
Technical Report
Number 702

Computer Laboratory

UCAM-CL-TR-702
ISSN 1476-2986

Relationships for object-oriented
programming languages

Alisdair Wren

November 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Alisdair Wren

This technical report is based on a dissertation submitted
March 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Sidney Sussex
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Object-oriented approaches to software design and implementation have gained
enormous popularity over the past two decades. However, whilst models of soft-
ware systems routinely allow software engineers to express relationships between
objects, object-oriented programming languages lack this ability. Instead, rela-
tionships must be encoded using complex reference structures. When the model
cannot be expressed directly in code, it becomes more difficult for programmers
to see a correspondence between design and implementation — the model no
longer faithfully documents the code. As a result, programmer intuition is lost,
and error becomes more likely, particularly during maintenance of an unfamiliar
software system.

This thesis explores extensions to object-oriented languages so that relation-
ships may be expressed with the same ease as objects. Two languages with rela-
tionships are specified: RelJ, which offers relationships in a class-based language
based on Java, and Qς, which is an object calculus with heap query.

In RelJ, relationship declarations exist at the same level as class declarations:
relationships are named, they may have fields and methods, they may inherit
from one another and their instances may be referenced just like objects. Moving
into the object-based world, Qς is based on the ς-calculi of Abadi and Cardelli,
extended with the ability to query the heap. Heap query allows objects to deter-
mine how they are referenced by other objects, such that single references are
sufficient for establishing an inter-object relationship observable by all partici-
pants. Both RelJ and Qς are equipped with a formal type system and semantics
to ensure type safety in the presence of these extensions.

By giving formal models of relationships in both class- and object-based set-
tings, we can obtain general principles for relationships in programming lan-
guages and, therefore, establish a correspondence between implementation and
design.

Acknowledgments

My thanks go first to my supervisors, Gavin Bierman and Andrew Pitts, both of
whom have given generously of their time, knowledge and experience during the
preparation of this work. This thesis could not have been completed without their
diligent supervision and encouragement. I also owe special thanks to Matthew
Parkinson for being a guide, sounding board, indefatigable proof-reader and a
source of excruciating puns, none of which have been included in this thesis
deliberately. I am also very grateful to my examiners, Giorgio Ghelli and Andrew
Kennedy, for all their efforts to make this a better thesis.

For their comments and suggestions on this work, I would like to thank Dave
Clarke, Sophia Drossopoulou and Imperial College’s SLURP group, Alan Mycroft,
James Noble, David Pearce, Peter Sewell, Gareth Stoyle, Darren Willis, the Pro-
gramming Principles and Tools group at Microsoft Research Cambridge, the at-
tendees of Semantics Lunch and Logic and Semantics for Dummies at the Com-
puter Laboratory, and the anonymous referees of FOOL 2005 and ECOOP 2006.
Further thanks go to Sophia Drossopoulou and to Paul Kelly, both of Imperial
College, without whose tutelage as an undergraduate I would certainly not have
embarked on a PhD at all.

Away from work, I have greatly enjoyed my time at Sidney Sussex College,
and I am grateful to all of Sidney’s students, staff and fellows, and in particular
to Sidney’s graduate society, the MCR. Finally, thank you to my family for their
constant support and to my friends for their tolerance and their wit.

Contents

1 Introduction 9
1.1 Object-orientation . 9
1.2 Encoding relationships . 19
1.3 Thesis . 22
1.4 Contribution . 23
1.5 Related work . 24

2 RelJ: Relationships for Java 29
2.1 Core language . 29
2.2 Relationships . 31
2.3 Language definition . 40
2.4 Type system . 44
2.5 Semantics . 52
2.6 Soundness . 61
2.7 Correctness . 66
2.8 Conclusion . 68

3 Extending RelJ 69
3.1 An alternative model of relationship inheritance 69
3.2 Relationships with multiplicities . 76
3.3 Other extensions . 81
3.4 Conclusion . 83

4 Qς: An object calculus with heap query 85
4.1 Core language . 85
4.2 Heap query . 91
4.3 Type system . 96
4.4 Semantics . 101
4.5 Soundness . 105
4.6 Extensions . 110
4.7 Conclusion . 114

5 Bridging the gap 115

Contents 7

5.1 Translation overview . 115
5.2 Qς booleans and conditionals . 120
5.3 Formalization of the translation . 122
5.4 Conclusion . 136

6 Conclusion 137
6.1 Future work . 137

Guide to notation 141

Bibliography 147

Chapter 1

Introduction

Relationships between objects are as important as the objects themselves [62].
However, whilst objects or, more generally, entities are well-represented through-
out the software development process, relationships are often lost after the design
phase and must be implemented indirectly [56, 57].

Certainly, developers are aware of objects — cars and roads, students and
universities — and the relationships that exist between them — cars drive on
roads, students are educated at universities. This intuition is largely preserved in
the design phase: Unified Modelling Language (UML) [47, 68], the de facto stan-
dard, has associations between classes of objects, whilst Entity-Relationship (ER)
diagrams [21] may be used to design an application’s data store. At implemen-
tation, however, object-oriented programming languages are unable to faithfully
represent relationships. Instead, we are left with references, which provide only
the most impoverished abstraction of inter-object relationships: unlike objects
and relationships from the models, they enjoy neither state nor behaviour and,
in the presence of unconstrained mutability and aliasing, can lead to confusion
and programmer error [4, 6, 23, 44].

In this thesis, we explore how relationships can be given the same status as
objects. Both species of object-oriented language — class-based and object-based
— are examined and extended to include relationships, and in both cases formal
methods are used to ensure that these new features may be implemented safely.
Despite the apparent differences between the class- and object-based worlds,
common principles emerge which suggest a consistent, general approach for the
correct and safe implementation of relationships in object-oriented languages.

1.1 Object-orientation

1.1.1 The briefest of histories

Object-oriented programming languages have enjoyed enormous popularity since
the 1990s, such that the object has largely overtaken the procedure and the mod-
ule as the primitive means of breaking up large software systems.

10 Introduction

By the 1970s, the procedure was well-established as a means by which large
lists of commands could be broken into smaller, reusable units [19, 75]. In com-
bination with finer-grained structured programming disciplines, these procedures
could be considered in some degree of isolation such that the programmer could
more easily satisfy himself that the program was correct, especially in the pres-
ence of some form of specification [8, 19, 28, 43].

In 1972, Parnas’ ideas on information hiding further contributed to looser
coupling between program components, so that modules could also be consid-
ered in increasing isolation, with only a shared, abstract interface [58]. Thus,
the decomposition of behaviour into procedures was joined by the decomposi-
tion of state and of a program’s procedure set into modules.

It seems a natural step from modules to abstract data types, a means by which
to take multiple copies of the module and to extend a language’s built-in type
system [40, 51], and from there to objects. However, Simula-67 by Dahl and Ny-
gaard in 1967 [26] already had the necessary machinery to support information
hiding and possessed many of the features familiar to modern object-oriented
programmers: classes, objects, inheritance and subtyping. Thus, it became the
first exemplar of what has become one of the pre-eminent software engineering
disciplines.

These remarks can only function as the most potted history of an evolution
of object-oriented programming that is well-explored in the literature [19, 73],
and which does not end with Simula: Smalltalk [48] and Self [71] exemplify
the continuing development of object-oriented programming languages before
C++ [18], Java [38] and, later, C# [55] came to prominence in industry. Never-
theless, this evolution demonstrates the rôle objects have in structuring software.

A new rôle for objects in software engineering was promoted in 1976 when
Chen proposed Entity-Relationship models as a means for modelling data [21].1

Entities in these models lack ideas of encapsulation and behaviour, and hence
program structure, but they demonstrate how a programmer may use objects
to structure a program according to some intuition of the world that is being
modelled. If a system has been developed according to an intuitive model, then
a programmer equipped with this intuition will be able to maintain the software
more effectively and with a decreased chance of error, especially when he was
not responsible for its original implementation. Thus, the Entity-Relationship
model was a fore-runner of other object-oriented modelling languages such as
the Booch Method [15], the Object Modelling Technique (OMT) [63] and, most
recently, the Unified Modelling Language [47], commonly used today to both
design and document object-oriented systems.

1We use ‘object’ and ‘entity’ interchangably when discussing the development of software mod-
els, as both represent an abstraction of some real-world concept represented directly in a software
design.

Object-orientation 11

1.1.2 Object-oriented programming languages

Throughout this evolution, what it means for a programming language to be
object-oriented has been the subject of debate: it is not unusual for an object-
oriented language to lack a feature declared elsewhere to be indispensable. Sim-
ula, for example, lacks dynamic dispatch (see below), but the designer of C++,
Bjarne Stroustrup, believes that a language does not support object-oriented pro-
gramming without — in C++ parlance — virtual functions [69].

At the very least, however, an object is a package with a unique identity, some
state and some behaviour. For the purposes of this work, an object’s identity will
be its address in memory. An object’s state will be formed from a collection
of named fields, which take values including object identities — thus, an object
may hold a reference to another object, or even to itself. Where a field does
not hold such a reference, its value is said to be ‘null’. An object’s behaviour
will be formed from a collection of named methods, which contain commands
that, amongst other actions, operate on the object’s fields. An object’s fields and
methods together form its set of attributes. Through references, an object method
may access the attributes of other objects as well as the attributes of its own
object: a method always knows the identity of the object to which it belongs,
known as a reference to self. In general, the target of a message invocation is
known as the receiver of the method call.

We now review other features common to object-oriented languages beyond
the fundamental definition given above. Some of these ideas are intertwined,
and are often named inconsistently in the literature and among practitioners of
different software engineering disciplines; therefore, this list also serves to lay
out definitions for use in our discussion.

Encapsulation We have already discussed the history of object-oriented pro-
gramming languages with respect to their ability to modularize a software system
by encapsulating some state and behaviour. Depending on the available language
features, an object’s state can be hidden from the outside world so that the object
forms a boundary around some of its fields. In C++, for example, a field may
be declared private, so that it can only be accessed by a method invoked on
the same object. This protection may be short-lived, however, as such a method
may legitimately read a private field’s value and transmit it out of the object as its
return value. Where languages lack annotations for protecting individual fields,
the language designer is left with a choice between exposing all fields to the out-
side world, or none at all. The choice makes little difference to the capabilities
of the language: where fields are shielded entirely from external access, methods
may be used to indirectly return or update field values. Such methods are often
known as getter and setter methods respectively.

Abstraction By encapsulating state, an object can ensure that the environment
does not manipulate its state in an unexpected way. Where a language supports

12 Introduction

the specification of hidden attributes, those that remain public form an interface
for the object. An object representing a car may, for example, expose methods
that allow the driver to switch the car on, turn left and right, change speed and to
switch it off. It would not, however, expose methods that allow individual spark
plugs to be fired — such a method might form part of the car’s implementation,
but the driver has no need to view the implementation of the car in such detail.
As well as by encapsulation, interfaces may be specified explicitly for objects:
objects with very different definitions may still conform to the same interface.

Generalization It is expected that some objects will share common properties:
for example, vehicles usually have an engine and can carry passengers, regardless
of whether they are cars or aeroplanes. Rather than specifying such properties for
every vehicle, we can regard ‘being a vehicle’ as a property that all vehicle objects
share. By attaching attributes to vehicles in general rather than to individual
objects, we ensure that all vehicles are specified consistently and make it easier
to maintain properties associated with being a vehicle. Where a type system is
used, generalizations may form types: here, a type whose values are vehicles.
Generalizations also form abstractions, or interfaces — an abstract view of a car
is that it is a vehicle.

Reuse of behaviour A special case of generalization involves the reuse of be-
haviour or, more specifically, the code that implements that behaviour. Not only
does this help enforce the idea that vehicles behave similarly, but the ability to
reuse code to implement the behaviour of several objects improves the maintain-
ability of the code: a bug fixed in one object’s behaviour is fixed for all objects
using that code. Re-use of behaviour usually involves some mechanism for ob-
taining methods from other objects, or from a generalization.

Specialization Whilst groups of objects may be ostensibly the same, slight vari-
ations may be accommodated: like other vehicles, a rocket may carry passengers
and has an engine, but unlike other vehicles it also has a heat shield, for exam-
ple. To start from scratch with a new concept of ‘being a heat-shielded vehicle’
would involve the reimplementation of engines and the advantages of general-
ization would be lost. Instead, we specialize vehicles to accomodate the presence
of a heat shield and, in doing so, create a new generalization of space vehicles
subordinate to the original generalization of vehicles. Of course, one can imag-
ine that the relationship between the generalizations can be inverted: vehicles
could be space vehicles specialized to omit the heat shield. Under the influence
of a type system, there is a general preference for adding attributes as objects are
specialized rather than removing them. In this case, the type of space vehicles is
considered a subtype of vehicles.

Object-orientation 13

Overriding of behaviour A method is overridden where its implementation,
derived from some generalization, is replaced. The attributes possessed by the re-
sulting object will match those of the original object, but the new object’s method
will behave differently. As such, overriding does not always imply the creation of
a new type.

Subtype polymorphism Subtype polymorphism permits an object of a subtype
to be used in place of an object of a supertype. For example, a space vehicle may
be used in any position where a vehicle is expected. In this case, the object’s
dynamic type would be that of space vehicles, whilst its static type would be that
of vehicles.

Dynamic dispatch Suppose that vehicles have a startEngine method, which
turns on the vehicle’s engine. Buses, cars and lorries all run on internal com-
bustion engines, so they may all use the same implementation of startEngine.
However, a rocket — derived from the generalization of space vehicles — may
have a much more complicated startEngine method, which overrides that defined
for vehicles. Code that expects a vehicle and invokes its startEngine method may
use a space vehicle according to subtype polymorphism. However, the behaviour
of that method depends on how the invocation is dispatched. Static dispatch se-
lects the behaviour according to the receiver’s static type: it would invoke the
vehicle’s definition of startEngine, as the code was designed to operate on vehi-
cles and not space vehicles. Dynamic dispatch, however, uses the dynamic type
to select behaviour, so the space vehicle’s version of startEngine is invoked: it
determines, at run-time, which is the most appropriate method to invoke.

Object-based versus class-based

Object-oriented languages may be divided into two broad categories: object-
based and class-based. Whilst some languages straddle the boundary, this divi-
sion largely determines how the properties specified above manifest themselves
in the language.

Object-based languages In object-based languages, the generalization mecha-
nism is based on prototypes: new objects may be created by cloning an existing
object, after which the object may be specialized by the addition of new fields and
methods, by the update of existing methods or, in some cases, by the removal of
attributes.

Behaviour reuse is implemented by delegation: an object based on a template
object may use methods defined by the template object rather than unnecessar-
ily re-implementing those methods — the object delegates method calls to the
template. If the template’s behaviour is updated, all the objects that delegate
method calls to that template will receive the benefits of that update. For exam-
ple, suppose objects bus and car are constructed from a template object, vehicle,

14 Introduction

to which they both delegate behaviour for their startEngine methods. After some
time, vehicle’s startEngine method is updated because all vehicles must now use
unleaded fuel: implicitly, buses and cars can be started with unleaded fuel too.
Conversely, a flyingSaucer may be constructed from vehicle but is sufficiently dif-
ferent that its startEngine method is re-implemented: it will not be affected by
the conversion of Earth-bound vehicles to unleaded fuel.

Whilst these dynamic features allow rapid software development, they leave
programs vulnerable to ‘message not understood’ errors, where an object receives
a request for a field or method that does not exist. Such errors can be caught be-
fore run-time using a static analysis or, more usually, a structural type system,
which specifies the attributes available for a given object [1, 7]. The drawback
of object-based type systems is that they tend to be either too restrictive or too
complicated for use by inexpert programmers. Nevertheless, dynamically-typed
languages such as Self [71] and Javascript [33] remain suitable for prototyping
and for situations where safety is not critical, such as in the implementation of
web applications. Object-based calculi have also been studied in order to de-
termine the theoretical ‘essence’ of object-oriented programming, perhaps most
famously by Abadi and Cardelli [1], whose calculi shall feature prominently in
this work.

Class-based languages Generalization in class-based languages stems from the
declaration of classes, which specify the fields and methods present in objects be-
longing to that class, otherwise known as instances of that class. An object’s class
is therefore similar to a prototype object in an object-based language, although
it is not usually an object itself. As a result, classes are often regarded as object
factories.

Subtyping and reuse are often conflated and implemented using inheritance:
a new class (the subclass) is created by inheriting the fields and methods of an
existing class (the superclass). At the same time, classes may be specialized: new
fields and methods may be added to those that have been inherited. It is also
possible to override inherited methods, so that instances of the subclass obtain
new behaviour. Other re-use mechanisms have been discussed, for example Mix-
ins [35] and Traits [64], but these are largely outside the scope of our discussion.

Returning to our previous example, vehicle would be represented as a class
in a class-based language. As flyingSaucer is a specialization of vehicle, it must
also be represented as a class: a subclass of vehicle. If car and bus require
specialization, or if more than one car or bus is needed, then they too will be
represented as subclasses of vehicle; if not, they may be instances of vehicle.

Type systems for class-based languages are generally nominal: an object’s
class determines its available attributes so, in the simple case, the types are class
names, and subclasses are subtypes.2 Such a type system is simpler — if a vari-

2The adoption of generics has started to introduce structural considerations to class-based type
systems, particularly in the presence of variance [34].

Object-orientation 15

able is declared to have type flyingSaucer then it can hold references to flying
saucers without listing all of their attributes — so it is unsurprising that popular
languages such as Java and C++ are class-based.

Aggregation

Regardless of whether a language is class- or object-based, aggregation is an im-
portant part of object-oriented design. Whilst the car object above could be con-
structed monolithically, such that all the attributes representing the car’s compo-
nents were contained by a single object, this strategy neither supports the re-use
of behaviour when specializing cars nor encapsulation of the components’ prop-
erties. Instead, car can hold references to an engine object, to four wheel objects,
and so on. When car receives a startEngine invocation, it may do some of its own
work such as turning on the car’s stereo, but most of the work will be performed
by invoking engine’s start method. In this arrangement, engine is a component
of the car, and car is an aggregate object built from a number of objects that help
to provide the object’s state and behaviour.

By breaking the object up in this way, the properties of the engine are pro-
tected from interference by car’s code, depending on the language’s ability to
restrict access to engine’s attributes. For example, one would expect the car to
be able to turn the engine on and off, increase and decrease its power, and in-
spect certain operational properties but one would not expect the car to be able
to arbitrarily alter the engine’s preferred air-to-fuel mixture. Thus, putting the
engine in its own object has created an abstraction of engines. This abstraction
promotes re-use when specializing a car to an environmentally friendly car: an
electric car engine has the same interface, but a different implementation. As the
car only knows about the interface, the original engine object can be swapped
for an electric engine without adjusting the car’s code: we obtain an electric car
without needlessly specializing the entire car object.

Earlier, methods for protecting the state of individual objects were discussed.
There has also been considerable work involved in protecting the internal objects
of an aggregate — like engine in the example above — from outside interfer-
ence: Ownership Domains [4] and Ownership Types [17, 23], Balloons [6] and
Islands [44] all attempt to express boundaries around groups of co-operating
objects.

Design patterns

Design patterns are programming idioms, often used to solve particular problems,
originally due to Alexander [5] and applied to object-oriented programs by ‘the
gang of four’: Gamma, Helm, Johnson and Vlissides [36]. A pattern usually
involves a number of objects that collaborate in some way, but does not give
any concrete implementation details: instead, it is a document that gives the
problem addressed by the pattern, gives an abstract, graphical, object-oriented

16 Introduction

specification for how that problem may be solved, and lists the consequences of
using that pattern. The specification is normally given in UML, which is described
below.

Patterns help to ensure that programmers do not implement a sub-optimal
or unclear solution to a problem that others have already solved, but they also
underline a deficiency in the implementation language. Such a deficiency may
be desirable: adding each design pattern as a language primitive would certainly
increase language complexity [16]. Additionally, design patterns can tempt pro-
grammers to force an elegant design into a less elegant, pattern-based design —
exactly what software engineers hope to avoid.

1.1.3 Modelling languages

In the process of designing a software system, a software engineer may use a
variety of techniques to express and improve the design. In an effort to find
some common ground between how a programmer thinks and how a program-
mer writes code, we focus here only on models used to express the design of
a system, either before development or afterwards, as documentation. We con-
centrate on two models in particular, both of which are regarded as de facto
standards: the class diagrams of Unified Modelling Language (UML) [47], and
Entity-Relationship diagrams [21].

Unified Modelling Language

Unified Modelling Language (UML) [47] arose from earlier object-oriented soft-
ware modelling techniques including Object Modelling Technique (OMT) [63],
the Booch method [15] and Object-Oriented Software Engineering (OOSE) [46].
Whilst we focus here on UML’s class diagrams, UML also contains a variety of
disciplines for expressing higher level structures such as packages, for modelling
state and interactions between objects and with users.

At their simplest, UML class diagrams are composed of classes and associa-
tions between them:

+passengers : int

Car

+startEngine()

Road

+lanes : int

* 0..1

drivesOn

The diagram above contains two classes, Car and Road, and an association be-
tween them, drivesOn. Cars have a field, passengers, which holds an integer,
and a method startEngine as discussed earlier.

The association, drivesOn, indicates that instances of Car may be associated
with instances of Road. The arrowhead indicates the association’s navigability,
in this case that the association may only be traversed in one direction: from an
instance of Car we may reach the Road it is driving on, but not the other way

Object-orientation 17

around. Each end of the association is annotated with a multiplicity: the ‘*’ indi-
cates that any number of cars may drive on each road, but the ‘0..1’ annotation
indicates that each car may drive on at most one road. These annotations —
navigability and multiplicity — may be omitted in order to relax the restrictions
placed upon the association. As we shall see later, a many-to-one, one-way asso-
ciation is precisely expressible by a reference from instances of Car to instances of
Road: many Cars may have a drivesOn field, each of which may hold a reference
to a Road instance. This may be demonstrated with a UML object digram, which
shows a possible instantiation of a class diagram into objects and references:

passengers : int

a : Car

lanes : int

b : Road

Each object has a name (sometimes omitted) and the name of its class, separated
by a colon and underlined. Object a is an instance of class Car, and object b is
an instance of class Road. The arrow represents a reference from a to b. Here,
it indicates that a drives on b, but references may be named where the context
leaves this unclear.

Class diagrams also contain information about inheritance. In the following,
Car generalizes HoverCar, which can takeOff to some height:

+passengers : int

Car

+startEngine()

Road

+lanes : int

* 0..1

drivesOn

+height : int

HoverCar

+takeOff()

The inheritance is indicated with a hollow-headed arrow. As HoverCar is a spe-
cialization of Car, it may also drive on a Road.

Finally, we may add some attributes to the drivesOn association with an asso-
ciation class, connected to an association with a dotted line:

+passengers : int

Car

+startEngine()

Road

+lanes : int

+direction : bool

drivesOn

* 0..1

Thus, when a Car instance drivesOn a Road instance, it does so with a certain
direction. Here, drivesOn has no methods.

UML class diagrams can be much richer than demonstrated here, yet already
we see that there is a rich model of assocations between instances of classes.

18 Introduction

As these modelling languages have evolved according to the needs of software
engineers, we argue that these diagrams are at least as expressive as the models
that engineers have in mind during development.

Entity-Relationship diagrams

Entity-Relationship diagrams (ER diagrams) [21] have a less prominent rôle
in modern software engineering, as they tend to be used to model databases
rather than software. Nevertheless, they pre-date other object-oriented models
by nearly twenty years and have had a tremendous influence on data modelling.
As data has acquired behaviour with the advent of object-oriented programming,
their influence is keenly felt in languages such as UML.

An ER diagram consists of entities, relations and attributes, which correspond
to classes, associations and fields/methods in UML diagrams. As a model of data,
based on tables of tuples, they lack inheritance and direction of relations.

The Car/Road example above may be modelled like so:

Car

passengers

drivesOn Road

lanes

1N

Entities are enclosed in square boxes, relations in diamonds, and attributes by
ellipses. These are joined by lines to indicate the participation of attributes in
entities and of entities in relations. Relation participations are annotated with
cardinalities — just as before, drivesOn is a many-to-one relation. Attributes
may be added to relations as well as entities, just as for associations in UML.
Furthermore, relations may participate in other relations alongside entities: this
is known as aggregation [66].

Again, this description of ER diagrams does not aim to be exhaustive, but
serves to demonstrate that a rich model of relationships between entities existed
in the earliest models of data. In some regards, this structure is erased in the
implementation of the model in a relational database. For example, an imple-
mentation in tables may have the form:

Cars
carId passengers drivesOn

A 4 (null)
B 2 M25

Roads
roadId lanes
A101 2
M25 4

Two cars, A and B, carry four and two passengers respectively. The first is not
being driven on a road. The second is being driven on the M25, which has four

Encoding relationships 19

lanes. Notice that the identity of entities, and relations between them have all
been reduced to table attributes. A separate table could be used for the drivesOn

relation: this would imply a many-to-many relation that is not in the model, and
would still conflate relations and entities.

1.2 Encoding relationships

As we have seen, software models rely on objects/entities and relationships be-
tween them. At the same time, object-oriented programming languages possess
objects with the same power as objects in the models, but only have inter-object
references rather than relationships.

Alone, an inter-object reference from one instance to another can be followed
only in one direction, can only reference a single object, and cannot have at-
tributes. As several objects may have a reference to any given object, references
can only directly express a one-way, many-to-one relationship without attributes.
Beyond this, relationships must be encoded.

Noble has proposed design patterns for expressing relationships in object-
oriented languages [56], which lay out strategies for breaking a single UML as-
sociation into an aggregate of objects and references — indeed, the patterns can
be seen as strategies for transforming associations of, say, a UML diagram so that
the diagram is composed only of associations that can be represented by refer-
ences. Similar strategies have been employed in a variety of mappings from UML
models to program code, such as that by Harrison et al. [41]. We describe, using
Noble’s pattern names, four simplified versions of these patterns:

Relationship as attribute As discussed, a many-to-one, one-way, association
without attributes between class A and class B requires no transformation. It can
be directly expressed at run-time by a reference to a B-instance from an attribute
of an A-instance. Figure 1.1(a) shows objects a and b, which are instances of
classes A and B respectively, in such a relationship.

