Technical Report A

Number 719

Computer Laboratory

The Intelligent Book:
technologies for intelligent
and adaptive textbooks,
focussing on Discrete Mathematics

William H. Billingsley

June 2008

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2008 William H. Billingsley

This technical report is based on a dissertation submitted
April 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitp:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

The Intelligent Book: technologies for intelligent and ada ptive textbooks,
focussing on Discrete Mathematics

William Henry Billingsley

An “Intelligent Book” is a Web-based textbook that contag®rcises that are backed by
computer models or reasoning systems. Within the exercsedents work using appropriate
graphical notations and diagrams for the subject mattercamments and feedback from the
book are related into the content model of the book. The comtedel can be extended by
its readers. This dissertation examines the question oftbgwovide an Intelligent Book that
can support undergraduate questions in Number Theory, anidydarly questions that allow
the student to write a proof as the answer. Number Theorytigmsgpose a challenge not only
because the student is working on an unfamiliar topic in danailiar syntax, but also because
there is no straightforward procedure for how to prove aiitraty Number Theory problem.

The main contribution is a system for supporting studenttar proof exercises, backed
by the Isabelle/HOL automated proof assistant and a setashieg scripts. Students write
proofs using MathsTiles: a graphical notation consistihgponposable tiles, each of which can
contain an arbitrary piece of mathematics or logic writtgrite teacher. These tiles resemble
parts of the proof as it might be written on paper, and aresteded into Isabelle/HOL's Isar
syntax on the server. Unlike traditional syntax-directddas, MathsTiles allow students to
freely sketch out parts of an answer and do not constrainrttex o which an answer is written.
They also allow details of the language to change betweewenr @uring questions.

A number of smaller contributions are also presented. Bygu#he dynamic nature of
MathsTiles, a type of proof exercise is developed where tindefit must search for the state-
ments he or she wishes to use. This allows questions to begedby informal modelling,
making them much easier to write, but still ensures thatriberfiace does not act as a prop for
the answer. The concept of searching for statements isaetdieio developnassively multiple
choicequestions: a mid-point between the multiple choice andtglmawer formats. The ques-
tion architecture that is presented is applicable acrd$sreint notational forms and different
answer analysis techniques. The content architecturearse@gormal ontology that enables
students and untrained users to add and adapt content whihinook, including adding their
own chapters, while ensuring the content can also be reféorey the models and systems that
advise students during exercises.

Acknowledgements

There are many people without whom my research would have beeh more difficult. |
thank my supervisor, Professor Peter Robinson, for thecadwe provided throughout this
PhD. This dissertation formed part of a wider research ptap@olving researchers from Cam-
bridge and the Massachusetts Institute of Technology.U3saog ideas and material with those
researchers — Hal Abelson, Gerry Sussman, Chris Hansok, Ad&idown, and Kasim Rehman
— has been valuable and informative. Alan Blackwell progiddvice on how to run a usability
study, and Sparsh Gupta assisted me in conducting the ixgahildy in Chapter 9. Thanks are
also due to Joe Hurd, Michael Compton, and Larry Paulsonhieir help as | learned to use
Isabelle/HOL.

Tal Sobol-Shikler, Mark Ashdown, and Shazia Afzal kindladeand reviewed early drafts
of chapters. | also thank the referees and editors oddlienal of Automated Reasonirgheir
extensive feedback and corrections on one of my papers sasalped me to improve large
sections of this dissertation. | also thank my examinerggpalamnik and Robert Harding, for
their helpful corrections and for the interest they showenohy research.

My research was funded and supported by the Cambridge-Mifltdite and the Cambridge
Commonwealth Trust. My parents, John and Ros, also proviidadcial and moral support,
especially in the first few months of my research.

Finally, | thank my wife Fiona. She has been endlessly pataa supportive, and has
moved half way around the world with me so that | could undertnis PhD. Without her
understanding and companionship, it might have been thouwifto contemplate.

Contents

1

Introduction 15
1.1 Background 15
1.1.1 “The Industrial Revolution in Education” 15
1.1.2 Bloom and the Two Sigma Problem 6 1
1.1.3 RecentResearch 17
1.1.4 Complementingthe Tutor 71
1.1.5 WhyaTextbook 18
1.2 ThisDissertation 18
1.2.1 Challenges for an IntelligentBook 18
1.2.2 Challenges for the Proof Exercises 19
1.2.3 Outline of the Following Chapters 19
1.2.4 Publications. 20
Related Work 21
2.1 Automated QUESHLIONS e 21
2.1.1 Short answer and multiple choice systems 21
2.1.2 Onlinesimulation., 32
2.1.3 Summary ... e e e e 24
2.2 Intelligent Tutoring Systems e 24
2.2.1 ModelTracing e 24
2.2.2 ConstraintBased Tutoring 26
2.2.3 Mixed-Initiative and Conversational tutors 27
224 SUMMANY o e e e e e e e 27
2.3 Web-based Learning Environments and Adaptive Hypeianed. 28
2.3.1 AlgeBrain. 28
2.3.2 ELM-ART e 29
23.3 REDEEM e 29
2.3.4 ThelivingBook 29
235 ActiveMath 29
2.3.6 Adaptive hypermedia o 03
2.3.7 SUMMANY e e e e e e 30

CONTENTS

2.4 Editing mathematics e 31
241 Parsedtext 31
2.4.2 Mathematical sketching 31
2.4.3 Structured Editing 23
244 SUMMANY e e e e e 32

2.5 Educational Systems for Mathematical Proof 33
251 EPGY . . . e 33
25.2 DALOG Project 33
2.5.3 Diagrammatic TheoremProving 33
2.5.4 Systems for Propositional Logic 33
255 Summary 34

2.6 Design Guidelines for an IntelligentBook 34

Supporting Complex Graphical Questions at the Client 37

3.1 OVEeIVIEW e e e 37

3.2 AQuestioninElectronics L . 40

3.3 TechnicalDetail 43
3.3.1 Cooperative XML Documents 4 4
3.3.2 Simple Change Formatfor XML 54
3.3.3 DocumentManagement e 47

Content Model 49

4.1 Overview of the Topic Structure 49

4.2 Architectureand DataModel 52
4.2.1 Database and SelectionlLogic 53
4.2.2 ModifiedWiki 54

4.3 Supporting Chapters, Sections, and Subsections 54

4.4 ClosingNote e 56

Server-Side Question Architecture 57

5.1 TeachingScripts. e 58
51.1 OVeIVIEW o ot e 58
5.1.2 Supporting Different Teaching Pedagogies 58
5.1.3 AdviceFunctions 59
5.1.4 AHypotheticalExample 06
5.1.5 RelationshiptoServlets 61

5.2 Conversion SCriptS o o o 62

5.3 Broker e e 62

5.4 Reusabilityof Components L L e 64

Proof Question Design Goals 67

6.1 Background and Hypothesis 67

6.2 DesignGoals 68
6.2.1 The exercises take place within a Web-based InteliBeok 68

6.2.2 The student, not the system, should write the proof 69
6.2.3 Proofs should resemble what students write on paper 69

CONTENTS 9
7 MathsTiles 71
7.1 OVEIVIEW o e e e e e 71
7.2 DocumentStructure L 73
7.3 Definable TileComponents 74
7.4 Inheritable Attributes e 75
7.5 Non-DefinedTiles. 76
7.6 TileTrays e 76
7.7 Future Work e 77
7.8 Conclusion 78
8 MathsTiles as a Proof Language 79
8.1 A Straightforward Example, 79
8.2 Prooftiles e 58
8.3 ColourCoding e 86
8.4 ReasoningStep Size 38
8.5 Annotations 88
8.6 Two Design Compromises i i e 90
8.6.1 The student does not always have to write the goahséattss 90
8.6.2 The proofischeckedlinearly. 91
8.7 ADifficultExample 91
9 Evaluation 95
9.1 OVEIVIEW e e e e 95
9.2 NumericalResults e 96
9.3 Qualitative Results 97
9.3.1 MathsTilesUl (Complex) 89
9.3.2 ProofLanguage 99
9.3.3 Domain Specific Issues (here Number Theory) 100
9.4 Future Work 110
9.4.1 Considerationoflemmas 101
9.4.2 Notusingadirecttranslation 102
9.4.3 Automatically set parts of a proof document 102
9.4.4 Configurable level of formality 102
9.5 Conclusions from the Qualitative Evaluation 102
9.6 Detailed Qualitative Results 104
9.7 Comparisonto ActiveMath 107
10 Searching Questions 109
10.1 Classroom Observations 109
10.2 The Informally Modelled Scenario 111
10.3 Massively Multiple Choice Questions 113
10.4 Conclusion 141
11 Conclusion 117
11.1 Summary of Contributions e 117
11.2 Future Directions e 118
11.2.1 Improvementsto MathsTiles 118

10 CONTENTS

11.2.2 Levelsof Formality 119
11.2.3 Further support for cases where the reasoning systensure 119
11.2.4 Programminginterfaces 119
11.3 The Future of Intelligent Teaching Assistants 120
Bibliography 121
A Abstract Teaching Script for Formal Proof Exercises 135
B Teaching Script for a Formal Proof Exercise 147
C Conversion Script for Fibonacci Sequence 151

D Question Document for a Formal Proof Exercise 155

List of Figures

11

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4

External and internal views of a Pressey Testing Machine 16
A tissue identification questionin JellyFish 22
A JOLLIES simulation for Control Theory 23
A Newtonian physics questioninAndes 25
A punctuation questionin CAPIT 26
An extractfroma SOPHIE session 28
The BrEdiMa Web-based mathematical editor 32
A stylised view of theclient 37
Client component architecture 38
DynamicHTML area e 39
An electronics question, not using the architecture 40
A TMS explanation of a contradiction 42
The electronics question, using the architecture 43
A TMS deduction step beingexplained 44
Behaviourobjects e 45
Simple Change Format for XML (SCFX) 46
The alphabetical topic index of an IntelligentBook 49
The content and chaptertoolbarso... 50
If no entry exists for a topic, a Web search is returned . : ... Bl
Adding the URL of a new entry for a topic involves fllllng anshort form ... b2
A simple overview of the content system 53
The Wiki is altered so that WikiWords link into the pageommendatlon system 54
The structure of a chapter is defined in the HTML of its eotd page 55
Links into the chapter are Javascript calls rather tbpitiook up URLs. . . . 55
The architecture of an Intelligent Book question 57
The three phases of a Teaching Script 59
Pseudocode for an Abstract Teaching Script class faldwtronics question . 60
Pseudocode for a teaching script for the electronicstgpre 61

11

12

LIST OF FIGURES

5.5
5.6
5.7
5.8
5.9

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

10.1
10.2
10.3

Registering a pattern in the Conversion Script for aarmlly modelled proof
Pseudocode for a conversion script for the electroniestipn
A question using MathsTiles and Isabelle/HOL

A question using MathsTiles but not Isabelle/HOL

A question using Isabelle/HOL but not MathsTiles

Some maths tiles, loose and combinedo
The combined tiles from Figure 7.1, together with the Xdflthe structure . .
The definition and layout of a Sumtile
Thevisibility of the brackets is set by an expression
Atiletray

An induction proof question waiting to be filledin
The induction tile for the worked example. .

The base case can be solved by the simplifier. . .
The guestion with the base case completed and the smppm;n f|IIed in. ..
The Teaching Script can help identify counter-examples
The feedback given when no counter-example can be found...
The teaching script makes a suggestion if we dHekp, | needa hint.
The completed proof.
A tile for natural induction that is used in Section 817d as Isar translation.
A tile for induction over the Fibonacci sequence, asdisiar translation. . . .
A tile containing a coloured socket with backgroundtex.
A Conversion Script “matcher” for an inductiontile

Responses from IsabeIIe/HOL are marked on the presfas annotations . . .

An informally modelled proof question
Atruthmapstack
A “massively multiple choice question” L.

62

63
64
65
66

List of Tables

1.1 A selection of active teaching techniques that can inmpstudent performance 17

9.1 The number of participants reaching each stage of theisgs. 97

13

14

LIST OF TABLES

CHAPTER 1

Introduction

This dissertation is not an Intelligent Book. It uses the samords to say the same thing to
every reader regardless of whether or not they can undergtahcannot help readers to work
through example problems and it cannot say anything thaitisineady in the book. In many
situations, a static unintelligent book like this is apptage. This thesis has to be examined
and that would be much harder to do if it changed every timead vead. However, if a text-
book is going to be presented on a networked computer, thaptsoes it makes sense to take
advantage of the capabilities that the computer and theanktean provide. This dissertation
examines how we can build an Intelligent Book that can supgiadents learning introductory
Number Theory, but designed using techniques that arecaiybdl to any scientific or mathe-
matical subject.

1.1 Background

1.1.1 “The Industrial Revolution in Education”

In 1926, long before electronic computers became avail&itiney Pressey built machines
that could ask students multiple choice questions [PreP@jotographs of a Pressey Testing
Machine are shown in Figure 1.1. The machine showed the nuohb® question on a counter.
Students would read the text of the corresponding questimm fa card that also listed the
possible answers. They would then push one of the five butinriee machine to enter their
answer, and pull a lever to move on to the next question. Ddipgron how it was configured,
the machine would either tally the answer as right or wrong) move on, or would refuse to
move to the next question until the correct answer was etdrge correct answers were held
on a roll of punched paper inside the machine, similar to aglareel.

Psychologists in the twentieth century, including B.F.ri8lar [Ski54, Ski58], hoped that
mechanisation could bring the same kind of revolution tocation that it had to industry.
Machines would automate as many of the mundane parts ofitegpab possible so that human
teachers could spend more time on the parts that require ékpertise. So, for example,
a Pressey machine would enable students to receive feedibaak many questions as they

15

16 Chapter 1. Introduction

Figure 1.1: External and internal views of a Pressey Testing Machine.

like at their own convenience, without troubling a human kear Pressey only sold 120 of
his machines, but arguably the revolution in education dicttplace, at least in assessment.
Computer-marked multiple choice exams are now a commorgyl @xamination technique
both at school and at university. The US Graduate Record ieion (GRE) General Test, an
admission requirement to many graduate schools, is a c@mpased test.

1.1.2 Bloom and the Two Sigma Problem

In 1984, educational researcher Benjamin Bloom publishedTwo Sigma Problem” paper
[Blo84] that is one of the most cited papers by educationethrielogists. The paper starts
with a result observed by two of his doctoral students [An@8884], that individually tutored
US high school students performed two standard deviatitws Gigma”) better than students
taught in classes of thirty. This means that the averageddtstudent performed better on tests
than 98% of the classroom taught students. (Cohen, Kulikkaritk [CKK82] also confirmed
that small group tutoring outperforms classroom teachatiipough in their study the margin
was smaller.)

Educational technologists often cite only this result frBloom’s paper. It is a motiva-
tion for providing more personal attention to studentsivigbial needs, and for examining the
pedagogical techniques that human tutors use and tryingpiccate them in automated sys-
tems. Bloom’s paper itself goes on to examine strategiescambinations of strategies, that
classroom teachers can use to bridge the two sigma gap. Tab&hows a selection of strate-
gies and the learning gains Bloom found they produced. Manlase are clearly applicable
to educational technology, and whether intentionally dr nost automated teaching systems
include one or more of these strategies. For example, signalging homework questions is
found to improve learning bg.80, and Mastery Learning (re-teaching items that were not un-
derstood) gave & improvement. Unsurprisingly, then, automated teachirsfesys have also
been shown to produce learning gains in students when ceapaiclassroom teaching alone
[SP96, SST01, MMSMO01].

1.1. Background 17

Strategy Effect size Percentile
Equivalent

Tutorial instruction 2.0 98

Enhanced Cues and Participatigbetter explanations andl.5 93

more student participation)

Reinforcementrewarding desirable behaviours, eg praising 2> 88

a student who gives a correct response in a discussion)

Increasing students’ time on task &.0 83

Mastery Learnindre-teaching items that most students ditl. 0o 83

not grasp)

Assigning and grading homework 0.8 79

Enhanced Pre-requisitgensuring pre-requisite material i€.60 73

understood)

Assigning homework 03 62

Asking higher order questions &3 62

Combination Effect size Percentile
Equivalent

Enhanced Cues and Participation + Reinforcement + Masfo 96

tery Learning

Enhanced Pre-requisites + Mastery Learning 0l1.6 95

Table 1.1: A selection of active teaching techniques that can improve student performance.
Extracted and adapted from Bloom [Blo84], in turn using data from Walberg [Wal84], Burke
[Bur84], Anania [Ana83], Leyton [Ley83], and Tenenbaum [Ten82].

1.1.3 Recent Research

Recent research has continued trying to reduce the cosuch&dn and improve its outcome.

As more materials have become Web-enabled, it has alsodaikeays of providing individual
teaching to remote students. Many of these systems ardluksan the Related Work in Chap-

ter 2. Intelligent Tutoring Systentsave been designed to apply pedagogical techniques, based
on either theories of cognition or observations of humaargjtto teach many different sub-
jects.Intelligent Learning Environmentsave considered how exercises and content fit within a
course, and can generate tailored lessons for individudesits.

1.1.4 Complementing the Tutor

My research has been conducted at the University of Camdariod it is worth taking a mo-
ment to consider the local teaching situation. The Univgngiovides small group tutorials,
called “supervisions”, to its undergraduate students ahesd their lecture courses. This is an
approximation to Bloom’s ideal of individual tutoring by ampert tutor. So, automated teach-
ing systems would be unlikely to produce the same learniimgsga Cambridge that they have
been shown to produced in untutored students. Howeverdtes not mean that automated
teaching systems have no role to play.

In the Computer Laboratory, approximately one hour of tiatas given for every four hours
of lectures, in groups of no more than three students. Forlactére course with 120 students,
at least 160 hours of tutorials take place in total. This du®stake into account preparation

18 Chapter 1. Introduction

time or the time taken to mark students’ homework. This i Vabour intensive, making it
difficult to provide more tutorials even if they could impexesults. Not only is cost an issue,
but it can be hard to find enough suitable tutors and time duhia term for the tutorials to take
place. Furthermore, because many tutors are graduatenssugi¢h little or no formal training
in tutoring, there is some variation in their teaching skill

An Intelligent Book, as an automated teaching system, ceaitde two useful purposes in
this setting. Firstly, there are often common homework [@ais that tutors set and common
misconceptions that students tend to have. If studentsnbestuck on a homework problem
without automated assistance, then this cannot be resaolvgdthe following tutorial, and
working through the rest of the question takes up valualiteial time. An Intelligent Book
could target these examples and misconceptions, allowitogstto dedicate more time to the
students’ less common needs. Secondly, by being a commourcesavailable to all students,
an Intelligent Book could help even out the quality of tubgrihat each student receives.

1.1.5 Why a Textbook

At some point, an automated homework system has to be abtenect students about factual
errors. This involves describing a piece of content, sousesful if the exercise can be combined
with some kind of content system. The conventional takeéoesource that students use as a
source of exercises and content is a textbook.

The role of a textbook affects the way students interact wjtand this is important to
preserve. A textbook is always the students’ servant, neearmaster. It does not nag students
about when a piece of coursework is due. It does not markwuoek for summative assessment,
so students are free to get exercises wrong without peditymodel in this dissertation, then,
is for an automated system to take the role of the textbodikerahan the tutor (as imtelligent
Tutoring Systemsor the course structure (as @ourseware Management Systeamsl many
Intelligent Learning Environmenys

1.2 This Dissertation

This dissertation seeks to develop a Web-based Intelligeok that can support proof exercises
in introductory Number Theory. There are two parts to theveloping technology to support

an Intelligent Book, and developing proof exercises witthie Book. The second part is the
more challenging.

1.2.1 Challenges for an Intelligent Book

An Intelligent Book should be able to cover all the topicshiita course. This could involve
a wide variety of graphical notations, styles of interactiand content. For example, a book
for electronic circuits may need to include exercises wagkwith circuit diagrams, simulation
plots, digital timing diagrams, and potentially variousds of engineering plot. Consequently,
the architecture for an intelligent book should be able fopsut different graphical notations
and different modelling or reasoning systems to suppogdhmtations.

The content of an Intelligent Book should be extensible atapgable. It should be possible
for both the teacher and students to add new material or wedrgersions of material into
the book. Also, when students work through a subject they atcatways rely on a single

1.2. This Dissertation 19

explanation for each item. Reading lists for courses oféeommend more than one textbook,
and students might often use additional material from therhet. An Intelligent Book should
support the concept that often there is not a definitive ewgilan that is suitable for all students,
and that having alternative explanations of the same naatan be helpful. At the same time,
however, the automated help and advice that the system tgiatgsdents must be able to refer
to the content.

The appropriate pedagogies and the depth of analysis toamsalso differ from question.
For some questions, we can model students’ solution stegu$lgxand train them in a particular
procedure. However, other questions may involve probldmrspor design tasks where there
IS no known step-by-step procedure that the system cansastetents against. In Bloom’s
Taxonomy of Educational Objectives [Blo56], this means mgvwrom the lowesknowledge
level (that includes practising taught techniques) toapplicationandsynthesidevels, where
students must work out for themselves how to design a solutio

1.2.2 Challenges for the Proof Exercises

Number Theory proofs are an example of a difficult domain whkere is no known step-by-
step procedure that can complete an arbitrary proof. Thenaated systems that have been built
for proofs need a great deal of guidance from their usersdegomost theorems. A teaching
system for proof faces the challenge of helping students d¢honot know how to complete a
proof using a reasoning system that cannot complete thd pither.

Automated proof assistants are also known to be difficulegori: it can often be harder to
write a verifiable proof in a proof assistant than it is to @radke theorem manually on paper.
Enabling students to write automatically verifiable proafisd making the system’s reasoning
understandable to students are both significant challenges

Mathematics is a difficult language to work with over the Wédeyboards are designed
for a one dimensional syntax (text) whereas mathematidsas bwo dimensional and includes
layout. The terminology used by mathematical modellingemys can also be very specific
and difficult for novices to learn. Students working with artaanated system for mathematics
therefore face the difficulty of working on an unfamiliar gedt using an unfamiliar notation.

1.2.3 Ouitline of the Following Chapters

Chapter 2 describes previous work by other researchersshatevant to this dissertation.
Chapters 3 to 5 describe how the architecture of the Ineiligdook supports complex ques-
tions that can include different graphical notations,at#t teaching pedagogies, and different
modelling or reasoning systems:

» Chapter 3 introduces these complex graphical questiodsdascribes how the client
components are organised.

» Chapter 4 describes the content model of the Book, thawvalgiudents to add and alter
content while still allowing the automated teaching advaeefer to it.

e Chapter 5 describes the structure of the teaching sciapis,how they allow different
pedagogies and different modelling or reasoning systerhe tesed.

Chapters 6 to 9 describe the formally modelled proof exescis

20

Chapter 1. Introduction

Chapter 6 provides the background, describing the usasBues with automated proof
systems and developing specific design goals for the praateses.

Chapter 7 introduces MathsTiles, a simple structuredacteon language | developed for
mathematics.

Chapter 8 describes how MathsTiles is used as a languageiforg automatically veri-
fiable proofs.

Chapter 9 describes an evaluation and usability study diected of the proof exercises.

Chapter 10 uses the results of the usability study, and atpabservations of students answer-
ing proof questions in front of human tutors, to develop infally modelled proof questions.
These rely on the fact that the teacher already knows thereegis students are likely to make
to simplify the modelling and make questions much simplextive. The informal modelling
principle is extended to develaopassively multiple choicguestions.

Finally, Chapter 11 concludes the dissertation.

1.2.4 Publications

Some of the work described in this dissertation has appearbe following publications:

1.

William Billingsley and Peter Robinson. Searching gicest, informal modelling, and
massively multiple choice.International Conference of the Association for Learning
Technology (ALT-G)2007. in press.

. William Billingsley and Peter Robinson. Student prooérises using MathsTiles and

Isabelle/HOL in an Intelligent Booklournal of Automated Reasonir2007. in press.

. Kasim Rehman, William Billingsley, and Peter Robinsorritivlg questions for an Intel-

ligent Book using external Al. IfProceedings of the Sixth International Conference on
Advanced Learning Technologies (ICALT200&ges 1089 — 1091, 2006.

. William Billingsley and Peter Robinson. Towards an ilgent textbook for discrete

mathematics. IiProceedings of the 2005 International Conference on Adfigdia Tech-
nology, Takamatsu, Japapages 291 — 296, 2005.

. William Billingsley, Peter Robinson, Mark Ashdown, antir@ Hanson. Intelligent tu-

toring and supervised problem solving in the browsePioceedings of the IADIS Inter-
national Conference WWW/Internet 2004, Madrid, Sppages 806 — 811, 2004.

. William Billingsley and John Billingsley. The animatiosf simulations and tutorial

clients for online teaching. IRroceedings of the 15th Annual Conference for the Aus-
tralasian Association for Engineering Education and thehlBustralasian Women in
Engineering Forum, Toowoomba, Australgages 532 — 540, 2004.

CHAPTER 2

Related Work

My research in this dissertation touches on previous woeknamber of areas. A wide variety
of automated homework systems exist that support queshatiferent subjects, both on-line
and as stand-alone programs. Intelligent Tutoring Syst&®ssarch has examined appropri-
ate pedagogies and teaching methods for an automatedaqusgtitem. Intelligent Learning
Environments and Adaptive Hypermedia research has exanhio& content material can be
adapted to the needs of individual students. Other resgeaopbcts have looked at how to edit
mathematics and other structured languages, and therksar@@umber of educational systems
that have been built to teach logic and proof. For simplisitake, each system described in this
chapter is listed under only one heading, although therenmsesoverlap between the sections.

2.1 Automated Questions

2.1.1 Short answer and multiple choice systems

UWA-CPCS [Sc096] is a Hypercard-based question systemlase@ at the University of
Western Australia in the mid-1990s. It supports questiohere the answer is a number, and
uses an eighty-twenty rule to provide useful feedback vanply. Roughly 80% of student
mistakes on a question fall into a small set of “common efrovéhen one of these common
wrong answers is encountered, UWA-CPCS shows a pre-wiitygercard explaining the mis-
take that leads to that wrong answer. An updated versioledcaellyFish / FlyingFish [SS98],
uses the same technique but allows Java applets to repladéyfrercards. For example one
applet (Figure 2.1) shows a picture of a tissue sample, &kwithe student to move labels over
particular kinds of tissue. The applets can either handerthrking of the answer themselves,
or send a short answer (eg, the co-ordinates of the tissaks)ab the server.

Alice Interactive Mathematics (AIM) [KKVdBO0O] is a short awer system that solves the
problem of mathematically equivalent answers by conngdatirthe Maple mathematics system
at the server — answers that Maple considers to be equivalerdeemed correct. To prevent
the student from taking unfair advantage of this, AIM maimsaa list of forbidden words for a
question. For example in a question asking a student to leédcotin (7 /2), thensin would be

21

22 Chapter 2. Related Work

SESTRAEN F 7 . o 3
\‘\k __J:l E d f{;“ b ,K}_ % ; T s i 2’
il \ fr8*, 7/ ,b.(o ! (¥ niltrating carcinaoma (@Bystiophiccalcicat
R b % ,
R P M@ stophic caltiiication % '*t . :
B i j}#, o, i = (CHInfitrating carcinoma
! 47 M y ! ,# ? &
/ ; .ﬁ L - g A -
(’ i - - Y 7 e o ;- - : . -?-
oy /7 """;"’ﬂfﬂ: : Y @ &
‘,u/' 2 i 1t F - -_{1 oy \:“.‘n.\‘ =Y :‘}i‘
» - T & 'y
; . - 3 v p— :
J i " ‘\'i f ‘:, - \.‘ 3 1
' !
'.ll'e e %“ ‘ c
Ij -'._“ J— -'f'l ' * . _J L ¥
- 2 % f“j I o $ i o]
¥ Nl VY L 4 -
ply . &, (W z
_';'_r'- ;e i - w by
» Gl 4 e 453
Problern | Daone

Figure 2.1 : A tissue identification question in JellyFish.

made a forbidden word to prevent from enteriig(7/2) as the answer. AIM also provides a
hint system, whereby the student can click a button to buy&fbr a small point penalty. The
hint can be pre-written text, or it can be a sub-questiontti@student will need to answer on
the way to answering the complete question.

The MIT 6.001 tutor [LPOO] is a Web based short answer systehis used in MIT’s
courses on artificial intelligence and the Scheme programgri@anguage. The tutor supports
questions where the student is asked to answer by writindnare routine. A checking func-
tion for the question runs the student’s routine against afdest cases in order to see whether
the routine does what was asked for.

SIETTE [GRC02, CGM04] is a Web based system fdser Adaptive Testg hese are tests
where the next question is chosen based upon the studeritsmpance in the test so far; they
are useful because they allow a more accurate gauge of anstuskills and knowledge using
fewer questions than fixed tests. Each question is assignategory which designates what
skill or knowledge item the question assesses, arittamCharacteristic Curvewhich broadly
speaking is a curve plotting a hypothetical student’s “klealge level” against the expected
probability that the student would get the answer right. WBEETTE is satisfied that it has an
accurate gauge of the student’s knowledge in a given categavill stop asking questions for
that category. SIETTE questions can either be multiplecghidems, or can use a small applet,
rather like JellyFish. Examples of SIETTE applets includgtipg a set of five pictures of
buildings in order of their construction date, and paintimgregion of a map where a particular
species of tree grows.

2.1. Automated Questions 23

2.1.2 Online simulation

Science Learning Spaces [KSF99] was a project looking teldewich learning environments
based around the availability of large numbers of onlineutations. Students would be able
to explore information and try out the various simulatioasd construct diagrams that rep-
resent their conceptual module of the material. The prajegtloped a “feasibility demon-

stration” that combined the Active lllustrations [For9Tinsilation framework with Belvedere

[SCL*01, Sut03], a coached environment for drawing graphicabsmtations of an argument
or conceptual model. A plug-in architecture for intellig&mors [RK97] was also included to

train students how to conduct an experiment.

JOLLIES [Bil01, BB04] are a set of Web-based simulationsailieped at the University of
Southern Queensland for use in engineering and mechadronirses. The simulations are
written in Javascript, and animated on the Web page usingjicéd the browser’s Java plugin.
More importantly, however, the part of the program that espnts the simulation (as opposed
to the animation code) is exposed to the student in an edit Baxdents are expected to alter
this code and see how their changes affect the behaviouredfytstem. Exercise notes with
each simulation provide a guided set of changes the studgyhit @0 examine. These usually
include altering gains, friction values, and the size oftihee step. The intent of JOLLIES is
both to improve students’ understanding of the system, Eudt@ improve their understanding
of how to model an engineering system. A screenshot of a JB&ldimulation is shown in
Figure 2.2.

diatepmodel ()
if (tplot<tma=x) |
/4 Thiz just defines where the brick is
if (tplot=100) [ground=0.1;};
if (tplot=160) [ground=0.0;};

m

Adwork out the friection - try changing the values
if{velocity>=0) [friction=-_.5};
if(velocity<0) [friction= .5} ;

dAdupdate the variables w

Figure 2.2 : A JOLLIES simulation for teaching Control Theory. Part of the code that describes
the simulation is exposed so that the student can alter it and see how those alterations affect
the behaviour of the system.

24 Chapter 2. Related Work

A number of projects have developed online simulations peexnents that students might
traditionally conduct in a laboratory. Jade [ATOO] suppastudents learning VLSI design by
allowing them to design circuits and then examine their behe by attaching virtual probes
to the circuit diagram and examining the probes’ outputasacRoberts’s Virtual Machines
Laboratory [Rob04] supports Web-based simulations ofrassfaamer, a synchronous machine,
and an induction machine. RIDES [M3%7] is an authoring environment for simulation based
tutorials. It was originally delivered over X, but a Javasien for intranets was later developed.
RIDES provided a toolkit for placing graphical objects oe #gtreen and attaching program-
matic behaviour to them. (This part of the system is somewinaitar to Adobe’s commercial
Flash toolkit.) Procedural instructions can then be add#tese tell the student what actions
they should perform in the simulation; if the student carvet the actions incorrectly, RIDES
can correct them and record performance measures.

More recently, virtual simulations have been extended ti¢hidea of teleoperation, to al-
low students to conduct real experiments remotely. Joohlaeid R6hrig’s Virtual Lab [JR99]
allows students to control a four wheeled vehicle remotaty] provides the software infras-
tructure for other experiments. “WebLabs” and “iLabs” ha&en developed to allow stu-
dents to teleoperate experiments in microelectronics [Eid?] and chemical engineering
[SGK'05, SKCMO06].

2.1.3 Summary

The eighty-twenty rule that most students tend to make theessort of mistake is a useful
observation that is used both in my work and also intibggy rulesof Cognitive Tutors (de-
scribed in the next section). The systems described heoeshl®w that there can be a wide
variety of useful analysis techniques — from asking an edlesystem to assess the answer (in
the case of AIM) to executing the student’s answer againstiasof test cases. The simulation
examples also show that a system can be educationally wesefulif there is no deliberate tu-
torial feedback: the student gains experience from workiitg the simulation and can see the
consequences of his or her mistakes.

2.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) research is heavily imaied by Bloom'’s “two sigma” find-
ing — that tutoring students individually is so much moreeefive than applying the same
classroom-wide teaching to all students. ITS researcimateto automate the pedagogy of
a human tutor. The “Intelligent” part of Intelligent Tutag Systems, then, refers to the im-
plementation of the pedagogy, while the marking of answ&iadividual questions can often
be very simple. | have grouped the systems in this sectioardi to the pedagogical and
cognitive theories that they are built upon.

2.2.1 Model Tracing

Anderson’s ACT [And83] and ACT-R [And93, And96] theoriesaignition separate knowl-
edge into two kinds:declarativeand procedural Declarative knowledge includes facts and
theoretical laws. Procedural knowledge describes whairatd take in a given situation, and

2.2. Intelligent Tutoring Systems 25

is represented as a set of production rules. The Cognitit@3trom Carnegie Mellon Univer-
sity [ACKP95], based on ACT and ACT-R, introduced Model Tr@cas an automated tutoring
technigue. They hold a set of declarative and productioasrdlescribing the process that a
“good student” would follow to answer the question. They afso holdbuggy ruleghat rep-
resent common misconceptions. The tutor attempts to irge(prtrace) students’ actions by
comparing them with its cognitive model of how a good studgtdguld behave. Each action
is evaluated to see whether any combination of producti@srcould have produced it. If the
action does not follow from the production rules, or if it riags a buggy rule, then an error is
flagged and the tutor gives the student corrective feedli&téctively, the tutor trains students
to behave like a model student.

A Bayesian network is often kept to calculate the probabihiat each student understands
each of the production rules. This is constantly updated,process calleknowledge tracing
and a summary of it is often shown to the student as a skilemet

The Carnegie Mellon research group has developed Cogihititegs for high school algebra
[KAHM97, Rit97], high school geometry [ABY85], and programmg in LISP [CT00, CB97].
Andes [GV00, SST01, CGV02, VLS 05]is a particularly successful Model Tracing tutor used
to teach Newtonian physics at the US Naval Academy. Typiaaktons involve calculating
the forces acting in particular systems — for example, if @ktOmarine is suspended by a cable
underneath a helicopter, what forces are acting upon thie.c&tudents are asked to draw
diagrams representing the forces involved, describe thatems that relate each of the forces,
and then solve the equations. An example of an Andes quastgihown in Figure 2.3.

"‘-AHHFS Physics Wmkbench - [Exzle-Solution. FED]
Y Fle Bt [hsgeam Vaishls Wiew Hep =18 =]
sla|x(@| 0@ eler| 2|9 []E]|

= || A0 kg midshipman doing Marine iraining is descending fram i I
|| @ helicopter when his release mechanism jams., Hame | Deliration | Comp [¥-Comp
L W milid mass of midehipman
TF'|| What is the tension in the cable that he is suspended from? W Fw magrituds of the 'Weight Force onmi. Fui_x Fret_y
F A Fi magrituds of the Tension Forca onm.. FI_x Fiy
= Answer: |:'J_l
T
e L
= 2
d &
F | | ¥
i t -
= 4= 10
g 1 |||
E - e |r' il 3
= Bhid ; |F_ =
|i 4 |I". A Ine s
— W

g, |r' w=Ft n '

6 |F-_-._ Fue_ty =[]

s ||_: =

g, |r-]

I =

For Help, preze F1 [[NOM eS|

Figure 2.3 : A Newtonian physics question in Andes.

Identifying and programming the production rules for a Miotiecing tutor can be time-
consuming. Some recent work [KAH4, AMSKO06] has focussed on authoring tutors by ex-

26 Chapter 2. Related Work

ample. Rather than immediately develop a full set of cogaitules for the question, the system

Is shown a number of examples of correct and incorrect swistiThe steps in the examples are
recorded into dehaviour graph This behaviour graph can then be used directly as the model
in an Example Tracing Tutqror it can be used as an aid to develop the production rules for
Model Tracing tutor.

2.2.2 Constraint Based Tutoring

Constraint Based Tutoring (CBT) is an approach proposedhigdd [Ohl92]. Students’ men-
tal processes are too complex for any system to model coetplahd accurately, so tutoring
systems must rely on a model that is incomplete but usefid.approach CBT takes is to model
knowedge as a set of constraints on answers in a domain.dCealations are those that do not
violate any constraints. Each constraint has a relevanogitton and a satisfaction condition.
If the relevance condition is met, then the satisfactiordaion must also be met or the answer
has violated the constraint.

Generally, the constraints represent the fundamentad nfléhe domain: for example, the
laws of physics or the rules of punctuation. CBT assumesiingbod solution to a question can
traverse a problem state where one of the fundamental plascis breached. So, students are
free to take any actions they like, so long as they do not ctugseanswers to enter an invalid
state [MKMO3]. A Bayesian Network is usually kept to estim#te students’ understanding of
each rule.

Constraint Based Tutors have been developed for the SQbakgdanguage [MO99, MHOO],
entity relationship modelling in databases [SM02], datamadisation [Mit02], and English lan-
guage punctuation [MMO1]. A screenshot of a CAPIT punctratuestion is shown in Figure
2.4.

