
Technical Report
Number 720

Computer Laboratory

UCAM-CL-TR-720
ISSN 1476-2986

A capability-based access control
architecture for multi-domain

publish/subscribe systems

Lauri I.W. Pesonen

June 2008

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2008 Lauri I.W. Pesonen

This technical report is based on a dissertation submitted
December 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Publish/subscribe is emerging as the favoured communication paradigm for large-scale, wide-

area distributed systems. The publish/subscribe many-to-many interaction model together with

asynchronous messaging provides an efficient transport forhighly distributed systems in high

latency environments with direct peer-to-peer interactions amongst the participants.

Decentralised publish/subscribe systems implement the event service as a network of event

brokers. The broker network makes the system more resilientto failures and allows it to scale

up efficiently as the number of event clients increases. In many cases such distributed systems

will only be feasible when implemented over the Internet as ajoint effort spanning multiple

administrative domains. The participating members will benefit from the federated event broker

networks both with respect to the size of the system as well asits fault-tolerance.

Large-scale, multi-domain environments require access control; users will have different

privileges for sending and receiving instances of different event types. Therefore, we argue

that access control is vital for decentralised publish/subscribe systems, consisting of multiple

independent administrative domains, to ever be deployablein large scale.

This dissertation presents MAIA , an access control mechanism for decentralised, type-based

publish/subscribe systems. While the work concentrates on type-based publish/subscribe the

contributions are equally applicable to both topic and content-based publish/subscribe systems.

Access control in distributed publish/subscribe requiressecure, distributed naming, and

mechanisms for enforcing access control policies. The firstcontribution of this thesis is a

mechanism for names to be referenced unambiguously from policy without risk of forgeries.

The second contribution is a model describing how signed capabilities can be used to grant do-

mains and their members’ access rights to event types in a scalable and expressive manner. The

third contribution is a model for enforcing access control in the decentralised event service by

encrypting event content.

We illustrate the design and implementation of MAIA with a running example of the UK

Police Information Technology Organisation and the UK police forces.

3

Marjalle

Acknowledgments

I would like to thank both my supervisor prof. Jean Bacon for her guidance and support both

while I was considering to apply to Cambridge as well as duringmy time here as a PhD student.

Jean also helped me find funding that allowed me to finish my studies, for which I am grateful

to her. I am also indebted to Dr. Ken Moody for his advice and insights.

I should also express my thanks to all the Opera group membersthat I have had the pleasure

of working with during the past four years. David Eyers especially has helped me tremen-

dously by collaborating with me and proof-reading countless drafts of research papers and this

dissertation. I am very grateful to David for all his help without which this dissertation might

never have been finished. Eiko Yoneki has also provided invaluable advice concerning publish/

subscribe systems. She is like a walking publish/subscriberesearch library. To András, Andy,

Brian, Dan, David, Luis, Nathan, Peter, Salman, and Samuel: thanks for all the tea and biscuits.

A special thanks to Sriram who helped me discover my interestfor programming languages

that I did not even know I had. I expect this to have a lasting effect on my career.

I would like to thank my parents for supporting my academic endeavours. I know my

moving abroad for the foreseeable future was not easy, but I have never received anything but

support from them.

Finally, I want to try to express my gratitude to Sarah. She has tirelessly supported me

through the final year of my PhD while I have been writing up my dissertation. Long nights and

busy weekends have been the norm and the work has seemed neverending, yet she has always

been there for me.

My work at Cambridge has been funded by the Engineering and Physical Sciences Re-

search Council (EPSRC), Nokia Foundation, Jenny and Antti Wihuri Foundation, Tekniikan

edisẗamiss̈aätiö, and Helsingin Sanomain 100-vuotissäätiö.

7

Publications

• Lauri I. W. Pesonen and Jean Bacon. Secure event types in content-based, multi-domain

publish/subscribe systems. InSEM’05: Proceedings of the 5th international workshop

on Software Engineering and Middleware, pages 98–105. ACM Press, September 2005.

• Jean Bacon, David M. Eyers, Ken Moody, and Lauri I. W. Pesonen.Securing pub-

lish/subscribe for multi-domain systems. In Gustavo Alonso, editor,Middleware’05:

Proceedings of the 6th International Conference on Middleware, volume 3790 ofLNCS,

pages 1–20. Springer-Verlag, November 2005.

• Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. A capabilities-based access control

architecture for multi-domain publish/subscribe systems. In SAINT 2006: Proceedings of

the Symposium on Applications and the Internet, pages 222–228, Washington, DC, USA,

January 2006. IEEE Computer Society.

• Lauri I.W. Pesonen, David M. Eyers, and Jean Bacon. Access control in decentralised

publish/subscribe systems.Journal of Networks, 2(2):57–67, April 2007.

• Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. Encryption-enforced access

control in dynamic multi-domain publish/subscribe networks. In Proceedings of the

International Conference on Distributed Event-Based Systems (DEBS’07), pages 104–

115. ACM Press, June 2007.

• Luis Vargas, Lauri I. W. Pesonen, Ehud Gudes, and Jean Bacon. Transactions in content-

based publish/subscribe middleware. InDEPSA’07:Proceedings of the International

Workshop on Distributed Event Processing, Systems and Applications, page 68, Toronto,

Canada, June 2007. IEEE Computer Society.

9

Contents

1 Introduction 19
1.1 Multi-Domain Publish/Subscribe Systems 21
1.2 Application Scenarios 22

1.2.1 Stock Ticker . 22
1.2.2 Numberplate Monitoring .24

1.3 Decentralised Access Control 26
1.4 Research Statement .26
1.5 Dissertation Outline 27

2 Background 29
2.1 Distributed Communication 29

2.1.1 Publish/Subscribe .30
2.1.2 Synchronous Request/Response .33
2.1.3 Asynchronous Messaging . 36
2.1.4 Tuple Spaces . 38

2.2 Publish/Subscribe Subscription Models 39
2.2.1 Topic-Based Publish/Subscribe 40
2.2.2 Content-Based Publish/Subscribe 41
2.2.3 Type-Based Publish/Subscribe .. . 43

2.3 Decentralised Publish/Subscribe 44
2.3.1 Hermes . 45

2.4 Access Control . 47
2.4.1 Mandatory Access Control . 48
2.4.2 Discretionary Access Control .. 49
2.4.3 Role-Based Access Control . 52

2.5 Decentralised Trust Management 53
2.5.1 PolicyMaker . 54

2.6 Simple Public Key Infrastructure 56
2.6.1 Authorisation Certificates .. 56
2.6.2 Name Certificates . 58
2.6.3 Group Subjects . 59

11

12 CONTENTS

2.6.4 Threshold Subjects . 59
2.7 Summary . 60

3 Multi-Domain Publish/Subscribe Systems 61
3.1 A Multi-Domain Publish/Subscribe System 61
3.2 Domains . 62

3.2.1 Sub-Domains . 63
3.2.2 Event Brokers . 63
3.2.3 Event Clients . 64
3.2.4 Access Control Service . 64

3.3 Principals . 65
3.4 The Coordinating Principal 65
3.5 Transport Layer Security 66
3.6 Threat Model . 68
3.7 Example Application .. 69
3.8 Summary . 72

4 Secure Event Types 74
4.1 Event Type Definitions .. 75
4.2 Secure Event Types .77

4.2.1 Name Tuple . 78
4.2.2 Digital Signature . 80

4.3 Type Management . 80
4.3.1 Version Number . 82
4.3.2 Type Version Translation .. 84
4.3.3 Authorisation Certificates .. 87

4.4 Modifications Made to Hermes .. . 89
4.4.1 Type Storage . 90
4.4.2 API Changes . 91
4.4.3 Message Routing . 92

4.5 Performance . 92
4.6 Secure Names in Topic-Based Publish/Subscribe 95
4.7 Related Work . 95
4.8 Summary . 96

5 Access Control 98
5.1 Access Control Model . 100

5.1.1 Authorising Domains . 100
5.1.2 Authorising Clients . 101
5.1.3 Authorising Event Brokers .102
5.1.4 Authorising Sub-Domains .105

5.2 Resources and Access Rights .. 107
5.2.1 Event Service Access Rights .107
5.2.2 Event Type Access Rights . 110

5.3 Verifying Authority .. . 115
5.3.1 Authentication . 116
5.3.2 Authorisation . 117

CONTENTS 13

5.3.3 Verification in MAIA . 118
5.4 Delegating Root Authority .. . 119
5.5 Access Control in Topic-Based Publish/Subscribe 120
5.6 Related Work . 121
5.7 Summary . 122

6 Policy Management 124
6.1 OASIS . 124

6.1.1 OASIS Policy in Our Example Scenario 126
6.2 Access Rights Revocation .127

6.2.1 Validity Period . 128
6.2.2 Certificate Revocation Lists .129
6.2.3 SPKI On-Line Tests . 130
6.2.4 Active Revocation . 131

6.3 Distributing Validity Statements over Publish/Subscribe 132
6.3.1 Request-Response over Publish/Subscribe 133
6.3.2 State Caching . 134
6.3.3 Publishing Validity Statements 134

6.4 Policy Evaluation at the Local Broker 135
6.5 Distributing Capabilities 136

6.5.1 Gathering Evidence . 136
6.5.2 Distribution Methods .137

6.6 Related Work . 137
6.7 Summary . 138

7 Event Content Encryption 139
7.1 Event Level Encryption .. . 141
7.2 Attribute Level Encryption 142

7.2.1 Emulating Attribute Level Access Control 143
7.2.2 Restricted Attribute Values .. . 143

7.3 Encrypting Subscription Filters 144
7.3.1 Coverage Relations with Encrypted Filters 145

7.4 Avoiding Unnecessary Encryptions and Decryptions 145
7.5 Implementation .147
7.6 Key Management . 149

7.6.1 Secure Group Communication . 150
7.6.2 Key Refreshing . 151

7.7 Evaluation . 152
7.7.1 End-to-End Overhead . 152
7.7.2 Domain Internal Events . 154
7.7.3 Communication Overhead . 155

7.8 Related Work . 156
7.9 Summary . 159

14 CONTENTS

8 Conclusions 160
8.1 Contributions . 160
8.2 Future Work . 162
8.3 Summary . 164

Bibliography 165

List of Figures

1.1 A publish/subscribe systems consists of a number of publishers and subscribers
and an event service decoupling the two from each other. 20

1.2 In decentralised publish/subscribe systems the event service is implemented as
a network of event brokers. .20

1.3 A multi-domain publish/subscribe system consisting ofthree brokerage firms
and one stock exchange. 23

1.4 A multi-domain publish/subscribe system consisting ofthe Metropolitan Police
and the Congestion Control Service. .. 25

2.1 The event service and the use of asynchronous messaging decouples the pub-
lisher from the subscribers in time, space, and synchronisation. 32

2.2 The use of synchronous messaging and the lack of an intermediary couples the
client tightly to the server. .. . 34

2.3 In traditional message passing the use of asynchronous messaging achieves syn-
chronisation decoupling between the message producer and the message con-
sumer. 36

2.4 In a message queueing system the message broker decouples the producer from
the consumers in time and space, but the consumers need to pull messages from
the broker synchronously. .. 37

2.5 Thein operation supports a many-to-one interaction model. 38
2.6 Therd operation in a Tuple Space allows many-to-many interactionbetween

producers and consumers. .39
2.7 Subscribing to a topic in a topic hierarchy implies subscriptions to all sub-topics. 41
2.8 An SPKI authorisation certificate loop with three principals and two levels of

delegation. 58

3.1 An overall view of our multi-domain publish/subscribe deployment 71

4.1 Detective Smith retrieves the Numberplate event type definition from a type
registry and verifies its authenticity and integrity. 77

4.2 Translation to and from transit time events. 85
4.3 Translation to and from transit time events with attribute UIDs. 87

15

16 LIST OF FIGURES

4.4 Verifying the name-signature link with and without a capabilities chain. 89
4.5 Subscription performance with and without certificate caching. 94

5.1 Capability1 authorises the Met domain to subscribe to all attributes of theNum-
berplateevent. Capabilities2 and3 delegate a subset of this capability to both
the Met Broker and Detective Smith. .. 100

5.2 The blanket capability together with the capability issued to the Met domain
authorises the broker to access typeT1. 103

5.3 The blanket capability together with the new capabilityissued to the Met do-
main authorises the broker to access typeT2. 104

5.4 An enclosing domain can group more privileged brokers and event clients into
their own privileged sub-domains. 106

5.5 The principals and the capabilities form a tree where theprincipals are nodes
and the capabilities are vertexes. 109

7.1 In order to emulate attribute level encryption with event level encryption the
publisher must publish independent events for all subscriber groups. 143

7.2 Caching decrypted data can increase efficiency when delivering an event to a
peer with similar privileges. 146

7.3 Node addressing is effectively random, therefore the rendezvous node for a
domain internal type can be outside of the domain that owns anevent type. . . . 147

7.4 The EAX mode of operation. .. 148
7.5 The steps involved for a broker to be successful in joining a key group. 150
7.6 Key refreshes can be delayed based on the validity times of the broker’s authority.152
7.7 The end-to-end test setup. 153
7.8 The end-to-end throughput of events with plaintext events, event level encryp-

tion, and attribute level encryption. 154
7.9 The end-to-end throughput of events with plaintext events, event level encryp-

tion, and attribute level encryption when plaintext caching is enabled. 155
7.10 The average number of hop counts when emulating attribute level encryption

with event level encryption and multiple sub-types (log scale). 156

List of Tables

1.1 TheStockTickerevent. 22
1.2 TheNumberplateevent. 24

2.1 The basic publish/subscribe API is very simple, consisting of only five operations. 31
2.2 The tuple space API of three operations used to write, read, and consume tuples. 38
2.3 Common classification labels in decreasing order of access. 48
2.4 An access control matrix representing files in a Unix system. 50
2.5 An access control list represents one column of the access control matrix. . . . 51
2.6 A capability represents a group of cells on one row of the access control matrix. 52

4.1 A Hermes-style event type definition. 75
4.2 A secure event type definition. 78
4.3 TheNumberplateevent type definition with a version number and attributes

with unique identifiers. .88
4.4 A secure event type definition with acredentialsfield. 88
4.5 The Hermes event client API. 91
4.6 The MAIA event client API. 92
4.7 The time in microseconds spent on 5-tuple reductions on RSA signature verifi-

cations. 93
4.8 The time in microseconds spent on processing a subscription request at the local

broker for plain types and signed types when the type cache isenabled. 93

17

CHAPTER 1

Introduction

Large-scale, multi-domain publish/subscribe systems require an access control mechanism in

order to be deployable. This dissertation proposes a discretionary access control architecture for

decentralised publish/subscribe systems spanning multiple independent administrative domains.

Very large-scale distributed systems, that cover large geographic areas and consist of a large

number of nodes, are commonplace in today’s networked world. The pervasiveness of the In-

ternet and ever more affordable networking equipment facilitate the building of increasingly

large systems with relatively low costs. Large-scale distributed systems are being built between

(i) organisations (e.g. supply-chain management, work-flow management), (ii) individuals (e.g.

instant messaging, IP telephony, and especially peer-to-peer applications), and finally between

(iii) organisations and individuals (e.g. RSS feeds, content delivery, and AJAX-based web appli-

cations). Publish/subscribe has emerged as a scalable communication paradigm for large-scale

distributed systems where traditional paradigms, e.g. request-response and simple asynchronous

message passing, have struggled. Publish/subscribe is nota silver bullet to be used in all dis-

tributed systems. For example, the publish/subscribe interaction model, where publishers push

data to the subscribers, is not suitable for all applications, and the lack of a reply channel makes

the implementation of some distributed applications cumbersome.

A publish/subscribe system decouples event producers, i.e. publishers, from event con-

sumers, i.e.subscribers, by introducing an abstractevent servicebetween the communicating

parties (See Figure 1.1). The event service is responsible for delivering published events from

publishers to all subscribers who have registered their interest in the given event. The decou-

pling of publishers from subscribers combined with asynchronous messaging allows publish/

subscribe systems to scale in size both with respect to the number of nodes as well as the geo-

graphic distances between nodes (i.e. increasing network latency).

19

20 Chapter 1. Introduction

SubPub

SubPub

SubPub

Event Service

Figure 1.1 : A publish/subscribe systems consists of a number of publishers and subscribers
and an event service decoupling the two from each other.

SubPub

SubPub

SubPub

Event Service

Broker

Broker

Broker Broker

Broker

Broker

Figure 1.2 : In decentralised publish/subscribe systems the event service is implemented as a
network of event brokers.

Modern, highly scalable publish/subscribe systems implement the event service as a decen-

tralised network of interconnectedevent brokers(See Figure 1.2).Event clients, i.e. publishers

and/or subscribers, connect to alocal brokerin order to access the decentralised event service.

The broker network then routes publications from publishers to subscribers. A decentralised

event service enhances system scalability, fault-tolerance, and load balancing in a large-scale

setting by distributing system load among all the participating brokers and by providing redun-

dant routes between publishers and subscribers. The main motivation for deploying a decen-

tralised event service is to be able to service a large numberof event clients. Therefore, when

the number of event clients in a publish/subscribe system grows past a certain point the event

service must be decentralised across multiple event brokers.

In the past most publish/subscribe oriented research has concentrated on efficient routing

algorithms, content-based filtering, and composite event detection in a single-domain environ-

ment. Relatively little research has been done with respect to security in publish/subscribe

systems, especially in a multi-domain setting, yet we believe scalable access control to be a

prerequisite for large-scale publish/subscribe systems to be widely adopted and deployed.

1.1. Multi-Domain Publish/Subscribe Systems 21

1.1 Multi-Domain Publish/Subscribe Systems

Publish/subscribe systems have been advocated especiallyfor large-scale systems where the

event service covers a large geographic area, because the publish/subscribe communication

paradigm performs extremely well under high latency conditions compared to other alternatives.

We expect that large-scale publish/subscribe systems willbe, in most cases, formed by mul-

tiple cooperating domains, where the domains represent separate organisations, sub-domains

of a single organisation, or a mix of the two. It is unlikely that a single organisation would

deploy a large-scale publish/subscribe system with hundreds of brokers spanning a large ge-

ographic area as a single domain. Instead the publish/subscribe system would span multiple

independent administrative domains (e.g. business units or divisions) in the organisation. Ex-

amples of such systems include commercial applications, e.g. in the banking world or logistics

systems, large-scale public sector systems, e.g. in the health care and law enforcement sectors,

and sensor-based systems, e.g. city-wide sensor networks.

The domains cooperate to form a publish/subscribe infrastructure that is shared among all

the domains (cf. the Internet email infrastructure). The motivation for domains to share the

infrastructure is three-fold: (i) the shared publish/subscribe system reaches a wider geographic

area and more users; (ii) the shared publish/subscribe system is more tolerant of node and net-

work link failures, because of redundant nodes and routes, both without additional infrastructure

expenses; and (iii) the shared infrastructure allows domains to implement applications with each

other.

Figure 1.3 shows a publish/subscribe system consisting of four independent administrative

domains: three brokerage firms and a single stock exchange. The four domains cooperate

together in order to share the infrastructure as well as applications running on that infrastructure.

The stock exchange scenario will be described in more detailin §1.2.1.

The domains are expected to deploy both their public and private publish/subscribe appli-

cations on the shared publish/subscribe system. Again the motivation for deploying all appli-

cations on the same publish/subscribe system is based on geographic reach and fault tolerance,

as above. The deployed applications can be freely accessible to all domains (i.e.public), access

can be limited to one or more other domains (i.e.shared), or the applications can be domain-

internal only (i.e.private). We will limit our discussion to private and shared applications that

are more interesting with respect to access control.

In order to facilitate the deployment of shared and private applications the publish/subscribe

system must provide an access control mechanism that can be used to prevent unauthorised

parties from accessing protected applications. The application owner must be able to specify in

an access control policy who is authorised to issue publications and subscriptions in the context

of a given application.

22 Chapter 1. Introduction

Attribute Name Description
time Time of the sale
stock Name of the stock
shares Number of shares sold
price Price per share
seller Brokerage firm selling the shares
buyer Brokerage firm buying the shares

Table 1.1 : The StockTicker event.

1.2 Application Scenarios

In order to motivate the necessity of access control in a multi-domain environment we present

two application scenarios. Both scenarios involve multipledomains and underline the need

for an expressive access control system that is able to span domain boundaries. The second

example application,numberplate monitoring, is used as a running example throughout the rest

of the dissertation.

1.2.1 Stock Ticker

The stock ticker presents a good example of a publish/subscribe application with access control

needs on multiple levels that can be deployed in a multi-domain environment. A stock ticker

reports each stock trade that happens in a stock exchange. The latest trade of a share determines

the current price for that share, which is then reported to investors.

In this scenario a stock exchange acts as the event publisher. There can be any number of

stock exchanges as publishers in the system, but for this example we will assume only one stock

exchange. The exchange publishes events for each stock trade that takes place in the exchange.

As shown in Table 1.1, the event includes the time of the sale,the name of the stock, the number

of shares sold, the price for one share in this transaction, and the names of the buying and selling

brokerage firms.

Private investors typically use a brokerage firm for their stock trades, because it is very ex-

pensive to interface directly with the stock exchange and the number of trades conducted by

a single individual do not justify the cost. In our scenario the brokerage firms act as service

providers for the private investors: the brokerage firm provides the private investor access to

the publish/subscribe system. In terms of event clients andbrokers, the investors act as event

clients that connect to the event brokers provided by the various brokerage firms, and the bro-

kerage firms and the stock exchange form together the broker network that implements the event

service, as shown in Figure 1.3. Lastly, the stock exchange implements an event publisher that

connects to the event broker provided by the Stock Exchange and publishes trade events.

The exchange publishes a number of event flows covering the sales of different types of

financial instruments, e.g. shares, commodities, and derivatives, that all produce their own flow

1.2. Application Scenarios 23

Event Service

Brokerage

Firm A

Brokerage

Firm B

Stock Exchange

Brokerage

Firm C

Sub

Sub

Sub

Pub

Derivatives

Publisher

Investor 1

Investor 2

Investor 3

Pub

Stock Quote

Publisher

Figure 1.3 : A multi-domain publish/subscribe system consisting of three brokerage firms and
one stock exchange.

of trade events. The exchange charges the brokerage firms a fee for access to the different event

flows. Each brokerage firm is free to choose which event flows itneeds access to. For example,

a brokerage firm might want to access only the shares event flow, but not the event flows for

derivatives or commodities trades.

The brokerage firms charge their customers, the private investors, for access to the event

streams available to the brokerage firms. A customer choosesher brokerage firm based on

which event flows she wants to access and which event flows are available from each brokerage.

E.g. if an investor wants access to derivatives events, she would pick a brokerage firm that can

provide that access.

In this example each brokerage firm and stock exchange represent their own domains. The

customers are event clients that access the publish/subscribe system via their brokerage firm. Ef-

fectively the customers are members of the domain of their brokerage firm. The stock exchange

grants other domains access to events it publishes (inter-domain access control). The brokerage

firms grant members of their own domains access to the published events (intra-domain access

control). We can assume that the access control policy at thestock exchange remains relatively

static, because brokerage firms rarely change the set of services they have subscribed to from

the stock exchange and new brokerage firms enter the system very infrequently. The access

control policies at the numerous brokerage firms, on the other hand, are in a constant state of

churn, when brokerage accounts are opened and closed as clients join and leave the brokerage

firm. The two layer access control approach accommodates this dichotomy of requirements

very well.

24 Chapter 1. Introduction

Attribute Name Description
time Time of numberplate sighting
numberplate Sighted numberplate
location Location of sighting,

i.e. the location of the camera

Table 1.2 : The Numberplate event.

1.2.2 Numberplate Monitoring

The city of London in the UK introduced the London Congestion Charge on 17th February

2003 [Tra07]. In the scheme a vehicle must pay a fee for entering a congestion controlled area

in central London. The fee must be paid before the vehicle actually enters the monitored area.

Payment can be made on the web, over SMS, or at specific pay points. The charge is enforced

by CCTV cameras that monitor vehicles going in and out of the congestion charge area. The

cameras take pictures of numberplates, which are then run through numberplate recognition

software. The resulting list of numberplates is compared toa list of numberplates that have paid

the congestion control fee for that day. If a numberplate is not present in the database for that

day, the owner of the vehicle is fined for not paying the fee on time.

We use the congestion charge scenario as an example application for motivating the need

for access control in multi-domain publish/subscribe systems. In our example the monitoring

and payment models differ from the system currently in use inLondon in two ways: (i) we

assume that vehicle owners are sent a bill or their pay-as-you-go accounts are debited when

their vehicle is seen inside the congestion controlled area, and (ii) that the CCTV cameras are

able to perform numberplate recognition internally and actas publishers in a publish/subscribe

system publishingNumberplateevents for each recognised numberplate. We also assume that

the Metropolitan police force is able to get access to the numberplate events based on a court

order.

In our example a CCTV camera publishes aNumberplateevent when it has recognised

the numberplate of a vehicle entering the congestion controlled area. As shown in Table 1.2,

the event contains the numberplate of the vehicle, the location of the CCTV camera, and a

publication timestamp specifying the time when the vehiclewas sighted.

A Congestion Control Service (CCS) billing office subscribes toNumberplateevents. Each

publishedNumberplateevent will be delivered to the data centre, which processes the event by

comparing the numberplate to a database of numberplates that have already been charged the

congestion charge for that day. If the numberplate is not in the database, the vehicle owner is

sent a bill or her pay-as-you-go account is debited.

The numberplate monitoring service has its uses outside of congestion control. TheNum-

berplateevents can be used to get notifications of sightings of a specific vehicle, which would

be useful in criminal investigations where a specific numberplate is related to a case investigated

1.2. Application Scenarios 25

Event Service

Metropolitan

Police

Congestion Charge

Service

Sub

Sub

Sub

Pub

Camera B

Detective

Smith

Billing

Office

Statistics

Office

Pub

Camera A

Figure 1.4 : A multi-domain publish/subscribe system consisting of the Metropolitan Police and
the Congestion Control Service.

by the police. Another example would be gathering traffic statistics from the congestion control

cameras.

Figure 1.4 illustrates the publish/subscribe system consisting of the Metropolitan Police and

the CCS domains. The cameras act asNumberplateevent publishers, connected to the CCS

domain. Detective Smith, the billing office and the statistics office all act as subscribers to the

Numberplateevents1.

Free access to numberplate sightings presents a massive privacy concern. Therefore, in or-

der to protect the privacy of vehicle owners and drivers, access to the events must be controlled

according to an access control policy. The three different applications need access to different

attributes of the numberplate events. The congestion control service needs to access the num-

berplate and timestamp fields in order to be able to send a billto the owner of the vehicle for

entering the congestion controlled area, but it does not need to know the specific location of the

sighting. The police needs access to all the attributes of a numberplate event to be able to track

down a given vehicle, but she does not need access to all numberplate events, instead her access

can be limited to those events related to a specific numberplate. And finally statisticians need

to know about locations and the time of each sighting, but they have no need for the number-

plate information. An access control architecture for a multi-domain publish/subscribe system

should be able to cater for each of these three scenarios.

We will use the numberplate monitoring application as a running example throughout this

dissertation. See§3.7 for a more detailed description of the example environment and the

application.

1While our application scenario is fictional, the anti-terrorofficers in the Metropolitan police in London did get
access to real-time congestion charge data recently [New07]

26 Chapter 1. Introduction

1.3 Decentralised Access Control

A multi-domain publish/subscribe system is inherently decentralised. All domains are consid-

ered equal and there is no central party that can be trusted byall participants to control access

to their applications. On the one hand the lack of a central authority enables all domains to

implement and deploy their own applications on the shared infrastructure as equals. On the

other hand it prevents implementing a relatively simple centralised access control architecture,

because there is no trusted central authority to host it.

We propose a decentralised access control architecture where application owners are re-

sponsible for defining and managing application specific access control policies, and the access

control decision making and enforcement is decentralised over all the domains in the system

and their event brokers.

Application owners delegate access rights to domains. Eachdomain further delegates those

rights to publishers and subscribers that are its members. The domains are able to implement

domain-specific access control policies.

A decentralised model can also be more scalable: it avoids single points of failure in the

verification infrastructure; it is more manageable in a multi-domain setting; and it will afford

better verification performance by localising access control checks to event brokers. In some

cases, though, the policy management requires that access rights must be immediately revoca-

ble, in which case decentralised access control models tendto degrade to making queries to a

central revocation server for each access control decision.

1.4 Research Statement

In this dissertation we argue that large-scale publish/subscribe systems will most likely be

formed by multiple independent administrative domains. The presence of more than one do-

main necessitates an access control mechanism that is able to enforce an access control policy

and protect the confidentiality and integrity of event content in a shared infrastructure.

The main contribution of this work is the design and prototype implementation of a decen-

tralised access control architecture for multi-domain publish/subscribe systems called MAIA .

MAIA provides:

Unique Names MAIA creates unique type and topic names by prefixing the human-readable

name with the name owner’s identity as a cryptographic public key. The globally unique

public key defines a globally unique namespace inside which the owner of the public

key is free to define new names. Assuming that the name owner isable to avoid name

collisions inside its own namespace and that the public key crypto system is not broken

we can guarantee that names in MAIA are unique.

1.5. Dissertation Outline 27

Type Authenticity and Integrity Type definitions are digitally signed by the type owner when

they are deployed. The signature can be verified with the typeowner’s public key that

is part of the event type name, i.e. a type definition is self-certifiable. By verifying the

signature on the type definition, the verifier (i.e. event client or broker) can ascertain the

integrity and authenticity of the type definition.

Network-Level Access Control MAIA enables a coordinating principal in the multi-domain

publish/subscribe system to control who is able to join the publish/subscribe system on

an infrastructure level. Only those domains that have been authorised by the coordinating

principal (directly or indirectly by a delegate of the coordinating principal) are able to

join and access the shared publish/subscribe system.

Application-Level Access Control MAIA enables type owners to control who is able to use

(i.e. publish or subscribe to) a type. A domain must be authorised by the type owner

(directly or indirectly by a delegate of the type owner) to use a given type. This work is

equally applicable to topic based publish/subscribe systems.

Event Content Encryption MAIA enforces event-level access control in the event service by

encrypting the content of published events. Encrypting theevent content prevents an

event broker that is routing the event from accessing the event content unless it has been

granted access to the appropriate encryption keys.

1.5 Dissertation Outline

The remainder of this dissertation is organised as follows:

Chapter 2 provides an introduction to the background necessary to understand access con-

trol in large-scale publish/subscribe systems. The chapter first discusses publish/subscribe as a

messaging paradigm, and more specifically decentralised publish/subscribe systems. The sec-

ond part of the chapter discusses various access control models and then moves on to looking at

decentralised trust management and specifically at thesimple public key infrastructure(SPKI).

Chapter 3 describes what we understand domains to be and what amulti-domain environ-

ment is expected to look like. The first part of the chapter introduces the various components

present in a domain, and what are the responsibilities of an access control service in a domain.

The second part describes how a coordinating principal forms a multi-domain environment by

inviting domains to join a shared infrastructure. We finish the chapter with a detailed descrip-

tion of the vehicle congestion control example applicationthat will be used throughout this

dissertation to motivate our work.

Chapter 4 provides a foundation for a decentralised access control system. The chapter

presents a scheme for secure names, verifiable event type definitions, and a mechanism for

28 Chapter 1. Introduction

updating type definition in a live publish/subscribe system. Secure names and verifiable event

type definitions enable us to reference event types securelyfrom access control policy.

Chapter 5 presents our decentralised access control architecture for multi-domain publish/

subscribe systems. The chapter begins with a description ofcapability-based access control and

access right delegation. The second part of the chapter describes the access control mechanism

for network-level and application-level access control.

Chapter 6 discusses access control policy management, various approaches to access right

revocation, and how to deliver capabilities and credentialvalidity statements in the publish/

subscribe system.

Chapter 7 addresses the issue of enforcing access control policy inside the publish/subscribe

event service. The architecture presented in Chapter 5 provides access control at the edge of the

publish/subscribe system’s event service, but it does not enforce access control while the event

is being routed through the system possibly via untrusted intermediaries.

Chapter 8 summarises the work presented in this dissertationand outlines future work on

decentralised publish/subscribe systems in the Opera group.

CHAPTER 2

Background

In this chapter we introduce the concepts and related work that the access control model pre-

sented in this dissertation builds on. The first part of the chapter concentrates on communication

in distributed systems and the publish/subscribe interaction paradigm. We discuss the vari-

ous distributed communication paradigms and compare them to the publish/subscribe paradigm

in §2.1. In §2.2 we introduce the three most common subscription models used in publish/

subscribe today. Finally, in§2.3 we discuss decentralised publish/subscribe systems, which are

at the heart of multi-domain publish/subscribe systems andthe basis of this dissertation.

The second part of this chapter introduces the reader to access control concepts that are rele-

vant to this work. In§2.4 we introduce basic access control concepts and discuss the background

of access control research. We move on to cover decentralised trust management systems in

§2.5, and finish the chapter with an in depth view of the Simple Public Key Infrastructure,

which we use as an underlying access control mechanism in MAIA , in §2.6.

2.1 Distributed Communication

A distributed system consists of a number of nodes that are connected to each other over a

computer network, e.g. alocal area network(LAN), a privatewide area network(WAN), or the

Internet. These nodes implement one or more distributed applications by running concurrently

and communicating with each other over that network. Coulouris et al. define a distributed sys-

tem as “one in which components located at networked computers communicate and coordinate

their actions only by passing messages” [CDK01].

The communication between nodes can be implemented in a number of different ways. Var-

ious communication paradigms, that formalise the node to node communication in a distributed

29

30 Chapter 2. Background

system, have been proposed in the past. We will discusspublish/subscribe, synchronous re-

quest/response, asynchronous message passing, andtuple spacesin more detail in the following

sections.

The various paradigms differ from each other in the type of abstraction provided for the

programmer, in the type of abstraction used in the implementation, and in the level of coupling

between communicating nodes. Notice that the communication abstraction offered to the pro-

grammer and the underlying implementation are orthogonal,e.g. the programming model can

provide an asynchronous messaging API to the programmer while the underlying implementa-

tion is based on synchronous remote procedure calls and viceversa.

In this dissertation we concentrate on large-scale distributed systems. Therefore we are first

and foremost interested in the scalability properties of the various communication paradigms.

The next section will describe the publish/subscribe interaction paradigm in detail. The follow-

ing sections will compare various alternative interactionparadigms to publish/subscribe and

discuss the differences from a scalability point of view.

2.1.1 Publish/Subscribe

In the publish/subscribe interaction paradigm event producers, i.e.publishers, publish events,

which are delivered to interested event consumers, i.e.subscribers. The subscribers declare

their interests in the form ofsubscriptions: a subscriber will be notified of all events that match

its subscription. We will discuss the various subscriptionmodels in more detail in§2.2.

Each publication is delivered to all subscribers with matching subscriptions. If there are

no matching subscriptions, the publication is not delivered to any subscriber (We will discuss

more expressive subscription models in§2.2). Multiple publishers are able to publish to the

same subscriber group. Therefore, publish/subscribe is said to implement a many-to-many

communication model.

A publish/subscribe system consists ofevent clients, that can be publishers, subscribers, or

both, and anevent service. The event clients connect to the event service in order to access

the publish/subscribe system. The event service is responsible for delivering publications to

subscribers by matching the publication to the active subscriptions.

The implementation of the event service depends on the size and type of the system being

supported. Small systems run on a single server where all theevent clients and the event service

are running on a single node, possibly even as a single application. Medium sized systems run

each event client and the event service on separate nodes. Finally, very large systems need to

implement the event service as a decentralised service overa set of nodes. We will discuss

decentralised publish/subscribe systems in§2.3.

The API exported by the event service is very simple (See Table 2.1). A subscriber calls the

subscribe operation on the event service to create a new subscription.Theunsubscribe

operation allows the client to cancel an earlier subscription. The publishing API consists of one

2.1. Distributed Communication 31

Function Description
advertise() advertise an event type / topic
unadvertise() undo a previous advertisement
publish() publish an event of a type / topic
subscribe() subscribe to events
unsubscribe() cancel an existing subscription

Table 2.1 : The basic publish/subscribe API is very simple, consisting of only five operations.

or two operations depending on the underlying publish/subscribe system. All publish/subscribe

systems support apublish operation for publishing events to the event service. Some publish/

subscribe systems also provide anadvertise operation, which is used in decentralised sys-

tems to create routing state and in other systems to provide information to potential subscribers

on the types of events that are being published in the system.

The event service isolates the event clients from each other, as shown in Figure 2.1, and

stores and maintains the event routing information (i.e. the subscriptions and advertisements).

The indirection provided by the event service allows the subscribers to be decoupled from the

publishers in three dimensions [EFGK03]:

Synchronisation decoupling

Communication between two nodes in a distributed system can be either synchronous or asyn-

chronous. With synchronous communication a client node makes a request to a server node

that then replies to that request (See§2.1.2 for a more detailed discussion onrequest/response).

Because the communication is synchronous, both nodes “meet in time”, i.e. both parties are in-

volved in handling the message at the same point in time. Typically the client has to wait for the

response from the server before it can continue its execution. This means that the client thread

has to block for the time it takes for the request to be delivered to the server, the server to han-

dle the request, and the response to be delivered back to the client. The fact that the requester

blocks for the duration of the synchronous interaction hinders the scalability of the distributed

system. Both the number of interacting nodes as well as the link latencies between nodes de-

grade the performance of a synchronous system, because client nodes block for increasingly

longer periods of time.

The publish/subscribe interaction paradigm avoids this problem by using an asynchronous

method of communication. A publisher submits a publicationto the event service. After that

the event service is responsible for delivering the publication to the subscribers. The publisher

does not have to wait for the publication to be delivered to the subscribers before it can continue

its execution. Typically the underlying implementation allows the application to continue its

execution immediately while the network communication is handled in the background. That

is, the publishing application pushes the publication ontoa send queue, which is then handled

32 Chapter 2. Background

Publisher Subscriber

Subscriber

Subscriber

Event

Service

Figure 2.1 : The event service and the use of asynchronous messaging decouples the publisher
from the subscribers in time, space, and synchronisation.

in the background by another thread of execution. The same istrue for the other messages in

the publish/subscribe system, i.e. subscriptions and advertisements.

Spatial decoupling

In order for two nodes to be able to communicate with each other, messages from a sender must

reach the recipient. If the sender is required to know the specific recipient (e.g. the recipient’s

name or IP address) in order to send a message, the two nodes are considered to be tightly

coupled to each other in space. Space coupling affects the scalability of a distributed system

by requiring nodes to have knowledge of all of their communication parties. This increases

the memory consumption of applications and it is difficult tomaintain that state in large-scale

systems with high node churn rates, like the multi-domain systems we are envisioning.

We can alleviate this tight coupling to some extent by introducing a level of indirection be-

tween the nodes. For example, aname servicethat maps names to addresses or objects allows

the recipient to change this mapping without it affecting the sender. Examples of such imple-

mentations include thedomain name service(DNS) used in the Internet to map hostnames to IP

addresses, and name services that are used in various request/reply style middleware products

to map names or interfaces to services or implementations, e.g. object registries in RMI and

CORBA (See§2.1.2).

In the publish/subscribe model the event service conveniently hides all the event clients from

each other. Instead of publishing an event to specific subscribers, the publisher submits the

publication to the event service and the event service delivers it to the subscribers. This means

that only the event service needs to know of all the participating nodes. We will discuss in§2.3

how this state can be decentralised in large-scale publish/subscribe systems by implementing

the event service as a network ofevent brokers.

2.1. Distributed Communication 33

Temporal decoupling

Two nodes are said to be coupled in time if both nodes need to beactive at the same time in

order to be able to communicate with each other. An active node in this case means a node that

is connected to the distributed system and executing the distributed application. In a typical

client/server model both the client and the server must be running at the same time in order to

be able to communicate with each other. If the client were to make a request to a server that was

not connected to the network, or was not executing the serverapplication, the request would

fail.

In message based systems a message broker can be used to storemessages while the recipi-

ent is inactive or disconnected from the system. The messagebroker stores the message while

the recipient is not available thereby hiding this fact fromthe sender.

Decoupling the nodes from each other in time allows the nodesto connect and disconnect

from the distributed system without affecting its overall functionality. In a large-scale dis-

tributed system it is expected that nodes join and leave the system frequently either of their own

volition or because they have been started or they have crashed. The fact that the churn does

not affect the other nodes in the system allows the system to scale better.

In a publish/subscribe system the decoupling provided by the event service allows publish-

ers and subscribers to join the system without there having to be a counterpart for them. For

example, a publisher can join the publish/subscribe systemand publish events when there are no

subscribers with matching subscriptions. Similarly a subscriber can subscribe to events when

there are no publishers in the system.

A publish/subscribe system can also provide disconnected operation where the event service

caches events for a client that have left the system temporarily and replays those events back to

the client when it rejoins (See [SAS01, PCM03, FGKZ03, CMPC04, MUHW04]).

