Technical Report A

Number 720

Computer Laboratory

A capability-based access control
architecture for multi-domain
publish/subscribe systems

Lauri I.W. Pesonen

June 2008

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2008 Lauri [.W. Pesonen

This technical report is based on a dissertation submitted
December 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitp:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Publish/subscribe is emerging as the favoured commuaitg@aradigm for large-scale, wide-
area distributed systems. The publish/subscribe mamyaioy interaction model together with
asynchronous messaging provides an efficient transpohidgtity distributed systems in high
latency environments with direct peer-to-peer interaxtiamongst the participants.

Decentralised publish/subscribe systems implement theteservice as a network of event
brokers. The broker network makes the system more resthbefiailures and allows it to scale
up efficiently as the number of event clients increases. Inyntases such distributed systems
will only be feasible when implemented over the Internet gsit effort spanning multiple
administrative domains. The participating members willdfé from the federated event broker
networks both with respect to the size of the system as weé &sult-tolerance.

Large-scale, multi-domain environments require accessralp users will have different
privileges for sending and receiving instances of differ@rent types. Therefore, we argue
that access control is vital for decentralised publishgstibe systems, consisting of multiple
independent administrative domains, to ever be deployali#ge scale.

This dissertation presentsA¥h , an access control mechanism for decentralised, typedbase
publish/subscribe systems. While the work concentrateypertbased publish/subscribe the
contributions are equally applicable to both topic and entibased publish/subscribe systems.

Access control in distributed publish/subscribe requsesure, distributed naming, and
mechanisms for enforcing access control policies. The dositribution of this thesis is a
mechanism for names to be referenced unambiguously frofoypwithout risk of forgeries.
The second contribution is a model describing how signedluiéipes can be used to grant do-
mains and their members’ access rights to event types inaxseand expressive manner. The
third contribution is a model for enforcing access controlhie decentralised event service by
encrypting event content.

We illustrate the design and implementation oA with a running example of the UK
Police Information Technology Organisation and the UK gmfiorces.

Marjalle

Acknowledgments

I would like to thank both my supervisor prof. Jean Bacon far dgnéidance and support both
while | was considering to apply to Cambridge as well as dumirygime here as a PhD student.
Jean also helped me find funding that allowed me to finish ngiessyfor which | am grateful
to her. I am also indebted to Dr. Ken Moody for his advice arsights.

I should also express my thanks to all the Opera group mentarshave had the pleasure
of working with during the past four years. David Eyers esggchas helped me tremen-
dously by collaborating with me and proof-reading courstlésafts of research papers and this
dissertation. | am very grateful to David for all his help maut which this dissertation might
never have been finished. Eiko Yoneki has also provideduamsé advice concerning publish/
subscribe systems. She is like a walking publish/subscabearch library. To Ands, Andy,
Brian, Dan, David, Luis, Nathan, Peter, Salman, and Samlghkis for all the tea and biscuits.

A special thanks to Sriram who helped me discover my intéoggirogramming languages
that | did not even know | had. | expect this to have a lastifigotion my career.

| would like to thank my parents for supporting my academideavours. | know my
moving abroad for the foreseeable future was not easy, bane hever received anything but
support from them.

Finally, | want to try to express my gratitude to Sarah. She tir@lessly supported me
through the final year of my PhD while | have been writing up nsgdrtation. Long nights and
busy weekends have been the norm and the work has seemecandirgg, yet she has always
been there for me.

My work at Cambridge has been funded by the Engineering andi€ilySciences Re-
search Council (EPSRC), Nokia Foundation, Jenny and Antti Wikoundation, Tekniikan

Publications

Lauri I. W. Pesonen and Jean Bacon. Secure event types imtdoatsed, multi-domain
publish/subscribe systems. 8EM’'05: Proceedings of the 5th international workshop
on Software Engineering and Middlewapages 98—-105. ACM Press, September 2005.

Jean Bacon, David M. Eyers, Ken Moody, and Lauri I. W. Pesone$ecuring pub-
lish/subscribe for multi-domain systems. In Gustavo Atgnaditor, Middleware’05:

Proceedings of the 6th International Conference on Middleywaslume 3790 oLLNCS

pages 1-20. Springer-Verlag, November 2005.

Lauril. W. Pesonen, David M. Eyers, and Jean Bacon. A capiasibased access control
architecture for multi-domain publish/subscribe system$SAINT 2006: Proceedings of

the Symposium on Applications and the Interpages 222-228, Washington, DC, USA,
January 2006. IEEE Computer Society.

Lauri .W. Pesonen, David M. Eyers, and Jean Bacon. Accedsaton decentralised
publish/subscribe systemdournal of Networks2(2):57—67, April 2007.

Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. Encnygidorced access
control in dynamic multi-domain publish/subscribe netkgr In Proceedings of the
International Conference on Distributed Event-Based 3ystéDEBS’'07) pages 104—
115. ACM Press, June 2007.

Luis Vargas, Lauri I. W. Pesonen, Ehud Gudes, and Jean Bacansdctions in content-
based publish/subscribe middleware. DEPSA'07:Proceedings of the International
Workshop on Distributed Event Processing, Systems andcagiphs page 68, Toronto,
Canada, June 2007. IEEE Computer Society.

Contents

1

Introduction 19
1.1 Multi-Domain Publish/Subscribe Systems 21
1.2 Application Scenarios e 22
1.2.1 StockTicker 22
1.2.2 Numberplate Monitoring 24
1.3 Decentralised AccessControl 26
1.4 ResearchStatement 26
1.5 DissertationOutline 27
Background 29
2.1 Distributed Communication. L oo 29
2.1.1 Publish/Subscribe. L 30
2.1.2 Synchronous Request/Response 33.
2.1.3 AsynchronousMessaging 6 3
214 TupleSpaces 38
2.2 Publish/Subscribe Subscription Models 39
2.2.1 Topic-Based Publish/Subscribe 40
2.2.2 Content-Based Publish/Subscribe 41
2.2.3 Type-Based Publish/Subscribe 43
2.3 Decentralised Publish/Subscribe, 44
2.3.1 Hermes e 45
2.4 AccessControl 47
2.4.1 Mandatory AccessControl o0 8 4
2.4.2 Discretionary Access Control e 49
2.4.3 Role-Based AccessControl 52
2.5 Decentralised Trust Management 0w .. 53
2.5.1 PolicyMaker 54
2.6 Simple Public Key Infrastructure 56
2.6.1 Authorisation Certificates 56
2.6.2 NameCertificates 58
2.6.3 GroupSubjects e 59

12 CONTENTS
2.6.4 Threshold Subjects, 95
2.7 SUMMAIY . . . e e e e 60
3 Multi-Domain Publish/Subscribe Systems 61
3.1 A Multi-Domain Publish/Subscribe System 61
3.2 DOmains e e 62
3.21 Sub-Domains 63
3.22 EventBrokers. 63
3.2.3 EventClients e 64
3.24 AccessControlService46
3.3 Principals 56
3.4 The Coordinating Principal 65
3.5 TransportLayer Security e 66
3.6 ThreatModel 68
3.7 Example Application 69
3.8 Summary . ..o e e e 72
4 Secure Event Types 74
4.1 EventType Definitions 75
4.2 SecureEventTypes e e e 77
421 NameTuple. e 78
4.2.2 Digital Signature 038
4.3 TypeManagement. 0 8
4.3.1 VersionNumber 82
4.3.2 TypeVersionTranslation 84
4.3.3 Authorisation Certificates 87
4.4 Modifications MadetoHermes L 0. 89
441 TypesStorage i e 90
442 APIChanges 91
443 MessageRouting 92
45 Performance 29
4.6 Secure Names in Topic-Based Publish/Subscribe 95
47 Related Work e 95
4.8 SUMMAIY oo e e e e e e e 96
5 Access Control 98
5.1 AccessControlModel 001
5.1.1 AuthorisingDomains 001
5.1.2 AuthorisingClients Lo 011
5.1.3 Authorising EventBrokers 102
5.1.4 Authorising Sub-Domains 105
5.2 Resourcesand AccessRights 107
5.2.1 EventService AccessRights 107
5.2.2 EventType AccessRights 011
5.3 \Verifying Authority e 115
5.3.1 Authentication 611
5.3.2 Authorisation 711

CONTENTS 13

5.3.3 \Verificationin MAIA L 118
5.4 Delegating Root Authority 119
5.5 Access Control in Topic-Based Publish/Subscribe 120
5.6 RelatedWork e 121
5.7 Summary e e e e 122
6 Policy Management 124
6.1 OASIS e 124
6.1.1 OASIS Policy in Our Example Scenario 126
6.2 Access Rights Revocation 127
6.2.1 \Validity Period a2
6.2.2 Certificate RevocationLists 129
6.2.3 SPKION-LineTests 130
6.2.4 Active Revocation 131
6.3 Distributing Validity Statements over Publish/Sultser. 132
6.3.1 Request-Response over Publish/Subscribe 133
6.3.2 StateCaching 134
6.3.3 Publishing Validity Statements 134
6.4 Policy Evaluation at the Local Broker 135
6.5 Distributing Capabilities 136
6.5.1 GatheringEvidence 361
6.5.2 Distribution Methods oo 137
6.6 RelatedWork 137
6.7 SUMMArY e 138
7 Event Content Encryption 139
7.1 EventLevel Encryption 141
7.2 Attribute Level Encryption e 142
7.2.1 Emulating Attribute Level Access Control 143
7.2.2 Restricted Attribute Values L L. 143
7.3 Encrypting SubscriptionFilters L L. 144
7.3.1 Coverage Relations with Encrypted Filters 145
7.4 Avoiding Unnecessary Encryptions and Decryptions 145
7.5 Implementation 147
7.6 KeyManagement 914
7.6.1 Secure Group Communication, 501
7.6.2 KeyRefreshing 151
7.7 Evaluation 521
7.7.1 End-to-EndOverhead 215
7.7.2 DomainlInternalEvents 541
7.7.3 CommunicationOverhead 515
7.8 RelatedWork 156
7.9 SUMMAIY e e e e e e e 159

14

CONTENTS

8 Conclusions
8.1 Contributions
8.2 Future Work

83 Summary

Bibliography

160

List of Figures

11

1.2

1.3

1.4

2.1

2.2

2.3

2.4

25

2.6

2.7
2.8

3.1
4.1

4.2
4.3

A publish/subscribe systems consists of a number ofghdsk and subscribers

and an event service decoupling the two from each other. 20

In decentralised publish/subscribe systems the eeewits is implemented as
anetwork ofeventbrokers. L L L Lo 20

A multi-domain publish/subscribe system consistinghoée brokerage firms

and one stock exchange. 23
A multi-domain publish/subscribe system consistinthefMetropolitan Police

and the Congestion Control Service. 25

The event service and the use of asynchronous messaggogples the pub-

lisher from the subscribers in time, space, and synchrbaisa. 32
The use of synchronous messaging and the lack of an ietany couples the
clienttightlytotheserver. 34

In traditional message passing the use of asynchronessaging achieves syn-
chronisation decoupling between the message produceheanaéssage con-

In a message queueing system the message broker decihggbeoducer from
the consumers in time and space, but the consumers need togagages from

the broker synchronously. oL 37
Thein operation supports a many-to-one interaction model. 38
Therd operation in a Tuple Space allows many-to-many interadvietween

producers and CONSUMEIS. v v v v it e e e e e e e 39

Subscribing to a topic in a topic hierarchy implies suipsions to all sub-topics. 41
An SPKI authorisation certificate loop with three prpads and two levels of
delegation. 58

An overall view of our multi-domain publish/subscribeptoyment 71

Detective Smith retrieves the Numberplate event tygmitlen from a type

registry and verifies its authenticity and integrity. 77
Translation to and from transittimeevents. 85
Translation to and from transit time events with attebdIDs. 87

15

16

LIST OF FIGURES

4.4 Verifying the name-signature link with and without a abifities chain. 89
4.5 Subscription performance with and without certificateléng. 94

5.1 Capabilityl authorises the Met domain to subscribe to all attributeBeRium-
berplateevent. Capabilitie® and3 delegate a subset of this capability to both

the Met Broker and Detective Smith. 100
5.2 The blanket capability together with the capabilityuesd to the Met domain

authorises the brokertoaccesstyfpe. 103
5.3 The blanket capability together with the new capabibsued to the Met do-

main authorises the brokerto accesstype. 104
5.4 An enclosing domain can group more privileged broketsenent clients into

their own privileged sub-domains. 106
5.5 The principals and the capabilities form a tree whereptitecipals are nodes

and the capabilitiesare vertexes. e 109
7.1 In order to emulate attribute level encryption with eviewel encryption the

publisher must publish independent events for all subscgboups. 143
7.2 Caching decrypted data can increase efficiency whenedielty an event to a

peer with similar privileges. e 146
7.3 Node addressing is effectively random, therefore tmeleevous node for a

domain internal type can be outside of the domain that owrevant type. . . . 147
7.4 The EAXmodeofoperation. 148
7.5 The steps involved for a broker to be successful in jgimitkey group. 150
7.6 Key refreshes can be delayed based on the validity tifribe droker’s authority. 152
7.7 Theend-to-endtestsetup.. 153
7.8 The end-to-end throughput of events with plaintext &yjegvent level encryp-

tion, and attribute level encryption. 154
7.9 The end-to-end throughput of events with plaintext &yjegvent level encryp-

tion, and attribute level encryption when plaintext caghgenabled. 155

7.10 The average number of hop counts when emulating atribuel encryption
with event level encryption and multiple sub-typéss(scale). 156

List of Tables

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8

TheStockTickeevent. 22
TheNumberplateevent. 24

The basic publish/subscribe APl is very simple, coimgsif only five operations. 31
The tuple space API of three operations used to writé, @@ consume tuples. 38

Common classification labels in decreasing order of acces. 48
An access control matrix representing filesina Unixeayst. 50
An access control list represents one column of the a@megrol matrix. . .. 51
A capability represents a group of cells on one row of tteess control matrix. 52
A Hermes-style event type definition. 75

A secure event type definition. L L L. 78
TheNumberplateevent type definition with a version number and attributes
with unique identifiers. 38

A secure event type definition witrceedentialdfield. 88
The Hermes eventclient APL. a.. 91
The Mala eventclient APL. 92
The time in microseconds spent on 5-tuple reductions ok $t§hature verifi-
CatioNS. e 93
The time in microseconds spent on processing a sulisariguest at the local
broker for plain types and signed types when the type cackrabled. 93

17

CHAPTER 1

Introduction

Large-scale, multi-domain publish/subscribe systemsiregan access control mechanism in
order to be deployable. This dissertation proposes a dignegy access control architecture for
decentralised publish/subscribe systems spanning reuligependent administrative domains.

Very large-scale distributed systems, that cover largg@gahic areas and consist of a large
number of nodes, are commonplace in today’s networked wadihe pervasiveness of the In-
ternet and ever more affordable networking equipmentitatzl the building of increasingly
large systems with relatively low costs. Large-scale iisted systems are being built between
() organisations (e.g. supply-chain management, work-ftanagement), (ii) individuals (e.qg.
instant messaging, IP telephony, and especially peee¢o-gpplications), and finally between
(iif) organisations and individuals (e.g. RSS feeds, cardetivery, and AJAX-based web appli-
cations). Publish/subscribe has emerged as a scalable wuigation paradigm for large-scale
distributed systems where traditional paradigms, e.gigsgresponse and simple asynchronous
message passing, have struggled. Publish/subscribe &silver bullet to be used in all dis-
tributed systems. For example, the publish/subscribedot®n model, where publishers push
data to the subscribers, is not suitable for all applicati@md the lack of a reply channel makes
the implementation of some distributed applications cusinae.

A publish/subscribe system decouples event producerspuldishers from event con-
sumers, i.esubscribersby introducing an abstraelvent servicdetween the communicating
parties (See Figure 1.1). The event service is respongiblggiivering published events from
publishers to all subscribers who have registered thesrést in the given event. The decou-
pling of publishers from subscribers combined with asyonbus messaging allows publish/
subscribe systems to scale in size both with respect to timbeuof nodes as well as the geo-
graphic distances between nodes (i.e. increasing netateldy).

19

20 Chapter 1. Introduction

Figure 1.1: A publish/subscribe systems consists of a humber of publishers and subscribers
and an event service decoupling the two from each other.

Figure 1.2 : In decentralised publish/subscribe systems the event service is implemented as a
network of event brokers.

Modern, highly scalable publish/subscribe systems implarthe event service as a decen-
tralised network of interconnectedent brokergSee Figure 1.2)Event clientsi.e. publishers
and/or subscribers, connect téogal brokerin order to access the decentralised event service.
The broker network then routes publications from publishersubscribers. A decentralised
event service enhances system scalability, fault-toteraand load balancing in a large-scale
setting by distributing system load among all the particigabrokers and by providing redun-
dant routes between publishers and subscribers. The mainatian for deploying a decen-
tralised event service is to be able to service a large nuwfoerent clients. Therefore, when
the number of event clients in a publish/subscribe systewgpast a certain point the event
service must be decentralised across multiple event bsoker

In the past most publish/subscribe oriented research hasentrated on efficient routing
algorithms, content-based filtering, and composite evetdadion in a single-domain environ-
ment. Relatively little research has been done with resgeseturity in publish/subscribe
systems, especially in a multi-domain setting, yet we beligcalable access control to be a
prerequisite for large-scale publish/subscribe systerbe twidely adopted and deployed.

1.1. Multi-Domain Publish/Subscribe Systems 21

1.1 Multi-Domain Publish/Subscribe Systems

Publish/subscribe systems have been advocated espdoralfrge-scale systems where the
event service covers a large geographic area, because Iiishpeubscribe communication
paradigm performs extremely well under high latency coodg compared to other alternatives.

We expect that large-scale publish/subscribe system$wiih most cases, formed by mul-
tiple cooperating domains, where the domains represetragporganisations, sub-domains
of a single organisation, or a mix of the two. It is unlikelyatha single organisation would
deploy a large-scale publish/subscribe system with hwsdo# brokers spanning a large ge-
ographic area as a single domain. Instead the publish/shbstystem would span multiple
independent administrative domains (e.g. business uni#/sions) in the organisation. Ex-
amples of such systems include commercial applicatiogsjrethe banking world or logistics
systems, large-scale public sector systems, e.g. in tHthluzaie and law enforcement sectors,
and sensor-based systems, e.g. city-wide sensor networks.

The domains cooperate to form a publish/subscribe infrestre that is shared among all
the domains (cf. the Internet email infrastructure). Theivation for domains to share the
infrastructure is three-fold: (i) the shared publish/suliee system reaches a wider geographic
area and more users; (ii) the shared publish/subscriberayistmore tolerant of node and net-
work link failures, because of redundant nodes and routeh Veithout additional infrastructure
expenses; and (iii) the shared infrastructure allows dost@ implement applications with each
other.

Figure 1.3 shows a publish/subscribe system consistinguwfihdependent administrative
domains: three brokerage firms and a single stock exchange. fdur domains cooperate
together in order to share the infrastructure as well as@dfmns running on that infrastructure.
The stock exchange scenario will be described in more datgil.2.1.

The domains are expected to deploy both their public and&ipublish/subscribe appli-
cations on the shared publish/subscribe system. Again tisvation for deploying all appli-
cations on the same publish/subscribe system is based gragic reach and fault tolerance,
as above. The deployed applications can be freely accegsibll domains (i.epublic), access
can be limited to one or more other domains (sleared, or the applications can be domain-
internal only (i.eprivate). We will limit our discussion to private and shared appiizas that
are more interesting with respect to access control.

In order to facilitate the deployment of shared and privaidiaations the publish/subscribe
system must provide an access control mechanism that casdaketa prevent unauthorised
parties from accessing protected applications. The agic owner must be able to specify in
an access control policy who is authorised to issue pulicaiand subscriptions in the context
of a given application.

22 Chapter 1. Introduction

Attribute Name Description

tinme Time of the sale

stock Name of the stock

shar es Number of shares sold

price Price per share

sel l er Brokerage firm selling the shares
buyer Brokerage firm buying the shares

Table 1.1: The StockTicker event.

1.2 Application Scenarios

In order to motivate the necessity of access control in airdolnain environment we present
two application scenarios. Both scenarios involve multighbenains and underline the need
for an expressive access control system that is able to spaaid boundaries. The second
example applicatiomumberplate monitorings used as a running example throughout the rest
of the dissertation.

1.2.1 Stock Ticker

The stock ticker presents a good example of a publish/sillesapplication with access control
needs on multiple levels that can be deployed in a multi-doreavironment. A stock ticker
reports each stock trade that happens in a stock exchangédatébt trade of a share determines
the current price for that share, which is then reportedvestors.

In this scenario a stock exchange acts as the event publi§here can be any number of
stock exchanges as publishers in the system, but for thimgeave will assume only one stock
exchange. The exchange publishes events for each stoekthaitakes place in the exchange.
As shown in Table 1.1, the event includes the time of the #aename of the stock, the number
of shares sold, the price for one share in this transactrahtlee names of the buying and selling
brokerage firms.

Private investors typically use a brokerage firm for thesckttrades, because it is very ex-
pensive to interface directly with the stock exchange amdnihmber of trades conducted by
a single individual do not justify the cost. In our scenahe brokerage firms act as service
providers for the private investors: the brokerage firm ptes the private investor access to
the publish/subscribe system. In terms of event clientskaoklers, the investors act as event
clients that connect to the event brokers provided by thewarbrokerage firms, and the bro-
kerage firms and the stock exchange form together the brekeork that implements the event
service, as shown in Figure 1.3. Lastly, the stock exchamgéeiments an event publisher that
connects to the event broker provided by the Stock Exchand@uablishes trade events.

The exchange publishes a number of event flows covering tks s different types of
financial instruments, e.g. shares, commodities, andaterds, that all produce their own flow

1.2. Application Scenarios 23

Event Service

Brokerage
F|rm A

Investor27%-. /7 U Stock Quote
Stock Exchange Publisher
Brokerage ________
Derivatives
Publisher

Investor 3

Figure 1.3 : A multi-domain publish/subscribe system consisting of three brokerage firms and
one stock exchange.

of trade events. The exchange charges the brokerage firradar feccess to the different event
flows. Each brokerage firm is free to choose which event flowsetls access to. For example,
a brokerage firm might want to access only the shares eventlflawwnot the event flows for
derivatives or commodities trades.

The brokerage firms charge their customers, the privatesiavg for access to the event
streams available to the brokerage firms. A customer chdosebrokerage firm based on
which event flows she wants to access and which event flowwvailalale from each brokerage.
E.g. if an investor wants access to derivatives events, shdwick a brokerage firm that can
provide that access.

In this example each brokerage firm and stock exchange exgréeeir own domains. The
customers are event clients that access the publish/siodsgstem via their brokerage firm. Ef-
fectively the customers are members of the domain of thekdnage firm. The stock exchange
grants other domains access to events it publishes (iot@ath access control). The brokerage
firms grant members of their own domains access to the pedlistients (intra-domain access
control). We can assume that the access control policy attio& exchange remains relatively
static, because brokerage firms rarely change the set atsemhey have subscribed to from
the stock exchange and new brokerage firms enter the systgninfieequently. The access
control policies at the numerous brokerage firms, on therdthed, are in a constant state of
churn, when brokerage accounts are opened and closed r@ts ¢him and leave the brokerage
firm. The two layer access control approach accommodateditihotomy of requirements
very well.

24 Chapter 1. Introduction

Attribute Name Description

tinme Time of numberplate sighting
nunber pl at e Sighted numberplate
| ocation Location of sighting,

i.e. the location of the camera

Table 1.2: The Numberplate event.

1.2.2 Numberplate Monitoring

The city of London in the UK introduced the London Congestiora@le on 17th February
2003 [Tra07]. In the scheme a vehicle must pay a fee for emgericongestion controlled area
in central London. The fee must be paid before the vehiclgadigtenters the monitored area.
Payment can be made on the web, over SMS, or at specific patgspdime charge is enforced
by CCTV cameras that monitor vehicles going in and out of thegestion charge area. The
cameras take pictures of numberplates, which are then rengh numberplate recognition
software. The resulting list of numberplates is compareallist of numberplates that have paid
the congestion control fee for that day. If a numberplateoispnesent in the database for that
day, the owner of the vehicle is fined for not paying the feeiimet

We use the congestion charge scenario as an example ajpplit@t motivating the need
for access control in multi-domain publish/subscribe esyst. In our example the monitoring
and payment models differ from the system currently in useandon in two ways: (i) we
assume that vehicle owners are sent a bill or their pay-asggoaccounts are debited when
their vehicle is seen inside the congestion controlled,aed (ii) that the CCTV cameras are
able to perform numberplate recognition internally andaascgpublishers in a publish/subscribe
system publishindNumberplatesvents for each recognised numberplate. We also assume that
the Metropolitan police force is able to get access to theberplate events based on a court
order.

In our example a CCTV camera publishetNamberplateevent when it has recognised
the numberplate of a vehicle entering the congestion cihettarea. As shown in Table 1.2,
the event contains the numberplate of the vehicle, the itotatf the CCTV camera, and a
publication timestamp specifying the time when the vehiges sighted.

A Congestion Control Service (CCS) billing office subscribeBltmberplateevents. Each
publishedNumberplateevent will be delivered to the data centre, which procedsegvent by
comparing the numberplate to a database of numberplatebdi@ already been charged the
congestion charge for that day. If the numberplate is nobhéndatabase, the vehicle owner is
sent a bill or her pay-as-you-go account is debited.

The numberplate monitoring service has its uses outsidermjestion control. Th&lum-
berplateevents can be used to get notifications of sightings of a Bpeeiicle, which would
be useful in criminal investigations where a specific nurplage is related to a case investigated

1.2. Application Scenarios 25

Event Service

Detective /™ Metropolitan
smith Police
____________________________ Congestion Charge N\~ Cameta A
Billing Service 4.,
Office T W T

.... Camera B
Statistics
Office

Figure 1.4 : A multi-domain publish/subscribe system consisting of the Metropolitan Police and
the Congestion Control Service.

by the police. Another example would be gathering traffitistias from the congestion control
cameras.

Figure 1.4 illustrates the publish/subscribe system stingi of the Metropolitan Police and
the CCS domains. The cameras aciNasnberplateevent publishers, connected to the CCS
domain. Detective Smith, the billing office and the statswffice all act as subscribers to the
Numberplatesvents.

Free access to numberplate sightings presents a massigeypconcern. Therefore, in or-
der to protect the privacy of vehicle owners and driverseasdo the events must be controlled
according to an access control policy. The three differgptieations need access to different
attributes of the numberplate events. The congestion alosgrvice needs to access the num-
berplate and timestamp fields in order to be able to send #hitle owner of the vehicle for
entering the congestion controlled area, but it does nat teeknow the specific location of the
sighting. The police needs access to all the attributes ahaberplate event to be able to track
down a given vehicle, but she does not need access to all mplateeevents, instead her access
can be limited to those events related to a specific numblerphnd finally statisticians need
to know about locations and the time of each sighting, but treve no need for the number-
plate information. An access control architecture for atirddmain publish/subscribe system
should be able to cater for each of these three scenarios.

We will use the numberplate monitoring application as a mgrexample throughout this
dissertation. Se&3.7 for a more detailed description of the example enviramnaad the
application.

lwhile our application scenario is fictional, the anti-terofficers in the Metropolitan police in London did get
access to real-time congestion charge data recently [NewQ7

26 Chapter 1. Introduction

1.3 Decentralised Access Control

A multi-domain publish/subscribe system is inherentlyetgralised. All domains are consid-
ered equal and there is no central party that can be trustedl pgirticipants to control access
to their applications. On the one hand the lack of a centrdiaaity enables all domains to

implement and deploy their own applications on the sharédstructure as equals. On the
other hand it prevents implementing a relatively simpletiadised access control architecture,
because there is no trusted central authority to host it.

We propose a decentralised access control architectureevapplication owners are re-
sponsible for defining and managing application specifiesgcontrol policies, and the access
control decision making and enforcement is decentralised all the domains in the system
and their event brokers.

Application owners delegate access rights to domains. Bawtain further delegates those
rights to publishers and subscribers that are its membdrs.ddbmains are able to implement
domain-specific access control policies.

A decentralised model can also be more scalable: it avordgespoints of failure in the
verification infrastructure; it is more manageable in a mditimain setting; and it will afford
better verification performance by localising access abminecks to event brokers. In some
cases, though, the policy management requires that adgbss must be immediately revoca-
ble, in which case decentralised access control modelsttedegrade to making queries to a
central revocation server for each access control decision

1.4 Research Statement

In this dissertation we argue that large-scale publistysiilbe systems will most likely be
formed by multiple independent administrative domainse phesence of more than one do-
main necessitates an access control mechanism that isoadrhéarce an access control policy
and protect the confidentiality and integrity of event cahia a shared infrastructure.

The main contribution of this work is the design and protetypplementation of a decen-
tralised access control architecture for multi-domainlighiisubscribe systems calledAvh .
MAIA provides:

Unigue Names MAIA creates unique type and topic names by prefixing the hunedalde
name with the name owner’s identity as a cryptographic pWkdy. The globally unique
public key defines a globally unique namespace inside whiehotvner of the public
key is free to define new names. Assuming that the name owrsdalésto avoid name
collisions inside its own namespace and that the public kgptoc system is not broken
we can guarantee that names imM are unique.

1.5. Dissertation Outline 27

Type Authenticity and Integrity Type definitions are digitally signed by the type owner when
they are deployed. The signature can be verified with the typeer’s public key that
Is part of the event type name, i.e. a type definition is seifttable. By verifying the
signature on the type definition, the verifier (i.e. evergmlior broker) can ascertain the
integrity and authenticity of the type definition.

Network-Level Access Control MAIA enables a coordinating principal in the multi-domain
publish/subscribe system to control who is able to join thbligh/subscribe system on
an infrastructure level. Only those domains that have ba#ased by the coordinating
principal (directly or indirectly by a delegate of the comating principal) are able to
join and access the shared publish/subscribe system.

Application-Level Access Control MAIA enables type owners to control who is able to use
(i.e. publish or subscribe to) a type. A domain must be aigbdrby the type owner
(directly or indirectly by a delegate of the type owner) t@ @sgiven type. This work is
equally applicable to topic based publish/subscribe ayste

Event Content Encryption MAIA enforces event-level access control in the event service by
encrypting the content of published events. Encryptingahent content prevents an
event broker that is routing the event from accessing theteantent unless it has been
granted access to the appropriate encryption keys.

1.5 Dissertation Outline

The remainder of this dissertation is organised as follows:

Chapter 2 provides an introduction to the background nepessainderstand access con-
trol in large-scale publish/subscribe systems. The chdipse discusses publish/subscribe as a
messaging paradigm, and more specifically decentralisblispisubscribe systems. The sec-
ond part of the chapter discusses various access contralsaald then moves on to looking at
decentralised trust management and specifically adithple public key infrastructuSPKI).

Chapter 3 describes what we understand domains to be and winatialomain environ-
ment is expected to look like. The first part of the chaptenomitices the various components
present in a domain, and what are the responsibilities otaess control service in a domain.
The second part describes how a coordinating principal $amulti-domain environment by
inviting domains to join a shared infrastructure. We finisl thapter with a detailed descrip-
tion of the vehicle congestion control example applicatioat will be used throughout this
dissertation to motivate our work.

Chapter 4 provides a foundation for a decentralised accegsot@ystem. The chapter
presents a scheme for secure names, verifiable event typatide, and a mechanism for

28 Chapter 1. Introduction

updating type definition in a live publish/subscribe syst&acure names and verifiable event
type definitions enable us to reference event types secinogtyaccess control policy.

Chapter 5 presents our decentralised access control atcinédor multi-domain publish/
subscribe systems. The chapter begins with a descripticapzbility-based access control and
access right delegation. The second part of the chapteriblest¢he access control mechanism
for network-level and application-level access control.

Chapter 6 discusses access control policy managementysajproaches to access right
revocation, and how to deliver capabilities and credeniddildity statements in the publish/
subscribe system.

Chapter 7 addresses the issue of enforcing access coniieyl palide the publish/subscribe
event service. The architecture presented in Chapter 5gaswccess control at the edge of the
publish/subscribe system’s event service, but it doesmiotree access control while the event
is being routed through the system possibly via untrustesnmediaries.

Chapter 8 summarises the work presented in this dissertatidroutlines future work on
decentralised publish/subscribe systems in the Operagrou

CHAPTER 2

Background

In this chapter we introduce the concepts and related wakthe access control model pre-
sented in this dissertation builds on. The first part of thegotér concentrates on communication
in distributed systems and the publish/subscribe intenagtaradigm. We discuss the vari-
ous distributed communication paradigms and compare theéhetpublish/subscribe paradigm
in §2.1. In§2.2 we introduce the three most common subscription modsdsd in publish/
subscribe today. Finally, if2.3 we discuss decentralised publish/subscribe systemshare
at the heart of multi-domain publish/subscribe systemsthadbasis of this dissertation.

The second part of this chapter introduces the reader teacoatrol concepts that are rele-
vant to this work. 1r;2.4 we introduce basic access control concepts and digweibatkground
of access control research. We move on to cover decentidlisst management systems in
§2.5, and finish the chapter with an in depth view of the Simplblié Key Infrastructure,
which we use as an underlying access control mechanismuir Mn §2.6.

2.1 Distributed Communication

A distributed system consists of a number of nodes that aneestied to each other over a
computer network, e.g.lacal area networKLAN), a privatewide area networKWAN), or the
Internet. These nodes implement one or more distributeticapipns by running concurrently
and communicating with each other over that network. Coudaeiral. define a distributed sys-
tem as “one in which components located at networked compatanmunicate and coordinate
their actions only by passing messages” [CDKO1].

The communication between nodes can be implemented in aenohbifferent ways. Var-
lous communication paradigms, that formalise the node tle m@mmunication in a distributed

29

30 Chapter 2. Background

system, have been proposed in the past. We will dispus$ish/subscribesynchronous re-
guest/respons@asynchronous message passiagdtuple spaces more detail in the following
sections.

The various paradigms differ from each other in the type dftraation provided for the
programmer, in the type of abstraction used in the impleatent, and in the level of coupling
between communicating nodes. Notice that the communitatistraction offered to the pro-
grammer and the underlying implementation are orthogangl,the programming model can
provide an asynchronous messaging API to the programmée tia underlying implementa-
tion is based on synchronous remote procedure calls andeisa.

In this dissertation we concentrate on large-scale digehsystems. Therefore we are first
and foremost interested in the scalability properties efwirious communication paradigms.
The next section will describe the publish/subscribe axteon paradigm in detail. The follow-
ing sections will compare various alternative interactparadigms to publish/subscribe and
discuss the differences from a scalability point of view.

2.1.1 Publish/Subscribe

In the publish/subscribe interaction paradigm event pceds i.e.publishers publish events,
which are delivered to interested event consumerssubscribers The subscribers declare
their interests in the form afubscriptionsa subscriber will be notified of all events that match
its subscription. We will discuss the various subscriptioodels in more detail i§2.2.

Each publication is delivered to all subscribers with matghsubscriptions. If there are
no matching subscriptions, the publication is not delideieeany subscriber (We will discuss
more expressive subscription modelssih2). Multiple publishers are able to publish to the
same subscriber group. Therefore, publish/subscribeidsteamplement a many-to-many
communication model.

A publish/subscribe system consistseoent clientsthat can be publishers, subscribers, or
both, and arevent service The event clients connect to the event service in order tessc
the publish/subscribe system. The event service is reggerfsr delivering publications to
subscribers by matching the publication to the active suptsans.

The implementation of the event service depends on the sizé¢ype of the system being
supported. Small systems run on a single server where avtir@ clients and the event service
are running on a single node, possibly even as a single apiplic Medium sized systems run
each event client and the event service on separate nodeslyFvery large systems need to
implement the event service as a decentralised serviceaoset of nodes. We will discuss
decentralised publish/subscribe system&i3.

The API exported by the event service is very simple (Seeel24l). A subscriber calls the
subscri be operation on the event service to create a new subscripftoeunsubscr i be
operation allows the client to cancel an earlier subsanptiThe publishing API consists of one

2.1. Distributed Communication 31

Function Description

advertise() advertise an event type / topic
unadvertise() undo a previous advertisement
publish() publish an event of a type / topic
subscribe() subscribe to events
unsubscribe() cancel an existing subscription

Table 2.1: The basic publish/subscribe APl is very simple, consisting of only five operations.

or two operations depending on the underlying publish/stilbs system. All publish/subscribe
systems support@ubl i sh operation for publishing events to the event service. Sambégh/
subscribe systems also provideauver t i se operation, which is used in decentralised sys-
tems to create routing state and in other systems to prorfdeniation to potential subscribers
on the types of events that are being published in the system.

The event service isolates the event clients from each ,ofiseshown in Figure 2.1, and
stores and maintains the event routing information (i.e.shbscriptions and advertisements).
The indirection provided by the event service allows thesstibers to be decoupled from the
publishers in three dimensions [EFGKO03]:

Synchronisation decoupling

Communication between two nodes in a distributed system eaaitber synchronous or asyn-
chronous. With synchronous communication a client nodeemakrequest to a server node
that then replies to that request (S€el.2 for a more detailed discussionm@guest/responge
Because the communication is synchronous, both nodes “mégte”, i.e. both parties are in-
volved in handling the message at the same point in time.C@lgithe client has to wait for the
response from the server before it can continue its exatulibis means that the client thread
has to block for the time it takes for the request to be dedgido the server, the server to han-
dle the request, and the response to be delivered back tdi¢hé dhe fact that the requester
blocks for the duration of the synchronous interaction Bnsdhe scalability of the distributed
system. Both the number of interacting nodes as well as thddiencies between nodes de-
grade the performance of a synchronous system, becauseé rtides block for increasingly
longer periods of time.

The publish/subscribe interaction paradigm avoids thidlem by using an asynchronous
method of communication. A publisher submits a publicatmihe event service. After that
the event service is responsible for delivering the pubbeeto the subscribers. The publisher
does not have to wait for the publication to be delivered gostlibscribers before it can continue
its execution. Typically the underlying implementatiotoels the application to continue its
execution immediately while the network communicationasdiled in the background. That
Is, the publishing application pushes the publication asend queuewhich is then handled

32 Chapter 2. Background

)
Subscriber

/
. Event .
Publisher |—» Servi —| Subscriber
ervice

N
Subscriber
__

Figure 2.1 : The event service and the use of asynchronous messaging decouples the publisher
from the subscribers in time, space, and synchronisation.

in the background by another thread of execution. The sarmmaador the other messages in
the publish/subscribe system, i.e. subscriptions andrasements.

Spatial decoupling

In order for two nodes to be able to communicate with eachrpthessages from a sender must
reach the recipient. If the sender is required to know theifipeecipient (e.g. the recipient’s
name or IP address) in order to send a message, the two nadesraidered to be tightly
coupled to each other in space. Space coupling affects Hiabslty of a distributed system
by requiring nodes to have knowledge of all of their commatian parties. This increases
the memory consumption of applications and it is difficulimaintain that state in large-scale
systems with high node churn rates, like the multi-domasteys we are envisioning.

We can alleviate this tight coupling to some extent by inii@idg a level of indirection be-
tween the nodes. For examplename servicéhat maps names to addresses or objects allows
the recipient to change this mapping without it affecting sender. Examples of such imple-
mentations include theomain name servid®NS) used in the Internet to map hostnames to IP
addresses, and name services that are used in varioust/esplgstyle middleware products
to map names or interfaces to services or implementatiogsobject registries in RMI and
CORBA (Se&2.1.2).

In the publish/subscribe model the event service convégikites all the event clients from
each other. Instead of publishing an event to specific sidessr the publisher submits the
publication to the event service and the event service @dlii to the subscribers. This means
that only the event service needs to know of all the partteiganodes. We will discuss i§2.3
how this state can be decentralised in large-scale publibbtribe systems by implementing
the event service as a networkedfent brokers

2.1. Distributed Communication 33

Temporal decoupling

Two nodes are said to be coupled in time if both nodes need txtie at the same time in
order to be able to communicate with each other. An activemothis case means a node that
Is connected to the distributed system and executing thaldited application. In a typical
client/server model both the client and the server must being at the same time in order to
be able to communicate with each other. If the client weredkera request to a server that was
not connected to the network, or was not executing the seglication, the request would
fail.

In message based systems a message broker can be used moesteages while the recipi-
ent is inactive or disconnected from the system. The medsajer stores the message while
the recipient is not available thereby hiding this fact frthra sender.

Decoupling the nodes from each other in time allows the noaesnnect and disconnect
from the distributed system without affecting its overalh€tionality. In a large-scale dis-
tributed system it is expected that nodes join and leaveyistes frequently either of their own
volition or because they have been started or they haveemnlasthe fact that the churn does
not affect the other nodes in the system allows the systeitele better.

In a publish/subscribe system the decoupling provided byetlent service allows publish-
ers and subscribers to join the system without there hawarigeta counterpart for them. For
example, a publisher can join the publish/subscribe syatahpublish events when there are no
subscribers with matching subscriptions. Similarly a subgr can subscribe to events when
there are no publishers in the system.

A publish/subscribe system can also provide disconnegiechtion where the event service
caches events for a client that have left the system temipoaad replays those events back to
the client when it rejoins (See [SAS01, PCMO03, FGKZ03, CMPCOUYHW04]).

2.1.2 Synchronous Request/Response

One of the earliest proposed paradigms for communicatibgd®n nodes in a distributed sys-
tem was th@emote procedure ca(RPC). An early form of RPC was proposed by James White
in aninternet Engineering Task For¢éETF) Request for CommeniRFC) titledA High-Level
Framework for Network-Based Resource Shafwhi76]. White's goal was to standardise
a communication protocol and an early form of middleward thauld allow developers to
reuse the communication layer when implementing distedatpplications like théle transfer
protocol (FTP) [PR85] for IP networks. Birrell and Nelson publisheditlsgminal paper on
implementing an RPC mechanism eight years later [BN84], whiokided the cornerstone for
many of the RPC-based systems of today.

The RPC mechanism allows the software developer to make asetpua server and wait
for the response. An RPC call consists of the client sendirggaest to a known server, the
server executing a specified procedure with parameterdiedfdyy the client in the message,

34 Chapter 2. Background

)

/ Server
N
)
- | Server
N

)
Server

—

Figure 2.2 : The use of synchronous messaging and the lack of an intermediary couples the
client tightly to the server.

and finally the server sending a response back to the clieriaitong a return value from the
executed procedure.

