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Abstract

The open nature of Internet services has been of great value to users, enabling
dramatic innovation and evolution of services. However, this openness permits many
abuses of open-access Internet services such as web, email, and DNS. To counteract
such abuses, a number of so called proof-of-work schemes have been proposed. They
aim to prevent or limit such abuses by demanding potential clients of the service to
prove that they have carried out some amount of work before they will be served. In
this paper we show that existing resource-based schemes have several problems, and
instead propose latency-based proof-of-work as a solution. We describe centralised
and distributed variants, introducing the problem class of non-parallelisable shared

secrets in the process. We also discuss application of this technique at the network
layer as a way to prevent Internet distributed denial-of-service attacks.

1 Introduction

There can be no doubt that the open nature of the Internet has great value, providing
essentially unrestricted communication between hosts, enabling a host to use services
openly provided by others. This openness has enabled innovation and evolution, resulting
in the Internet we know today. Unfortunately today’s Internet is also plagued by a
daunting variety of abuses from unsolicited email to distributed network-layer denial-of-
service attacks. The effects of these abuses are felt by most if not all users of the Internet
and Internet-based services such as email, DNS, and the web.
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The underlying cause of much of this abuse is that an attacker can cause dispropor-
tionate consumption of available resources at the hosts providing the service. In network-
level distributed denial of service (DDoS) attacks, large numbers of attacking hosts send
enough traffic to a victim to clog up its access links, consuming all inbound server network
resources. Unsolicited email forms an abuse of service as individual nodes waste dispro-
portionate amounts of bandwidth and CPU cycles by pumping vast amounts of email
through individual SMTP servers. The goal here is not to deny the service to legitimate
clients but to abuse its willingness to serve for commercial ends.

In this paper we focus on the latter problem, namely abusive use of openly available
services. A dominant approach to battling this abuse, particularly in the context of
unsolicited email, is to impose proof-of-work (PoW) [17] on the client. This forces the
client to consume some of its own resources before the server will grant it service, slowing
down the client’s request rate and reducing the economic incentive to abuse the service.

First, we examine the dominant PoW categories – CPU-bound and memory-bound –
and arrive at the conclusion that they are not suitable for all applications (§2). Second, we
propose a novel avenue for proving performed work by enforcing passive delay on a client.
We call this latency-based PoW (§3) and propose two different implementation strategies:
centralised latency-based PoW, in which a server slows down the client through the use
of delay-cookies; and distributed latency-based PoW, where we extend delay-cookies by
requiring the client to contact a number of other hosts before being admitted to the service.
As we will show, latency-based PoW requires a new kind of distributed puzzle which we
term non-parallelisable shared secrets. Latency-based PoW has several advantages over
existing approaches:

1. Independence from client resources such as CPU and power. This is an important
benefit for a PoW scheme that is expected to run Internet-wide on devices as diverse
as datacenter-hosted servers and hand-held mobile phones.

2. Independence from the client’s other activities, since the actions of one application
in proving latency-based PoW in no way reduces the ability of other applications
on the same client to make progress. In particular, this avoids the problems of
CPU-based PoW identified by Laurie and Clayton [19].

3. Preservation of the client’s ability to establish connections to many different hosts in
parallel. This is an important requirement of many popular present-day applications
such as peer-to-peer platforms.

4. Enlargement of the client’s network footprint in the distributed PoW variant, by
making it visible under the same identity over a longer period of time and at more
places in the network. This aids both prevention of attacks on the proof computation
and post-hoc forensic analysis.

We continue by presenting an analytical comparison of resource-based and latency-
based PoW (§4). We then shift focus from the transport layer to the network layer, and
outline use of latency-based PoW to prevent network layer denial of service attacks (§5).
Finally, we present related work (§6) and conclude with some thoughts on future work
(§7).
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2 Existing schemes for proof-of-work

In this section we survey the dominant classes of PoW proposed to date, and discuss their
common problems as well as their suitability in different application settings.

2.1 CPU-bound work

In its original formulation, PoW was strongly tied to computational work, i.e., work in
which the client is actively busy in order to complete the work assignment. The general
idea is that the client needs to present to the server the outcome of a moderately costly
computation y = F (x) along with its input x. The server must then be able to verify that
y = F (x) does indeed hold at substantially lower cost than that invested by the client.

Dwork and Naor [12] originally termed such proofs of work pricing functions for the
client to compute, and suggested square-root computation and cracking intentionally
weakened cryptographic signature schemes as sample problems. Back [7] takes a simi-
lar approach with HashCash, relying on generating collisions among prefixes of hashed
values.

The design space for CPU-bound PoW is large, and variants have been proposed that
vary along numerous dimensions:

Interactive vs. non-interactive. Does the server need to be contacted in order
to obtain the work assignment?

Publicly auditable vs. private. Can a third party verify the result?

Trapdoored vs. trapdoor-free. Can the server leverage knowledge of shortcuts
to generate the correct solution?

Sequential vs. parallelisable. Is there any way to speed up the computation
through parallelisation?

Notably absent from these considerations is whether the scheme is centralised or dis-
tributed ; previously proposed schemes are largely centralised in that communication oc-
curs only between the client and the server, at most including the possibility of a third
party for purposes of external validation and auditing.

