
B
@

t 1 := nondet;

h[e] := t 1i ;

ht 2 := [ e]i ;

if (t 1 6= t 2) fault ;

1

C
C
C
A

�

;

h[e] := e0i ;

9
>>>>>>>>=

>>>>>>>>;

More generally, given a non-atomic primitive command and a suitable memory model,

we can devise an encoding into a sequence of atomic commands that guarantees the same

properties. Based on that encoding, we can derive custom proof rules.
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Chapter 5

Reasoning about linearisability

Linearisability is the standard correctness condition for �ne-grained concurrent data

structure implementations. Informally, a procedure is linearisable in a context if and

only if it appears to execute atomically in that context. A concurrent data structure is

linearisable if all the operations it supports are linearisable.

Linearisability is widely used in practice because atomic codecan be speci�ed much

more accurately and consicely than arbitrary code. For instance, consider we want to

specify the following procedure, which increments the sharedvariable x atomically:

inc() f int t ; do f t := x; g while (: CAS(& x; t ; t + 1)); g

Using the rely/guarantee proof rules, we can prove thatinc() satis�es the speci�ca-

tions (x= N; x= (�x ; G; x= N +1), ( x� N; x� (�x ; G; x� N +1), ( x� N; x� (�x ; G; x� N +1), and

(true; True; G; true), where G = ( x� (�x ). Each of these four speci�cations is useful in a

di�erent context, but there is no single best speci�cation we can give to inc() .

A better way to specify inc() is to prove that it is observationally equivalent to

hx := x + 1; i . Then, using the mid-stability proof rules, we can derive the speci�cation

(x = N; True; G; x = N +1), which encompasses the previous four speci�cations.

This chapter, �rst, de�nes linearisability in two ways: the standard one due to Herlihy

and Wing [45], and an alternative one that is more suitable forveri�cation. Then, we

shall consider how to prove linearisability, illustrated by linearisability proof sketches of

a number of �ne-grained algorithms. The chapter concludes bydiscussing related work.

5.1 De�nition of linearisability

5.1.1 Historical de�nition

Herlihy and Wing [45] de�ne linearisability in terms of histories of I/O automata. A

history is a �nite sequence of events describing the execution of a concurrent program.
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There are two types of events: invocations of methods and (matching) responses. For each

invocation, there may or may not be a matching response later inthe sequence (depending

on whether the method call has returned or is still running); but for each response, there

is a matching invocation earlier in the history. Hence, all non-empty histories start with

an invocation event.

A history H induces an irreexive partial order< H on operations,

op1 < H op2; if and only if res(op1) precedesinv (op2) in H .

Two operations that are unrelated by this order are said to be concurrent.

A history H is sequential if every invocation in H , except possibly the last, is imme-

diately followed by a matching response. Each response is immediately preceded by a

matching invocation. Or equivalently, a historyH is sequential, if and only if,< H is a

total order.

For a history H , complete(H ) is the maximal subsequence ofH consisting only of

invocations and matching responses. In other words,complete(H ) is obtained fromH by

removing any unmatched invocations. A history islegal if it satis�es all the internal data

invariants.

De�nition 48. A history H is linearisable, if it can be extended (by appending zero or

more response events) to some historyH 0 such that:

� complete(H 0) is equivalent to some legal sequential historyS

� < H � < S.

An object is linearisable if all its possible execution historiesare linearisable.

5.1.2 Alternative de�nition

Herlihy and Wing [45] acknowledge that the �rst de�nition of linearisability is somewhat

`awkward' for veri�cation. Instead, it is better to de�ne under what conditions a method

is linearisable, and to say that an object is linearisable if andonly if all its methods are

linearisable.

A method call is linearisable if it is observationally equivalent to an atomic execution

of the method at some point between its invocation and its return. Phrased di�erently, a

method call is linearisable if there exists an instant between the invocation and the return

of the method at which the entire externally visible e�ect of the method took place. The

instant when according to an external observer the entire e�ect of the method takes place

is known as thelinearisation point of that method.

Of course, this de�nition only makes sense in a context where theterms \externally

visible" and \atomic" are de�ned. We consider them in the context of a simple module
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that owns some private memory, inaccessible from outside the module. Anexternally

visible e�ect is any observable update to the global memory and the result of acall to a

public method of the module. Similarly,atomic will be with respect to all public methods

on the module and with any code outside the module. When a module implements a

data structure and provides update and access methods, it is often useful to de�ne an

abstract version of the data structure and assume that it is globally visible. Even though

it may not be visible directly, all its data would be availablethrough the module's access

methods.

5.1.3 Properties

Linearisability is a local notion: a history consisting of callsto multiple separate objects

is linearisable if and only if it is linearisable with respect toeach of the objects separately.

Hence, we can partition the task of proving linearisability andconsider one object at a

time.

In addition, linearisability enables concise speci�cations: alinearisable method is spec-

i�ed by just the precondition and the postcondition of its linearisation point. Since all

interesting concurrency is hidden within the module, the method can be given a simple

speci�cation summarising its sequential e�ect.

5.2 Proving linearisability

In theory, a method is linearisable if and only if modulo termination it is equivalent to a

single atomic block performing its abstract operation. Therefore, to prove that a method

is linearisable it is su�cient to be able to reason about programequivalence in a possibly

restricted context.

The standard way for reasoning about program equivalence is torepresent programs

as transition systems and to de�ne appropriate simulations between them. Unfortunately,

this approach is not practical. Transition systems and simulation relations are unintuitive

to the average programmer. Wanting to reason about his C program, the programmer

has to translate it to a di�erent formalism (a transition system) and to de�ne special

simulation relations between objects of that new system.

This complexity is, however, unnecessary. Proving linearisability may be a special

case of proving program equivalence, but reasoning about thisspecial case is much sim-

pler than about the general case. Instead, we can embed the speci�cation within the

program as auxiliary code. Writing these annotations is a form of programming, familiar

to the average programmer. As the examples inx5.3 will demonstrate, most algorithms

require very few annotations. More advanced algorithms (e.g. RCDSS) require more aux-

iliary code, but still the designers of the algorithm should be able to come up with these
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annotations if they believe that their algorithm is correct.

Before presenting further details, it is useful to recall how weprove the correctness

of sequential programs. Assume we are given a low-level implementation (e.g. a sorted

linked list) and a high-level speci�cation (e.g. a set of integers), and we want to prove that

the implementation conforms to the speci�cation. First, assumethat concrete program

and the abstract program operate on disjoint states: the concrete and the abstract state

respectively. If not, we can rename the variables of either program to satisfy this condition.

Then, de�ne an abstraction map that relates the concrete state to the abstract state.

Execute the two programs in sequence, and show that if the abstraction map holds initially,

it also holds when both programs end. For an object with multiple methods, repeat this

process for each method of the object.

For concurrent programs, we can take a similar approach.

1. For each method, locate thelinearisation point as a point in the concrete source

code. The intended meaning is that when this program point isexecuted, it is a

valid linearisation point for the particular method call.

2. Embed the abstract operation as an atomic command at that program point.

3. De�ne an abstraction mapthat relates the concrete and the abstract states.

4. Prove that if the abstraction map holds initially, then it holds continuously through-

out the program, and that the concrete method and the abstractmethod return the

same results.

Unfortunately, the �rst step may fail. Sometimes, we cannot identify the linearisation

point as as a point in the program's control-ow graph becauseit depends on future

behaviour.

Herlihy and Wing [45] gave an arti�cial example of a concurrent queue, whose lineari-

sation point could not be speci�ed directly as a point in the source code. They went on

to reject this proof method and proposed a more elaborate method whereby each legal

concrete state is mapped to a set of abstract states.

Their approach, however, is unnecessarily complex. Instead, we shall introduce auxil-

iary variables to capture the location of the linearisation point. The amount of auxiliary

state needed to carry out the proof of a program is a good measurefor the program's

synchronisation intricacy. For common synchronisation patterns, there is a systematic

way of introducing such auxiliary state.

5.2.1 Single assignment variables

To prove that the embedded abstract operation at the linearisation point was executed

exactly once, it is useful to have special variables that during execution get assigned at
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most one time. The proof technique is to introduce one such variable per method, initially

unset, to assign to it at the linearisation point, and to have the postcondition check that

the variable has been set. This ensures that the abstract operation was executed exactly

once, and, if the linking invariant is satis�ed, the method is linearisable.

A write-once variable is a variable that at its de�nition does not contain any value

and that dynamically gets assigned to at most once. Formally, wecan de�ne write-once

variables as an abstract data type with four operations:

� newsingle : It creates a new, uninitialised write-once memory cell.

� readsingle , which returns the value stored in the write-once memory cell.

� write single : This has a precondition saying that the variable is uninitialised, so that

it cannot be assigned multiple times.

� dispose single : This simply deallocates a single-assignment variable.

These operations have speci�cations:

f empg x := newsingle ; f x s7! undefg

f y s7! z ^ e = yg x := [ e]single ; f y s7! z ^ x = zg

f e1
s7! undefg [e1]single := e2; f e1

s7! e2g

f e s7! g dispose single (e); f empg

For convenience, we shall use [e]single notation for accessing the value stored in the write-

once memory locatione. We will use the keywordsingle to declare such variables, and

we will omit the subscripts when they are obvious from the context.

We can impose a syntactic restriction that assignments to a certain write-once variable

occur only together with the abstract operation at potentiallinearisation points. Hence,

if after the execution of a method that write-once variable has been set, a linearisation

point was executed; moreover, the abstract operation took place exactly once.

An alternative approach is to keep a counter per method call counting how many times

the abstract operation is executed (by a similar syntactic restriction). At the beginning

set the counter to 0, and at the end prove it contains 1. This approach is less convenient

because it requires more state to be carried around in the proofs.

5.2.2 Proof technique for a class of lock-free algorithms

Lock-free algorithms are a class of non-blocking algorithms which get rid of deadlock and

livelock, but not starvation. At all times, if some thread participating in the algorithm

is scheduled, then global progress is made in the sense that some outstanding opera-

tion makes a non-Zeno step towards completion, even if some threads have failed or are
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descheduled for arbitrarily long. Clearly, lock-free algorithms cannot use locks to syn-

chronise between threads, because if one thread acquires a lockand then gets descheduled

and another thread waits for that lock, then no thread makes progress.

Instead, a large class of lock-free algorithms splits the operation in two phases: The

thread executing a method, �rst, announces its intention to perform operationk by atomi-

cally placing a record in memory; then, it proceeds to complete the operation. This record

contains all the information necessary in order to completek. Therefore, if another con-

current thread interferes with operationk, it will �rst help the �rst thread complete k

before performing its own operation. Therefore, the linearisation point of a method call

is not necessarily in the code of the method itself, because another thread could have

intervened and �nished o� the operation on behalf of the caller.

Typically, these algorithms create a record in the heap describing the operation to be

performed. This descriptor record becomes visible to any interfering thread so that they

can `help' the outstanding method to �nish. For the proof, it is helpful to extend this

descriptor record with a single-assignment auxiliary �eldAbsResult. (In algorithms that

do not have descriptor records, such as \lazy contains" [73], we can introduce an auxiliary

record containing just the �eld AbsResult.) At each linearisation point, we perform the

abstract e�ect of the operation, and assign its result toAbsResult. Then, we verify that:

f p ^ d:AbsResult s7! undefg ConcreteOp(d) f d:AbsResult s7! Result g;

which means that there was precisely one assignment tod:AbsResult during the execution

of ConcreteOp(d). By construction, we know that there is a one-to-one correspondence

between assignments tod:AbsResult and linearisation points. This entails that the entire

abstract operation was executed precisely once at some moment between the invocation

and the return of the concrete operation. Finally, the abstract and the concrete operations

return the same value; so, they have the same externally-visiblebehaviour.

5.2.3 Proof technique for read-only methods

If a method does not have any side-e�ects, we can employ a simplerapproach. All we need

to prove that there is a possible linearisation point. We can relax the requirement that the

abstract operation was executed exactly once to at least once.Since the operation does

not have any side-e�ects, executing it multiple times does notmatter. This adjustment

often simpli�es the annotations to such methods, as well as the corresponding proofs.

5.2.4 Common annotation patterns

For each method call, we associate a descriptor record with one �eld for each argument

of the method and one additional �eld,AbsResult, which is assigned at the linearisation
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point. Calling a method implicitly allocates a new such record in the heap. Within the

method's body, let the program variable t̀his ' point to that record.

For those algorithms that are passed a descriptor record as a parameter, we do not

create a new record. Instead we extend the existing record withan AbsResult �eld.

We de�ne the following syntactic sugar for linearisation pointannotations. Lin e1 ;:::;en

declares that the descriptorse1; : : : ; en are linearised at this point in the order they were

given. The most common pattern is to writeLin this at the projected linearisation points.

Lin e1 ;:::;en (b) is a conditional linearisation point: if b holds, thene1 up to en are linearised;

otherwise, they're not.

Lin e1 ;:::;en

def= e1:AbsResult := AbsOp(e1); : : : ; en :AbsResult := AbsOp(en );

Lin e1 ;:::;en (b) def= if (b) f Lin e1 ;:::;en g

Finally, a very common idiom is for successful compare-and-swap(CAS) operations to

be linearisation points. Therefore, we annotate the CAS instructions with the sequence

of operations whose linearisation points take place if the CAS is successful.

CASe1 ;:::;en (a; o; n) def= h

bool b := CAS(a; o; n);

Lin e1 ;:::;en (b);

return b ;

i

The angle bracketshCi denote that the commandC is executed atomically.

5.2.5 Prophecy variables

In some advanced algorithms, the location of the linearisationpoint depends on unpre-

dictable future behaviour. For example, the linearisation point of RDCSS (seex5.3.3) is

the read operation, but only if a later CAS succeeds.

Fortunately, we can circumvent this problem by introducingan auxiliary prophecy

variable. Prophecy variables, introduced by Abadi and Lamport [1], are an analogue

to history variables and capture �nite knowledge about the future. Introducing such

prophecy variables is de�nitively not intuitive, but Abadi and Lamport showed that it is

sound under some �niteness conditions. A prophecy variable amounts to an oracle that

guesses some condition about the future.

Here, we will be interested only in whether a certain future CAS succeeds; so, a single

boolean prophecy variable is su�cient (and it trivially satis� es the required �niteness

conditions).
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5.3 Examples

This section demonstrates the techniques described inx5.2 by verifying a number of

�ne-grained concurrent algorithms. Its aim is to show recurring auxiliary code patterns

rather than complete proofs. Hence, for brevity, most details will be omitted and only

proof sketches presented. Where more details are given, the examples act as further case

studies for RGSep. We shall consider the following algorithms:

1. concurrent stack implementations:
� simple non-blocking stack

� elimination-based non-blocking stack of Hendler et al. [39]

2. list-based set implementations:
� lock-coupling list-based set

� optimistic list-based set

� lazy concurrent list-based set of Heller et al. [38]

3. restricted double-compare single-swap (RDCSS) of Harris et al. [34]

4. multiple compare-and-swap (MCAS) of Harris et al. [34]

The hope is that the actual proof can be generated automatically from a program

annotated with the necessary auxiliary code and its rely and guarantee conditions. Such

an automatic tool has not yet been implemented: Chapter 6 describes a less powerful

tool that can reason about the shape of memory-allocated data structures, but not about

their contents.