From a software developer’s point of view the RPC model is \&tractive, because the
provided abstraction resembles local function calls. Témsetbper can in principle ignore the
fact that the RPC call is passed over the network to a remote.nbite developer is also able

to move remote code back to the local process with relatige g simply replacing the RPC
calls with local function calls.

In practice though, while the RPC API hides most of the netimgykletails of the RPC call,
it cannot hide the increased latency, the possible netnaleted failure modes, or the fact that
the referenced objects reside in separate memory spaceeefdte the apparent simplicity of
the RPC abstraction is often misleading, resulting in apghas with, for example, insufficient
error handling. It is not uncommon to find distributed apgticns based on RPC that fail to
scale up in size, because of latent problems that have mgyibeen masked by the small size
of the deployed system [WWWK94].

The procedure call abstraction results in tight couplintgpeen the client and the server in
all the three dimensions described earlier (See Figure 2iP)he client will block until the
server responds to the request; (ii) the client must knovatitress of the server; and (iii) both
parties must be running at the same time. Because of thisamigling the RPC paradigm is
not very well suited for large-scale, wide-area deployrsavitere nodes are transient and link
latencies are high.

Extensions to the RPC model have been introduced in an effdry tto relieve the tight
coupling between the client and the server. For examplegsmplementations have introduced
fire-and-forgetstyle RPCs where the client does not care about the succegstulten of the
call nor the possible return value. With a fire-and-forget ttee client is able to resume its
execution immediately after making the call without haviagvait for a return value.

Another popular extension to the RPC model, first proposedsiol and Shira in [LS88],
arefutures This extension allows an RPC API call to return a future aijethe caller rather
than the real return value. The future is returned immeljiatdile the remote procedure

2.1. Distributed Communication 35

call is handled in the background by another thread of exatui he background thread will
eventually place the real return value into the future dljpece the remote call returns. Futures
are a simple way to allow the client to continue its executidrile a remote procedure call is
being serviced in the background. When the client is ready&d @dith the return value, it can
read it from the future object. If the client does not havethimg else to do before handling the
return value, the future object typically implements a klog get () method that allows the
client to wait for the return value. Otherwise the client cae thepol | () method to check if
the return value has arrived yet and perform some other wailewvaiting for it.

Both extensions aim to enable the application programmeseécagynchronous messaging
towards the server when possible, thereby increasingrmayséeformance and scalability when
the client is not interested in the return value of the call.

Most modern, object-oriented RPC implementations, e.g. CORBAJava RMI (See be-
low), typically include aname servicelnstead of using the server’s address to access an object
directly, the client uses the name of a service to look up dlation of the object implement-
ing that service from a registry. The location of the objextudes the address of the server
hosting that object. The name service introduces a leveiaifection between the client and
the server. This indirection allows the nodes that implentlea service to change as long as
the name-to-object mapping is updated in the name servioen@ime service can also be used
to introduce some level of fault-tolerance to the systemllmyveng multiple objects to register
with the same name. The name service will then load balardeifis between all the objects
registered with the same name. Another alternative is wrmed list of objects to the client
and let the client pick one to use. This approach allows tieatcto transparently switch from
one object to another in case of failure, assuming that tn®te object does not maintain any
session state.

There have been numerous implementations of the RPC paraiigia RFC 707. One
of the most notable implementations is Sun’s RPC [Sun88]clwvis used as the transport for
the Network File SystenNFS) protocol [SCR03]. Sun’s RPC was renamed in 1995 by the
IETF as the ONC RPC (Open Network Computing RPC) in [Sri95]. TherCpoftware Foun-
dation has standardised another RPC implementation as afghdir Distributed Computing
Environment(DCE) [Cha93]. The latest version of the DCE specification, ivard.2.2, was
released in early 2005. Microsoft adopted version 1.1 of DCE B®the basis for the MSRPC
mechanism that is used to implement the DCOM framework in thed@ds operating system.

The Common Object Request Broker Architect(@RBA) [Obj04a] and Java’Remote
Method InvocatiofRMI) [Sun94] both provide an object-oriented RPC abstractiat allows
clients to make method calls on remote objects that havelbekad up from a naming service.

The latest additions to the RPC family of distributed commation paradigms include
the Web servicesimple object access protoéqISOAP) [Wor07] andXML-RPC[Win99], a

1The original acronym has been dropped since version 1.2aftttndard and the protocol is known now simply
as SOAP.

36 Chapter 2. Background

)

Server
—
)
—
)
Server
—

Figure 2.3 : In traditional message passing the use of asynchronous messaging achieves syn-
chronisation decoupling between the message producer and the message consumetr.

simpler variation of SOAP. In both protocols RPC calls areaised as XML messages and
sent to a server usually as an HTTP request (although otiesorts like SMTP or XMPP are
also supported).

2.1.3 Asynchronous Messaging

The alternative to synchronous RPC is asynchronous megsalgistead of making a request
to a server and waiting for a response, a node sends a meegaga¢cipient. The message is
one-way only, i.e. there is no response to it. If a responsegsired, the recipient will send a
response as a separate first-class message.

Because the message sending does not result in a responsthéroetipient, it is simple
to implement message sending in an asynchronous way aneéiaie the client to carry on
execution immediately after submitting the message to be $&e underlying distributed mid-
dleware takes care of sending the message over the netwtiré tecipient in the background
(i.e. typically in another thread of execution).

Asynchronous messaging comes in a variety of flavours, othvpublish/subscribe is one
example. The other flavours include simpreessage passingnd more advancethessage
gueueing

Message passing is one of the earlier forms of distributegtation. In this paradigm an
originator sends a message to a recipient, as shown in Fj8ré'he sending of the message
is asynchronous, i.e. the originator can carry on with itsceion immediately. The receiving
of messages on the other hand is typically synchronousheeecipient blocks on the message
sink waiting for incoming messages. A simple implementatimuld consist of the originator
sending UDP packets to the recipient that is blocking onirgpal UDP socket.

With respect to the three dimensions of tight coupling dssed above, the nodes in a mes-
sage passing system remain tightly coupled in space anché the originator must know the
address of the recipient, and both nodes must be active aathe time.

Message queueing is another style of asynchronous megsamed at larger systems
where the space coupling of message passing is not aceeptablessage queueingreessage

2.1. Distributed Communication 37

)
Consumer
v —=<
)
& | Consumer

Broker %
)

Consumer
\—___

Message
Producer —» g

Figure 2.4 : In a message queueing system the message broker decouples the producer from
the consumers in time and space, but the consumers need to pull messages from the broker
synchronously.

broker provides a level of indirection between the communicatindes, not unlike the event
service in a publish/subscribe system, which further dplesuthe nodes from each other (See
Figure 2.4). Instead of the client sending a message direxthe server, the client sends the
message to message queuwsted by the message broker. The intended recipient of ése m
sage, i.e. the owner of the message queue, dequeues thgeesathe queue synchronously
when it is ready to handle a new message.

Typically a message queue in the system can be read only byamseimer at a time. The
same message cannot be read by multiple consumers. Tleenedssage queueing implements
amany-to-onecommunication model, i.e. multiple producers can commaigievith only one
consumer over a message queue.

Compared to message passing the message broker decoupieestbege producer from
the consumer both in space and time: the producer is requadatbw only the message broker
rather than each consumer, and the message broker can\stats #r a consumer while it is
not active. On the other hand the fact that consumers pulsages from the message broker
creates a synchronisation coupling between the messakertaod the message consumer.

One of the earliemessage oriented middlewa@OM) implementations is IBM’s Web-
Sphere MQ [IBMO07]. Thelava Messaging Systef@MS) [Sun02] has become a very popular
messaging standard with the rise of Java’s popularity irerpnise systems. Another, rela-
tively recent implementation, is the Apache foundatiofyfs|ache ActiveMQApa07] with its
OpenWirewire protocol. ActiveMQ also implements a number of the m@eent enterprise
integration approaches likitomgSto07], web services, arREST[Fie00] as well as JMS.

It is important to notice that asynchronous message passihg underlying communica-
tion paradigm in most distributed system formalisms, e gatd’'sCommunicating Sequential
Processe$CSP) [Hoa78] and thBi-calculusby Milner et al. [MPW92].

38 Chapter 2. Background

)
Consumer
—

Tuple &’ ‘
Producer [—» S Consumer
pace

)
Consumer
__

Figure 2.5: The in operation supports a many-to-one interaction model.

2.1.4 Tuple Spaces

A tuple spaces an implementation adistributed shared memaryrhe shared memory, in this
case, stores a collection of tuples. A node can access tleedpgace by reading and removing
tuples from the space and by inserting new tuples into theespacording to the APl shown

in Table 2.2. Both theead andin operations accept patterns that are used to select a tuple
from the tuple space. If more than one tuple match the pattara of the tuples is selected

at random from the matching tuples and the operation is eginly to that tuple. All tuples

are equally accessible to all nodes in the system, whiclvaltbe tuple space to be used as a
communication medium between nodes.

Function Description

in consumes a tuple from the tuple space
read reads a tuple from the tuple space
out writes a tuple into the tuple space

Table 2.2: The tuple space API of three operations used to write, read, and consume tuples.

Depending on the operation used to read tuples, a tuple gpacenplement eithemany-
to-onemessage delivery if the consumer consumes the tuple frospee, omany-to-many
delivery if the message is read and left in the tuple space F8gures 2.5 and 2.6).

The client nodes in a tuple space system are decoupled fromotlaer, and from the tuple
space both in time and space, but again, similarly to mesgageeing, the consumers pull
messages from the tuple space synchronously.

Tuple spaces suffer from scalability issues. It is diffi¢doldistribute the tuple space over
a set of nodes. One approach, suggested by Xu and Liskov iB9KLs to replicate the tu-
ple space over a set of nodes in which case each node willincaitauples. Murphy et al.
in [MPRO1] suggest another approach, targeted at mobile@nwvients, where mobile nodes
all have their own tuple spaces with their own content. A nadecache a tuple destined for
an unreachable node in its own tuple space until the destinegjoins the system.

Neither approach is suitable for large-scale systems.dridimer approach the tuple space

2.2. Publish/Subscribe Subscription Models 39

)
Consumer

&;/

Tuple ’ ‘
Producer [— G | Consumer
Space %

)
Consumer
__

Figure 2.6 : The rd operation in a Tuple Space allows many-to-many interaction between pro-
ducers and consumers.

will grow in size indefinitely. In the latter approach all rexlin the system are expected to
have knowledge of all other nodes in the system and the lgaxijoining of a node causes the
execution of globaéngagemendanddisengagemerygrotocols.

The underlying problem is that it is hard to divide the tugbace into smaller sub-spaces
that still allow for efficient pattern matching with tle andrd operations.

Some implementations, most notably JavaSpaces and Rinda,elxéended the original
interface with anot i f y operation that allows the tuple space to notify consumeisctbns
executed on the tuple space (e.g. adding or removing tuplds notify operation decouples
the consumers from the tuple space thus providing syncéeiban decoupling.

Tuple spaces were first introduced as a part oflLimela programming language [Gel85].
Since then other implementations have emerged, e.g. IB8sace$WMLF98], Sun’sJava
SpacegSun03] specification anRinda a Ruby implementation of a tuple space [Rin07].

2.2 Publish/Subscribe Subscription Models

The publish/subscribe interaction model enables a pudaligh publish an event to a set of
subscribers. The termo subscribemplies that the subscriber is in control of what kind of
events it receives. In order to empower the subscriber gwlaly, the publish/subscribe system
must provide a way for the subscriber to express its inter@sthe form of a subscription.
The subscription acts as a filter on the published eventsevbat service will deliver to the
subscriber only those events that match the subscribdy&csiption.

The subscription mechanism provided by the publish/sifs@ystem imposes a trade-
off: a less expressive subscription mechanism results myraanecessary events being deliv-
ered to the subscriber which are then discarded by the apipinc a more expressive subscrip-
tion mechanism on the other hand requires the event sexvide more work when delivering
events [CRW99].

The following sections describe the following three pubksibscribe subscription models
in more detailtopic-basedcontent-basedandtype-baseghublish/subscribe.

40 Chapter 2. Background

2.2.1 Topic-Based Publish/Subscribe

The first publish/subscribe systems implemented a topsedaubscription model. In topic-
based publish/subscribe published events are associdtetbpics A subscriber, respectively,
specifies a topic as part of the subscription. Instead ofivieceall events published in the
system, the subscriber is notified only of those events tiet been published on that topic.

A topic forms a broadcast communication channel from alllighkers to the subscribers
of a given topic. Therefore, topics are very similargupsin group communicatiorsys-
tems [Pow96] where nodes join a group in order to communiwdteother group members. In
fact, one of the first systems to implement the publish/stibsénteraction model was built on
top of thelsis group communication toolkiBCJ+90].

However, the topic-based subscription model providesubsaiber only with very limited
expressiveness. This results in the subscriber typicatigiving many unnecessary events that
have to be discarded in the application. For example, asguthat all stock quotes in the stock
ticker example (Segl.2.1) are published on a singde ockQuot e topic, a subscriber, that is
interested only in one of the many companies, will have terfittut all the other stock quotes
itself. This results in inefficient use of resources as weltequiring the subscriber to do extra
work.

A solution to this problem is to divide the topic space intaeger number of topics. In-
stead of having one topic to represent all stock quote eyver@san publish each company’s
guotes under its own, company-specific topic. This appradloivs subscribers to subscribe to
company-specific topics and receive only those events teahteresting to them.

The downside of a verbose topic space is the fact that in dadsubscribe to a larger
segment of the topic space, the subscriber must subscribaltiple topics. For example, con-
tinuing with the stock quotes example, a subscriber thatsv@receive all stock quote events,
regardless of the company, must now subscribe to all comppegific topics that number in
the hundreds.

In order to address this expressiveness issue topic-babdidip'subscribe implementations
introducedtopic hierarchies Topic hierarchies allow the topic space in a publish/stibsc
system to be organised into one or more hierarchies: topiesed to each other are placed
into a hierarchy according to some containment relatigpsshirhe sub-topics in a hierarchy
represent a more specific sub-category of their parent.téfmc example, a company-specific
topic (e.g.Noki a) would be the sub-topic of a genef&l ocks topic, as shown in Figure 2.7.
A subscription to a topic that has sub-topics results inmbficn subscriptions for all of the
sub-topics as well. By representing the companies in a st@kehand the rest of the stock
exchange as topics in a topic hierarchy we can allow suligmmgp both to company-specific
topics and to the parent top&t ocks. In both cases the subscriptions are expressive enough
to allow the event service to take care of all the event filgwithout the subscriber having to
do any application level filtering at all.

2.2. Publish/Subscribe Subscription Models 41

(MarketQuotes)

Stocks (Derivatives)

/\ N

Nokia (]

Figure 2.7 ;. Subscribing to a topic in a topic hierarchy implies subscriptions to all sub-topics.

Another popular enhancement, which was first introducedIBCD Rendezvous [TIB07],
IS to supportwildcardsin topic names. Wildcards allow event clients to subscriyeot pub-
lish under all topics in a set of topics matching the topidqrat The wildcards in the TIBCO
system allow the subscriber to replace a node in the hieydrele with a wildcard. For ex-
ample, by subscribing tvar ket Quot es. *. Noki a a subscriber is able to subscribe to all
three-component topics in the system that start Whin ket Quot es and end withNoki a.
Assuming that the stock exchange example includes also @oyrgpecific derivatives, e.g.
Nokia futures, this subscription will match Nokia-relateekents both under th&t ocks and
Deri vat i ve sub-topics.

Topic-based publish/subscribe has been implemented byaenof publish/subscribe mid-
dleware products including Altherr et al. [AEM99] and TIBCAPBD7]. The JMS specification
also defines some topic-based functionality.

2.2.2 Content-Based Publish/Subscribe

While hierarchical topics allow subscribers to describdrtBabscription in more detail, in
many cases the expressiveness provided by topic-basedipabbscribe is simply not enough,
resulting in either fragmented topic spaces or alternigtiegcessive application level event
filtering and inefficient resource usage. The fundamentatdition in the topic-based subscrip-
tion model is the fact that subscriptions are static, i.at thatching of events to subscriptions
does not take into account the content of the events.

The content-based subscription model, first proposed by Batal. in [BBHM95], ad-
dresses this problem by allowing the subscriber to inclutde\gent filter expression in the
subscription. The filter expression is applied by the eventise to the content of each pub-
lished event to determine whether the event matches thegptien or not. For example, a
subscriber can subscribe to all events whesee = Noki a andpri ce > 24. 00, which
in topic-based publish/subscribe, event with topic hignaas, results in filtering in the applica-
tion.

42 Chapter 2. Background

Topic-based publish/subscribe can be seen as a speciabitasetent-based subscription
model where the subscription includes an equality filter dkiet opi ¢ attribute. Topic hier-
archies can also be accommodated for if the subscripti@ndifupport string prefix matching.
The content of the event would be another attribute thataaos used in filters.

A subscription filter is specified in subscription languagewhich allows a subscriber to
define constraints on event content. Proposed subscrifatiguages include SQL [Sun02],
OMG's Default Filter Constraint Language [Obj04b], XPathH®@0, DFFT02], and publish/
subscribe system specific proprietary implementations [B88, CRWO01]. Nevertheless,
most content-based publish/subscribe implementatiopteiment relatively inexpressive sub-
scription languages that support only conjunctions of $ngomparisons (i.e=, ! =, <, >,
<=, and>=). Some subscription languages, XPath and SQL, in partielilaw for very fine
grained filters including filtering on partial string contexs well as dynamic filters based on,
for example, mathematical expressions.

The choice of subscription language usually defines thefs#dta types available in pub-
lications. For example, simple comparison based languggésally support only basic data
types: strings, integers, and floats. XPath 2.0 [Wor05] endtiher hand supports up to 19
different data types including dates, timestamps, yeaosiths, and URIs.

The challenge in content-based publish/subscribe systetnsmplement event filtering in
an efficient manner. Neely applying each subscription filter to each publicatioiurn will
resultin linear computational complexity with respectite humber of active subscriptions (i.e.
O(n)). A more efficient alternative is to place the subscriptitterfs into a tree where the most
generic subscription is at the root and the leaves représemhost specific subscriptions. This
approach allows the matching algorithm to ignore whole tnas of the tree when a node in
the tree does not match the publication resulting in logarit complexity (i.eO(logn)).

To be able to take advantage of this performance optimisdlie event service must be
able to impose a partial ordering on all subscriptions. Witleig partial ordering theoverage
relation between two subscriptions. Following the notation intraetliby Carzaniga and Wolf
in [CWO01], we represent an attribute as a 3-tuple- (type,,, name,, value,) and a constraint
as a 4-tuplep = (type,, nameg, operator 5, values). The constraint covers the attributer,
e« Efc o, If type, = typey A\ name, = namey N operators(value,, valuey).

A subscription covers, i.e. matches, a publication if alliteffilter constraints cover the
attributes present in the publication:
p[?f(:)ngGf:HaEp:aE’}gb.

A subscriptionf; thereby covers(g) another subscriptioff, if f; covers at least all the publi-
cations thatf, covers:

2.2. Publish/Subscribe Subscription Models 43

fa ngl <:>VP€P3P|:§f2:>pE§f1,

whereP is the set of all possible publications.

The subscription language must lend itself to comparing@deéring two expressions of
that language. The comparison is relatively simple in retsttl subscription languages that con-
sist only of conjunctions of simple comparisons, egme = Noki aandpri ce > 24. 00,
but ordering arbitrarily complex filters becomes quicklyrattable. Therefore decentralised
publish/subscribe systems that rely on the ordering of@utifons in order to be able to scale
well typically implement relatively simple subscriptioanguages.

The expressiveness of the content-based subscriptionldepgends solely on the expres-
siveness of the subscription language. On the other haadtftitiency of the event filtering
implemented in the event service relies on the subscrifiliens implementing a partial-order.
These two requirements introduce a trade-off between sgweness and efficiency.

Some decentralised publish/subscribe systemsHelgnes use the coverage relation when
distributing subscription state across the decentraksett service. Effectively the nodes in
the subscription tree are represented by event brokersaoidevent broker will forward the
publication to the other event brokers only if the publioatmatches the subscriptions on those
event brokers. We will discuss event routing in Hermes inerd®tail in§2.3.1.

2.2.3 Type-Based Publish/Subscribe

Topics in publish/subscribe are used to group common evegesher. For example, a topic like
St ockQuot e is used to group together stock trades that are happenihg stéck market. In
most cases events published under a given topic also sleasaitie structure, i.e. they have the
same set of name-value pairs.

The content-based subscription model, on the other hataysathe subscriber to filter
events based on the events content. By replacing the evaotvith an event type, one can
combine both the topic-based and the content-based maaasts are published as instances
of a type, which guarantees a given set of attributes, ansithscriber can filter on the contents
of those attributes. Thig/pe-basedsubscription model also allows for better integration with
programming languages, because an event can be providdtefprogrammer as a first-class
object of the programming language.

In [EGDO01] Eugster et al. propose a type-based subscriptiodel that borrows heavily
from object-oriented programming. In the proposed scheveatdypes define both attributes
and behaviour. The attributes are expected to be private@alydaccessible through accessor
methods. In addition to accessor methods, the type can edsalp other methods that can be
used in filter expressions or to access the event contenme gadirect way.

44 Chapter 2. Background

It is unclear what the advantage of this encapsulation isalee the subscriber will most
likely want to access all the fields that are included in thenév One can argue that the en-
capsulation allows for tighter programming language irdégn where objects are serialised
as publications, but one could just as well allow the clierdi¢cess the object’'s member fields
directly either by making the fields public or generatingediraccessors that simply return the
field value.

The Cambridge Event Architectuf€EA) was the first event-based system to utilise a type-
based subscription model [BBHM95]. CEA was built on top of CORBA #rused thenter-
face definition languag@DL) to define event types. Events were instances of a CIE§A
also supported content-based filtering as was discus$@ddr2. The Hermes publish/subscribe
middleware, which we will describe in more detail§d.3.1, inherited its type-based approach
from CEA and theCORBA-based event architect@OBEA) [MB98].

2.3 Decentralised Publish/Subscribe

We mentioned earlier if2.1.1 that a publish/subscribe system consists of evesitsliand an
event service. Depending on the size of the system, the seevite can be embedded in the
application with the event clients. In slightly larger ssis the event service can be a separate
service running on the same node with the event clients. istalaited setting the event service
can be a separate node with client nodes connecting to itleeretwork.

All publications travel via the event service. In a largelscsystem with thousands of event
clients the event service quickly becomes a bottlenecktfig the performance of the whole
system. The next logical step is to decentralise the evewitseamongst multiplevent brokers
and distribute the system load across those brokers. Tim eients connect to Bcal broker.
The local broker acts agaustedproxy between the event client and the rest of the eventarvi
forwarding messages from the client to the rest of the systeandelivering publications from
the system to the client. Byustedwe mean that the client trusts the local broker to proxy event
for it to and from the event service without changing themisTincludes event decryption and
encryption as we will describe in Chapter 7. We assume thabtta broker is either part of
the same domain, or it is owned by a service provider trusyatdclient.

The challenge in a decentralised publish/subscribe systéimw to distribute subscription
state and the event matching algorithm across the evenetsrokdne approach is to replicate
all state and broadcast all publications to all brokerssHpiproach is simple, but it also results
in a lot of unnecessary traffic between the event brokers.eiQtiore advanced approaches
aim to distribute state across all the event brokers whichase complicated, but requires less
resources and results in more efficient bandwidth use, lllgengproving the overall scalability
of the system. The downside in the distributed approachasdahch event broker is a single
point of failure in the system, because the loss of a brokemméhat some part of the system

2.3. Decentralised Publish/Subscribe 45

state has been lost. An optimal approach is to distributsyiiion state across the event
brokers as much as possible while at the same time replicattme of that state so as to
provide enough redundancy to be able to survive the loss@bomore event brokers.

A number of decentralised publish/subscribe implememtatihave been proposed in the
literature. One of the earliest implementations isghalable Internet event notification archi-
tecture(Siena) [Car98, CRWO0L1]. Siena is a content-based publishtabbssystem that was
specifically designed for Internet-wide deployments.

Another significant implementation is tl@ryphonproject at IBM Research [BCNP9a].
Gryphon is an industrial-strength, content-based pulsligiscribe system that has now been
integrated to IBM’s WebSphere suite of enterprise messggioducts. Gryphon is based on an
information flow graphIFG) model [BCM"99b] where an IFG specifies the flow of informa-
tion from publishers to subscribers.

Other notable implementations of decentralised publigigsribe systems include tdava
Event-Based Distribute Infrastructu(@eDI) from Politecnico di Milano [CNF01] anRebeca
from the Darmstadt University of Technology [FMBO1].

The decentralised publish/subscribe systems can be divide two camps depending on
whether the event broker network implements a static or slyniéopology. A static topology
is defined at deployment time and cannot change during enhié of the system. A dynamic
topology on the other hand is able to adapt to changing n&teonditions and joining and
leaving event brokers. Therefore a dynamic topology neéivean heal itself after node and
link failures by re-balancing itself. From the systems nwmd above, Siena and Gryphon
implement static topologies, while both JEDI and Rebeca@mgint a dynamic topology.

In alarge-scale, Internet-wide system it can be assumeédvbat brokers will join and leave
the system, and that network faults will cause event brotetsse connectivity temporarily.
Therefore a dynamic topology will make the broker networngicantly more resilient to
transient faults and node churn in an Internet-wide deptaym

2.3.1 Hermes

Hermes [PB02, PB03, Pie04] is a content-based publish/sbbsuoiddleware with strong event
typing. It implements a decentralised event service in ora@rovide scalable event dissemi-
nation and fault tolerance in the presence of node and nktiaibures.

A Hermes system consists effent brokersand event clientsthe latter beingoublishers
and/orsubscribers Event brokers form an event broker network that perfornenepropa-
gation by means of a type- and content-based routing afgoritEvent clients publish and/or
subscribe to events in the system. An event client conneaddcal broker, which then be-
comespublisher hostingPHB), subscriber hostindSHB), or both (CHB). An event broker
without connected clients is called antermediate broke(IB).

A feature of Hermes, that this work relies on, is supportfgent typingevery publication in

46 Chapter 2. Background

Hermes is an instance of awent typeAn event type definestgpe namend a set oéttributes
that consist of arattribute nameand anattribute type Supported attribute types depend on
the types supported by the language used to express sulwscfilpers. In our implementation
the subscription language supports basic Java types thaasaly be compared, e.g. integers,
strings, booleans, dates, and floats. We will refer to thisseuption model asype-based
publish/subscribe throughout the rest of this dissenatio

Another Hermes-specific addition to traditional conteaséxd publish/subscribe is support
for event type hierarchiesn Hermes event types can be organised into inheritancarbldes,
where an event type inherits all of the attributes defined iahdrited by its super-type. In
addition to making defining new types easier, type hieraskbnable a subscriber to subscribe
to a super type in an event type hierarchy and receive ndidicaf events of that specific type
as well as all its subtypes. While some of our work is compatiith event type hierarchies,
the proposed design would require more work in order to sagpem fully. Therefore we
do not claim to support Hermes’ type inheritance. In geneahave tried to keep the design
as widely compatible with Hermes’ flavour of type-checkedteot-based publish/subscribe
systems as possible without any loss of generality.

We have built our access control system on topHefmes We chose to build on top of
Hermes, because it is a decentralised publish/subscrgdtersywith a dynamic broker network
topology. Both features place requirements on the accessotanchitecture. Therefore by
concentrating on Hermes we provide an access control aothie that is equally applicable
to decentralised, dynamic topology systems as well asalesgd systems and system with a
static broker network.

While parts of our work are also applicable to content-basetitapic-based systems, we
will concentrate on the type-based subscription modeluginout this dissertation. Where ap-
plicable we have included a section describing how a ceféature could be implemented in a
topic-based publish/subscribe system.

Event Routing

The event service in Hermes is implemented as a network @fdohnected event brokers. The
event brokers form a peer-to-peer system with each otherenents are routed by means of
consistent hashinfKLL 797]. More specifically Hermes is implemented on top of thetfyas
distributed hashtabl¢€DHT) [RDO1b].

In a consistent hashing system each node picks a randonitydenttself from a large iden-
tity space. Typically a random identity is generated by imgghome node specific information,
e.g. the node’s IP address, which results in the identig@sgouniformly distributed across the
identity space. MIA uses the SHA-1 hash algorithm to generate a node identity.idéntity
space is 160 bits. Messages in the system are sent to antydeftie destination identity is
generated by hashing some information related to the messaga key. The message is then

2.4. Access Control 47

routed to the node with the identity that is numerically elsisto the target identity. All nodes
in the system that know the key are able to access it by hasienkey with the hash algorithm.

Distributed hashtable@DHTs) [ZKJ01, SMK01, RFH 01, MMO02] use consistent hashing
to partition the identity space amongst the nodes in therysThe key associated with a value
is hashed and that hash value is used as the destinatiorsétandlookupmessages.

Hermes (and MIA) uses consistent hashing to findemdezvous nod®r an event type
amongst all the event brokers in the system. The rendezuaiesis the node with the identity
that is numerically closest to the hash value of the everd tyggme. The rendezvous node is
used as a meeting point for advertisement and subscriptessages. Advertisement messages
from the publisher hosting brokers and subscription mess&gm subscriber hosting brokers
for a given event type are all routed to the same rendezvods. nBach intermediate broker
that the advertisement or subscription message is routedgh sets up routing state for the
event type. Publications from the publisher hosting brekee then routed through the event
broker network according to the created routing state. Mpezxifically, a publication follows
the forward-path of the advertisement from the publishetheorendezvous node. At every
node where the publication meets a matching subscriptimps of the publication is sent on
the reverse-path of the subscription towards the subscriibe subscription paths form a tree
routed at the rendezvous node. At each branch of the treputhiecation is again copied and
one instance is routed towards each branch of the tree.

Because the identity generation in a consistent hashingmyisteffectively uniformly ran-
dom, it is impossible to control the route an event will takeotigh the system. In a multi-
domain environment this means that a domain-internal ngesseght be routed via brokers in
other domains before it gets to its destination inside tigirating domain. This places some
requirements on the access control architecture. Namelpritbker network cannot be trusted
not to read or not to change the event content even thoughuseal event brokers to route
events correctly (Seg3.6 for a more detailed discussion on the threat assumptensave
made). This is addressed in Chapter 7 where we introduce emenjption as a mechanism for
enforcing access control in the untrusted broker network.

Event routing, including fault-tolerance of the routingtst, in Hermes is described in more
detail in [PB02, PB03].

2.4 Access Control

Access control in computer systems is used to control the of@actions a user can perform
on a resource. In formal ternmbjectsrepresent the resources that are being protected by the
systemsubjectgepresent, for example, users or processes performiranaain an object, and
operationsrepresent all the actions that the subjects can performealifects.

In an operating system access control decisions are mddigitihereference monitarThe

48 Chapter 2. Background

Classification
Top Secret
Secret
Confidential
Unclassified

Table 2.3: Common classification labels in decreasing order of access.

reference monitor was introduced as a concept by James gordéer his study on computer
security [And72]. Anderson proposed that the access corglated functionality should be

contained in a single component in the operating systemwibatd be small enough to be
subject to thorough testing and analysis. Together witdware, firmware and other software
the reference monitor in a computer system formdiirgted computing bagd CB). The TCB

is defined as the set of components that, if working correetllf be enough to enforce the

security policy in the system regardless of the behaviowtloér components. In other words,
if the any of the components that form the TCB malfunction artao a bug, it might jeopardise
the security properties of the system.

Traditionally access control has been divided imandatory access contrgMAC) and
discretionary access contr@DAC) models. In MAC-based systems the system sets the access
control restrictions for objects based on security policgl the subject that applied an operation
on the subject. In DAC-based systems access control réstiscon objects are left to the
discretion of the subject owning the object. In the recest me-based access contrfRBAC)
has emerged as a third alternative access control modethuspowerful enough to simulate
both MAC and DAC systems.

2.4.1 Mandatory Access Control

Mandatory access control systems have their roots in theamibnd intelligence communities,
which have based their access control on hierarchicaliitzg®on levels as shown in Table 2.3.
MAC systems can only ever protect the confidentiality orgntg of data, but never both.

In 1973 David Bell and Leonard LaPadula presentedltilevel security(MLS) [BL73,
LB73, Bel74, BL76]. The MLS model concentrates on the configdityiof data. It prevents
information from flowingdownwardsin the classification system, i.e. from a higher level of
classification to a lower one.

A subject in an MLS system is allowed to access an object ditly ¢lassification is greater
or equal to the classification of the object. For example, ex usth Secretclassification is
able to read and writé&nclassified Confidentia] and Secretdocuments, but notop Secret
documents.

Ken Biba proposed another model [Bib75] that concentrateslysoh data integrity, ig-
noring confidentiality considerations. When protecting ¢befidentiality of information it is

2.4. Access Control 49

important to prevent that information from flowing from higlassification levels to lower clas-
sification levels. On the other hand, in a system concerndd the integrity of information
we must prevent information from flowing upwards from lowkassification levels to a higher
one. Subjects must alwaysad upandwrite down i.e. read data from a higher classification
level and write data to lower classification levels. Thesalg@are contrary to the goals of a
confidentiality protecting system.

Other formal security models include the Chinese Wall s¢gpalicy and the Clark-Wilson
model. The Chinese Wall model was developed by Brewer and Ne$B89 [BN89]. The
model has its roots in the investment banking industry witeeeimportant to internally pre-
vent conflicts of interest, e.g. between the trading anddhensercial banking departments. The
Clark-Wilson model is another model that concentrates oa oegrity rather than confiden-
tiality. The model was proposed by Clark and Wilson in thei8dgaper [CW87]. Curiously
the Clark-Wilson model has its roots in the accounting inquabd draws many of its ideas
from book keeping.

While formal MAC models enable reasoning about the secufitii@system and provably
prevent malware like viruses and trojan horses from leakifgrmation from the system, in
many cases the models end up being too rigid for practicdbgieyents. Operations that should
be simple, e.g. object creation and deletion, become oeertyplex and require compromises.

With respect to access control in a multi-domain publighéstibe systems, a MAC system
would not be applicable simply because no single domain eoirtrol of all the participating
nodes. Simply by passing an event from one domain to anotieeottiginating domain has
leaked the content of the event and has lost control over it.

2.4.2 Discretionary Access Control

Most operating systems provide discretionary access@qi@AC). In a DAC system the sub-
jects themselves are responsible for defining access ¢potroy for their own objects. Access
control policy is at the subject’s owdiscretion

Because the subject is able to define access control polityefaswn objects, she is able to
grant other subjects access to her resources. This allessithject to, for example, share files
with other users of the system.

Access Control Matrix

Access rights in a DAC system can be described witla@ess control matrixirst proposed
by Lampson in [Lam74]. An access control matrix consistsomis representing subjects and
columns representing objects. The cells in the matrix defieeperations that the subject can
perform on the given object, as shown in Table 2.4.

More formally, as shown in Equation (2.1), wheYg, C A represents the access opera-
tions that the subject, € S, can perform on an objeet € O. HereS is a set of subjects)

50 Chapter 2. Background

/etc/passwd /home/alice /bin/sh
Alice read read, write, execute read, execute
Bob read read, execute read, execute
root read, write read, execute read, execute

Table 2.4: An access control matrix representing files in a Unix system.

a set of objects, and a set of all the access operations that a subject can perfoan object.

M = (Mso)SES,on7 Mso g A (21)

While the access control matrix is a good theoretical todk arely used as such in ac-
tual implementations. The matrix is likely to be sparse istegns with more than one user
where objects accessed by the users of the system rarellapvdfor example, in a typical
multi user Unix system the users have their own files in thein bome directories. The only
files that are commonly shared between users are the exésimabhe system. Therefore, ac-
cess control implementations typically use either accestal lists or capabilities to represent
policy [Gon89].

Access Control Lists

By taking a column centric view of the access control matreghecolumn of the matrix is
translated to amccess control lis(ACL). ACLs are typically stored with the object that the
column represents. The ACL contains entries for each subgftting the operations that the
subject can execute on the given object, as seen in Table 2.5.

In ACL-based systems it is often difficult to see which objemts accessible to a given
subject. This is rarely a problem, though, because usugll more interesting to get the
list of subjects that are allowed to access a given objecit. i$fnecessary to find all objects
accessible to a given subject, for example if the subjeatipleyment at the organisation has
been terminated and the subjects access rights need todkedgVt is possible to simply check
each object in the system.

In a multi-domain setting the centralised nature of ACLsadtrces some problems. It is
difficult to deploy an ACL in a multi-domain system while guateeing that all nodes have the
most recent ACL. It is also difficult to name subjects in a mdtimain setting while guaran-
teeing that names are unique as well as meaningful throughesystem.

More importantly for multi-domain environments, it is ddftilt to delegate access rights
to other subjects. The delegator would either have to upaabal, object-specific ACL
to include an entry granting the delegate access to thetolojealternatively ask the resource
owner to update the ACL. In the first case the ACL would have to ialslude an entry allowing

2.4. Access Control 51

/homel/alice
Alice ... read, write, execute . ..
Bob ... read, execute
root ... read, execute

Table 2.5: An access control list represents one column of the access control matrix.

the delegator to update the ACL. In a multi-domain systemsztmsnain ACL updates would
be cumbersome to implement. The ACL would also quickly becarperformance bottleneck
both when verifying or updating access rights.

For practical reasons access control lists are often ttadaghen they are implemented in
operating systems. For example, in most Unix systems the ASbaated with a file contains
only three subjectaiser, group, andothers The motivation for simplifying ACLs in operating
systems is twofold. First, as stated above, most files in x Wystem are accessed only by
a few subjects or alternatively by a group of subjects, tegyin very sparse ACLs. Second,
complete ACLs would need to be updated whenever a new subjadtied to a system resulting
in the management software having to go through all the AClaldhe files in the system.

Capabilities

An access control system can alternatively be implemenigawvow centric view of the access
control matrix in which case each row of the matrix is trateddato acapability. A capability
contains entries for the objects that a given subject hassado, as can be seen in Table 2.6.
While ACLs are usually stored with the objects, capabilities@ften stored with the subject.

Because capabilities are often stored with the subject amgdissession of a capability
implies authority, it is important that a capability implentation protects the integrity of the
capabilities. More specifically, capabilities must be wgéable and non-transferable. That is,
principals must not be able to forge capabilities and thegtmot be able to use a capability
iIssued to some other principal. In centralised capabifitglementations capabilities are often
protected by the hardware and the operating system. Inrébdigtd implementation capabilities
are usually protected by digital signatures to preventdoes, and they include the subjects
identity, which is also protected by the signature, to bimel¢apability to the subject.

The Cambridge CAP computer developed in the 1970s is an exaohi@ecentralised
capability-based system [Wil79]. The operating systemhef CAP computer used capabili-
ties in controlling access to objects. Instead of storirgydhpabilities with the subjects, the
CAP operating system kept track of which capabilities eatjesti held internally. When mak-
ing access control decisions the reference monitor woudlcthat the capabilities held by the
subject authorised it for the requested operation.

Capabilities have been making something of a comeback fgdenthe form of digital
certificates. Especially in distributed systems it is ddd& to give the capabilities to the subject

52 Chapter 2. Background

letc/lpasswd /home/alice /bin/sh

Bob read read, execute read. execute

Table 2.6: A capability represents a group of cells on one row of the access control matrix.

to manage, i.e. it is the subject’s responsibility to keegnirsafe and to present them when
necessary. Capabilities in the form of signature protecegtificates allow the issuer to give
the capability to the subject without risk of tampering.

Capabilities support a very simple and elegant delegatiorhar@sm: in addition to direct
access rights for a given object, the capability can alsi steat the subject of the capability
is allowed to further delegate those access rights. Aganalise the capability’s integrity is
protected by the digital signature, there is no risk of sciigjéorging delegation rights. When
delegating a capability théelegatorcreates a new capability for tlikelegate When accessing
the object, the delegate must show the verifier both its ovyaloidity as well as the delegator’s
capability.

A decentralised delegation mechanism is crucial in a nddtrain environment so that
access control policy management can be distributed armhatigghe participating domains
without having to rely on a centralised party.

One implementation of a modern certificate-based capalsjistem is thesimple public
key infrastructure(SPKI). Our multi-domain access control system will leygre&SPKI-style
capabilities. We will discuss SPKI in more detailj.6.

2.4.3 Role-Based Access Control

In both MAC and DAC systems, new subjects need to be addeditceamoved from the access
control policy frequently. In a MAC system this is relatiyedimple, the new user is given a
security classification that then grants her access toicetgects. In a DAC system, depending
on whether its based on ACLs or capabilities, the new subjest be either added to all relevant
ACLs or she must be issued capabilities to all relevant object

In many cases new subjects can be seen as new members oftargexie. For example,
in a university a new lecturer will be a member of the lectuode. Role-based access control
(RBAC) [FK92, SCFY96] tries to leverage this fact in order to glify access control policy
management. Common groups of subject types are separatadled that are granted access
rights. Subjects are then issued with memberships to oerdés. The indirection introduced
by the RBAC model allows new subjects to be added to the systiémease simply by grant-
ing them membership to certain roles that match the uselesimathe organisation. There is
typically no need to change the access rights of roles oestghgirectly.

With respect to the MAC and DAC access control models, RBACasthy orthogonal to

2.5. Decentralised Trust Management 53

both models. More specifically, RBAC can be used to implemeiit biscretionary [SM98]
and mandatory [OSMO0O0] access control systems.

In this dissertation we concentrate on presenting an acme¥sol mechanism for multi-
domain publish/subscribe systems that is based on capegilln this setting RBAC is a use-
ful approach to simplify policy management in domains, huias no direct impact on the
capability-based access control mechanism. That is, amégalement RBAC within MIA,
but it is not necessary. We will touch upon policy managena@atRBAC in Chapter 6.

2.5 Decentralised Trust Management

Blaze et al. argued in [BFL96] that there existtrast management problem decentralised
systems. At the time of the work, in the latter part of the tige the Internet was growing in
leaps and bounds. The paper argued that traditional ACLebaseess control systems were
not appropriate for Internet-wide, decentralised systédrascrossed domain boundaries.

Traditional ACL-based systems authenticate principalstas their name. For example, in
an operating system the principal has a user name, whicagempts the principal in the context
of that OS instance. The user name also maps to the prirejgafsical identity, i.e. the system
administrator knows the mapping between user names andepdde principal authenticates
herself to the system with a password associated with tietnene. Blaze et al. argued that
in the context of a computer system, i.e. a single admirtiggr@omain, the principal’s name
is well known and the mapping from principal to user name igrapriate and simple. But
in a global setting, with multiple administrative domaitise management of names becomes
cumbersome. Does tligobin domain A represent the same principal asBlodin domain B?