2.1.2 Synchronous Request/Response

One of the earliest proposed paradigms for communicating between nodes in a distributed sys-

tem was theremote procedure call(RPC). An early form of RPC was proposed by James White

in anInternet Engineering Task Force(IETF) Request for Comments(RFC) titledA High-Level

Framework for Network-Based Resource Sharing[Whi76]. White’s goal was to standardise

a communication protocol and an early form of middleware that would allow developers to

reuse the communication layer when implementing distributed applications like thefile transfer

protocol (FTP) [PR85] for IP networks. Birrell and Nelson published their seminal paper on

implementing an RPC mechanism eight years later [BN84], whichprovided the cornerstone for

many of the RPC-based systems of today.

The RPC mechanism allows the software developer to make a request to a server and wait

for the response. An RPC call consists of the client sending a request to a known server, the

server executing a specified procedure with parameters supplied by the client in the message,

34 Chapter 2. Background

Client Server

Server

Server

Figure 2.2 : The use of synchronous messaging and the lack of an intermediary couples the
client tightly to the server.

and finally the server sending a response back to the client containing a return value from the

executed procedure.

From a software developer’s point of view the RPC model is veryattractive, because the

provided abstraction resembles local function calls. The developer can in principle ignore the

fact that the RPC call is passed over the network to a remote node. The developer is also able

to move remote code back to the local process with relative ease by simply replacing the RPC

calls with local function calls.

In practice though, while the RPC API hides most of the networking details of the RPC call,

it cannot hide the increased latency, the possible network-related failure modes, or the fact that

the referenced objects reside in separate memory spaces. Therefore the apparent simplicity of

the RPC abstraction is often misleading, resulting in applications with, for example, insufficient

error handling. It is not uncommon to find distributed applications based on RPC that fail to

scale up in size, because of latent problems that have previously been masked by the small size

of the deployed system [WWWK94].

The procedure call abstraction results in tight coupling between the client and the server in

all the three dimensions described earlier (See Figure 2.2): (i) the client will block until the

server responds to the request; (ii) the client must know theaddress of the server; and (iii) both

parties must be running at the same time. Because of this tightcoupling the RPC paradigm is

not very well suited for large-scale, wide-area deployments where nodes are transient and link

latencies are high.

Extensions to the RPC model have been introduced in an effort to try to relieve the tight

coupling between the client and the server. For example, some implementations have introduced

fire-and-forgetstyle RPCs where the client does not care about the successful execution of the

call nor the possible return value. With a fire-and-forget call the client is able to resume its

execution immediately after making the call without havingto wait for a return value.

Another popular extension to the RPC model, first proposed by Liskov and Shira in [LS88],

arefutures. This extension allows an RPC API call to return a future object to the caller rather

than the real return value. The future is returned immediately while the remote procedure

2.1. Distributed Communication 35

call is handled in the background by another thread of execution. The background thread will

eventually place the real return value into the future object once the remote call returns. Futures

are a simple way to allow the client to continue its executionwhile a remote procedure call is

being serviced in the background. When the client is ready to deal with the return value, it can

read it from the future object. If the client does not have anything else to do before handling the

return value, the future object typically implements a blocking get() method that allows the

client to wait for the return value. Otherwise the client canuse thepoll() method to check if

the return value has arrived yet and perform some other work while waiting for it.

Both extensions aim to enable the application programmer to use asynchronous messaging

towards the server when possible, thereby increasing system performance and scalability when

the client is not interested in the return value of the call.

Most modern, object-oriented RPC implementations, e.g. CORBAand Java RMI (See be-

low), typically include aname service. Instead of using the server’s address to access an object

directly, the client uses the name of a service to look up the location of the object implement-

ing that service from a registry. The location of the object includes the address of the server

hosting that object. The name service introduces a level of indirection between the client and

the server. This indirection allows the nodes that implement the service to change as long as

the name-to-object mapping is updated in the name service. The name service can also be used

to introduce some level of fault-tolerance to the system by allowing multiple objects to register

with the same name. The name service will then load balance lookups between all the objects

registered with the same name. Another alternative is to return a list of objects to the client

and let the client pick one to use. This approach allows the client to transparently switch from

one object to another in case of failure, assuming that the remote object does not maintain any

session state.

There have been numerous implementations of the RPC paradigmsince RFC 707. One

of the most notable implementations is Sun’s RPC [Sun88], which is used as the transport for

the Network File System(NFS) protocol [SCR+03]. Sun’s RPC was renamed in 1995 by the

IETF as the ONC RPC (Open Network Computing RPC) in [Sri95]. The Open Software Foun-

dation has standardised another RPC implementation as a partof their Distributed Computing

Environment(DCE) [Cha93]. The latest version of the DCE specification, version 1.2.2, was

released in early 2005. Microsoft adopted version 1.1 of DCE RPC as the basis for the MSRPC

mechanism that is used to implement the DCOM framework in the Windows operating system.

The Common Object Request Broker Architecture(CORBA) [Obj04a] and Java’sRemote

Method Invocation(RMI) [Sun94] both provide an object-oriented RPC abstraction that allows

clients to make method calls on remote objects that have beenlooked up from a naming service.

The latest additions to the RPC family of distributed communication paradigms include

the Web servicessimple object access protocol1 (SOAP) [Wor07] andXML-RPC[Win99], a

1The original acronym has been dropped since version 1.2 of the standard and the protocol is known now simply
as SOAP.

36 Chapter 2. Background

Client Server

Server

Server

Figure 2.3 : In traditional message passing the use of asynchronous messaging achieves syn-
chronisation decoupling between the message producer and the message consumer.

simpler variation of SOAP. In both protocols RPC calls are serialised as XML messages and

sent to a server usually as an HTTP request (although other transports like SMTP or XMPP are

also supported).

2.1.3 Asynchronous Messaging

The alternative to synchronous RPC is asynchronous messaging. Instead of making a request

to a server and waiting for a response, a node sends a message to the recipient. The message is

one-way only, i.e. there is no response to it. If a response isrequired, the recipient will send a

response as a separate first-class message.

Because the message sending does not result in a response fromthe recipient, it is simple

to implement message sending in an asynchronous way and thusenable the client to carry on

execution immediately after submitting the message to be sent. The underlying distributed mid-

dleware takes care of sending the message over the network tothe recipient in the background

(i.e. typically in another thread of execution).

Asynchronous messaging comes in a variety of flavours, of which publish/subscribe is one

example. The other flavours include simplemessage passingand more advancedmessage

queueing.

Message passing is one of the earlier forms of distributed interaction. In this paradigm an

originator sends a message to a recipient, as shown in Figure2.3. The sending of the message

is asynchronous, i.e. the originator can carry on with its execution immediately. The receiving

of messages on the other hand is typically synchronous, i.e.the recipient blocks on the message

sink waiting for incoming messages. A simple implementation would consist of the originator

sending UDP packets to the recipient that is blocking on reading a UDP socket.

With respect to the three dimensions of tight coupling discussed above, the nodes in a mes-

sage passing system remain tightly coupled in space and in time: the originator must know the

address of the recipient, and both nodes must be active at thesame time.

Message queueing is another style of asynchronous messaging aimed at larger systems

where the space coupling of message passing is not acceptable. In message queueing amessage

2.1. Distributed Communication 37

Producer Consumer

Consumer

Consumer

Message

Broker

Figure 2.4 : In a message queueing system the message broker decouples the producer from
the consumers in time and space, but the consumers need to pull messages from the broker
synchronously.

broker provides a level of indirection between the communicating nodes, not unlike the event

service in a publish/subscribe system, which further decouples the nodes from each other (See

Figure 2.4). Instead of the client sending a message directly to the server, the client sends the

message to amessage queuehosted by the message broker. The intended recipient of the mes-

sage, i.e. the owner of the message queue, dequeues the message from the queue synchronously

when it is ready to handle a new message.

Typically a message queue in the system can be read only by oneconsumer at a time. The

same message cannot be read by multiple consumers. Therefore message queueing implements

a many-to-onecommunication model, i.e. multiple producers can communicate with only one

consumer over a message queue.

Compared to message passing the message broker decouples themessage producer from

the consumer both in space and time: the producer is requiredto know only the message broker

rather than each consumer, and the message broker can store events for a consumer while it is

not active. On the other hand the fact that consumers pull messages from the message broker

creates a synchronisation coupling between the message broker and the message consumer.

One of the earliermessage oriented middleware(MOM) implementations is IBM’s Web-

Sphere MQ [IBM07]. TheJava Messaging System(JMS) [Sun02] has become a very popular

messaging standard with the rise of Java’s popularity in enterprise systems. Another, rela-

tively recent implementation, is the Apache foundation’sApache ActiveMQ[Apa07] with its

OpenWirewire protocol. ActiveMQ also implements a number of the morerecent enterprise

integration approaches likeStomp[Sto07], web services, andREST[Fie00] as well as JMS.

It is important to notice that asynchronous message passingis the underlying communica-

tion paradigm in most distributed system formalisms, e.g. Hoare’sCommunicating Sequential

Processes(CSP) [Hoa78] and thePi-calculusby Milner et al. [MPW92].

38 Chapter 2. Background

Producer Consumer

Consumer

Consumer

Tuple

Space

Figure 2.5 : The in operation supports a many-to-one interaction model.

2.1.4 Tuple Spaces

A tuple spaceis an implementation ofdistributed shared memory. The shared memory, in this

case, stores a collection of tuples. A node can access the tuple space by reading and removing

tuples from the space and by inserting new tuples into the space according to the API shown

in Table 2.2. Both theread and in operations accept patterns that are used to select a tuple

from the tuple space. If more than one tuple match the pattern, one of the tuples is selected

at random from the matching tuples and the operation is applied only to that tuple. All tuples

are equally accessible to all nodes in the system, which allows the tuple space to be used as a

communication medium between nodes.

Function Description
in consumes a tuple from the tuple space
read reads a tuple from the tuple space
out writes a tuple into the tuple space

Table 2.2 : The tuple space API of three operations used to write, read, and consume tuples.

Depending on the operation used to read tuples, a tuple spacecan implement eithermany-

to-onemessage delivery if the consumer consumes the tuple from thespace, ormany-to-many

delivery if the message is read and left in the tuple space (See Figures 2.5 and 2.6).

The client nodes in a tuple space system are decoupled from each other, and from the tuple

space both in time and space, but again, similarly to messagequeueing, the consumers pull

messages from the tuple space synchronously.

Tuple spaces suffer from scalability issues. It is difficultto distribute the tuple space over

a set of nodes. One approach, suggested by Xu and Liskov in [XL89], is to replicate the tu-

ple space over a set of nodes in which case each node will contain all tuples. Murphy et al.

in [MPR01] suggest another approach, targeted at mobile environments, where mobile nodes

all have their own tuple spaces with their own content. A nodewill cache a tuple destined for

an unreachable node in its own tuple space until the destination rejoins the system.

Neither approach is suitable for large-scale systems. In the former approach the tuple space

2.2. Publish/Subscribe Subscription Models 39

Producer Consumer

Consumer

Consumer

Tuple

Space

Figure 2.6 : The rd operation in a Tuple Space allows many-to-many interaction between pro-
ducers and consumers.

will grow in size indefinitely. In the latter approach all nodes in the system are expected to

have knowledge of all other nodes in the system and the leaving or joining of a node causes the

execution of globalengagementanddisengagementprotocols.

The underlying problem is that it is hard to divide the tuple space into smaller sub-spaces

that still allow for efficient pattern matching with thein andrd operations.

Some implementations, most notably JavaSpaces and Rinda, have extended the original

interface with anotify operation that allows the tuple space to notify consumers ofactions

executed on the tuple space (e.g. adding or removing tuples). The notify operation decouples

the consumers from the tuple space thus providing synchronisation decoupling.

Tuple spaces were first introduced as a part of theLinda programming language [Gel85].

Since then other implementations have emerged, e.g. IBM’sTSpaces[WMLF98], Sun’sJava

Spaces[Sun03] specification andRinda, a Ruby implementation of a tuple space [Rin07].

2.2 Publish/Subscribe Subscription Models

The publish/subscribe interaction model enables a publisher to publish an event to a set of

subscribers. The termto subscribeimplies that the subscriber is in control of what kind of

events it receives. In order to empower the subscriber in this way, the publish/subscribe system

must provide a way for the subscriber to express its interests in the form of a subscription.

The subscription acts as a filter on the published events: theevent service will deliver to the

subscriber only those events that match the subscriber’s subscription.

The subscription mechanism provided by the publish/subscribe system imposes a trade-

off: a less expressive subscription mechanism results in many unnecessary events being deliv-

ered to the subscriber which are then discarded by the application; a more expressive subscrip-

tion mechanism on the other hand requires the event service to do more work when delivering

events [CRW99].

The following sections describe the following three publish/subscribe subscription models

in more detail:topic-based, content-based, andtype-basedpublish/subscribe.

40 Chapter 2. Background

2.2.1 Topic-Based Publish/Subscribe

The first publish/subscribe systems implemented a topic-based subscription model. In topic-

based publish/subscribe published events are associated with topics. A subscriber, respectively,

specifies a topic as part of the subscription. Instead of receiving all events published in the

system, the subscriber is notified only of those events that have been published on that topic.

A topic forms a broadcast communication channel from all publishers to the subscribers

of a given topic. Therefore, topics are very similar togroups in group communicationsys-

tems [Pow96] where nodes join a group in order to communicatewith other group members. In

fact, one of the first systems to implement the publish/subscribe interaction model was built on

top of theIsis group communication toolkit[BCJ+90].

However, the topic-based subscription model provides the subscriber only with very limited

expressiveness. This results in the subscriber typically receiving many unnecessary events that

have to be discarded in the application. For example, assuming that all stock quotes in the stock

ticker example (See§1.2.1) are published on a singleStockQuote topic, a subscriber, that is

interested only in one of the many companies, will have to filter out all the other stock quotes

itself. This results in inefficient use of resources as well as requiring the subscriber to do extra

work.

A solution to this problem is to divide the topic space into a larger number of topics. In-

stead of having one topic to represent all stock quote events, we can publish each company’s

quotes under its own, company-specific topic. This approachallows subscribers to subscribe to

company-specific topics and receive only those events that are interesting to them.

The downside of a verbose topic space is the fact that in orderto subscribe to a larger

segment of the topic space, the subscriber must subscribe tomultiple topics. For example, con-

tinuing with the stock quotes example, a subscriber that wants to receive all stock quote events,

regardless of the company, must now subscribe to all company-specific topics that number in

the hundreds.

In order to address this expressiveness issue topic-based publish/subscribe implementations

introducedtopic hierarchies. Topic hierarchies allow the topic space in a publish/subscribe

system to be organised into one or more hierarchies: topics related to each other are placed

into a hierarchy according to some containment relationships. The sub-topics in a hierarchy

represent a more specific sub-category of their parent topic. For example, a company-specific

topic (e.g.Nokia) would be the sub-topic of a generalStocks topic, as shown in Figure 2.7.

A subscription to a topic that has sub-topics results implicitly in subscriptions for all of the

sub-topics as well. By representing the companies in a stock market and the rest of the stock

exchange as topics in a topic hierarchy we can allow subscriptions both to company-specific

topics and to the parent topicStocks. In both cases the subscriptions are expressive enough

to allow the event service to take care of all the event filtering without the subscriber having to

do any application level filtering at all.

2.2. Publish/Subscribe Subscription Models 41

MarketQuotes

DerivativesStocks

......Nokia

Figure 2.7 : Subscribing to a topic in a topic hierarchy implies subscriptions to all sub-topics.

Another popular enhancement, which was first introduced by TIBCO Rendezvous [TIB07],

is to supportwildcards in topic names. Wildcards allow event clients to subscribe to, or pub-

lish under all topics in a set of topics matching the topic pattern. The wildcards in the TIBCO

system allow the subscriber to replace a node in the hierarchy tree with a wildcard. For ex-

ample, by subscribing toMarketQuotes.*.Nokia a subscriber is able to subscribe to all

three-component topics in the system that start withMarketQuotes and end withNokia.

Assuming that the stock exchange example includes also company-specific derivatives, e.g.

Nokia futures, this subscription will match Nokia-relatedevents both under theStocks and

Derivative sub-topics.

Topic-based publish/subscribe has been implemented by a number of publish/subscribe mid-

dleware products including Altherr et al. [AEM99] and TIBCO [TIB07]. The JMS specification

also defines some topic-based functionality.

2.2.2 Content-Based Publish/Subscribe

While hierarchical topics allow subscribers to describe their subscription in more detail, in

many cases the expressiveness provided by topic-based publish/subscribe is simply not enough,

resulting in either fragmented topic spaces or alternatively excessive application level event

filtering and inefficient resource usage. The fundamental limitation in the topic-based subscrip-

tion model is the fact that subscriptions are static, i.e. that matching of events to subscriptions

does not take into account the content of the events.

The content-based subscription model, first proposed by Bacon et al. in [BBHM95], ad-

dresses this problem by allowing the subscriber to include an event filter expression in the

subscription. The filter expression is applied by the event service to the content of each pub-

lished event to determine whether the event matches the subscription or not. For example, a

subscriber can subscribe to all events wherename = Nokia andprice > 24.00, which

in topic-based publish/subscribe, event with topic hierarchies, results in filtering in the applica-

tion.

42 Chapter 2. Background

Topic-based publish/subscribe can be seen as a special caseof content-based subscription

model where the subscription includes an equality filter over thetopic attribute. Topic hier-

archies can also be accommodated for if the subscription filters support string prefix matching.

The content of the event would be another attribute that cannot be used in filters.

A subscription filter is specified in asubscription language, which allows a subscriber to

define constraints on event content. Proposed subscriptionlanguages include SQL [Sun02],

OMG’s Default Filter Constraint Language [Obj04b], XPath [AF00, DFFT02], and publish/

subscribe system specific proprietary implementations [BCM+99a, CRW01]. Nevertheless,

most content-based publish/subscribe implementations implement relatively inexpressive sub-

scription languages that support only conjunctions of simple comparisons (i.e.=, ! =, <, >,

<=, and>=). Some subscription languages, XPath and SQL, in particular allow for very fine

grained filters including filtering on partial string content as well as dynamic filters based on,

for example, mathematical expressions.

The choice of subscription language usually defines the set of data types available in pub-

lications. For example, simple comparison based languagestypically support only basic data

types: strings, integers, and floats. XPath 2.0 [Wor05] on the other hand supports up to 19

different data types including dates, timestamps, years, months, and URIs.

The challenge in content-based publish/subscribe systemsis to implement event filtering in

an efficient manner. Naı̈vely applying each subscription filter to each publicationin turn will

result in linear computational complexity with respect to the number of active subscriptions (i.e.

O(n)). A more efficient alternative is to place the subscription filters into a tree where the most

generic subscription is at the root and the leaves representthe most specific subscriptions. This

approach allows the matching algorithm to ignore whole branches of the tree when a node in

the tree does not match the publication resulting in logarithmic complexity (i.e.O(log n)).

To be able to take advantage of this performance optimisation the event service must be

able to impose a partial ordering on all subscriptions. We call this partial ordering thecoverage

relation between two subscriptions. Following the notation introduced by Carzaniga and Wolf

in [CW01], we represent an attribute as a 3-tupleα = (typeα, nameα, valueα) and a constraint

as a 4-tupleφ = (typeφ, nameφ, operatorφ, valueφ). The constraintφ covers the attributeα,

i.e.α <
p
f φ, if typeα = typeφ ∧ nameα = nameφ ∧ operatorφ(valueα, valueφ).

A subscription covers, i.e. matches, a publication if all ofits filter constraints cover the

attributes present in the publication:

p <
P
S f ⇔ ∀φ ∈ f : ∃α ∈ p : α <

p
f φ.

A subscriptionf1 thereby covers (<S
S) another subscriptionf2 if f1 covers at least all the publi-

cations thatf2 covers:

2.2. Publish/Subscribe Subscription Models 43

f2 <
S
S f1 ⇔ ∀p ∈ P : p <

P
S f2 ⇒ p <

P
S f1,

whereP is the set of all possible publications.

The subscription language must lend itself to comparing andordering two expressions of

that language. The comparison is relatively simple in restricted subscription languages that con-

sist only of conjunctions of simple comparisons, e.g.name = Nokia andprice > 24.00,

but ordering arbitrarily complex filters becomes quickly intractable. Therefore decentralised

publish/subscribe systems that rely on the ordering of subscriptions in order to be able to scale

well typically implement relatively simple subscription languages.

The expressiveness of the content-based subscription model depends solely on the expres-

siveness of the subscription language. On the other hand, the efficiency of the event filtering

implemented in the event service relies on the subscriptionfilters implementing a partial-order.

These two requirements introduce a trade-off between expressiveness and efficiency.

Some decentralised publish/subscribe systems, e.g.Hermes, use the coverage relation when

distributing subscription state across the decentralisedevent service. Effectively the nodes in

the subscription tree are represented by event brokers and each event broker will forward the

publication to the other event brokers only if the publication matches the subscriptions on those

event brokers. We will discuss event routing in Hermes in more detail in§2.3.1.

2.2.3 Type-Based Publish/Subscribe

Topics in publish/subscribe are used to group common eventstogether. For example, a topic like

StockQuote is used to group together stock trades that are happening in the stock market. In

most cases events published under a given topic also share the same structure, i.e. they have the

same set of name-value pairs.

The content-based subscription model, on the other hand, allows the subscriber to filter

events based on the events content. By replacing the event topic with an event type, one can

combine both the topic-based and the content-based models:events are published as instances

of a type, which guarantees a given set of attributes, and thesubscriber can filter on the contents

of those attributes. Thistype-basedsubscription model also allows for better integration with

programming languages, because an event can be provided forthe programmer as a first-class

object of the programming language.

In [EGD01] Eugster et al. propose a type-based subscriptionmodel that borrows heavily

from object-oriented programming. In the proposed scheme event types define both attributes

and behaviour. The attributes are expected to be private andonly accessible through accessor

methods. In addition to accessor methods, the type can also provide other methods that can be

used in filter expressions or to access the event content in some indirect way.

44 Chapter 2. Background

It is unclear what the advantage of this encapsulation is, because the subscriber will most

likely want to access all the fields that are included in the event. One can argue that the en-

capsulation allows for tighter programming language integration where objects are serialised

as publications, but one could just as well allow the client to access the object’s member fields

directly either by making the fields public or generating direct accessors that simply return the

field value.

TheCambridge Event Architecture(CEA) was the first event-based system to utilise a type-

based subscription model [BBHM95]. CEA was built on top of CORBA and it used theinter-

face definition language(IDL) to define event types. Events were instances of a class.CEA

also supported content-based filtering as was discussed in§2.2.2. The Hermes publish/subscribe

middleware, which we will describe in more detail in§2.3.1, inherited its type-based approach

from CEA and theCORBA-based event architecture(COBEA) [MB98].

2.3 Decentralised Publish/Subscribe

We mentioned earlier in§2.1.1 that a publish/subscribe system consists of event clients and an

event service. Depending on the size of the system, the eventservice can be embedded in the

application with the event clients. In slightly larger systems the event service can be a separate

service running on the same node with the event clients. In a distributed setting the event service

can be a separate node with client nodes connecting to it overthe network.

All publications travel via the event service. In a large-scale system with thousands of event

clients the event service quickly becomes a bottleneck affecting the performance of the whole

system. The next logical step is to decentralise the event service amongst multipleevent brokers

and distribute the system load across those brokers. The event clients connect to alocal broker.

The local broker acts as atrustedproxy between the event client and the rest of the event service,

forwarding messages from the client to the rest of the systemand delivering publications from

the system to the client. Bytrustedwe mean that the client trusts the local broker to proxy events

for it to and from the event service without changing them. This includes event decryption and

encryption as we will describe in Chapter 7. We assume that thelocal broker is either part of

the same domain, or it is owned by a service provider trusted by the client.

The challenge in a decentralised publish/subscribe systemis how to distribute subscription

state and the event matching algorithm across the event brokers. One approach is to replicate

all state and broadcast all publications to all brokers. This approach is simple, but it also results

in a lot of unnecessary traffic between the event brokers. Other more advanced approaches

aim to distribute state across all the event brokers which ismore complicated, but requires less

resources and results in more efficient bandwidth use, thereby improving the overall scalability

of the system. The downside in the distributed approach is that each event broker is a single

point of failure in the system, because the loss of a broker means that some part of the system

2.3. Decentralised Publish/Subscribe 45

state has been lost. An optimal approach is to distribute subscription state across the event

brokers as much as possible while at the same time replicating some of that state so as to

provide enough redundancy to be able to survive the loss of one or more event brokers.

A number of decentralised publish/subscribe implementations have been proposed in the

literature. One of the earliest implementations is thescalable Internet event notification archi-

tecture(Siena) [Car98, CRW01]. Siena is a content-based publish/subscribe system that was

specifically designed for Internet-wide deployments.

Another significant implementation is theGryphonproject at IBM Research [BCM+99a].

Gryphon is an industrial-strength, content-based publish/subscribe system that has now been

integrated to IBM’s WebSphere suite of enterprise messagingproducts. Gryphon is based on an

information flow graph(IFG) model [BCM+99b] where an IFG specifies the flow of informa-

tion from publishers to subscribers.

Other notable implementations of decentralised publish/subscribe systems include theJava

Event-Based Distribute Infrastructure(JEDI) from Politecnico di Milano [CNF01] andRebeca

from the Darmstadt University of Technology [FMB01].

The decentralised publish/subscribe systems can be divided into two camps depending on

whether the event broker network implements a static or dynamic topology. A static topology

is defined at deployment time and cannot change during the lifetime of the system. A dynamic

topology on the other hand is able to adapt to changing network conditions and joining and

leaving event brokers. Therefore a dynamic topology network can heal itself after node and

link failures by re-balancing itself. From the systems mentioned above, Siena and Gryphon

implement static topologies, while both JEDI and Rebeca implement a dynamic topology.

In a large-scale, Internet-wide system it can be assumed that event brokers will join and leave

the system, and that network faults will cause event brokersto lose connectivity temporarily.

Therefore a dynamic topology will make the broker network significantly more resilient to

transient faults and node churn in an Internet-wide deployment.

2.3.1 Hermes

Hermes [PB02, PB03, Pie04] is a content-based publish/subscribe middleware with strong event

typing. It implements a decentralised event service in order to provide scalable event dissemi-

nation and fault tolerance in the presence of node and network failures.

A Hermes system consists ofevent brokersandevent clients, the latter beingpublishers

and/orsubscribers. Event brokers form an event broker network that performs event propa-

gation by means of a type- and content-based routing algorithm. Event clients publish and/or

subscribe to events in the system. An event client connects to a local broker, which then be-

comespublisher hosting(PHB), subscriber hosting(SHB), or both (CHB). An event broker

without connected clients is called anintermediate broker(IB).

A feature of Hermes, that this work relies on, is support forevent typing: every publication in

46 Chapter 2. Background

Hermes is an instance of anevent type. An event type defines atype nameand a set ofattributes

that consist of anattribute nameand anattribute type. Supported attribute types depend on

the types supported by the language used to express subscription filters. In our implementation

the subscription language supports basic Java types that can easily be compared, e.g. integers,

strings, booleans, dates, and floats. We will refer to this subscription model astype-based

publish/subscribe throughout the rest of this dissertation.

Another Hermes-specific addition to traditional content-based publish/subscribe is support

for event type hierarchies. In Hermes event types can be organised into inheritance hierarchies,

where an event type inherits all of the attributes defined andinherited by its super-type. In

addition to making defining new types easier, type hierarchies enable a subscriber to subscribe

to a super type in an event type hierarchy and receive notification of events of that specific type

as well as all its subtypes. While some of our work is compatible with event type hierarchies,

the proposed design would require more work in order to support them fully. Therefore we

do not claim to support Hermes’ type inheritance. In generalwe have tried to keep the design

as widely compatible with Hermes’ flavour of type-checked content-based publish/subscribe

systems as possible without any loss of generality.

We have built our access control system on top ofHermes. We chose to build on top of

Hermes, because it is a decentralised publish/subscribe system with a dynamic broker network

topology. Both features place requirements on the access control architecture. Therefore by

concentrating on Hermes we provide an access control architecture that is equally applicable

to decentralised, dynamic topology systems as well as centralised systems and system with a

static broker network.

While parts of our work are also applicable to content-based and topic-based systems, we

will concentrate on the type-based subscription model throughout this dissertation. Where ap-

plicable we have included a section describing how a certainfeature could be implemented in a

topic-based publish/subscribe system.

Event Routing

The event service in Hermes is implemented as a network of interconnected event brokers. The

event brokers form a peer-to-peer system with each other where events are routed by means of

consistent hashing[KLL +97]. More specifically Hermes is implemented on top of the Pastry

distributed hashtable(DHT) [RD01b].

In a consistent hashing system each node picks a random identity for itself from a large iden-

tity space. Typically a random identity is generated by hashing some node specific information,

e.g. the node’s IP address, which results in the identities being uniformly distributed across the

identity space. MAIA uses the SHA-1 hash algorithm to generate a node identity. The identity

space is 160 bits. Messages in the system are sent to an identity. The destination identity is

generated by hashing some information related to the message, i.e. a key. The message is then

2.4. Access Control 47

routed to the node with the identity that is numerically closest to the target identity. All nodes

in the system that know the key are able to access it by hashingthe key with the hash algorithm.

Distributed hashtables(DHTs) [ZKJ01, SMK+01, RFH+01, MM02] use consistent hashing

to partition the identity space amongst the nodes in the system. The key associated with a value

is hashed and that hash value is used as the destination forinsertandlookupmessages.

Hermes (and MAIA) uses consistent hashing to find arendezvous nodefor an event type

amongst all the event brokers in the system. The rendezvous node is the node with the identity

that is numerically closest to the hash value of the event type name. The rendezvous node is

used as a meeting point for advertisement and subscription messages. Advertisement messages

from the publisher hosting brokers and subscription messages from subscriber hosting brokers

for a given event type are all routed to the same rendezvous node. Each intermediate broker

that the advertisement or subscription message is routed through sets up routing state for the

event type. Publications from the publisher hosting brokers are then routed through the event

broker network according to the created routing state. Morespecifically, a publication follows

the forward-path of the advertisement from the publisher tothe rendezvous node. At every

node where the publication meets a matching subscription a copy of the publication is sent on

the reverse-path of the subscription towards the subscriber. The subscription paths form a tree

routed at the rendezvous node. At each branch of the tree, thepublication is again copied and

one instance is routed towards each branch of the tree.

Because the identity generation in a consistent hashing system is effectively uniformly ran-

dom, it is impossible to control the route an event will take through the system. In a multi-

domain environment this means that a domain-internal message might be routed via brokers in

other domains before it gets to its destination inside the originating domain. This places some

requirements on the access control architecture. Namely the broker network cannot be trusted

not to read or not to change the event content even though we trust all event brokers to route

events correctly (See§3.6 for a more detailed discussion on the threat assumptionswe have

made). This is addressed in Chapter 7 where we introduce eventencryption as a mechanism for

enforcing access control in the untrusted broker network.

Event routing, including fault-tolerance of the routing state, in Hermes is described in more

detail in [PB02, PB03].

2.4 Access Control

Access control in computer systems is used to control the type of actions a user can perform

on a resource. In formal termsobjectsrepresent the resources that are being protected by the

system,subjectsrepresent, for example, users or processes performing actions on an object, and

operationsrepresent all the actions that the subjects can perform on the objects.

In an operating system access control decisions are mediated by thereference monitor. The

48 Chapter 2. Background

Classification
Top Secret

Secret
Confidential
Unclassified

Table 2.3 : Common classification labels in decreasing order of access.

reference monitor was introduced as a concept by James Anderson in his study on computer

security [And72]. Anderson proposed that the access control related functionality should be

contained in a single component in the operating system thatwould be small enough to be

subject to thorough testing and analysis. Together with hardware, firmware and other software

the reference monitor in a computer system forms thetrusted computing base(TCB). The TCB

is defined as the set of components that, if working correctly, will be enough to enforce the

security policy in the system regardless of the behaviour ofother components. In other words,

if the any of the components that form the TCB malfunction or contain a bug, it might jeopardise

the security properties of the system.

Traditionally access control has been divided intomandatory access control(MAC) and

discretionary access control(DAC) models. In MAC-based systems the system sets the access

control restrictions for objects based on security policy and the subject that applied an operation

on the subject. In DAC-based systems access control restrictions on objects are left to the

discretion of the subject owning the object. In the recent past role-based access control(RBAC)

has emerged as a third alternative access control model, which is powerful enough to simulate

both MAC and DAC systems.

2.4.1 Mandatory Access Control

Mandatory access control systems have their roots in the military and intelligence communities,

which have based their access control on hierarchical classification levels as shown in Table 2.3.

MAC systems can only ever protect the confidentiality or integrity of data, but never both.

In 1973 David Bell and Leonard LaPadula presentedmultilevel security(MLS) [BL73,

LB73, Bel74, BL76]. The MLS model concentrates on the confidentiality of data. It prevents

information from flowingdownwardsin the classification system, i.e. from a higher level of

classification to a lower one.

A subject in an MLS system is allowed to access an object only if its classification is greater

or equal to the classification of the object. For example, a user with Secretclassification is

able to read and writeUnclassified, Confidential, andSecretdocuments, but notTop Secret

documents.

Ken Biba proposed another model [Bib75] that concentrates solely on data integrity, ig-

noring confidentiality considerations. When protecting theconfidentiality of information it is

2.4. Access Control 49

important to prevent that information from flowing from highclassification levels to lower clas-

sification levels. On the other hand, in a system concerned with the integrity of information

we must prevent information from flowing upwards from lower classification levels to a higher

one. Subjects must alwaysread upandwrite down, i.e. read data from a higher classification

level and write data to lower classification levels. These goals are contrary to the goals of a

confidentiality protecting system.

Other formal security models include the Chinese Wall security policy and the Clark-Wilson

model. The Chinese Wall model was developed by Brewer and Nash in 1989 [BN89]. The

model has its roots in the investment banking industry whereit is important to internally pre-

vent conflicts of interest, e.g. between the trading and the commercial banking departments. The

Clark-Wilson model is another model that concentrates on data integrity rather than confiden-

tiality. The model was proposed by Clark and Wilson in their 1987 paper [CW87]. Curiously

the Clark-Wilson model has its roots in the accounting industry and draws many of its ideas

from book keeping.

While formal MAC models enable reasoning about the security of the system and provably

prevent malware like viruses and trojan horses from leakinginformation from the system, in

many cases the models end up being too rigid for practical deployments. Operations that should

be simple, e.g. object creation and deletion, become overlycomplex and require compromises.

With respect to access control in a multi-domain publish/subscribe systems, a MAC system

would not be applicable simply because no single domain is incontrol of all the participating

nodes. Simply by passing an event from one domain to another the originating domain has

leaked the content of the event and has lost control over it.

2.4.2 Discretionary Access Control

Most operating systems provide discretionary access control (DAC). In a DAC system the sub-

jects themselves are responsible for defining access control policy for their own objects. Access

control policy is at the subject’s owndiscretion.

Because the subject is able to define access control policy forher own objects, she is able to

grant other subjects access to her resources. This allows the subject to, for example, share files

with other users of the system.

Access Control Matrix

Access rights in a DAC system can be described with anaccess control matrixfirst proposed

by Lampson in [Lam74]. An access control matrix consists of rows representing subjects and

columns representing objects. The cells in the matrix definethe operations that the subject can

perform on the given object, as shown in Table 2.4.

More formally, as shown in Equation (2.1), whereMso ⊆ A represents the access opera-

tions that the subject,s ∈ S, can perform on an objecto ∈ O. HereS is a set of subjects,O

50 Chapter 2. Background

/etc/passwd /home/alice /bin/sh
Alice read read, write, execute read, execute
Bob read read, execute read, execute
root read, write read, execute read, execute

Table 2.4 : An access control matrix representing files in a Unix system.

a set of objects, andA a set of all the access operations that a subject can perform on an object.

M = (Mso)s∈S,o∈O,Mso ⊆ A (2.1)

While the access control matrix is a good theoretical tool, itis rarely used as such in ac-

tual implementations. The matrix is likely to be sparse in systems with more than one user

where objects accessed by the users of the system rarely overlap. For example, in a typical

multi user Unix system the users have their own files in their own home directories. The only

files that are commonly shared between users are the executables in the system. Therefore, ac-

cess control implementations typically use either access control lists or capabilities to represent

policy [Gon89].

Access Control Lists

By taking a column centric view of the access control matrix, each column of the matrix is

translated to anaccess control list(ACL). ACLs are typically stored with the object that the

column represents. The ACL contains entries for each subjectdefining the operations that the

subject can execute on the given object, as seen in Table 2.5.

In ACL-based systems it is often difficult to see which objectsare accessible to a given

subject. This is rarely a problem, though, because usually it is more interesting to get the

list of subjects that are allowed to access a given object. Ifit is necessary to find all objects

accessible to a given subject, for example if the subject’s employment at the organisation has

been terminated and the subjects access rights need to be revoked, it is possible to simply check

each object in the system.

In a multi-domain setting the centralised nature of ACLs introduces some problems. It is

difficult to deploy an ACL in a multi-domain system while guaranteeing that all nodes have the

most recent ACL. It is also difficult to name subjects in a multi-domain setting while guaran-

teeing that names are unique as well as meaningful throughout the system.

More importantly for multi-domain environments, it is difficult to delegate access rights

to other subjects. The delegator would either have to updatea global, object-specific ACL

to include an entry granting the delegate access to the object, or alternatively ask the resource

owner to update the ACL. In the first case the ACL would have to also include an entry allowing

2.4. Access Control 51

. . . /home/alice . . .

Alice . . . read, write, execute . . .

Bob . . . read, execute . . .

root . . . read, execute . . .

Table 2.5 : An access control list represents one column of the access control matrix.

the delegator to update the ACL. In a multi-domain system cross-domain ACL updates would

be cumbersome to implement. The ACL would also quickly becomea performance bottleneck

both when verifying or updating access rights.

For practical reasons access control lists are often truncated when they are implemented in

operating systems. For example, in most Unix systems the ACL associated with a file contains

only three subjects:user, group, andothers. The motivation for simplifying ACLs in operating

systems is twofold. First, as stated above, most files in a Unix system are accessed only by

a few subjects or alternatively by a group of subjects, resulting in very sparse ACLs. Second,

complete ACLs would need to be updated whenever a new subject is added to a system resulting

in the management software having to go through all the ACLs ofall the files in the system.

Capabilities

An access control system can alternatively be implemented with a row centric view of the access

control matrix in which case each row of the matrix is translated to acapability. A capability

contains entries for the objects that a given subject has access to, as can be seen in Table 2.6.

While ACLs are usually stored with the objects, capabilities are often stored with the subject.

Because capabilities are often stored with the subject and the possession of a capability

implies authority, it is important that a capability implementation protects the integrity of the

capabilities. More specifically, capabilities must be unforgeable and non-transferable. That is,

principals must not be able to forge capabilities and they must not be able to use a capability

issued to some other principal. In centralised capability implementations capabilities are often

protected by the hardware and the operating system. In a distributed implementation capabilities

are usually protected by digital signatures to prevent forgeries, and they include the subjects

identity, which is also protected by the signature, to bind the capability to the subject.

The Cambridge CAP computer developed in the 1970s is an exampleof a centralised

capability-based system [Wil79]. The operating system of the CAP computer used capabili-

ties in controlling access to objects. Instead of storing the capabilities with the subjects, the

CAP operating system kept track of which capabilities each subject held internally. When mak-

ing access control decisions the reference monitor would check that the capabilities held by the

subject authorised it for the requested operation.

Capabilities have been making something of a comeback recently in the form of digital

certificates. Especially in distributed systems it is desirable to give the capabilities to the subject

52 Chapter 2. Background

/etc/passwd /home/alice /bin/sh
.

Bob read read, execute read. execute
.

Table 2.6 : A capability represents a group of cells on one row of the access control matrix.

to manage, i.e. it is the subject’s responsibility to keep them safe and to present them when

necessary. Capabilities in the form of signature protected certificates allow the issuer to give

the capability to the subject without risk of tampering.

Capabilities support a very simple and elegant delegation mechanism: in addition to direct

access rights for a given object, the capability can also state that the subject of the capability

is allowed to further delegate those access rights. Again, because the capability’s integrity is

protected by the digital signature, there is no risk of subjects forging delegation rights. When

delegating a capability thedelegatorcreates a new capability for thedelegate. When accessing

the object, the delegate must show the verifier both its own capability as well as the delegator’s

capability.

A decentralised delegation mechanism is crucial in a multi-domain environment so that

access control policy management can be distributed amongst all the participating domains

without having to rely on a centralised party.

One implementation of a modern certificate-based capability system is thesimple public

key infrastructure(SPKI). Our multi-domain access control system will leverage SPKI-style

capabilities. We will discuss SPKI in more detail in§2.6.

2.4.3 Role-Based Access Control

In both MAC and DAC systems, new subjects need to be added to and removed from the access

control policy frequently. In a MAC system this is relatively simple, the new user is given a

security classification that then grants her access to certain objects. In a DAC system, depending

on whether its based on ACLs or capabilities, the new subject must be either added to all relevant

ACLs or she must be issued capabilities to all relevant objects.

In many cases new subjects can be seen as new members of an existing role. For example,

in a university a new lecturer will be a member of the lecturerrole. Role-based access control

(RBAC) [FK92, SCFY96] tries to leverage this fact in order to simplify access control policy

management. Common groups of subject types are separated into roles that are granted access

rights. Subjects are then issued with memberships to certain roles. The indirection introduced

by the RBAC model allows new subjects to be added to the system with ease simply by grant-

ing them membership to certain roles that match the user’s role in the organisation. There is

typically no need to change the access rights of roles or subjects directly.