Capilalization & Punclualustion Tutor [Mike iz hogged onl

PFut cepitels, full stops, and apastrophes in the nght place.

& big shark's in the bay. It isn't
travelling very fast. We haven't seen
this shark before theres a chance that
swimmings dangerous

Your Score; I : Waloe Of This Problem: I : |

Figure 2.4 : A punctuation question in CAPIT

2.2. Intelligent Tutoring Systems 27

2.2.3 Mixed-Initiative and Conversational tutors

For both CBT and Model Tracing, the tutoring session is prilp&ed by the system. CBT sets
the student questions and corrects broken rules; Modeingancourages the student to follow
an expected procedure to reach the answer. Mixed-Inigatitors instead support the principal
that both the system should be able to ask the student qugstiod also the other way around.
Tutoring becomes a two-way conversation between the stahehthe tutor. Even if the tutor
does not consciously adapt its behaviour to an individualet, the fact that each student will
make different actions or say different things will cause $bssions to progress in unique ways.

The earliest Mixed-Initiative system is usually regardedé Carbonell’'s SCHOLAR [Car70]
system for teaching South American Geography. It holdsworitof facts, concepts, and pro-
cedures as a database, and when it identifies a student roegatam it tries to show materials
that will help the student to see her own error. SCHOLAR has twodes: a tutor led mode
in which SCHOLAR asks the student questions, and a studémhtale which works the other
way around. Its dialogue however does not support a coheoewersation, in that each new
question can be very disconnected from the last.

SOPHIE [BBB75] is designed to beReactive Learning Environmenthe student is en-
couraged to try out his ideas and receive detailed feedbas&don a computer model of the
scenario. In a SOPHIE scenario, the student is given anretectcircuit that has a fault in it,
perhaps a damaged component or a short-circuit, and is @sldidgnose the fault. He can
ask SOPHIE to make measurements on the circuit, and canggdppotheses about what the
fault is. If a hypothesis is logically flawed, then SOPHIE céses how it does not match the
measurements that have been taken so far. If the studennkesaiuck, SOPHIE can generate
plausible hypotheses for him to explore (again based on #esaorements so far). The com-
puter model also allows the student to ask SOPHIE hypothlejieestions such as “what would
the output voltage be if the beta of Q3 were 8”, or “what woudghpen if R22 were shorted?”.
An extract from a SOPHIE tutorial session is shown in Figuke 2

Another approach has been to examine the dialogue thatpéesin human tutorials, and
attempt to reproduce this conversational style of teacimag automated system. The AutoTu-
tor project [GWHWH 99, CHG"00, GLJ"04] pioneered this approach. AutoTutor is a natural
language dialogue tutor for Newtonian physics and computgacy. It asks questions that
require a conceptual explanation as the answer. For exafiWleen a car without headrests
is struck from behind, the passengers often suffer necki@sjuWhy do passengers get neck
injuries in this situation? A student’s initial responses is often very short — juse am two
words. The tutorial dialogue then focusses on asking thaesituto explain and elaborate, in
order to draw out more of the learner’s knowledge. The caatern is mixed-initiative in that
both the tutor and the student can ask questions and statbpess of discussion. Other notable
conversational tutors include Atlas-Andes [RJRwvhich adds the Atlas conversational module
to the Andes physics tutor described earlier, and CIRCSINGT[LEMO4], which examined
how an automated tutor can use appropriate analogies te&kplain concepts to students.

2.2.4 Summary

There is no one-size-fits-all pedagogy for automated togprModel Tracing tutors are care-
fully designed to teach students how to execute a known pspdrit this also means they are
only suitable for questions where the process used to arsweestion is well-defined. For
example, Model Tracing does not easily apply to larger detagks that may involve exper-

28 Chapter 2. Related Work

Student: REPLACE Q6

Sophie: I am going to ask you some questions about how Q6 is
faulted. Are there any junctions shorted?

Student: I DON’'T KNOW

Sophie: Are any terminals open?

Student: YES

Sophie: Which terminals are open?

Student: THE BASE

Sophie: Q6 is not faulted in that manner. Q6 not replaced.

Student: IS IT POSSIBLE THAT Q6 HAS AN OPEN BASE

Sophie: Is the complete fault mode EB/EC/BC = OP/0K/OP what
you intended?

Student: SURE

Sophie: When the settings were: (C=1.0, CR=HIGH, LOAD=20,
VC=1.0, VR=HIGH, that fault conflicts with the
following measurement. You observed that the
output voltage was 11.7 volts. If Q6 had fault mode
EB/EC/BC = OP/0K/OP it would be 23.9 volts. 1In a
working circuit it is 19.9 volts.

Figure 2.5 : An extract from a SOPHIE session

imenting and prototyping in order to develop a good answad, \@ahere there are an almost
infinite number of choices of next step. Reactive Learningifenments would be more appro-
priate for those questions. The natural language dialogpeoach is useful to help students
understand the core concepts and issues in a domain, bualnanguage can be too vague for
questions involving detailed mathematical equations.

Constraint-Based Tutoring assumes that no correct ansavetraverse an invalid state,
which is not strictly true for some design tasks. For examghgineers are sometimes encour-
aged to take a “rough cut” approach first, deliberately igrgpsome rules in order to get an
approximate answer that can then be refined.

2.3 Web-based Learning Environments and Adaptive Hy-
permedia

2.3.1 AlgeBrain

AlgeBrain [ASF99] is a Model Tracing tutor that was convdrieto a Java Applet for use over
the Web. It teaches elementary high school algebra, p&atigihow to solve algebraic equa-
tions. However, AlgeBrain also includesJast-In-Time Dictionarycontaining some content
material. For example, if students left-click on thi@1lect like terms” task button, they
indicate that is the next step they are taking in their solutHowever, if they right-click on the
button, a dictionary entry is shown explaining what it metnsollect like terms in an equation.
This allows students to see explanations of content maieiGantext as they become appropri-
ate for the problem at hand, rather than in isolation. Thelmoation of teaching material with
tutorial advice gives AlgeBrain some of the features of a Wabed Learning Environment.

2.3. Web-based Learning Environments and Adaptive Hypermedia 29

2.3.2 ELM-ART

ELM-ART [BRW96, WBO01] is described as an adaptive electcdaktbook for programming in
LISP. It contains lessons which are divided hierarchicaitg sections, subsections, and units.
It also contains “live examples” (underlined LISP expressithat can be run in an interactive
LISP evaluator by clicking on them) and short programmingppgms.

ELM-ART keeps a four layered user model for each unit: hasifes visited the unit, which
test items has the user attempted and were they successiuhe unit be inferred as known
from another unit, and has the unit been manually marked awhn This model is used to
annotate links within the book. For example, green ballssa@vn next to links that ELM-
ART recommends the student should visit next, while redsbate shown next to links that
ELM-ART does not think the student is ready for yet. Therelsda Next Topic” button
that asks ELM-ART for the best next step depending on the kedye state of the learner.

2.3.3 REDEEM

REDEEM [AMG*03, AG04] is a system designed to enable non-technical éeadb reuse
existing computer-based instructional material, for eglamWeb pages, within an intelligent
teaching system. The teachers add metadata that descaitiepa&ge in terms of a number of
important dimensions, such as d#ficulty and itsfamiliarity. Simple kinds of questions (for
examplerue/falseandmultiple choicg can also be added, along with hints. During operation,
an Intelligent Tutoring Shell models the individual stutseand selects appropriate parts of the
course to present to them. The instructional strategy tiESDEEEM uses can be configured
using a graphical interface.

REDEEM is perhaps the most extensively evaluated learnmgament that has been
developed, and has been shown to give improved learningmas with students compared
to “dumb” courseware. However, the exact causes of theilggugains are harder to identify,
and Ainsworth (the principle developer) suggests they msghply be due to increasing the
amount of time students spend on a task and providing fe&diatheir errors [Ain06].

2.3.4 The Living Book

The Living Book [BGHS02, BFGHSO04] project has developed aline adaptive book for
teaching logic to computer scientists. Its content modébised orSlicing the system takes
an existing document or textbook and automatically divite@go slices. Each slice represents
a piece of information about a topic — for example, a definitio a problem. The relationship
between slices is partly inferred from the structure of thginal document, for example the
references to different sections. However it is usuallyaipd manually, and other metadata,
such as keywords, are also added manually to each slice. litke are then reassembled in
different levels of detail for individual students, depargdon their level of knowledge and the
scenario they wish to use the book for. For example, stuadamexamine all the exercises for
a topic to revise for an exam, or can find all the referenceartbér literature.

2.3.5 ActiveMath

ActiveMath [MAB*01] is a learning environment that holds a very detailed sgimanodel
of the mathematics it teaches. This mathematical knowlesidgept in the OMDoc format

30 Chapter 2. Related Work

[Koh00]. However, as well as describing the mathematickti@ships between concepts,
the OMDoc documents in ActiveMath also contgiadagogicalmetadata [MBG03] — for
example, thabstractnesdifficulty, andlearning-contexof a concept.

Students are also modelled in detail. Like Intelligent Tuntg Systems, ActiveMath main-
tains an ongoing estimate of each student’s understandittgeaconcepts that it teaches, but
it also models students against eigloimpetenciesFor example, being able to understand a
diagram is a different competency from being able to coesumathematical argument.

ActiveMath uses these detailed models to generate couraesite tailored to individual
learners’ goals, competencies, and preferences. It calel&lop courses for the same material
using different pedagogical styles: for example, in a Gerteaching style the definitions and
theorems might be presented before the examples, wheneas famerican teaching style the
examples might be presented first.

A comparison between ActiveMath and my research is provid&kction 9.7.

2.3.6 Adaptive hypermedia

Systems that alter online materials to make them more deitabindividual users are called
adaptive hypermedidrhis is a very active research area, as well as a techniquiestbften ap-
plied to Web-based Learning environments (for example tttevéMath and Living Book sys-
tems described above). Brusilovsky, one of the develoddfs BI-ART, provides an overview
of how adaptive hypermedia and education have been linkeaD[B. He also distinguishes
adaptive contenfrom adaptive navigation suppartn adaptive content, the text of the content
is altered for individual readers; in adaptive navigatiopmort, the links are altered, redirected,
or hidden to lead each user to the most appropriate contetitdm.

Adaptive hypermedia systems can also differ according tethdr they alter the content
at a page-level or a more fine-grained level, the particidahriiques they use to adapt the
content [Bru96], and the user model that they base theisdets upon [FMMCMO04]. Some
recent work has also examinsdcially adaptive navigatioflBCF04] — personalising navigation
support based on the navigation patterns of previous usEngre are, however, too many
adaptive hypermedia projects to describe them indivigualthis dissertation.

2.3.7 Summary

Many different systems have been developed to adapt cowntsrials to individual students.
Often these generate material from a single “authoritatveology or master text. However,
the more complex or intricate the mechanism that alters @temal, the harder it is for students
to understand how or why the material has been altered. Fongbe, Kay [Kay00] described
how it is important for student models to berutable— that is, the students should be able to
see and understand how the system is modelling them.

Where content is adapted in a fine-grained way (rather thanpaige level), it raises the
guestion of how students can refer to content when talkingatth other — there needs to be
some mechanism for the students to be able to look at the sare®n of the same content.
Also, if the system relies on a detailed ontology or requaréarge amount of metadata about
each content item, it might be difficult for students (or ewerauthors) to contribute to the
book. Each author would need a detailed knowledge of thedatascheme before he or she
could contribute. Masthoff [Mas02] developed an “authgraoach” to teach authors how to
provide the metadata.

2.4. Editing mathematics 31

While many Intelligent Tutoring Systems have been desighatallow students to work
on diagrams or in graphical notations, the questions in neashing environments use much
simpler interacton, often text-based. The focus on detatadent modelling also means that
Web-based Learning Environments generally do not suppeact/e Learning Environment
questions — where the particular skills to model the studgainst are unclear.

2.4 Editing mathematics

Editing mathematical notation with a computer is a difficateraction task. Written mathemat-
ics has a very large number of symbols, more than can be exgeskdirectly on the keyboard,
and many of those symbols are usually arranged in a two-difoeal syntax. In this section
| describe the various approaches that have been taken porsupe editing of mathematics,
particularly in educational settings.

2.4.1 Parsed text

One approach is to ask the user to write the mathematics asthifferent text-based one-
dimensional syntax. This is particularly common in systéimas were developed before graphi-
cal user interfaces became widely available. For exammeiTeX typesetting system includes
a text formula language and most UNIX installations inclilde eqn program that formats
equations for theroff typesetter.

Raggett’s and Batsalle’s EZ-math system [RB97] uses a aexfulage to allow maths to be
written easily for use on the Web. The language is based onrhatliematics is read aloud,
because that is necessarily a one dimensional languaggwenas. For examplelimit as
x tends to a of function f(x)” would produce tim, ., f(z)". EzZMath elaborates the
notation slightly, for example allowing brackets to be usetesolve ambiguities.

2.4.2 Mathematical sketching

Another approach is to allow users to handwrite mathemasicgy a stylus. MathPa1JLZ04]

is an application fomathematical sketchin@handwritten mathematics that can be associated
with sketched diagrams). To simplify the parsing procesati?ad requires the user to draw
a lasso around expressions he wishes to be parsed, rathexutwanatically parsing the whole
page. Parsed characters in the expression are rewritteg training examples of the user’s
own handwriting. This makes any mis-parsed charactersooBybut also preserves the look,
feel, and spatial relationships of the handwritten math@saDiagrams can be sketched and
linked to the expressions by labelling parts of the diagrath wariables from the expression.
MathPad can then “rectify” the diagram as the variable’s value ctesng so for instance if
an angle is labelled with a variable, then the angle in thécbkean be altered to match the
variable value. If a drawing element is associated with ation of time, then the diagram can
be animated. Supported animations include translatiooakment, rotation, and changing the
value of an arc. Matlaly is used as the computational engine for the system.

32 Chapter 2. Related Work

2.4.3 Structured Editing

Most WYSIWYG mathematics editors, however, use a technaglied “syntax-directed” (or
“structured”) editing. A set of menu options or buttons céacp a template of a mathematical
structure on the screen, which can then be filled in by the. uae most commonly used
mathematical editor, the Design Sciences editor that isided in Microsoft Word, uses this
technique. A screenshot of the BrEdiMa [MNO6] system, which mathematical editor built
in Javascript and HTML, is shown in Figure 2.6.

RN E EN SO AR R O P
[XETEFZIEE PRI EP VNS> TE=Te e - =L
[« Alls =] w2l e]efalr]e] 2]

= > T e]

i=0

Preview: | [Live preview
11

a= Zﬁ-démodlﬂ
3 =0

| Show MathML Source || Show LaTeX Source |

Figure 2.6 : The BrEdiMa Web-based mathematical editor

Structured editing has a long history and was originallyigtesd for writing computer pro-
grams. As early as the 1970s, systems such as EMILY [HandltheCornell Program Synthe-
sizer [TR81] allowed programs to be constructed by choosymgactic templates in a top-down
manner, rather than by typing text to be parsed. Recently) G&XMacs [VDHO1] has applied
the technique for WYSIWYG editing of mathematical and TeXudments.

Structured editing has been found to help novices work withuafamiliar programming
syntax — the novice is guided by menus of legal operatiortssgntax errors become impossible
to make. The Carnegie Mellon programming environments [NPK¥] pioneered this use for
the technique in the 1980s, and the Alice2 programming enuient [KCC 02] is a more
recent example. A number of toolkits for building structiediting environments have also
been designed — for example, Harmonia [Bos01] and Barid#0@.

2.4.4 Summary

Structured editing is the most common technique for editiraghematics because it supports
the two-dimensional nature of maths and only requires a mand keyboard. Many students do
not have styluses, so sketching can currently only be a sich#tion. Text-based syntaxes have
the limitation that students must learn the text syntax dtagethe syntax of the mathematics
it produces.

2.5. Educational Systems for Mathematical Proof 33

However, traditional structured editors are often tooditp be ideal for education. The
granularity of editing is usually fixed at a syntax level. example, a teacher cannot group
together semi-constructed pieces of mathematics thatttiderst cannot break apart. In most
systems the syntax of the mathematics itself is also fixedcandot vary from document to
document. Different questions in a textbook, however, miig¥olve different structures, nota-
tions, and occasionally informal shorthand notationsafynit is often awkward to sketch out
fragments of an answer, as each fragment must be createdepsiate equation. So editing
can involve cutting and pasting between multiple documents

2.5 Educational Systems for Mathematical Proof

In this section | describe systems that have been spedgjfdadigned to support the teaching of
proof and logic.

251 EPGY

The EPGY Theorem Proving Environment [SN04] is a stand@lmoof environment used in

a number of courses at Stanford University. Students begmanset of given statements and
a proof goal. A menu based system allows the student to aplyii strategies and inference

rules to goals in order to build up a proof — this aspect of §stesn is intended to encourage
“structured theorem proving”. Additionally, students oamter their own intermediate goals
using a formula editor, and the proving environment wilkaipt to verify these goals using the
Otter automated theorem prover.

2.5.2 DIALOG Project

The DIALOG Project [BHLT06, BHKK™07] is an ongoing project developing a system that
can discuss proofs with students in natural language. Tineipkes behind their philosophy
are similar to those behind AutoTutor [CHB0]. Human-to-human tutorials have frequently
been found to be an effective teaching technique, so thdywisarry the pedagogy from those
human tutorials across to automated tutorials. The prowfado the project has most examined
is naive set theory.

2.5.3 Diagrammatic Theorem Proving

Dr Doodle [WBGO04, WBGJ02] is a diagrammatic theorem provent Edinburgh University,
specifically supportingnetric-space analysislt was developed out of the assumption that a
significant number of students find reasoning diagrammigtieasier than reasoning in formal
mathematical notation. The diagrams show example objectstee relations between them.
Therewrite rules that are the mainstay of theorem provers beaa@w rules in Dr Doodle:
rather than testing properties of the algebra and creatmgnaline of mathematics, they test
properties of the drawing and create an appropriatelyeadtdrawing as the next step.

2.5.4 Systems for Propositional Logic

A number of educational systems have been designed for gitapwl (or sentential) logic.
The Carnegie Mellon Proof Tutor (CPT) [SS94], the The P-kconitor [LLB02], and Logic-

34 Chapter 2. Related Work

ITA [LY0O2, Yac03, Yac04] are all examples of Intelligent Buing Systems designed to teach
propositional logic. CPT uses a combination of Fitch diaggaand a Goal Tree to describe
the proof being developed. Logic-ITA represents proofdyfaimply — as a sequence of proof
lines in a table — and focusses instead on detailed andigéanbdelling and assessment of the
student. It assesses the validity of proof steps as thestwideks on them, and once the proof
is complete returns to assess the usefulness of each okfhe §-Logic Tutor doubles both as
a tutor and as a research environment for tracking studamitey and exploring the cognitive
issues involved.

ETPS [ABP 04] assists students in writing and checking formal proafgriopositional
logic. The student asks ETPS to apply particular rules aregrice, and ETPS handles writing
the mathematics. Ehrensberger’s and Zinn’s DialLog sysE£AT] treats propositional logic as
a game between a proponent and an opponent. Proving a thesisdct involves demonstrating
that the proponent has a winning strategy that can sucdlysdifend against any possible
attack from an opponent. The user plays the part of the pemomwnhile DiaLog ensures that
all possible alternatives of the opponent are considerggehbroof [BE94] teaches students
the principles of analytical reasoning and propositiongid in the blocks world of Tarski’'s
World.

Tutch [ACPO1] is a tutorial proof checker that does away vpthof environments com-
pletely and requires the proof to be written in a human-rbedext-only syntax. In its goal
to provide a human readable formal proof syntax, it is simitathe Isar language that the
MathsTiles proofs in our system are translated to, but desigpecifically for education.

2.5.5 Summary

There appear to be a wide variety of educational proof sysfemdomains where automated
techniques can reasonably be expected to find an answertunthman intervention, for exam-
ple propositional logic. There are comparatively fewertayss for “harder” domains, such as
Number Theory. The EPGY Theorem Proving Environment is thetrrelevant system in that
regard. EPGY permits students to complete the proof by amplyactics from a menu rather
than requiring them to write each line of proof themselves. WAll be described in Chapter

6, this interaction style can lead to students gaming théesy®y trying each tactic in turn

until some progress appears to be made. (I am not aware oftaahigs that have specifically
investigated “gaming” behaviour within EPGY, however.)

2.6 Design Guidelines for an Intelligent Book

An Intelligent Book is a similar concept to a Web-based LesgrEnvironment, in that it con-
tains content integrated with appropriate exercises. {Ably the definitive distinction is that
an Intelligent Book restricts itself to the role of a textlkaamnd does not, for example, grade
students or check that required exercises have been cadpléiowever, in order to fulfil its
role as a textbook, the Intelligent Book architecture deped in this dissertation is designed to
meet certain goals:

1. Graphical interaction with detailed advice
An Intelligent Book should be able to support the graphicggriaction and detailed advice
that can be found in many Intelligent Tutoring Systems aniesautomated question
systems.

2.6. Design Guidelines for an Intelligent Book 35

2. Support for a variety of questions
As described in Section 1.2.1, an Intelligent Book shouldlble to have the wide variety
of questions that one expects to find in a textbook. So, thetacture should support
different graphical notations and different modelling easoning systems. It should not
be restricted to a single pedagogical technique — as deskciibSection 2.2.4, different
pedagogical techniques can be appropriate for differeestipns.

3. Reactive Learning Environment questions
An Intelligent Book should be able to support Reactive LeggiiEnvironment exercises.
These are suitable for design tasks and questions wherelios procedure is not
known in detail, but have not generally been supported in-Wé&ted Learning Environ-
ments in the past.

4. Support for existing models
Many of the modelling systems used in tutoring systems, ¥anele in Model Tracing
tutors, are bespoke systems designed for education. Hovegvmtelligent Book should
also be able to make use of existing modelling or reasonigagesys rather than requiring
every system to have been designed specifically for the book.

5. Support for multiple explanations

In April 2007, the booksellers WHSmith listed thirteen di#nt textbooks for thermody-
namics as being in stock, and twelve more as available om.dvtiest university libraries
do not limit themselves to a single text on a subject, and rosgtses’ reading lists in-
clude more than one book. Many students do not limit thenesaiw textbooks but also
use Wikis and Web-based tutorials. There is clearly not glsiauthoritative ontology or
explanation for each topic, but a marketplace of competkpdamations. An Intelligent
Book, then, should not limit itself to a single explanatidraa@ontent item. Students and
co-authors should be able to add alternative explanatiodsmaprove existing explana-
tions during the life of the book.

6. A content model that is extensible by students and automatadly referable
If students are to be able to contribute to the book, then émenit model should be
reasonably straightforward. Students should not haveatim la detailed ontology or be
taught how to write detailed metadata before they can dmutei The content model
should, however, allow the automated advice from questmnsfer to the content.

As well as designing a suitable architecture for Intellig@ooks, this dissertation also seeks
to develop proof exercises suitable for an introductory Manirheory course. Chapter 6 de-
scribes the design goals for these exercises.

36

Chapter 2. Related Work

CHAPTER 3

Supporting Complex Graphical Questions at the Client

This chapter introduces complex graphical questions andiders how to present them at the
client. Section 3.1 gives an overview of how the client comgrds are organised. Section 3.2
presents an electronics question as an example. Secti@iv@s8some more technical details
on a simple method for building applets to support teachimgugh graphical notations. The
work described in this chapter was carried out in 2003 aneh$gpart of two papers that were
published in 2004 [BRAHO04, BBO4].

3.1 Overview

When students are working on questions in an intelligenkbtiey should be able to use the
appropriate notations for the subject matter. For exangttudent working on an electronics
question should be able to work with a circuit diagram. [Zb#lectronics questions might
involve timing diagrams or state charts; mathematics questare likely to involve proofs
written in mathematical notation. We also want the systemsuigport progressive evaluation
and be able to give students feedback while they are workather than always waiting for a
“submit” button to be pressed.

HTML“ T~

Content’Applet

Question text

One kind of diagram

— Advice from the server

Content
Another kind of diagram HTML
* St Applet Y~ Links to relevant topics

Figure 3.1: An exercise page may contain any number of graphical notations that the student
works with — in this example, two diagrams. Comments from the system as the student is
working may involve mark up on the Content Applets, alterations to the HTML on the page, or
both.

37

38 Chapter 3. Supporting Complex Graphical Questions at the Client

Figure 3.1 shows a stylised diagram of an exercise page. ®hermt applets represent
the different graphical notations the student has to wotkwior many kinds of notations, it
remains costly and impractical to write an editor that ordgsithe HTML and Javascript that
a browser can natively display, so the applets are implesdeint Java. However, where the
system makes text comments about the student’s work orgesvVinks to related content, we
would prefer it to use the full HTML capabilities of the brogvsrather than a limited HTML
component included in an applet. We therefore have a needdatel the HTML of the page
in-place, because performing a fresh page load would fdreedntent applets to reinitialise.
Since Google Maps was released in April 2005, there has béenoh industrial interest in
updating Web pages in-place using a JavaScript and XML tgukrthat has since come to
be known as AJAX [Gar05]. My architecture predates this peqgation of AJAX, and the
coining of the term, but similarly uses a component to fetatadrom the server and then alter
the current page. Figure 3.2 shows the architecture.

Content || Content Content
] Applet || Applet oo Applet
E < XML-RPC Calls::..ﬂ
3| Return list of il A
: pplet
“|"XML-RPC Calls = Response
calls
|| o, N TarMe | [ETVML | Y
Input Altering practically, these
............. Applet || Applet | /are combined

Figure 3.2 : Calls are always initiated by the user, either through interacting with the Content
Applets or the HTML Input Applet, which accepts Javascript calls from controls on the page.
These are sent to the server as XML-RPC calls. The response is a list of XML-RPC calls the
server wishes to make on the client in return.

A hidden Java applet handles communication with the sersgrguXML-RPC [Win99].
For teaching applications, it can be helpful to script thentls behaviour from the server.
This allows question authors to mark up the same contenetfthke same graphical notation)
in different ways for different questions, and lets themng®many aspects of the system’s
teaching behaviour without altering the client componehiswever, to avoid the overhead of
maintaining open connections between the client and theesand dealing with reconnects
and timeouts, we would like all communication to happen iale@nd-response manner driven
by requests from the client. To satisfy these two desiresatbhitecture requires the server’s
response to an XML-RPC call from the client to be a list of thdIXRPC calls it wishes to
make on the client in return. These calls could be to the Cdritpplets to annotate or alter the
student’s work, or they could be to the HTML Altering appleait makes changes to the page’s
HTML on the server’s behalf. The HTML Input applet accept&aript calls from controls on
the page (which may have been placed by an earlier servaiss)y and either applies them to
the Content Applets or passes them on to the server, as agieopn this way, communication
is always initiated by the client, but the client’s teachbehaviour is completely scripted from
the server.

Practically, the XML-RPC, Student Input, and HTML Alteriagplets need to be combined.
The reason for this is that a call chainbfvascript — Applet — Applet — Javascript

3.1. Overview 39

can deadlock some browsers with some versions of the Jaginplrhis would occur, for
instance, if a Javascript link called the Student Input epmvhich called a separate XML-RPC
applet, which made a response call to a separate HTML Abdeapplet, which internally uses
Javascript to alter the page.

Rather than arbitrarily altering any HTML on the page, theMiTAltering applet reserves
a number of areas for particular kinds of interaction. Atsys text” and “system HTML”
area are kept for transient comments and controls from tiveisé\n “actions” area is kept for
permanent actions the student may wish to take, and a “timis”’larea is kept for content links
that relate to the exercise. These are shown in Figure 3@aring the explanations area in
this way keeps the interaction consistent, as the studdessslikely to overlook a change to
the page if they always occur in the same area, and also maiggamming the interaction
more consistent, as the dynamic area can be cleared aftersaatent action to remove old
comments.

L i Il Eh |
[Ueinbln]V 4 EA RS >

>

Topic Links: Mathstiles Rulelnduction

It looks like this is being caused because you haven't filled in some sockets in some earlier tiles.
Is this useful to you? - yes no

Actions: Check proof : Help, I need a hint! | Reload this frame ! Clear answer & start again !

et Topic: Type: [Recommend][List All]

Figure 3.3 : The layout of the dynamic HTML area of the page. The topic links and actions for
the question are grouped so that the student knows where to find them. The central area con-
tains a “system Text” and a “system HTML’ area. Functionally, there is no distinction between
them, but separating them can make it slightly more convenient for calls from the server to set
a prompt and then determine any appropriate HTML controls to show.

An interaction history log is also kept, although it is usydlidden. On an early version
of the electronics question, this log could be exposed and/sti the “command line” format
of changes the student had made using the content appletnfaad line entry box was also
provided, with the intention that the interaction histarg Wwould teach the user how to use the
command line box, in the style of Slatet al. [SAC86]. This style of interaction would still
be useful for dialogue-oriented questions (the teachinthau®logies of SOPHIE[BBB75] or
AutoTutor[CHG'00]), but the questions | describe in this dissertationgardfrect interaction
with some work in a graphical notation over indirect conatics about that work.

Where possible, the system does not automatically makegelsan the student’s work (for
instance applying a correction). The technical reasonti is that if the student takes an
action, there could be a network delay before the responsesdack from the server. If
this response changes the student’s work, then this newget@ould interfere with actions the
student is currently taking, which could be frustratingstead, the system will often make its
suggestion in text in the System Text area, and place a JgMasacked link in the System
HTML area. Clicking this link invokes the Javascript whiclilwnake the change on behalf of
the student. This HTML area can also be used to offer alteeaburses of action, or to ask
mini-questions during the exercise.

The graphical nature of the exercises raises the issue ebsitdity. The comments and
feedback that are marked up in HTML on the page are autoniigtaailable to the browser’s

40 Chapter 3. Supporting Complex Graphical Questions at the Client

own accessibility features. Making a Content Applet adbésshowever, requires program-
ming effort on the part of its author. The Java Runtime Enwinent provides an Accessibility
API, which applet authors can use to make their Content Apptere accessible. It would
also be possible to provide alternative Content Appletsiesusers. For example, a blind user
might find a graphical circuit diagram to be awkward to usel mght prefer to use a Content
Applet that presents the same circuit (using the same dadelnia a different way.

3.2 A Question in Electronics

In 2003, | designed a client to support a type of electroniestjon that had been developed by
Abelson, Sussman, and Hanson at MIT. This type of questidronginally been asked using
static HTML forms, but anecdotal evidence showed studeetg waving difficulty following
the explanations of errors given by the teaching system. sfhéent is given the diagram
of an electrical circuit and a set of requirements that it tnmeet. He or she must then set
currents, voltages, and component values on the diagramder ¢ fully specify the circuit.
All answers that obey the rules of electronics and meet tip@irements are accepted as correct.
A screenshot of a question using the original forms interiashown in Figure 3.4.

&) Lo ey s Sy nihesiEEMozl e ox: L]Lila

Ele Edt Wew Go Bookmarks Took Help

<:Z| © - @ @] hktpejfwsn intellibonk. ol c.am . ac.ukfintelibookjclasses|6.002xspringD4/pset -tutar [psS feruds-hias-analysis-run. xdac D [«

A Java APL(S.0) [| Making a Semantic ... [] The British HCI Group [] Usability News (new... || Questionnaire Usein... || Centre for Entrepre... | | Staff Development: ... || pdf (applicationjpdf ...

PS35: Crude Bias Synthesis

+Vee Vee 9. Volts Spec
gam -8 Spec
RBl RC Cout Vot 3. Volts Spec
Zin min 15000, Ohrms Spec
C ¢ + + Eg Assume
; b i Eg Agsume
Q Bpt Assume
+ +
v v Ep2 Assume
c out
v, v e + Ve 3. Volts Explain
i BR R VE 2. Volts ﬂl
v
B2 E E Ve Assume
I Assume |
I A
Assumptions: £ S5UME
iz Assume

Done

Figure 3.4: An electronics question as originally asked (using forms). The student is given
an electrical circuit, in this case an amplifier, and is asked to choose component and property
values in order to meet a set of specifications. Students had difficulty following the explanations
from the server.

The reasoning system that supports this questioramatraint propagation and truth main-
tenance systefi$S77], or TMS for short. The TMS makes deductions based retation (or
constrain) model of the circuit. For example, in a circuit node whenmn@éwires meet, Kirch-
hoffaAZs Current Law imposes the relation that the three currarttyieg the node must sum
to zero. If two currents are set, the TMS will deduce the thirdll three are set, it will signal

3.2. A Question in Electronics 41

a contradiction if they do not sum to zero. Deduced valuepsrpagated into other relations
to make further deductions. The specifications from the ipuesire set as constraints in the
TMS, and whenever the student sets a value on the circistyéthie is set as a constraint in the
TMS. So, a value set by the student may cause further values teduced, and it may also
cause a contradiction to be flagged. The student is not fdmeekolve the contradiction im-
mediately — he can continue to set other values — but must deesdually in order to complete
the question. The question is complete when there are noownkrariables left in the circuit
and no contradictions.

The TMS works from a hierarchical description of the cirdbhit is written in a Scheme-
based language. Every circuit elementdft’) has terminals parametersandrelations A
terminal has aurrentand apotential The relations may involve the terminal currents, the
terminal potentials, and the parameters. For example eistor part-type has two terminals;
the current into the two terminals are related by Kirchlo@urrent Law, and the difference in
the terminal potentials is related to the currents and thist@nce parameter by Ohm’s law. Parts
can also have differembodels with different relations in each model. Transistor pgpes tend
to have abias model which describes their steady-state behaviour, antheremental model
which describes how they respond to transient signals. heitlanguage is hierarchical. A
transistor amplifier is composed of parts (a transistorst@s, and capacitors), but it is also a
part itself and can be used in larger circuits. As a part, stitmown parameters and relations;
for instance its gain parameter relates the signal outpthigsignal input in the incremental
model.

Anecdotal evidence suggested that students had difficatterstanding the contradictions
that the TMS had flagged. These can involve several dedusteps, and the HTML forms
client was only capable of displaying the final step. An exkngd the TMS’s raw output is
shown in Figure 3.5. When examined on the server, some of Mf&Sexplanations appeared
quite difficult to follow as they can be overly detailed. Fostance, if a line of resistors are in
series and the current into the first resistor is set, the TMISnalividually deduce the current
into and out of each terminal of each resistor, where a humamdixsimply mark a single
current through the entire series.

To make the automated explanations more easily comprdilensdesigned the client to
use a separate diagram model of the circuit. This diagramesepted the “desired mental
model” that the student should have of the circuit, and ohiywged the currents and potentials
that the teacher wanted the student to talk about. The TM@keation trees were then au-
tomatically pruned and collapsed so that only variableskethon the diagram were included.
(The pruning is carried out at the server, and is determiyedh®ther there is a mapping from
the server variable path to a client variable path, rathan strictly by examining the client
circuit model).

A screenshot of the client is shown in Figure 3.6. The cirdigigram is a Java content
applet, and the surrounding details are described in HTMie actions of setting or clearing
circuit values are taken directly on the circuit diagrang any automatically deductable values
are then marked in grey. Right-clicking on any of these gadyes and then choosing the “how
did you get this value?” option asks the server to explairdigmuction. If a value the student
has set causes a contradiction on the circuit, the value ikadan red, and text appears in the
system text area to say that a contradiction has occurrethkAihderneath the text then asks
for an explanation.

The explanations are shown on the diagram, starting withfitiaé step. At each step,

42 Chapter 3. Supporting Complex Graphical Questions at the Client

(CEP118 contradiction found by (<swing-high) (CEP116 CEP75))
(CEP116 (v:lhs:swing-high) = 16 set by (+lhs:swing-high) (CEP67
CEP114))

(CEP75 (potential vcc bias) = 15 set by (-rhs:kvl power bias) (CEP74
CEP49))

(CEP67 (swing) = 6 set by assumption (CEP68))
(CEP114 (v:1:lhs:swing-high) = 10 set by (-1:lhs:swing-high) (CEP112
CEP49))

(CEP74 (voltage power bias) = 15 set by (=rhs:voltage-source power
bias) (CEP63))

(CEP49 (potential gnd bias) = 0 set by (v:rhs:bias-ground) ())
(CEP112 (potential c bias) = 10 set by assumption (CEP113))
(CEP63 (strength power) = 15 set by assumption (CEP64))

(QED)

Figure 3.5: The TMS explaining one of its contradictions. The step labels are highlighted in
green; part of the deduction that can be considered to be the rule is highlighted in red. In this
case, the TMS is complaining that if the output bias potential is 10V and the output swing is
specified as 6V, then the voltage needs to swing above the voltage of the power rail (15V).

the values involved in this step are highlighted in red, ad tlescribing the rule and the
other variables that caused this deduction is displayediaMes that are not involved in this
deduction step but are involved in other steps are highdiglm orange. Links for each of
the variables involved in this deduction step allow the shido see how those variables got
their values in turn. These links either lead to other dadacteps, or simply tell the student
that the value was set directly by the student or in the goiestpecifications. By clicking
through the links, the student can navigate the (pruned) T&tiiction tree. Additional links
underneath navigate through the tree in a flattened ordesethen, effectively allowing the
student to animate the deductions on the diagram. A screenth deduction step is shown in
Figure 3.7.