Relationship object Where the association has an association class — put dif-
ferently, where the relationship has attributes — we are left with the problem
of where to store the relationship’s data. The data can be distributed amongst
the relationship’s participants, but this does not represent the data in a way that
respects encapsulation. Instead, then, the data is stored in its own object. For a
many-to-one relationship, R, between classes A and B, we create a class for R and
have an A-instance reference an R-instance, in which R’s attributes are stored.
The R-instance then references the related B-instance. In Figure 1.1(b), a and b

are related by an instance of relationship R, r(a,b).

Mutual friends A two-way relationship between classes A and B can be mod-
elled with two references — one from an A-instance to a B-instance, and one in

20 Introduction

a : A b : B

(a) One-way, no attributes (‘relationship as attribute’ pattern)

a : A r(a,b) : R b : B

(b) One-way, with attributes (‘relationship object’ pattern)

a : A r(a,b) : R b : B

(c) Two-way, with attributes (‘relationship object’ and ‘mutual friends’)

Figure 1.1: Objects representing many-to-one relationship, R, between A and B

reverse. This can be combined with the relationship object pattern where the
association has attributes, as shown in Figure 1.1(c). Owing to the structure’s
symmetry, such a relationship is one-to-one rather than many-to-one.

Collection object Many-to-many associations can be implemented with collec-
tion objects, such as linked lists: rather than an object directly referencing its
relative, it references a collection object that holds references to several relatives.
This situation is shown in Figure 1.2(a), where a is related to two B-instances,
b1 and b2, through the collection object forA.

Collection objects can be combined with the relationship object pattern, as
shown in Figure 1.2(b), to represent many-to-many relationships with attributes.
This can be further combined with the mutual friends pattern to obtain a two-
way, many-to-many relationship with attributes, an example of which is shown
in Figure 1.2(c).

Criticism

Whilst these patterns provide a systematic way to translate UML associations
to designs expressible in object-oriented languages, their use does not permit
the relationship to be faithfully represented in the program. As a result, the
original UML association cannot easily be recovered from its implementation,
although Guéhéneuc and Albin-Amiot have proposed an approximate technique
using static and dynamic analyses [39]. An inability to equate a software model
with its implementation complicates maintenance and encourages programmer
error, sometimes referred to as the traceability problem [16, 67].

Encoding relationships 21

b2 : B

a : A forA : Collection b1 : B

(a) One-way, without attributes (‘collection object’ pattern)

r(a,b1) : Ra : A

forA : Collection r(a,b2) : R

b1 : B

b2 : B

(b) One-way, with attributes (‘collection object’ and ‘relationship object’)

r(a,b1) : Ra : A

forA : Collection

b1 : B

forB1 : Collection

r(a,b2) : R b2 : B

forB2 : Collection

(c) Two-way, with attributes (as above, with ‘mutual friends’)

Figure 1.2: Objects representing many-to-many relationship, R, between A and B

22 Introduction

The patterns also yield complicated structures that can easily become incon-
sistent, especially in the presence of association classes and two-way associations.
Taking a simple example, the objects in Figure 1.1(c), which represent the im-
plementation of a two-way, one-to-one relationship with attributes, may have the
following form:

a : A r1 : R b1 : B

A programmer may then update this structure with the intention of relating a

to a different B-instance. However, as information about the relationship is dis-
tributed across three classes, the programmer cannot reason about the relation-
ship in isolation and may make a mistake — here, he has set up a new instance
of R correctly, but has not updated the participants of the old relationship. Thus,
following references from b1 it appears that a and b1 are still related, whereas
references from a indicate that it is related to b2:

a : A r1 : R b1 : B

b2 : Br2 : R

There is a variety of work on maintaining invariants on aggregate structures such
as these. For example, the Contracts of Helm et al. permit the specification of de-
pendencies between objects and their obligations to one another [42]. Ducasse et
al. similarly propose a means to automatically manage dependencies [32]. Nev-
ertheless, we are still left without a direct abstraction of relationships in program
code.

Finally, one-to-one and one-to-many relationships between A and B cannot
be reliably represented without creating two-way structures as found in Fig-
ure 1.1(c): in general, more than one A-instance is free to reference any given
B-instance. Known as aliasing, this gives object-oriented programming much of
its power, but also poses a significant challenge for producing reliable, secure soft-
ware. There are a variety of techniques for detecting, declaring and restricting
aliasing [4, 6, 17, 22, 23, 44, 74], but in many cases these come with a significant
overhead, and are not sufficiently expressive to impose all of the constraints we
require.

1.3 Thesis

Software engineers and software design tools are well equipped to consider rela-
tionships between objects and entities, whilst programming languages are not. As
has been argued elsewhere, relationships should be available all the way through
software development, from design to implementation [57, 62]. Only a language

Contribution 23

extension can give relationships the same status as objects: we have already seen
that encoding relationships is cumbersome and potentially error prone. Libraries
can package up new abstractions, but they cannot provide the typing guarantees
one expects from such a fundamental feature of object-orientation, and relation-
ships remain encoded backstage. In an age when object-oriented programs are
routinely compiled to code for abstract machines, relationship information can
be maintained so that expected invariants and hence security are maintained at
run-time — this is impossible when relationships are erased from the program
text.

We therefore conclude that object-oriented languages should be extended to
accommodate relationships with the same standing as objects. We further con-
clude that such language extensions be subject to the rigours of formal reasoning
to ensure the programming language’s safety: specifically, that no well-typed pro-
gram may reach an unanticipated state. As we shall see in the following chapters,
typing relationships is not necessarily straightforward, just as typing has caused
difficulties for object-oriented programming languages in the past [25, 27, 30].

1.4 Contribution

This thesis conducts a formal exploration of relationships in object-oriented lan-
guages, covering both the class-based and object-based worlds. In doing so, we
consider relationships with all of the features offered to classes and objects in-
cluding subtyping and generalization/specialization.

We first demonstrate the practicality of including relationships as class-like
constructs in a class-based object-oriented programming language called RelJ.
RelJ is based on Java, but the ideas demonstrated are broadly applicable to other
strongly and statically typed class-based languages, such as C#. Relationships in
RelJ share many the characteristics of association classes from UML: they relate
two classes (or, indeed, other relationships), they may have fields and methods,
and they may inherit from other relationships. At run-time, relationships are
instantiated when a pair of objects is placed in a relationship, so that the resulting
relationship instance holds the relationship state for that pair. That relationship
instance may be referenced just like a class instance. RelJ provides operators for
accessing relationships: for example, an operator to determine for a given object
which objects are related to it. A formal type system and semantics is given, and
we give a soundness result which specifies that a well-typed program cannot get
into an unsafe state.

The semantics of RelJ is based on an abstraction of a program heap, which is
queried upon relationship access: the complex implementation of relationships
using references and objects is, to some extent, maintained but responsibility
is wrested from the programmer. As a result, we can ensure formally that the
semantics maintains consistency of these structures, and that a safe abstraction
is presented to the programmer.

24 Introduction

Moving into the object-based world, we go further by eliminating an ex-
plicit relationship abstraction, and introducing more flexible heap queries into
an object-based language, Qς, based on Abadi-Cardelli’s ς-calculus. In Qς, when
an object has a reference to two other objects, a query can be written to discover
that fact and those two objects are seen to be related. The referencing object’s
state becomes the relationship’s state. No back-pointers are required to maintain
bi-directionality; no collection objects must be maintained: objects and relation-
ships are reunited as a single abstraction with heap query. Again, we give a
formal type system and semantics and show that this language extension is safe.
Finally, we demonstrate that Qς’s heap query can represent RelJ’s relationships by
giving a translation from RelJ to Qς.

Related literature is summarized in the remainder of this chapter, after which
this thesis is organized as follows:

Chapter 2 We introduce RelJ, a class-based language similar to Java or C# with
relationships. Although the model of relationships is kept simple, relationships
may have fields and methods, their instances may be referenced like objects, and
they may inherit from one another. We give a formal type system and semantics,
and show that the new language is type-safe.

Chapter 3 A new form of inheritance for RelJ relationships is introduced, along-
side other variants of RelJ to show how more advanced aspects of, for example,
UML relationship models may be accommodated.

Chapter 4 Relationships are investigated in an object-based setting. We extend
the Abadi-Cardelli ς-calculus to create Qς, which adds the ability to query the
heap. We find that heap query generalizes the idea of relationships from RelJ,
and that query removes the need for the object model and relationship models to
differ.

Chapter 5 We consolidate the correspondence between relationships and heap
query by giving a translation from RelJ programs to Qς.

Chapter 6 This chapter discusses future directions for research and concludes
the thesis.

1.5 Related work

Rumbaugh suggested the addition of relationships to object-oriented program-
ming languages in 1987 [62] and, with others, made the first steps towards a
relationship-capable language with DSM [65]. Whilst DSM addresses the con-
straint aspects of relationship modelling, relationships are not represented quite
at the same level as classes — inheritance and attributes are not available. As an

Related work 25

aside, Rumbaugh also proposes that operations such as object deletion should be
propagated through relations, suggesting an interesting rôle for relationships in
defining the boundaries of an aggregate object [61].

Kristensen describes Complex Associations [49], a richer model of relation-
ships than is available in UML, where classes may be nested inside classes, and
where associations may link those classes. Further, associations may be nested in-
side other associations, linking classes nested inside the participants of the larger
association. Complex associations can therefore function as conduits for rela-
tionships between components of aggregate structures. Kristensen also infor-
mally describes a language of binary associations and nesting that supports the
model. Whilst the model is quite expressive and embodies many of the principles
found in the literature on encapsulating aggregate objects, we believe a model
of simple associations should be established before a more complicated model is
introduced.

Some language extensions have focused on higher-level abstractions, but a
means to express relationships has emerged incidentally: for example, Bosch’s
layered object model [16] aims to improve the representation of design patterns
in object-oriented programming languages by adding a new layer of abstraction.
At the top level, design patterns may be described abstractly, and subsequently
instantiated for specific situations, promoting re-use. The resulting language is
powerful, but is significantly more complicated than Java and C++. Further-
more, relationships are not directly represented at the same level as classes, so
there will remain a mismatch between the design and the language. We argue
that relationships are an important part of expressing many design patterns, and
that their addition would make both a simpler and more fundamental step to-
wards the faithful representation of patterns in programming languages.

Classages [52] by Liu and Smith are designed to improve the specification of
inter-object collaborations — where objects work together as an aggregate ob-
ject — and are therefore capable of representing inter-object relationships. Each
classage declares fields and methods as usual, but also declares various types of
connector, which serve as interfaces for a specific collaboration between classage
instances, known as objectages. Connectors may import and export methods,
and may have their own fields. By plugging the connector of one objectage to
the corresponding connector of another objectage, a relationship between those
objectages is formed. Relationships have state by virtue of the state contained in
the participating connectors. The connection has a handle which may be passed
around as a value, just like a reference to a RelJ relationship instance, but its
passage across relationships is restricted in order to support an improved model
of encapsulation provided by the declaration of minimal interfaces for each of an
objectage’s collaborations. Typing is static, and structural, but there is not yet a
soundness result. Relationships expressed by classages differ from RelJ’s model
and from relationships as represented in Qς, most notably because they are de-
clared in two places, as part of each participating classage. As a result, subtyping
and reuse for relationships declared in this way are bound up in the subtyping

26 Introduction

and reuse between their participating classes. Despite this, classages represent an
encouraging move towards more powerful abstractions for dealing with collab-
orative relationships between objects, and for improving encapsulation of those
relationships.

Balzer, Gross and Eugster [10] have also focused on relationships as a vital as-
pect of object collaborations. Whilst the features available for their relationships
are partly based on RelJ, they focus on exposing a richer abstraction for rela-
tionships — that of discrete mathematical relations — which offers more power
when, for example, specifying invariants; more power does, of course, reduce
opportunities for statically ensuring invariants are satisfied. Similarly to the use
of triggers by Albano et al. [2], they propose a number of run-time strategies to
maintain declared invariants. Further, the authors introduce member interposi-
tion, which imbues objects with extra fields and methods when they participate
in certain relationships. This extends the ability for relationships to have their
own state.

Pearce and Noble [59] have recently described some aspect-oriented design
patterns for relationships, and provided them in a library. The ability for aspects
to cross-cut standard class boundaries allows classes participating in a relation-
ship to be equipped with the required fields and methods without their declara-
tions being distributed across classes in code. As a result, once relationships are
declared using the Relationship Aspect Library, their system provides a convinc-
ing implementation of a RelJ-like language with only a small performance penalty
over hand-coded implementations

Along with Willis, Pearce and Noble have gone on to explore query as a means
to express (or discover) inter-object relationships [76]. They observe that a run-
ning program has implicit relationships (e.g. students whose names are identical)
that are not explicit in the program text. Collection objects are often used to ex-
press such a relationship, but it must be updated at every update of a student’s
name. They propose that the set of objects with such a property could instead
be obtained by querying the heap, and offer a library to efficiently evaluate such
queries. Whilst typing issues are not discussed, their work certainly reflects how
Qς’s object query, mapped into a class-based language, might be implemented:
the application of a formal model such as Qς remains important so that the pro-
grammer may expect complete and type-correct results.

A number of query systems exist outside programming languages for object-
oriented heaps: Lencevicius et al.’s query based debugging [50] is able to alert
the programmer when pre-specified relationships — here, conjunctions of con-
ditions on references — are broken. Off-line query-based debuggers such as the
Java Heap Analysis Tool [70] enable the programmer to query dumps of object-
oriented heaps for inconsistent data structures. By extending the language, our
aim is to maintain relationships such that their debugging is never required.

The database community has a long tradition of relational reasoning, so it is
not surprising that objects have acquired some relational features as they have
been introduced to databases. Objects in object-oriented databases defined by

Related work 27

the Object Data Management Group (ODMG) [20], for example, may have rela-
tionships between them. Also in an object-oriented database, Albano, Ghelli and
Orsini [2] propose a strongly-typed language that incorporates inter-object rela-
tionships. Their model closely matches the expressiveness of UML associations,
but they rely on the richer data model provided by the database system — for
example, triggers and transactions. A more lightweight approach was taken by
Hwang and Lee [45], who did not address typing or constraints. In both cases,
classes are represented as a special case of relationships. Despite these works,
however, progress towards inter-object relationships in object-oriented databases
has yet to be mirrored in the programming languages that communicate with
them.

Chapter 2

RelJ: Relationships for
Java

Class-based programming languages form the most popular family of object-
oriented languages, which includes Java [38] and C# [55] as well as languages
which have class-based features such as C++ [18] and Python [53]. In this chap-
ter, we explore the addition of relationships to a language based on Java, though
the ideas may be applied to any similar language. We formalize this language,
which we call RelJ, and extend it with facilities to create and manipulate rela-
tionships between objects. By giving a formal description to its type system and
semantics, we then demonstrate some important safety properties.

An earlier, condensed version of this work has appeared, with Bierman, at the
2005 European Conference on Object-Oriented Programming (ECOOP) [12].

2.1 Core language

The Java language provides programmers with a large number of features, but
this power makes a formal treatment intractable for the full language. Instead,
we select a subset that preserves the essence of Java, but excludes features that
are irrelevant to the addition of relationships, and which would serve only to
complicate the presentation.

2.1.1 Java fragment

We choose a fragment of similar expressivity to other ‘middle-weight’ Java for-
malizations [14, 30, 35]. A program in this subset consists of a sequence of
simple class declarations, each of which:

i. declares the new class’s name, which then represents the type of all in-
stances of the class;

30 RelJ: Relationships for Java

ii. specifies the name of a previously-declared superclass, from which the new
class will inherit fields and methods and which will become a supertype of
the new class’s name;

iii. gives a list of field names and types which join those fields inherited from
the superclass; and

iv. gives a list of methods which join (or may override) those methods inher-
ited from the superclass.

We assume that the superclass specifications form a tree of classes, at which
Object — the class without fields or methods that is implicitly present in all
programs — is the root.

Unlike Java, where the superclass need not be specified if it is Object, we
require that superclasses are always given. Furthermore, we assume all methods
have exactly one parameter and always return a value, whereas Java allows any
number of parameters and permits methods to take the void return type. To fur-
ther simplify the presentation, objects must be explicitly initialized — construc-
tors are not provided — and we do not permit the use of generics. An example
class declaration, which forms part of our running example, is given below:

class Student extends Object {
String name;

String setName(String newName) {
this.name = newName;
return newName;

}
}

Instances of the Student class, otherwise referred to as Student objects, each
have a field called name which stores a reference to a String object (or null). A
method, setName, which also returns a String, allows this field to be set with a
string provided by the method’s caller. As usual, this refers to the receiver; that
is, the object on which the method was invoked.

We specialize Student by extending it to become LazyStudent:

class LazyStudent extends Student {
int hoursOfSleep;

String setName(String newName) {
String n = newName.append(this.hoursOfSleep);
this.name = n;
return n;

}
}

This class has both a name field, inherited from Student, and an hoursOfSleep
field. The setName method is overidden so that a student’s sleeping time is ap-

Relationships 31

pended to his name when it is set, by invoking the append method of the String
class, and storing the result in the local variable n.

To simplify the presentation, we do not permit Java’s field shadowing or
method overloading when extending classes — method names must be unique in
each class. We do, however, permit overriding of method implementations.

2.1.2 Addition of sets

We do not have generics or casts in this restricted subset of Java, owing to their
relative complexity, so we provide first-class, generic sets, much like the generic
literal types used by the ODMG [20]. Such a container type is useful in order to
process the result of following one-to-many relationships, for example.

Values of set type, written set<c> for some class type c, are sets of references
to c-instances. Sets are immutable values: the addition of an element to a set
results in a new set. We therefore allow them to be covariant — set<c> is a
subtype of set<c′> where c is a subclass of c′. In the presence of generic container
classes, even without variance in type parameters, we could give up this container
type in favour of a container class without harming our ability to work with
relationships.1

We also provide an iterator, similar to that of Java 1.5, to examine the ele-
ments of a set. For example:

set<LazyStudent> sleepers;
...

for (LazyStudent s : sleepers) {
s.snooze(new Dream());

}

The variable sleepers is a set of LazyStudent objects. The for iterator sequen-
tially removes an element from the set, binds the element to the variable s, and
executes the code in its body. In this case, each LazyStudent has his snooze
method invoked.

2.2 Relationships

2.2.1 Choosing a model of relationships

Broadly speaking, there are two models of relationships relevant to programmers:
that of the UML association, and that of the mathematical relation.

UML associations

We have already seen how relationships are expressed by associations between
classes in a UML class diagram. To recap, we review the features that a software

1Of course, some expressivity would be lost owing to the absence of covariance, but this is not
vital to the treatment of relationships.

32 RelJ: Relationships for Java

designer may expect from a programming language designed to implement such
associations:

Navigability In UML it is possible to specify the direction in which an association
may be followed. For example, if A is related one-way to B, then A can
observe its relationship to B, but B cannot (directly) observe its relationship
to A.

Multiplicity UML permits multiplicity annotations on associations, which spec-
ify constraints on the numbers of objects that may be related by any given
association. For example, an association representing ‘married-to’ may be
limited to a one-to-one association between two people, whereas an associ-
ation representing ‘is-child’ may be many-to-one: many children may share
the same parent. UML provides a rich language for specifying multiplicities,
including wildcards, numerical ranges, and lists.

Aggregation/Composition Aggregation and composition associations both de-
note an ‘is-part-of’ relationship between two classes. For example, an em-
ployee may be part of a company. However, UML distinguishes the strength
of this association: aggregation generally indicates that the part may be
shared with other objects — an employee may work for other companies
— whilst composition indicates stronger ownership of the part by the whole
— the employee may only work for one company. The difference between
aggregation and composition has no bearing on implementation [68].

Association classes A class may be added to an association, in which proper-
ties relevant to the association but not to the participating classes may be
stored. For example, a ‘married-to’ association may have an association
class with the property ‘wedding-date’.

Inheritance may exist between association classes.

Mathematical relations

A mathematical relation is a set whose elements are tuples of elements of its
underlying sets. The binary relation R on the sets X and Y is written R⊆ (X ×Y).
When an element x ∈ X is related to an element y ∈ Y , it may be written xRy
or R(x , y), where the latter is more suitable for ternary relationships or those of
greater arity.

There are many properties that a mathematician may expect from a program-
ming language abstraction designed to implement relations, of which the most
common are summarized here:

Relation arity UML associations are binary, but as we have already mentioned,
mathematical relations may be have arbitrary arities. For example, the edge
relation of a weighted graph holds triples — two nodes and a distance for
the edge.

Relationships 33

Multi-relations Mathematical relations are based on sets and therefore the pres-
ence of a tuple is binary — either the objects are related, or they are
not. Basing a relation on a multi-set would permit multiple instances of
the same relation. For example, two companies may be related by an ‘is-
contracted-to’ relation, but the presence of multiple contracts may imply
more than one instance. Of course, this can be encoded by moving from a
pair to a triple, with a contract count as the third member.

Relational databases are often based on multi-relations.

Constraints There are a number of commonly required constraints on the pairs
present in binary relations. Their maintenance usually requires action
when new relation elements are added, or when new elements are added
to the relation’s underlying sets: in total and surjective relations, new pairs
are induced by the addition of members to the underlying sets; the addition
of a new pair to an injective or functional relation may require the removal
of another element; and the addition of new pairs may imply the addition
of further pairs to reflexive, transitive or symmetric endorelations. Balzer
et al. have surveyed the effect of these constraints on object collaborations
in greater detail [9].

RelJ’s model

Not only is there a tension between the mathematical perspective and that of
UML, but also with the practicality of respecting such properties statically in a
programming language. In this case, we also wish to keep the presentation sim-
ple, leaving properties that may be available from modest extensions for later
consideration.

In this chapter’s presentation of relationships, therefore, our relationships are
one-way, many-to-many, and binary. We disregard aggregation and composition
associations, given that they do not influence implementation. We do not pro-
vide facilities to automatically ensure that relationships remain total, injective,
functional, surjective, reflexive, symmetric or transitive.

Finally, we only allow relationships to occur once between each pair of ob-
jects; that is, our relations are based on sets rather than multi-sets. The provision
of multi-relations is dicussed in Chapter 3, as is the provision of n-ary relations,
which, as observed above, provide some of the power of multi-relations.

Terminology Terminology used for mathematical relations does not match that
used for UML associations. We therefore define the terms in which we will couch
our discussion of relationships as they are to be presented in this chapter:

Relationship Broadly represents the mathematical concept of relation, and the
UML concept of association.

34 RelJ: Relationships for Java

Relationship instance Analagous to an element of a mathematical relation, or
an instance of a UML association class. When discussing instances of a
specific relationship, r, we will refer to an r-instance or r-object.

Participants Depending on context, refers to the types between which a rela-
tionship is defined, or the instances related by a relationship-instance.

2.2.2 Declaring relationships

At the top level, a Java program consists of a set of class declarations. A RelJ

program adds to this a set of relationship declarations. A relationship declaration
expresses an association between pairs of classes or, as we shall see later, between
classes and relationships or pairs of relationships.

We earlier gave declarations for Student and LazyStudent. We would nor-
mally expect a student to attend courses, so we declare a Course class, which
has a field to represent the course’s code and some methods (elided here):

class Course extends Object {
String code;
...

}

To model the attendance of a student at a course, rather than resorting to the
structures discussed in Section 1.2, RelJ simply declares the following relation-
ship:

relationship Attends extends Relation (Student, Course) {
int mark;
Certificate getCertificate(Academic signatory) {

...
}

}

The declaration above specifies:

i. the name of the new relationship, Attends, which becomes the type for
instances of this new relationship;

ii. the name of the new relationship’s super-relationship, from which it inher-
its fields and methods;

iii. the participants in the relationship, Student and Course — we sometimes
refer to the first type as the source and the second as the destination;

iv. a list of fields, in this case, the field representing the mark that the partici-
pating student gets for attending the participating course; and

v. a list of methods that can be invoked on instances of the new relationship;
here, a method that returns a Certificate, signed by an Academic, for
the student’s course attendance.

Relationships 35

Relation is the implicit root of the inheritance tree of relationships, just as
Object is for classes. Relation has no methods, and has two special fields,
to and from, through which the objects participating in the relationship may be
accessed; we give examples later. 2

In the declaration above, we used two classes as the participants in the
Attends relation. However, relationships themselves may take part in further
relationships — a feature known as aggregation in ER-modelling [66]. For ex-
ample, suppose a Tutor object is able to recommend that a student attends a
particular course. This may be written:

relationship Recommends extends Relation (Tutor, Attends) {
String reason;

}

2.2.3 Manipulating relationships

Relationships function as factories for relationship instances just as classes func-
tion as factories for objects. Classes may be instantiated with new:

Student alice = new Student();
Course semantics = new Course();

However, relationships may only be instantiated in the course of relating two
objects:

Attends attnds = Attends.add(alice, semantics);

Thus, alice is related to semantics through the Attends relationship. The
result of establishing that relationship is a new instance of Attends, in which are
stored values for Attends’s declared fields, and on which its declared methods
may be invoked:

int aliceMark = attnds.mark;
Certificate aliceCert = attnds.getCertificate(new Academic());

If alice had already been in the Attends relationship with semantics before
the invocation of add, then no action would have been taken. The instance
of Attends returned by add would have been that which related alice and
semantics before the attempted addition.

Whilst the instance of Attends relating alice and semantics may be ob-
tained at the site where the relationship is established, we may obtain the set of
all Attends relationship instances pertaining to alice using the ‘:’ operator:

set<Attends> aliceAttends = alice:Attends;

2The fields are ‘special’ as they are covariant, immutable, and distinguished in the semantics.
This note is only to satisfy the curious — to and from are discussed further in Section 2.5.

36 RelJ: Relationships for Java

As discussed previously, our relationships are one-way — the ‘:’ operator may
only be applied to the source instance of a relationship. Without this restriction,
ambiguity would arise for any relationship whose participants were not distin-
guishable by type: for example, where a relationship links objects of the same
class. The extensions in Chapter 3 include the provision of a bidirectional rela-
tionship model.