2.2 Memory-bound work

Another category of algorithms focusing on memory latencies rather than CPU cycles
was first proposed by Abadi et al. [1, 2]. They observed that assigning universally fair
amounts of CPU-bound work to arbitrary machines is hard due to the dramatic varia-
tions in computational resource available to different hosts. In contrast, memory latency
exhibits much smaller variance than CPU speed. In the scheme they proposed, the server
essentially chains together the computation of k applications of a function xi+1 = F (xi).
The client’s goal is to find the original x0 by repeatedly computing F−1(x) which is a more
costly operation than computing F (x). The scheme is carefully designed to use compu-
tations that clients can best solve by first computing a table of solutions for F−1 over
its entire domain, and then completing the work assignment using chained application of
this function.
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To further skew the amount of work required for constructing/solving the work as-
signment toward the client, F is surjective, i.e., F−1 can have multiple possible values,
potentially forcing the client to explore multiple branches in an (implicit) tree structure.
An intriguing aspect of their scheme is that it can be rendered entirely non-interactive: it
is possible to architect the proof of work in such a fashion that the client can prove com-
pleted work to the server without ever having contacted either it or a third party. Abadi
et.al. suggest table sizes of the order of 32MB for the client’s work assignment. Dwork et
al. [14] expand upon this idea, and require 16-18MB for the client’s precomputed table.

2.3 Cognitive work

An entirely different class of PoW typically termed “CAPTCHAs” [30] consists of work
that cannot practically be performed by a computer at all, while generally being trivial to
solve by a human. Examples include distorted renderings of text and image recognition.
The intention is typically also to prevent abuse of service usually in situations where
benign use will be relatively infrequent, e.g., posting comments to blog sites or registering
user accounts in web fora. These schemes have seen widespread adoption and are largely
effective.1 However, enforcement is not through brute force but through cognitive ability:
CAPTCHAs cannot easily be crafted in a fashion that imposes specific computational
resources since they test the absolute proposition “is the client a human or a computer?”,
and so we do not consider them further in this paper.

2.4 Problems with resource-based work

We believe that there are two main problems with use of resource-based (i.e., CPU- or
memory-bound) PoW in modern networked applications: they expect exclusive use of the
host on which they’re running, and attackers can elide them through the use of large-scale
botnets if the work is non-parallelisable.

2.4.1 Exclusive nature of work

Resource-bound PoW has been proposed as a solution to a wide range of problems (see
Jakobsson and Juels [17] for a survey). In some sense, this is due to a benefit of resource-
bound work: it obviates the need to identify malicious clients as performing the work
obstructs the attacker whether or not they issue requests under a spoofed identity or
their true identity. However, we argue that resource-bound PoW is flawed in the bigger
picture: it assumes exclusivity of work, i.e., that the client can be burdened with additional
work because its only goal is to use the service requiring the PoW. While perhaps true
for attackers, it is not true for hosts of legitimate users which will typically be busy with
many tasks.

Worse, if resource-bound PoW were widely deployed, the client might well be pre-
vented from legitimately using multiple services in parallel: each piece of CPU-bound
work will clearly increase the time it takes the client to complete other piece of work;
with memory-bound work the client does not have the room to do the work since each

1Attackers have however “outsourced” such challenges to sites under their control, harnessing unknow-
ing visitors for solving the assignments, which the attackers then forward on to the original site [13].
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assignment requires substantial amounts of memory plus some CPU cycles. Since such
PoW schemes actively slow down the client, attempting to complete parallel independent
work assignments will increase the slowdown imposed on the client at least linearly, no
matter the chosen completion strategy.

However, parallel communication with a large and diverse set of hosts is a common
scenario in popular present-day applications. For example, the default settings of a peer-
to-peer system such as Pastry [23] requires each node to maintain connectivity with around
16 other hosts; in a modern file-sharing system such as BitTorrent, each client maintains
between 20 and 40 clients [16].

2.4.2 Large-scale parallelisation

The advent of botnets, large groups of compromised hosts under control of a single attacker,
has caused some discussion regarding the usefulness of PoW schemes. Back [7] and Laurie
and Clayton [19] point out that botnets can be used to perform massively parallel PoW,
in at least three possible ways:

• A single client subdivides a parallelisable assignment and has the bots compute
these subproblems, thus increasing the client’s completion rate.

• A single client distributes whole assignments to the bots and has them compute
them for it, thus increasing the client’s completion rate.

• Each compromised host communicates with the server autonomously, parallelising
completion.

We agree with this analysis: where the work in the proof can be performed faster
through the action of many hosts and there exists an incentive to do so, botnets will be
used in this manner. We would argue that these kind of massively parallel attacks are
out of the scope of most PoW schemes, which are intended to control individual clients.
Our proposal elides this problem: although latency-based PoW is parallelisable at a single
client (a host can wait for many thing simultaneously), parallelisation does not lead more
quickly to a solution so there is no incentive to involve a botnet. When applied at the
service level this still leaves open the possibility of attacks at other layers (e.g. network
layer DDoS): we outline a possible solution in Section 5.