The X.500 [ITUO5a] series of standards try to solve this pgobby binding globally unique
distinguished name® principals with X.509 [ITUO5b] identity certificates. €hlistinguished
name is based on hierarchical domain relationships anceigfibre globally unique. It speci-
fies, for example, the country, state, and city of the orgdiua that the principal is a member
of. It is assumed that by leveraging hierarchical relatgps the organisations that are issuing
distinguished names are able to keep the names unique \himown namespace. The iden-
tity certificate allows a principal to authenticate hersalfthe owner of the distinguished name
by proving ownership of the public key bound to the certificat

But authenticating a principal to a name does not say anytogit the authority of that
principal. In traditional access control systems the authof the principal is then looked
up from an ACL. The ACL contains entries for all names, spengythe access rights of that
name. Similarly with X.509 certificates, the access corgystem would look up the principal’s
distinguished name from an ACL to determine the principateess rights. In a capability-
based access control system the capabilities would be biouhé principal’s name, as is the
case with the X.50@ttribute certificates

54 Chapter 2. Background

In the end the access control system needs to know the paiiscguthority when deciding
whether to perform the principal’'s request or not. The narthe principal introduces an
unnecessary indirection in the authorisation processewierprincipal is first linked to a name,
which is then linked to that principal’s authority:

Principal — Name — Authority

Blaze et al. and the SPKI working group have both argued folowemg the indirection
introduced by the principal-to-name mapping and to simpdypraccess rights to the identity of
a principal, i.e. the principal’s public key.

Another problem with ACL-based systems is the lack of a singiglegation mechanism,
as discussed if2.4.2. In a distributed system delegation of access righis/s access right
management to be decentralised across the system. This #éie system to avoid performance
bottlenecks that might otherwise appear if access contaslaentralised to a few nodes.

Similarly, the system must be able to decentralise accaessataecision making. That
Is, the nodes responding to the client requests must be @allake access control decisions
themselves without having to rely on a central access closgroer. Delegation in the form of
signed capabilities facilitates this type of decentraliaathorisation.

2.5.1 PolicyMaker

Blaze et al. proposed the PolicyMakeust management engiime [BFL96] as a solution to the
trust management problem in decentralised environments.

To address the problems caused by the artificial indiredtitoduced by principal names,
PolicyMaker uses public keys to represent principals. 8ddhowing bindings created by an
X.509 identity certificate:

PublicKey — Name — Authority

would be replaced in PolicyMaker by the following binding:

PublicKey — Authority

By treating the principal’'s public key as the principal’s mdi¢y PolicyMaker avoids the
complication introduced by the use of artificial names. Moz, the public key is a globally
unique identifier.

In the PolicyMaker model principals delegate access rightsther principals by issuing

2.5. Decentralised Trust Management 55

signed capabilities that are calladsertionsn the PolicyMaker terminology. Assertions come
with all the benefits of capabilities discussedsii4.2. The main benefit in a decentralised
system is to allow principals to carry their own credenti@ther than having to store them
centrally in the system, as well as supporting access riglegation in a decentralised manner.

PolicyMaker can be implemented either as a dynamic libdaay is linked to applications,
or alternatively as a system wide daemon process that casdzehy all applications in the
system. One of the key design goals in PolicyMaker was toragpthe trust computation from
the application logic and from credential management. Assalt PolicyMaker expects the
application to verify the validity of presented credergjad.g. digital signatures and certificate
validity dates. This approach has the added benefit thatyRhddiker is certificate and public
key algorithm agnostic, which allows it to work both with ocemt and future standards (e.g.
X.509, PGP, RSA, DSA).

PolicyMaker takes as inputraquestto determine whether a public key (or a sequence of
public keys) is authorised to perform a given action:

key,, key,, . . ., key,, requestsiction

The semantics of the action are application specific anddaheyot known to or interpreted
by PolicyMaker.

In the PolicyMaker model principals are authorised to p@nfgertain actions by aasser-
tion of the following form:

source assertsiuthority_struct wherefilter

The sourceis the source of the assertion. It can be either the locatyalr the public
key that signed a related capability. Téethority structspecifies the delegate of the assertion,
i.e. a set of public keys that the assertion rule appliestondst cases there is only one key
mentioned in the rule, but the authority structure allowsdbr more complicated scenarios
like threshold subjects, as describedh6.4. Finally, thdilter is a predicate that is defined in
a safe programming language. The subject’s access requsstatisfy the filter predicate in
order to for the access request to be authorised by the iassdrt essence an assertion states
that the source of the assertion trusts the public keys maediin the authorisation structure to
perform the actions that are accepted by the filter program.

Other trust management engines in the vein of PolicyMaldude KeyNote [BFK98] and
REFEREE [CFL 97]. KeyNote has been accepted as an IETF standard [BFIKQ8@0BI It
was designed as a simpler descendant of PolicyMaker by nfahg same people. REFEREE
was originally designed to control access to web pages,riimaless the trust management

56 Chapter 2. Background

engine is general purpose and can be deployed in other anwnats as well.

2.6 Simple Public Key Infrastructure

Thesimple public key infrastructugSPKI) is another decentralised trust management system
with similar design goals than those of PolicyMaker et al. KBRas designed by an IETF
working group led by Carl Ellison. During the standardisatprocess thsimple distributed
security infrastructurédSDSI) [RL96] proposed by Rivest and Lampson was integratiecive
SPKI proposal. SPKI was eventually standardised by the IBTIP99 [EII99, EFLF99].

The central idea in decentralised trust management and SR&Hecentralise access con-
trol policy management, decision making, and credentiahagament. This is achieved by
implementing a capability-based approach to access domhere theowner of an objectis
responsible for access control policy and credential mameagt for that particular object. Dis-
tributing management responsibilities over all of the pipals results in an extremely scalable
access control system, because both management and vierifican be implemented in a de-
centralised fashion without relying on centralised sesithat might turn into performance
bottlenecks.

2.6.1 Authorisation Certificates

The main concept in SPKI is theuthorisation certificate An authorisation certificate is basi-
cally a signed capability. The certificate is represented Bytuple: (1, S, D, V, A). Issueris
the principal that issued the certifica®ybjectis the principal that the certificate is issued to;
Delegationis a boolean value specifying whether tBebjectis permitted to further propagate
the Authorisationgranted by this certificateduthorisationis an application specific represen-
tation of the access rights granted to Bujectoy this certificate; anialidity defines the date
range when the certificate is valid and an optional set ofirmmalidity tests, e.gcertificate
revocation list§See Chapter 6 for a more detailed discussion on certificditdityaand revo-
cation). Thessuerfield is either the issuer’s public key or its hash value. Shbjecftfield can
be a public key of a principal, its hash, a name, the hash obgth or a so callethreshold
subject

An issuer can grant a subject a given set of access rightsbingthe subject an authori-
sation certificate that specifies those access rights initsaty field. The issuer can allow the
subject to further delegate these access rights to othggctalby setting th®elegationfield
tot r ue. Thiscertificate chaincan be infinitely long in SPKI as long as each certificate in the
chain, except the last one, has Delegationfield set tot r ue.

2According to Blaze et al. SPKI is, strictly speaking, notustrmanagement engine, because certificates can be
processed in an application dependent manner, whereastartamagement engine, like PolicyMaker, processes
all credentials the same way [BFIK99b].

2.6. Simple Public Key Infrastructure 57

To verify the access rights of a principal the verifier firstiftes each certificate in the
certificate chain independently. This includes verifyihg tigital signature on the certificate
and all the possible validity conditions, e.g. the validigtes and the possible on-line checks.
After the certificates have been deemed valid, the verifiestroollapse a certificate chain into
a single 5-tuple. The verifier reduces two adjacent certége@nto a single 5-tuple with the
following 5-tuple reduction rule:

<]17SI7-D17A17‘/1) + (]27SQ7D27A27‘/2)
= <[17527D27A1 mAQa ‘/1 N ‘/2)
1ffA1ﬂA27é@/\V1ﬁV27é(Z),Sl :]2/\D1 = true

That is, for the reduction rule to be applicable, the issd¢h® second certificate must be
the subject of the first certificate and the delegation fielthenfirst certificate must be set to
t r ue. The validity period of the resulting 5-tuple is the inteaen of the validity periods of
the two certificates. Similarly the authority implied by thesulting 5-tuple is the intersection
of the two certificates.

The verifier applies the 5-tuple reduction rule to the cesdife chain recursively until left
with a single 5-tuple. The final 5-tuple is then used to deteemvhether the principal is au-
thorised to make the given request. Notice that taking thersection of both the authority
and validity fields allows principals to issue authorisatertificates that have authority and
validity fields that are greater than those of the previousifates in the chain. Therefore if
one certificate in the chain expires, that certificate careffeshed independently of the other
certificates. The system is therefore distributed both acemnd time [Aur99].

The authorisation certificates communicate power fromdbear to the subject. This power
is rooted at an ACL. ACLs in SPKI link a resource to a resourceaawi/hen a verifier verifies
an access request for an object, an ACL links the object togheer of the first certificate
in the certificate chain, thereby formingcartificate loop The SPKI RFC does not specify a
format for ACL entries, however a sample implementationngmy an authorisation certificate
without the issuer field.

Atypical certificate loop is depicted in Figure 2.8 wheredhener, P, of an objecO, grants
P, an SPKI authorisation certificat€,,, with access rightsd,, = (read, write), for the object
O. P, then further delegates access rights = (read) to P. by grantingP. another delegation
certificateCy,.. Now, whenP,. wants to acces®, she shows>, both certificateg”,, and Cj,..

P, is now able to form a certificate chain from to P, via (. and from P, to itself viaC,,,.
Finally P. authenticates herself t8, by proving ownership of the key-paff.. P. does this
by executing a public key challenge-response protocol Witt{See§5.3 for a more detailed
discussion on challenge-response protocols). This cdegptle certificate chain which now,
along with an implicit ACL, forms aertificate loopflowing from P, to P, to P. and back to

58 Chapter 2. Background

Issuer: P,
Subject: Py
Delegation: true
Authorisation: A,p
Validity: Vap

Issuer: Py
Subject: P,

Delegation: false
Authorisation: Ap.
Validity: Ve

A P, proves ownership of key-pair P, to P,

Figure 2.8 : An SPKI authorisation certificate loop with three principals and two levels of dele-
gation.

P, again.P, has now verified thaP, is authorised to accegswithin the privileges granted by
Aa N Aye. Typically the verification is performed by an access cdrgeovice rather thai®,.

Our work relies on SPKI authorisation certificates to pragaguthorisation from resource
owners to domains in a decentralised and scalable fashtenfdllowing sections discuss some
of the more advanced features of SPKI that are utilised mAV

2.6.2 Name Certificates

One of the SDSI features that was incorporated into the Sp&tiScation as a result of the
merging of the two wasame certificatesin most cases SPKI relies simply on public keys as
principal identities. But in some cases it is beneficial tolle & give that public key a name in
some context. SDSI relies on linked local namespacesgioh jgrincipal in the system has their
own namespace and the principal is free to create whateweesd wants in that namespace.
Another principal can refer to a local name in some othergypad’s namespace by prefixing
the local name with the identity, i.e. public key, of the aotpencipal. For example, i, has
defined a naméoo to refer to %, a third principal can refer té&, with P, foo. The name can
refer to either a principal or another name. Thereby we caaterarbitrarily long linked names
that will eventually refer to a principal with the princiggpublic key.

Naming is based oname certificates A name certificate is a 4-tuple with the following
fields: Issuer Name SubjectandValidity. The 4-tuple states that in the issuer's namespace the
given name will refer to the given subject for the given viigheriod.

As mentioned earlier, when we introduced SPKI authorisatiertificates, a name can be
used as the subject in an authorisation certificate. Thetesauthorisation certificate can dele-

2.6. Simple Public Key Infrastructure 59

gate authority to a name in the issuer's namespace. The isan¢hen issue a name certificate
for a principal, which links the principal to the authorisat certificate.

A name certificate will never be used in a trust calculatioswash. It will always be reduced
to a public key before being used in such a way. The name catgf allow also for a relatively
painless integration of X.509 identities and SPKI. Thathg, X.509 name can be mapped into
an SPKI name certificate that is then used in the rest of thd-BB&ed access control system.

2.6.3 Group Subjects

Another benefit of name certificates is the way they allow fier definition ofgroup subjects

In the previous section we stated that an authorisatiofficate can be issued to a name and a
principal can be linked to that name with a name certificateethy authorising the principal.
The number of name certificates is not limited to one in SPIL, the issuer can issue any
number of name certificates linking any number of principakhe same name. This effectively
forms a group of principals that are all authorised by theesanthorisation certificate. The
mechanism can be used as a very simple RBAC system. We wilhaesdéda of group subjects
in §5.1.3 to grant a group of principals the same authority.

2.6.4 Threshold Subjects

SPKI supports also so call¢gareshold subjecthat allow multiple principals to act as a quorum.
A threshold subject specifidsof-n other subjects. Each subject wieli—tﬂ;u of the power of the
threshold subject. That is, at ledsbf then subjects must delegate their shares for the authority
of the threshold subject to be passed along. In practice @&able & subject issues a certificate
independently of the otheér — 1 subjects. It is then up to the subject of those certificates to
collectk certificates and show them to a verifier. The verifier will tiwvenify each certificate
and accept the statement made by the threshold subject asitvérified at least separate
certificates successfully.

Threshold subjects are desirable, because they incogodtundancy. A combination of
k principals is able to use the subject. Therefore, the tlmdssubject would remain usable
even if some of the keys of some of the principals were comedn Threshold subjects also
support the removal of old principals and addition of newsnEherefore a threshold subject
can evolve through time and remain valid and secure for sktemperiods of time. We propose
the use of threshold subjects as owners for the resourcesrthpresent in MiA in Chapters 3,
4, and 5.

60 Chapter 2. Background

2.7 Summary

In this chapter we have introduced the reader to the negebsa@kground required to dis-
cuss both publish/subscribe systems as well as accesslaarttie coming chapters. We have
highlighted the features that allow the publish/subsagpiés@digm to scale in wide-area environ-
ments and contrasted the publish/subscribe paradigm totliee distributed communications
paradigms. We have also discussed the various types ofspigalbscribe systems that exist
and pointed out the features, e.g. type-based subscripéiod a decentralised event service,
that we expect to see in multi-domain publish/subscribéesys. In the latter part of the chap-
ter we described the basic theory of access control and nmvéaldescribe decentralised trust
management and SPKI that provide the foundations for owgssccontrol architecture.

In the next chapter we will present our definition for a mdlbmain publish/subscribe sys-
tem in an effort to provide scope for our work. We will also gat a number of assumptions
that we have made in our work so that we can build on these g throughout this dis-
sertation.

CHAPTER 3

Multi-Domain Publish/Subscribe Systems

In this chapter we will present our understanding of what dtirdemain publish/subscribe
system is and how its users interact with it in an effort tgogcour work. As mentioned briefly
in the introduction in Chapter 1, we will consider only decahsed publish/subscribe systems
that span across multiple independent administrative dmsn¥Ve motivate our assumption that
large-scale publish/subscribe systems will be implentebyemultiple domains ig3.1. In§3.2
we present an informal definition of domains and describé @f¢he four types of domain
members considered in our work. Access control systemssrally based on the notion of
subjects or principals. We list i§8.3 the principals that are present in the\l architecture.
We assume that a coordinating principal is responsibledoning the multi-domain system.
We discuss coordinating principals §3.4. We expect that the system will be deployed with
encrypted connections between nodes in order to avoid a euailattack scenarios. We will
discuss the details of encrypted connectiong3rb. In §3.6 we present an informal threat
model in order to outline what security threats we are casid in this dissertation. Finally
§3.7 elaborates on the numberplate monitoring example fiesgmted ir§1.2.2. We will use
this application as a motivating example throughout théselitation.

3.1 A Multi-Domain Publish/Subscribe System

Multi-domain publish/subscribe systems are large, distad systems that extend across two
or more independent administrative domains. A multi-donsgistem is formed when multiple
domains connect their broker networks together, thus fograishared event service consisting
of brokers from all participating domains.

The incentive for domains to join the network is twofold: firdomains are interested in

61

62 Chapter 3. Multi-Domain Publish/Subscribe Systems

implementing shared applications with other domains, pudlishers in one domain produce
events while subscribers in other domains consume themdoiains that need access to a
given application take part in forming the publish/subdsersystem that this application is run-
ning on. Instead of setting up a separate publish/subssysgtem for each separate application
shared between two or more domains, the participating dwsriarm a single large-scale pub-
lish/subscribe system that is used to implement a numbeharksd, distributed applications.
Merging together all the small publish/subscribe systesedduto run individual applications
provides cost savings for all of the participating domalmsgause each domain can leverage
the shared infrastructure rather than having to deploy ainfastructure for each application.

Second, the shared infrastructure also provides the demdth a higher level of service
in two ways: (i) a larger, shared broker network will gengrake able to provide greater geo-
graphic reach without significant extra cost, and (ii) shga broker network will almost always
increase the overall interconnectivity of the decentealipublish/subscribe infrastructure, thus
providing a higher level of fault-tolerance and performandVe expect such a multi-domain
system to consist of thousands of event clients and hundrieegent brokers, and to span a
large geographic area.

In addition to multi-domain applications, we assume thahdms will also want to deploy
their private applications on the same shared publishésildesinfrastructure. Again the incen-
tives for doing so are the increased geographic reach ttdatance, and performance provided
by the larger infrastructure, as well as the lower costs bhawing to maintain two independent
publish/subscribe systems, one private and the othergubili

Shared infrastructures are attractive to domains, butibttge system provides appropriate
access control mechanisms to prevent unauthorised accdsplbyed applications.

3.2 Domains

A domain in a multi-domain publish/subscribe system regmésa physical or logical domain
in the physical world, i.e. a corporation, an institute, clepartment in either of the former. For
example, a service provider, a stock exchange, a regioriaeporce, or a university would
all be considered domains. In principle a domain is an inddeet organisational entity that is
responsible for maintaining its own publish/subscribeastructure.

The domains connect to each other either over private oligubtwork connections. Pri-
vate connections would be made over dedicated private metwemnections, ovirtual private
networkgVPNSs). Connections over a public network would be over tHdipunternet or some
other publicly accessible communication network that islimaited to the use of participating
domains. In most cases we expect domains to communicatén@veublic Internet, butin some
scenarios it is more likely that domains are connected edher dedicated connections or over
virtual private connections. This would be the case in bb#hstock ticker example described

3.2. Domains 63

in §1.2 and the numberplate monitoring example describgd iB.2 and in more detail at the
end of this chapter i§3.7.

There are four kinds of components in a domain that are istiegeto us: sub-domains,
event clients, event brokers, and an access control seMieewill discuss each domain com-
ponent separately in the following four sections.

3.2.1 Sub-Domains

Domains can also be arranged in a hierarchical manner, valimls larger domains to organise
their internal structure to smaller entities in order tolitete easier management. For exam-
ple, a large university might delegate publish/subscrifeastructure management duties to
individual departments instead of handling everythingticadly. Similarly, an investment bank
must for legal reasons separate its trading departmentitsooorporate financing department
in order to avoid the misuse of confidential client inforroati

The sub-domain hierarchy can be as deep as necessary,b-dosiains can have sub-
domains that have their own sub-domains etc. We use the pbatsub-domains to divide the
enclosing domain into multiple trust domains. Each sub-@ions issued with its own set of
access rights. Some of those access rights do not overlaghetother sub-domains thereby
giving that sub-domain access to resources that are uabiailo the other sub-domains. A
domain is allowed to contain either event brokers or subalosm Such a restriction allows
for a very simple authorisation policy for event brokers vehthe event brokers inherit all the
access rights of the enclosing domain. We discuss this ie metail in§5.1.4.

3.2.2 Event Brokers

Event brokers are the backbone of a decentralised puhliséd¢sibe system, as explained in
§2.3. The event brokers of a domain connect it to the sharetti-damain publish/subscribe
system. It is expected that each domain adds event brokehe tehared publish/subscribe
infrastructure. The promise of added brokers acts as antinedor existing domains to allow
new domains to join the shared infrastructure.

The domain’s event brokers join the multi-domain publisb&cribe system by connecting
to existing brokers. As members of the broker network théém®are expected to route events
from publishers to subscribers even if neither the pubtistoe any of the subscribers are a
member of the broker's domain. That is, the broker acts antammediate broker on the
event's path from the publisher to the subscribers. Thisspeeially important if the event
broker network is built on top of a peer-to-peer routing $tdie, as is the case with Ma,
where event routing is based on dynamic routes that can ehduagng the life-time of the
system rather than static routes created by system adraiois.

In addition to routing events as members of the broker nétwibie event brokers are re-
sponsible for exporting the publish/subscribe API to thengelients in their own domain. That

64 Chapter 3. Multi-Domain Publish/Subscribe Systems

is, event clients connect to a local broker in order to actessvent service, as explained in
§2.3.

3.2.3 Event Clients

Event clients implement the applications that use the phldubscribe system as a communica-
tions medium. An application that wants to publish or suibgcto events connects to an event
broker as an event client. This allows the application teeasdhe event service through the
publish/subscribe API exported by the event broker.

We expect that an event client will always connect tocal broker, i.e. an event broker that
is a member of the client’'s domain. This will allow the cli¢otrust the event broker to handle
confidential event content and in general act as the clipnbsy towards the publish/subscribe
system by, for example, forwarding the clients subscriptiadvertisement, and publication
requests to the event service.

It is expected that all domains include both event client$ larokers. This follows from
the requirement that all domains provide a set of event lvsaikethe shared infrastructure, and
the fact that there is little motivation for a domain to jolmetmulti-domain system unless it
has clients that require access to one or more of the shapigatpns. As an exception to
this rule one can envision domains that provide event beot@ma publish/subscribe system
as an infrastructure service without having its own cliegntshe system. Another possible
scenario would include service provider domains that gewvheir customers access to the
multi-domain publish/subscribe system, but who do not tiae& own event clients otherwise
(e.g. the brokerage firms in our stock ticker exampl&lir? provide their clients access to the
publish/subscribe system). In such a case the custometsecsgen as members of the service
provider's domain.

3.2.4 Access Control Service

The last component in a domain is ancess control serviclACS). The ACS is an abstract
service that is responsible for managing and enforcing ¢khess control policy of the domain.
The ACS is described as an abstract service, because thetomplementation of the ACS
is not relevant in our work. Our work relies only on the asstiompthat the ACS issues SPKI
certificates to domain members (i.e. sub-domains, evemiebspand event clients) based on
the domain’s access control policy and the credentialshivat been granted to the domain by
other principals in the publish/subscribe system.

We will use the termslomainand ACSinterchangeably throughout the rest of this disser-
tation. For example, in Chapter 5 we write that a domain istg@a given access right. In
practice this means that the ACS of that domain is granteditles gccess right. The ACS is
responsible for delegating that access right within thataio according to the domain’s access
control policy.

3.3. Principals 65

3.3 Principals

Each of the domain members mentioned above including theotofire. the domain’s ACS) is
a principal in MaIA. As in SPKI, a principal is identified by its globally uniqualgic key. The
principal authenticates itself to a verifier by proving owstep of the corresponding private key
by executing a challenge-response protocol with the ve(iBeet5.3).

Access rights are delegated to principals, who either éurtlelegate them to other princi-
pals, e.g. domains delegate access right to their memheusecthem to access resources or
services, e.g. event clients and event brokers use thesaigkts to access the publish/subscribe
system.

In many cases a principal is a human who executes an apphcttat inherits the prin-
cipal’s identity for the duration of the session. The apgtdiien might be provided with a set
of credentials by the principal, which define the applica&tcaccess rights. Or alternatively
the application can inherit the principal’s identity, whiwould allow the application to behave
as the principal and activate credentials on demand, degyaativation in RBAC (we discuss
RBAC in MAIA in more detail in§6.1). In the numberplate monitoring example described in
§1.2.2 Detective Smith is a human principal.

The principal can also be a software agent. That is, a pieseftfare running on a specific
node has been given its own identity and issued its own cted&n For example, we see
the event brokers in a domain to be principals in their owhtrigthe CCTV cameras in the
numberplate monitoring example are examples of softwagetags principals.

A subject in the system can have more than one key pair. Beeaabekey pair defines an
identity, a subject with multiple key pairs has effectivatyltiple identities in the system and is
seen as multiple principals. Nothing in the key pairs or egiistem links two identities that are
used by the same subject to that subject or to each other.sé\cigghts are principal-specific.
Therefore, access rights issued to one principal cannosée loy the other identities of a given
subject.

We do not use X.509 identity certificates inaVA to bind the public key to a X.509 identity
for two reasons. First, an X.509 identity is not necessatiiémarchitecture — even with identity
certificates the access control decision making and verdicavould be based on the key pair
rather than the identity. Second, it is not clear what idgrit give to certain types of prin-
cipals. For example, software agents, like event brokexge Imo clear identity that would be
meaningful to humans. In some cases, e.g. for human priscipading the public key to the
identity of the principal is sensible, but this can, and stiplbe implemented outside of MA.

3.4 The Coordinating Principal

A multi-domain publish/subscribe system could be createdexample, at the initiative of
one domain that creates an application that other domains teaccess. The domain grants

66 Chapter 3. Multi-Domain Publish/Subscribe Systems

other domains access to the application by inviting thoseaios to join the publish/subscribe
system. Thus the multi-domain publish/subscribe systemwgrorganically when more and
more domains require access to applications implementeadogybers of the publish/subscribe
system.

We call the domain that forms the publish/subscribe systemdordinating principal We
see the coordinating principal as the owner of the publigigsribe system, i.e. the coordinating
principal forms the multi-domain system and is respondibtedeciding which other domains
are allowed to access the shared infrastructure. In additicontrolling access to the publish/
subscribe infrastructure, the coordinating principabalscides which domains are allowed to
introduce new event types in the shared system.

The SPKI threshold subjects allowkaof-n group of principals to behave as a single prin-
cipal, as we discussed {j2.6.4. By creating a threshold subject a group of principafs act
together as the coordinating principal and no one domaircbasol over the whole system.
For example, three domains that want to form a shared puslisbcribe system together can
setup a2-of-3 threshold principal to be the coordinating principal. Nawtout of three do-
mains must agree on which other domains to invite to join fs¢esn, or which domains are
allowed to install new event types.

The threshold subjects also support changes to the groupnafgals that form the thresh-
old subject. For example, two of the three domains in the alexample can decide to replace
the third domain in th@-of-3 threshold subject with a fourth domain. This ability of tsineld
subject’s is very important from a management point of vieegause it allows the system to
evolve when domains join and leave the system or if a key has bempromised.

We would expect most multi-domain publish/subscribe syst¢éo be created by two or
more domains where all of the original domains would wantdgeha say in managing the
system. Threshold subjects allow all of those domains te laavequal amount of control over
the shared publish/subscribe system.

3.5 Transport Layer Security

We assume that all links (i.e. both client-to-broker cotioes and broker-to-broker connec-
tions) in the publish/subscribe system are protectetragsport Layer Securit¢TLS) [DA99].
Securing the communication links between nodes with TLSdsrgle way to prevent trivial
network sniffing attacks. Also, the encrypted transportrgniees that the application level
messages have originated from the other peer instead afighééen injected to the system
by an adversary. This is especially important in publisbgsuibe systems with dynamic event
routing where forged routing messages can be used to cdahepbuting state of the system
thereby bringing the whole routing network down.

TLS requires the authentication of at least one of the twagpanaks for it to be secure against

3.5. Transport Layer Security 67

aman-in-the-middle attackThe authentication is usually based on X.509 identityiteates.
For example, in the secure version of tgpertext transfer protocoHTTPS) the server is
usually required to present an X.509 identity certificatg th bound to the server’'s hostname.
If the server’'s hostname does not match the hostname on ttikcaée, the user is presented
with a warning.

Using the server’s hostname as an identity, it is possibseaure web traffic, because it is
safe to assume that the server’'s hostname is registered dothain name servicdNS). In
MAIA it is not necessarily true that the broker’'s hostname has bdded to the DNS or that
it even has a static IP. Forcing the brokers to have statidtfPesses and registered hostnames
would prevent us from having mobile broker nodes. It woulsbahdd to the administrative
burden of adding a new broker to the system, because thersystministrator would have
to add the broker’s hostname to the DNS system and that hostmauld have to match the
identity in the broker’s X.509 certificate.

In a typical HTTPS session the client connecting the sersvaever authenticated. This is
partly because users very rarely have X.509 certificatees$ them, so they do not have a
certificate to present to the server. Also, in most secureapgltications the user authorisation
is done at the application level once the TLS connection h@sady been established. For
example, in a web banking application the user is queriedaflagin name and a password
before she can access her bank account. If the user had a eeBtf-ate issued to her, she
would not have to login to the web bank, because the bank'ssgeler would have already
authenticated the user as part of the TLS handshake. Agauritase issuing X.509 certificates
to event clients is not an option, because the event clieghtmot have a clearly definable
identity, as discussed §8.3.

Instead of using X.509 identity certificates, we use SPKharsation certificates for autho-
rising TLS connection end-points. We will discuss accesdgroband principal authorisation in
more detail in Chapter 5, but suffice to say at this point, wetwadivide access control in the
publish/subscribe system to network-level and applicalevel concerns. Network-level access
means that a principal is authorised to connect to the gublibscribe system. When initiating
the TLS connection, both peers will present their netweslel credentials to each other. By
verifying those credentials both peers can be certain tiegt &re connected to another autho-
rised member of the publish/subscribe system. Once the Bh8ection has been established
the application-level access control can be implementadpiof the secure connection.

In the multi-domain publish/subscribe system the issuallofietwork-level access rights
is ultimately the coordinating principal. Therefore theifter can check that the other peers
certificate chain is rooted at the coordinating principat] ¢hat the certificate chain authorises
the peer to connect to this particular publish/subscritstesy (Se¢5.2 for more details). As-
suming that the connecting peer has been authorised, possilrectly, by the coordinating
principal to connect to the given publish/subscribe systamverifier should establish the TLS
connection to the connecting peer. The connecting peetity is immaterial. The real ques-

68 Chapter 3. Multi-Domain Publish/Subscribe Systems

tion is whether the peer is authorised to join the publigbgstibe system.

3.6 Threat Model

We present an informal threat model in order to clarify whatkof threats and attacks Ma
is designed to protect against and what kind of assumptianhave made concerning the
environment where MIA is deployed.

In our approach we have divided access control in multi-dormpablish/subscribe systems
into two levels: network-level access control and appicatevel access control. Network-
level access control controls access to the publish/sibesarfrastructure, i.e. which event
clients and brokers are authorised to connect to the brodsvank. Application-level access
control, on the other hand, controls access to event types@nsider a set of event type defi-
nitions to be a publish/subscribe application) that aradp@ublished on the publish/subscribe
system. That is, application-level access control polefyrebs which principals have the rights
to subscribe to or publish events of a given event type.

Computer security is often described in terms of confidahtjahtegrity, and availability
of both data and services. In publish/subscribe systerasiibans that we want to protect the
integrity and confidentiality of advertisements, subgaips and publications, and the avail-
ability of the event service. By implementing access contrelare able to address all three
facets of security. By controlling access to the event serwe can address availability require-
ments. By controlling access to publication and subscmgtights we can address integrity and
confidentiality requirements.

We place a lot of trust on authorised principals. Basicallyassume that principals that
have been authorised to join the publish/subscribe systenrastworthy and not malicious.
For example, we assume that an event broker that has not b#eriaed to access events of a
given type might be interested in reading those events arebly try to circumvent the access
control system, but it will always route the events correctDn the other hand we assume
that if a principal were to start behaving maliciously, fleoding the network with messages,
corrupting routing state, or tampering with event conter can identify them and revoke their
access rights. Obviously principals can behave malicyomsivays that are difficult to detect.
For example, an event broker can randomly drop events, apdratipals can leak confidential
information from the system to unauthorised parties (thigriie for all discretionary access
control systems).

We can identify four types of adversaries for a multi-domaublish/subscribe system: (i)
an external adversary that is not a member of any of the gaating domains and is therefore
only able to eavesdrop on the message traffic between dontigias internal adversary that is
a member of one of the participating domains, but does na hagess to the publish/subscribe
system and can therefore only eavesdrop on the message bafiveen event brokers and

3.7. Example Application 69

clients; (iii) an internal adversary that is authorised ¢oess the publish/subscribe system, but
is not allowed to access a specific event type; and finallydivinternal adversary that has
access both to the publish/subscribe infrastructure amtkldl access to a given event type (e.g.
subscription rights, but no publishing rights).

The goal of an adversary is to exceed her authority, i.e. gatess to system in a way that
is not authorised by the access control policy. For advesam cases (i) and (ii) this means
accessing the publish/subscribe system in any way posgtleadversaries in cases (iii) and
(iv) this means subscribing to events, publishing evemid setting and reading attribute values
in published events.

We can easily protect against both adversaries (i) andyigdploying the broker network
on top of TLS, as described above§B.5. TLS secured connections would be used both for
intra and inter domain connections. This prevents the adviers from accessing any of the
publish/subscribe system messaging, thereby prevertigg from reading published events
and from injecting messages into the system (e.g. pulicatdr routing messages).

In the last two scenarios, i.e. (iii) and (iv), the adversaag limited access to the publish/
subscribe system and she wants to exceed her authority aadsaadditional event types. For
both scenarios we require a more sophisticated accesotamtchanism. In Chapter 5 we
propose an access control system that allows us to delegagesarights to domains and event
clients, and to verify those access rights at the eventt®iéocal broker. In Chapter 7 we
propose an approach to enforce access control within tHeebreetwork by encrypting event
content.

We do not address more advanced attacks in this dissertatignattacks based on traffic
monitoring.

3.7 Example Application

The architecture presented in this dissertation is ma@d/dty problems facing organisations
with which we have done collaborative research, such as #tehal Health Service (NHS) —
particularly electronic health record management — andPtiiee Information Technology Or-
ganisation (PITO) in the UK. In our example application wasider the British Police Force
— a federation of more than fifty largely autonomous regidoaies. Historically the national
police forces have been relatively independent of centkities in their decision making. For
example, the police forces have been free to purchase andydsgftware and data models
independently of each other. This has resulted in incorbleaitaiformation technology deploy-
ments across the forces, which hinder effective police vioyripreventing one force to access
data and services from another force.

Many of PITO’s projects aim to increase the efficiency of cainimations between the
independent police forces. This is a challenging task,mgitae diversity of software deployed,

70 Chapter 3. Multi-Domain Publish/Subscribe Systems

and the different ontologies and data models used withiséparate forces. The main efforts
in PITO include developing a data model for nation-wide U ts compatible with the data

models used both by Interpol and Europol, and enabling matiole access to force-specific
databases and national registries (e.g. fingerprint rggigehicle registry, and the criminal

records database).

We feel that a shared, nation-wide publish/subscribe systeuld enable information to
flow more efficiently and faster from force to force. For exdenpublish/subscribe messaging
allows a user to be notified when an event has occurred. Thati@nality is very valuable in
criminal investigations where new information is most ile when it is first discovered. For
example, vehicle sightings, arrests, and the recoveryotérstgoods or firearms are all events
that can help the police solve an investigation. A publishésribe system allows the user to be
notified of an event as soon as it happens, asynchronoushgutihaving to constantly poll the
related databases.

By implementing a common, shared publish/subscribe sydtemational forces are able
to share these applications nation-wide. The forces alseflidrom lower infrastructure costs
and added fault-tolerance with respect to the event seragcdiscussed earlier in the beginning
of this chapter.

Although the regional forces are all part of the nationalgforce and thus trusted, there
still needs to be access control in place to provide confidiggtand to guarantee message
integrity. For example, investigations include witnessainents where the witness’ identity
must remain confidential in order to protect her privacy. §hu infrastructure shared among
multiple seemingly mutually trusting domains must impl&tan access control system such
as the one proposed in this dissertation.

In addition to protecting data confidentiality and integraccess control is also necessary
in order to implement domain-internal applications. In¢hase of the British Police Forces, the
regional forces will still have their own proprietary apgations that they will want to maintain
and possibly integrate with the publish/subscribe sysiBmese applications should not neces-
sarily be accessible to all the other national forces, he.local force must be able to restrict
access to those applications to the local force even wheretteedeployed on the nation-wide
publish/subscribe system.

The threat model for this scenario is different from the #tr@odel presented i§8.6, i.e.
we can assume that there are no external adversaries, babausystem is deployed within
the police network, and the internal adversaries are mketylto be curious rather than mali-
cious. Nevertheless we will assume the threat model %818 in this dissertation in order to
provide an access control architecture that will be appleeto a wider range of deployments
and applications.

We will use the numberplate monitoring application that weched upon ir31.2.2 as an
example throughout this dissertation. Figure 3.1 showsnthéii-domain publish/subscribe
system consisting of three particular sub-domains:

3.7. Example Application 71

Congestion Charge
Service Domain

Metropolitan Police
Domain

Billin
Officg

Statistics
Office

Detective
Smit

o e)

PITO Domain

KEY
Publisher Hogﬁggsgr%rker
Subscriber Hosting Broker
Type Owner CGHE e Hosting
CB O Integgtkeg;ate

Figure 3.1 : An overall view of our multi-domain publish/subscribe deployment

Congestion Charge Service DomainThe CCS domain implements the numberplate moni-
toring system in London. The main purpose of the system isitoree payment of the
congestion control charge by vehicles entering the cormagesbntrolled area. The do-
main contains the CCTV cameras that implement numberplatgnéon and publish
numberplate events whenever a vehicle passes by them. Thaimdalso includes the
billing and statistics systems that levy the congestiontrcbrtharges and monitor the
number of vehicles that have passed through the London Cooigé&€sharge zone each
day. The fact that the subscribers in the CCS domain are oriipaséd to read a subset
of the vehicle event data will exercise some of the key festof the enforceable publish/
subscribe system access control presented in this digserta

Metropolitan Police Domain. The Met domain has access to the numberplate sighting events
published by the CCTV cameras. The publications are useddk wehicles in London
that are related to an ongoing investigation. The tracksr@uithorised on a case by case
basis by a judge issuing an appropriate court order. Theresgant of a court order is
enforced by an access control policy in the Met domain ashailtiescribed in Chapter 6.

PITO Domain. The Police Information Technology Organisation (PITO)hs tentre from
which Police data standards are managed. It is the Coondgn&tiincipal that formed

72 Chapter 3. Multi-Domain Publish/Subscribe Systems

the publish/subscribe system and it has deployedtmaberplateevent type that is used
to report numberplate sightings in this particular scanaITO is an example of an
infrastructure provider, i.e. it has no event clients obita in our example scenario.

We also have the following four event clients in the examglensirio deployed in the above
three domains:

Detective Smith. Detective Smith is a member of the Met domain. She has begnasisto a
case where the suspects were seen to have driven away in gitcdreNicense plateE0QS
XYZ. Detective Smith has been authorised to subscribe to nyfaberevents matching
the suspect’s numberplate by a court order for a limited time

Billing Office. The CCS domain contains a Billing Office subscriber. This subscis respon-
sible for receiving alNumberplatesvents and levying the vehicle owner the congestion
charge whenever the vehicle is seen to enter the congestigrotted area. The Billing
Office needs to see only the numberplate and timestamp iatomfrom each event to
be able to levy the charge. In order to protect the vehicleestsrprivacy the Billing
Office is not authorised to read the location information.

Statistics Office. The Statistics Office is another subscriber in the CCS domtspurpose is
to collect traffic statistics from the system. Similarly teetBilling Office, the Statistics
Office requires only partial access to tNemberplateevents. Specifically the Statistics
Office needs to know the location and timestamp of the sighbat not the numberplate
of the vehicle that was sighted.

Cameras. Finally the system includes a number of cameras that publishberplateevents.
We assume that the cameras are able to execute the numbeegagnition software
internally and publish the numberplate in textual form iNamberplateevent. Each
camera knows its own location, which will be included in thibjished events alongside
the time when the vehicle was sighted and the vehicle’s nuphdgte. We expect that the
CCTV cameras will be able to produce relatively accurate tiareps.

We will use this application as a running example throughloistdissertation. Many of the
features of the MIA system are motivated by the access control requiremenkssoéxample
application. For example, the access control system muablego enforce access to the events
per event attribute, so that the system can appropriatetggirthe privacy of vehicle owners.

3.8 Summary

In this chapter we have outlined the scope of our work. We ddfimhat a multi-domain publish/
subscribe system is; how one is to be deployed; and what Kitideats it should be protected

3.8. Summary 73

against. Our aim has been to introduce the reader to the atismsthat we have made in our
work, especially those assumptions that will affect soméhefdesign choices that we make
later on in this dissertation.

In the next chapter we will present a scheme for secure eypetdefinitions, i.e. event type
definitions whose integrity and authenticity can be veritigdhe user of the event type. The
event type definitions will also provide globally unique aretifiable event type and attribute
names. We feel that these features are the cornerstonesotass control system for publish/
subscribe systems.

CHAPTER 4

Secure Event Types

The goal of our work is to design an access control architedtr decentralised, multi-domain,
type-based publish/subscribe systems. We have designmealcoess control architecture for
Hermes, i.e a publish/subscribe system with a decentdalisgamic topology broker network,
and a type-based subscription model, but the work is egaglbficable to centralised systems
or systems with a static broker network.

We lay the foundations for an access control architecturéirblyaddressing the security
issues of type definitions. For example, the lack of uniqukvamifiable names in Hermes-style
event type definitions makes it very difficult to referencemvtypes and attributes from an
access control policy unambiguously.

In §4.1 we discuss event type definitions in general, introdoedasic Hermes type defini-
tion framework and address each of the security vulnetegdslinherent in those type definitions
in turn.

We presensecure event type definitiofte Hermes-style type-based publish/subscribe sys-
tems in§4.2. Our model provides a cryptographically verifiable lmgdbetween type names
and type definitions. It also facilitates self-certifiablpe definitions that enable the verification
of the authenticity and integrity of these type definitiovée argue that secure, unique, and veri-
fiable type and attribute names are a prerequisite for cdmepisgve access control architectures
in decentralised publish/subscribe systems. Althoughchapter concentrates on type-based
publish/subscribe, the naming scheme is also applicalitgpio-based publish/subscribe. This
will be elaborated on i§4.6.

In §4.3, we consider the management of event type definitionsuti-stomain publish/
subscribe systems and present a scheme for event typervaraimagement that supports mul-
tiple versions of an event type to be present in a publisissiliie system at any given time.