With the set of Attends instances that relate alice to some course stored in
the aliceAttends variable, we may use the for iterator to print the marks Alice
obtains for her courses:

for (Attends a : alice:Attends) {
System.println("Alice got " + a.mark

+ " for " + a.to.code);
}

Recall that all relationship instances have a to field, which, in the case of an in-
stance returned by alice:Attends, evaluates to a Course. If we wish to obtain
the set of courses that Alice attends, then we may collect these by iterating over
the contents of alice:Attends and applying .to to each member. For conve-
nience, we overload the ‘.’ operator to perform the same function:

set<Course> aliceCourses = alice.Attends;

The ‘.’ operator, just as for ‘:’, may only be applied to the source instance of a
relationship.

At some point in the future, it might be the case that Alice stops attending
Semantics. In that case, alice and semantics may be unrelated:

Attends.rem(alice, semantics);

Recall however that references to relationship instances may be stored in vari-
ables and fields just like references to any other object, which raises the question
of what it means to unrelate two instances. Suppose the following situation:

myObj.f = Attends.add(alice, semantics);
Attends x = myObj.f;

Attends.rem(alice, semantics);

set<Course> aliceAttds = alice.Attends;

Thus, a reference to the instance relating alice and semantics is stored in both
field f of object myObj, and in the variable x. After alice and semantics are un-
related, clearly semantics ought not appear in the set assigned to aliceAttds,
but what of the Attends-instance in the heap? The available options include:

Take no action The instance is allowed to remain in the heap, but is not re-
turned in the results of relationship access.

Relationships 37

relationship ActiveRel extends Relation (A, B) {
boolean isActive() {

boolean x;
x = false;
for (ActiveRel r : this.from:ActiveRel) {

if (r == this) {
x = true;

}
}
return x;

}
}

Figure 2.1: Provision of an isActive flag for relationship instances

Delete instance The instance could be removed from the heap. In this case,
however, we have references to the deleted instance in myObj.f and in x,
which may result in an attempt to dereference a dangling pointer. Whilst
dangling pointers are allowed in languages such as C++, where they pose
a significant security risk, they are not compatible with the abstractions
provided by Java or C#.

Nullify references To prevent the pursuit of dangling pointers, we might nullify
references to the deleted instance. In this case, x and myObj.f would be set
to null when alice and semantics are unrelated. However, this merely
results in a null pointer exception at dereference time — more secure, but
still potentially surprising.

Given the difficulties with the second and third options, we leave the instance
in the heap. The change in state, therefore, is represented by the absence of
semantics from alice.Attends, and of the relating Attends-instance from the
result of Alice:attends. We refer to relationship instances in the heap that
are returned by relationship access as active, and those no longer returned by
relationship access as inactive.

We conjecture that storage of the sets returned by the two relationship access
operators would in fact be rather rare: it is more likely that the set would be
obtained, examined with the for iterator, and discarded:

for (Course c : alice.Attends) {
System.out.println("Alice attends " + c.code);

}

However, if the programmer requires a flag to determine a particular relationship
instance’s activity, this may be provided by checking for its membership in the
set returned by the ‘:’ operator applied to its own source address, as shown in
Figure 2.1. Recall that this.from:ActiveRel is the set of ActiveRel-instances

38 RelJ: Relationships for Java

relating this.from to some other object. Clearly any relationship instance will
find itself in this set until such time as its participating objects are unrelated.

This idea of active and inactive relationship instances bears some similarity
to the idea of extents in object databases [20]. There, a class’s extent is the set
containing all instances of the class, which may then be queried. The ‘:’ and
‘.’ operators, applied to a relationship, essentially query the extent of active
instances for that relationship.

Relationships and inheritance

Relationship inheritance is defined for the purposes of this chapter exactly as for
classes. Specifically, where relationship r1 extends r2, then:

• r1 is a subtype of r2: instances of r1 may be assigned to fields/variables
whose type is r2;

• r1 inherits all fields and methods of r2 (subject to overriding of method
implementations).

Alongside those properties of inheritance common to classes, however, there are
additional concerns that arise from the involvement of a relationship’s two par-
ticipating types. In particular, when we declare a relationship, we allow covari-
ance in those types. For example, when extending the Attends relationship to
ReluctantlyAttends, we may express that the relationship only applies to lazy
students attending difficult courses:

relationship Attends extends Relation
(Student, Course) { ... }

relationship ReluctantlyAttends extends Attends
(LazyStudent, HardCourse) { ... }

where we have already specified that LazyStudent extends Student and where
we assume that HardCourse extends Course.

In turn, the pseudo-fields to and from are typed covariantly, such
that Attends.to has type Course, but ReluctantlyAttends.to has type
HardCourse. Normally, fields’ types are fixed down the inheritance hierarchy.3

Whilst such covariance is normally unsound, it is available for to and from be-
cause the instances related by any given relationship instance are immutable
during the lifetime of that relationship instance:

Attends a = ...
a.to = new Student(); // Not permitted

This restriction is enforced syntactically, by precluding to and from as field
names.

3We do not consider field shadowing, though shadowed fields cannot be said to be ‘the same’
as the fields they shadow.

Relationships 39

It remains to discuss the effect of inheritance on the results of relationship
access with the ‘:’ and ‘.’ operators. Consider the following situation, where lazy
student Bob attends two courses:

LazyStudent bob = new LazyStudent();
HardCourse rocketScience = new HardCourse();

Attends.add(bob, semantics);
ReluctantlyAttends.add(bob, rocketScience);

It must then be decided what the results of bob:Attends and bob.Attends
should be. The choice depends on the extent to which inheritance impacts on
the semantics of relationships:

i. if we regard relationship inheritance merely as a reuse and subtyping mech-
anism, then only semantics should occur in bob.Attends;

ii. if inheritance also implies that ReluctantlyAttends’s membership
is contained in Attends’s membership — just as instances of type
ReluctantlyAttends are included in the Attends type — then
both semantics and rocketScience should occur in the result of
bob.Attends.

Both possibilities are sound — a HardCourse may be included in a set of Course-
instances — but both results can be counter-intuitive. In this example, we would
certainly expect Bob to attend semantics if he reluctantly attends semantics: the
first result seems incomplete. The second option does reflect the intuition that a
reluctant attendance is still an attendance, but this strategy gives an unexpected
result in the case where we make the following addition:

Attends.add(bob, rocketScience);

There, rocketScience will occur twice in bob.Attends, once for each of
Attends and ReluctantlyAttends. Although one of these attendances stems
from ReluctantlyAttends, the result is not compatible with the idea that each
pair of objects may only be related once through each relationship. We might
remedy this situation by removing duplicates from the results of relationship ac-
cesses, but there are two relationship instances for the (bob,rocketScience)
pair. If only one is to be returned, it is difficult to decide which — there is not
necessarily a ‘best’ instance. Moving away from our example for a moment, sup-
pose the following triangular relationship inheritance hierarchy:

relationship R extends Relation (A, B) { ... }

relationship S extends R(A, B) { ... }
relationship T extends R(A, B) { ... }

and that we wish to evaluate the following:

40 RelJ: Relationships for Java

c ∈ ClassName Class names
r ∈ RelName Relationship names
f ∈ FldName Class/relationship field names

m ∈ MethName Class/relationship method names
x ∈ VarName Program variables
ι ∈ Address Object identifiers/addresses

Figure 2.2: Names used in RelJ and their meta-variables

a = new A(); b = new B();
...
Set<R> rs = a:R;

That is, rs receives the set of R-instances relating a to some B-instance. Our goal
is to return only one instance for the relationship of a to b through R or any of
its sub-relationships, but it quickly emerges that there is no consistent strategy to
select an appropriate instance:

• Where a and b are related by R, S and T, then there is no unique, least
type. However, R is the unique, greatest type and its instance may be safely
returned.

• Where a and b are related only by S and T but not R, then there is no in-
stance of the greatest type that may be returned. In the absence of a unique,
least type it only makes sense to return both relationships’ instances.

With these considerations in mind, then, we choose the inheritance model that af-
fects only reuse and not relationship membership: when accessing bob:Attends
we return only instances whose dynamic type is precisely Attends. Simi-
larly, bob.Attends only returns those Course-instances that are related through
Attends and not those related through ReluctantlyAttends. The larger re-
sult may still be constructed by explicitly accessing Attends and all of its sub-
relationships.

We later discuss an alternative model of inheritance that reflects the contain-
ment of ReluctantlyAttends in Attends whilst addressing the difficulties dis-
cussed above. However, the semantics for this alternative model is significantly
more complicated than the semantics given here: in this chapter we therefore
proceed with our simple model of inheritance and present the more complicated
model as an extension to RelJ in Chapter 3.

2.3 Language definition

In this and the following sections, we give a formal description of RelJ, its type
system and semantics. A grammar for RelJ programs and types is given in Fig-
ure 2.3, which uses the various sets of atomic names defined in Figure 2.2. We
assume these sets of names are disjoint.

Language definition 41

p ∈ Program ::= ClassDecl∗ RelDecl∗ s

ClassDecl ::= class c extends c′

{ FieldDecl∗ MethDecl∗ }
RelDecl ::= relationship r extends r ′ (n, n′)

{ FieldDecl∗ MethDecl∗ }
n ∈ RefType ::= c | r

t ∈ Type ::= boolean | n | set<n>

FieldDecl ::= t f ;

MethDecl ::= t m(t ′ x) { LocalDecl∗ s return e; }

LocalDecl ::= t x;

mb ∈ MethBody ::= { s return e; }

v ∈ Value ::= true | false | null | empty | value literals

ι | {ι1, ι2, . . . , ιn≥0} run-time values

l ∈ LValue ::= x |
e. f field access

e ∈ Expression ::= v | value

l | l-value

e1 == e2 | equality test

e1 + e2 | e1 - e2 | set addition/removal

e.r | e:r | relationship access

e.from | relationship source

e.to | relationship destination

new c() | instantiation

l = e | assignment

r.add(e,e′) | r.rem(e,e′) | relationship addition/removal

e.m(e′) | method call

{ s return e; } method body (run-time only)

s ∈ Statement ::= ε | empty statement

e; s1 | expression

if (e) {s1} else {s2}; s3 | conditional

for (n x : e) {s1}; s2 set iteration

R ∈ Term ::= s | e RelJ terms

Figure 2.3: The grammar of RelJ types and programs

42 RelJ: Relationships for Java

C ∈ ClassTable : ClassName→ ClassName× FieldMap×MethMap

R ∈ RelTable : RelName→ RelName× RefType× RefType× FieldMap×MethMap

F ,F+ ∈ FieldMap : FldName→ Type

M ,M+ ∈ MethMap : MethName→ VarName× LocalMap× Type× Type×MethBody

L ∈ LocalMap : VarName→ Type

Figure 2.4: Signatures of class and relationship tables

Types In common with Java, RelJ types include the names of all the classes
defined in the program, ranged over by c, as well as the names of primitive types.
Here, only boolean is provided, but the addition of other primitive types does
not significantly impact on the formalization. Added to this are the names of all
relationships defined in the program, ranged over by r. We use n to range over
the names of both classes and relationships, which form the set of reference types.
Finally, the set<− > type constructor may be applied to any reference type, but
not to primitive types or set types: sets-of-sets are not permitted. RelJ types are
ranged over by t, and the set of types available in a program p is written Tp.
Context usually renders the subscript redundant, in which case it is omitted.

Class and relationship declarations A program p is a set of class declarations,
a set of relationship names, and a statement (analagous to Java’s main method).
In common with other calculi, we abstract from the syntax by regarding a pro-
gram as a collection of maps from names to definitions [29]. A program, p, is
therefore abstracted by a triple, P , of a class map, a relationship map and a
‘main’ statement:

P ::= (C,R, s)

Similarly, class maps and relationship maps provide abstractions of their respec-
tive definitions in the syntax.

A class map, C, maps a class name c to a triple of c’s superclass, and maps
for c’s fields and methods:

C(c) = (c′,F ,M)

We usually refer to c’s field map and method map simply as Fc andMc respec-
tively. A class’s field map, Fc merely maps field names, f , to the declared type
for that field, t:

Fc(f) = t

Similarly, a method map takes method names, m, to a tuple containing m’s formal
parameter, types for local variables, argument and result types, and method body:

Mc(m) = (x ,L , t1, t2, mb)

Language definition 43

Method bodies are simply statements terminated by a return statement, and are
ranged over by mb. In the abstract syntax, the method body does not include
local variable declarations — they are represented by L , which maps variable
names to their declared types:

L (x) = t

Relationships are represented by a relationship map,R, which maps relationship
names, r, to a tuple containing the name of r ’s super-relationship, its participat-
ing type and, as for classes, field and method maps:

R(r) = (r ′, n1, n2,F ,M)

Recall that the Object class is implicitly defined for all programs, as is the
Relation relationship. We therefore assume the following entries in C and R:

C(Object) = (Object,;,;)
R(Relation) = (Relation,Object,Object,;,;)

We also formalize the set of a program’s valid types in terms of the class and
relationship maps:

T b= {boolean} ∪ dom(C)∪ dom(R)∪ {set<n> | n ∈ dom(C)∪ dom(R)}

Finally, we give versions of method and field lookup that respect inheritance,
writtenM+ andF+ respectively, and which include fields and methods inherited
from supertypes:

M+
c (m) =

¨

Mc(m) if m ∈ dom(Mc)
M+

c′ (m) otherwise, if c 6= Object and C(c)super = c′

M+ for relationships andF+ are defined similarly. Signatures for all these maps
are to be found in Figure 2.4.

Alongside the shorthands for field and method maps, Fc andMc , we some-
times use a subscript to project away portions of tuples in which we are not
interested. For example, we may write C(c)super = c′ to express that c′ is the
superclass of c. We extend this shorthand to the results of other lookups:

R(r) = (R(r)super,R(r)from,R(r)to,Fr ,Mr)

Mc(m) = (Mc(m)argvar,Mc(m)locvars,Mc(m)arg,Mc(m)ret,Mc(m)body)

A list of such subscripts yields the obvious tuple:

Mc(m)arg,ret = (t1, t2) whereMc(m) = (x ,L , t1, t2, mb)

44 RelJ: Relationships for Java

Expressions Expressions are ranged over by e. They include standard features
such as variables, field access, equality test and value literals. Some expressions,
for example object addresses, ι, and sets of addresses, {ι1, . . . , ιi≥0}, may not
be written in static program text. However, they will occur during execution of
terms — these are discussed further in due course. Set manipulation operators
for set addition, +, and subtraction, -, are provided, along with a literal for the
empty set, empty. Sets of addresses are also legitimate values during execution of
a program. Relationship access operators are also provided: e.r gives access to
the objects related to the result of e by relationship r; e:r gives those instances
of r pertaining to the result of e. Also included are side-effecting expressions:
object allocation with new, assignment and method invocation, as well as the
relationship addition and removal operators. Finally, method bodies are included
in the set of expressions in order to simplify the modelling of method call: the
intention is that the method body’s statement is executed, after which the block
is replaced by the value formed from the return expression — this is discussed
further in Section 2.5.

Notice that we demand more regular syntax than Java: receivers of method
invocations or field accesses must be written in full, and new never takes any
arguments — we do not consider constructor methods.

Statements Statements, ranged over by s, may be empty or may be a statement
prepended to a further sequence of statements. The set iterator for, with syntax
matching that of Java 1.5, is provided along with an if statement. Expressions
may be used as statements when suffixed with a semi-colon but, for simplicity
and unlike Java, we do not restrict such ‘promotion’ only to side-effecting expres-
sions [14, 38].

Terms A RelJ term is either a statement or an expression. RelJ terms are ranged
over by R.

2.4 Type system

The rôle of the type system is ostensibly to prevent the invocation of a non-
existent method on some object, and to ensure that programs cannot get into
states where they may no longer execute (except for result states). The RelJ type
system is composed of various judgements, all of which are annotated `R in
order to distinguish them from the judgements given for the object calculus in
Chapter 4.

Subtyping A subtyping relation, written `R t1 ≤ t2 where t1 is a subtype of
t2, is defined in Figure 2.5. (RSub Class) and (RSub Rel) reflect those subtypes
established in class and relationship declarations, whilst (RSub Ref) and (RSub

Trans) close these under reflexivity and transitivity. The covariance of set<− >

Type system 45

(RSub Class)

C(c1)super = c2

`R c1 ≤ c2

(RSub Rel)

R(r1)super = r2

`R r1 ≤ r2

(RSub Set)

`R n1 ≤ n2

`R set<n1>≤ set<n2>

(RSub Ref)

t ∈ T
`R t ≤ t

(RSub Trans)

`R t1 ≤ t2 `R t2 ≤ t3

`R t1 ≤ t3

(RSub Object)

`R Relation≤ Object

Figure 2.5: Definition of RelJ’s subtyping relation

types is established in (RSub Set), and we join the relationship and class hierar-
chies — desirable in the absence of generics — by making Relation a subtype
of Object in (RSub Object).

Typing environments We type expressions and statements in the presence of a
typing environment, Γ ∈ TypeEnv, which maps variable names and addresses to
types:

Γ(x) = t Γ(ι) = n

We shall discuss the circumstances under which addresses, ι, receive bindings in
Γ when discussing the semantics; for the moment we shall consider only variable
bindings. Notice that Γ’s signature contains that of method local variable maps,
L . We can therefore extend type environments with local variable maps when,
for example, entering the scope of a method body as long as Γ and L assign
types to disjoint sets of variables (local variable maps do not include addresses in
their domains).

Γ′ = Γ]L

Γ′ then agrees with Γ and L unless their domains overlap, in which case the
union is not defined. A type environment may be updated with [x 7→ t]:

Γ′ = Γ[x 7→ t]

Here, Γ′ agrees with Γ except for x , which it maps to t.

Typing relations Type checking is performed with two typing relations. The
first indicates that an expression e has type t, whilst the other checks that a
statement s is well-typed, both in the presence of environment Γ:

Γ `R e : t Γ `R s

The rules that define these typing relations are given in Figure 2.6.

46 RelJ: Relationships for Java

(RTyp Sub)

Γ `R e : t1 `R t1 ≤ t2

Γ `R e : t2

(RTyp Bool)

Γ `R true : boolean
Γ `R false : boolean

(RTyp NullEmpty)

n ∈ T
Γ `R null : n
Γ `R empty : set<n>

(RTyp Var)

Γ(x) = t
Γ `R x : t

(RTyp Addr)

Γ(ι) = n
Γ `R ι : n

(RTyp Set)

∀ j ∈ 1..i : Γ `R ι j : n
Γ `R {ι1, . . . , ιi} : set<n>

(RTyp New)

c ∈ T
Γ `R new c() : c

(RTyp Eq)

Γ `R e1 : n Γ `R e2 : n′

Γ `R e1 == e2 : boolean

(RTyp Ass)

Γ(x) = t
Γ `R e : t

x 6= this
Γ `R x = e : t

(RTyp Fld)

F+n (f) = t
Γ `R e : n
Γ `R e. f : t

(RTyp FldAss)

F+n (f) = t
Γ `R e1 : n Γ `R e2 : t
Γ `R e1. f = e2 : t

(RTyp Body)

Γ `R s
Γ `R e : t
Γ `R { s return e; } : t

(RTyp Add)

Γ `R e1 : set<n> Γ `R e2 : n
Γ `R e1 + e2 : set<n>

(RTyp Subtract)

Γ `R e1 : set<n> Γ `R e2 : n
Γ `R e1 - e2 : set<n>

(RTyp RelObj)

R(r)from,to = (n1, n2)
Γ `R e : n1

Γ `R e.r : set<n2>

(RTyp RelInst)

R(r)from = n
Γ `R e : n
Γ `R e:r : set<r>

(RTyp From)

R(r)from = n
Γ `R e : r
Γ `R e.from : n

(RTyp To)

R(r)to = n
Γ `R e : r
Γ `R e.to : n

(RTyp RelAdd)

R(r)from,to = (n1, n2)
Γ `R e1 : n1 Γ `R e2 : n1

Γ `R r.add(e1,e2) : r

(RTyp RelRem)

R(r)from,to = (n1, n2)
Γ `R e1 : n1 Γ `R e2 : n2

Γ `R r.rem(e1,e2) : r

(RTyp Skip)

Γ `R ε

(RTyp Exp)

Γ `R se : t
Γ `R s
Γ `R se; s

(RTyp Call)

M+
n (m)arg,ret = (t1, t2)

Γ `R e1 : n Γ `R e2 : t1

Γ `R e1.m(e2) : t2

(RTyp Cond)

Γ `R e : boolean
Γ `R s1 Γ `R s2 Γ `R s3

Γ `R if (e) {s1} else {s2}; s3

(RTyp For)

Γ `R e : set<n> Γ[x 7→ n] `R s1

Γ `R s2 x 6∈ dom(Γ)
Γ `R for (n x : e) {s1}; s2

Figure 2.6: Subsumption-based typing rules for RelJ expressions, Γ `R e : t, and
statements, Γ `R s

Type system 47

Most of these rules are standard. (RTyp Sub) implements subtype polymor-
phism by allowing a term to be viewed at a supertype of any previously assigned
type. (RTyp Bool) assigns the boolean type to boolean literals, whilst (RTyp

NullEmpty) allows null to take type n and empty to take type set<n> for any
reference type n defined in the program. Variables’ types are taken directly from
the environment in (RTyp Var), as are those of addresses and address sets in
(RTyp Addr) and (RTyp Set). In the presence of subsumption, sets may contain
addresses of several types as long as they have a common supertype. New class
instances are given the obvious type in (RTyp New), as long as the class is de-
fined in the program, whilst the equality test for object references in (RTyp Eq)
returns a boolean as long as the operands have reference types.4 Variable update
is typed by (RTyp Ass), which requires that the variable’s new value can be typed
with the variable’s declared type.

The result of field access takes its type from the field’s definition in (RTyp

Fld). Field assignment, typed by (RTyp FldAss), requires that the updated value
can be given the field’s declared type. The result of a field assignment has the
field’s type, in order to support chaining of assignments.

(RTyp Body) checks that the constituent statement and expression are ty-
pable, and propagates the return expression’s type to the outside of the block.

The set addition and subtraction operators are typed by (RTyp Add) and
(RTyp Subtract) respectively. In both cases, the affected set and the item be-
ing added (or removed) must agree on the type of the set’s elements.

Relationship access is typed by (RTyp RelObj) and (RTyp RelInst). When
accessing the objects related to the receiver, typed by (RTyp RelObj), the result
will be a set of the relationship’s destination type. When accessing the instances
of the relationship pertaining to the receiver, the result will be a set of relationship
instances, as specified by (RTyp RelInst).

The to and from operators may be applied to any relationship instance, and
are typed directly from the relationship’s definition in (RTyp To) and (RTyp From)
respectively.

Relationship addition is typed by (RTyp RelAdd) directly from the relation-
ship’s declaration, just as for (RTyp RelRem). In both cases, the type of the result
is simply the relationship type: for addition, this reflects the desire to return the
newly-created relationship instance for field initialization; in the case of deletion,
the inactivated relationship instance may be useful for housekeeping.

Syntax-directed typing The type-rules of Figure 2.6 are not syntax-directed
owing to the presence of the subsumption rule, (RTyp Sub). As a result, a type-
checker may choose to apply a rule that later results in an unsuccessful derivation,
even though the term in question is typable — backtracking will be required to
check all possibilities before a term can be rejected.

4This is a relaxation of the Java rule, which requires that the types be directly comparable. In
this case, we only require that the types are both subtypes of Object.

48 RelJ: Relationships for Java

(RTyp Boolalg)

Γ `R true : boolean
Γ `R false : boolean

(RTyp NullEmptyalg)

n ∈ T
Γ `R null : n
Γ `R empty : set<n>

(RTyp Varalg)

Γ(x) = t
Γ `R x : t

(RTyp Addralg)

Γ(ι) = n
Γ `R ι : n

(RTyp Setalg)

n=
⊔

{Γ(ι1), . . . ,Γ(ιi)}
Γ `R {ι1, . . . , ιi} : set<n>

(RTyp Newalg)

c ∈ T
Γ `R new c() : c

(RTyp Eqalg)

Γ `R e1 : n Γ `R e2 : n′

Γ `R e1 == e2 : boolean

(RTyp Assalg)

Γ(x) = t1 Γ `R e : t2 `R t2 ≤ t1 x 6= this
Γ `R x = e : t1

(RTyp Fldalg)

Γ `R e : n
F+n (f) = t
Γ `R e. f : t

(RTyp FldAssalg)

Γ `R e1 : n F+n (f) = t1

Γ `R e2 : t2 `R t2 ≤ t1

Γ `R e1. f = e2 : t1

(RTyp Bodyalg)

Γ `R s Γ `R e : t
Γ `R { s return e; } : t

(RTyp Addalg)

Γ `R e1 : set<n1> Γ `R e2 : n2

n3 = n1 t n2

Γ `R e1 + e2 : set<n3>

(RTyp Subtractalg)

Γ `R e1 : set<n1> Γ `R e2 : n2

Γ `R e1 - e2 : set<n1>

(RTyp RelObjalg)

R(r)from,to = (n2, n3)
Γ `R e : n1 `R n1 ≤ n2

Γ `R e.r : set<n3>

(RTyp RelInstalg)

R(r)from = n2

Γ `R e : n1 `R n1 ≤ n2

Γ `R e:r : set<r>

(RTyp Fromalg)

R(r)from = n
Γ `R e : r
Γ `R e.from : n

(RTyp Toalg)

R(r)to = n
Γ `R e : r
Γ `R e.to : n

(RTyp RelAddalg)

R(r)from,to = (n1, n2)
Γ `R e1 : n3 Γ `R e2 : n4

`R n3 ≤ n1 `R n4 ≤ n2

Γ `R r.add(e1,e2) : r

(RTyp RelRemalg)

R(r)from,to = (n1, n2)
Γ `R e1 : n3 Γ `R e2 : n4

`R n3 ≤ n1 `R n4 ≤ n2

Γ `R r.rem(e1,e2) : r

(RTyp Skipalg)

Γ `R ε

(RTyp Expalg)

Γ `R e : t
Γ `R s
Γ `R e; s

(RTyp Callalg)

Γ `R e1 : n Γ `R e2 : t1

M+
n (m)arg,ret = (t2, t3) `R t1 ≤ t2

Γ `R e1.m(e2) : t3

(RTyp Condalg)

Γ `R e : boolean
Γ `R s1 Γ `R s2 Γ `R s3

Γ `R if (e) {s1} else {s2}; s3

(RTyp Foralg)

Γ `R e : set<n1> Γ[x 7→ n2] `R s1

Γ `R s2 `R n1 ≤ n2 x 6∈ dom(Γ)
Γ `R for (n2 x : e) {s1}; s2

Figure 2.7: Alternative, syntax-directed typing rules for RelJ

Type system 49

Figure 2.7 gives a version of the type system that suggests a more practical
type-checking algorithm: subtyping is applied only when necessary, and a type-
checker can determine, for any term, which type rule will be applicable. The
types of compound terms are determined uniquely from the types of sub-terms.