Due to these two problems we believe that resource-based PoW is unsuitable in a
general setting, and so we next propose a scheme that preserves the clients’ ability to
engage in parallel activity while still forcing it to slow down if so requested by its peers.

3 Latency-based proof-of-work

Stepping back for a moment we note that the basis for PoW schemes is to cause the client
to do some piece of work for the server in order to partly right the imbalance in resource
consumption. Currently, the client can cause the server (or multiple servers) to do large
amounts of work on its behalf, while requiring almost none of its own resources to be
consumed. Examples of such asymmetry of invested and effected work include sending
email to a large number of recipients, uploading files into peer-to-peer sharing systems,
or queries to complex search engines.
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CPU-bound and memory-bound PoW schemes attempt to impose some load on the
client in order to curb the excesses of attackers without significantly impacting legitimate
users. Both techniques boil down to increasing the time an attacker must spend causing
servers to do work on their behalf. As we have argued, these schemes are unsuitable in
the general case, and a different approach is needed.

Consequently, we now propose latency-based proof-of-work, where the server occa-
sionally causes the client to complete a time-consuming work assignment that does not
consume any client resource before the server will do any further work on the client’s
behalf. The major advantage of latency-based PoW is that in contrast to resource-bound
approaches, it permits the client to perform multiple concurrent assignments with little
undesired impact.

At first glance this might seem to do little to protect the server, but in fact this is
not the case for two reasons. First, it achieves the immediate goal of enabling the server
to slow down the aggregate client request rate, in the same way as resource-bound PoW
schemes. Second, as a beneficial side-effect, the server can now predict its future workload
without maintaining per-flow state. This potentially allows it to better schedule its load,
e.g., by ensuring sufficient variance in the timing of continuing traffic to prevent load
spikes.

3.1 Centralised latency-based work

We now consider the design space of centralised latency-based PoW, i.e., schemes that
operate exclusively between client and server, before describing a possible implementation.

3.1.1 Design space

Consider as a strawman a system in which the server responds to a client’s request with
a delay(d) message, where d is some time that the client must delay before continuing the
communication. If the client does not respond after d ticks then the server will simply drop
the request. If and only if the client responds after a delay of at least d ticks will the server
process the client’s request. Earlier requests by the client are ignored, or worse, cause the
server to disconnect the client. We will later demonstrate how the latter technique can
be securely implemented as a variant of SYN cookies [9] (§3.1.2).

The effect of this message is to require the client to perform some negligible amount
of computation, but more importantly to wait for a noticeable period of time before re-
contacting the server. As a result, and in a manner similar to other PoW schemes, the
client must therefore entertain an ongoing relationship with the server, helping the server
avoid doing work for ephemeral attackers as with current-day abuse-of-service schemes.

Ideally the server would send a delay(d) message every time it performed some unit of
work as defined by the service, e.g., sending an email or executing a method of a remote
web-service. However, this requires input from the higher layers of the service to delineate
the pieces of work that the service deems significant.

While technically feasible, this would require improvements to each application that
should use the delay feature. There are three approximations to this: (i) session-based
PoW, (ii) connection-based PoW, and (iii) periodic activity-triggered PoW. In the first,
completed PoW would permit the client to establish arbitrary many connections to the
server for a limited period of time. In the second, PoW is required on a per-connection
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basis. In the third, the delay requests are triggered automatically and periodically as part
of the transport-level dialog, depending on the resource usage imposed on the server.

We argue that connection-based PoW is preferable for the following reasons. First,
it is more scalable than session-based PoW as it does not require the server to track a
timer for each client. Second, it enables the server to control the number of concurrent
connections made by a single, possibly malicious, client. Third, since resource usage
is a rather complex notion and can manifest in a variety of ways (e.g., CPU cycles,
memory consumption, network bandwidth), determining correct intervals for periodic
PoW is challenging. The major drawback of connection-based PoW is that applications
making heavy use of pipelining over a single connection will see little benefit: the cost of
the PoW is amortised over the many pieces of work carried over the single connection. In
such cases, approaches (i) or (iii) should be used instead.

3.1.2 Implementation

We focus discussion here on TCP services since these are more prevalent, and are more
likely to need protection at the service-level from attack. The techniques could be trans-
lated to the equivalent of a connection for UDP services, but this would be likely to
require application modification. An initial suggestion for implementing centralised la-
tency-based PoW would be to clamp the server’s TCP receive window, rwnd. By shrinking
rwnd to 0 bytes, e.g., with the SYN-ACK during the three-way handshake, the server can
effectively stop the client from sending since any further traffic would be discarded.

While attractive and feasible in principle, this approach suffers from the major draw-
back of requiring the server to keep connection-level state. As a better alternative we
propose TCP delay-cookies, an extension of SYN cookies. By slightly modifying the SYN
cookie creation process and introducing a TCP Wait Request option, we can implement
delay-cookies in the TCP stack.

The TCP Wait Request option conveys to the client how long to wait before the server
will continue to handle the connection. It consists of 3 bytes: 1 byte opcode, 1 byte length,
1 byte for a positive integer representing the requested waiting time, d, in seconds, which
allows for over 4 minutes of delay.