74

4.1. Event Type Definitions 75

Field Description

name Name of the event type definition

extends An optional reference to an inherited event type
attributes A set of attribute definitions

Table 4.1: A Hermes-style event type definition.

Following type versioning, we present a mechanism for thgiral type owner to delegate
management duties to other principals by issuing them digapabilities authorising them to
manage a given event type definition.

We had to redesign some parts of Hermes in order to impleneents event types. How-
ever, the addition of secure event types allowed us to siynplher parts of Hermes. All in all
the addition of secure event types makes the overall Hergstem simpler, as well as provid-
ing us with a solid foundation on which to build our accesstegrarchitecture. These changes
will be discussed in more detail {§%.4.

We evaluate our approach §#.5 and discuss the computational overhead introduced by
the addition of secure event types, or more specifically typtographic operations used to
verify secure event types. We will show that all of the addeerbeads are one-time costs, i.e.
the added overheads will affect the start-up time of brokers the time required to process
advertisement and subscription messages whereas evditagion and delivery will not be
affected.

Finally we conclude the chapter with a section coveringteelavork,§4.7, and a section
summarising the chaptey.8.

4.1 Event Type Definitions

Types in the context of publish/subscribe systems meanpilalished events must conform
to a predetermined event type definition. We assume thataisydefined by daype owney
l.e. principal in the publish/subscribe system, who theviges the type definition to publish/
subscribe applications and the event service. In most casegould expect this principal to
be either the domain, or alternatively a principal in a domaho is responsible for managing
event types in that domain. The event service (i.e. locatdarm the context of a decentralised
publish/subscribe system) is responsible for type-chmecki submitted publication against an
event type definition provided in an earlier advertisemequest.

A type definition can be modified after is has been first defimetira-deployed as a new
version of the original type (Se®t.3 for more details). We call a principal that modifies an
existing type a@ype managerAgain, a type manager is expected to be a domain or a specific
type manager principal in a domain. We refer to the type ovafs as a type manager in the
following sections when the type owner is modifying an erigtype.

76 Chapter 4. Secure Event Types

A Hermes event type definition, as shown in Table 4.1, camsibthree components: an
event type name, a set of attribute definitions, and an ogiti@ierence to an inherited event
type (i.e. the name of the inherited type). An attribute dedin defines the name and type of
the attribute. A type definition name and an attribute namedoath represented by a character
string. As stated ir§2.3.1, we will not consider event type inheritance in thissértation.
Therefore we will ignore thextenddield of the Hermes event type definition throughout the
rest of this dissertation.

The main problem with simple, Hermes-style, type defingices described above, is their
lack of ownership information. The type definition does nu¢afy who has defined it, i.e. its
owner. In a decentralised access control system the resowner is responsible for managing
the access control policy for a resource. If the owner of @ametype is not known, the system
does not know whom to trust as the source of access contiiol/pol

Related to the lack of ownership information, the type deéniprovides no integrity pro-
tection. Without integrity protection anyone will be abtedhange the type definition and claim
that their version of the type definition is the authentic.dnea closed, small-scale system this
may be acceptable, but in a decentralised, multi-domainighububscribe system this is not
acceptable. In addition to malicious changes, a largeesgatem is also more likely to experi-
ence, for example, transmission errors that might chargéythe definition accidentally. Both
malicious and accidental changes to the type definitionddvgo unnoticed without integrity
checks embedded in the type definition.

Finally, event type and attributes names are not protegathst name collisions. For ex-
ample, two type owners might both introduce an event typeettHcationat the same time
without knowing about each other. In such a case it would hEossible for the access control
system to know which event type definition was meant whendbanters the namieocation
in an access control policy or a publish/subscribe requesaddition to name collisions, the
authenticity of type names cannot be verified. Authentioityhis case means that the event
type name was defined by the same principal that defined the gy, i.e. the type owner.
Without a mechanism for verifying the authenticity of typesnes a malicious principal could
bind an existing type definition to a new name owned by himcwimight allow the malicious
principal to circumvent the access control policy by acicgsthe type definition through the
new name.

The possibility of name collisions and the lack of a mecharfr verifying the authenticity
of type names means that one can not reference type namdshartatnames from an access
control policy, because there are no guarantees that nathe ipolicy references the correct
event type. That is, there exists a many-to-many relatipnisetween names and event type
definitions instead of the expected one-to-one relatignshi

The next section describes simple enhancements to the éasnt type definitions that
result in verifiable type definitions, and unique and verlgabames, with no possibility of
name collisions.

4.2. Secure Event Types 77

1: [Ppito, “Numberplate”]
[type def., SprTo]

2: [Ppito, “Numberplate”]
w—

Type
Registry

3: [Ppro, “Numberplate”]

5: verify(Spito, type def., Ppito)
Detective ’
Smith

4: [type def, Spitol

Figure 4.1 : Detective Smith retrieves the Numberplate event type definition from a type registry
and verifies its authenticity and integrity.

4.2 Secure Event Types

We propose a secure event type framework for type-basedspigalbscribe systems that se-
curely binds the type name and type definition to each othals® guarantees type authenticity
and integrity by using public key cryptography. Secure ewgmes form a basis for our access
control architecture by allowing types and attributes tardferenced from an access control
policy in a secure and unambiguous fashion.

We approach the problem of secure event type definitions bgidg a secure namespace
for type names. We propose incorporating the type issiggigtityto the type name in the form
of a public key. A public key is globally unique if the publiek scheme is secure [EFR9],
thus a public key can be used to define a globally unique naawespamespaces that are spe-
cific to type owners will prevent both accidental and malisiamame collisions in the publish/
subscribe system.

Finally we propose that the type owner digitally signs thpetydefinition. Because the
private key used to sign the type definition correspondsdadype owner’s identity incorporated
in the name of the type definition, the type name is bound taythe definition by the digital
signature. Similarly to digitally signed email messageasthlihe authenticity and integrity of
the type definition can be verified by verifying the digitajsature on the type definition with
the identity in the type name. If the signature verifies atttyeit follows that the issuer is the
owner of the namespace defined by the public key (autheyjtiamd that the type definition has
not been tampered with since it was issued (integrity). @m#yowner of the namespace is able
to issue new types for that namespace, because the digitatsre on the type definition must
be bound to the identity defining the namespace. By incorppgrdle type owner’s identity
in the type definition’s name we create a self-certifyind Imetween the name and the type
definition. That is, any principal in the system is able tafyethe authenticity and integrity of
any given event type definition simply by verifying the daisignature on that type definition

78 Chapter 4. Secure Event Types

Field Description

name A tuple consisting of the type owner’s identity
and a human-readable name

attributes A set of attribute definitions

signature The type owner’s digital signature containing
all of the above elements

Table 4.2: A secure event type definition.

with the public key that is part of the type definition’s nanfégure 4.1 shows how Detective
Smith looks up theNumberplatesvent type definition from the type registry and then verifies
the authenticity and integrity of the type definition by ¥ging its digital signature with the
public key present in the name tuple. The figure presentslleing steps:

i. The type owner, PITO, inserts tiNumberplateevent type definition into the type registry.
ii. PITO sends the name tuple to Detective Smith,

iii. Detective Smith looks up the event type definition matchthe name tuple she received
from PITO,

iv. The type registry returns the event type definition withdigital signature, and finally

v. Detective Smith verifies the digital signatuse;ro with the public keyPpiro that is part
of the name tuple.

At this point a secure event type definition consists of tlite®s as depicted in Table 4.2.
We will add two more items to the secure type definition$4r8 to facilitate type management.

The following sections discuss first the changes to the ndrtieedype definition and then
the digital signature.

4.2.1 Name Tuple

The name of an event type is used to refer to a type definitamn fsublish/subscribe messages
(i.e. advertisement, subscriptions, and publicationbe fame can also be used, for example, to
request a type definition from a type repository. It is crlitiat a specifitype nameeferences
the samdype definitionfor all clients and messages, i.e. the name tuple must fgemtype
definition unambiguously.

We replace the traditional type name with a 2-tuple congistif thetype owner’s identity
as a public key and the traditionaliman-readable namgve will add a third item to the name
tuple, a version number, {{#.3.1). The name tuple defines a unique name for the type tigfini
and creates a secure one-to-one mapping between a type ndragyge definition.

4.2. Secure Event Types 79

A cryptographic hash of the type definition would also definenmue name and a secure
one-to-one mapping to the type definition, but we feel thatukers benefit from being able
to discern event type’s owner and the user-friendly namen filee name tuple. Also, the type
versioning mechanism presentedi#3 relies on the structure of the event type names.

Notice that the inheritance relationship in Hermes typenitedns would also use the com-
plete name tuple including the type owner’s identity ratian just the human-readable name.

The Identity of the Type Owner

The type owner’s public key defines a globally unique namespéile at the same time speci-
fying the owner of that namespace. Because the namespaobalglunique, accidental name
collisions are unlikely assuming that the namespace owsable to avoid name collisions
within its own namespace. A type definition within a namespacvalid only if the signature
of the type definition can be successfully verified with thélgukey from the name tuple. Be-
cause the signature can only be created with the type isspigvate key, malicious users are
not able to forge the link between the name and the type definiand therefore are unable to
introduce forged type definitions into the system.

Using the type owner’s public key to sign the event type digdiniimplies that the key pair
must be long-lived in the system, so that the event type camdnegaged during its lifespan.
This must be considered when types are being deployed irygters. Instead of using a key
associated with a human principal, the types can be credthdakey owned by the domain’s
access control server, or a threshold subject (2e®4).

Another alternative is to create a temporary key pair justfeating the type definition. That
key pair is be used to sign the type definition and delegataatiagement rights immediately to
another principal (We will discuss the delegation of typenagement duties i§¢.3.3). The type
management rights would probably be delegated again tootimaih’s access control service or
a threshold subject. This approach is essentially the sartteegorevious two alternatives with
the exception of using a temporary key pair to create the @yypkthen for delegating all access
and management rights to the domain or a threshold subject.

Human-Readable Name

Where the type owner’s identity defines a globally unique regraee, the human-readable name
can be used to build naming hierarchies within that namesp&or example, the reverse-
DNS naming scheme used in naming Java packages [Sun99]ce®tierarchical names like
uk. gov. pi t 0. Nunber pl at e. Naming hierarchies enable the event type owner to express
a semantic structure among multiple related event typgs,al.type definitions related to a
single publish/subscribe application can be grouped bageAlso, including information about
the type issuer in the type name will help the applicationetigyers to remember who has
deployed the type they are working with. We would assume dhaintegrated development

80 Chapter 4. Secure Event Types

environment supporting event type definitions would hideghblic key part of the name tuple
from the user in order to make the interface more user-fiericherefore the human-readable
name should provide the developer with as much informatsopossible.

In the congestion control example application describegBi@ PITO is the owner of the
Numberplatesvent type. PITO’s identity is signified bipro and the full name of the event
type isuk. gov. pi t 0. Nunber pl at e. Therefore the name tuple for thumberplatesvent
type is [Prrro, UK. gov. pi t 0. Nunber pl at e] (we will refer to the event type witiNum-
berplatemost of the time in order to save space).

4.2.2 Digital Signature

The digital signature on an event type definition is used tdywhe authenticity and integrity
of the type definition, i.e. by verifying the signature one eacertain that the type definition has
not been tampered with and that it has been created by thersighe signature is generated
over all of the items in the type definition, including the reamaple, i.e. it binds the name
tuple to the type definition in a cryptographically securghian. This binding allows users, for
example, to lookup type definitions from a type registry withhaving to worry about forged
types, because they can verify the authenticity and irtiegfihe type definition for themselves.
The digital signature also allows event brokers to trushewges presented to them by event
clients.

4.3 Type Management

We must assume that type definitions in a large-scale publibscribe system need to evolve
during their lifetime either because of mistakes made irotiiginal definition of the event type
or because of changing application requirements duringetleat type’s lifetime. We must
also assume that multi-domain publish/subscribe systenss ramain operational at all times,
because it is very difficult to schedule downtime when midtgiomains are running multiple
mission critical applications on the same shared infratiine. Therefore, a type manager must
be able to deploy an updated version of an event type definitidle the system is still running
without disrupting existing clients that are still usingtbld version of the same type definition.

We expect types to be managed only in the creating domairthbudelegation mechanism
places no such constraints. That is, a type owner is ablel¢gae type management rights to
principals in other domains as well. This is important whelomain that created an event type
wants to leave the shared publish/subscribe system, Inat éine still clients using that type. In
such a scenario the type owner can delegate all type managegigs to some other domain
in the system. Another alternative would be for some othenalo to recreate a new event type
with the same attributes, but this would disrupt the operatif the publish/subscribe system,
because the name of the new event type would be different.

4.3. Type Management 81

Type managers can apply the following type management tpesaon event type defini-
tions:

i. add attribute,
ii. remove attribute,
iil. rename attribute,
iv. change attribute type.

Unlike thechange attribute typeperation theename attributeoperation is not equivalent
to a sequence gémove attributeindadd attributeoperations, because the rename operation is
able to maintain a semantic link between the attribute’saold new name. We elaborate on this
in §4.3.2 where we discuss support for renaming attributesentaypes while maintaining the
semantic link between the two names.

The type management features described above are provigeder to allow a type man-
ager to carefully change an event type definition. We exget dfter the release of a new
version of a type definition the event clients using that tgipénition will migrate to the new
version in stages: the event clients that are from the sammeitioas the type manager will
probably migrate early on while event clients in other damawill take a longer time before
migrating. We also expect that some clients might never atth@pnew version. Therefore we
feel that it is unrealistic to expect that all event clients able migrate to a new event type
version at the same time.

We describe irg4.3.2 a mechanism for translating published events fromvemsion to
another. This mechanism is quite brittle and will resultiscdnnected event clients if the type
manager is not careful when changing the event type defmitio

The type management features are provided as a way for thartgpager to slowly evolve
the event type definition to match new requirements whilewatlg existing event clients to
continue using the current event type version. When chargingvent type definition with a
number of event clients using the current version of the,tiypeetype manager is responsible for
making only changes that allow the event clients to contiousommunicate with each other.
The type manager should never introduce changes that wilept a set of event clients from
communicating with each other if some of them migrate to tbew mersion of the event type
unilaterally.

In cases where there is a risk of event clients losing conigcor a slow migration is not
possible for some other reason, a completely new event typdd be defined instead of trying
to update the existing event type which would result in ewdients loosing connectivity with
each other. In such cases one can deploy type translatatsctigat will subscribe to the old
event type, translate it to an instance of the new event tgdegoablish that instance.

82 Chapter 4. Secure Event Types

Alternatively type managers can decide to only extend iejstypes. That is, the type
manager can add new attributes or rename existing attspbtg it must never remove an
attribute or change its type. By only ever extending the seaitivibute, the type manager can
guarantee that the events will always contain all attribepected by a subscriber. On the
other hand the type manager cannot force the publishershedie semantically valid values
for attributes that they do not care about. That is, a puelishn always set the attribute value
tonul | orto some otheandefinedsalue.

The following two sections describe the changes to the semtant type definitions that we
have made in order to support type management in a runniniisp(gubscribe system. The
third section will describe how the type owner will be abledielegate management duties to
other principals.

4.3.1 Version Number

In order to allow multiple versions of an event type to coekighe publish/subscribe system
simultaneously we propose to include a version number imémee tuple effectively making it
a 3-tuple: fype owner’s identityname version numbdr

A new version number is created for each new version of a tgfi@ition that is deployed.
Since the version number is part of the name tuple, changieffeictively renames the event
type. This means that introducing an updated event typdhetgystem does not interfere with
existing clients, because they have subscribed to andhldispievents of a different type name
(i.e. the same type name, but with a different version nuiber

Existing clients will continue to use the old type until thiestve been explicitly modified
to subscribe to and publish the new version of the updatexlt éype definition. New clients,
implemented against the updated type definition, can useeiveaype immediately.

We assume that clients have to be manually modified to be ablsdé an updated type
definition. The manual modification might be as simple as ragitlhe new type definition to
the client’s configuration files, or it might require more stamtial changes to the client. Notice
that under the current assumptions clients subscribiniggméw version of the event type will
not receive events published as instances of the old veditime same event type. We will
address this shortcoming #d.3.2 by addindype version translatioto our proposed scheme.

If there is only one type manager, i.e. the type owner, fovamievent type, the type man-
ager is free to use a traditional, monotonically increasiegsion numbering scheme starting
from 0. Because there is only one type manager there is nabfriskrsion numbers collisions.

When there are more than one type manager for a given eventwgeropose using a
version number scheme based on collision resistant vatuegler to avoid having to serialise
access to a version number counter. If we were to use a celbased version numbering
scheme with more than one type manager, each type managierewe to ask an authoritative
party for the next version number in order to avoid versiombar collisions. This would be

4.3. Type Management 83

both slower and more expensive, not to mentioned more diffioumplement, compared to
collision resistant version numbers in a distributed sgttiNote that even with multiple type
managers the initial version of an event type can always haxersion number 0, which will
also identify the original version of an event type.

In MAIA we have implemented event type version numberdrasersally Unique Identi-
fiers (UUIDs) [Ope97]. A UUID is a 128-bit value that is guarantgedbe unique from all
other UUIDs until the year 3400. Instead of UUIDs we couldalse some other collisions
resistant value, for example, the cryptographic hash ofytpe definition. Notice that we are
only concerned with accidental collisions instead of malis collisions in version numbers.
Therefore we could use MD5 [Riv92] or SHA-1 [FIP02] as a cadiisresistant hash function
even though these two algorithms are no longer considered gecure against malicious at-
tacks [WYO05, WYYO05].

One of the advantages of UUIDs is that they are generallgrfésicreate than cryptographic
hash values. On the other hand a cryptographic hash valubecéorced to collide with an
existing value. That is, by calculating the hash value fromdttributes set the version number
of an event type definition will be the same as the version rarrabanother version of the same
type definition with an equal attributes set. In contrast H}based version number scheme
will always produce a unique version number regardless @fattribute set. In a hash based
scheme, if a type manager releases a new version of an eperdéyinition that is equivalent to
a previous version, the two versions would have the samevensmber and therefore the same
name. Notice in order to generate colliding hash valuesyé¢ngion number must be generated
by hashing only the attribute set. The calculation mustmdtide any other fields from the type
definition, e.g. a creation timestamp or tbedentialsfield that we will introduce ing4.3.3,
because these fields would bind the version number to a speuiicipal who updated the type
definition or to a point in time when the update happened thepeeventing other principals
from generating colliding version numbers.

We felt that equivalent version numbers for equivalent exgpe definitions would not
provide us with any further advantage compared to type eeiisanslation described #4.3.2.
Therefore MhIA implements UUID-based version numbers.

It was also suggested to use the digital signature on a tyfp@tamn as the version number.
Unfortunately this results in a chicken and egg problemabse the name tuple that includes the
version number is included in the type definition that is besigned. That is, we cannot create
the name tuple with a version number, because the versiobemsbased on the signature and
we cannot create the signature, because the signed dataoiude the name tuple. Remember
from §4.2.1 that including the name tuple in the type definitiorates a link between the name
tuple and the type definition, which allows us to verify théheunticity and integrity of both the
type definition and the name tuple.

Compared to a counter-based version number, collisiontaesischemes lack a clear time
line. One cannot order collision resistant version numldegsause they are basically uniformly

84 Chapter 4. Secure Event Types

random numbers and one can not say if one version precedéanae or not. With a counter-
based scheme it is obvious that versioprecedes: + 1. In order to provide a time line for
type definition versions we can add the preceding versionbeuno the type definition. With
the help of the reference to the preceding version we catecegaartially ordered version tree.
We feel that there is no need for partial ordering of evenetyersions and have therefore not
added a reference to the preceding version to our securétgperdefinitions.

With a version number the name tuple for tdemberplateevent type is a 3-tuple:Hpiro,
uk. gov. pi t 0. Nunber pl at e, 1234]. Notice that the real version number would be a 16-
byte UUID number that in its canonical form would be a 36-eleser hex string, e.g. 550e8400-
e29b-41d4-a716-446655440000. We will be using four charaetegers to represent version
numbers in the rest of this dissertation in order to makedkerhore readable.

4.3.2 Type Version Translation

A side effect of adding the version number to the name tuptéas subscribers will not re-
ceive events from publishers that are publishing instantes different version of the same
event type. This presents a real problem when either theghalor the subscriber updates
its event type version unilaterally. Event clients mighgraie to the new version of the event
type in cases where the event clients are in different dosnaingy. the event clients in the type
manager’s domain might be given access to the new versidieretiian event client in other
domains. Even if all event clients were migrating to the nension at the same time it would
be improbable that they would do so at exactly the same momedime. If a publisher and
a subscriber are using different versions of the same eypetthe publisher and subscriber
will lose connectivity with each other, because the différevent type versions are treated as
unrelated event types.

Instead of routing events of specific event type versiongdrareslate the published event to
atransit time evenat the PHB after the event has been type-checked by the PHBsagfae
version of the type definition used by the publisher. Thegitaime event is simply a collection
of name-value pairs that were copied from the publicatidraldo includes the type owner’s
identity and the human-readable name from the name tupl@dbihe version number.

The transit time event is then routed through the broker adtwo all subscribers of that
event type, regardless of the version of the type definiteedun the subscriptions. The SHB
then translates the transit time event to an instance ofubgcsiber’s version of the type defi-
nition. Attributes that are present in the transit time eybat not in the subscriber’s version of
the type definition are ignored. Similarly attributes that aot present in the transit time event,
but are defined in the subscriber’s version of the event typesat tonul | (or undefinedlin
the event instance, as shown in Figure 4.2.

4.3. Type Management

[Ppiro, Numberplate, 5201]

Att.Name Type
numberplate String
timestamp Timestamp

Published Event

Transit Time Event

[Ppiro, Numberplate, 3678]

Att.Name Type
numberplate String
timestamp Timestamp
location String

Att.Name

timestamp

Value

numberplate “AE05 XYZ"

“10:03:02..."

Name Value

type [Pprron
Numberplate]

N N———< > ———<

Delivered Event

numberplate
timestamp

"AE05 XYZ"
“10:03:02..."

Att.Name

Value

numberplate “AEQ5 XYZ"

timestamp
location

“10:03:02..."
null

Figure 4.2 : Translation to and from transit time events.

Renaming Attributes

The operation for renaming attributes in a type definitiossutes in problems when translating
an instance of one version of an event type to an instanceodhanversion. More specifically,
the publisher might use a version of tNemberplatetype definition that refers to an attribute
with the namd i cense- pl at e while the subscriber is using another version of the same
event type that refers to semantically the same attributie the namenunber pl at e. The
transit time event created from the publication will alsterdo the attribute with the name
| i cense- pl at e. The SHB translates the transit time event to an instandeea$ubscriber’s
version of theNumberplateevent type, but because that version of the event type usemthe
nunber pl at e instead ofl i cense- pl at e, the SHB sets the value aunber pl at e at-
tribute tonul | before delivering the event to the subscriber.

In order to allow the renaming of attributes in event type rdgfins without losing the
semantic link in the process, we add a unique identifier th egtcibute definition. We replace
the attribute 2-tuples in event type definitions consistiig@ name and a type with a 3-tuple
consisting of a name, a unique identifier, and a type, awgrber pl at e, 1234, String]. When
renaming an attribute, the name in the 3-tuple changeshbputinique identifier and the type
stay the same.

The attribute definition defines a mapping between the atgibame and the unique identi-
fier. The name has to be unique within the context of thatqaetr version of the type definition
whereas the unique identifier has to be unique within thesstwif all versions of the type defi-
nition. A unique identifier therefore identifies a singleiatite among all the attributes defined
for that event type in all its different versions.

Similarly to event type version numbers described4tB.1, the attribute identifiers in the
first version of an event type definition can be created asesemunumbers, i.e. 0, 1, 2 etc.,

86 Chapter 4. Secure Event Types

because there is not risk of collisions. Assuming that thpe tgefinitions change very little
during their lifetimes, we can guarantee that we creategastlamount of overhead by assign-
ing the original attributes the shortest possible idemsfidhe attribute identifiers in following
versions of the event type can be either sequence numbeaddlision resistant values depend-
ing on whether there is more than one type manager creatingvasions of the event type
simultaneously, as was the case with event type version atsnb

Instead of using a UUID we could use some other identifier getien scheme that would
be collisions resistant in the relatively small identifipase of an event type definition. The
attribute identifier has to be unique among all the attrildeatifiers of all the versions of that
single event type definition. Assuming ten different vemsiof an event type where each version
has a completely new set of ten attributes we would requieshamdred identifiers. Using a
16-byte UUID for each attribute seems wasteful considetirgnumber of unique identifiers
that need to be created (it would be safe to assume that mest gypes will have only a few
versions with mostly the same set of attributes in each @8ysOne possible solution would be
to fold the 16-byte UUID inta: bytes by XORring the:-byte segments into one single value.
Another approach would be to take thdoyte remainder of the generated UUID and use that as
the identifier.

The length of the identifier can be varied based on the exgeutmber of attributes for a
given event type definition. In both approaches it is impatrta verify that the resulting values
are uniformly random and collisions resistant. The lendtthe identifiers can also vary from
version to version which allows the type owner to switch frecheme to scheme depending on
the current circumstances.

The publish/subscribe clients refer to attributes usitigoatte names, whereas the interme-
diate brokers use the unique identifiers. Before routing temtethrough the broker network
the PHB creates a transit time event from the publicatiorréydating the attribute names to
UIDs based on the publisher’s version of the type definititme SHB translates the UIDs back
to attribute names based on the subscriber’s version of/feedefinition before delivering the
event to the subscriber.

The transit time event uses UIDs instead of names to refettribuies. The unique identi-
fiers guarantee that attributes are always unambiguousittiféhble regardless of their names
in any given version of the event type. This allows type mans¢p rename existing attributes
and reintroduce old attribute names while maintainingroperability between different ver-
sions of a type definition. For example, in Figure 4.3 the shiglr uses the version 4799 of
the typeNumberplatevith the namd i cense- pl at e for the attribute with UID 9525, while
the subscriber uses the version 8516 of the same type witk namber pl at e for the same
attribute. Although the names for the attribute are diffiéfer the publisher and the subscriber,
the UIDs are the same, which allows the subscriber’s locakdarto deliver the attribute to
the subscriber asunber pl at e. Similarly a new version of the type definition derived from
version 4799 might include a new attribute with the ndmeense- pl at e, but with a UID

4.3. Type Management 87

[Ppiro, Numberplate, 4799] [Ppiro, Numberplate, 8516]
Att.Name UID Type tt.Name UID Type
license-plate 9525 String numberplate 9525 String
timestamp 0723 Timestamp timestamp 0723 Timestamp

location 6352 String
Published Event Transit Time Event Delivered Event
Att.Name Value Name Value Att.Name Value
license-plate “AE05 XYZ" type “Numberplate” numberplate “AE05 XYZ"
timestamp ~ “10:03:02..." 9525 “AEO5 XYZ" timestamp ~ “10:03:02..."
0723 “10:03:02..." location null

Figure 4.3 : Translation to and from transit time events with attribute UIDs.

3879. Because the UID (3879) differs from the UID (9525) of dhniginall i cense- pl at e
attribute, there is no risk of confusing one attribute wite bther when converting instances of
the type to and from transit time events.

Table 4.3 shows thlumberplatesvent type definition with a name tuple including a version
number and attribute tuples that include a unique identifier

4.3.3 Authorisation Certificates

In a scalable system, the management of an event type caanlo¢ lbesponsibility of a single
principal, i.e. the type owner. We expect that in an Inteseatle publish/subscribe system
event types are long-lived and that type owners can leaveyiem. For example, a domain
that owns an event type, that is used in the multi-domainighislubscribe system by other
domains, leaves the system, but wants to allow the other mhsnb@ carry on using that event
type. Therefore the system must allow delegation of typeagament duties to one or more
type managers. Unfortunately the secure event type defisitiely on the fact that the identity
in the name tuple verifies the digital signature on the tygendi®en. Thus, only the principal
identified by the public key in the name tuple, i.e. the typenexyis able to create a digital
signature that is verifiable with that public key. Becauseha$ pnly the type owner is able
to deploy updated versions of the type definition. If anotlype manager were to edit the
event type, sign it, and reintroduce it to the system this Wwould be broken, because the type
manager is unable to sign the type definition with the typeeansrprivate key.

To overcome this limitation we propose using signed cafiedsiito delegate type man-
agement duties to other principals. The type owner issuegpabdlity to each type manager
authorising the type manager to issue new versions of thefizkevent type. The capabil-
ity includes both the issuer’s (i.e. the type owner’s) arelghbject’s (i.e. the type manager’s)
identities, thereby creating a link between the two priatsp

88 Chapter 4. Secure Event Types

Name Value
name [Prito, UK. gov. pi t o. Nunber pl at e, 8516]
attributes punber pl at e, 3265, String]
[ti mest anp, 9058, Timestamp]
[l ocati on, 3467, String]
signature The type owner’s digital signature containing
all of the above elements

Table 4.3: The Numberplate event type definition with a version number and attributes with
unique identifiers.

Field Description

name A tuple consisting of the type owner’s identity,
a human-readable name and a version number

attributes A set of attribute definitions

credentials A set of signed capabilities

signature The type owner’s digital signature containing
all of the above elements

Table 4.4: A secure event type definition with a credentials field.

The type manager includes its capability chain in the tygedi®n and signs the definition
with its private key. A verifier can now link the signature teetname tuple by following the
capabilities chain from the type owner’s identity in the reatiple to the type manager’s identity
in the capability, and verify the signature with the type imger's public key. The capability
chain links the type manager to the type owner and allowsehéer to trust the type manager’s
signature. We add@edentialdield to the secure type definition to hold the capabilitissseen
in Table 4.4.

The capability can also authorise the subject of the capalbd delegate a subset of its
authority to a third party. Therefore the certificate chaayroonsist of more than one certificate.

Figure 4.4 depicts three different cases of type managenierihe first column the type
owner, P, has created or updated the type definition and signed ittyjgeeowner’s signature
Is directly verifiable with its identity present in the nanuple. Therefore there is no need for a
capability and thus the credentials field in the type debnits left empty. In the second column
the type manager),, has updated the type definitioR; includes in the updated type definition
a capability that has been issued Byand authorise$, to manage the type definition. The
capability links the signaturé;(P), to the type owner’s identity;. The third column is similar
to the second column, except in this case the capabilitiasmdimking S(P,) to P, consists of
more than one capability.

The set of credentials is there to link the current signatimitee identity in the name tuple.
The type manager updating the type definition always repl#oe previous set of credentials

4.4. Modifications Made to Hermes 89

Signed by the Signed by the Signed by the
Type Issuer, P, First Delegate, P, nth Delegate, P,,
Name Tuple: [P1, “Numberplate; 2587] [P1, “Numberplate; 3837] [P1, “Numberplate; 2768]
A T

Issuer: Pq
Subject: P

Issuer: Py

Capabilities Chain: Subject: P,

Issuer: Pp_y
Subject: P

Digitally Signed
Type Definition: Signature: Sj(...) Signature:Sy(...) Signature: Sp(...)

Figure 4.4 : Verifying the name-signature link with and without a capabilities chain.

with a set of credentials that link it to the name tuple. Indeéault case where the type owner
issues the type definition and manages all updates, theoenised to include any authorisation
certificates (See the first column in Figure 4.4).

The authorisation certificates are delivered to the typeagers out-of-band, i.e. indepen-
dent of the type definitions. Out-of-band delivery enablhestype owner to grant authorisation
to a principal even after the type definition has already lmkgrioyed. If the capabilities were
embedded in the type definition, the type owner would haveptiate the type definition every
time she wanted to change the access control policy to isswvake type management rights.
This would result in otherwise unnecessary versions ofythe tefinition, and maintaining an
up-to-date set of authorisation certificates as part ofyihe tlefinition would be close to impos-
sible if the type managers were authorised to further dédelype management rights to other
principals.

We will discuss access control based on capabilities in rdetail in Chapter 5, where we
will present an access control architecture for multi-dompaiblish/subscribe systems based on
signed capabilities and delegation.

4.4 Modifications Made to Hermes

We made a number of changes to the original Hermes desigml@r to add support for secure
event types. Some of the changes were necessary for Herrnestie to support secure event
types. Other changes were made possible by secure evesataggdeallowed us to simplify the

90 Chapter 4. Secure Event Types

Hermes design. The following sections describe in detaihtiore important changes that were
done.

4.4.1 Type Storage

The original Hermes design usediatributed hashtabl€DHT) [RDO1a] to store event types in
the broker network. The name of the event type is used as alkey imserting a type definition
into the DHT. The unreliable nature of structured overlajwoeks demands that the stored
type definition be replicated among multiple nodes. Thabégause the nodes of the overlay
network may leave at any time, not to mention the possibdityyode and network failures,
the content stored at a specific node must be replicated év ntddes in order to guarantee the
availability of the content with high probability. Maintang the DHT thus results in a lot of
unnecessary network traffic when content is copied to repimdes during inserts, and when
nodes join and leave the overlay network. Even with repgbecatthe DHT can only provide
availability with high probability based on the number opliea nodes. In the worst case the
requesting node is left stranded from all replica nodes afteetwork partition and thus not able
to access the content.

In addition to performance issues Hermes does not provigiardaegrity or authenticity
guarantees for type definitions. The integrity of type dé&bins in a multi-domain publish/
subscribe setting must be protected so that accidental ahdowus modifications do not go un-
noticed. Otherwise implementing an access control baséibse type definitions is doomed to
failure. In Hermes all participants are expected to trustebent service to protect the integrity
of event type definitions. In a multi-domain environmentsitunlikely that all participating
domains are willing to trust the other domains with theirrevgpe definitions.

The self-certifiability of secure event types enables botneclients and event brokers to
verify the authenticity and integrity of type definitions. &eise the authenticity and integrity
of type definitions can be verified it is no longer necessarglfigparticipants to trust the event
service to protect the integrity of a type definition. Typdinions can be stored in the event
service as is the case with Hermes with the knowledge thataangering by any of the event
brokers that implement the type storage will be noticed.

We argue that developers implementing publish/subscpipécations that handle specific
event types need to have the definitions of those types alaita them during development
time. The type definitions would be delivered to the develspeait-of-band, e.g. as downloads
from the type owner’s web page or a type repository. Sincéjptedefinitions are part of the de-
velopment process it would be simple to include them in thek@ging of the publish/subscribe
applications. The client would then be able to pass the tgbi@aitlon on to the local broker as
a part of an appropriate publish/subscribe requedvérti se orsubscri be). The broker
would then verify the authenticity and integrity of the cligorovided type before executing the
client’'s request by verifying the digital signature and bk authorisation certificates.

4.4. Modifications Made to Hermes 91

Function Attributes

advertise {ype_nane)

unadvertise tlype_nane)

publish event _i nst ance)

subscribe {ype_nane,filter,call back)
unsubscribe t(ype_nane, cal | back)

addEventType tlype_def)
modifyEventType t{pe_def)
removeEventType t ype_nane)

Table 4.5: The Hermes event client API.

Only the local brokers need to do type-checking. The PHB-tyipecks the submitted pub-
lication before it is routed through the broker network. Hamty the SHB type-checks the
subscription filter before passing the subscription on ¢édtoker network. The SHB also type-
checks all publications against the subscriber’s versfdhetype definition. With publications
the SHB can type-check a given publication once against eadion of the type definition
and use that result for all subscribers that have subscriliédthe same type definition ver-
sion. The intermediate brokers assume that the publicatonl subscriptions have already
been type-checked by the local brokers, thus only the logtdrs need to be aware of type
definitions.

By relying on publish/subscribe clients to provide type débns to local brokers we re-
move the need for maintaining a type repository in a DHT, tbugring the amount of system
internal network traffic and making the broker design moegaht and simpler in general.

4.4.2 API Changes

The new approach to type storage presented in the previatisrs@nd the introduction of
the name tuple result in changes to the Hermes API, shownbte a5 (the Hermes API is
described in more detail in [Pie04].

Because type definitions are not installed in the publisigsiilbe system any more, as
explained above, there is no need for a specific type managef with the operations
addEvent Type, renoveEvent Type, andnodi f yEvent Type. Type definitions are pro-
vided to the brokers by the clients as parameters t@atheer t i se andsubscri be opera-
tions. In both cases the old API operations referred to tieatype with the type name. These
operations are provided in the new API as well in order tovaflar cases where the client host-
ing broker has cached the event type definition and therélfierelient is able to refer to it by
name. Table 4.6 defines the new API implemented A

Note that we have removed type management operations frenARM exported by the
event brokers, but this does not mean that one could not mgiéa type registry in the broker
network as has been done in Hermes. We merely feel that tea¢gstry functionality should

92 Chapter 4. Secure Event Types

Function Attributes

advertise {ype_def)

advertise {ype_nane)

unadvertise type_nane)

publish event _i nst ance)

subscribe (ype_def ,filter,call back)
subscribe {ype_nane,filter,call back)
unsubscribe t(ype_nane, cal | back)

Table 4.6: The MAIA event client API.

be independent from the publish/subscribe functionality.

4.4.3 Message Routing

In addition to using the event type name as a key in the DHT wdtening type definitions,
Hermes uses the type name as a node id when routing eventgithtbe broker network.
Hermes chooses @ndezvous nod&#om all the broker nodes by hashing the type name in
order to create a node id. An event dissemination tree is ¢theated in the broker network
by routing advertisement and subscription messages tewaedendezvous node. Because the
rendezvous node id is created by hashing the name of thetgpenboth the PHB and the SHB
are able to compute the node id of the rendezvous node frotyple& name tuple without any
external assistance. Publications are then routed bast @vent dissemination tree from the
publisher to all subscribers. The Hermes routing algorihexplained in more detail in [PB02]
and [PBO3].

Simply hashing the name tuple would result in each event ¥gpsion having a different
rendezvous node, becaus@||n||v1) # h(P||n||vs). This would result in independent event
dissemination trees for each version of an event type amduse of this, in unnecessary routing
state and sub-optimal routing performance. Moreover, tlentedissemination tree for one
version would not be able to reach subscribers of anotheiorenf the same event type, e.g.
v; publications would not reacty, subscriptions. Instead of hashing the whole name tuple, we
ignore the version number and hash only the public key andhdnee: 2(P||n). This results
in a common rendezvous node and optimal routing performéorcall versions of an event
type allowing, for exampley, subscribers to receive both answv, publications (Se¢4.3.2
regarding type version translation.).

4.5 Performance

The most significant performance penalty in verifying secewvent types is caused by digital
signature verification. The other related operations,&RKI| 5-tuple reduction, are very cheap

4.5. Performance 93

in comparison. This is clear from the performance result3ahle 4.7 that show the time
spent for both operations in microseconds. The 5-tupleatszhs are over 50 times faster than
digital signature verifications. The reduced SPKI certtBazhain was five certificates long and
the digital signatures were generated with a 1024-bit RSA Kag test runs were executed on
an Intel P4 3.2GHz workstation with 1GB of main memory.

Operation 1S o
5-tuple reduction 5.533 0.18513
RSA signature verification 291.926 2.60839

Table 4.7: The time in microseconds spent on 5-tuple reductions on RSA signature verifica-
tions.

Event types need to be verified when a publish/subscribatglievides an event type to
the local broker as a part of an advertisement or a subsmmipgiquest. Publications refer to an
already verified event type and thus do not need to be veriididually.

In a ndve implementation a broker verifies every client-provideent type for every ad-
vertisement and subscription request separately. An dgeoimplementation would cache the
verification result of each event type and simply comparetready verified type to the event
types in subsequent requests thus avoiding the expengivatsre verification. When the type
cache is enabled in MA the plain and signed type definitions perform equally welvasild
be expected. This is shown in Table 4.8.

Event Types 5 o
Plaintypes 6.77053 0.47450
Signed types 7.10021 0.83788

Table 4.8: The time in microseconds spent on processing a subscription request at the local
broker for plain types and signed types when the type cache is enabled.

The broker can also store client-provided event types Ipedter verification. This enables
the broker to load and verify those event types as part of tbkel start-up sequence. As we
can assume that the set of event types in use in a publisicf#adbsystem is relatively static, i.e.
the publish/subscribe clients advertise and subscribleet@ame event types most of the time,
the bulk of the cost of verifying those types is paid in adwantile the broker is starting up.
The routing performance of a broker is only affected by nguesyand type versions introduced
to the system that have not been verified yet.

The cost of verifying an event type depends on the length efctrtificate chain in that
event type. Therefore the impact of event type verificatian be reduced even more by the
broker caching also verified authorisation certificatese ¢ached certificates can then be used
in verifying certificate chains in other event types and ¢Wgpe versions where the certificate

94 Chapter 4. Secure Event Types

Withlout Certificlate Cachinlg —
With Certificate Caching ---x---
45 Plain Types --—-*--- &

ms / Subscription

0 1 2 3 4 5 6 7 8 9
Number of Certificates in Certificate Chain

Figure 4.5 : Subscription performance with and without certificate caching.

chains contain cached certificates. For example, if a typgager introduces a new version of
an already cached event type to the system, the broker cahaisached certificates in veri-
fying the certificate chain from the type owner to the type ager. Figure 4.5 shows how the
processing time of a single subscription increases whetetigth of the certificate chain in-
creases. Notice that all the subscriptions use the sametgperand therefore we have disabled
the type cache, which would otherwise affect the resultdh\6&rtificate caching disabled the
local broker must verify each certificate and the digitahsigire on the type definition for each
subscription. When certificate caching is enabled the bredefies the certificates in the chain
only once. For the remaining subscription the broker hagtdwonly the digital signature on
the event type definition. The Plain Types graph is includeklighlight the price of verifying
digital signatures. A subscription for a plain event typeetaon average 7.42& with a stan-
dard deviation of 1.78347s. The high standard deviation is the result of a small testwiich

is completed very quickly when using plain types. A larget tein was not possible, because
the same test run for signed types would have taken too long.

In any real world deployment the type cache would be enabteldnae would get perfor-
mance results comparable to the results in Table 4.8. Neleds the timing results in Fig-
ure 4.5 show that a certificate cache does provide a perfa@riaorease when verifying signed
event types that share certificates in their certificaterchai

Although signed event types do affect the time required txg@ss subscription and adver-
tisement requests, we assume that subscriptions and isdweents will represent only a small
portion of all the requests made to local brokers and thezdfte performance impact should

4.6. Secure Names in Topic-Based Publish/Subscribe 95

be relatively small. Even in cases where subscribers anlispebs disconnect from the event
service quite frequently it is safe to assume that they vallally subscribe or advertise the
same event type that they used the previous time they wergectad to the event service. In
such cases the event type cache will provide comparablerpesthce. Therefore we can con-
clude that the biggest performance impact is suffered wigeneavent types are introduced to
the event service frequently. We expect this to be relatiezle.