Finally, it is worth discussing the lack of a student modehny tutoring systems rely on a
detailed model of the students’ understanding of the ruléfssodomain, perhaps represented in
a Bayesian network. So for instance if the student causedtaachction that broke Ohm’s law,
the system would adjustits model to suggest that perhaps$utdent does not understand Ohm’s
law. In this question, however, the student never actuaty/the opportunity to apply rules such
as Ohm’s law — if a value can be deduced from simple rules, tteeMS sets it automatically.
Also, contradictions often involve a chain of six or more detilve steps. It seems unreasonable
to mark the student down on each of the six rules involved,gast would be unreasonable to
mark a student down on “understanding multiplication” hessashe can’t calculat®3, 421 x
647,823 quickly in her head. It is not the basic rules that are beireg@sged in the question, but
experience working on a realistic problem with help fromoaudted verification tools. Many
of the questions addressed in this dissertation share pinegerties — there is not a transferrable
straightforward process to model the student against tasdat the basic “rules of the domain”
that are being tested. Although we want the architecturendhtelligent Book to support the

3.3. Technical Detall

43

|3

1 . - a
3 . j ﬂ \] AL 3z
; O Back ? *| (& o 7 Search . Favorites @ Media 6;‘5

Address @ hkkp: e, intelibook. ol cam. ac.ukfintelibookfdasses 6. 002x spring04 /pset-tukorfps 201 ferude-bias-analysis-run. bkl

= =

)
"

Lirks **

@j Applet electricapplet started

i PS5: Crude Bias Synthesis
|
| Tou are asked to choose component values and determmme current and voltage properties m the circutt shown below. You will need to ensure that values are
4 set {or calculated) for all the variables marked on the diagram, including the resistances of the four resistors.
First, click the link to the right hand side of the circuit to pick up your values from the database. Then, to set a value for a variable, left click on the variable.
To set the resistances of the resistors, you will need to right-chick on the resistor and select "Edit B from the popup menu, because until a resistance 15 set,
there would be ne resistance label to lefi-chck.
An automated help system will atternpt to give you advice with your solution. You can also retract all your circuit settings by using the link underneath the
circuit
VC c 4 15V
I B o perity ﬂ
1. (B
L2ty R | 6V
R
"Bt c
L. Java Applat Window
T y
N y There are no contradictions so
o] out far
.
q
vV
C, B
in VE
Tl
[+ty Il Ty
Rpy Ry
=
T omiwmitimdinn Tt

‘j Local intranet

Figure 3.6 : The electronics question using the updated question architecture.

more straightforward questions, the questions developédtis dissertation are mostly ones
where the student has not been taught an exact processow folanswer the question, and the

system might not know one either.

3.3 Technical Detall

For an Intelligent Book to support a variety of differenté#of questions for a subject, it needs
to be relatively quick and easy to write content applets fifeient kinds of graphical notations.
In this section, | describe how the architecture supposisdanstruction of new content applets,

through thecam.cl.intelligentBook.domEditors package.

44 Chapter 3. Supporting Complex Graphical Questions at the Client

VC c 4“ 15V
LS. . Gain=-10
4 M V=600mV Output Swing=6V
Rpy Re The voltage across R, =.6
- | |_ Ohm's Law
dlg=2mA | « The current throush R .,
out

300.

= c <
1| I_ I/\fC 14.4v 002
5 —=

|\‘1 « The registance of R . =

T

Fust Prev Next Last

I + + +
WS m3

=

Figure 3.7 : A step of the TMS’s deductions being displayed on the client. The variable being
explained, the voltage across R., is highlighted in magenta. The other variables involved in
the step, R. and I., are highlighted in orange. Variables that are involved in other steps of the
explanation are coloured dark blue. The variable links in the text allow the student to ask how
those variables obtained their values. The links First, Prev, Next, and Last allow the student to
step through the deductions in the explanation in order.

3.3.1 Cooperative XML Documents

Because we want the server to be able to comment on the stidemk progressively, we
consider the student to be working on a remote documentrréta@ preparing an answer
to be submitted. These documents are stored on the serveMas Phe way the student
interacts with the graphical notation, however, is esaéiptdefined by the content applet on
the client. It would be possible to write content appletstas tlients with only the server
making changes to a document, but this would require two corapts (client and server) to be
written to describe the GUI behaviour for each notation, aetvork latency could impair the
quality of interaction. Instead, we treat the system asrtgaiwvo documents — a client document
and a server document — that need to be kept synchronised.

Because we may wish to make changes to the student’s worktfierserver or through
Javascript links, it is important that the internal datastures in the content applet can support
an API to update the document at runtime. Ideally, for maxmuode reuse, this would be an
API based on the standard Document Object Model (DOM) for XMbwever, each content
applet, being a different notation, will need its own apaiion-specific classes to display the
data in the document. XML serialisation technologies, sacliAXB[VF04], support generat-
ing application-specific objects from XML documents atiadisation time, but do not support
DOM-based alterations to them afterwards. Programmingatpor the DOM interfaces into
the application specific classes would require a large atnafumork. So instead, we treat the
XML as object field data that has been separated from its rdstand behaviour. At load time,
the XML is parsed into a standard DOM tree with no specific b&ha. This tree is then passed

3.3. Technical Detall 45

to abehaviour factorywhich creates hehaviour objector each element, and attaches it to the
element'suserData field that is present in DOM Level 3, using the strirgehaviour” as the
data key. This is illustrated in Figure 3.8.

DOM Elements UI Components

User Data

COmpOnent|Comp0nent behaviourl

Terminal =55 —|T erminal behaviour

CherDeia....... 8 -[Symbol behaviour |
UserData.... N - Terminal behaviour |
User.Data.... fProperty behaviour |

------------------- ~Property behaviour

Figure 3.8: The Ul components are attached as “behaviour objects” to the DOM elements,
using the userData field. This allows the DOM to be used as the model in a poor man’s Model-
View-Controller. While DOM Level 3 does not support event notifications for simple updates, the
external update API is made to call update functions on the behaviour objects by convention.

Essentially, this is a form of Model-View-Controller [GH99]: the standard DOM classes
provide the model, and the behaviour objects provide the aed controller. Although the
DOM Level 3 classes do not support an event listener to nttéywiew of updates, the external
API is made to call update methods on the behaviour objectadi element that is altered.

Behaviour objects are required to implement EiementBehaviour interface, which de-
fines thesynchroniseFromElement method for use by the external API. An abstract factory
class,ElementBehaviourFactory, builds behaviour objects for an element and all its chil-
dren. To define the mapping between elements and behavigaotsbcontent applets should
subclass this factory and implement thei ldThisElementBehaviour (Element) method.

3.3.2 Simple Change Format for XML

The external API the system uses to describe changes to tHeiX® simple set of functions
that | have dubbe&imple Change Format for XM{SCFX). The need to define a new API
came from the unsuitability of the industry standard akémes. XUpdate [LMOOQ], which is
used by a number of XML databases, is an XML dialect for desugi changes to an XML
document. However, it has not been consistently maintafimesbme years. Also, as an XML
dialect, it needs to be processed into calls, and the sizkeoptocessor could be difficult in
a content applet. An API, however, needs no processor asdgetusable written syntaxes
for free: the XML-RPC representation and the Javascriptesgntation of calls to the API.
XQuery, which is a W3&Recommendation, has recently gained update functions imaist
recent draft [CFRO6]. However, as a scripting language itld@also need a sizable parser and
processor (and in any case its update functions were addeddently for our development).
The methods in SCFX are shown in Figure 3.9. A version of th&)S@terface that
includes an extrarefix parameter, PSCFX, is also provided. g fix can be used to give
context to the operation. So, if a content applet holds nmwaa bne document, thpprefix can

IWorld Wide Web Consortium

46 Chapter 3. Supporting Complex Graphical Questions at the Client

be used to choose between them. Other times it may be usefiidprefix to hold a root
XPath within the document from which the other XPaths aréuatad.

Thewith method is provided for two purposes (although in practiceamntent applets
have not needed it yet). The first is to avoid the need to repgdatesolve the same XPath in a
set of calls. The second is if there is a need to wrap a set oiggsinto an atomic transaction.
The format for the calls to be made within thkéth method depends on the implementing
application. For content applets, it is most conveniertiélse calls are formatted as Javascript,
since the browser’s Javascript parser is easily accessitere SCFX is used on the server, it
may be appropriate for them to be in the same format as thmalicpll — for instance if this call
was made using XML-RPC, then the wrapped calls should al$orb@atted using XML-RPC.
Again the reason for this choice is that a parser for that &nmmust already be present.

| provide support for the SCFX methods in thef xHandler class. Content applets may or
may not expose all of the methods — since content appletssagdly written hand in hand with
teaching scripts, it will depend on which methods the teagiscripts need. Naturally, content
applets can also include their own specific methods. BecthesXML-RPC applet works

using reflection (runtime discovery of the available me#)othese extra methods automatically
become available for the server to call.

setValue(XPath, value)
setAttribute(XPath, attribute name, value)

Required becausse=tValue cannot set an attribute that does not exist: the XPath would

resolve to nothing.
setAttributes(XPath, list of attribute names, list of values)
addFragment (XPath, XML to add, child index)
removeSubTree(XPath to remove)
removeSingle(XPath to remove)

Children of the removed nodes are attached to the removesshpdrents.
moveSubTree(XPath to move, XPath of new location, child index)
moveSingle(XPath to move, XPath of new location, child index)

Children of the removed nodes are attached to the moved rode®r parents.
replaceSubTree(XPath to replace, new XML)
replaceSingle(XPath to replace, new XML)

Children of the removed nodes become children of the new Xi\plossible.
with(XPath, Further calls)

Performs the further calls on the nodes resolved by the XHdtis method could also be
used to wrap transactions.

Figure 3.9: Simple Change Format for XML (SCFX). The format for the calls to be made
within the with method depends on the implementing application. A prefixed version of SCFX
(PSCFX) provides the same methods with an additional prefix parameter to provide context
for the operation — for instance selecting which document to act upon, or providing a base
XPath to operate from.

3.3. Technical Detall 47

3.3.3 Document Management

Often, documents contain definition elements that destiaweother elements should appear —
for instance the electronics applet allows components weffieed and then instances of those
components to be displayed. It can also be useful to breae tefinitions out into separate
utility documents. ADocumentSystem class is provided to support this. It maintains the set of
currently open documents, which are accessible by eitlearaie attribute on the document’s
root element or the URL from which the document was retrieved

When a document is loaded, tbecumentSystem looks for requires elements in the
DOMEditors namespace, to see if any other documents need to be loadeexdfople in the
transistor amplifier question the following is used to load tocument containing the symbol
definitions for transistors, resistors, and other needetpocments:

<requires name="analog" uri="electronics/analogComponents.xml"
xmlns="http://www.cl.cam.ac.uk/users/whb21/DOMEditors" />

Documents’ DOM trees can be accessed directly, but two coemee methods are also
provided:

getBuiltElement (element tag, name attribute, default document)
getUnbuiltElement(element tag, name attribute, default document)

The methods differ as to whether thecumentSystem should ensure the behaviour objects
for the element have been constructed before the elemeetusied. (Many elements, such
as those describing default font size settings or metadadatahe document itself, do not
require behaviour objects.) Elements can be fetched framaratocuments by formatting the
name attribute agocumentName: elementName. A DocumentSystem also has an associated
XPathHandler, which provides convenience methods for running XPath esgons on the
document.

48 Chapter 3. Supporting Complex Graphical Questions at the Client

CHAPTER 4

Content Model

In this chapter, | describe the way that content is organigédn the Intelligent Book. A num-
ber of previous online textbook systems have taken a semiastic and ontological approach
to content, such as OMDoc [Koh00]. However, a strict ontgloguld pose a barrier to readers
wishing to add their own content — they would need to know thlogy in detail in order
to fit their entry within it. The approach | have taken is to aseinformal ontology that lets
readers add alternative entries for topics, or even altemehapters, more easily. Automated
analysis of the book’s content could then infer a more pesgigology if it was required. The
content model is very simple both so that its complexity sttowt be a barrier to the readers’
understanding of the book, and also to create the minimurassacy content model to support
the exercises that are the main focus of this dissertation.

Section 4.1 gives an overview of how pages are categoristtunwthe book. Section 4.2
describes the architecture and data model that supportSaation 4.3 describes how the book
supports hierarchies such as chapters, sections, andctiobse

4.1 Overview of the Topic Structure

Address @htm:-':".'-",-J',ﬂ.'.|nte||\hook.cl.cam‘ac‘ukrDlscretaMamsBook-'Toplclndax D Go Links **
Topic Available page types
book list Summary
chinese remainder theorem Introduction
congruences Introduction E
course objectives Chapter Summary
DiscreteMathsPagel Chapter
division Introduction
division algorithm Example Introduction
euclid algorithm Introduction Summary ||

Figure 4.1 : Pages in an Intelligent Book are classified by topic and type. This index page lists
the topics and the available page types for each of those topics; there may be more than one
entry per topic-type combination, in which case selection scripts choose which one to show.

49

50 Chapter 4. Content Model

Content in an Intelligent Book is classified by topic and byg tiape of entry. For exam-
ple, a student could ask for @ntroduction to mathematical induction and then ask for an
example. Figure 4.1 shows part of the alphabetical topic index of @kbd here may be more
than one induction example in the book, in which case sewprgrts choose an appropriate one
to show. These scripts are configurable, and Section 4.4is88s selection techniques they
could use.

Navigate between entry types for this topic

Address @htb::fﬂnhunraﬂmd.cam‘ac.uk: 11080,DiscreteMathsBook /ShowChapter jsp D Go Links **

Chapter
Home Contents > Proof = Chapter controls: Prev Next
toolbar —C o
topic: proof type of this page: Introduction available page types: Chapter Introduction
Content f(Forun ‘OPC P o = LRl 2 : Recommend,

toolbar replace, add,
Proof | Welcome Indexoftopics Email William | whs21| write, and
"""""""""""""""""""""""""""""" comment on
What is a proof? If a theorem is a logical statement, the proof is meant to convince you that the statement is entries

true. When faced with a proof you should convince yourself of three things:

* The arguments put forward are all true and the sequence follows logically from beginning to end.

+ The arguments are sufficient to prove the theorem.

* The arguments are all necessary to prove the theorem.

Figure 4.2 : A content toolbar allows students to navigate between different types of entry for
a topic, to recommend an entry, choose an alternate entry, add or write their own entry, or
comment on the existing entries. A chapter toolbar allows students to navigate the topics of a
chapter in an ordered mannetr.

Figure 4.2 shows a page of content within the book, and f@suss the toolbars that appear
above the page. The lower of the two toolbars allows studenisrk with the book’s content
model in a number of ways; they can:

* navigate between different types of entry for this topic.

7¢ recommend this entry. Or, if they have already recommeniiscentry, they can retract
their recommendation.

< ask for a list of alternative entries for this topic and typehoose from. This is presented
as a simple list, with the title and summary of each entry @lith informative metadata
such as the author and who added the entry into the book.

+ add an entry they have found on the Web for this topic.

w! write their own Wiki-style entry for this topic. Student Wikntries can refer to other
topics in the book, and there can be more than one studentaiky for a topic.

© comment on this entry or read other people’s comments.
= |link to a forum where they can discuss this topic with othadsnts.

If the Book does not have an entry for a topic, then by defayerforms a search using
a popular Web search engine. In that case, the content towmilbbaot show all of the options
listed above — it is not possible to recommend an entry or@sélfernative entries if no entries
exist. (It is possible to add the Web search as@ch entry itself, but this does not happen
automatically. The rationale for this is to make it more ligithat there were no entries, and to
encourage the reader to write or add their own.) The comneentis present, in case readers
wish to discuss what entries to add before they actually adeh&ry. The case where there are
no entries returned is shown in Figure 4.3.

4.1. Overview of the Topic Structure 51

File Edit View Go Bookmarks Tools Help "::'
@ r/—\' Lo S % I |“http:,ffwww.discmath.cl.cam.ac.uijiscrete '| L | |

FORLUM o ; }) +
fopic. missing topic fype of this page: default awvailable page fypes: default —I— W, @

Signin *

Web Images Video News Maps more» E

‘ ;0 (_nge Imissing topic Search | ﬁpiz;:;:i;amh |

Web Results 1-10 of about 16,400,000 for missing topic . (0.24 seconds)

Wikipedia:WikiProject Missing encyclopedic articles - Wikipedia ...

Find a WP article that's clearly on the same topic as the article fram the external source ...
Categories; Wikipedia WikiProjects | Wikipedia missing topics ...
enwikipedia.org/wikiWikipediaWikiProject_Missing_encyclopedic_articles - 58k -
Cached - Similar pages

Wikipedia:WikiProject Missing encyclopedic articles/Hot ... -

< | m | »

|Done |@|

Figure 4.3 : If no entry exists for a topic, a Web search is returned and the recommend and
replace icons are hidden.

Adding a new page for a topic involves filling in a short fornr foe new entry. This is
shown in Figure 4.4. The form for adding a new Wiki entry is i@mexcept that it asks for the
content of the page rather than the URL. It is worth noting tha reader cannot create new
entry types, but has to choose from a predefined list. Thi®isartechnical limitation but a
practical one — if readers could create new types of entryhatnwthen the list of entry types
available for a given topic could quickly become so largé thaould be unnavigable by other
readers who look up that topic.

The default list of types are:

Summanry Brief, and assumes that the reader has some familiarity thvéth
topic.

Introduction Longer, and assumes that the reader has not encounteregite t
before.

Ezxzample A page describing a worked example.

Exercise A live exercise within the Book that the student can try.

Exercise advice A piece of advice about an issue that might come up in an exer-
cise.

Search Executes a search using a Web search engine.

Chapter Takes the reader through the topic in an ordered manner.t&@isap

are made up of subtopics and are described in Section 4.3.

A content item can be listed under more than one type. Theersauf the book are not
able to add new exercises within the book because this woutiMe setting up the appropriate
teaching script, content applet, and modelling or reagpsystem, which it is not yet practical
for a student reader to do.

Students can add new topics as well as adding new pages. dieeteo ways of doing

52 Chapter 4. Content Model

File Edit View Go Bookmarks Tools Help Lo 3
@ h‘ th O » ‘U‘ http:/fwww.discrmath.cl.cam.ac, uk/DiscreteMathsBook/ TopicRecommend #opic=Missing + Topichty pe={ '| L ‘ |
FORUM

fopic. missing topic type of this page: default available page fypes: default
Add A Content Entry for missing topic Front Page (Experiment Home) Email William

Flease fill in the form below to add your content entry into the book.

The form is submitted using Javascript, so you can freely use the "back" and "forward" buttons without causing the form to be
resubmitted.

URL (must start http://) [
Title of this entry: [

m

What sort of content entry is it?

Introduction [~ Example [~ Sumimar Chapter " Search [Exercise advice
(please tick all that apply) a I Example I~ y ™ Chapter ™ -

Author (or search engine): |

A short description of this entry:
(or a short excerpt)

Topic key: missing topic
Submit Entry |
|| ttp:wrvew discamerth,of.cam ac. ik DiscreteMathsBook/addACantentEntry.jspPiopic= missing-+opic []

Figure 4.4 . Adding the URL of a new entry for a topic involves filling in a short form. Adding
a new Wiki entry is similar except that the Wiki text rather than the URL is required. Readers
cannot add an exercise for the practical reason that they cannot yet configure the teaching
script, content applet, and modelling or reasoning system for the question.

this. The first is to invoke the Add Topic Entry form without eepspecified topic; this is the
way that the primary author would normally add content i@ ibook. The second is to write
a Wiki page (or other content page) referring to the new topiben a reader follows the link,
they will effectively perform a look up for a topic with no ems, and will have the option of
adding or writing an entry for the topic. It is perhaps prafge for readers to use this method to
add entries because it ensures that the new topic does na&drataly become a disconnected
island in the topic graph. Consequently, no links to the Addi& Entry form are given which
do not specify a topic (though the reader could easily wotkloei URL).

Accessibility issues in the content model are handled iragitforward way. Both the
chapter and the content toolbars contain plain HTML, anteguivalents are provided for all
non-text elements (for example the image icons all haveraltee text specified). These should
therefore be available to the browser’'s own accessibiégtires. The toolbars are currently
implemented using frames, which some assistive techredogandle better than others, but

this could be reimplemented to compose the toolbars ancesbnito a single HTML page
without frames.

4.2 Architecture and Data Model

At the simplest level, the architecture of the content sysbeeaks down into the four parts
shown in Figure 4.5. A model database contains details afesntor each topic and type,
and also a record of how readers have interacted with thase®nSelection scripts use this
database to recommend particular entries to particulalersaand also update the database as

4.2. Architecture and Data Model 53

readers interact with entries and add new pages. Some obtitent entries within the book
are editable using a slightly modified Wiki, while others &ised or external resources. A
description of how the selection scripts work with the datgmodel is given in Section 4.2.1,
and a description of the modified Wiki is given in Section 2.2.

>
RDF g Q :
+ H H

XML

Model Database Model Logic Modifiable Content Fixed/External Content

Figure 4.5 : A simple overview of the content system

4.2.1 Database and Selection Logic

The XML database holds three distinct collections thateeia the content. The first collection
holds RDF [BM04] data describing the entries that are in thekb Each entry lists the URL,
the topic and type that the entry was added for, together inittrmative data such as the
original author of the page. Entries are also separated@ogpto which user added them to
the book, for datamining purposes. Although the studenisada content to the book that will
be made available for other students, the primary authdrebbok can prevent students from
crowding out the original entries in a couple of ways. Addingiow F'ir st tag to a page’s RDF
entry ensures that the tagged entry will be shown first to éestulooking up this topic for the
first time, regardless of whether other entries have morennetendations for them. Adding a
noAdditions tag prevents the students from adding entries to that togioeating Wiki entries
foritat all.

The second section is a “student content model” which recbalv each student has in-
teracted with the entries. When a page is shown, it is markeédbaok for that topic for that
reader. If the reader looks up the same again lateryth@k page will always be shown. This
prevents the book from behaving like a shifting sand, canistahanging while the reader is
away from the book. If the reader rejects this page and clsoaskfferent one, the old page
is markedrejected and the new page becomegook. The reader can also toggle on or off a
recommended tag using the recommendation button on the content toollber.recommenda-
tion model is kept very simple on the philosophical grourds thile a satisfied reader might
or might not say that they are happy with a page, a dissatisfiednfused reader probably will
ask for a different page instead.

The third section that is stored in the database is the cortsnberard. Comments can be
made both on particular pages and also on entire topic. ks k the same database rather
than in separate commodity forum software with a view torfeitwork. Potentially, automated
analysis tools could examine the comments for pages andstaporder to mark those pages
as suitable for particular kinds of reader.

| found it helpful to keep all three collections in the same&eéc XML database (rather
than using a dedicated RDF database for the RDF data) partihé simplicity of having to
maintain fewer pieces of software, and partly because tlog/&t XQuery selection scripts to
guery across all three sections very easily.

54 Chapter 4. Content Model

4.2.2 Modified Wiki

Readers can write their own pages for particular topics itighntyy modified Wiki system.
Because the book supports more than one entry for a giveq, tibygi Wiki should also support
multiple entries for that topic. However, the Wiki should@be changed so that when a reader
clicks on a WikiWord within a page it is treated as a topic lagkwithin the intelligent book,
rather than a direct link to another Wiki page.

In practice, this is very easy to implement with a small cleatmexisting open source Wiki
software. (In the Discrete Mathematics book that | conséicl used JSPWiki.) The engine
that generates HTML from the text source was altered so thidVWirds within the page would
generate URLSs that query the book’s page recommendatioensybut the Edit links and other
administrative controls for this page would remain opetn this page within the Wiki. Since
readers would no longer use WikiWords to access Wiki pagestlly, the pages could then be
stored in the Wiki using a simple unique ID. This is summatiseFigure 4.6

(WikiWord) § (Unique ID)
WikiWord ~ WikiWord ——\
Seleripts

~~
=
5
5
N

(UniqueID) ~_“

Ordinary Wiki | Modified Wiki

Figure 4.6 : The Wiki is altered so that WikiWords link into the page recommendation system.
The Wiki pages can then be stored within the Wiki under a unique ID rather than the WikiWord.

The intelligent book also provides its own search featusdsch index the Wiki pages, so
the Wiki software’s search features could be switched off.

4.3 Supporting Chapters, Sections, and Subsections

A textbook is not just a directory of entries for particulapics. It also contains chapters,
sections, and subsections. The intelligent book suppuigdy allowing chapters to be defined
as an ordered list of topics. The type of page to show for eapit tan also be constrained.
Chapter is itself a page type, so chapters can contain other cha@tbosving an unlimited
hierarchy.

Each chapter has a contents page, which is the first page ohéipger the student will visit
and has the structure of the chapter embedded within it. llystlee first page of an intelligent
book is itself a chapter contents page, with each of the $oppidts structure limited to the

4.3. Supporting Chapters, Sections, and Subsections 55

chapter page type. This gives an order to the top-level of chaptetisimvthe book, and it is
this that allows readers to “turn to page one and start rgadin

Embedding the chapter as a topic structure within its cdatpage has two advantages.
Firstly it means that chapters can easily be stored in the &&base simply as another entry
for that topic. Secondly, it means that alternate chaptensbe added to the book by writing
a single page that could even be held in the modified Wiki. 8aders could write their own
chapters.

In terms of implementation, the chapter structure is held mdden HTML form and the
contents page includes a reference to a Javascript libvéogt of the hidden form can simply
be cut and paste into the page. The topic structure is wiititdavascript Object Notation. An
example based on the lecture notes for the Cambridge déstrathematics course is shown in
Figure 4.7.

< input type="hidden" name="chapterOutlineSrc"
id = "ibChap_outlineInput"
value=" { chapterName: "Integers", topics: [
{ topic: "sets", type: "Introduction" },
{ topic: "mathematical induction", type: "Introduction"},
{ topic: "well ordering", type: "Introduction"}
1y ' 7/

Figure 4.7 : The structure of a chapter is defined in the HTML of its contents page. The code
defining the structure of the chapter is shown in bold; the surrounding plain text code would be
the same for any chapter.

The Wiki’'s display engine could even be altered to genetsenhidden form from a tag so
that the chapter author only has to enter a tag containingpghe structure. (It should be noted,
though, that modern browser restrictions on cross-siiptsog means that these chapter pages
have to reside on the same server as the book). The links topies within the chapter are
then Javascript calls to enter the chapter, rather thao topk up URLS. An example is given
in Figure 4.8.

<a href="javascript: enterChapter(l);"
>A link to the first topic in the chapter

Figure 4.8 : Links into the chapter are Javascript calls rather than topic look up URLSs.

A chapter bar, the upper of the two toolbars shown in Figug dllows the student to
navigate between the topics in a chapter and to move backeupid¢narchy of chapters that
they have entered. The toolbar is implemented by splitiegdage into a toolbar frame and
a content frame. The frameset (the parent of both framegpirmnJavascript that maintains
the reader’s navigational context within the chapters sEmisures that if the reader is reading
a chapter, and encounters another page of tyjgter within it, then this second chapter is
treated as a subchapter (or subsection) of the first.

56 Chapter 4. Content Model
4.4 Closing Note

The content model described in this chapter is designed ierna epen ended manner. The
selection scripts could work on an arbitrary set of RDF tags] using an arbitrary student
model. For example, the scripts could look at how similadstis reacted to content marked in
similar ways in the RDF (perhaps students with very highes@refer Prof. Smith’s conciser
entries instead of Prof. Jones’s more verbose ones). Or wd ownitor which entries actually
caused students to improve in some skill.

Allowing the users of a book to add and alter content als@saigiestions about authenticity
and quality assurance. Students could add incorrect exipens to the book. How, then, can a
reader judge the relative merits of two different explamati? And how can the primary author
of a book ensure that students are not misled by incorredestunritten explanations? The
content model does provide two mechanisms to assist a bpokigry author in this regard. He
or she can tag content items so that they will always appesadabf user-contributed items, and
can also tag topics so that they will not accept any new dautions (see Section 4.2.1). One
could, however, envisage extending the system to class#ysuaccording to their reliability.
Reliability might be based on the users’ roles (for exampaaher might be more reliable than
a student), and also on analysis (for example students vérdses are often recommended by
a teacher might be considered more reliable). The selestiopts might prefer entries from
more reliable users, and less reliable users might be preddrom editing content that was
written by someone deemed to be more reliable.

The usability experiment (described in Chapter 9), howed@es not focus extensively on
the content selection scripts themselves, but rather oprtied exercises that they are designed
to support. For this reason, the selection scripts useddrugiability experiment were kept
deliberately naive: they simply selected a page at randaighted according to th&book,
recommended, andrejected tags on the entry. Some discussion of details that might peap
priate to add to the student content model, and more complge pelection schemes, is given
in Chapter 11.

CHAPTER b

Server-Side Question Architecture

Figure 5.1 shows the architecture of an Intelligent Bookstjoa. The client components have
been described in Chapter 3. This chapter describes hovetlierccomponents support com-
plex graphical questions, and how they allow different éag pedagogies and modelling or
reasoning systems to be used for different questions. T¢tersy developed was written using
Java Servlets, but the same structure could readily bepéeimented for other server platforms.
The work described in this chapter forms part of a paper pbbtl in 2005 [BRO5].

Web Page

Content
Changes > Applet !
Actions L A >
Changes

XML-RPC Applet -HIML 7

X
Annotations
Highlights
éﬁl‘l’(lsce Question
HTML/Javascript Document
! /
Teaching > - > >
Script Student's Conversion | Broker |_ External
document Script < - Model
Calls
Annotations

Figure 5.1: The architecture of an Intelligent Book question. The External Model represents
any modelling or reasoning system that does not form part of the Teaching Script.

57

58 Chapter 5. Server-Side Question Architecture

5.1 Teaching Scripts

5.1.1 Overview

Each question in an Intelligent Book is supported by a TeagBicript that describes how to
respond to the student. Every XML-RPC call made by the cleatcall to the Teaching Script.
Every public method that an author writes into a TeachingpBcan be called by the Web Page
and the Content Applet, without requiring any alteratiamghie components in between.

Teaching Scripts are Java classes, so they support infeitaA superclass provides the
basic implementation of the features described in this eapgJsually a subclass is defined
for a particular kind of question, for example proof exeesisand that is subclassed again to
provide the Teaching Scripts for individual questions. cheag scripts can be written in any
Java Virtual Machine supported language (including Jy#umh Groovy).

5.1.2 Supporting Different Teaching Pedagogies

In Chapter 1, | described how different teaching pedagogpestd be appropriate for different
questions. Recently, two successful automated tutoricignigues have been Model Tracing
and Constraint Based Tutoring (see Sections 2.2.2 and)2.RIbdel Tracing gives strate-
gic feedback by comparing the students’ actions to a setaxfymtion rules that represent an
ideal solution strategy, and by looking for common procetionistakes that students make.
Constraint Based Tutors do not consider the students’reetirectly, but examine what they
produce at each step: the state of the answer. They chechevlike state is valid or whether it
breaks any domain rules. From this they assess the studeulis'standing of those rules. Judg-
ing the respective merits of the two techniques has beerobats [KWR05, MO06, KWRO06].
However, a tutoring system can be likened to a complex stathime, and the difference be-
tween Constraint Based Tutoring and Model Tracing can engkl to the difference between
a Moore machine and a Mealy machine. The Moore machine’s €§BUtput depends solely
on the new state, while the Mealy machine’s (Model Tracipgigput depends on the existing
state and the student’s input. For different questionseeikind of machine may be a more
convenient representation, and it could sometimes be lusefallow a mixed approach. For
example, a question might not contain a full set of Model ffrgcules, but only a few produc-
tion rules to warn the student away from the most common phae mistakes.

Any automated technique for providing advice or correctioast involve some analysis
using the old state, the new state, and a description of targeh The pedagogical methods
differ by what kind of analysis model they use and where. Smd@raint Based Tutoring and
Model Tracing each use Bayesian networks and a databaskesfirueither a Mealy or Moore
model of the system. Reactive Learning Environments use rspecialised analysis models,
usually using only the current state. For example, the mpixts question in Chapter 3 used
a set of state-based constraints ptogstraint propagatiomn its analysis, but with no student
model.

This gives us three steps to processing a student actiohpassn Figure 5.2. In the first
step, the teaching script looks at the change the studerdksngnand the current state of the
student’s work, and interprets what the student is tryinddoln the second step, the student’s
change is applied to the document in the database, giving @meent state of the problem. In
the third step, the new state is examined.

This architecture considers the pedagogy within a quesiany techniques, for example

5.1. Teaching Scripts 59

Change

Is this a sensible
change for the student
to make?

XML
Document Apply the change

New state Is the new state valid?
Is it closer to the answer?

Figure 5.2: The teaching script breaks the analysis into a state plus input and a new state
phase.

User-Adaptive Tests, also specify how the next questionlshue selected. There are two ways
in which this can be supported. The first is by writing thiittte Selection Scripts (described
in Chapter 4) that choose an appropriate entry from the Boahbw. The script would be
made to examine the student model when considering wdxelciseshould be chosen for the
topic. The second is by altering the question. Because thstigm document is dynamically
updatable, a User-Adaptive Test can be implemented in desifgpching Script. As each
question is completed, the Teaching Script would updatesthéent’s question document to
show the next part of the test.

5.1.3 Advice Functions

In Chapter 4, | described how the content model is designeithatoit can be extended by
students but also referenced by the Teaching Scripts. Henyweten students ask for help with
a topic, they are not always asking for content. They may beksh an exercise and be asking
for analytical help examining how to solve a particular essii may be useful to included hoc
analysis that relies on knowing how students are expectaddwer the question. It would not
always be possible, though, for the teacher to know whettiemtill be useful at the time the
advice is written.

The system allowadvice function$o be associated with topic keys in questions’ Teaching
Scripts. They are also associated witlkel@vance functionWhen the student asks, the Teaching
Script will attempt to choose an advice function for the tofhat is relevant to the current
situation. If there is more than one relevant advice fumgtiben the Teaching Script chooses a
function based on which have been found to be useful in thie p&en the advice is presented,
the student is asked to say whether or not it was helpfuliethesponses are recorded in the
database along with the students’ Question Documents.)

There can be two sets of advice functions. The first set talke@guments and can be called
by the student at any time. The second set are for the stunlasktfor advice about comments
made by the modelling or reasoning system. This set take deauaf arguments to describe
the context of the comment.

60 Chapter 5. Server-Side Question Architecture

class ElectronicsTeachingScript extends TeachingScript

public void preChange() {
/I This script does no checking before the student’s action is applied

/

public void postChange() {
annotationsList = conversionProcessor.process(document, conversionScript);
annotationsDoc.setContents(annotationsList);
documentCache.put(annotationsDocumentKey, annotationsList)

for(annotation in annotationsList) {

if (annotation.type == consequentValue) {
addResponse("content.setAttribute", annotation.path, "value", annotation.value);
addResponse("content.setAttribute", annotation.Path, "setBy", annotation.setBy);

/

else if (annotation.type == contradiction) {
addResponse("tutor.showContradiction", annotation);

/

else if (annotation.type == questionComplete) {
addResponse("tutor.showSystemText", "Congratulations, you’ve finished the

question");

/

Figure 5.3 : Pseudocode for an Abstract Teaching Script class for the electronics question

5.1.4 A Hypothetical Example

The electronics question described in Chapter 3.2 predh&eserver architecture, but it is
a suitably small example. The question gave students atr@béc circuit, and asked them
to choose appropriate values for currents, potentials,cantbonent properties. A constraint
propagator then worked out any other circuit values thdb¥ad logically by the rules of
electronics, and also identified any contradictions.

Figure 5.3 shows Java-like pseudocode for an abstractitepstript describing this sort of
guestion. It performs no checks before the student’s chengemmitted. After the change has
been applied to the document, the document is run throughdheersion process to put the
values into the constraint propagator. The output fromdbis/ersion process is collected as a
list and stored in an annotation document. Each of theseautatpight describe a consequent
value that needs to be marked up at the client (or which mighagpreviously known value
to null), a contradiction that needs to be explained to the studest,message saying that the
circuit is now fully specified.

Figure 5.4 shows a teaching script for a specific questiosetk the path and name of the
guestion document in the database, and registeasldrocadvice function suggesting that the

5.1. Teaching Scripts 61

user should start by setting.

class Questionl extends ElectronicsTeachingScript

Constructor {
super();
adviceMap.add({"advice_StartWithlc", "relevance_StartWithlc", "help"});

documentPath = "questions/electronics /MITquestions";
documentName = "questionl.xml";

/

public boolean relevance_StartWithlc() {
/I This advice is only valid if the student has not set the collector current
setBy = evaluateXPath("/ /transistor /terminal[@name="C’]/property[@name="1"]/
@setBy");
return (! "student".equals(setBy));
/

public void advice_StartWithlc() {
addResponse("tutor.showSystemText", "Start by setting the collector current to a
reasonable value.");

/

Figure 5.4 : Pseudocode for a teaching script for the electronics question

5.1.5 Relationship to Servlets

A naive approach in Java would be to make each Teaching &c8ptvlet. However, the Java
Servlet model expects Servlet objects to be thread-safeasdite same object can be used to
handle many concurrent requests. While it is reasonablggdeat experienced Java program-
mers to be able to write thread-safe servlets, this could pdmrrier to teaching staff who might
not have as much specific experience with the Java Servigbpra(and it would be easy for
script authors to forget this requirement if they did not kvaith the system regularly). For this
reason, teaching scripts are not themselves Servletséddisgposable objects instantiated on a
one-object-per-request basis by a central dispatchingeder

This central dispatching Servlet is registered in the S¢rebntainer for all URLs match-
ing the pattern«.teachingScript. It loads the target Teaching Script’s class dynamically.
To determine which class to instantiate, it uses the cormenhat the URL to call a Teach-
ing Script must endpgackage.class.teachingScript”. For example, a URL might end
“discreteMaths.fibonacci.FibMplusN.teachingScript”. (This also means that Teach-
ing Scripts do not have to be registered with the Servletainat inweb.xml as Servlets do.)

62 Chapter 5. Server-Side Question Architecture

5.2 Conversion Scripts

Conversion Scripts are responsible for processing theestigddocument and presenting it to
the External Model (any external modelling or reasonindgesys, if there is one, via the Broker.
Sometimes, however, the Conversion Script contains itsrowdelling and there is no Broker
or External Model. As described in Chapter 3, the studenisstjon document is an XML

document, so this involves converting its Document ObjeotiM into a suitable form for the

External Model.