With respect to the MAC and DAC access control models, RBAC is mostly orthogonal to

2.5. Decentralised Trust Management 53

both models. More specifically, RBAC can be used to implement both discretionary [SM98]

and mandatory [OSM00] access control systems.

In this dissertation we concentrate on presenting an accesscontrol mechanism for multi-

domain publish/subscribe systems that is based on capabilities. In this setting RBAC is a use-

ful approach to simplify policy management in domains, but it has no direct impact on the

capability-based access control mechanism. That is, one can implement RBAC within MAIA ,

but it is not necessary. We will touch upon policy managementand RBAC in Chapter 6.

2.5 Decentralised Trust Management

Blaze et al. argued in [BFL96] that there exists atrust management problemin decentralised

systems. At the time of the work, in the latter part of the nineties, the Internet was growing in

leaps and bounds. The paper argued that traditional ACL-based access control systems were

not appropriate for Internet-wide, decentralised systemsthat crossed domain boundaries.

Traditional ACL-based systems authenticate principals based on their name. For example, in

an operating system the principal has a user name, which represents the principal in the context

of that OS instance. The user name also maps to the principal’s physical identity, i.e. the system

administrator knows the mapping between user names and people. The principal authenticates

herself to the system with a password associated with that user name. Blaze et al. argued that

in the context of a computer system, i.e. a single administrative domain, the principal’s name

is well known and the mapping from principal to user name is appropriate and simple. But

in a global setting, with multiple administrative domains,the management of names becomes

cumbersome. Does theBob in domain A represent the same principal as theBob in domain B?

The X.500 [ITU05a] series of standards try to solve this problem by binding globally unique

distinguished namesto principals with X.509 [ITU05b] identity certificates. The distinguished

name is based on hierarchical domain relationships and is therefore globally unique. It speci-

fies, for example, the country, state, and city of the organisation that the principal is a member

of. It is assumed that by leveraging hierarchical relationships the organisations that are issuing

distinguished names are able to keep the names unique withintheir own namespace. The iden-

tity certificate allows a principal to authenticate herselfas the owner of the distinguished name

by proving ownership of the public key bound to the certificate.

But authenticating a principal to a name does not say anythingabout the authority of that

principal. In traditional access control systems the authority of the principal is then looked

up from an ACL. The ACL contains entries for all names, specifying the access rights of that

name. Similarly with X.509 certificates, the access controlsystem would look up the principal’s

distinguished name from an ACL to determine the principal’s access rights. In a capability-

based access control system the capabilities would be boundto the principal’s name, as is the

case with the X.509attribute certificates.

54 Chapter 2. Background

In the end the access control system needs to know the principal’s authority when deciding

whether to perform the principal’s request or not. The name of the principal introduces an

unnecessary indirection in the authorisation process where the principal is first linked to a name,

which is then linked to that principal’s authority:

Principal → Name → Authority

Blaze et al. and the SPKI working group have both argued for removing the indirection

introduced by the principal-to-name mapping and to simply map access rights to the identity of

a principal, i.e. the principal’s public key.

Another problem with ACL-based systems is the lack of a simpledelegation mechanism,

as discussed in§2.4.2. In a distributed system delegation of access rights allows access right

management to be decentralised across the system. This allows the system to avoid performance

bottlenecks that might otherwise appear if access control was centralised to a few nodes.

Similarly, the system must be able to decentralise access control decision making. That

is, the nodes responding to the client requests must be able to make access control decisions

themselves without having to rely on a central access control server. Delegation in the form of

signed capabilities facilitates this type of decentralised authorisation.

2.5.1 PolicyMaker

Blaze et al. proposed the PolicyMakertrust management enginein [BFL96] as a solution to the

trust management problem in decentralised environments.

To address the problems caused by the artificial indirectionintroduced by principal names,

PolicyMaker uses public keys to represent principals. So the following bindings created by an

X.509 identity certificate:

PublicKey → Name → Authority

would be replaced in PolicyMaker by the following binding:

PublicKey → Authority

By treating the principal’s public key as the principal’s identity PolicyMaker avoids the

complication introduced by the use of artificial names. Moreover, the public key is a globally

unique identifier.

In the PolicyMaker model principals delegate access rightsto other principals by issuing

2.5. Decentralised Trust Management 55

signed capabilities that are calledassertionsin the PolicyMaker terminology. Assertions come

with all the benefits of capabilities discussed in§2.4.2. The main benefit in a decentralised

system is to allow principals to carry their own credentialsrather than having to store them

centrally in the system, as well as supporting access right delegation in a decentralised manner.

PolicyMaker can be implemented either as a dynamic library that is linked to applications,

or alternatively as a system wide daemon process that can be used by all applications in the

system. One of the key design goals in PolicyMaker was to separate the trust computation from

the application logic and from credential management. As a result PolicyMaker expects the

application to verify the validity of presented credentials, e.g. digital signatures and certificate

validity dates. This approach has the added benefit that PolicyMaker is certificate and public

key algorithm agnostic, which allows it to work both with current and future standards (e.g.

X.509, PGP, RSA, DSA).

PolicyMaker takes as input arequestto determine whether a public key (or a sequence of

public keys) is authorised to perform a given action:

key1, key2, . . . , keyn requestsaction

The semantics of the action are application specific and theyare not known to or interpreted

by PolicyMaker.

In the PolicyMaker model principals are authorised to perform certain actions by anasser-

tion of the following form:

source assertsauthority struct wherefilter

The sourceis the source of the assertion. It can be either the local policy or the public

key that signed a related capability. Theauthority structspecifies the delegate of the assertion,

i.e. a set of public keys that the assertion rule applies to. In most cases there is only one key

mentioned in the rule, but the authority structure allows also for more complicated scenarios

like threshold subjects, as described in§2.6.4. Finally, thefilter is a predicate that is defined in

a safe programming language. The subject’s access request must satisfy the filter predicate in

order to for the access request to be authorised by the assertion. In essence an assertion states

that the source of the assertion trusts the public keys mentioned in the authorisation structure to

perform the actions that are accepted by the filter program.

Other trust management engines in the vein of PolicyMaker include KeyNote [BFK98] and

REFEREE [CFL+97]. KeyNote has been accepted as an IETF standard [BFIK99a, BIK00]. It

was designed as a simpler descendant of PolicyMaker by many of the same people. REFEREE

was originally designed to control access to web pages, nevertheless the trust management

56 Chapter 2. Background

engine is general purpose and can be deployed in other environments as well.

2.6 Simple Public Key Infrastructure

Thesimple public key infrastructure(SPKI) is another decentralised trust management system2

with similar design goals than those of PolicyMaker et al. SPKI was designed by an IETF

working group led by Carl Ellison. During the standardisation process thesimple distributed

security infrastructure(SDSI) [RL96] proposed by Rivest and Lampson was integrated into the

SPKI proposal. SPKI was eventually standardised by the IETFin 1999 [Ell99, EFL+99].

The central idea in decentralised trust management and SPKIis to decentralise access con-

trol policy management, decision making, and credential management. This is achieved by

implementing a capability-based approach to access control where theowner of an object is

responsible for access control policy and credential management for that particular object. Dis-

tributing management responsibilities over all of the principals results in an extremely scalable

access control system, because both management and verification can be implemented in a de-

centralised fashion without relying on centralised services that might turn into performance

bottlenecks.

2.6.1 Authorisation Certificates

The main concept in SPKI is theauthorisation certificate. An authorisation certificate is basi-

cally a signed capability. The certificate is represented bya 5-tuple:(I, S,D, V,A). Issueris

the principal that issued the certificate;Subjectis the principal that the certificate is issued to;

Delegationis a boolean value specifying whether theSubjectis permitted to further propagate

theAuthorisationgranted by this certificate;Authorisationis an application specific represen-

tation of the access rights granted to theSubjectby this certificate; andValidity defines the date

range when the certificate is valid and an optional set of on-line validity tests, e.g.certificate

revocation lists(See Chapter 6 for a more detailed discussion on certificate validity and revo-

cation). TheIssuerfield is either the issuer’s public key or its hash value. TheSubjectfield can

be a public key of a principal, its hash, a name, the hash of an object, or a so calledthreshold

subject.

An issuer can grant a subject a given set of access rights by issuing the subject an authori-

sation certificate that specifies those access rights in its authority field. The issuer can allow the

subject to further delegate these access rights to other subjects by setting theDelegationfield

to true. Thiscertificate chaincan be infinitely long in SPKI as long as each certificate in the

chain, except the last one, has theDelegationfield set totrue.

2According to Blaze et al. SPKI is, strictly speaking, not a trust management engine, because certificates can be
processed in an application dependent manner, whereas a trust management engine, like PolicyMaker, processes
all credentials the same way [BFIK99b].

2.6. Simple Public Key Infrastructure 57

To verify the access rights of a principal the verifier first verifies each certificate in the

certificate chain independently. This includes verifying the digital signature on the certificate

and all the possible validity conditions, e.g. the validitydates and the possible on-line checks.

After the certificates have been deemed valid, the verifier must collapse a certificate chain into

a single 5-tuple. The verifier reduces two adjacent certificates into a single 5-tuple with the

following 5-tuple reduction rule:

(I1, S1, D1, A1, V1) + (I2, S2, D2, A2, V2)

⇒ (I1, S2, D2, A1 ∩ A2, V1 ∩ V2)

iffA1 ∩ A2 6= ∅ ∧ V1 ∩ V2 6= ∅, S1 = I2 ∧D1 = true

That is, for the reduction rule to be applicable, the issuer of the second certificate must be

the subject of the first certificate and the delegation field inthe first certificate must be set to

true. The validity period of the resulting 5-tuple is the intersection of the validity periods of

the two certificates. Similarly the authority implied by theresulting 5-tuple is the intersection

of the two certificates.

The verifier applies the 5-tuple reduction rule to the certificate chain recursively until left

with a single 5-tuple. The final 5-tuple is then used to determine whether the principal is au-

thorised to make the given request. Notice that taking the intersection of both the authority

and validity fields allows principals to issue authorisation certificates that have authority and

validity fields that are greater than those of the previous certificates in the chain. Therefore if

one certificate in the chain expires, that certificate can be refreshed independently of the other

certificates. The system is therefore distributed both in space and time [Aur99].

The authorisation certificates communicate power from the issuer to the subject. This power

is rooted at an ACL. ACLs in SPKI link a resource to a resource owner. When a verifier verifies

an access request for an object, an ACL links the object to the issuer of the first certificate

in the certificate chain, thereby forming acertificate loop. The SPKI RFC does not specify a

format for ACL entries, however a sample implementation is simply an authorisation certificate

without the issuer field.

A typical certificate loop is depicted in Figure 2.8 where theowner,Pa of an objectO, grants

Pb an SPKI authorisation certificate,Cab, with access rights,Aab = (read ,write), for the object

O. Pb then further delegates access rightsAbc = (read) to Pc by grantingPc another delegation

certificateCbc. Now, whenPc wants to accessO, she showsPa both certificatesCab andCbc.

Pa is now able to form a certificate chain fromPc to Pb via Cbc and fromPb to itself viaCab.

Finally Pc authenticates herself toPa by proving ownership of the key-pairPc. Pc does this

by executing a public key challenge-response protocol withPa (See§5.3 for a more detailed

discussion on challenge-response protocols). This completes the certificate chain which now,

along with an implicit ACL, forms acertificate loopflowing from Pa to Pb to Pc and back to

58 Chapter 2. Background

Pa Pc

Issuer: Pa
Subject: Pb
Delegation: true

Authorisation: Aab
Validity: Vab

Issuer: Pb
Subject: Pc
Delegation: false

Authorisation: Abc
Validity: Vbc

Pc proves ownership of key-pair Pc to Pa

Pb

Cab Cbc

O

Figure 2.8 : An SPKI authorisation certificate loop with three principals and two levels of dele-
gation.

Pa again.Pa has now verified thatPc is authorised to accessO within the privileges granted by

Aab ∩ Abc. Typically the verification is performed by an access control service rather thanPa.

Our work relies on SPKI authorisation certificates to propagate authorisation from resource

owners to domains in a decentralised and scalable fashion. The following sections discuss some

of the more advanced features of SPKI that are utilised in MAIA .

2.6.2 Name Certificates

One of the SDSI features that was incorporated into the SPKI specification as a result of the

merging of the two wasname certificates. In most cases SPKI relies simply on public keys as

principal identities. But in some cases it is beneficial to be able to give that public key a name in

some context. SDSI relies on linked local namespaces, i.e. each principal in the system has their

own namespace and the principal is free to create whatever names it wants in that namespace.

Another principal can refer to a local name in some other principal’s namespace by prefixing

the local name with the identity, i.e. public key, of the other principal. For example, ifP1 has

defined a namefoo to refer toP2, a third principal can refer toP2 with P1foo. The name can

refer to either a principal or another name. Thereby we can create arbitrarily long linked names

that will eventually refer to a principal with the principal’s public key.

Naming is based onname certificates. A name certificate is a 4-tuple with the following

fields: Issuer, Name, Subject, andValidity. The 4-tuple states that in the issuer’s namespace the

given name will refer to the given subject for the given validity period.

As mentioned earlier, when we introduced SPKI authorisation certificates, a name can be

used as the subject in an authorisation certificate. That is,the authorisation certificate can dele-

2.6. Simple Public Key Infrastructure 59

gate authority to a name in the issuer’s namespace. The issuer can then issue a name certificate

for a principal, which links the principal to the authorisation certificate.

A name certificate will never be used in a trust calculation assuch. It will always be reduced

to a public key before being used in such a way. The name certificates allow also for a relatively

painless integration of X.509 identities and SPKI. That is,the X.509 name can be mapped into

an SPKI name certificate that is then used in the rest of the SPKI-based access control system.

2.6.3 Group Subjects

Another benefit of name certificates is the way they allow for the definition ofgroup subjects.

In the previous section we stated that an authorisation certificate can be issued to a name and a

principal can be linked to that name with a name certificate thereby authorising the principal.

The number of name certificates is not limited to one in SPKI, i.e. the issuer can issue any

number of name certificates linking any number of principalsto the same name. This effectively

forms a group of principals that are all authorised by the same authorisation certificate. The

mechanism can be used as a very simple RBAC system. We will use the idea of group subjects

in §5.1.3 to grant a group of principals the same authority.

2.6.4 Threshold Subjects

SPKI supports also so calledthreshold subjectsthat allow multiple principals to act as a quorum.

A threshold subject specifiesk-of-n other subjects. Each subject wields1

k
th of the power of the

threshold subject. That is, at leastk of then subjects must delegate their shares for the authority

of the threshold subject to be passed along. In practice eachof thek subject issues a certificate

independently of the otherk − 1 subjects. It is then up to the subject of those certificates to

collectk certificates and show them to a verifier. The verifier will thenverify each certificate

and accept the statement made by the threshold subject if it has verified at leastk separate

certificates successfully.

Threshold subjects are desirable, because they incorporate redundancy. A combination of

k principals is able to use the subject. Therefore, the threshold subject would remain usable

even if some of the keys of some of the principals were compromised. Threshold subjects also

support the removal of old principals and addition of new ones. Therefore a threshold subject

can evolve through time and remain valid and secure for extensive periods of time. We propose

the use of threshold subjects as owners for the resources that are present in MAIA in Chapters 3,

4, and 5.

60 Chapter 2. Background

2.7 Summary

In this chapter we have introduced the reader to the necessary background required to dis-

cuss both publish/subscribe systems as well as access control in the coming chapters. We have

highlighted the features that allow the publish/subscribeparadigm to scale in wide-area environ-

ments and contrasted the publish/subscribe paradigm to theother distributed communications

paradigms. We have also discussed the various types of publish/subscribe systems that exist

and pointed out the features, e.g. type-based subscriptions and a decentralised event service,

that we expect to see in multi-domain publish/subscribe systems. In the latter part of the chap-

ter we described the basic theory of access control and movedon to describe decentralised trust

management and SPKI that provide the foundations for our access control architecture.

In the next chapter we will present our definition for a multi-domain publish/subscribe sys-

tem in an effort to provide scope for our work. We will also present a number of assumptions

that we have made in our work so that we can build on these assumptions throughout this dis-

sertation.

CHAPTER 3

Multi-Domain Publish/Subscribe Systems

In this chapter we will present our understanding of what a multi-domain publish/subscribe

system is and how its users interact with it in an effort to scope our work. As mentioned briefly

in the introduction in Chapter 1, we will consider only decentralised publish/subscribe systems

that span across multiple independent administrative domains. We motivate our assumption that

large-scale publish/subscribe systems will be implemented by multiple domains in§3.1. In§3.2

we present an informal definition of domains and describe each of the four types of domain

members considered in our work. Access control systems are usually based on the notion of

subjects or principals. We list in§3.3 the principals that are present in the MAIA architecture.

We assume that a coordinating principal is responsible for forming the multi-domain system.

We discuss coordinating principals in§3.4. We expect that the system will be deployed with

encrypted connections between nodes in order to avoid a number of attack scenarios. We will

discuss the details of encrypted connections in§3.5. In §3.6 we present an informal threat

model in order to outline what security threats we are considering in this dissertation. Finally

§3.7 elaborates on the numberplate monitoring example first presented in§1.2.2. We will use

this application as a motivating example throughout this dissertation.

3.1 A Multi-Domain Publish/Subscribe System

Multi-domain publish/subscribe systems are large, distributed systems that extend across two

or more independent administrative domains. A multi-domain system is formed when multiple

domains connect their broker networks together, thus forming a shared event service consisting

of brokers from all participating domains.

The incentive for domains to join the network is twofold: first, domains are interested in

61

62 Chapter 3. Multi-Domain Publish/Subscribe Systems

implementing shared applications with other domains, e.g.publishers in one domain produce

events while subscribers in other domains consume them. Alldomains that need access to a

given application take part in forming the publish/subscribe system that this application is run-

ning on. Instead of setting up a separate publish/subscribesystem for each separate application

shared between two or more domains, the participating domains form a single large-scale pub-

lish/subscribe system that is used to implement a number of shared, distributed applications.

Merging together all the small publish/subscribe systems used to run individual applications

provides cost savings for all of the participating domains,because each domain can leverage

the shared infrastructure rather than having to deploy a newinfrastructure for each application.

Second, the shared infrastructure also provides the domains with a higher level of service

in two ways: (i) a larger, shared broker network will generally be able to provide greater geo-

graphic reach without significant extra cost, and (ii) sharing a broker network will almost always

increase the overall interconnectivity of the decentralised publish/subscribe infrastructure, thus

providing a higher level of fault-tolerance and performance. We expect such a multi-domain

system to consist of thousands of event clients and hundredsof event brokers, and to span a

large geographic area.

In addition to multi-domain applications, we assume that domains will also want to deploy

their private applications on the same shared publish/subscribe infrastructure. Again the incen-

tives for doing so are the increased geographic reach, faulttolerance, and performance provided

by the larger infrastructure, as well as the lower costs of not having to maintain two independent

publish/subscribe systems, one private and the other public.

Shared infrastructures are attractive to domains, but onlyif the system provides appropriate

access control mechanisms to prevent unauthorised access to deployed applications.

3.2 Domains

A domain in a multi-domain publish/subscribe system represents a physical or logical domain

in the physical world, i.e. a corporation, an institute, or adepartment in either of the former. For

example, a service provider, a stock exchange, a regional police force, or a university would

all be considered domains. In principle a domain is an independent organisational entity that is

responsible for maintaining its own publish/subscribe infrastructure.

The domains connect to each other either over private or public network connections. Pri-

vate connections would be made over dedicated private network connections, orvirtual private

networks(VPNs). Connections over a public network would be over the public Internet or some

other publicly accessible communication network that is not limited to the use of participating

domains. In most cases we expect domains to communicate overthe public Internet, but in some

scenarios it is more likely that domains are connected either over dedicated connections or over

virtual private connections. This would be the case in both the stock ticker example described

3.2. Domains 63

in §1.2 and the numberplate monitoring example described in§1.2.2 and in more detail at the

end of this chapter in§3.7.

There are four kinds of components in a domain that are interesting to us: sub-domains,

event clients, event brokers, and an access control service. We will discuss each domain com-

ponent separately in the following four sections.

3.2.1 Sub-Domains

Domains can also be arranged in a hierarchical manner, whichallows larger domains to organise

their internal structure to smaller entities in order to facilitate easier management. For exam-

ple, a large university might delegate publish/subscribe infrastructure management duties to

individual departments instead of handling everything centrally. Similarly, an investment bank

must for legal reasons separate its trading department fromits corporate financing department

in order to avoid the misuse of confidential client information.

The sub-domain hierarchy can be as deep as necessary, i.e. sub-domains can have sub-

domains that have their own sub-domains etc. We use the concept of sub-domains to divide the

enclosing domain into multiple trust domains. Each sub-domain is issued with its own set of

access rights. Some of those access rights do not overlap with the other sub-domains thereby

giving that sub-domain access to resources that are unavailable to the other sub-domains. A

domain is allowed to contain either event brokers or sub-domains. Such a restriction allows

for a very simple authorisation policy for event brokers where the event brokers inherit all the

access rights of the enclosing domain. We discuss this in more detail in§5.1.4.

3.2.2 Event Brokers

Event brokers are the backbone of a decentralised publish/subscribe system, as explained in

§2.3. The event brokers of a domain connect it to the shared, multi-domain publish/subscribe

system. It is expected that each domain adds event brokers tothe shared publish/subscribe

infrastructure. The promise of added brokers acts as an incentive for existing domains to allow

new domains to join the shared infrastructure.

The domain’s event brokers join the multi-domain publish/subscribe system by connecting

to existing brokers. As members of the broker network the brokers are expected to route events

from publishers to subscribers even if neither the publisher nor any of the subscribers are a

member of the broker’s domain. That is, the broker acts as an intermediate broker on the

event’s path from the publisher to the subscribers. This is especially important if the event

broker network is built on top of a peer-to-peer routing substrate, as is the case with MAIA ,

where event routing is based on dynamic routes that can change during the life-time of the

system rather than static routes created by system administrators.

In addition to routing events as members of the broker network, the event brokers are re-

sponsible for exporting the publish/subscribe API to the event clients in their own domain. That

64 Chapter 3. Multi-Domain Publish/Subscribe Systems

is, event clients connect to a local broker in order to accessthe event service, as explained in

§2.3.

3.2.3 Event Clients

Event clients implement the applications that use the publish/subscribe system as a communica-

tions medium. An application that wants to publish or subscribe to events connects to an event

broker as an event client. This allows the application to access the event service through the

publish/subscribe API exported by the event broker.

We expect that an event client will always connect to alocal broker, i.e. an event broker that

is a member of the client’s domain. This will allow the clientto trust the event broker to handle

confidential event content and in general act as the client’sproxy towards the publish/subscribe

system by, for example, forwarding the clients subscription, advertisement, and publication

requests to the event service.

It is expected that all domains include both event clients and brokers. This follows from

the requirement that all domains provide a set of event brokers to the shared infrastructure, and

the fact that there is little motivation for a domain to join the multi-domain system unless it

has clients that require access to one or more of the shared applications. As an exception to

this rule one can envision domains that provide event brokers to a publish/subscribe system

as an infrastructure service without having its own clientsin the system. Another possible

scenario would include service provider domains that provide their customers access to the

multi-domain publish/subscribe system, but who do not havetheir own event clients otherwise

(e.g. the brokerage firms in our stock ticker example in§1.2 provide their clients access to the

publish/subscribe system). In such a case the customers canbe seen as members of the service

provider’s domain.

3.2.4 Access Control Service

The last component in a domain is anaccess control service(ACS). The ACS is an abstract

service that is responsible for managing and enforcing the access control policy of the domain.

The ACS is described as an abstract service, because the concrete implementation of the ACS

is not relevant in our work. Our work relies only on the assumption that the ACS issues SPKI

certificates to domain members (i.e. sub-domains, event brokers, and event clients) based on

the domain’s access control policy and the credentials thathave been granted to the domain by

other principals in the publish/subscribe system.

We will use the termsdomainandACSinterchangeably throughout the rest of this disser-

tation. For example, in Chapter 5 we write that a domain is granted a given access right. In

practice this means that the ACS of that domain is granted the given access right. The ACS is

responsible for delegating that access right within that domain according to the domain’s access

control policy.

3.3. Principals 65

3.3 Principals

Each of the domain members mentioned above including the domain (i.e. the domain’s ACS) is

a principal in MAIA . As in SPKI, a principal is identified by its globally unique public key. The

principal authenticates itself to a verifier by proving ownership of the corresponding private key

by executing a challenge-response protocol with the verifier (See§5.3).

Access rights are delegated to principals, who either further delegate them to other princi-

pals, e.g. domains delegate access right to their members, or use them to access resources or

services, e.g. event clients and event brokers use the access rights to access the publish/subscribe

system.

In many cases a principal is a human who executes an application that inherits the prin-

cipal’s identity for the duration of the session. The application might be provided with a set

of credentials by the principal, which define the application’s access rights. Or alternatively

the application can inherit the principal’s identity, which would allow the application to behave

as the principal and activate credentials on demand, e.g. role activation in RBAC (we discuss

RBAC in MAIA in more detail in§6.1). In the numberplate monitoring example described in

§1.2.2 Detective Smith is a human principal.

The principal can also be a software agent. That is, a piece ofsoftware running on a specific

node has been given its own identity and issued its own credentials. For example, we see

the event brokers in a domain to be principals in their own right. The CCTV cameras in the

numberplate monitoring example are examples of software agents as principals.

A subject in the system can have more than one key pair. Becauseeach key pair defines an

identity, a subject with multiple key pairs has effectivelymultiple identities in the system and is

seen as multiple principals. Nothing in the key pairs or in the system links two identities that are

used by the same subject to that subject or to each other. Access rights are principal-specific.

Therefore, access rights issued to one principal cannot be used by the other identities of a given

subject.

We do not use X.509 identity certificates in MAIA to bind the public key to a X.509 identity

for two reasons. First, an X.509 identity is not necessary inthe architecture – even with identity

certificates the access control decision making and verification would be based on the key pair

rather than the identity. Second, it is not clear what identity to give to certain types of prin-

cipals. For example, software agents, like event brokers, have no clear identity that would be

meaningful to humans. In some cases, e.g. for human principals, binding the public key to the

identity of the principal is sensible, but this can, and should, be implemented outside of MAIA .

3.4 The Coordinating Principal

A multi-domain publish/subscribe system could be created,for example, at the initiative of

one domain that creates an application that other domains want to access. The domain grants

66 Chapter 3. Multi-Domain Publish/Subscribe Systems

other domains access to the application by inviting those domains to join the publish/subscribe

system. Thus the multi-domain publish/subscribe system grows organically when more and

more domains require access to applications implemented bymembers of the publish/subscribe

system.

We call the domain that forms the publish/subscribe system thecoordinating principal. We

see the coordinating principal as the owner of the publish/subscribe system, i.e. the coordinating

principal forms the multi-domain system and is responsiblefor deciding which other domains

are allowed to access the shared infrastructure. In addition to controlling access to the publish/

subscribe infrastructure, the coordinating principal also decides which domains are allowed to

introduce new event types in the shared system.

The SPKI threshold subjects allow ak-of-n group of principals to behave as a single prin-

cipal, as we discussed in§2.6.4. By creating a threshold subject a group of principals can act

together as the coordinating principal and no one domain hascontrol over the whole system.

For example, three domains that want to form a shared publish/subscribe system together can

setup a2-of-3 threshold principal to be the coordinating principal. Now two out of three do-

mains must agree on which other domains to invite to join the system, or which domains are

allowed to install new event types.

The threshold subjects also support changes to the group of principals that form the thresh-

old subject. For example, two of the three domains in the above example can decide to replace

the third domain in the2-of-3 threshold subject with a fourth domain. This ability of threshold

subject’s is very important from a management point of view,because it allows the system to

evolve when domains join and leave the system or if a key has been compromised.

We would expect most multi-domain publish/subscribe systems to be created by two or

more domains where all of the original domains would want to have a say in managing the

system. Threshold subjects allow all of those domains to have an equal amount of control over

the shared publish/subscribe system.

3.5 Transport Layer Security

We assume that all links (i.e. both client-to-broker connections and broker-to-broker connec-

tions) in the publish/subscribe system are protected byTransport Layer Security(TLS) [DA99].

Securing the communication links between nodes with TLS is asimple way to prevent trivial

network sniffing attacks. Also, the encrypted transport guarantees that the application level

messages have originated from the other peer instead of having been injected to the system

by an adversary. This is especially important in publish/subscribe systems with dynamic event

routing where forged routing messages can be used to corruptthe routing state of the system

thereby bringing the whole routing network down.

TLS requires the authentication of at least one of the two endpoints for it to be secure against

3.5. Transport Layer Security 67

a man-in-the-middle attack. The authentication is usually based on X.509 identity certificates.

For example, in the secure version of thehypertext transfer protocol(HTTPS) the server is

usually required to present an X.509 identity certificate that is bound to the server’s hostname.

If the server’s hostname does not match the hostname on the certificate, the user is presented

with a warning.

Using the server’s hostname as an identity, it is possible insecure web traffic, because it is

safe to assume that the server’s hostname is registered in the domain name service(DNS). In

MAIA it is not necessarily true that the broker’s hostname has been added to the DNS or that

it even has a static IP. Forcing the brokers to have static IP addresses and registered hostnames

would prevent us from having mobile broker nodes. It would also add to the administrative

burden of adding a new broker to the system, because the system administrator would have

to add the broker’s hostname to the DNS system and that hostname would have to match the

identity in the broker’s X.509 certificate.

In a typical HTTPS session the client connecting the server is never authenticated. This is

partly because users very rarely have X.509 certificates issued to them, so they do not have a

certificate to present to the server. Also, in most secure webapplications the user authorisation

is done at the application level once the TLS connection has already been established. For

example, in a web banking application the user is queried fora login name and a password

before she can access her bank account. If the user had a X.509certificate issued to her, she

would not have to login to the web bank, because the bank’s webserver would have already

authenticated the user as part of the TLS handshake. Again inour case issuing X.509 certificates

to event clients is not an option, because the event client might not have a clearly definable

identity, as discussed in§3.3.

Instead of using X.509 identity certificates, we use SPKI authorisation certificates for autho-

rising TLS connection end-points. We will discuss access control and principal authorisation in

more detail in Chapter 5, but suffice to say at this point, we want to divide access control in the

publish/subscribe system to network-level and application-level concerns. Network-level access

means that a principal is authorised to connect to the publish/subscribe system. When initiating

the TLS connection, both peers will present their network-level credentials to each other. By

verifying those credentials both peers can be certain that they are connected to another autho-

rised member of the publish/subscribe system. Once the TLS connection has been established

the application-level access control can be implemented ontop of the secure connection.

In the multi-domain publish/subscribe system the issuer ofall network-level access rights

is ultimately the coordinating principal. Therefore the verifier can check that the other peers

certificate chain is rooted at the coordinating principal, and that the certificate chain authorises

the peer to connect to this particular publish/subscribe system (See§5.2 for more details). As-

suming that the connecting peer has been authorised, possibly indirectly, by the coordinating

principal to connect to the given publish/subscribe system, the verifier should establish the TLS

connection to the connecting peer. The connecting peer’s identity is immaterial. The real ques-

68 Chapter 3. Multi-Domain Publish/Subscribe Systems

tion is whether the peer is authorised to join the publish/subscribe system.

3.6 Threat Model

We present an informal threat model in order to clarify what kind of threats and attacks MAIA

is designed to protect against and what kind of assumptions we have made concerning the

environment where MAIA is deployed.

In our approach we have divided access control in multi-domain publish/subscribe systems

into two levels: network-level access control and application-level access control. Network-

level access control controls access to the publish/subscribe infrastructure, i.e. which event

clients and brokers are authorised to connect to the broker network. Application-level access

control, on the other hand, controls access to event types (we consider a set of event type defi-

nitions to be a publish/subscribe application) that are being published on the publish/subscribe

system. That is, application-level access control policy defines which principals have the rights

to subscribe to or publish events of a given event type.

Computer security is often described in terms of confidentiality, integrity, and availability

of both data and services. In publish/subscribe systems this means that we want to protect the

integrity and confidentiality of advertisements, subscriptions and publications, and the avail-

ability of the event service. By implementing access controlwe are able to address all three

facets of security. By controlling access to the event service we can address availability require-

ments. By controlling access to publication and subscription rights we can address integrity and

confidentiality requirements.

We place a lot of trust on authorised principals. Basically weassume that principals that

have been authorised to join the publish/subscribe system are trustworthy and not malicious.

For example, we assume that an event broker that has not been authorised to access events of a

given type might be interested in reading those events and thereby try to circumvent the access

control system, but it will always route the events correctly. On the other hand we assume

that if a principal were to start behaving maliciously, i.e.flooding the network with messages,

corrupting routing state, or tampering with event content,we can identify them and revoke their

access rights. Obviously principals can behave maliciously in ways that are difficult to detect.

For example, an event broker can randomly drop events, and all principals can leak confidential

information from the system to unauthorised parties (this is true for all discretionary access

control systems).

We can identify four types of adversaries for a multi-domainpublish/subscribe system: (i)

an external adversary that is not a member of any of the participating domains and is therefore

only able to eavesdrop on the message traffic between domains; (ii) an internal adversary that is

a member of one of the participating domains, but does not have access to the publish/subscribe

system and can therefore only eavesdrop on the message traffic between event brokers and

3.7. Example Application 69

clients; (iii) an internal adversary that is authorised to access the publish/subscribe system, but

is not allowed to access a specific event type; and finally (iv)an internal adversary that has

access both to the publish/subscribe infrastructure and limited access to a given event type (e.g.

subscription rights, but no publishing rights).

The goal of an adversary is to exceed her authority, i.e. gainaccess to system in a way that

is not authorised by the access control policy. For adversaries in cases (i) and (ii) this means

accessing the publish/subscribe system in any way possible. For adversaries in cases (iii) and

(iv) this means subscribing to events, publishing events, and setting and reading attribute values

in published events.

We can easily protect against both adversaries (i) and (ii) by deploying the broker network

on top of TLS, as described above in§3.5. TLS secured connections would be used both for

intra and inter domain connections. This prevents the adversaries from accessing any of the

publish/subscribe system messaging, thereby preventing them from reading published events

and from injecting messages into the system (e.g. publications or routing messages).

In the last two scenarios, i.e. (iii) and (iv), the adversaryhas limited access to the publish/

subscribe system and she wants to exceed her authority and access additional event types. For

both scenarios we require a more sophisticated access control mechanism. In Chapter 5 we

propose an access control system that allows us to delegate access rights to domains and event

clients, and to verify those access rights at the event client’s local broker. In Chapter 7 we

propose an approach to enforce access control within the broker network by encrypting event

content.

We do not address more advanced attacks in this dissertation, e.g. attacks based on traffic

monitoring.

3.7 Example Application

The architecture presented in this dissertation is motivated by problems facing organisations

with which we have done collaborative research, such as the National Health Service (NHS) –

particularly electronic health record management – and thePolice Information Technology Or-

ganisation (PITO) in the UK. In our example application we consider the British Police Force

– a federation of more than fifty largely autonomous regionalforces. Historically the national

police forces have been relatively independent of central policies in their decision making. For

example, the police forces have been free to purchase and deploy software and data models

independently of each other. This has resulted in incompatible information technology deploy-

ments across the forces, which hinder effective police workby preventing one force to access

data and services from another force.

Many of PITO’s projects aim to increase the efficiency of communications between the

independent police forces. This is a challenging task, given the diversity of software deployed,

70 Chapter 3. Multi-Domain Publish/Subscribe Systems

and the different ontologies and data models used within theseparate forces. The main efforts

in PITO include developing a data model for nation-wide use that is compatible with the data

models used both by Interpol and Europol, and enabling nation-wide access to force-specific

databases and national registries (e.g. fingerprint registry, vehicle registry, and the criminal

records database).

We feel that a shared, nation-wide publish/subscribe system would enable information to

flow more efficiently and faster from force to force. For example, publish/subscribe messaging

allows a user to be notified when an event has occurred. This functionality is very valuable in

criminal investigations where new information is most valuable when it is first discovered. For

example, vehicle sightings, arrests, and the recovery of stolen goods or firearms are all events

that can help the police solve an investigation. A publish/subscribe system allows the user to be

notified of an event as soon as it happens, asynchronously, without having to constantly poll the

related databases.

By implementing a common, shared publish/subscribe system,the national forces are able

to share these applications nation-wide. The forces also benefit from lower infrastructure costs

and added fault-tolerance with respect to the event service, as discussed earlier in the beginning

of this chapter.

Although the regional forces are all part of the national police force and thus trusted, there

still needs to be access control in place to provide confidentiality and to guarantee message

integrity. For example, investigations include witness statements where the witness’ identity

must remain confidential in order to protect her privacy. Thus an infrastructure shared among

multiple seemingly mutually trusting domains must implement an access control system such

as the one proposed in this dissertation.

In addition to protecting data confidentiality and integrity, access control is also necessary

in order to implement domain-internal applications. In thecase of the British Police Forces, the

regional forces will still have their own proprietary applications that they will want to maintain

and possibly integrate with the publish/subscribe system.These applications should not neces-

sarily be accessible to all the other national forces, i.e. the local force must be able to restrict

access to those applications to the local force even when they are deployed on the nation-wide

publish/subscribe system.

The threat model for this scenario is different from the threat model presented in§3.6, i.e.

we can assume that there are no external adversaries, because the system is deployed within

the police network, and the internal adversaries are more likely to be curious rather than mali-

cious. Nevertheless we will assume the threat model from§3.6 in this dissertation in order to

provide an access control architecture that will be applicable to a wider range of deployments

and applications.

We will use the numberplate monitoring application that we touched upon in§1.2.2 as an

example throughout this dissertation. Figure 3.1 shows themulti-domain publish/subscribe

system consisting of three particular sub-domains:

3.7. Example Application 71

IB

SHB

Sub

Sub
Sub

IB

IB

IB
IB

IB

IB

IB

IB

IB
CHB

SHB

PHBIB

IB
IB

IB

IB
IBIB

IB
TO

IB

IB
IB

Metropolitan Police
Domain

Congestion Charge
Service Domain

PITO Domain

Detective
Smith

Billing
Office Statistics

Office

Sub Subscriber SHB Subscriber
Hosting Broker

Pub Publisher PHB Publisher
Hosting Broker

TO Type Owner CHB Client Hosting
Broker

KEY

Pub

Camera 2

Pub

Camera 1

IB Intermediate
Broker

Figure 3.1 : An overall view of our multi-domain publish/subscribe deployment

Congestion Charge Service Domain.The CCS domain implements the numberplate moni-

toring system in London. The main purpose of the system is to enforce payment of the

congestion control charge by vehicles entering the congestion controlled area. The do-

main contains the CCTV cameras that implement numberplate recognition and publish

numberplate events whenever a vehicle passes by them. The domain also includes the

billing and statistics systems that levy the congestion control charges and monitor the

number of vehicles that have passed through the London Congestion Charge zone each

day. The fact that the subscribers in the CCS domain are only authorised to read a subset

of the vehicle event data will exercise some of the key features of the enforceable publish/

subscribe system access control presented in this dissertation.

Metropolitan Police Domain. The Met domain has access to the numberplate sighting events

published by the CCTV cameras. The publications are used to track vehicles in London

that are related to an ongoing investigation. The tracking is authorised on a case by case

basis by a judge issuing an appropriate court order. The requirement of a court order is

enforced by an access control policy in the Met domain as willbe described in Chapter 6.

PITO Domain. The Police Information Technology Organisation (PITO) is the centre from

which Police data standards are managed. It is the Coordinating Principal that formed

72 Chapter 3. Multi-Domain Publish/Subscribe Systems

the publish/subscribe system and it has deployed theNumberplateevent type that is used

to report numberplate sightings in this particular scenario. PITO is an example of an

infrastructure provider, i.e. it has no event clients of itsown in our example scenario.

We also have the following four event clients in the example scenario deployed in the above

three domains:

Detective Smith. Detective Smith is a member of the Met domain. She has been assigned to a

case where the suspects were seen to have driven away in a car with the license plateAE05

XYZ. Detective Smith has been authorised to subscribe to numberplate events matching

the suspect’s numberplate by a court order for a limited time.

Billing Office. The CCS domain contains a Billing Office subscriber. This subscriber is respon-

sible for receiving allNumberplateevents and levying the vehicle owner the congestion

charge whenever the vehicle is seen to enter the congestion controlled area. The Billing

Office needs to see only the numberplate and timestamp information from each event to

be able to levy the charge. In order to protect the vehicle owner’s privacy the Billing

Office is not authorised to read the location information.

Statistics Office. The Statistics Office is another subscriber in the CCS domain. Its purpose is

to collect traffic statistics from the system. Similarly to the Billing Office, the Statistics

Office requires only partial access to theNumberplateevents. Specifically the Statistics

Office needs to know the location and timestamp of the sighting, but not the numberplate

of the vehicle that was sighted.

Cameras. Finally the system includes a number of cameras that publishNumberplateevents.