Note that adopting secure event types in a publish/sulesayistem does not affect the
routing performance of the system at all. All type-relatpemtions, e.g. validating the event
types and type-checking publications, are performed oinlgeaclient hosting brokers either at
subscription or advertisement time, or at publication tiragpectively.

4.6 Secure Names in Topic-Based Publish/Subscribe

While the bulk of this chapter has been specifically abouttygsed publish/subscribe systems,
the concept of secure namespaces and secure names arerusgfig-based publish/subscribe
as well. By prefixing the topic owner’s identity to the topiamawe get a 2-tuple that is globally
unique with high probability (Segt.2.1).

With type-based publish/subscribe the identity in the naupke was bound to the type defi-
nition through the digital signature covering the whole wi@fhn including the name tuple. The
signature creates a two-directional link that on the onelltararantees that the type definition
is authentic and correct, but it also verifies that the typma& authentic, i.e. that it has been
created by the owner of the identity. In the case of topiebgsublish/subscribe there is no
type definition and no signature that could be used to venégyauthenticity of the topic-name.
Therefore topic-names with the topic owner’s identity peedi to the name are not useful as
such, because their authenticity cannot be verified.

Fortunately, the access control architecture that wedoize in Chapter 5 binds the topic
name to the authorisation certificates that grant prinsipatess to the topic, and the authen-
ticity and integrity of those certificates can be verified isimilar manner as we verified the
authorisation certificates used in this chapter to deldgagzmanagement rights. Thus, we can
use secure topic names to implement access control forbasied publish/subscribe.

4.7 Related Work

Wang et al. present in [WCEWO02] a number of security issues gelarcale publish/subscribe
systems that need to be addressed before publish/subsysteEms can be deployed in the
Internet. The paper covers problems related to authemiicatata integrity and confidentiality,
accountability, and service availability. We feel thatisecnames and event type definitions
provide a foundation on which to build solutions to the pesb$ they discuss.

96 Chapter 4. Secure Event Types

Linked local namespaces were first introduced by Rivest amdploat as part of the SDSI
1.0 specification [RL96]. In SDSI a principal maps local narteshe public keys of other
principals. For example, the local nafm® in P;’s namespace is bound to principl, but to
P, in Py’s namespace. Local names can also be chained,/.gop, bar], which points to the
principal known adar by the principal who is known &@so by P;.

Our proposed naming scheme for secure event types borromsIDSI in creating globally
unique namespaces by using public keys as the root of thespaoe. The appearance of secure
names resembles SDSI’s linked local names, but in fact theylifferent. In SDSI all names
always point to a principal with its own key pair. In our caseaould think of the human
readable part of the secure name as a local name in the typer'swamespace, that points to
the event type definition. But this would be incorrect, beedahg event type is not a principal.
Similarly one could think of the version numbers as local earn the event type’s namespace,
but again this would not be accurate, because versions apeincipals either. In SDSI one can
reduce a chain of names by replacing the public key and a f@rak with the public key that
represents the local name. With secure names the analodg b@to replace the type owner’s
public key and the human readable name with the event typeitil@fis public key, which is
not allowed in the current scheme. So, while secure names lheen inspired by and appear
similar to SDSI’s linked local names, in actual fact they diféerent.

The type management approach with multiple concurrentiyatype versions in the sys-
tem was inspired by schema evolution in object-orientedluiges. For example, the ORION
object-oriented database [BKKK87] also uses unique versionbers instead of names to iden-
tify schema entities in a similar way that we use UUIDs to tifgrattributes in event types. The
indirection created by the use of version numbers allowsitlmee of the entity to change from
one version of the schema to another while maintaining a seaiank between the two entities
with different names in the two versions of the schema.

4.8 Summary

This chapter presents a model for secure event type defisitiotype-based publish/subscribe
systems. The scheme provides self-certifiable type defirgtihat allow both event clients and
brokers to verify the authenticity and integrity of a typdidigion. Although our design is based
on Hermes, it is applicable to type-based publish/subssistems in general and to topic-
based publish/subscribe systems with certain limitatasdescribed i§4.6. We presented the
work originally in [PBO5].

We feel that secure names and event type definitions prolieléoundation for a secure
publish/subscribe middleware. Other services like accestol can then be built on this foun-
dation. For example, in the case of access control we canduioelss rights to topic, type and
attribute names, because we can trust those names to bgeedbte and unique. At the same

4.8. Summary 97

time, digitally signed type definitions allow us to placeipglinformation in the form of SPKI
authorisation certificates inside event definitions.

In addition to secure event types, we have also introducezhanse for managing event
types in a large-scale publish/subscribe system. We faéldahge-scale publish/subscribe sys-
tems must be able to run continuously regardless of type geamant operations. Our approach
enables type managers to update existing type definitiansparently without affecting exist-
ing clients. We also support the delegation of type managéethdies to other principals, which
we see as an equally important feature when consideringeceed lifetime of event types in
a large-scale, highly decentralised publish/subscristesy.

CHAPTER 5

Access Control

In Chapter 4, we introduced a scheme for creating unique anitalxde names for event types
and attributes. In this chapter we will leverage that cétion in designing a decentralised
access control system for multi-domain publish/subscistems. We use signed capabilities
to describe the global access control policy of the multhdo environment in a decentralised
fashion. That policy refers to publish/subscribe netwoaknes, event types and attributes,
which must be both unique and unforgeable for the accessatqulicy to be unambiguous.
We use a similar naming scheme for network names as we did ipt&hé for event types,
I.e. we prefix the coordinating principal’s identity to therhan-readable network name in order
to guarantee its uniqgueness and verifiability. For exantple,PITO coordinated UK Police
Network is namedPpiro, UK Pol i ce Net wor k].

In addition to secure hames we also utilise the signed eyestdefinitions introduced in
Chapter 4 to store credentials related to event type deployamel management operations. For
example, the credentials authorising a type owner to deplogw event type on the publish/
subscribe system are included in the type definition beimioged.

Incorporating the credentials in the type definition all@allsrodes in the publish/subscribe
system to verify that the type owner has been authorisedeéogdbrdinating principal to deploy
new event types on the publish/subscribe system. We usaitiemechanism when authorising
the deployment of new event types and the management oinexigpes.

The tight coupling of type management credentials and tygmitions prevents us from
updating the credentials after the type has been deployethBus only a problem when the
credentials embedded in the type definition expire. In suzsa the type definition can be seen
as expired and a new version of the type definition must beogledlwith fresh credentials. We
will discuss credential expiration and revocation in detaChapter 6.

98

99

In a decentralised, multi-domain publish/subscribe sysie need to control access to two
types of resources: the shared infrastructure (i.e. thatesexvice / broker network) and the
event types that have been deployed on that infrastruciure following two operations have
to be authorised by the owner of the infrastructure:

I. event brokers and event clients, joining and accessiadptbker network
ii. type owners deploying new event types on the broker ngtwo
And the following two operations have to be authorised byaivaer of the event type:

i. event clients and brokers accessing event types antua#s in those types through the
publish/subscribe API either by publishing or subscridim@n event type

ii. type owners delegating type management duties to ottecipals

Connecting to the broker network and accessing event tygelah actions that are exe-
cuted by clients when they connect to the broker network tigli and to subscribe to events.
The other two actions, deploying event types and deleg&yipgg management duties, are exe-
cuted only when new types or new version of existing typedaiee deployed on the infras-
tructure.

We propose a common approach to access control in publisvsbe systems for all five
actions where access control decisions are ultimatelyedbat the resource owner. Employing
signed capabilities and distributing the access contriidypmanagement, decision making, and
credential management over all resource owners enablestess control architecture to scale
up in a decentralised environment consisting of multipiejpendent administrative domains.
The architecture also allows domains to implement an aco@sol policy management ap-
proach of their choice, for example, role-based accessaamrtaccess control lists.

The rest of this chapter is organised as follows. We intreduar access control model in
§5.1. This section describes how access rights are delegatiEanains, and domain members.
In §5.2 we discuss the various resources that are protectecetactess control system, what
kind of access operations those resources support, anddu@ssarights to those resources are
represented in the access control system. We describe hoincippl’s authority is verified
in the system ir§5.3. An important part of decentralised access controlescttincept of root
authority, i.e. which principal is ultimately responsiliter all access control decisions for a
given resource. We discussgh.4 how the resource owner is able to delegate root authoety
all rights to a resource, to another principal and how théguee can be used to manage event
types etc. within a domain. While this dissertation focusedype-based publish/subscribe,
we give a short overview on how our access control systenddoeilapplied to a topic-based
publish/subscribe system §b.5. There exist other proposals for access control in plbli
subscribe systems, which we presengs6. Finally,§5.7 gives a short summary of the whole
chapter.

100 Chapter 5. Access Control

Capability
issuer: PITO
subject: Met
type: Numberplate
action: subscribe
attributes: * 1

Capability
issuer: PITO
subject: Met
type: Numberplate
action: subscribe
attributes:
numberplate="AE05 XYX"

location
timestamp %

Detective
Smith

Capability
issuer: PITO
subject: Met
type: Numberplate
action: subscribe \
attributes: *

Met
Broker

Figure 5.1 : Capability 1 authorises the Met domain to subscribe to all attributes of the Num-
berplate event. Capabilities 2 and 3 delegate a subset of this capability to both the Met Broker
and Detective Smith.

5.1 Access Control Model

We propose a two-tiered access control model for multi-dompablish/subscribe systems. On
the first tier a resource owner authorises a domain to accgsea resource. On the second
tier the domain delegates its members a subset of that @ythBor example, in Figure 5.1
following our example scenario, the type owner, PITO, hab@ised the Metropolitan Police
domain to subscribe thlumberplatesvents. The Metropolitan Police domain has delegated a
subset of that authority to the Met Broker and Detective Smithe Met Broker shares the
authority granted to the Met domain, while Detective Snsitlithority is limited to a specific
set of Numberplateevent attributes with a mandatory filter on thanber pl at e attribute.
One can think of event brokers as proxies of their domainesgmting the domain in the
publish/subscribe system. Therefore, the brokers sharddmain’s authority. We will discuss
authorising event brokers in more detailfb 1.3.

5.1.1 Authorising Domains

To authorise a domain to access a resource the resource @snes a capability to the do-
main. In practise thaccess control servic®dCS) of each domain represents that domain and
therefore the capability is issued to the ACS.

The capability specifies the authority,, that has been granted to the domain. In addition
to the access rights, the capability also authorises theadoto further delegate a subset of

5.1. Access Control Model 101

the granted authority to members of the domain. The authgranted to the domain by the
resource owner is always a subset of the resource ownehisrdtyt A; C A,.

The ACS issues capabilities to the members of the domain er dochuthorise them to ac-
cess a resource. When issuing capabilities to domain mertiieACS implements a domain-
internal access control policy that is completely indegancdf the resource owner, i.e. the
resource owner cannot affect the access control policys iBhiypical of discretionary access
control systems.

The authority granted to a domain membéy,, is always a subset of the authority granted to
the ACS,A,, and therefore a subset of the resource owner’s authdakity,e. A, C A; C A,.
Notice that the subset relation is enforced by the 5-tulacton rule, as described §2.6, that
collapses a chain of capabilities by taking the interseatiball the authority fields. Therefore
the authority field in a capability lower down in the chain apabilities can be a superset of the
authority of some capability higher up in the chain, whild staintaining the subset property
described above. We will rely on this property when we auieoevent brokers in a domain in
§5.1.3.

Domain members are event clients and brokers, and sub-denes stated i§3.2. Event
clients access the publish/subscribe system through tedrlscal broker in order to imple-
ment a distributed application with other event clientscdntrast both event brokers and sub-
domains implement infrastructure and are there to fatglithe event clients. The following
three sections will describe in detail how a domain can detguthority to each of the three
types of domain members.

5.1.2 Authorising Clients

The domain delegates authority to an event client by issaingpability to the client, which
specifies the delegated access rights. As stated in theopeesection, the delegated authority
is a subset of the domain’s authority. We do not expect ev@tite ever to be authorised to
further delegate their authority, because delegation andss control policy management are
the responsibility of the domain (i.e. the ACS).

The domain-internal access control policy specifies whegsg rights should be delegated
to each client. The access rights of two event clients capn significantly, e.g. two detectives
in the Metropolitan Police domain are likely to be working different cases which require
access to different information and therefore differemres. Enforcing such an access control
policy centrally, i.e. by the resource owner directly, webabt be scalable. Also, in most cases
the resource owner simply cannot understand the domate®ial policies and therefore is not
able to specify a global access control policy.

We expect the ACS to issue very fine-grained certificates toteslents that authorise the
client to access a single resource in a very specific manhes.allows the system to implement
the principle of least privilegdSS75], according to which principals should be granted onl

102 Chapter 5. Access Control

those privileges that are required for the task at hand. & adsume that the access control
policy for event clients is very dynamic and relies on ermimental predicates and certificates
issued by other parties. For example, in Figure 5.1 Deted@mith has been authorised to
subscribe to events related to a single numberplate. Welcshope that Detective Smith is
granted this authority only after showing the ACS a court padghorising her to monitor the
movements of a specific numberplate in London.

5.1.3 Authorising Event Brokers

The event brokers in a domain form the domain-internal esentice and connect that event
service to the shared, multi-domain event service. Theqaapf the event brokers is to export
the publish/subscribe API to the domain’s event clientsvahg the clients to publish and to
subscribe to events over the multi-domain publish/subsaretwork. Therefore, we can assume
that an ACS would grant all the event brokers in the domain éimeesauthority that it has, i.e.
V3 € B : Az = Ay, whereB is the set of event brokers in the domain. If the brokers share
the domain’s credentials, then an event client is free t;meonto any event broker in that
domain without having to worry that the event broker is ndeab access a given resource
(i.e. publish/subscribe network, or event type) for laclaotess rights. We can guarantee that
VBe B: A CAzgwhenvVge B:Ag=A; NA. C A,

We assume in this chapter that all the brokers forming theteservice, i.e. the broker
network, are trustworthy and that we need to enforce acaagsat policy only at the edges of
the broker network. Addressing access control only at tlgegdf the broker network results
in a system where any domain can circumvent the access tpaticy simply by not enforcing
the policy at the domain’s event brokers. More specificalty broker that an event is routed
through is able to read and alter that event. We will addreissgroblem in Chapter 7 by
using encryption to enforce access control inside the lno&vork. We will therefore require
already in this chapter that event brokers have the samesacdghts as the event clients they
are hosting in order to be able to fulfil the clients’ requeatsdescribed above. For example,
a broker will not be able to fulfil a client’s subscription texst forNumberplatesvents if the
broker itself is not authorised to subscribeNamberplateevents and access the same set of
event attributes.

There are two approaches that a domain can implement in trdiedegate access rights to
all its event brokers in an efficient manner. We will first dissblanket capabilitiesand then
group subjects

Blanket Capabilities

When the domain is granted access to a new resource, e.g. a teplbyed event type, the
domain must propagate the new access rights to its evenets:oRKo simplify the process of
propagating access rights to event brokers we can utilisef@epy of SPKI 5-tuple reduction:

5.1. Access Control Model 103

Capability

issuer: PITO
subject: Met
type: (sometypeT1)

Capability Met

issuer: Met
subject: MB Broker

type: * l !

Figure 5.2 : The blanket capability together with the capability issued to the Met domain autho-
rises the broker to access type T3.

in the 5-tuple reduction the authority of the reduced cdpas chain is the intersection of
the authority fields of all the capabilities in the chain, aasvexplained ir;5.1.1 and§2.6.
Therefore the authority granted in the capabilities thatlawer down in the chain, e.g. the
capability issued to the Met Broker in Figure 5.2, is restdcby the capabilities higher up in
the chain, e.g. the capability issued by PITO.

This property allows a domain to issbéanket capabilitiego all of its event brokers. A
blanket capability has an authority field that is a supers#@t@issuer’s authority, but because
of the 5-tuple reductions ends up being equal to the issaeitisority. A blanket capability
allows the issuer to automatically delegate new accesssrighall brokers without having to
iIssue each one of them a new capability.

For example, in Figure 5.2 the Met Broker has been grantedé&tyttio access all event
types by the Metropolitan Police domain. The domain on themohand has only been granted
access to the event tyfié. The authority granted to the Met Broker is the union of théarity
fields in the two capabilities}; andC5, forming the certificate chain linking the broker to the
type owners,i.e.ifd; =T1 ANAy, =T AS;=LthenA,NA;, = TiNT = T} = A,
whereT signifies all possible access rights. Therefore the eveakdnis authority is always
limited by the authority of the domain.

In the case where a domain ACS has been granted new access eighticcess to the type
T, in Figure 5.3, the blanket capability allows the MetropaiitPolice domain to delegate the
new authority to all event brokers in the domain simply byiaing the new capability to all
the domain’s event brokers. Once an event broker has obtéeenew capability and is able
to show it together with its blanket capability to a verifigrhas effectively been granted the
access rights specified in the new capability. Without bédrgapabilities the ACS would have
to issue a new capability to each event broker in the domash gme the ACS was granted
new access rights.

The access control policy cannot be compromised by the npabdy leaking to an unau-
thorised principal in the same domain unless that prindiaal a blanket capability issued by
the Metropolitan Police domain where the intersection efahthority fields is non-empty, i.e.
Shet = Ipob N Anet N Ao # (. Therefore, assuming that the domain is able to enforce
its own access control policy and avoid issuing blanket b#iias to unauthorised principals,

104 Chapter 5. Access Control

Capability

issuer: PITO
subject: Met
type: (sometypeT1)

Capability Met

issuer: Met
Broker

subject: MB
type: *

Capability
issuer: PITO

subject: Met
type: (some type T2) M

Figure 5.3 : The blanket capability together with the new capability issued to the Met domain
authorises the broker to access type T5.

broadcasting the new capability in the domain does not ptessecurity risk.

Similarly, leaking the new capability outside of the domeamnot compromise the access
control policy, because the capability issued to the doraashthe newly deployed capability
must form a capability chain together, i®y.. = Ig.,. Therefore, the new capability cannot
be used with capabilities issued to other domains.

Instead of issuing blanket capabilities that grant eveokdérs access to everything that the
domain can access without any restrictions, the blankedlghiies should be restricted, for
example, by resource type or owner. In Figure 5.3 the blac&pability issued to the Met
Broker grants access to all event types that the Metropditaite domain has access to. We
would expect blanket capabilities to be restricted, fornegle, to one type of resources, i.e.
networks, e.gnet wor k: *, or event types, e.d.ype: *, or alternatively to certain network
or type owners, e.quet wor K: [Pprro, *]or type: [Perro, *, *].

Group Subjects

Another alternative for distributing new access rightsverg brokers is to usgroup subjects
(We discussed group subjects§ip.6.3). In SPKI an authorisation certificate can be issued to
a name rather than a principal. A principal is then linkedhat name by issuing it aame
certificate

Each name is effectively a group, i.e. any number of namdicates can link principals to
the same name. This allows for the creation of groups of stijén many cases where SPKI
name certificates are used the group has only one membehdre.is a one to one mapping
from a name to a principal. But this does not mean that otherlmeesrcannot be added to the
group at a later date.

By issuing all event brokers with a name certificate for a gimame, e.gMet domain
event brokersthe domain can create an event broker group. After that dineath is able to
iIssue authorisation certificates for that group, effettigelegating the given access rights to

5.1. Access Control Model 105

all group members at the same time. When delegating rightetgroup, the domain needs to
issue only one certificate, as was the case with blanket dajesb

During credential verification the verifier will first chedkat the event broker is a member
of the given group, i.e. that the event broker has a namdicaté linking it to the group name.
Once the link between the principal and the name has beelisbtd, the verifier will check
that the authorisation certificate is valid and grants tHddrdhe required access rights.

In effect this approach is very similar to the blanket cali#ds described in the previous
section: both approaches allow the ACS to delegate accéss t@a set of brokers quickly and
efficiently without having to issue a new capability to eacbre broker.

The difference between the two approaches lies in theitdiiégyi With blanket capabilities
the ACS must decide when issuing the blanket capabilities rhd of access rights the blanket
capability should cover. For example, the ACS can restrigthlanket capability to a specific
type owner. If later on the ACS wants to delegate access rightse latest type from that type
owner to a subset of the principals, the ACS must first revdkb@kxisting blanket capabilities
and then issue new ones which exclude the new event typentrast, with group subjects the
ACS is able to create a new group of those principals that shoeildelegated the new access
rights and then delegate the access rights only to that group

When delegating access rights via group subjects, the ACSssaa the authorisation cer-
tificates with relatively long life times while issuing shived name certificates to all group
members. This way the ACS avoids having to re-issue the aatihbrisation certificate, but
it will still be able to easily control the group membershgisndividual principals. Also, it is
possible to issue name certificates with longer lifetimestoe trustworthy principals.

Group subjects resemble rolesrote-based access contrlRBAC) where access rights are
granted to the role rather than directly to subjects, andsis controlled by controlling which
subjects are able to enter a given role. Similarly, with greubjects access rights are granted
to a group and group membership is controlled by issuing naertdicates to principals.

The ACS is able to implement local policy management with RBAGee by always issu-
ing a set of authorisation certificates to a subject whent&rsm given role, or alternatively,
with group subjects, by issuing a name certificate to thecppal while maintaining long-lived
authorisation certificates issued to the group.

5.1.4 Authorising Sub-Domains

Large domains might find it beneficial if they were able to teesub-domains to match their
own organisational structure. In a nested setting theggptdomain delegates access rights to
its sub-domains in the same way as resource owners grargsagghts to top-level domains.
Notice that sub-domains can be authorised by the resouroeraghirectly, but in most cases
we would expect the authorisation to follow the domain higlng, because domain internal
structures should not be visible outside of the domain. Rersake of argument we assume

106 Chapter 5. Access Control

Authority:
Ai A,
Pay Rall,

Authority:

q o\l sub-Domain __ Ay, Pay Roll,
a —

Authority:
A, A,

Figure 5.4 . An enclosing domain can group more privileged brokers and event clients into their
own privileged sub-domains.

here that sub-domains will not be directly authorised byrés®urce owner.

Sub-domains allow an organisation to implement a domairatgly consisting of multiple
levels of sub-domains, each with their own set of privilegé®r example, an organisation
might want to restrict events related to employee salades fiew trusted event brokers that
form the Pay Roll domain and that are administered by a trusgstem administrator. We
assume that system administrators are able to circumveat@ss control policy by logging
on to an event broker and looking at the raw event flow. Theeefawe can assume that a
system administrator is always able to access all eventsniipiirough a broker administered
by her. By placing the privileged brokers into a domain of tleevn and by granting only a
trusted system administrator access to that event brolegan prevent the untrusted system
administrators from reading specific event types, i.e.rgaeents in this case.

Assuming that a sub-domain’s authority is always a subsis$ parent domain’s authority,
then the top-level domain’s authority will always be the etget of all the authorities of all its
sub-domains. If we were to place the Pay Roll brokers inta then Pay Roll sub-domain and
the authority delegated to the top-level brokers was theesssthe top-level domain’s authority,
as was suggested §5.1.3, then the top-level brokers would always be authdriseaccess all
events that were accessible to the top-level domain, imgduthe confidential salary events.
This suggests that either sub-domains must be more pradlégan their parent domain, which
would turn the domain hierarchy tree upside down, or altirely the event brokers’ authority
cannot reflect the authority of theirs domain, which wouldigainst the notion of event brokers
representing their domain in the publish/subscribe systecththerefore sharing the domain’s
access rights.

We can resolve this issue more elegantly by creating onedeuimin for the privileged
event brokers and another one for the unprivileged evelkinso The privileged sub-domain is
then granted access to the salary events while the ung@disub-domain is not. By placing

5.2. Resources and Access Rights 107

the event brokers into two sub-domains we can issue capediid the event brokers that allow
them to share the privileges of their respective domains,g®wn in Figure 5.4. This approach
maintains the subset relation between a sub-domain andrignpdomain in the domain tree
and we can also allow the event brokers to share all the adgéss granted to their domain.

A domain is either alomain groupin which case it contains only sub-domains, or it is a
broker groupin which case it contains only event brokers. A domain carenewentain both
event brokers and sub-domains. This definition is recurali@ving sub-domains inside a
domain to contain again either other sub-domains or evexkigos, but not both.

5.2 Resources and Access Rights

A publish/subscribe system has two types of resources #ed to be protected: the event
service and the event types. The event service is owned byraioating principal and the
event types are owned by their respective type owners.

The access rights can also be divided into two groups bas#tedgpes of principals. Both
event brokers and event clients need to be able to conndw ®vent service and to access the
publish/subscribe API for specific event types. Type marsage the other hand need to be able
to install event types on the event service and manage rexisfpes.

The following sections discuss all the access rights reélatdoth types of resources and to
all three types of principals in more detail.

5.2.1 Event Service Access Rights

Principals need access to the event service in two casegén a principal wants to access the
publish/subscribe API for any event type and (ii) when a@gal wants to deploy a new event
type, or a new version of an existing event type, on the evanice. Here we equate the event
routing performed by event brokers to accessing the evevitsei.e. an event broker needs the
right to access the event service in order to be able to j@rbthker network and route events.
Both types of access rights are granted by the coordinatingipal, that is seen as the owner
of the event service.

Connecting to the Event Service

All event clients and brokers need to be authorised to cdrioglse publish/subscribe system in
order to be able to access it. This provides network layeeseccontrol and prevents unautho-
rised parties from connecting to the event service and gebasystem’s internal traffic. If a
malicious node is able to access the event service, it istalideinch a simplelenial of service
(DoS) attack by issuing a large number of subscription retp@r by injecting invalid routing

108 Chapter 5. Access Control

messages to the broker network, which can lead to netwotkipas. We can easily protect
against such trivial DoS attacks by controlling access ¢dotoker network.

In our example below, PITO, as the coordinating principayites another domain, the
Metropolitan Police, to join the shared publish/subschilfi@structure by issuing a capability to
the Metropolitan Police domain that grants it the right tamect to the given publish/subscribe
network. The capability specifies the name of the networkthedauthorised actionpiro,
UK Pol i ce Net wor k] andconnectrespectively:

Name Value

issuer Pprro

subject Pyt

network [Ppiro, UK Pol i ce Net wor K]
action connect

The Metropolitan Police domain delegates the right to conteethe UK Police Network to
all of its event brokers. This allows the domain’s publisityscribe infrastructure, i.e. the event
brokers, to join the shared broker network. Here we specdg@ability that grants one of the
event brokers in the Met domain access to a specific publisbésibe network. Notice that the
capability has been issued to the grdvigt Br oker s rather than to a single broker.

Name Value

issuer Pyet

subject Met Brokers

network [Ppiro, UK Pol i ce Net wor K]
action connect

Finally those event clients in the Metropolitan Police damthat need access to the UK
Police Network, i.e. Detective Smith in this case, are idstagpabilities that authorise them to
connect to the broker network:

Name Value

issuer Pyet

subject Psmitn

network [Ppiro, UK Pol i ce Net wor K]
action connect

Together the three capabilities form a certificate treed¢bahects the event broker and the
detective to PITO, as seen in Figure 5.5. The 5-tuple reduciperation collapses one branch
of the capabilities tree into a single capability where #seier is the resource owner, the subject
Is the leaf of the tree, e.g. Detective Smith or Met Broker, tnedvalidity and authority fields
are the intersection of all the validity and authority fieldall the capabilities in the tree branch,
respectively. Notice that the Met Broker’s capability chaioludes a name certificate that is
not shown in the figure. The name certificate binds the Met Biskdentity, P, 3, to theMet
Br oker group.

5.2. Resources and Access Rights 109

Capabilities Tree Reduced 5-Tuples

issuer: Pyeq

ject: & P
issuer: P subject: Py) issuer: Poro
subject: :’m network: [Ppyro, UK Police Network] Detective subject: Pps
e action: connect Smith network: [Ppro, UK Police Network]
action: connect

network: [Ppro, UK Police Network]
action: connect
PITO

Figure 5.5: The principals and the capabilities form a tree where the principals are nodes and
the capabilities are vertexes.

issuer: Ppiro

subject: Pyg

network: [Ppro, UK Police Network]
action: connect

issuer: Pye
subject: Met Brokers
network: [Ppro, UK Police Network]
action: connect

Installing Event Types

The other type of access right issued by the coordinatingcipal and relating to the event
service as a resource is the right to install event types@e\knt service. This right is relevant
to principals in the system that want to either create newtaypes or deploy new versions of
existing event types. Again the coordinating principaliessa capability to a domain in order
to authorise the domain to issue new event types on the system

Name Value

issuer Pprro

subject Pocs

network [Ppiro, UK Pol i ce Net wor K]
action install

The domain then delegates this authority to those membeteadlomain who should be
authorised to deploy new event types or updated versionsistireg event types. In this case
the CCS domain has granted the install right to the Billing Office

Name Value

issuer Pcocg

subject Pzo

network [Pprro, UK Pol i ce Net wor k]
action install

Notice that the principal deploying the event type does resdnto connect to the event
service. The principal simply defines an event type, signaritl stores it in a type registry.
An event client will then pick up the type definition from thegistry and present the definition
to its local broker as part of a publish/subscribe requelserdfore, a principal deploying new
event types does not need ttennectaccess right in order to be able to deploy event types.

110 Chapter 5. Access Control

5.2.2 Event Type Access Rights

There are two cases where a principal needs access to artygwent

i. when accessing the publish/subscribe API for a given etygre, i.e. publishing or sub-
scribing to an event type, and

il. when updating an existing event type definition and relleg the modified definition as a
new version of the existing event type.

In the first case the principal will also need tbennectright to the appropriate publish/
subscribe network for using the publish/subscribe APIhinlatter case the principal will need
theinstall right to be able to install a valid event type definition on évent service.

Both access rights described in this section specify thetdype that they apply to. The
type field specifies a 3-tuple pattern of the type name anefiver it can be used to match a
specific version of an event type or all the types sharing éimeesprefix. For examplebiro,
uk. gov. pi t o. Nunber pl at e, 1234] will match the version 1234 of tidumberplateevent
type whereas®riro, *, *] will match all types owned by PITO.

Both the identity and version fields either match one spedgaiity or version or all iden-
tities and versions. Because the version numbers are namgead to be linear, as discussed in
§4.3.1, we cannot use relational operators in defining pegtdrat match all versions below or
above a given version number. The name field is treated asraatbastring, which allows the
pattern to include wildcards for prefix, postfix and infix nfatg.

In some cases it is nonsensical to specify a type field thatheatmore than one event type.
For example, granting a principplublishor subscriberights to all event types from a specific
type owner while specifying the set of attributes that sheaxaess does not make sense, but is
still a valid capability.

For themanageright the type field can match any set of event types. We expattn most
cases specifying the version number of an event type is reitadde, because it prevents the
event clients from using newer event types and thereforefothe type owner to support the
older event type indefinitely.

Accessing the Publish/Subscribe API

From an application’s point of view the right to access thbligh/subscribe API for a specific
event type is the only access right that really matters. #€d¢e the API allows the client to
publish or subscribe to a specific event type. With the rightdnnect to the event service, but
without the right to publish or subscribe, the applicatisrunable to utilise the event service
and is therefore unable to communicate with other nodestbegoublish/subscribe system.

A publish/subscribe API request is always specific to an elyge, i.e. a client advertises or
subscribes to a specific event type instead of making gereakests. The owner of the event

5.2. Resources and Access Rights 111

type is responsible for delegating APl access rights to diesnan a per type basis. The type
owner issues domains capabilities that specify the eveetaynd the requests that the domain is
allowed to make concerning that type (i.e. publish or subsegr Note, that theublishright is
checked at advertisement time rather than at publicatioa.tiThis allows the system to verify
the authority once in the beginning of a session before amyng state has been created in the
broker network, instead of having to verify the authority éach published event.

In the following example PITO, as the type owner, has grattedCongestion Control
Service both the right to publish and the right to subscridbevents of any version of the
Numberplateevent type. The capability grants the CCS domain access tdtrdtiudes in the
event type.

Name Value
issuer Prito
Su bjeCt Pocs

type [Pprro, UK. gov. pi t 0. Nunber pl at e, *]
action publish
subscribe

attributes *

The CCS domain is responsible for further delegating a sulfsbese access rights to the
members of the CCS domain. The CCS domain has granted the Billiige@he right to
subscribe taNumberplateevents and to read theunber pl at e andt i nest anp attributes
shown below:

Name Value
issuer Pccs
subject Pyo

type [PpiTo, UK. gov. pi t 0. Nunber pl at e, *]
action subscribe
attributes numberplate

timestamp

In reality the attributes would be identified by their UID$ivar than their names in order to
allow the capability to be valid even when the attributesshaeen renamed (S&4.3.2 for more
details on renaming attributes). We will use attribute naumnstead of UIDs in our examples
in order to maintain readability. In an implementation theilaute names can be included in
annotation attached to the attributes in order to provideebeser experience in type editing
tools.

The following table shows a capability issued to a CCTV camkxequl near Victoria station
that is granted the right to publisfumberplateevents from that location:

112 Chapter 5. Access Control

Name Value
issuer Pccs
subject Pcorv
type [Pprro, UK. gov. pi t 0. Nunber pl at e, *]
action publish
attributes location %/i ctori a
numberplate
timestamp

The capabilities specify the access rights granted to antelent at the granularity of
individual attributes. Each attribute specified in the dalis is accessible to the principal
for the specified action, e.g. the CCTV camera at Victoria isvadd to set the value for the
t i mest anp field when it publishes &lumberplateevent. Note that the attributes do not have
to exist in the event type. This allows a capability to applypdated versions of the event type
where attributes have been removed. Similarly the capglodstricts the event client’'s access
to those attributes that are mentioned in the capabilitythecefore the event client is unable to
access attributes that have been added to a new version®fghetype.

Specifying the attributes in the capability allows the systto limit attribute visibility in
cases where the event client does not need to see all of the @wetent. For example, in the
Congestion Control scenario the Billing Office needs acceswtaumberplate of a car entering
the congestion controlled area, but there is no need foaittess the location where the car was
sighted, because the congestion fee based on the vehieléngnthe area, not on its location
when there:

Name Value
issuer Poces
subject Pgo

type [PpiTo, UK. gov. pi t 0. Nunber pl at e, *]
action subscribe
attributes numberplate

timestamp

Similarly the Statistics Office needs to see timestamps acations for each numberplate
sighting, but it has no need to know the specific numberplatesder to collect traffic statistics
for a given area:

5.2. Resources and Access Rights 113

Name Value

issuer Pccs
subject Pso

type [Pprro, UK. gov. pi t 0. Nunber pl at e, *]
action subscribe
attributes location

timestamp

Detective Smith on the other hand must see all attributes t&bite to track down a vehicle,
but her subscription includes a filter on the numberplatéate in order to prevent the detective
tracking arbitrary vehicles:

Name Value
issuer Pyret
subject Psmitn
type [PpiTo, UK. gov. pi t 0. Nunber pl at e, *]
action subscribe
attributes location
numberplate ;AE05 XYZ
timestamp

Unlike domains and event brokers, event clients can bedssapabilities that specify re-
strictions on event attribute values. For example, theevaluthel ocat i on attribute in the
capability issued to the CCTV camera is forced to the valuet ori a. For the CCTV cam-
era this means that its local broker forces the value of theat i on attribute toVi ct ori a
regardless of the value the CCTV camera has set to that adtriBirnilar restrictions can also
be used when granting subscription rights to an event clieot example, Detective Smith of
the Metropolitan Police has the right to subscribeNteamberplateevents where the value of
thenunber pl at e attribute iISAEO5 XYZ. Detective Smith’s local broker is responsible for
enforcing the restriction by adding an appropriate filtgpression to Detective Smith’s sub-
scription.

It is impossible for type owners or domains to specify simdltiribute level restrictions for
domains, because there is no way for the issuer to enforse tlestrictions. A domain on the
other hand is able to enforce the restrictions on eventtslidiecause an event client accesses
the event service by connecting to an event broker that isralbree of the same domain and
acts on the ACS'’s behalf.

When a client has access only to a subset of the attributesaweant type, the client hosting
broker will replace the other attributes wittul | values. In the case of publishers, the PHB
sets all attributes that the publisher is not authorisedcteess tonul | . If a subscriber is
not authorised to access an attribute in a publication, thB 8elivers the publication to the
subscriber with the inaccessible attributes setubl .

114 Chapter 5. Access Control

We expect that in most cases publishers would have accedkatiriputes, albeit some
attributes might have forced values as is the case with the C&ifivera above. Subscribers on
the other hand might be more restricted with respect to adeeattributes. We imagine that
in many cases where a number of subscribers with differdas raccess the same events the
subscribers would be granted access to different setsrdfaés as is the case in our example
application with the Billing Office, Statistics Office, and teetive Smith as subscribers. Forced
subscription filters would probably be used quite frequeinttases where the subscriber is only
authorised to access a subset of the event stream. Suchwaadesnclude our example with
Detective Smith as well as any case where the subscriberaigett for accessing the event
stream as is the case in the Stock Ticker example fbra.1.

Type Management

We assume that event type definitions need to be revisedghineir lifetime, either because the
original definition was incorrect or because the applicatequirements have changed since the
event definition was deployed. Type management is the dutyedype owner, but if necessary
she can delegate type management duties to other printipadsuing them a capability with
themanageaccess right:

Name Value

issuer Pprro

subject Pry

type [PpiTo, UK. gov. pi t 0. Nunber pl at e, *]
action manage

This capability allows the type managét:{), whose job in the PITO organisation includes
deploying new versions of PITO owned event type, to issue vensions of theNumberplate
event type.

Delegating type management duties to other principalsvalltype owners to spread the
responsibility of managing an event type to other prin@palcases where the type owner is
either unable to perform their duties at this time (e.g. #eyleaving the organisation) or when
the type owner wants to distribute the load of type managebetween multiple principals.

We can subdivide thenanageright into specific management operations, as described in
§4.3:

i. add attribute,
ii. remove attribute,
iii. rename attribute,

iv. change attribute type.

5.3. Verifying Authority 115

Fine grained access rights give a type manager more conblrehwlelegating type man-
agement duties to other principals. For example, a type geanesould delegate the right to
add attributes to a less trusted principal so that they cadttinew attributes to an event type
if necessary, but are prevented from removing vital attebdrom the event type and thereby
breaking existing applications.

Unfortunately verifying that the type manager has actetiwits authority requires that the
verifier is able to compare this version of the event type >evious version. The previous
version of the event type could be incorporated in the new tigfinition, but this will result in
larger event type definitions. Alternatively the event tgjadinition can reference the previous
version by name and it is up to the verifier or the prover to ignthe previous version from a
type registry. By comparing the two versions with each othenderifier can ascertain that the
changes made to the old version are indeed authorised bypgbertanager’s credentials.

We feel that in most cases the extra granularity in grantpg immanagement rights to type
managers is not necessary and thus it is simpler to just grambanageauthority rather than
the right for individual type management operations. Thaifia type manager is not trusted to
manage the type definition with respect to all the type mamagé operations specified above,
then the type manager should not be authorised to managgpeheatall.

Note that it does not make sense to include the version numbiie type field of the
capability unless we support the finer granularity type nganaent operations, i.e. restrict the
type manager’s access right to, for example, renamingiegiattributes. If a type manager has
been granted tonanageright, it does not make a difference what the original varsib the
event type is, the type manager is able to change any it to #agy version of the same event
type by using the above mentioned operations.

As in the case of thénstall right, the credentials granting the principal timanageright
need to be embedded in the type definition so that the brokdying the validity of the type
definition is able to verify the type manager’s right to dgpéonew version of the given event
type. Note that the type manager must also havertsiall right in order to be able to deploy
updated event type definitions on the publish/subscribesys

We would expect types to be managed and created by the da#gd8 or alternatively a
specific principal responsible for event types in that domé# either case the same principal
will most likely be responsible for both managing the typ&rdgon and access rights to that
type across the type’s lifespan.

5.3 \Verifying Authority

In distributed, capability-based access control systeprgaipal’s authority is usually verified
by executing an interactive protocol between the principal the verifier. During the protocol
(i) the principal authenticates herself to the verifiel), fiesents her credentials to the verifier,

116 Chapter 5. Access Control

and (iii) issues an access request concerning a specifictojbe verifier confirms the prin-
cipal’s identity, verifies the presented credentials, andllff, assuming that the credentials are
valid, executes the principal’s request.

5.3.1 Authentication

In SPKI the principal’s identity is represented by a publeyk The principal authenticates
herself by proving that she owns the private key correspuntb the public key. A principal
proves the ownership of a private key by signing a piece afrmation with the private key.
The verifier is then able to verify the signature with the pipral’s the public key, thus verifying
that the principal does indeed own the private key corredipgrto her identity. The principal’'s
public key is included as the subject in one or more of the ipiexV credentials.

Public key cryptography allows for a number of identificatgrotocols based on signing a
noncé. The verifier is able to ascertain the principal’s identiymMerifying the signature on the
nonce with the principal’s public key.

The ISO/IEC 9798-3 [ISO98] standard defines the followimgéhmechanisms for authen-
ticating a principal using digital signature techniquesJW¥bB6]:

I. unilateral authentication with timestamps:
A— B CtA, B, SA(tA, B)

Principal A sends the authentication messag&tavho verifies that the timestamp is valid,
l.e. it is fresh with respect to some pre-defined grace petioat the identityB in the
message is its own, and that the signature across these lwes v correct.

ii. unilateral authentication with random numbers:

A«— B:rp
A— B ITA,B,SA(TA,TB,B)

Verifier B sends a challenge message to principdUpon receipt of the challenge principal
A generates her own random numbgrand sends a reply back 1. B verifies that the
identifier is its own and that the signature over the two ramemmbers and the identifier
is correct. The random numbej is used to prevent chosen-text attacks whéraight be
tricked into signing, for example, some legally binding doent.

1A nonceis a number that is used only once for the same purpose. lestosprevent the replay of messages.
A nonce can be a timestamp, a random number, or a sequencenumb

5.3. Verifying Authority 117

iii. mutual authentication with random numbers:

A— B B
A— Bira,B,Sa(ra,rp, B)
A— B :A,SB(T‘B7TA,A)

The message verification in this protocol is the same as)ialfibve. This protocol, com-
pared to the two previous ones, allows for simultaneouseatittation of both parties,
whereas the previous protocols authenticated only prahcip

Notice that often with identity certificates, e.g. X.509ntigy certificates, the goal of ex-
ecuting the authentication protocol is to verify the prpadis identity, i.e. that they own the
presented identification certificate. Therefore, the it\enertificate must be either provided to
the verifier in the protocol messages or in some out-of-baedn@anism. The certificate gives
the verifier the public key to use to check the digital signain the authentication message.
In our case the goal is to prove the ownership of the key p#ierahan the ownership of an
identity certificate. The verifier still needs the public keycheck the digital signature. The
principal’s public key (or its hash value) is the subjectlod tast authorisation certificate in the
certificate chain. Therefore the public key is provided ®Brifier as a part of the principal’s
request.