5.3.1 Stack algorithms

First, we shall consider two non-blocking stack algorithms. Bothalgorithms represent the

stack as a singly-linked list starting from a known addressS. The stack interface consists

of two operations,push and pop, with the following abstract implementations:

Abs push(e) def= hAbs:= e�Abs; AbsResult := e; i

Abs pop() def= hcase (Abs)

j � =) AbsResult := EMPTY;

j v�A =) f Abs:= A; AbsResult := v; g i

This pseudocode uses sequences and pattern matching notation.We write � for the empty

sequence, andA�B for the concatenation of sequencesA and B. Abs push just adds a new

element at the beginning of the sequence.Abs pop �rst checks if the sequence is empty.

If it is empty, it returns the reserved valueEMPTY; otherwise, it removes the �rst element
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class Cell f Cell next ; value t data ; g
Cell S; Abs;

void push (value v ) f
Cell t ; x;
x := new Cell();
x:data := v;
do f

ht := S; i
x:next := t ;

g while (: CASthis (& S; t ; x));
g

value pop () f
Cell t ; x;
do f

ht := S; Lin this (t = null );i
if (t = null )

return EMPTY;
x := t :next ;

g while (: CASthis (& S; t ; x));
return t :data ;

g

Figure 5.1: Annotated simple stack implementation

from the sequence and returns it. Normally pushing a value does not return anything,

but here we assume thatAbs push(e) always returnse. This simpli�es the speci�cations

of the second stack algorithm.

Simple stack

Figure 5.1 contains a simple lock-free implementation of a concurrent stack. The stack is

stored as a linked list, and is updated by CAS instructions. The code illustrates a common

design pattern in lock-free algorithms. Each method (i ) reads the state's current value;

(ii ) computes an updated value depending on the value read; and (iii ) atomically updates

the state swapping the new value for its old value. If the state has changed between (i )

and (iii ) and has not been restored to its initial value, the CAS will fail, and we repeat

the algorithm until the CAS succeeds.

The highlighted code is the auxiliary code that is needed forthe linearisability proof. In

this case, the auxiliary code just consists of program annotations de�ning the linearisation

points. The linearisation point ofpush is its CAS when it succeeds; the linearisation point

of pop is readingS, if it was empty, or the CAS, if that succeeds.

RGSep proof The proof is straightforward. To avoid `variables as resource' [64], we

treat the shared global variablesS and Abs as memory cells at addresses &S and &Abs

respectively. Any use ofS in the code is just a shorthand for [&S]. We have two actions:

pushing an element onto the stack, and removing an element fromthe stack.

&S7! y � &Abs7! A  &S7! x � x7! Cell(v; y) � &Abs7! v�A (Push)

&S7! x � x7! Cell(v; y) � &Abs7! v�A  &S7! y � x7! Cell(v; y) � &Abs7! A (Pop)
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void push (value v ) f
Cell t ; x;�

AbsResult s7! undef � StackInv
	

x := new Cell();
x:data := v;�

AbsResult s7! undef
� x7! Cell(v; ) � StackInv

�

do f�
AbsResult s7! undef
� x7! Cell(v; ) � StackInv

�

ht := S; i
x:next := t ;�
AbsResult s7! undef
� x7! Cell(v; t ) � StackInv

�

g while (: CASthis (& S; t ; x));�
AbsResult s7! v � StackInv

	

g

value pop () f
Cell t ; x; temp;�

AbsResult s7! undef � StackInv
	

do f
ht := S; Lin this (t = null );i�
(t = null ^ AbsResult s7! EMPTY� StackInv)
_ (9x: AbsResult s7! undef � K (x))

�

if (t = null ) return EMPTY;�
9x: AbsResult s7! undef � K (x)

	

x := t :next ;�
AbsResult s7! undef � K (x)

	

g while (: CASthis (& S; t ; x));8
<

:

9v: AbsResult s7! v

�
9x A: &Abs7! A � &S7! x
� lseg(x; null ; A) � x7! Cell(v; ) � true

9
=

;

temp:= t :data ;�
9v: AbsResult s7! temp� StackInv

	

return temp ;
g

Figure 5.2: Proof outline for the simple stack

These actions also push or pop a value from the abstract stack. Thus,if the concrete

and the abstract stack are equivalent at the beginning, they are still equivalent after one

atomic operation. Formally, we can de�ne the following list segment predicate:

lseg(x; y; A) def= ( x = y ^ A = � ^ emp)

_ (x 6= y ^ 9 v z B: x7! Cell(v; z) � lseg(z; y; B) ^ A = v�B)

This represents a singly-linked list segment fromx until y, whose values form the se-

quenceA. We write A�B for sequence concatenation and� for the empty sequence. It

is straightforward to prove that the following assertion is stable under the two possible

actions, (Push) and (Pop).

StackInv def= 9x A: &S7! x � &Abs7! A � lseg(x; null ; A) � true

Informally, this assertion says thatS points to the head of a list (x) which represents

the sequence (A) stored in Abs. The \ � true" conjunct indicates that there may be

other garbage nodes in the shared heap. This happens because ofthe Pop action: in its

postcondition, the cellx remains in the shared heap although it is not reachable fromS.

Figure 5.2 shows the proof outline. Besides the invariant, theother crucial assertion
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about the shared state is:

K (y) def=

 
9x v A B: &Abs7! A�v�B � &S7! x � lseg(x; t ; A)

� t 7! Cell(v; y) � lseg(y;null ; B) � true

!

_ (9x A: &Abs7! A � &S7! x � lseg(x; null ; A) � t 7! Cell( ; ) � true)

This asserts that either the cell pointed to byt is in the stack and the next cell isy, or

it is not in the stack but still in the shared state. This assertion isalso stable under the

two permitted actions Pushand Pop. Further, note that K (y) ) StackInv.

The assertionK (y) is crucial for the safety of the algorithm. In order to prove that

pop is linearisable, we must ensure that when the CAS succeeds,t :next = x. If between

the assignmentx := t :next and the following CAS, the nodet could have been popped

from the stack, the stack changed, and the nodet pushed back onto the top of the stack

(so that t :next 6= x), then the CAS would succeed, but would do something di�erent

than popping t from the stack. This is known as an ABA problem: the stack was in state

A, then changed to state B, but the CAS does not distinguish betweenstates A and B;

so it thinks it is still in state A. Note how the actions rule out this from happening:Push

adds anew node to the shared state andPop leaves popped nodes in the shared state.

That is essentially why the assertionK (y) is stable under the rely.

Now, consider the atomic blocks in more detail. Following the exact details below

is not central to understanding the algorithm or the linearisability proofs. It is just an

example of a RGSep proof that could be automatically generated by a moderate extension

of SmallfootRG (see Chapter 6 for more about mechanisation).

1. CASof push We have to prove the triple:

(
AbsResult s7! undef

� x7! Cell(v; t ) � StackInv

)

b := CASthis (& S; t ; x);

8
><

>:

(b ^ AbsResult s7! v � StackInv)

_

 
: b ^ AbsResult s7! undef

� x7! Cell(v; t ) � StackInv

!
9
>=

>;

Applying Cad (seex4.2), Ex , and Conseq reduces the problem to showing:

n
AbsResult s7! undef � x7! Cell(v; t ) � 9A: &S7! t � &Abs7! A � lseg(t ; null ; A) � true

o

n
AbsResult s7! undef � x7! Cell(v; t ) � &S7! t � &Abs7! A � lseg(t ; null ; A) � true

o

h[&S] := x; Abs push(v)in
AbsResult s7! v � &S7! x � &Abs7! v�A � x7! Cell(v; t ) � lseg(t ; null ; A) � true

o

n
AbsResult s7! v � 9xA: &S7! x � &Abs7! A � lseg(x; null ; A) � true

o

Finally, apply the rule Atom with
� P = & S7! t � &Abs7! A,
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� Q = & S7! x � &Abs7! v�A � x7! Cell(v; t ), and

� F = lseg(t ; null ; A) � true.

Note that the action P  Q is an instance ofPush.

2. CASof pop We have to prove the triple:

n
AbsResult s7! undef � K (x)

o

b := CASthis (& S; t ; x);8
><

>:

 

b ^ 9 v: AbsResult s7! v �
9x A: &Abs7! A � &S7! x � lseg(x; null ; A)

� phead7! Cell(v; ) � true

!

_ (: b ^ AbsResult s7! undef � K (x))

9
>=

>;

The proof is analogous to the previous case and proceeds by applying Cad , Ex , Conseq ,

and �nally Atom with

� P = & S7! t � t 7! Cell(v; x) � &Abs7! v�A

� Q = & S7! x � t 7! Cell(v; x) � &Abs7! A

� F = lseg(pnext ; null ; A) � true

3. Reading S in pop We must prove the following speci�cation:

(
AbsResult s7! undef

� StackInv

) (
(t = null ^ AbsResult s7! EMPTY� StackInv)

_ (9x: AbsResult s7! undef � K (x))

)

Apply Atomic with the following parameters:

� f yg = ;

� P0 = Q0 =

 
(b^ &S7! null � &Abs7! � )

_ (: b^ &S7! x � x7! Cell(v; y) � &Abs7! A)

!

� P00= AbsResult s7! undef

� Q00=

 
(b^ t = null ^ AbsResult s7! EMPTY)

_ (: b^ t 6= null ^ AbsResult s7! undef)

!

� F = ( b^ lseg(x; null ; A) � true) _ (: b^ lseg(y;null ; A) � true)

(P0  Q0) � G ` C sat (P0 � P00; ; ; ; ; Q0 � Q00) 9y:P stable underR

FV (P00) \ f yg = ; j= SL P ) P0 � F j= SL Q0 � F ) Q Q stable underR

` hCi sat (9y: P � P00; R; G; 9y: Q � Q00)

Note that we inserted the logical variableb to record whether the stack is empty or

not. The premises ofAtomic follow because:

� P and Q are stable (proof omitted).

� j = SL P ) (P0 � F ).
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� j = SL (Q0 � F ) ) Q.

� (P0  Q0) � G. This holds becauseP0 = Q0 and P0 is exact.

� The body of the atomic satis�esf P0 � P00g f Q0 � Q00g, namely:

(
(b^ &S7! null � &Abs7! � � AbsResult s7! undef)

_ (: b^ &S7! x � x7! Cell(v; y) � &Abs7! A � AbsResult s7! undef)

)

t := [& S];

if (t = null ) [AbsResult] := Abs pop();(
(b^ t = null ^ &S7! null � &Abs7! � � AbsResult s7! EMPTY)

_ (: b^ t 6= null ^ &S7! x � x7! Cell(v; y) � &Abs7! A � AbsResult s7! undef)

)

Therefore, we have proved thatpush and pop have the following speci�cations:

n
AbsResult s7! undef � StackInv

o
push(v)

n
AbsResult s7! v � StackInv

o

n
AbsResult s7! undef � StackInv

o
x := pop()

n
AbsResult s7! x � StackInv

o

with R = G = f (Push); (Pop)g. Furthermore, as AbsResult was written only at valid

linearisation points, these speci�cations entail thatpush and pop are linearisable, hence

observationally equivalent (in any context that satis�esR and does not accessS directly)

to the atomic operationsAbs push and Abs pop.

HSY elimination-based stack

Hendler, Shavit, and Yerushalmi [39] presented an improved version of a stack that per-

forms better on higher workloads. Figure 5.3 shows an adapted version of their algorithm.

The highlighted bits in the algorithm is the auxiliary code needed to specify and verify

the linearisability of the algorithm.

The implementation is moderately complex because it combines two algorithms: a

central singly-linked list, S, and an elimination layer. The elimination layer consists of

two global arrays: loc [1::threadNum] which has one element per thread storing a pointer

to a ThreadInfo record, andcoll [1::size] which stores the identi�ers of the threads trying

to collide.

A push or a pop operation �rst tries to perform the operation on the central stack

object, by doing a CAS to change the shared top-of-the-stack pointer. If it is successful

then it is the linearisation point of the operation. Otherwise, if the CAS fails (because of

contention), the thread backs o� to the elimination scheme. If this scheme fails, it tries

again the top-of-the stack pointer and so on until one of the twoschemes succeeds.

The elimination scheme works as follows: Threadp �rst announces its arrival at the

collision layer by writing its descriptor in the loc array. Then it selects a random slot in

the coll array, and it atomically reads that slot and overwrites it with its own identi�er.
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class Cell f Cell next ; value t data ; g

class ThreadInfo f
int id ; // thread identi�er
int op ; // PUSH or POP
value t data ;
single int AbsResult ; g

Cell S; Abs; // shared stack object(s)
ThreadInfo loc [1::threadNum];
int coll [1::size ];

void StackOp(ThreadInfo p )
int him ; pos;
while (true )f

if (TryStackOp(p)) return ;
hloc [mypid] := p; i
pos := GetPosition (p);
him := coll [pos];
while (: CAS(& coll [pos]; him; mypid))

him := coll [pos];
if (1 � him � threadNum)f

ThreadInfo q := loc [him];
if (q6= null ^ q:id = him ^ q:op6= p:op)

if (CAS(& loc [mypid]; p; null ))
if (TryCollision (p; q))

return ;
else

continue ;
else

FinishCollision (p); return ;
g
delay ();
if (: CAS(& loc [mypid]; p; null ))

FinishCollision (p); return ;
g

/* Private methods */

bool TryStackOp(ThreadInfo p )
Cell phead ; pnext ;
if (p:op = PUSH)

phead:= S;
pnext := new Cell(p:data; phead);
return CASp(& S; phead; pnext );

else if (p:op = POP)
hphead:= S; Lin p(phead= null );i
if (phead= null )

p:data := EMPTY;
return true ;

pnext := phead:next ;
if (CASp(& S; phead; pnext ))

p:data := phead:data;
return true ;

else
return false ;

bool TryCollision (ThreadInfo p ; q)
bool b ;
if (p:op = PUSH)

b := CASp;q(& loc [q:id ]; q; p);
else if (p:op = POP)

b := CASq;p(& loc [q:id ]; q; null );
if (b) p:data := q:data;

return b ;

void FinishCollision (ThreadInfo p )
if (p:op = POP)

p:data := loc [mypid]:data ;
hloc [mypid] := null ; i

Figure 5.3: Annotated HSY stack implementation

Now there are two possible scenarios depending on the value read from the coll array.

If p reads the identi�er of another threadq executing an opposite operation, it attempts

to eliminate itself with it: First, it does a CAS to remove its entry from the loc array, so

that no other threads might eliminate themselves withp, and then tries to removeq from

the loc array with another CAS. If this last CAS succeeds, then the two operations have

eliminated each other. This is the linearisation point of both the PUSH and the POP,
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with the PUSHoperation happening immediately before thePOP. If the �rst CAS failed,

this is becausep was eliminated by some other thread in the meantime; so we just �nish

the collision and return.

Otherwise, the thread delays for a small amount of time in the hope that some other

thread will collide with it. Then it does a CAS to remove its entry from the loc array. If

this CAS fails, p was eliminated by some other thread; so we just �nish the collisionand

return. Otherwise we just go round the loop and try again the operation on the shared

top-of-the-stack pointer.

Linearisation points Following the methodology inx5.2.2, we introduced the auxiliary

\single-assignment" �eld AbsResult, and annotated the linearisation points with assign-

ments to it. This algorithm has two types of linearisation points. Those in TryStackOp

are quite standard and linearise the operationp that is performed. On the other hand,

the compare-and-swaps inTryCollision , if successful, linearise bothp and q, doing the

PUSHbefore thePOP.

Proof structure In this proof, we will exploit the modularity of RGSep to reason sepa-

rately about the shared stack object stored inS(code within TryStackOp) and separately

about the elimination scheme (the rest of the algorithm). The bene�ts of this approach

are that:

� The proof is simpler because the collision layer proof does not need not worry about

the shared stack, and vice versa.