Like XSLT [Cla99], the most common conversion technologplaga to XML documents,
Conversion Scripts work by associating patterns with text@sl. The pattern matches a part of
the source document, and the template how to process thatrpaHowever, while XSLT is
primarily designed to transform an XML document into anoti®IL document, in an Intelli-
gent Book we generally need to transform an XML document anset of procedural actions.
So, Conversion Scripts, rather than being written in an XMalett, are written in Groovy
[LCL*04] (a scripting language that interoperates well with Javal the template is a Groovy
closure of actions to perform. Conversion scripts are magiuh that they can include and
extend other Conversion Scripts.

Figure 5.5 shows an extract from a Conversion Script for dormally modelled proof
question (described in Chapter 10). Tweoc.veracity call registers the pattern. For this
Conversion Script there are two lists of patterngeracity checkerandstatement getters/e-
racity checkers know how to determine whether a particukecgof logic is true; statement
getters know how to retrieve a statement ID from a piece atlothe code in Figure 5.5 regis-
ters a veracity checker for a theorem. It says that to cheakiveln the theorem is true, first the
system should process the proof, and then it should probegtéorem statement itself to see
whether or not is has been shown to be true.

Figure 5.6 shows pseudocode for a Conversion Script forléatrenics question.

5.3 Broker

A Broker is needed if the interface to the External Model i3 tomplex or awkward to drive
directly from the Conversion Script. For example, if the &xial Model is a separate process
communicating over text streams, then a Broker must keepbgb@rocesses ready to handle
requests. Once a Conversion Script has finished, the Brasets the External Model for
the next request rather than keeping its current state. mbkens that if the External Model

processor.veracity (MATHSTILES_NAMESPACE, "tile",
{it.getAttribute("definition")=="informalproofs:theorem"},

{

processor.processVeracity(it, "mt:socket[@name='proofsteps’]");

processor.processVeracity(it, "mt:socket[@name='theorem’]");

});

Figure 5.5 : Registering a pattern in the Conversion Script for an informally modelled proof. The
second (large) code closure describes the procedural actions to take for these tiles. it refers
to the document element that has been matched by the pattern.

5.3. Broker 63

identifies an error, the Conversion Script should take adiocollect any context information
it needs (or serialise the External Model’s state) befoexits. Otherwise when the student
asks for advice, the Teaching Script would need to re-rurctimversion process in order to
analyse the External Model’s state any further. The cal@emnnotations are stored along with
the student’s document, so later calls to the Teaching Scaiprefer to them.

In the formally modelled proof exercises (Chapter 8), whteeExternal Model is an au-
tomated proof assistant, the Conversion Scripts make émqalls to write appropriately for-
matted proof commands into the Broker’s buffer. When askeel Broker writes the contents
of the buffer to the proof assistant process and collectsebgonses. This happens regularly
throughout the document, rather than only at the end. Thmrses are post-processed in the
Broker, and passed back to the Conversion Script as anmogati

In the informally modelled proof exercises (Chapter 10)evethe External Model is a Java

match mapping from a graphical notation path to an External Model path:
register the mapping;

match component:
process child elements;

match wire:
process child elements;

match property:
if ("student".equals(it.get Attribute("setBy"))) {
mapping = map.get(getXPath(it));
if (mapping = null) {
Model.putValue(mapping, it.getAttribute(value));
/
/

match document:
process all child elements;
for (mapping in mappingsList) {
annotations.add(new Annotation("consequentValue", Model.getValue(mapping),
Model.getSetBy(mapping)),
/
contradiction = Model.getContradiction();
if (contradiction != null) {
annotations.add(new Annotation("contradiction", contradiction));
/
if (Model.isFullySpecified()) {
annotations.add(new Annotation("questionComplete"));

/

Figure 5.6 : Pseudocode for a conversion script for the electronics question

64 Chapter 5. Server-Side Question Architecture

object written for the exercises, the interface is so sintpde there is no need for a Broker.

5.4 Reusability of Components

If Content Applets and Brokers are written well, then Con#&pplets, Brokers, and External
Models can often be reused across different kinds of questio

Proof methods

Toprovethat Y m e m>0= fim+n)= fim-1)xfin)+ fim)xfin+l)
Call this the Proposttion for n

[induction

Proof commands

[.. we have (expr) by simplification]

[.. with (rule) we have (expr) by simplification]

[Rewrite {statement) For {expr) gives us {expr)]

Rules

[rndk=mkrnk [Kmnd=kn+kn |
Maths expression
- < - L < |
> JL =« v e |
Prop for {expr)][i)]

Variable or Mumber l

Expression l

W, Qm == Fim+n) = Fim-13*Fn) + F{m)*F{n+1)]

[
[
[
|
l Statement Label l
|
[

>

Topic Links: Mathstiles |

Hints and advice from the server will sometimes appear here.

Did you know: You can pop the Mathematics, Tile Tray and Annotation panes out into separate windows if
you are short of room. You can also change their sizes using by dragging the dividers)

Note: Firefox users may experience a short delay (6 secs) the first time they click "Check proof" before the
status icon changes to "communicating".

Actions: Check proof | Help, I need a hint! | Reload this frame | Clear answer & start again |

Front Page (experiment home)

from where you can find other questions or answer the guestionnaire.

Text: Topic: Type: [Recommend][List All

Topics and types are converted to lowercase, and 'CamelCase' turns te 'camel case'. If you are unsure of the topic or type, try using the Index of topics.

Figure 5.7 : An formally modelled question that uses MathsTiles and Isabelle/HOL.

Figure 5.7 shows a formal proof question that uses the IEb®L automated proof as-
sistant as the model and a specialised interface calledSViggis as the Content Applet. This
type of question is described and developed in Chapters 6 Fagire 5.8, shows a question
that uses informal modelling rather than Isabelle/HOL sTuses a different Conversion Script
(that includes its own modelling), but the same MathsTilesit€nt Applet. This question is
developed in Chapter 10.

Figure 5.9 shows a proof exercise that uses Isabelle/HGitigensyntax. This uses a dif-
ferent Content Applet and Conversion Script, but the sanokd&rand External Model as the
formal proof question in Figure 5.7.

In practice, the different Conversion Scripts tend to hav®aadly similar structure (and
Brokers, Teaching Scripts, and Content Applets similadyentheir own common structures),

5.4. Reusability of Components 65

COrdinary tiles

To prove that: | he irrationals are uncountable | This statement isfr...
[7 TR 8] Assume: The frationals are countable I think this
[Support a statement with other statements] We have: The reals are uncountable (from notes) statement is true
Search But we have: [he reals are countable {no reason given]
l search l which we lmow from:

The reals are the union of the rationals and the irrationals (fror
The union of two countable sets is countable (from notes)
The rationals are countable (from notes)

Search results

Search results will appear as tile buttons

here. The irrationals are uncountable

Click for heln

which s a contradiction.

%] il | 1]

>

Topic Links:

You've proved the statement, but you also have a few False or Unknown statements in your answer.

Text: Topic: Type: [Recommend][List All]

Tepics and types are converted te lowercase, and 'CamelCase' turns to 'camel case'. IF you are unsure of the topic or type, try using the Index of topics.

Figure 5.8: An informally modelled question that uses MathsTiles but does not use Is-
abelle/HOL. (See Chapter 10 for further details about this question.)

so writing a new kind of question can be less effort than itmhappear from Figure 5.1.

The electronics question described in Chapter 3 used the gasstion architecture at the
client, but predates the server architecture. In early 2B6Wever, | re-implemented the elec-
tronics question using the server architecture describéuis chapter.

66 Chapter 5. Server-Side Question Architecture

Mathematics h nnotation Details
(S Proof state
consts fib :: “nat == nat" .
recdef fib less_than "fib 0 = 0" "fib {Suc 0} = 1" "fib {Suc (Suc x)) = fib % + fib {Suc)" Goals:
gcd (fib n, fib n + 1)) = 1

lemima fibD: “fib 0 = 0" by simp
lemma fib1: "fib 1 = 1" by simp
lemma fibn: *m > 0 ==2 fib {m + 1) = fib m + fib {m - 1)" by{cases m, auto} what does this mean?
lemma fibPos: "0 < fib {Suc n}" by {induct n rule:fib.induct} {simp+} —

th d_mult_add: "0 < n ==> ged (n *k +m, n) = ged (m, n)" (57 Normal response

eorem ged_mult_a n==>gcd (n m, n) = ged (m, n)” sorry

theorem ged_fib_Suc_eq_1: “gcd (fib n, fib (n + 1)) = 1" sorry thearermn ged_fib_Suc_eq_1: ged fib 7n, fib (7n + 1) =1
theorem fib_add: "fib {n + k + 1) =fib (k+1)*rh (n+1)+Fhk*th SOrry

theorem gquestion: "gcd {fib m, fib {n + m}) = gcd (fib m, fib n)"

ged

W Ready

Figure 5.9 : A proof exercise that uses a native Isar Content Applet, but that uses the same
Broker to talk to Isabelle/HOL.

CHAPTER O

Proof Question Design Goals

In Chapters 3, 4, and 5, | described how | designed the Ig&gitiBook architecture so that it can
support different kinds of question and different modejlor reasoning systems. A particular
goal of this dissertation however, is to develop techn@sdor an Intelligent Book that can
support proof exercises in introductory Number Theory fdirgt year Discrete Mathematics
course.

This chapter describes the background and design goalkdse fproof exercises. Section
6.1 gives the background of the hypothesis and choice of m8detion 6.2 then describes three
specific constraints on the proof exercises. The exercigethan developed and evaluated in
Chapters 7, 8, and 9.

6.1 Background and Hypothesis

The first question that arises‘iwhat kind of model could be used to support proof exercises
in introductory Number Theory?One possible choice is an automated proof assistant. These
have been developed over many years to model and supporbitfs pf researchers and profes-
sionals. However, they are generally regarded to be difffoulnovices to learn to use. From
their experiences teaching postgraduates how to use the dy&tem, Slindet al [SBCT05]
found interactive proof assistants to be “powerful but beéening”. They identified general
reasons for this, including: “simply managing to formuletgrect statements can be difficult”;
“finding the correct tool to use at any point can be hard”; aeneh remembering how to look
for existing theorems to use can be hard”.

Isabelle/HOL [NPWO02], the proof assistant | use in this ditation, is similarly complex.
The two shortest introduction courses to Isabelle/HOL MipBK04], presented to research
audiences, each take four sessions of 90 minutes and edodenmore than 300 slides. |
asked informally on the Isabelle/HOL users’ mailing lismhtong it might take a first year
undergraduate to learn to use the system well enough to arnisgiection or case proofs on
the Fibonacci sequence (using an example from the evatustimly in Chapter 9). The rough
estimate | received from an experienced user was that if feeeaf a taught course in how to use
the system then students “could do simple things within teaks” and “it might take as long as

67

68 Chapter 6. Proof Question Design Goals

twenty weeks for an average student to become proficienedetiel you are suggesting”. | was
also warned that if students could not already write a proo&ftheorem on paper, they would
not be able to prove it in Isabelle/HOL. In design-stage ustons with experienced users of
HOL and Isabelle/HOL, | was also warned that the reasonirtigudwf most proof assistants is
very low level and would be difficult for students to follow.

My hypothesis, however, is that by using a very specialinegtiace to the proof exercises it
is possible to provide something of educational value thatents can learn to use much more
quickly and with much less training. | have three reasons&ieving that this might be the
case:

» The interfaces of proof assistants appear, by and lardgewe been optimised for experi-
enced users who work with them regularly, rather than foriceusers. There are many
techniques in Human Computer Interaction research thateziuce the learning barrier
for first time users — for example structured editing [TR8HW90] can help novices to
work with a new syntax, but can be cumbersome for more expezetusers [KU93].

« Answering a homework proof exercise is a different sitatio attempting a proof in
professional practice, because in a homework exercisetiod pas been set by a teacher.
The teacher has the opportunity to look at the question ia@ck and make alterations
to ensure that an answer is achievable by students.

» Experience with the electronics question, described icti®e 3.2, suggests that it is
possible to relate automatically generated reasoning todest’s level of detail. In the
electronics questions, initially the constraint propagautput explanations that (anecdo-
tally) were too detailed and low level for students to untierd. | found that a successful
approach to solving this was to define the circuit diagrandestts would interact with
separately from the TMS’s constraint model of the circuiheTexplanations were then
automatically pruned so that only steps involving varialiteat were marked on the dia-
gram were included. The principle here is that if the usarfate is designed to represent
the student’s model of the question, then by mapping thereag onto that interface we
are mapping it to a student’s level of detail.

6.2 Design Goals

In this section, | describe three design goals for the egesgiand how those drove my design
decisions. During development, | made minor compromisethersecond and third goals, as
described in Section 8.6, but nonetheless they were impddahe design.

6.2.1 The exercises take place within a Web-based Intellige nt Book

Providing proof exercises within a Web-based book placesesextra limitations on the design.
For example, the client component that the student workis mitst fit within a Web browser
and be small enough to be downloaded over a slow connectilso, the manner in which the
student writes mathematics is limited to the mouse and kaghaevhich traditionally are not an
ideal mechanism for writing two-dimensional mathematsgaitax. An Intelligent Book cannot,
for instance, rely on recognising expressions written &isitylus because not all students will
have one.

6.2. Design Goals 69

6.2.2 The student, not the system, should write the proof

Many proof assistants do not ask the user to write each lintaefroof. Instead the user
works by asking the assistant to apply tactics to statem@mta goal stack. These tactics
eliminate goals or produce new goal statements, until eligivals have been proved. It would
be tempting, from a Human Computer Interaction perspediivese a similar mechanism in the
exercises. This way the student would not have to learn inveps expression syntax (not even
for the overall proof goal, which would be set by the questiaut could focus on applying the
appropriate tactics. However, this would also enable stisd® “game the system” by rapidly
trying each tactic in turn, rather than actively thinkingoabthe problem. This behaviour has
been observed in a number of educational settings and atesedtrongly with reduced learning
outcomes [BCKWO04].

Instead, | decided students should write the statementexgréssions for each line of their
proofs, as they do when answering proof exercises on patleerrtthan have them generated by
the system. This means that to use a tactic, the student tiaskaabout what it will produce.
So, the students’ investment at each step is much greateharelis less scope for gaming the
system.

For this reason, | chose Isabelle/HOL to act as the modelsdisproof language [Wen99,
NipO03] supports “declarative” proofs that are somewhatilsinio written proofs, rather than
only supporting tactic scripts.

6.2.3 Proofs should resemble what students write on paper

While structured and menu-based editors have been knowedtae the burden of learning a
new syntax (keywords and syntax rules can be recognisedrrdtan recalled), this alone is
unlikely to make Isabelle/HOL approachable for studentwbd experience of programming
or proof. Isabelle/HOL contains both an inner HOL syntax anduter Isar syntax. The outer
Isar syntax contains keywords that appear similar in meghut have very different effects.
Fox example, the difference between the keywdrelsce, thus, then, also, andmoreover

is not readily apparent from the words themselves. Theralaeoccasions where the same
concept can be applied either at the Isabelle level or at ke ldvel, for example whether the
mathematical declaratiofor all is made using ! or ALL, and this decision will affect later
proof commands.

Also, as described in Section 6.1, the user interface shreplietsent a “students’ model” of
the question rather than the reasoning system’s modelididise, | decided that the statements
students make in questions should more closely resemidégrstats they might make on paper,
rather than mimicking the Isar language exactly. (That istasay, however, that they look
identical to written proofs.)

A related point is that when students write proofs on papesy o not always take the
strictly top-down approach that traditional structureidt@d encourage. The interface should
not force them into that approach. As an example, it would &g wnusual for a student
writing an algebraic expression on paper to write the sysibothe hierarchical order of the
expression’s parse tree. Students may wish to start in tdelenof the expression, or may wish
to sketch out parts of the expression and then link them ug ifterface should make some
attempt to support this.

70

Chapter 6. Proof Question Design Goals

CHAPTER 7/

MathsTiles

Students using an Intelligent Book should be able to work witations that are appropriate to
the subject matter. An Intelligent Book for Discrete Mattsits, then, needs a way for students
to work with mathematics and proofs. This chapter desctibbesnterface that | developed for
this purpose. It has been described briefly in a 2005 paped3B&nd more fully in a paper to
appear in 2007 [BRO7].

7.1 Overview

MathsTiles is an interface for students to edit structurecktent, such as mathematical equa-
tions and proofs, within Web pages. The syntax is not fixed$aonfigurable from question
to question. This means that MathsTiles is not itself a féronasemantic language for math-
ematics, but is a structured interaction language desigodbat the constructed mathematics
can easily be transformed into other representationsuirag) formal and semantic representa-
tions). For example in the proof exercises, tiles gain a sgimeneaning on the server because
they are transformed into Isabelle/HOL's modelling langias described in Chapter 8.
MathsTiles is designed to achieve the following goals:

1. Resemblance to maths
The notation used to enter and manipulate maths should lkekHe notation students
are expected to write on paper, for example in their exam arswf the notation were
very different, for example a text-based formula languégen this would add a learning
burden which is not directly related to the material beingta.

2. Ease of alteration
Students can be expected to enter incorrect expressionzaof$ much of the time — if
they already knew the material they wouldn’t be studentsit@important that students
can make changes to their expressions easily.

3. No forced order.
The interface should not force the student to write syntaxparticular sequence. While

71

72 Chapter 7. MathsTiles

there are occasions where teachers might want studente & pesticular methodology,
this should be enforced in the explicit teaching feedbaather than as an implicit by-
product of the interface design. So for example, studemsildhbe able to build the
middle parts of an expression before the outer parts if theayt\o.

4. Low commitment.
Students should be able to write and play around with frage@franswers without being
committed to them. The interface should allow students bsttact and examine as many
answer fragments as they like in parallel.

5. Progressive evaluation
Sometimes, students might know what part of the proof oresgon needs to look like,
but get stuck on how to complete the structure. They shoulabieeto ask for feedback
from the tutor on an incomplete answer fragment.

6. Ease of authoring
Because it is not possible to identify in advance all theedédht pieces of mathematics
(which includes proof structures and arguments as wellsbeis) question authors will
wish to include in their questions, it needs to be simple fahars to implement new
pieces of notation.

7. Reasonable size for the Web
While fast broadband connections are becoming more compeoformance over slower
or more congested networks should still be reasonable.rméans that both the code size
of the client applet and the size of the MathsTiles documeedsl to be reasonably small.

Tiles containing arbitrary pieces of maths can be addeddq#ye, dragged around and
dropped into sockets in other tiles to build up the structifran expression or proof by con-
tainment. In this way, the notation is kept closely mappekaodwritten mathematics, but the
students are exposed to the hierarchical nature of the €sipres they are building. A simple
example of some tiles is shown in Figure 7.1.

S 10
- 10

Figure 7.1 : Some maths tiles, loose and combined

Tiles can be pulled out of and dropped into sockets by holthegtrl key when pressing
or releasing the mouse over the tile or socket, so the eféogtired to change a structure is
low. When a student drops a tile into a socket in anotherttike border of the contained tile is
removed so that the appearance of the constructed mathsiigterwupted. However, the tile
border reappears when the mouse is moved over the tile goikenstudent a clear sense of the
structure of the tile.

7.2. Document Structure 73

The fact that tiles and groups of tiles can sit on the pageowittbeing combined into
the student’s answer means that students are able to writeqdaheir answer without being
committed to them. New parts of an expression or proof canugged in without discarding
the old parts. Because tiles can be combined as easily intaidetin or inside-out order, the
student is not constrained to working in a top-down or bottqgermanner.

7.2 Document Structure

As described in Chapters 3 and 5, the student’s document ¥\dnfile and its Document
Object Model is updated in real-time on both the client arelgérver as the student works on
it.

tile definition="maths:equals"
— socket name="s1"
L tile definition="maths:sum"
socket name="upper_limit"
L variable name="10"
socket name="lower_limit"
socket name="to_sum"

. socket "s1" "g"
L tile name="maths:dot" socket:_ s2

socket name="varl" 10 """""""
L variable name="i" 2 ; : 1

socket name="var2"

L socket name="s2" L —]

Figure 7.2 : The combined tiles from Figure 7.1, together with the XML of the structure, shown
as a tree. The sockets of the equals tile have been labelled on the diagram.

Figure 7.2 shows the combined tiles from Figure 7.1 togetvidr their XML structure.
The outermostile element has itdefinition attribute set tanaths:equals. Most tiles
in a document, like this one, adefined tiles Their appearance and structure are not fixed in
the MathsTiles program, but are describedtitsy definitions Here, the tile is defined by the
equals tile definition in a separate tile document calhegk hs.

Within thetile element are twsocket elements which are the two sockets of ygials
tile. The socket called2 (the right socket) is empty, while the socket caltdd(the left socket)
contains asum tile. This sum tile in turn contains sockets, some of which contain othesti
Note that the socket names are local to the tile — if there weesTancequals tile on the page,
its left and right sockets would also be nansddands2.

Figure 7.3 shows the tile definition for tkam tile in Figure 7.1. Within the&cileDefinition
element, there are threaecketDefinition elements that define the three socketsunm tiles.
The names of the tile’s sockets in Figure 7.1 match the naifrtbe gocket definitions in Figure
7.3. Here, the socket definitions have specified the sockedshs and heights. There is also a
text element that defines the sum symbol that appears on the tile.

The layout element corresponds to the fact that the tile definitidrigout attribute is
set toInstructionLayout. This layout element contains a sequencemafve and pull
elements that describe operations that will arrange thieet®@nd text on the tile appropriately.
Alternatively, if the layout attribute was setBaselineFlowLayout, then all the components
of the tile would be arranged left to right, vertically algphby the baselines of any text that

74 Chapter 7. MathsTiles

tileDefinition name="sum" layout="InstructionLayout"
socketDefinition name="to_sum" width="100" height="20"
text name="sum_sign" font-name="Math" font-size="20"
L
socketDefinition name="upper_limit" width="10" height="20"
socketDefinition name="lower_limit" width="10" height="20"
layout
— move cl="sum_sign" el="North" by="5" c2="upper_limit" e2="South"
~ move cl="to_sum" el="West" by=">5" c2="sum_sign" e2="East"
— move cl="to_sum" el="v_middle" by="0" c2="sum_sign" e2="v_middle"
— move cl="lower_limit" el="North" by="5" ¢2="sum_sign" e2="South"
— move cl="lower_limit" el="h_middle" by="0" c2="sum_sign" e2="h_middle"

— move cl="upper_limit" el="h_middle" by="0" c2="sum_sign" e2="h_middle"

Figure 7.3 : The definition and layout of a Sum tile. “Component” and “Edge” have been abbre-
viated to “c” and “e” in this figure. The horizontal middle, vertical middle, and text baseline are
also edges that can be used in alignment operations.

appears on them. (The baseline of a tile laid out ugimgt ructionLayout is the baseline of
the first element in its tile definition.)

Atile is loosely coupled to its definition, so the visual apmnce of a MathsTiles document
can be changed by loading it with a different set of tile dabmis. This is not as flexible as a
stylesheet, however, because changing a tile definitioayswhanges the appearance of every
tile in the document referring to it.

7.3 Definable Tile Components

Tile definitions can include the following components:

Text.
The text that appears on a tile is specifiedtaxt elements in the tile definition. By
setting thevisible attribute to an XPath [CD99] expression, a piece of text eamhbade
to appear only if the expression evaluatesto. This can be used, for example, to make
the brackets on plus tile to only appear when the tile is within a socket it Emes or
power tile, as shown in Figure 7.4.

(Ll+Ly =

Figure 7.4 : The visibility attribute of the brackets is set so that they will only appear when
the plus tile is inserted into a socket in a higher priority tile. (For the same reason as the
limitation on the type system, as described in Section 7.7, the higher priority tiles are listed
explicitly in the expression.)

Symbol.
Symbols can be defined using the Scalable Vector Graphic&)$¥th syntax [FFJ03],
and given a name. Once defined, a symbol can be placed on & iflelbding asymbol

7.4. Inheritable Attributes 75

element in the tile’s definition. As with text, each symbolaotile can be given a visibility
that depends on an expression.

Socket.
Each socket is defined by socketDefinition element in the tile definition. Back-
ground text can be set to appear on the socket when it is efpgy/colour, height, and
width of the socket can also be specified.

The tagName attribute provides a rudimentary way of setting what kintisle can be
inserted into the socket. Ifitis set then only tiles whossent tag (for non-defined tiles)
or definition (for defined tiles) appears in the list of namethie tagName attribute will
be accepted into the socket. When a tile is being moved ancdtihiekey is pressed, the
socket underneath the tile that the student might want tp driato will outline itself in
green or red depending on whether it would accept the til®brAs discussed in Section
7.7, this is only a rudimentary substitute for a type systamd, if an author wrote further
tiles it might be necessary to alter thegName attributes on the sockets of existing tiles.

Socket List.
Horizontally or vertically arranged lists of sockets casoabe placed on a tile. Socket
lists can have a specified number of sockets, or they can lie sgpand automatically
so that there is always an empty socket in the list. Expanstieget lists place an ellipsis
(*...) at the end of the list to show that it will expand. #ocketDefinition within
thesocketListDefinition defines what the sockets in the list should look like.

Three attributes of tiles are also worth notinrgelectable (defaultye9 sets whether or
not the user can select this tile. Unselectable tiles aex®fkely stuck on the page or in their
sockets. If they are stuck within sockets then the sockeatdyowill not highlight when the
mouse moves over the tile, and the unselectable tile wileappo be an integral part of its
parent tile.Delible (defaultyeg sets whether or not the tile can be deletealckground sets
the background colour of the tile.

7.4 Inheritable Attributes

Some attributes can be inherited from the parent sockdeofine rules of inheritance are that if
an attribute is not set on an element, then first the correpgrefinition element is checked
(tileDefinition for tile, etc). If the definition element does not set the attributent
the parent element is checked. The inheritable attribuigade: selectable, background,
socketBackground, delible, font-size, font-style, andfont.

For numeric attributes, particularfiont - size, if the attribute value begins with &”, then
system will attempt to set it to the inherited value mulegliby the number after the™ This
allows, for example, the text on an expression to be scaleah dfidhe expression is placed into
a socket that represents a subscript.

Attributes can be reset (set to nothing) by setting them timeadid value.

76 Chapter 7. MathsTiles
7.5 Non-Defined Tiles

In addition to defined tiles, MathsTiles also provides foardtoded kinds of tile for conve-
nience with mathematics:

Variable.
A variable is a simple tile containing text that matchesdse tag. It is also useful for
representing numbers.

Function.
A function contains text that matches ntame tag, and sockets for its parameters. The
sockets are surrounded by parentheses. Functions can tkafigurable number of
parameters, or can be set to automatically expand. A separharacter can also be
configured.

Labelled Statement.
A labelled statement is a tile that contains a socket fortdement, and text for the label.
The label is set using thid attribute.

Statement Reference.
A statement reference is a simple tile containing text thatcimes the label of the state-
ment it references (defined by the attribute).

7.6 Tile Trays

The set of buttons and controls that a student can use toladddia proof (called &le tray)

is also defined in XML. It can form part of the student’s prootdment, or it can be part of a
separate document in the same way that the tile library deatsrare. In Figure 7.5, the tile
tray is to the left of the picture.

4

Proof methods

Toprovethat VmeN m=0= f{m+n)= f{m-1)%X f(n)+ fim)xffn+1l)
Call thus the Proposition for n

[induction]

Proof commands

[.. wie have (expr) by simplification]

[.. with {rule) we have {expr) by simplification]

[Rewrite (statement) For {expr) gives us {expr)]

Rules

[menk=mk+rk |[Kmem=km+kn |
Maths expression
- L+ - <]
> JL < J v J en]

Prop For {expr)][fi)]

Statement Label l

[
[
[
l Variable or Mumber l
|
l Expression l
[

wm. 0<m = F{m-+n) = F{m-17*F(n) + F{m)*F{n+1)]

Figure 7.5 : The set of controls that the student can use to add tiles to the page is also config-
urable in XML.

7.7. Future Work 77

The controls that can be placed into the tile tray are:

TileButton.
Inserts a single tile, as specified by the definition refetoduly thedefinition attribute.

XmlButton.
Rather than inserting a single tile, an XML Button insersstito match a defined XML
structure. This is useful to provide both for commonly-usag@ressions (such as the
expression contained in the theorem to be proved), and alswsért a nest of tiles but
treat it as a single tile. Marking the contained tiles in tlestras unselectable in the XML
prevents them from being pulled out of their parent tile.

VariableButton.
Inserts a variable. The name is specified by typing it intodihlex set into the button.

StatementButton.
Inserts a Statement Label or a Statement Reference. If xthéyfmed into the edit box
(within the button) is already the label of a statement onphge, then a Statement Ref-
erence is added. If not, then a Statement Label is addeck #df box is left blank, then
the button automatically generates a new label.

Tabbed Pane.
Holds a set of tabs.

Tab
A labelled tab group that can hold a set of buttons. (May or matybe within a Tabbed
Pane.)

Expression Button.
Parses an expression typed or pasted in by the user, anccpsodtile structure to match
that expression. It's primary purpose is that if a hint mgssar a response from the
prover contains an expression, the user should be able te {ieg expression into the
proof. Itis also included, however, because simple onesdsional expressions such as
3 + 4 are much faster to type than to construct with the mouse. $8eton 7.7.)

Tile Search Button.
This takes advantage of the dynamic nature of the tile trde file tray, like the proof
document, can be altered at run-time by scripting calls ftbenserver. This means that
not all of the buttons the student will use for the questioach® be in the tile tray
at the start. Th@ileSearchButton sends the student’s search query to a function in
the question’s teaching script, which usually respondsduiray found tile buttons to a
“search results” tab in the tile tray.

7.7 Future Work

This section describes two possible extensions that hagae bmitted in order to keep the
MathsTiles applet down to a reasonable size and to keep tbdaoe straightforward for the
evaluation.

78 Chapter 7. MathsTiles

Despite the fact that being able to type is known to be usefidtiuctured editors, it is
not possible to edit in MathsTiles by typing. The only exgrea control that there is uses an
expression parser that only accepts a few formats (XML, dbatHHOL expressions, and basic
arithmetic), although it is reasonably forgiving of errof$ie reason for this omission becomes
apparent when you consider that MathsTiles does not haveed §ixntax, but a changeable
syntax from question to question. It is also technicallysiole for new tile definitions to be
introduced during questions. Furthermore, many of thes tilse a two-dimensional syntax
ordered by layout rules. It is not obvious what is the mosblestechnique to convert from a
one-dimensional syntax (text) to aal hoctwo-dimensional syntax. So, this is left for future
work.

It would be useful if parts of a tile or socket definition cowldpend upon an attribute of
the tile or socket. For example, if a piece of text that appeara defined tile could be set to
match thename attribute of the tile, then it would not have been necessahatdcode variable
and function tiles. As a second example, if a socket coulddbi@ed to only accept tiles where
an expression such asdcket De finition.type = tile.type” was true then this would allow
question authors, if they wished, to prevent students frosariting tiles into unsuitable sockets.
Currently thetagName attribute provides only rudimentary support for this. Hoel Maths-
Tiles was designed to work with version 5.0 of the Java Ruatimvironment, which includes
an expression parser for XPath but not for any more generpbge languages. XPath expres-
sions cannot bridge documents and we usually keep the fiieitins in library documents
that are separate from the question document. So, we woeld toeinclude our own general
purpose expression language for tiles, which we decideddyoake the applet size too large.
Java version 6.0 does include general purpose languagesotiid be used for this purpose in
future versions.

7.8 Conclusion

Although structured editing is a well established techajeqs discussed in Section 2.4.3, there
are a number of aspects in which MathsTiles is unique.

Allowing tiles to be scattered on the page makes it simplevddk in a bottom-up manner
than in many structure based editors, and many answer fragmeay exist simultaneously.
Whereas in most programming languages, code needs to beameuinout or cut and paste
into a notepad to detach it from the program without deleting MathsTiles structure can
simply be unplugged from its parent and left on the page.

The ability to define and configure new kind of tiles allows N&iiles to be adapted to very
different kinds of question — for example the formal prooéeises in Chapter 8 versus the
informal proof exercises in Chapter 10. The informal proxéreises also take advantage of
the fact that the document, the tile tray, and the librarynitédins can all be updated from the
server during a question using the API described in Chapter 3

Thirdly, as described in the next chapter, the tile syntagsdeot need to directly match
the underlying modelling language. This is both in termsaihh able to translate syntax ele-
ments into different language, and also because tiles céorded to stick together by making
some tiles unselectable. This allows the granularity adrismttion (what kinds of structures are
considered atomic) to be altered in places, rather tharyalwsing a keyword-level granularity.

CHAPTER 8

MathsTiles as a Proof Language

In Chapter 7, | described how MathsTiles works as a strudturieraction language and an
editor for redefinable mathematics. In this chapter, | dbschow | have used MathsTiles
to allow students to write proofs that can be translatedraatizally into Isabelle/HOL's Isar
language in proof exercises. The proof exercises are intextiwith a straightforward example
before the principles behind the exercises are described.

8.1 A Straightforward Example

This is an example of a typical proof exercise using the syst€he question is a homework
exercise from the lecture notes of the first year undergtadDescrete Mathematics course in
the Computer Science tripos.

Students are given the following definitions:

The Fibonacci sequence is defined as:
f(0)=0

f1)y=1

fln+2)=f(n)+ fln+1)

where f(n) represents theth Fibonacci number.

The Greatest Common Divisor is defined as:

GCD(0,0) =0

GCD(a,0) =a

GCD(0,b) =b

GCD(a,b) is the largest natural number that divides bethndb without leaving
a remainder.

They are then asked to prove by induction &t D(f(n), f(n+ 1)) = 1.

Initially, the question appears as shown in Figure 8.1. (défnitions are not shown in
the figure, but are above the exercise in the Web page.) Tdwdil the page at the start of a

79

80 Chapter 8. MathsTiles as a Proof Language

Mathematics 5
-
Toprove that ged(f(n), fin+l))=1 =
Call thus the Proposition for n
~Proof command

[.. we have (expr) by simplification] l:l

[. with frulel we have {expri by simplification

Proof methods

[Induction on the MNakurals]

~Rules you might need

[merk=mkank | Kmim=kntkn |

[gedim, m-+n) = gedim, n)][gedix, ¥) = gedly, x)]

rMaths expression

- - b -]

< = J =]

W I =M | W
Prop for {expr)][F)]

g,)|

Expression | |

[
[
[
[
[
l Variable or Mumber | |
|
|
[

Statement Label | | l
]

GCDF(n), fin+1)) =1

| €

W Ready
Topic Links: Mathstiles

Hints and advice from the server will sometimes appear here.

Did you know: You can pop the Mathematics, Tile Tray and Annotation panes out into separate windows if
you are short of room. You can also change their sizes using by dragging the dividers)

Note: Firefox users may experience a short delay (6 secs) the first time they click "Check proof" before
the status icon changes to "communicating".

Actions: Check proof ! Help, I need a hint! | Reload this frame : Clear answer & start again !

Front Page (experiment home)
from where you can find other ! or the ! ire.

Text: | H Search | T | | Type: | |[Recommend || ListAll |

Figure 8.1 : An induction proof question waiting to be filled in. Because this question is specifi-
cally set as an induction proof, no other proof methods are available.

8.1. A Straightforward Example 81

Proof by mduction on
Base case:

We can show our goal that is true by simplification
Inductive step:

Fix

Assume

.. we can show our goal that 15 true by simplification

Figure 8.2 : The induction tile for the worked example.

question are fixed in place and coloured green; these neefiitelol out to complete the proof.
The only socket available in the answer asks for a proof ntethothe tile tray, there is only
one button in the section marked “proof methods”: inductibime question specifically asks the

student to use induction, so no other methods are allowee.ifduction tile for this question
is shown in Figure 8.2.

The induction tile has a number of sockets to fill: the induttvariable, the goal statement
for the base case, and several sockets in the inductive ktpus induct om. Now let us
consider the goal for the base case. At the foot of the tileitr&igure 8.1, there is a button that
will insert the entire expressiaidC' D(f(n), f(n+1)) = 1, which is the statement to be proved.
For the base case, we must show that this statement is true whe 0. So, let us insert this
expression into the goal and substitOtdes for then tiles. Filling these in and clickingCheck
Proof" we find that the base case can be solved by the simplifier,agrsim Figure 8.3.

.
éPo prove that: ged(f(n), ffn+1))=1 *|15? Normal response

. o show ged (F0, F(0+ 130=1
Call this the Proposition for n
S? Normal response

@00fhy mduction on n Successiul attempt to salve goal by exported rule:

Base case: ged (70,70 + 1) =1

@e can show our goal that ged (f(0), £ 0+1)) =11is true G/Sanplification

Inductive step:

EEES

(Exsume

n
@k can show our goal that 15 true by sunphfication

Figure 8.3 : The base case can be solved by the simplifier.

For the inductive step, we need to assume that the proposg#itrue for some arbitrary
value. We achieve this by filling in thieix and Assumdiles in the inductive step. Let us fix
n. We could explicitly assume th&tC'D(f(n), f(n + 1)) = 1, but here let us use the shortcut
Proposition for n. Checking the proof again gives us the situation in Figude 8.

82 Chapter 8. MathsTiles as a Proof Language

Toprove that: ged(fin), fin+1))=1
Call thus the Propositon for n

Proof by mduction on n

Base case:
Inductive step:

Frx n

Assume Proposition for n

. we can show our goal that

We can show our goalthat ged(F(0), f{ 0+1)) =11z true by sunphfication

15 true by sunphification

Figure 8.4 : The question with the base case completed and the step assumption filled in.

To see what happens when we introduce an error into our getofs insert the statement.”
we haveGCD(f(n), f(n+ 1)) = 2 by simplificatiori into our script. The by simplificatiori

justification makes the system use a set of term rewritingsrto try to show that the statement
Is true (see Section 8.4). Clearly, however, the statemeritave just added is not true because

we earlier assumed that expression equalsot2. The error this statement produces s

proof command failed to prove the statenieBecause this is an error, the annotation for it has

a “Suggest a fixlink underneath it. In this case, when the link is clickelde thelper function

on the teaching script that is called looks for a counterga, trying the numbers from 0 to
20. Zero should be identified becausée'D(f(0), f(1)) = GCD(1,1) = 1. Figure 8.5 shows

a screenshot of the returned counter-example.