When authenticating the principal to the verifier, we coulthdy use the first method,
unilateral authentication with timestamypdescribed above. This would allow us to piggy-back
the authentication message with the credentials and theeseéqs part of single message being
sent to the verifier.

The second methodinilateral authentication with random numbeis only useful if the
two parties do not have access to an accurate time sourasathbe used as a source for nonces.
The protocol includes an initial challenge message thabeaavoided in the first protocol. In
our environment we assume that all nodes have access to adumee that is accurate enough
within a certain delta.

In MAIA we want both parties of a connection to mutually authergiestch other (we
discuss the motivation for this in detail below §56.3.3). We can achieve this in an ad-hoc
fashion by executing either of the unilateral protocolswyibut that results in two independent
runs of the protocol that cannot be logically associateth wéach other. By implementing the
third protocol described abovejutual authentication with random numbgb®th parties can
authenticate themselves to each other as part of the satoeq@lroun.

5.3.2 Authorisation

To prove her authority to access a specific event type the elient presents the verifier with a
set of credentials that together provide evidence of thetalent’s authority. These credentials

118 Chapter 5. Access Control

include all the authorisation certificates that form theitieate chain between the principal and
the type owner. If the any of the certificates in the chainudek group or named subjects,
then the principal must also provide the necessary namiicaes. Similarly with threshold
subjects, the principal must provide authorisation cestés fromk of then issuers to prove
delegation.

The verifier checks the validity of all the provided certifesby checking that the signature
is correct, that the certificate has not expired and thatadlssiple on-line tests pass (We discuss
SPKI on-line tests in more detail 6.2.3). The certificates are then mapped to tuples.

Names in the tuples are replaced with public keys or hashpshiic keys by performing a
4-tuple reduction on the name 4-tuples.

The authorisation 5-tuples are then reduced to a singl@lg-twy recursively applying the
5-tuple reduction rule on consecutive pairs of 5-tuples.

Finally the verifier checks that the authority field in the wedd 5-tuple includes the re-
guested operation on the specified object. The verifier tkeautes the principal’s request.

There must be a clear link between the resource owner, @eoti principal in the capability
chain, and the object being accessed so that the verifieocaref certificate loop from the chain
and verify it. This link is formed by an ACL in SPKI. An ACL in SPKpecifies the owner of
an object. The SPKI specification does not give a formal detsan of an ACL. The informal
description of an ACL provided in the specification is simphyauthorisation certificate body
without the issuer field. In practise implementations anpliagtions are free to choose their
own ACL formats. In MAIA we use event type definitions as an ACL when dealing with event
type access rights. Access rights related to the eventcsgreig. the right to join the event
service, are based on trusted principals. l.e. the owneheihetwork resource is specified
explicitly in the participant’'s system configuration siarly to how X.509 root certificates are
specified in web browsers.

5.3.3 Verificationin M AIA

In MAIA the principals making access requests are event cliergsf bvokers, and type man-
agers. The verifier is always an event broker that is conddotthe broker network.

Interactive verification happens only between an evenhth&d an event broker or alter-
natively between two event brokers. For type managemehtsrifpe type manager’s authority
is verified at publish/subscribe request time when the es@t presents an event type to an
event broker as part of its advertise or subscribe requéss. i3 because a type manager never
interacts with the event brokers directly (the event clegts as the type manager’s proxy).

In order to present its credentials to the verifier the typ@agar embeds them in the type
definition that she has signed. The type manager’s signatutbe type definition, along with
the type manager’s identity in the name tuple, authentittaetype manager to the verifier
even though the two never communicate with each other direthe verifier is able to trust

5.4, Delegating Root Authority 119

the presented signature and does not have to worry abouatyragthcks, because the signed
document, i.e. the type definition, is a self-contained s&cequest that specifies the requested
operation (deploy event type) and the related data (evem thefinition). This is similar to
digitally signing an email and sending it to the recipient.

With API related access rights the principal always comnézthe verifier directly and is
therefore able to present its credentials to the verifienimgeractive session. The connecting
principal presents her credentials to the verifier in ordgorove that it is authorised to make
the given API request.

Following the principle of least privilege, the event clieran decide later in the session
to disclose more credentials if it wants to make other palisbscribe requests that are not
covered by the already verified credentials.

When an event broker connects to another broker, it must alsty what the other broker’s
credentials are so that it can decide whether it can deli@n{pext events to the broker or if
it must first encrypt them in order to prevent the unautharis®ker from accessing the event
content. We will discuss event encryption in more detail ira@tier 7. Notice that while an
event client can choose to disclose only those credenhiatsauthorise it to perform a specific
publish/subscribe request, the event brokers must deselbtheir credentials so that (i) an event
client can decide if the broker has the required authorityfgement all future requests for the
client and (ii) a neighbouring event broker can decide wigiebnts it can deliver in plain-text
and which ones it needs to encrypt (We discus$7id the possibility of avoiding encryption
operations when the event broker knows that the receiviegtebroker has the same access
rights to the event.).

The brokers are able to increase their verification perfomaay caching the verification
results of single capabilities between sessions and gtohi@ capabilities on disk. Caching
verification results will allow the broker to check the caébiea previous verification result be-
fore committing itself to an expensive verification procedluStoring capabilities on disk will
allow the broker to read and verify those capabilities as @iits bootstrapping process, thus
performing the expensive verification procedure in advaat®er than during normal runtime
when it is also responsible for executing client requestsranting events. We provided per-
formance measurement result$#5 which showed how expensive capability verification was
compared to using cached results.

5.4 Delegating Root Authority

Decentralised trust management is based on the idea thainher of a particular resource
is the ultimate authority, with respect to access contrdicpcand decision making, and is
therefore responsible for managing the access contratyp@dr that resource. Nevertheless
the resource owner is able to delegate this root authorignther principal by granting the

120 Chapter 5. Access Control

principal a capability that grants her all access rightstesl to the resource. Typically we would
expect a capability to have certain validity conditions ,a@hdothing else, at least an expiration
date. By issuing the above described capability to a primeighout any validity conditions the
resource owner is effectively delegating root authorigy, all access rights, to another principal.
The capability allows the new resource manager to managss¢o the resource as if it was
the original resource owner, as long as it always includédeexce that it has been delegated
authority to manage access to the resource, i.e. the capassiued by the original resource
owner.

The resource owner is still able to issue capabilities eeldbd the resource herself, but it
has no way of revoking the other principal’s authority. Timechanism allows resource owners
to permanently delegate resource management duties to iheipals in the system. For
example, a domain, that is about to leave the system, midagate type management duties
permanently to another principal in the same domain in ai@etiow other domains to carry
on using its event types.

With event type definitions the event type name and the sigeatust be linked together, as
explained in Chapter 4, therefore the capability delegatiog authority to a new type manager
must be included in the type definition. Including the capigtin the type definition will allow
anyone to verify the authenticity and integrity of the typidition. With access rights to the
publish/subscribe network or to the publish/subscribe #&@Pa given event, the capability used
to delegate the root authority must be included in the ceatiéi chain that the client shows to
the event broker verifying the authority.

The use of threshold subjects as type owners and networkrevgimaplifies the manage-
ment of that resource significantly, because the principalsded as members of the threshold
subject can be changed as describegRit®.4. Therefore, when threshold subjects are used to
create publish/subscribe networks or event types, there ieeed to delegate root authority to
another principal at all.

5.5 Access Control in Topic-Based Publish/Subscribe

While most of this chapter is concerned with event types, #mesprinciples are equally ap-
plicable to topic-based publish/subscribe systems. Famgke, topic-based publish/subscribe
systems share the two fundamental access rights descnljbd®i namely the right to connect
to the event service and the right to access the publisidgabbsAPI.

The right to create new topics should also be controlled bycthordinating principal as is
the case with installing new event types in our type-basstesy.

For a broker to verify the authority of a type owner to instalhew event type the broker
needs to see the type owner’s credentials. In our type-lmstem, as described earlier in this
chapter, the credentials are embedded in the type definititoch allows any principal in the

5.6. Related Work 121

system, that has access to the type definition, to verifyythe tmanager’s authority to deploy
that type definition. With topic-based publish/subscriberé exists nothing similar to type
definition that could be used as a container for the topic owieeedentials.

In order to allow the topic owner to present her credentakhé publish/subscribe system
we could devise a topic definition that would embed the cradisrsimilarly to our type-based
system, but it would be difficult to justify why the event ¢lis should be interested in the
topic definitions and provide them for the local broker, ahéscase with type definitions (See
§4.4.1).

Instead of forcing the event clients to provide the topic mgfin for the local brokers,
we could implement a topic registry in the event service. picmwner would create a new
topic by passing a topic definition for a local broker whichubb verify the topic owner’s
authority and store the topic definition in the event servietopic definition would contain
the name of the topic, the owner’s identity, the credenaalforising the topic owner to create
the topic, and a digital signature that protects all the abields. Other brokers could then
lookup the topic definition from the registry when they asuesd a request related to that topic.
It is important that all event brokers in the system are ableerify the topic definition for
themselves, otherwise a malicious event client and a malkcevent broker from the same
domain could collude and create an unverified topic defimit®Remember that the topic’s name
tuple must contain the topic owner’s identity as was describn §4.6.

In a hierarchical topic-based publish/subscribe systepujdisher publishing events under
a topic must have publication rights to all of the supertegs well in order to be authorised
to publish the events. Whereas for a subscriber it is enoughk tauthorised to subscribe to the
current topic only, with no access rights with respect toitierited topics.

5.6 Related Work

Zhao and Sturman propose an approach to dynamic accesslgorarcontent-based publish/
subscribe system in [ZS06]. In contrast to our work they pegpa centralised access control
list based architecture, which, while perfectly accepdbl single domain deployments, will
not effectively scale to multiple domains. The proposedsoh maintains a central ACL in the
system, which is consulted when event clients make new aig@arent or subscription requests.
The ACL server becomes a bottle-neck in the system when thé&uoh authorisation requests
increase. Also, when the centralised policy is changedptiiey changes are pushed to all
interested brokers, i.e. brokers hosting event clientsateaffected by the policy change. This
approach provides a very fast revocation mechanism, bugatr@sults in a large number of
messages being sent immediately after the policy changeagproach to revocation will be
discussed in Chapter 6.

Zoltan Miklos proposes an access control mechanism for content-babésghgsubscribe

122 Chapter 5. Access Control

systems in [Mik02]. The paper treats credentials as syftsami or publication filters. That is,

a credential defines what event content a principal is alibteepublish or subscribe to as a
filter on that event content. The principal is allowed to peddvertisements and subscription
that are covered by the credential. Mikl proposal is very similar to how we suggest to restrict
publishing and advertisement rights based on the eveneotrats discussed §5.2.2. However,
our proposal is less formal and would benefit from M&I more formal treatment. From a
practical point of view, Mikbs does not describe how access rights are granted to agadinai
how the event broker authorising the event client’s reqisastade aware of the current policy.
These issues have been the main concern of our work, so weneesipa integrating Mikbs’
work with our own approach.

As a precursor to our work, Belokosztolszki et al. presenteBRBAC-based access control
architecture for publish/subscribe systems [BBB]. We have expanded on that work by de-
coupling the RBAC policy management system from the accagsaloerification mechanism.
That is, our architecture allows the use of RBAC within domsabut uses SPKI authorisation
certificates as credentials between the domain membershamyént brokers.

We base our access control model on that presented in a nwhpapers relating to the
topic: [BEMPO5] introduces the multi-domain environmentgroposes a high-level access
control approach based on role-based access control, &@b]Pas discussed in the previous
chapter, introducesecure event typesd secure names. Finally, the access control architecture
proposed in this chapter is based on the work originally ighkd in [PEBO6] and [PEBO7].

5.7 Summary

We have presented a capability-based access control estthié for multi-domain publish/
subscribe systems. By applying decentralised trust managgepnincipals, we are able to ad-
minister and enforce access control in publish/subsckibems that span multiple independent
administrative domains both in a convenient and scalablenera While the chapter concen-
trates on type-based publish/subscribe systems, thenpeelseleas are equally applicable to
topic-based and content-based publish/subscribe systems

We have identified two resource types, broker networks aedtaypes, that are present
in a type-based publish/subscribe system. And we haveifigehfive operationsconnect
install, publish subscribe andmanagethat can be executed on one of the two resources. Our
proposed access control model allows us to control accelsthotypes of resources and to
authorise principals to execute all five operations inddpetly.

The proposed architecture is multi-tiered, i.e. resouvaeass authorise domains rather than
event clients and brokers. The domain is then responsibfariher delegating that access right
to domain members. We see event brokers as representingriedrdin the publish/subscribe
system and therefore they are typically delegated all ofitmeain’s authority. The multi-tiered

5.7. Summary 123

architecture also seamlessly supports a hierarchy of d@marhis allows large domains to
divide their organisation into a number of sub-domainsriragy.

The presented access control model provides access canhth@ edges of the broker net-
work. That is, the brokers are responsible for enforcing @dealised access control policy
that is defined in the form of signed capabilities. We provédemechanism for controlling
which brokers can join the broker network, but once a brokertieen allowed to join the pub-
lish/subscribe system it is able to implement any publiskudyscription request without any
restrictions.

This approach works well if we can assume that the brokersraséworthy. While this
assumption can be valid inside a single domain, it most icgytdoes not hold across domain
boundaries. Therefore enforcing access control insiddtbker network becomes an issue.
We address this in the following chapter by encrypting theteot of events while they are in
transit in the broker network, thus preventing unautharisekers from decrypting the events.
Effectively we move access control enforcement from thekén® to the key servers manag-
ing the encryption keys, and thus evolve away from an acaassat approach that relies on
trustworthy brokers.

CHAPTER O

Policy Management

The dissertation has thus far focused solely on how to impigranforcement of access control
in a multi-domain environment in a scalable and manageablener. We have not touched on
policy management or credential revocation in previougptdra. While the dissertation con-
centrates on the mechanisms for enforcing an access cpotioy rather than the management
of that policy, we feel that for the sake of completeness westrdiscuss the options that are
available for resource owners and domains to implemensaazmtrol policy management and
credential revocation.

The remainder of this chapter will address a number of prakitssues relating to policy
management in a real-world deployment oAM. In §6.1 we provide an illustration of how
the Open Architecture for Secure Interworking Serfi@ASIS) system can be used to manage
policy in a domain. One of the more serious disadvantagesdialities is the fact that it is
non-trivial for an issuer to revoke a capability that hagadly been delivered to a principal.
We discuss credential revocation§é.2. In§6.3 we present a mechanism for delivering SPKI
validity statements to event brokers over the publish/stibs infrastructure. Related to the
revocation of capabilities, we discussg6.4 the possibility of delegating part of the dynamic
policy evaluation to the event brokers as a means of impgpthie efficiency of the system. In
§6.5 we discuss how capabilities can be delivered to prifeifpanally we present related work
in §6.6 and a summary of the chapterst.7.

6.1 OASIS

We stated earlier in Chapter 5 that inaM\ the policy management at the resource owner and
the domains is decoupled from the enforcement of that palidhe event brokers. We also

124

6.1. OASIS 125

wrote that both the resource owners and the domains weréofieglement a policy manage-
ment approach of their choice without affecting the enforeet of that policy in the multi-
domain environment. For example, a resource owner mighsutba simpleaccess control
list when issuing capabilities to domains. Similarly a domaigimiuse a more sophisticated
policy management system, for examplendefDDLS01] or OASIS We will use OASIS as an
example in this section.

The Open Architecture for Secure Interworking Servi@@ASIS) [BMY02, BMYO03] is an
established, distributed, role-based access control (RBRAK92, SCFY96] system that can be
used to manage access control policy for a domain or a typemnvirprovides a comprehensive
rule-based means to specify roles and access rights aszbevéh a given role. Principals
acquire role memberships and activate access rights asstavith a role according to role
activation and authorisation policies, respectively.

In OASIS a principal acquires the privileges that authatiseaccess an object in two steps:
first, the principal acquires membership of a role by adtipa role membership rule. Second,
the principal activates an authorisation rule that resoltbe principal, as a member of a role,
to be issued with the appropriate capabilities.

A role activation policy comprises a set of rules, where @ iattivation rule for a role
takes the following form:

Tlyee ey Ty A1y e e ey Gy €14 ...,€6 T

wherer; are prerequisite roles, are appointment certificates andare environmental con-
straints. The appointment certificates represent pensistedentials, e.g. a physician’s medical
license, an employment contract between an employee andgloyer, or in Detective Smith’s
case a court order authorising her to track a given numberpldne environmental constraints
allow restrictions to be imposed on when and where roles eaachvated, e.g. role activation
can be limited to a physician’s working hours, or in Deteet®mith’s case, as we shall see
below, to her being assigned to the investigation involthegtracking of a given numberplate.

A predicate that must remain true for the principal to renaaitive in the role can be tagged
as arole membership conditionSuch predicates are monitored, and their violation trgge
revocation of the role membership and related privilegemfthe principal. We discuss in
66.4 how the evaluation of such predicates could be deledatdw verifier rather than being
implemented at the issuer, i.e. at the ACS.

An authorisation rule for some privilegetakes the form:

rey,...,ep

wherer is an active roleg; are environmental constraints, apds a privilege granted to the
principal. An authorisation rule takes only one role as tnput a variable number of environ-
mental predicates, and results in a single privilege besagad to the principal. An authorisa-
tion policy comprises a set of such rules. Note that OASISasegative rules, and satisfying
any one rule indicates success.

126 Chapter 6. Policy Management

OASIS roles and rules can be parameterised. This allowgfiaeed policy requirements
to be expressed and enforced, such as exclusion of indigidnad relationships between them.
Without parameterisation it becomes necessary to defin@manageable number of roles for
larger systems. For example, the parameterisedmoleacker(numberplategllows the same
npTrackerrole to be used in all investigations that require accesh@éatimberplate tracking
system. Parameterising the role binds the role to the speuifnberplate thereby preventing
the detective from abusing the granted privilege by traghkirbitrary numberplates. Without
parameterisation it would be difficult if not impossible tgpeess the access control policy at
such a fine level of detalil.

6.1.1 OASIS Policy in Our Example Scenario

In our Congestion Control example Detective Smith is only piteth to receive events relating
to the sighting of a particular numberplate. We have in@iddow the publish/subscribe system
can enforce these types of access control rules, but havdisttssed how to specify this in
terms of policy within a domain.

In this section we show how the OASIS policy language coulddss to specify the simple
rules required by our example scenario. We propose thatdiescare equipped with a means
to issue a warrant as an OASIS appointment certificate. Tgpsiatment certificate, repre-
sented bycourtOrder below, has parameters that specify which case and which expiate
the warrant has been issued for. The appointment certifiGateset to expire when the court
order expires.

The predicateletectiveensures that only detectives are able to activate the rabelb@eship
rule. The constraint is parameterised with the principalé&ntity, which corresponds to an
identity that can be verified when the principal tries to\att the role. This identity can be
either an X.509 identity or a public key as used in SPKI toespnt principals. If the predicate
Is implemented as an environmental constraint, it will @olly result in a database lookup to
check that the presented identity is a detective. Altevebtithe predicate could be represented
by an appointment certificate held by the principal thateatis that the principal is indeed a
detective of the Metropolitan police.

The domain access control policy can finally ensure thatmdenbership is granted only
to detectives who have been assigned to the case. We usesthissignment environmental
predicate to record the mapping between cases and detective

An appropriate OASIS role activation rule for numberplatgcking in the Met domain
would be:

6.2. Access Rights Revocation 127

courtOrder(caseld,numberplate)
detective(detectiveld),

caseAssignment(detectiveld, caseId) - npTracker(numberplate)

This rule grants Detective Smith membership of tipdrackerrole. That is, the Detective
Is issued aole membership certificatedicating that she is a member of the role. The role
is parameterised with the numberplate of the vehicle in tpreshat is specified in the court
order. The binding prevents the Detective from using the mémbership to track arbitrary
numberplates.

The role membership rule by itself does not grant the prad@py access rights. The policy
must specify one or more authorisation rules that allow thecypal to acquire actual access
rights. In our example the policy would include the belowrauisation rule:

np Tracker(numberplate) b Numberplate.subscribe(location,
timestamp,

numberplate = numberplate)

This rule grants the holder of ampTrackemrole membership certificate the right to subscribe
to Numberplateevents with a filter over theumberplateattribute. The filter value is the num-
berplate string that is included in the role membershipifceate. The principal is granted the
right to read the three attributes, (ilecation timestampandnumberplatgof delivered events,
I.e. the SHB delivers events to the subscriber with all tlatt#butes intact.

We have used SPKI in MA to implement capabilities. If we were to implement policy
management in a domain with OASIS, the above rule would havesult in an SPKI authori-
sation certificate that would grant the principal subsaiptights to the Numberplate events, as
described irt5.2.2. The OASIS implementation could either issue SPKhaugation certifi-
cates directly, or the ACS could implement a level of indil@ttvhere a rule activation would
first result in an OASIS capability that would then result m SPKI authorisation certificate
being issued to the principal.

6.2 Access Rights Revocation

Compared to access control lists, capabilities suffer fram distinct disadvantages. First,
because the currently active access control policy isidiggd amongst all the principals in
the system, it is difficult for the resource owner to detemnivhat that access control policy

128 Chapter 6. Policy Management

is. A simple solution to this is for the owner of each resourceaintain a database of issued
capabilities and their expiration dates. Newly issued baipias are added to the database while
expired capabilities are removed from it. The databasegwi# the resource owner a snapshot
of the current access control policy for a given resources &pproach assumes that principals
that are authorised to further delegate the access rightsomehow register those delegations
with the resource owner in order to keep the database up & dampared to an ACL, the
resource owner must explicitly maintain a database of thsul valid capabilities, whereas
in an ACL-based system the ACL of an object provides a view ofctireently active access
control policy for that object implicitly. Notice that in m§ cases, especially in large-scale
systems like MIA, an access control policy would be defined explicitly andatalgies and
ACLs would simply be the method for implementing that accesgrol policy. But in smaller
systems, e.g. filesystems or web sites, the ACL and capabibtttually represent the access
control policy.

Second, capabilities are difficult to revoke. In an ACL-basgstem the resource owner
can simply change the centralised ACL in order to revoke acal's access rights for future
requests. Not so in a distributed capability-based systente a capability is given to the
principal it is impossible to take it away from her. In a dajitvorld the principal is able to
make an infinite number of identical copies of the capabdity it is practically impossible for
the resource owner to delete all of them without relying angar-proof devices. Solving this
problem is analogous to solving the digital rights managemeoblem.

Fortunately various methods exist to control the validityssued capabilities. The follow-
ing sections will describe each of these methods in turn.

6.2.1 Validity Period

The simplest and most reliable method for determining ttieisaof a capability is the validity
period assigned to the capability at the time of issue. Thditsaperiod specifies thaot before
andnot afterdates that together define a time span during which the dé@gabiconsidered to
be valid. The verifier will treat the capability as invalidthdefore thenot beforeand after the
not afterdates. If either date is not specified, the validity date isaumded in that direction.

The method is very reliable and fast, because the decisadiag does not rely on third par-
ties such as certificate revocation lists (§&2.2) or on-line checks (S€6.2.3). All other more
sophisticated revocation methods add complexity to thessccontrol architecture [Aur99].
These methods imply frequent network communication tow/dinttd party on-line services,
constant availability of those services, and signatureeggion and verification of generated
responses. Therefore, in most systems, we would like todamttier revocation methods as
much as possible and rely only on validity dates. The TAOSatpey system is an example of
an architecture that relies solely on validity dates foradality revocation [WABL94].

The issuer of a capability can decide to implement policy agg&ment based only on va-

6.2. Access Rights Revocation 129

lidity periods by issuing so calleshort-lived capabilities that are valid only for a relatively
short period of time. Once the capability has expired theqgipial is expected to request a fresh
capability from the issuer. Each time the principal regsi@shew capability to replace an old
expired one, the issuer is able to revoke the principal'®s€¢o the resource simply by de-
clining to issue a new capability. Obviously the issuer nwit for the existing capability to
expire before a policy change takes effect and thereforessiuer is forced to make a trade-off
between the effort required to re-issue capabilities winenpolicy has not changed, and the
time it takes for a policy change to take effect after theqyotias been modified.

Whether fast revocation is a requirement or not depends oagpkcation. For example,
in the Stock Ticker example i§il.2.1 the stock exchange might implement a pre-paid model in
which a brokerage firm is required to pay for access to thekdioker data in advance. The
expiration date on the capability issued to the brokerageiill be set to match the date when
the current contract, which the brokerage firm has already foa runs out. This allows the
stock exchange to review its access control policy wheninecapability expires without any
risk of loss of revenue due to a brokerage firm missing its s

In the congestion control example Detective Smith’s righdtcess the Numberplate event
stream is based on her obtaining a court order to do so. Thamtdras an expiration date set
by the judge who issued it. If the court order is revoked beeanf an appeal, or Detective
Smith is removed from the case, the access rights grantedtexfive Smith should be revoked
immediately. Since the capability was issued to Detectivitlswith the assumption that she
would not be removed from the case and that the court ordeldwaai be revoked, the expi-
ration date on the capability will be based on the expiratiate of the court order. To be able
to handle these extraordinary circumstances the Metrgpotiomain must be able to revoke
Detective Smith’s access rights before they have expirée. féllowing sections will describe
the alternatives that are available for revoking a signgébaity before it has expired.

6.2.2 Certificate Revocation Lists

An early form of Certificate Revocation Lists (CRLS) is based ackllists used by banks
and credit card companies where a book was distributed tetallers listing all bad checking
accounts and credit card numbers [ERO]. The retailer was then responsible for checking
that the checking account or credit card used by a customemnaglisted in the book before
accepting it. Similarly a CRL contains all identities of thetdeates that have been revoked.
Each verifier is provided with a copy of the latest CRL and it spansible for checking that
the certificate used by a principal has not been revoked. Tduehallows the issuer to release a
new CRL on demand whenever a certificate is revoked. The CRLs kbguesce numbers that
allow the verifiers to tell which CRL is the most recent one. Wiena new CRL is released
it replaces the previous one at the verifier.

The main problem with this form of CRL is the fact that the revaaprocess is not de-

130 Chapter 6. Policy Management

terministic: depending on how the new CRL is delivered to the&fiees, a revoked certificate
might be accepted as valid if the latest CRL has not yet readhiggarticular verifier. More-
over, an active adversary could prevent the CRL from ever ieg@ngiven verifier simply by
tampering with the network regardless of whether the ndtwonnection is encrypted or not.

6.2.3 SPKI On-Line Tests

The SPKI working group wanted to define a set of revocatiorhods that would allow de-
terministic revocation behaviour. The SPKI Certificate TiydRFC [EFL"99] specifies three
types of deterministic on-line tests:

1. Timed CRLs
2. Timed Revalidations

3. One-Time Revalidations

Timed Certificate Revocation Lists

Timed CRLsim to address the shortcomings of traditional CRLs descabesgie by attaching a
validity period to the CRL that specifies the time period forethtihe CRL should be considered
valid. If the CRL expires and the verifier does not have accessnew valid CRL, it will
consider all certificates as invalid. The validity period$wo CRLs must not intersect, i.e. the
validity period of the new CRL must start after the previous CR& &leeady expired. Obviously
the replacing CRL can be distributed before it is valid, butehdier the CRL is distributed the
more out of date it will be when it does become valid.

SPKI certificates must state the key that is used to sign the @Rlalso where the CRL can
be fetched. Unlike with traditional CRLs where the certifiaaguer distributes the CRL to the
verifiers, in SPKI it is the principal’s responsibility totéd the latest CRL and provide it to the
verifier with her other credentials. These rules guarangterdhinistic behaviour wherein all
certificates that rely on CRLs will always be processed withlalV@RL and CRLs are always
issued in a deterministic manner.

Timed Revalidations

A timed revalidations a positive version of a timed CRL. Where a CRL states which ceatés
have been revoked, a timed revalidation specifies whiclificates are still valid. Again, to
provide deterministic behaviour, timed revalidations tfoow the same rules as described
above for timed CRLs.

6.2. Access Rights Revocation 131

One-Time Revalidations

Both timed CRLs and timed revalidations force the issuer to naakade-off between how of-
ten to issue a new validity statement and the time it takea foolicy change to take effect. In
some cases any latency, however small, is unacceptableddfess these scenarios, the SPKI
standard definesne-time revalidationsA one-time revalidation states that the certificate men-
tioned in the instrument is validow for the current authorisation computation only. Because
the response from the revalidation service has no validgtyod, the revalidation request (in-
cluding a unigue nonce) must be generated by the verifieedirtte of access. With both timed
CRLs and timed revalidations the principal is responsibledbieving the CRL or revalidation
and providing it for the verifier with its other credentials.

6.2.4 Active Revocation

Richard Hayton describes in his PhD dissertation [Hay96] ication based approach to
credential invalidation, which he calksctive revocation The idea is that credential issuers
notify registered verifiers when a given credential’s V#fidtate changes. For example, when
making an access control decision a verifier registers aistheer of a particular credential.
The issuer will from then on notify the verifier if the crediafis validity state changes, i.e. the
credential is revoked. The registration phase in the pregpesheme allows verifiers to retrieve
up to date validity information from the issuer that is usethie initial access control decision,
and the notification phase guarantees that verifiers ar@atb#is soon as the validity state of
the credential changes.

Active revocation was developed to be used in conjunctidh amn OASIS role server. In
such a deployment verifiers register at the OASIS server todbified if the validity state of
a given credential changes. A credential is revoked if ontefpre-conditions in any of the
OASIS policy rules that have led to the principal acquirihg given credential becomes false
or any of rules are removed from the system. The preconditias described i§6.1, are role
memberships, appointment certificates, and environmeatadtraints. If any of the principal’s
appointment certificates are revoked, or an environmentatcaint is no longer true, the OA-
SIS rule will no longer be valid. The invalid rule will trigge cascading invalidation of all the
other rules that depend on this rule being valid. As a reBuoke credentials of the principal that
depended on the invalidated rule will be revoked. The OA®ISes then notifies all registered
verifiers that the credential has been revoked.

For example, in the Detective Smith’s case a verifier wougdster with the Met domain
to receive notifications if either the role membership ruléhe authorisation becomes invalid.
The role membership rule depends on the court order, Deg¢esatiith being a detective, and her
being assigned to the investigation. The role membershewoauld become invalid if (i) the
court order was revoked, (ii) Detective Smith lost her diétecstatus, or (iii) Detective Smith
was removed from the investigation. The authorisation délpends only on Detective Smith

132 Chapter 6. Policy Management

being a member of thepTrackerrole, so if Detective Smith lost her membership of the role,
she would also lose her numberplate tracking rights.

To avoid the non-determinism typically related to CRL implenagions, Hayton’s approach
implements a heartbeat protocol between the server an@gistered verifiers. The heartbeat
messages act as timed CRLs in that they refresh the status e fioext time interval.

Because the verifiers communicate directly with the OASISesethe parties end up being
tightly coupled to each other. The client-server naturehef communication also presents a
problem in two fronts: (i) the server must send one messagesaith registered verifier, and (ii)
each verifier must connect to each server in the system.

By using a publish/subscribe system as the notification cerwie are able to decouple
the verifiers from the issuers while maintaining the detarstic behaviour of the revocation
system. The publish/subscribe system allows the verifteestess all servers simply by con-
necting to a single broker. The servers are able to publishghesrevocation message that is
delivered to all registered verifiers. We will describe oppeach in more detail in the next
section.

6.3 Distributing Validity Statements over Publish/Subscribe

Active revocation relies on a one-to-many notification ggrvhat could be easily and efficiently
implemented over a publish/subscribe system. Verifierédcsubscribe to a publish/subscribe
topic that was used to publish validity statements for a ifjpecredential or all credentials
iIssued by the same principal issuer depending on the degiaedlarity.

A crucial step in the active revocation scheme is the inrggluest phase where the verifier
registers to be notified of validity changes. That phasenalithe issuer to provide the verifier
with the credential’s current validity state as a respowsthé registration request. Unfortu-
nately, in decentralised publish/subscribe the subswiéee decoupled from the publishers so
the verifier is unable to make the initial request to deteentime current validity state of a
credential over the publish/subscribe protocol.

This problem can be addressed in one of two ways: (i) the ipahcan provide the verifier
with the initial validity statement, this is the approacloposed in the SPKI RFC [EF199],
or (ii) the publish/subscribe protocol is enhanced to sufpgpoequest-response type interaction
model that allows the verifier to receive the initial valjdgtatement over the publish/subscribe
system as a response to an initial request. The two appreaahealso be combined so that the
verifier will rely on receiving the initial validity statemé over the publish/subscribe system if
the principal did not provide one with its other credentials

The following proposal is aimed at topic-based publishésube systems, which allows us
to ignore the contents of the publications. We will try to gealise our approach for content-
based and type-based publish/subscribe systems in the fuRlease keep in mind that the

6.3. Distributing Validity Statements over Publish/Subscribe 133

proposal has not been fully fleshed out at the time of writing that we will aim to publish the
work independently of this dissertation.

6.3.1 Request-Response over Publish/Subscribe

In order to use the publish/subscribe system for delivetirgginitial validity statement to the
verifier, we can enhance the publish/subscribe protocokisneling the semantics of the sub-
scription message to include an initial state request. iBhatsubscription message will create
subscription state in the brokers that it passes througlsael,ubut it will also double as a re-
quest for the current state of the topic. The event servilgovavide a response to the request
and deliver it to the subscriber as a response to the subearigquest. After that the protocol
falls back to the normal publish/subscribe semantics aadtibscriber is notified whenever a
new event is published.

In the validation scenario revocation events would be ghield under credential-specific
topics, i.e. each credential would have its own publishgstibe topic. This would make it
simple for the verifier to subscribe to revocation eventsafgiven credential. When a verifier
subscribes to validity events for a given credential, tHesstiption doubles as a request for the
current validity state of that credential.

The problem in integrating a request-response protocolthe subscription phase of pub-
lish/subscribe is deciding who should provide the respdoséhe request. We can route the
request back to a publisher and expect the publisher toge@/response. This works very well
and is conceptually simple if we have only one publisher smtetopic. This is true for our ex-
ample scenario where the validity request would be handtatidsole publisher of revocation
events under this particular topic.

But in other scenarios we might have more than one publishiex fpven topic. Even in
the revocation example we might have multiple publishersdbability’s sake. With multiple
publishers we can route the request to all of the publishepsck a subset of publishers at ran-
dom. When routing the request to all of the known publishersnuet decide which response
to accept. Itis plausible that the publishers do not actuairee on the current state of affairs.
We can address this by simply attaching a timestamp to the stply signifying the age of
the provided state and then allow the subscriber (or the SéiBick from all the responses the
one with the most recent timestamp. If the subscriber is &egeto pick the response with the
most recent state snapshot it implies that the subscribst wait for responses from all known
publishers. The problem here is that the decentralisedt esxice does not actually know
how many publishers there are in the system. Therefore tlyeatternative for the subscriber
Is to wait for responses until a timeout expires and then pio& response from the received
responses. This approach introduces a constant delay sakadtription requests, which, de-
pending on the length of the delay, might not be acceptalile.other simpler alternative is to
always pick the first response in which case the subscriksetdwaait for the full timeout only

134 Chapter 6. Policy Management

in cases when there are no publishers in the system. Thewsbglmwnside is that the accepted
response might not be accurate.

Instead of proposing a solution here, we will add responséing to the protocol in the
next section. Response caching allows us to avoid havingctogpublisher in cases when
a response has already been provided. We need to actualigsadtie problem only when a
cached response is not available.

6.3.2 State Caching

Because event publications follow a predefined event digsdion tree that has been created
by advertisement and subscription events flowing thougleveat broker network, we can use
the event dissemination tree to cache previous publicatiiorthe broker network. Each new
subscription event will eventually reach a node that is & phthe event dissemination tree.
Assuming that a broker has cached the most recent publicatioesponse to a previous state
request, it can provide an up-to-date state response tabisesber without having to forward
the request any further in the broker network.

When a subscription event is routed through the broker nétwavill always eventually
reach the event dissemination tree, at the very latest wineadhes the rendezvous node for that
publish/subscribe topic. By caching previous state regmirs each event broker that stores
subscription routing state for that publish/subscribddape can increase the state response
performance of the whole publish/subscribe system.

All caching brokers are free to discard items from their eatththey are running out of
resources. If a broker does not have the previous state @¢dcha given topic, it can always
propagate the state request to its parent in the event dissgom tree, all the way up to the
rendezvous node. If the rendezvous node does not have ttentatate, we will have to deal
with the problem described in the previous section. One Ggagr, in addition to the ones
described previously, is to simply let the rendezvous nedpaond with amnknownmessage.

If we decide to implement one of the approaches from the pusvsection we should im-
plement it at the rendezvous node rather than at the subscfibe rendezvous node represents
a root node in the event dissemination tree towards the sbbss. If the rendezvous node
makes the request towards the publisher or publisherseiponse willimmediately be cached
by the rendezvous node for the benefit of future subscrifdrsreby we can avoid forwarding
requests to the publishers as much as possible.

6.3.3 Publishing Validity Statements

State response caching provides the best performance wimeargy subscribers as possible are
interested in the same topic. In the extreme case when therdyi one subscriber per topic the
state request will degrade to the worst case scenario whegeerequests are always routed to
the rendezvous node and in many cases all the way to the peisis

6.4. Policy Evaluation at the Local Broker 135

In order to take advantage of state caching in the credemetiacation scenario described
earlier in this section, we would like one publish/subsetibpic to represent as many creden-
tials as possible. Therefore, we would prefer issuers tdigtuimed CRLs that cover all the
credentials that they have issued and that have not yetsekpiihat is, each publication would
be an SPKI-style timed CRL that states which of those certéetsued by the issuer, that have
not yet expired, have been revoked. Each timed CRL would ad¢e g own validity period as
required by the SPKI specification.

Because each issuer publishes events only under one tofimansdhe broker network to
cache the current state, i.e. the previously published CRd,paovide it to new subscribers
as the current state. The caching scheme could be furth@neatl by making the brokers
aware of the CRL's validity semantics so that brokers would lile 8o purge expired events,
l.e. expired CRLs, from their caches when they have expired

In addition to enabling more efficient caching, the one-CRLt-4psuer scheme allows the
issuer to offload some processing to the verifiers. Thatésisguer can sign one large statement
instead of multiple small ones (one per issued certificatbgreas the verifiers have to verify
the signature of a larger document covering a number officaties instead of a small document
covering only the certificate the verifier is interested in.

As stated above this is still work in progress and we have aeh#éd out all the details yet.
We do feel strongly that the proposed mechanism for cachatg s the event service as well
as providing the last known state as a response to a sulisorgre valuable mechanisms for
any state related publish/subscribe applications.

6.4 Policy Evaluation at the Local Broker

In addition to static policy rules, the principal’s accegghts to the publish/subscribe system
may also depend on dynamic conditions such as the time whewean was published, or the
frequency of publications, to name a few. For example, aigp®t may be restricted to publish
events only during working hours or if they are on duty at tirae.

In order to enforce access restrictions outside of workiogré in our current model the
publisher’s authorisation certificate would expire at &gm each day. The publisher would
then have to acquire a new certificate that would be valid éetwdam and 5pm the next day.
If the publisher left early that day, i.e. she were not on dartymore, the issuer would revoke
her credential before it expired. This kind of policy would easy to specify in OASIS with
environmental constraints that evaluate to true betweem&ad 5pm or if the principal is on
duty.

In order to allow longer lived certificates and to lower thadaon the certificate issuer, we
can move the evaluation of the dynamic part of the policy ®érifier. That is, instead of
Issuing certificates with validity times between 9am and 5@ issuer could issue a certificate

136 Chapter 6. Policy Management

that was valid for the coming month, but only when the accegsi@st was made between
9am and 5pm. Similarly, the verifier could check that the jsinglr is on duty at the time of
publication by querying a database.

Delegating the evaluation of the relatively simple dynacoaditions to the broker would
require us to define a minimal and safe policy language thatsalthe issuer to define these
conditions in the authority field of authorisation certitess The verifier could then evaluate
the condition in the authority field and grant access if thedition evaluates to true. The policy
language must be “safe” in the sense that it does not allowsacio any system calls and the
programs are executed in a sandbox that guarantees thabtirams behave well (i.e. do not
run in an infinite loop or consume large amounts of memoryg ftograms would receive the
requested action (e.g. publish or subscribe) and the dugresronment (e.g. time, event type)
as input. Defining such a policy language is part of our pldrfo&ure work.

6.5 Distributing Capabilities

When capabilities are implemented as digitally signed feegites, the certificates can be stored
and managed anywhere in the system as long as they are &vtaltte verifier at the time of the
access request. The digital signature on the capabilityagtees the integrity and authenticity
of the capability. Therefore, both the principal and theifier can trust the content of the
capability.

Typically it is the principal that gathers evidence and leg that evidence to the verifier
at the time of access. The evidence includes capabilitidsalidity instruments (Seg6.2.3).
This approach makes it the principal’s responsibility todte and obtain valid, i.e. up to date,
credentials and validity instruments. The verifier is regpole only for making the access
control decision based on the evidence at hand. The exoggtithis rule is when the system
requires one-time revalidations, as describegbi2.3.

6.5.1 Gathering Evidence

Before a principal can use a capability that has been issuéértéo access a resource, she
must gather other evidence, as described above, that tvgsith her capability proves her
authority to access the resource. The evidence includescdpabilities that link the principal’s
capability to the resource owner, and possibly validityesteents specified in the capabilities’
validity fields.

Assuming that the issuer did not provide the principal whid ¢apabilities that link her to the
resource owner, the principal must somehow obtain the ngssapabilities that are part of the
capability chain. Alternatives include requesting theatalities from the issuer, or retrieving
them from some sort of capability repository. In most caseduding our implementation in

6.6. Related Work 137

MAIA, we would expect the issuer to provide the principal withriberly issued capability and
the chain of capabilities linking that capability to theaasce owner.

In order to obtain the required validity statements, thagpal needs to look at the validity
fields of all the capabilities in the capability chain. Thdidigy field in the capability will
specify a URL from where the principal can obtain the requu@lity statements.