For the purposes of this discussion, we write `sub
R and `alg

R to distinguish
the typing relations derived from the subsumption-based rules of Figure 2.6 and
syntax-directed rules of Figure 2.7 respectively. We refer to the two resulting
calculi as RelJsub and RelJalg.

Most of the RelJalg rules are similar in form to those from RelJsub, except
for those rules that type sets and their operations. Rather than assigning sets a
type formed from an arbitrary bound on its constituent addresses’ types, we take
the least such bound. The least upper bound of a collection of types, written
⊔

{t1, . . . , tn}, is the closest super-type of t1..i . Formally:

Definition 2.1 (Least upper bound). The least upper bound (LUB) of two types t1
and t2 is written t1 t t2 and is the unique type that:

• is a supertype of t1 and t2: `R t1 ≤ t1 t t2 and `R t2 ≤ t1 t t2

• is a subtype of all other such types:

for all t3 : `R t1 ≤ t3 and `R t2 ≤ t3 implies `R t1 t t2 ≤ t3

The definition extends to the least upper bounds of sets of types:
⊔

{t1, t2, . . . , tn}= t1 t t2 t . . .t tn

The empty set of types has no least upper bound:
⊔

; is undefined. The least upper
bound of a singleton set is the singleton itself:

⊔

{t}= t.

That least upper bounds exist for all non-empty sets of types arises, via stan-
dard order theory, from the properties of subtyping discussed in Section 2.6.1.

(RTyp Addalg) is are similarly modified, so that the bound on the type is
uniquely determined from the types of the sub-terms. (RTyp Subtractalg) assigns
the type of the old set to the result set, as the removal of an element cannot
weaken the type.

The remaining rules have simply been extended with subtyping at the use-
sites of sub-terms, with the exception of sub-terms that are the target of field-,
method- or relationship-lookup: recall that the lookup functions respect inheri-
tance by definition.

The subsumption-based and syntax-directed type systems are equally express-
sive, but not strictly equivalent. All derivable typings in RelJalg are derivable in
RelJsub, but the reverse does not hold. However, of all the types that can be
assigned to a term in RelJsub, the ‘best’ of those types — that is, the least type
according to the subtype relation — will be derivable for the term in RelJalg. No
operation permitted by RelJsub is excluded by RelJalg.

50 RelJ: Relationships for Java

(RWD Field)

C(n)super = n′ or R(n)super = n′ f 6∈ dom(F+n′) Fn(f) ∈ T
n `R f

(RWD Method)

1 : C(n)super = n′ or R(n)super = n′

2 : Mn(m) = (x ,L , t1, t2,{ s return e; })
3 : t1, t2 ∈ T
4 : this, x 6∈ dom(L)
5 : {x 7→ t1,this 7→ n} ∪L `R { s return e; } : t2

6 : m ∈ dom(M+
n′) implies ⇒ `RM+

n′ (m)arg ≤ t1 and `R t2 ≤M+
n′ (m)ret

n `R m

Figure 2.8: Definition of well-declared fields and method

Theorem 2.1. The type systems of RelJsub and RelJalg are equivalent up to subtyp-
ing. More precisely, for all Γ, e and t:

Γ `sub
R e : t iff there exists t ′ such that `R t ′ ≤ t and Γ `alg

R e : t ′

The systems are equivalent for statements: Γ `sub
R s iff Γ `alg

R s

Proof. The proof proceeds by demonstrating that the properties above are closed
under the rules of the appropriate type system. For example, we need to show,
for each rule in RelJalg, that the rule’s consequence can be derived from its an-
tecedents using the rules of RelJsub. This follows by induction and the application
of the subsumption rule at the points indicated by subtyping in the RelJalg rules.

The process is similar in the other direction: we need only show that a deriva-
tion exists in RelJalg that takes the antecedents of each RelJsub rule to its conse-
quence, but potentially at a subtype. This holds vacuously for the subsumption
rule, (RTyp Sub), and follows by induction and the properties of least upper
bounds for the syntax-directed rules.

For the remainder of this work, we use the subsumption-based type system as
the basis for RelJ.

Well-declared fields and methods There are a number of constraints imposed
upon field and method declarations in classes and relationships, many of which
were discussed earlier. These are now formalized in the rules of Figure 2.8.

When a field f or method m is well-declared in a class or relationship n, we
write:

n `R f n `R m

A field is well-declared according to (RWD Field), in which it is checked that a
field in class (or relationship) n has not been declared in n’s direct or indirect su-

Type system 51

perclasses (or super-relationships), and that the field’s declared type is contained
with the set of the program’s recognized types.

A method is well-declared according to (RWD Method), the lines of which
have been numbered for ease of explanation. The rule checks:

1. the super-type of the class/relationship;

2. the method’s declaration;

3. that the method’s input and return types are valid;

4. that the parameter name and this do not clash with any of the method’s
local variable names;

5. that the method body is well-typed with the method’s return type when the
parameter, this and local variables are assigned the types specified in the
method definition;

6. that the input type of this method is a supertype of any previous declaration
of m in a supertype of n, and that the return type of m is a subtype of any
previous method declaration: that is, that this definition of m may be used
anywhere a supertype’s version of m can be used.

In fact, we only need to check that the method’s argument type is in the set of
program types, T , explicitly. The return type is included in the subtyping relation
and, as we shall see later, this relation only includes valid types.

Well-formed types Figure 2.9 defines a relation specifying the well-formedness
of RelJ types. We write `R t when t is a well-formed type. Primitive types, in
this case only boolean, are always well-formed as expressed in (RVT Bool).
Similarly, the implicitly-defined Object and Relation types are always well-
formed, according to (RVT Object) and (RVT Relation) respectively.

(RVT Class) specifies that a class type is well-formed if its superclass is de-
clared, and if all of its methods and fields are well-declared. (RVT Relationship)
imposes many of the same restrictions as (RVT Class), but also checks that the re-
lationship’s participating types are subtypes of its super-relationship’s respective
participating types.

Well-formed programs Finally, the program is well-formed, written `R �, if it
conforms to (RProgram) of Figure 2.9. Specifically, all declared classes and rela-
tionships must be well-formed and the subtyping relation must be antisymmetric.

By ensuring the asymmetry of the subtyping relation we preclude declaration
of classes as subclasses of themselves. Notice also that, in a well-formed program,
all valid types t ∈ T are well-formed.

We only consider well-formed programs.

52 RelJ: Relationships for Java

(RVT Bool)

`R boolean

(RVT Object)

`R Object

(RVT Relation)

`R Relation

(RVT Set)

`R n
`R set<n>

(RVT Class)

c 6= Object
c,C(c)super ∈ dom(C)
∀ f ∈ dom(Fc) : c `R f
∀m ∈ dom(Mc) : c `R m

`R c

(RVT Relationship)

r 6= Relation r ′ =R(r)super
r, r ′ ∈ dom(R)
∀ f ∈ dom(Fr) : r `R f
∀m ∈ dom(Mr) : r `R m
`R R(r)from ≤R(r ′)from
`R R(r)to ≤R(r ′)to

`R r

(RProgram)

P = (C,R, s)
∀n ∈ dom(C)∪ dom(R) : `R n
∀n1, n2 : `R n1 ≤ n2 and `R n2 ≤ n1⇒ n1 = n2

; `R s

`R �

Figure 2.9: Well-formed types and programs

2.5 Semantics

The semantics defines the dynamic behaviour of a program. With this formal
model of execution, we may go on to show that the type system imposes enough
restrictions to enforce certain properties: that is, that well-typed programs are
also well-behaved.

Evaluation contexts We use evaluation contexts to specify the evaluation or-
der of expressions and statements [77]. Evaluation contexts for RelJ are given
in Figure 2.10. There are two kinds of context: expression contexts, denoted Ee,
control evaluation order of sub-expressions inside expressions; statement con-
texts, denoted Es, control evaluation of sub-expressions inside statements. E
ranges over both kinds of context.

Each context contains exactly one hole, written •, which represents the posi-
tion of the sub-expression to be executed first. In the grammar, the unique hole
is normally found in a sub-context: for example, the grammar contains Ee.m(e)
which specifies that the receiver of a method is evaluated first. Only when the
receiver has been reduced to a value does evaluation of the parameter begin,
hence v.m(Ee). The evaluation order is largely as expected: expressions and
statements are evaluated left-to-right. Execution never occurs under for or if,

Semantics 53

Ee ∈ ExpContext ::= • hole

| Ee. f field lookup

| Ee == e | v == Ee equality test

| Ee + e | v + Ee set addition

| Ee - e | v - Ee set removal

| Ee.r | Ee:r relationship access

| Ee.from | Ee.to relationship from/to

| { Es return e; } method body

| { return Ee; } method return

| Ee. f = e | x = Ee | v. f = Ee assignment

| Ee.m(e′) | v.m(Ee) method call

| r.add(Ee,e′) | r.add(v,Ee) relationship addition

| r.rem(Ee,e′) | r.rem(v,Ee) relationship removal

Es ∈ StatContext ::= Ee; s expression

| for (n x : Ee) {s1}; s2 set iteration

| if (Ee) {s1} else {s2}; s3 conditional

Figure 2.10: Grammar for RelJ evaluation contexts

or in the tail of a sequence of statements.
A context is made into an expression or statement by substituting the hole

with some expression. We write Ee[e] when expression e is substituted for the
hole in Ee. Thus, expression contexts may be regarded as endofunctions on ex-
pressions and statement contexts as functions from expressions to statements.

Ee ∈ ExpContext : Expression→ Expression

Es ∈ StatContext : Expression→ Statement

Variable substitution Substitution of variables in program syntax is written
e[x ′/x] for the replacement of all variables x in e with x ′, and similarly with
statements, s[x ′/x]. We do not need to consider binding: substitution is a
straight-forward replacement.

Errors In common with many class-based object-oriented languages, RelJ yields
an error when asked to dereference null. In order to avoid complicating the
presentation with incidental details, error catching is not permitted: when an
error is thrown, it is immediately propagated to the top level and execution is

54 RelJ: Relationships for Java

halted. To accomplish this, the set of errors, ranged over by w, is defined (adding
Error to the evaluation contexts’ domains):

w ∈ Error ::= NullPtrError | Ee[w] | Es[w]

Thus, any expression or statement is an error when it contains an error.

Heaps and objects Classes and relationships are instantiated during execution,
either with the new operator in the case of classes, or when objects are placed in
a relationship.

Objects are finite maps from field names to field values, annotated with the
instance’s dynamic type — the name of the class or relationship that was instanti-
ated to create the object. We write an instance of class c, with fields f1, f2, . . . , fi
each having value v1, v2, . . . , vi as follows:

o ::= 〈〈c|| f1 : v1, f2 : v2, . . . , fi : vi〉〉

The heap stores a program’s objects, each at a unique address. Addresses, ranged
over by ι, are infinite — we do not model limited memory or garbage collection.

Heaps are ranged over by σ, which is a finite map from addresses to objects:

σ ∈ Heap ::= {ι1 7→ o1, ι2 7→ o2, . . . , ιi 7→ oi≥0}

Relationship instances are similar to class instances, but are also annotated with
references to the objects they relate. An r-instance relating ι1 and ι2 is therefore
written:

〈〈r, ι1, ι2|| f1 : v1, f2 : v2, . . . , fi : vi〉〉

For both stores and objects, we use the usual map notation for access and update.
In the case of objects, these apply only to their field-value map:

o(f2) = v2 o[f4 7→ v′] σ(ι) = o σ[ι 7→ o′]

As before, we use subscript notation to access an object’s dynamic type:

o = 〈〈c|| . . .〉〉 if and only if odyntyp = c

Relationship store The relationship store holds the pairs of addresses related
through each relationship and, for each such pair, the address of the relationship
instance that exists between the two objects. It therefore acts as abstraction of
the reference structures discussed in Section 1.2 — rather than requiring the
participating objects to hold references to the relationship instance, its presence
is simply recorded in ρ. It maps a pair of instances, ι1 and ι2, and a relationship
name, r, to the address of the r-instance that relates ι1 and ι2:

ρ(r, ι1, ι2) = ι
′

Semantics 55

ι ∈ Address
o ∈ Object ::= 〈〈c|| f1 : v1, . . . , fi : vi≥0〉〉 | 〈〈r, ι1, ι2|| f1 : v1, . . . , fi : vi≥0〉〉
σ ∈ Heap ::= {ι1 7→ o1, . . . , ιi 7→ oi≥0}

ρ ∈ RelStore ::= {(r1, ι1, ι′1) 7→ ι
′′
1 , . . . , (ri , ιi , ι

′
i) 7→ ι

′′
i≥0}

γ ∈ LocalStore ::= {x1 7→ v1, . . . , x i 7→ vi≥0}
w ∈ Error ::= NullPtrError | Ee[w] | Es[w]

Config ::= 〈σ,ρ,γ, R〉 | 〈σ,ρ,γ, w〉

Figure 2.11: The sets and meta-variables supporting RelJ’s semantics

As a map, it enforces our invariant that each relationship occurs only once be-
tween each pair of addresses. The store may be updated or extended in the usual
way. Unlike objects and heaps, it may also be shrunk:

ρ′ = ρ \ {(r, ι1, ι2) 7→ ι′}

Local variables store A local variable store maps variable names to their val-
ues, and is written γ:

γ ∈ LocalStore ::= {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn}

The local variable store models a program stack, except it has no framing struc-
ture. Instead, variable names are freshened upon entry to new scopes; this is
discussed further when the semantics of expressions is defined.

Configurations The semantics is given by transitions between configurations,
each of which represents the state of a program at some point in its execution.
Each configuration consists the three stores discussed above, as well as the term
which is to be executed.

〈σ,ρ,γ, e〉 〈σ,ρ,γ, s〉

Instead of a term, a configuration may contain an error, w, in which case this is
known as an error configuration.

Well-formedness The rules of Figure 2.12 describe what it means for these
structures — objects, heaps, relationship stores and local variable stores — to
be well-formed by applying the typing relation from the previous section to their
component values.

(RTyp CObject) checks a class instance for well-formedness by ensuring all
its fields have values which conform to the fields’ declared types. (RTyp RObject)

56 RelJ: Relationships for Java

(RTyp CObject)

dom(F+c) = { f1, . . . , fi}
∀ j ∈ 1..i : Γ `R v j :F+c (f j)
Γ `R 〈〈c|| f1 : v1, . . . , fi : vi〉〉

(RTyp Heap)

∀ι ∈ dom(σ)
Γ `R σ(ι) Γ(ι) = σ(ι)dyntyp

Γ `R σ

(RTyp RObject)

dom(F+r) = { f1, . . . , fi}
∀ j ∈ 1..i : Γ `R v j :F+n (f j)
Γ `R ι1 :R(r)from
Γ `R ι2 :R(r)to
Γ `R 〈〈r, ι1, ι2|| f1 : v1, . . . , fi : vi〉〉

(RTyp RelStore)

∀(r, ι1, ι2) ∈ dom(ρ)
Γ `R ι1 :R(r)from
Γ `R ι2 :R(r)to
Γ `R ρ(r, ι1, ι2) : r
Γ `R ρ

(RTyp Locals)

∀x ∈ dom(γ) : Γ `R γ(x) : Γ(x)
Γ `R γ

(RTyp ExpConfig)

dom(Γ) = dom(σ)∪ dom(γ)
Γ `R σ Γ `R ρ Γ `R γ Γ `R e : t

Γ `R 〈σ,ρ,γ, e〉 : t

(RTyp StatConfig)

dom(Γ) = dom(σ)∪ dom(γ)
Γ `R σ Γ `R ρ Γ `R γ Γ `R s

Γ `R 〈σ,ρ,γ, s〉

Judgement Rule
Γ `R o (RTyp CObject) The values of fields in class instance o agree

with their declarations in o’s class.
Γ `R o (RTyp RObject) As above for relationship instance o, and the

types of the addresses related by o agree
with o’s relationship declaration.

Γ `R σ (RTyp Heap) The objects in the heap σ are well-formed,
and their types agree with those assigned to
their addresses in environment Γ.

Γ `R ρ (RTyp RelStore) The entries in the relationship store, ρ,
agree with the program’s relationship dec-
larations and with Γ.

Γ `R γ (RTyp Locals) The values of variables in the local variable
store, γ, agree with their types in Γ.

Γ `R 〈σ,ρ,γ, e〉 : t (RTyp ExpConfig) The components of the configuration are
well-formed, and Γ only types addresses and
variables that exist in σ and γ.

Γ `R 〈σ,ρ,γ, s〉 (RTyp StatConfig) As above, for statement configurations.

Figure 2.12: Rules specifying well-formedness conditions for structures used in
the semantics, with corresponding informal description.

Semantics 57

performs a similar function for relationship instances with additional checks to
ensure that the source and destination addresses have types appropriate to the re-
lationship’s declaration. (RTyp Heap) maps these conditions across all the objects
in the heap, as well as ensuring that every heap address has an entry in Γ ap-
propriate to its object’s dynamic type. (RTyp RelStore) ensures the addresses in
each entry of the relationship store have types appropriate to each relationship’s
declaration. (RTyp Locals) ensures every variable’s value in the local variable
store, γ, can be typed according to the variable’s entry in the environment, Γ.

Finally, configurations are well-formed with respect to some environment, Γ,
if Γ has an entry for every address of the heap, σ, and for every variable in the
local variable store, γ, and no more. This condition ensures, for example, that
no address is typable (see (RTyp Addr) of Figure 2.6) which does not exist in the
heap: that is, there are no dangling pointers. The remaining conditions ensure
that the heap, the local variable store, the relationship store, ρ, and the configu-
ration’s term are well-typed. If the term is an expression, its type is assigned to
the entire configuration.

Execution relation We now define the execution relation, R, which relates
starting configurations to configurations that result from one step in program
execution.

 R⊂ Config× Config

The relation is constructed from a collection of axioms, which specify the be-
haviour of the smallest executable expressions and statements, and is then closed
under (RRed Context), which is shown at the top of Figure 2.13 and which al-
lows sub-terms to be reduced inside larger terms.

It then remains to define the base cases for construction of the R relation.
The rules governing expression execution are given in Figure 2.13 underneath
(RRed Context). The empty value literal is translated into ; by (RRed Empty).
Variables’ values are taken directly from the local variable store, γ, by (RRed

Var). Variable assignment is performed by updating γ, in (RRed VarAss). (RRed

Eq) and (RRed Neq) compare two values for equality; the type system ensures
this is restricted to heap addresses for which, as a countable set, we have a good
notion of equality.

New objects are allocated by (RRed New), which uses the new(c) auxilliary
function, given in Figure 2.14, which creates an object with all the appropriate
fields for an object of type c, including those inherited from superclasses. Each
field is assigned an initial value by the initial function, which returns a suitable
value based on each field’s type. Once this object has been created, it is given a
fresh address in the heap, σ, which is updated accordingly.

The addition and removal of elements from a set is handled by (RRed Add)
and (RRed Sub). Again, we rely on the type system to ensure that the only values
encountered here are sets of addresses.

Field access, in (RRed Fld), looks up the receiver address in the heap, then

58 RelJ: Relationships for Java

(RRed Context)

〈σ,ρ,γ, R〉 R 〈σ′,ρ′,γ′, R′〉
〈σ,ρ,γ,E[R]〉 R 〈σ′,ρ′,γ′,E[R′]〉

(RRed Empty) 〈σ,ρ,γ,empty〉 R 〈σ,ρ,γ,;〉

(RRed Var) 〈σ,ρ,γ, x〉 R 〈σ,ρ,γ,γ(x)〉

(RRed VarAss) 〈σ,ρ,γ, x = v〉 R 〈σ,ρ,γ[x 7→ v], v〉

(RRed Eq) 〈σ,ρ,γ, v == v〉 R 〈σ,ρ,γ,true〉

(RRed Neq) 〈σ,ρ,γ, v == v′〉 R 〈σ,ρ,γ,false〉 where v 6= v′

(RRed New) 〈σ,ρ,γ,new c()〉 R 〈σ[ι 7→ new(c)],ρ,γ, ι〉 where ι 6∈ dom(σ)

(RRed Add) 〈σ,ρ,γ, v + ι〉 R 〈σ,ρ,γ, v ∪ {ι}〉

(RRed Sub) 〈σ,ρ,γ, v - ι〉 R 〈σ,ρ,γ, v \ {ι}〉

(RRed Fld) 〈σ,ρ,γ, ι. f 〉 R 〈σ,ρ,γ,σ(ι)(f)〉

(RRed FldAss) 〈σ,ρ,γ, ι. f = v〉 R 〈σ[ι 7→ σ(ι)[f 7→ v]],ρ,γ, v〉

(RRed Call) 〈σ,ρ,γ1, ι.m(v)〉 R 〈σ,ρ,γ2,{ s2 return e2; }〉

where σ(ι) = 〈〈n|| . . .〉〉 or σ(ι) = 〈〈n, _, _|| . . .〉〉

M+
n (m) = (x ,L , t1, t2,{ s1 return e1; })

dom(L) = {x1, . . . , x i}

x ′, x ′this, x ′1, . . . , x ′i 6∈ dom(γ1)

γ2 = γ1[x ′ 7→ v][x ′this 7→ ι][x
′
1..i 7→ initial(L (x1..i))]

s2 = s1[x ′/x][x ′1..i/x1..i][x ′this/this]

e2 = e1[x ′/x][x ′1..i/x1..i][x ′this/this]

(RRed Return) 〈σ,ρ,γ,{ return v; }〉 R 〈σ,ρ,γ, v〉

(RRed RelObj) 〈σ,ρ,γ, ι.r〉 R 〈σ,ρ,γ, {ι′ | ∃ι′′ : ρ(r, ι, ι′) = ι′′}〉

(RRed RelInst) 〈σ,ρ,γ, ι:r〉 R 〈σ,ρ,γ, {ι′′ | ∃ι′ : ρ(r, ι, ι′) = ι′′}〉

(RRed From) 〈σ,ρ,γ, ι.from〉 R 〈σ,ρ,γ, ι′〉 where σ(ι) = 〈〈_, ι′, _||_〉〉

(RRed To) 〈σ,ρ,γ, ι.to〉 R 〈σ,ρ,γ, ι′〉 where σ(ι) = 〈〈_, _, ι′||_〉〉

(RRed RelAdd) 〈σ1,ρ1,γ, r.add(ι1,ι2)〉 R 〈σ2,ρ2,γ, ι3〉

where (σ2,ρ2) = addRel(r, ι1, ι2,σ1,ρ1)

ι3 = ρ2(r, ι1, ι2)

(RRed RelRem1) 〈σ,ρ1,γ, r.rem(ι1,ι2)〉 R 〈σ,ρ2,γ,ρ1(r, ι1, ι2)〉

where (r, ι1, ι2) ∈ dom(ρ1)

ρ2 = ρ1 \ {(r, ι1, ι2) 7→ ρ1(r, ι1, ι2)}

(RRed RelRem2) 〈σ,ρ,γ, r.rem(ι1,ι2)〉 R 〈σ,ρ,γ,null〉

where (r, ι1, ι2) 6∈ dom(ρ)

Figure 2.13: Transition relation for RelJ expressions

Semantics 59

new(c) = 〈〈c|| f1 : initial(F+c (f1)), . . . , fi : initial(F+c (fi))
fi∈dom(F+c)〉〉

new(r, ι1, ι2) = 〈〈r, ι1, ι2|| f1 : initial(F+r (f1)), . . . , fi : initial(F+r (fi))
fi∈dom(F+r)〉〉

initial(t) =







null if t = n′

false if t = boolean

; if t = set<n>

addRel(r, ι1, ι2,σ,ρ) =

¨

(σ,ρ) if (r, ι1, ι2) ∈ dom(ρ)
(σ[ι 7→ new(r, ι1, ι2)],ρ[(r, ι1, ι2) 7→ ι]) otherwise

where ι 6∈ dom(σ)

Figure 2.14: Functions auxiliary to the semantics

looks up the accessed field in the resulting object. Similarly, (RRed FldAss)
implements field update by looking up the object in the heap, updating it, then
updating the heap so that the object’s address maps to the newly updated object.

(RRed Call) implements method call. The receiver object is first found in the
heap in order to establish its dynamic type, n. The method’s definition is then
determined fromM+

n . Fresh variables — variables not present in the locals store
— are then found to act as this, as the method’s formal parameter, and as the
method’s local variables. We substitute these fresh variable names for those used
in the method’s body. By freshening variables in this way, there is no need to
keep an explicit stack [30]. Finally, the local variable store is updated so that the
variable acting as the method’s parameter obtains the value given as the method
call’s argument; the variable taking the place of this receives the address of the
call’s receiver; and local variables receive appropriate initial values dependent
on their declared type. The result of this execution step is the method body
fromM+

n , with variables freshened: recall that method bodies are expressions,
and that the evaluation contexts of Figure 2.10 permit execution inside method
bodies.