4

@oprovethat: ged(fin), fin+l))=1
Call this the Proposition for n
(BYoof by mduction on n
Base case:
@e can show our goal that ged (f(0), £(0+1))=1is true GfSAnplification

Inductive step:

&&

@ssume Proposition for n

@)@ehave ged(fin), ffn+1))=2E8simplification

®@* can show our goal that 1s true by simplification

Error response
This proof command failed to prove the statement

What does this mean?

Sunggest a Fix

<

Topic Links: Mathstiles

This counter-example shows the line is wrong:
n=0
Is this useful to you? - yes no

Figure 8.5 : If we insert an incorrect statement into the inductive step, the Teaching Script can

help identify a counter-example.

Of course the errorThis proof command failed to prove the statefiean also occur if
we make a true statement that we cannot prove by simplificatimr example, let us try to

8.1. A Straightforward Example 83

4 4

Error response
This proof cammand failed to prove the statement

@oprovethat: ged{ fin), fin+l))=1

Call this the Proposition for n Whak doss this mean?
(Boof by mduction on n Sungest a Fix
Base case:

@e can show our goal that ged (f(0), £ 0+1)) =11is true G/Sanplification

Inductive step:

&

@xsume Proposition for n
@.)@ehave ged(fin+1), f(n+2))=1E4simplification

(&¥E: can show our goal that 15 true by sunphfication

< 4

>

Topic Links: Mathstiles

I can't find a counter-example. Perhaps the line is true but Isabelle can't prove it - maybe you need to
use an extra rule, or it might just be algebraicly too far from the previous line
Is this useful to you? - ves no

Figure 8.6 : The feedback given when no counter-example can be found. It can be difficult to
ascertain why Isabelle/HOL failed to prove a statement, so the feedback tries to encourage the
student to take smaller steps. (There is no straightforward definition of what “algebraically far”
means — this message is simply a way of encouraging students to make each line of the proof
resemble the previous line more closely. The kinds of reasoning steps that the proof can make,
however, are discussed in Section 8.4.)

immediately prove tha&GC'D(f(n + 1), f(n + 2)) = 1. This is certainly true — in fact it is
almost exactly the goal for the inductive step — but it carb®proved automatically using the
simplifier. The message returned from the helper functi@n@vn in Figure 8.6.

The tile tray has been hidden in Figures 8.3 to 8.6 in ordet tbdiscreenshots on the page.
Referring back to Figure 8.1, however, we can see that weaea the rules7C D(m, m+n) =
GCD(m,n) andGCD(z,y) = GCD(y,x). Also, if we are stuck at this point and click the
“Help, I need a hiritlink, we receive a useful message, shown in Figure 8.7.

| |< >|

Topic Links: Mathstiles

We want to show something about gcd(f(n+1), f{(n+2)), and we know that f(n+2) = f(n) + f(n+1) ...
Is this useful to you? - yes no

Actions: Check proof ! Help, I need a hint! | Reload this frame : Clear answer & start again !

Front Page (experiment home)

from where you can find other questions or answer the questionnaire.

Figure 8.7 : The teaching script makes a suggestion if we click Help, | need a hint.

This suggests that we should substitfite) + f(n + 1) for f(n + 2) in our goal and see if
any of the rules we are given can help us. The proof from hangrages:

. wehaveGCD(f(n+1), f(n+2)) = GCD(f(n+1), f(n+1)+ f(n)) by simplification

84 Chapter 8. MathsTiles as a Proof Language

. with GCD(m,m +n) = GCD(m,n)
we haveGCD(f(n+ 1), f(n+2)) = GCD(f(n+ 1), f(n)) by simplification

. with GCD(z,y) = GCD(y, x)
we haveGCD(f(n+ 1), f(n+2)) = GCD(f(n)), f(n+ 1)) by simplification

This is a kind of backward proof. We wish to show tli&t'D(f(n + 1), f(n+2)) =1, so
we have taken the left hand side of that equality and, by apglarious rules, we have shown
that it equals the left hand side of the equality from the ssgumptionGCD(f(n), f(n+1)).

In the step assumption, we assumed tHatD(f(n), f(n + 1)) = 1, so therefore we can also
conclude thaGCD(f(n+2), f(n+2)) =1

However, we are still not quite at our goal. Just as our gaekstient for the base case

involved substituting for » in the proposition, so our goal in the step case involvestgubag
n + 1 for n. Our actual goal line then appears as:

.. we can show our goal thatC'D(f(n + 1), f(n + 1+ 1)) = 1 by simplification.

Alternatively, we can use the shortcurroposition forn + 1”. This is shown in Figure 8.8.
This figure also shows that the teaching script has regsteeeannotation from Isabelle/HOL
stating that the theorem has been proved, and a congratuhagssage is displayed.

=

éPoprovethat: ged{ fin). fin+l))=1 *
Call this the Proposition for n
@@fhy mnduction on n

Base case:

@e can show our goal that ged (F(0), £ 0+1))=1is true GfSinplification
Inductive step:

&
@sswne ged(fin), fin+l))i=1

%have ged(fin+1), fin+2))=ged(fin+1), fin+1)+ f(n))G smplification
%}ith ged(m, m+ n) = ged(mn) we have ged(f(n+1), f(n+2))=ged(fin+1), f(n))istrueS) simplification
%}ith ged(x v)=ged(y, ®) we have ged(f(n+1), fin+2))=ged(fin), f{n+1))istrueG} simplification

(®EL can show our goal that Proposition for n + 1 is true GfSanplification

<

Topic Links: Mathstiles

OK, that looks like Isabelle is happy you've proved the statement. Well done.

Actions: Check proof ! Help, I need a hint! ! Reload this frame ! Clear answer & start again !

Front Page (experiment home)
from where you can find other questions or answer the guestionnaire.

Figure 8.8 : The completed proof.

8.2. Proof tiles 85
8.2 Prooftiles

One use for definable tiles is to expose to students what ey to do to fully answer an exam
question — for example, what is needed to complete an inmlugtioof, or how to show that a
set relation is an equivalence relation. Tiles can be defim&dnclude sockets for each section
the student is expected to include to complete the indugtiamof or show the equivalence
relation. A tile for natural induction is shown in Figure 8&long with its Isar translation. It
is implemented as a nest of tiles, but some of them are marskedselectable (and so cannot
be taken out of the parent tile), so to the user it appears to $irgle tile. The tile contains
a socket for the student to fill in the induction variable. Baih that is a section for the base
case. This contains an expanding socket list for the prepissihe student will take to show the
base case. The final goal step has already been filled in ®pémticular tile using the shortcut
“this caseé as the goal statement. The reason why this shortcut is soreetused is described
in Section 8.6. A second section in the tile is provided far ithductive step case.

Proof by induction on

Base case:

. we can show our goal that this case is true by simplification
Inductive step:

Asgsume that the proposition 15 true for some value

.. we can show our goal that this case 15 true by sunphfication

proof (induct variable rule: altInduct)
case base

proof commands

with prems show ?case by simp

next

case (step variable)

proof commands

with prems show ?case by simp

ged

Figure 8.9 : A tile for natural induction that is used in Section 8.7, and its Isar translation.

In the Isar code of Figure 8.9, notice the tekt'le: altInduct". Thisis notrepresented
anywhere on the tile. This is a small example of how quessipecific code can be hidden in the
Isar conversion of tiles. In this case the reason for theatltn is simply that Isabelle/HOL's
default induction rules use the successor function anddensase$ andSuc(n), whereas for
this question | wanted students to reason with cassesdn + 1. | therefore hid an alternative
induction rule in the conversion script for the questiord aat the induction tile to use it.

The induction tile in Figure 8.9 is not intended to be the anduction tile in the system. For
example, Figure 8.10 shows an induction tile that is usedmesquestions about the Fibonacci
sequence. For this tile, the induction scheme uses the t&fiiof the Fibonacci sequence. So,

86 Chapter 8. MathsTiles as a Proof Language

Proof by mduction using rule on

using our modified mduction rule.
We can show our goal that 1s true by sunplification
We can show our goal that 1s true by sunphification
Fux
Assume

Assume

.. we can show our goal that 15 true by simphfication

proof (induct variable rule: fibInduct)
show expressiorby simp

next

show expressiorby simp

next

fix variable

assume expression

assume expression

proof commands

with prems show expressiorby simp
ged

Figure 8.10 : A tile for induction over the Fibonacci sequence, and its Isar translation.

there are base cases f0) andf (1) and the inductive step must make assumptiong for-1)
andf(n—2). The tile also uses the induction proof method slightlyetitly in Isar. In Figure
8.9, the tile used the Isar case labetaSe base” and “case (step variable)”; these
cause Isabelle/HOL to make the appropriate assumptiorigeantuctive step automatically.
In Figure 8.10, however, the student is asked to fill in theiagdions explicitly, and they are
translated intdf ix andassume commands. The tile in Figure 8.10 also asks the student te wri
the goal statement and does not use tigs“casé short cut. The straightforward example in
Section 8.1, meanwhile, used an induction tile over the fatuumbers that similarly asked
students to fill in the step assumption and the goal statement

It is important to note, however, that socketed tiles arepnobf sketche# the way that
the automated reasoning community uses the term. ProafleefLam95, Wie04] are proofs
with some of the low level reasoning omitted to make the esseithe proof more readable.
The main reasoning steps are shown in full in a proof sketabofRiles, meanwhile, are syntax
templates that do not contain any of the statements in thaf prdil the student fills them in.

8.3 Colour Coding

Although MathsTiles does not support a formal type systéroamn provide the user with a
few hints. In the proof exercises, | colour coded the sockétsles, and colour coded the
background of sections of the tile tray to match. This issiliated in Figure 8.11.

8.3. Colour Coding 87

Proof methods

Toprovethat VmeN m=>0= f{m+n)= f{m-1)%Xf{n)+ fim)xffn+1l)
Call thus the Proposition for n

[induction]

Proof commands

[.. wie have (expr) by simplification]

[.. with {rule) we have {expr) by simplification]

[Rewrite (skatement) For (expr) gives us (expr)] Proof by mduction on

Rules Base case:

[onk=mktrk | kmtn=km+kn |

Maths expression
-][-][.][=] .. we can show our goal that this case 15 true by sunphfication
= 0 = v] en] Inductive step:
Prop for {expr)][fi 3y] Assume that the proposition 15 true for some value

Selioment (] l .. we can show our goal that this case 15 true by sunphfication

Expression l

[
[
[
l Variable or Mumber l
|
|
[

wm. 0<m = F{m-+n) = F{m-17*F(n) + F{m)*fin+13]

Figure 8.11: A tile containing a coloured socket with background text, indicating what kind of
tile should be dropped into it. The buttons with the same background colour produce the right
kind of tile for the socket

There are four different socket colours used. The pink dsckee for expressions. These
correspond to the inner HOL syntax in Isabelle, whereas tierdhree colours all correspond
to aspects of the outer Isar syntax. As Isabelle/HOL worksugh the proof, its Isar Virtual
Machine [Wen05] moves between two modes that describe whdtdf operation is expected
next. In theproof(state)mode, the proof is expected to state new assumptions, gaads,
intermediate results. The blue sockets and buttons aref@a@mmands” that correspond to
this mode. In thgroof(prove)mode, the proof is expected to justify a goal or result thaag
just stated. The yellow sockets and buttons are “proof nuththat correspond to this mode.
(The Isar VM has a third mod@yroof(chain) that the proof exercises do not use.) The khaki
sockets and buttons are for statement labels and rule names.

The colours were picked arbitrarily. The decision to coloade these four categories,
however, came from informal observations when volunteesstfied the proof system, before
the evaluation trials. | noticed that users would often ihaa expression as a line of proof,
in either the base case or the step case, without enclosingiproof command such as.”
we have ... by simplificatién This happened even if they had written several previooesdi
correctly, and suggested that it was not noticeable endugjrat proof command was needed.
Although it did not happen in the pre-trials, there was atsodanger that students would think
they could refer to a rule by building its expression ratlamt selecting a rule label from the
Rulespart of the tile tray — for example, constructifg + n) x k = m x k + n x k from tiles
rather than selecting the(fi+n)k = mk + nk” rule label in Figure 8.11. Finally, | decided
it was important to make the distinction between proof comdsa(making new statements of
truth) and proof methods (justifying those statementsjrcle

Dark green, meanwhile, has been used as a colour code foudstian tile — the uns-
electable and indelible tile that describes the staten@bietproved and contains an empty
socket waiting for the proof.

88 Chapter 8. MathsTiles as a Proof Language

8.4 Reasoning Step Size

Answering a proof exercise is a very different situatiomirprofessional or research use of a
theorem prover. In professional use, the user should bet@abige advanced automated proof-

finding techniques to make his or her work easier. In a proefa@se, however, the automated

proof-finding techniques the student can use must be linbikeduse the student is supposed to
answer the question, not the prover. The prover should anbtite to take “obvious steps”.

The approach | have taken is to limit the student to only ussadpelle/HOL's simplifier,
through the Isas imp method (by simplificatioriin the MathsTiles proofs). The simplifier can
handle many simple steps, such as algebraic rearrangerbentsainnot automatically solve the
proof exercises from the Discrete Mathematics course.

The simplifier repeatedly applies a set of rewrite ruleslécathesimpsel to the current
goal statement. A rewrite rule describes a pattern that nmgtich part of the goal statement,
and states what it should be transformed to. Each rewrigeisthknown to be formally correct
when it is applied. It might be an assumption or a lemma thaah@ady been shown to be true
in the current proof, or it might be a theorem from one of Isl@idOL’s libraries, or it might
come from the definition of a function. For example, the d&bniof the Fibonacci sequence
in Section 8.1 produces a number of rewrite rules, includiva f(0) can be rewritten as.
Additionally, Isabelle/HOL’s simplifier can call upon a nber of built-in methods for handling
arithmetic expressions.

Allowing only simp also provides a “configurable notion of triviality” becausges can
be added or removed from the simplifier — effectively configgiwhich rules are considered
trivial. This can be used to force the student to be explibaw steps that are considered
important for a particular question.

8.5 Annotations

As described in Chapter 5, when proofs are executed in lIedHEL, the responses are col-
lected as annotations. Figure 8.12 shows a matcher from fotte @onversion Scripts. The
output.append(...) calls append PGIP-formatted [ALWO5] Isar commands to the-Br
ker’'s buffer. Theprocessor.talk(...) calls then tell the Broker to write its buffer out to
Isabelle/HOL and collect the responses as annotations. alhetations are associated with
the tile that is passed inforocessor.talk(...). Usually, thisis it”, which is the tile the
matcher is processing. So, choosing which matchers shallljdrocessor.talk(it) selects
where the annotations will appear.

The annotations are shown first as small icons on the tiless@ Bnnotations are the reason
why the induction tile in Figure 8.9 is implemented as an jr@gable nest of tiles: although
the nest behaves to the user like a single tile, the annotaheed to be marked against the
commands that caused them. For example, the proof state e case is different from the
proof state in the inductive step. The annotation types are:

® Proof state — these annotations let the user see what gaalsmee proved at this stage
of the proof, and what premises are being used.

9 Comment —non-error comments, such as saying that a goakkeasshiccessfully shown.
E Error — faults Isabelle/HOL has found with the proof, or esrm syntax.

8.5. Annotations 89

processor.matcher (MATHSTILES_NAMESPACE, "tile",
{it.getAttribute("definition")=="proofs:inductionNatManual"},
{
output.append("<proofstep>proof (induct ");
processor.process(it, "mt:socket[@name='variable’]);
output.append(" rule: altInduct)</proofstep>");

processor.talk();

processor.process(it, "mt:socketList[@name='step list’]");
processor.process(it, "mt:socket[@name='show’']");

output.append("<proofstep>ged</proofstep>");

processor.talk();
3

Figure 8.12: A “matcher” (pattern + template) for one kind of induction tile. The second (large)
code closure describes the procedural actions to take for these tiles. it refers to the document
element that has been matched: the tile. The base case and step assumption are implemented
as unselectable tiles contained within the the step list. Consequently, their Isar code is not
produced by this matcher but by their own separate matchers.

Clicking on the icons gives more detail of the annotation iseparate pane, as shown in
Figure 8.13.

The responses from the prover are post-processed in theBirokrder to make the mes-
sages more understandable to the student. They are algoessopic keys, which refer to the
content model described in Chapter 4. TNeéHat does this meah®tnk in the annotation pane
looks up a the associated topic in the book. Error annotati@ve a Suggest a fixlink un-
derneath them. Clicking this link calls an advice functiaorthe Teaching Script for the error’s
topic.

The Teaching Script superclass for proof questions comtme advice functions for com-
mon errors topics. For example, it includes a helper fumctoy the ‘Proof command failet
error message that will try a number of different values farables to try to find a counter-
example that would show the proof line was untrue rather fhahunproven. This finds the
relevant state annotation that contains the premises aald gbthe failed command and parses
each goal and premise. It attempts to find numbers which ntla&chremises but do not match
the goal statement. An advantage it has over just usinglls&8®L’s in-built mechanism for
finding counter examples is that the Teaching Script can ukiesient definition of a function.
For example, using the equation for thih Fibonacci number instead of the recursive definition
of the sequence.

As described in Section 5.1.3, the advice function to cathigsen by an algorithm in the
Teaching Script. This collects all the registered advicefions for the topic — these may come
from a Teaching Script superclass or from the Teaching Stoipthis particular question. It
then checks which advice functions are relevant, accortbrifpeir relevance functions, and
then selects a function to call based on whether previoutests found it useful.

90 Chapter 8. MathsTiles as a Proof Language

'© n @Proofstate
Toprovethat 2% 2 i =nxX(n+1) This:
ien =0 2% 3{0..n} =n* (n+ 1)
Call this the Proposition for n and call the sum (Sum for n) 2 I{l..n+ 1} =2 " I{0..n} + 27 (n+ 1)

(Boof by mduction on n

what does this mean?

®e can show our goal that Proposition for 0 is true GSAnplification () Proof state

@Gk n This:

Exsume Proposition for n 2% E{0..n} =n % (n+ 1)

@)@ehave (Sumfor n+1) = (Sumfor n) + 2 x (n +1) G} simplification 2% Z{0..n+ 1} = 2 % Z{0..n} + 2 % (n+ 1)

what does this mean?

E Error response
This proaf cammand is incomplete
what does this mean?

pidan show our goal that 1s true by simplification

Sugaest a fix

Figure 8.13: The responses from Isabelle/HOL are marked on the proof tiles as annotation
icons; these annotations can then be shown in full in the annotation pane by clicking on their
icons. The annotations disappear when tiles are dropped into or pulled out of a socket. (Since
the user has already placed the tiles, and so knows what they are, the fact that the icons can
obscure some of the text on the tile is less of a problem than it might appear from the picture.)

8.6 Two Design Compromises

In Chapter 6, | described design goals that the student dHwaue to write the statements in
a proof, and that the proof should resemble what studentg wri paper. In this section, |
describe two design compromises | made in this area.

8.6.1 The student does not always have to write the goal state ments

Referring back to the induction tile in Figure 8.9, the gdaltements for the base case and
inductive step are simply the shortcuhis cas€ The student has not been forced to write
them.

The reason why this shortcut is sometimes used is that whaelineabelle/HOL that we
are using induction or proof by cases, Isabelle/HOL autarally works out what the goals
need to be for each of the cases. Students, if they were allowvevrite in the goal, might
write it in a way that a human would consider equivalent bat tk very slightly different to the
goal Isabelle/HOL calculated — for example swapping thesaf an addition. This would then
cause the goal statement to fail. Isabelle/HOL expectsdhésiatement to be shown exactly as
calculated, and will not allow something to be shown thatfismasteps of logic away instead.

A possible workaround for this would be for the tile not to tise show command for the
user’s goal, but to treat it as just anotteive command and then hide a command to show the
real goal by simplification in the Conversion Script. Thisulallow the user to put in a goal
that was “trivially close” to the goal and the proof would seed. Unfortunately, for goals that
Isabelle/HOL's simplifier can prove from the definition, bugs> " 0..0 = 0, this would also
allow the user to write in a true but irrelevant statementhsasl = 1, as the goal and the

8.7. A Difficult Example 91

hidden proof command would still prove the real goal. The aomotion of a “trivial step” is
different from the notion of whether a statement is equivede the goal.

Section 9.4 discusses some potential long-term solutmtisg issue. For the usability trial,
described in the next chapter, however, students were giveriles that would make stating
the goal more straightforward. In most questionsPeoposition for .. tile was available, as
used in the example in Section 8.1. This tile provides a pafte writing the proposition from
the question, with a particular value or expression inserk®r example, the goal of the base
case of an induction over the naturals would be tReoposition for0”, and in the inductive
step we would assume th@foposition forn” is true and attempt to show théfoposition for
n+ 1" must also be true. In one question, however, the inductiemad a this casétile fixed
in its goal sockets, so in that question students did not tavweite the goal statement at all.

8.6.2 The proof is checked linearly.

The student is free to write the proof in any order using Mailles. However, because the proof
Is translated into Isar, an error in the proof is likely to saevery following line of proof to fail.
These follow-on errors could be an unhelpful distractimmfrthe original (causative) error, so
when the proof is checked, the Broker stops collecting atiwots after the first error. This
means that the student gets no feedback on correctneseflinéls after the first error. While
the interface does not prevent the student from constigiti@ proof in any order, the system
provides much stronger support for starting at the begmoirthe proof and working towards
the end.

8.7 A Difficult Example

This example is part of a question from the 2004 written exahby first year undergraduates
in the Computer Science tripos. It is a proof exercise thegdhnically more difficult in Isar. It
is described here to show how a question author, by adjustenguestion and the proof script,
can set a question up so that students will not encounter ebthe technicalities.

The student is again given a definition of the Fibonacci seqeéthe same definition as is
given in Section 8.1), and is asked to prove by induction fttat + n) = f(m — 1) x f(n) +
f(m) x f(n+ 1) for all m > 0, wheref(n) corresponds to theth element of the Fibonacci
sequence. A rough paper proof that resembles the MathsiGtasion is shown in Figure 8.14.
The completed MathsTiles version of the proof is then shawRigure 8.15. However, there
is a difference between the paper proof and the MathsTilesfpin the paper proof both
andm are explicitly universally quantified; in the MathsTileopf m is explicitly universally
guantified, but: is not — although it ismplicitly universally quantified.

Practically, the reason for the difference is that as a qureeauthor | initially wrote the proof
in Isar with both variables explicitly universally quargifi, and the proof failed. Removing the
guantifier fromn allowed the proof to succeed, but if | removed the quantifiemfm as well,
the proof failed again. In each case, | decided the reasothéfailure was too technical
to expose to first year undergraduate students. So, by giitie question withm explicitly
universally quantified and not, | forced the students answering the question to tak@akie
that succeeds.

The reason why, must not be universally quantified is that in Isabelle’s HOgit, induc-
tion is only permitted ovefree variablegNPWO05]. A free variable acts as a place marker that

92 Chapter 8. MathsTiles as a Proof Language

To prove thatym,n.m >0 — f(m+n) = f(m—1) x f(n)+ f(m) x f(n+1)
Proof by induction om
Base case:

We can show'm . f(m+0) = f(m—1)x f(0)+ f(m) x f(0+1) by simplification
Inductive step:

Fix n
AssumeA: Vm.m >0 — f(m+n) = f(m—1) x f(n)+ f(m) x f(n+1)
With A, substitutingn + 1 for m,
we havef(m +1+n) = f(m) x f(n)+ f(m+ 1) x f(n+ 1) by simplification
~ Withm >0 — f(m+1) = f(m)+ f(m—1)
we havef(m + 1+ n) = f(m) x f(n) + (f(m) + f(m — 1)) x f(n+ 1) by
simplification
. With (m + n)k = mk + nk
we havef (m+14n) = f(m) x f(n)+ f(m) x f(n+1)+ f(m—1) x f(n+1)
by simplification
. With km + kn = k(m +n)
we havef(m +1+n) = f(m) x (f(n) + f(n+ 1))+ f(m—1) x f(n+1) by
simplification
~ Withm >0 — f(m+1) = f(m)+ f(m—1)
we havef(m+1+n) = f(m) x f(n+2)+ f(m—1) x f(n+ 1) by simplification
. We have
Vm.m>0— fm+14+n)=f(m—1)x fln+1)+ f(m) x f(n+1+1)
by simplification
-, Our final goal, that¥m . m >0 — f(m+ (n+1)) = f(m—1) x f(n+1) +
f(m) x f((n+ 1)+ 1) can be shown by simplification.

Figure 8.14: A proof of the question that makes sense on paper. In the inductive step, we
perform a forward proof: we take the step assumption and use it deduce further statements until
we can finally conclude that the goal statement must also be true. (Again, “by simplification”
asserts that the statement can be shown automatically using the set of term rewriting rules and
arithmetic procedures that are available to Isabelle/HOLs simplifier — see Section 8.4.) The
proof fails in Isabelle/HOL because in Isabelle’s HOL logic, induction is only permitted over free
variables, whereas in this paper proof, n is bound by a universal quantifier.

can be substituted with any other expression later, subjdygtto type-checking (eg, a Boolean
cannot be substituted for a Natural number). In the exampésstipn, we wished to prove a
proposition, let us call itP(m, n), is true for allm > 0 and for alln € N. To prove this by
induction in Isabelle/HOL, we should in fact prove thatm, z) is true for allm > 0 and the
free variabler. This gives us a free variable to induct over. We should thizhaafinal general-
isation step, in which we say “sind&(m, x) is true form > 0 and the free variable, we can
substitute the universally quantified variabldéor =, and soP(m, n) is true for allm > 0 and
alln € N".

8.7. A Difficult Example 93

Toprovethat Vm el m=0= fim+n)= fim-1)xFfin)+ ffim)=xf{in+tl)
Call this the Proposition for n

Proof by induction on n

Base case:

V. we can show our goal that this case is true by sumplification
Inductive step:

Assume that the proposition 1s true for some value n

Sowehave A0 VmeEN m=>0= f(m+n)= f{m-1)%xf(an)+ f(m)x*f{n+1)] bysmphfication

Rewrte AD for m + lgwesus f(m+1+n)= fim)X ffin)+ fim+1)xfin+1)

SWithm=>0=fim+) =fm)+fm-) wehave f{m+1+n)= fim)x fin)+(Ff(m)+Ff{m-1))xF(n+1) istrue by simphification
CoWith (mtm)k =mls+mn wehave fim+1+n)= fim)x o)+ fim)xfFf(n+l)+ Fffm-1)x7F(n+1) istue by sinplification

S With kfmtn) =lm+lm wehave ffm+1+n)= fim)x{ f(an)+ fin+1))+ Ff(m-1)x f(n+1) istrue by simphfication

Sowehave fim+1l+n)= f{m-1)%x f(an+1)+ Ff(m)x f{n+2) bysmplfication

. we can show our goal that tlus case 15 true by sunphification

Figure 8.15 : The solution to the difficult question, in MathsTiles.

However this would be a very difficult and subtle concept tplaix to a novice student,
as it is a difference between the way the students’ first yesarBte Mathematics lecture notes
[Rob06] describe induction and the way the proof assistantlles induction. The lecture notes
describe mathematical induction as a method to prove a pitiqo true“for every natural
number”, rather than for & free variable of type Natural

The reason whyn must be explicitly universally quantified in the propositig so that we
can legitimately substitute: + 1 for m in the inductive step assumption. At the beginning of
the inductive step, we have a statemdiitn, n) that we are going to assume. If we assume
Vm € N.A(m,n) is true then we can legitimately deduce that € N.A(m + 1, n) is also true.
However, if we simply assume thatm, n) is true, and do not universally quantify, it is not
valid to conclude tha#l(m + 1, n) is also true.

There is a subtlety that would be harder to explain to firstr wtadents, however. Free
variables are implicitly universally quantified, in thatthcan stand for any expression of the
same type. For example, when | described whigad to be a free variable, | explained that
we could add a final generalisation step to introduce the tifiean- replacing a free variable
with a universally quantified variable. And yet that implianiversal quantification does not
allow us to sayA(m,n) — A(m + 1,n) if m is a free variable. We also cannot insert a
generalisation step to universally quantifywithin the inductive step. Ifn is a free variable in
the proposition, then we can only add a generalisation stepantifymn after we have proved
the proposition, and not in the middle of its inductive proof

94

Chapter 8. MathsTiles as a Proof Language

CHAPTER 9

Evaluation

In Sections 9.1 to 9.6 of this chapter, | describe a qualgagvaluation of the MathsTiles/Isar
number theory proof exercises. The evaluation shows sontleechdvantages of the system
but also presents a number of challenges that remain to seds@nd helps to uncover “why
students find maths hard”.

Additionally, in Section 9.7, | describe in more detail thifatences between the Intelligent
Book and ActiveMath. ActiveMath is the research project ianost similar in aims to the
Intelligent Book, and so it is worth assessing how the sydteave developed differs from it.

9.1 Overview

My goal in evaluating the system was twofold. By asking stugend others who have no
experience of automated proof to attempt the exercisesH toisee whether novices can make
progress with the exercises with a bare minimum of trainibore importantly, | wish to
understand the usability issues that arise from the systechwhether they are insurmountable
and a different approach is required, or whether they sudgatul avenues of further inquiry.

To this end, with the assistance of undergraduate intermsBgaupta, | performed a user
trial and qualitative usability study using the Cognitiveri2nsions of Notations (CDs) frame-
work [GP96, BG03]. CDs provide a formalised vocabulary fiscdssing usability issues, with
sixteen “dimensions” that can affect usability. An exampie Cognitive Dimension i8vis-
cosity”, which is the question of how difficult is it to make changegptevious work using
the interface. The CDs Framework provides means for corniegisecondary notationfielper
devicesandredefinition devicesout in this study we only examined the primary notation: the
MathsTiles proofs.

| chose CDs for the evaluation because it is a technique | amlig& with, and | was
confident that it could meet my objectives. However, | alsielve that any suitable evaluation
mechanism would probably have produced similar resultsgémnes | present here.

Two methods were used to collect usability data:

1. A server containing an introduction to the system and smwfpexercises was made pub-

95

96

Chapter 9. Evaluation

lically available, and its use over three weeks in July 20@8 wxamined. A range of
users were asked to try the system, including Cambridgergrattuate students, under-
graduate students from other universities, postgradudbest of Discrete Mathematics,
and other interested parties. The examined exercises Wwerg the Greatest Common
DenominatoiGC D(a, b) and the Fibonacci serig&n). The proofs exercises were:

(@) Prove thaR x > 0..n = n x (n + 1), by induction on the Natural numbers. This
was the introductory example for which a walkthrough waggiv

(b) Prove thatGC'D(f(n), f(n+ 1)) = 1, by induction on the Natural numbers.

(c) Prove that > 0 = GCD(n x k + m,n) = GCD(m,n), by assuming the left
hand side of th@mpliesis true and showing the right hand side must follow.

(d) Provethaff(n+k+1)= f(k+1)x f(n+1)+ f(k) x f(n), by induction using a
different induction rule. There are two base casesOfnd1. In the inductive step,
the student should assume the proposition is true for somuedn + 1 and prove
that it must also be true for + 2.

(e) Prove that/m.m >0 = f(m+n) = f(m—1) x f(n)+ f(m) x f(n+1), by
induction on the Natural numbers.

(f) Prove thatGCD(f(n + m), f(m)) = GCD(f(n), f(m)), by considering the pos-
sible cases fom (eitherm = 0 orm = p + 1 for somep € N).

Three kinds of training items were provided. Two Flash vildotalling just over three
minutes in length, showed how to use the MathsTiles intetfAn “introductory chapter”
to the exercises, three pages long, explained similar mbtethe videos (for participants
who might not have had the Flash plugin installed). A wal&tlgh described how to solve
the first and simplest question, with screenshots.

The comments, feedback, and requests for help from useesaoeled against the CDs
Framework by two researchers.

. To identify issues that novice participants might be prém miss or unable to articu-

late, the system was assessed against a Cognitive Dimsrididlotations questionnaire
[BGO7]. This was carried out both by myself and by the undeatgate intern, who had
worked with the system for two months. The collected comser@re also passed to an
expert in CD analysis for informal review.

9.2 Numerical Results

The numerical results from the trials are shown in Table 9.1.

While very few participants indicated whether or not theyr@vstudents, from examining
their email addresses and how they became involved withrighls t confidently identified 44
of the participants as students. Of the five participants edropleted question two, three were
students. One of the participants who completed five proafs avstudent; the other two were
tutors of students but had no prior experience with IsaliéQsd..

The five participants who accessed question two but wereepitigpt to have made a serious
attempt” put fewer than six tiles on the canvas, placed alkttiles on the canvas very quickly,

9.3. Qualitative Results 97

Participants Stage
83 Accessed the server and read about the system
19 Accessed the introductory question
8 Completed the introductory question
13 Accessed question two
8 Made a serious attempt at question two
5 Completed question two
3 Completed five of the six proofs

Table 9.1: The number of participants reaching each stage of the exercises.

and did not attempt to construct any expressions or placea prethod into the answer tile.
From this | concluded that they played briefly with the inded, but did not attempt the proof.

On the one hand, the results are encouraging. In Chapteo@d that the shortest training
course in Isabelle/HOL is four sessions of ninety minuta#) ®00 slides, and | was given an
(unscientific) estimate that students might take ten weseke @ible to do simple things using the
prover. In this trial, some novice users and students hase able to complete proof exercises
despite their training being barely three minutes of vidéoage explanatory Web pages, and a
walkthrough of a single proof. On the other hand, howeverglis a significant attrition from
83 initial participants down to three who completed five gsp@nd only one of those was a
student. This suggests there are still some major issuastcame.

It is not possible, of course, to determine the reason foattréion from 83 participants
down to 8 who made a serious attempt at a proof without a wadltih. Many of these par-
ticipants may simply have been interested in looking at a imegrface, but not interested in
attempting a mathematical proof. On the other hand they naag been scared away by the
complexity of the system. The three participants who fadeéstion two, however, reported
that they had become stuck.

9.3 Qualitative Results

In the user study, | asked participants to fill in a feedbac&stjonnaire. However, | found
that many of the participants were reluctant to fill in a gigstaire form, but were more than
happy to contact either Sparsh Gupta or me informally to gs/eheir feedback. Consequently,
feeback was received by email, instant messenger, andsdiscis with users who came to my
office or phoned me to tell me their thoughts and demonstraassues they were having.
While this meant that feedback was received in a less cdatiohanner, it had the advantage
of immediacy — we were able to examine the participants’ imeslocuments when the issues
were reported to see the issues in practice and ensure weohadsunderstood them.

After the user feedback had been received, we conductedaysanusing the Cognitive
Dimensions questionnaire.

The full table of issues identified is at the end of this chgmteSection 9.6. Because of the
informal and verbose nature of the feedback, | have reptrammy of the issues for concise
presentation in the table.

For discussion purposes, | have classified these 30 quadisaatements into five categories,
three of which | discuss in detail:

98 Chapter 9. Evaluation

Non-problems.
Statements 10, 18, 21, 24, and 26.
This category lists all the positive and non-negative rdisar

MathsTiles Ul (Simple).
Statements 2,5, 6,7, 8,9, 11, 12, 15, 16, 17, 22, 27, and 30.
This category lists usability issues that suggest striaghiard enhancements to make to
the MathsTiles or Intelligent Book user interface that doingpact on the approach. For
example, bug fixes are listed under this category.

MathsTiles Ul (Complex).
Statements 13, 28, and 29.
This category lists usability issues with the MathsTiled &mtelligent Book interface |
regard as more complex or interesting. These are discusstiion 9.3.1.

Proof Language
Statements 4 and 14.
This category lists usability issues that specifically teet@ using MathsTiles as a proof
language that translates to Isar. These are discussedtinrs8.2.

Domain Specific (here Number Theory).
Statements 1, 3, 19, 20, 23, and 25.
This category lists usability issues | regard as inherernih&oproblem of freely-written
student proofs in “difficult” domains such as Number Theofhese are discussed in
Section 9.3.3.

The following three sections discuss the statements franteaist three categories in detail.
These three categories are discussed in detail becausefregent complex challenges still to
be overcome, whereas the first two categories do not.

9.3.1 MathsTiles Ul (Complex)
Statements 13 and 28: Limitations with the expression contr ol

In Statement 13, a user has seen that it is possible to typessipns, and has assumed that
any text that appears on a tile can be typed into the expressiotrol and recognised as a
valid expression. This is an issue that to an extent hasireaen discussed in Section 7.7.
Unfortunately, the MathsTiles applet in its current vensises a traditional generated LL(K)
parser with a fixed grammar. So, it is incapable of adding &fendd tiles for a question to its
expression grammar.

Statement 28 describes how students wanted to insert ifetergxpression fragments us-
ing the expression control. This is another case where thd fik (k) parsing is insufficient, but
for a different reason. The design assumption had been $keas would wish to type complete
algebraic expressions into the box to save the effort of ammmg them from tiles, or would cut
and paste expressions into the box from annotations. Havitgwens out that very often users
only want to add the few tiles they need to alter an existingession, but they still type them
into the expression control. These few tiles are necegsariincomplete expression fragment,
and might or might not be parsable with the current parsee rssible solution to this would
be to support placeholders in expressions (or effectivehave a syntax element for an empty

9.3. Qualitative Results 99

socket). For example, the expressidn_" could represent an addition where the right socket
is left empty.

An interesting observation, not noted in the table, is thatisers who became confused by
the expression box and reported Statement 28 were tryingddhe expression control in the
first (tutorial) exercise. After it was reported, | removée tontrol from this exercise and new
users did not encounter the expression box until question o further complaints about the
expression control were received and one new user compiedér(Statement 18). This might
be due to individual differences in the users, but it miglggest that when users gain even a
little more experience of an interface, they become muctiieedo work around the limitations
of newly introduced components.