A capability can also define an on-line check that will alldve principal to obtain a fresh
capability when the original capability has expired [ER9]. This mechanism can be used to
refresh any capabilities in the capability chain.

6.5.2 Distribution Methods

Since it is the principal’s responsibility to obtain validedentials before making an access
request, it makes sense in most cases to employ pull-typmonications between the principal
and the credential sources.

In some cases, though, the issuer has a vested interest pritlogpals having valid ca-
pabilities. For example, it is in the domain’s best intertestnake sure that all brokers and
sub-domains have valid credentials. Also, when using gsalgjects to delegate access rights
to event brokers, the domain wants to push new credentiaktis all the event brokers at the
same time. In these scenarios the issuer should employtgpshmessaging between itself and
the principals to ensure that the principals have the latestentials. It is also advantageous
from a performance point of view to broadcast the credesit@bll principals at the same time
rather than wait for each principal to make a request for émeescredential.

We assume that in general capabilities and validity insemits will be transmitted out-of-
band in the system, i.e. they will be sent to their destimatioutside of the publish/subscribe
system being protected. It would probably be possible useptiblish/subscribe system in
implementing the push-type messaging described abovestogapabilities to the event brokers
in a domain, but we have not yet investigated doing so. Ancatffecient alternative inside a
single domain would be to use multicast to push capabilibesvent brokers.

6.6 Related Work

We touched upon moving part of the dynamic policy evaluatmtine verifier from the ACS in
§6.4. We are proposing that some of the dynamic environmentadtraints should be incorpo-
rated in the issued credentials and evaluated by the veaifitye time of access. In order to do
that we would have to develop a safe policy language thatdoelembedded in SPKI autho-
risation certificates. Both the PolicyMaker [BFL96] and Keydl{BFK98, BFIK99a] systems
also rely on such safe policy languages. We would also hauevéstigate what type of en-
vironmental constraints can be implemented reliably atvéréfier. For example, the OASIS

138 Chapter 6. Policy Management

environmental constraints can be anything from databadeufus to the current time. Many of
these environmental constraints could be checked at thfgeevevhen the request is made.

In §6.3 we sketch out mechanisms for (i) using the subscribetea®m request for the
current state, or the most recent publication if you willdgn) caching the current state, or
the most recent publication, in the decentralised evertcein order to improve performance.
Other work that provides similar functionality in publisbhbscribe systems include so called
event replayservices where the event service remembersithest publications andeplays
those publications to a new subscriber. Many systems tipgostidisconnected operation, i.e.
the subscriber is able to disconnect the system while séilhtaining its subscriptions, support
event replay for those events that were published whiledbs@iber was disconnected [ZF03]
(we discussed disconnected operatiorg2nl.1). The state caching approach is suitable for
applications that monitor the current state of an objectefaample, whereas event replay is
more suitable for applications that collate a sequence erfitsv

6.7 Summary

In this chapter we have addressed many issues that we medioory briefly in previous chap-
ters. Many of those issues are directly or indirectly ralai@® how access control policy is
managed in the system. We provided a cursory look at how th8I®/KRBAC system could be
integrated with MuIA in order to manage access control policy in domains.

We also addressed credential revocation both from the pbwiew of SPKI authorisation
certificates as well as from an OASIS view point. The revacatif capabilities has traditionally
presented trade-offs between certificate lifespans, thé t@aused by on-line checks, and the
timeliness of credential revocation. In some cases thetaditis non-existent, for example, if
strict revocation is not necessary and the applicationdésdlf to short-lived capabilities, then
it is simple to issue short-lived capabilities and forgo attyer revocation mechanisms. On the
other hand applications that require fast revocation ad@néials must make frequent validity
requests towards the credential issuers thereby creataaydn the on-line check service. We
feel confident that we have shown that thei architecture enables both the resource owner
and the domain to select a policy management mechanismuitattse application’s needs.

We also proposed moving some of the dynamic parts of the sccoedrol policy evaluation
to the verifier by embedding conditions into the SPKI autbetion certificate. This would
allow the verifier to evaluate the conditiomssitu without having to rely on third party services.
This would relieve the need for revoking and re-issuing bdps based on some of the more
dynamic conditions.

CHAPTER [/

Event Content Encryption

In Chapter 5 we proposed a capability-based access conttoteature for multi-domain pub-
lish/subscribe systems. The architecture provides a nmésrinafor authorising clients to, for
example, publish and subscribe to event types. The clipntideges are checked by the local
broker hosting the client.

The approach implements access control at the edge of tkertwetwork and assumes that
all brokers can be trusted to enforce the access contraigslicorrectly and not to disclose
confidential information to unauthorised parties. Any mialis, compromised or unauthorised
broker is therefore free to read and write any events that freeugh it on their way from the
publisher to the subscribers. Malicious brokers are al$® tabinject and remove messages in
the broker network, thereby affecting the routing statdeftiroker network or creating spurious
publications.

This level of access control might be acceptable in a redtismall system deployed inside
a single organisation, but it is not appropriate in a muttivéin environment where organisa-
tions share a common infrastructure, but do not necessaiy each other.

In order to enforce access control inside the broker netw@lpropose encrypting event
content and controlling access to the encryption keys. @fitrypted event content only those
brokers that are authorised to access the keys are abledssat®e event content either to write
(i.e. when publishing events) or to read (i.e. when routindalivering events). We effectively
add an extra layer of access control where the key managetr®taccess to the keys.

In addition to protecting the confidentiality of events irauthorised domains, we can also
use encryption to implement a more expressive access torgomanism and lower the number
of events sent. By encrypting individual attributes, indteithe whole event as a single block,
we are able to enforce attribute level access control in di+gaimain environment: publishers

139

140 Chapter 7. Event Content Encryption

and subscribers can be authorised to access only a subketatdfributes in an event type. With
attribute level access control a single event instance eadetivered to a set of subscribers
each with its individual set of access rights. In Chapter 5 weus$sed the congestion control
example and how the various subscribers require differesess rights to the published events.
Attribute level encryption will allow us to enforce that Eof access control also in the broker
network, not just at its edges. Without attribute level gpton the client's domain and the
client hosting broker will have access to all the attributethe event and it is up to the event
broker not to disclose the restricted attributes to the egkent. Previously we relied on the
client hosting broker to enforce attribute level accesgrobifor connected event clients. With
attribute level encryption the event type owner can enfdheesame level of access control
towards a domain by not disclosing the appropriate atteileuicryption keys.

As stated ig3.2.3, it is assumed that all clients have access to a brbkéthey can trust
and that the broker is authorised to access the event caeguited by the client. This allows
us to implement the event content encryption transparevithyin the broker network without
involving the clients: an event client’s local broker eruisyand decrypts events for the event
client without the event client ever knowing about it. By dgeng the encryption tasks to the
brokers, we lower the number of nodes required to have ateesgiven encryption key. The
benefits are four-fold:

i. fewer nodes handle the confidential encryption keys sctetlsea smaller chance of a key
being accidentally or maliciously disclosed

ii. key refreshes involve fewer nodes, which means that gyerkanagement algorithm will
incur smaller communication and processing overheadse@tilish/subscribe system
and refreshing encryption keys will be faster

iii. the local broker performs all encryption related tagsall those event clients that it hosts,
thus making the encryption of events transparent from teataslients’ point of view

iv. since the local broker decrypts the events, it can de@gpevent once and deliver it to all
subscribers, instead of each subscriber having to dedrgmame event

Delegating encryption tasks to the local broker is appaipribecause in this case event
content encryption is a middleware feature used to enfoccess control within the publish/
subscribe system. If applications need to handle encrygééal in the application layer, they
are free to publish encrypted data over the publish/suissgistem, i.e. set attributes to already
encrypted values.

The rest of this chapter is organised as follows. We presenscheme for event level
encryption in§7.1, followed by our scheme for attribute level encryptiorg7.2. We propose
in §7.3 to encrypt subscription filters in order to avoid leakinfprmation about the events
that match a given subscription. In order to minimise thdqvarance impact of encrypting

7.1. Event Level Encryption 141

and decrypting event content, we propos&i4 not to encrypt events when they are being
forwarded to another broker with equivalent access rightsg7.5 we discuss details of our
implementation of event content encryption ilmM. Key management is an inevitable part
of any system relying on encryption. We discuss using seguwap communication based
key management ifi7.6 and propose a scheme for minimising key refreshes. Waatezour
approach ing7.7. Finally we finish the chapter with a discussion of relaterk on event
content encryption in publish/subscribe systems and & shormary of the chapter.

7.1 Event Level Encryption

In event level encryption all the event attributes are epiey as a single block of plaintext.

The event type identifier, which was discussed4m.3, is left intact in the event (i.e. it is

not encrypted). This facilitates faster and more efficiamng routing in the broker network,

because authorised brokers do not have to decrypt the fidessti each hop, and unauthorised
brokers can route the event down the event disseminatiernristéead of having to broadcast it
to all their neighbours.

The globally unique event type identifier specifies the eptioy key used to encrypt the
event content. Each event type in the system will have its mwlividual key (the various
versions of the same event type all share the same key, lBeaacsss is granted to all versions
of an event type). Keys are refreshed, as discussgd.é?2.

While in transit the event will consist of a tuple containitge ttype identifier, a publica-
tion timestamp, ciphertext, and a message authenticatpn [type id timestampciphertext
authentication tajy

Event brokers that are authorised to access the event, astidlve access to the encryption
key, can decrypt the event and implement content-basenhgouvent brokers that do not have
access to the key will not be able to decrypt the event comtedhiare therefore forced to route
the event based only on its type. That is, they will not be ableok at the different attribute
values and route the event based on its content.

Event level encryption results in one encryption at the ighier hosting broker, and one de-
cryption at each filtering intermediate broker and subsciitosting broker that the event passes
through, regardless of the number of attributes in the etygr@. This results in a significant
performance advantage compared to attribute level enory@s we will discuss i§7.7.

1The authentication tag is a message authentication cod€jyroduced by the EAX algorithm as described
in§7.5

142 Chapter 7. Event Content Encryption

7.2 Attribute Level Encryption

In attribute level encryption each attribute value in amgv&encrypted separately with its own
encryption key. The key is identified by the attribute’s gthp unique name (Segt.2).

Similarly to event level encryption, the event type ideetifis left intact to facilitate event
routing for unauthorised brokers. The attribute identfiare also left intact to allow autho-
rised brokers to identify each attribute and to decrypt thrébate values with the correct keys.
Brokers can implement content-based routing over thosibuatis that they are authorised to
access.

An attribute level encrypted event in transit consists efdtient type identifier, a publication
timestamp, and a set of attribute tuples: [type id, timegtatiributeg. Attribute tuples consist
of an attribute identifier, ciphertext, and a message atittaion tag: [attribute id, ciphertext,
authentication tag].

Compared with event level encryption, attribute level eption usually results in larger
processing overheads, because each attribute is encrggpedately. In the encryption pro-
cess the initialisation of the encryption algorithm, irdihg building the key schedule, takes a
significant portion of the total running time of the algorithOnce the algorithm is initialised,
increasing the amount of data to be encrypted increaseanhég time linearly. This disparity
Is emphasised in attribute level encryption, where an guimy algorithm must be initialised
for each attribute separately with the attribute specific &ed an event specific initialisation
vector, and the amount of data to be encrypted is relativablls As a result attribute level en-
cryption incurs larger processing overheads when compaithdevent encryption, which can
be clearly seen from the performance result§ary.

Because each encrypted attribute has its own authentidaiiprattribute level encryption
introduces a larger size overhead as well, when comparedetd &vel encryption where an
encrypted event includes only one authentication tag.

The significant advantage of attribute level encryptionrasent level encryption is the
higher level of granularity that enables the type owner taticd access to the event type at the
attribute level. The event type owner can therefore alldfednt clients to have different levels
of access to the same events. Attribute level encryptiom etgbles content-based routing in
cases where an intermediate broker has access to only & sdilbse event’s attributes, thus
allowing more efficient event delivery within the brokerwetk. Therefore the choice between
event and attribute level encryption is a trade-off betwegressiveness and performance, and
depends on the requirements of the distributed applicatiotice that both event level and
attribute level encryption can be implemented in a systethesame time, thereby allowing
the event type owner to choose which one to use with a givent ¢ype.

7.2. Attribute Level Encryption 143

- timestamp Billing Office
- numberplate sub-event

Numberplate /
- location - location
. . Numberplate

- timestamp > | -timestamp evenpt

- numberplate \ - numberplate
-
- location Statistics Office
- timestamp sub-event
—_ " J

Figure 7.1: In order to emulate attribute level encryption with event level encryption the pub-
lisher must publish independent events for all subscriber groups.

7.2.1 Emulating Attribute Level Access Control

One can try to emulate the expressiveness provided bywd#riével encryption by introducing
a new event type for each group of subscribers that shareathe sredentials. The publisher
would then publish an instance of each of these types instepdblishing just a single event.
For example, in the congestion control example, the CCTV cas&ould have to publish three
events: one for the subscribers with the same authorityeasilling office, a second one for the
subscribers with the statistics office’s authority, andiedtbne as the fulNumberplatesvent
for the subscribers with Detective Smith’s authority (SéguFe 7.1). Each type of sub-event
would be encrypted with a separate key that was known to alktibscribers with the same
authority. The PHB could implement this transparently s the publisher has to publish only
one event and the PHB would create the appropriate subsevent

Obviously this approach does not scale as well as attrilawel lencryption and a large
number of subscribers with differing access rights wousdiien a comparatively larger number
of publications, as is shown Kv.7.

The more important performance related aspect of emulatitnigpute level access control
with sub-events is the fact that each group of subscribexsrghthe same authority must have
their own unique encryption key. The number of these keygsas2”, wheren is the number
of attributes in the event type. On the other hand the numbé&ey groups with attribute
encryption is onlyn, because access to each attribute is granted independérntig other
attributes. For example, an event type with 5 attributesatasost 32 subscriber key groups
when emulating attribute level access control with evewnell@ncryption, whereas attribute
level encryption would require only 5 key groups.

7.2.2 Restricted Attribute Values

We described ir35.2.2 how to restrict attribute values for publications anbscriptions. As-
suming that the access control policy is enforced in thedaraktwork by encrypting attributes

144 Chapter 7. Event Content Encryption

it is not possible to force domain level restrictions on wdiial attributes. For example, PITO
can not force one domain to publislumberplateevents with the location set ¥ ct ori ain
all publications, because an intermediate broker recgithe publication from another broker
will not know which broker published the event and therefaanot verify that the publication
meets the attribute value restrictions placed on the PHB.

Restricting attributes on a domain level would mean that tHB Rould have to attach its
credentials to the publication and sign it. Each broker emilblication’s path from the PHB to
all SHBs would have to verify the signature, verify the PHBgerials, decrypt all the event
attributes and check that the attribute values conformed?HB’s credentials. This procedure
would incur a lot of processing overhead and it would impéaet throughput of the broker
network quite significantly. Therefore, we assume tharictgins on attribute values are used
only when issuing authorisation certificates to event tfievhere the client hosting broker, who
is a member of the same domain as the client, is responsibénforcing the restrictions.

7.3 Encrypting Subscription Filters

In order to prevent the event content from leaking to unaugkd parties we must also encrypt
the filter expressions attached to subscriptions. Encdypt#oscription filters guarantee: (i)
that only authorised brokers are able to submit subscriptto the broker network, and (ii)
that unauthorised brokers do not gain information abouhegentent, by monitoring which
subscriptions a given event matches. For example, in thectise an unauthorised broker can
create subscriptions with appropriately chosen filterstedhem towards the root of the event
dissemination tree, and monitor which events were deld/&vét as matching the subscription.
The fact that the event matched the subscription would lefskmation to the broker about the
event content, even if the event was still encrypted. In #o®sd case, even if an unauthorised
broker was unable to create subscriptions itself, it cotiltlsok at subscriptions that were
routed through it, take note of the filters on those subsongt and monitor which events are
delivered to it by upstream brokers as matching the suligmmifilters. This would again reveal
information about the event content to the unauthoriseldsro

In the case of event level encryption, we encrypt the cora@abscription filter. The event
type identifier in the subscription must be left intact tooadlbrokers to route events based
on their type when they are not authorised to access the fittesuch cases the unauthorised
broker is required to assume that events of such a type métfities expressions, i.e. the
brokers implement only topic-based routing.

With attribute level encryption each attribute filter is grpted individually, similarly to
when encrypting publications. In addition to the event tigfemtifier the attribute identifiers are
also left intact to allow authorised brokers to decrypt thbkers that they have access to, and
route the event based on it matching the decrypted filters.

7.4. Avoiding Unnecessary Encryptions and Decryptions 145

7.3.1 Coverage Relations with Encrypted Filters

In order to take advantage of subscription coverage in typecantent-based publish/subscribe
systems when encrypting attributes, we extend the covesdgion to handle publication and
subscriptions with encrypted attributes and filter expoess

We treat the filter expression in a subscription as a conjomaif attribute filters, as de-
scribed in§2.2.2. When we employ attribute encryption, each attribuig atribute filter is
encrypted with an attribute-specific key. An encryptedlaite is covered by an encrypted at-
tribute filter if the filter matches the attribute value and #vent broker applying the filter has
access to the encryption key for that attribute. Therebytaibate encrypted publication is
covered by an encrypted subscription when the event bra®abcess to the encryption keys
of all the attribute filters and each of those filters coveesdtiribute value in the publication:

p[?f@ngﬁkEf:EIakEp:EIkEK:akE?qbk,

whereK is the set of encryption keys that are available to the eveakds, andy, anda, rep-
resent filters and attributes encrypted with the keyespectively. Notice that the event broker
applying the subscription to the publication does not haveaive access to all the attributes in
the publication. It is enough for the event broker to haveeasdo all the attribute keys that are
included in the subscription filter.

The subscription coverage relation is defined in terms optidication coverage relation.
Therefore the subscription coverage relation stays theesa@n in the presence of encrypted
filters and attributes:

frCs fieVpeEP pCE fo=pCh fi,

7.4 Avoiding Unnecessary Encryptions and Decryptions

Encrypting the event content is not always necessary. I€tineent broker and the next broker
down the event dissemination tree have the same credewithlsespect to the event type at
hand, we can pass the event to the next broker in plaintexteXxample, as argued #5.1.3,
one can assume that in most cases all brokers inside an sagjani would share the same
credentials. Therefore, as long as the next broker is a meailibe same domain, the event
can be routed in plaintext. With attribute level encryptibis possible that the neighbouring
broker is authorised to access a subset of the decryptdaligds, in which case those attributes
that the broker is not authorised to access would be passeerorypted.

In order to know when it is safe to pass the event in plaintexnf the brokers exchange

146 Chapter 7. Event Content Encryption

KEY

- - - - Ciphertext
Plaintext
P——> b SEA .——)S .
_> >C 1B 2 >CSHB D ———=Cached Plaintext (most data)
Encrypts Filters from Decrypts, Decpts | e Cached Plaintext (some data)
Different domains

Figure 7.2 : Caching decrypted data can increase efficiency when delivering an event to a peer
with similar privileges.

credentials as part of a handshake when they connect to #aeh(8e€5.3). When a broker
verifies the credentials of one of its neighbouring brokieegjds those credentials to the routing
table entry for that broker for future reference. If a brokequires new credentials after the
initial handshake, it will present these new credential#daxisting neighbours as soon as
possible by performing part of the handshaking protocoiraga

To avoid unnecessary decryptions, we attach a plaintexttaboache to encrypted events.
A broker fills the cache with content that it has decryptedgefample, in order to filter on that
content. The cache is accessed by the broker when it delweesent to a local subscriber
after first matching the event against the subscriptiorrfiftet the broker also sends the cache
to the next broker together with the encrypted event. The imeker can look up the attribute
from the cache instead of having to decrypt it. If the everliasg sent to an unauthorised
broker, the cache will be discarded before the event is €8wiously sending the cache with
the encrypted event will add to the communication cost, fustis outweighed by the savings in
encryption/decryption processing. In Figure 7.2 we seedemarate cached plaintext streams
accompanying an event depending on the inter-broker oalstiips in two different domains.

Regardless of its neighbouring brokers, the PHB will alwagsrgpt the event content,
because it is cheaper to encrypt the event once at the robeavient dissemination tree. In
Hermes the rendezvous node for each event type is selectiinoly randomly (the event
type name is hashed with the SHA-1 hash algorithm to produeevent type identifier, the
identifier is used to select the rendezvous node in the steattoverlay network, as described
in §2.3.1). Because SHA-1 values are indistinguishable frordaanvalues, it is probable that
the rendezvous node will reside outside of the current domahis situation is illustrated in
the event dissemination tree in Figure 7.3. Therefore, aidndomain internal applications
where the event can be routed from the publisher to all silEssrin plaintext form, the event
content will in most cases have to be encrypted for it to béadto the rendezvous node.

We show in§7.7 that the overhead of sending an encrypted event witH plaihtext cache
incurs almost no processing overhead compared to sendinggit events.

7.5. Implementation 147

Figure 7.3 : Node addressing is effectively random, therefore the rendezvous node for a domain
internal type can be outside of the domain that owns an event type.

7.5 Implementation

In our implementation we used the EAX mode [BRWO3] of operatidren encrypting events,
attributes, and subscription filters. EAX is a mode of opgerafor block ciphers, also described
as anauthenticated encryption with associated déd&AD) algorithm, that provides simulta-
neously both data confidentiality and integrity protectidhe algorithm implements a two-pass
scheme where during the first pass the plain text is encryptetion the second pass@ssage
authentication codéMAC) is generated for the encrypted data.

The EAX mode is compatible with any block cipher. We useddbdganced encryption
standard(AES) [FIP0O1] algorithm in our implementation, becausetsfdtandard status and
the fact that the algorithm has gone through thorough cngiyais during its existence and no
serious vulnerabilities have been found thus far.

In addition to providing both confidentiality and integrfiyotection, the EAX mode uses the
underlying block cipher icounter modéCTR mode) [DH79, LRWO0O0]. A block cipherin CTR
mode is used to produce a stream of key bits that are then XORkdhe plaintext. In effect
the CTR mode of operation transforms a block cipher into astreipher. In our application the
advantage of stream ciphers when compared to block cipbéhsi the ciphertext is the same
length as the plaintext, whereas with block ciphers thenpgai must be padded to a multiple of
the block cipher’s block length (e.g. the AES block size i8 bits). Avoiding padding is very
important in attribute level encryption, because we encsypgle attributes that might be very
small in size. For example, a single integer might be 32 hitemgth, which would be padded
to 128 bits if we used a block cipher. With event level enanipthe message expansion is
not that relevant, since the length of padding required &zhighe next 16-byte multiple will

148 Chapter 7. Event Content Encryption

Type: Numberplate Type: Numberplate
Time: 1191439655000} Nonce Nonce = Time: 17191439655000
PHB: Met Broker PHB: Met Broker
Event content —— ———— Encrypted event content
! ! ! ! ¢— Authentication tag
EAX EAX
Encryption Decryption
Type: Numberplate
Time: 1191439655000 * | Type: Numberplate
PHB: Met Broker Tag valid? Time: 1191439655000
Encrypted event content +—— Yes/No PHB: Met Broker
Authentication tag <+——————— L » FEvent content

Figure 7.4 : The EAX mode of operation.

probably be relatively small compared to the overall pexhtength.

In encryption mode the EAX algorithm takes as input a nondesyaand the plaintext, and
it returns the ciphertext and an authentication tag. Inyg#@mn mode the algorithm takes as
input the key, the ciphertext and the authentication tad,iareturns either the plaintext, or an
error if the authentication check failed. The EAX inputs audputs can be seen in Figure 7.4.

The nonce can be of arbitrary length. It is expanded (or cesgad) to the block length of
the underlying block cipher by passing it through an OMACstauct (One-key MAC [IK03]).
The OMAC takes an arbitrary length input and produces a fieegth output. In EAX the
output of the OMAC construct is used as the initialisatioateefor the CTR mode of operation.
The OMAC construct guarantees that small changes in theen@sult in large changes in the
initialisation vector.

It is important that particular nonce values are not reusdlterwise the block cipher in
CTR mode would produce an identical key stream. In our impteate®n we create a nonce by
concatenating the PHB defined event timestamp (64-bit vaduating the milliseconds since
January 1, 1970 UTC) and the PHB’s identity. The timestampeai®not enough to guarantee
unique nonces as two PHBs can publish an instance of the sangtgpe at the same moment
in time, thus resulting in two identical key streams. The P3iBéntity could be replaced with a
PHB-specific random value. The PHB is responsible for makumg that the timestamp grows
monotonically from publication to publication. Both the #stamp and the PHB's identity
must be included in the published event in order to allow obreker’s to decrypt and verify
the authenticity of the ciphertext.

The authentication tag is appended to the produced ciptieaereate a two-tuple. With
event level encryption a single tag is created for the ertedypvent. With attribute level encryp-
tion each attribute is encrypted and authenticated seggrand they all have their individual
tags. The tag length is configurable in EAX without restans, which allows the user to make
a trade-off between the authenticity guarantees provigdtidX and the added communication
overhead. We used a tag length of 16 bytes in our implementaiut one could make the tag

7.6. Key Management 149

length a publisher/subscriber defined parameter for eabhcation/subscription or include it
in the event type definition to make it a type specific paramete

EAX also supportsaassociated datahat is included in the tag calculation, but is not en-
crypted. That is, the integrity of the data is protected l®y délathentication tag, but it is still
readable by all principals in the system. In event level yotion the event type should be
added to the tag calculation as associated data. Simitaditiibute level encryption, the event
type and each attribute name should be included in the tagleéibn as associated data for
each attribute. We have not had time to implemented this anA\Vyet.

Other AEAD algorithms include theounter with CBC-MAC modeéCCM) [WHFO03] and
the offset codebook mod©®CB) [RBBKO1]. The CCM mode is the predecessor of the EAX
mode. EAX was proposed in order to address some problemeénatdiscovered in the CCM
mode [RWO03]. Similarly to EAX, CCM is also a two-pass mode. The O@&de requires
only one pass over the plaintext, which makes it roughly éwas fast as EAX and CCM.
Unfortunately the OCB mode has a patent application pendirigg USA, which restricts its
use.

7.6 Key Management

In both encryption approaches the encrypted event conganalglobally unique identifier (i.e.
the event type or the attribute name). That identifier is usddentify the encryption key to
use for encrypting and decrypting the event content. Eaehtdype, in event level encryption,
and attribute, in attribute level encryption, has its owatividual encryption key. By controlling
access to the key we effectively control access to the etexiygvent content.

In order to control access to the keys we forrkegy groupof event brokers for each indi-
vidual key. The key group is used to refresh the key when sacgsand deliver the new key
to all current members of the key group. The key group managesponsible for verifying
that a new member requesting to join the key group is authdris do so. Therefore the key
group manager must be trusted by the type owner to enforesscontrol correctly. We expect
that the key group manager is either the type owner, the AClsedlype owner’s domain, some
other member of the type owner’s domain trusted to managg, keya trusted third party that
Is managing keys for a number of domains in the shared puslibbcribe system.

We proposed a capability-based access control archigeict@hapter 5 where we use capa-
bilities to decentralise access control policy enforceina@mongst the publish/subscribe nodes
(i.e. clients and brokers): each node holds a set of capabilthat define its authority. The
authority to publish or to subscribe to a given event typerated by the type owner issuing
the principal a capability where the capability defines theng type, the action, and the at-
tributes that the node is authorised to access. For exampiple Nunber pl at e, subscribe,

*] would authorise the owner to subscribeNomberplateevents with access to all attributes in

150 Chapter 7. Event Content Encryption

3.Key manager may check
broker’s credentials at the
Access Control Service

Key Manager

4.Key manager may
check that the Type
Owner permits access

2.Broker requests to
join “Numberplate”

key group
5.1f the broker satisfies Type Owner
all checks, they will begin
receiving appropriate keys.
Broker

Figure 7.5 : The steps involved for a broker to be successful in joining a key group.

1.Grant authorisation
for “Numberplate” key

the published events.

We use the same capabilities to authorise membership in greey that are used to autho-
rise publish/subscribe requests ($8€2.2). Not doing so could lead to inconsistencies where
an SHB is authorised to make a subscription on behalf of ightd, but is not able to decrypt
incoming event content for them. In the Congestion Controhgta, the broker hosting a
CCTV camera is authorised to join theimberplateékey group as well as the key groups for all
the attributes in th&lumberplatesvent type.

Figure 7.5 shows what steps are required to grant a brokexutherity to join a key group
and how this authority is verified.

7.6.1 Secure Group Communication

Event content encryption in a decentralised publish/suissystem can be seen as an instance
of secure group communication. In both cases the key maramgesgstem must scale well
with the number of clients, the clients might be spread cargd geographic areas, there might
be high rates of churn in group membership, and all membest bausynchronised with each
other in time in order to use the same encryption key at theegane.

There are a number of scalable key management protocoledores group communica-
tion [RHO3]. We have implemented tl&ne-Way Function Tre@OFT) [SMO03] protocol as a
proof of concept. We chose OFT for our proof of concept, beedtuwvas easy to implement and
the performance was only slightly worse than the perforraari¢che more advanced protocols
evaluated in [RHO3].

Our implementation uses the same structured overlay nktused by the MiA broker
network as a transport. The OFT protocol is based on a bineenthere the participants are
at the leaves of the tree. It scaleddg n in processing and communication costs, as well as in
the size of the state stored at each participant. We havieektinis in our simulations.

7.6. Key Management 151

7.6.2 Key Refreshing

Traditionally in group key management schemes the keytieshéd when a new member joins
the group, an existing member leaves the group, or the kegstahg timer expires. Refreshing
the key when a new member joins provides backward secrecthe new member is prevented
from accessing old messages. Similarly refreshing the Kegrman existing member leaves
provides forward secrecy, i.e. the old member is preventewh faccessing future messages.
Timer triggered refreshes are issued periodically in otalémit the amount of traffic encrypted
with the same key. This is important both in limiting the ambaf ciphertext available for the
adversary to use in cryptanalysis, and the amount of trdffat will be compromised if the
current session key were to be compromised.

Even though the state-of-the-art key management protacelsfficient, refreshing the key
introduces extra traffic and processing amongst the keypgmeembers, often unnecessarily. In
our case key group membership is based on the broker holdiagability that authorises it to
access a given event type or event attribute and therefgoetthe appropriate key group. The
capability has a set of validity conditions that in their piest form define a time period when
the capability is valid, and in more complex cases involvdioa checks back to the issuer of
the capability.

In some cases a joining broker might have been authorisedceesa the key at the time
of the previous key refresh. In such a case there is no neeatde & key refresh when the
broker joins the key group, because it is authorised to adtesevents between the previous
key refresh and now. Similarly a leaving broker’s creddmtieght be valid for some time after
the broker has left the key group. Again, there is no needftesk the group key until the
leaving brokers authority has expired. The key manager lvarefore avoid unnecessary key
refreshes by looking at the validity conditions of the gram@mber’s credentials. With joining
brokers the key refresh can be avoided if the broker was ag#tbto join the key group at the
time of the previous key refresh. Similarly with leaving keos, the key refresh can be deferred
until the leaving broker’s credentials expire or it is tinoe the periodic key refresh.

These situations are both illustrated in Figure 7.6. It carabsumed that the credentials
granted to brokers are relatively static, i.e. as describ&8.1.3. Therefore, once a domain is
authorised to access an event type, the authority will begaééd to all brokers of that domain,
and they will have the authority for the foreseeable futukéore fine grained and dynamic
access control would be implemented at the edge of the bralitesork between the clients and
the client hosting brokers.

When a key is refreshed the new key is tagged with a timestaimpk@y to use for a given
event is selected based on the event's publication timgstanne old keys will be kept for
a reasonable amount of time in order to allow for some clodf. dBetting this value is part
of the key management protocol, although exactly how lomgtime should be will depend
on the nature of the application and possibly the size of #tevork. It can be configured

152 Chapter 7. Event Content Encryption

Broker's key group
credentials are valid

> Time

Key refresh schedule

Broker 1 joining and
leaving the key group

Broker 2 joining and :

leaving the key group ; j
Actual key refresh times ¢ j + ¢
Actual join time Actual leave time

Figure 7.6 : Key refreshes can be delayed based on the validity times of the broker’s authority.

independently per key group if necessary.

7.7 Evaluation

In order to evaluate the performance of event content etiorypve have implemented both
encryption approaches in MA. The implementation supports all three modes of operation:
plaintext content, event level encryption, and attribetesl encryption.

We have evaluated the overhead added by the two encryptpyoaghes compared to plain-
text events with a number of micro benchmarks. We have nda&ted the routing performance
of the system, because it is directly based on Hermes.

We ran three performance tests in a discrete event simulzdobis part of the FreePastry
distribution [Fre07]. We used a discrete event simulatetaad of running the tests over a live
system in order to be able to measure the increase in oveoaégsing required to publish a
given number of events. The Pastry simulator was run on @hh#t 3.2GHz workstation with
1GB of main memory. The sections below will describe eacltifipdest in more detail.

7.7.1 End-to-End Overhead

The end-to-end overhead test shows how much the overallagessroughput of the simula-
tor was affected by event content encryption. We formed &esraetwork with two brokers,
attached a publisher to one of them and a subscriber to tlee otie, as shown in Figure 7.7.
The subscriber subscribed to the advertised event typeoutitany filters, i.e. each publica-
tion matched the subscriber’s subscription and thus wasedetl to the subscriber. The test
measures the combined time it takes to publish and delivej0D0 events. If the content is
encrypted the measured time includes both encrypting theenbat the PHB and decrypting it
at the SHB.

7.7. Evaluation 153

KEY
P—>CPHB - - - - - >5 - - - - Ciphertext
Encrypts Decrypts, Plaintext
delivers

Figure 7.7 : The end-to-end test setup.

In the test the number of attributes in the event type is mmed from 1 to 25 (the-axis).
Each attribute is set to a 30 character string. For each nuoflegtributes in the event type
the publisher publishes 100,000 events, and the elapseddimeasured to derive the message
throughput. The test was repeated five times for each nunilagtributes and we use the aver-
age of all iterations in the graph, but the results were vensistent so the standard deviation is
not shown. The same tests were run with plaintext eventsit és'eel encryption, and attribute
level encryption.

As can be seen in Figure 7.8, event content encryption intresl a large computational
overhead compared to plaintext events. The throughput wkeng attribute level encryption
with an event type with one attribute is 46% of the throughgehiieved when events are sent
in plaintext. When the number of attributes increases thétopaance gap increases as well:
with ten attributes the performance with attribute levetrgption has decreased to 11.7% of
plaintext performance.

Event level encryption fares better, because there are femgeyption operations per event
even though the amount of data to encrypt is larger. The numb@dividual encryption
operations affects the performance more than the amouatathat needs to be encrypted. The
difference in performance with event level encryption atidkaite level encryption with only
one attribute is caused by the Java object serialisatiomamesm: in the event level encryption
case the whole attribute structure is serialised, whichlt®$n more objects than serialising
a single attribute value. A more efficient implementationuldoprovide its own marshalling
mechanism.

Note that the EAX implementation we use runs the nonce (iigalisation vector) through
an OMAC construct. Since the nonce is not required to be keptes, there is a potential
time/space trade-off we have not yet investigated in aitgcthe output of the OMAC construct
to the event. That way the brokers decrypting the event cowle not have to run the nonce
through the OMAC construct themselves. This optimisatiouh allow a trade-off to be made
between the size of the events and the time it takes to dettrgpt. The performance increase
might be considerable especially with attribute level gption where the OMAC construct is
executed for each attribute separately even though theerisrtise same in each case.

154 Chapter 7. Event Content Encryption

35000 T T . ; '
No Encryption —+—
Attribute Encryption ---x---
Whole-content Encryption ------
30000
25000
e}
o
Q
2
& 20000 -
o}
o
3
2 X
g 15000 | * i
o N\
= \\%"‘%
10000 | N TR 1
X, '3 ooy
\X\ TRy o
s KooK Xy
5000 T *-- ok
A .
[l S
A L VI VY PEENIVERVI
O 1 1 1 1
0 5 10 15 20 25

Number of Attributes

Figure 7.8 : The end-to-end throughput of events with plaintext events, event level encryption,
and attribute level encryption.

7.7.2 Domain Internal Events

We explained ing7.4 that event content decryption and encryption could lmedad if both
brokers are authorised to access the event content. Thisvéssdesigned to show that by
attaching the cached plaintext to the encrypted event wéagiisg an event from one authorised
broker to another results in only a small performance owwthe#hen compared to plaintext
events.

In this test we again form a broker network with two brokers,saown in Figure 7.7.
Both brokers are configured with the same credentials. Thighel is attached to one of the
brokers and the subscriber to the other, and again the sioésdoes not specify any filters in
its subscription.

The publisher publishes 100,000 events and the test meath@elapsed time in order to
derive the message throughput for the system. The evergmaatencrypted outside the timing
measurement, i.e. the encryption cost is not included imt&asurements. The goal is to model
an environment where a broker has received a message frotihearauthorised broker, and
it routes the event to a third authorised broker. In this aderthe intermediate broker is not
required to encrypt or decrypt any of the event content, iiee#he PHB provided it with both
the plaintext and ciphertext content.

As shown in Figure 7.9, the elapsed time was measured as theamwof attributes in the
published event was increased from 1 to 25. The attributgegaih each case are 30 character
strings. Each testis repeated five times, and we use theggvefall iterations in the graph. The

7.7. Evaluation 155

100000 T . ; :
No Encryption —+—

Attribute Encryption ---x---

95000 X Whole-content Encryption ---%--- |

90000

85000

80000

75000

70000

Messages per Second

65000

60000

55000

50000 L L L L
0 5 10 15 20 25

Number of Attributes

Figure 7.9 : The end-to-end throughput of events with plaintext events, event level encryption,
and attribute level encryption when plaintext caching is enabled.

same test was repeated with no encryption, event level pticryand attribute level encryption
turned on.

The two encrypted modes follow each other very closely. Tlaefext mode performs a
little better for all attribute counts. The difference candxplained partially by the encrypted
events being larger in size, because they include both #ietpkt and the encrypted content in
this test. The difference in performance is 3.7% with onetaite and 2.5% with 25 attributes.

7.7.3 Communication Overhead

As we explained ir37.2.1, it is possible to emulate the expressiveness obaté&ilevel encryp-
tion by defining multiple event types and applying event lereryption of those events. The
third test we ran was to show the communication overheadecang this emulation technique,
compared to using real attribute level encryption.

In the test we form a broker network of 2000 brokers. We attawd publisher to one of
the brokers, and an increasing number of subscribers t@thaining brokers. Each subscriber
simulates a group of subscribers that all have the same saciggds to the published event.
Each subscriber simulating a group of subscribers has itseynt type in the test.

The outcome of this test is shown in Figure 7.10. The numbeubscribers is increased
from 1 to 50 (ther-axis). For the: subscribers the publisher publishes one event to représent
use of attribute level encryption amdevents representing the events for each subscriber group.
We count the number of hops each publication makes throwghbrtiker networks(-axis). Note

156 Chapter 7. Event Content Encryption

10000 T T T T T T T T T

1000

100

Number of Hops in Total

10

Attribute Encryption —+—
. Whole-lcontent Elncryption T

1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Number of Subscription Groups

Figure 7.10 : The average number of hop counts when emulating attribute level encryption with
event level encryption and multiple sub-types (log scale).

thaty-axis is in logarithmic scale.

Note that Figure 7.10 shows workloads beyond those we woulda in common usage,
in which many event types are likely to contain fewer thanatnbutes. The subscriber groups
used in this test represent disjoint permission sets ower suent attributes. The number of
these sets can be determined from the deployed accesslquoiicy. The upper limit will be
2", wheren is the number of attributes in the event type.

The figure indicates that attribute level encryption schakser than event level encryption
even for small numbers of subscriber groups. Indeed, withtbnee subscriber groups (e.g. the
case withNumberplatesvents) the hop count increases from 9.0 hops on averagéribute
level encryption to 30.8 hops on average for event levelygrtion. With 10 subscriber groups
the corresponding numbers are 24.2 and 251.0 on average.

7.8 Related Work

Opyrchal and Prakash address the problem of event confidigntt the last link between the
subscriber and the SHB in [OP01]. They correctly state ths@ire group communication
approach is infeasible in an environment like publish/stbg that has highly dynamic group
memberships. As a solution they propose a scheme utili@gg#ching and subscriber group-
ing in order to minimise the number of required encryptiom&wdelivering a publication from
a SHB to a set of matching subscribers. We assume in our watkthle SHB is powerful

7.8. Related Work 157

enough to manage a TLS-secured connection for each locstisbeér.

Raiciu and Rosenblum present a formal security model for ptioig the confidentiality of
published events in content-based publish/subscribesysin [RR06]. The presented model
allows the broker network to route events based on theiypted content. The paper discusses
only content-based publish/subscribe systems, but thenselshould be equally applicable to
type-based publish/subscribe. Compared to our work, Ram@duRDsenblum assume that none
of the brokers in the broker network are trustworthy. Therefevent encryption and decryption
is implemented by the event clients themselves. In ordemfmément content-based routing
with these assumptions the brokers must be able to applgsptisn filters to encrypted con-
tent, which is enabled by the proposed scheme. We on the ludinerassume that some brokers
can be authorised to access event content. Specificallydomleers of event clients are trusted
to encrypt and decrypt events for the clients. Intermediatiers that are trusted to decrypt
attributes can use those attributes to implement contasedrouting and all brokers are able
to route events based on the plaintext type-name in the eVéaetscheme proposed by Raiciu
and Rosenblum could be integrated with our approach in oodetdw unauthorised event bro-
kers to also route events based on their content. The does$ithe scheme is that it places
requirements on the filtering language since some filterperations cannot be implemented
on encrypted content.

Srivatsa and Liu present EventGuard in [SLO5]. EventGuangiiges event confidentiality,
integrity and authenticity in decentralised publish/suliee systems. The prototype is built on
top of Siena [CRWOL1]. The paper concentrates on topic-badaspisubscribe, but the authors
state that the approach is equally applicable to contesegpublish/subscribe. In the scheme
publishers sign events and encrypt them with a publicaspecific, random encryption key.
The encryption key is then encrypted with a topic-specific &ed attached to the event. Event
brokers are expected to verify the signature on each rotitopg The subscriber on receipt of
the publication verifies the publisher’s signature, detsype random key, and finally decrypts
the message. A trustadeta servicMS) is used to certify advertisement and subscription
messages, i.e. it controls access to the event servicdydpaper does not address the definition
of policy. The paper includes micro benchmarks that showttieexcessive use of public key
encryption has an effect on performance. For example, egohtsire verification increases the
time needed to handle a single event by 1.7ms. In contrasteosame hardware Siena handles
a subscription event in less than/&80 Similarly to Raiciu and Rosenblum, the model assumes
that event brokers are not trustworthy and as a result ati/ption operations are implemented
by the event clients, whereas our architecture providesyption as a transparent infrastructure
feature to event clients.