� The proof explains the elimination scheme orthogonally to the stack implementation.

� The proof is more robust. If we change the implementation of the collision layer or

of the shared stack, we need to repeat only part of the proof.

Standard rely/guarantee cannot achieve this modularity inthe proof because interference

is global. Concurrent separation logic enables this modularity, but it cannot tractably

carry out either of the subproofs.

In fact, we can decompose the collision layer proof further. The part involving the

collision array is just an optimisation for selecting an identi�er that is likely to be waiting

for collision. Assigning any random value tohim is su�cient for the safety of the algorithm.

The proofs use three disjoint regions of shared state (cf.x4.3.2). Stack contains the

shared stack object and the abstract stack object;Loc contains theloc [::] array together

with any ThreadInfo records that have become shared through that array. Finally,Coll

just contains the coll [::] array.
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Predicates The proof uses the simplest case of fractional permissions (seex2.4) with

just two fractions: 1/2 (for a read permission) and 1 (for a full permission). Adding two

half permissions gives a full permission:x
1=2
7! v1 � x

1=2
7! v2 () x 7! v1 ^ v1 = v2.

To describeThreadInfo records, we shall use the following predicates:

T(p; id; op; v; r) def= p7! ThreadInfo f .id
1=2
= id; .op

1=2
= op; .data = v; .AbsResult s= rg

^ id 2 T ^ op2 f PUSH; POPg

TU(p; id; op; v) def= T(p; id; op; v;undef)

TR(p; id; op) def= p7! ThreadInfo f .id
1=2
= id; .op

1=2
= op; g

^ id 2 T ^ op2 f PUSH; POPg

The predicate T(p; id; op; v; r) describes a record at addressp containing a valid thread

identi�er (i.e. belonging to the set of all thread identi�ers, T), a descriptor (PUSH or

POP) denoting which operation is performed, a data value and theresult of the abstract

operation at the linearisation point. The read permissions enable the id and op �elds to

be shared. The predicateTU(p; id; op; v) just describes an operation before its linearisation

point. Finally, TR(p; id; op) contains the remaining permissions of aThreadInfo record.

These permissions are used to make the proof modular. At some points in the al-

gorithm both the central stack and the elimination layer needto know that a certain

ThreadInfo recordp exists, but only one of the two components actually need to update

its data and AbsResult �elds. With this encoding, we give aT(p; ; ; ; ) permission to

the �rst component and a TR(p; ; ) to the second.

Central stack object The shared stack object proof is almost identical to the proof of

the simple stack in the beginning of this section. Again, we treatSand Absas allocated in

the heap addresses &Sand &Absrespectively. The actions and the invariant are identical:

&S7! y � &Abs7! A  &S7! x � x7! Cell(v; y) � &Abs7! v�A (Push)

&S7! x � x7! Cell(v; y) � &Abs7! v�A  &S7! y � x7! Cell(v; y) � &Abs7! A (Pop)

As before, the invariant says thatAbs stores the sequence thatS represents. TheStack

subscript indicates the region described by the boxed assertion.

StackInv def= 9x A: &S7! x � Abs7! A � lseg(x; null ; A) � true
Stack

For the function TryStackOp, we prove the following speci�cation:

(
TU(p; mypid; ; )

� StackInv

)

x := TryStackOp(p);

(
(x ^ 9 v: T(p; mypid; ; v; v) � StackInv)

_ (: x ^ TU(p; mypid; ; ) � StackInv)

)
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bool TryStackOp(ThreadInfo p )�
TU(p; mypid; ; ) � StackInv

	

Cell phead ; pnext ;
if (p:op = PUSH)�

TU(p; mypid; PUSH; ) � StackInv
	

phead:= S;�
TU(p; mypid; PUSH; ) � StackInv

	

pnext := new Cell(p:data; phead);�
9d: TU(p; mypid; PUSH; d) � pnext7! Cell(d;phead) � StackInv

	

Result := CASp(& S; phead; pnext );�
(Result ^ 9 d: T(p; mypid; PUSH; d; d) � StackInv)
_ (: Result ^ TU(p; mypid; PUSH; ) � StackInv)

�

return Result ;
else if (p:op = POP)�

TU(p; mypid; POP; ) � StackInv
	

h phead:= S; Lin p(phead= null ); i�
(phead= null ^ T(p; mypid; POP; ; EMPTY) � StackInv)
_ (TU(p; mypid; POP; ) � K ( ))

�

if (phead= null )�
T(p; mypid; POP; ; EMPTY) � StackInv

	

p:data := EMPTY;�
T(p; mypid; POP; EMPTY; EMPTY) � StackInv

	

return true ;�
TU(p; mypid; POP; ) � K ( )

	

pnext := phead:next ;�
TU(p; mypid; POP; ) � K (pnext )

	

temp:= CASp(& S; phead; pnext );� �
temp^ 9 v: T(p; mypid; POP; ; v) � StackInv � phead7! Cell(v; ) � true

Stack

�

_ (: temp^ TU(p; mypid; POP; ) � StackInv)

�

if (temp)�
9v: T(p; mypid; POP; ; v) � StackInv � phead7! Cell(v; ) � true

Stack

	

p:data := phead:data;�
9v: T(p; mypid; POP; v; v) � StackInv

	

return true ;
else�

TU(p; mypid; POP; ) � StackInv
	

return false ;

Figure 5.4: Proof outline ofTryStackOp.
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This speci�cation says that if the stack invariant holds initially and p has not been lin-

earised, then at the end,p will be linearised if and only if the function returns true.

Moreover, if the function returns true then p:data will contain the return value of the

abstract method call at the linearisation point.

Figure 5.4 shows the proof outline. The formulaK (y) is the same as in the simple

stack proof and asserts that either the cell pointed to byphead is in the stack and the

next cell is y, or it is not in the stack (but still in the shared state). This avoids the ABA

problems discussed previously.

K (y) def=

 
9x v A B: &Abs7! A�v�B � &S7! x � lseg(x; phead; A)

� phead7! Cell(v; y) � lseg(y;null ; B) � true

!

_ (9x A: &Abs7! A � &S7! x � lseg(x; null ; A) � phead7! Cell( ; ) � true)
Stack

Note that this proof does not mention the data structures of theelimination layer.

Elimination layer Similarly, the collision layer proof does not rely on the shared stack

implementation, except for the existence of abstract stack object, Abs. It assumes that

the stack implementation cannot deallocateAbs. This is a trivial proof obligation because

only the auxiliary code can accessAbs. It amounts to the assertionAbs7! � true Stack

which is implied by StackInv and is trivially stable. This property can also be described

by an `existence' permission. In particular, while the elimination layer knows something

about the Stack region, it does not modify it: its GStack = ; .

The proof uses fractional permissions in special manner. We always have half of a

descriptor owned by the local state of a thread and half of it belonging to the shared

state. When callingStackOp, we �rst put a TR( ; ; ) permission of the argument in the

shared regionElim. This action initialises our logical splitting of the permissions.

emp  TR(p; ; ) (Publish)

Thereafter, all actions except forPublishrespect this splitting and assign do not transfer

full ownership to either party, although they may swap which halves belong to the shared

state and which to the local state of a single thread.

A thread t 2 T e�ectively owns the location loc [t] and all descriptors whose thread

identi�er is t. It is allowed to place or remove a descriptor fromloc [t] provided that the

descriptor has been `published.' This protocol ensures that ifa thread ever reads a pointer

to a descriptor record from theloc array, the record is not deallocated afterwards.

loc [t] 7! � TR(p; x; op)  loc [t] 7! p � T(p; x; op; ; ) (Place)

loc [t] 7! p � T(p; x; op; ; )  loc [t] 7! null � TR(p; x; op) (Remove)
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Moreover, as a result of an elimination, threadt can update a di�erent entry, i , of the

loc array by overwriting an unlinearised operation by its own descriptor and linearising

both operations. If pushing a value, it must also make its descriptor available to the other

thread so that the POP can return the value that was pushed.

loc [i ] 7! p � TU(p; i; PUSH; v) ^ i 6= t

 loc [i ] 7! null � T(p; i; PUSH; v; v) (Elim1)

loc [i ] 7! p � TU(p; i; POP; x) � TR(q; t;PUSH) ^ i 6= t

 loc [i ] 7! q � T(p; i; POP; x; v) � T(q; t;PUSH; v; v) (Elim2)

Finally, there is an action that allows a thread to remove itsdescriptor from the shared

state when it notices that it has been eliminated by another thread:

T(p; t; op; ; )  TR(p; t; op) provided ~
t2 T

(9v: loc [t] 7! v ^ v 6= p) (NoticeElim)

The side-condition of this action requires thatp does not occur in the location array. This

ensures that the representation invariant (de�ned below) is stable under this action.

To de�ne the representation invariant, we introduce the predicatemy loc(t) to describe

the properties of a single entryt of the loc array. The representation invariant is just the

separating conjunction of all entries in theloc array:

my loc(t) def() loc [t] 7! null

_ 9q: loc [t] 7! q � TU(q; t; ; )

_ 9q t0: loc [t] 7! q � TR(q; t0; POP) ^ t 6= t0

_ 9q v t0: loc [t] 7! q � T(q; t0; PUSH; v; v) ^ t 6= t0

J def() ~ t2 T my loc(t) � true

Note that my loc(t0) � true (for all t0) and J are stable under the actions de�ned so far.

Figures 5.5, 5.6 and 5.7 contain the proof outlines ofTryCollision , FinishCollision

and StackOp respectively. The proof outline ofStackOp treats the code involving the

coll [::] array as simply assigning a random value to the variablehim.

The most interesting case in the proof are the twoCAS(& loc [mypid]; p; null ) oper-

ations in StackOp. If they succeed, they simply do the actionRemove. If, however,

the CASes fail then we know that we are in the second or third disjunct ofA. Hence,

loc [mypid] 6= p and alsoloc [t] 6= p for all t 2 T n f mypidg sinceTR(p; : : :) and T(p; : : :)

are � -conjoined with my loc(t0). Therefore, we can do aNoticeElimaction and remove our

descriptor from the shared state thereby gettingC as a postcondition.

Finally, the collision array (coll ) hardly a�ects the safety of the algorithm. It is trivial

to reason about it: the resource invariant~ i 2 [1::size ] coll [i ] 7! su�ces.

98



De�ne x 67!y = ( 9z: x 7! z ^ z 6= y). Let D = &Abs7! � true Stack .
Frame out: ~ t02 T my loc(t0) � true

Elim
. Fix t.

bool TryCollision (ThreadInfo p ; q)
bool b ;�
(loc [t] 7! q � TU(q; t; op2; ) � true)
_ (loc [t] 67!q � TR(q; t; op2) � true)

Elim

� D � TU(p; mypid; op1; ) ^ op16= op2

�

if (p:op = PUSH) f�
(loc [t] 7! q � TU(q; t; POP; ) � true)
_ (loc [t] 67!q � TR(q; t; POP) � true)

Elim

� D � TU(p; mypid; PUSH; )
�

b := CASp;q(& loc [q:id ]; q; p);�
9v: (b^ T(p; mypid; PUSH; v; v) � true

Elim
� TR(p; t; PUSH))

_ (: b^ TU(p; mypid; PUSH; )))

�

g else if (p:op = POP) f�
(loc [t] 7! q � TU(q; t; PUSH; ) � true)
_ (loc [t] 67!q � TR(q; t; PUSH) � true)

Elim

� D � TU(p; mypid; POP; )
�

b := CASq;p(& loc [q:id ]; q; null );�
(b^ 9 v: T(q; t; PUSH; v; v) � true

Elim
� T(p; mypid; POP; ; v))

_ (: b^ TU(p; mypid; POP; ))

�

if (b) p:data := q:data;�
9v: (b^ T(p; mypid; POP; v; v)) _ (: b^ TU(p; mypid; POP; ))

	

g8
<

:

(b^ 9 v: T(p; mypid; ; v; v) � true
Elim

� TR(p; t; PUSH))
_ (b^ 9 v: T(p; mypid; ; v; v))
_ (: b^ TU(p; mypid; ; ))

9
=

;

return b ;

Figure 5.5: Proof outline ofTryCollision .

void FinishCollision (ThreadInfo p )8
<

:

9v: T(p; mypid; PUSH; v; v) � ~ t2 T my loc(t) � true
Elim

_ 9v q: T(p; mypid; POP; ; v) �
loc [mypid] 7! q � T(q; ; PUSH; v; v)
� ~ t2 T nf mypidg my loc(t) � true

Elim

9
=

;

if (p:op = POP)
p:data := loc [mypid]:data ;
hloc [mypid] := null ; in

9v: T(p; mypid; ; v; v) � ~ t2 T my loc(t) � true
Elim

o

Figure 5.6: Proof outline ofFinishCollision .
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Let A =

0

@
loc [mypid] 7! p � TU(p; mypid; op1; )
_ (9q v: loc [mypid] 7! q � T(q; ; PUSH; v; v) � T(p; mypid; POP; ; v)
_ (9q v: loc [mypid] 7! q � TR(q; ; POP) � T(p; mypid; PUSH; v; v)

1

A

� ~ t2 (T nf mypidg) my loc(t) � true
Elim

Let B =
loc [him] 7! q � TU(q; him; op2; ) � true
_ 9q0: q 6= q ^ loc [him] 7! q0 � TR(q; him; op2) � true

Elim

Let C =

0

@9v q: T(p; mypid; POP; ; v) �
loc [mypid] 7! q � T(q; ; PUSH; v; v)
� ~ t2 (T nf mypidg) my loc(t) � true

Elim
_ 9v: T(p; mypid; PUSH; v; v) � ~ t2 T my loc(t) � true

Elim

1

A

void StackOp(ThreadInfo p ) f int him ; pos;
while (true )f�

TU(p; mypid; op1; ) � TR(p; mypid; op1) � J
Elim

� StackInv
	

if (TryStackOp(p))�
9v: T(p; mypid; op1; v; v) � TR(p; mypid; op1) � J

Elim
� StackInv

	

return ;�
TU(p; mypid; op1; ) � TR(p; mypid; op1) � J

Elim
� StackInv

	
�

TU(p; mypid; op1; ) � TR(p; mypid; op1) � J
Elim

� D
	

hloc [mypid] := p; i�
TR(p; mypid; op1) � A � D

	

him := nondet();
if (1 � him � threadNum) f

ThreadInfo q := loc [him];
if (q6= null ^ q:id = him ^ q:op6= p:op)�

op1 6= op2 ^ TR(p; mypid; op1) � A � B � D
	

if (CAS(& loc [mypid]; p; null ))�
op1 6= op2 ^ TU(p; mypid; op1; ) � B � D
� TR(p; mypid; op1) � J

Elim

�

if (TryCollision (p; q))8
<

:

9v: TR(p; mypid; op1)
� T(p; mypid; op1; v; v)� true ^ J

Elim
_ T(p; mypid; op1; v; v) � J Elim

9
=

;

return ;
else

�
TU(p; mypid; ; )� TR(p; mypid; op1)� J

Elim

	

continue ;
else

�
StackInv � C

	

FinishCollision (p); return ;
g�

TR(p; mypid; op1) � A
	

delay ();
if (: CAS(& loc [mypid]; p; null ))

�
C

	

FinishCollision (p); return ;�
TU(p; mypid; ; ) � J Elim

	

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Let D = Abs7! � true Stack

GStack = ;

Frame out StackInv
which is stable under
RStack [ GStack .

g g

Figure 5.7: Proof outline ofStackOp.
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locate (e) f
local p ; c;
p := Head;
lock (p);
c := p:next ;
while (c:value < e) f

lock (c);
unlock (p);
p := c;
c := p:next ;
lock (c);

g
return (p; c);

g

add(e) f
local x ; y; z;
(x; z) := locate (e);
if (z:value 6= e) f

y := new Node();
y:lock := 0;
y:value := e;
y:next := z;
x:next := y;

g
Lin this ;
unlock (x);

g

remove(e) f
local x ; y; z;
(x; y) := locate (e);
if (y:value = e) f

lock (y);
z := y:next ;
x:next := z; Lin this ;
unlock (x);
dispose (y);

g else f Lin this ;
unlock (x);

g
g

Figure 5.8: Lock-coupling list algorithm

5.3.2 List-based set algorithms

This collection of algorithms represent an integer set as a sorted linked list with two

sentinel nodes at the two ends of the list, containing the values �1 and +1 respectively.