To keep TCP delay-cookies stateless, the server needs a mechanism for recording in
the existing sequence number space how long a new connection should be delayed. Using
the notation x|i to denote the low-order i bits of x and xi to denote that x is i bits long,
recall that SYN cookies consist of three components: (i) T|5 where T is a server time
counter incremented every 64 seconds, (ii) a 3-bit encoding MSS of the MSS, and (iii) a
server-selected hash function to produce the 24-bit value H24(session, T ) of the session
parameters (client & server address, client & server port) and T . The purpose of T is
to allow the server to test whether the request has timed out. For delay-cookies, instead
of using the current value of T , we use T ′, the value of T in d seconds time. Next, we
introduce an additional counter t that gets incremented every second. Finally, we modify
the computation of H24 by shrinking the hash value to 16 bits (i.e., using H16) and using
the remaining 8 bits to store (t + d)|8.

To protect the resulting 24-bit value from tampering and in order to allow the server
to recover the requested delay time when receiving the response from the client, the server
encrypts the 24 bits using a block cypher E24[K, ·], such as RC6 [21] parameterised to
24-bit block length, with a key K which the server keeps private. The resulting initial
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Figure 1: A delay-cookie exchange during a TCP handshake.

sequence number is thus:
(

T ′
|5,MSS,E24

[

K,
(

H16(session, T ′), (t + d)|8
)])

An example of a delay-cookie-enabled handshake is shown in Figure 1: at time t0, the
client sends a TCP SYN to request a connection. At t1, it arrives at the server, which
decides it wants to keep this client waiting for d seconds. It sends the SYN-ACK with d
in a TCP Wait Request option and constructs the initial sequence number ISNd with a
timestamp of (t1 + d)|8 as just described. the client, who sees that it has to wait for d
seconds. After waiting, it returns the ACK echoing the wait request option. time t3 the
server receives the ACK and extracts (t1 + d)|8 and H16(session, T ′) from ISNd, which
is the current ACK number minus one. It confirms that the hash values match and that
the current time is sufficient for the requested delay as follows: It expands (t1 + d)|8 into
t′ by taking the value of t3 and overwriting its low 8 bits. Then it checks whether t3 ≥ t′.
Note that the hashing procedure involved T and thus ensured that the comparison occurs
in the right counting cycle. If successful, the connection proceeds as normal. If too little
time has passed since the SYN-ACK was sent, the server ignores the packet.

One interesting consequence is that if d is relatively small (on the order of a few
seconds), TCP delay-cookies should interoperate with a normal TCP client. From the
unchanged client’s viewpoint, it should be interpreted as a packet loss event for d seconds
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between when the SYN/ACK was received and the server decides the delay is sufficient.
Unfortunately this will disrupt TCP slow-start but we do not expect this to be a common
occurrence as TCP delay-cookies should only be used when a server is under attack or
other stress. This should allow incremental deployment of TCP delay-cookies. Servers
directly benefit from implementation, while clients will benefit by having more reliable
performance when communicating with servers which are under attack.

3.2 Distributed latency-based work

We now shift our attention to an aspect of PoW that has not previously been considered
in the literature to the best of our knowledge: mechanisms that non-trivially and inten-
tionally involve multiple nodes in the proof, i.e., distributed PoW. Our motivation for this
is twofold. First, if a node is required to engage in communication with a number of
other nodes in order to prove work, this will increase its network footprint in terms of the
spread and duration of its network presence, improving the chances of detection through
coordinated investigation of abusive activity [4, 10, 27, 28]. Second, with a suitable proof
scheme it enables the server to reflect the load imposed on it not only onto a single client,
but on the abusive nodes as a collective entity.

3.2.1 Design space

We begin our exploration of distributed PoW schemes with a list of requirements that
apply in addition to those for centralised PoW.

Non-parallelisable operation. The client must be forced to process the work in
a serial fashion for the distributed aspect to make sense.

Non-centralisable operation. The client must not be able to gain advantage by
centralising the processing onto itself.

Distributed secrecy. Individual nodes must not be able to help other nodes
toward completing the assignment beyond their intended share of the work, to hinder
collusion among the nodes involved in the proof.

Fault tolerance. The possibility of network unreliability must be anticipated.

As a first step toward these goals we build upon the idea of latency-based PoW by
proposing a distributed queue in which the client first has to be processed by a number
of nodes before being admitted to the server. This requires the client to contact several
nodes in addition to the server; We call these nodes validators. A natural source of valida-
tors for a server are its previous clients which, from the server’s perspective, conceptually
form a departure queue preceding the server’s regular request queue (see Figure 2). From
the client’s perspective the server points the client to a queue of validators through which
access to the server can be gained (see Figure 3). This distributed scheme is thus inher-
ently interactive. We now present a possible distributed PoW algorithm for this scenario,
which essentially forces the client to obtain a shared secret as the PoW, allowing it to
proceed through the distributed queue.

Shamir’s classic algorithm for sharing a secret [24] would involve issuing a polynomial
coordinate to each validator and requiring the client to retrieve enough coordinates in
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Arrival Queue

Server
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Figure 2: After being processed, the server’s former clients turn into validators stored in
the departure queue.

Distributed Queue

Server

validator1 validator2 validatorN

...