We assume that the cameras are able to execute the numberplate recognition software

internally and publish the numberplate in textual form in aNumberplateevent. Each

camera knows its own location, which will be included in the published events alongside

the time when the vehicle was sighted and the vehicle’s numberplate. We expect that the

CCTV cameras will be able to produce relatively accurate timestamps.

We will use this application as a running example throughoutthis dissertation. Many of the

features of the MAIA system are motivated by the access control requirements of this example

application. For example, the access control system must beable to enforce access to the events

per event attribute, so that the system can appropriately protect the privacy of vehicle owners.

3.8 Summary

In this chapter we have outlined the scope of our work. We defined what a multi-domain publish/

subscribe system is; how one is to be deployed; and what kind of threats it should be protected

3.8. Summary 73

against. Our aim has been to introduce the reader to the assumptions that we have made in our

work, especially those assumptions that will affect some ofthe design choices that we make

later on in this dissertation.

In the next chapter we will present a scheme for secure event type definitions, i.e. event type

definitions whose integrity and authenticity can be verifiedby the user of the event type. The

event type definitions will also provide globally unique andverifiable event type and attribute

names. We feel that these features are the cornerstones of anaccess control system for publish/

subscribe systems.

CHAPTER 4

Secure Event Types

The goal of our work is to design an access control architecture for decentralised, multi-domain,

type-based publish/subscribe systems. We have designed our access control architecture for

Hermes, i.e a publish/subscribe system with a decentralised, dynamic topology broker network,

and a type-based subscription model, but the work is equallyapplicable to centralised systems

or systems with a static broker network.

We lay the foundations for an access control architecture byfirst addressing the security

issues of type definitions. For example, the lack of unique and verifiable names in Hermes-style

event type definitions makes it very difficult to reference event types and attributes from an

access control policy unambiguously.

In §4.1 we discuss event type definitions in general, introduce the basic Hermes type defini-

tion framework and address each of the security vulnerabilities inherent in those type definitions

in turn.

We presentsecure event type definitionsfor Hermes-style type-based publish/subscribe sys-

tems in§4.2. Our model provides a cryptographically verifiable binding between type names

and type definitions. It also facilitates self-certifiable type definitions that enable the verification

of the authenticity and integrity of these type definitions.We argue that secure, unique, and veri-

fiable type and attribute names are a prerequisite for comprehensive access control architectures

in decentralised publish/subscribe systems. Although thechapter concentrates on type-based

publish/subscribe, the naming scheme is also applicable totopic-based publish/subscribe. This

will be elaborated on in§4.6.

In §4.3, we consider the management of event type definitions in multi-domain publish/

subscribe systems and present a scheme for event type version management that supports mul-

tiple versions of an event type to be present in a publish/subscribe system at any given time.

74

4.1. Event Type Definitions 75

Field Description
name Name of the event type definition
extends An optional reference to an inherited event type
attributes A set of attribute definitions

Table 4.1 : A Hermes-style event type definition.

Following type versioning, we present a mechanism for the original type owner to delegate

management duties to other principals by issuing them signed capabilities authorising them to

manage a given event type definition.

We had to redesign some parts of Hermes in order to implement secure event types. How-

ever, the addition of secure event types allowed us to simplify other parts of Hermes. All in all

the addition of secure event types makes the overall Hermes system simpler, as well as provid-

ing us with a solid foundation on which to build our access control architecture. These changes

will be discussed in more detail in§4.4.

We evaluate our approach in§4.5 and discuss the computational overhead introduced by

the addition of secure event types, or more specifically the cryptographic operations used to

verify secure event types. We will show that all of the added overheads are one-time costs, i.e.

the added overheads will affect the start-up time of brokersand the time required to process

advertisement and subscription messages whereas event publication and delivery will not be

affected.

Finally we conclude the chapter with a section covering related work,§4.7, and a section

summarising the chapter,§4.8.

4.1 Event Type Definitions

Types in the context of publish/subscribe systems mean thatpublished events must conform

to a predetermined event type definition. We assume that a type is defined by atype owner,

i.e. principal in the publish/subscribe system, who then provides the type definition to publish/

subscribe applications and the event service. In most caseswe would expect this principal to

be either the domain, or alternatively a principal in a domain who is responsible for managing

event types in that domain. The event service (i.e. local broker in the context of a decentralised

publish/subscribe system) is responsible for type-checking a submitted publication against an

event type definition provided in an earlier advertisement request.

A type definition can be modified after is has been first defined and re-deployed as a new

version of the original type (See§4.3 for more details). We call a principal that modifies an

existing type atype manager. Again, a type manager is expected to be a domain or a specific

type manager principal in a domain. We refer to the type owneralso as a type manager in the

following sections when the type owner is modifying an existing type.

76 Chapter 4. Secure Event Types

A Hermes event type definition, as shown in Table 4.1, consists of three components: an

event type name, a set of attribute definitions, and an optional reference to an inherited event

type (i.e. the name of the inherited type). An attribute definition defines the name and type of

the attribute. A type definition name and an attribute name are both represented by a character

string. As stated in§2.3.1, we will not consider event type inheritance in this dissertation.

Therefore we will ignore theextendsfield of the Hermes event type definition throughout the

rest of this dissertation.

The main problem with simple, Hermes-style, type definitions, as described above, is their

lack of ownership information. The type definition does not specify who has defined it, i.e. its

owner. In a decentralised access control system the resource owner is responsible for managing

the access control policy for a resource. If the owner of an event type is not known, the system

does not know whom to trust as the source of access control policy.

Related to the lack of ownership information, the type definition provides no integrity pro-

tection. Without integrity protection anyone will be able to change the type definition and claim

that their version of the type definition is the authentic one. In a closed, small-scale system this

may be acceptable, but in a decentralised, multi-domain publish/subscribe system this is not

acceptable. In addition to malicious changes, a large-scale system is also more likely to experi-

ence, for example, transmission errors that might change the type definition accidentally. Both

malicious and accidental changes to the type definitions would go unnoticed without integrity

checks embedded in the type definition.

Finally, event type and attributes names are not protected against name collisions. For ex-

ample, two type owners might both introduce an event type namedLocationat the same time

without knowing about each other. In such a case it would be impossible for the access control

system to know which event type definition was meant when it encounters the nameLocation

in an access control policy or a publish/subscribe request.In addition to name collisions, the

authenticity of type names cannot be verified. Authenticityin this case means that the event

type name was defined by the same principal that defined the event type, i.e. the type owner.

Without a mechanism for verifying the authenticity of typesnames a malicious principal could

bind an existing type definition to a new name owned by him, which might allow the malicious

principal to circumvent the access control policy by accessing the type definition through the

new name.

The possibility of name collisions and the lack of a mechanism for verifying the authenticity

of type names means that one can not reference type names or attribute names from an access

control policy, because there are no guarantees that name inthe policy references the correct

event type. That is, there exists a many-to-many relationship between names and event type

definitions instead of the expected one-to-one relationship.

The next section describes simple enhancements to the basicevent type definitions that

result in verifiable type definitions, and unique and verifiable names, with no possibility of

name collisions.

4.2. Secure Event Types 77

Type

Registry

Detective

Smith

PITO
[PPITO, “Numberplate”]
[type def., SPITO]

[PPITO, “Numberplate”]

[PPITO, “Numberplate”]

[type def., SPITO]

1:

2:

3:

4:

5: verify(SPITO, type def., PPITO)

Figure 4.1 : Detective Smith retrieves the Numberplate event type definition from a type registry
and verifies its authenticity and integrity.

4.2 Secure Event Types

We propose a secure event type framework for type-based publish/subscribe systems that se-

curely binds the type name and type definition to each other. It also guarantees type authenticity

and integrity by using public key cryptography. Secure event types form a basis for our access

control architecture by allowing types and attributes to bereferenced from an access control

policy in a secure and unambiguous fashion.

We approach the problem of secure event type definitions by defining a secure namespace

for type names. We propose incorporating the type issuer’sidentityto the type name in the form

of a public key. A public key is globally unique if the public key scheme is secure [EFL+99],

thus a public key can be used to define a globally unique namespace. Namespaces that are spe-

cific to type owners will prevent both accidental and malicious name collisions in the publish/

subscribe system.

Finally we propose that the type owner digitally signs the type definition. Because the

private key used to sign the type definition corresponds to the type owner’s identity incorporated

in the name of the type definition, the type name is bound to thetype definition by the digital

signature. Similarly to digitally signed email messages, both the authenticity and integrity of

the type definition can be verified by verifying the digital signature on the type definition with

the identity in the type name. If the signature verifies correctly, it follows that the issuer is the

owner of the namespace defined by the public key (authenticity), and that the type definition has

not been tampered with since it was issued (integrity). Onlythe owner of the namespace is able

to issue new types for that namespace, because the digital signature on the type definition must

be bound to the identity defining the namespace. By incorporating the type owner’s identity

in the type definition’s name we create a self-certifying link between the name and the type

definition. That is, any principal in the system is able to verify the authenticity and integrity of

any given event type definition simply by verifying the digital signature on that type definition

78 Chapter 4. Secure Event Types

Field Description
name A tuple consisting of the type owner’s identity

and a human-readable name
attributes A set of attribute definitions
signature The type owner’s digital signature containing

all of the above elements

Table 4.2 : A secure event type definition.

with the public key that is part of the type definition’s name.Figure 4.1 shows how Detective

Smith looks up theNumberplateevent type definition from the type registry and then verifies

the authenticity and integrity of the type definition by verifying its digital signature with the

public key present in the name tuple. The figure presents the following steps:

i. The type owner, PITO, inserts theNumberplateevent type definition into the type registry.

ii. PITO sends the name tuple to Detective Smith,

iii. Detective Smith looks up the event type definition matching the name tuple she received

from PITO,

iv. The type registry returns the event type definition with its digital signature, and finally

v. Detective Smith verifies the digital signatureSPITO with the public keyPPITO that is part

of the name tuple.

At this point a secure event type definition consists of threeitems as depicted in Table 4.2.

We will add two more items to the secure type definitions in§4.3 to facilitate type management.

The following sections discuss first the changes to the name of the type definition and then

the digital signature.

4.2.1 Name Tuple

The name of an event type is used to refer to a type definition from publish/subscribe messages

(i.e. advertisement, subscriptions, and publications). The name can also be used, for example, to

request a type definition from a type repository. It is crucial that a specifictype namereferences

the sametype definitionfor all clients and messages, i.e. the name tuple must identify a type

definition unambiguously.

We replace the traditional type name with a 2-tuple consisting of thetype owner’s identity

as a public key and the traditionalhuman-readable name(we will add a third item to the name

tuple, a version number, in§4.3.1). The name tuple defines a unique name for the type definition

and creates a secure one-to-one mapping between a type name and a type definition.

4.2. Secure Event Types 79

A cryptographic hash of the type definition would also define aunique name and a secure

one-to-one mapping to the type definition, but we feel that the users benefit from being able

to discern event type’s owner and the user-friendly name from the name tuple. Also, the type

versioning mechanism presented in§4.3 relies on the structure of the event type names.

Notice that the inheritance relationship in Hermes type definitions would also use the com-

plete name tuple including the type owner’s identity ratherthan just the human-readable name.

The Identity of the Type Owner

The type owner’s public key defines a globally unique namespace while at the same time speci-

fying the owner of that namespace. Because the namespace is globally unique, accidental name

collisions are unlikely assuming that the namespace owner is able to avoid name collisions

within its own namespace. A type definition within a namespace is valid only if the signature

of the type definition can be successfully verified with the public key from the name tuple. Be-

cause the signature can only be created with the type issuer’s private key, malicious users are

not able to forge the link between the name and the type definition, and therefore are unable to

introduce forged type definitions into the system.

Using the type owner’s public key to sign the event type definition implies that the key pair

must be long-lived in the system, so that the event type can bemanaged during its lifespan.

This must be considered when types are being deployed in the system. Instead of using a key

associated with a human principal, the types can be created with a key owned by the domain’s

access control server, or a threshold subject (See§2.6.4).

Another alternative is to create a temporary key pair just for creating the type definition. That

key pair is be used to sign the type definition and delegate allmanagement rights immediately to

another principal (We will discuss the delegation of type management duties in§4.3.3). The type

management rights would probably be delegated again to the domain’s access control service or

a threshold subject. This approach is essentially the same as the previous two alternatives with

the exception of using a temporary key pair to create the typeand then for delegating all access

and management rights to the domain or a threshold subject.

Human-Readable Name

Where the type owner’s identity defines a globally unique namespace, the human-readable name

can be used to build naming hierarchies within that namespace. For example, the reverse-

DNS naming scheme used in naming Java packages [Sun99] produces hierarchical names like

uk.gov.pito.Numberplate. Naming hierarchies enable the event type owner to express

a semantic structure among multiple related event types, e.g. all type definitions related to a

single publish/subscribe application can be grouped together. Also, including information about

the type issuer in the type name will help the application developers to remember who has

deployed the type they are working with. We would assume thatan integrated development

80 Chapter 4. Secure Event Types

environment supporting event type definitions would hide the public key part of the name tuple

from the user in order to make the interface more user-friendly. Therefore the human-readable

name should provide the developer with as much information as possible.

In the congestion control example application described in§3.7 PITO is the owner of the

Numberplateevent type. PITO’s identity is signified byPPITO and the full name of the event

type isuk.gov.pito.Numberplate. Therefore the name tuple for theNumberplateevent

type is [PPITO, uk.gov.pito.Numberplate] (we will refer to the event type withNum-

berplatemost of the time in order to save space).

4.2.2 Digital Signature

The digital signature on an event type definition is used to verify the authenticity and integrity

of the type definition, i.e. by verifying the signature one can ascertain that the type definition has

not been tampered with and that it has been created by the signer. The signature is generated

over all of the items in the type definition, including the name tuple, i.e. it binds the name

tuple to the type definition in a cryptographically secure fashion. This binding allows users, for

example, to lookup type definitions from a type registry without having to worry about forged

types, because they can verify the authenticity and integrity of the type definition for themselves.

The digital signature also allows event brokers to trust event types presented to them by event

clients.

4.3 Type Management

We must assume that type definitions in a large-scale publish/subscribe system need to evolve

during their lifetime either because of mistakes made in theoriginal definition of the event type

or because of changing application requirements during theevent type’s lifetime. We must

also assume that multi-domain publish/subscribe systems must remain operational at all times,

because it is very difficult to schedule downtime when multiple domains are running multiple

mission critical applications on the same shared infrastructure. Therefore, a type manager must

be able to deploy an updated version of an event type definition while the system is still running

without disrupting existing clients that are still using the old version of the same type definition.

We expect types to be managed only in the creating domain, butthe delegation mechanism

places no such constraints. That is, a type owner is able to delegate type management rights to

principals in other domains as well. This is important when adomain that created an event type

wants to leave the shared publish/subscribe system, but there are still clients using that type. In

such a scenario the type owner can delegate all type management rights to some other domain

in the system. Another alternative would be for some other domain to recreate a new event type

with the same attributes, but this would disrupt the operation of the publish/subscribe system,

because the name of the new event type would be different.

4.3. Type Management 81

Type managers can apply the following type management operations on event type defini-

tions:

i. add attribute,

ii. remove attribute,

iii. rename attribute,

iv. change attribute type.

Unlike thechange attribute typeoperation therename attributeoperation is not equivalent

to a sequence ofremove attributeandadd attributeoperations, because the rename operation is

able to maintain a semantic link between the attribute’s oldand new name. We elaborate on this

in §4.3.2 where we discuss support for renaming attributes in event types while maintaining the

semantic link between the two names.

The type management features described above are provided in order to allow a type man-

ager to carefully change an event type definition. We expect that after the release of a new

version of a type definition the event clients using that typedefinition will migrate to the new

version in stages: the event clients that are from the same domain as the type manager will

probably migrate early on while event clients in other domains will take a longer time before

migrating. We also expect that some clients might never adopt the new version. Therefore we

feel that it is unrealistic to expect that all event clients are able migrate to a new event type

version at the same time.

We describe in§4.3.2 a mechanism for translating published events from oneversion to

another. This mechanism is quite brittle and will result in disconnected event clients if the type

manager is not careful when changing the event type definition.

The type management features are provided as a way for the type manager to slowly evolve

the event type definition to match new requirements while allowing existing event clients to

continue using the current event type version. When changingan event type definition with a

number of event clients using the current version of the type, the type manager is responsible for

making only changes that allow the event clients to continueto communicate with each other.

The type manager should never introduce changes that will prevent a set of event clients from

communicating with each other if some of them migrate to the new version of the event type

unilaterally.

In cases where there is a risk of event clients losing connectivity, or a slow migration is not

possible for some other reason, a completely new event type should be defined instead of trying

to update the existing event type which would result in eventclients loosing connectivity with

each other. In such cases one can deploy type translator clients that will subscribe to the old

event type, translate it to an instance of the new event type and publish that instance.

82 Chapter 4. Secure Event Types

Alternatively type managers can decide to only extend existing types. That is, the type

manager can add new attributes or rename existing attributes, but it must never remove an

attribute or change its type. By only ever extending the set ofattribute, the type manager can

guarantee that the events will always contain all attributes expected by a subscriber. On the

other hand the type manager cannot force the publishers to include semantically valid values

for attributes that they do not care about. That is, a publisher can always set the attribute value

to null or to some otherundefinedvalue.

The following two sections describe the changes to the secure event type definitions that we

have made in order to support type management in a running publish/subscribe system. The

third section will describe how the type owner will be able todelegate management duties to

other principals.

4.3.1 Version Number

In order to allow multiple versions of an event type to coexist in the publish/subscribe system

simultaneously we propose to include a version number in thename tuple effectively making it

a 3-tuple: [type owner’s identity, name, version number].

A new version number is created for each new version of a type definition that is deployed.

Since the version number is part of the name tuple, changing it effectively renames the event

type. This means that introducing an updated event type intothe system does not interfere with

existing clients, because they have subscribed to and/or publish events of a different type name

(i.e. the same type name, but with a different version number).

Existing clients will continue to use the old type until theyhave been explicitly modified

to subscribe to and publish the new version of the updated event type definition. New clients,

implemented against the updated type definition, can use thenew type immediately.

We assume that clients have to be manually modified to be able to use an updated type

definition. The manual modification might be as simple as adding the new type definition to

the client’s configuration files, or it might require more substantial changes to the client. Notice

that under the current assumptions clients subscribing to the new version of the event type will

not receive events published as instances of the old versionof the same event type. We will

address this shortcoming in§4.3.2 by addingtype version translationto our proposed scheme.

If there is only one type manager, i.e. the type owner, for a given event type, the type man-

ager is free to use a traditional, monotonically increasingversion numbering scheme starting

from 0. Because there is only one type manager there is not riskof version numbers collisions.

When there are more than one type manager for a given event type, we propose using a

version number scheme based on collision resistant values in order to avoid having to serialise

access to a version number counter. If we were to use a counter-based version numbering

scheme with more than one type manager, each type manager would have to ask an authoritative

party for the next version number in order to avoid version number collisions. This would be

4.3. Type Management 83

both slower and more expensive, not to mentioned more difficult to implement, compared to

collision resistant version numbers in a distributed setting. Note that even with multiple type

managers the initial version of an event type can always havea version number 0, which will

also identify the original version of an event type.

In MAIA we have implemented event type version numbers asUniversally Unique Identi-

fiers (UUIDs) [Ope97]. A UUID is a 128-bit value that is guaranteedto be unique from all

other UUIDs until the year 3400. Instead of UUIDs we could also use some other collisions

resistant value, for example, the cryptographic hash of thetype definition. Notice that we are

only concerned with accidental collisions instead of malicious collisions in version numbers.

Therefore we could use MD5 [Riv92] or SHA-1 [FIP02] as a collision resistant hash function

even though these two algorithms are no longer considered tobe secure against malicious at-

tacks [WY05, WYY05].

One of the advantages of UUIDs is that they are generally faster to create than cryptographic

hash values. On the other hand a cryptographic hash value canbe forced to collide with an

existing value. That is, by calculating the hash value from the attributes set the version number

of an event type definition will be the same as the version number of another version of the same

type definition with an equal attributes set. In contrast, a UUID-based version number scheme

will always produce a unique version number regardless of the attribute set. In a hash based

scheme, if a type manager releases a new version of an event type definition that is equivalent to

a previous version, the two versions would have the same version number and therefore the same

name. Notice in order to generate colliding hash values, theversion number must be generated

by hashing only the attribute set. The calculation must not include any other fields from the type

definition, e.g. a creation timestamp or thecredentialsfield that we will introduce in§4.3.3,

because these fields would bind the version number to a specific principal who updated the type

definition or to a point in time when the update happened thereby preventing other principals

from generating colliding version numbers.

We felt that equivalent version numbers for equivalent event type definitions would not

provide us with any further advantage compared to type version translation described in§4.3.2.

Therefore MAIA implements UUID-based version numbers.

It was also suggested to use the digital signature on a type definition as the version number.

Unfortunately this results in a chicken and egg problem, because the name tuple that includes the

version number is included in the type definition that is being signed. That is, we cannot create

the name tuple with a version number, because the version number is based on the signature and

we cannot create the signature, because the signed data mustinclude the name tuple. Remember

from §4.2.1 that including the name tuple in the type definition creates a link between the name

tuple and the type definition, which allows us to verify the authenticity and integrity of both the

type definition and the name tuple.

Compared to a counter-based version number, collision resistant schemes lack a clear time

line. One cannot order collision resistant version numbers, because they are basically uniformly

84 Chapter 4. Secure Event Types

random numbers and one can not say if one version precedes another one or not. With a counter-

based scheme it is obvious that versionn precedesn + 1. In order to provide a time line for

type definition versions we can add the preceding version number to the type definition. With

the help of the reference to the preceding version we can create a partially ordered version tree.

We feel that there is no need for partial ordering of event type versions and have therefore not

added a reference to the preceding version to our secure event type definitions.

With a version number the name tuple for theNumberplateevent type is a 3-tuple: [PPITO,

uk.gov.pito.Numberplate, 1234]. Notice that the real version number would be a 16-

byte UUID number that in its canonical form would be a 36-character hex string, e.g. 550e8400-

e29b-41d4-a716-446655440000. We will be using four character integers to represent version

numbers in the rest of this dissertation in order to make the text more readable.

4.3.2 Type Version Translation

A side effect of adding the version number to the name tuple isthat subscribers will not re-

ceive events from publishers that are publishing instancesof a different version of the same

event type. This presents a real problem when either the publisher or the subscriber updates

its event type version unilaterally. Event clients might migrate to the new version of the event

type in cases where the event clients are in different domains, e.g. the event clients in the type

manager’s domain might be given access to the new version earlier than event client in other

domains. Even if all event clients were migrating to the new version at the same time it would

be improbable that they would do so at exactly the same momentin time. If a publisher and

a subscriber are using different versions of the same event type the publisher and subscriber

will lose connectivity with each other, because the different event type versions are treated as

unrelated event types.

Instead of routing events of specific event type versions, wetranslate the published event to

a transit time eventat the PHB after the event has been type-checked by the PHB against the

version of the type definition used by the publisher. The transit time event is simply a collection

of name-value pairs that were copied from the publication. It also includes the type owner’s

identity and the human-readable name from the name tuple, but not the version number.

The transit time event is then routed through the broker network to all subscribers of that

event type, regardless of the version of the type definition used in the subscriptions. The SHB

then translates the transit time event to an instance of the subscriber’s version of the type defi-

nition. Attributes that are present in the transit time event, but not in the subscriber’s version of

the type definition are ignored. Similarly attributes that are not present in the transit time event,

but are defined in the subscriber’s version of the event type are set tonull (or undefined) in

the event instance, as shown in Figure 4.2.

4.3. Type Management 85

[PPITO, Numberplate, 3678]

Att.Name Type
numberplate String

timestamp Timestamp

location String

Att.Name Value
numberplate “AE05 XYZ”

timestamp “10:03:02...”

Published Event

SubscriberPublisher PHB Broker SHB

Transit Time Event

Name Value
type [PPITO,

Numberplate]

numberplate “AE05 XYZ”

timestamp “10:03:02...”

Delivered Event

Att.Name Value
numberplate “AE05 XYZ”

timestamp “10:03:02...”

location null

Att.Name Type
numberplate String

timestamp Timestamp

[PPITO, Numberplate, 5201]

Figure 4.2 : Translation to and from transit time events.

Renaming Attributes

The operation for renaming attributes in a type definition results in problems when translating

an instance of one version of an event type to an instance of another version. More specifically,

the publisher might use a version of theNumberplatetype definition that refers to an attribute

with the namelicense-plate while the subscriber is using another version of the same

event type that refers to semantically the same attribute with the namenumberplate. The

transit time event created from the publication will also refer to the attribute with the name

license-plate. The SHB translates the transit time event to an instance of the subscriber’s

version of theNumberplateevent type, but because that version of the event type uses the name

numberplate instead oflicense-plate, the SHB sets the value ofnumberplate at-

tribute tonull before delivering the event to the subscriber.

In order to allow the renaming of attributes in event type definitions without losing the

semantic link in the process, we add a unique identifier to each attribute definition. We replace

the attribute 2-tuples in event type definitions consistingof a name and a type with a 3-tuple

consisting of a name, a unique identifier, and a type, e.g. [numberplate, 1234, String]. When

renaming an attribute, the name in the 3-tuple changes, but the unique identifier and the type

stay the same.

The attribute definition defines a mapping between the attribute name and the unique identi-

fier. The name has to be unique within the context of that particular version of the type definition

whereas the unique identifier has to be unique within the context of all versions of the type defi-

nition. A unique identifier therefore identifies a single attribute among all the attributes defined

for that event type in all its different versions.

Similarly to event type version numbers described in§4.3.1, the attribute identifiers in the

first version of an event type definition can be created as sequence numbers, i.e. 0, 1, 2 etc.,

86 Chapter 4. Secure Event Types

because there is not risk of collisions. Assuming that the type definitions change very little

during their lifetimes, we can guarantee that we create the least amount of overhead by assign-

ing the original attributes the shortest possible identifiers. The attribute identifiers in following

versions of the event type can be either sequence numbers or collision resistant values depend-

ing on whether there is more than one type manager creating new versions of the event type

simultaneously, as was the case with event type version numbers.

Instead of using a UUID we could use some other identifier generation scheme that would

be collisions resistant in the relatively small identifier space of an event type definition. The

attribute identifier has to be unique among all the attributeidentifiers of all the versions of that

single event type definition. Assuming ten different versions of an event type where each version

has a completely new set of ten attributes we would require one hundred identifiers. Using a

16-byte UUID for each attribute seems wasteful consideringthe number of unique identifiers

that need to be created (it would be safe to assume that most event types will have only a few

versions with mostly the same set of attributes in each version). One possible solution would be

to fold the 16-byte UUID inton bytes by XORring then-byte segments into one single value.

Another approach would be to take then-byte remainder of the generated UUID and use that as

the identifier.

The length of the identifier can be varied based on the expected number of attributes for a

given event type definition. In both approaches it is important to verify that the resulting values

are uniformly random and collisions resistant. The length of the identifiers can also vary from

version to version which allows the type owner to switch fromscheme to scheme depending on

the current circumstances.

The publish/subscribe clients refer to attributes using attribute names, whereas the interme-

diate brokers use the unique identifiers. Before routing the event through the broker network

the PHB creates a transit time event from the publication by translating the attribute names to

UIDs based on the publisher’s version of the type definition.The SHB translates the UIDs back

to attribute names based on the subscriber’s version of the type definition before delivering the

event to the subscriber.

The transit time event uses UIDs instead of names to refer to attributes. The unique identi-

fiers guarantee that attributes are always unambiguously identifiable regardless of their names

in any given version of the event type. This allows type managers to rename existing attributes

and reintroduce old attribute names while maintaining interoperability between different ver-

sions of a type definition. For example, in Figure 4.3 the publisher uses the version 4799 of

the typeNumberplatewith the namelicense-plate for the attribute with UID 9525, while

the subscriber uses the version 8516 of the same type with namenumberplate for the same

attribute. Although the names for the attribute are different for the publisher and the subscriber,

the UIDs are the same, which allows the subscriber’s local broker to deliver the attribute to

the subscriber asnumberplate. Similarly a new version of the type definition derived from

version 4799 might include a new attribute with the namelicense-plate, but with a UID

4.3. Type Management 87

Att.Name UID Type
numberplate 9525 String

timestamp 0723 Timestamp

location 6352 String

[PPITO, Numberplate, 8516]

Att.Name Value
license-plate “AE05 XYZ”

timestamp “10:03:02...”

Published Event

SubscriberPublisher PHB Broker SHB

Transit Time Event

Name Value
type “Numberplate”

9525 “AE05 XYZ”

0723 “10:03:02...”

Delivered Event

Att.Name Value
numberplate “AE05 XYZ”

timestamp “10:03:02...”

location null

Att.Name UID Type
license-plate 9525 String

timestamp 0723 Timestamp

[PPITO, Numberplate, 4799]

Figure 4.3 : Translation to and from transit time events with attribute UIDs.

3879. Because the UID (3879) differs from the UID (9525) of theoriginallicense-plate

attribute, there is no risk of confusing one attribute with the other when converting instances of

the type to and from transit time events.

Table 4.3 shows theNumberplateevent type definition with a name tuple including a version

number and attribute tuples that include a unique identifier.

4.3.3 Authorisation Certificates

In a scalable system, the management of an event type cannot be the responsibility of a single

principal, i.e. the type owner. We expect that in an Internet-scale publish/subscribe system

event types are long-lived and that type owners can leave thesystem. For example, a domain

that owns an event type, that is used in the multi-domain publish/subscribe system by other

domains, leaves the system, but wants to allow the other domains to carry on using that event

type. Therefore the system must allow delegation of type management duties to one or more

type managers. Unfortunately the secure event type definitions rely on the fact that the identity

in the name tuple verifies the digital signature on the type definition. Thus, only the principal

identified by the public key in the name tuple, i.e. the type owner, is able to create a digital

signature that is verifiable with that public key. Because of this only the type owner is able

to deploy updated versions of the type definition. If anothertype manager were to edit the

event type, sign it, and reintroduce it to the system this link would be broken, because the type

manager is unable to sign the type definition with the type owner’s private key.

To overcome this limitation we propose using signed capabilities to delegate type man-

agement duties to other principals. The type owner issues a capability to each type manager

authorising the type manager to issue new versions of the specified event type. The capabil-

ity includes both the issuer’s (i.e. the type owner’s) and the subject’s (i.e. the type manager’s)

identities, thereby creating a link between the two principals.

88 Chapter 4. Secure Event Types

Name Value
name [PPITO, uk.gov.pito.Numberplate, 8516]
attributes [numberplate, 3265, String]

[timestamp, 9058, Timestamp]
[location, 3467, String]

signature The type owner’s digital signature containing
all of the above elements

Table 4.3 : The Numberplate event type definition with a version number and attributes with
unique identifiers.

Field Description
name A tuple consisting of the type owner’s identity,

a human-readable name and a version number
attributes A set of attribute definitions
credentials A set of signed capabilities
signature The type owner’s digital signature containing

all of the above elements

Table 4.4 : A secure event type definition with a credentials field.

The type manager includes its capability chain in the type definition and signs the definition

with its private key. A verifier can now link the signature to the name tuple by following the

capabilities chain from the type owner’s identity in the name tuple to the type manager’s identity

in the capability, and verify the signature with the type manager’s public key. The capability

chain links the type manager to the type owner and allows the verifier to trust the type manager’s

signature. We add acredentialsfield to the secure type definition to hold the capabilities, as seen

in Table 4.4.

The capability can also authorise the subject of the capability to delegate a subset of its

authority to a third party. Therefore the certificate chain may consist of more than one certificate.

Figure 4.4 depicts three different cases of type management. In the first column the type

owner,P1, has created or updated the type definition and signed it. Thetype owner’s signature

is directly verifiable with its identity present in the name tuple. Therefore there is no need for a

capability and thus the credentials field in the type definition is left empty. In the second column

the type manager,P2, has updated the type definition.P2 includes in the updated type definition

a capability that has been issued byP1 and authorisesP2 to manage the type definition. The

capability links the signature,S(P2), to the type owner’s identityP1. The third column is similar

to the second column, except in this case the capabilities chain linking S(Pn) to P1 consists of

more than one capability.

The set of credentials is there to link the current signatureto the identity in the name tuple.

The type manager updating the type definition always replaces the previous set of credentials

4.4. Modifications Made to Hermes 89

[P1, “Numberplate”, 3837]

...

Signature: S2(...)

Issuer: P1

Subject: P2

...

[P1, “Numberplate”, 2587]

...

Signature: S1(...)

[P1, “Numberplate”, 2768]

...

Signature: Sn(...)

Issuer: P1

Subject: P2

...

Issuer: Pn-1

Subject: Pn

...

.

.

.

Name Tuple:

Capabilities Chain:

Digitally Signed

Type Definition:

Signed by the

First Delegate, P2

Signed by the

Type Issuer, P1

Signed by the

nth Delegate, Pn

Figure 4.4 : Verifying the name-signature link with and without a capabilities chain.

with a set of credentials that link it to the name tuple. In thedefault case where the type owner

issues the type definition and manages all updates, there is no need to include any authorisation

certificates (See the first column in Figure 4.4).

The authorisation certificates are delivered to the type managers out-of-band, i.e. indepen-

dent of the type definitions. Out-of-band delivery enables the type owner to grant authorisation

to a principal even after the type definition has already beendeployed. If the capabilities were

embedded in the type definition, the type owner would have to update the type definition every

time she wanted to change the access control policy to issue or revoke type management rights.

This would result in otherwise unnecessary versions of the type definition, and maintaining an

up-to-date set of authorisation certificates as part of the type definition would be close to impos-

sible if the type managers were authorised to further delegate type management rights to other

principals.

We will discuss access control based on capabilities in moredetail in Chapter 5, where we

will present an access control architecture for multi-domain publish/subscribe systems based on

signed capabilities and delegation.

4.4 Modifications Made to Hermes

We made a number of changes to the original Hermes design in order to add support for secure

event types. Some of the changes were necessary for Hermes tobe able to support secure event

types. Other changes were made possible by secure event types and allowed us to simplify the

90 Chapter 4. Secure Event Types

Hermes design. The following sections describe in detail the more important changes that were

done.

4.4.1 Type Storage

The original Hermes design uses adistributed hashtable(DHT) [RD01a] to store event types in

the broker network. The name of the event type is used as a key when inserting a type definition

into the DHT. The unreliable nature of structured overlay networks demands that the stored

type definition be replicated among multiple nodes. That is,because the nodes of the overlay

network may leave at any time, not to mention the possibilityof node and network failures,

the content stored at a specific node must be replicated to other nodes in order to guarantee the

availability of the content with high probability. Maintaining the DHT thus results in a lot of

unnecessary network traffic when content is copied to replica nodes during inserts, and when

nodes join and leave the overlay network. Even with replication, the DHT can only provide

availability with high probability based on the number of replica nodes. In the worst case the

requesting node is left stranded from all replica nodes after a network partition and thus not able

to access the content.

In addition to performance issues Hermes does not provide any integrity or authenticity

guarantees for type definitions. The integrity of type definitions in a multi-domain publish/

subscribe setting must be protected so that accidental and malicious modifications do not go un-

noticed. Otherwise implementing an access control based onthose type definitions is doomed to

failure. In Hermes all participants are expected to trust the event service to protect the integrity

of event type definitions. In a multi-domain environment it is unlikely that all participating

domains are willing to trust the other domains with their event type definitions.

The self-certifiability of secure event types enables both event clients and event brokers to

verify the authenticity and integrity of type definitions. Because the authenticity and integrity

of type definitions can be verified it is no longer necessary for all participants to trust the event

service to protect the integrity of a type definition. Type definitions can be stored in the event

service as is the case with Hermes with the knowledge that anytampering by any of the event

brokers that implement the type storage will be noticed.

We argue that developers implementing publish/subscribe applications that handle specific

event types need to have the definitions of those types available to them during development

time. The type definitions would be delivered to the developers out-of-band, e.g. as downloads

from the type owner’s web page or a type repository. Since thetype definitions are part of the de-

velopment process it would be simple to include them in the packaging of the publish/subscribe

applications. The client would then be able to pass the type definition on to the local broker as

a part of an appropriate publish/subscribe request (advertise or subscribe). The broker

would then verify the authenticity and integrity of the client-provided type before executing the

client’s request by verifying the digital signature and possible authorisation certificates.

4.4. Modifications Made to Hermes 91

Function Attributes
advertise (type name)
unadvertise (type name)
publish (event instance)
subscribe (type name, filter, callback)
unsubscribe (type name, callback)
addEventType (type def)
modifyEventType (type def)
removeEventType (type name)

Table 4.5 : The Hermes event client API.

Only the local brokers need to do type-checking. The PHB type-checks the submitted pub-

lication before it is routed through the broker network. Similarly the SHB type-checks the

subscription filter before passing the subscription on to the broker network. The SHB also type-

checks all publications against the subscriber’s version of the type definition. With publications

the SHB can type-check a given publication once against eachversion of the type definition

and use that result for all subscribers that have subscribedwith the same type definition ver-

sion. The intermediate brokers assume that the publications and subscriptions have already

been type-checked by the local brokers, thus only the local brokers need to be aware of type

definitions.

By relying on publish/subscribe clients to provide type definitions to local brokers we re-

move the need for maintaining a type repository in a DHT, thuslowering the amount of system

internal network traffic and making the broker design more elegant and simpler in general.

4.4.2 API Changes

The new approach to type storage presented in the previous section and the introduction of

the name tuple result in changes to the Hermes API, shown in Table 4.5 (the Hermes API is

described in more detail in [Pie04].

Because type definitions are not installed in the publish/subscribe system any more, as

explained above, there is no need for a specific type management API with the operations

addEventType,removeEventType, andmodifyEventType. Type definitions are pro-

vided to the brokers by the clients as parameters to theadvertise andsubscribe opera-

tions. In both cases the old API operations referred to the event type with the type name. These

operations are provided in the new API as well in order to allow for cases where the client host-

ing broker has cached the event type definition and thereforethe client is able to refer to it by

name. Table 4.6 defines the new API implemented in MAIA .

Note that we have removed type management operations from the API exported by the

event brokers, but this does not mean that one could not implement a type registry in the broker

network as has been done in Hermes. We merely feel that the type registry functionality should

92 Chapter 4. Secure Event Types

Function Attributes
advertise (type def)
advertise (type name)
unadvertise (type name)
publish (event instance)
subscribe (type def, filter, callback)
subscribe (type name, filter, callback)
unsubscribe (type name, callback)

Table 4.6 : The MAIA event client API.

be independent from the publish/subscribe functionality.

4.4.3 Message Routing

In addition to using the event type name as a key in the DHT whenstoring type definitions,

Hermes uses the type name as a node id when routing events through the broker network.

Hermes chooses arendezvous nodefrom all the broker nodes by hashing the type name in

order to create a node id. An event dissemination tree is thencreated in the broker network

by routing advertisement and subscription messages towards the rendezvous node. Because the

rendezvous node id is created by hashing the name of the eventtype, both the PHB and the SHB

are able to compute the node id of the rendezvous node from thetype’s name tuple without any

external assistance. Publications are then routed based onthe event dissemination tree from the

publisher to all subscribers. The Hermes routing algorithmis explained in more detail in [PB02]

and [PB03].

Simply hashing the name tuple would result in each event typeversion having a different

rendezvous node, becauseh(P ||n||v1) 6= h(P ||n||v2). This would result in independent event

dissemination trees for each version of an event type and, because of this, in unnecessary routing

state and sub-optimal routing performance. Moreover, the event dissemination tree for one

version would not be able to reach subscribers of another version of the same event type, e.g.

v1 publications would not reachv2 subscriptions. Instead of hashing the whole name tuple, we

ignore the version number and hash only the public key and thename:h(P ||n). This results

in a common rendezvous node and optimal routing performancefor all versions of an event

type allowing, for example,v2 subscribers to receive bothv1 ansv2 publications (See§4.3.2

regarding type version translation.).

4.5 Performance

The most significant performance penalty in verifying secure event types is caused by digital

signature verification. The other related operations, e.g.SPKI 5-tuple reduction, are very cheap

4.5. Performance 93

in comparison. This is clear from the performance results inTable 4.7 that show the time

spent for both operations in microseconds. The 5-tuple reductions are over 50 times faster than

digital signature verifications. The reduced SPKI certificate chain was five certificates long and

the digital signatures were generated with a 1024-bit RSA key. The test runs were executed on

an Intel P4 3.2GHz workstation with 1GB of main memory.

Operation µs σ

5-tuple reduction 5.533 0.18513
RSA signature verification 291.926 2.60839

Table 4.7 : The time in microseconds spent on 5-tuple reductions on RSA signature verifica-
tions.

Event types need to be verified when a publish/subscribe client provides an event type to

the local broker as a part of an advertisement or a subscription request. Publications refer to an

already verified event type and thus do not need to be verified individually.

In a näıve implementation a broker verifies every client-providedevent type for every ad-

vertisement and subscription request separately. An optimised implementation would cache the

verification result of each event type and simply compare thealready verified type to the event

types in subsequent requests thus avoiding the expensive signature verification. When the type

cache is enabled in MAIA the plain and signed type definitions perform equally well aswould

be expected. This is shown in Table 4.8.