The set is equipped with a lookup operationcontains and two destructive operations

add and removethat change the set's cardinality by one. Their speci�cationsare given

by the following abstract code.

Abs contains (e) def= h

AbsResult := ( e 2 Abs);

i

Abs add(e) def= h

AbsResult := ( e =2 Abs);

Abs:= Abs[ f eg;

i

Abs remove(e) def= h

AbsResult := ( e 2 Abs);

Abs:= Absn f eg;

i

Pessimistic list (Lock-coupling list)

The �rst algorithm (see Figure 5.8) is pessimistic in its concurrency management: it

always locks a node before accessing it.locate traverses the list usinglock coupling: the

lock on some node is not released until the next one is locked, somewhat like a person

climbing a rope \hand-over-hand." The methodsadd and removecall locate to traverse

the list and lock the appropriate nodes; then they update the data structure locally.

In x3.5, we proved that this algorithm is safe, does not leak memory, and maintains the

structure of a sorted list. Here, we will prove that it is linearisable. To achieve this, we em-

bed the abstract implementationsAbs Addand Abs Removeat the candidate linearisation

points and derive the post-conditionResult = AbsResult for add and remove.

The proof is a direct adaptation of the proof inx3.5. First, introduce an auxiliary

variable Abs to hold the abstract set that the linked list represents. When a node is
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locate (e) f
local p ; c; s;
while (true ) f

p := Head;
hc := p:next ; i
while (c:value < e) f

p := c;
hc := c:next ; i

g
lock (p);
s := Head;
while (s:value < e)

hs := s:next ; i
if (s = c ^ p:next = c)

return (p; c);
else

unlock (p);
g g

add(e) f
local x ; y; z;
(x; z) := locate (e);
if (z:value 6= e) f

y := new Node();
y:lock := 0;
y:value := e;
y:next := z;
hx:next := y;
Lin this ;i

g else f
Lin this ;

g
unlock (x);

g

remove(e) f
local x ; y; z;
(x; y) := locate (e);
if (y:value = e) f

lock (y);
hz := y:next ; i
hx:next := z;
Lin this ;i
unlock (y);

g else f
Lin this ;

g
unlock (x);

g

Figure 5.9: Optimistic list-based set implementation

inserted or removed from the list, this is a linearisation pointand the (instrumented)

algorithm also updatesAbs. Thread tid is allowed to perform the following actions:

U (x; v; n)  L tid (x; v; n) (Lock)

L tid (x; v; n)  U (x; v; n) (Unlock)

L tid (x; u; n) � &Abs7! A  L tid (x; u; m) � U (m; v; n) � &Abs7! A [ f vg

provided (u < v < w ) ^ Ns(n; w; y) (Add)

L tid (x; u; n) � L tid (n; v; m) � &Abs7! A  L tid (x; u; m) � &Abs7! A n f vg

provided v < + 1 (Remove)

The assertions in the proof outlines are exactly the same as inx3.5, provided we rede�ne

the predicates(A) to also require that Abs contains the mapping of the sequenceA to a

set:

s(A) def= 9B: A = �1� B �+ 1 ^ sorted(A) ^ &Abs7! elems(B)

Optimistic list

Now consider the algorithm in Figure 5.9, which implementslocate di�erently. The new

implementation is optimistic: it traverses the list without taking any locks, then locks

two candidate nodes, and re-traverses the list to check whetherthe nodes are still present

in the list and adjacent. If either test fails, the nodes are unlocked and the algorithm is
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restarted.

While one thread has locked part of the list and is updating it,another thread may

optimistically traverse it. The success of the optimistic traversal clearly depends on some

properties of locked nodes (e.g., that they point to valid next nodes). In particular,

updating the next �eld of a shared node and reading thenext �eld of an unlocked node

must be both atomic. Otherwise, because of a possible race condition, the read could

return a corrupted value.

The optimistic algorithm has the same linearisation points as the lock-coupling algo-

rithm. The set of permitted actions is similar: we can lock, unlock, add, and remove a

node. The actionsLock, Unlock, and Add are the same as for the lock coupling list. The

action Removeis, however, di�erent. Whereas in lock-coupling the noden was removed

from the shared state, here it remains in the shared state, becauseit may be accessed by

concurrent optimistic list traversals.

U (x; v; n)  L tid (x; v; n) (Lock)

L tid (x; v; n)  U (x; v; n) (Unlock)

L tid (x; u; n) � &Abs7! A  L tid (x; u; m) � U (m; v; n) � &Abs7! A [ f vg

provided (u < v < w ) ^ Ns(n; w; y) (Add)

L tid (x; u; n) � L tid (n; v; m) � &Abs7! A  L tid (x; u; m) � L tid (n; v; m) � &Abs7! A n f vg

provided v < + 1 (Remove)

Lazy list (lazy concurrent list-based set implementation)

The �nal list algorithm we will consider is due to Heller et al. [38], and combines optimistic

and lazy concurrency techniques. Under common work loads, their algorithm is more

e�cient than the previous versions, because checking for membership in the set avoids

locking. The concrete representation is the same as the one usedby the earlier algorithms.

In addition, however, nodes have amarked�eld, which is set when the node is deleted.

An element is added as before. An element is removed in two stages:�rst, the node

is logically removed by setting themarked �eld; then it is physically removed by redi-

recting reference �elds. Concurrent membership tests traversethe list without checking

the marked ag. This ag is checked only when a candidate node is found. Similarly,

locate ignores the ag while traversing the list. When the method locates and locks the

two candidate nodes, itvalidates them by checking they are adjacent and unmarked. If

validation fails, the locate operation is restarted.

Becausecontains is completely wait-free, this algorithm crucially dependson global

invariants, such as the list being sorted, whichmust hold at all times, even when part of

the list is locked and local updates are performed. RGSep is good at describing these.
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locate (e) :
while (true ) f

pred := Head;
hcurr := pred:next ; i
while (curr :val < e) f

pred := curr ;
hcurr := curr :next ; i

g
lock (pred);
lock (curr );
if (:h pred:markedi

^ :h curr :markedi
^ hpred:next i = curr )

return (pred; curr );
else f

unlock (pred);
unlock (curr ); g

g

contains (e) :
hLin this (e =2 Abs); i
hOutOps:= OutOps[ f this g; i
curr := Head;
while (curr :val < e)

hcurr := curr :next ; i
hb := curr :marked; Lin this (: b);i
hOutOps:= OutOpsn f this g; i
if (b)

return false ;
else

return curr :val = e;

add(e) :
(n1; n3) := locate (e);
if (n3:val 6= e) f

n2 := new Node(e);
n2:next := n3;
hn1:next := n2; Lin this ;i
Result := true ;

g else f
Result := false ; Lin this ;

g
unlock (n1);
unlock (n3);
return Result ;

remove(e) :
(n1; n2) := locate (e);
if (n2:val = e) f

hn2:marked:= true ; Lin this ;
foreach (p 2 OutOps)

Lin p(p:arg1 = e); i
hn3 := n2:next ; i
hn1:next := n3; i
Result := true

g else f
Result := false ; Lin this ;

g
unlock (n1);
unlock (n2);
return Result ;

Figure 5.10: Lazy concurrent list-based set implementation

Linearisation points The linearisation points ofadd and removeare annotated in the

source code. Just note that a successfulremoveis linearised at the point where the node

is logically deleted, not when it is physically removed from the list. Physically removing

the node from the list does not change the abstract set the list represents; indeed, it can

be seen as an optimisation for improving future list accesses.

The linearisation point of contains is much subtler. If contains returns true, the last

assignment tocurr in the loop and the read of themarkedbit are both valid linearisation

points. If, however,contains returns false, the proof is more subtle. Here is an informal

argument which will motivate the formal proof.

Initially, when contains (e) starts executing, eithere is in the list or it is not. If e
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is not in the list, then clearly the linearisation point can be identi�ed to be that initial

point. If e was in the list, then there exists a (unique) unmarked nodem that is reachable

from Headand contains the valuee.

If the node m never gets marked whilecontains (e) executes,contains (e) will �nd

that node and return true. So, by contradiction, the nodem must have been marked (and

perhaps even physically removed) during the execution ofcontains (e).

This, however, does not mean thate will not be in the list at the next scheduling of

contains (e); indeed, another node containinge could have been added in the meantime.

But since marking a node and inserting a new node cannot be done atomically, there is a

point (just after the node was marked) whene was not in the list. Take that point to be

the linearisation point.

To capture this point in a formal proof, we introduce an auxiliary record for each

outstanding contains operation, and a global auxiliary variableOutOpscontaining the

set of all outstanding contains records. Each record contains three �elds: the thread

identi�er of the method invoking contains , the argumente of contains , and an initially

unset �eld AbsResult for holding the result of the linearisable function. Ascontains is

a read-only operation, it is su�cient that a linearisation point exists; it does not need to

be unique. The freedom to linearisecontains multiple times simpli�es the auxiliary code

signi�cantly.

Node predicates The nodes of this list algorithm consist of four �eldslock , value ,

next , and marked. We use the following shorthand notation to describe nodes:

Ns(x; v; n) def= x 7! f :lock = s; :value = v; :next = n; :marked= g

M s(x; v; n) def= x 7! f :lock = s; :value = v; :next = n; :marked= trueg

U (x; v; n) def= N0(x; v; n)

L tid (x; v; n) def= Ntid (x; v; n) ^ tid 6= 0

Actions The actions are slightly more involved than for the previous algorithms, be-

cause they also specify the operations a�ecting the auxiliary state. The actions for locking

a node, releasing a lock, and adding a node are standard:

U (x; v; n)  L tid (x; v; n) (Lock)

L tid (x; v; n)  U (x; v; n) (Unlock)

L tid (x; u; n) � Abs7! A  L tid (x; u; m) � U (m; v; n) � Abs7! A [ f vg

provided (u < v < w ) ^ Ns(n; w; y) (Add)
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Physically removing a node from the list requires the node to bemarked; moreover, it

does not a�ect the auxiliary state.

L tid (x; u; n) � M tid (n; v; m)  L tid (x; u; m) � M tid (n; v; m)

provided v < + 1 (Remove)

Marking a node is a more complex action, because it does severaltasks at once: (i ) it

marks nodex; (ii ) it removesv from the abstract set; and (iii ) it linearises all outstanding

contains (v) calls.

 
L tid (x; v; n) � Abs7! A

� ~ c2 C R s(c; v; )

!

 

 
M tid (x; v; n) � Abs7! A n f vg

� ~ c2 C R s(c; v;false)

!

provided

0

B
@

&OutOps7! B [ C

� ~ b2 B 9w: R (b; w; ) ^ w 6= v

^ �1 < v < + 1

1

C
A (Mark)

where R s(c; v; w) represents a record forcontains (v) that currently has its AbsResult

set to w (w 2 f undef; false; trueg):

R s(c; v; w) def= c 7! Recordf :threadid = s; :val = v; :AbsResult = wg

Finally, there is a symmetric action enabling a thread to add and remove an outstanding

record of a contains(e) it initiated.

(c =2 B) ^ (& OutOps7! B)  (& OutOps7! B [ f cg) � R tid (c; v; w))

(& OutOps7! B [ f cg) � R tid (c; v; w))  (c =2 B) ^ (& OutOps7! B)

5.3.3 Restricted double-compare single-swap (RDCSS)

Restricted double-compare single-swap(RDCSS, see Figure 5.11) is an intermediate abstract

operation de�ned by Harris et al. [34] in their implementation of multiple compare-and-

swap (MCAS). RDCSStakes as an argument two addresses with their expected values

and one new value. If both addresses contain their expected values, then the new value

n2 is stored at the second addressa2. The speci�cation of RDCSS(RDCSSspec) requires

that this entire operation is atomic. It is restricted in the sense that the address space is

logically split in two disjoint domains, A and B. The �rst address (a1) must belong to

A, whereas the second address (a2) to B . Hence, any address passed as ana1 cannot be

passed as ana2 in a later call to RDCSSand vice versa.

On A-type addresses, all the standard memory operations are permitted; whereas on B-

type addressed, only two operations are permitted:RDCSSread and RDCSS. We can relax
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class Descriptor f
address t a 1; a2;
word t o 1; o2; n2;
single word t AbsResult;
single word t r 2; g

RDCSSspec(Descriptor d ) = h
local r := [ d:a2];
if ([d:a1] = d:o1 ^ [a:a2] = d:o2)

[d:a2] := d:n2;
result r i

Complete(Descriptor d ) f
local r ;

C1 : hr := [ d:a1]; i
if (r = d:o1)

C2 : CAS1(d:a2; d; d:n2);
else

C3 : CAS1(d:a2; d; d:o2);
g

RDCSSread(address t a 2) f
local r ;

R1 : hr := [ a2]; i
while (IsDesc(r )) f

Complete(r );
R2 : hr := [ a2]; i

g
return r ;

g

RDCSS(Descriptor d ) f
local r ;

A1 : r := CAS1(d:a2; d:o2; d);
while (IsDesc(r )) f

Complete(r );
A2 : r := CAS1(d:a2; d:o2; d);

g
if (r = d:o2) Complete(d);
return r ;

g

Figure 5.11: RDCSS implementation

this restriction by allowing standard atomic memory writes toB-type addresses provided

they do not interfere with the RDCSS implementation. These additional operations,

actually used in MCAS, are formalised in the actionWriteB.

Each RDCSSoperation has a unique descriptor: this is a record in memory containing

the parameters of the method call (a1, o1, a2, o2, n2). For the sake of the proof, we add

two auxiliary �elds ( AbsResult and r 2) to these descriptors.

The implementation of RDCSSuses a variant of CAS, which instead of a boolean

indicating whether it succeeded, it returns the (old) value stored in the memory address:

value_t CAS1(value_t *addr, value_t exp, value_t new) {

value_t v;

atomic { v = *addr;

if (v == exp) *addr = new; }

return v;

}

Each RDCSSis performed in two steps: �rst, it places its descriptor at the memory

addressa2. This essentially `locks' that location. Any thread that reads amemory location

and �nds it contains a descriptor must either wait until the RDCSS operation completes

or complete it itself by calling the helper functionComplete. RDCSSread reads location

a, after committing any conicting outstanding RDCSSoperations.
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The function call IsDesc(r ) checks whetherr is a pointer to a descriptor or a normal

value. The implementation distinguishes between the two by reserving one bit in the

representation of values. Hence, the implementationIsDesc(r ) can just check whether

the reserved bit is set.

Linearisation points The linearisation point of RDCSSis among the lines A1, A2, and

C1. If the CASes at A1 or A2 encounter a di�erent value for [d:a2] that is not a descriptor,

then these are valid linearisation points becauseRDCSSfails at that point, returning r .