Once execution of a method body has completed, only the enclosing block
and return statement will remain: it will have the form { return v; }. This
value is unwrapped by (RRed Return), eliminating the block created by (RRed

Call). For example, a method invocation used in a variable assignment may
execute in the following way:

x = ι.m(v) R x = { s return e; } (RRed Call)

 R . . . R x = { return v′; } Execution inside method body

 R x = v′ (RRed Return)

60 RelJ: Relationships for Java

(RRed Stat) 〈σ,ρ,γ, v; s〉 R 〈σ,ρ,γ, s〉

(RRed CondT) 〈σ,ρ,γ,if (true) {s1} else {s2}; s3〉 R 〈σ,ρ,γ, s1 s3〉

(RRed CondF) 〈σ,ρ,γ,if (false) {s1} else {s2}; s3〉 R 〈σ,ρ,γ, s2 s3〉

(RRed For1) 〈σ,ρ,γ,for (n x : ;) {s1}; s2〉 R 〈σ,ρ,γ, s2〉

(RRed For2) 〈σ,ρ,γ1,for (n x : v) {s1}; s2〉 R

〈σ,ρ,γ2, s′1 for (n x : (v \ {ι})) {s1}; s2〉

where ι ∈ v

x ′ 6∈ dom(γ1)

γ2 = γ1[x ′ 7→ ι]

s′1 = s1[x ′/x]

Figure 2.15: Transition relation for RelJ statements

The remaining rules of Figure 2.13 specify the manipulation of relationships.
(RRed RelObj) and (RRed RelInst) express relationship access. Both build a set
of addresses based on the contents of ρ for a given receiver, ι and relationship
r: (RRed RelObj) implements the ‘.’ operator, and returns the addresses related
to ι in ρ; (RRed RelInst) implements the ‘:’ operator, and returns the relating
instances in ρ.

The (RRed From) and (RRed To) rules simply extract the source and desti-
nation references from the relationship instance retrieved from the heap. Notice
that there are no corresponding update rules.

Relationship addition is handled by (RRed RelAdd). The resulting configura-
tion has a new heap and relationship store, which are obtained from the auxilliary
function addRel. addRel’s definition is given in Figure 2.14. It takes a heap, σ,
relationship store, ρ, a pair of addresses, ι1 and ι2, and the relationship through
which the addresses should be related, r. If ι1 and ι2 are already related through
r — that is, ρ(r, ι1, ι2) is defined — then addRel returns the heap and relation-
ship store unchanged. Otherwise, a new instance of r is added to σ, and ρ is
updated such that ρ(r, ι1, ι2) maps to the new r-instance’s address in σ. Notice
that there is a version of new that accepts two addresses alongside a relationship
name, which creates r-objects just as new(c) creates c-objects.

Relationship removal has two rules: (RRed RelRem1) governs the result of
relationship removal when the addresses given are related in ρ— the appropriate
entry in ρ is simply deleted, the heap is left unchanged, and the address of the
inactivated r-instance is returned. When the addresses are not related through
the given relationship then, under (RRed RelRem2), no action is taken and null
is returned.

Figure 2.15 gives the semantics for statements. The rules are largely stan-
dard: (RRed Stat) throws away values encountered in statement context and
(RRed CondT) and (RRed CondF) select a branch of an if-statement based on

Soundness 61

(RRed AddN) 〈σ,ρ,γ, v + null〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed SubN) 〈σ,ρ,γ, v - null〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed FldN) 〈σ,ρ,γ,null. f 〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed FldAssN) 〈σ,ρ,γ,null. f = v〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed CallN) 〈σ,ρ,γ,null.m(v)〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed RelInstN) 〈σ,ρ,γ,null:r〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed RelObjN) 〈σ,ρ,γ,null.r〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed FromN) 〈σ,ρ,γ,null.from〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed ToN) 〈σ,ρ,γ,null.to〉 R 〈σ,ρ,γ,NullPtrError〉

(RRed RelAddN)

〈σ,ρ,γ, r.add(ι,null)〉

〈σ,ρ,γ, r.add(null,ι)〉

〈σ,ρ,γ, r.add(null,null)〉











 R 〈σ,ρ,γ,NullPtrError〉

(RRed RelRemN)

〈σ,ρ,γ, r.rem(ι,null)〉

〈σ,ρ,γ, r.rem(null,ι)〉

〈σ,ρ,γ, r.rem(null,null)〉











 R 〈σ,ρ,γ,NullPtrError〉

Figure 2.16: Error transitions for RelJ

the value of the test condition. Execution of the for iterator is specified by (RRed

For1) and (RRed For2). In the former, iterations over empty sets are discarded.
In the latter case, the iterator variable is freshened in the loop’s body, and the
locals store is updated so that this freshened variable is bound to an element of
the target set. The resulting statement starts with the (freshened) body state-
ment and is followed by the original for statement, with its target set missing
the element selected earlier.

Finally, the axioms in Figure 2.16 specify the conditions under which a null-
pointer error is generated. Such an error will result from any attempt: to access
or update a field on null; to invoke a method on null; to add null to or subtract
null from a set; to relate or un-relate null through a relationship; to access
the related or relating instances of null; or to access the source or destination
pointers of null.

2.6 Soundness

In this section we outline proofs of two key safety properties for RelJ:

Type preservation We wish to ensure that types of terms are preserved as they
are executed. By checking that any execution step from a well-typed term

62 RelJ: Relationships for Java

results in a new well-typed term, we can be assured that the requirements
imposed by the typing rules are enforced throughout execution.

Progress If a term is a value, then we consider execution to have completed.
Otherwise, the progress theorem specifies that a well-typed term may make
an execution step to a new state — at least one of the rules defining the
semantics must be applicable.

Both of these properties hold for RelJ, so RelJ is sound. A term will always execute,
by a series of steps, to a well-defined error state or to a value whose type matches
that assigned to the original term.

The remainder of this section summarizes the key steps of the soundness
proof.

2.6.1 Properties of subtyping

The subtyping relation essentially gives permission for values of one type to be
viewed at another type, so it is of primary importance that types cannot ‘break
out’ of their type class such that they become the target of operations which they
cannot perform: for example, the ability to observe a boolean at reference type
would be unsound, as a boolean value cannot satisfy method invocations. The
following lemma specifies, amongst other properties, that such a situation does
not arise.

Lemma 2.2. The subtyping relation, `R t ≤ t ′, is the disjoint union of three
join-semilattices: one for reference types, one for set types, and one (singleton)
for booleans. Each is closed under subtyping, with greatest elements Object,
set<Object> and boolean respectively.

The relationship types form a sub-tree in the reference-type portion of the re-
lation, with Relation as its greatest element. Relationship types are downwards-
closed under subtyping.

Proof. The properties (including reflexivity, transitivity and anti-symmetry) are
shown by induction: they are closed under the rules generating the subtyping
relation.

The disjointness of the three portions of the subtyping relation ensures that
subtype polymorphism does not allow a value to be viewed at an inappropriate
type. That the portions are join-semilattices ensures that non-empty least upper
bounds exist in all three portions of the subtyping relation, as required by the
syntax-directed typing rules of Figure 2.7.

It is also important that fields and methods cannot become unavailable down
the inheritance hierarchy within the type class of reference types. Again, this
ensures that an object is never asked for a method or field it cannot provide:

Soundness 63

Lemma 2.3. Field and method declarations respect subtyping:

`R n≤ n′ implies











F+n′ ⊆F
+
n

m ∈ dom(M+
n′) implies m ∈ dom(M+

n)
and `RM+

n′ (m)arg ≤M
+
n (m)arg

and `RM+
n (m)ret ≤M

+
n′ (m)ret

Proof. Again, proof is by induction on the rules defining the subtype relation.

2.6.2 Preserving well-formedness

During execution, new addresses will be added to the heap and, as required by
(RTyp ExpConfig) and (RTyp StatConfig), to the typing environment if it is to
remain well-formed with respect to that heap. We must ensure, then, that typing
of expressions is preserved by such extension.

Lemma 2.4 (Environment weakening). Typing of expressions and statements is
preserved by the addition of new variable and address bindings to the typing envi-
ronment:

Γ `R e : t
Γ `R s

«

and x 6∈ dom(Γ) implies

¨

Γ[x 7→ t ′] `R e : t
Γ[x 7→ t ′] `R s

Similarly for the addition of address bindings.

Proof. By induction on the rules defining the typing relation.

Recalling the rules of Figure 2.12, the well-formedness of heaps, relation-
ship stores and local variable stores is predicated upon their constituent values
being well-typed. As a result, the weakening property is available for those well-
formedness relations too:

Lemma 2.5. Well-formedness of objects, heaps, relationship stores, and local vari-
able stores is preserved by environment weakening:

Γ `R o
Γ `R σ

Γ `R ρ

Γ `R γ







and x 6∈ dom(Γ) implies







Γ[x 7→ t ′] `R o
Γ[x 7→ t ′] `R σ

Γ[x 7→ t ′] `R ρ

Γ[x 7→ t ′] `R γ

Similarly for the addition of address bindings to the environment.

Proof. By inspection of the rules in Figure 2.12 and the application of Lemma 2.4
(Environment Weakening).

64 RelJ: Relationships for Java

During each execution step, objects may be updated or new objects may be
allocated. Updates to the heap may be expressed by disjoint union:

σ[ι 7→ o] =

(

σ] {ι 7→ o} ι 6∈ dom(σ)
σ′] {ι 7→ o} otherwise, where σ = σ′] {ι 7→ o′}

It is therefore useful to note that the indirection provided by typing addresses
from an environment, Γ, allows us to isolate parts of the various stores that have
changed in order to re-establish well-formedness conditions.

Lemma 2.6. Well-formedness conditions are compositional. For disjoint heaps,
where dom(σ)∩ dom(σ′) = ;:

Γ `R σ and Γ `R σ
′ iff Γ `R σ]σ′

Γ `R ρ and Γ `R ρ
′ iff Γ `R ρ]ρ′

Γ `R γ and Γ `R γ
′ iff Γ `R γ] γ′

Proof. By inspection of the rules in Figure 2.12.

To establish that the operations performed by the semantics upon the stores
preserve their well formedness, it remains then to check that the objects with
which the heap will be extended are well-formed:

Lemma 2.7. The singleton heap portions containing new or updated objects are
well-formed. For ι 6∈ dom(Γ):

Γ[ι 7→ c] `R {ι 7→ new(c)}
Γ `R ι1 :R(r)from and Γ `R ι2 :R(r)to implies Γ[ι 7→ r] `R {ι 7→ new(r, ι1, ι2)}

And for ι ∈ dom(Γ):

Γ `R {ι 7→ o} and odyntyp = n and Γ `R v :Fn(f) implies Γ `R {ι 7→ o[f 7→ v]}

Proof. By application of (RTyp CObject), (RTyp RObject) and (RTyp Heap).

Therefore, we can show that object allocation and object update result in
well-formed stores. Similarly, the addition of new entries in the relationship
store and the allocation of new local variables preserve well-formedness.

2.6.3 Preserving types

It then remains to show that the manipulations performed on terms by the se-
mantics preserve typing. The fundamental operation in the semantics is the sub-
titution of sub-terms in contexts with other sub-terms:

Soundness 65

Lemma 2.8 (Soundness of context substitution). Substitution of a well-typed term
in a context with another well-typed term preserves (or specializes) typing. Formally,
if Γ `R e1 : t1 and Γ `R e2 : t2 and `R t2 ≤ t1 then:

Γ `R Ee[e1] : t3 implies Γ `R Ee[e2] : t3

Γ `R Es[e1] implies Γ `R Es[e2]

Proof. By induction on the rules specifying Γ `R Ee[e1] : t1 and Γ `R Es[e2].

The lemma above demonstrates the soundness of (RRed Context), thus it
remains to show that the small steps generated by the other reduction rules pre-
serve types.

Theorem 2.9 (Subject Reduction).

Γ `R 〈σ,ρ,γ, e〉 : t and 〈σ,ρ,γ, e〉 R 〈σ′,ρ′,γ′, e′〉 implies

there exists Γ′ ⊇ Γ such that Γ′ `R 〈σ′,ρ′,γ′, e′〉 : t

Γ `R 〈σ,ρ,γ, s〉 and 〈σ,ρ,γ, s〉 R 〈σ′,ρ′,γ′, s′〉
implies there exists Γ′ ⊇ Γ such that Γ′ `R 〈σ′,ρ′,γ′, s′〉

Proof. By induction on the rules generating Γ `R e : t from (RTyp ExpConfig). In
general, each case proceeds by examining two subcases:

i. the execution step arises from (RRed Context), in which case the result
follows by induction and from Lemma 2.8; or

ii. the execution step arises from one of the other, axiomatic reduction rules,
in which case well-formedness of the stores is established by Lemmas 2.6
and 2.7, and the preservation of type must be checked by inspection of the
relevant rule.

In both cases, the environment weakening of Lemma 2.4 must be used to acco-
modate new addresses and variables from the inductive step in (i), or the com-
position of heaps in (ii).

2.6.4 Progress

In order to drive the induction in the progress proof, it is important that sub-terms
of well-typed terms are themselves well-typed:

Lemma 2.10 (Context sub-expressions are typable).

Γ `R Ee[e] : t
Γ `R Es[e]

«

implies ∃t ′ : Γ `R e : t ′

66 RelJ: Relationships for Java

(RAbstraction)

∀(r, ι1, ι2) ∈ dom(ρ) : σ(ρ(r, ι1, ι2)) = 〈〈r, ι1, ι2|| . . .〉〉
σ `R ρ

Figure 2.17: Relationship abstraction relation specifying consistency between re-
lationship store ρ and heap σ

Proof. By induction on the rules defining the Γ `R e : t and Γ `R s relations.

Finally, we show that a well-typed program may always perform an execution
step:

Theorem 2.11 (Progress). If a configuration is well-typed, it is either terminal (a
value or an empty statement) or it may make an execution step to a new configura-
tion, which may be an error configuration.

Γ `R 〈σ,ρ,γ, e〉 : t and e 6∈ Value implies 〈σ,ρ,γ, e〉 R 〈σ′,ρ′,γ′, e′〉

or 〈σ,ρ,γ, e〉 R 〈σ′,ρ′,γ′, w〉

Γ `R 〈σ,ρ,γ, s〉 and s 6= ε implies 〈σ,ρ,γ, s〉 R 〈σ′,ρ′,γ′, s′〉

or 〈σ,ρ,γ, s〉 R 〈σ,ρ,γ, w〉

Theorems 2.9 and 2.11 demonstrate that a well-formed program never gets
stuck and always executes either to a terminal configuration or to an error con-
figuration — well-typed programs do not go wrong.

2.7 Correctness

The type preservation and progress results guarantee, amongst other properties,
that an expression of some type will evaluate to a value of that type, or will
diverge, or will terminate in a well-defined error state — there will be no attempt
to invoke methods upon a value that cannot provide them (other than null, for
which we have an error state).

Whilst the well-formedness conditions of Figure 2.12 ensure that the objects
involved in entries from relationship store ρ have the correct type, we do not
check that ρ-entries are consistent with the heap, σ, other than that types match
and the objects exist. We have already discussed how the relationship represents
an abstraction of the heap: it remains to show that the abstraction is faithful. To
do so, we add a new property, called relationship abstraction, which is defined in
Figure 2.17 and ensures that ρ will give consistent answers when evaluating the
results for relationship access operators. When a heap σ is abstracted by a rela-
tionship store ρ, written σ `R ρ, (RAbstraction) requires that the relationship

Correctness 67

and related addresses in ρ map to an object in the heap whose dynamic type,
source and destination addresses match those used to access the heap object in
the first place. As a result, the following conditions are enforced:

ρ(r, ι1, ι2).from
∗
R ι1

ρ(r, ι1, ι2).to
∗
R ι2

Referring to the relationship encodings of Section 1.2, this informally means that
references from participating objects to the relationship object — not present in
RelJ as they are replaced by ρ— are consistent with the references in the opposite
direction — the to and from fields of relationship instances.

Owing to the possibility of inactive relationship instances in the heap, there
may be many relationship stores that are consistent with any given heap. Fur-
thermore, we have the following property, just as for well-formedness conditions:

Lemma 2.12. Relationship abstraction is compositional:

σ `R ρ]ρ′ iff σ `R ρ and σ `R ρ
′

Proof. By trivial inspection of the rule (RAbstraction): the relation is defined
pointwise on ρ.

The store may be extended without affecting the validity of entries in the
relationship store:

Lemma 2.13. Relationship abstraction is preserved by store extension and by field
update:

σ `R ρ and ι 6∈ dom(σ) implies σ[ι 7→ o] `R ρ

σ `R ρ and σ(ι)dyntyp,
from, to

= odyntyp,
from, to

implies σ[ι 7→ o] `R ρ

Proof. By inspection of (RAbstraction).

The removal of entries from ρ must therefore preserve relationship abstrac-
tion. By inspection, we observe that addRel only creates entries in ρ and objects
in σ that satisfy the conditions of (RAbstraction). It is then easy to see that this
abstraction is preserved by the operational semantics:

Theorem 2.14 (Abstraction preservation). Heap and relationship store updates
during program execution preserve relationship abstraction. For all transitions from
some term, R:

〈σ,ρ,γ, R〉 R

¨

〈σ′,ρ′,γ′, R′〉
〈σ′,ρ′,γ′, w〉

68 RelJ: Relationships for Java

it is the case that:

Γ `R 〈σ,ρ,γ, e〉 : t and σ `R ρ and implies σ′ `R ρ
′

Proof. By induction on the rules generating the R relation.

As a result, we may be assured that queries on the relationship store when
evaluating e.r and e:r will provide sound and correct results. Put differently,
this guarantees that the consistency of structures representing relationships are
always preserved, unlike when programmers are allowed (or obliged) to alter
those structures manually.

2.8 Conclusion

In this chapter we presented RelJ, which demonstrates how Java can be extended
with the ability to declare relationships alongside classes. By offering a formal
description of RelJ’s type system and semantics, we are able to guarantee the
safety of program execution in the presence of such extensions. In the formal
semantics, we introduced the relationship store, which acts as an abstract rep-
resentation of the complex reference structures otherwise necessary to encode
relationships. In doing so, we are able to guarantee that the language always
maintains the consistency of those structures.

In the following chapter, we outline some variants of RelJ that fill more of the
design space outlined at the beginning of this chapter, including a different model
of relationship inheritance. In Chapter 4, we introduce heap query as a means to
replace the relationship store — in a sense, the abstraction is done ‘on the fly’ —
and in Chapter 5 we show how RelJ’s relationship features can be translated into
query.

Chapter 3

Extending RelJ

In this chapter we present several extensions or modifications to the relationship
model upon which RelJ is based. First, we give an alternative model of inheri-
tance more suited to relationships which, we argue, is more intuitive than the
Java-style inheritance model from the previous chapter. The addition of multi-
plicity constraints is also explored, after which we summarize the modification
of the relationship model to accommodate multi-relationships, bidirectional rela-
tionships and relationships of higher arities.

3.1 An alternative model of relationship inheritance

In the previous chapter, it was observed that RelJ’s behaviour can be unintuitive
when objects are related both through a relationship and its sub-relationships.
This section presents an alternative semantics for relationship inheritance, which
we refer to as shared inheritance.

3.1.1 The problem

Recall the relationship definitions from the previous chapter:

relationship Attends extends Relation (Student, Course) {
int mark;
...

}
relationship ReluctantlyAttends extends Attends

(LazyStudent, HardCourse) {
...

}

Unexpected behaviour was observed in the following situation:

Attends.add(bob, rocketScience);
ReluctantlyAttends.add(bob, rocketScience);
...
set<Course> bobsCourses = bob.Attends;

70 Extending RelJ

According to the semantics of Figure 2.13, bobsCourses has just one entry for
rocketScience despite having two entries for the (bob,rocketScience) pair
in the relationship store — one for Attends and one for ReluctantlyAttends.
Consider the following code, in which bob’s marks are printed:

for (Attends a : bob:Attends) {
System.println("Bob got " + a.mark + " for " + a.to.code);

}

Whilst the semantics we assigned to bob:Attends in the previous chapter pre-
vents a mark for rocketScience from appearing twice, the output only reflects
the mark from the Attends-instance. The ReluctantlyAttends-instance be-
tween bob and rocketScience is distinct from the Attends-instance, such that
updates to the mark through ReluctantlyAttends will not alter the output from
the above code — relationship inheritance is not reflected by relationship state.

3.1.2 Proposed solution

In the RelJ semantics as they stand, the fields inherited by a relationship are
implemented in exactly the same way as those the relationship declares. Instead,
we propose that inherited fields should be implemented by an instance of the
relationship in which they were declared, so that this instance may be shared
among instances of sub-relationships.

For example, in the above situation, there would be only one instance of the
mark field — that in the Attends-instance relating bob and rocketScience.
The programmer may still ask for the mark field of the ReluctantlyAttends
instance, but the request is passed on to the Attends instance which holds the
field. Similarly, any update of the mark field can be passed on, so that the re-
ported mark is consistent regardless of which relationship instance is accessed.

Instance sharing means that we must ensure the presence of an Attends-
instance for every ReluctantlyAttends-instance if a full set of (possibly inher-
ited) fields is to be available: if a ReluctantlyAttends-instance were allowed
to exist alone, then there would be no storage for its expected mark field.

By enforcing this invariant, there are no longer competing entries in the rela-
tionship store, and sub-relationships are always represented in accesses to super-
relationships. For example, recall the triangular inheritance hierarchy from the
previous chapter:

relationship R extends Relation (Object, Object) { ... }
relationship S extends R (Object, Object) { ... }
relationship T extends R (Object, Object) { ... }

When we make the following addition:

S.add(a, b);

it must be the case that an instance of R exists between a and b in order to
implement the fields declared in R and inherited by S. If it is also the case that a

An alternative model of relationship inheritance 71

and b are related though T, then we no longer have to decide whether to return
the S-instance, the T-instance or both when evaluating:

set<R> rinsts = a.R;

We may simply return the R-instance for a and b, which must exist and which is
shared by the S- and T-instances relating a and b.

Whilst the idea of small objects cooperating to produce an instance of a sin-
gle type bears some similarity to virtual multiple inheritance of C++ [18], it is
not possible for C++’s sub-instances to be allocated separately: the implemen-
tation relies on a strict memory layout. The inheritance scheme given here also
resembles Drossopoulou et al.’s Fickle [31], which allows objects to move — with
some limitations — between classes with a common supertype just as we allow a
relationship instance to take part in several sub-relationship instances simultane-
ously. Like C++, however, Fickle objects are not divided into smaller, separately-
allocated parts. Albano et al.’s roles [3] also allow the run-time extension of
objects with new state and behaviour. They rely on a delegation mechanism —
more complicated than that described above — to ensure that the appropriate
role methods are used to answer method invocations.

We now define RelJs, which implements this new model of relationship inher-
itance.

3.1.3 Modified semantics

The typing of expressions and statements is unchanged in RelJs: only the way
in which relationships are instantiated and field accesses are carried out is to be
altered. The goal of these new semantics is to preserve the following invariants:

Invariant 1 (Single-instance). There is only one instance of r between any to ad-
dresses ι1 and ι2.

This invariant is already enforced by RelJ as the relationship store, ρ, is a map.

Invariant 2 (Super-relationship). If ι1 and ι2 are related by an instance of r, then
there is an instance of every super-relationship of r also between ι1 and ι2.

Extended object model Class instances remain unchanged in RelJs, but we ex-
tend relationship instances to accommodate the sharing of super-relationship im-
plementations:

o = 〈〈r, ι1, ι2, ι|| f1 : v1, . . . , fi : vi〉〉 osuper = ι

The fourth member, ι, is referred to as o’s super-instance address. That is, ι is
the address of an instance of r ’s super-relationship, r ′, and services all requests
for fields declared in r ′ on behalf of o. This super-instance address may be null
where the instance is of Relation, as it has no super-relationship. As shown

72 Extending RelJ

(RTyp RObject1s)

Γ `R ι1 : Object
Γ `R ι2 : Object
Γ `R 〈〈Relation, ι1, ι2,null||〉〉

(RTyp RObject2s)

dom(Fr) = { f1, . . . , fi}
∀ j ∈ 1..i : Γ `R v j :Fr(f j)
Γ `R ι1 :R(r)from Γ `R ι2 :R(r)to
Γ(ι) =R(r)super
Γ `R 〈〈r, ι1, ι2, ι|| f1 : v1, . . . , fi : vi〉〉

Figure 3.1: Modified well-formedness relation for relationship instances

(RRed RelAdds) 〈σ1,ρ1,γ, r.add(ι1,ι2)〉 R 〈σ2,ρ2,γ, ι3〉

where (σ2,ρ2) = addRels(r, ι1, ι2,σ1,ρ1)

ι3 = ρ2(r, ι1, ι2)

(RRed RelRem1s) 〈σ,ρ1,γ, r.rem(ι1,ι2)〉 R 〈σ,ρ2,γ,ρ1(r, ι1, ι2)〉

where (r, ι1, ι2) ∈ dom(ρ1)

ρ2 = ρ1 \ {(r ′, ι1, ι2) 7→ ι′ | `R r ′ ≤ r}

Figure 3.2: Updated semantics for RelJs’s relationship manipulation operators

above, our subscript notation is extended to provide shorthand access to this
extra annotation.

Object typing Figure 3.1 updates the well-formedness relation for relationship
instances, Γ `R o. Two rules, (RTyp RObject1s) and (RTyp RObject2s) replace
the original (RTyp RObject) rule from the previous chapter. The former checks
instances of Relation, for which we require only that the source and destination
addresses are of reference type. (RTyp RObject2s) performs the checks familiar
from the original rule, but now specifies that only those fields directly declared
in r are present in r-instances. An additional condition ensures that the super-
instance address has the type of r ’s super-relationship, so that we may be assured
that the super-instance will be able to satisfy requests for inherited fields and
methods that will be passed on to it. Here, we require an equal type rather than
a subtype in order to guarantee progress up the inheritance hierarchy when fol-
lowing super-instance pointers. Use of subtyping (via the typing relation) would
admit various undesirable structures: for example, an object would be allowed
to be its own super-instance.

The other rules from Figure 2.12 remain in place for RelJs.

Updated reduction relation Modified rules for defining R are given in Fig-
ure 3.2 and replace their counterparts from the semantics given in Figure 2.13.