1

2

3

4

Client

Figure 3: The client obtains details about the distributed validator queue from the server
(1/2), proceeds through this queue (3), and is finally admitted to the server (4).

order to be able to interpolate the polynomial. Unfortunately, this is unsuitable in our
case as retrieval of polynomial coordinate values is inherently parallelisable: the client need
only issue requests to all validators in parallel to obtain the shared secret and complete the
queueing process. However, Shamir’s scheme does nicely provide resilience as it requires
contacting only any k of n validators, each of whom knows only part of the shared secret.
In contrast, the time puzzles proposed by Rivest et al. [22] are inherently resistant to
parallelisation but they lack secrecy and resilience: an identical operation has to be applied
a certain number of times for the puzzle to be solved.

We require an approach combining the benefits of both schemes: shared secrets, re-
silience, and non-parallelisability. We call this problem class non-parallelisable shared
secrets and we now present an example of such a scheme. Note that we are not claiming
it as the best or only possible approach – rather, we consider it a first step into a likely
fruitful area for future research.

Let F = {f1, f2, . . . , fn} be a set of n functions with identical input and output
domains so that they are chainable. We desire that the value y = fs1

◦ fs2
◦ · · · ◦ fsn

is
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a valid representation of the secret for any set S = {fs1
, fs2

, . . . , fsk
} ⊆ F , si ∈ [1, n], of

k ≤ n functions.

We distribute the tuple (fi, ti) to each validator vi. ti is the amount of time vi will
wait before responding to the client. We impose this delay rather than relying solely on
the inherent communication latency as that can vary widely across the Internet and there
is no immediate way for the server to know the latency between a potential client and
the validators. Thus the server cannot estimate aggregates of such latencies accurately
enough to rely on them for delay purposes. For many clients and servers it is also likely
that pure reliance on communication latency would require too many verifier contacts in
order to realise substantial delays.

We require the functions fi to be cheap but not predictable (i.e, when x1 6= x2, knowing
that y1 = fi(x1) should yield no clues as to the value of f(x2)), properties that hold for
basic cryptographic hash functions. Then, for each validator vi in the departure queue,
the server remembers its (fi, ti). To force the client to wait at least T time the server
sends a tuple

(c, S(c), k, V n, Tmax)

where c is a challenge suitable for input to each of the vi’s fi, S(c) is the server’s signature
for c, k is the number of validators to contact, V n is a set of n validators such that for
any V ′ ⊂ V n with |V ′| = k,

∑

vi∈V ′

ti ≥ T

and Tmax ≫ T is a fallback delay which the client will have to endure if it is unable to
contact any

(

n

k

)

validators.

The client then iteratively attempts to connect to any subset V ′ = {v1, . . . , vk} ⊆ V
of validators. It first sends c to v1, which computes and returns f1(c). The client then
iterates, sending the most recently received result to the next selected validator, until
k iterations have been made. Each individual connection is an instance of a centralised
latency-bound PoW. After k verifiers have been contacted, the client returns to the server
the tuple

(fk(c), S(c), [v1, . . . , vk])

where fk(c) is the result returned by the last contacted validator, S(c) is as above, and
the third item is a vector specifying the sequence of successful validator connections.

The server then verifies first, that c is correct by checking against S(c) and second,
that fk(c) is indeed the result of chained application of the validators’ fi functions in the
sequence provided by the client2. If both are the case then the client is admitted to the
service and the server may move the client from the arrival to the validator queue, possibly
removing older validators. If the ex-client becomes a new validator, the server uses its
current and anticipated workload to adjust the new validator’s delay value t accordingly.

3.2.2 Implementation

We now consider implementation aspects of the scheme just described. As a full treatment
of a protocol implementing the various exchanges would be beyond the scope of the

2Recall that the fi are cheap to compute.
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paper, we instead focus on a number of higher-level implementation challenges created by
requiring a server’s potential clients to contact its former clients.

Connectivity. The unfortunate reality is that it is not a given that any former
client of a server can itself be contacted, e.g., due to the presence of substantial firewall
and NAT deployments at the network edge. However, validators do not have to be the
former clients of the server themselves, but could instead be agents managed by the clients’
hosting organisations, reachable by definition, and made available via some similar system
to reverse DNS lookup.

Privacy. Contacting former clients brings privacy issues to the fore: a malicious
client might simply be interested in learning who has recently used a given service, never
actually intending to make real connections. As above, this problem could be solved by
having agents acting on behalf of the clients.

Bootstrap. A server’s departure queue will be empty at start of day, so it has no
validators at which to point arriving clients. However, this does not actually pose a
problem as the server can simply issue trivially solvable assignments to initial clients. As
the number of clients grows, the mechanism self-clocks since the more clients there are,
the more flexibility the server has in selecting and allocating validators.

Client Identity. In addition to increasing the network footprint of the client, the
scheme can be extended to force the client to use the same identity throughout the PoW.
As presented, the scheme does not prevent a set of clients from communicating partially
solved assignments among each other, although there is little point in doing so since each
work assignment is non-parallelisable and latency-based. By parameterising the validator
functions with a weak form of client identity, e.g., its IP address, the client can be forced
to continue using this same identity.