Therefore, we annotate A1 and A2 as follows:

hr := CAS1(d:a2; d:o2; d); Lin d(r 6= d:o2 ^ : IsDesc(r )); i

If, however, the descriptord gets placed in [d:a2], then the linearisation point is within

Complete. In fact it is line C1 provided that the CAS on line C2 or C3 succeeds. Since

with `helping', any thread can callComplete, the linearisation point is the line C1 of the

Complete(d) that succeeds in its CAS at C2 or C3. This linearisation point depends on

future behaviour (the success of a CAS) that is not known at the linearisation point. To

capture this formally, the proof will introduce a prophecy variable. Note that C2 and/or

C3 are not valid linearisation points because the value of [d:a1] could have changed since

last read at C1.

The linearisation point of RDCSSread is the last R1 or R2 line executed. The proof

annotates these lines as follows:

hr := [ a2]; Lin this (: IsDesc(r )); i

Descriptors The predicateDd(a1; a2; o1; o2; n2; r2) describes a valid RDCSS descriptor

stored at addressd.

Dd(a1; a2; o1; o2; n2; a; r2) def=

d 7! f :a1= a1; :o1= o1; :a2= a2; :o2= o2; :n2= n2; :AbsResult= a; :r 2= r2g

^ (a1 2 A) ^ (a2 2 B) ^ IsDesc(d) ^ : IsDesc(o2) ^ : IsDesc(n2)

It says that d must be an address of type `descriptor', thata1 must be a type A address

and that a2 must be a type B address. Moreover, the valueso2 and n2 must be normal

values (and not descriptors).

When the AbsResult �eld is unde�ned, r 2 is also unde�ned. The following shorthand

notation describes such records:

Ud(a1; a2; o1; o2; n2) def= Dd(a1; a2; o1; o2; n2; undef; undef)
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Abstraction map Nodes of type A store normal values; their abstract value is simply

the value stored at the node. Nodes of type B, however, can store either a normal value or

a pointer to a descriptor. In the latter case, their abstract value depends on whether the

described operation has `committed' or not. If it has `committed', that is if it has past

its linearisation point, then the abstract value is the one stored in its r 2 �eld. Otherwise,

if it is before the linearisation point, the abstract value is still the recorded old value,o2.

Let K (x) be the following assertion mapping the concrete value of location x to its

abstract value.

K (x) def= ( x 2 B) ^ 9 d v w:

0

B
@

Abs[x] 7! v � x 7! v ^ : IsDesc(v)

_ Abs[x] 7! v � x 7! d � Ud( ; x; ; v; )

_ Abs[x] 7! w � x 7! d � Dd( ; x; ; v; ; v; w)

1

C
A

The overall invariant, RDCSS Inv , asserts that (i ) all the locations in A exist, (ii )

every location in B has a matching concrete and abstract values, and (iii ) there may be

some more garbage state (completed RDCSS descriptors).

RDCSS Inv def= 9D: ~
x2 A

x 7! � ~
x2 B

K (x) � ~
x2 D

9o2: Dd( ; ; ; o2; ; o2; )

Actions The �rst two actions describe what code outside the RDCSS moduleis allowed

to do. It can write any value to A-type cells, and it can update B-type cells atomically

provided that both the old and the new value are not RDCSS descriptors.

(x 2 A) ^ x 7! v  x 7! w (WriteA)

(x 2 B) ^ : IsDesc(v) ^ x 7! v  x 7! w ^ : IsDesc(w) (WriteB)

These actions together with the ones below form the rely condition. They need not be

included in the guarantee because the algorithm itself does not perform either of the

actions above. Nevertheless, the proof goes through whether weinclude them in the

guarantee or not.

The next three actions describe what the algorithm itself doesand correspond very

closely to the code. The �rst action allows a descriptor to be placed at a memory cell

provided it has a matching old value (cf. lines A1 and A2). The second action allows

a descriptor to be removed if its linearisation point has been passed (cf. lines C2 and

C3). The �nal action involves only changes to the abstract state and happens at the
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�
RDCSS Inv � Ud(a1; a2; o1; o2; n2)

	

local r ;
hr := CAS1(d:a2; d:o2; d); Lin d(r 6= d:o2 ^ : IsDesc(r )); i8
<

:

(r = o2 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; ; ) � true )
_ (RDCSS Inv ^ Dr ( ; a2; ; ; ; ; ) � true � Ud(a1; a2; o1; o2; n2))
_ (: IsDesc(r ) ^ r 6= o2 ^ RDCSS Inv � Dd(a1; a2; o1; o2; n2; r ; undef))

9
=

;

while (IsDesc(r )) f�
RDCSS Inv ^ Dr ( ; a2; ; ; ; ; ) � true � Ud(a1; a2; o1; o2; n2)

	

Complete(r );�
RDCSS Inv � Ud(a1; a2; o1; o2; n2)

	

hr := CAS1(d:a2; d:o2; d); Lin d(r 6= d:o2 ^ : IsDesc(r )); i
g�
(r = o2 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; ; ) � true )
_ (: IsDesc(r ) ^ r 6= o2 ^ RDCSS Inv � Dd(a1; a2; o1; o2; n2; r ; undef))

�

if (r = d:o2) f�
(r = o2 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; ; ) � true )

	

Complete(d);�
(r = o2 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; o2; ) � true )

	

g�
RDCSS Inv � Dd(a1; a2; o1; o2; n2; r ; )
_ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; r ; ) � true

�

return r ;

Figure 5.12: RDCSS(d)proof outline

linearisation point of RDCSS(i.e. on someexecutions of line C1).

x 7! v  x 7! d � Ud(a1; x; o1; v; n1) (PlaceD)

x 7! d � Dd(a1; x; o1; o2; n2; a; y)  x 7! y � Dd(a1; x; o1; o2; n2; a; y) (RemoveD)

Abs[a2] 7! o2 � Ud(a1; o1; a2; o2; n2)  Abs[a2] 7! x � Dd(a1; o1; a2; o2; n2; o2; x) (Lin)

Note that all these actions preserve the abstraction map,RDCSS Inv . We exploit the

symmetry of algorithm by having identical rely and guaranteeconditions.

Proof outline The proof outlines of RDCSSand RDCSSread are relatively straightfor-

ward. In the proof of the atomic sections in lines A1, A2, R1, and R2 we do a case split

depending on the value stored ina2.

In contrast, verifying Complete is much more involved (see proof outline in Fig-

ure 5.13). The complexity arises because we have to specify the linearisation point,

which depends on future behaviour. To do so, we introduce aboolean prophecy variable

futSucc . We assume there is an oracle that tells us whether the value of [d:a2] at the time

of the appropriate CAS below will bed or not, and hence whether the CAS will succeed or
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�
RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; ; ) � true

	

h
v := [ d:a1];
guess futSucc ;
assert (futSucc ) ([d:a2] = d));
if (futSucc )

d:AbsResult := RDCSSspec(d);
d:r 2 := ABS[d:a2]; i8

<

:

(: futSucc ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; ; ) � true )
_ (futSucc ^ v 6= o1 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; o2; o2) � true )
_ (futSucc ^ v = o1 ^ RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; o2; n2) � true )

9
=

;

if (v = d:o1)
h assert (futSucc , ([d:a2] = d));

CAS1(d:a2; d; d:n2); i
else

h assert (futSucc , ([d:a2] = d));
CAS1(d:a2; d; d:o2); i�

RDCSS Inv ^ Dd(a1; a2; o1; o2; n2; o2; ) � true
	

Figure 5.13: Complete(d) proof outline

not. Abadi and Lamport [1] proved that assuming the existence of such an oracle is sound

under some �niteness conditions, which are trivially satis�ed bythis boolean prophecy

variable. The `guessed' value of the prophecy variable is such that the two introduced

assert commands immediately before the two compare-and-swap instructions succeed.

As RGSep does not have a modality to express properties about the future, the proof

requires an additionalassert command just after theguess statement. We can justify

that this assert succeeds informally with a short proof by contradiction. Assume the

assert at C1 does not hold. Then,futSucc is true and [d:a2] 6= d at C1. Hence, [d:a2] 6= d

at C2/C3 because [d:a2] 6= d is stable under the rely condition. Therefore, as the asserts

at C2/C3 hold, futSucc is false which contradicts our assumption.

Now that we have established that all theassert statements are satis�ed, we can

convert them to assumestatements, and the proof is straightforward.

5.3.4 Multiple compare-and-swap (MCAS)

Figure 5.14 contains the implementation of multiple compare-and-swap (MCAS) due to

Harris et al. [34] which has been annotated with the linearisation points. Each MCAS

operation uses a fresh descriptor record (cd) with its arguments, and a status ag which is

initially UNDECIDED. The algorithm progresses by placing the descriptor in all the memory

locationsai that contain the expected valueoi . If one of these contains a di�erent value,

then MCASfails, and the status is changed toFAILED. If we encounter the descriptor of
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class CASNDescriptor f
enumf UNDECIDED; SUCCEEDED; FAILEDg status ;
int k ;
address t a 1; : : : ; ak;
word t o 1; : : : ; ok;
word t n 1; : : : ; nk;
single bool AbsResult ;

g

MCASspec(CASNDescriptor cd) def= h
if ([cd:a1] = cd:o1 ^ : : : ^ [cd:acd:k] = cd:ocd:k])

[ca:a1] := cd:n1; : : : ;
[ca:acd:k] := cd:ncd:k;
AbsResult := true ;

else
AbsResult := false ;

i

void MCAS(CASNDescriptor cd) f
L: if (cd:status = UNDECIDED)

s := SUCCEEDED;
for (i := 1; i � cd:k; i++ )

A1: hv := RDCSS(& cd:status ; UNDECIDED; cd:ai ; cd:oi ; cd);
Lin cd(: IsCASNDesc(v) ^ v 6= cd:oi ^ cd:AbsResult = undef); i
if (IsCASNDesc(v))

if (v 6= cd)
MCASimpl (v); goto L;

else if (v 6= cd:oi )
s := FAILED; break;

A2: hLin cd(cd:status = UNDECIDED^ s = SUCCEEDED);
CAS(& cd:status ; UNDECIDED; s); i

if (cd:status = SUCCEEDED)
F1: for (i := 1; i � cd:k; i++ ) CAS(cd:ai ; cd; cd:ni );

else
F2: for (i := 1; i � cd:k; i++ ) CAS(cd:ai ; cd; cd:oi );
g

Figure 5.14: MCAS implementation
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another concurrent invocation to MCAS, we `help' that operation complete and restart

our own operation. (If we encounter our own descriptor, it does not matter, it means

some other thread has `helped' us.) On exiting thefor loop successfully, we have placed

our descriptor on all relevant memory locations: then, we simply change our state to

SUCCEEDED(or FAILED, if one of the RDCSSoperations failed). Finally, we update the

memory contents to their new or old values depending on whether MCASsucceeded or not.

Similar to RDCSS, MCASmust distinguish its descriptors from normal values. To do so,

the implementation reserves a second bit in the domain of values and calls the function

IsCASNDesc(v) to test that bit.

Linearisation points Treating the RDCSS call as atomic, the linearisation points are

straightforward. If MCASsucceeds, the CAS at lineA2 is the linearisation point. If it fails,

the linearisation point is the RDCSS at lineA1 that noticed that [cd:ai ] 6= oi . Because

multiple threads could have noticed that theMCASfailed, we take the linearisation point

be the time that this was �rst noticed.

Predicates Let CDcd(s; k; addr; old; new; r) denote a valid MCAS descriptor with status

s, width k, an array addr of addresses, an arrayold of expected values, an arraynew

of new values, and abstract resultr . Valid descriptors have a few constraints on their

arguments: the three arrays must have lengthk, there must not be any duplicates in the

a array, and there is a correspondence between thestatus and AbsResult �elds.

CDcd(s; k; addr; old; new; r) def()

cd 7! f :status = s; :k= k; :AbsResult= rg

� ~ 1� i � k(cd 7! f :ai = addr(i ); :oi = old(i ); :ni = new(i )g ^ addr(i ) 2 A)

^ dom(addr) = dom(old) = dom(new) = f 1; : : : ; kg

^ (8i; j 2 f 1; : : : ; kg: addr(i ) = addr(j ) ) i = j )

^ (r = true , s = SUCCEEDED)

^ (r = undef ) s = UNDECIDED)

Abstraction map The abstraction map is straightforward. If an address containsa

descriptor, then abstractly it holds the old value if the MCAS has not (yet) succeeded,

or the new value if the MCAS has succeeded. Informally, we can write the following

abstraction map:

ABS[a] =

8
>>><

>>>:

v if MEM[a] = v ^ : IsCASNDesc(v)

cd:oi if MEM[a] = cd^ cd:ai = a ^ cd:status 6= SUCCEEDED

cd:ni if MEM[a] = cd^ cd:ai = a ^ cd:status = SUCCEEDED
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This abstraction map is a function because eachai �eld of the descriptor cd contains a

di�erent address.

Unfortunately, expressing this abstraction map in separation logic is tricky. The prob-

lem is that a given descriptorcd may be needed to de�ne the abstraction map of several

addresses. Therefore we cannot simply take the separate conjunction of the abstraction

maps of all the addresses. Preferably, we would like a connective that treats the descrip-

tors additively and the addresses multiplicatively. We can simulate this e�ect using the

following pattern involving the magic wand:

De�nition 49. hPi Q def() P �� (P � Q)

Informally, one can understand this formula as asserting thatQ holds in the current

heap provided its context satis�esP. This reading is justi�ed by the following properties:

P � hPi Q () P � Q

P � ~
i 2I

hPi Qi () P � ~
i 2I

Qi

Hence, we can represent the abstraction map as the following separation logic assertion:

J def() ~
x2 A

0

B
B
B
@

9v: x 7! v � Abs[x] 7! v ^ : IsCASNDesc(v)

_ 9v a o i: x 7! v � hCDv(FAILED; ; a; o; ; ) ^ ai = xi Abs[x] 7! oi

_ 9v a o i: x 7! v � hCDv(UNDECIDED; ; a; o; ; ) ^ ai = xi Abs[x] 7! oi

_ 9v a n i: x 7! v � hCDv(SUCCEEDED; ; a; ; n; ) ^ ai = xi Abs[x] 7! ni

1

C
C
C
A

� ~
cd2 D

CDcd( ; ; ; ; ; )

J says that for each addressx in A, if x contains a concrete value then its abstract value

is the same as that concrete value. If, however, it contains a descriptor and the descriptor

is in the context then x's abstract value isni or oi depending on whether the MCAS has

succeeded. Finally, we separately have a collection of descriptors D.

Actions First, we have three actions that do not change the abstract state.

a(i ) 7! o(i )  a(i ) 7! cd provided CDcd(UNDECIDED; k; a; o; n; r) (5.1)

a(i ) 7! cd  a(i ) 7! n(i ) provided CDcd(SUCCEEDED; k; a; o; n; r) (5.2)

a(i ) 7! cd  a(i ) 7! o(i ) provided CDcd(FAILED; k; a; o; n; r) (5.3)

These are performed by lines A1, F1, and F2 respectively.
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There are another three actions that change the �elds of an MCAS descriptor.

CDcd(UNDECIDED; k; a; o; n;undef)  CDcd(UNDECIDED; k; a; o; n;false ) (5.4)

CDcd(UNDECIDED; k; a; o; n;false )  CDcd(FAILED; k; a; o; n;false ) (5.5)
 

CDcd(UNDECIDED; k; a; o; n;undef)

� ~ i (ai 7! cd� Abs[ai ] 7! oi )

!