An alternative model of relationship inheritance 73

news(r, ι1, ι2, ιsup) b= 〈〈r, ι1, ι2, ιsup|| f1 : initialP(Fr(f1)), . . . , fi : initial(Fr(fi))
fi∈dom(Fr)〉〉

addRels(r, ι1, ι2,σ,ρ) b=

¨

(σ,ρ) if (r, ι1, ι2) ∈ dom(ρ)
(σ′[ι 7→ onew],ρ′[(r, ι1, ι2) 7→ ι]) otherwise, ι 6∈ dom(σ)

where addRels is used recursively in the construction of σ′ and ρ′:

(σ′,ρ′) =

¨

(σ,ρ) if r = Relation

addRels(r ′, ι1, ι2,σ,ρ) otherwise

onew =

¨

news(r, ι1, ι2,null) if r = Relation

news(r, ι1, ι2,ρ′(r ′, ι1, ι2)) otherwise

r ′ b=R(r)super

Figure 3.3: Updated auxilliary functions for RelJs

(RRed RelAdds) has only been changed to reflect a new version of the addRel
auxilliary function, addRels, which is shown in Figure 3.3. Just as before, it takes
a relationship, r, two addresses to be related through r, ι1 and ι2, and a heap and
relationship store, σ and ρ respectively. If ρ indicates that ι1 and ι2 are already
related through r, then no action is taken. However, if the relationship does not
already exist, then addRels first recursively ensures that r ’s super-relationship,
r ′, exists between ι1 and ι2 in order to maintain the super-relationship invariant.
This may in turn lead to the creation of new relationships all the way up r ’s
inheritance hierarchy. If r is Relation, then this recursion does not occur as
there are no more super-relationships. Only once ι1 and ι2 are related by all
of r ’s super-relationships does addRels add an r-instance, onew, between ι1 and
ι2 using a modified version of the new auxilliary function, news, which takes a
fourth argument for the new r-instance’s super-instance address. For Relation,
there is no super-relationship, so its super-instance address is null; otherwise,
onew’s super-instance address is read from ρ. Notice also that news constructs
r-instances only with fields immediately declared in r, using Fr rather than the
inheritance-respecting field map, F+r .

Relationships are inactivated by (RRed RelRem1s): when inactivating the re-
lation of ι1 to ι2 through relationship r, the relation of ι1 to ι2 through any
sub-relationship of r must also be removed from the relationship store. If sub-
relationships were not removed in this way, the super-relationship invariant for
those entries that survive may be violated.

Finally, there are modified versions of field access and update in Figure 3.4,
which are defined in terms of a new operation that returns the instance contain-

74 Extending RelJ

σ ↑ι f b=

(

ι if f ∈ dom(σ(ι))
σ ↑ι′ f otherwise, where ι′ = σ(ι)super

(RRed Flds) 〈σ,ρ,γ, ι. f 〉 R 〈σ,ρ,γ,σ(σ ↑ι f)(f)〉

(RRed FldAsss) 〈σ,ρ,γ, ι. f = v〉 R 〈σ[ι′ 7→ σ(ι′)[f 7→ v]],ρ,γ, v〉

where ι′ = σ ↑ι f

Figure 3.4: Updated semantics for field access and update in RelJs

ing field f on behalf of the instance at ι in heap σ:

σ ↑ι f = ι′

The instance at ι′ will — if the heap is well-formed — be an instance either of a
class which inherited field f , or will be an instance of the relationship in which
f was originally declared. For class instances, σ ↑ι f is equivalent simply to ι.

(RRed Flds) reads field f on address ι by finding the instance containing f ,
which may be at ι itself, or one of its (transitive) super-instances, and then by
looking up f ’s value as usual. Similarly, (RRed FldAsss) updates the instance
containing f with f ’s new value.

No modification is required to the semantics of the relationship access opera-
tors, given by (RRed RelObj) and (RRed RelInst) in Figure 2.13. When access-
ing relationship r, they already return only instances of precisely r rather than
admitting instances of sub-relationships. The super-relationship invariant now
ensures that the results are representative of all active relationships, as the pres-
ence of any sub-relationships of r now implies the presence of a corresponding
r-instance.

3.1.4 Soundness

The soundness proof proceeds much as before: upon relationship access, the
RelJs semantics returns exactly those instances that would have been returned
according to the original RelJ semantics. It must be shown that news returns well-
formed relationship instances and that addRels preserves the well-formedness of
heaps and relationship stores, but this is straightforward. Otherwise, it remains
to show that:

Lemma 3.1. All inherited fields are available for each object, possibly through a
super-instance:

Γ `R 〈σ,ρ,γ, ι〉 : n implies for all f ∈ dom(F+n) that f ∈ dom(σ ↑ι f)

An alternative model of relationship inheritance 75

(RAbstractions)

∀(r, ι1, ι2) ∈ dom(ρ) :
r = Relation implies σ(ρ(r, ι1, ι2)) = 〈〈r, ι1, ι2,null|| . . .〉〉
r 6= Relation implies σ(ρ(r, ι1, ι2)) = 〈〈r, ι1, ι2,ρ(R(r)super, ι1, ι2)|| . . .〉〉

σ `R ρ

Figure 3.5: Updated abstraction relation for RelJs

The well-formedness condition for the instance returned by σ ↑ι f ensures that each
field’s value is well-typed.

Proof. That the configuration is well-typed implies that ι ∈ dom(σ) and that its
dynamic type is a sub-type of n. With (RTyp RObject2s), the result follows by
induction on the number of recursive steps required to evaluate σ ↑ι f .

The full proof of soundness is given in the RelJ technical report [13].

3.1.5 Correctness

Previously the relationship abstraction relation, σ `R ρ implied that ρ and σ
gave consistent results for each relationship instance’s source and destination ad-
dresses. We give a new version of the rule in Figure 3.5, where the consistency
requirements are also applied to super-instance pointers. As before, the rule en-
sures that any access of the relationship store, ρ, for relationship r and addresses
ι1 and ι2 always yields an r-instance whose participating addresses are ι1 and ι2.
The new rule (RAbstractions) further checks that the entry in ρ for r ’s super-
relationship matches the super-instance address of the r-instance in σ, except for
Relation-instances which have no super-instance. This ensures that following
super-instance references does not result in a jump from an active instance to an
inactive instance. The converse may not be true, of course, as a sub-relationship
may have been inactivated, but its super-relationship may remain in ρ; for exam-
ple, bob may become interested in taking rocketScience such that he no longer
attends it reluctantly:

ReluctantlyAttends.add(bob, rocketScience);
ReluctantlyAttends.rem(bob, rocketScience);

The first line implicitly establishes an entry in ρ for Attends between bob and
rocketScience, as well as an entry for ReluctantlyAttends. The second line
only removes the ReluctantlyAttends entry, leaving the entry for Attends
active. Thus, asking for a field declared in Attends from the (inactivated)
ReluctantlyAttends-instance involves following a super-instance pointer from
an inactive instance to an active one.

76 Extending RelJ

3.2 Relationships with multiplicities

As we saw in Section 1.1.3, both UML class diagrams and ER diagrams permit as-
sociations/relationships to be annotated with multiplicities/cardinalities, which
specify how many of one participant is related to each instance of the other par-
ticipant. ER diagrams distinguish ‘one’ from ‘many’: for example each student
has only one lecturer as their tutor, but each lecturer my act as tutor for several
students:

Lecturer tutors Student
N1

UML multiplicities can be more expressive. For example, it could be that every
student attends exactly eight courses, but that a course may have any number of
students:

Student Course

* 8

attends

More exotic multiplicities are available in UML, including ranges (‘1..7’), and
comma-separated ranges (‘1..7, 10..*’).

There are a number of ways in which such restrictions could be expressed in
RelJ. We describe below both a flexible, but dynamically checked approach that
can represent UML’s more flexible multiplicities, and a more restricted, statically
checked approach that only attempts to express the one/many granularity of ER
diagrams’ cardinalities.

3.2.1 Dynamic versus static solutions

The use of a run-time checks at every relationship addition would allow us to
preserve multiplicities’ upper-bounds by limiting the number of related objects.
When, say, too many courses are added to the Attends relationship for a partic-
ular student, an exception could be raised:

relationship Attends (many Student, 0..2 Course)
{ int mark; }

...
Attends.add(alice, programming);
Attends.add(alice, semantics);
Attends.add(alice, types); // Exception!

Complementary checks at relationship removal can ensure that lower-bounds are
respected, whilst the addition of relationship constructors with implicit checks
at the end of initialization can ensure that relationships start with an acceptable
number of participants.

Relationships with multiplicities 77

mc ∈ MultConstraint ::= one | many
RelDecl ::= relationship r extends r ′ (mc1 n1, mc2 n2)

{ FieldDecl∗,MethDecl∗ }

Figure 3.6: Relationship declaration grammar for RelJm and RelJsm

Our preference, however, is for a static approach to the expression of mul-
tiplicities. While less flexible, a compiler need not generate constraint-checking
code for relationship additions, removals and constructions, and we provide more
robust guarantees that the multiplicity constraints are satisfied.

3.2.2 Relationship declarations

RelJm is the extension of RelJ with multiplicity declarations. Instead of the UML-
style ‘0..n’ declarations which must be checked at run-time, RelJm only distin-
guishes between ‘one’ and ‘many’ multiplicities.

relationship Teaches extends Relation
(one Lecturer, many Course) {

int studentRating;
}

According to this declaration, a lecturer may teach many courses, but each course
has only one lecturer. We do not require that every Course has at least one
Lecturer associated with it, so one is in fact equivalent to ‘0..1’ in UML notation.
If it were precisely ‘1’, construction of each Course would require a Lecturer
parameter in order to immediately satisfy the constraint.

The modified grammar for relationship declarations is given in Figure 3.6,
and the definition of the relationship map, R, is updated to reflect these declara-
tions:

R(Teaches) = (Relation,one Lecturer,many Course,FTeaches,MTeaches)

We name the participants’ multiplicity constraints fmul and tmul so that they may
be obtained from R as follows:

R(Teaches)fmul = one R(Teaches)tmul = many

3.2.3 RelJm: Multiplicities with simple inheritance

No change to the typing rules or semantics is necessary other than to update
the definition of addRel, which is given in Figure 3.7. Where one of the partic-
ipating types is annotated ‘one’, addRelm removes any existing entries from the

78 Extending RelJ

addRelm(r, ι1, ι2,σ,ρ) =

¨

(σ,ρ) if (r, ι1, ι2) ∈ dom(ρ)
(σ[ι 7→ onew],ρ[(r, ι1, ι2) 7→ ι]) otherwise, ι 6∈ dom(σ)

where onew = new(r, ι1, ι2)
ρ′ = ρ\{(r, ι′, ι2) 7→ ι′′ | R(r)fmul = one and ρ(r, ι′, ι2) = ι′′}

\{(r, ι1, ι′) 7→ ι′′ | R(r)tmul = one and ρ(r, ι1, ι′) = ι′′}

Figure 3.7: Definition of addRel for RelJm that maintains multiplicity constraints

(RVT Relationshipsm)

r 6= Relation r ′ =R(r)super r, r ′ ∈ dom(R)
∀ f ∈ dom(Fr) : r `R f ∀m ∈ dom(Mr) : r `R m
`R R(r)from ≤R(r ′)from `R R(r)to ≤R(r ′)to
R(r ′)fmul = one implies R(r)fmul = one R(r ′)tmul = one implies R(r)tmul = one

`R r

Figure 3.8: Updated rule for the specification of well-declared relationships in
RelJsm, with new conditions highlighted

relationship store that will conflict with the new entry. If the source type is an-
notated one, then all relationships through r to the new destination address are
deleted; if the destination type is annotated one, then entries linking the new
source address to any other address through r are removed.

3.2.4 RelJsm: Multiplicities with shared inheritance

The situation is more complicated when introducing multiplicity constraints to
RelJs, the version of RelJ with the shared inheritance model of Section 3.1.

Type system Firstly, the super-relationship invariant requires that multiplicity
constraints can only become more restrictive down the inheritance hierarchy, oth-
erwise sub-relationships may exist where super-relationships may not and the in-
variant becomes unsatisfiable. Therefore, a relationship with a one annotation
on one of its participants may only be extended by a new relationship if it pre-
serves that annotation. This requirement is formalized in Figure 3.8 by a new
version of (RVT Relationshipsm), which specifies the conditions under which a
relationship is well-declared — the new conditions are highlighted.

Semantics Just as for RelJm, the only change required to the semantics is to the
definition of addRel. The new version, addRelsm, is defined in Figure 3.9 as a
combination of its counterparts in RelJs and RelJm. Like the former, the function
recurses up the inheritance tree to ensure super-relationships are in place before

Relationships with multiplicities 79

addRelsm(r, ι1, ι2,σ,ρ) b=

¨

(σ,ρ) if (r, ι1, ι2) ∈ dom(ρ)
(σ′[ι 7→ onew],ρ′′[(r, ι1, ι2) 7→ ι]) otherwise, ι 6∈ dom(σ)

where:

(ρ′,σ′) b=

¨

(σ,ρ) if r = Relation

addRelsm(r ′, ι1, ι2,σ,ρ) otherwise

onew b=

¨

news(r, ι1, ι2,null) if r = Relation

news(r, ι1, ι2,ρ′(r ′, ι1, ι2)) otherwise

r ′ b=R(r)super

ρ′′ b=ρ′\{(r ′′, ι′, ι2) 7→ ι′′ | R(r)fmul = one and
`R r ′′ ≤ r and ρ′(r ′′, ι′, ι2) = ι′′}

\{(r ′′, ι1, ι′) 7→ ι′′ | R(r)tmul = one and
`R r ′′ ≤ r and ρ′(r ′′, ι1, ι′) = ι′′}

Figure 3.9: New definition of addRel for RelJsm which implements multiplicities
in the presence of the revised inheritance model for relationships

the new relationship instance is created, whilst relationship entries are cleared
away if they conflict with the new instance created at each recursive step. How-
ever, where addRelsm must clear a relationship entry to protect the multiplicity
invariant, it must also clear entries for sub-relationships in order to protect the
super-relationship invariant just as for ‘standard’ relationship removal in RelJs.

The combination of recusion up the inheritance tree with the clearance of
relationships down the inheritance tree can yield surprising — if potentially in-
tuitive — results. Consider the following relationship definitions, where a course
can only be taught by a single lecturer, and where lecturers enjoy teaching hard
courses, but may teach them slowly:

relationship Teaches extends Relation
(one Lecturer, many Course) { ... }

relationship ExcitedlyTeaches extends Teaches
(one Lecturer, many HardCourse) { ... }

relationship SlowlyTeaches extends Teaches
(one Lecturer, many HardCourse) { ... }

charlie = new Lecturer();
deirdre = new Lecturer();

Suppose that charlie ExcitedlyTeaches rocketScience, then by the super-
relationship invariant, charlie also Teaches rocketScience:

80 Extending RelJ

ExcitedlyTeaches.add(charlie, rocketScience);
// implies: Teaches.add(charlie, rocketScience);

Now suppose that deirdre is to teach rocketScience slowly:

SlowlyTeaches.add(deirdre, rocketScience);

Again by the super-relationship invariant, deirdre must also be in the Teaches
relationship with rocketScience via Teaches. However, in order to respect
the multiplicity constraint on Teaches, charlie and deirdre cannot both teach
rocketScience. In that case, addRelsm removes the (charlie,rocketScience)
pair from Teaches. Furthermore, the super-relationship invariant does not allow
charlie to be in ExcitedlyTeaches with rocketScience once he has been re-
moved from Teaches — therefore, he is also removed from ExcitedlyTeaches.

Whilst this behaviour appears rather convoluted, we argue that — at least
for this example — this behaviour is what the programmer would expect in the
absence of exceptions. Further experience will undoubtedly be required before
any such design can be fixed; indeed, any implementation may need to remain
flexible so that the programmer can adapt the model according to requirements.

Soundness and correctness The proof of soundness proceeds mostly as be-
fore; it must of course be shown that addRelsm preserves the well-formedness of
the heap and relationship stores, but this is clear when viewed as a combination
of relationship deletion (compare with (RRed RelRem1) in Figure 3.2) and ad-
dition as per addRels in Figure 3.3: RelJsm can be easily compiled to RelJs. That
the multiplicity invariants are maintained is not required for soundness, but the
following property is easy to show:

Lemma 3.2 (Preservation of multiplicity invariant). Take φ,ψ to be the follow-
ing properties, which express that a relationship store, ρ, respects the multiplicity
invariants:

φ(ρ) b=∀(r, ι1, ι2) ∈ ρ :R(r)fmul = one implies ∀(r, ι′, ι2) ∈ dom(ρ) : ι′ = ι1
ψ(ρ) b=∀(r, ι1, ι2) ∈ ρ :R(r)tmul = one implies ∀(r, ι1, ι′) ∈ dom(ρ) : ι′ = ι2

Then, wherever 〈σ,ρ,γ, R〉 R 〈σ′,ρ′,γ′, R′〉 for well-typed configurations, then:

φ(ρ) implies φ(ρ′) ψ(ρ) implies ψ(ρ′)

Proof. It suffices to show that these constraints are preserved by the relationship
deletions in the definition of addRelsm.

The definitions of relationship abstraction are unchanged with the addition
of multiplicity constraints, as is the related proof.

Other extensions 81

3.3 Other extensions

We now give informal summaries of other extensions to RelJ, and demonstrate
them by example.

3.3.1 Multi-relationships

Multi-relationships allow pairs of objects to be related more than once through
each relationship. For example, a student may be related to an examination more
than once, where the examination has had to be re-taken; a mark will exist for
each re-take. RelJ only permits one instance of each relationship between any
pair of objects, but may be easily modified to permit multi-relationships.

First, the relationship store, ρ, must be modified so that more than one r-
instance may exist between each pair of participating objects:

ρ ::= {(r1, ι1, ι′1) 7→ {ι1,1, ι1,2, . . . ι1,i≥0}, . . . , (r j , ι j , ι
′
j) 7→ {ι j,1, . . . ι j≥0,i≥0}}

This change in the relationship store may be reflected for most operations in the
obvious way. In the original RelJ semantics, alice:Attends evaluates to:

{ι′ | ∃ι′′ : ρ(Attends, ιalice, ι
′′) = ι′}

However, in the presence of a multi-relationship model the result becomes:
⋃

{ρ(Attends, ιalice, ι
′) | (Attends, ιalice, ι

′) ∈ dom(ρ)}

where ιalice is the address of the Student-instance stored in the variable alice.
Finally, notice that addRel need no longer be idempotent; a new entry in ρ

may be made for every relationship addition, rather than for those where the
requested relationship does not already exist. The modification required is slight,
so we do not give a full redefinition of addRel.

The considerations above apply to both RelJ and RelJs. However, whilst the
impact on RelJ, with its simple inheritance model, is slight, the existence of more
than one relationship instance between any pair of participating addresses makes
it difficult to select an appropriate super-instance when using the shared inher-
itance model. For example, suppose that alice is in the Attends relationship
with semantics twice: if alice is added to the ReluctantlyAttends rela-
tionship with semantics, then it is unclear which of the two existing Attends-
instances should receive forwarded field requests on behalf of the new instance
of ReluctantlyAttends. This ambiguity must either be resolved with new op-
erations for ‘extending’ specific relationship instances, or by specifying that new
relationship instances always imply a new line of ancestor-instances, eliminating
sharing of super-relationship fields altogether.

82 Extending RelJ

3.3.2 Bidirectional relationships

Relationships in RelJ may only be accessed with a reference to the source object:
the fact that semantics is in the set returned by alice.Attends may not be
determined with a reference to semantics alone.

Whilst the semantic stuctures may remain unchanged, the addition of bidi-
rectional relationships to RelJ requires a different syntax for relationship access
which distinguishes the source and destination (or forwards and backward traver-
sal) of the relationship. As we shall see, the problem of specifying which relation-
ship participants we have, and which we wish to access, is a problem common
to n-ary as well as bidirectional relationships. Therefore, we treat bidirectional
binary relationships as a special case, and move directly to the consideration of
n-ary relationships.

3.3.3 n-ary relationships

RelJ is restricted to binary relationships. Here we sketch a version with n-ary
relationships, which can be derived relatively easily from RelJ’s model of binary
relationships but which still pose some interesting design problems.

So that participants of a relationship may be named in syntax, relationship
declarations must give names to the participating types, denoting their rôle in the
relationship.1 For example, the binary Attends relationship’s definition becomes:

relationship Attends extends Relation
(Student student, Course course) {

...
}

Of course, in this case, the rôles could have been determined by type, but this
is certainly not always the case, particularly when the types are comparable by
the subtype relation. For example, the following Assesses relationship specifies
which tutors are responsible for assessing a student:

relationship Assesses extends Relation
(Student student,

Tutor supervisor,
Tutor examiner)

{ ... }

Two Tutors are involved, one as the supervisor, and one as the examiner.
The syntax for manipulating relationships can be extended in the obvious

way. For example:

1The term ‘rôle’ is overloaded in the database and object-oriented language literature [9, 52].
Whilst our meaning overlaps with that in other works, our rôles are just labels for participants in a
relationship, and we do not imbue objects in those rôles with any special properties.

Conclusion 83

Tutor lucy = new Tutor(); Tutor matthew = new Tutor();
...
Assesses.add(student = bob,

supervisor = lucy,
examiner = matthew);

Whilst the relationship store of RelJ is a map from relationship names to pairs of
addresses, support for n-ary addresses requires that it map relationship names
to a further map from rôle names to addresses. Thus, after evaluation of the
Attends.add line above, the following might be true:

ρ(Assesses) = {student 7→ ιbob,supervisor 7→ ιlucy,examiner 7→ ιmatthew}

where ιx is the store location stored in variable x . The replacement of pairs in ρ
for these maps must be echoed in relationship instances, where a rôle-participant
map will replace the pair of addresses used to provide values for from and to
in RelJ. Thus, an instance’s participants begin to look increasingly like fields, but
remain immutable during the lifetime of the instance. Just as for from and to,
we make the participants’ rôles available as pseudo-fields:

Assesses a = Assesses.add(...);
Tutor t = a.examiner;

There is no longer an assumption of directionality for n-ary relationships, so we
require a more expressive syntax for relationship access. Inspired by XPath [72],
we suggest a projection notation. For example, if we wish to obtain the set of
Assesses-instances that apply to alice as a student, we may issue the following:

Assesses[student == alice]

Similarly, the first step towards determining all those Students supervised by
lucy and examined by matthew is to find all such Attends-instances:

Attends[supervisor == lucy && examiner == matthew]

By adding the ability to map field requests over a set of objects to obtain the
corresponding set of results, as found in Cω [11] for example, we may provide a
similar shortcut for obtaining participating instances without explicitly iterating
over the set returned by relationship access:

set<Tutor> examiners = Attends[student == alice].examiner;

We stop short of suggesting a full query language for relationships here; query is
explored in much greater detail in the following chapters.

3.4 Conclusion

In this chapter, we specified shared inheritance which provides a model of in-
heritance more suited to relationships than that used for classes. A scheme for

84 Extending RelJ

the support of multiplicity constraints was also sketched, and its interactions
with other language features discussed. Finally, some adjustments to the model
were presented which may be of particular relevance to software and database
modelling languages: multi-relationships, bidirectional relationships and rela-
tionships of arbitrary arity.

This series of extensions demonstrates that RelJ’s model of relationships is
reasonably flexible: new relationship features may be obtained without extensive
changes to the formalization. This flexibility is important so that experience in
software development can rapidly inform the choice of features made available
in languages with relationships.

Chapter 4

Qς: An object calculus
with heap query

We now turn our attention to object-based languages, and to heap query. We
have already seen how access to RelJ’s relationships relies on a very limited query
of the relationship store, which is in turn an abstraction of the structures in the
heap that would otherwise be required to encode relationships. However, a more
flexible approach is required in an object-based world where objects are not so
rigidly classified. We therefore move towards a more powerful query mechanism
as a means to recover relationships from the heap — in the presence of query,
a single reference may represent a relationship without the complex encodings
from Section 1.2.

Whilst object-based calculi have been used by researchers to explore the fun-
damentals of object-oriented programming — perhaps most famously by Abadi
and Cardelli [1] — object-based languages are popular in practice, particularly
for scripting. For example, most web browsers will execute Javascript [33], which
allows the construction of arbitrary objects without the constraints imposed by a
class-based type system. Development time is reduced but, in the absence of a
type system, the possibility of run-time error is increased.

In this chapter, we give a strongly-typed object calculus based on the ς-calculi
of Abadi and Cardelli [1]. We equip the calculus with heap query, which gives
rise to a number of interesting typing issues, and demonstrate soundness.

4.1 Core language

First, we describe the core object calculus on which we build our extensions.
Our object calculus is based on the calculus presented by Gordon, Hankin and
Lassen [37], itself based on the impς calculus of Abadi and Cardelli [1]. To
this basis, we add recursive types in the spirit of FOb1<:µ [1, Chapter 9]. A
similar starting point was used in work by Clarke to explore the fundamentals of
Ownership Types [23].

86 Qς: An object calculus with heap query

4.1.1 Terms

The core calculus, the grammar for which is given in Figure 4.1, contains an
object-based portion and, for convenience, let-binding, λ-abstraction and appli-
cation, which may be encoded using only the object-based terms.1 We assume
familiarity with this latter set of features, and only introduce the object-based
portion of the calculus in detail. Types for the calculus, denoted A and B, are
discussed later.

An object is constructed by giving definitions to each of its methods. A
method definition has the following components:

m ::= ς(x : A)a

The body of the method — the term to be executed upon method invocation —
is denoted a. The self -binder, ς, specifes the variable, x , to be bound in the body
with type A to the identity of the object upon which the method is invoked.

Objects are finite, unordered collections of labelled methods, where each ob-
ject has at most one definition for each label, and where at least one label is
defined.2

[l1 = ς(x1 : B1)b1, l2 = ς(x2 : B2)b2, . . . , ln = ς(xn : Bn)bn]

[li = ς(x i : Bi)bi
i∈1..n]

l ranges over the countably infinite set of label names. For brevity, we index the
parts of an object definition by some interval in the naturals — the definitions
above are equivalent.