Event Types µs σ

Plain types 6.77053 0.47450
Signed types 7.10021 0.83788

Table 4.8 : The time in microseconds spent on processing a subscription request at the local
broker for plain types and signed types when the type cache is enabled.

The broker can also store client-provided event types locally after verification. This enables

the broker to load and verify those event types as part of the broker start-up sequence. As we

can assume that the set of event types in use in a publish/subscribe system is relatively static, i.e.

the publish/subscribe clients advertise and subscribe to the same event types most of the time,

the bulk of the cost of verifying those types is paid in advance while the broker is starting up.

The routing performance of a broker is only affected by new types and type versions introduced

to the system that have not been verified yet.

The cost of verifying an event type depends on the length of the certificate chain in that

event type. Therefore the impact of event type verification can be reduced even more by the

broker caching also verified authorisation certificates. The cached certificates can then be used

in verifying certificate chains in other event types and event type versions where the certificate

94 Chapter 4. Secure Event Types

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8 9

m
s

/ S
ub

sc
rip

tio
n

Number of Certificates in Certificate Chain

Without Certificate Caching
With Certificate Caching

Plain Types

Figure 4.5 : Subscription performance with and without certificate caching.

chains contain cached certificates. For example, if a type manager introduces a new version of

an already cached event type to the system, the broker can usethe cached certificates in veri-

fying the certificate chain from the type owner to the type manager. Figure 4.5 shows how the

processing time of a single subscription increases when thelength of the certificate chain in-

creases. Notice that all the subscriptions use the same event type and therefore we have disabled

the type cache, which would otherwise affect the results. With certificate caching disabled the

local broker must verify each certificate and the digital signature on the type definition for each

subscription. When certificate caching is enabled the brokerverifies the certificates in the chain

only once. For the remaining subscription the broker has to verify only the digital signature on

the event type definition. The Plain Types graph is included to highlight the price of verifying

digital signatures. A subscription for a plain event type takes on average 7.422µs with a stan-

dard deviation of 1.78347µs. The high standard deviation is the result of a small test run, which

is completed very quickly when using plain types. A larger test run was not possible, because

the same test run for signed types would have taken too long.

In any real world deployment the type cache would be enabled and we would get perfor-

mance results comparable to the results in Table 4.8. Nevertheless the timing results in Fig-

ure 4.5 show that a certificate cache does provide a performance increase when verifying signed

event types that share certificates in their certificate chain.

Although signed event types do affect the time required to process subscription and adver-

tisement requests, we assume that subscriptions and advertisements will represent only a small

portion of all the requests made to local brokers and therefore the performance impact should

4.6. Secure Names in Topic-Based Publish/Subscribe 95

be relatively small. Even in cases where subscribers and publishers disconnect from the event

service quite frequently it is safe to assume that they will usually subscribe or advertise the

same event type that they used the previous time they were connected to the event service. In

such cases the event type cache will provide comparable performance. Therefore we can con-

clude that the biggest performance impact is suffered when new event types are introduced to

the event service frequently. We expect this to be relatively rare.

Note that adopting secure event types in a publish/subscribe system does not affect the

routing performance of the system at all. All type-related operations, e.g. validating the event

types and type-checking publications, are performed only at the client hosting brokers either at

subscription or advertisement time, or at publication time, respectively.

4.6 Secure Names in Topic-Based Publish/Subscribe

While the bulk of this chapter has been specifically about type-based publish/subscribe systems,

the concept of secure namespaces and secure names are usefulin topic-based publish/subscribe

as well. By prefixing the topic owner’s identity to the topic name we get a 2-tuple that is globally

unique with high probability (See§4.2.1).

With type-based publish/subscribe the identity in the nametuple was bound to the type defi-

nition through the digital signature covering the whole definition including the name tuple. The

signature creates a two-directional link that on the one hand guarantees that the type definition

is authentic and correct, but it also verifies that the type name is authentic, i.e. that it has been

created by the owner of the identity. In the case of topic-based publish/subscribe there is no

type definition and no signature that could be used to verify the authenticity of the topic-name.

Therefore topic-names with the topic owner’s identity prefixed to the name are not useful as

such, because their authenticity cannot be verified.

Fortunately, the access control architecture that we introduce in Chapter 5 binds the topic

name to the authorisation certificates that grant principals access to the topic, and the authen-

ticity and integrity of those certificates can be verified in asimilar manner as we verified the

authorisation certificates used in this chapter to delegatetype management rights. Thus, we can

use secure topic names to implement access control for topic-based publish/subscribe.

4.7 Related Work

Wang et al. present in [WCEW02] a number of security issues in large-scale publish/subscribe

systems that need to be addressed before publish/subscribesystems can be deployed in the

Internet. The paper covers problems related to authentication, data integrity and confidentiality,

accountability, and service availability. We feel that secure names and event type definitions

provide a foundation on which to build solutions to the problems they discuss.

96 Chapter 4. Secure Event Types

Linked local namespaces were first introduced by Rivest and Lamport as part of the SDSI

1.0 specification [RL96]. In SDSI a principal maps local namesto the public keys of other

principals. For example, the local namefoo in P1’s namespace is bound to principalP3, but to

P4 in P2’s namespace. Local names can also be chained, e.g. [P1, foo, bar], which points to the

principal known asbar by the principal who is known asfooby P1.

Our proposed naming scheme for secure event types borrows from SDSI in creating globally

unique namespaces by using public keys as the root of the namespace. The appearance of secure

names resembles SDSI’s linked local names, but in fact they are different. In SDSI all names

always point to a principal with its own key pair. In our case one could think of the human

readable part of the secure name as a local name in the type owner’s namespace, that points to

the event type definition. But this would be incorrect, because the event type is not a principal.

Similarly one could think of the version numbers as local names in the event type’s namespace,

but again this would not be accurate, because versions are not principals either. In SDSI one can

reduce a chain of names by replacing the public key and a localname with the public key that

represents the local name. With secure names the analogy would be to replace the type owner’s

public key and the human readable name with the event type definition’s public key, which is

not allowed in the current scheme. So, while secure names have been inspired by and appear

similar to SDSI’s linked local names, in actual fact they aredifferent.

The type management approach with multiple concurrently active type versions in the sys-

tem was inspired by schema evolution in object-oriented databases. For example, the ORION

object-oriented database [BKKK87] also uses unique versionnumbers instead of names to iden-

tify schema entities in a similar way that we use UUIDs to identify attributes in event types. The

indirection created by the use of version numbers allows thename of the entity to change from

one version of the schema to another while maintaining a semantic link between the two entities

with different names in the two versions of the schema.

4.8 Summary

This chapter presents a model for secure event type definitions in type-based publish/subscribe

systems. The scheme provides self-certifiable type definitions that allow both event clients and

brokers to verify the authenticity and integrity of a type definition. Although our design is based

on Hermes, it is applicable to type-based publish/subscribe systems in general and to topic-

based publish/subscribe systems with certain limitationsas described in§4.6. We presented the

work originally in [PB05].

We feel that secure names and event type definitions provide the foundation for a secure

publish/subscribe middleware. Other services like accesscontrol can then be built on this foun-

dation. For example, in the case of access control we can bindaccess rights to topic, type and

attribute names, because we can trust those names to be unforgeable and unique. At the same

4.8. Summary 97

time, digitally signed type definitions allow us to place policy information in the form of SPKI

authorisation certificates inside event definitions.

In addition to secure event types, we have also introduced a scheme for managing event

types in a large-scale publish/subscribe system. We feel that large-scale publish/subscribe sys-

tems must be able to run continuously regardless of type management operations. Our approach

enables type managers to update existing type definitions transparently without affecting exist-

ing clients. We also support the delegation of type management duties to other principals, which

we see as an equally important feature when considering the expected lifetime of event types in

a large-scale, highly decentralised publish/subscribe system.

CHAPTER 5

Access Control

In Chapter 4, we introduced a scheme for creating unique and verifiable names for event types

and attributes. In this chapter we will leverage that contribution in designing a decentralised

access control system for multi-domain publish/subscribesystems. We use signed capabilities

to describe the global access control policy of the multi-domain environment in a decentralised

fashion. That policy refers to publish/subscribe network names, event types and attributes,

which must be both unique and unforgeable for the access control policy to be unambiguous.

We use a similar naming scheme for network names as we did in Chapter 4 for event types,

i.e. we prefix the coordinating principal’s identity to the human-readable network name in order

to guarantee its uniqueness and verifiability. For example,the PITO coordinated UK Police

Network is named [PPITO, UK Police Network].

In addition to secure names we also utilise the signed event type definitions introduced in

Chapter 4 to store credentials related to event type deployment and management operations. For

example, the credentials authorising a type owner to deploya new event type on the publish/

subscribe system are included in the type definition being deployed.

Incorporating the credentials in the type definition allowsall nodes in the publish/subscribe

system to verify that the type owner has been authorised by the coordinating principal to deploy

new event types on the publish/subscribe system. We use the same mechanism when authorising

the deployment of new event types and the management of existing types.

The tight coupling of type management credentials and type definitions prevents us from

updating the credentials after the type has been deployed. But this is only a problem when the

credentials embedded in the type definition expire. In such acase the type definition can be seen

as expired and a new version of the type definition must be deployed with fresh credentials. We

will discuss credential expiration and revocation in detail in Chapter 6.

98

99

In a decentralised, multi-domain publish/subscribe system we need to control access to two

types of resources: the shared infrastructure (i.e. the event service / broker network) and the

event types that have been deployed on that infrastructure.The following two operations have

to be authorised by the owner of the infrastructure:

i. event brokers and event clients, joining and accessing the broker network

ii. type owners deploying new event types on the broker network

And the following two operations have to be authorised by theowner of the event type:

i. event clients and brokers accessing event types and attributes in those types through the

publish/subscribe API either by publishing or subscribingto an event type

ii. type owners delegating type management duties to other principals

Connecting to the broker network and accessing event types are both actions that are exe-

cuted by clients when they connect to the broker network to publish and to subscribe to events.

The other two actions, deploying event types and delegatingtype management duties, are exe-

cuted only when new types or new version of existing types areto be deployed on the infras-

tructure.

We propose a common approach to access control in publish/subscribe systems for all five

actions where access control decisions are ultimately rooted at the resource owner. Employing

signed capabilities and distributing the access control policy management, decision making, and

credential management over all resource owners enables theaccess control architecture to scale

up in a decentralised environment consisting of multiple independent administrative domains.

The architecture also allows domains to implement an accesscontrol policy management ap-

proach of their choice, for example, role-based access control or access control lists.

The rest of this chapter is organised as follows. We introduce our access control model in

§5.1. This section describes how access rights are delegatedto domains, and domain members.

In §5.2 we discuss the various resources that are protected by the access control system, what

kind of access operations those resources support, and how access rights to those resources are

represented in the access control system. We describe how a principal’s authority is verified

in the system in§5.3. An important part of decentralised access control is the concept of root

authority, i.e. which principal is ultimately responsiblefor all access control decisions for a

given resource. We discuss in§5.4 how the resource owner is able to delegate root authority, i.e.

all rights to a resource, to another principal and how this feature can be used to manage event

types etc. within a domain. While this dissertation focuses on type-based publish/subscribe,

we give a short overview on how our access control system could be applied to a topic-based

publish/subscribe system in§5.5. There exist other proposals for access control in publish/

subscribe systems, which we present in§5.6. Finally,§5.7 gives a short summary of the whole

chapter.

100 Chapter 5. Access Control

Detective

Smith

PITO

Met

Met

Broker

issuer: PITO

subject: Met

type: Numberplate

action: subscribe

attributes:

 numberplate=”AE05 XYX”

 location

 timestamp

Capability

issuer: PITO

subject: Met

type: Numberplate

action: subscribe

attributes: *

Capability

issuer: PITO

subject: Met

type: Numberplate

action: subscribe

attributes: *

Capability

1

2 3

Figure 5.1 : Capability 1 authorises the Met domain to subscribe to all attributes of the Num-
berplate event. Capabilities 2 and 3 delegate a subset of this capability to both the Met Broker
and Detective Smith.

5.1 Access Control Model

We propose a two-tiered access control model for multi-domain publish/subscribe systems. On

the first tier a resource owner authorises a domain to access agiven resource. On the second

tier the domain delegates its members a subset of that authority. For example, in Figure 5.1

following our example scenario, the type owner, PITO, has authorised the Metropolitan Police

domain to subscribe toNumberplateevents. The Metropolitan Police domain has delegated a

subset of that authority to the Met Broker and Detective Smith. The Met Broker shares the

authority granted to the Met domain, while Detective Smith’s authority is limited to a specific

set ofNumberplateevent attributes with a mandatory filter on thenumberplate attribute.

One can think of event brokers as proxies of their domain, representing the domain in the

publish/subscribe system. Therefore, the brokers share the domain’s authority. We will discuss

authorising event brokers in more detail in§5.1.3.

5.1.1 Authorising Domains

To authorise a domain to access a resource the resource ownerissues a capability to the do-

main. In practise theaccess control service(ACS) of each domain represents that domain and

therefore the capability is issued to the ACS.

The capability specifies the authority,Ad, that has been granted to the domain. In addition

to the access rights, the capability also authorises the domain to further delegate a subset of

5.1. Access Control Model 101

the granted authority to members of the domain. The authority granted to the domain by the

resource owner is always a subset of the resource owner’s authority: Ad ⊆ Ar.

The ACS issues capabilities to the members of the domain in order to authorise them to ac-

cess a resource. When issuing capabilities to domain membersthe ACS implements a domain-

internal access control policy that is completely independent of the resource owner, i.e. the

resource owner cannot affect the access control policy. This is typical of discretionary access

control systems.

The authority granted to a domain member,Am, is always a subset of the authority granted to

the ACS,Ad, and therefore a subset of the resource owner’s authority,Ar, i.e.Am ⊆ Ad ⊆ Ar.

Notice that the subset relation is enforced by the 5-tuple reduction rule, as described in§2.6, that

collapses a chain of capabilities by taking the intersection of all the authority fields. Therefore

the authority field in a capability lower down in the chain of capabilities can be a superset of the

authority of some capability higher up in the chain, while still maintaining the subset property

described above. We will rely on this property when we authorise event brokers in a domain in

§5.1.3.

Domain members are event clients and brokers, and sub-domains, as stated in§3.2. Event

clients access the publish/subscribe system through a trusted local broker in order to imple-

ment a distributed application with other event clients. Incontrast both event brokers and sub-

domains implement infrastructure and are there to facilitate the event clients. The following

three sections will describe in detail how a domain can delegate authority to each of the three

types of domain members.

5.1.2 Authorising Clients

The domain delegates authority to an event client by issuinga capability to the client, which

specifies the delegated access rights. As stated in the previous section, the delegated authority

is a subset of the domain’s authority. We do not expect event clients ever to be authorised to

further delegate their authority, because delegation and access control policy management are

the responsibility of the domain (i.e. the ACS).

The domain-internal access control policy specifies what access rights should be delegated

to each client. The access rights of two event clients can vary significantly, e.g. two detectives

in the Metropolitan Police domain are likely to be working ondifferent cases which require

access to different information and therefore different events. Enforcing such an access control

policy centrally, i.e. by the resource owner directly, would not be scalable. Also, in most cases

the resource owner simply cannot understand the domain’s internal policies and therefore is not

able to specify a global access control policy.

We expect the ACS to issue very fine-grained certificates to event clients that authorise the

client to access a single resource in a very specific manner. This allows the system to implement

the principle of least privilege[SS75], according to which principals should be granted only

102 Chapter 5. Access Control

those privileges that are required for the task at hand. We also assume that the access control

policy for event clients is very dynamic and relies on environmental predicates and certificates

issued by other parties. For example, in Figure 5.1 Detective Smith has been authorised to

subscribe to events related to a single numberplate. We should hope that Detective Smith is

granted this authority only after showing the ACS a court order authorising her to monitor the

movements of a specific numberplate in London.

5.1.3 Authorising Event Brokers

The event brokers in a domain form the domain-internal eventservice and connect that event

service to the shared, multi-domain event service. The purpose of the event brokers is to export

the publish/subscribe API to the domain’s event clients allowing the clients to publish and to

subscribe to events over the multi-domain publish/subscribe network. Therefore, we can assume

that an ACS would grant all the event brokers in the domain the same authority that it has, i.e.

∀β ∈ B : Aβ = Ad, whereB is the set of event brokers in the domain. If the brokers share

the domain’s credentials, then an event client is free to connect to any event broker in that

domain without having to worry that the event broker is not able to access a given resource

(i.e. publish/subscribe network, or event type) for lack ofaccess rights. We can guarantee that

∀β ∈ B : Ac ⊆ Aβ when∀β ∈ B : Aβ = Ad ∧ Ac ⊆ Ad.

We assume in this chapter that all the brokers forming the event service, i.e. the broker

network, are trustworthy and that we need to enforce access control policy only at the edges of

the broker network. Addressing access control only at the edges of the broker network results

in a system where any domain can circumvent the access control policy simply by not enforcing

the policy at the domain’s event brokers. More specifically,any broker that an event is routed

through is able to read and alter that event. We will address this problem in Chapter 7 by

using encryption to enforce access control inside the broker network. We will therefore require

already in this chapter that event brokers have the same access rights as the event clients they

are hosting in order to be able to fulfil the clients’ requests, as described above. For example,

a broker will not be able to fulfil a client’s subscription request forNumberplateevents if the

broker itself is not authorised to subscribe toNumberplateevents and access the same set of

event attributes.

There are two approaches that a domain can implement in orderto delegate access rights to

all its event brokers in an efficient manner. We will first discussblanket capabilitiesand then

group subjects.

Blanket Capabilities

When the domain is granted access to a new resource, e.g. a newly deployed event type, the

domain must propagate the new access rights to its event brokers. To simplify the process of

propagating access rights to event brokers we can utilise a property of SPKI 5-tuple reduction:

5.1. Access Control Model 103

PITO Met
Met

Broker
issuer: PITO

subject: Met

type: (some type T1)

Capability

1

issuer: Met

subject: MB

type: *

Capability

2

Figure 5.2 : The blanket capability together with the capability issued to the Met domain autho-
rises the broker to access type T1.

in the 5-tuple reduction the authority of the reduced capabilities chain is the intersection of

the authority fields of all the capabilities in the chain, as was explained in§5.1.1 and§2.6.

Therefore the authority granted in the capabilities that are lower down in the chain, e.g. the

capability issued to the Met Broker in Figure 5.2, is restricted by the capabilities higher up in

the chain, e.g. the capability issued by PITO.

This property allows a domain to issueblanket capabilitiesto all of its event brokers. A

blanket capability has an authority field that is a superset of the issuer’s authority, but because

of the 5-tuple reductions ends up being equal to the issuer’sauthority. A blanket capability

allows the issuer to automatically delegate new access rights to all brokers without having to

issue each one of them a new capability.

For example, in Figure 5.2 the Met Broker has been granted authority to access all event

types by the Metropolitan Police domain. The domain on the other hand has only been granted

access to the event typeT1. The authority granted to the Met Broker is the union of the authority

fields in the two capabilities,C1 andC2, forming the certificate chain linking the broker to the

type owners, i.e. ifA1 = T1 ∧ A2 = ⊤ ∧ S1 = I2 thenA1 ∩ A2 =⇒ T1 ∩ ⊤ =⇒ T1 = A1,

where⊤ signifies all possible access rights. Therefore the event broker’s authority is always

limited by the authority of the domain.

In the case where a domain ACS has been granted new access rights, e.g. access to the type

T2 in Figure 5.3, the blanket capability allows the Metropolitan Police domain to delegate the

new authority to all event brokers in the domain simply by delivering the new capability to all

the domain’s event brokers. Once an event broker has obtained the new capability and is able

to show it together with its blanket capability to a verifier,it has effectively been granted the

access rights specified in the new capability. Without blanket capabilities the ACS would have

to issue a new capability to each event broker in the domain each time the ACS was granted

new access rights.

The access control policy cannot be compromised by the new capability leaking to an unau-

thorised principal in the same domain unless that principalhas a blanket capability issued by

the Metropolitan Police domain where the intersection of the authority fields is non-empty, i.e.

SMet = IBob ∧ AMet ∩ ABob 6= ∅. Therefore, assuming that the domain is able to enforce

its own access control policy and avoid issuing blanket capabilities to unauthorised principals,

104 Chapter 5. Access Control

PITO Met
Met

Broker
issuer: Met

subject: MB

type: *

Capability

2

issuer: PITO

subject: Met

type: (some type T2)

Capability

3

issuer: PITO

subject: Met

type: (some type T1)

Capability

1

Figure 5.3 : The blanket capability together with the new capability issued to the Met domain
authorises the broker to access type T2.

broadcasting the new capability in the domain does not present a security risk.

Similarly, leaking the new capability outside of the domaincannot compromise the access

control policy, because the capability issued to the domainand the newly deployed capability

must form a capability chain together, i.e.SMet = IBob. Therefore, the new capability cannot

be used with capabilities issued to other domains.

Instead of issuing blanket capabilities that grant event brokers access to everything that the

domain can access without any restrictions, the blanket capabilities should be restricted, for

example, by resource type or owner. In Figure 5.3 the blanketcapability issued to the Met

Broker grants access to all event types that the MetropolitanPolice domain has access to. We

would expect blanket capabilities to be restricted, for example, to one type of resources, i.e.

networks, e.g.network:*, or event types, e.g.type:*, or alternatively to certain network

or type owners, e.g.network: [PPITO, *] or type: [PPITO, *, *].

Group Subjects

Another alternative for distributing new access rights to event brokers is to usegroup subjects

(We discussed group subjects in§2.6.3). In SPKI an authorisation certificate can be issued to

a name rather than a principal. A principal is then linked to that name by issuing it aname

certificate.

Each name is effectively a group, i.e. any number of name certificates can link principals to

the same name. This allows for the creation of groups of subjects. In many cases where SPKI

name certificates are used the group has only one member, i.e.there is a one to one mapping

from a name to a principal. But this does not mean that other members cannot be added to the

group at a later date.

By issuing all event brokers with a name certificate for a givenname, e.g.Met domain

event brokers, the domain can create an event broker group. After that the domain is able to

issue authorisation certificates for that group, effectively delegating the given access rights to

5.1. Access Control Model 105

all group members at the same time. When delegating rights to the group, the domain needs to

issue only one certificate, as was the case with blanket capabilities.

During credential verification the verifier will first check that the event broker is a member

of the given group, i.e. that the event broker has a name certificate linking it to the group name.

Once the link between the principal and the name has been established, the verifier will check

that the authorisation certificate is valid and grants the holder the required access rights.

In effect this approach is very similar to the blanket capabilities described in the previous

section: both approaches allow the ACS to delegate access rights to a set of brokers quickly and

efficiently without having to issue a new capability to each event broker.

The difference between the two approaches lies in their flexibility. With blanket capabilities

the ACS must decide when issuing the blanket capabilities what kind of access rights the blanket

capability should cover. For example, the ACS can restrict the blanket capability to a specific

type owner. If later on the ACS wants to delegate access rightsto the latest type from that type

owner to a subset of the principals, the ACS must first revoke all the existing blanket capabilities

and then issue new ones which exclude the new event type. In contrast, with group subjects the

ACS is able to create a new group of those principals that should be delegated the new access

rights and then delegate the access rights only to that group.

When delegating access rights via group subjects, the ACS can issue the authorisation cer-

tificates with relatively long life times while issuing short-lived name certificates to all group

members. This way the ACS avoids having to re-issue the actualauthorisation certificate, but

it will still be able to easily control the group membershipsof individual principals. Also, it is

possible to issue name certificates with longer lifetimes tomore trustworthy principals.

Group subjects resemble roles inrole-based access control(RBAC) where access rights are

granted to the role rather than directly to subjects, and access is controlled by controlling which

subjects are able to enter a given role. Similarly, with group subjects access rights are granted

to a group and group membership is controlled by issuing namecertificates to principals.

The ACS is able to implement local policy management with RBAC either by always issu-

ing a set of authorisation certificates to a subject when it enters a given role, or alternatively,

with group subjects, by issuing a name certificate to the principal while maintaining long-lived

authorisation certificates issued to the group.

5.1.4 Authorising Sub-Domains

Large domains might find it beneficial if they were able to create sub-domains to match their

own organisational structure. In a nested setting the top-level domain delegates access rights to

its sub-domains in the same way as resource owners grant access rights to top-level domains.

Notice that sub-domains can be authorised by the resource owner directly, but in most cases

we would expect the authorisation to follow the domain hierarchy, because domain internal

structures should not be visible outside of the domain. For the sake of argument we assume

106 Chapter 5. Access Control

Top-Level Domain

O

th
er Sub-Domain

Pay Roll Sub-Domain

Authority:

A1, A2,

...

Authority:

A1, Pay Roll,

...

Authority:

A1, A2,

Pay Roll,

...

Figure 5.4 : An enclosing domain can group more privileged brokers and event clients into their
own privileged sub-domains.

here that sub-domains will not be directly authorised by theresource owner.

Sub-domains allow an organisation to implement a domain hierarchy consisting of multiple

levels of sub-domains, each with their own set of privileges. For example, an organisation

might want to restrict events related to employee salaries to a few trusted event brokers that

form the Pay Roll domain and that are administered by a trustedsystem administrator. We

assume that system administrators are able to circumvent anaccess control policy by logging

on to an event broker and looking at the raw event flow. Therefore, we can assume that a

system administrator is always able to access all events flowing through a broker administered

by her. By placing the privileged brokers into a domain of their own and by granting only a

trusted system administrator access to that event broker, we can prevent the untrusted system

administrators from reading specific event types, i.e. salary events in this case.

Assuming that a sub-domain’s authority is always a subset ofits parent domain’s authority,

then the top-level domain’s authority will always be the superset of all the authorities of all its

sub-domains. If we were to place the Pay Roll brokers into their own Pay Roll sub-domain and

the authority delegated to the top-level brokers was the same as the top-level domain’s authority,

as was suggested in§5.1.3, then the top-level brokers would always be authorised to access all

events that were accessible to the top-level domain, including the confidential salary events.

This suggests that either sub-domains must be more privileged than their parent domain, which

would turn the domain hierarchy tree upside down, or alternatively the event brokers’ authority

cannot reflect the authority of theirs domain, which would goagainst the notion of event brokers

representing their domain in the publish/subscribe systemand therefore sharing the domain’s

access rights.

We can resolve this issue more elegantly by creating one sub-domain for the privileged

event brokers and another one for the unprivileged event brokers. The privileged sub-domain is

then granted access to the salary events while the unprivileged sub-domain is not. By placing

5.2. Resources and Access Rights 107

the event brokers into two sub-domains we can issue capabilities to the event brokers that allow

them to share the privileges of their respective domains, asis shown in Figure 5.4. This approach

maintains the subset relation between a sub-domain and its parent domain in the domain tree

and we can also allow the event brokers to share all the accessrights granted to their domain.

A domain is either adomain groupin which case it contains only sub-domains, or it is a

broker groupin which case it contains only event brokers. A domain can never contain both

event brokers and sub-domains. This definition is recursiveallowing sub-domains inside a

domain to contain again either other sub-domains or event brokers, but not both.

5.2 Resources and Access Rights

A publish/subscribe system has two types of resources that need to be protected: the event

service and the event types. The event service is owned by a coordinating principal and the

event types are owned by their respective type owners.

The access rights can also be divided into two groups based onthe types of principals. Both

event brokers and event clients need to be able to connect to the event service and to access the

publish/subscribe API for specific event types. Type managers on the other hand need to be able

to install event types on the event service and manage existing types.

The following sections discuss all the access rights related to both types of resources and to

all three types of principals in more detail.

5.2.1 Event Service Access Rights

Principals need access to the event service in two cases: (i)when a principal wants to access the

publish/subscribe API for any event type and (ii) when a principal wants to deploy a new event

type, or a new version of an existing event type, on the event service. Here we equate the event

routing performed by event brokers to accessing the event service, i.e. an event broker needs the

right to access the event service in order to be able to join the broker network and route events.

Both types of access rights are granted by the coordinating principal, that is seen as the owner

of the event service.

Connecting to the Event Service

All event clients and brokers need to be authorised to connect to the publish/subscribe system in

order to be able to access it. This provides network layer access control and prevents unautho-

rised parties from connecting to the event service and seeing the system’s internal traffic. If a

malicious node is able to access the event service, it is ableto launch a simpledenial of service

(DoS) attack by issuing a large number of subscription requests, or by injecting invalid routing

108 Chapter 5. Access Control

messages to the broker network, which can lead to network partitions. We can easily protect

against such trivial DoS attacks by controlling access to the broker network.

In our example below, PITO, as the coordinating principal, invites another domain, the

Metropolitan Police, to join the shared publish/subscribeinfrastructure by issuing a capability to

the Metropolitan Police domain that grants it the right to connect to the given publish/subscribe

network. The capability specifies the name of the network andthe authorised action, [PPITO,

UK Police Network] andconnect, respectively:

Name Value

issuer PPITO

subject PMet

network [PPITO, UK Police Network]

action connect

The Metropolitan Police domain delegates the right to connect to the UK Police Network to

all of its event brokers. This allows the domain’s publish/subscribe infrastructure, i.e. the event

brokers, to join the shared broker network. Here we specify acapability that grants one of the

event brokers in the Met domain access to a specific publish/subscribe network. Notice that the

capability has been issued to the groupMet Brokers rather than to a single broker.

Name Value

issuer PMet

subject Met Brokers

network [PPITO, UK Police Network]

action connect

Finally those event clients in the Metropolitan Police domain that need access to the UK

Police Network, i.e. Detective Smith in this case, are issued capabilities that authorise them to

connect to the broker network:

Name Value

issuer PMet

subject PSmith

network [PPITO, UK Police Network]

action connect

Together the three capabilities form a certificate tree thatconnects the event broker and the

detective to PITO, as seen in Figure 5.5. The 5-tuple reduction operation collapses one branch

of the capabilities tree into a single capability where the issuer is the resource owner, the subject

is the leaf of the tree, e.g. Detective Smith or Met Broker, andthe validity and authority fields

are the intersection of all the validity and authority fieldsin all the capabilities in the tree branch,

respectively. Notice that the Met Broker’s capability chainincludes a name certificate that is

not shown in the figure. The name certificate binds the Met Broker’s identity,PMB, to theMet

Broker group.

5.2. Resources and Access Rights 109

PITO

issuer: PPITO

subject: PMet

network: [PPITO, UK Police Network]

action: connect
Met

Detective

Smith

issuer: PMet

subject: PDS

network: [PPITO, UK Police Network]

action: connect

issuer: PMet

subject: Met Brokers

network: [PPITO, UK Police Network]

action: connect

issuer: PPITO

subject: PMB

network: [PPITO, UK Police Network]

action: connect

issuer: PPITO

subject: PDS

network: [PPITO, UK Police Network]

action: connect

Capabilities Tree Reduced 5-Tuples

Met

Broker

Figure 5.5 : The principals and the capabilities form a tree where the principals are nodes and
the capabilities are vertexes.

Installing Event Types

The other type of access right issued by the coordinating principal and relating to the event

service as a resource is the right to install event types on the event service. This right is relevant

to principals in the system that want to either create new event types or deploy new versions of

existing event types. Again the coordinating principal issues a capability to a domain in order

to authorise the domain to issue new event types on the system:

Name Value

issuer PPITO

subject PCCS

network [PPITO, UK Police Network]

action install

The domain then delegates this authority to those members ofthe domain who should be

authorised to deploy new event types or updated versions of existing event types. In this case

the CCS domain has granted the install right to the Billing Office:

Name Value

issuer PCCS

subject PBO

network [PPITO, UK Police Network]

action install

Notice that the principal deploying the event type does not need to connect to the event

service. The principal simply defines an event type, signs it, and stores it in a type registry.

An event client will then pick up the type definition from the registry and present the definition

to its local broker as part of a publish/subscribe request. Therefore, a principal deploying new

event types does not need theconnectaccess right in order to be able to deploy event types.

110 Chapter 5. Access Control

5.2.2 Event Type Access Rights

There are two cases where a principal needs access to an eventtype:

i. when accessing the publish/subscribe API for a given event type, i.e. publishing or sub-

scribing to an event type, and

ii. when updating an existing event type definition and releasing the modified definition as a

new version of the existing event type.

In the first case the principal will also need theconnectright to the appropriate publish/

subscribe network for using the publish/subscribe API. In the latter case the principal will need

the install right to be able to install a valid event type definition on theevent service.

Both access rights described in this section specify the event type that they apply to. The

type field specifies a 3-tuple pattern of the type name and therefore it can be used to match a

specific version of an event type or all the types sharing the same prefix. For example, [PPITO,

uk.gov.pito.Numberplate, 1234] will match the version 1234 of theNumberplateevent

type whereas [PPITO, *, *] will match all types owned by PITO.

Both the identity and version fields either match one specific identity or version or all iden-

tities and versions. Because the version numbers are not guaranteed to be linear, as discussed in

§4.3.1, we cannot use relational operators in defining patterns that match all versions below or

above a given version number. The name field is treated as a character string, which allows the

pattern to include wildcards for prefix, postfix and infix matching.

In some cases it is nonsensical to specify a type field that matches more than one event type.

For example, granting a principalpublishor subscriberights to all event types from a specific

type owner while specifying the set of attributes that she can access does not make sense, but is

still a valid capability.

For themanageright the type field can match any set of event types. We expectthat in most

cases specifying the version number of an event type is not desirable, because it prevents the

event clients from using newer event types and therefore forces the type owner to support the

older event type indefinitely.

Accessing the Publish/Subscribe API

From an application’s point of view the right to access the publish/subscribe API for a specific

event type is the only access right that really matters. Access to the API allows the client to

publish or subscribe to a specific event type. With the right to connect to the event service, but

without the right to publish or subscribe, the application is unable to utilise the event service

and is therefore unable to communicate with other nodes overthe publish/subscribe system.

A publish/subscribe API request is always specific to an event type, i.e. a client advertises or

subscribes to a specific event type instead of making generalrequests. The owner of the event

5.2. Resources and Access Rights 111

type is responsible for delegating API access rights to domains on a per type basis. The type

owner issues domains capabilities that specify the event type and the requests that the domain is

allowed to make concerning that type (i.e. publish or subscribe). Note, that thepublishright is

checked at advertisement time rather than at publication time. This allows the system to verify

the authority once in the beginning of a session before any routing state has been created in the

broker network, instead of having to verify the authority for each published event.

In the following example PITO, as the type owner, has grantedthe Congestion Control

Service both the right to publish and the right to subscribe to events of any version of the

Numberplateevent type. The capability grants the CCS domain access to all attributes in the

event type.

Name Value

issuer PPITO

subject PCCS

type [PPITO, uk.gov.pito.Numberplate, *]

action publish

subscribe

attributes *

The CCS domain is responsible for further delegating a subset of these access rights to the

members of the CCS domain. The CCS domain has granted the Billing Office the right to

subscribe toNumberplateevents and to read thenumberplate andtimestamp attributes

shown below:

Name Value

issuer PCCS

subject PBO

type [PPITO, uk.gov.pito.Numberplate, *]

action subscribe

attributes numberplate

timestamp

In reality the attributes would be identified by their UIDs rather than their names in order to

allow the capability to be valid even when the attributes have been renamed (See§4.3.2 for more

details on renaming attributes). We will use attribute names instead of UIDs in our examples

in order to maintain readability. In an implementation the attribute names can be included in

annotation attached to the attributes in order to provide better user experience in type editing

tools.

The following table shows a capability issued to a CCTV camera placed near Victoria station

that is granted the right to publishNumberplateevents from that location:

112 Chapter 5. Access Control

Name Value

issuer PCCS

subject PCCTV

type [PPITO, uk.gov.pito.Numberplate, *]

action publish

attributes location =Victoria

numberplate

timestamp

The capabilities specify the access rights granted to an event client at the granularity of

individual attributes. Each attribute specified in the capability is accessible to the principal

for the specified action, e.g. the CCTV camera at Victoria is allowed to set the value for the

timestamp field when it publishes aNumberplateevent. Note that the attributes do not have

to exist in the event type. This allows a capability to apply to updated versions of the event type

where attributes have been removed. Similarly the capability restricts the event client’s access

to those attributes that are mentioned in the capability andtherefore the event client is unable to

access attributes that have been added to a new version of theevent type.

Specifying the attributes in the capability allows the system to limit attribute visibility in

cases where the event client does not need to see all of the event content. For example, in the

Congestion Control scenario the Billing Office needs access to the numberplate of a car entering

the congestion controlled area, but there is no need for it toaccess the location where the car was

sighted, because the congestion fee based on the vehicle entering the area, not on its location

when there:

Name Value

issuer PCCS

subject PBO

type [PPITO, uk.gov.pito.Numberplate, *]

action subscribe

attributes numberplate

timestamp

Similarly the Statistics Office needs to see timestamps and locations for each numberplate

sighting, but it has no need to know the specific numberplatesin order to collect traffic statistics

for a given area:

5.2. Resources and Access Rights 113

Name Value

issuer PCCS

subject PSO

type [PPITO, uk.gov.pito.Numberplate, *]

action subscribe

attributes location

timestamp

Detective Smith on the other hand must see all attributes to be able to track down a vehicle,

but her subscription includes a filter on the numberplate attribute in order to prevent the detective

tracking arbitrary vehicles:

Name Value

issuer PMet

subject PSmith

type [PPITO, uk.gov.pito.Numberplate, *]

action subscribe

attributes location

numberplate =AE05 XYZ

timestamp

Unlike domains and event brokers, event clients can be issued capabilities that specify re-

strictions on event attribute values. For example, the value of thelocation attribute in the

capability issued to the CCTV camera is forced to the valueVictoria. For the CCTV cam-

era this means that its local broker forces the value of thelocation attribute toVictoria

regardless of the value the CCTV camera has set to that attribute. Similar restrictions can also

be used when granting subscription rights to an event client. For example, Detective Smith of

the Metropolitan Police has the right to subscribe toNumberplateevents where the value of

thenumberplate attribute isAE05 XYZ. Detective Smith’s local broker is responsible for

enforcing the restriction by adding an appropriate filter expression to Detective Smith’s sub-

scription.

It is impossible for type owners or domains to specify similar attribute level restrictions for

domains, because there is no way for the issuer to enforce those restrictions. A domain on the

other hand is able to enforce the restrictions on event clients, because an event client accesses

the event service by connecting to an event broker that is a member of the same domain and

acts on the ACS’s behalf.

When a client has access only to a subset of the attributes in anevent type, the client hosting

broker will replace the other attributes withnull values. In the case of publishers, the PHB

sets all attributes that the publisher is not authorised to access tonull. If a subscriber is

not authorised to access an attribute in a publication, the SHB delivers the publication to the

subscriber with the inaccessible attributes set tonull.

114 Chapter 5. Access Control

We expect that in most cases publishers would have access to all attributes, albeit some

attributes might have forced values as is the case with the CCTVcamera above. Subscribers on

the other hand might be more restricted with respect to access to attributes. We imagine that

in many cases where a number of subscribers with different roles access the same events the

subscribers would be granted access to different sets of attributes as is the case in our example

application with the Billing Office, Statistics Office, and Detective Smith as subscribers. Forced

subscription filters would probably be used quite frequently in cases where the subscriber is only

authorised to access a subset of the event stream. Such caseswould include our example with

Detective Smith as well as any case where the subscriber is charged for accessing the event

stream as is the case in the Stock Ticker example from§1.2.1.

Type Management

We assume that event type definitions need to be revised during their lifetime, either because the

original definition was incorrect or because the application requirements have changed since the

event definition was deployed. Type management is the duty ofthe type owner, but if necessary

she can delegate type management duties to other principalsby issuing them a capability with

themanageaccess right:

Name Value

issuer PPITO

subject PTM

type [PPITO, uk.gov.pito.Numberplate, *]

action manage

This capability allows the type manager (PTM), whose job in the PITO organisation includes

deploying new versions of PITO owned event type, to issue newversions of theNumberplate

event type.

Delegating type management duties to other principals allows type owners to spread the

responsibility of managing an event type to other principals in cases where the type owner is

either unable to perform their duties at this time (e.g. theyare leaving the organisation) or when

the type owner wants to distribute the load of type management between multiple principals.

We can subdivide themanageright into specific management operations, as described in

§4.3:

i. add attribute,

ii. remove attribute,

iii. rename attribute,

iv. change attribute type.

5.3. Verifying Authority 115

Fine grained access rights give a type manager more control when delegating type man-

agement duties to other principals. For example, a type manager could delegate the right to

add attributes to a less trusted principal so that they couldadd new attributes to an event type

if necessary, but are prevented from removing vital attributes from the event type and thereby

breaking existing applications.

Unfortunately verifying that the type manager has acted within its authority requires that the

verifier is able to compare this version of the event type to the previous version. The previous

version of the event type could be incorporated in the new type definition, but this will result in

larger event type definitions. Alternatively the event typedefinition can reference the previous

version by name and it is up to the verifier or the prover to lookup the previous version from a

type registry. By comparing the two versions with each other the verifier can ascertain that the

changes made to the old version are indeed authorised by the type manager’s credentials.

We feel that in most cases the extra granularity in granting type management rights to type

managers is not necessary and thus it is simpler to just grantthemanageauthority rather than

the right for individual type management operations. That is, if a type manager is not trusted to

manage the type definition with respect to all the type management operations specified above,

then the type manager should not be authorised to manage the type at all.