 

 
CDcd(SUCCEEDED; k; a; o; n;true )

� ~ i (ai 7! cd� Abs[ai ] 7! ni )

!

(5.6)

The �rst is performed by line A1 when the RDCSS fails; the other two are performed by

line A2.

Note how all these actions satisfy the rely condition of the implementation of RDCSS.

The �rst three actions are just restricted versions ofWriteB and the next three actions

are restricted versions ofWriteA.

Proof outline Besides the abstraction map, the following important assertionis pre-

served by the rely condition:

K (m) def= CDcd(s; a; o; n; r) � (s = UNDECIDED) ~
1� j � m

aj 7! cd� Abs[aj ] 7! oj � true)

This assertion is part of the loop invariant for the �rst for loop of MCAS. It states that

if the status of the operation isUNDECIDEDthen the �rst m addresses in the descriptor

contain a pointer to the descriptor. Informally, this is stable under the rely condition

because in order to remove a descriptor from a memory location (action 5.2 or 5.3), the

status must beSUCCEEDEDor FAILED.

5.4 Related work

This section briey discusses the two alternative ways of proving linearisability: reduction

and simulation.

Reduction-based techniques

A simple way to reason about atomicity is Lipton's theory of left and right movers [55].

An action a is a right mover if in any execution trace wherea occurs immediately before

an action b of a di�erent thread, we can swap the execution order ofa and b without

changing the resulting state. Similarly, an action is aleft mover if it left-commutes with

operations of other threads. Lock acquisitions are right mover actions, lock releases are

left movers; reading a variable is aboth mover provided there is no race condition on

that variable, otherwise it is an non-commutative atomic action. A composite action is
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Let B j
def= ( x = UNDECIDED) a(j ) 7! cd � Abs[a(j )] 7! o(j ) � true).

void MCAS(CASNDescriptor cd) f
L:

�
J ^ CDcd( ; k; a; o; n; ) � true

	

if (cd:status = UNDECIDED) f
s := SUCCEEDED;�
J ^ CDcd( ; k; a; o; n; ) � true ^ s = SUCCEEDED

	

for (i := 1; i � cd:k; i++ ) fn
J ^ 9 x: CDcd(x; k; a; o; n; ) � ~ 1� j< i B j ^ s = SUCCEEDED

o

hv := RDCSS(& cd:status ; UNDECIDED; cd:ai ; cd:oi ; cd);
Lin cd(: IsCASNDesc(v) ^ v 6= cd:oi ^ cd:AbsResult = undef); i8

>><

>>:

9x r: CDcd(x; k; a; o; n; r) � ~ 1� j< i B j � ((v = oi _ v = cd) ) B i )
^ (IsCASNDesc(v) ) CDv( ; ; ; ; ; ) � true)
^ ((: IsCASNDesc(v) ^ v 6= oi ) ) r = false ) ^ J
^ s = SUCCEEDED

9
>>=

>>;

if (IsCASNDesc(v))
if (v 6= cd)�

J ^ CDcd( ; k; a; o; n; ) � CDv( ; ; ; ; ; ) � true
	

MCASimpl (v); goto L;
else if (v 6= cd:oi )�

J ^ CDcd(s; k; a; o; n;false ) � true
	

s := FAILED; break;n
J ^ 9 x: CDcd(x; k; a; o; n; ) � ~ 1� j � i B j ^ s = SUCCEEDED

o

g�
s = SUCCEEDED̂ J ^ 9 x: CDcd(x; k; a; o; n; ) � ~ 1� j � k B j

_ s = FAILED^ J ^ 9 x: CDcd(x; k; a; o; n; false )

�

hLin cd(cd:status = UNDECIDED^ s = SUCCEEDED);
CAS(& cd:status ; UNDECIDED; s); i

g�
J ^ CDcd(SUCCEEDED; k; a; o; n;true ) � true
_ J ^ CDcd(FAILED; k; a; o; n;false ) � true

�

if (cd:status = SUCCEEDED)
for (i := 1; i � cd:k; i++ ) CAS(cd:ai ; cd; cd:ni );

else
for (i := 1; i � cd:k; i++ ) CAS(cd:ai ; cd; cd:oi );�

J ^ CDcd(SUCCEEDED; k; a; o; n;true ) � true
_ J ^ CDcd(FAILED; k; a; o; n;false ) � true

�

g

Figure 5.15: Proof outline for MCAS
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deemed atomic if it consists of a sequence of right mover actions,followed by a single

atomic action, followed by a sequence of left mover actions.

Cohen and Lamport [16] showed how reduction-based proofs can be done in TLA.

More recently, Flanagan and Qadeer [29, 28] have de�ned a type and e�ect system, which

assigns atomicity e�ects to expressions based on whether the expressions are left or right

movers. So far, their work has been focused on a lock-based paradigm and relies on a

separate race condition detector. Wang and Stoller [76] extended Flanagan and Qadeer's

work to verify the atomicity simple algorithms using CAS and LL/CS. Their approach is

very good at verifying quickly the atomicity of simple algorithms that consist of a single

CAS loop, but it is limited to algorithms that conform to this r igid pattern.

Simulation-based techniques

Another approach to verifying concurrent algorithms is basedon I/O automata or UNITY.

The veri�er must manually translate the algorithm to an automaton, and then prove that

this automaton is observationally equivalent to a simpler automaton that represents the

speci�cation. To do so, one constructs a forward or a backward simulation between the

two automata. Using these techniques, Doherty et al. [25] and Colvin et al. [18] verify

a few simple stack and queue algorithms. In more complex cases, suchas the `lazy list'

algorithm [38] presented inx5.3.2, Colvin et al. [19] de�ne an intermediate automaton

and combine forward and backward simulation.

This approach may be useful for small complex algorithms, but itis unlikely to scale

for larger programs because it lacks modularity. Another weakness of this method is the

manual translation of the algorithm into an I/O automaton. While this translation could

perhaps be automated, one still needs to prove that it is sound.
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Chapter 6

Mechanisation

A program logic, such as RGSep, can be mechanised at two levels:

� By embedding it in a generic theorem prover (such as Isabelle, HOL, or Coq),

proving soundness of the logic and generating a useful reasoningsystem.

� By developing a specialised tool that checks that a program adheres to a speci�cation

belonging to subset of the assertion language.

Here, the latter approach is followed. The result is a tool, SmallfootRG, that takes a

lightly annotated program as its input and proves that it is correct with respect to its

user-supplied speci�cation or reports an error. SmallfootRG is based on Smallfoot [6],

a simple theorem prover that handles a subset of separation logic, and contains three

additional decision procedures: septraction elimination, symbolic execution of atomic

commands, and stabilization. Had the former approach been followed, these procedures

would have been encoded as tactics in the theorem prover.

First, we will go over the three new decision procedures inside SmallfootRG: how to

eliminate the septraction operator (seex6.2.2), how to execute an atomic command on a

symbolic state (seex6.4.2), and how to get a stable assertion implied by a given unstable

assertion (seex6.4.3). Then, inx6.5 we will see how these procedures are applied as Small-

footRG veri�es the lock-coupling list algorithm. Finally, x6.6 presents some experimental

results.

6.1 SmallfootRG assertions

SmallfootRG assertions are a subset of RGSep assertions chosen to facilitate entailment

checking and symbolic execution. Recall that the state is splitinto thread-local state and

shared state. Hence, the assertions specify a state consisting of two heaps with disjoint
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domains: the local heap (visible to a single thread), and the shared heap (visible to all

threads). Normal formulae,P, specify the local heap, whereas boxed formulae,P , specify

the shared heap.1 Boxes cannot be nested.

SmallfootRG accepts assertions written in the following grammar:

A; B ::= e1= e2 j e16= e2 j e 7! � j lseg(e1; e2) j junk

P; Q; R; S ::= A j P _ Q j P � Q j P � ~ Q j P� e1 ;:::;en

p; q ::= p _ q j P � Q

wheree is a pure expression, an expression that does not depend on the heap. All variables

starting with an underscore (e.g., x) are implicitly existentially quanti�ed at the top level.

In the assertion
W

i (Pi � Qi ), if X is the set of existential free variables of
W

i (Pi � Qi ) then

their scope is9X:
W

i (Pi � Qi ).

The �rst line contains the usual atomic assertions of separation logic: pure predicates

(that do not depend on the heap), heap cells (e 7! � ), list segments (lseg(e1; e2)), and junk.

The formula e 7! � asserts that the heap consists of a single memory cell with address

e and contents � , where � is a mapping from �eld names to values (pure expressions);

lseg(e1; e2) says that the heap consists of an acyclic linked list segment starting at e1

and ending at e2; junk asserts the heap may contain inaccessible state. For notational

convenience, let pure assertions hold only on the empty heap. Technically, e1= e2 is an

abbreviation for the formula (e1= SLe2) ^ emp where =SL is the usual de�nition of equality

in separation logic. This way, we can writeP � (e1 = e2) instead of P ^ (e1 = SL e2).

The second line contains operators for building larger assertions:

� Disjunction, P _ Q, asserts that the heap satis�esP or Q.

� Separating conjunction,P � Q, asserts that the heap can be divided into two (dis-

joint) parts, one satisfying P and the other satisfyingQ.

� Septraction (� ~ ) is de�ned as h j= ( P � ~ Q) () 9 h1 h2: h2 = h � h1 and h1 j= P

and h2 j= Q. This operation is similar to subtraction or di�erentiation, as it achieves

the e�ect of subtracting heaph1 satisfying P from the bigger heaph2 satisfying Q.

� The \dangling" operator, P� D , asserts thatP holds and that all locations in the

set D are not allocated. This can be de�ned in separation logic asP� (E1 ;:::;E n ) ()

P ^ : ((E1 7! ) � junk) ^ � � � ^ : ((En 7! ) � junk), but for analysis it is better treated

as a built-in assertion form, because it is much easier to analyse than ^ and : .

1More generally, SmallfootRG supports multiple disjoint regions of sharedstate, and boxes are anno-
tated with the name %of the region: P % (cf. x4.3.2). For clarity of exposition, this Chapter presents the
analysis with respect to a single resource, and omits the subscript.
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(e 7! � )� D () e=2D � (e 7! � )

wheree=2f e1; : : : ; eng def= e6= e1 � � � � � e6= en

lsegitl;� (e1; e2; D 0)� D () lsegitl;� (e1; e2; D [ D 0)

(P � Q)� D () P� D � Q� D

(P _ Q)� D () P� D _ Q� D

Figure 6.1: Elimination rules forP� D .

Finally, the third line introduces P � Q, the novel assertion of RGSep, which does not

exist in separation logic. It asserts that the shared state satis�esQ and that the local

state is separate and satis�esP.

6.2 Entailment checking

Given a procedure that checks separation logic entailments, it is relatively easy to extend

it to handle the dangling operator (� D ) and septraction (� ~ ): seex6.2.1 andx6.2.2 for

details.

Reasoning about assertions with boxes is straightforward. First, assertions containing

boxes are always written in a canonical form,
W

i (Pi � Qi ). Given an implication between

formulas in this form, we can essentially check implications between normal separation

logic formulae, by the following lemma:

(P ` P0) ^ (Q ` Q0) =) (P � Q ` P0 � Q0)

Furthermore, we can deduce fromP � Q all the heap-independent facts, such asx 6= y,

which are consequences ofP � Q, since shared and local states are always disjoint.

6.2.1 Reasoning about the dangling operator ( � D )

Extending any separation logic theorem prover to handle the dangling operator (� D ) is

simple. As it distributes over disjunction (_) and separating conjunction (� ), it can be

eliminated from all terms (see Figure 6.1) except for those containing recursive predicates,

such aslseg. Recursive predicates require the dangling setD to be passed as a parameter,

lsegitl;� (E1; E2; D) def= ( E1 = E2) _ 9x: E17! (tl = x; � )� D � lsegitl;� (x; E2; D):

The list segment is subscripted with the name of the linking �eld,tl , and any common

�elds, � , that all the nodes in the list segment have. Being able to remember any common

�elds is important for the lazy list algorithm (seex6.6) because its invariant involves
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a list segment where all the nodes are marked as deleted (have amarked�eld set to 1).

We omit the subscript when the linking �eld is tl and � is empty.

Note that the above de�nition of lsegiis imprecise (cf. Def. 8 in x2.4): lsegi(E; E; ; )

describes both the empty heap and a cyclic list. So far program analyses based on separa-

tion logic [7, 24] have used precise list segments. Using imprecise list segments simpli�es

the theorem prover, as the side-conditions for appending listsegments are not needed.

In contrast, frame inference (i.e. givenP and Q �nd a frame R such that P ` Q � R)

becomes harder as there may be multiple solutions. A precise listsegment,lseg(E1; E2),

is just a special case of our imprecise list segment,lsegi(E1; E2; f E2g).

Another bene�t of the dangling operator is that some proof rules can be strengthened,

removing some causes of incompleteness. For instance, the following application of the

proof rule for deallocating a memory cellf P � x7! g dispose(x) f Pg can be strengthened

by rewriting the precondition and obtain f P� x � x7! g dispose(x) f P� xg.

6.2.2 Reasoning about septraction ( � ~ )

This section describes a few general properties of septractionand then shows how Small-

footRG reasons about this connective. Septraction can be de�ned in terms of the sepa-

rating implication ( �� ) as follows:

P � ~ Q () : (P �� : Q)

This de�nition, however, is useless for automated reasoning because negation is hard to

reason about in separation logic. In contrast, septraction has much nicer properties. The

following properties are direct consequences of the de�nitions.

emp� ~ P () P

(P � Q) � ~ R () P � ~ (Q � ~ R)

P � ~ Q () P � ~ (Q ^ (P � true))

In addition, septraction distributes over_, and semi-distributes over̂ .

P � ~ (Q _ R) () (P � ~ Q) _ (P � ~ R)

(Q _ R) � ~ P () (Q � ~ P) _ (R � ~ P)

P � ~ (Q ^ R) =) (P � ~ Q) ^ (P � ~ R)

(Q ^ R) � ~ P =) (Q � ~ P) ^ (R � ~ P)

If P is exact, the last two properties become equivalences.

If P is precise, then (P � ~ (P � Q)) =) Q.
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(e1 7! � 1) � ~ (e2 7! � 2) () e1 = e2 � � 1 ' � 2

e17! (tl = e2; � ) � ~ lsegitl;� 0(e; e0; D) ()
e16=0 � e1 =2D � � ' � 0 � lsegitl;� 0(e; e1; D)� e1 � lsegitl;� 0(e2; e0; D)� e1

(e 7! � ) � ~ (P � Q) () P� e � (e 7! � � ~ Q)
_ (e 7! � � ~ P) � Q� e

(e 7! � ) � ~ (P _ Q) () (e 7! � � ~ P) _ (e 7! � � ~ Q)
(P � Q) � ~ R () P � ~ (Q � ~ R)
(P _ Q) � ~ R () (P � ~ R) _ (Q � ~ R)

Figure 6.2: Elimination rules for septraction (� ~ ).

When we are septracting a single memory cell,e 7! � , then further properties hold:

(e 7! � ) � ~ P () ((e 7! � ) � ~ P)� e

(e 7! � ) � ~ P� D () ((e 7! � ) � ~ P)� D � e =2 D

(e 7! � ) � ~ (e0 7! � 0) () e = e0 � � ' � 0

(e 7! � ) � ~ (P � Q) () ((( e 7! � ) � ~ P) � Q� x ) _ ((( e 7! � ) � ~ Q) � P� x )

(e 7! � ) � ~ emp () false

where e =2 f e1; : : : ; eng def() e6= e1 � : : : � e6= en ; and

� ' � 0 def() ~ x2 (dom(� )\ dom(� 0)) � (x)= � 0(x):

Intuitively, if we remove a memory cell fromP, the result does not contain the removed

cell. If we remove a memory cell fromP� D , then D must not contain the address of the

memory cell; otherwise, the result is false. If we remove a memory cell from another

memory cell, the two memory cells must be identical and the resulting state is empty.