Statement 29: Missing entry in the Book

In Statement 29, a user was surprised by the Intelligent Bedkulting to a Web search when it
found it did not have an entry for a topic. While | ensured theticipants saw an introduction
to the maths problems, | did not ensure that they saw an exjitemnof how the book’s content
features work. (There was a low-key link on the instructipage, but | deliberately did not
draw attention to it). | left this particular entry out of theok curious as to whether participants
would add an entry when they discovered the feature, evamgththey had not been explicitly
taught how to. They did not.

9.3.2 Proof Language
Statement 4: Universal quantification and the Rewrite tile

In Statement 4, a student is unaware that a statement musténa universally quantified

variable before it can be rewritten with a different expressubstituted for that variable. This
appears to reflect that either students do not yet understendifference between a variable
that has and has not been universally quantified, or theyresshat all the variables in the
statement are implicitly universally quantified. Unforately, | also found from experience of
writing questions, as described in Chapter 8, that proaisimto fewer technical problems in

Isabelle/HOL when the variables in the expression are nioewsally quantified.

Statement 14: Labelling of prior statements

Statement 14 perhaps represents a difference between yhpaople informally view proofs
and the way formal proof languages do. The students wereisedthat the prover appeared to
“forget” statements that were only two lines back in the fpr&dhen people write arguments in
English, they expect the reader to remember the contexediettt so far without labelling the
earlier sentences they refer to. (This can be seen in thelrangdeers to the tutorial questions
shown in Chapter 10.) The'‘we have ... by simplificatidriles that students were using in
their questions, however, translate to the Isar structmi¢lf prems have ... by simp”.
This uses only the previous line and the assumptions tayuste new line of proof. If any
earlier lines of the proof are needed, they must be labehed@ferenced explicitly.

On the one hand, this requirement to label referenced statisnis an artificial form of
interaction that does not match exam paper proofs. On tiez bind, however, forcing students
to state which previous lines they are using forces studeritink about the structure of their

100 Chapter 9. Evaluation

proofs and might be considered to be educationally helpfethaps a suitable approach would
be to make referring to earlier statements easier by autoatigitiabelling every proof line,
and to add a visual hint to indicate that by default the préatesnent only uses the immediate
previous statement and the assumptions.

9.3.3 Domain Specific Issues (here Number Theory)
Statement 1: Tiles were only provided for one solution

In Statement 1, the problem is that not enough tiles have pemmnded to allow the student to
solve the problem by a different proof strategy than the @utitended. In terms of Cognitive
Dimensions of Notations, there is a trade-off betweisibility andpremature commitmetiere
— by providing more tiles it becomes slightly harder to idignivhich ones you need. In this
particular case, the extra tile is a different inductioe,tidnd providing it would be unlikely
to make the tiles too hard to find. However, in cases where y&al o provide extra rules to
support alternate strategies, this loss of visibility cooécomes a much greater problem.

The set of rules that the simplifier includes (and that the@ses consider “trivial” as
described in Chapter 8) is called thienpset In the second question, the simpset included some
1,570 rules. While students do not need to know what rulesnatiee simpset, they need to
be able to ascertain what rules aret in the simpset. How else could they know they need to
state them? The set of rules in the tile tray gives a strongaVisue as to which rules have to
be stated. However, the more rules there are in the tile tin@yharder it is to spot each rule.
Taking the rules off the screen (and using a query mecharostiém) does not appear to be
a viable option. Students might only be able to articulatatwhles are necessary for a step if
the step size was very small.

Allowing students to use more complex automated methotiserghan just the simplifier,
would be one possible way of resolving this issue. Referbagk to Section 8.4, | restricted
students to use only the simplifier because it forced thenate siny “non-obvious steps” ex-
plicitly, and provided a configurable notion of trivialitidowever, if more complex automated
methods were made available to students, there is the démgfestudents them to solve the
question by trial and error. There appears to be an integegtade-off between allowing stu-
dents to “game the system” and making it easier for them téoesphe proof.

Another possible approach might be to allow the teachinigisar conversion script to infer
the necessary rule. During the verification process, th@tsoould try each rule in turn and
then identify what rule was required. Only steps that inedhadding a single rule would be
allowed. This would have the effect that the student woulkedre state the steps explicitly but
not the rules.

Statement 3: Proofs are fragile

Statement 3 describes how changing an early line of the pranfcause following lines to
fail. Even a trivial re-ordering of additive terms in an etjoa can cause a rewrite rule to fail
— the terms are equivalent to the student but not to the proMeere are two aspects to this.
On the one hand, perhaps the system should remember whashitihas already proved, and
be more reluctant to mark those lines as no longer proved.h®wother hand, this could give
an inaccurate proof document, where lines of proof purpmtidve come from one chain of
reasoning, but actually come from another. Another paaéstlution might be to use a less

9.4. Future Work 101

rigorous theorem prover that treats “equivalence” in a neamnore similar to that which the
student expects. (This prover might yet need to be invehiadever.)

Statements 19 and 20: Students could only take small proof st eps

Statements 19 and 20 describe how the steps students canamakeh line of a proof in an
exercise are very small. In the proof exercises, this rekatéhe fact that we only allow students
to use the simplifier, and we only allow them to invoke one tronal rule at a time. However,
even if these restrictions were relaxed students still trfigld themselves limited in the kind
of reasoning steps they can take. The reasoning steps toatated methods can make do not
easily and naturally correspond to the steps that a humama&a. So, just as humans can take
reasoning steps that are hard to verify automatically,raated methods can also take steps that
a human would find hard to follow. If we rely purely on autonthteasoning to provide the
model for a question, then we can only support smaller steggsbibth automated methods and
humans can follow.

Statement 23: Students could not recognise a bug from a mista ke

Statement 23 describes how a bug in the tile translationechas error in some proofs, but
students could not tell that this was due to a bug and assume&dproofs were wrong. This
is perhaps an inherent problem with a teaching system irfiaudtfdomain — because students
are inexperienced with the material and the system, theytfditficult to think critically about
whether the system is operating as expected. This meangettyatareful testing and debugging
of proof questions is necessary before they are made aleaitabtudents.

Statement 25: Lack of a proper progress measure

Statement 25 describes how the only visible measure of gssgwith a proof is the number
of rule tiles that have been provided but not used yet. It edod possible to provide a more
direct measurement of the student’s progress by compdriagipre-written proof, but as with

Statement 1, this raises the problem that unexpected aotutiould not be supported in this
way. Practically it might be appropriate for exercises toyute guidance and support for a
number of pre-planned proofs, but allow unexpected prosfsta be constructed even though
only limited assistance could be provided with them.

9.4 Future Work

This section describes some issues that are interestingngder in future work that directly
relate to formally verifiable proof exercises and to the igglstudy. More general issues that
arise for future work are discussed in Chapter 11.

9.4.1 Consideration of lemmas

The evaluation exercises did not assess how students cae t¢einmas in their proofs. The
reason why | did not consider it here is that proof exercise®#ien set in a number of stages.
Parts (a), (b), and (c) might ask the student to prove paaticiseful lemmas, and then part (d)
might ask the student to use those lemmas to derive an inmpoesult. In the exercises, each

102 Chapter 9. Evaluation

of these parts could be set as a separate exercise. (Andlitliedinal question in the study
did draw together the lemmas proved in the previous questidtowever, not all questions on
paper are set in this broken-down style, and if a Reactiverlieg Environment s to let students
try out their ideas, then it is important that they should bke &0 take their own approaches to
solving the proofs.

9.4.2 Not using a direct translation

Performing a direct translation from MathsTiles to Isariaidy naive approach to the problem.
It was taken on the grounds that, this being an unusual pntefface, it was important to reuse
an existing and well established reasoning mechanism @gahtiere would not be too many
novel factors impacting on the usability study). It would ferfectly reasonable instead for
the Broker, when examining a line of proof, to set all of theyious statements as lemmas,
define the proof line as a goal theorem, and see whether amatéd tactic can prove it or not.
There would need to be some careful consideration of whatréines should be given to the
tactic, however, so this would move much of the problem ih® ¢onfiguration of the proof
tool. However, it could allow the MathsTiles proofs to res#enlsar much less — there would
not need to be a straightforward translation to Isar. It Walso be possible to try to verify a
given line of proof using more than one reasoning system.

9.4.3 Automatically set parts of a proof document

Writing proofs using tiles is currently a one-directionatigity, where the student writes the
proof and the system comments on it. However, where themdsgrendencies between elements
in the proof, it may be helpful to allow the system to write djuest parts of the proof, or to allow
parts of tiles to be calculated from their surrounding rathan strictly defined in the XML. For
example, if an early proof line is changed that breaks lates|of proof, perhaps the system
should attempt to automatically adjust the later lines gy @re no longer broken. Similarly,
where an automated proof method is used to justify a statemperhaps that automated proof
method should be able to write back to the MathsTiles proefdétails of the proof steps it
used.

9.4.4 Configurable level of formality

It may be helpful educationally to be able to have a configierkdvel of formality in the prover.
For example, we observed that students did not appear tostadd the issues around universal
guantification. What if the model could be made to tempoydalget those issues until the
student was due to learn them? A common technique througiokekucation is to teach a
simplified and abbreviated version of the material first, tmithtroduce the complexities later.

9.5 Conclusions from the Qualitative Evaluation

The exercises appear to have enabled a few users in the stadynplete formally verifiable
proofs with a surprisingly small amount of training. The hifity issues raised with the in-
terface during the study do not appear to be insurmountalifigugh there remain a number
of significant challenges these proof exercises have natadéd. For example, each of the

9.5. Conclusions from the Qualitative Evaluation 103

exercises only provided the right tiles for a solution thed lalready been carefully checked by
the teacher. This means that although students are thelhefree to “try out their ideas” in

a Reactive Learning Environment, in practice they can oantceed with ideas the teacher has
thought of for them.

Two participants commented informally after the study thedugh attempting the exercises
they felt they had learnt a little more about automated pessistants, and felt braver to try
using Isabelle/HOL, where before they thought Isabelld/kduld be too difficult to learn.

Some challenging user interface issues arise where thergtsi@xpectation of how some-
thing should work is different from the goals of formal pro&for example, students appeared
to hope that all the statements they have made so far in tlod yauld be remembered, and
the checker would automatically determine which ones shbelused to demonstrate the next
statement; formal proofs, meanwhile, attempt to be expdibout their structure and which
statements are involved in which steps.

Another challenge is developing automated systems thatgge enough for a student to
understand roughly how they work, but that can make the santedt steps that humans do
when reasoning about a proof. The system needs to be ablefyphueman reasoning steps so
that automated proof exercises do not have to differ too nfnach paper proofs. Students must
be able to understand roughly how the reasoning system vibatause there are often proof
steps that a reasoning system cannot verify and cannobgspstudents need a mental model
of why the system cannot verify a step, so they can changetéipeascordingly. Making the
reasoning system understandable is especially challgngirthe proof exercises described in
this paper, we use a very simple model of “triviality”: thesea set of trivial rules. But even
with this simple model, the sheer number of rules means tiadlifficult for a student to know
whether or not a proof step requires a non-trivial rule. Véithore complex notion of triviality,
it might become very difficult indeed for a user to understamy a step is not trivial to the
reasoning system.

104 Chapter 9. Evaluation
9.6 Detailed Qualitative Results

The table below presents the collected issues from the tisgy and Cognitive Dimensions
questionnaires. For ease of presentation, | have alsdl liseissues and feedback from the
users against relevant Cognitive Dimensions. (The usenuamts were assigned to appropriate
dimensions by me and informally checked by Alan Blackwellgapert in CDs.)

Statements for issues that were first raised by a user areetharnkh a U. Statements that
were not reported by users, but describe issues that weredaealed in the Cognitive Dimen-
sions analysis are marked CD.

Premature Commitment

1 U The choice of which tiles to give the student often forcethgle solution method
on the student. For question 4, a student commented thattheg have easily
answered the question using the technique from questiaunt &yéy had not been
given the necessary tiles to do so.

2 U The questions offered only provided tiles support fomfard proof (moving
forward from the premises, rather than backward from thé)goa

Hidden Dependencies

3 CD A change made to an early line of proof can cause followirapf commands
that had worked before to fail. This was particularly nogiicke where small
algebraic changes are made (swapping a few terms aroundjpilee a rule that
the simplifier used to no longer match the line.

4 U Users did not understand that tRewrite statement for expression
command (that corresponds to Isabellef§ ... 1 syntax) only works if the
statement has a universally quantified variable in it. (&fely, it only works if
there is &V’ in the expression). Otherwise Isabelle/HOL marks the contna
with an error.

Viscosity

5 U Currently only free-standing tiles and nests of tiles barcopied or deleted. A
user asked for a way to copy a tile that is in a socket withollinmuit out of the
socket first.

6 U Expanding socket lists for commands only ensure thaetlseean empty socket
at the end of the list. This leaves users having to manuall§flshcommands
down the list if they wish to insert a command in the middle.

7 CD Although structural changes (eg, swapping two nestdes)tcan be very fast,
some other actions are slower than if textual edits weravelib— for example
changing(a + b) x cto (b+ ¢) x a.

Visibility

8 U Ifaline of proofis particularly long, they simplification can be hidden by
the annotation pane (it can be revealed by scrolling). Hewekis means that if
the line of proof fails, the error icon that is placed owgr simplificationis
not immediately visible. This sometimes caused studeritimealise that there
was an error in their proof, and they would become confused hsw come the
congratulatory message saying they had completed the girdobt appear.

9 U For one user, the bottom of the MathsTiles canvas happtnedincide with
the bottom of his browser window, and it took some time for homealise he
needed to scroll down to find téheck prooflink and other action links.

9.6. Detailed Qualitative Results 105

10 U Thetiles make the structure of the proof clear.

11

U

When tiles are added, they are always placed in the cehthe canvas and can
hide each other.

Closeness of Mapping
12 CD The text of the tiles does more closely map a written fotiban Isar syntax.

However, a student would not normally writky simplification” at the end of
each line.

Consistency

13

14

15

16

17

U

CD

CD

A user working through the introduction question wasfased that the Expres-
sion button could not generate tReoposition for .. .tile even though it is used in
expressions. She tried a number of different ways of typibgfiore emailing for
help and did not notice that there was a “Proposition fotbufton she could use
to generate this tile. (The expression button was remowsd the introduction
guestion, but left in later questions — see Section 9.3.#iBwussion of this).

A number of users became confused that when they triedoem line, Is-
abelle/HOL did not remember all the lines of proof that haveaybefore, but
only the assumptions and the immediately previous lfhestablishedA = B
and B = (' after a number of steps each, but when | then want to show that
A = C the state space appears to forget thlat= B (If a user needed to use an
earlier line as a premise much later, they needed to labetlitlzen re-introduce
itwith “ . with label we have ...").

Because the selection of hint and advice functions didemoember which func-
tions this student had already used, the same hint funcbaldde selected a
second time before all the other hints had been tried. Users appeared to
assume that there were no other hint functions available.

If there are three comments on a tile, three commensiaomshown rather than
one.

TheStatement Labedontrol in the tile tray is inconsistent — when a new label is
entered, it produces a label with a socket; when a label sategl it produces a
label reference with no socket. This is particularly indetent because a refer-
ence is of typeule whereas a label is of typexpressiofut the control is always
listed in the expression section of the tile tray.

Diffuseness
18 U One user expressed particular appreciation for thedSspyn button because it

19

20

is much faster to type simple expressions where the syntakv®us than to
construct them with the mouse. (This user used the systeanth#t Expression
button was removed from the introduction, and so first used the second
question).

“More talented students may become frustrated at the lacklnfiousness’, for
example explicitly having to use th&”' D(x, y) = GCD(y, x) tile”

“The system focusses on very formal proofs with only smapsstllowed by
Isabelle. This would be very useful for introducing first yeadergraduates
to formal proof. However, for teaching discrete maths | khinmight distract
attention from the core idea of the proof to getting all thellyddetails right”

106 Chapter 9. Evaluation

21 CD Thetiles for proof commands are necessarily more werbmread than the Isar
keywords they translate to. However, since proof commanelsnaerted using
the mouse, the number of words on a tile does not affect tloetedf insert a tile
into the proof.

Error-proneness

22 CD Whendragging avery large nest of tiles, it is easy tcotesthe socket you want
to drop it into and a number of other empty sockets as well,ingak unclear
where it will go.

Hard Mental Operations

23 U Abug in one guestion (later fixed) caused a proof line tidolecause thenod
tile incorrectly bracketed itself both visually and in thiartslation. Users were
unable to determine that it was a bug, however, and when thaf pine failed
they wondered if there was a missing rule that they shoule hesed. This
suggests users find it quite hard to think critically aboutthler the system is
operating as expected.

Progressive Evaluation

24 CD lItis possible to check an incomplete proof and see veneaihnot the lines of
proof so far have succeeded.

25 CD The only measure of how near you are to completing thefpimwever, is
whether there are any useful rules for the question that yve hot needed to
use yet. (The prover does not know how to solve the questitoraatically, so
there is no yardstick to measure against).

Provisionality

26 CD Because nests of tiles can be unplugged and left looigecranvas (out of the
proof but undeleted), it is relatively easy to de-commitirparts of the proof,
sketch out, and change your mind.

Role-expressiveness

27 U A number of users were not aware that by typing a label yamdiready used
into the Statement Label button, you would get a referentleabstatement.

28 U Users frequently used the Expression button to try tegea incomplete ex-
pression fragments to add to the canvas. (For example yjpisif “="). Some
of these expression fragments were beyond the capabilityeoparser behind
the Expression button to parse.

29 U The explanation for one of the error messages was migsimghe Book. When
a user clicked théwWhat does this mean?’'link for the error, the Book took its
default action when it cannot find any entries for a topic dsenting a set of
search results and links for adding your own entry into thekBdr'he user was
surprised by the sudden appearance of a set of search rasdlthought that
something on the server had broken.

30 CD Clicking an annotation icon brings up details of all #motations on that tile,
not just the one you clicked on.

9.7. Comparison to ActiveMath 107

9.7 Comparison to ActiveMath

Of the related work described in Chapter 2, ActiveMath [MAR, MBG+03, MS04, LG06] is
the most similar in aim. It is an ongoing project to develderactive Web-based textbooks that
combine both exercises and content. It is worth, therefdescribing the differences between
my system and ActiveMath in more detail.

The major difference is that the Intelligent Book, desaiibethis dissertation, takes a more
informal approach to modelling both the content and theages. Content in ActiveMath
is defined in the semantic OMDoc format [Koh00], and is nohatdble by students. It is
regarded as a canonical representation of mathematicgpeasdnalised lessons are generated
from it. The content in the Intelligent Book, meanwhile, éaka looser approach in which
multiple entries for the same content can co-exist, and k@eminimal amount of semantic
information, to ensure that users can add content to the tblout extensive training in its
content model.

In the ActiveMath system, exercises are expected to pradadailed feedback to the stu-
dent model, which rates students against competenciesatitr @oncept in the system. The
Intelligent Book, meanwhile, does not specify a student ehoout leaves it to question-type
authors to decide what student modelling, if any, a questmuld perform. This is particularly
designed to support Reactive Learning Environment questiwhere it might not be feasible
to model students. The proof exercises in this dissertatowrinstance, might be difficult to in-
tegrate into ActiveMath because it is currently impossibldetermine preciselwhya student
failed to complete a particular proof.

A third difference is that, at the time of writing, ActiveMahas not focussed on exercises
that require a graphical interface and cannot be represéntext or HTML. The only graphical
exercise | am aware of in ActiveMath is a modelling exercise/hich students draw their own
concept map for a topic, and this is compared to the conceptth@d can be derived from the
OMDoc content [MKHO5]. This exercise was, however, writterd published some time after
| developed the graphical exercise architecture describ&thapter 3.

However, there are ways in which the two projects have beglook at similar issues. For
example, Claus Zinn [Zin06] noted that Wiki content can bedoiced much more quickly than
ActiveMath’s carefully written semantic content, and timecaunt of mathematics Wiki content
on the Web is growing much faster than the content withinvedtlath. He has therefore begun
to examine ways in which the OMDoc content of ActiveMath e¢bbk used to provide seed
content for a semantic Wiki, called se(rfa).

108 Chapter 9. Evaluation

CHAPTER 10

Searching Questions

Although some users in the study in Chapter 9 successfultypbeted proofs, which is more
than we could expect if they attempted proofs directly irb&de/HOL with so little training,
the study revealed a number of significant usability prolsle8ome of these related to simple
oversights in the MathsTiles applet that would be a stréagivard coding exercise to fix (for
example, the annotations often obscure some of the textetilés). Some of the usability
iIssues, however, were more fundamental and relate to théh&chumans and automated sys-
tems have a very different notion of whether one line of sylshroof trivially follows from
another. For example, rearranging the order of an algebxaiession is often a trivial exercise
for a human, but requires the combination of many differeigs of algebra for Isabelle/HOL
to check that it is correct. In fact there are approximateh0Q rules that Isabelle/HOL's sim-
plifier considers “trivial” in most questions, and this langumber in turn makes it very difficult
indeed for a student to know which rules Isabelle/HOL dodgmaok are simple, and therefore
must be mentioned explicitly in the proof.

In this chapter, based on observations of students attegiptioofs in front of a human
tutor, | examine whether an informal model might be able fgpsut proof questions that can be
made usable with much less effort. When generalised andifigdpl show how these search-
based questions can also be used as a replacement for mahigte questions, or to provide
“massively multiple choice” questions.

10.1 Classroom Observations

In 2005, with the assistance of Kasim Rehman, | observed @ed vecorded a series of tutorial
sessions in which students worked through homework exey@sa the blackboard in front of
their peers and a tutor as part of their Discrete Mathemabasse. We recorded 13 sessions,
with four students answering questions in each sessiomim 6f one of four tutors.
Unsurprisingly, when students became stuck | observedutats would often try to guide
them to the expected answer for the question, which wasllmtean answer sheet held by the
tutors. Surprisingly, however, | also observed occasionere/ the student found an unantici-
pated solution to the exercise (which was accepted) bututioe still felt the need to explain

109

110 Chapter 10. Searching Questions

what the expected solution on the answer sheet had beensudgested that perhaps the ideal
of giving equal support to every possible solution in anlligent Book exercise is unnecessary.
Even human tutors, often found to be the ideal teaching sicefiglo84, KK91], sometimes fo-
cus on an expected solution. This might in fact be the costategy — homework exercises
are not usually set for the sheer beauty of setting a quediidrio give the student experience
in a taught area. Indeed if the question setter did not hawéuéien in mind, how would he or
she have known that it was a reasonable question to set?

| also observed that many of the questions set in the mathhesraiurse do not call for
an answer phrased as a symbolic proof, but a more informdidbnignguage argument. For
example, consider the following two questions from the iatcsessions, together with their
expected answers. (These answers have been rephrasely stighake them more readable
for this dissertation.)

1. Show that the set of irrational numbers is uncountable.

(a) We suppose that the set of irrational numbkgrns, countable and derive a contradic-
tion. Suppose thdtis countable. Every real number is either rational or ionadil.
That is,R = Q UI. The set of rational number®, is countable. The union of two
countable sets is countable. So the set of real numBensust be countable. But
R is uncountable — a contradiction.

2. Show that any set of disjoint discs (ie, circular areasciimnay or may not include their
perimeters and that do not overlap) in the plane (a two-dgioeral plane) is countable.
You may assume that the rational numbers are dense in theuedders, in the sense that
for any reals , there is a rational such that .

(a) LetD be a collection of discs in the plane. For every disk, we camwdx hypothet-
ical square aligned with the andy axis, such that the corners of the square lie on
the circumference of the circle. This square has corndts at;), (2, y1), (22, y2),
and(zy,y»). Since the rational numbers are dense in the real numbersaveea
rational numbey, € Q such thatr; < ¢4 < z, and a rational numbey, € Q
such thaty; < ¢, < y». The point(q,, ¢;) certainly lies in the disc. We now define
a functiong : D — Q x Q as follows: g(d) = (qa,q}). Since the discs iD
are disjoint, this function is an injection. Sin€ex Q is countable and there is an
injection fromD to Q x Q, D must also be countable.

Looking at these questions, there is little advantage tcdogegl from modelling the mathe-
matics formally. We already know that the arguments, wherstracted correctly, are formally
true or otherwise we would not have set them as questions. eSarevessentially looking for
the students to say particular expected statements in {h@@ate argumentative construct.
The text of the second question appears more complex, artdicsmalgebraic inequalities that
look as if they could be modelled symbolically, but that wobabt be helpful. The inequalities
are not used in any algebraic operations, but only to argaebcause there are two distinct
real coordinates and two distinct real coordinates on tbe, thhere must be a point with rational
coordinates somewhere between them. (In fact, the orignoalel answer had a slight mistake
in the inequalities that went uncorrected for two years s thighlights that the algebra of the
inequalities is not considered to be the important teacpimigt of the question.) Concepts

10.2. The Informally Modelled Scenario 111

such as drawing a square on the circle are awkward to modwabity; but very easy to model
informally as statements the student might say for this tijpes

For the tutorial sessions, the course planners explicsthed students to explain the outline
of their solution rather than focus on the specific algebtd,|kalso observed many similar
questions in the course notes.

10.2 The Informally Modelled Scenario

| built a system for asking these kinds of questions that asesformal modelling system
with the same MathsTiles front end as | had used in the fosnmatidelled questions. Tiles are
provided for prewritten statements that the student migehwo use in his or her answer. A
screenshot of a question is shown in Figure 10.1.

iRy Ts To prove that [he irrationals are uncountable T This statement is r...
[AR} 7 I T)] Assume: The irrationals are countable I think this
[Support a stetement with other statements | f ¢ hage: The reals are uncountable (from notes) staternent is true
Search But we have: The reals are countable {no reason given)
l Search] which we lnow from:
S— The reals are the union of the rationals and the irrationals (frox
earch resulls
The union of two countable sets is countable (from notes)
Search results will appear as tile buttons The rationals are countable (from notes)
here. The irationals are uncountable
Click For help
wlnch 1s a contradichon.
<] il | B
Topic Links:

You've proved the statement, but you also have a few False or Unknown statements in your answer.

Actions: iCheck proof | Help, I need a hint! | Reload this frame | Clear answer & start again |

Text: Search Topic: Type: Recommend List All

Topics and ypes are converted to lowercass, and 'CamelCase' turns to 'camel case'. If you are unsure of the topic or type, try using the Index of topics.

Figure 10.1 : An informal proof question. Students argue using predefined statements that they
must find using search functions. (The feedback in this screenshot suggests that the student’s
answer contains statements and an argument that could prove the proposition, but there is
an unproved and unnecessary statement in the argument that should be removed before the
answer is correct. The unproved statement is indicated with a question mark.)

If a list of the possible statements was made available tsttigents then the exercise would
change from requiring recall to only requiring recogniti®@iudents, rather than having to think
of the statements they need to use in their argument, wouldlyngave to recognise them from
the list. Furthermore, students would be able to solve tlestpn by simple trial and error —
trying out different combinations of the available stataitseuntil the system was happy with
the answer. To avoid this, the interface does not show theflistatements that can be used in
the question. Instead it requires students to search farsteements, forcing them to show
they know something about the statements they wish to usesdérch box is towards the left
of the screen in Figure 10.1.

112 Chapter 10. Searching Questions

The search typed in by the student is required to contain amim number of keywords
(normally two), and only tiles matching all the keywords hetsearch will be returned. The
reason for this is to prevent very simple searches based ymokds in the question. For
instance, if the question allowed searches on a single taen,it would be possible for students
to search for all the available statements about the reabetsnor all the statements including
the word countable. Requiring multiple terms makes thiategy less effective — statements
often link concepts (eg, “the union of two countable setsosntable”), and if keywords are
required for each concept then the student has to initigtérnk between concepts, rather than
finding linking statements in the list by accident.

The model used to keep track of the argument is a truth mag.skach map in the stack
maps statement IDs to either of the states true or false, Boed-@members the reason why
each statement is mapped to each state. A request for tieadtfrat statement will look for
the most recent map containing that statement ID and reh@&rassociated state. Statements
that are not in any of the maps are unknown. Maintaining eksthenaps provides a simple
way for us to make temporary assumptions and reason abaut tRer example, in a proof
by contradiction, we push a new map onto the stack and makitmgorary assumption that
a statement is true. Based on this assumption, we then puotreef statements to be true,
until we find a contradiction that shows our original assuorptmust have been mistaken. At
that point, we discard the top map from the stack, that coataur assumption and all the
temporary conclusions we drew from it, and mark the origstatement as being false in the
map underneath. The truth map stack is illustrated in Fig0Or2.

5 = false
3 =true
4 = false
1=true 5 = true
2 =true 6 =true
3 = false

Figure 10.2 : A truth map stack. Each level contains mappings from statement IDs to the states
true or false. Maps can be added to the stack to temporarily override the existing mappings.
Each mapping also holds a reference to the tile from the argument that caused it to be set (not
shown).

The model is not driven by any automatic reasoning systeinbypthe argument that the
student has written. The argument, as written in the tilglage, forms a hierarchy of elements.
Just as in the formal proof case, conversion scripts workemligh the hierarchy to convert it
into an Isar proof, so in this case conversion scripts worttgh the hierarchy. However, the
output of these conversion scripts is not a document in andéinguage, but a series of actions
on the model. So for example, the matcher for contradiciies pushes the new truth map
onto the stack, sets the statement in the £ilé& assumption socket to be true, and tests for a
contradiction in its other sockets. In the tile languagédli@se questions, users can only assume
or conclude that statements are true. (False statemerdsaltevith by assuming or concluding

10.3. Massively Multiple Choice Questions 113

that the opposite statement is true: users cannot argu&¢histfalse but must argue that “not
X" is true.) The test for a contradiction, then, is to find twoposite statements that are both
true.

Writing a question involves writing the statements thatshalent can use, specifying their
keywords, marking which statements are opposite to whichratatements, and defining a set
of implication rules. The implication rules state that aesta@ent is true (or false) if a list of
other statements is true. Implication rules can set statese be false even though students
can only argue that statements are true. The reason forsthisdllow the list of statements
returned by a search to include statements that are intorrec

These questions essentially use predicate logic to modertfument, and use pre-written
statements for anything that requires a more complex Idgie.system is, however, extensible
beyond predicate logic — questions can include their oves @ind extend the conversion script
to include their own matchers that implement the necessagics.

10.3 Massively Multiple Choice Questions

In the previous section, | discussed questions where stsidh@ve to search for statements to
construct an argument. In this section | briefly consider tiow applies to questions where
students have to search for a single statement.

Prewritten statements have the advantage over askingngésutte write their own state-
ments that they do not need any complex parsing or checkihg.“Jearching for statements”
paradigm was introduced so that students would not be albextmnise and select statements
to use from a short list. It is possible, then, to consideafsking for statements” as a com-
promise between the short answer and multiple choice fanidte number of options can be
much larger than is practical in traditional multiple cheizecause the options do not all need
to be shown at the same time, but is not the theoreticallyitefinumber of choices that the
short answer format gives. For this reason, these can bedeoed to bemassively multiple
choice question@MMCQs). | constructed a simple system for MMCQs, a screenshwhich
is shown in Figure 10.3.

Again, these questions use the principle that knowing tbéatsle answers in advance al-
lows us to model the question more loosely. A more traditiapgroach would be to ask the
student to enter a short answer and use Natural Languaged3mg (NLP) to analyse the an-
swer. In this case because we already know what the studékelig to say, we effectively
replace complex NLP with a simple keyword search and confionatep.

The main advantage over traditional multiple choice qoestiis that the list of answers,
being hidden, does not act as a prop. For example, consieléoltbwing mathematical puzzle
(again from the Discrete Mathematics course) that does ak &s a multiple choice question:

1. A prison houses 100 inmates, one in each of 100 cells, gddoy a total of 100 warders.
One evening, all the cells are locked and the keys left in dlokd. As the first warder
leaves, she turns every key, unlocking all the doors. Thersbwarder turns every second
key, relocking every even numbered cell. The third warderdwevery third key, and so
on. Finally the last warder turns just the key in the last d&thich doors are left unlocked
and why?

(@) The key to cell numbers has been turned once for every factomofSo the doors
left unlocked are those with an odd number of factors.

114 Chapter 10. Searching Questions

) MMCQ - Mozilla Firefox (=13
File Edit Wew Go Bookmarks Tools Help
Question: 2 2

Find a suitable definition for a rational number.

You have to search for the answer vou wish to select. Tupe your search string below.
ratio |[Search]

Your search query returned More than 10 answers
To reduce the list of answers returned, try refining vour search.

Search results 1 to 10 of 20. Previous 10. Next 10.

O A real mumber that cannot be reduced to a ratio of two rational numbers
O A real mmmber that cannot be reduced to a ratio of two real numbers

O A real mumber that cannot be reduced to a ratio of two irrational mumbers
O A real mimber that cannot be reduced to a ratio of two natural numbers
O A real mumber that cannot be reduced to a ratio of two prime mmmbers

O A real muimber that can be reduced to a ratio of two rational numbers

O A real mmmber that can be reduced to a ratio of two real mmbers

O A real mmmber that can be reduced to a ratio of two irrational numbers

O A real mumber that can be reduced to a ratio of two natral mmbers

O A real mumber that can be reduced to a ratio of two prime mumbers

Submit answer .

Figure 10.3: A “massively multiple choice question” — the student is required to enter a search
to return potential answers, and then select an answer from the resulting list. The student has
searched for “ratio”, so only answers including the word “ratio” are returned. (In this particular
guestion, students are not required to search for all or a minimum number of terms in the
intended answer.)

If the answer is visible on the page then respondents arg iégick it whether or not they
had thought of it before. If respondents must search for &yakrds “factor” and “odd” before
that answer becomes visible, however, then that would reddp restrict that answer to only
those who had already thought of it. Similarly, in surveysiiens hiding the potential answers
may prevent respondents from being distracted from the&ir@l answers. It remains open to
argument, however, whether this is a benefit or not — whethiesonse from someone who
has not seen the alternatives is “a less well-consideradeah®sr “unaffected by suggestion”.
Nonetheless, just as there have been observed differemstsdentsaZ responses to multi-
ple choice questions compared to short answer questiond/f8B], | expect students would
respond slightly differently again to these questions.

10.4 Conclusion

Neither the formal nor the informal system is obviously sigreto the other, but they serve
complementary roles in teaching mathematics, because/th®y/stems allow us to ask different
kinds of questions. In the formal system the questions wengsymbolic, such as an induction
proof of some algebraic statement on the Fibonacci sequdimese would be less well suited
to the informal system because so many of the lines of thef jarecalgebra, and there is not a

10.4. Conclusion 115

mechanism to search for algebra yet (although one could agiivaed). The informal questions,
as described before, focus on proofs where the argumenpregsed in words. This makes it
impractical to directly compare the usability of the twotgyss.

However, it is not simply the usability of the informally melted questions that is their
advantage — it is that it takes so much less development éfgproduce a usable question.
The conversion scripts and processing for the formally Mledsystem took several months of
effort, and the Isabelle/HOL automated theorem proveritheges no doubt took many PhD’s
worth of work for its developers to build. The informally malted questions, meanwhile, were
constructed over two afternoons, including their model.

There also appear to be two other advantages to a systempssipianned answers:

» Students of mathematics take some time to become fluent iiothhal language required
for proofs. Allowing them to choose between syntacticatiyrect but semantically dif-
ferent answers reinforces correct use of the language.

* Limiting the student to pre-planned answers using a simgédel might also have another
practical benefit. Often while there may theoretically benyneoutes to a proof, in a
formal reasoning system there can be subtle reasons why gbthe routes are very
difficult to achieve. In a formally reasoned setting, studenight spend a great deal
of time trying a theoretically possible but practically ehaevable route to a proof. In a
limited and informally reasoned setting, they will perhpgeadier to decide that a route
is not supported and try another more successful stratedyco@se, further research
would be required to verify this hypothesis.

Generalising the “searching for statements” mechanicltwaminassively multiple choice
questions is an obvious extension of the questions | deedlojn pencil-and-paper multiple
choice tests, there is a clear technical need for the optmal be shown to the student at the
start. However, in the client-server situation that hasiimenmon in online learning for many
years now, there appears to be no need to give away the anmstherguestion, nor to limit the
possible answers to only four or five.

116 Chapter 10. Searching Questions

CHAPTER 11

Conclusion

11.1 Summary of Contributions
This dissertation has presented the following contrimgio

1. Formally modelled exercises supporting student-written poofs in Number Theory.
Although there are many usability issues still to overcothe, exercises described in
Chapters 6 to 9 represent an advance in enabling untrainddrds to write verifiable
proofs in a system where the student must write the linesadf{rather than asking an
automated proof assistant to apply tactics to manipulaaésiatements). There are many
systems that ask students to write simple proofs in simpbenains such as predicate
logic [LY0Z2, LLBO0Z2], but this is the first Web-based learniagvironment to ask students
to write proofs in this manner for Number Theory. The quélktausability study revealed
a number of issues that are relevant for future work on eduwgat proof interfaces, as
described in Chapter 9.

2. A novel kind of structured interaction language.
As described in Chapter 2, structured editing is an estadisechnique but MathsTiles
is different in three ways. Firstly, it allows multiple coftagments to be scattered across
the canvas, which means it does not have the restrictiorfithais on the page, itis in
the code” that is common to other structured editors. Sdgpim a structured editor for
informally defined languages that translate to formal lawgy rather than for languages
with formally defined syntaxes (and it allows students to enakistakes). Thirdly, it
allows the interaction behaviour to be altered for indiabpieces of syntax at run-time.
For example, the green question tiles are individuallyséetunselectable and indelible.
A change message from the server, however, can remove 8igttien, or make any
other tile on the page unselectable. Another change messadgintroduce a new tile
with a new tile definition, effectively altering the syntaktbe language.

3. Informally Modelled and “Searching” Questions.
The informally modelled questions, described in Chapteridtboduce the concept of

117

118 Chapter 11. Conclusion

“searching for statements”. This allows complex questimnse modelled using much
less complex reasoning: the parts that are complex to medekplaced by prewritten
statements and search and select steps. The example shmwad Argumentative proof
in Number Theory could be modelled using predicate logicis Htlowed development
time for the question to be many orders of magnitude fastan the formally modelled
Number Theory questions.