4 Analysis

We now consider a simple analytical model of both resource-based and latency-based PoW
schemes. We assume a system with N clients which are homogeneous in their resources
for simplicity. Each client submits requests at a rate 1/T , with a request taking the server
c seconds to complete. We introduce n attackers, each submitting requests at rate 1/t,
t ≪ T . The long-term server utilisation is therefore Nc/T + nc/t, and the number of
clients the server can support with no attackers is N0 = T/c.

Let p be the ratio of attackers to clients, i.e., n = pN . Then the utilisation is is:

Nc(t + pT )

Tt

and the proportion of the original client base that can be supported is:

N

N0

=
t

t + pT

Each work assignment in the PoW scheme costs a client d ticks and is given to the
client as a delay cookie (§3.1.2). As these are extensions of SYN cookies [9], the client
cannot consume server resources from a false address, and the server is assumed to restrict
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the number of outstanding connections to a single client address to be small number,
e.g., one3. The number of clients that can be supported rises to:

Nd =
(T + d)(t + d)

c(t + pT + d + pd)

Writing in terms of the original client request rate, let r = t/T and x = d/T ; then the
proportion of clients supportable under attack becomes:

Nd

N0

=
x2 + (r + 1)x + r

(p + 1)x + p + r

and the delay required to support the full set of clients can be found by solving x2 + (r−
p)x − p = 0.

For example, if attackers generate requests 100 times faster than normal clients and
1% of clients are attackers, then the server should delay each client by just T/10 ticks to
support the workload as if there were no attackers.

With resource-based PoW, a client can impose work on at most 1/d servers concur-
rently; with latency-based PoW there is no such limit as latency-based PoW parallelises4.

Figure 4 shows impact of the rate of each attacker on the number of clients served.
Even with quite a low proportion of attackers this model suggests that each attacker need
not go at a very high rate before having a notable negative impact on the number of
clients the server can serve. E.g., with just 1% attackers transmitting at 5× the rate of a
normal client, reduces the capacity of the server by almost 40%.

Figure 5 shows the effect of the PoW enforced delay when under attack. The top two
curves show the effect if 1% clients are attackers, and they communicate at 10 (top) or
100 (second) times the rate of a normal client. The bottom two curves show the same but
when 10% clients are attackers. Imposing just a small extra delay of d = T/10 can have
a dramatic effect, essentially negating the negative impact of the attackers in the top two
curves.

5 Network-layer proof-of-work

Thus far we have presented latency-based PoW as a service layer technique: a way to allow
servers to dissuade attackers by increasing the cost of having the server perform work on
a client’s behalf. However, a perennial problem with systems such as the service-layer one
we have proposed is that, even if they are secure in themselves, it is typically possible to
attack them at a lower layer. A concrete example of this is found in the Internet: if the
victim service is itself secured, a distributed denial-of-service attack at the network layer
can overload access links to the servers hosting the service, effectively closing the service
down. Again, this is an example of the exploitation of the open any-to-any communication
nature of the Internet. As a result we now discuss implementation of latency-based PoW
as a network layer mechanism.

3This is not a problem for pipelining protocols such as HTTP/1.1; for legacy protocols such as
HTTP/1.0, a very small number of connections, e.g., four, could be permitted rather than just one.

4In practise there would be a limit due to fixed resources at the client such as memory footprint,
socket availability, etc. These resources are not relevant to this discussion.
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Figure 4: Effect of attacker rate on number of clients served.

Prevention of this kind of abuse requires only two simple mechanisms to extend the
current Internet architecture. The first is a distributed latency-based PoW system as
presented above (§3.2). The second is the ability to insert firewall rules at a network’s
gateways, whether these be the CPE, the first-hop router, or even the border router
between two networks. Although not immediately available, similar facility is the subject
of several standards [25, 26]5.

We now sketch a design for such a system, assuming for simplicity of exposition that
the first-hop gateway of every client is beyond the client’s reach, and is able to support
rate-limiting and firewalling of traffic from and to particular hosts. Logically speaking,
the address space is divided into 3 parts which we label “access” (A), “validation” (V ),
and “privileged” (P ). In IPv4 the total address space is small enough that this logical
separation cannot be matched by a physical separation but instead is implemented by
mutating a set of firewall rules in the gateway. If the total address space was large enough
to support this logical separation then a less complex implementation might have each
router applying rate limits uniformly to the different address spaces.

The current Internet assumption of unrestricted communication now holds only for
packets with the destination address from P -space. All packets for addresses in A- and
V -space are subject to a rate limit which substantially restricts traffic to these spaces, in
analogy with approaches taken by capability schemes that attempt to prevent flooding

5See IETF draft-eggert-middlebox-control-survey-00 for a survey in-progress as of
23/June/2007.
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Figure 5: Effect of PoW-enforced delay when under attack.

attacks on the capability-issuing channel [5].

Once the client has recovered the SP it uses that for further communication with S.
To prevent snooping of P -addresses, they are periodically re-issued, first to validators
and then to existing clients, ensuring a smooth hand-over. All traffic for A addresses
is rate-limited, preventing DDoS attacks to this space. Communication with validators
is similarly rate-limited, albeit to a rate k times higher than the rate to A-space as k
validators must be contacted. Traffic to P -addresses is not rate limited at all once the
server has confirmed admittance of the client.