Removing a memory cell from a separating conjunction of two formulae generates a case

split: the cell could belong either to the �rst conjunct or to the second. This equivalence

is reminiscent of the chain rule of di�erentiation (d(yz)
dx = dy

dx z + y dz
dx ). Finally, removing a

cell from the empty heap is impossible.

List segments and septraction mix very well. Removing a node from a list produces

two list segments: one from the beginning up to the removed node,and one starting after

that node until the end of the list.

e17! (tl = e2; � ) � ~ lsegitl;� 0(e; e0) () e16=0 � � ' � 0 � lsegitl;� 0(e; e1)� e1 � lsegitl;� 0(e2; e0)� e1

Hence, we can eliminate the septraction operator fromP � ~ Q, provided that P and

Q belong to the fragment of separation logic accepted by SmallfootRG, and P does not

contain any lsegor junk predicates (see Figure 6.2). Had we allowed further inductive

predicates, such astree(E1), we would have needed an additional rule for computing

(E 7! � ) � ~ tree(E1).
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Aside: weakest precondition versus strongest postconditi on

Given an unknown commandC speci�ed as f Pg C f Qg, P � (Q �� R) is the weakest

safe precondition of executingC and deriving the postconditionR. Similarly, given a

precondition R, provided R ) (P � true), then Q� (P � ~ R) is the strongest postcondition

of executingC from an initial state satisfying R

Given an action P  Q, there are two obvious ways to check that an assertionR

is stable under the action: we can either use the weakest precondition or the strongest

postcondition formulation. If P is precise, the two ways are equivalent:

(R ^ P � true) ) (P � (Q �� R)) () ((P � ~ R) � Q ) R));

but the latter is generally easier to compute than the former.

6.3 Programs in SmallfootRG

SmallfootRG programs are written in an untyped toy languagewhose syntax resembles

C. Expressions,E, consist of integer constants,null (which is the same as 0), variables,

�eld dereferences, and arithmetic operations (plus, minus, times, divide, and logical xor).

E ::= n j null j var j E->field j E1+E2 j E1- E2 j E1*E2 j E1/ E2 j E1^E2

Boolean expressions,B , consist of the boolean constantstrue and false , equalities

and inequalities between expressions, and the short-cut evaluation &&and || operators.

There are no boolean variables, but their e�ect can be simulated by an integer variable

that holds either zero or non-zero.

B ::= true j false j E1==E2 j E1!= E2 j E1<=E2 j E1<E2 j E1>=E2 j E1>E2

j B1&&B2 j B1|| B2

Finally, commands,C, are given by the following grammar:

C ::= var=E; j E1->field= E2; j assume(B); j assert (B ); j f C1 : : : Cng

j procName(E1; : : : ; Em ; Em+1 ; : : : ; Em+ n );

j if (* ) C1 else C2 j if (B ) C1 else C2

j while (* ) C j while (B) C

j atomic C j atomic C as actName(E1; : : : ; En );

j atomic (B) C j atomic (B) C as actName(E1; : : : ; En );

These consist of assignments to variables or to �elds,assumeand assert statements,

procedure calls, sequencing, conditionals, loops, and atomic blocks. As expressions can
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contain multiple memory dereferences and the axioms of separation logic can cope only

with a single memory read at a time, we convert a complex expression into a sequence of

memory reads into fresh temporary variables followed by a simple expression that does

not contain any memory dereferences. Similarly, we desugar complex boolean expressions

into sequences of assignments andassumeor assert statements, taking care of the short-

circuit evaluation of &&and || . Procedure calls take two types of arguments: those before

the semicolon are passed by reference, those after the semicolon are passed by value. If

all arguments are to be passed by value, we can omit the semicolon. The * in if(*) and

while(*) denotes non-deterministic choice.

Atomic blocks have an optional action annotation which is used by the symbolic

execution engine (seex6.4.2). An atomic block with a guardB is a conditional critical

region, which blocks untilB becomes true and then executes its body atomically. This is

just syntactic sugar foratomic f assume(B); Cg.

This syntax is largely inherited from Smallfoot with a few extensions (multiple memory

dereferences in an expression, short-circuit evaluation, `less than', etc., non-deterministic

choice, and action annotations).

6.4 Reasoning about programs

6.4.1 Describing interference

Recall that RGSep abstracts interference by two relations: the rely condition (R) and the

guarantee condition (G), which are compactly represented as sets of actions (updates)

to the shared state. Because in many systems, every thread executesthe same code, we

assume that the rely and guarantee conditions of all threads are identical up a parameter,

TID, representing the `current' thread.

SmallfootRG does not attempt to infer such actions; instead it provides convenient

syntax for the user to de�ne them. The declarationaction name(params) [ P] [ Q] de-

�nes the action P  Q, giving it a name and some parameters. Formally, the parameters

are just existentially quanti�ed variables whose scope extendsover both P and Q.

SmallfootRG uses the names and the parameters of the actions to minimise the an-

notation burden, and to simplify the guarantee checks. SmallfootRG requires the user to

annotate every command that changes the shared state with the name of the action it

performs and with concrete instantiations for the parameters. Hence, checking that the

command performs a permitted action is trivial.

For example, consider the following two action declarations:

action Lock(x) [x|->lk=0 ] [x|->lk=TID]

action Unlock(x) [x|->lk=TID] [x|->lk=0 ]
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Lock(x) takes a locationx whoselk �eld is zero, and replaces it withTID, which stands

for the current thread identi�er (which is unique for each thread and always non-zero).

Unlock(x) takes a locationx whoselk �eld contains the current thread identi�er ( TID)

and replaces it with zero. Crucially, the precondition and the postcondition delimit the

overall footprint of the action on the shared state. They assert that the action does not

modify any sharedstate other than x.

As a guaranteecondition for thread t, the action P  Q (which may contain TID)

stands forP[t=TID]  Q[t=TID]. As a rely condition for thread t, the same action means

( t 6= 0 � t 6= t � P[ t=TID])  Q[ t=TID] where t is a fresh existential variable.

6.4.2 Symbolic execution of atomic blocks

We discharge veri�cation conditions by performing a form of symbolic execution [52, 7] on

symbolic states, and then check that the result implies the givenpostcondition. Symbolic

heaps are formulae of the form

A1 � : : : � Am �
W

i B i; 1 � : : : � B i;n i

where eachA i and B i;j is an atomic formula. TheA part of a symbolic heap describes

the local state of the thread, and theB part (inside the box) describes the shared part.

Disjunctions within boxed assertions represent more compactlythe result of stabilization,

and avoid duplicating the local part of the assertion for each disjunct of the shared part.

Symbolic states are �nite sets of symbolic heaps, representing their disjunction.

As commands can contain non-pure (accessing the heap) expressions in guards and

assignments, SmallfootRG translates them into a series of reads to temporary variables

followed by an assignment or a conditional that uses only pure expressions. For example,

assume(x->tl==0) would be translated totemp = x->tl; assume(temp==0) , for a fresh

variable temp.

Except for atomic blocks, symbolic execution is pretty standard: the shared compo-

nent is just passed around. For atomic blocks more work is needed. Consider executing

the atomic block atomic(B) {C} as Act(x) starting from symbolic preconditionX � S.

Intuitively, the command is executed atomically when the condition B is satis�ed. The

annotation as Act(x) speci�es that commandC performs shared actionAct with the pa-

rameter instantiated with x. Suppose thatAct was declared asaction Act(x) [P] [Q] .

Our task is to �nd the postcondition 	 in the following Hoare trip le:

f X � Sg atomic(B) C as Act(x); f 	 g

Our algorithm consists of 4 steps, corresponding to the premises ofthe following inference

rule.
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f X � Sg assume(B) f X � P � F g

f X � Pg Cf X 0g X 0 ` Q � Y stabilize(Q � F ) = R

f X � Sg atomic(B) C as Act(x); f Y � R g

Step 1. Add shared stateS to the local state, and call the symbolic execution engine and

theorem prover to infer the frameF such that f X � Sg assume(B) f X � P � F g.

This step has the dual function of checking that the action's precondition P is

implied, and also inferring the leftover stateF , which should not be accessed during

the execution ofC. The symbolic execution ofassume(B) removes cases whereB

evaluates to false. Note that the evaluation ofB can access the shared state. If this

step fails, the action's precondition cannot be met, and we report an error.

Step 2. Execute the body of the atomic block symbolically starting with X � P. Notice

that F is not mentioned in the precondition: because of the semanticsof Hoare

triples in separation logic, this ensures that commandC does not access the state

described byF , as required by the speci�cation ofAct.

Step 3. Call the theorem prover to infer the frameY such that X 0 ` Q � Y. As before,

this has the e�ect of checking that the postconditionQ is true at the end of the

execution, and inferring the leftover stateY. This Y becomes the local part of the

postcondition. If the implication fails, the postcondition of the annotated action

cannot be met, and we report an error.

Step 4. Combine the shared leftoverF computed in the �rst step with the shared post-

condition Q, and stabilize the resultQ � F with respect to the execution of actions

by the environment as described inx6.4.1.

Read-only atomics Atomic regions that do not write to the heap do not need an action

annotation. For such regions we can use the following simpli�edatomic rule:

f Sg Cf X 0g stab(X 0) = R Cis read-only.

f Sg atomic C f R g

6.4.3 Inferring stable assertions

Most often, the postcondition of a critical section obtained bysymbolic execution is not

stable under interference; therefore, we must �nd a stable postcondition which is weaker

than the original.

Assume for the time being that the rely contains a single actionAct with precondition

P and postconditionQ; later, we will address the general case. Mathematically, inferring
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a stable assertion from an unstable assertionS is a straightforward �x-point computation

S0 = S Sn+1 = Sn _ (P � ~ Sn ) � Q;

whereSn is the result of at mostn executions ofAct starting from S. This computation,

however, does not always terminate because the domain of assertions is in�nite.

Instead, we can approximate the �x-point by using abstract interpretation [20]. Take

the concrete domain to be the set of syntactic Smallfoot assertions, and the abstract

domain to be a �nite subset of normalised Smallfoot assertions that contain a bounded

number of existentially quanti�ed variables. Both domains are lattices ordered by impli-

cation, with true as > and false as ? ; _ is join.

We have a lossy abstraction function� : Assertion! RestrictedAssertionthat con-

verts a Smallfoot assertion to a restricted assertion, and a concretisation function  :

RestrictedAssertion! Assertionwhich is just the straightforward inclusion (i.e., the iden-

tity) function. In our implementation, the abstraction function � is computed by applying

a set of abstraction rules, an adaptation of the rules of Distefano et al. [24]. The details

are at the end of this section. Nevertheless, the technique is parametric to any suitable

abstraction function.

The �x-point can be computed in the abstract domain as follows:

S0 = � (S) Sn+1 = Sn _ � ((P � ~ Sn ) � Q):

In the general case we haven actions act 1; : : : ; act n . Two natural algorithms are to

interleave the actions during the �x-point computation, or to stabilize one action at a

time and repeat the process until we get an assert stable under allactions. The latter

strategy tends to reach the �x-point quicker.

As an example, consider stabilizing the assertionx 7! lk = 0 � y 7! lk = TID with

the Lock and Unlock actions from x6.4.1. Before stabilizing, we replace variableTID in

the speci�cation of the actions with a fresh existentially quanti�ed variable tid , and add

assumptions tid 6= 0 and tid 6= TID. The idea is that any thread might be executing

in parallel with our thread, and all we know is that the threadidenti�er cannot be 0 (by

design choice) and it cannot beTID (becauseTID is the thread identi�er of our thread).

In this case, stabilization involves the �rst and third rules in Figure 6.2. In most cases,

an inconsistent assertion would be generated by adding one of thefollowing equalities:

0 = 1, 0 = tid , TID = tid . The following �x-point computation does not list those cases.
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S0 () � (x 7! lk=0 � y 7! lk= TID) = x 7! lk=0 � y 7! lk= TID

action lock

S1 () S0 _ � ( tid 6= 0 � tid 6= TID � x 7! lk= tid � y 7! lk= TID)

() S0 _ ( tid 6= 0 � tid 6= TID � x 7! lk= tid � y 7! lk= TID)

() tid 6= TID � x 7! lk = tid � y 7! lk= TID

action lock

S2 () S1 _ � ( tid 0 6= 0 � tid 0 6= TID � x 7! lk= tid 0 � y 7! lk= TID)

() S1 _ ( tid 0 6= 0 � tid 0 6= TID � x 7! lk= tid 0 � y 7! lk= TID)

() ( tid 6= TID � x 7! lk= tid � y 7! lk= TID) () S1

action unlock

S3 () S2 _ � (x 7! lk=0 � y 7! lk= TID)

() S2 _ (x 7! lk=0 � y 7! lk= TID)

() S2

In this case, we do not need to stabilize with respect tolock again, sinceunlock produced

no changes.

Adaptation of Distefano et al.'s abstraction

The domain of separation logic assertions,P, is in�nite because assertions can contain an

unbounded number of existentially quanti�ed variables. Distefano et al. [24] proposed an

abstraction function that restricts the number of existentialvariables. Their insight was

to forbid assertions such asx 7! y � y 7! z and to combine the two7! terms into a list

segment. Their abstract domain is �nite, which is su�cient to guarantee that �x-point

computations terminate.

Assume that variable names are ordered and that existential variables are smaller

than normal variables in this order. The following algorithm abstracts a formulaP =

(A1 � : : : An ) where eachA i is an atomic formula.

1. Rewrite all equalitiese1 = e2, so that e1 is a single variable, which is `smaller' than

all the variables in e2. This is always possible for simple equalities. If we get an

equality between more complex expressions, we can simply drop that equality.

2. For each equalitye1 = e2 in P, substitute any other occurrences ofe1 in P by e2; if

e1 is an existential variable, discard the equality.

3. For eachA i describing a memory structure (i.e., a cell or a list segment) whose

starting address is an existential variable, �nd all other terms that can point to that

address. If there are none,A i is unreachable; replace it withjunk. If there is only

one, then try to combine them into a list segment. If there are multiple terms that

point to A i , leave them as they are.
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To combine two terms into a list segment, use the following implication:

L tl ;� 1(e1; x)� D 1 � L tl ;� 2( x; e2)� D 2 =) lsegtl ;� 1 \ � 2
(e1; e2)� D 1 \ D 2

where L tl ;� (e1; e2)� D is lsegtl ;� (e1; e2)� D or e1 7! (tl = e2; � ) � e1 6= D. This is a

generalisation of Distefano et al.'s rule, because our list segments record common

�elds � of nodes, and the setD of disjoint memory locations. In addition, because

our list segments are imprecise, we do not need Distefano et al.'sside condition that

e2 is nil or allocated separately.

4. Put the formulae in a canonical order by renaming their existential variables. This is

achieved by �rst, ordering atomic formulas by only looking attheir shape, while ig-

noring the ordering between existential variables, and then renaming the existential

variables based on the order they appear in the ordered formula.