In another paper Srivatsa and Liu propose an efficient keyagement scheme for publish/
subscribe systems [SLO7]. The work utilidessy graphgWGLO0O] where a root key is hashed
in order to generate child keys in a key tree. By partitioning value space of an attribute
in content-based publish/subscribe into a tree, the luki@al key derivation algorithm can be

158 Chapter 7. Event Content Encryption

used to create keys for subsets of the value space in an effioenner. The scheme assumes
that both publishers and subscribers are authorised teaesents based on their content, i.e.
they request an encryption key based on what the publicetiotent or subscription filter is. We
proposed similar functionality i§5.2.2 that would allow domains to limit the authority of both
publishers and subscribers to only certain subset of aliteygublished as instances of a given
type depending on the values of attributes. The differenceur approach is that we expect
the local broker to enforce the restrictions whereas Saaind Liu are able to enforce the
restrictions by preventing the clients from reading/wgtevents that are within their authority.
The key management scheme is applicable in the contexthNlthough we feel that the
level of granularity already provided by Ma (i.e. attribute-level access control) should be
enough for most scenarios.

Srivatsa and Liu also address the problemfrefiuency inference attacks the routing
network. Givena priori knowledge about event frequency distributions, a broker inéer
which type of event the publication is even when the eveng tyas been blinded by hashing
it. The proposed solution is to implement probabilistictiog in the broker network so that
the number of events flowing through any given broker in thetesy has been skewed enough
to prevent frequency based inference. We have not considier#ic monitoring attacks in our
work thus far. Another alternative is to introduce fake ésento the event stream. In our case,
since we trust the PHBs, we can delegate the generation o&fegtds to the PHBs. Each PHB
can introduce enough fake events into the event stream w thleeevent distributions as well
as cover for periods when there are no real events published.

Khurana proposes a security scheme in [Khu05] that proteetmtegrity and confidential-
ity of some event attributes while allowing subscribers ¢oify the authenticity of the event.
Khurana makes the assumption that only some of the attabatan event in a content-based
publish/subscribe system need to be encrypted while thairgng attributes can remain un-
encrypted. The proposed scheme implements content-basgdg only on the unencrypted
attributes thereby forcing the application designers t&aratrade-off between efficient rout-
ing and event confidentiality. Similarly to EventGuard, #rehitecture relies on a trustpdxy
security and accounting servi(BSAS) to proxy-encrypt events. That is, the PSAS servitle wi
decrypt a publication, verify two signatures, re-encrym publication for a given subscriber,
and finally sign it. The subscriber hosting broker is expgtbdgass each received publication to
the PSAS service for authentication and re-encryptionrsgglg for each matching subscriber.
Also, all encryption operations are based on public key ritlgms that are several orders of
magnitude slower than symmetric equivalents [MOV96]. kKdna expects that each subscriber
receives only one event per minute at most. We feel that sublbaghput assumption is not
realistic in multi-domain systems. For example, in the namplate monitoring application the
Billing Office will see tens of events per second when vehielet®r the congestion controlled
area in London. In Khurana's model none of the event brokerdrasted and therefore the
PSAS service is used as a trusted third party between théspabland the subscribers. Be-

7.9. Summary 159

cause of the high computational cost associated with eaght @lelivered to a subscriber, a
large number of PSAS nodes must be deployed in the system. ddel\argue that the PSAS
functionality should be incorporated in a trusted localderarather than deployed as a separate
entity.

7.9 Summary

Event content encryption can be used to enforce accesotpoticy while events are in tran-
sit in the broker network of a multi-domain publish/subbkersystem. Encryption introduces
a small communication overhead in the form of nonces andeatitation tags, and a very
large computational overhead in the form of encryption apens. But (i) in many cases there
may be no alternatives, i.e. event integrity and confidétytiprotection is required, and (i)
the performance penalty can be lessened with implementaftimisations, such as passing
cached plaintext content alongside encrypted contentdseiviorokers with identical security
credentials and thereby lessening the computational ea€erhy increasing the communication
overhead.

Attribute level encryption can be implemented in order tioere fine-grained access con-
trol policies. In addition to providing attribute level a&ss control, attribute level encryption
enables partially authorised brokers to implement corbassed routing based on the attributes
that are accessible to them resulting in more efficient exairting.

Our experiments show that (i) by caching plaintext and aifgx¢ content when possible, we
are able to deliver comparable performance to plaintexttsyand (ii) attribute level encryption
incurs far less overhead than trying to emulate the saméedéegpressiveness with event level
encryption.

By placing trust in some of the event brokers, namely the lboakers of both publishers
and subscribers, we are able to implement both contentibagging and event encryption
without having to rely on exotic cryptographic methods.

CHAPTER 8

Conclusions

This chapter concludes the dissertation. We summariseothigiloutions of this dissertation in
§8.1; discuss the research avenues that have been reveaben Wwprk in §8.2; and conclude
the dissertation witl§8.3.

8.1 Contributions

The goal for this work was to provide an access control aechire for decentralised, large-
scale publish/subscribe systems that span multiple inutkg@ administrative domains, as de-
scribed in Chapter 1. In Chapter 2 we provided an overview ofipus research both in dis-
tributed communication paradigms as well as access comirolder to define the scope of our
work we described in Chapter 3 what we understood to be a mhaittiain publish/subscribe
system, how we imagined one to be deployed, and what kindreéts we expected to see in
such an environment.

In Chapter 4 we presented a scheme for securing event typatidetin The goal was
to provide a scheme for globally unique names in a publifisstube context, so that those
names could be used in an access control policy unambigutiustfer to resources. We also
wanted to provide secure event type definitions that woldbshalsers to verify their authenticity
and integrity. Authenticity means that the event type didfiniis owned by a given principal.
Integrity means that the event type definition has not beapéaed with since it was deployed.
The ownership of an event type is important, because it gesvihe root of the authority that is
being delegated to domains and domain members with austionscertificates. Type definition
integrity is important also from an access control point igfw because it guarantees that all
parties in the system agree on the contents of the type defirsind can therefore enforce and

160

8.1. Contributions 161

adhere to a common access control policy.

The work on secure event types also resulted in a scheme édvimy type definitions.
We felt that one of the requirements for a large-scale phudigscribe system is the ability
of the system to evolve without it having to be shut down widiteng this. Decentralised
publish/subscribe systems usually allow the event setgievolve, because event brokers can
be removed and added to the system at will in many cases,dretias no way to make changes
to an event type that had already been deployed on the sysithimuivdisconnecting existing
clients. While providing support for secure event types, \8e described a scheme for event
type versioning that allows multiple versions of an evemetyo coexist on the same publish/
subscribe system. The different versions would also sheneueh of the publication content as
possible, i.e. a publication of versidnwould be translated to versiéhat the subscribers. This
mechanism allows an event type to be used in a live systenewhiblishers and subscribers
slowly migrate to using the latest version of the event tyginition.

In Chapter 5 we presented our access control architectudetantralised, large-scale pub-
lish/subscribe systems. The architecture relied on SPHiaaisation certificates for delegating
access rights to publish/subscribe principals. We comagst especially on the multi-domain
environment and therefore presented a hierarchical dedeganodel, where resource owners
delegate access rights to domains and those domains dethgadccess rights to sub-domains
or event brokers and event clients. We felt that in a multrdm environment the main goal
should be to support scalability as much as possible. Byitiggatzent types as resources that
are owned by their creators we are able to decentralise gymmntreation. By relying on SPKI
authorisation certificates we are able to decentraliseeoiteal management and credential ver-
ification.

The access control architecture presented in Chapter SGedgunla system where access
control towards event clients was enforced by the clientsl event broker. The event brokers
could be trusted to enforce the local domain’s access domiay, but there was nothing to
enforce access control policies in the broker network.

This dissertation concentrated on providing an accessaanechanism for multi-domain
publish/subscribe systems, but we felt that we should alslvess policy management, espe-
cially credential revocation, which is a hotly debated ¢dpr capabilities. In Chapter 6 we pre-
sented a simple model for implementing policy managemetidmains with the OASIS RBAC
system. We also described the various options for certfficatocation that are applicable to
SPKI authorisation certificates. Finally we presented @sehfor implementing request/reply
and reply-caching mechanisms in decentralised publibbsibe system and how to use those
mechanisms for delivering certificate validity statementserifiers over a publish/subscribe
system.

In Chapter 7 we presented an approach for encrypting evetgmio he goal was to prevent
unauthorised event brokers from reading or writing evemtt&at by encrypting the events.
This would allow the unauthorised brokers to route eventthénevent broker network. We

162 Chapter 8. Conclusions

presented two schemes for event content encryption: wivelet @ncryption and attribute level
encryption. The former was more efficient, while the latteiswnore expressive.

8.2 Future Work

The work in this dissertation has highlighted a number ofd®phat should be addressed in
future work.

We described ir$6.4 how it would be beneficial if the verifier, i.e. the evernent's local
event broker, were to be able to evaluate predicates likditine of day or the publication
frequency of the event client. Such an enhancement wowdd éifie domain to issue certificates
to the event clients that would be valid for longer periodsrag, while providing the same level
of control as short-lived certificates provide. For examifle verifier could enforce restrictions
on the time of access instead of the domain having to issug-kled certificates that expire
every day at the time when the client is no longer authorisexttess the event service.

PolicyMaker and other trust management systems suppodlienl safe languages that are
used to write short programs that either accept or rejectcaass request based on the local
policy and the client’s credentials (S&2.5 for a discussion on PolicyMaker). Safe in this case
means that the program is guaranteed to finish and not to sensureasonable amounts of
resources. A similar language could be used iniMto move some of the dynamic parts of
the access control policy to be enforced by the event bralegher than the domain’s access
control service.

The SPKI-based access control model imi allows for principals to have read access,
write access, or both to an event type and its attributes stheme that is used to enforce access
control within the event broker network by encrypting eveantent does not unfortunately
provide the same level of granularity. That is, if an evewikier has either read or write access
to the event content, it will automatically be also able titevand read the content, respectively.
This is because MiA uses symmetric encryption where the same key is used to botlyp
and decrypt the event content. The obvious solution is taaggenmetric cryptography where
the event content is encrypted with one key and decrypteld thié other key. The brokers
with read access to the event content would be issued one é&kifs while those brokers with
write access would be issued the other key. Public key asraisein this case not appropriate,
because both keys of the key pair would have to be treatedrd&lential information. An
alternative approach would be to sign the event content antlasymmetric key and encrypt
it with a symmetric key. Thereby only those event brokers lizave access to the private key
used to sign publications are able to publish events. Thendiol® of any kind of asymmetric
cryptography is that it is orders of magnitude more expengiian symmetric cryptography.
Therefore we decided in this version ofAVA to not enforce access control at the level of
different access operations in the event broker network.

8.2. Future Work 163

Another aspect of security that is not addressed by the miarehitecture is the possibility
of traffic analysis and event client privacy. In the curreygtem event brokers are free to
monitor the events that pass through them. While the evergbtrbe encrypted, some level
of header information must be left in plaintext so as to emahbre efficient event routing.
Therefore intermediate brokers will be able to keep tracWladt types of events pass through
them. On the other hand the event routing mechanism maAMs based on hashed event
identifiers, i.e.h(P||n), whereP is the public key of the event type owner ands the event
type’s human readable name. By using only this event typdifdann the event header we
canblind the event type information so that a casual observer camuot kvhat event type it is.
Authorised brokers can form a list of event type identifiard aompare events to that list when
filtering them or delivering them to event clients. Unforately the number of event types in
a system is not very large and it is conceivable that a desticatlversary is able to get a list
of most of the event type names in the system, e.g. from a @pistry. The adversary can
then calculate event type identifiers for all the event typedhat list and compare the event
type identifier of each passing publication to the list of révigpe identifiers, thereby being
able to monitor the event flow in the system. We can defendnagé#his attack by using a
HMAC construct instead of a normal hash function to genettateevent type identifier. The
HMAC construct (i.ea keyed-hash message authentication gagldefined in the IETF RFC
2104 [KBC97]. In simple terms, a secret k&yis used in the hash calculation of the message
hmac(K, m). This prevents anyone who does not know the secret key froifyivg the hash
value and from generating new hash values. In our case thérse will prevent unauthorised
event brokers from creating lists of event type identifibxscause they are not in possession
of the event type encryption key. The downside of this schsntigat the event type identifier
would change whenever the encryption key is refreshed. Wlavibe very difficult to somehow
synchronise all brokers in the system to update the eveatitigntifier at the same time without
losing any publications in the process. We would like to sseleme that would protect the
system against these kinds of traffic monitoring attackenethough one can argue that we
should not be worried about such attacks given our threaeh{&ees3.6).

Raiciu and Rosenblum presented an alternative approach fdemnenting confidentiality
in publish/subscribe systems in [RR06]. Most notably theprapch relied on advanced cryp-
tographic operations and allowed unauthorised brokersuterevents based on their content
without actually disclosing it. We assume that the brokemwoek is trusted to some extent
and that the decreased routing performance, in cases wineteréker does not have access
to the event content, is acceptable. It would be worthwluleneasure how much the rout-
ing performance in a large-scale system improves by allpwihnodes to route based on the
event content, and on the other hand, what kind of an overisgattoduced by the advanced
cryptographic operations.

Finally, we have realised that the research community wbelkefit from a modular pub-
lish/subscribe middleware that would allow for the mixingdamatching of various publish/

164 Chapter 8. Conclusions

subscribe models. Such a middleware would allow reseasdiebuild on a common base,
while being able to easily implement their own enhancemetihé common middleware and
to disable or enable other features like content-basedngand event encryption. Raiciu et
al. suggested in their position paper that event matchingezant routing should be separated
in a publish/subscribe middleware in order to allow the rfedére to cope with application
diversity. We feel that a modular middleware implementatiould cater for that need as well.

8.3 Summary

This dissertation has presentedaM, a decentralised access control architecture for large-
scale, multi-domain publish/subscribe systems. We haeaddressed related issues like am-
biguous names, forged event type definitions, and enforagugss control within the event
broker network. We have motivated our work with a runningregée, based on the challenges
facing the UK Police Forces and the Police Information Tetbgy Organisation. Finally we
have highlighted new research areas that we aim to expldaheifuture.

Bibliography

[AEM99]

[AFOO]

[And72]

[Apal7]
[Aur99]

[BBHM95]

[BCJ90]

[BCM*99a]

Marcel Altherr, Martin Erzberger, and Silvano Mai$. iBus - a software bus
middleware for the java platform. Imternational Workshop on Reliable Mid-
dleware Systempages 43-53, October 1999.

Mehmet Altinel and Michael J. Franklin. Efficient &liting of xml documents for
selective dissemination of information. WiLDB '00: Proceedings of the 26th
International Conference on Very Large Data Bagesges 53—64, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

James P. Anderson. Computer security technologyntg study. Technical Re-
port ESD-TR-73-51, U.S. Air Force Electronic Systems DisiOctober 1972.

Apache activemq, October 200t p: // acti veng. apache. org/ .

Tuomas Aura. Distributed access-rights managdseiith delegations certifi-
cates. In Jan Vitek and Christian D. Jensen, editSes;ure Internet Program-
ming: Security Issues for Distributed and Mobile Objegtdume 1603 0£NCS
pages 211-235. Springer-Verlag, 1999.

Jean Bacon, John Bates, Richard Hayton, and Ken MoodyingUsvents to
build distributed applications. I8DNE’95: Proceedings of the 2nd Interna-
tional Workshop on Services in Distributed and Networked @@nwents pages
148-155, Washington, DC, USA, June 1995. IEEE Computer Societ

Kenneth P. Birman, Robert Cooper, Thomas A. Joseph, Keitlzhlla, Messac
Makpangou, Ken Kane, Frank Schmuck, and Mark Wolktk ISIS System Man-
ual, Version 2.0 Department of Computer Science, Cornell University, Ithaca
NY, USA, March 1990.

Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jagafdprao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicastqzol for
content-based publish-subscribe system$¢CICS’99: Proceedings of the 19th
IEEE International Conference on Distributed Computing 8yst pages 262—
272, Washington, DC, USA, May 1999. IEEE Computer Society.

165

166

BIBLIOGRAPHY

[BCM*T99b] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jagafsdfarao,

[Bel74]

[BEMPO5]

[BEP*03]

[BFIK99a]

[BFIK99D]

[BFK98]

[BFLO6]

[Bib75]

[BIKOO]

[BKKK87]

Robert E. Strom, and Daniel C. Sturman. Information flow baseshtedistri-
bution middleware. IfProceedings of the ICDCS Workshop on Electronic Com-
merce and Web-Based Applicatippsges 114-121, June 1999.

David E. Bell. Secure computer systems: A refinementhef mathematical
model. Technical Report ESD-TR-73-278, Vol. lll, ElectroBigstems Division,
Air Force Systems Command, April 1974.

Jean Bacon, David M. Eyers, Ken Moody, and Lauri |. Wséhen. Securing
publish/subscribe for multi-domain systems. In Gustavon&b, editorMid-
dleware’05: Proceedings of the 6th International ConferenceMiddleware
volume 3790 oL.NCS pages 1-20. Springer-Verlag, November 2005.

Andras Belokosztolszki, David M. Eyers, Peter R. Pietzuch, JeamrmBaand
Ken Moody. Role-based access control for publish/subsaritulleware ar-
chitectures. INDEBS’03: Proceedings of the 2nd International Workshop on
Distributed Event-Based Systempsges 1-8, New York, NY, USA, June 2003.
ACM.

Matt Blaze, Joan Feigenbaum, John loannidis, angefos Keromytis. The
KeyNote trust-management system version 2. RFC 2704, ktt&ngineering
Task Force, September 1999.

Matt Blaze, Joan Feigenbaum, John loannidis, angefes D. Keromytis. The
role of trust management in distributed systems securnitfselcure Internet pro-
gramming: Security Issues for Mobile and Distributed Obgepages 185-210,
London, UK, 1999. Springer-Verlag.

Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytes/Note: Trust man-
agement for public-key infrastructures (position papdrn.Proceedings of the
Cambridge 1998 Security Protocols International Worksheplume 1550 of
LNCS pages 59-63, 1998.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decergcatrust management.
In Proceedings of the IEEE Conference on Security and Privaages 164—173.
IEEE Computer Society, May 1996.

Ken Biba. Integrity considerations for secure conmpgitsystems. Technical
Report MTR-3153, The MITRE Corporation, March 1975.

Matt Blaze, John loannidis, and Angelos Keromytis. A&hd RSA key and sig-
nature encoding for the KeyNote trust management system. ZHBE, Internet
Engineering Task Force, March 2000.

Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F.rifo Semantics and
implementation of schema evolution in object-orientecbases. IProceedings
of the 1987 ACM SIGMOD International Conference on Managerotbata,
pages 311-322. ACM Press, 1987.

BIBLIOGRAPHY 167

[BL73]

[BL76]

[BMY02]

[BMYO03]

[BN84]

[BNS9]

[BRWO3]

[Car98]

[CDKO1]

[CFL*97]

[Cha93]

[CMPCO04]

David E. Bell and Leonard J. LaPadula. Secure computstesns: Mathemat-
ical foundations. Technical Report ESD-TR-73-278, \Vol. kedtonic Systems
Division, Air Force Systems Command, November 1973.

David E. Bell and Leonard J. LaPadula. Secure computstes: Unified ex-
position and MULTICS intepretation. Technical Report MTR-2%ev. 1, The
MITRE Corporation, March 1976.

Jean Bacon, Ken Moody, and Walt Yao. A model of OASISerbased access
control and its support for active securi§CM Transactions on Information and
System Security (TISSEG)4):492-540, November 2002.

Jean Bacon, Ken Moody, and Walt Yao. Access control &ast in the use of
widely distributed servicesSoftware — Practice and Experien@8(4):375-394,
2003.

Andrew D. Birrell and Bruce Jay Nelson. Implementing meprocedure calls.
ACM Transactions on Computer Systystep{$):39-59, February 1984.

David F. C. Brewer and Michael J. Nash. The chinese wallist/ policy. In
Proceedings of the 1989 IEEE Computer Society Symposiunconitgend Pri-
vacy, pages 206-214, Oakland, CA, USA, May 1989. IEEE ComputereBoci

Mihir Bellare, Phillip Rogaway, and David Wagner. EAX: éonventional
authenticated-encryption mode. Cryptology ePrint ArchiReport 2003/069,
April 2003. htt p: // eprint.iacr. org/ 2003/ 069.

Antonio CarzanigaArchitectures for an Event Notification Service Scalable to
Wide-area NetworksPhD thesis, Politecnico di Milano, Milano, Italy, Decembe
1998.

George Coulouris, Jean Dollimore, and Tim Kindber®istributed Systems:
Concepts and DesignAddison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 3 edition, 2001.

Yang-Hua Chu, Joan Feigenbaum, Brian A. LaMacchia, PauliBlesand Mar-
tin Strauss. REFEREE: Trust management for web applicatiGomputer Net-
works and ISDN Systen9(8-13):953-964, 1997.

David Chappell. Distributed computing: implementation and management
strategies chapter The OSF Distributed Computing Environment (DCEyega
175-199. Prentice-Hall, Inc., Upper Saddle River, NJ, USgtoBer 1993.

Paolo Costa, Matteo Migliavacca, Gian Pietro Picard &ianpaolo Cugola.
Epidemic algorithms for reliable content-based publishseribe: An evalua-
tion. InICDCS’04: Proceedings of the 24th IEEE International Confeson
Distributed Computing Systensages 552-561, Washington, DC, USA, March
2004. IEEE Computer Society.

168

BIBLIOGRAPHY

[CNFO1]

[CRW99]

[CRWO1]

[CW87]

[CWO1]

[DA99]

[DDLS01]

[DFFTO02]

[DH79]

[EFGKO3]

[EFL*99]

[EGDO1]

Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonsaygatta. The JEDI event-
based infrastructure and its application to the developroithe OPSS WFMS.
IEEE Transactions on Software Engineeri2g(9):827-850, 2001.

Antonio Carzaniga, David R. Rosenblum, and Alexander &lfV€hallenges for
distributed event services: Scalability vs. expressisenénlCSE’'99 Workshop
on Engineering Distributed Objects (EDO '9Wlay 1999.

Antonio Carzaniga, David S. Rosenblum, and Alexandeénalf. Design and
evaluation of a wide-area event notification servis€M Transactions on Com-
puter Systems (TOCS)9(3):332—-383, August 2001.

David D. Clark and David R. Wilson. A comparison of commakand military
computer security policies. IRroceedings of the 1987 IEEE Computer Society
Symposium on Security and Privagages 184-194. IEEE Computer Society,
1987.

Antonio Carzaniga and Alexander L. Wolf. Content-basetivorking: A new
communication infrastructure. NSF Workshop on an Infrastructure for Mobile
and Wireless Systemsumber 2538 in Lecture Notes in Computer Science, pages
59-68, Scottsdale, AZ, USA, October 2001. Springer-Verlag

Tim Dierks and Christopher Allen. The TLS protocol,rs®n 1.0. RFC 2246,
Internet Engineering Task Force, January 1999.

Nicodemos Damianou, Naranker Dulay, Emil Lupudavorris Sloman. The
ponder policy specification language. ROLICY’01: Proceedings of the In-
ternational Workshop on Policies for Distributed Systemd &letworks pages
18-38, London, UK, January 2001. Springer-Verlag.

Yanlei Diao, Peter Fischer, Michael J. Franklindé&Raymond To. YFilter: Ef-
ficient and scalable filtering of xml documents. I@DE’'02: Proceedings of the
18th International Conference on Data Engineeripgges 341-342, Washing-
ton, DC, USA, February 2002. IEEE Computer Society.

Whitfield Diffie and Martin Hellman. Privacy and auth&ation: An introduc-
tion to cryptographyProceedings of the IEEEB7:397-427, March 1979.

Patrick Th. Eugster, Pascal A. Felber, Rachid Gamrm, and Anne-Marie Ker-
marrec. The many faces of publish/subscribédCM Computing Surveys
35(2):114-131, June 2003.

Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brianoftas, and Tatu
Ylonen. SPKI certificate theory. RFC 2693, Internet Engingefiask Force,
September 1999.

Patrick Th. Eugster, Rachid Guerraoui, and Christairde Damm. On objects
and events. IOOPSLA’01: Proceedings of the 16th ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, aplicApons pages
254-269, New York, NY, USA, October 2001. ACM Press.

BIBLIOGRAPHY 169

[EN99]

[FGKZ03]

[Fie00]

[FIPO1]

[FIPO2]

[FK92]

[FMBO1]

[Fre07]
[Gel85]

[Gon89]

[Hay96]

[Hoa78]

[IBMO7]

[1KO3]

[1S098]

[ITUO5a]

Carl Ellison. SPKI requirements. RFC 2692, Internegiheering Task Force,
September 1999.

Ludger Fiege, Felix C. &tner, Oliver Kasten, and Andreas Zeidler. Supporting
mobility in content-based publish/subscribe middlewadume 2672 oLNCS
pages 103-122. Springer-Verlag, June 2003.

Roy T. Fielding. Architectural styles and the design of network-based soéwar
architectures PhD thesis, University of California, Irvine, CA, USA, 2000.

Specification for the advanced encryption standAESS). Federal Information
Processing Standards Publication 197, November 2001.

Secure hash standard (SHS). Federal InformationeR®sing Standards Publica-
tion 180-2, August 2002.

David Ferraiolo and Richard Kuhn. Role-based accessrals. InProceedings
of the 15th NIST-NCSC National Computer Security Confergramgges 554-563,
October 1992.

Ludger Fiege, Gero Mhl, and Alejandro Buchmann. An architectural framework
for electronic commerce applications. Informatik 2001: Annual Conference of
the German Computer SocieB001.

The Pastry web site, October 200t p: // freepastry.ri ce. edu/.

David Gelernter. Generative communication in la&ndACM Transactions on
Programming Languages and Systems (TOPLAQ):80-112, January 1985.

Li Gong. A secure identity-based capability systémProceedings of the 1989
IEEE Computer Society Symposium on Security and Prjyzanyes 56—63. IEEE
Computer Society, May 1989.

Richard Hayton.An Open Architecture for Secure Interworking ServicBsD
thesis, University of Cambridge, Cambridge, UK, 1996.

Charles A. R. Hoare. Communicating sequential prese€ommunications of
the ACM 21(8):666—677, August 1978.

IBM WebSphere MQ. IBM Website, September 200/t t p: / / www. i bm
coni sof twar e/ i nt egrati on/ wny/ .

Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MACHS®E'03: Fast
Software Encryptionvolume 2887 ofLNCS pages 129-153. Springer-Verlag,
February 2003.

ISO/IEC, Geneva, Switzerlan®798-3:1998: Information Technology — Security
Techniques — Entity Authentication — Part 3: Mechanismg®igital Signa-
ture Technique<2 edition, 1998.

ITU-T. X.500: Information technology - Open Systems Interconmect The
Directory: Overview of concepts, models and serviéegjust 2005.

170

BIBLIOGRAPHY

[ITUO5D]

[KBCO7]

[Khu05]

[KLL T97]

[Lam74]

[LB73]

[LRWOO]

[LS88]

[MBOS]

[Mik02]

[MMO2]

[MOV96]

[MPRO1]

ITU-T. X.509: Information technology - Open Systems Interconmect The
Directory: Public-key and attribute certificate framewoyrkaigust 2005.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keykdshing for
message authentication. RFC 2104, Internet Engineering Haxe, February
1997.

Himanshu Khurana. Scalable security and accogrgervices for content-based
publish/subscribe systems. 3AC’05: Proceedings of the 2005 ACM Symposium
on Applied Computingpages 801-807, New York, NY, USA, March 2005. ACM.

David Karger, Eric Lehman, Tom Leighton, Rina PanigraWgatthew Levine,

and Daniel Lewin. Consistent hashing and random treesiliis#d caching pro-
tocols for relieving hot spots on the world wide web.3mOC’97: Proceedings
of the 29th annual ACM Symposium on Theory of compupages 654—663,
New York, NY, USA, May 1997. ACM Press.

Butler W. Lampson. Protection. ACM SIGOPS Operating System Review
8(1):18-24, January 1974.

Leonard J. LaPadula and David E. Bell. Secure computstess: A mathe-
matical model. Technical Report ESD-TR-73-278, Vol. Il, Etenic Systems
Division, Air Force Systems Command, November 1973.

Helger Lipmaa, Phillip Rogaway, and David Wagner. Coemts to NIST con-
cerning AES-modes of operations: CTR-mode encryption.Symmetric Key
Block Cipher Modes of Operation Workshdaltimore, ML, USA, 2000.

Barbara Liskov and Liuba Shrira. Promises: Lingaistipport for efficient asyn-
chronous procedure calls in distributed system$2UD1'88: Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Desighnaple-
mentation pages 260-267, New York, NY, USA, June 1988. ACM.

Chaoying Ma and Jean Bacon. COBEA: A CORBA-based event achit
ture. In4th USENIX Conference on Object-Oriented Technologies astk®g
(COOTS) pages 117-132, April 1998.

Zoltan Miklés. Towards an access control mechanism for wide-area pub-
lish/subscribe systems. DEBS’02: Proceedings of the 1st International Work-
shop on Distributed Event-based Systedudy 2002.

Peter Maymounkov and David Mazies. Kademlia: A peer-to-peer information
system based on the XOR metric. IPTPS’02: Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systepages 53—-65, March 2002.

Alfred J. Menezes, Paul C. Van Oorschot, and Scott Andtone.Handbook of
Applied CryptographyCRC Press, Inc., Boca Raton, FL, USA, October 1996.

Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Rom LIME: A mid-
dleware for physical and logical mobility. ICDCS’01: Proceedings of the 21st

BIBLIOGRAPHY 171

[MPW92]

IEEE International Conference on Distributed Computing 8yst page 524,
Washington, DC, USA, April 2001. IEEE Computer Society.

Robin Milner, Joachim Parrow, and David Walker. A eaits of mobile pro-
cesses, lInformation and Computatigri00(1):1-40, September 1992.

[MUHWO04] Gero Muhl, Andreas Ulbrich, Klaus Herrmann, and Torben Weis. Ensimating

[NewQ7]

[Objo4al]

[ObjO4b]

[OPO1]

[Ope97]
[OSMO00]

[PBO2]

[PBO3]

[PBO5]

[PCMO3]

information to mobile clients using publish-subscribeEE Internet Computing
8(3):46-53, May 2004.

BBC News. Met given real time C-charge data. BBC News Wep3uly 2007.
http: // news. bbc. co. uk/ 1/ hi /uk_politics/6902543. st m

The Object Management Group (OM&ommon Object Request Broker Archi-
tecture: Core Specification, Revision 3..0M&arch 2004.

The Object Management Group (OM&ORBA Notification Service Specifica-
tion, Revision 1.10ctober 2004.

Lukasz Opyrchal and Atul Prakash. Secure distroubf events in content-
based publish subscribe systems.Pioceedings of the 10th USENIX Security
SymposiumUSENIX, August 2001.

The Open GrouCE 1.1: Remote Procedure Call997.

Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuole-based ac-
cess control to enforce mandatory and discretionary acoegsol policiesACM
Transactions on Information and Systems Security (TISSEZ):85-106, May
2000.

Peter R. Pietzuch and Jean M. Bacon. Hermes: A DistdbHEteent-Based
Middleware Architecture. I'DEBS’02: Proceedings of the 1st International
Workshop on Distributed Event-Based Systgrages 611-618, Washington, DC,
USA, July 2002. IEEE Computer Society.

Peter R. Pietzuch and Jean Bacon. Peer-to-peer oved&grimetworks in an
event-based middleware. IDEBS’03: Proceedings of the 2nd international
workshop on Distributed event-based systgmagies 1-8, New York, NY, USA,
June 2003. ACM Press.

Lauri I. W. Pesonen and Jean Bacon. Secure event typesiant-based, multi-
domain publish/subscribe systems.3&EM’'05: Proceedings of the 5th interna-
tional workshop on Software Engineering and Middlewa@ges 98-105. ACM
Press, September 2005.

Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murplifficient content-
based event dispatching in the presence of topologicalnfegoation. In
ICDCS’03: Proceedings of the 23rd IEEE International Confeeron Dis-
tributed Computing Systemsages 234-243, Washington, DC, USA, May 2003.
IEEE Computer Society.

172

BIBLIOGRAPHY

[PEBO6]

[PEBO7]

[Pie04]

[Pow96]

[PR85]

[RBBKO1]

[RDO1a]

[RDO1b]

[RFHT01]

[RHO3]

[RIN0O7]

[RiVO2]

[RLO6]

Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. palséities-based
access control architecture for multi-domain publishésuibe systems. IBAINT
2006: Proceedings of the Symposium on Applications andrtteerief pages
222-228, Washington, DC, USA, January 2006. IEEE Computaefoc

Lauri I.W. Pesonen, David M. Eyers, and Jean Bacon.eggcontrol in decen-
tralised publish/subscribe systendsurnal of Networks2(2):57—-67, April 2007.

Peter R. Pietzuch. Hermes: A scalable event-basgdlemare. Technical Report
UCAM-CL-TR-590, University of Cambridge, Computer Laborataiyne 2004.

David Powell. Group communicatio@ommunications of the ACN89(4):50—
53, April 1996.

Jon Postel and Joyce Reynolds. File transfer protédd?). RFC 959, Internet
Engineering Task Force, October 1985.

Phillip Rogaway, Mihir Bellare, John Black, and Ted Krtwe OCB: a block-
cipher mode of operation for efficient authenticated entoyp In CCS’01: Pro-
ceedings of the 8th ACM conference on Computer and Commums&ecurity
pages 196—-205, New York, NY, USA, November 2001. ACM Press.

Antony Rowstron and Peter Druschel. PAST: A largdesqaersistent peer-to-
peer storage utility. IHotOS-VIIl: Proceedings of the 8th Workshop on Hot
Topics in Operating Systemsages 75-80, Los Alamitos, CA, USA, May 2001.
IEEE Computer Society.

Antony Rowstron and Peter Druschel. Pastry: Scalaldeentralized object lo-
cation and routing for large-scale peer-to-peer systemdlididleware’01: Pro-
ceedings of the 2nd International Conference on Distribi@gsgtems Platforms
volume 2218 oLNCS pages 329-350, London, UK, November 2001. Springer-
Verlag.

Sylvia Ratnasamy, Paul Francis, Mark Handley, RichardpKand Scott

Schenker. A scalable content-addressable networlerdoeedings of the 2001
conference on Applications, technologies, architectuaesl protocols for com-

puter communications (SIGCOMM 200pages 161-172, New York, NY, USA,
September 2001. ACM Press.

Sandro Rafaeli and David Hutchison. A survey of key nggmaent for secure
group communication. ACM Computing Surveys35(3):309-329, September
2003.

Rinda API, September 2007.htt p://ww. r uby- doc. org/ stdli b/
| i bdoc/ rindal/rdoc/index. htm.

Ron Rivest. The MD5 message-digest algorithm. RFC 18f#&rnet Engineer-
ing Task Force, April 1992.

Ronald L. Rivest and Butler Lampson. SDSI — A simple distteéd security
infrastructure. Presented at CRYPTO’96 Rumpsession, Ocl®g6.

BIBLIOGRAPHY 173

[RRO6]

[RWO03]

[SASO01]

[SCFY96]

[SCR*03]

[SLOS]

[SLO7]

[SMO8]

[SMO3]

[SMK*01]

[Sri95]

Costin Raiciu and David S. Rosenblum. Enabling confidktytia content-based
publish/subscribe infrastructures. $®curecomm 2006: Proceedings of the 2nd
International Conference on Security and Privacy in Commatioo Networks
August 2006.

Phillip Rogaway and David Wagner. A critique of CCM. Cryiogy ePrint
Archive, Report 2003/070, April 2003. http://eprint.iacr.org/
2003/ 070.

Peter Sutton, Rhys Arkins, and Bill Segall. Suppagrtiirsconnectedness — trans-
parent information delivery for mobile and invisible conipg. In CCGRID’01:
Proceedings of the 1st International Symposium on Clusterpgtiting and the
Grid, pages 277-285, Washington, DC, USA, May 2001. IEEE Compwter S
ety.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, amal€h E. Youman.
Role-based access control mod#sEE Computer29(2):38—47, February 1996.

Spencer Shepler, Brent Callaghan, David Robinson, Robeutldvy Carl
Beame, Mike Eisler, and David Noveck. Network file system (NF&sion
4 protocol. RFC 3530, Internet Engineering Task Force, A103.

Mudhakar Srivatsa and Ling Liu. Securing publisiibstribe overlay services
with EventGuard. InCCS’05: Proceedings of the 12th ACM Conference on
Computer and Communications Securjpages 289—-298, New York, NY, USA,
November 2005. ACM Press.

Mudhakar Srivatsa and Ling Liu. Secure event dissatmon in publish-
subscribe networks. iCDCS’07: Proceedings of the 27th International Confer-
ence on Distributed Computing Systemage 22, Washington, DC, USA, June
2007. IEEE Computer Society.

Ravi Sandhu and Qamar Munawer. How to do discretionacgss control using
roles. INRBAC’98: Proceedings of the 3rd ACM Workshop on Role-BaseesAcc
Control, pages 47-54, New York, NY, USA, October 1998. ACM Press.

Alan T. Sherman and David A. McGrew. Key establishimenlarge dynamic
groups using one-way function tred&€EE Transactions on Software Engineer-
ing, 29(5):444-458, May 2003.

lon Stoica, Robert Morris, David Karger, M. Frans Kaash@nd Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service fermet applications.
In Proceedings of the 2001 Conference on Applications, Teolres, Architec-
tures, and Protocols for Computer Communications (SIGCOMMLY08ages
149-160, New York, NY, USA, September 2001. ACM Press.

Raj Srinivasan. RPC: Remote procedure call protocotifipation version 2.
RFC 1831, Internet Engineering Task Force, August 1995.

174

BIBLIOGRAPHY

[SS75]

[Sto07]

[Sun88]
[Sun94]

[Sun99]

[Sun02]

[Sun03]

[TIBO7]
[Tra07]

[WABLO4]

[WCEWO02]

[WGLOO]

[WHFO3]

[Whi76]

[Wil79]

[Win99]

J. H. Saltzer and M. D. Schroeder. The protection frmation in computer
systemsProceedings of the IEEE3:1278-1308, September 1975.

Stomp messaging protocol, October 200t t p: // st onp. codehaus.
org/.

RPC: Remote Procedure Call Protocol Specification Versiolube 1988.

Jav&'remote method invocation (RMI), 1994ht t p: //j ava. sun. conl
rm/.

Sun Microsystems, IncCode Conventions for the JalProgramming Lan-
guage April 1999.

Sun Microsystems, IncJava Message Service, Version,12002. htt p: //
j ava. sun. conl product s/ jns/.

Sun Microsystems, IncJavaSpacéd'Service Specification, Version 2.0une
2003.

Tibco rendezvous, September 200it.t p: / / www. ti bco. con .

The Transport for London congestion charge wepSigptember 2007t t p:
/ I www. ccl ondon. com .

Edward Wobber, Maih Abadi, Michael Burrows, and Butler Lampson. Authen-
tication in the taos operating systetACM Transactions on Computer Systems
(TOCS) 12(1):3-32, February 1994.

Chenxi Wang, Antonio Carzaniga, David Evans, and AleearL. Wolf. Se-
curity issues and requirements in internet-scale puldighscribe systems. In
HICSS’02: Proceedings of the 35th Annual Hawaii Internatic@anference on
System Sciencepage 303, Washington, DC, USA, January 2002. IEEE Com-
puter Society.

Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Segurep commu-
nications using key graphslEEE/ACM Transactions on Netwworking (TQN)
8(1):16-30, February 2000.

Doug Whiting, Russ Housley, and Niels Ferguson. Couwign CBC-MAC
(CCM). RFC 3610, Internet Engineering Task Force, Septemi#3.20

James E. White. A high-level framework for networkskd resource sharing.
RFC 707, Internet Engineering Task Force, January 1976.

Maurice V. Wilkes. The Cambridge CAP Computer and its Operating System
(Operating and Programming Systems Seri@$)rth Holland, Amsterdam, The
Netherlands, 1979.

Dave Winer. XML-RPC specification. XML-RPC Websitejngé 1999.ht t p:
[I www. xm rpc. com spec.

BIBLIOGRAPHY 175

[WMLF98]

[Wor05]

[WorQ7]

[WWWK94]

[WYO05]

[WYYO5]

[XL89]

[ZFO03]

[ZKJO1]

[Z2S06]

Peter Wyckoff, S. W. McLaughry, T. J. Lehman, and D.Ford. T spacesiBM
Systems JournaB7(3):454—-474, 1998.

World Wide Web ConsortiumXML Path Language (XPath) Version 2 Qpril
2005.

World Wide Web ConsortiumSOAP Version 1,2April 2007. ht t p: / / www.
w3. or g/ TR/ soapl2-part1l/.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kenda&Inote on distributed
computing. Technical Report TR-94-29, Sun Microsystems Laooes Inc.,
November 1994.

Xiaoyun Wang and Hongbo Yu. How to break MD5 and otheshhé&unctions.
volume 3494 oL.NCS pages 19-35. Springer, May 2005.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collisisearch attacks on
SHA1. Technical report, Shandong University, Shandongn&2005.

Andrew Xu and Barbara Liskov. A design for a fault-tcd@t, distributed imple-
mentation of Linda. IrDigest of Papers of the 19th International Symposium on
Fault-Tolerant Computingpages 199-206, Chicago, IL, USA, June 1989. IEEE
Computer Society.

Andreas Zeidler and Ludger Fiege. Mobility suppoithhAREBECA. InICD-
CSW’03: Proceedings of the 23rd International Conference mtributed Com-
puting Systems Workshgopsages 354-360, Providence, RI, USA, May 2003.
IEEE Computer Society.

Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Jdseapestry: An in-
frastructure for fault-tolerant wide-area location andtieg. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

Yuanyuan Zhao and Daniel C. Sturman. Dynamic accessaian a content-
based publish/subscribe system with delivery guarantéedCDCS’06: Pro-

ceedings of the 26th IEEE International Conference on hsted Computing
Systemgpage 60, Los Alamitos, CA, USA, July 2006. IEEE Computer Sgcie