A strawman scheme for implementing this in a cooperating gateway firewall/router
is as follows. Let SX , X ∈ (A, V, P ) be the server’s addresses, where the client initially
communicates with SA. Observing a new flow, the gateway rate-limits it to 1/T . The
server responds to the client’s request with a list of validators, v1 . . . vn, which the gateway
snoops. The gateway then installs rate-limits of k/T for all pairs (C, Vi), allowing the client
to recover the necessary k pieces of SP .6 Finally, the client initiates communication with
SP , whose first response packet contains a special IP option to indicate that S accepts
communication from C to SP unreservedly, at which point the gateway can remove all
rate-limits between that address pair.

We now provide some analysis of the resilience of this system against several variants

6The scheme proposed in Section 3.2 can produce a large number of different results making SP

unlikely to be unique. One workaround is to consider the results as “unlock codes” for the final SP

address which would be revealed by the server’s next response.
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of an attack by a set of coordinated hosts or botnet. We begin with a set of N clients,
C = {c1 . . . cN}, and assume all communications are homogeneous in their transmission
rates R, latencies t, and message loss probabilities p. Clients may speak to other hosts
at rate 1/T ≪ R unless they are speaking to a host via its P -address when they may
use their full rate, R. When a client wishes to recover the address SP , it is directed by
S to speak consecutively to k of n validators, V = {v1 . . . vn}. Thus, to recover SP , a
client might expect to communicate with k/(1 − p) validators on average. P -addresses
are recycled periodically, with period T .

We consider three possible attacks that may be carried out by a botnet B composed
of many hosts: (i) attacks against a particular client, Cv, rendering it incapable of com-
munication; (ii) attacks against the P -address of a particular server, SP ; (iii) attack a
sufficiently large subset of V such that no client can recover SP .

1. Attacking a particular client requires |B| = T · R since each member of the botnet
can only transmit to the victim at rate 1/T , and the victim can handle traffic up to
rate R.

2. Attacking the P address of a server only requires |B| = 1 since the attacker must first
have recovered the P address which allows it to transmit at full rate, R. However,
it can easily be closed down by removal of the firewall entry for (B,Cv). Further,
the periodic recycling of P -addresses means that B must reacquire SP every T ticks,
implying that useful work may be performed by other clients of SP for

k · t

(1 − p) · T
ticks.

3. To attack sufficient validators to prevent recovery of SP , the attacker might proceed
in one of two ways: (i) request V from SA and then target n − k + 1 members of V ;
or (ii) construct a botnet large enough that it can attack at random enough hosts,
H ′ ⊂ H, that S cannot select a large enough k and n.

In the first case,

|B| =
T

k
· (n − k + 1) · R

assuming that V is freshly constructed every T ticks and communication with mem-
bers of V is at rate k/T .

In the second case, the attacker must attack each host with a botnet Bi of size
|Bi| = T ·R. Our scheme requires n > k/(1−p) lest we run out of validators, which
implies p < 1 − k/n. If we assume that failure to communicate with a validator is
entirely due to the attack, then p = |H ′|/N which means that |H ′| > N · (1 − k/n)
is the required number of botnets of size T · R to cause the system to fail, i.e., to
break the system, the attacker must control a botnet of size

|B| = N · T · R · (1 − k/n)
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6 Related work

Existing techniques for proving the completion of a given amount of work have already
been discussed at length in Section 2. The first use of CPU-bound puzzles was proposed
by Merkle [20] in the context of an early variant of public-key cryptography. Many other
suggestions arose in the context of unsolicited electronic mail, and have typically focused
on work that is CPU-bound [18, 17, 7]. Laurie and Clayton have pointed out the need for
this work to be non-parallelisable [19]. The problem of the amount of work being hard
to specify due to the huge variation in CPU speeds led to the proposal of memory-bound
PoW [1, 2] as memory latencies vary considerably less than CPU speeds.

DomainKeys [3] provides for email authentication: rather than prevent abuse, it en-
ables abuse to be detected and tracked more easily by having the initial mail-server sign
the mail so that the receiver can verify that the mail did indeed come from the server it
claims to.

Greylisting7 can be viewed as an email specific application of latency-based PoW,
relying on the ability of SMTP to temporarily fail a mail delivery attempt. The underlying
aim is to delay spam to the extent that other filters can catch up and drop the spam
completely. The mail server initially blacklists all mail with a previously unseen triplet
(upstream host IP, envelope sender address, envelope recipient address). Most spambots
will not retry whereas genuine mail will, succeeding after the greylisting server decides
to whitelist mail with that triplet. The authors suggest a default delay period of 1 hour
although they do note that a delay of 1 minute would block 99% of the mail that the
longer delay would block. Triplets remain on the whitelist for a period of time, by default
36 days, chosen as a reasonable tradeoff in the size of the whitelist against unnecessarily
delaying mail. In their whitepaper the authors present results from testing which suggest
Greylisting is quite successful in reducing spam, and anecdotal evidence seems to support
this. However, it is specific to the SMTP protocol and implementation is somewhat tricky
due to the vagaries of various mail transport agents.