Simply running this analysis as described above would forget too much information and

could not prove even the simplest programs. This is because the analysis would abstract

x7! (lk= TID; tl = y) � lseg( y; z) into lseg(x; z), forgetting that the node x was locked! To

avoid this problem, before starting the �x-point calculation, replace existential variables

in such 7! assertions containing occurrences ofTID with normal variables to stop the

abstraction rules from �ring. At the end of the �x-point calcu lation, replace them back

with existential variables. Note that the number of normal variables does not increase

during the �x-point computation and hence the analysis still terminates. Experiments

indicate that this simple heuristic gives enough precision in practice. In addition, turning

dead program variables into existential variables before starting the �x-point calculation

signi�cantly reduces the number of cases and speeds up the analysis.

6.5 Example: lock coupling list

This section demonstrates, by example, that SmallfootRG can verify the safety of a �ne-

grained concurrent linked list. This is the same algorithm as in x3.5, but here we prove

a weaker property: that the algorithm does not access unallocated memory and does not

leak memory.

Figure 6.3 contains the annotated input to SmallfootRG. Next, we informally describe

the annotations required, and also the symbolic execution of our tool. In the tool the

assertions about shared states are enclosed in[ ... ] brackets, rather than a box. For

example, in the assertionx|->hd=9 * [y|->hd=10] , the cell at x is local whereas that at

y is shared.

Note that SmallfootRG calculates loop invariants with a standard �x-point computa-

tion using the same abstraction function as that for stabilization.
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action Lock(x) [x|->lk=0,tl=_w ] [x|->lk=TID,tl=_w]
action Unlock(x) [x|->lk=TID,tl=_w] [x|->lk=0,tl=_w]
action Add(x,y) [x|->lk=TID,tl=_w] [x|->lk=TID,tl=y * y| ->tl=_w]
action Remove(x,y) [x|->lk=TID,tl=y*y|->lk=TID,tl=_z]

[x|->lk=TID,tl=_z]

ensures: [a!=0 * lseg(a,0)]
init() f a = new(); a->tl = 0; a->lk = 0; g

lock(x) f atomic(x->lk == 0) f x->lk = TID; g as Lock(x); g
unlock(x) f atomic f x->lk = 0; g as Unlock(x); g

requires: [a!=0 * lseg(a,0)]
ensures: [a!=0 * lseg(a,0)]
add(e) f local prev,curr,temp;

prev = a;
lock(prev);

	
(a)

atomic f curr = prev->tl; g
	

(b)
if (curr!=0)

atomic f temp = curr->hd; g
while(curr!=0 && temp<e) f

lock(curr);
unlock(prev);

	
(c)

prev = curr;
atomic f curr = prev->tl; g
if (curr!=0)

atomic f temp = curr->hd; g
g
temp = new();
temp->lk= 0;
temp->hd = e;
temp->tl = curr;

9
>>=

>>;
(d)

atomic f prev->tl = temp; g
as Add(prev,temp);

�
(e)

unlock(prev);
g

requires: [a!=0 * lseg(a,0)]
ensures: [a!=0 * lseg(a,0)]
remove(e) f local prev,curr,temp;

prev = a;
lock(prev);
atomic f curr = prev->tl; g
if (curr!=0)

atomic f temp = curr->hd; g
while(curr!=0 && temp!=e) f

lock(curr);
unlock(prev);
prev = curr;
atomic f curr = prev->tl; g
if (curr!=0)

atomic f temp = curr->hd; g
g
if (curr!=0) f

lock(curr);
atomic f temp = prev->tl; g
atomic f prev->tl = temp; g

as Remove(prev,curr);
dispose(curr);

9
=

;
(f)

g
unlock(prev);

g

Figure 6.3: Lock-coupling list. Annotations are in italic font.

The rest of this section explains the highlighted parts of the veri�cation (a){(f).

Executing an atomic block (a) To illustrate the execution of an atomic block, con-

sider the �rst lock in the add function, following the rule in x6.4.2.

(Step 1) Execute the guard and �nd the frame.
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prev==a * a!=0 * lseg(a,0)

assume(prev->lk == 0);

prev==a * a!=0 * prev 7! lk:0,tl:_z * lseg(_z,0)

The execution unrolls the list segment becausea!=0 ensures that the list is not empty.

Then, check that the annotated action's precondition holds,namely prev7! lk=0,tl= w.

(Recall that any variable starting with an underscore, such asw, is an existential variable

quanti�ed across the pre- and post-condition of the action.) The checking procedure

computes the leftover formula { theframe { obtained by removing cell prev. For this

atomic block the frame islseg( z,0) . The frame is not used by the atomic block, and

hence remains true at the exit of the atomic block.

(Step 2) Execute the body of the atomic block starting with theseparate conjunction of

the local state and the precondition of the action:prev==a * a!=0 * prev 7! lk:0,tl: z

* w=z in total. At the end, we get prev==a * a!=0 * prev 7! lk:TID,tl: z * w==z.

(Step 3) Try to prove that this assertion implies the postcondition of the action plus

some local state. In this case, all the memory cells were consumedby the postcondition;

hence, when exiting the atomic block, no local state is left.

(Step 4) So far we have derived the postconditionprev7! (lk = TID; tl = z) � lseg( z; 0) ,

but we have not �nished. We muststabilize the postcondition to take into account the

e�ect of other threads onto the resulting state. Following the�x-point computation of

x6.4.3, compute a weaker assertion that is stable under interference from all possible

actions of other threads. In this case, the initial assertion wasalready stable.

Executing a read-only atomic block (b) The next atomic block only reads the

shared state without updating it. Hence, no annotation is necessary, as this action causes

no interference. Symbolic execution proceeds normally, allowing the code to access the

shared state. Again, when we exit the region, we need to stabilizethe derived postcondi-

tion.

Stabilization (c) This case illustrates how stabilization forgets information.Consider

unlocking theprev node within the loop. Just before unlockingprev, we have the shared

assertion:

lseg(a; prev) � prev7! (lk= TID; tl = curr ) � curr 7! (lk= TID; tl = z) � lseg( z; 0):

This says that the shared state consists of a list segment froma to prev, two adjacent

locked nodesprev and curr , and a list segment from z to nil . Just after unlocking the

node, before stabilization, we get:

lseg(a; prev) � prev7! (lk=0; tl = curr ) � curr 7! (lk= TID; tl = z) � lseg( z; 0):
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Stabilization �rst forgets that prev! lk = 0, because another thread could have locked

the node; moreover, it forgets thatprev is allocated, because it could have been deleted

by another thread. The resulting stable assertion is:

lseg(a; curr ) � curr 7! (lk= TID; tl = z) � lseg( z; 0):

Local updates (d) Next we illustrate that local updates do not need to consider the

shared state. Consider the code after the loop inadd. As tempis local, the creation of the

new cell and the two �eld updates a�ect only the local state. These commands cannot

a�ect the shared state. Additionally, astemp is local state, we know that no other thread

can alter it. Therefore, we get the following symbolic execution:

[a!=0 * lseg(a,prev) * prev 7! lk=TID,tl=curr * lseg(curr,0)]

temp = new(); temp->lk = 0; temp->val = e; temp->tl = z;

[a!=0 * lseg(a,prev) * prev 7! lk=TID,tl=curr * lseg(curr,0)]

* temp7! lk=0,val=e,tl=curr

Transferring state from local to shared (e) Next we illustrate the transfer of state

from local ownership to shared ownership. Consider the atomic block with the Addanno-

tation:

[a!=0 * lseg(a,prev) * prev 7! lk=TID,tl=curr * lseg(curr,0)]

* temp7! lk=0,tl=curr

atomic f prev->tl = temp g as Add(prev,temp);

[a!=0 * lseg(a,prev) * prev 7! lk=TID,tl=temp

* temp7! tl=curr * lseg(curr,0)]

We execute the body of the atomic block with the separate conjunction of the local state

and the precondition of the action, soprev7! lk=TID,tl=curr * temp 7! lk=0,tl=curr

in total. At the end, we get prev7! lk=TID,tl=temp * temp 7! lk=0,tl=prev and we try

to prove that this implies the postcondition of the action plus some local state. In this

case, all the memory cells were consumed by the postcondition; hence, when exiting the

atomic block, no local state is left. Hence the celltemp is transferred from local state to

shared state.

Transferring state from shared to local (f ) This illustrates the transfer of state

from shared ownership to local ownership, and hence that shared state can safely be

disposed. Consider the atomic block with aRemoveannotation.

[lseg(a,prev) * prev 7! lk=TID,tl=curr

* curr 7! lk=TID,tl=temp * lseg(temp,0)]
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Program LOC LOA Act #Iter #Calls Mem(Mb) Time(s)
lock coupling 50 9 4 365 3879 0.47 3.9
lazy list 58 16 6 246 8254 0.70 13.5
optimistic list 59 13 5 122 4468 0.47 7.1
blocking stack 36 7 2 30 123 0.23 0.06
Peterson 17 24 10 136 246 0.47 1.35

Table 6.1: Experimental results

atomic f prev->tl = temp; g as Remove(x,y);

[lseg(a,prev) * prev 7! lk=TID,tl=temp * lseg(temp,0)]

* curr 7! lk=TID,tl=temp

Removing the action's precondition,prev7! lk=TID,tl=curr * curr 7! lk=TID,tl=temp ,

from the shared state leaves a frame oflseg(a,prev) * lseg(temp,0) . Executing the

body givesprev7! lk=TID,tl=temp * curr 7! lk=TID,tl=temp and we try to prove that

this implies the postcondition of the action plus some local state. The action's post-

condition requiresprev7! lk=TID,tl=temp , so the remainingcurr 7! lk=TID,tl=temp is

returned as local state. This action has taken shared state, accessible by every thread,

and made it local to a single thread. Importantly, this means that the thread isfree to

dispose this memory cell as no other thread will attempt to access it.

[lseg(a,x) * x 7! lk=TID,tl=z * lseg(z,0)] * y 7! lk=TID,tl=z

dispose(y);

[lseg(a,x) * x 7! lk=TID,tl=z * lseg(z,0)]

Summary This example has illustrated �ne-grained locking, in particular

� dynamically allocated locks

� non-nested lock/unlock pairs

� disposal of memory (including locks)

Other examples SmallfootRG handles include optimistic reads from shared memory and

lazy deletions.

6.6 Experimental results

SmallfootRG extends the separation logic tool called Smallfoot [6]. The tests were ex-

ecuted on a Powerbook G4 1.33 GHz with 786MB memory running OSX10.4.8. The

results are reported in Figure 6.1. For each example we report: the number of lines of

code (LOC) and of annotation (LOA); the number of user-provided actions (Actions);
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the total number of iterations for all the �x-point calculat ions for stabilization (#Iter);

the number of calls to the underlying theorem prover during stabilization (#Calls); the

maximum memory allocated during execution (Mem (Mb)) in megabytes, and the total

execution time (Time (s)) in seconds.

We have tested our tool on a number of �ne-grained concurrencyexamples. The �rst

three (lock coupling, lazy list, optimistic list) all implement the data structure of a set as

a singly linked list with a lock per node.

� lock coupling The main part of the algorithm was described in Section 6.5. When

traversing the list, locks are acquired and released in a \hand over hand" fashion.

� lazy list An algorithm by Heller et al. [38], which traverses the list without ac-

quiring any locks; at the end it locks the relevant node and validates the node is

still in the list. Deletions happen in two steps: nodes are �rst marked as deleted,

then they are physically removed from the list.

� optimistic list Similar to lazy list, it traverses the list without acquiring any

locks; at the end it locks the relevant node and re-traverses the list to validate that

the node is still in the list.

The next two examples are simpler:blocking stack simply acquires a lock before

modifying the shared stack; andPeterson [66] is a well-known mutual exclusion algo-

rithm.

We have a �nal example of Simpson's4Slot [71], which implements a wait-free atomic

memory cell with a single reader and a single writer. This algorithm has been veri�ed

in both our tool, and Smallfoot. In our new tool it takes under4 minutes, while in the

original Smallfoot it took just under 25 minutes. Also, the speci�cation of the invariant

for Smallfoot is over twice as long as the action speci�cationfor SmallfootRG.2

Program Lines of Annotation Time (s)

4Slot (SmallfootRG) 42 221

4Slot (Smallfoot) 80 1448

Smallfoot requires the same invariant about shared state at every program point. In

contrast, SmallfootRG calculates only the pertinent shared states at each atomic block,

so when it enters an atomic block it does not need to consider as many possibilities

as Smallfoot. This example demonstrates that using binary relations instead of simply

invariants leads to shorter proofs.

Apart from the 4Slot algorithm, we believe our tool takes an acceptable amount of

time to verify the algorithms discussed in this section. Our examples have demonstrated

2The speci�cation for both could be simpli�ed if Smallfoot directly supported ar rays in the assertion
language.
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the disposal of memory (lock-coupling list and blocking stack),the optimistic reading

of values and leaking memory (lazy and optimistic list algorithms), and classic mutual

exclusion problems (Peterson's and Simpson's algorithm).
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Chapter 7

Conclusion

7.1 Summary

The dissertation has covered three main topics:

� a new logic, RGSep, that enables concise reasoning about �ne-grained concurrency;

� a set of techniques for proving linearisability demonstrated by proofs of important

practical algorithms such as MCAS;

� a tool, SmallfootRG, based on RGSep that checks safety properties about �ne-

grained concurrent algorithms operating on linked lists.

There are many topics that this dissertation did not address: liveness, termination,

fairness, starvation|issues well known and widely discussed. It didnot consider dis-

tributed systems and the additional problems caused by communication delays, process

or link failures, and security concerns.

At least, it has shown that reasoning about �ne-grained shared-memory concurrency

can be done formally, concisely, modularly, and compositionally. And in some cases, even

automatically.

7.2 Future work

Dynamic modularity RGSep and separation logic both permit multiple disjoint re-

gions of shared state, but the number of regions is determined statically. Recently, Gots-

man et al. [30] described a way of lifting this restriction in Separation Logic thereby

permitting locks to be stored in the heap. Their work can probably be recast to RGSep.
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Separation logic permissions [8] are also dynamic in nature. Their drawback is that

they protect a single memory cell and enforce a very simple property: no writes happen to

that memory cell. If integrated with RGSep boxed assertions, permissions could enforce

much more complex properties. In addition, RGSep would gain good dynamic modularity

and become ideal for reasoning about object-oriented languages.

Liveness/termination Proving termination in a concurrent setting is another inter-

esting open problem. Except for the simplest concurrent programs, termination of a

concurrent operation depends heavily on its environment and often on the scheduler's

fairness. Terminology such as `wait-free,' `lock-free', and `obstruction-free' describe vari-

ous degrees of context-dependent termination. Judging from the informal proofs of these

properties, their formal proofs will be global, but tractable and, in fact, relatively easy.

Weak memory models Most proof methods, including RGSep, assume that parallel

composition has an interleaving semantics. This assumption is false for the so called \weak

memory models" provided by modern processors. In these models, there is no globally

consistent view of the shared state, and each thread may observe writes to shared variables

happening in a di�erent order. Is there a suitable logic for verifying programs running in

weak memory models?

Tool support This dissertation has already presented a prototype checker based on

RGSep demonstrating that automated reasoning about �ne-grain concurrency is possible.

There are a few limitations to the current version of SmallfootRG, which can be resolved

in the future. Interference actions can be inferred, arithmetic can be taken into account.

But more importantly, tools should be developed to encompass the techniques for

proving linearisability and automating these proofs. This will enable us to verify con-

current libraries involving intricate internal concurrency, so that their users may safely

assume they expose a simple sequential interface. Proving linearisability automatically is

not very di�cult, because the respective hand-crafted proofsinvolve surprisingly simple

mathematics, and simple annotations can be used to determine the linearisation point.

The recent work by Amit et al. [3] is a promising step in that direction.
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