4. Massively Multiple Choice Questions
The massively multiple choice questions are a logical cgusece of the informally mod-
elled questions: they are the case where students are asteatth for a single statement.
However, their wide applicability means they are worth d&sing explicitly. They pro-
vide a means for asking multiple choice questions withotihg@s a prop for the student,
and they support a very large selection of different answfsout the natural language
processing requirement of the short answer format.

5. A novel architecture for an Intelligent Book.

Chapters 3 to 5 described an architecture for Intelligerak8o It supports questions
where students work in graphical notations appropriatéhéodomain, and allows the
teaching script to make comments as students work, ratlaer whaiting for a submit
button to be pressed. It supports different models, pedagpgnd graphical notations
for different questions. Its content model is designed tajyeropriate both for students
and for the modelling or reasoning system that supportstigunss students can add new
content or alter existing content, and the system can auicaig generate references to
the content. Both the content architecture and the queaticmtecture are designed to
be more flexible and informal than in the most relevant othebWased textbook project
(see Section 9.7).

11.2 Future Directions

11.2.1 Improvements to MathsTiles

As noted in Section 7.7, MathsTiles as presented in Chapgtee3 not support editing by typing,
even though this has been found to be useful. Adding thisatipuld involve converting one-
dimensional typed text into ad hoctwo-dimensional syntax, ideally without needing to teach
the one-dimensional syntax explicitly to users.

In Section 9.4.3, | described how there are dependenciesbatelements in a proof, and
proposed that the system should be able to adjust studentfsputomatically to maintain the
dependencies. Determining parts of a tile from an exprassithe tile definition could maintain
the simplest dependencies. (In Section 7.7, | describe hamay be useful to introduce a
general purpose expression language into tile definifjgkdditional modifications would also
need to be made by logic in the Teaching Script for more coxngidgendencies. This raises
the wider research question of how collaborative authprehdocuments should be supported
when the participants are a human and a reasoning systérar, thin two humans.

11.2. Future Directions 119

11.2.2 Levels of Formality

In Section 9.4.4 | proposed that being able to configure thel lef formality of the prover
would be helpful. (For example, the prover could handle ersal quantification differently
depending on whether or not students have been taught ticemon This would also support
an “engineering” approach to questions. In Section 2.2dedcribed how engineers often
work out a rough solution to a problem that they later refindisTs increasingly also true
of mathematicians working with formal proof systems, tlglouhe use of proof planners and
proof sketches to develop a formally verifiable proof. In @iea 10 | introduced questions that
use informal modelling. It might therefore be useful to sopp@ transition from informal to
formal models.

11.2.3 Further support for cases where the reasoning system IS unsure

In the electronics question in Chapter 3, | described a tgcienfor relating a automatically
generated reasoning to a student’s level of detail. In the&tly modelled proof exercises in
Chapter 9, however, one of the major difficulties was whatdoMhen the reasoning system
Is unsure whether a statement is correct or not — there is eaxessful chain of reasoning to
explain.

The questions in this dissertation used a simple technidjyeoviding a selection o&d
hoc advice functions that could, for example, try different roers with an equation to see if
it failed or provide potted advice written by the teacher. i@khese can be helpful, there are
many well-known analysis techniques that were not used hodlg be in future versions. For
example, although the simplifier was limited to only using $timp automated proof method,
there is no reason why the advice functions should not us ptioof methods, such a3ast
and auto. This would uncouple the concepts of whether a proof stgmasably trueand
whether it isacceptablen a student’s answer.

Dixon and Fleuriot [DF05] describe how in professional pickeit can be more useful to use
weaker proof methods that leave a readable proof state wiitie kind of progress, rather than
stronger tools that either succeed or fail without helpimguser. The progress from these “well-
behaved” methods could equally help students to understéwadl the system can and cannot
verify, as well as helping students to explore the proof. éM@nd Melis [MMO5] describe
how meta-reasoning about why a proof attempt failed candagipmated proof systems choose
the right strategy to use. This information would clearlgcabe helpful to students. There
would, however, need to be careful consideration abouthénéhe automated help could allow
students to game the system.

This problem of uncertainty is also likely to occur in oth@sayn tasks. For example, in a
programming exercise it can be difficult for a modelling cagening system to assess whether
a piece of program is “on the right track” until it has been gbeted.

11.2.4 Programming interfaces

Some of the usability issues raised suggest that provingre ke programming than | had
anticipated. For example, the need for automatic labeltihgroof statements is similar to
line numbering. The annotations appearing on the tiles feened to be problematic because
they could be obscured by other tiles or the edge of the windoad/'so a more traditional gutter
seems appropriate. However, there are also aspects ofdbigxercises that may be applicable

120 Chapter 11. Conclusion

to programming environments. For example, it has been wbdehat programmers frequently
find themselves substituting blocks of code between a sdtashatives [KAMO5]. Being able
to extract syntactic sections of code and leave them on tge pat not in the code might be
helpful.

11.3 The Future of Intelligent Teaching Assistants

Despite three decades of research into intelligent tegchssistants, most university courses
do not use one. Practically, the most significant barrieh&rtuse is that they are expensive to
develop and maintain. Often, universities develop thein ¢@aching assistant for a particular
course, perhaps funded as part of a research project. Tbiggh, means that the high cost of
maintaining the system is set against the few students Wealeat particular course each year.

Industrially, there have been efforts to standardise lagrobjects so that they can be reused
between courseware management systems. This allows tredgetts to be used for many
students across different universities. However, whileribduces the development and mainte-
nance effort, the effort is still significant. Each time a neswsion of a courseware management
system or a learning object is developed, there is maintenark involved in upgrading the
system at the university site. This work occurs at every ensity that is using the system, and
each different kind of “intelligent question” is anotherp@ maintain.

While universities might not want their courseware managyginsystems externally hosted
(subcontracting the management of students’ learningdcbelseen as subcontracting a uni-
versity’s core business), they do not feel the same pressymeduce their own textbooks for
every course they teach. An “Intelligent Publisher” coutdthintelligent Books for a number
of different universities, and could be responsible foredepging new kinds of exercise. The
books could be made to appear separate, so that for instaecenoversity’s students do not
see pages added by another’s, but as the system would bel lhgstesingle organisation, the
exercise types could be reused between the textbooks with tess effort.

When the cost of developing and maintaining a question besdess significant, many
more techniques become possible. Questions could be gexdetbat use many different mod-
elling and reasoning systems, supporting the fact that hgratien think about a problem on a
number of levels. They would let students smoothly move fesralysing a numerical example
to describing what its implications are — for example, mgvirom calculating the capacity of
the ocean to absorb carbon to discussing what that meanevimoemental policy. Questions
could try to infer the student’s mental model of how concéiptegether, rather than only rating
students against concept maps written by the teacher. Qtiestions could be integrated into
real world systems — for example, traffic engineering qoestihat use a constantly up-to-date
model of the country’s transport infrastructure.

Bibliography

[ABP+04]

[ABY85]

[ACKP95]

[ACPO1]

[AG04]

[AHWOO]

[AIn06]

[ALWO5]

[AMG *03]

Peter B Andrews, Chad E Brown, Frank Pfenning, MattheghBp, Sunil
Issar, and Hongwei Xi. ETPS: A system to help students woiten&l proofs.
Journal of Automated Reasoni®P:75-92, 2004.

J. R. Anderson, C. F. Boyle, and G. Yost. The geomaitgr. In Proceedings
of IJCAI-85 pages 1-7, 1985.

John R. Anderson, A. T. Corbett, Kenneth R. Koedingnd R. Pelletier. Cog-
nitive tutors: lessons learned@he Journal of the Learning Scien¢d$2):167
— 207, 1995.

A. Abel, B. Chang, and F. Pfenning. Human-readabbeimme-verifiable
proofs for teaching constructive logic. In Uwe Egly, Armireéfler, Helmut
Horacek, and Stephan Schmitt, editd?spceedings of the Workshop on Proof
Transformations, Proof Presentations and Complexity ados (PTPO0L)
2001.

S. E. Ainsworth and S. K. Grimshaw. Evaluating the REEM authoring tool:
Can teachers create effective learning environmerstnational Journal of
Artificial Intelligence in Education14:279-312, 2004.

Farah Arefi, Charles E. Hughes, and David A. Workmamntomatically gen-
erating visual syntax-directed editolSommun. ACM33(3):349-360, 1990.

Shaaron Ainsworth. 10 years, 30 learning environtse850 students and one
authoring tool: Lessons learned. Keynote speech to 6th IEEtEnational
Conference on Advanced Learning Technologies, July 2006.

David Aspinall, Christoph Luth, and Daniel Winteéesn. Parsing, editing,
proving: The pgip display protocol. limternational Workshop on User Inter-
faces for Theorem Provers 2005 (UITP'Q205.

S. E. Ainsworth, N. Major, S. K. Grimshaw, M. Hayes, J. Dndé¢rwood,
B. Williams, and D. J. Wood. REDEEM: Simple intelligent tuitw systems

121

122

BIBLIOGRAPHY

[AMSKO06]

[Ana83]

[And83]

[And93]
[And96]

[ASF99]

[ATOO]

[BBO4]

[BBB75]

[BCF04]

[BCKWO04]

[BE94]

from usable tools. In T. Murray, S. Blessing, and S. Ainswpeditors,Ad-
vanced Tools for Advanced Learning Technolgmages 205-232, Amsterdam,
2003. Kluwer Academic Publishers.

Vincent Aleven, Bruce M McLaren, Jonathan Sewadind Kenneth R
Koedinger. The cognitive tutor authoring tools (ctat): [lPnenary evaluation

of efficiency gains. InProceedings of the 8th International Conference on
Intelligent Tutoring Systems (ITS2006pges 6170, 2006.

J. Anania. The influence of instructional condisoan student learning
and achievementEvaluation in Education: An International Review Series
7(1):1-92, 1983.

John R. AndersonThe architecture of cognitionHarvard University Press,
1983.

John R. AndersorRules of the MindErlbaum, Hillsdale, NJ, 1993.

John R. Anderson. ACT: a simple theory of complexrmatgn. American
Psychologist51:355-365, 1996.

Sherman R. Alpert, Mark K. Singley, and Peter G. Wa#ther. Deploying
intelligent tutors on the web: An architecture and an exampiternational
Journal of Artificial Intelligence in Educatiqri0:183—-197, 19909.

Jonathan Allen and Christopher J. Terman. An intevadearning environ-
ment for VLSI designProceedings of the IEEB8(1):1-11, January 2000.

William Billingsley and John Billingsley. The anintian of simulations and
tutorial clients for online teaching. IRroceedings of the 15th Annual Confer-
ence for the Australasian Association for Engineering Edion and the 10th
Australasian Women in Engineering Forum, Toowoomba, Aligfppages 532
— 540, 2004.

John Seely Brown, R R Burton, and A G Bell. SOPHIE: &stowards a
reactive learning environmerhternational Journal of Man-Machine Studies
7:675—-696, 1975.

Peter Brusilovsky, Girish Chavan, and Rosta FarZwrcial adaptive naviga-
tion support for open corpus electronic textbooks.Altaptive Hypermedia
2004 number 3137 in LNCS, pages 24-33, 2004.

Ryan Shaun Baker, Albert T Corbett, Kenneth R. Kiogér, and Annette
Wagner. Off-task behavior in the cognitive tutor classroomen students
"game the system". In Elizabeth Dykstra-Erickson and Meohffrscheligi, ed-
itors, Proceedings of ACM CHI 2004 Conference on Human Factors im-Co
puting Systemgpages 383—-390, 2004.

J Barwise and J Etchemendyyperproof CSLI Publications, Stanford, Cali-
fornia, 1994.

BIBLIOGRAPHY 123

[BFGHSO04]

[BGO3]

[BGO7]

[BGHS02]

[BHKK +07]

[BHL +06]

[Bil01]

[BKO4]

[Blo56]

[Blo84]

[BM04]

Peter Baumgartner, Ulrich Furbach, Margret GralRdt, and Alex Sinner.
Living book - deduction, slicing, and interactiodournal of Automated Rea-
soning 32(3):259-286, 2004.

Alan Blackwell and Thomas Green. Notational systerttee Cognitive Di-
mensions of Notations framework. In John M. Carroll, edité€l Models,
Theories and Frameworkpages 103 — 133, Amsterdam, 2003. Morgan Kauf-
mann.

Alan Blackwell and Thomas Green. A cognitive di-
mensions questionnaire, 2007. Available online from
http://www.cl.cam.ac.uk/ afb21/CognitiveDimensionBifliestionnaire.pdf.
Accessed 25 February 2007.

Peter Baumgartner, Margaret Gross-Hardt, andaMisimon. Living Book
- an interactive and personalized book. In Veljko Milutingveditor, SS-
GRR 2002s - International Conference on Advances in Irinasire for e-
Business, e-Education, e-Science, and e-Medicine on thmbt 2002.

Christoph Benzmdller, Helmut Horacek, lvana Kruijféayova, Manfred
Pinkal, Jorg Siekmann, and Magdalena Wolska. Natural laggulialog with
a tutor system for mathematical proofdournal of Computer Science and
Technology2007. To appear.

Christoph Benzmdller, Helmut Horacek, Henri Lesourdana Kruijff-
Korbayova, Marvin Schiller, and Magdalena Wolska. A corpfigutorial
dialogs on theorem proving; the influence of the presentatiothe study-
material. InProceedings of International Conference on Language Ressu
and Evaluation (LREC 2006¥5enova, Italy, 2006. ELDA. To appear.

John Billingsley. Javascript ‘Jollies’ can bringwulations to life. InProceed-
ings of the 12th AAEE Conference on Engineering Educapages 63-67,
Brisbane, Australia, 2001.

Clemens Ballarin and Gerwin Klein. Introduction toetisabelle proof assis-
tant. InSecond International Joint Conference on Automated Reaga004.
Available from http://isabelle.in.tum.de/coursema#ldCARO4/index.html.
Accessed 24 February 2007.

Benjamin S. Bloom.Taxonomy of Educational Objectives, Handbook I: The
Cognitive Domain David McKay Co Inc, New York, 1956.

Benjamin Bloom. The two sigma problem: the searchrm@thods of group
instruction as effective as one-to-one tutoririfducational Researchef3:4
—15, 1984.

Dave Beckett and Brian McBride, editoreRDF/XML Syntax Specification
(Revised) World Wide Web Consortium, 2004. Accessed 30 January 2005
http://www.w3.0rg/TR/2004/REC-rdf-syntax-grammar020210/.

124

BIBLIOGRAPHY

[Bos01]

[BRO5]

[BRO7]

[BRAH04]

[Bru96]

[Bru00]

[BRWO6]

[Bur84]

[Car70]

[CB97]

[CD99]

[CFRO6]

Marat Boshernitsan. Harmonia: A flexible framewtwk constructing inter-
active language-based programming tools. Technical RépoB/CSD-01-
1149, University of California at Berkeley, 2001.

William Billingsley and Peter Robinson. Towards arelligent textbook for
discrete mathematics. Proceedings of the 2005 International Conference on
Active Media Technology, Takamatsu, Japaages 291 — 296, 2005.

William Billingsley and Peter Robinson. Student pfexercises using Maths-
Tiles and Isabelle/HOL in an Intelligent BooBournal of Automated Reason-
ing, 2007. in press.

William Billingsley, Peter Robinson, Mark Ashdayand Chris Hanson. Intel-
ligent tutoring and supervised problem solving in the brexvén Proceedings
of the IADIS International Conference WWW/Internet 2004dht, Spain
pages 806 — 811, 2004.

Peter Brusilovsky. Methods and techniques of aslagtypermedia. User
Modeling and User-Adapted Interactio®(2—3):87—129, 1996.

Peter Brusilovsky. Adaptive hypermedia: from iliggent tutoring systems to
web-based education. IMS2000 LNCS, pages 1-7. Springer-Verlag, 2000.

P. Brusilovsky, S. Ritter, and G. Weber. ELM-ART: anelligent tutoring
system on the World Wide Web. In C. Frasson, G. Gauthier, arlce8gold,
editors,Lecture Notes in Computer Scienpages 261-269. Springer-Verlag,
1996.

A. J. Burke. Student’s potential for learning contrasted under tutbaad
group approaches to instructiofPhD thesis, University of Chicago, 1984.

Jaime Carbonell. Al in CAl: Artificial intelligencapproach to computer
aided instruction.IEEE Transactions on Man-Machine Systerh$(4):190—
202, 1970.

A T Corbett and A Bhatnagar. Student modeling in theTA&togramming tu-
tor: Adjusting a procedural learning model with declaratknowledge. In
User Modeling: Proceedings of the Sixth International Gwvehce UM97
pages 243-254, 1997.

James Clark and Steve DeRose, edit¥iidL Path Language (XPath) Version
1.0. World Wide Web Consortium, 1999. Accessed 30 January 20§45 f
http://www.w3.0rg/TR/1999/REC-xpath-19991116.

Don Chamerlin, Daniela Florescu, and Jonathan & aalitors. XQuery Up-
date Facility, Working Draft 11 July 2006 World Wide Web Consortium,
2006. Accessed from http://www.w3.0rg/TR/2006/WD-xqafed20060711/
on 13 Jan 2007.

BIBLIOGRAPHY 125

[CGM*+04]

[CGV02]

[CHG*00]

[CKK82]

[Cla99]

[CTO0]

[DFO05]

[EZ97]

[FFJ03]

[FMMCMO4]

[For97]

[Gar05]

[GHJIV95]

R Conejo, E Guzman, E Millan, M Trella, J. L. Perez-de-ta£; and A. Rios.
SIETTE: A web-based tool for adaptive testingternational Journal of Arti-
ficial Intelligence in Educationl4:29-61, 2004.

Christine Conati, A S Gertner, and Kurt VanLehn. hgsBayesian networks to
manage uncertainty in student modeliigser Modelling and User-Adapted
Interaction 12(4):371-417, 2002.

Scotty D. Craig, Xiangen Hu, Barry Gholson, William MarkArthur C.
Graesser, and The Tutoring Research Group. AutoTutor: Admutatoring
simulation with an animated pedagogical interface. In Enblarger, editor,
Proceedings of the International Society for Optical Emgring: Integrated
Command EnvironmentSPIE Proceedings Series, 2000.

P. A. Cohen, C. C. Kulik, and J. A. Kulik. Educationalitcomes of tutoring:
a meta-analysis of finding®American Educational Research Journ9:237
— 248, 1982.

James Clark, editor. XSL Transformations (XSLT) Version 1.0World
Wide Web Consortium, 1999. Accessed 13 August 2006 from
http://www.w3.0rg/TR/1999/REC-xslt-19991116.

Albert Corbett and Holly Trask. Instructional intentions in computer-based
tutoring: differential impact on learning time and accyralm CHI '00: Pro-
ceedings of the SIGCHI conference on Human factors in cangpaystems
pages 97-104. ACM Press, 2000.

Lucas Dixon and Jacques Fleuriot. A proof-centripra@ach to mathematical
assistantsJournal of Applied Logic2005.

Jurgen Ehrensburger and Claus Zinn. DiaLog: A sydterdialogue logic. In
Conference on Automated Deductipages 446—-460, 1997.

Jon Ferraiolo, Jun Fujisawa, and Dean JacksongreditScalable Vector
Graphics (SVG) 1.1 Specificationhapter Paths. Word Wide Web Consor-
tium, 2003.

Enrique Frias-Martinez, George Magoulas, Shethen, and Robert Ma-
credie. Recent soft computing approaches to user modeliadaptive hyper-
media. InAdaptive Hypermedia 200Aumber 3137 in LNCS, pages 104-114.
Springer-Verlag, 2004.

Kenneth D. Forbus. Using qualitative physics taateearticulate educational
software.lEEE Expert 12(3), 1997.

Jesse James Garrett. Ajax: A new approach to welcagpiphs. Technical
report, adaptivepath.com, 2005.

Erich Gamma, Richard Helm, Ralph E. Johnson, arth Mlissides. De-
sign Patterns: elements of reusable object-oriented swéwAddison Wesley,
1995.

126

BIBLIOGRAPHY

[GLIT04]

[GP96]

[GRCO2]

[GVOO0]

[GWHWH*99]

[Han71]

[HAAC+04]

[JJLZ04]

[JR99]

[KAH ~04]

[KAHMO7]

[KAMO5]

A. C. Graesser, S. Lu, G. T. Jackson, H. Mitchell, M. VeatlA. Olney, and
M. M. Louwerse. AutoTutor: A tutor with dialogue in naturainguage Be-
havioural Research Methods, Instruments, and Compu@érd 80—193, 2004.

Thomas R G Green and M Petre. Usability analysis afaliprogramming
environmentsJournal of Visual Languages and Computiiig 1996.

E Guzman, J A Riveros, and R Conejo. A library for igeconstruction in an
adaptive evaluation system. Evidence Centred Design (ECD) Approach to
Creating Diagnostic e-Assessments. San Sebagiages 78-86, 2002. Also
available online from http://www.lcc.uma.es/ accessedatdid 2004.

Abigail S Gertner and Kurt VanLehn. Andes: A coacheoljpem solving envi-
ronment for physics. Iintelligent Tutoring Systemsolume 1839 ot ecture
Notes in Computer Sciengeages 133-142, 2000.

Arthur C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hast R. Kreuz, and
The Tutoring Research Group. AutoTutor: a simulation of anlan tutor.
Journal of Cognitive Systems Researtts5-51, 1999.

Wilfred J Hansen. Creation of hierarchic text witbanputer display. Tech-
nical report, Argonne National Laboratories, 1971.

V. Judson Harward, Jesus A. del Alamo, Vijay S. ChoudHKimberley de-

Long, James L. Hardison, Steven R. Lerman, Jedidiah NddkriCharuleka
Varadharajan, Shaomin Wang, Karim Yehia, and David Zyclabg: A scal-

able architecture for sharing online experimentsinkernational Conference
on Engineering Educatiqr2004.

Jr. Joseph J. LaViola and Robert C. Zeleznik. Matijp a system for the
creation and exploration of mathematical sketcheACM Trans. Graph.
23(3):432-440, 2004.

Andreas Jochheim and Christof Rohrig. The Virtudh kar teleoperated con-
trol of real experiments. IRroceedings of the 38th IEEE Conference on De-
cision and Contrgl1999.

Kenneth R Koedinger, Vincent Aleven, Neil HeffernanuBe McLaren, and
Matthew HockenBerry. Opening the door to non-programmeéusthoring
intelligent tutoring systems by demonstrationIritelligent Tutoring Systems
volume 3220/2004 dfNCS pages 162-174, 2004.

Kenneth R Koedinger, John R Anderson, William H Heyl and Mary A
Mark. Intelligent tutoring goes to school in the big citgternational Journal
of Artificial Intelligence in Education8:30 — 43, 1997.

Andrew J. Ko, H. Aung, and Brad A. Myers. Eliciting dign requirements for
maintenance-oriented ides: A detailed study of corre@naperfective main-
tenance tasks. Imternational Conference on Software Engineeri2g05.

BIBLIOGRAPHY 127

[Kay00]

[KCC+02]

[KK91]

[KKVdBOO]

[KMO6]

[Koh0O]

[KSF99]

[KU93]

[KWRO5]

[KWRO06]

[Lam95]

[LCL*04]

[LEMO4]

Judy Kay. Stereotypes, student models and scilittalbn Intelligent Tutoring
Systemsnumber 1839 in LNCS, 2000.

Caitlin Kelleher, Dennis Cosgrove, David Culyba, @it Forlines, Jason
Pratt, and Randy Pausch. Alice2: Programming without syeteors. In
User Interface Software and Technolog@02.

C C Kulik and J A Kulik. Effectiveness of computer basastruction: An
updated analysi€Computers in Human Behaviguf:75 — 94, 1991.

S. Klai, T. Kolokolnikov, and N. Van den Bergh. Usj Maple and the web
to grade mathematics tests. Pnoceedings of the International Workshop on
Advanced Learning Technologies, Palmerston, New Zea20MD.

Andrew J. Ko and Brad A. Myers. Barista: An implemetita framework for
enabling new tools, interaction techniques and views irecaditors. InPro-
ceedings of the SIGCHI Conference on Human Factors in Cang&lystems
(CHI2006) 2006.

Michael Kohlhase. OMDoc: Towards an internet stnadfor the adminis-
tration, distribution and teaching of mathematical knage. InAISC 2000
Artificial Intelligence and Symbolic Computation Thegmgges 32-52, 2000.

Kenneth R. Koedinger, Daniel D. Suthers, and Kemn&. Forbus.
Component-based construction of a science learning spactarnational
Journal of Artificial Intelligence in Educatiqri0:292-313, 1999.

Amir Ali Khwaja and Joseph E. Urban. Syntax-directstiting environments:
issues and features. 8AC '93: Proceedings of the 1993 ACM/SIGAPP sym-
posium on Applied computingages 230-237, New York, NY, USA, 1993.
ACM Press.

Viswanathan Kodaganallur, Rob R Weitz, and David&athal. A comparison
of model-tracing and constraint-based intelligent tutgmparadigmsinterna-
tional Journal of Artificial Intelligence in Educatiori5:117-144, 2005.

Viswanathan Kodaganallur, Rob R Weitz, and Davids&uthal. An assess-
ment of constraint-based turos: A response to mitrovic amdson’s cri-
tigue of "A comparison of model-tracing and constraintdzbisitelligent tutor-
ing paradigms".International Journal of Artificial Intelligence in Eduadan,
16:219-321, 2006.

Leslie Lamport. How to write a proof.he American Mathematical Monthly
102(7):600-608, 1995.

Guillaume Laforge, Clinton L Combs, Derek Lane, Chrisrieg James Stra-
chan, R L Winder, Boeing, and Thoughtworks. The Groovy progning
language. Java Specification Request 241, Java Communite$y, 2004.

Evelyn Lulis, Martha Evens, and Joel Michael. Implenting analogies in an
electronic tutoring system. Ilimtelligent Tutoring System&NCS, 2004.

128

BIBLIOGRAPHY

[Ley83]

[LGO6]

[LLBO2]

[LMOO]

[LPOO]

[LYO2]

[MAB *01]

[Mas02]

[MBG+03]

[MHOO]

[Mit02]

[MJIP+97]

F. S. Leyton.The extent to which group instruction supplemented by maste
of the initial cognitive prerequisites approximates tharteng effectiveness of
one-to-one tutorial method®hD thesis, University of Chicago, 1983.

P. Libbrecht and C. Gross. Experience report writegctivemath calculus. In
William Farmer Jon Borwein, editoProceedings of Mathematical Knowledge
Management 20Qéumber 4108 in LNAI. Springer Verlag, aug 2006.

Stacey Lukins, Alan Levicki, and Jennifer Burg. Attwial program for propo-
sitional logic with human/computer interactive learnitgProceedings of the
33rd SIGCSE Technical Symposium on Computer Science Holycpages
381-385. ACM Press, 2002.

Andreas Laux and Lars MartinXUpdate — XML Update Language, Working
Draft 2000-09-14 XML:DB Initiative, 2000.

Thomas Lozano Perez. Technologically enhanced aduc
tion in electrical engineering and computer science, 2000.
http://www.swiss.ai.mit.edu/projects/icampus/pregéeecs.html. MIT 6.001
tutor homepage. Last viewed December 2003.

Leanna Lesa and Kalina Yacef. An intelligent teaghgystem for logic. Inn-
telligent Tutoring Systems : 6th International Conferen@& 2002, Biarritz,
France and San Sebastian, Spain, June 2-7, 28p&nger-Verlag, 2002.

Erica Melis, Eric Andres, Jochen Budenbender, Adriaisdhiauf, George
Goguadze, Paul Libbrecht, Martin Pollet, and Carsten ¢Hlri ActiveMath:
A generic and adaptive web-based learning environmietérnational Jour-
nal of Artificial Intelligence in Educatiornl2(4):385-407, 2001.

J. Masthoff. Automatic generation of a navigatitmesture for adaptive web-
based instruction. In P. Brusilovsky, N. Henze, and E. Milkeditors Proceed-

ings of the AH’2002 Workshop on Adaptive Systems for WebeBaducation,

Malaga, Spain2002.

Erica Melis, Jochen Budenbender, George Goguadze, [Raltecht, and
Carsten Ullrich. Knowledge representation and managemeattivemath.
Annals of Mathematics and Atrtificial Intelligenc#8:47—-64, 2003.

Antonija Mitrovic and K. Hausler. Porting SQL Tutoo tthe web. InPro-
ceedings of the International Workshop on Adaptive andligest Web-Based
Educational Systems, Montreal, Canagages 37-44, 2000.

Antonija Mitrovic. NORMIT: A web-enabled tutor fodatabase normaliza-
tion. In Proceedings of the Interational Conference on Computesduca-
tion (ICCE) 2002 pages 1276-1280, 2002.

Allen Munro, Mark C. Johnson, Quentin A. Pizzini, DavidSurmon, Dou-
glas M. Towne, and James L. Wogulis. Authoring simulatientered tu-
tors with RIDES.International Journal of Artificial Intelligence in Edudan,
8:234-316, 1997.

BIBLIOGRAPHY 129

[MKHO5]

[MKMO3]

[MMO1]

[MMO5]

[MMSMO1]

[MNO6]

[MO99]

[MOO6]

[MPMV94]

[MS04]

[Nip03]

E. Melis, P Karger, and M. Homik. Interactive con¢apapping in Active-
Math. In Jorg N. Haake, Ulrich Lucke, and Djamshid Tavargayrieditors,
Delfi 2005: 3. Deutsche eLearning Fachtagung Informatdume 66 ofLNI,
pages 247-258, Rostock, Germany, September 2005.

Antonija Mitrovic, Kenneth R Koedinger, and Brentdftin. A comparative
analysis of cognitive tutoring and constraint-based madelln Proceedings
of the Ninth International Conference on User Modelling (®D3) number
2702 in LNAI, pages 313-322. Springer-Verlag, 2003.

M. Mayo and Antonija Mitrovic. Optimising ITS behawet with Bayesian net-
works and decision theoryinternational Journal of Artificial Intelligence in
Education 12:124-153, 2001.

Andreas Meier and Erica Melis. Impasse-driven reasg in proof plan-
ning. InProceedings of the Fourth International Conference on Mathtical
Knowledge Management (MKM2002005.

Antonija Mitrovic, Michael Mayo, Pradmuditha Saweera, and Brent Mar-
tin. Constraint-Based Tutors: A success story.Ehgineering of Intelligent
Systems : 14th International Conference on Industrial andikeering Appli-
cations of Atrtificial Intelligence and Expert Systems, W&l&/2001, Budapest,
Hungary, 2001.

Hirokazu Murao and Yasuhito Nakano. BrEdiMa: Yet #mex Web-browser
tool for editing mathematical expressions. Rroceedings of MathUI 2006
2006.

Antonija Mitrovic and Stellan Ohlsson. Evaluatiohaconstraint-based tutor
for a database languagdnternational Journal of Artificial Intelligence in
Education 10:238-256, 1999.

Antonija Mitrovic and Stellan Ohlsson. A critique kbdaganallur, weitz and
rosenthal, "A comparison of model-tracing and constrheded intelligent tu-
toring paradigms".International Journal of Artificial Intelligence in Educa-
tion, 16(3):277-289, 2006.

Phillip Miller, John Pane, Glenn Meter, and Scotirthmann. Evolution of
novice programming environments: the structure editor€arhegie Mellon
University. Interactive Learning Environment4(2):140-158, 1994.

E. Melis and Jorg Siekmann. Activemath: An intelligeutoring system
for mathematics. In L. Rutkowski, J. Siekmann, R. Tadeusizwand L.A.
Zadeh, editorsSeventh International Conference ’Artificial Intelligenand
Soft Computing’ (ICAISC)volume 3070 ofLNAI, pages 91-101. Springer-
Verlag, 2004.

Tobias Nipkow. Structured proofs in Isar/HOL. In HeGvers and
F. Wiedijk, editors,Types for Proofs and Programs (TYPES 2002)ICS,
pages 259 — 278. Springer-Verlag, 2003. Also available nenfirom

130

BIBLIOGRAPHY

[Nip06]

[NPWO2]

[NPWO5]

[Ohl92]

[PGWP90]

[Pre26]

[RB97]

[Rit97]

[RIR']

[RK97]

[Rob04]

[Rob06]

[SACS6]

http://www4.informatik.tu-muenchen.de/ nipkow/pulgpks02.pdf accessed
10 June 2005.

Tobias Nipkow. A compact introduction to isabelel, 2006. Available from
http://isabelle.in.tum.de/coursematerial/Shangh@déx.html. Accessed 24
February 2007.

Tobias Nipkow, Lawrence C. Paulson, and Markus \W&enizabelle/HOL —
A Proof Assistant for Higher-Order Logizolume 2283 olLNCS Springer,
2002.

Tobias Nipkow, Lawrence C. Paulson, and Markus \Wrigabelle’s Logics:
HOL. Technische Universitat Miinchen, 2005.

Stellan Ohlson. Constraint-based student modeliournal of Artificial In-
telligence and Educatiqr8(4):429-447, 1992.

M. Pressley, E. S. Ghatala, V. Woloshyn, and JePBometimes adults miss
the main ideas and do not realize it: Confidence in respoosgsart answer

and multiple choice comprehension questioReading Research Quarteyly
25(3):232-249, 1990.

Sidney L. A. Pressey. A simple apparatus which gigsts and scores — and
teachesSchool and Societ23:373-376, 1926.

Dave Raggett and Davy Batsalle. Mathematics on the:\Wée EzMath no-
tation. http://www.w3.org/People/Raggett/EzMath/EzMRaper.html, 1997.
Accessed 11 April 2007.

Steven Ritter. PAT Online: a model-tracing tutor thre World-Wide-Web.
In Proceedings of the Workshop Intelligent Educational $gsten the World
Wide Web, 8th World Conference of the AIED Soc¢i&dp7.

Carolyn P Rosé, Pamela Jordan, Michael Ringenberg, Stéplgiler, Kurt
VanLehn, and Anders Weinstein. Interactive conceptualriog in atlas-
andes.

S. Ritter and K. R. Koedinger. An architecture for glin tutoring agents.
Journal of Artificial Intelligence in Educatiqry:315-347, 1997.

T. J. Roberts. The virtual machines laboratdwystralasian Journal of Engi-
neering Education(1):1-15, 2004.

Peter RobinsorDiscrete Mathematics IUniversity of Cambridge Computer
Laboratory, 2006.

Brian M. Slator, Matthew P. Anderson, and Walt Cognlé€ygmalion at the
interface.Communications of the ACN29(7):599-604, 1986.

BIBLIOGRAPHY 131

[SBC*05]

[SCL*01]

[Sco96]

[SGK*05]

[SKCMO6]

[Ski54]

[Ski58]

[SM02]

[SNO4]

[SP96]

[SS77]

Konrad Slind, Steven Barrus, Seungkeol Choe, Chris @indianjun Duan,
Sivaram Gopalakrishnan, Aaron Knoll, Hiro Kuwahara, Guagld.i, Scott
Little, Lei Liu, Steffanie Moore, Robert Palmer, ClauriSa#tle, Sean Walton,
Yu Yang, and Junxing Zhang. Teaching a hol course: Expegieaport. In
Joe Hurd, Edward Smith, and Ashish Darbari, editdiseorem Proving in
Higher Order Logics: Emerging Trends Proceedingember PRG-RR-05-02
in Oxford University Computing Laboratory Technical Refpgrages 170—
179, August 2005.

Daniel D. Suthers, John Connelly, Alan Lesgold, Masskaolucci, Eva Er-

dosne Toth, Joe Toth, and Arlene Weiner. Representatiownizdvisory guid-

ance for students learning scientific inquiry. In K. Forbusl &. Feltovich,

editors,Smart machines in educatippages 7-35. AAAI/MIT Press, Menlo
Park, CA, 2001.

N. W. Scott. A Study of the Introduction of Educational Technology into a
Course in Engineering Dynamics: Classroom environmentlaaching out-
comes PhD thesis, University of Western Australia, 1996.

Anders Selmer, Mike Goodson, Markus Kraft, Siddhartkea,S/. Faye Mc-
Neill, Barry S. Johnston, and Clark K. Colton. Performinggess control
experiments across the atlanti@hemical Engineering Educatiof:232-237,
2005.

Anders Selmer, Markus Kraft, Clark Colton, and R&loros. Weblabs in
chemical engineering education. Technical report, Usitaeiof Cambridge,
2006.

B. F. Skinner. The science of learning and the areathing.Harvard Edu-
cational Reviewpages 86—-97, 1954.

B. F. Skinner. Teaching machines: From the expeniaestudy of learning
come devices which arrange optimal conditions for selfruttion. Science
128:969-977, 1958.

P. Suraweera and Antonija Mitrovic. KERMIT: a corshtit-based tutor for
database modeling. In P. Cerri, G. Gouarderes, and F. RerageditorsPro-
ceedings of the 6th International Conference on Intelltgeutoring Systems
ITS 2002, Biarritz, Francgpages 377-387, 2002.

Richard Sommer and Gregory Nuckols. A proof envireninfor teaching
mathematicsJournal of Automated Reasonir#R:227 — 258, 2004.

V. J. Shute and J. Psotka. Intelligent tutoring systePast, present and fu-
ture. In D. Jonassen, editétandbook of Research on Educational Communi-
cations and Technologgcholastic Publications, 1996.

Richard Stallman and Gerald J. Sussman. Forwardmesand dependency-
directed backtracking in a system for computer-aided gilaalysis. Artifi-
cial Intelligence 9:135-196, 1977.

132

BIBLIOGRAPHY

[SS94]

[SS98]

[SST+01]

[Sut03]

[Ten82]

[TR81]

[VDHO1]

[VFO4]

[VLS*05]

[Wal84]

[WB01]

[WBGO04]

[WBGJ02]

Richard Scheines and Wilfried Sieg. Computer envirents for proof con-
struction.Interactive Learning Environment4(2):159-169, 1994.