Note that it does not make sense to include the version numberin the type field of the

capability unless we support the finer granularity type management operations, i.e. restrict the

type manager’s access right to, for example, renaming existing attributes. If a type manager has

been granted tomanageright, it does not make a difference what the original version of the

event type is, the type manager is able to change any it to any other version of the same event

type by using the above mentioned operations.

As in the case of theinstall right, the credentials granting the principal themanageright

need to be embedded in the type definition so that the broker verifying the validity of the type

definition is able to verify the type manager’s right to deploy a new version of the given event

type. Note that the type manager must also have theinstall right in order to be able to deploy

updated event type definitions on the publish/subscribe system.

We would expect types to be managed and created by the domain’s ACS or alternatively a

specific principal responsible for event types in that domain. In either case the same principal

will most likely be responsible for both managing the type definition and access rights to that

type across the type’s lifespan.

5.3 Verifying Authority

In distributed, capability-based access control systems aprincipal’s authority is usually verified

by executing an interactive protocol between the principaland the verifier. During the protocol

(i) the principal authenticates herself to the verifier, (ii) presents her credentials to the verifier,

116 Chapter 5. Access Control

and (iii) issues an access request concerning a specific object. The verifier confirms the prin-

cipal’s identity, verifies the presented credentials, and finally, assuming that the credentials are

valid, executes the principal’s request.

5.3.1 Authentication

In SPKI the principal’s identity is represented by a public key. The principal authenticates

herself by proving that she owns the private key corresponding to the public key. A principal

proves the ownership of a private key by signing a piece of information with the private key.

The verifier is then able to verify the signature with the principal’s the public key, thus verifying

that the principal does indeed own the private key corresponding to her identity. The principal’s

public key is included as the subject in one or more of the provided credentials.

Public key cryptography allows for a number of identification protocols based on signing a

nonce1. The verifier is able to ascertain the principal’s identity by verifying the signature on the

nonce with the principal’s public key.

The ISO/IEC 9798-3 [ISO98] standard defines the following three mechanisms for authen-

ticating a principal using digital signature techniques [MOV96]:

i. unilateral authentication with timestamps:

A→ B :tA, B, SA(tA, B)

PrincipalA sends the authentication message toB, who verifies that the timestamp is valid,

i.e. it is fresh with respect to some pre-defined grace period, that the identityB in the

message is its own, and that the signature across these two values is correct.

ii. unilateral authentication with random numbers:

A← B :rB

A→ B :rA, B, SA(rA, rB, B)

VerifierB sends a challenge message to principalA. Upon receipt of the challenge principal

A generates her own random numberrA and sends a reply back toB. B verifies that the

identifier is its own and that the signature over the two random numbers and the identifier

is correct. The random numberrA is used to prevent chosen-text attacks whereA might be

tricked into signing, for example, some legally binding document.

1A nonceis a number that is used only once for the same purpose. It is used to prevent the replay of messages.
A nonce can be a timestamp, a random number, or a sequence number.

5.3. Verifying Authority 117

iii. mutual authentication with random numbers:

A← B :rB

A→ B :rA, B, SA(rA, rB, B)

A← B :A, SB(rB, rA, A)

The message verification in this protocol is the same as in (ii) above. This protocol, com-

pared to the two previous ones, allows for simultaneous authentication of both parties,

whereas the previous protocols authenticated only principal A.

Notice that often with identity certificates, e.g. X.509 identity certificates, the goal of ex-

ecuting the authentication protocol is to verify the principal’s identity, i.e. that they own the

presented identification certificate. Therefore, the identity certificate must be either provided to

the verifier in the protocol messages or in some out-of-band mechanism. The certificate gives

the verifier the public key to use to check the digital signature in the authentication message.

In our case the goal is to prove the ownership of the key pair rather than the ownership of an

identity certificate. The verifier still needs the public keyto check the digital signature. The

principal’s public key (or its hash value) is the subject of the last authorisation certificate in the

certificate chain. Therefore the public key is provided to the verifier as a part of the principal’s

request.

When authenticating the principal to the verifier, we could simply use the first method,

unilateral authentication with timestamps, described above. This would allow us to piggy-back

the authentication message with the credentials and the request as part of single message being

sent to the verifier.

The second method,unilateral authentication with random numbers, is only useful if the

two parties do not have access to an accurate time source thatcan be used as a source for nonces.

The protocol includes an initial challenge message that canbe avoided in the first protocol. In

our environment we assume that all nodes have access to a timesource that is accurate enough

within a certain delta.

In MAIA we want both parties of a connection to mutually authenticate each other (we

discuss the motivation for this in detail below in§5.3.3). We can achieve this in an ad-hoc

fashion by executing either of the unilateral protocols twice, but that results in two independent

runs of the protocol that cannot be logically associated with each other. By implementing the

third protocol described above,mutual authentication with random numbers, both parties can

authenticate themselves to each other as part of the same protocol run.

5.3.2 Authorisation

To prove her authority to access a specific event type the event client presents the verifier with a

set of credentials that together provide evidence of the event client’s authority. These credentials

118 Chapter 5. Access Control

include all the authorisation certificates that form the certificate chain between the principal and

the type owner. If the any of the certificates in the chain includes group or named subjects,

then the principal must also provide the necessary name certificates. Similarly with threshold

subjects, the principal must provide authorisation certificates fromk of then issuers to prove

delegation.

The verifier checks the validity of all the provided certificates by checking that the signature

is correct, that the certificate has not expired and that the possible on-line tests pass (We discuss

SPKI on-line tests in more detail in§6.2.3). The certificates are then mapped to tuples.

Names in the tuples are replaced with public keys or hashes ofpublic keys by performing a

4-tuple reduction on the name 4-tuples.

The authorisation 5-tuples are then reduced to a single 5-tuple by recursively applying the

5-tuple reduction rule on consecutive pairs of 5-tuples.

Finally the verifier checks that the authority field in the reduced 5-tuple includes the re-

quested operation on the specified object. The verifier then executes the principal’s request.

There must be a clear link between the resource owner, i.e. the root principal in the capability

chain, and the object being accessed so that the verifier can form a certificate loop from the chain

and verify it. This link is formed by an ACL in SPKI. An ACL in SPKIspecifies the owner of

an object. The SPKI specification does not give a formal description of an ACL. The informal

description of an ACL provided in the specification is simply an authorisation certificate body

without the issuer field. In practise implementations and applications are free to choose their

own ACL formats. In MAIA we use event type definitions as an ACL when dealing with event

type access rights. Access rights related to the event service, e.g. the right to join the event

service, are based on trusted principals. I.e. the owner of the network resource is specified

explicitly in the participant’s system configuration similarly to how X.509 root certificates are

specified in web browsers.

5.3.3 Verification in M AIA

In MAIA the principals making access requests are event clients, event brokers, and type man-

agers. The verifier is always an event broker that is connected to the broker network.

Interactive verification happens only between an event client and an event broker or alter-

natively between two event brokers. For type management rights the type manager’s authority

is verified at publish/subscribe request time when the eventclient presents an event type to an

event broker as part of its advertise or subscribe request. This is because a type manager never

interacts with the event brokers directly (the event clientacts as the type manager’s proxy).

In order to present its credentials to the verifier the type manager embeds them in the type

definition that she has signed. The type manager’s signatureon the type definition, along with

the type manager’s identity in the name tuple, authenticatethe type manager to the verifier

even though the two never communicate with each other directly. The verifier is able to trust

5.4. Delegating Root Authority 119

the presented signature and does not have to worry about replay attacks, because the signed

document, i.e. the type definition, is a self-contained access request that specifies the requested

operation (deploy event type) and the related data (event type definition). This is similar to

digitally signing an email and sending it to the recipient.

With API related access rights the principal always connects to the verifier directly and is

therefore able to present its credentials to the verifier in an interactive session. The connecting

principal presents her credentials to the verifier in order to prove that it is authorised to make

the given API request.

Following the principle of least privilege, the event client can decide later in the session

to disclose more credentials if it wants to make other publish/subscribe requests that are not

covered by the already verified credentials.

When an event broker connects to another broker, it must also verify what the other broker’s

credentials are so that it can decide whether it can deliver plain-text events to the broker or if

it must first encrypt them in order to prevent the unauthorised broker from accessing the event

content. We will discuss event encryption in more detail in Chapter 7. Notice that while an

event client can choose to disclose only those credentials that authorise it to perform a specific

publish/subscribe request, the event brokers must disclose all their credentials so that (i) an event

client can decide if the broker has the required authority toimplement all future requests for the

client and (ii) a neighbouring event broker can decide whichevents it can deliver in plain-text

and which ones it needs to encrypt (We discuss in§7.4 the possibility of avoiding encryption

operations when the event broker knows that the receiving event broker has the same access

rights to the event.).

The brokers are able to increase their verification performance by caching the verification

results of single capabilities between sessions and storing the capabilities on disk. Caching

verification results will allow the broker to check the cachefor a previous verification result be-

fore committing itself to an expensive verification procedure. Storing capabilities on disk will

allow the broker to read and verify those capabilities as part of its bootstrapping process, thus

performing the expensive verification procedure in advancerather than during normal runtime

when it is also responsible for executing client requests and routing events. We provided per-

formance measurement results in§4.5 which showed how expensive capability verification was

compared to using cached results.

5.4 Delegating Root Authority

Decentralised trust management is based on the idea that theowner of a particular resource

is the ultimate authority, with respect to access control policy and decision making, and is

therefore responsible for managing the access control policy for that resource. Nevertheless

the resource owner is able to delegate this root authority toanother principal by granting the

120 Chapter 5. Access Control

principal a capability that grants her all access rights related to the resource. Typically we would

expect a capability to have certain validity conditions and, if nothing else, at least an expiration

date. By issuing the above described capability to a principal without any validity conditions the

resource owner is effectively delegating root authority, i.e. all access rights, to another principal.

The capability allows the new resource manager to manage access to the resource as if it was

the original resource owner, as long as it always includes evidence that it has been delegated

authority to manage access to the resource, i.e. the capability issued by the original resource

owner.

The resource owner is still able to issue capabilities related to the resource herself, but it

has no way of revoking the other principal’s authority. Thismechanism allows resource owners

to permanently delegate resource management duties to other principals in the system. For

example, a domain, that is about to leave the system, might delegate type management duties

permanently to another principal in the same domain in orderto allow other domains to carry

on using its event types.

With event type definitions the event type name and the signature must be linked together, as

explained in Chapter 4, therefore the capability delegatingroot authority to a new type manager

must be included in the type definition. Including the capability in the type definition will allow

anyone to verify the authenticity and integrity of the type definition. With access rights to the

publish/subscribe network or to the publish/subscribe APIfor a given event, the capability used

to delegate the root authority must be included in the certificate chain that the client shows to

the event broker verifying the authority.

The use of threshold subjects as type owners and network owners simplifies the manage-

ment of that resource significantly, because the principalsincluded as members of the threshold

subject can be changed as described in§2.6.4. Therefore, when threshold subjects are used to

create publish/subscribe networks or event types, there isno need to delegate root authority to

another principal at all.

5.5 Access Control in Topic-Based Publish/Subscribe

While most of this chapter is concerned with event types, the same principles are equally ap-

plicable to topic-based publish/subscribe systems. For example, topic-based publish/subscribe

systems share the two fundamental access rights described in §5.2, namely the right to connect

to the event service and the right to access the publish/subscribe API.

The right to create new topics should also be controlled by the coordinating principal as is

the case with installing new event types in our type-based system.

For a broker to verify the authority of a type owner to installa new event type the broker

needs to see the type owner’s credentials. In our type-basedsystem, as described earlier in this

chapter, the credentials are embedded in the type definitionwhich allows any principal in the

5.6. Related Work 121

system, that has access to the type definition, to verify the type manager’s authority to deploy

that type definition. With topic-based publish/subscribe there exists nothing similar to type

definition that could be used as a container for the topic owner’s credentials.

In order to allow the topic owner to present her credentials to the publish/subscribe system

we could devise a topic definition that would embed the credentials similarly to our type-based

system, but it would be difficult to justify why the event clients should be interested in the

topic definitions and provide them for the local broker, as isthe case with type definitions (See

§4.4.1).

Instead of forcing the event clients to provide the topic definition for the local brokers,

we could implement a topic registry in the event service. A topic owner would create a new

topic by passing a topic definition for a local broker which would verify the topic owner’s

authority and store the topic definition in the event service. A topic definition would contain

the name of the topic, the owner’s identity, the credentialsauthorising the topic owner to create

the topic, and a digital signature that protects all the above fields. Other brokers could then

lookup the topic definition from the registry when they are issued a request related to that topic.

It is important that all event brokers in the system are able to verify the topic definition for

themselves, otherwise a malicious event client and a malicious event broker from the same

domain could collude and create an unverified topic definition. Remember that the topic’s name

tuple must contain the topic owner’s identity as was described in§4.6.

In a hierarchical topic-based publish/subscribe system, apublisher publishing events under

a topic must have publication rights to all of the super-topics as well in order to be authorised

to publish the events. Whereas for a subscriber it is enough tobe authorised to subscribe to the

current topic only, with no access rights with respect to theinherited topics.

5.6 Related Work

Zhao and Sturman propose an approach to dynamic access control in a content-based publish/

subscribe system in [ZS06]. In contrast to our work they propose a centralised access control

list based architecture, which, while perfectly acceptable for single domain deployments, will

not effectively scale to multiple domains. The proposed scheme maintains a central ACL in the

system, which is consulted when event clients make new advertisement or subscription requests.

The ACL server becomes a bottle-neck in the system when the number of authorisation requests

increase. Also, when the centralised policy is changed, thepolicy changes are pushed to all

interested brokers, i.e. brokers hosting event clients that are affected by the policy change. This

approach provides a very fast revocation mechanism, but it also results in a large number of

messages being sent immediately after the policy change. Our approach to revocation will be

discussed in Chapter 6.

Zoltán Miklós proposes an access control mechanism for content-based publish/subscribe

122 Chapter 5. Access Control

systems in [Mik02]. The paper treats credentials as subscription or publication filters. That is,

a credential defines what event content a principal is allowed to publish or subscribe to as a

filter on that event content. The principal is allowed to setup advertisements and subscription

that are covered by the credential. Miklós’ proposal is very similar to how we suggest to restrict

publishing and advertisement rights based on the event content, as discussed in§5.2.2. However,

our proposal is less formal and would benefit from Miklós’ more formal treatment. From a

practical point of view, Mikĺos does not describe how access rights are granted to a principal, or

how the event broker authorising the event client’s requestis made aware of the current policy.

These issues have been the main concern of our work, so we can envision integrating Mikĺos’

work with our own approach.

As a precursor to our work, Belokosztolszki et al. presented an RBAC-based access control

architecture for publish/subscribe systems [BEP+03]. We have expanded on that work by de-

coupling the RBAC policy management system from the access control verification mechanism.

That is, our architecture allows the use of RBAC within domains, but uses SPKI authorisation

certificates as credentials between the domain members and the event brokers.

We base our access control model on that presented in a numberof papers relating to the

topic: [BEMP05] introduces the multi-domain environment and proposes a high-level access

control approach based on role-based access control, and [PB05], as discussed in the previous

chapter, introducessecure event typesand secure names. Finally, the access control architecture

proposed in this chapter is based on the work originally published in [PEB06] and [PEB07].

5.7 Summary

We have presented a capability-based access control architecture for multi-domain publish/

subscribe systems. By applying decentralised trust management principals, we are able to ad-

minister and enforce access control in publish/subscribe systems that span multiple independent

administrative domains both in a convenient and scalable manner. While the chapter concen-

trates on type-based publish/subscribe systems, the presented ideas are equally applicable to

topic-based and content-based publish/subscribe systems.

We have identified two resource types, broker networks and event types, that are present

in a type-based publish/subscribe system. And we have identified five operations,connect,

install, publish, subscribe, andmanage, that can be executed on one of the two resources. Our

proposed access control model allows us to control access toboth types of resources and to

authorise principals to execute all five operations independently.

The proposed architecture is multi-tiered, i.e. resource owners authorise domains rather than

event clients and brokers. The domain is then responsible for further delegating that access right

to domain members. We see event brokers as representing the domain in the publish/subscribe

system and therefore they are typically delegated all of thedomain’s authority. The multi-tiered

5.7. Summary 123

architecture also seamlessly supports a hierarchy of domains. This allows large domains to

divide their organisation into a number of sub-domains internally.

The presented access control model provides access controlat the edges of the broker net-

work. That is, the brokers are responsible for enforcing a decentralised access control policy

that is defined in the form of signed capabilities. We providea mechanism for controlling

which brokers can join the broker network, but once a broker has been allowed to join the pub-

lish/subscribe system it is able to implement any publish orsubscription request without any

restrictions.

This approach works well if we can assume that the brokers aretrustworthy. While this

assumption can be valid inside a single domain, it most certainly does not hold across domain

boundaries. Therefore enforcing access control inside thebroker network becomes an issue.

We address this in the following chapter by encrypting the content of events while they are in

transit in the broker network, thus preventing unauthorised brokers from decrypting the events.

Effectively we move access control enforcement from the brokers to the key servers manag-

ing the encryption keys, and thus evolve away from an access control approach that relies on

trustworthy brokers.

CHAPTER 6

Policy Management

The dissertation has thus far focused solely on how to implement enforcement of access control

in a multi-domain environment in a scalable and manageable manner. We have not touched on

policy management or credential revocation in previous chapters. While the dissertation con-

centrates on the mechanisms for enforcing an access controlpolicy rather than the management

of that policy, we feel that for the sake of completeness we must discuss the options that are

available for resource owners and domains to implement access control policy management and

credential revocation.

The remainder of this chapter will address a number of practical issues relating to policy

management in a real-world deployment of MAIA . In §6.1 we provide an illustration of how

theOpen Architecture for Secure Interworking Service(OASIS) system can be used to manage

policy in a domain. One of the more serious disadvantages of capabilities is the fact that it is

non-trivial for an issuer to revoke a capability that has already been delivered to a principal.

We discuss credential revocation in§6.2. In§6.3 we present a mechanism for delivering SPKI

validity statements to event brokers over the publish/subscribe infrastructure. Related to the

revocation of capabilities, we discuss in§6.4 the possibility of delegating part of the dynamic

policy evaluation to the event brokers as a means of improving the efficiency of the system. In

§6.5 we discuss how capabilities can be delivered to principals. Finally we present related work

in §6.6 and a summary of the chapter in§6.7.

6.1 OASIS

We stated earlier in Chapter 5 that in MAIA the policy management at the resource owner and

the domains is decoupled from the enforcement of that policyat the event brokers. We also

124

6.1. OASIS 125

wrote that both the resource owners and the domains were freeto implement a policy manage-

ment approach of their choice without affecting the enforcement of that policy in the multi-

domain environment. For example, a resource owner might consult a simpleaccess control

list when issuing capabilities to domains. Similarly a domain might use a more sophisticated

policy management system, for examplePonder[DDLS01] orOASIS. We will use OASIS as an

example in this section.

TheOpen Architecture for Secure Interworking Services(OASIS) [BMY02, BMY03] is an

established, distributed, role-based access control (RBAC)[FK92, SCFY96] system that can be

used to manage access control policy for a domain or a type owner. It provides a comprehensive

rule-based means to specify roles and access rights associated with a given role. Principals

acquire role memberships and activate access rights associated with a role according to role

activation and authorisation policies, respectively.

In OASIS a principal acquires the privileges that authoriseit to access an object in two steps:

first, the principal acquires membership of a role by activating a role membership rule. Second,

the principal activates an authorisation rule that resultsin the principal, as a member of a role,

to be issued with the appropriate capabilities.

A role activation policy comprises a set of rules, where a role activation rule for a roler

takes the following form:

r1, . . . , rn, a1, . . . , am, e1, . . . , el ⊢ r

whereri are prerequisite roles,ai are appointment certificates andei are environmental con-

straints. The appointment certificates represent persistent credentials, e.g. a physician’s medical

license, an employment contract between an employee and an employer, or in Detective Smith’s

case a court order authorising her to track a given numberplate. The environmental constraints

allow restrictions to be imposed on when and where roles can be activated, e.g. role activation

can be limited to a physician’s working hours, or in Detective Smith’s case, as we shall see

below, to her being assigned to the investigation involvingthe tracking of a given numberplate.

A predicate that must remain true for the principal to remainactive in the role can be tagged

as arole membership condition. Such predicates are monitored, and their violation triggers

revocation of the role membership and related privileges from the principal. We discuss in

§6.4 how the evaluation of such predicates could be delegatedto the verifier rather than being

implemented at the issuer, i.e. at the ACS.

An authorisation rule for some privilegep takes the form:

r, e1, . . . , el ⊢ p

wherer is an active role,ei are environmental constraints, andp is a privilege granted to the

principal. An authorisation rule takes only one role as input, but a variable number of environ-

mental predicates, and results in a single privilege being issued to the principal. An authorisa-

tion policy comprises a set of such rules. Note that OASIS hasno negative rules, and satisfying

any one rule indicates success.

126 Chapter 6. Policy Management

OASIS roles and rules can be parameterised. This allows fine-grained policy requirements

to be expressed and enforced, such as exclusion of individuals and relationships between them.

Without parameterisation it becomes necessary to define an unmanageable number of roles for

larger systems. For example, the parameterised rolenpTracker(numberplate)allows the same

npTrackerrole to be used in all investigations that require access to the numberplate tracking

system. Parameterising the role binds the role to the specific numberplate thereby preventing

the detective from abusing the granted privilege by tracking arbitrary numberplates. Without

parameterisation it would be difficult if not impossible to express the access control policy at

such a fine level of detail.

6.1.1 OASIS Policy in Our Example Scenario

In our Congestion Control example Detective Smith is only permitted to receive events relating

to the sighting of a particular numberplate. We have indicated how the publish/subscribe system

can enforce these types of access control rules, but have notdiscussed how to specify this in

terms of policy within a domain.

In this section we show how the OASIS policy language could beused to specify the simple

rules required by our example scenario. We propose that the courts are equipped with a means

to issue a warrant as an OASIS appointment certificate. This appointment certificate, repre-

sented bycourtOrderbelow, has parameters that specify which case and which numberplate

the warrant has been issued for. The appointment certificates are set to expire when the court

order expires.

The predicatedetectiveensures that only detectives are able to activate the role membership

rule. The constraint is parameterised with the principal’sidentity, which corresponds to an

identity that can be verified when the principal tries to activate the role. This identity can be

either an X.509 identity or a public key as used in SPKI to represent principals. If the predicate

is implemented as an environmental constraint, it will probably result in a database lookup to

check that the presented identity is a detective. Alternatively the predicate could be represented

by an appointment certificate held by the principal that indicates that the principal is indeed a

detective of the Metropolitan police.

The domain access control policy can finally ensure that rolemembership is granted only

to detectives who have been assigned to the case. We use thecaseAssignment environmental

predicate to record the mapping between cases and detectives.

An appropriate OASIS role activation rule for numberplate tracking in the Met domain

would be:

6.2. Access Rights Revocation 127

courtOrder(caseId, numberplate)

detective(detectiveId),

caseAssignment(detectiveId, caseId) ⊢ npTracker(numberplate)

This rule grants Detective Smith membership of thenpTrackerrole. That is, the Detective

is issued arole membership certificateindicating that she is a member of the role. The role

is parameterised with the numberplate of the vehicle in question that is specified in the court

order. The binding prevents the Detective from using the role membership to track arbitrary

numberplates.

The role membership rule by itself does not grant the principal any access rights. The policy

must specify one or more authorisation rules that allow the principal to acquire actual access

rights. In our example the policy would include the below authorisation rule:

npTracker(numberplate) ⊢ Numberplate.subscribe(location,

timestamp,

numberplate = numberplate)

This rule grants the holder of annpTrackerrole membership certificate the right to subscribe

to Numberplateevents with a filter over thenumberplateattribute. The filter value is the num-

berplate string that is included in the role membership certificate. The principal is granted the

right to read the three attributes, (i.e.location, timestamp, andnumberplate) of delivered events,

i.e. the SHB delivers events to the subscriber with all threeattributes intact.

We have used SPKI in MAIA to implement capabilities. If we were to implement policy

management in a domain with OASIS, the above rule would have to result in an SPKI authori-

sation certificate that would grant the principal subscription rights to the Numberplate events, as

described in§5.2.2. The OASIS implementation could either issue SPKI authorisation certifi-

cates directly, or the ACS could implement a level of indirection where a rule activation would

first result in an OASIS capability that would then result in an SPKI authorisation certificate

being issued to the principal.

6.2 Access Rights Revocation

Compared to access control lists, capabilities suffer from two distinct disadvantages. First,

because the currently active access control policy is distributed amongst all the principals in

the system, it is difficult for the resource owner to determine what that access control policy

128 Chapter 6. Policy Management

is. A simple solution to this is for the owner of each resourceto maintain a database of issued

capabilities and their expiration dates. Newly issued capabilities are added to the database while

expired capabilities are removed from it. The database willgive the resource owner a snapshot

of the current access control policy for a given resource. This approach assumes that principals

that are authorised to further delegate the access rights will somehow register those delegations

with the resource owner in order to keep the database up to date. Compared to an ACL, the

resource owner must explicitly maintain a database of issued and valid capabilities, whereas

in an ACL-based system the ACL of an object provides a view of thecurrently active access

control policy for that object implicitly. Notice that in many cases, especially in large-scale

systems like MAIA , an access control policy would be defined explicitly and capabilities and

ACLs would simply be the method for implementing that access control policy. But in smaller

systems, e.g. filesystems or web sites, the ACL and capabilities actually represent the access

control policy.

Second, capabilities are difficult to revoke. In an ACL-basedsystem the resource owner

can simply change the centralised ACL in order to revoke a principal’s access rights for future

requests. Not so in a distributed capability-based system:once a capability is given to the

principal it is impossible to take it away from her. In a digital world the principal is able to

make an infinite number of identical copies of the capabilityand it is practically impossible for

the resource owner to delete all of them without relying on tamper-proof devices. Solving this

problem is analogous to solving the digital rights management problem.

Fortunately various methods exist to control the validity of issued capabilities. The follow-

ing sections will describe each of these methods in turn.

6.2.1 Validity Period

The simplest and most reliable method for determining the validity of a capability is the validity

period assigned to the capability at the time of issue. The validity period specifies thenot before

andnot afterdates that together define a time span during which the capability is considered to

be valid. The verifier will treat the capability as invalid both before thenot beforeand after the

not afterdates. If either date is not specified, the validity date is unbounded in that direction.

The method is very reliable and fast, because the decision-making does not rely on third par-

ties such as certificate revocation lists (See§6.2.2) or on-line checks (See§6.2.3). All other more

sophisticated revocation methods add complexity to the access control architecture [Aur99].

These methods imply frequent network communication towards third party on-line services,

constant availability of those services, and signature generation and verification of generated

responses. Therefore, in most systems, we would like to avoid other revocation methods as

much as possible and rely only on validity dates. The TAOS operating system is an example of

an architecture that relies solely on validity dates for capability revocation [WABL94].

The issuer of a capability can decide to implement policy management based only on va-

6.2. Access Rights Revocation 129

lidity periods by issuing so calledshort-livedcapabilities that are valid only for a relatively

short period of time. Once the capability has expired the principal is expected to request a fresh

capability from the issuer. Each time the principal requests a new capability to replace an old

expired one, the issuer is able to revoke the principal’s access to the resource simply by de-

clining to issue a new capability. Obviously the issuer mustwait for the existing capability to

expire before a policy change takes effect and therefore theissuer is forced to make a trade-off

between the effort required to re-issue capabilities when the policy has not changed, and the

time it takes for a policy change to take effect after the policy has been modified.

Whether fast revocation is a requirement or not depends on theapplication. For example,

in the Stock Ticker example in§1.2.1 the stock exchange might implement a pre-paid model in

which a brokerage firm is required to pay for access to the stock ticker data in advance. The

expiration date on the capability issued to the brokerage firm will be set to match the date when

the current contract, which the brokerage firm has already paid for, runs out. This allows the

stock exchange to review its access control policy wheneverthe capability expires without any

risk of loss of revenue due to a brokerage firm missing its payments.

In the congestion control example Detective Smith’s right to access the Numberplate event

stream is based on her obtaining a court order to do so. The warrant has an expiration date set

by the judge who issued it. If the court order is revoked because of an appeal, or Detective

Smith is removed from the case, the access rights granted to Detective Smith should be revoked

immediately. Since the capability was issued to Detective Smith with the assumption that she

would not be removed from the case and that the court order would not be revoked, the expi-

ration date on the capability will be based on the expirationdate of the court order. To be able

to handle these extraordinary circumstances the Metropolitan domain must be able to revoke

Detective Smith’s access rights before they have expired. The following sections will describe

the alternatives that are available for revoking a signed capability before it has expired.

6.2.2 Certificate Revocation Lists

An early form of Certificate Revocation Lists (CRLs) is based on black lists used by banks

and credit card companies where a book was distributed to allretailers listing all bad checking

accounts and credit card numbers [EFL+99]. The retailer was then responsible for checking

that the checking account or credit card used by a customer was not listed in the book before

accepting it. Similarly a CRL contains all identities of the certificates that have been revoked.

Each verifier is provided with a copy of the latest CRL and it is responsible for checking that

the certificate used by a principal has not been revoked. The model allows the issuer to release a

new CRL on demand whenever a certificate is revoked. The CRLs have sequence numbers that

allow the verifiers to tell which CRL is the most recent one. Whenever a new CRL is released

it replaces the previous one at the verifier.

The main problem with this form of CRL is the fact that the revocation process is not de-

130 Chapter 6. Policy Management

terministic: depending on how the new CRL is delivered to the verifiers, a revoked certificate

might be accepted as valid if the latest CRL has not yet reached this particular verifier. More-

over, an active adversary could prevent the CRL from ever reaching a given verifier simply by

tampering with the network regardless of whether the network connection is encrypted or not.

6.2.3 SPKI On-Line Tests

The SPKI working group wanted to define a set of revocation methods that would allow de-

terministic revocation behaviour. The SPKI Certificate Theory RFC [EFL+99] specifies three

types of deterministic on-line tests:

1. Timed CRLs

2. Timed Revalidations

3. One-Time Revalidations

Timed Certificate Revocation Lists

Timed CRLsaim to address the shortcomings of traditional CRLs describedabove by attaching a

validity period to the CRL that specifies the time period for which the CRL should be considered

valid. If the CRL expires and the verifier does not have access toa new valid CRL, it will

consider all certificates as invalid. The validity periods of two CRLs must not intersect, i.e. the

validity period of the new CRL must start after the previous CRL has already expired. Obviously

the replacing CRL can be distributed before it is valid, but theearlier the CRL is distributed the

more out of date it will be when it does become valid.

SPKI certificates must state the key that is used to sign the CRL and also where the CRL can

be fetched. Unlike with traditional CRLs where the certificateissuer distributes the CRL to the

verifiers, in SPKI it is the principal’s responsibility to fetch the latest CRL and provide it to the

verifier with her other credentials. These rules guarantee deterministic behaviour wherein all

certificates that rely on CRLs will always be processed with a valid CRL and CRLs are always

issued in a deterministic manner.

Timed Revalidations

A timed revalidationis a positive version of a timed CRL. Where a CRL states which certificates

have been revoked, a timed revalidation specifies which certificates are still valid. Again, to

provide deterministic behaviour, timed revalidations must follow the same rules as described

above for timed CRLs.

6.2. Access Rights Revocation 131

One-Time Revalidations

Both timed CRLs and timed revalidations force the issuer to makea trade-off between how of-

ten to issue a new validity statement and the time it takes fora policy change to take effect. In

some cases any latency, however small, is unacceptable. To address these scenarios, the SPKI

standard definesone-time revalidations. A one-time revalidation states that the certificate men-

tioned in the instrument is validnow for the current authorisation computation only. Because

the response from the revalidation service has no validity period, the revalidation request (in-

cluding a unique nonce) must be generated by the verifier at the time of access. With both timed

CRLs and timed revalidations the principal is responsible forretrieving the CRL or revalidation

and providing it for the verifier with its other credentials.

6.2.4 Active Revocation

Richard Hayton describes in his PhD dissertation [Hay96] a notification based approach to

credential invalidation, which he callsactive revocation. The idea is that credential issuers

notify registered verifiers when a given credential’s validity state changes. For example, when

making an access control decision a verifier registers at theissuer of a particular credential.

The issuer will from then on notify the verifier if the credential’s validity state changes, i.e. the

credential is revoked. The registration phase in the proposed scheme allows verifiers to retrieve

up to date validity information from the issuer that is used in the initial access control decision,

and the notification phase guarantees that verifiers are notified as soon as the validity state of

the credential changes.

Active revocation was developed to be used in conjunction with an OASIS role server. In

such a deployment verifiers register at the OASIS server to benotified if the validity state of

a given credential changes. A credential is revoked if one ofthe pre-conditions in any of the

OASIS policy rules that have led to the principal acquiring the given credential becomes false

or any of rules are removed from the system. The preconditions, as described in§6.1, are role

memberships, appointment certificates, and environmentalconstraints. If any of the principal’s

appointment certificates are revoked, or an environmental constraint is no longer true, the OA-

SIS rule will no longer be valid. The invalid rule will trigger a cascading invalidation of all the

other rules that depend on this rule being valid. As a result those credentials of the principal that

depended on the invalidated rule will be revoked. The OASIS server then notifies all registered

verifiers that the credential has been revoked.

For example, in the Detective Smith’s case a verifier would register with the Met domain

to receive notifications if either the role membership rule or the authorisation becomes invalid.

The role membership rule depends on the court order, Detective smith being a detective, and her

being assigned to the investigation. The role membership rule would become invalid if (i) the

court order was revoked, (ii) Detective Smith lost her detective status, or (iii) Detective Smith

was removed from the investigation. The authorisation ruledepends only on Detective Smith

132 Chapter 6. Policy Management

being a member of thenpTrackerrole, so if Detective Smith lost her membership of the role,

she would also lose her numberplate tracking rights.

To avoid the non-determinism typically related to CRL implementations, Hayton’s approach

implements a heartbeat protocol between the server and the registered verifiers. The heartbeat

messages act as timed CRLs in that they refresh the status quo for the next time interval.

Because the verifiers communicate directly with the OASIS server, the parties end up being

tightly coupled to each other. The client-server nature of the communication also presents a

problem in two fronts: (i) the server must send one message for each registered verifier, and (ii)

each verifier must connect to each server in the system.

By using a publish/subscribe system as the notification service we are able to decouple

the verifiers from the issuers while maintaining the deterministic behaviour of the revocation

system. The publish/subscribe system allows the verifiers to access all servers simply by con-

necting to a single broker. The servers are able to publish a single revocation message that is

delivered to all registered verifiers. We will describe our approach in more detail in the next

section.

6.3 Distributing Validity Statements over Publish/Subscribe

Active revocation relies on a one-to-many notification service that could be easily and efficiently

implemented over a publish/subscribe system. Verifiers could subscribe to a publish/subscribe

topic that was used to publish validity statements for a specific credential or all credentials

issued by the same principal issuer depending on the desiredgranularity.

A crucial step in the active revocation scheme is the initialrequest phase where the verifier

registers to be notified of validity changes. That phase allows the issuer to provide the verifier

with the credential’s current validity state as a response to the registration request. Unfortu-

nately, in decentralised publish/subscribe the subscribers are decoupled from the publishers so

the verifier is unable to make the initial request to determine the current validity state of a

credential over the publish/subscribe protocol.

This problem can be addressed in one of two ways: (i) the principal can provide the verifier

with the initial validity statement, this is the approach proposed in the SPKI RFC [EFL+99],

or (ii) the publish/subscribe protocol is enhanced to support a request-response type interaction

model that allows the verifier to receive the initial validity statement over the publish/subscribe

system as a response to an initial request. The two approaches can also be combined so that the

verifier will rely on receiving the initial validity statement over the publish/subscribe system if

the principal did not provide one with its other credentials.

The following proposal is aimed at topic-based publish/subscribe systems, which allows us

to ignore the contents of the publications. We will try to generalise our approach for content-

based and type-based publish/subscribe systems in the future. Please keep in mind that the

6.3. Distributing Validity Statements over Publish/Subscribe 133

proposal has not been fully fleshed out at the time of writing and that we will aim to publish the

work independently of this dissertation.

6.3.1 Request-Response over Publish/Subscribe

In order to use the publish/subscribe system for deliveringthe initial validity statement to the

verifier, we can enhance the publish/subscribe protocol by extending the semantics of the sub-

scription message to include an initial state request. Thatis, a subscription message will create

subscription state in the brokers that it passes through as usual, but it will also double as a re-

quest for the current state of the topic. The event service will provide a response to the request

and deliver it to the subscriber as a response to the subscription request. After that the protocol

falls back to the normal publish/subscribe semantics and the subscriber is notified whenever a

new event is published.

In the validation scenario revocation events would be published under credential-specific

topics, i.e. each credential would have its own publish/subscribe topic. This would make it

simple for the verifier to subscribe to revocation events fora given credential. When a verifier

subscribes to validity events for a given credential, the subscription doubles as a request for the

current validity state of that credential.

The problem in integrating a request-response protocol into the subscription phase of pub-

lish/subscribe is deciding who should provide the responsefor the request. We can route the

request back to a publisher and expect the publisher to provide a response. This works very well

and is conceptually simple if we have only one publisher for each topic. This is true for our ex-

ample scenario where the validity request would be handled by the sole publisher of revocation

events under this particular topic.

But in other scenarios we might have more than one publisher for a given topic. Even in

the revocation example we might have multiple publishers for reliability’s sake. With multiple

publishers we can route the request to all of the publishers or pick a subset of publishers at ran-

dom. When routing the request to all of the known publishers wemust decide which response

to accept. It is plausible that the publishers do not actually agree on the current state of affairs.

We can address this by simply attaching a timestamp to the state reply signifying the age of

the provided state and then allow the subscriber (or the SHB) to pick from all the responses the

one with the most recent timestamp. If the subscriber is expected to pick the response with the

most recent state snapshot it implies that the subscriber must wait for responses from all known

publishers. The problem here is that the decentralised event service does not actually know

how many publishers there are in the system. Therefore the only alternative for the subscriber

is to wait for responses until a timeout expires and then pickone response from the received

responses. This approach introduces a constant delay to allsubscription requests, which, de-

pending on the length of the delay, might not be acceptable. The other simpler alternative is to

always pick the first response in which case the subscriber has to wait for the full timeout only

134 Chapter 6. Policy Management

in cases when there are no publishers in the system. The obvious downside is that the accepted

response might not be accurate.

Instead of proposing a solution here, we will add response caching to the protocol in the

next section. Response caching allows us to avoid having to pick a publisher in cases when

a response has already been provided. We need to actually address the problem only when a

cached response is not available.

6.3.2 State Caching

Because event publications follow a predefined event dissemination tree that has been created

by advertisement and subscription events flowing though theevent broker network, we can use

the event dissemination tree to cache previous publications in the broker network. Each new

subscription event will eventually reach a node that is a part of the event dissemination tree.

Assuming that a broker has cached the most recent publication or response to a previous state

request, it can provide an up-to-date state response to the subscriber without having to forward

the request any further in the broker network.

When a subscription event is routed through the broker network it will always eventually

reach the event dissemination tree, at the very latest when it reaches the rendezvous node for that

publish/subscribe topic. By caching previous state responses in each event broker that stores

subscription routing state for that publish/subscribe topic we can increase the state response

performance of the whole publish/subscribe system.

All caching brokers are free to discard items from their cache if they are running out of

resources. If a broker does not have the previous state cached for a given topic, it can always

propagate the state request to its parent in the event dissemination tree, all the way up to the

rendezvous node. If the rendezvous node does not have the current state, we will have to deal

with the problem described in the previous section. One approach, in addition to the ones

described previously, is to simply let the rendezvous node respond with anunknownmessage.

If we decide to implement one of the approaches from the previous section we should im-

plement it at the rendezvous node rather than at the subscriber. The rendezvous node represents

a root node in the event dissemination tree towards the subscribers. If the rendezvous node

makes the request towards the publisher or publishers, the response will immediately be cached

by the rendezvous node for the benefit of future subscribers.Thereby we can avoid forwarding

requests to the publishers as much as possible.

6.3.3 Publishing Validity Statements

State response caching provides the best performance when as many subscribers as possible are

interested in the same topic. In the extreme case when there is only one subscriber per topic the

state request will degrade to the worst case scenario where state requests are always routed to

the rendezvous node and in many cases all the way to the publishers.

6.4. Policy Evaluation at the Local Broker 135

In order to take advantage of state caching in the credentialrevocation scenario described

earlier in this section, we would like one publish/subscribe topic to represent as many creden-

tials as possible. Therefore, we would prefer issuers to publish timed CRLs that cover all the

credentials that they have issued and that have not yet expired. That is, each publication would

be an SPKI-style timed CRL that states which of those certificates issued by the issuer, that have

not yet expired, have been revoked. Each timed CRL would also state its own validity period as

required by the SPKI specification.