When an object is constructed, it is assigned a unique identity, which we will
later use as the object’s location in a program store. We use ι to range over the
countable, infinite set of these identities. This set of identities is also included in
the set of values, ranged over by v, which is, informally, the set of terms which
do not execute any further and thus form the result of some computation. This
set also includes λ-abstractions. Where the method body for a label l is a value v
that does not include the self-parameter (in a free position) then we write l = v
instead of l = ς(x : A)v.3 Thus, whilst fields and methods are disjoint in the class-
based world, they are only distinguished by notation in this calculus. Indeed, it
is entirely possible that an update of label l will give it a method body which is a
non-value term.

An object’s methods may be invoked using the ‘.’ operator. For example, the

1In the encoding of λ-abstraction/application, provision of subtyping for function types re-
quires variance annotations for soundness, which are not included in the object-based portion. [1,
Section 8.7] We include them first-class, however, so we are able to provide sound subtyping for
function types.

2Unlike Gordon, Hankin and Lassen [37], we do identify objects up to reordering of labels.
3As discussed later, self types must match for all labels in an object. Therefore, only one label

need have a typed self-parameter for its type to be determined.

Core language 87

following constructs a button object, binds it to the button variable and ‘clicks’
the button by selecting its click label. We assume an appropriate type Button for
the button object:

let button : Button= [click= ς(x : Button) . . . click code . . .] in button.click

For clarity in examples, such as the above, we will routinely use lower-case italics
for variables and labels, instead of relying on x and l. Similarly for types, to
which we give an upper-case initial.

If we wish to re-implement the click method, we can update its definition. In
the following example, we construct a button with methods click, l1 and l2. The
button reacts to clicks by invoking its own l1 method. During the assignment to
button2, however, we update the button so that it receives a new implementation
of its click method that invokes l2 instead:

let button1 : Button= [click= ς(x : Button)x .l1,
l1 = ς(x : Button)a1,
l2 = ς(x : Button)a2] in

let button2 : Button= button1⇐ ς(x : Button)x .l2 in button2.click

Method update may neither add nor remove methods. Update modifies the target
object directly; no copying is involved. Thus, button1 and button2 both contain
the address, ι, of the single button — the invocation of button2.click could just as
easily have been written button1.click.

To make copies of an existing object, the result of a term may be cloned. For
example, we may modify the final let clause from the example above:

let button2 : Button= clone(button1)⇐ ς(x : Button)x .l2 in button2.click

In this example, button2’s click method is implemented using l2, whilst button1’s
continues to use l1.

4.1.2 Types

The intention of the type system is to prevent a label being invoked on an object
which has no method associated with that label. Therefore, the intention of ob-
ject types is to specify which labels are available for invocation, and the type of
the term that will be returned upon such an invocation. We allow width subtyp-
ing, so that an object’s type need not mention all of the labels defined within it.
Therefore, labels may be hidden from the outside world, for example to protect
an invariant. Width subtyping also allows objects to be extended with additional
methods during software maintenance, but unmodified code may continue to
view the extended object through its unextended type as long as all of the re-
quired methods are still provided. Where A is a subtype of B, we write A<: B.

In general, an object type is a finite, unordered collection of mappings from

88 Qς: An object calculus with heap query

x ∈ var variable names

l ∈ label label names

ι ∈ loc store locations

A, B ∈ type types, see Figure 4.2

m ∈meth ::= ς(x : A)b method

o ∈ obj ::= [li = mi∈1..n] object (li distinct)

a, b ∈ term ::= ι location

| x variable

| o object

| λ(x : A)a | a(b) λ-abstraction/application

| let x : A= a in b let

| a.l selection

| a.l ⇐ m update

| clone(a) clone

| fold(A, a) type folding

| unfold(a) type unfolding

Figure 4.1: Grammar describing terms for the core calculus underlying Qς

label names to types. Object types must have at least one label defined. We have
a distinguished, largest type, written Top, which acts as the object type with no
labels — that is, no methods may be invoked on a term of type Top.

In our button example above, some appropriate types (in increasing subtype
order) for the object assigned to button1 would be:

[click : Click, l1 : Click, l2 : Click]<: [l1 : Click]<: Top

Of course, only the first type allows the update and invocation of methods as in
the button example.

Many interesting examples require some form of recursion in the type sys-
tem [1, 60]. For example, suppose we extend our button with a method, id, that
returns the button’s identity:

let button : ButtonA= [click= . . . ,
id= ς(self : ButtonB)self] in button.id.id

It seems desirable that ButtonA and ButtonB — both set in sans-serif as we are
discussing specific types, and no longer meta-variables — should all be the same
type. We quickly run into trouble, however: ButtonA must be at least [id : . . .] to
allow the first invocation of id. If the second call is to be allowed, the ButtonA

Core language 89

X , Y ∈ tyvar type variables

O ∈ otype ::= [li : Ai∈1..n] object type (li distinct)

A, B ∈ type ::= X

| O object type

| Top greatest type

| A→ B function type

| µ(X).A recursive type

Figure 4.2: Grammar describing types for the core calculus underlying Qς

must be at least [id : [id : . . .]]. This situation is clearly unsatisfactory, so we
introduce recursion. Recursive types are written:

µ(X).A

where X ranges over a countably infinite set of type variables, and may occur
in type A. This type may be unfolded by substituting µ(X).A for every (free)
occurrence of X in A. This substitution is written:

A{{µ(X).A/X }}

By introducing fold and unfold into our term language to witness the isomor-
phism between a recursive type’s folded and unfolded forms, we may write our
example:

let button : ButtonA= [click= . . . ,
id= ς(self : ButtonA)fold(ButtonB, self)]

in unfold(button.id).id

where our Button types are, for some appropriate click return type, Click:

ButtonA b= [click : Click, id : ButtonB]

ButtonB b= µ(X).[click : Click, id : X]

To make id available for its second invocation, the result of the first id invocation
must be unfolded to take its type from the folded type, ButtonB, to the unfolded
type, ButtonA. The use of fold in the object definition, on the other hand, marks
the transition of the type in the other direction, from ButtonA to ButtonB.

We summarize the grammar for the types so far described in Figure 4.2.

90 Qς: An object calculus with heap query

4.1.3 Adding lists

As for RelJ, it is reasonable to expect that more than one object may satisfy any
given query. We therefore provide lists in which the results of such queries may
be stored.

We therefore extend the core calculus with lists. Lists are built in the usual
way using constructors nil, for the empty list, and cons. Lists are given the type
list of A, where A is a type valid for the list’s members:

cons(ι1,cons(ι2,nil)) : list of Top

Lists are typed covariantly, as they are passed by value. For the consumption of
lists, the match operator is provided:

match a : list of A with cons(x , y)⇒ b | nil⇒ b′

This acts as both destructor and empty-test: it executes the term b with x and y
bound to the head and tail of the input list when it is non-empty; it executes b′

when the list is nil.
With these constructs, we are able to iterate over lists. In the following ex-

ample, we use the button definition from the previous section to write a method
clickAll for a window object. This method fetches a list of buttons from the win-
dow, clicks each in turn and then minimizes the window:

let window : Window=

[getButtons= ς(w : Window). . . supplies list of ButtonA objects. . . ,
minimize= ς(w : Window). . . minimizes the window. . . ,
clickAll= ς(w : Window)w.clickList(w.getButtons),
clickList= ς(w : Window)

λ(bs : list of ButtonA)match bs : list of ButtonA with

cons(b, bs′)⇒ let x : Top= b.click in w.clickList(bs′) |
nil⇒ w.minimize]

where:

Window b= [getButtons : list of ButtonA, minimize : Top,

clickAll : Top, clickList : list of ButtonA→ Top]

The ‘self’ parameter provides the recursion necessary to iterate over the list pro-
vided by getButtons. Notice also that the clickList method returns a λ-abstraction
so that it may be considered to be a method that takes an argument, as at the
recursive call on the penultimate line.

Heap query 91

Binding form binds in
Terms:

λ(x : A)a x a
ς(x : A)a x a
let x : A= a in b x b
match a : A with cons(x , y)⇒ b | nil⇒ b′ x , y b

Types:
µ(X).A X A

Figure 4.3: Binding forms in Qς

4.1.4 Definitions

The set of free type and term variables in a term a is written FV(a), and in a
type A as FV(A). The capture-free substitution of a term a for term variable x in
another term b is written b{{a/x}}, and similarly for types, B{{A/X }}. The effect
of Qς’s various binding constructs is summarized in Figure 4.3, and gives rise to
the obvious definition for substitution.

Definition 4.1 (Closed terms). As usual, a term, a, is closed when FV(a) = ;.

Definition 4.2 (Fresh names). A term variable x is fresh for a term a, written
x B a iff x 6∈ FV(a). Similarly for type variables X , and types A.

4.2 Heap query

Heap query is a means by which objects may be selected from all those that exist
at some point in program execution, according to whether or not they satisfy
some property. Specifically, to give a value to the comprehension:

{ o ∈ Object |ψ(o) } ⊆ existing objects

The goal is then to decide upon an appropriate class of properties, of which ψ is
a member, and to ensure that the mechanism and result of such queries respect
both the type system and programmer intuition.

4.2.1 Expressivity of query

When deciding upon a class of properties determinable by our query mechanism,
we must return to our original goal — the provision of relationships in an object-
based language. As discussed in Section 1.2, the fundamental form of inter-object
relationship is a reference, upon which a network of back-pointers and collection
objects may be built to represent n-ary, many-to-many, two-way relationships.
Instead, we argue that heap query may take the strain of such book-keeping,

92 Qς: An object calculus with heap query

allowing the programmer to use a single reference to represent membership of a
variety of different relationships.

In the following term, we create two objects assigned to x and y respectively,
then relate them by constructing an object that references them both:

let x : A= o1 in

let y : B = o2 in

let r : [la : A, lb : B] = [la = x , lb = y] in . . .

The objects o1 and o2 are unrelated until the object bound to r is constructed, at
which point they are related by that object. Their rôles in the object are specified
by the labels la and lb respectively. In order to determine which objects are thus
related to o1, for example, we can constuct the following set of objects that relate
o1 to something else, where ι1 and ι2 are the object identifiers for o1 and o2
respectively:

{ ι | ∃A′, ι′ : ι is the object id for [la = ι1, lb = ι
′, . . .] and ι exists in the heap }

Thus, we obtain all objects such as that bound to r, where o1 is assocated with
label la and some other object is assocated with lb. If we were to extend the term
above with the following:

let z : B = o3 in

let r ′ : [la : A, lb : B] = [la = x , lb = z] in . . .

then both r and r ′ would be included in the result.
In the following sections we describe how such queries shall be expressed in

Qς, how query results are determined, and how these mechanisms interact with
the structural type system of object-based calculi.

4.2.2 Query syntax

A query of the heap requests objects which have certain labels with specified
values. For example, if we were to want all buttons that are blue, then we might
issue the following query:

let blue : Colour= [. . .] in

. . .

let blueButtons : list of A= 〈getColour= blue〉

where we intend 〈getColour = blue〉 to return all the objects in the heap whose
getColour label returns the value bound to the blue variable. Immediately, we
observe two challenges posed by such a query in a typed setting:

1. The result of the query is bound to the variable blueButtons with type

Heap query 93

lv ∈ listval ::= nil | cons(v, lv)
Q ∈ querytype ::= O | µ(X).O queryable types

qv ∈ queryval ::= ι | fold(A, qv) queryable values

v ∈ value ::= λ(x : A)a | qv | lv values

a, b ∈ term ::= . . .

| 〈li : Q i = ai∈1..n, l j∈n+1..m : A j = ?〉 object query (li , l j distinct)

Figure 4.4: Additions to the Qς grammar for heap query

list of A, but it is not obvious which types may be represented by A. In this
case, we know that blue, the value for which we are querying, is of type
Colour, so A ≡ [getColour : Colour] seems like a reasonable type. How-
ever, we may wish to use more complicated terms to provide values for
queries, rather than restricting ourselves to term variables. In that case,
type inference will be required. As usual when faced with such a difficulty,
we counter by annotating labels with types, just as we do for ς-, λ- and
let-bound variables:

〈getColour : Colour= blue〉

Now, the query’s type may be read directly from its definition.

2. Furthermore, if we were to want to invoke click on all blue buttons in
the system, then the type system would not allow it. We could extend the
query so that click is requested with a value equal to click’s implementation,
but this breaks the most fundamental encapsulation provided to object-
oriented programmers and forces us to test the equality of functions.

Instead, we provide wildcards in object queries, which guarantee that the
specified label will be present in each object of the result, and with the
specified type:

〈getColour : Colour= blue, click : Click= ?〉

The result will be the list of blue buttons upon which the type system will
allow us to safely select the click label, but without requiring the program-
mer to know the implementation of the click method itself.

We give the additional portions of the Qς grammar that support heap query in
Figure 4.4. For convenience, the full grammar is given in Figure 4.5.

94 Qς: An object calculus with heap query

4.2.3 Completeness of result

Consider the following term, in which DialogWindow<: Window:

let wnd : DialogWindow= . . . in

let yesBtn : Button= [parent : Window= wnd, . . .] in

let noBtn : DialogButton= [parent : DialogWindow= wnd, . . .] in . . .

Here, a DialogWindow is created, the intention being that a DialogWindow is a
specialization of Window which acts as a dialogue box. Two buttons are then
created: the first is typed Button; the second as DialogButton, which reflects the
fact that a DialogButton may only be contained in a DialogWindow. Given that
a DialogWindow is a Window, however, both buttons are contained inside that
assigned to wnd, as specified by the buttons’ parent label.

When querying which buttons are contained in the window represented by
wnd, then, it is reasonable to pose the following query:

〈parent : Window= wnd, click : Click= ?〉

As we have already established, this query will return a result of type:

list of [parent : Window, click : Top]

We would expect such a query to return both noBtn and yesBtn; after all, both
have parent and click labels at a type compatible with Window and, in the case
of parent, the value requested by the query. However, whilst the type of yesBtn
is equal to that of the list’s element type, the type of noBtn is unrelated to the
element type owing to the absence of depth subtyping. Clearly, noBtn may not be
soundly returned by such a query. Conversely, yesBtn may not be returned in the
result of the following query, as its parent label is typed Window:

〈parent : DialogWindow= wnd, click : Click= ?〉

Thus, a query’s type annotations do more than simplify type-checking: they form
further constraints on returned objects just as a query’s values and labels do.

Where the programmer considers the type annotations to be part of a query’s
constraint set, the results obtained are complete. However, this may seem like
a convenient choice of perception. If one were to regard the annotations simply
as a typing aid, the problem may be attacked by the standard approaches to
obtaining sound depth-subtyping. One such approach involves annotating labels
with their variance: ‘+’ for a covariant label; and ‘−’ for contravariance [60].

A<: B implies [l+ : A]<: [l+ : B]

A<: B implies [l− : B]<: [l− : A]

Heap query 95

l ∈ label
ι ∈ loc

X , Y ∈ tyvar
O ∈ otype ::= [li : Ai∈1..n] object type (li distinct)

Q ∈ querytype ::= O | µ(X).O queryable types

A, B ∈ type ::= Top | X | O | A→ B | µ(X).A | list of A

lv ∈ listval ::= nil | cons(v, lv)
qv ∈ queryval ::= ι | fold(A, qv) queryable values

v ∈ value ::= λ(x : A)a | qv | lv values

m ∈meth ::= ς(x : A)b method

o ∈ obj ::= [li = mi∈1..n] object (li distinct)

a, b ∈ term ::= ι location

| x variable

| o object

| λ(x : A)a | a(b) λ-abstraction/application

| let x : A= a in b let

| a.l selection

| a.l ⇐ m update

| clone(a) clone

| fold(A, a) type folding

| unfold(a) type unfolding

| nil | cons(a, b) list constructors

| (match a : A with

cons(x , x ′)⇒ b | nil⇒ b′) list destructor

| 〈li : Q i = ai∈1..n, l j∈n+1..m : A j = ?〉 object query (li , l j distinct)

Figure 4.5: Qς grammar

The type system precludes potentially unsound operations, specifically that a co-
variant label cannot be updated, whilst a contravariant label cannot be read. A
full treatment of variance annotations for the ς-calculus is given by Abadi and
Cardelli [1]. Similar features are also being adopted for mainstream languages,
where variance with respect to the parameters of generic types is allowed in
Java [38] and has been proposed for C# [34]. Whether these features are well-
understood by programmers remains an open question.

96 Qς: An object calculus with heap query

(Env Empty)

`Qς ε ok

(Env Var)

E `Qς A x 6∈ dom(E)
`Qς E, x : A ok

(Env TypVar)

E `Qς A X 6∈ dom(E)
`Qς E, X <: A ok

(Env Loc)

E `Qς [li : Ai∈1..n] ι 6∈ dom(E)
`Qς E, ι : [li : Ai∈1..n] ok

Figure 4.6: Rules specifying well-formed environments, written `Qς E ok

4.3 Type system

The type system formalizes the features discussed earlier in this chapter by giving
rules which may later be subjected to formal proof.

Typing environments Typing is performed in the presence of a typing envi-
ronment, which assigns types to term variables and object addresses, and gives
bounds for µ-bound type variables.

E ∈ Environment ::= ε empty environment

| E, x : A term variable type

| E, ι : A store location type

| E, X <: A type variable bound

When an environment E is well-formed, we write `Qς E ok. Such environments
are contained in the least set that is closed under the rules given in Figure 4.6,
which make use of the judgement that a type A is valid in environment E, written
E `Qς A and defined by the rules in Figure 4.7.

(Env Empty) specifies that the empty environment is well-formed whilst the
(Env Var) and (Env Loc) rules allow term variables and addresses to be assigned
any well-formed type as long as they have not been previously defined in the
environment. (Env TypVar) imposes similar restrictions on the bounds of type
variables.

Well-formed types Top is a valid type in any valid environment, as specified
by (IsTypTop) in Figure 4.7. Object types, function types and list types are well-
formed according to (IsTypObj), (IsTypFun) and (IsTypList) respectively, only
when their constituent types are well-formed. In the case of object types, recall
that we only consider finite object types where the labels are distinct. (IsTypVar)
permits type variables as valid types when they have a bound specified in the
environment, which must itself be well-formed. (IsTypRec) checks the validity

Type system 97

(IsTypTop)

`Qς E ok

E `Qς Top

(IsTypObj)

E `Qς Bi∈1..n

E `Qς [li : Bi∈1..n]

(IsTypVar)

`Qς E′, X <: A, E′′ ok

E′, X <: A, E′′ `Qς X

(IsTypFun)

E `Qς A E `Qς B

E `Qς A→ B

(IsTypList)

E `Qς A

E `Qς list of A

(IsTypRec)

E, X <: Top `Qς B X 6∈ dom(E)
E `Qς µ(X).B

Figure 4.7: Rules specifying well-formed types,written E `Qς A.

of the body of recursive types in the presence of a bound on the type’s µ-bound
variable to determine the validity of a recursive type.

Types in environments are checked for validity from right to left and environ-
ment ordering is important: a type later in the environment may mention type
variables which acquire their bound earlier on. For example, it is the case that
`Qς X <: Top, ι : X ok but not that `Qς ι : X , X <: Top ok. In the latter case, the
derivation requires ε `Qς X , which does not hold in the absence of a bound for
X in the environment. Similarly, mutually-bounding variables are quite sensibly
precluded: `Qς X <: Y, Y <: X ok does not hold.

Whilst the rules defining well-formed environments and well-formed types
are mutually-recursive, they are decidable: each Env-rule is an axiom or shrinks
the environment and each IsTyp-rule, with the exception of (IsTypRec) shrinks
the type or uses environment well-formedness. Types have only a finite number of
recursive bindings and no rule grows a type, so a derivation ending in (IsTypRec)
will always reach a sub-derivation without a µ-binding in outer position.

Subtyping When A is a subtype of B in the presence of an environment E, we
write E `Qς A<: B for the least relation closed under the rules of Figure 4.8.

(Sub Top) establishes all types as subtypes of Top, whilst (Sub Object) allows
an object type to be a subtype of any other object type which is a prefix. Recall
that we identify objects and object types up to reordering of their labels, so we
can consider only prefixes without imposing any real restriction. (Sub List) and
(Sub Fun) specify that list types are covariant in their element type, while func-
tion types are contravariant in their argument type and covariant in their result
type. (Sub Var) propagates subtype relationships for type variables from the envi-
ronment into the subtyping relation, while (Sub Rec) allows two recursive types
to be subtypes if their bodies are subtypes in the presence of bounds for their
µ-bound type variables [1, 60]. Finally, (Sub Refl) and (Sub Trans) provide the

98 Qς: An object calculus with heap query

(Sub Top)

E `Qς A

E `Qς A<: Top

(Sub Object)

∀i ∈ 1..n+m : E `Qς Ai m≥ 0

E `Qς [li : Ai∈1..n+m]<: [li : Ai∈1..n]

(Sub List)

E `Qς A<: B

E `Qς list of A<: list of B

(Sub Fun)

E `Qς A′ <: A E `Qς B <: B′

E `Qς A→ B <: A′→ B′

(Sub Var)

`Qς E′, X <: A, E′′ ok

E′, X <: A, E′′ `Qς X <: A

(Sub Rec)

E `Qς µ(X).A E `Qς µ(Y).B
E, Y <: Top, X <: Y `Qς A<: B

E `Qς µ(X).A<: µ(Y).B

(Sub Refl)

E `Qς A

E `Qς A<: A

(Sub Trans)

E `Qς A<: B E `Qς B <: C

E `Qς A<: C

Figure 4.8: Rules defining the subtyping relation, E `Qς A<: B

reflexive and transitive closure of the relation established by the preceding rules.
Notice that only well-formed types take part in the subtype relation.

Typing relation The type system assigns a type A to term a in the presence of
typing environment E, written E `Qς a : A. This relation is the least such closed
under the rules of Figure 4.9.

Subtyping is by subsumption, expressed by (Typ Sub), so that subtyping is
available at all points in a type derivation in comparison with RelJ where sub-
typing may be used only at specific locations, for example at method invocation.
This comes at the cost of non-structural rules for typing.

Term variables and object addresses are typed directly from the environment
in (Typ Var) and (Typ Val) respectively. Empty lists may be typed with any well-
formed list type in (Typ Nil), whilst (Typ Cons) ensures that the type of the head
of a list matches that of its tail.

The typing of object construction by (Typ Object) ensures that method bodies
are well-typed when the self type declaration is transferred into the environment.
The types given as self types in method declarations must all match, and also
match the derived type for the object.

(Typ Select) types label selection simply by projection from the object type,
while (Typ Update) ensures that new method bodies are well-typed similarly to
those in (Typ Object). Notice that the self type declared in the new method
body may not match either the originally derived type for the target object or the

Type system 99

(Typ Sub)

E `Qς A<: B E `Qς a : A

E `Qς a : B

(Typ Var)

`Qς E′, x : A, E′′ ok

E′, x : A, E′′ `Qς x : A

(Typ Val)

`Qς E′, ι : [li : Ai∈1..n], E′ ok

E′, ι : [li : Ai∈1..n], E′′ `Qς ι : [li : Ai∈1..n]

(Typ Nil)

E `Qς A

E `Qς nil : list of A

(Typ Cons)

E `Qς a : A
E `Qς b : list of A

E `Qς cons(a, b) : list of A

(Typ Object)

E, x i : A`Qς bi : Ai∈1..n

A≡ [li : Ai∈1..n] x i∈1..n 6∈ dom(E)
E `Qς [li = ς(x i : A)bi∈1..n] : A

(Typ Select)

E `Qς a : [li : Ai∈1..n]
j ∈ 1..n

E `Qς a.l j : A j

(Typ Update)

E `Qς a : A E, x : A`Qς b : A j

x 6∈ dom(E) j ∈ 1..n A≡ [li : Ai∈1..n]
E `Qς a.l j ⇐ ς(x : A)b : A

(Typ Clone)

E `Qς a : [li : Ai∈1..n]
E `Qς clone(a) : [li : Ai∈1..n]

(Typ Let)

E `Qς a : A E, x : A`Qς b : B
x 6∈ dom(E)

E `Qς let x : A= a in b : B

(Typ Lam)

E, x : A`Qς b : B

E `Qς λ(x : A)b : A→ B

(Typ App)

E `Qς b : A→ B E `Qς a : A

E `Qς b(a) : B

(Typ Match)

x , x ′ 6∈ dom(E)
E `Qς a : list of A E, x : A, x ′ : list of A`Qς b : B E `Qς b′ : B

E `Qς match a : list of A with cons(x , x ′)⇒ b | nil⇒ b′ : B

(Typ Fold)

E `Qς b : B{{A/X }} A≡ µ(X).B
E `Qς fold(A, b) : A

(Typ Unfold)

E `Qς a : A A≡ µ(X).B
E `Qς unfold(a) : B{{A/X }}

(Typ Query)

E `Qς ai : Q i E `Qς A j for all i ∈ 1..n, j ∈ n+ 1..m

E `Qς 〈li : Q i = ai∈1..n, l j : A j∈n+1..m = ?〉 : list of [li : Q i∈1..n, l j : A j∈n+1..m]

Figure 4.9: Rules defining the typing relation E `Qς a : A

100 Qς: An object calculus with heap query

method’s originally declared self type; we require only that it matches a derivable
type for the update’s target which, in the presence of subsumption, will be a
supertype of that originally derived for the object. (Typ Clone) types object
copies in the obvious way.

Typing for the let-bindings and λ-calculus portions is entirely standard, and is
given by (Typ Let), (Typ Lam) and (Typ App). (Typ Match) types list destruction
in a similar way as for let.

Type folding and unfolding is also standard [1, 60]: the folding of a term to
a recursive type µ(X).B is valid as long as the term can be typed to the unfolded
type, B{{µ(X).B/X }}, and vice versa for type unfolding.

Finally, we type heap queries with (Typ Query). We check that the query’s
sub-terms are typable according to the query’s type annotations, and that the
types assigned to the query’s wildcards are valid. The query’s type is then a list
of object types conforming to those declared in the body of the query. We restrict
non-wildcard type annotations to the set of ‘queryable types’, which guarantees
that the values for which we must query will be object addresses (possibly inside
some folds), and not, for example, λ-expressions.