N Scott and B Stone. A flexible web based tutorial sydier engineering,
maths and science. In D. Jonassen, ediandbook of Research on Educa-
tional Communications and Technolo@cholastic Publications, 1998.

R Shelby, K Schulze, D Treacy, M Wintersgill, Kurt Vanlehand A We-
instein. An assessment of the Andes tutor. Pioceedings of the Physics
Education Research Conference, July 21-25, Rocheste2001.

Daniel D. Suthers. Representational guidance dtialgorative learning. In
H. U. Hoppe, F. Verdejo, and Judy Kay, editotstificial Intelligence in Edu-
cation, pages 3-10. I0S Press, Amsterdam, 2003.

G. TenenbaumA method of group instruction which is as effective as orne-to
one tutorial instruction PhD thesis, University of Chicago, 1982.

Tim Teitelbaum and Thomas Reps. The Cornell Programtifsizer: a
syntax-directed programming environmenCommunications of the ACM
24(9):563-573, September 1981.

Joris Van Der Hoeven. GNU TeXmacs: a free, struaymysiwyg and tech-
nical text editor.Le document au XXI-ieme siec89-40:39-50, May 2001.

Sekhar Vajjhala and Joe Fialli, editofiche Java Architecture for XML Binding
(JAXB) 2.0 (early draft v0.4)Sun Microsystems, Inc., 2004.

K. VanLehn, C. Lynch, K. Schulze, J.A. Shapiro, R. Shelhy Taylor,

D. Treacy, A. Weinstein, and M. Wintersgill. The Andes plogstutoring
system: Lessons learnednternational Journal of Artificial Intelligence in
Education 15:147-204, 2005.

H. J. Walberg. Improving the productivity of Ameais schools Educational
Leadership41(8):19-27, 1984.

Gerhard Weber and Peter Brusilovsky. ELM-ART: An ptize versatile sys-
tem for web-based instructiomnternational Journal of Artificial Intelligence
in Education 12:351-384, 2001.

Daniel Winterstein, Alan Bundy, and Corin Gurr. Doodle: a diagrammatic
theorem prover. IrSecond International Joint Conference, IJCAR 2004, Ire-
land, July 4-8 Lecture Notes in Computer Science, pages 331-335. Springe
2004.

Daniel Winterstein, Alan Bundy, Corin Gurr, and tdja Jamnik. Using ani-
mation in diagrammatic theorem proving.Dmagrams 2002Springer-Verlag,
2002.

BIBLIOGRAPHY 133

[Wen99]

[Wen05]
[Wie04]

[Win99]

[Yac03]

[Yac04]

[Zin06]

Markus Wenzel. Isar - a generic interpretative apph to readable for-
mal proof documents. ITheorem Proving in Higher Order Logics, 12th
International Conference, TPHOLS'9@NCS, 1999. Also available online
from http://www4.in.tum.de/ wenzelm/papers/Isar-TPHO8.pdf accessed
10 June 2005.

Markus WenzelThe Isabelle/Isar Reference Manudlu Minchen, 2005.

Freek Wiedijk. Formal proof sketches. Types for Proofs and Programs
volume 3085/2004 adfNCS Springer, 2004.

David Winer. XML-RPC SpecificatianUserLand Software, 1999. Accessed
30 January 2005 from http://www.xmlrpc.com/spec.

Kalina Yacef. Experiment and evaluation resultgha logic-ita. Technical
Report 542, University of Sydney, 2003.

Kalina Yacef. Making large class teaching more aidapwith logic-ita. In
Proceedings of the sixth conference on Australasian comgpugducation
pages 343-347, 2004.

Claus Zinn. Bootstrapping a semantic Wiki applioatfor learning mathemat-
ics. In S. Schaffert and Y. Sure, editoBgmantic Systems: From Visions to
Applications. Proc. of the Semantics 2006 Conferenuages 255-260. Aus-
trian Computer Society, 2006.

134 BIBLIOGRAPHY

APPENDIX A

Abstract Teaching Script for Formal Proof Exercises

An abstract class is usually written for a type of questiowl, the scripts for individual questions
are subclasses of that Abstract Teaching Script. The cstiiegibelow is the abstract superclass
for the formally modelled proof exercises.

[+
= Created on Mar 9, 2005
*
x|
package cam.cl.intelligentBook.proof;

import java.io.IOException;

import java.io.StringReader;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect. Method;

import javax.servlet.ServletException;

import cam.cl.intelligentBook.datalog.Datalog;

import cam.cl.intelligentBook.isabelleExpr.EvalException;
import cam.clintelligentBook.isabelleExpr.FunctionCallback;
import cam.cl.intelligentBook.isabelleExpr.ParseException;
import cam.cl.intelligentBook.isabelleExpr.SimpleNode;
import cam.cl.intelligentBook.isabelleExpr.TokenMgrError;
import cam.cl.intelligentBook.isabelleExpr.isar;

import cam.cl.intelligentBook.questions.DocumentKey;
import cam.cl.intelligentBook.questions.QuestionScriptException;
import cam.cl.intelligentBook.questions.TeachingScript;
import cam.cl.intelligentBook.questions.Util;

import cam.cl.intelligentBook.questions.XPathHandler;

135

136 Appendix A. Abstract Teaching Script for Formal Proof Exercises

import java.util. ArrayList;
import java.util. HashMap;
import java.util. List;

import java.util. Map;

import java.util.Set;

import java.util. Vector;
import java.util. logging.Level;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

[
» Abstract teaching script for Isar/MathsTiles based proof questions
*
!
public abstract class ProofQuestionScript extends TeachingScript implements
FunctionCallback {

public static final String MATHSTILES_NAMESPACE = “http://www.cl.cam.ac.uk/
users/whb21/MathsTiles”;

protected GroovylsarProcessor isarProcessor;

public ProofQuestionScript() throws ServletException, QuestionScriptException {

super();

isarProcessor = new GroovylsarProcessor();

this.xpathHandler = new XPathHandler(MATHSTILES_NAMESPACE);

suggestFixAdviceMap.add(new String|[] {“suggestFix_FailedToFinishProof”, ”
relevance_FailedToFinishProof”});

suggestFixAdviceMap.add(new String|[] {"suggestFix_UnexpectedEndOfInput”, ”
relevance_Unexpected EndOfInput”});

suggestFixAdviceMap.add(new String|[] {"suggestFix_TilelnlllegalLocation”, ”
relevance_Tilelnlllegal Location”});

suggestFixAdviceMap.add(new String]] {
suggestFix_LocalStatement WillFailToSolveAnyPendingGoal”, ”
relevance_LocalStatementWillFailToSolveAnyPendingGoal"});

suggestFixAdviceMap.add(new String|[] {"suggestFix_ProofCommandFailed”, ”
relevance_ProofCommandFailed”});

suggestFixAdviceMap.add(new String|[] {"suggestFix_CannotRewriteStatement”, ”
relevance_CannotRewriteStatement”});

”

[xx

137

» Checks the proof using Isar, using the default Conversion Script
-
public Vector checkProof() throws ServletException {
return checkProof(”Defaultlsar.groovy”);

}

[k
» Checks the proof using Isar, using the specified Conversion Script
*l
public Vector checkProof(String scriptPath) throws ServletException {
try {
DocumentKey documentKey = new DocumentKey(this.getUserName(), this.
getSubCollection(), this.getDocumentld());
document = documentManager.getDocument(documentKey);
Datalog.logSnapshot(this.getActionKey(), this.getUserName(), this.
getDocumentId(), this.getSubCollection(), documentManager.
getXmlContents(document));

preChangeSetup();

this.addCodedResponseCall(“mundane”, "clear annotations”, “content.
clearAnnotations”);

ProverResponseltem[] r_arr = isarProcessor.dolsar(document, scriptPath);

DocumentKey annotationDK = new DocumentKey(documentKey.
getUsername(), documentKey.getCollection(), “annotations_" +
documentKey.getDocumentName());

Document annotationDoc = documentManager.createDocument(annotationDK

, null, "annotations”);

boolean foundError = false;
for (ProverResponseltem pri : r_arr) {
if (pri.xmlContextPath != null && pri.xmlContextPath.endsWith("/")) {
pri.xmlContextPath = pri.xmlContextPath.substring(0, pri.xmlContextPath.
length() — 1);
}

if (pri.responseLabel == "error” && 'Util.empty(pri.xmlContextPath)) {

/' We stop showing errors after the first one, because they tend to be "follow
—on" errors. Note, we only worry about errors with a response path, so
we don’t stop after errors in the header

if (foundError) {

this.addResponseCall(“content.annotate”, pri.xmlContextPath, pri.
responseLabel, pri.responseTitle, pri.responseText, pri.responseCode)

4

138 Appendix A. Abstract Teaching Script for Formal Proof Exercises

foundError = true;
)
} else {
this.addResponseCall(“content.annotate”, pri.xmlContextPath, pri.
responseLabel, pri.responseTitle, pri.responseText, pri.responseCode);

}

[
» Add the response into the annotation document
x
if ('Util.empty(pri.responseLabel)) {
Element e = annotationDoc.createElement(pri.responseLabel);
e.setAttribute("xpath”, pri.xmlContextPath);
e.setAttribute(“code”, pri.responseCode);
e.setAttribute("title”, pri.responseTitle);
if (pri.responseText != null && pri.responseText.length() > 0) {
Element xmlE = annotationDoc.createElement(“text"”);
xmlE.appendChild(xpathHandler.parseXml(annotationDoc, Util.
xmlEncode(pri.responseText), null));
e.appendChild(xmlE);
}
if (pri.responseXml != null && pri.responseXml.length() > 0) {
Element xmlE = annotationDoc.createElement(”xml");
xmlE.appendChild(xpathHandler.parseXml(annotationDoc, pri.
responseXml, null));
e.appendChild(xmlE);
}
annotationDoc.getDocumentElement().appendChild(e);
} else {
logger.warning(”A prover response had an empty label (text follows): ” + pri.
responseText);

}

documentManager.setModified (annotationDK);

if (checkDone(r_arr)) {
this.addResponseCall(“tutor.appendSystemText”, “OK, that looks like Isabelle is
happy you've proved the statement. Well done.”);
)
return this.getResponseStrings();
} catch (IOException e) {
String msg = String.format(”An exception occurred checking the proof.%n Student
%s Collection %s Document %s ActionKey %s”, this.getUserName(), this.
getSubCollection(), this.getDocumentId(), this.getActionKey());

139

logger.log(Level. SEVERE, msg, e);

e.printStackTrace();

throw new ServletException(msg, e);

} catch (QuestionScriptException e) {

String msg = String.format(”An exception occurred checking the proof.%n Student
%s Collection %s Document %s ActionKey %s”, this.getUserName(), this.
getSubCollection(), this.getDocumentId(), this.getActionKey());

logger.log(Level. SEVERE, msg, e);

e.printStackTrace();

throw new ServletException(msg, e);

}
}

I

x Checks if Isabelle/HOL thinks the theorem has been proved

«
protected boolean checkDone(ProverResponseltem[] priArr) {

for (ProverResponseltem pri: priArr) {
if (pri.responseLabel == "info” && pri.responseText.startsWith("<htmI>theorem
answer:")) {
return true;

}
}

return false;

)

I
x» Checking a proof takes approximately 2 seconds. This is too slow to do every
time the user changes anything (the "changes" we are sent for this question
are low—level syntax moves), so for this kind of question we do nothing by
default, and let the user click "Check Proof" to have his/her proof checked.
!
public void preChangeSetup() throws ServletException, IOException {
public void preChangeRules() throws ServletException, IOException {
public void postChangeSetup() throws ServletException, IOException
public void postChangeRules() throws ServletException, IOException
public void cleanUp() throws ServletException, IOException { }

}
}

- —— e

/**********************************
x Default advice functions

**********************************/

public boolean relevance_Failed ToFinishProof(String errorCode, String xpath,
String text) {
return “Failed to finish proof”.equals(errorCode);

)

140 Appendix A. Abstract Teaching Script for Formal Proof Exercises

public void suggestFix_Failed ToFinishProof (String errorCode, String xpath, String
text) throws ServletException {
DocumentKey annotationDK = new DocumentKey(this.getUserName(), this.
getSubCollection(), “annotations_" + this.getDocumentId());
Document annotationDoc = documentManager.getDocument(annotationDK);
Document theDoc = documentManager.getDocument(this.getUserName(), this.
getSubCollection(), this.getDocumentld());

if (xpathHandler.evaluateToBoolean(”count(//mt:tilel@name="answer’]/mt:socket/mt
;tile[@definition="proofs:simp’]) > 0", theDoc.getDocumentElement())) {

this.addCodedResponseCall(“recommendFix", “unfinish proof (top level simp)”,

" on

tutor.prompt”, "You can’t expect the simplifier to automatically do the entire proof
for you!”);

return;

}

String missingGoal = findUnshownGoal(xpath, annotationDoc);
if (missingGoal != null) {
this.addCodedResponseCall(“recommendFix", "unfinish proof (found missing goal)
", "tutor.prompt”, "You still need to show the goal ” + missingGoal);
} else {
this.addCodedResponseCall(“recommendFix", “unfinish proof (can’t find missing
goal)”, "tutor.prompt”, "Check back in the proof to see if there are any goals that

you haven’t shown");

)
)

public boolean relevance_UnexpectedEndOfInput(String errorCode, String xpath,
String text) {
return "Inner syntax error: unexpected end of input”.equals(errorCode);
)
public void suggestFix_UnexpectedEndOfInput(String errorCode, String xpath,
String text) throws ServletException {

NodeList nl = xpathHandler.evaluateToList("//mt:tile[@name="answer’]//mt:tile/mt:
socket[not(*)]”, documentManager.getDocument(this.getUserName(), this.
getSubCollection(), this.getDocumentId()));

if (nl.getLength() > 0) {

this.addCodedResponseCall(“recommendFix", “unfilled sockets”, "tutor.highlight”
, " /fmt:tile[@name="answer’|//mt:tile/mt:socket[not(+)]”, "OxFFAAAA");

this.addCodedResponseCall(“recommendFix”, “unfilled sockets”, “tutor.prompt”,
"It looks like this is being caused because you haven't filled in some sockets in some
earlier tiles.”);

} else {

this.addCodedResponseCall(“recommendFix", "incomplete wrong tile”, "tutor.
prompt”, "I think you've put something that isn’t an expression (maybe a rule label
) in an expression socket, but I'm just guessing.”);

141

}
}

public boolean relevance_TilelnIllegalLocation(String errorCode, String xpath,
String text) {
return ("Opening PGIP tag found when state is writingPGIP".equals(errorCode) | |
"Output found outside of a command”.equals(errorCode) | | “Illegal application of
proof command in prove mode”.equals(errorCode));
}
public void suggestFix_TileInlllegalLocation(String errorCode, String xpath, String
text) throws ServletException {
this.addCodedResponseCall(“recommendFix", "tile in illegal location”, "tutor.

prompt”, "This usually means the tile with the error is in an illegal location (eg an
equation in a "proof method’ socket).”);

}

public boolean relevance_LocalStatementWillFailToSolve AnyPendingGoal(String
errorCode, String xpath, String text) {
return ("Local statement will fail to solve any pending goal”.equals(errorCode));
)
public void suggestFix_CannotRewriteStatement(String errorCode, String xpath,
String text) throws ServletException {
this.addCodedResponseCall(“recommendFix”, “cannot rewrite statement”, "tutor.
prompt”, “If the statement doesnt have a \ "For AlI\" in it, and doesn’t have a
declared external variable, Isabelle won’t know what variable she can rewrite”);

}

public boolean relevance_CannotRewriteStatement(String errorCode, String xpath,
String text) {
return ("Cannot rewrite statement”.equals(errorCode));
)
public void suggestFix_LocalStatementWillFailToSolveAnyPendingGoal(String
errorCode, String xpath, String text) throws ServletException {
this.addCodedResponseCall(“recommendFix”, “local statement will fail to solve any
pending goal”, "tutor.appendSystemText”, "Here’s a topic link for advice on solving
this one: " + this.topicRecommendLink(“solving isar goals”, null, “solving isar
goals”, true));

}

public boolean relevance_ProofCommandFailed(String errorCode, String xpath,
String text) {
return “empty result sequence —— proof command failed”.equals(errorCode);
)
public void suggestFix_ProofCommandFailed (String errorCode, String xpath,
String text) throws ServletException {

142 Appendix A. Abstract Teaching Script for Formal Proof Exercises

DocumentKey annotationDK = new DocumentKey(this.getUserName(), this.
getSubCollection(), “annotations_" + this.getDocumentId());
Document annotationDoc = documentManager.getDocument(annotationDK);

Element e = findClosestPremiseState(xpath, annotationDoc);

if (e !=null) {
List<SimpleNode> premiseList = new ArrayList<SimpleNode>();
List<SimpleNode> goalList = new ArrayList<SimpleNode>();
Set<String> varNames = null;

NodeList nl = e.getChildNodes();
for (inti = 0; i < nl.getLength(); i++) {
Node n = nl.item(i);
if (n instanceof Element && n.getLocalName().equals(“premise”)) {
isar isar = new isar(new StringReader(n.getTextContent()));
try {
SimpleNode expr = isar.Expression();
premiseList.add All(expr.getConstraints(false));
if (varNames == null) {
varNames = expr.getldentifiers();
} else {
varNames.add All(expr.getldentifiers());
}
} catch (ParseException el) {
this.addCodedResponseCall(“recommendFix", "proof command failed (can’t
parse premise)”, "tutor.prompt”, "Sorry, I'd try to check if the expression
was true, but I'm having trouble parsing this premise:
" + n.
getTextContent());
return;
} catch (TokenMgrError el) {
this.addCodedResponseCall(“recommendFix”, "proof command failed (can’t
parse premise)”, "tutor.prompt”, "Sorry, I'd try to check if the expression
was true, but I'm having trouble parsing this premise:
" + n.
getTextContent());
return;
}
} else if (n instanceof Element && n.getLocalName().equals(“goal”)) {
isar isar = new isar(new StringReader(n.getTextContent()));
SimpleNode goal;
try {
goal = isar.Expression();
} catch (ParseException el) {
this.addCodedResponseCall(“recommendFix”, "proof command failed (can’t
parse goal)”, "tutor.prompt”, "Sorry, I'd try to check if the expression was
true, but I'm having trouble parsing this goal:
" + n.getTextContent

0)

143

return;
} catch (TokenMgrError el) {
this.addCodedResponseCall(“recommendFix", "proof command failed (can’t
parse goal)”, "tutor.prompt”, "Sorry, I'd try to check if the expression was
true, but I'm having trouble parsing this goal:
" + n.getTextContent

0);

return;
}
goalList.add(goal);
premiseList.add All(goal.getConstraints(true));
if (varNames == null) {
varNames = goal.getldentifiers();
} else {
varNames.add All(goal.getldentifiers());

)

HashMap<String, Object> varsMap = new HashMap<String, Object>();
try {
if (findCounterExamples(varsMap, varNames, premiseList, goalList)) {
StringBuilder sb = new StringBuilder("This counter—example shows the
line is wrong:
");
for (String varName : varNames) {
sb.append(varName);
sb.append(”=");
sb.append(varsMap.get(varName));
sb.append(” ”);

}

this.addCodedResponseCall(“recommendFix", "proof command failed (
found counterexample)”, "tutor.prompt”, sb.toString());
return;
} else {
this.addCodedResponseCall(“recommendFix", "proof command failed (can
't find counterexample)”, "tutor.prompt”, "I can’t find a counter—
example. Perhaps the line is true but Isabelle can’t prove it — maybe you
need to use an extra rule, or it might just be algebraicly too far from the
previous line”);
return;
}
} catch (EvalException el) {
this.addCodedResponseCall(“recommendFix”, "proof command failed (eval
failed)”, "tutor.prompt”, "Sorry, I'd try to check if the expression was true,
but I had trouble evaluating one of the goals:
" + el.getMessage());

return;

}

144 Appendix A. Abstract Teaching Script for Formal Proof Exercises

)
this.addCodedResponseCall(“recommendFix", "unfinish proof (found missing goal)

", "tutor.prompt”, documentManager.getXmlContents(e));
} else {
this.addCodedResponseCall(“recommendFix", “unfinish proof (can’t find missing

" on

goal)”, "tutor.prompt”, "Didn’t find any states with premises ” + xpath);

}
}

/**********************************
» Functions useful for checking proofs

**********************************/

[k
= Tries to find goals that Isabelle hasn’t declared shown
*l
protected String findUnshownGoal(String xpath, Document annotationDoc) {
String missingGoal = null;
if (annotationDoc != null) {
String searchPath = "//state[@xpath=\"" + xpath + "\ "[/xml/goal”;

NodeList goals = xpathHandler.evaluateToList(searchPath, annotationDoc.
getDocumentElementy());
NodeList infos = xpathHandler.evaluateToList("//info/text”, annotationDoc.
getDocumentElementy());
if (goals != null) {
for (inti = 0; i < goals.getLength(); i++) {
String goalText = goals.item(i).getTextContent();
boolean found = false;
if (infos != null) {
for (int j = 0; j < infos.getLength(); j++) {
Node n = infos.item(j);
String s = n.getTextContent();
if (s.contains(”Successful attempt to solve goal by exported rule”) && s.
contains(goalText)) {
found = true;
break;

)

}

)

if (Ifound) {
missingGoal = goalText;
break;

}

}
)

145

}

return missingGoal;

}

[k
» Searches for a state element that contains at least one premise element, and

has an xpath that is the closest parent of the given xpath
-
protected Element findClosestPremiseState(String xpath, Document annotationDoc
) {
Element e = null;
while (e == null && !Util.empty(xpath)) {
NodeList nl = xpathHandler.evaluateToList(String.format(”//state[@xpath=\"%s
\" and count(xml/premise) > 0]/xml”, xpath), annotationDoc.
getDocumentElement());
if (nl.getLength() > 0) {
e = (Element)nl.item(0);
} else {
int i = xpath.lastindexOf(’/’);
if 1>0) {
xpath = xpath.substring(0, i);
} else {
xpath = null;
}
)
}

return e;

}

I
» Find a counterexample, and put it in varMap; return true if a counterexample has
been found
«
protected boolean findCounterExamples(Map<String, Object> varMap, Set<String
> varNames, List<SimpleNode> premises, List<SimpleNode> goals) throws
EvalException {
String[] varNamesArr = varNames.toArray(new String[0]);
if (varNamesArr.Jength == 0) {
return false;

)

return doTrials(varMap, 0, varNamesArr, premises, goals);

}

I
x Tries different numbers for each of the variables to find a counterexample
-

146 Appendix A. Abstract Teaching Script for Formal Proof Exercises

protected boolean doTrials(Map<String, Object>m, int i, String[] varNames, List<
SimpleNode> premises, List<SimpleNode> goals) throws EvalException {
for (int k = 0; k < 20; k++) {
m.put(varNamesl[i], k);
if (i + 1 < varNames.length) {
boolean b = doTrials(m, i + 1, varNames, premises, goals);
if (b) {
return true;
}
} else {
StringBuilder sb = new StringBuilder();
for (int locall = 0; locall < varNames.length; locall++) {
sb.append(varNames[locall]);
sb.append('=’);
sb.append(m.get(varNames[locall]));
sb.append(”’);
}
boolean passesPremises = true;
for (SimpleNode n : premises) {
Object o = n.eval(m, this);
if (o instanceof Boolean && !'Boolean.valueOf((Boolean)o)) {
passesPremises = false;
break;

}
)

if (passesPremises) {
for (SimpleNode n : goals) {
Object o = n.eval(m, this);
if (o instanceof Boolean & & !Boolean.valueOf((Boolean)o)) {
return true;
}
}
}
}
}

return false;

}

public Object call(Map<String, Object> variableValues, FunctionCallback
functionCallback, String functionName, SimpleNode... parameters) throws
EvalException {
throw new EvalException(”Couldn’t obtain an executable definition of function ” +
functionName);

APPENDIX B

Teaching Script for a Formal Proof Exercise

This appendix contains the Teaching Script for a questiontihe Fibonacci sequence and the
Greatest Common Denominator. It specifies which questicnmment and conversion script to
use, defines somaa hocadvice functions, and provides an executable definitiottferfib(n)
andgcd(n, m) functions.

package cam.cl.intelligentBook.discreteMaths.questions.gcd;

importjava.io.JOException;

import java.util. Map;

import java.util. Vector;

import javax.servlet.ServletException;

import cam.cl.intelligentBook.isabelleExpr.EvalException;

import cam.clintelligentBook.isabelleExpr.FunctionCallback;
import cam.cl.intelligentBook.isabelleExpr.SimpleNode;

import cam.cl.intelligentBook.proof.ProofQuestionScript;

import cam.cl.intelligentBook.questions.QuestionScriptException;

[
x Teaching script for Question A
*/
public class Scripta extends ProofQuestionScript {

public Scripta() throws ServletException, QuestionScriptException {

super();
this.contextXPath = “/mt:document/mt:tileSet|@name="question’]/”;

this.adviceMap = new String[][] {
{"advice_ruleTiles”, "returnTrue”, "help”},
{"advice_fibDef", "returnTrue”, "help”},

b

147

148 Appendix B. Teaching Script for a Formal Proof Exercise

}

public String getDocumentId() {
return “question.xml”;

}

public String getSubCollection() {
return "questions/gcd/a/”;

}

@Override
public Vector checkProof() throws ServletException {
I
x» We use a Conversion Script that includes the Fibonacci sequence definition
«l
return checkProof(Scripta.class.getResource(”Fibonaccilsar.groovy”).getPath());

}

public boolean returnTrue() {
return true;

}

public void advice_ruleTiles() throws ServletException {
addCodedResponseCall(“suggest”, “rulesTiles”, "tutor.prompt”, "Isabelle’s simplifier
only knows a few rules; there are rule tiles in the tray to add more rules. This means

Isabelle DOESN'T know those rules unless you tell her about them!”);
}

public void advice_fibDef() throws ServletException {
addCodedResponseCall(“suggest”, "fibDef”, "tutor.prompt”, “We want to show
something about gcd(f(n+1), f(n+2)), and we know that f(n+2) = f(n) + f(n+1) ...");

}

@Override
public Object call(Map<String, Object> variableValues, FunctionCallback
functionCallback, String functionName, SimpleNode... parameters) throws
EvalException {
if ("f".equals(functionName)) {
if (parameters == null | parameters.length < 1) {
throw new EvalException(”Call to f had fewer than one parameter”);
}
return fib(getInt(parameters[0].eval(variableValues, functionCallback)));
} else if (“gcd”.equals(functionName)) {
if (parameters == null | parameters.length < 2) {
throw new EvalException(”Call to gcd had fewer than two parameters”);

)

149

return gcd(getInt(parameters[0].eval(variableValues, functionCallback)), getInt(
parameters[1].eval(variableValues, functionCallback)));
} else {
return super.call(variableValues, functionCallback, functionName, parameters)

7

}
}

public static int fib(int i) {

if (1> 0) {
double sqrt5 = Math.sqrt(5.0);
double a = Math.pow((1.0 + sqrt5) / 2.0, i);
double b = Math.pow((1.0 — sqrt5) / 2.0, i);
double c = (a — b)/sqrt5;
return (int)Math.rint(c);

} else {
return 0;

}
}
public static int gcd(int x, int y) {
if (x == 0 && y ==0) {
return 0;
} else {
int n = Math.max(x, y);
int d = Math.min(x, y);
if (d==0) {
return n;
} else {
intr=n%d;
return (r ==0) ? d : gcd(r, d);
}
}

}
static int getInt(Object 0) throws EvalException {

if (o instanceof Integer) {
return ((Integer) o).intValue();
} else if (o instanceof Long) {
return ((Long) o).intValue();
} else if (0 instanceof Short) {
return ((Short) o).intValue();
} else {
throw new EvalException(String.format(”Couldn’t get an integer from %s %s”, o.
getClass().getName(), o.toString()));

150 Appendix B. Teaching Script for a Formal Proof Exercise

APPENDIX C

Conversion Script for Fibonacci Sequence

The Conversion Script shown here defines the Fibonacci sequa Isabelle/HOL, and pro-
vides matchers for tiles associated with it. It loads plmeofs.groovy andmaths.groovy
Conversion Scripts to handle all other tiles.

String MATHSTILES_NS = “http://www.cl.cam.ac.uk/users/whb21/MathsTiles";

/I Matchers for various rule labels

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:fibm
1A

out.append(”“fibm”);

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:fib0
1A

out.append(“fib0");

%

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:fibl
1A

out.append(”fib1”);

%

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:
fib_add” }, {

out.append(”“fib_add”);

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:
ged_fib_Suc_eq 1"}, {

out.append(“gcd_fib_Suc_eq_1");

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute(“definition”) == "fibonacci:

ged_add2” }, {

out.append(”gcd_add2");

151

152 Appendix C. Conversion Script for Fibonacci Sequence

D
proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:

ged_commute” }, {

out.append(“gcd_commute”);

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute(“definition”) == "fibonacci:
ged_non_0"}, {

out.append(“gcd_non_0");

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute(“definition”) == "fibonacci:
gcd_mult_add” }, {

out.append(”gcd_mult_add”);

%

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:
gcd_mult_cancel” }, {

out.append(”gcd_mult_cancel”);

D

proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:
ged_commute” }, {

out.append(”gcd_commute”);

D;

/I Matcher for the induction tile that uses the definition of the Fibonacci series for its
cases
proc.matcher(MATHSTILES_NS, “tile”, { it.getAttribute("definition”) == "fibonacci:
inductionFib” }, {
out.append(”<proofstep>proof (induct ”);
proc.process(it, “mt:socket[@name="variable’]");
out.append(” rule: fib_induct)</proofstep>");

proc.talk(it);

proc.process(it, “mt:socketList|@name="step list’]");
proc.process(it, “mt:socket[@name="show’]”);

out.append(”<proofstep>ged</proofstep>");
proc.talk(it);
D;

/I Load the default conversion scripts that contain definitions for various maths and
proof tiles

proc.use(“prooflolsar.groovy”);

proc.use(“mathsTolsar.groovy”);

/I Matcher for the document as a whole (always processed first)
proc.matcher(null, null, null, {

153

out.append(”<aborttheory/>");

//Set up the alternative induction rule

out.append(”””

<opentheory>theory question imports Main Primes begin</opentheory>

<theoryitem>
theorem altInduct [case_names base step]: "P 0 ==> (!ln:mat. Pn ==>P (n + 1)) ==>Pn”
by(auto elim!: nat_induct)

</theoryitem>

<theoryitem>
theorem altCases: “[| m=0==>P,m=k+1==>P |] ==>P" sorry
</theoryitem>

7y,
);

proc.talk();

/I Define the Fibonacci sequence and associated lemmas
out.append(”””
<theoryitem>
consts f :: "nat =>nat”
recdef f less_than
"“t0=0"
“f (Suc0)=1"
“f (Suc (Suc x)) = f x + f (Suc x)”
</theoryitem>

<theoryitem>
lemma fib0: "£ 0 = 0" by simp
lemma fibl: "£1 =1" by simp
lemma fibSuc: “f (Suc (Sucn)) = (Sucn) + fn” by simp

”

lemma fibm: "m >0==>f(m+1)=fm+f (m — 1)” by (cases m, auto)

declare fibO[simp]
declare fib1[simp]
declare fibSuc[simp]
declare fibm[simp]

declare fib1[simplified, simp]
lemma [simp]: "0 < f (Suc n)”
by (induct n rule: f.induct) (simp+)

theorem fib_induct:
"PO0==>P1l==>(.P(n+1)==>Pn==>P (n+2)==>P (n:nat
)Il
by (induct rule: f.induct, simp+)

154 Appendix C. Conversion Script for Fibonacci Sequence

</theoryitem>

<theoryitem>

theorem gecd_fib_Suc_eq_1: "gcd (fn, f (n + 1)) = 1" sorry
</theoryitem>
<theoryitem>

theorem fib_add: "f(n+k+1)=f(k+1)«f(n+ 1)+ fk+fn" sorry
</theoryitem>
<theoryitem>

theorem gcd_mult_add: "0 &It; n ==> ged (n * k + m, n) = gcd (m, n)” sorry
</theoryitem>

"oy,
);

proc.talk();

/I Process the question tile containing the theorem and socket for the proof
proc.process(it, “//mt:tile[@name="answer’]");

D;

APPENDIX D

Question Document for a Formal Proof Exercise

The question document for a formal proof exercise contdiedites that will be converted to

declare and prove the theorem in Isabelle/HOL. (The tile$ declare the theorem are in the
document at the start; the student adds the tiles to provéh#wmem.) Question documents
are not usually handwritten, but created by piecing the titgyether in MathsTiles and then
marking some of them as unselectable and indelible. Howéverquestion document for a
guestion about the Fibonacci sequence is shown here.

<document
xmlns="http://www.cl.cam.ac.uk/users/whb21/MathsTiles”
xmlns:d="http://www.cl.cam.ac.uk/users/whb21/DOMEditors”
xmlns:mt="http://www.cl.cam.ac.uk/users/whb21/MathsTiles"
name="question”>

<d:requires name="proofs” uri="proofs.xml" />

<d:requires name="maths"” uri="maths.xml" />

<tileSet name="question” xmlns="http://www.cl.cam.ac.uk/users/whb21/MathsTiles">

<tile definition="proofs:theorem with (is) slot” name="answer” x="0" y="0" selectable=
"no” delible="no" background="0xBBEEAA">

<socket name="theorem”>

<tile definition="maths:=" name="t6" x="153" y="20">

<socket name="varl">

<function name="gcd"” separator="," socketCount="2">

<socket name="varl">

<function name="f" separator="," socketCount="1">

<socket name="varl ">

<variable name="n" x="215" y="330" />

</socket>

</function>

</socket>

155

156 Appendix D. Question Document for a Formal Proof Exercise

<socket name="var2">

<function name="f" separator="," socketCount="1">
<socket name="varl ">

<tile definition="maths:+"” name="t5" x="267" y="338">
<socket name="var1”>

<variable name="n" x="374" y="257" />

</socket>

<socket name="var2 ">

<variable name="1" x="394" y="257" />

</socket>

</tile>

</socket>

</function>

</socket>

</function>

</socket>

<socket name="var2">

<variable name="1" x="257" y="332" />

</socket>

</tile>

</socket>

<socket name="is slot”>

<tile definition="proofs:(is)" name="t20" x="183" y="149">
<socket name="is1">

<tile definition="proofs:P()” name="t21" x="117" y="207">
<socket name="var1"”>

<variable name="n" x="138" y="224"/>

</socket>

</tile>

</socket>

</tile>

</socket>

<socket name="proof” selectable="yes” delible="yes"” background="n0"/>
</tile>

< /tileSet>

</document>

	Introduction
	Background
	``The Industrial Revolution in Education''
	Bloom and the Two Sigma Problem
	Recent Research
	Complementing the Tutor
	Why a Textbook

	This Dissertation
	Challenges for an Intelligent Book
	Challenges for the Proof Exercises
	Outline of the Following Chapters
	Publications

	Related Work
	Automated Questions
	Short answer and multiple choice systems
	Online simulation
	Summary

	Intelligent Tutoring Systems
	Model Tracing
	Constraint Based Tutoring
	Mixed-Initiative and Conversational tutors
	Summary

	Web-based Learning Environments and Adaptive Hypermedia
	AlgeBrain
	ELM-ART
	REDEEM
	The Living Book
	ActiveMath
	Adaptive hypermedia
	Summary

	Editing mathematics
	Parsed text
	Mathematical sketching
	Structured Editing
	Summary

	Educational Systems for Mathematical Proof
	EPGY
	Dialog Project
	Diagrammatic Theorem Proving
	Systems for Propositional Logic
	Summary

	Design Guidelines for an Intelligent Book

	Supporting Complex Graphical Questions at the Client
	Overview
	A Question in Electronics
	Technical Detail
	Cooperative XML Documents
	Simple Change Format for XML
	Document Management

	Content Model
	Overview of the Topic Structure
	Architecture and Data Model
	Database and Selection Logic
	Modified Wiki

	Supporting Chapters, Sections, and Subsections
	Closing Note

	Server-Side Question Architecture
	Teaching Scripts
	Overview
	Supporting Different Teaching Pedagogies
	Advice Functions
	A Hypothetical Example
	Relationship to Servlets

	Conversion Scripts
	Broker
	Reusability of Components

	Proof Question Design Goals
	Background and Hypothesis
	Design Goals
	The exercises take place within a Web-based Intelligent Book
	The student, not the system, should write the proof
	Proofs should resemble what students write on paper

	MathsTiles
	Overview
	Document Structure
	Definable Tile Components
	Inheritable Attributes
	Non-Defined Tiles
	Tile Trays
	Future Work
	Conclusion

	MathsTiles as a Proof Language
	A Straightforward Example
	Proof tiles
	Colour Coding
	Reasoning Step Size
	Annotations
	Two Design Compromises
	The student does not always have to write the goal statements
	The proof is checked linearly.

	A Difficult Example

	Evaluation
	Overview
	Numerical Results
	Qualitative Results
	MathsTiles UI (Complex)
	Proof Language
	Domain Specific Issues (here Number Theory)

	Future Work
	Consideration of lemmas
	Not using a direct translation
	Automatically set parts of a proof document
	Configurable level of formality

	Conclusions from the Qualitative Evaluation
	Detailed Qualitative Results
	Comparison to ActiveMath

	Searching Questions
	Classroom Observations
	The Informally Modelled Scenario
	Massively Multiple Choice Questions
	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions
	Improvements to MathsTiles
	Levels of Formality
	Further support for cases where the reasoning system is unsure
	Programming interfaces

	The Future of Intelligent Teaching Assistants

	Bibliography
	Abstract Teaching Script for Formal Proof Exercises
	Teaching Script for a Formal Proof Exercise
	Conversion Script for Fibonacci Sequence
	Question Document for a Formal Proof Exercise