Because each issuer publishes events only under one topic it allows the broker network to

cache the current state, i.e. the previously published CRL, and provide it to new subscribers

as the current state. The caching scheme could be further enhanced by making the brokers

aware of the CRL’s validity semantics so that brokers would be able to purge expired events,

i.e. expired CRLs, from their caches when they have expired

In addition to enabling more efficient caching, the one-CRL-per-issuer scheme allows the

issuer to offload some processing to the verifiers. That is, the issuer can sign one large statement

instead of multiple small ones (one per issued certificate),whereas the verifiers have to verify

the signature of a larger document covering a number of certificates instead of a small document

covering only the certificate the verifier is interested in.

As stated above this is still work in progress and we have not fleshed out all the details yet.

We do feel strongly that the proposed mechanism for caching state in the event service as well

as providing the last known state as a response to a subscription are valuable mechanisms for

any state related publish/subscribe applications.

6.4 Policy Evaluation at the Local Broker

In addition to static policy rules, the principal’s access rights to the publish/subscribe system

may also depend on dynamic conditions such as the time when anevent was published, or the

frequency of publications, to name a few. For example, a publisher may be restricted to publish

events only during working hours or if they are on duty at thattime.

In order to enforce access restrictions outside of working hours in our current model the

publisher’s authorisation certificate would expire at e.g.5pm each day. The publisher would

then have to acquire a new certificate that would be valid between 9am and 5pm the next day.

If the publisher left early that day, i.e. she were not on dutyanymore, the issuer would revoke

her credential before it expired. This kind of policy would be easy to specify in OASIS with

environmental constraints that evaluate to true between 9am and 5pm or if the principal is on

duty.

In order to allow longer lived certificates and to lower the load on the certificate issuer, we

can move the evaluation of the dynamic part of the policy to the verifier. That is, instead of

issuing certificates with validity times between 9am and 5pm, the issuer could issue a certificate

136 Chapter 6. Policy Management

that was valid for the coming month, but only when the access request was made between

9am and 5pm. Similarly, the verifier could check that the publisher is on duty at the time of

publication by querying a database.

Delegating the evaluation of the relatively simple dynamicconditions to the broker would

require us to define a minimal and safe policy language that allows the issuer to define these

conditions in the authority field of authorisation certificates. The verifier could then evaluate

the condition in the authority field and grant access if the condition evaluates to true. The policy

language must be “safe” in the sense that it does not allow access to any system calls and the

programs are executed in a sandbox that guarantees that the programs behave well (i.e. do not

run in an infinite loop or consume large amounts of memory). The programs would receive the

requested action (e.g. publish or subscribe) and the current environment (e.g. time, event type)

as input. Defining such a policy language is part of our planned future work.

6.5 Distributing Capabilities

When capabilities are implemented as digitally signed certificates, the certificates can be stored

and managed anywhere in the system as long as they are available to the verifier at the time of the

access request. The digital signature on the capability guarantees the integrity and authenticity

of the capability. Therefore, both the principal and the verifier can trust the content of the

capability.

Typically it is the principal that gathers evidence and provides that evidence to the verifier

at the time of access. The evidence includes capabilities and validity instruments (See§6.2.3).

This approach makes it the principal’s responsibility to locate and obtain valid, i.e. up to date,

credentials and validity instruments. The verifier is responsible only for making the access

control decision based on the evidence at hand. The exception to this rule is when the system

requires one-time revalidations, as described in§6.2.3.

6.5.1 Gathering Evidence

Before a principal can use a capability that has been issued toher to access a resource, she

must gather other evidence, as described above, that together with her capability proves her

authority to access the resource. The evidence includes other capabilities that link the principal’s

capability to the resource owner, and possibly validity statements specified in the capabilities’

validity fields.

Assuming that the issuer did not provide the principal with the capabilities that link her to the

resource owner, the principal must somehow obtain the missing capabilities that are part of the

capability chain. Alternatives include requesting the capabilities from the issuer, or retrieving

them from some sort of capability repository. In most cases,including our implementation in

6.6. Related Work 137

MAIA , we would expect the issuer to provide the principal with thenewly issued capability and

the chain of capabilities linking that capability to the resource owner.

In order to obtain the required validity statements, the principal needs to look at the validity

fields of all the capabilities in the capability chain. The validity field in the capability will

specify a URL from where the principal can obtain the requiredvalidity statements.

A capability can also define an on-line check that will allow the principal to obtain a fresh

capability when the original capability has expired [EFL+99]. This mechanism can be used to

refresh any capabilities in the capability chain.

6.5.2 Distribution Methods

Since it is the principal’s responsibility to obtain valid credentials before making an access

request, it makes sense in most cases to employ pull-type communications between the principal

and the credential sources.

In some cases, though, the issuer has a vested interest in theprincipals having valid ca-

pabilities. For example, it is in the domain’s best interestto make sure that all brokers and

sub-domains have valid credentials. Also, when using groupsubjects to delegate access rights

to event brokers, the domain wants to push new credentials towards all the event brokers at the

same time. In these scenarios the issuer should employ push-type messaging between itself and

the principals to ensure that the principals have the latestcredentials. It is also advantageous

from a performance point of view to broadcast the credentials to all principals at the same time

rather than wait for each principal to make a request for the same credential.

We assume that in general capabilities and validity instruments will be transmitted out-of-

band in the system, i.e. they will be sent to their destinations outside of the publish/subscribe

system being protected. It would probably be possible use the publish/subscribe system in

implementing the push-type messaging described above to push capabilities to the event brokers

in a domain, but we have not yet investigated doing so. Another efficient alternative inside a

single domain would be to use multicast to push capabilitiesto event brokers.

6.6 Related Work

We touched upon moving part of the dynamic policy evaluationto the verifier from the ACS in

§6.4. We are proposing that some of the dynamic environmentalconstraints should be incorpo-

rated in the issued credentials and evaluated by the verifierat the time of access. In order to do

that we would have to develop a safe policy language that could be embedded in SPKI autho-

risation certificates. Both the PolicyMaker [BFL96] and KeyNote [BFK98, BFIK99a] systems

also rely on such safe policy languages. We would also have toinvestigate what type of en-

vironmental constraints can be implemented reliably at theverifier. For example, the OASIS

138 Chapter 6. Policy Management

environmental constraints can be anything from database lookups to the current time. Many of

these environmental constraints could be checked at the verifier when the request is made.

In §6.3 we sketch out mechanisms for (i) using the subscribe event as a request for the

current state, or the most recent publication if you will, and (ii) caching the current state, or

the most recent publication, in the decentralised event service in order to improve performance.

Other work that provides similar functionality in publish/subscribe systems include so called

event replayservices where the event service remembers then last publications andreplays

those publications to a new subscriber. Many systems that support disconnected operation, i.e.

the subscriber is able to disconnect the system while still maintaining its subscriptions, support

event replay for those events that were published while the subscriber was disconnected [ZF03]

(we discussed disconnected operation in§2.1.1). The state caching approach is suitable for

applications that monitor the current state of an object forexample, whereas event replay is

more suitable for applications that collate a sequence of events.

6.7 Summary

In this chapter we have addressed many issues that we mentioned only briefly in previous chap-

ters. Many of those issues are directly or indirectly related to how access control policy is

managed in the system. We provided a cursory look at how the OASIS RBAC system could be

integrated with MAIA in order to manage access control policy in domains.

We also addressed credential revocation both from the pointof view of SPKI authorisation

certificates as well as from an OASIS view point. The revocation of capabilities has traditionally

presented trade-offs between certificate lifespans, the load caused by on-line checks, and the

timeliness of credential revocation. In some cases the trade-off is non-existent, for example, if

strict revocation is not necessary and the application lends itself to short-lived capabilities, then

it is simple to issue short-lived capabilities and forgo anyother revocation mechanisms. On the

other hand applications that require fast revocation of credentials must make frequent validity

requests towards the credential issuers thereby creating load on the on-line check service. We

feel confident that we have shown that the MAIA architecture enables both the resource owner

and the domain to select a policy management mechanism that suits the application’s needs.

We also proposed moving some of the dynamic parts of the access control policy evaluation

to the verifier by embedding conditions into the SPKI authorisation certificate. This would

allow the verifier to evaluate the conditionsin situwithout having to rely on third party services.

This would relieve the need for revoking and re-issuing capabilities based on some of the more

dynamic conditions.

CHAPTER 7

Event Content Encryption

In Chapter 5 we proposed a capability-based access control architecture for multi-domain pub-

lish/subscribe systems. The architecture provides a mechanism for authorising clients to, for

example, publish and subscribe to event types. The client’sprivileges are checked by the local

broker hosting the client.

The approach implements access control at the edge of the broker network and assumes that

all brokers can be trusted to enforce the access control policies correctly and not to disclose

confidential information to unauthorised parties. Any malicious, compromised or unauthorised

broker is therefore free to read and write any events that pass through it on their way from the

publisher to the subscribers. Malicious brokers are also able to inject and remove messages in

the broker network, thereby affecting the routing state of the broker network or creating spurious

publications.

This level of access control might be acceptable in a relatively small system deployed inside

a single organisation, but it is not appropriate in a multi-domain environment where organisa-

tions share a common infrastructure, but do not necessarilytrust each other.

In order to enforce access control inside the broker networkwe propose encrypting event

content and controlling access to the encryption keys. Withencrypted event content only those

brokers that are authorised to access the keys are able to access the event content either to write

(i.e. when publishing events) or to read (i.e. when routing or delivering events). We effectively

add an extra layer of access control where the key managers control access to the keys.

In addition to protecting the confidentiality of events in unauthorised domains, we can also

use encryption to implement a more expressive access control mechanism and lower the number

of events sent. By encrypting individual attributes, instead of the whole event as a single block,

we are able to enforce attribute level access control in a multi-domain environment: publishers

139

140 Chapter 7. Event Content Encryption

and subscribers can be authorised to access only a subset of the attributes in an event type. With

attribute level access control a single event instance can be delivered to a set of subscribers

each with its individual set of access rights. In Chapter 5 we discussed the congestion control

example and how the various subscribers require different access rights to the published events.

Attribute level encryption will allow us to enforce that level of access control also in the broker

network, not just at its edges. Without attribute level encryption the client’s domain and the

client hosting broker will have access to all the attributesin the event and it is up to the event

broker not to disclose the restricted attributes to the event client. Previously we relied on the

client hosting broker to enforce attribute level access control for connected event clients. With

attribute level encryption the event type owner can enforcethe same level of access control

towards a domain by not disclosing the appropriate attribute encryption keys.

As stated in§3.2.3, it is assumed that all clients have access to a broker that they can trust

and that the broker is authorised to access the event contentrequired by the client. This allows

us to implement the event content encryption transparentlywithin the broker network without

involving the clients: an event client’s local broker encrypts and decrypts events for the event

client without the event client ever knowing about it. By delegating the encryption tasks to the

brokers, we lower the number of nodes required to have accessto a given encryption key. The

benefits are four-fold:

i. fewer nodes handle the confidential encryption keys so there is a smaller chance of a key

being accidentally or maliciously disclosed

ii. key refreshes involve fewer nodes, which means that the key management algorithm will

incur smaller communication and processing overheads to the publish/subscribe system

and refreshing encryption keys will be faster

iii. the local broker performs all encryption related tasksfor all those event clients that it hosts,

thus making the encryption of events transparent from the event clients’ point of view

iv. since the local broker decrypts the events, it can decrypt an event once and deliver it to all

subscribers, instead of each subscriber having to decrypt the same event

Delegating encryption tasks to the local broker is appropriate, because in this case event

content encryption is a middleware feature used to enforce access control within the publish/

subscribe system. If applications need to handle encrypteddata in the application layer, they

are free to publish encrypted data over the publish/subscribe system, i.e. set attributes to already

encrypted values.

The rest of this chapter is organised as follows. We present our scheme for event level

encryption in§7.1, followed by our scheme for attribute level encryption in §7.2. We propose

in §7.3 to encrypt subscription filters in order to avoid leakinginformation about the events

that match a given subscription. In order to minimise the performance impact of encrypting

7.1. Event Level Encryption 141

and decrypting event content, we propose in§7.4 not to encrypt events when they are being

forwarded to another broker with equivalent access rights.In §7.5 we discuss details of our

implementation of event content encryption in MAIA . Key management is an inevitable part

of any system relying on encryption. We discuss using securegroup communication based

key management in§7.6 and propose a scheme for minimising key refreshes. We evaluate our

approach in§7.7. Finally we finish the chapter with a discussion of related work on event

content encryption in publish/subscribe systems and a short summary of the chapter.

7.1 Event Level Encryption

In event level encryption all the event attributes are encrypted as a single block of plaintext.

The event type identifier, which was discussed in§4.4.3, is left intact in the event (i.e. it is

not encrypted). This facilitates faster and more efficient event routing in the broker network,

because authorised brokers do not have to decrypt the identifier at each hop, and unauthorised

brokers can route the event down the event dissemination tree instead of having to broadcast it

to all their neighbours.

The globally unique event type identifier specifies the encryption key used to encrypt the

event content. Each event type in the system will have its ownindividual key (the various

versions of the same event type all share the same key, because access is granted to all versions

of an event type). Keys are refreshed, as discussed in§7.6.2.

While in transit the event will consist of a tuple containing the type identifier, a publica-

tion timestamp, ciphertext, and a message authentication tag1: [type id, timestamp, ciphertext,

authentication tag].

Event brokers that are authorised to access the event, and thus have access to the encryption

key, can decrypt the event and implement content-based routing. Event brokers that do not have

access to the key will not be able to decrypt the event contentand are therefore forced to route

the event based only on its type. That is, they will not be ableto look at the different attribute

values and route the event based on its content.

Event level encryption results in one encryption at the publisher hosting broker, and one de-

cryption at each filtering intermediate broker and subscriber hosting broker that the event passes

through, regardless of the number of attributes in the eventtype. This results in a significant

performance advantage compared to attribute level encryption, as we will discuss in§7.7.

1The authentication tag is a message authentication code (MAC) produced by the EAX algorithm as described
in §7.5

142 Chapter 7. Event Content Encryption

7.2 Attribute Level Encryption

In attribute level encryption each attribute value in an event is encrypted separately with its own

encryption key. The key is identified by the attribute’s globally unique name (See§4.2).

Similarly to event level encryption, the event type identifier is left intact to facilitate event

routing for unauthorised brokers. The attribute identifiers are also left intact to allow autho-

rised brokers to identify each attribute and to decrypt the attribute values with the correct keys.

Brokers can implement content-based routing over those attributes that they are authorised to

access.

An attribute level encrypted event in transit consists of the event type identifier, a publication

timestamp, and a set of attribute tuples: [type id, timestamp, attributes]. Attribute tuples consist

of an attribute identifier, ciphertext, and a message authentication tag: [attribute id, ciphertext,

authentication tag].

Compared with event level encryption, attribute level encryption usually results in larger

processing overheads, because each attribute is encryptedseparately. In the encryption pro-

cess the initialisation of the encryption algorithm, including building the key schedule, takes a

significant portion of the total running time of the algorithm. Once the algorithm is initialised,

increasing the amount of data to be encrypted increases the running time linearly. This disparity

is emphasised in attribute level encryption, where an encryption algorithm must be initialised

for each attribute separately with the attribute specific key and an event specific initialisation

vector, and the amount of data to be encrypted is relatively small. As a result attribute level en-

cryption incurs larger processing overheads when comparedwith event encryption, which can

be clearly seen from the performance results in§7.7.

Because each encrypted attribute has its own authenticationtag, attribute level encryption

introduces a larger size overhead as well, when compared to event level encryption where an

encrypted event includes only one authentication tag.

The significant advantage of attribute level encryption over event level encryption is the

higher level of granularity that enables the type owner to control access to the event type at the

attribute level. The event type owner can therefore allow different clients to have different levels

of access to the same events. Attribute level encryption also enables content-based routing in

cases where an intermediate broker has access to only a subset of the event’s attributes, thus

allowing more efficient event delivery within the broker network. Therefore the choice between

event and attribute level encryption is a trade-off betweenexpressiveness and performance, and

depends on the requirements of the distributed application. Notice that both event level and

attribute level encryption can be implemented in a system atthe same time, thereby allowing

the event type owner to choose which one to use with a given event type.

7.2. Attribute Level Encryption 143

Numberplate

- location

- timestamp

- numberplate

Statistics Office

sub-event

- location

- timestamp

Billing Office

sub-event

- timestamp

- numberplate

Numberplate

event

- location

- timestamp

- numberplate

Figure 7.1 : In order to emulate attribute level encryption with event level encryption the pub-
lisher must publish independent events for all subscriber groups.

7.2.1 Emulating Attribute Level Access Control

One can try to emulate the expressiveness provided by attribute level encryption by introducing

a new event type for each group of subscribers that share the same credentials. The publisher

would then publish an instance of each of these types insteadof publishing just a single event.

For example, in the congestion control example, the CCTV cameras would have to publish three

events: one for the subscribers with the same authority as the billing office, a second one for the

subscribers with the statistics office’s authority, and a third one as the fullNumberplateevent

for the subscribers with Detective Smith’s authority (See Figure 7.1). Each type of sub-event

would be encrypted with a separate key that was known to all the subscribers with the same

authority. The PHB could implement this transparently so that the publisher has to publish only

one event and the PHB would create the appropriate sub-events.

Obviously this approach does not scale as well as attribute level encryption and a large

number of subscribers with differing access rights would result in a comparatively larger number

of publications, as is shown in§7.7.

The more important performance related aspect of emulatingattribute level access control

with sub-events is the fact that each group of subscribers sharing the same authority must have

their own unique encryption key. The number of these key groups is2n, wheren is the number

of attributes in the event type. On the other hand the number of key groups with attribute

encryption is onlyn, because access to each attribute is granted independentlyof the other

attributes. For example, an event type with 5 attributes hasat most 32 subscriber key groups

when emulating attribute level access control with event level encryption, whereas attribute

level encryption would require only 5 key groups.

7.2.2 Restricted Attribute Values

We described in§5.2.2 how to restrict attribute values for publications andsubscriptions. As-

suming that the access control policy is enforced in the broker network by encrypting attributes

144 Chapter 7. Event Content Encryption

it is not possible to force domain level restrictions on individual attributes. For example, PITO

can not force one domain to publishNumberplateevents with the location set toVictoria in

all publications, because an intermediate broker receiving the publication from another broker

will not know which broker published the event and thereforecannot verify that the publication

meets the attribute value restrictions placed on the PHB.

Restricting attributes on a domain level would mean that the PHB would have to attach its

credentials to the publication and sign it. Each broker on the publication’s path from the PHB to

all SHBs would have to verify the signature, verify the PHBs credentials, decrypt all the event

attributes and check that the attribute values conform to the PHB’s credentials. This procedure

would incur a lot of processing overhead and it would impact the throughput of the broker

network quite significantly. Therefore, we assume that restrictions on attribute values are used

only when issuing authorisation certificates to event clients where the client hosting broker, who

is a member of the same domain as the client, is responsible for enforcing the restrictions.

7.3 Encrypting Subscription Filters

In order to prevent the event content from leaking to unauthorised parties we must also encrypt

the filter expressions attached to subscriptions. Encrypted subscription filters guarantee: (i)

that only authorised brokers are able to submit subscriptions to the broker network, and (ii)

that unauthorised brokers do not gain information about event content, by monitoring which

subscriptions a given event matches. For example, in the first case an unauthorised broker can

create subscriptions with appropriately chosen filters, route them towards the root of the event

dissemination tree, and monitor which events were delivered to it as matching the subscription.

The fact that the event matched the subscription would leak information to the broker about the

event content, even if the event was still encrypted. In the second case, even if an unauthorised

broker was unable to create subscriptions itself, it could still look at subscriptions that were

routed through it, take note of the filters on those subscriptions, and monitor which events are

delivered to it by upstream brokers as matching the subscription filters. This would again reveal

information about the event content to the unauthorised broker.

In the case of event level encryption, we encrypt the complete subscription filter. The event

type identifier in the subscription must be left intact to allow brokers to route events based

on their type when they are not authorised to access the filter. In such cases the unauthorised

broker is required to assume that events of such a type match all filter expressions, i.e. the

brokers implement only topic-based routing.

With attribute level encryption each attribute filter is encrypted individually, similarly to

when encrypting publications. In addition to the event typeidentifier the attribute identifiers are

also left intact to allow authorised brokers to decrypt those filters that they have access to, and

route the event based on it matching the decrypted filters.

7.4. Avoiding Unnecessary Encryptions and Decryptions 145

7.3.1 Coverage Relations with Encrypted Filters

In order to take advantage of subscription coverage in type and content-based publish/subscribe

systems when encrypting attributes, we extend the coveragerelation to handle publication and

subscriptions with encrypted attributes and filter expressions.

We treat the filter expression in a subscription as a conjunction of attribute filters, as de-

scribed in§2.2.2. When we employ attribute encryption, each attribute and attribute filter is

encrypted with an attribute-specific key. An encrypted attribute is covered by an encrypted at-

tribute filter if the filter matches the attribute value and the event broker applying the filter has

access to the encryption key for that attribute. Thereby an attribute encrypted publication is

covered by an encrypted subscription when the event broker has access to the encryption keys

of all the attribute filters and each of those filters covers the attribute value in the publication:

p <
P
S f ⇔ ∀φk ∈ f : ∃αk ∈ p : ∃k ∈ K : αk <

p
f φk,

whereK is the set of encryption keys that are available to the event broker, andφk andαk rep-

resent filters and attributes encrypted with the keyk, respectively. Notice that the event broker

applying the subscription to the publication does not have to have access to all the attributes in

the publication. It is enough for the event broker to have access to all the attribute keys that are

included in the subscription filter.

The subscription coverage relation is defined in terms of thepublication coverage relation.

Therefore the subscription coverage relation stays the same even in the presence of encrypted

filters and attributes:

f2 <
S
S f1 ⇔ ∀p ∈ P : p <

P
S f2 ⇒ p <

P
S f1,

7.4 Avoiding Unnecessary Encryptions and Decryptions

Encrypting the event content is not always necessary. If thecurrent broker and the next broker

down the event dissemination tree have the same credentialswith respect to the event type at

hand, we can pass the event to the next broker in plaintext. For example, as argued in§5.1.3,

one can assume that in most cases all brokers inside an organisation would share the same

credentials. Therefore, as long as the next broker is a member of the same domain, the event

can be routed in plaintext. With attribute level encryptionit is possible that the neighbouring

broker is authorised to access a subset of the decrypted attributes, in which case those attributes

that the broker is not authorised to access would be passed toit encrypted.

In order to know when it is safe to pass the event in plaintext form, the brokers exchange

146 Chapter 7. Event Content Encryption

IB IB SHBPHBP S

Encrypts Filters from
cache

Decrypts,
delivers

Decrypts,
filters

Plaintext
Cached Plaintext (most data)
Cached Plaintext (some data)
Different domains

Ciphertext

KEY

Figure 7.2 : Caching decrypted data can increase efficiency when delivering an event to a peer
with similar privileges.

credentials as part of a handshake when they connect to each other (See§5.3). When a broker

verifies the credentials of one of its neighbouring brokers,it adds those credentials to the routing

table entry for that broker for future reference. If a brokeracquires new credentials after the

initial handshake, it will present these new credentials toits existing neighbours as soon as

possible by performing part of the handshaking protocol again.

To avoid unnecessary decryptions, we attach a plaintext content cache to encrypted events.

A broker fills the cache with content that it has decrypted, for example, in order to filter on that

content. The cache is accessed by the broker when it deliversan event to a local subscriber

after first matching the event against the subscription filter, but the broker also sends the cache

to the next broker together with the encrypted event. The next broker can look up the attribute

from the cache instead of having to decrypt it. If the event isbeing sent to an unauthorised

broker, the cache will be discarded before the event is sent.Obviously sending the cache with

the encrypted event will add to the communication cost, but this is outweighed by the savings in

encryption/decryption processing. In Figure 7.2 we see twoseparate cached plaintext streams

accompanying an event depending on the inter-broker relationships in two different domains.

Regardless of its neighbouring brokers, the PHB will always encrypt the event content,

because it is cheaper to encrypt the event once at the root of the event dissemination tree. In

Hermes the rendezvous node for each event type is selected uniformly randomly (the event

type name is hashed with the SHA-1 hash algorithm to produce the event type identifier, the

identifier is used to select the rendezvous node in the structured overlay network, as described

in §2.3.1). Because SHA-1 values are indistinguishable from random values, it is probable that

the rendezvous node will reside outside of the current domain. This situation is illustrated in

the event dissemination tree in Figure 7.3. Therefore, evenwith domain internal applications

where the event can be routed from the publisher to all subscribers in plaintext form, the event

content will in most cases have to be encrypted for it to be routed to the rendezvous node.

We show in§7.7 that the overhead of sending an encrypted event with a full plaintext cache

incurs almost no processing overhead compared to sending plaintext events.

7.5. Implementation 147

PHB

IBIB

IB SHB

RN IB

SHB

Figure 7.3 : Node addressing is effectively random, therefore the rendezvous node for a domain
internal type can be outside of the domain that owns an event type.

7.5 Implementation

In our implementation we used the EAX mode [BRW03] of operationwhen encrypting events,

attributes, and subscription filters. EAX is a mode of operation for block ciphers, also described

as anauthenticated encryption with associated data(AEAD) algorithm, that provides simulta-

neously both data confidentiality and integrity protection. The algorithm implements a two-pass

scheme where during the first pass the plain text is encrypted, and on the second pass amessage

authentication code(MAC) is generated for the encrypted data.

The EAX mode is compatible with any block cipher. We used theadvanced encryption

standard(AES) [FIP01] algorithm in our implementation, because of its standard status and

the fact that the algorithm has gone through thorough cryptanalysis during its existence and no

serious vulnerabilities have been found thus far.

In addition to providing both confidentiality and integrityprotection, the EAX mode uses the

underlying block cipher incounter mode(CTR mode) [DH79, LRW00]. A block cipher in CTR

mode is used to produce a stream of key bits that are then XORed with the plaintext. In effect

the CTR mode of operation transforms a block cipher into a stream cipher. In our application the

advantage of stream ciphers when compared to block ciphers is that the ciphertext is the same

length as the plaintext, whereas with block ciphers the plaintext must be padded to a multiple of

the block cipher’s block length (e.g. the AES block size is 128 bits). Avoiding padding is very

important in attribute level encryption, because we encrypt single attributes that might be very

small in size. For example, a single integer might be 32 bits in length, which would be padded

to 128 bits if we used a block cipher. With event level encryption the message expansion is

not that relevant, since the length of padding required to reach the next 16-byte multiple will

148 Chapter 7. Event Content Encryption

Type: Numberplate

Time: 1191439655000

PHB: Met Broker

Event content

Type: Numberplate

Time: 1191439655000

PHB: Met Broker

Encrypted event content

Authentication tag

Type: Numberplate

Time: 1191439655000

PHB: Met Broker

Encrypted event content

Authentication tag

Type: Numberplate

Time: 1191439655000

PHB: Met Broker

Event content

}

EAX

Encryption

Nonce
}

Nonce

EAX

Decryption

Tag valid?

Yes/No

Figure 7.4 : The EAX mode of operation.

probably be relatively small compared to the overall plaintext length.

In encryption mode the EAX algorithm takes as input a nonce, akey and the plaintext, and

it returns the ciphertext and an authentication tag. In decryption mode the algorithm takes as

input the key, the ciphertext and the authentication tag, and it returns either the plaintext, or an

error if the authentication check failed. The EAX inputs andoutputs can be seen in Figure 7.4.

The nonce can be of arbitrary length. It is expanded (or compressed) to the block length of

the underlying block cipher by passing it through an OMAC construct (One-key MAC [IK03]).

The OMAC takes an arbitrary length input and produces a fixed length output. In EAX the

output of the OMAC construct is used as the initialisation vector for the CTR mode of operation.

The OMAC construct guarantees that small changes in the nonce result in large changes in the

initialisation vector.

It is important that particular nonce values are not reused,otherwise the block cipher in

CTR mode would produce an identical key stream. In our implementation we create a nonce by

concatenating the PHB defined event timestamp (64-bit valuecounting the milliseconds since

January 1, 1970 UTC) and the PHB’s identity. The timestamp alone is not enough to guarantee

unique nonces as two PHBs can publish an instance of the same event type at the same moment

in time, thus resulting in two identical key streams. The PHB’s identity could be replaced with a

PHB-specific random value. The PHB is responsible for making sure that the timestamp grows

monotonically from publication to publication. Both the timestamp and the PHB’s identity

must be included in the published event in order to allow other broker’s to decrypt and verify

the authenticity of the ciphertext.

The authentication tag is appended to the produced ciphertext to create a two-tuple. With

event level encryption a single tag is created for the encrypted event. With attribute level encryp-

tion each attribute is encrypted and authenticated separately, and they all have their individual

tags. The tag length is configurable in EAX without restrictions, which allows the user to make

a trade-off between the authenticity guarantees provided by EAX and the added communication

overhead. We used a tag length of 16 bytes in our implementation, but one could make the tag

7.6. Key Management 149

length a publisher/subscriber defined parameter for each publication/subscription or include it

in the event type definition to make it a type specific parameter.

EAX also supportsassociated datathat is included in the tag calculation, but is not en-

crypted. That is, the integrity of the data is protected by the authentication tag, but it is still

readable by all principals in the system. In event level encryption the event type should be

added to the tag calculation as associated data. Similarly in attribute level encryption, the event

type and each attribute name should be included in the tag calculation as associated data for

each attribute. We have not had time to implemented this in MAIA yet.

Other AEAD algorithms include thecounter with CBC-MAC mode(CCM) [WHF03] and

the offset codebook mode(OCB) [RBBK01]. The CCM mode is the predecessor of the EAX

mode. EAX was proposed in order to address some problems thatwere discovered in the CCM

mode [RW03]. Similarly to EAX, CCM is also a two-pass mode. The OCBmode requires

only one pass over the plaintext, which makes it roughly twice as fast as EAX and CCM.

Unfortunately the OCB mode has a patent application pending in the USA, which restricts its

use.

7.6 Key Management

In both encryption approaches the encrypted event content has a globally unique identifier (i.e.

the event type or the attribute name). That identifier is usedto identify the encryption key to

use for encrypting and decrypting the event content. Each event type, in event level encryption,

and attribute, in attribute level encryption, has its own individual encryption key. By controlling

access to the key we effectively control access to the encrypted event content.

In order to control access to the keys we form akey groupof event brokers for each indi-

vidual key. The key group is used to refresh the key when necessary and deliver the new key

to all current members of the key group. The key group manageris responsible for verifying

that a new member requesting to join the key group is authorised to do so. Therefore the key

group manager must be trusted by the type owner to enforce access control correctly. We expect

that the key group manager is either the type owner, the ACS of the type owner’s domain, some

other member of the type owner’s domain trusted to manage keys, or a trusted third party that

is managing keys for a number of domains in the shared publish/subscribe system.

We proposed a capability-based access control architecture in Chapter 5 where we use capa-

bilities to decentralise access control policy enforcement amongst the publish/subscribe nodes

(i.e. clients and brokers): each node holds a set of capabilities that define its authority. The

authority to publish or to subscribe to a given event type is granted by the type owner issuing

the principal a capability where the capability defines the event type, the action, and the at-

tributes that the node is authorised to access. For example,a tuple [Numberplate, subscribe,

*] would authorise the owner to subscribe toNumberplateevents with access to all attributes in

150 Chapter 7. Event Content Encryption

Type Owner

ACS

Broker

Key Manager

1. Grant authorisation
for “Numberplate” key

2. Broker requests to
join “Numberplate”
key group

5. If the broker satisfies
all checks, they will begin
receiving appropriate keys.

3. Key manager may check
broker’s credentials at the
Access Control Service

4. Key manager may
check that the Type
Owner permits access

Figure 7.5 : The steps involved for a broker to be successful in joining a key group.

the published events.

We use the same capabilities to authorise membership in a keygroup that are used to autho-

rise publish/subscribe requests (See§5.2.2). Not doing so could lead to inconsistencies where

an SHB is authorised to make a subscription on behalf of its clients, but is not able to decrypt

incoming event content for them. In the Congestion Control example, the broker hosting a

CCTV camera is authorised to join theNumberplatekey group as well as the key groups for all

the attributes in theNumberplateevent type.

Figure 7.5 shows what steps are required to grant a broker theauthority to join a key group

and how this authority is verified.

7.6.1 Secure Group Communication

Event content encryption in a decentralised publish/subscribe system can be seen as an instance

of secure group communication. In both cases the key management system must scale well

with the number of clients, the clients might be spread over large geographic areas, there might

be high rates of churn in group membership, and all members must be synchronised with each

other in time in order to use the same encryption key at the same time.

There are a number of scalable key management protocols for secure group communica-

tion [RH03]. We have implemented theOne-Way Function Tree(OFT) [SM03] protocol as a

proof of concept. We chose OFT for our proof of concept, because it was easy to implement and

the performance was only slightly worse than the performance of the more advanced protocols

evaluated in [RH03].

Our implementation uses the same structured overlay network used by the MAIA broker

network as a transport. The OFT protocol is based on a binary tree where the participants are

at the leaves of the tree. It scales inlog n in processing and communication costs, as well as in

the size of the state stored at each participant. We have verified this in our simulations.

7.6. Key Management 151

7.6.2 Key Refreshing

Traditionally in group key management schemes the key is refreshed when a new member joins

the group, an existing member leaves the group, or the key refreshing timer expires. Refreshing

the key when a new member joins provides backward secrecy, i.e. the new member is prevented

from accessing old messages. Similarly refreshing the key when an existing member leaves

provides forward secrecy, i.e. the old member is prevented from accessing future messages.

Timer triggered refreshes are issued periodically in orderto limit the amount of traffic encrypted

with the same key. This is important both in limiting the amount of ciphertext available for the

adversary to use in cryptanalysis, and the amount of traffic that will be compromised if the

current session key were to be compromised.

Even though the state-of-the-art key management protocolsare efficient, refreshing the key

introduces extra traffic and processing amongst the key group members, often unnecessarily. In

our case key group membership is based on the broker holding acapability that authorises it to

access a given event type or event attribute and therefore tojoin the appropriate key group. The

capability has a set of validity conditions that in their simplest form define a time period when

the capability is valid, and in more complex cases involve on-line checks back to the issuer of

the capability.

In some cases a joining broker might have been authorised to access the key at the time

of the previous key refresh. In such a case there is no need to force a key refresh when the

broker joins the key group, because it is authorised to access the events between the previous

key refresh and now. Similarly a leaving broker’s credential might be valid for some time after

the broker has left the key group. Again, there is no need to refresh the group key until the

leaving brokers authority has expired. The key manager can therefore avoid unnecessary key

refreshes by looking at the validity conditions of the groupmember’s credentials. With joining

brokers the key refresh can be avoided if the broker was authorised to join the key group at the

time of the previous key refresh. Similarly with leaving brokers, the key refresh can be deferred

until the leaving broker’s credentials expire or it is time for the periodic key refresh.

These situations are both illustrated in Figure 7.6. It can be assumed that the credentials

granted to brokers are relatively static, i.e. as describedin §5.1.3. Therefore, once a domain is

authorised to access an event type, the authority will be delegated to all brokers of that domain,

and they will have the authority for the foreseeable future.More fine grained and dynamic

access control would be implemented at the edge of the brokernetwork between the clients and

the client hosting brokers.

When a key is refreshed the new key is tagged with a timestamp. The key to use for a given

event is selected based on the event’s publication timestamp. The old keys will be kept for

a reasonable amount of time in order to allow for some clock drift. Setting this value is part

of the key management protocol, although exactly how long this time should be will depend

on the nature of the application and possibly the size of the network. It can be configured

152 Chapter 7. Event Content Encryption

Key refresh schedule

Broker 1 joining and
leaving the key group

Broker 2 joining and
leaving the key group

Actual key refresh times

Time

One day

Broker’s key group
credentials are valid

Actual join time Actual leave time

One day One day

Figure 7.6 : Key refreshes can be delayed based on the validity times of the broker’s authority.

independently per key group if necessary.

7.7 Evaluation

In order to evaluate the performance of event content encryption we have implemented both

encryption approaches in MAIA . The implementation supports all three modes of operation:

plaintext content, event level encryption, and attribute level encryption.

We have evaluated the overhead added by the two encryption approaches compared to plain-

text events with a number of micro benchmarks. We have not evaluated the routing performance

of the system, because it is directly based on Hermes.

We ran three performance tests in a discrete event simulatorthat is part of the FreePastry

distribution [Fre07]. We used a discrete event simulator instead of running the tests over a live

system in order to be able to measure the increase in overall processing required to publish a

given number of events. The Pastry simulator was run on an Intel P4 3.2GHz workstation with

1GB of main memory. The sections below will describe each specific test in more detail.

7.7.1 End-to-End Overhead

The end-to-end overhead test shows how much the overall message throughput of the simula-

tor was affected by event content encryption. We formed a broker network with two brokers,

attached a publisher to one of them and a subscriber to the other one, as shown in Figure 7.7.

The subscriber subscribed to the advertised event type without any filters, i.e. each publica-

tion matched the subscriber’s subscription and thus was delivered to the subscriber. The test

measures the combined time it takes to publish and deliver 100,000 events. If the content is

encrypted the measured time includes both encrypting the content at the PHB and decrypting it

at the SHB.

7.7. Evaluation 153

SHBPHBP S

Encrypts Decrypts,
delivers

KEY

Plaintext
Ciphertext

Figure 7.7 : The end-to-end test setup.

In the test the number of attributes in the event type is increased from 1 to 25 (thex-axis).

Each attribute is set to a 30 character string. For each number of attributes in the event type

the publisher publishes 100,000 events, and the elapsed time is measured to derive the message

throughput. The test was repeated five times for each number of attributes and we use the aver-

age of all iterations in the graph, but the results were very consistent so the standard deviation is

not shown. The same tests were run with plaintext events, event level encryption, and attribute

level encryption.

As can be seen in Figure 7.8, event content encryption introduces a large computational

overhead compared to plaintext events. The throughput whenusing attribute level encryption

with an event type with one attribute is 46% of the throughputachieved when events are sent

in plaintext. When the number of attributes increases the performance gap increases as well:

with ten attributes the performance with attribute level encryption has decreased to 11.7% of

plaintext performance.

Event level encryption fares better, because there are fewer encryption operations per event

even though the amount of data to encrypt is larger. The number of individual encryption

operations affects the performance more than the amount of data that needs to be encrypted. The

difference in performance with event level encryption and attribute level encryption with only

one attribute is caused by the Java object serialisation mechanism: in the event level encryption

case the whole attribute structure is serialised, which results in more objects than serialising

a single attribute value. A more efficient implementation would provide its own marshalling

mechanism.

Note that the EAX implementation we use runs the nonce (i.e. initialisation vector) through

an OMAC construct. Since the nonce is not required to be kept secret, there is a potential

time/space trade-off we have not yet investigated in attaching the output of the OMAC construct

to the event. That way the brokers decrypting the event content do not have to run the nonce

through the OMAC construct themselves. This optimisation would allow a trade-off to be made

between the size of the events and the time it takes to decryptthem. The performance increase

might be considerable especially with attribute level encryption where the OMAC construct is

executed for each attribute separately even though the nonce is the same in each case.

154 Chapter 7. Event Content Encryption

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25

M
es

sa
ge

s
pe

r
S

ec
on

d

Number of Attributes

No Encryption
Attribute Encryption

Whole-content Encryption

Figure 7.8 : The end-to-end throughput of events with plaintext events, event level encryption,
and attribute level encryption.

7.7.2 Domain Internal Events

We explained in§7.4 that event content decryption and encryption could be avoided if both

brokers are authorised to access the event content. This test was designed to show that by

attaching the cached plaintext to the encrypted event when sending an event from one authorised

broker to another results in only a small performance overhead when compared to plaintext

events.

In this test we again form a broker network with two brokers, as shown in Figure 7.7.

Both brokers are configured with the same credentials. The publisher is attached to one of the

brokers and the subscriber to the other, and again the subscriber does not specify any filters in

its subscription.

The publisher publishes 100,000 events and the test measures the elapsed time in order to

derive the message throughput for the system. The event content is encrypted outside the timing

measurement, i.e. the encryption cost is not included in themeasurements. The goal is to model

an environment where a broker has received a message from another authorised broker, and

it routes the event to a third authorised broker. In this scenario the intermediate broker is not

required to encrypt or decrypt any of the event content, because the PHB provided it with both

the plaintext and ciphertext content.

As shown in Figure 7.9, the elapsed time was measured as the number of attributes in the

published event was increased from 1 to 25. The attribute values in each case are 30 character

strings. Each test is repeated five times, and we use the average of all iterations in the graph. The

7.7. Evaluation 155

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 5 10 15 20 25

M
es

sa
ge

s
pe

r
S

ec
on

d

Number of Attributes

No Encryption
Attribute Encryption

Whole-content Encryption

Figure 7.9 : The end-to-end throughput of events with plaintext events, event level encryption,
and attribute level encryption when plaintext caching is enabled.

same test was repeated with no encryption, event level encryption and attribute level encryption

turned on.

The two encrypted modes follow each other very closely. The plaintext mode performs a

little better for all attribute counts. The difference can be explained partially by the encrypted

events being larger in size, because they include both the plaintext and the encrypted content in

this test. The difference in performance is 3.7% with one attribute and 2.5% with 25 attributes.