Other approaches to achieving “fair” usage of distributed resources have been tried,
notably in peer-to-peer filesharing systems. For example, Samsara [11] forces each node
that uses resources of some other node to store a claim on behalf of that other node. The
node storing data tests the claim from time-to-time, and if the test fails it probabilistically
drops the stored data. The result is that a cheating node will eventually suffer data loss,
enforcing symmetry in resource usage: a node must be willing to contribute something to
others in the system.

SHARP [15] provides for a richer set of resources to be traded among systems, using re-
source claims which are unforgeable and assert control over resources. Claims are initially
“soft” (tickets), i.e., the do not guarantee resource usage, but become “hard” (leases)
with the agreement of the site manager, and ticket holders may delegate resources (asym-
metrically) to others. Tickets have similarities to capabilities but they refer to potential
future resource usage and they may expire. Detecting whether a site is actually providing
the resources it has contracted out is left to some other mechanism.

Rather than trading explicit current and future usage of real resources, some systems
rely on maintaining some measure of the reputation of each node over time. This permits
local asymmetries in resource provision and consumption while ensuring that malicious

7http://greylisting.org/articles/whitepaper.shtml, revised August 21, 2003.
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nodes cannot consume too much without providing some in return. For example, KARMA
[29] uses certain nodes to securely track the resource provision and consumption of other
nodes in the system—their karma. Nodes that perform the tracking are rewarded for
doing so, and anti-inflation/-deflation mechanisms are provided that ensure that the price
for providing/consuming resources does not under-/over-flow. Nodes without sufficient
karma (free-riders) are simply not allowed to perform operations that would consume the
resources of other nodes within the system.

Distributed latency-based PoW might also be seen as a distributed version of port-
knocking. Port-knocking8 [8] is a technique to obscure which ports expose services, while
still granting friendly clients access to public-facing services. The client sends a sequence
of SYNs to different port numbers at the server in such a way that the server can verify
the client is validly “knocking” and opens the service as a result.

Capability-based strategies for prevention of DoS attacks have received considerable
attention. Among the first such strategy was that of Anderson et al. [5], overlaying a net-
work of capability servers and validators on the Internet. Capabilities are created through
chained application of a cryptographic hash function usable by the clients up to packet-
batch granularity, once established along the path. SIFF [31] extended this approach by
eliminating the need for per-flow state in routers, instead making the routers transpar-
ently add and verify capability-suitable information of passing packets. Yang et al. [32]
introduced TVA, a traffic validation architecture that further builds upon the above work.
Their design adds fine-grained volume control to the capabilities and flexible destination
policies, but requires all routers in the network to verify capabilities that are an additional
feature of each packet. All these proposed solutions are generally more heavyweight and
low-level than latency-based PoW, requiring major changes to the infrastructure.

More recently Argyraki and Cheriton [6] have posited that the notion of a protected
capability channel obviates the need for a capability system, because the protection system
could then simply be used for all traffic. Essentially we argue for precisely this mindset,
but we apply it per-request at the application layer rather than per-packet at the network
layer.

7 Conclusion

Internet communication has historically been “any-to-any”, and although this openness
has been crucial in encouraging the Internet to grow and develop, it does nothing to help
prevent malicious usage of the network. In particular, it is relatively straightforward for
clients to attack services simply by overloading them with work since modern-day clients
connected over broadband access networks can impose work on a server with negligible
cost.

In this paper we have discussed the shortcomings of existing so-called proof-of-work
schemes, which aim to alleviate this problem by increasing the cost to the client of impos-
ing work on the server. Any such scheme aims to cost the attacker either time or money,
and in the case of existing schemes, both. However, existing resource-based schemes do
neither well: the wide variation in the resources of Internet-connected hosts makes it
difficult to precisely control the time the attacker must spend; yet CPU and memory are
both too inexpensive to cost the attacker enough money [19].

8http://www.portknocking.org/, revised May 1, 2006
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Thus, rather than attempt to match CPU- or memory-bound work to time, we pro-
posed a new PoW technique that costs the attacker only time. It is both more effective at
doing so, while also being simpler to implement and less burdensome on clients. Latency-
based PoW uses the simple idea of enabling the server to delay the client between its
initial (transport layer) contact and the client’s imposition of work on the server. We
extended this to a distributed latency-based PoW scheme, involving many hosts in the
proof of work, thus increasing the network footprint of any attacker as an aid to foren-
sics. In the process, we introduced non-parallelisable shared secrets, a novel secret-sharing
strategy that combines aspects of classic approaches to time-puzzles and shared secrets.
Finally, we outlined a way for such a mechanism to be applied at the network layer as a
way to prevent network-layer denial of service attacks, which currently can only be dealt
with at significant cost either through manual intervention (imposition of filters, route
blackholing, etc) or over-provisioning of capacity.

In future work we will expand on the network layer application of distributed latency-
based PoW, and also investigate other techniques enabling limited parallelisation of PoW
at the client, e.g., for support of PoW in peer-to-peer systems. One possibility we are
considering here is controlling the size of the table required by memory-based PoW in
relation to the cache size so that a small number of proofs can be efficiently carried out
simultaneously but too many causes the cache to be too small.
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