7.7.3 Communication Overhead

As we explained in§7.2.1, it is possible to emulate the expressiveness of attribute level encryp-

tion by defining multiple event types and applying event level encryption of those events. The

third test we ran was to show the communication overhead caused by this emulation technique,

compared to using real attribute level encryption.

In the test we form a broker network of 2000 brokers. We attachone publisher to one of

the brokers, and an increasing number of subscribers to the remaining brokers. Each subscriber

simulates a group of subscribers that all have the same access rights to the published event.

Each subscriber simulating a group of subscribers has its own event type in the test.

The outcome of this test is shown in Figure 7.10. The number ofsubscribers is increased

from 1 to 50 (thex-axis). For then subscribers the publisher publishes one event to representthe

use of attribute level encryption andn events representing the events for each subscriber group.

We count the number of hops each publication makes through the broker network (y-axis). Note

156 Chapter 7. Event Content Encryption

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 H

op
s

in
 T

ot
al

Number of Subscription Groups

Attribute Encryption
Whole-content Encryption

Figure 7.10 : The average number of hop counts when emulating attribute level encryption with
event level encryption and multiple sub-types (log scale).

thaty-axis is in logarithmic scale.

Note that Figure 7.10 shows workloads beyond those we would expect in common usage,

in which many event types are likely to contain fewer than tenattributes. The subscriber groups

used in this test represent disjoint permission sets over such event attributes. The number of

these sets can be determined from the deployed access control policy. The upper limit will be

2n, wheren is the number of attributes in the event type.

The figure indicates that attribute level encryption scalesbetter than event level encryption

even for small numbers of subscriber groups. Indeed, with only three subscriber groups (e.g. the

case withNumberplateevents) the hop count increases from 9.0 hops on average for attribute

level encryption to 30.8 hops on average for event level encryption. With 10 subscriber groups

the corresponding numbers are 24.2 and 251.0 on average.

7.8 Related Work

Opyrchal and Prakash address the problem of event confidentiality at the last link between the

subscriber and the SHB in [OP01]. They correctly state that asecure group communication

approach is infeasible in an environment like publish/subscribe that has highly dynamic group

memberships. As a solution they propose a scheme utilising key caching and subscriber group-

ing in order to minimise the number of required encryptions when delivering a publication from

a SHB to a set of matching subscribers. We assume in our work that the SHB is powerful

7.8. Related Work 157

enough to manage a TLS-secured connection for each local subscriber.

Raiciu and Rosenblum present a formal security model for protecting the confidentiality of

published events in content-based publish/subscribe systems in [RR06]. The presented model

allows the broker network to route events based on their encrypted content. The paper discusses

only content-based publish/subscribe systems, but the scheme should be equally applicable to

type-based publish/subscribe. Compared to our work, Raiciu and Rosenblum assume that none

of the brokers in the broker network are trustworthy. Therefore, event encryption and decryption

is implemented by the event clients themselves. In order to implement content-based routing

with these assumptions the brokers must be able to apply subscription filters to encrypted con-

tent, which is enabled by the proposed scheme. We on the otherhand assume that some brokers

can be authorised to access event content. Specifically local brokers of event clients are trusted

to encrypt and decrypt events for the clients. Intermediatebrokers that are trusted to decrypt

attributes can use those attributes to implement content-based routing and all brokers are able

to route events based on the plaintext type-name in the event. The scheme proposed by Raiciu

and Rosenblum could be integrated with our approach in order to allow unauthorised event bro-

kers to also route events based on their content. The downside of the scheme is that it places

requirements on the filtering language since some filtering operations cannot be implemented

on encrypted content.

Srivatsa and Liu present EventGuard in [SL05]. EventGuard provides event confidentiality,

integrity and authenticity in decentralised publish/subscribe systems. The prototype is built on

top of Siena [CRW01]. The paper concentrates on topic-based publish/subscribe, but the authors

state that the approach is equally applicable to content-based publish/subscribe. In the scheme

publishers sign events and encrypt them with a publication-specific, random encryption key.

The encryption key is then encrypted with a topic-specific key and attached to the event. Event

brokers are expected to verify the signature on each routinghop. The subscriber on receipt of

the publication verifies the publisher’s signature, decrypts the random key, and finally decrypts

the message. A trustedmeta service(MS) is used to certify advertisement and subscription

messages, i.e. it controls access to the event service, but the paper does not address the definition

of policy. The paper includes micro benchmarks that show that the excessive use of public key

encryption has an effect on performance. For example, each signature verification increases the

time needed to handle a single event by 1.7ms. In contrast on the same hardware Siena handles

a subscription event in less than 50µs. Similarly to Raiciu and Rosenblum, the model assumes

that event brokers are not trustworthy and as a result all encryption operations are implemented

by the event clients, whereas our architecture provides encryption as a transparent infrastructure

feature to event clients.

In another paper Srivatsa and Liu propose an efficient key management scheme for publish/

subscribe systems [SL07]. The work utiliseskey graphs[WGL00] where a root key is hashed

in order to generate child keys in a key tree. By partitioning the value space of an attribute

in content-based publish/subscribe into a tree, the hierarchical key derivation algorithm can be

158 Chapter 7. Event Content Encryption

used to create keys for subsets of the value space in an efficient manner. The scheme assumes

that both publishers and subscribers are authorised to access events based on their content, i.e.

they request an encryption key based on what the publicationcontent or subscription filter is. We

proposed similar functionality in§5.2.2 that would allow domains to limit the authority of both

publishers and subscribers to only certain subset of all events published as instances of a given

type depending on the values of attributes. The difference in our approach is that we expect

the local broker to enforce the restrictions whereas Srivatsa and Liu are able to enforce the

restrictions by preventing the clients from reading/writing events that are within their authority.

The key management scheme is applicable in the context of MAIA although we feel that the

level of granularity already provided by MAIA (i.e. attribute-level access control) should be

enough for most scenarios.

Srivatsa and Liu also address the problem offrequency inference attacksin the routing

network. Givena priori knowledge about event frequency distributions, a broker can infer

which type of event the publication is even when the event type has been blinded by hashing

it. The proposed solution is to implement probabilistic routing in the broker network so that

the number of events flowing through any given broker in the system has been skewed enough

to prevent frequency based inference. We have not considered traffic monitoring attacks in our

work thus far. Another alternative is to introduce fake events into the event stream. In our case,

since we trust the PHBs, we can delegate the generation of fakeevents to the PHBs. Each PHB

can introduce enough fake events into the event stream to skew the event distributions as well

as cover for periods when there are no real events published.

Khurana proposes a security scheme in [Khu05] that protectsthe integrity and confidential-

ity of some event attributes while allowing subscribers to verify the authenticity of the event.

Khurana makes the assumption that only some of the attributes in an event in a content-based

publish/subscribe system need to be encrypted while the remaining attributes can remain un-

encrypted. The proposed scheme implements content-based routing only on the unencrypted

attributes thereby forcing the application designers to make a trade-off between efficient rout-

ing and event confidentiality. Similarly to EventGuard, thearchitecture relies on a trustedproxy

security and accounting service(PSAS) to proxy-encrypt events. That is, the PSAS service will

decrypt a publication, verify two signatures, re-encrypt the publication for a given subscriber,

and finally sign it. The subscriber hosting broker is expected to pass each received publication to

the PSAS service for authentication and re-encryption separately for each matching subscriber.

Also, all encryption operations are based on public key algorithms that are several orders of

magnitude slower than symmetric equivalents [MOV96]. Khurana expects that each subscriber

receives only one event per minute at most. We feel that such athroughput assumption is not

realistic in multi-domain systems. For example, in the numberplate monitoring application the

Billing Office will see tens of events per second when vehiclesenter the congestion controlled

area in London. In Khurana’s model none of the event brokers are trusted and therefore the

PSAS service is used as a trusted third party between the publisher and the subscribers. Be-

7.9. Summary 159

cause of the high computational cost associated with each event delivered to a subscriber, a

large number of PSAS nodes must be deployed in the system. We would argue that the PSAS

functionality should be incorporated in a trusted local broker rather than deployed as a separate

entity.

7.9 Summary

Event content encryption can be used to enforce access control policy while events are in tran-

sit in the broker network of a multi-domain publish/subscribe system. Encryption introduces

a small communication overhead in the form of nonces and authentication tags, and a very

large computational overhead in the form of encryption operations. But (i) in many cases there

may be no alternatives, i.e. event integrity and confidentiality protection is required, and (ii)

the performance penalty can be lessened with implementation optimisations, such as passing

cached plaintext content alongside encrypted content between brokers with identical security

credentials and thereby lessening the computational overhead by increasing the communication

overhead.

Attribute level encryption can be implemented in order to enforce fine-grained access con-

trol policies. In addition to providing attribute level access control, attribute level encryption

enables partially authorised brokers to implement content-based routing based on the attributes

that are accessible to them resulting in more efficient eventrouting.

Our experiments show that (i) by caching plaintext and ciphertext content when possible, we

are able to deliver comparable performance to plaintext events, and (ii) attribute level encryption

incurs far less overhead than trying to emulate the same level of expressiveness with event level

encryption.

By placing trust in some of the event brokers, namely the localbrokers of both publishers

and subscribers, we are able to implement both content-based routing and event encryption

without having to rely on exotic cryptographic methods.

CHAPTER 8

Conclusions

This chapter concludes the dissertation. We summarise the contributions of this dissertation in

§8.1; discuss the research avenues that have been revealed byour work in§8.2; and conclude

the dissertation with§8.3.

8.1 Contributions

The goal for this work was to provide an access control architecture for decentralised, large-

scale publish/subscribe systems that span multiple independent administrative domains, as de-

scribed in Chapter 1. In Chapter 2 we provided an overview of previous research both in dis-

tributed communication paradigms as well as access control. In order to define the scope of our

work we described in Chapter 3 what we understood to be a multi-domain publish/subscribe

system, how we imagined one to be deployed, and what kind of threats we expected to see in

such an environment.

In Chapter 4 we presented a scheme for securing event type definitions. The goal was

to provide a scheme for globally unique names in a publish/subscribe context, so that those

names could be used in an access control policy unambiguously to refer to resources. We also

wanted to provide secure event type definitions that would allow users to verify their authenticity

and integrity. Authenticity means that the event type definition is owned by a given principal.

Integrity means that the event type definition has not been tampered with since it was deployed.

The ownership of an event type is important, because it provides the root of the authority that is

being delegated to domains and domain members with authorisation certificates. Type definition

integrity is important also from an access control point of view, because it guarantees that all

parties in the system agree on the contents of the type definition and can therefore enforce and

160

8.1. Contributions 161

adhere to a common access control policy.

The work on secure event types also resulted in a scheme for evolving type definitions.

We felt that one of the requirements for a large-scale publish/subscribe system is the ability

of the system to evolve without it having to be shut down whiledoing this. Decentralised

publish/subscribe systems usually allow the event serviceto evolve, because event brokers can

be removed and added to the system at will in many cases, but there was no way to make changes

to an event type that had already been deployed on the system without disconnecting existing

clients. While providing support for secure event types, we also described a scheme for event

type versioning that allows multiple versions of an event type to coexist on the same publish/

subscribe system. The different versions would also share as much of the publication content as

possible, i.e. a publication of version1 would be translated to version2 at the subscribers. This

mechanism allows an event type to be used in a live system while publishers and subscribers

slowly migrate to using the latest version of the event type definition.

In Chapter 5 we presented our access control architecture fordecentralised, large-scale pub-

lish/subscribe systems. The architecture relied on SPKI authorisation certificates for delegating

access rights to publish/subscribe principals. We concentrated especially on the multi-domain

environment and therefore presented a hierarchical delegation model, where resource owners

delegate access rights to domains and those domains delegate the access rights to sub-domains

or event brokers and event clients. We felt that in a multi-domain environment the main goal

should be to support scalability as much as possible. By treating event types as resources that

are owned by their creators we are able to decentralise eventtype creation. By relying on SPKI

authorisation certificates we are able to decentralise credential management and credential ver-

ification.

The access control architecture presented in Chapter 5 resulted in a system where access

control towards event clients was enforced by the client’s local event broker. The event brokers

could be trusted to enforce the local domain’s access control policy, but there was nothing to

enforce access control policies in the broker network.

This dissertation concentrated on providing an access control mechanism for multi-domain

publish/subscribe systems, but we felt that we should also address policy management, espe-

cially credential revocation, which is a hotly debated topic for capabilities. In Chapter 6 we pre-

sented a simple model for implementing policy management indomains with the OASIS RBAC

system. We also described the various options for certificate revocation that are applicable to

SPKI authorisation certificates. Finally we presented a scheme for implementing request/reply

and reply-caching mechanisms in decentralised publish/subscribe system and how to use those

mechanisms for delivering certificate validity statementsto verifiers over a publish/subscribe

system.

In Chapter 7 we presented an approach for encrypting event content. The goal was to prevent

unauthorised event brokers from reading or writing event content by encrypting the events.

This would allow the unauthorised brokers to route events inthe event broker network. We

162 Chapter 8. Conclusions

presented two schemes for event content encryption: whole event encryption and attribute level

encryption. The former was more efficient, while the latter was more expressive.

8.2 Future Work

The work in this dissertation has highlighted a number of topics that should be addressed in

future work.

We described in§6.4 how it would be beneficial if the verifier, i.e. the event client’s local

event broker, were to be able to evaluate predicates like thetime of day or the publication

frequency of the event client. Such an enhancement would allow the domain to issue certificates

to the event clients that would be valid for longer periods oftime, while providing the same level

of control as short-lived certificates provide. For example, the verifier could enforce restrictions

on the time of access instead of the domain having to issue short-lived certificates that expire

every day at the time when the client is no longer authorised to access the event service.

PolicyMaker and other trust management systems support so called safe languages that are

used to write short programs that either accept or reject an access request based on the local

policy and the client’s credentials (See§2.5 for a discussion on PolicyMaker). Safe in this case

means that the program is guaranteed to finish and not to consume unreasonable amounts of

resources. A similar language could be used in MAIA to move some of the dynamic parts of

the access control policy to be enforced by the event brokersrather than the domain’s access

control service.

The SPKI-based access control model in MAIA allows for principals to have read access,

write access, or both to an event type and its attributes. Thescheme that is used to enforce access

control within the event broker network by encrypting eventcontent does not unfortunately

provide the same level of granularity. That is, if an event broker has either read or write access

to the event content, it will automatically be also able to write and read the content, respectively.

This is because MAIA uses symmetric encryption where the same key is used to both encrypt

and decrypt the event content. The obvious solution is to useasymmetric cryptography where

the event content is encrypted with one key and decrypted with the other key. The brokers

with read access to the event content would be issued one of the keys while those brokers with

write access would be issued the other key. Public key as a term is in this case not appropriate,

because both keys of the key pair would have to be treated as confidential information. An

alternative approach would be to sign the event content withan asymmetric key and encrypt

it with a symmetric key. Thereby only those event brokers that have access to the private key

used to sign publications are able to publish events. The downside of any kind of asymmetric

cryptography is that it is orders of magnitude more expensive than symmetric cryptography.

Therefore we decided in this version of MAIA to not enforce access control at the level of

different access operations in the event broker network.

8.2. Future Work 163

Another aspect of security that is not addressed by the current architecture is the possibility

of traffic analysis and event client privacy. In the current system event brokers are free to

monitor the events that pass through them. While the events might be encrypted, some level

of header information must be left in plaintext so as to enable more efficient event routing.

Therefore intermediate brokers will be able to keep track ofwhat types of events pass through

them. On the other hand the event routing mechanism in MAIA is based on hashed event

identifiers, i.e.h(P ||n), whereP is the public key of the event type owner andn is the event

type’s human readable name. By using only this event type identifier in the event header we

canblind the event type information so that a casual observer cannot know what event type it is.

Authorised brokers can form a list of event type identifiers and compare events to that list when

filtering them or delivering them to event clients. Unfortunately the number of event types in

a system is not very large and it is conceivable that a dedicated adversary is able to get a list

of most of the event type names in the system, e.g. from a type registry. The adversary can

then calculate event type identifiers for all the event typeson that list and compare the event

type identifier of each passing publication to the list of event type identifiers, thereby being

able to monitor the event flow in the system. We can defend against this attack by using a

HMAC construct instead of a normal hash function to generatethe event type identifier. The

HMAC construct (i.e.a keyed-hash message authentication code) is defined in the IETF RFC

2104 [KBC97]. In simple terms, a secret keyK is used in the hash calculation of the messagem:

hmac(K,m). This prevents anyone who does not know the secret key from verifying the hash

value and from generating new hash values. In our case this scheme will prevent unauthorised

event brokers from creating lists of event type identifiers,because they are not in possession

of the event type encryption key. The downside of this schemeis that the event type identifier

would change whenever the encryption key is refreshed. It would be very difficult to somehow

synchronise all brokers in the system to update the event type identifier at the same time without

losing any publications in the process. We would like to see ascheme that would protect the

system against these kinds of traffic monitoring attacks, even though one can argue that we

should not be worried about such attacks given our threat model (See§3.6).

Raiciu and Rosenblum presented an alternative approach for implementing confidentiality

in publish/subscribe systems in [RR06]. Most notably their approach relied on advanced cryp-

tographic operations and allowed unauthorised brokers to route events based on their content

without actually disclosing it. We assume that the broker network is trusted to some extent

and that the decreased routing performance, in cases where the broker does not have access

to the event content, is acceptable. It would be worthwhile to measure how much the rout-

ing performance in a large-scale system improves by allowing all nodes to route based on the

event content, and on the other hand, what kind of an overheadis introduced by the advanced

cryptographic operations.

Finally, we have realised that the research community wouldbenefit from a modular pub-

lish/subscribe middleware that would allow for the mixing and matching of various publish/

164 Chapter 8. Conclusions

subscribe models. Such a middleware would allow researchers to build on a common base,

while being able to easily implement their own enhancement to the common middleware and

to disable or enable other features like content-based routing and event encryption. Raiciu et

al. suggested in their position paper that event matching and event routing should be separated

in a publish/subscribe middleware in order to allow the middleware to cope with application

diversity. We feel that a modular middleware implementation would cater for that need as well.

8.3 Summary

This dissertation has presented MAIA , a decentralised access control architecture for large-

scale, multi-domain publish/subscribe systems. We have also addressed related issues like am-

biguous names, forged event type definitions, and enforcingaccess control within the event

broker network. We have motivated our work with a running example, based on the challenges

facing the UK Police Forces and the Police Information Technology Organisation. Finally we

have highlighted new research areas that we aim to explore inthe future.

Bibliography

[AEM99] Marcel Altherr, Martin Erzberger, and Silvano Maffeis. iBus - a software bus
middleware for the java platform. InInternational Workshop on Reliable Mid-
dleware Systems, pages 43–53, October 1999.

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of xml documents for
selective dissemination of information. InVLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, pages 53–64, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[And72] James P. Anderson. Computer security technology planning study. Technical Re-
port ESD-TR-73-51, U.S. Air Force Electronic Systems Division, October 1972.

[Apa07] Apache activemq, October 2007.http://activemq.apache.org/.

[Aur99] Tuomas Aura. Distributed access-rights managements with delegations certifi-
cates. In Jan Vitek and Christian D. Jensen, editors,Secure Internet Program-
ming: Security Issues for Distributed and Mobile Objects, volume 1603 ofLNCS,
pages 211–235. Springer-Verlag, 1999.

[BBHM95] Jean Bacon, John Bates, Richard Hayton, and Ken Moody. Using events to
build distributed applications. InSDNE’95: Proceedings of the 2nd Interna-
tional Workshop on Services in Distributed and Networked Environments, pages
148–155, Washington, DC, USA, June 1995. IEEE Computer Society.

[BCJ+90] Kenneth P. Birman, Robert Cooper, Thomas A. Joseph, Keith Marzullo, Messac
Makpangou, Ken Kane, Frank Schmuck, and Mark Wood.The ISIS System Man-
ual, Version 2.0. Department of Computer Science, Cornell University, Ithaca,
NY, USA, March 1990.

[BCM+99a] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicast protocol for
content-based publish-subscribe systems. InICDCS’99: Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, pages 262–
272, Washington, DC, USA, May 1999. IEEE Computer Society.

165

166 BIBLIOGRAPHY

[BCM+99b] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. Information flow based event distri-
bution middleware. InProceedings of the ICDCS Workshop on Electronic Com-
merce and Web-Based Applications, pages 114–121, June 1999.

[Bel74] David E. Bell. Secure computer systems: A refinement ofthe mathematical
model. Technical Report ESD-TR-73-278, Vol. III, ElectronicSystems Division,
Air Force Systems Command, April 1974.

[BEMP05] Jean Bacon, David M. Eyers, Ken Moody, and Lauri I. W. Pesonen. Securing
publish/subscribe for multi-domain systems. In Gustavo Alonso, editor,Mid-
dleware’05: Proceedings of the 6th International Conferenceon Middleware,
volume 3790 ofLNCS, pages 1–20. Springer-Verlag, November 2005.

[BEP+03] Andŕas Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and
Ken Moody. Role-based access control for publish/subscribemiddleware ar-
chitectures. InDEBS’03: Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems, pages 1–8, New York, NY, USA, June 2003.
ACM.

[BFIK99a] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis. The
KeyNote trust-management system version 2. RFC 2704, Internet Engineering
Task Force, September 1999.

[BFIK99b] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The
role of trust management in distributed systems security. In Secure Internet pro-
gramming: Security Issues for Mobile and Distributed Objects, pages 185–210,
London, UK, 1999. Springer-Verlag.

[BFK98] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust man-
agement for public-key infrastructures (position paper).In Proceedings of the
Cambridge 1998 Security Protocols International Workshop, volume 1550 of
LNCS, pages 59–63, 1998.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proceedings of the IEEE Conference on Security and Privacy, pages 164–173.
IEEE Computer Society, May 1996.

[Bib75] Ken Biba. Integrity considerations for secure computing systems. Technical
Report MTR-3153, The MITRE Corporation, March 1975.

[BIK00] Matt Blaze, John Ioannidis, and Angelos Keromytis. DSA and RSA key and sig-
nature encoding for the KeyNote trust management system. RFC2792, Internet
Engineering Task Force, March 2000.

[BKKK87] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Semantics and
implementation of schema evolution in object-oriented databases. InProceedings
of the 1987 ACM SIGMOD International Conference on Managementof Data,
pages 311–322. ACM Press, 1987.

BIBLIOGRAPHY 167

[BL73] David E. Bell and Leonard J. LaPadula. Secure computer systems: Mathemat-
ical foundations. Technical Report ESD-TR-73-278, Vol. I, Electronic Systems
Division, Air Force Systems Command, November 1973.

[BL76] David E. Bell and Leonard J. LaPadula. Secure computer system: Unified ex-
position and MULTICS intepretation. Technical Report MTR-2997 Rev. 1, The
MITRE Corporation, March 1976.

[BMY02] Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-based access
control and its support for active security.ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, November 2002.

[BMY03] Jean Bacon, Ken Moody, and Walt Yao. Access control andtrust in the use of
widely distributed services.Software – Practice and Experience, 33(4):375–394,
2003.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systystems, 2(1):39–59, February 1984.

[BN89] David F. C. Brewer and Michael J. Nash. The chinese wall security policy. In
Proceedings of the 1989 IEEE Computer Society Symposium on Security and Pri-
vacy, pages 206–214, Oakland, CA, USA, May 1989. IEEE Computer Society.

[BRW03] Mihir Bellare, Phillip Rogaway, and David Wagner. EAX: Aconventional
authenticated-encryption mode. Cryptology ePrint Archive, Report 2003/069,
April 2003. http://eprint.iacr.org/2003/069.

[Car98] Antonio Carzaniga.Architectures for an Event Notification Service Scalable to
Wide-area Networks. PhD thesis, Politecnico di Milano, Milano, Italy, December
1998.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed Systems:
Concepts and Design. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 3 edition, 2001.

[CFL+97] Yang-Hua Chu, Joan Feigenbaum, Brian A. LaMacchia, Paul Resnick, and Mar-
tin Strauss. REFEREE: Trust management for web applications.Computer Net-
works and ISDN Systems, 29(8–13):953–964, 1997.

[Cha93] David Chappell. Distributed computing: implementation and management
strategies, chapter The OSF Distributed Computing Environment (DCE), pages
175–199. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, October 1993.

[CMPC04] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola.
Epidemic algorithms for reliable content-based publish-subscribe: An evalua-
tion. In ICDCS’04: Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems, pages 552–561, Washington, DC, USA, March
2004. IEEE Computer Society.

168 BIBLIOGRAPHY

[CNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-
based infrastructure and its application to the development of the OPSS WFMS.
IEEE Transactions on Software Engineering, 27(9):827–850, 2001.

[CRW99] Antonio Carzaniga, David R. Rosenblum, and Alexander L. Wolf. Challenges for
distributed event services: Scalability vs. expressiveness. InICSE’99 Workshop
on Engineering Distributed Objects (EDO ’99), May 1999.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L.Wolf. Design and
evaluation of a wide-area event notification service.ACM Transactions on Com-
puter Systems (TOCS), 19(3):332–383, August 2001.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies. InProceedings of the 1987 IEEE Computer Society
Symposium on Security and Privacy, pages 184–194. IEEE Computer Society,
1987.

[CW01] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new
communication infrastructure. InNSF Workshop on an Infrastructure for Mobile
and Wireless Systems, number 2538 in Lecture Notes in Computer Science, pages
59–68, Scottsdale, AZ, USA, October 2001. Springer-Verlag.

[DA99] Tim Dierks and Christopher Allen. The TLS protocol, version 1.0. RFC 2246,
Internet Engineering Task Force, January 1999.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The
ponder policy specification language. InPOLICY’01: Proceedings of the In-
ternational Workshop on Policies for Distributed Systems and Networks, pages
18–38, London, UK, January 2001. Springer-Verlag.

[DFFT02] Yanlei Diao, Peter Fischer, Michael J. Franklin, and Raymond To. YFilter: Ef-
ficient and scalable filtering of xml documents. InICDE’02: Proceedings of the
18th International Conference on Data Engineering, pages 341–342, Washing-
ton, DC, USA, February 2002. IEEE Computer Society.

[DH79] Whitfield Diffie and Martin Hellman. Privacy and authentication: An introduc-
tion to cryptography.Proceedings of the IEEE, 67:397–427, March 1979.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe.ACM Computing Surveys,
35(2):114–131, June 2003.

[EFL+99] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Yl önen. SPKI certificate theory. RFC 2693, Internet Engineering Task Force,
September 1999.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and ChristianHeide Damm. On objects
and events. InOOPSLA’01: Proceedings of the 16th ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications, pages
254–269, New York, NY, USA, October 2001. ACM Press.

BIBLIOGRAPHY 169

[Ell99] Carl Ellison. SPKI requirements. RFC 2692, Internet Engineering Task Force,
September 1999.

[FGKZ03] Ludger Fiege, Felix C. G̈artner, Oliver Kasten, and Andreas Zeidler. Supporting
mobility in content-based publish/subscribe middleware.volume 2672 ofLNCS,
pages 103–122. Springer-Verlag, June 2003.

[Fie00] Roy T. Fielding.Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, CA, USA, 2000.

[FIP01] Specification for the advanced encryption standard(AES). Federal Information
Processing Standards Publication 197, November 2001.

[FIP02] Secure hash standard (SHS). Federal Information Processing Standards Publica-
tion 180-2, August 2002.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. InProceedings
of the 15th NIST-NCSC National Computer Security Conference, pages 554–563,
October 1992.

[FMB01] Ludger Fiege, Gero M̈uhl, and Alejandro Buchmann. An architectural framework
for electronic commerce applications. InInformatik 2001: Annual Conference of
the German Computer Society, 2001.

[Fre07] The Pastry web site, October 2007.http://freepastry.rice.edu/.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(1):80–112, January 1985.

[Gon89] Li Gong. A secure identity-based capability system. In Proceedings of the 1989
IEEE Computer Society Symposium on Security and Privacy, pages 56–63. IEEE
Computer Society, May 1989.

[Hay96] Richard Hayton.An Open Architecture for Secure Interworking Services. PhD
thesis, University of Cambridge, Cambridge, UK, 1996.

[Hoa78] Charles A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, August 1978.

[IBM07] IBM WebSphere MQ. IBM Website, September 2007.http://www.ibm.
com/software/integration/wmq/.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. InFSE’03: Fast
Software Encryption, volume 2887 ofLNCS, pages 129–153. Springer-Verlag,
February 2003.

[ISO98] ISO/IEC, Geneva, Switzerland.9798-3:1998: Information Technology – Security
Techniques – Entity Authentication – Part 3: Mechanisms Using Digital Signa-
ture Techniques, 2 edition, 1998.

[ITU05a] ITU-T. X.500: Information technology - Open Systems Interconnection - The
Directory: Overview of concepts, models and services, August 2005.

170 BIBLIOGRAPHY

[ITU05b] ITU-T. X.509: Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks, August 2005.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for
message authentication. RFC 2104, Internet Engineering Task Force, February
1997.

[Khu05] Himanshu Khurana. Scalable security and accounting services for content-based
publish/subscribe systems. InSAC’05: Proceedings of the 2005 ACM Symposium
on Applied Computing, pages 801–807, New York, NY, USA, March 2005. ACM.

[KLL +97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: distributed caching pro-
tocols for relieving hot spots on the world wide web. InSTOC’97: Proceedings
of the 29th annual ACM Symposium on Theory of computing, pages 654–663,
New York, NY, USA, May 1997. ACM Press.

[Lam74] Butler W. Lampson. Protection.ACM SIGOPS Operating System Review,
8(1):18–24, January 1974.

[LB73] Leonard J. LaPadula and David E. Bell. Secure computer systems: A mathe-
matical model. Technical Report ESD-TR-73-278, Vol. II, Electronic Systems
Division, Air Force Systems Command, November 1973.

[LRW00] Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to NIST con-
cerning AES-modes of operations: CTR-mode encryption. InSymmetric Key
Block Cipher Modes of Operation Workshop, Baltimore, ML, USA, 2000.

[LS88] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. InPLDI’88: Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Design and Imple-
mentation, pages 260–267, New York, NY, USA, June 1988. ACM.

[MB98] Chaoying Ma and Jean Bacon. COBEA: A CORBA-based event architec-
ture. In4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), pages 117–132, April 1998.

[Mik02] Zolt án Miklós. Towards an access control mechanism for wide-area pub-
lish/subscribe systems. InDEBS’02: Proceedings of the 1st International Work-
shop on Distributed Event-based Systems, July 2002.

[MM02] Peter Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. InIPTPS’02: Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems, pages 53–65, March 2002.

[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, October 1996.

[MPR01] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME: A mid-
dleware for physical and logical mobility. InICDCS’01: Proceedings of the 21st

BIBLIOGRAPHY 171

IEEE International Conference on Distributed Computing Systems, page 524,
Washington, DC, USA, April 2001. IEEE Computer Society.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, I.Information and Computation, 100(1):1–40, September 1992.

[MUHW04] Gero Mühl, Andreas Ulbrich, Klaus Herrmann, and Torben Weis. Disseminating
information to mobile clients using publish-subscribe.IEEE Internet Computing,
8(3):46–53, May 2004.

[New07] BBC News. Met given real time C-charge data. BBC News Website, July 2007.
http://news.bbc.co.uk/1/hi/uk_politics/6902543.stm.

[Obj04a] The Object Management Group (OMG).Common Object Request Broker Archi-
tecture: Core Specification, Revision 3.0.3, March 2004.

[Obj04b] The Object Management Group (OMG).CORBA Notification Service Specifica-
tion, Revision 1.1, October 2004.

[OP01] Lukasz Opyrchal and Atul Prakash. Secure distribution of events in content-
based publish subscribe systems. InProceedings of the 10th USENIX Security
Symposium. USENIX, August 2001.

[Ope97] The Open Group.DCE 1.1: Remote Procedure Call, 1997.

[OSM00] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based ac-
cess control to enforce mandatory and discretionary accesscontrol policies.ACM
Transactions on Information and Systems Security (TISSEC), 3(2):85–106, May
2000.

[PB02] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based
Middleware Architecture. InDEBS’02: Proceedings of the 1st International
Workshop on Distributed Event-Based Systems, pages 611–618, Washington, DC,
USA, July 2002. IEEE Computer Society.

[PB03] Peter R. Pietzuch and Jean Bacon. Peer-to-peer overlay broker networks in an
event-based middleware. InDEBS’03: Proceedings of the 2nd international
workshop on Distributed event-based systems, pages 1–8, New York, NY, USA,
June 2003. ACM Press.

[PB05] Lauri I. W. Pesonen and Jean Bacon. Secure event types incontent-based, multi-
domain publish/subscribe systems. InSEM’05: Proceedings of the 5th interna-
tional workshop on Software Engineering and Middleware, pages 98–105. ACM
Press, September 2005.

[PCM03] Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murphy. Efficient content-
based event dispatching in the presence of topological reconfiguration. In
ICDCS’03: Proceedings of the 23rd IEEE International Conference on Dis-
tributed Computing Systems, pages 234–243, Washington, DC, USA, May 2003.
IEEE Computer Society.

172 BIBLIOGRAPHY

[PEB06] Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. A capabilities-based
access control architecture for multi-domain publish/subscribe systems. InSAINT
2006: Proceedings of the Symposium on Applications and the Internet, pages
222–228, Washington, DC, USA, January 2006. IEEE Computer Society.

[PEB07] Lauri I.W. Pesonen, David M. Eyers, and Jean Bacon. Access control in decen-
tralised publish/subscribe systems.Journal of Networks, 2(2):57–67, April 2007.

[Pie04] Peter R. Pietzuch. Hermes: A scalable event-based middleware. Technical Report
UCAM-CL-TR-590, University of Cambridge, Computer Laboratory,June 2004.

[Pow96] David Powell. Group communication.Communications of the ACM, 39(4):50–
53, April 1996.

[PR85] Jon Postel and Joyce Reynolds. File transfer protocol (FTP). RFC 959, Internet
Engineering Task Force, October 1985.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In CCS’01: Pro-
ceedings of the 8th ACM conference on Computer and Communications Security,
pages 196–205, New York, NY, USA, November 2001. ACM Press.

[RD01a] Antony Rowstron and Peter Druschel. PAST: A large-scale, persistent peer-to-
peer storage utility. InHotOS-VIII: Proceedings of the 8th Workshop on Hot
Topics in Operating Systems, pages 75–80, Los Alamitos, CA, USA, May 2001.
IEEE Computer Society.

[RD01b] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems. In Middleware’01: Pro-
ceedings of the 2nd International Conference on DistributedSystems Platforms,
volume 2218 ofLNCS, pages 329–350, London, UK, November 2001. Springer-
Verlag.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. InProceedings of the 2001
conference on Applications, technologies, architectures, and protocols for com-
puter communications (SIGCOMM 2001), pages 161–172, New York, NY, USA,
September 2001. ACM Press.

[RH03] Sandro Rafaeli and David Hutchison. A survey of key management for secure
group communication. ACM Computing Surveys, 35(3):309–329, September
2003.

[Rin07] Rinda API, September 2007.http://www.ruby-doc.org/stdlib/
libdoc/rinda/rdoc/index.html.

[Riv92] Ron Rivest. The MD5 message-digest algorithm. RFC 1321,Internet Engineer-
ing Task Force, April 1992.

[RL96] Ronald L. Rivest and Butler Lampson. SDSI – A simple distributed security
infrastructure. Presented at CRYPTO’96 Rumpsession, October 1996.

BIBLIOGRAPHY 173

[RR06] Costin Raiciu and David S. Rosenblum. Enabling confidentiality in content-based
publish/subscribe infrastructures. InSecurecomm 2006: Proceedings of the 2nd
International Conference on Security and Privacy in Communication Networks,
August 2006.

[RW03] Phillip Rogaway and David Wagner. A critique of CCM. Cryptology ePrint
Archive, Report 2003/070, April 2003. http://eprint.iacr.org/
2003/070.

[SAS01] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting disconnectedness – trans-
parent information delivery for mobile and invisible computing. In CCGRID’01:
Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, pages 277–285, Washington, DC, USA, May 2001. IEEE Computer Soci-
ety.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models.IEEE Computer, 29(2):38–47, February 1996.

[SCR+03] Spencer Shepler, Brent Callaghan, David Robinson, Robert Thurlow, Carl
Beame, Mike Eisler, and David Noveck. Network file system (NFS) version
4 protocol. RFC 3530, Internet Engineering Task Force, April2003.

[SL05] Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe overlay services
with EventGuard. InCCS’05: Proceedings of the 12th ACM Conference on
Computer and Communications Security, pages 289–298, New York, NY, USA,
November 2005. ACM Press.

[SL07] Mudhakar Srivatsa and Ling Liu. Secure event dissemination in publish-
subscribe networks. InICDCS’07: Proceedings of the 27th International Confer-
ence on Distributed Computing Systems, page 22, Washington, DC, USA, June
2007. IEEE Computer Society.

[SM98] Ravi Sandhu and Qamar Munawer. How to do discretionaryaccess control using
roles. InRBAC’98: Proceedings of the 3rd ACM Workshop on Role-Based Access
Control, pages 47–54, New York, NY, USA, October 1998. ACM Press.

[SM03] Alan T. Sherman and David A. McGrew. Key establishment in large dynamic
groups using one-way function trees.IEEE Transactions on Software Engineer-
ing, 29(5):444–458, May 2003.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM 2001), pages
149–160, New York, NY, USA, September 2001. ACM Press.

[Sri95] Raj Srinivasan. RPC: Remote procedure call protocol specification version 2.
RFC 1831, Internet Engineering Task Force, August 1995.

174 BIBLIOGRAPHY

[SS75] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems.Proceedings of the IEEE, 63:1278–1308, September 1975.

[Sto07] Stomp messaging protocol, October 2007.http://stomp.codehaus.
org/.

[Sun88] RPC: Remote Procedure Call Protocol Specification Version 2, June 1988.

[Sun94] JavaTMremote method invocation (RMI), 1994.http://java.sun.com/
rmi/.

[Sun99] Sun Microsystems, Inc.Code Conventions for the JavaTMProgramming Lan-
guage, April 1999.

[Sun02] Sun Microsystems, Inc.Java Message Service, Version 1.1, 2002. http://
java.sun.com/products/jms/.

[Sun03] Sun Microsystems, Inc.JavaSpacesTMService Specification, Version 2.0, June
2003.

[TIB07] Tibco rendezvous, September 2007.http://www.tibco.com/.

[Tra07] The Transport for London congestion charge website, September 2007.http:
//www.cclondon.com/.

[WABL94] Edward Wobber, Mart́ın Abadi, Michael Burrows, and Butler Lampson. Authen-
tication in the taos operating system.ACM Transactions on Computer Systems
(TOCS), 12(1):3–32, February 1994.

[WCEW02] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander L. Wolf. Se-
curity issues and requirements in internet-scale publish-subscribe systems. In
HICSS’02: Proceedings of the 35th Annual Hawaii International Conference on
System Sciences, page 303, Washington, DC, USA, January 2002. IEEE Com-
puter Society.

[WGL00] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Securegroup commu-
nications using key graphs.IEEE/ACM Transactions on Netwworking (TON),
8(1):16–30, February 2000.

[WHF03] Doug Whiting, Russ Housley, and Niels Ferguson. Counterwith CBC-MAC
(CCM). RFC 3610, Internet Engineering Task Force, September 2003.

[Whi76] James E. White. A high-level framework for network-based resource sharing.
RFC 707, Internet Engineering Task Force, January 1976.

[Wil79] Maurice V. Wilkes. The Cambridge CAP Computer and its Operating System
(Operating and Programming Systems Series). North Holland, Amsterdam, The
Netherlands, 1979.

[Win99] Dave Winer. XML-RPC specification. XML-RPC Website, June 1999.http:
//www.xmlrpc.com/spec.

BIBLIOGRAPHY 175

[WMLF98] Peter Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces.IBM
Systems Journal, 37(3):454–474, 1998.

[Wor05] World Wide Web Consortium.XML Path Language (XPath) Version 2.0, April
2005.

[Wor07] World Wide Web Consortium.SOAP Version 1.2, April 2007. http://www.
w3.org/TR/soap12-part1/.

[WWWK94] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall.A note on distributed
computing. Technical Report TR-94-29, Sun Microsystems Laboratories Inc.,
November 1994.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
volume 3494 ofLNCS, pages 19–35. Springer, May 2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collisionsearch attacks on
SHA1. Technical report, Shandong University, Shandong, China, 2005.

[XL89] Andrew Xu and Barbara Liskov. A design for a fault-tolerant, distributed imple-
mentation of Linda. InDigest of Papers of the 19th International Symposium on
Fault-Tolerant Computing, pages 199–206, Chicago, IL, USA, June 1989. IEEE
Computer Society.

[ZF03] Andreas Zeidler and Ludger Fiege. Mobility support with REBECA. In ICD-
CSW’03: Proceedings of the 23rd International Conference on Distributed Com-
puting Systems Workshops, pages 354–360, Providence, RI, USA, May 2003.
IEEE Computer Society.

[ZKJ01] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

[ZS06] Yuanyuan Zhao and Daniel C. Sturman. Dynamic access control in a content-
based publish/subscribe system with delivery guarantees.In ICDCS’06: Pro-
ceedings of the 26th IEEE International Conference on Distributed Computing
Systems, page 60, Los Alamitos, CA, USA, July 2006. IEEE Computer Society.