Principal types It is clear that, in the presence of subsumption, the types as-
signed to terms are not unique. However, it is conceptually useful to have a
canonical, or ‘best’, type; that is, the type that allows the greatest number of la-
bels to be selected from a term. Such a type for a term, a, where it exists and is
unique, is known as a’s principal type. Qς does not have principal types in general
— for example, the empty list constructor nil may take any well-formed list type.
However, it is useful to note that objects and addresses do have principal types:

Theorem 4.1 (Principal types). The principal type of a term is the unique type
which is a subtype of all other types assignable to the term. Formally, the principal
type AP is the unique type that satisfies:

E `Qς a : AP and, for all A, E `Qς a : A implies E `Qς AP <: A

In Qς, objects and object locations have principal types.

Proof. The proof is based on the observation that (Typ Object) and (Typ Val)
uniquely determine the types assigned to objects and locations, whilst (Typ Sub)
may only assign supertypes of those types previously derived.

In (Typ Object), objects are assigned the types extracted from their labels’
self types, which must all match according to the same rule. In (Typ Val), ob-
ject addresses, ι, are typed from the environment which, by the environment
well-formedness conditions, must assign a type to ι uniquely. The result then fol-
lows from an inductive step for (Typ Sub), and from the transitivity of subtyping
specified in (Sub Trans).

Semantics 101

This property is particularly useful when considering the typing constraints
previously discussed for heap query: without a canonical type for an object, it
becomes less clear whether these constraints are satisfied.

4.4 Semantics

We specify the execution of Qς programs as a transition relation between program
states or configurations. A configuration consists of a term and an object store:

c ∈ Configuration ::= (a,σ) configuration

σ ∈ Store ::= {ιi 7→ oi∈1..n} object store (ιi distinct)

The store, σ, maps addresses, ι, to the object located at that address, o. Each
address may be mapped to no more than one object and there are infinitely many
addresses, though each store is a finite map.

Store update is written σ[ι 7→ o], which represents the update (or addition)
of location ι in the store, which will subsequently map to object o. All other store
locations are unchanged.

We can use the typing relation from the previous section to enforce some ex-
pectations about the store. (Typ Store) in Figure 4.10 ensures that each location
in the store has a type in the environment and that the object is well-typed with
respect to that environment. In particular, all free variables and store locations
mentioned in any object must have an entry in the environment. When a store,
σ, is well-formed in the presence of an environment, E, we write E `Qς σ.

A configuration may also be well-formed and well-typed, in which case we
write E `Qς (a,σ) : A. This relation is defined by the rule (Typ Config), which
checks that a configuration’s store is well-formed, its term well-typed, and that
the domains of the environment, E, and store, σ, are identical. This final condi-
tion ensures that only addresses in the store have entries in the environment, so
that there can be no dangling pointers — if there were, the containing object in
the store would not be type-correct whilst checking store well-formedness. As the
store’s domain contains only addresses, this also implies that there are no term
or type variables in the environment and thus in the configuration’s term or in
any terms in object methods. All such terms must therefore be closed.

Execution is represented by a transition relation, Qς, which expresses a
single execution step between configurations:

 Qς⊆ Configuration× Configuration

This relation is defined by the axioms in Figure 4.12, which make use of evalua-
tion contexts [77] to frame execution order. Just as for RelJ, evaluation contexts
contain a single hole, denoted •, which marks the position of the sub-term to
be executed. A context, E , is instantiated to a term, a, by the substitution of a
sub-term, b, for the context’s hole: this is written a = E[b]. During execution

102 Qς: An object calculus with heap query

(Typ Store)

∀ι ∈ dom(σ) :
σ(ι) = [li = ς(x i : A)bi∈1..n] A≡ [li : Ai∈1..n]
E `Qς σ(ι) : A E ≡ E′, ι : A, E′′

E `Qς σ

(Typ Config)

E `Qς σ E `Qς a : A dom(E) = dom(σ)
E `Qς (a,σ) : A

Figure 4.10: Rules defining well-formed stores, and well-typed configurations

E ∈ context ::= • hole

| E (b) | v(E) λ-application

| let x : A= E in b let

| fold(A,E) type fold

| unfold(E) type unfold

| E .l select

| E .l ⇐ ς(x : A)b update

| clone(E) clone

| cons(E , a) | cons(v,E) list

| (match E : A with

cons(x , x ′)⇒ b | nil⇒ b′) list match

| 〈li : Ai = vi∈1..n, ln+1 : An+1 = E ,

l j : A j = a j∈n+2..m, lk : Ak∈m+1..p = ?〉
query

Figure 4.11: Evaluation contexts

of a term, one can imagine the decomposition of the term into a context and a
reducible expression (or redex). The redex is transformed by one of the rules of
Figure 4.12 into a new sub-term, and the result of that execution step shall be
the new sub-term wrapped in the original context — the continuation.

The definition of the evaulation contexts for Qς is given in Figure 4.11. The
λ-calculus evaluation order is standard for a call-by-value semantics. let-bound
expressions are fully evaluated before the term in which the binding occurs. We
fully evaluate terms that are to be folded or unfolded, cloned, used for label
selection, for method update, or for list construction or destruction. We also

Semantics 103

evaluate all terms in queries to values, from left to right. Notice that no execution
occurs underneath let-bindings, inside method bodies at update, or underneath a
match — in particular it is useful to note that no variables are bound in sub-terms
in reduction position.

We now describe the semantics of the redexes themselves, given by the rules
in Figure 4.12. Object definitions are simply copied to the store in (Red Object),
having been allocated a new store location. (Red Clone) is similar, but copies
the object from the store location which is to be cloned, rather than from the
executed term. (Red Select) looks up the appropriate object’s method body in
the store — the new configuration’s term is the method body where the self pa-
rameter has been substituted for the receiving location. Similarly, (Red Update)
locates the object to be updated, and updates the target location so that the new
method replaces that previously found at the updated label. Notice that the self
type is re-written to match those of methods already in the object, thus the new
object remains typable according to (Typ Object) as all self types match, and the
method remains typable as its bound variable’s type becomes only more permis-
sive.

Reduction of let-bindings in (Red Let) and λ-applications in (Red App) is
standard, as is the reduction of a fold/unfold pair in (Red Fold), where an unfold

cancels out an immediately enclosed fold.
(Red Match Cons) and (Red Match Nil) correspond to the two cases of list

destruction. In the former, a match with a non-nil list reduces to the first branch
where the head and tail of the list are substituted for the variables in the pattern;
in the latter, the term is reduced to the second branch without any substitutions.

Finally, (Red Query) evaluates heap queries by returning a list of all the ob-
jects in the store whose types match that required by the query’s type annotations
and whose values match those given in the query’s non-wildcard labels. This list
is constructed using a deterministic list comprehension:

Definition 4.3 (Deterministic list comprehension). A deterministic list compre-
hension is written

〈〈z |ψ(z)〉〉

and returns a list containing exactly the elements of the set comprehension {z |
ψ(z)} in some order. This order is preserved regardless of the context in which the
comprehension is used. This may be accomplished with the use of some total order;
for example, store locations may be sorted by their order of allocation.4

Maintaining a deterministic semantics in this way — as opposed to using a
set comprehension — simplifies the later soundness proof and, given that our
study is not one of non-determinism, does not preclude any useful or interesting
execution paths. It would be of little importance to a programmer in practice.

4Such use of a total order is more powerful than we require — the ordering need not be
consistent between different comprehensions.

104 Qς: An object calculus with heap query

(Red Object)

σ′ = σ[ι 7→ o]
ι 6∈ dom(σ)
(E[o],σ) Qς (E[ι],σ′)

(Red Select)

σ(ι) = [li = ς(x i : A)bi∈1..n]
j ∈ 1..n

(E[ι.l j],σ) Qς (E[b j{{ι/x j}}],σ)

(Red Update)

σ(ι) = [li = ς(x i : B)bi∈1..n] j ∈ 1..n
σ′ = σ[ι 7→ [li = ς(x i : B)bi∈1.. j−1, l j = ς(x : B)b, li = ς(x i : B)bi∈ j+1..n]]

(E[ι.l j ⇐ ς(x : A)b],σ) Qς (E[ι],σ′)

(Red Clone)

σ(ι) = o σ′ = σ[ι′ 7→ o] ι′ 6∈ dom(σ)
(E[clone(ι)],σ) Qς (E[ι′],σ′)

(Red Let)

(E[let x : A= v in b],σ) Qς (E[b{{v/x}}],σ)

(Red Fold)

(E[unfold(fold(A, v))],σ) Qς (E[v],σ)

(Red App)

(E[(λ(x : A)b)(v)],σ) Qς (E[b{{v/x}}],σ)

(Red Match Nil)

(E[match nil : A with cons(x , x ′)⇒ b | nil⇒ b′],σ) Qς (E[b′],σ)

(Red Match Cons)

(E[match cons(v, l v) : A with cons(x , x ′)⇒ b | nil⇒ b′],σ)
 Qς (E[b{{v/x}}{{lv/x ′}}],σ)

(Red Query)

v ≡ 〈〈ι | ∃E : E `Qς (ι,σ) : [li : Ai∈1..m] and σ(ι) = [li = qvi∈1..n, . . .]〉〉
(E[〈li : Ai = qvi∈1..n, l j : A j∈n+1..m = ?〉],σ) Qς (v,σ)

Figure 4.12: Substitution-based, small-step reduction semantics

Soundness 105

(Red Query Syntactic)

v = 〈〈ι | σ(ι) = [lk = ς(xk : A)qvk∈1..m, . . .] and A≡ [li : Ai∈1..m, . . .]〉〉
(E[〈li : Ai = qvi∈1..n, l j : A j∈n+1..m = ?〉],σ) Qς (v,σ)

Figure 4.13: A syntax-directed implementation of (Red Query)

(Red Query)’s use of the type system, and quantification over the environ-
ment, renders a direct implementation impractical. An alternative approach
would involve the annotation of objects with their principal types, in order to
avoid the invocation of the type system. This is precisely the approach taken for
class-based languages, both in theory and in practice, where these annotations
are usually referred to as the object’s dynamic type. Whilst objects are not explic-
itly annotated with their principal types, recall that object methods are annotated
with a self-type. We can therefore re-cast (Red Query) as a syntactic examination
of each object, as shown in Figure 4.13.

To establish that these two approaches are equivalent, it suffices to show the
following:

Theorem 4.2. In a well-typed configuration:

∃E : E `Qς (ι,σ) : [li : Ai∈1..m] iff

σ(ι) = [li = ς(x i : A)ai∈1..m, . . .] and A≡ [li : Ai∈1..m, . . .]

Proof. Suppose that E `Qς (ι,σ) : [li : Ai∈1..m] for some environment E. Then
from (Typ Config), E `Qς σ and E `Qς ι : [li : Ai∈1..m]. The latter implies that
ι ∈ dom(E) which, with (Typ Config), implies that ι ∈ dom(σ). (Typ Store)
requires that σ(ι) = [li = ς(x i : A)bi∈1..n] and A ≡ [li : Ai∈1..n]. The original
typing could have arisen either from (Typ Val) or (Typ Sub), so m = n or m < n.
Therefore, σ(ι) = [li = ς(x i : A)ai∈1..m, . . .] and A≡ [li : Ai∈1..m, . . .] as required.

From right-to-left, the property follows simply from the well-formedness of
the configuration, hence the store, and the conditions of (Typ Store).

4.5 Soundness

In this section, we summarize the main properties of Qς required for soundness.
As for RelJ, we focus on two key properties: that no type-correct program will
get ‘stuck’ — except in a well-defined error state — and that types are preserved
during program execution. Qς has both of these properties, and is thus sound.
For the interested reader, we summarize the important steps in the proof of these
properties in the remainder of this section.

106 Qς: An object calculus with heap query

4.5.1 Properties of well-formed environments and types

The definitions of type validity and environment well-formedness are mutually-
referencing. Therefore, their properties must be established by induction over
both sets of rules. The store is manipulated by execution, and the environments
must keep up if the conditions set by (Typ Config) are to be satisfied. Addition-
ally, during typing, we add type variable bounds and address and term variable
bindings to the environment. We therefore establish some properties of well-
formed environments and types under addition, removal and reordering of envi-
ronment elements:

Lemma 4.3 (Well-formed environments and valid types). We establish the follow-
ing properties of well-formed environments and valid types:

i. Type validity is preserved by the extension of the environment as long as the
new environment is also well-formed (specifically, as long as the extension
mentions no invalid types or duplicates of variables already bound by the
original environment):

E1, E2 `Qς A and `Qς E1, E3, E2 ok implies E1, E3, E2 `Qς A

ii. Similarly, type validity and environment well-formedness are preserved by the
removal of unused elements from the environment:

E1, E2, E3 `Qς A and dom(E2)B E3, A implies E1, E3 `Qς A

`Qς E1, E2, E3 ok and dom(E2)B E3 implies `Qς E1, E3 ok

Clearly, term variable and address bindings may be removed immediately, as
these are always fresh for environments and types.

Finally, as a corollary of the above properties:

iii. Environments remain well-formed and types remain valid under any reorder-
ing of the environment that respects dependencies:

`Qς E1, E2, E3 ok and dom(E2)B E3 implies `Qς E1, E3, E2 ok

E1, E2, E3 `Qς A and dom(E2)B E3 implies E1, E3, E2 `Qς A

Proof. The proofs proceed by ensuring the required property is closed under the
IsTyp and Env rules of Figures 4.6 and 4.7. As the `Qς E ok and E `Qς A relations
are the least such relations closed under the rules, then they must be contained
in the properties above.

We must also check that types remain valid under substitutions resulting from
traversal of the isomorphism between a recursive type and its unfolding.

Soundness 107

Lemma 4.4 (Validity of recursive type foldings/unfoldings). If the folding of a
recursive type is a valid type, so is its unfolding and vice versa:

E `Qς µ(X).B iff E `Qς B{{µ(X).B/X }}

Proof. By induction on the Typ rules of Figure 4.7:

(=⇒) We observe that where X is not a free variable in B, then the result is
immediate. Where X ∈ FV(B), we show the following property is closed
under the rules defining E `Qς A:

E `Qς A and (A≡ A′{{µ(X).B/X }} and X ∈ FV(A′) implies E `Qς µ(X).B)

(⇐=) Rather than using the property above as the inductive hypothesis, we in-
stead show the following is closed under the rules defining type validity:

E, X <: Top `Qς A and E `Qς B implies E `Qς A{{B/X }}

The desired result then follows simply by observing that E `Qς µ(X).B must
derive from E, X <: Top `Qς B, to which the above property may then be
applied.

4.5.2 Properties of typed expressions

We are able to establish that typing is preserved by the reorderings and weaken-
ings similar to those given in Lemma 4.3, and omit their definitions here. How-
ever, we add an additional operation — that of bound weakening:

Lemma 4.5 (Weakening of term variable bindings). The type bound to a term
variable in the environment may be replaced by a subtype without impacting on the
validity of typing:

E, x : A, E′ `Qς b : B and E `Qς A′ <: A implies E, x : A′, E′ `Qς b : B

Proof. By trivial induction on the rules defining the typing relation.

We now demonstrate that types are preserved by operations used in the def-
inition of the semantics in Figure 4.12. As a substitution-based semantics, the
following property is of particular importance:

Lemma 4.6 (Types preserved by substitution). Substitution of a term for a vari-
able, both with matching types, preserves typing:

E, x : B `Qς a : A and E `Qς b : B implies E `Qς a{{b/x}} : A

108 Qς: An object calculus with heap query

Proof. The proof follows routinely by ensuring that the following property is
closed under the Typ rules of Figure 4.9:

E `Qς a : A and (E ≡ E′, x : B and E′ `Qς b : B implies E′ `Qς a{{b/x}} : A)

Our semantics is also predicated upon evaluation contexts to determine eval-
uation order and to frame the execution of sub-terms within larger terms. We
therefore establish the following properties that percolate the properties of typ-
ing to sub-terms in contexts:

Lemma 4.7 (Typing in contexts).

1. A sub-expression of a well-typed expression is also typable:

E `Qς E[a] : A implies E `Qς a : B for some B

2. Replacement of a well-typed sub-expression in a well-typed expression yields a
new well-typed expression:

E `Qς E[b] : A and E `Qς b : B and E `Qς b′ : B implies E `Qς E[b′] : A

Proof. Both properties follow easily by checking closure under the rules defining
the typing relation.

4.5.3 Progress

We have already shown that typing respects terms in contexts, and we now es-
tablish similar properties for term execution:

Lemma 4.8 (Execution in contexts). A term may execute regardless of its context:

(a,σ) Qς (a
′,σ′) implies (E[a],σ) Qς (E[a′],σ′)

Proof. By inspection of the rules defining the semantics, it suffices to show that
the set of contexts is closed under context composition, that is, E[E ′]≡ E ′′. This
clearly holds by definition of context.

The above lemma then allows us to show that the Progress Theorem holds.

Theorem 4.9 (Progress).

E `Qς (a,σ) : A implies a ∈ value or (a,σ) Qς (a
′,σ′)

Soundness 109

Proof. From E `Qς (a,σ) : A we obtain, by (Typ Config):

E `Qς a : A

dom(E) = dom(σ)

E `Qς σ

It then remains to show that, under the above assumptions, the following prop-
erty is closed under the typing rules:

E `Qς a : A and (a ∈ value or ∃a′,σ′ : (a,σ) Qς (a
′,σ′))

In general the proof proceeds as follows: For each of the typing rules, we may
apply the inductive hypothesis to the antecedents of the rule, at least one of which
always corresponds to a sub-term in hole position according to the definition of
evaluation contexts.

Where every such antecedent is a value, then a Red rule is always applicable,
and an execution step is immediately derived.

Otherwise, the induction hypothesis specifies that such a sub-term is exe-
cutable and Lemma 4.8 (Execution in contexts) allows us to wrap the appropriate
context around it to derive an execution step for the original term.

4.5.4 Determinism of the semantics

We now show, for any well-typed configuration, that the execution step made
available according to the Progress Theorem is unique. As a first step, we must
show that the decomposition of a term into a context and sub-term of the form
found in the conclusion of a reduction rule is unique, but this is routine and clear
from inspection of the rules. The remaining source of non-determinism is the
selection of a fresh location for object allocation in (Red Object). Such non-
determinism is immaterial to the execution of programs (in particular, we do not
allow comparison of addresses) so we require only determinism up to renaming
of locations:

Lemma 4.10 (Determinism). The semantics is deterministic up to the renaming of
locations:

E `Qς (a,σ) : A and (a,σ) Qς (a
′,σ′) and (a,σ) Qς (a

′′,σ′′) implies

∃ι, ι′ 6∈ dom(σ) : (a′,σ′)≡ (a′′,σ′′){{ι/ι′}}

Proof. By inspection of the rules. In the case of (Red Object), we need only pick
the substitution that aligns the various possible choices of new location.

110 Qς: An object calculus with heap query

4.5.5 Type preservation

As the converse to Lemma 4.8, we show that execution of sub-terms in contexts
is, in fact, the only way that execution may come about:

Lemma 4.11. If a well-typed term may make an execution step, so may a sub-term:

E `Qς (E[a],σ) : A and (E[a],σ) Qς (a
′,σ′) and

a 6∈ value implies a′ ≡ E[a′′] and (a,σ) Qς (a
′′,σ′)

Proof. By inspection of the rules.

Lemma 4.12 (Type Preservation). Types are preserved by execution:

E `Qς (a,σ) : A and (a,σ) Qς (a
′,σ′) implies ∃E′ : E, E′ `Qς (a

′,σ′) : A

Proof. We show the property is closed under the typing rules of Figure 4.9.

Thus, every well-typed term may make a step according to the Progress The-
orem, and that step will result in a new well-typed configuration. Therefore,
well-typed Qς programs will not get stuck, and the guarantees provided by the
type system are enforced.

4.6 Extensions

In this section, we propose some potential extensions to Qς’s basic form of query
and give examples of their implementation, either by encoding or by extension
of the language.

4.6.1 Richer query language

Subqueries

The queries permitted by Qς do not allow values of labels to be defined by prop-
erty — for each label, either its value matches exactly that specified in the query,
or it is unconstrained. Instead, we can imagine allowing a richer specification
of the values that may be permitted. For example, the following query might
express those buttons contained in a subwindow of main:

〈parent : Window in 〈parent : Window=main〉, click : Top= ?〉

This could, of course, be written in Qς as:

flatten(map(〈parent : Window=main〉,
λ(x : [parent : Window])〈parent : Window= x , click : Top= ?〉))

Extensions 111

Company
ID Name
1 Sprockets Ltd.
2 General Widgets Inc.
3 Smith & Sons

Invoice
CompanyID Amount

1 100
3 200
3 300

Company ./ Invoice
ID Name CompanyID Amount
1 Sprockets Ltd. 1 100
3 Smith & Sons 3 200
3 Smith & Sons 3 300

Figure 4.14: Example of a database join

Where flatten flattens members of list of list of A to list of A and map applies the
function given as its second argument to successive elements of its first argument,
returning a list of the results. Their definitions use an object to provide the recur-
sion in their standard implementations, which are omitted here: see Figure 5.8
on page 130 for an example.

Joins

Joins — where objects from two collections are paired according to some prop-
erty — are common in database queries. For example, where we have a set of
Company tuples and a set of Invoice tuples, where each Company has an ID

and each Invoice has a CompanyID to indicate who was billed, we might join
the tuples by matching the two identifiers, which we write using the ./ operator
familiar from relational algebra [24]5:

Company
ID=CompanyID

./ Invoice

The result is a set of tuples containing the properties of both the Company and
the Invoice, wherever a match was possible, as shown in Figure 4.14. Given
the join condition, at least one of the ID/CompanyID columns is redundant, and
would normally be projected out from the result.

We demonstrate how joins may be useful in a programming language by giv-
ing an example from a Graphical User Interface (GUI):

During execution, a GUI generates events. In this example, each occurrence
of such an event gives rise to an object storing the event type, the target of the
event and a flag to indicate whether the event has been handled by the system.

5Whilst Codd [24] used ∗ instead of the ./ operator, it is now standard

112 Qς: An object calculus with heap query

For example:

[target= ς(x : Event)myButton, type= clickEvent, handled= no]

Event≡ [target : Window, type : EventType, handled : Bool]

Suppose that a behaviour defines a set of actions associated with various system
events such as a button click, or the minimization of a window. When such an
event occurs, the behaviour’s handleEvent label is invoked with the type of the
event and the target as parameters. Thus, a behaviour takes the form:

[handleEvent= ς(x : Behaviour)λ(target : Window)λ(type : EventType) . . .]

It is possible that a button may have several behaviours, and buttons may share
the same behaviour — they are in a many-to-many relationship. We associate a
behaviour bhv with a button btn by relating the two in an object:

[button= ς(x : [button : Button, behaviour : Behaviour])btn, behaviour= bhv]

For any given button, b, we can obtain its behaviours by posing the query:

〈button : Button= b, behaviour : Behaviour= ?〉

and we can obtain its unhandled events with:

〈target : Window= b, type : EventType= ?, handled : Bool= no〉

With a join, however, we can obtain in one place the details of outstanding events
as well as the behaviour responsible for handling them.

〈behaviour : Behaviour= ?〉
button=target

./ 〈target : Button= ?,
type : EventType= ?,
handled : Bool= no〉

During execution of such a query, a database system would construct a set (or
bag) of tuples to represent the result — in a database programming language, it
is usual to manipulate tuples which do not exist in a table. In an object-oriented
programming language, however, it is not usual to deal with data that does not
exist in the program store. Broadly speaking, there are two possibilities for the
result of such a query in Qς:

List of objects Just as for a query without join, we may return a list of objects as
the result, where each object has type:

[behaviour : Behaviour, target : Button, type : EventType, handled : Bool]

However, unlike the forms of query previously presented, the result would

Extensions 113

include objects that would not have existed before the query was executed.
Nowhere have we defined objects that include labels returning behaviours
alongside labels returning buttons. In this case, observing the heap mod-
ifies its state: executing the same query twice, even without any object
updates in-between, may yield different results for each execution.

List of tuples Qς could be extended with records, that could store tuples of type:

[behaviour : Behaviour]×[target : Button, type : EventType, handled : Bool]

In common with databases, these are not objects and are not reflected in
the program store.

Both options carry advantages, and both can — we believe — be constructed
soundly.

4.6.2 Zoned query

When a query is executed, every object in the heap is considered. Instead suppose
that we allow objects to be created in zones: effectively ring-fenced areas of the
heap in which queries may operate. For example, buttons are constructed in the
a zone of the heap dedicated to the graphical user interface:

[click= (invoke click handler)] in GUIZone

whilst elsewhere, an object may be created that has a click method, but which
represents part of a sound system:

[click= speaker.emit(1kHz for 2ms)] in SoundSystemZone

Thus, the following queries would have disjoint results:

GUIZone.〈click : Top= ?〉 SoundZone.〈click : Top= ?〉

and yet their union would represent the result of the 〈click : Top = ?〉 query
without any zone constraints.

Applications of such a mechanism are various, but in particular it can help us
mitigate the effect of objects created by joins, as discussed above. Objects created
in this way can be created in an ‘unqueryable’ zone, such that they do not affect
other queries. Additionally, without the facility to destroy objects, which gives
rise to the difficulties surrounding dangling pointers, we can move objects that
no longer represent current relationships into similarly unqueryable zones.

We can implement zones in Qς simply by adding an extra field to zoned
objects and to zoned queries. For appropriate choices of a zone type, Zone6 and

6This can reasonably be Top, as we do not expect to perform any operations on zones.

114 Qς: An object calculus with heap query

for a label to represent an object’s zone, zone, we can encode the constructions
above thus:

[li : Ai = mi] in Z translates to [li : Ai = mi , zone : Zone= Z]

Z .〈li : Ai = vi , l j : A j = ?〉 translates to 〈li : Ai = mi , zone : Zone= Z〉

4.7 Conclusion

In this chapter we have introduced Qς: a formal treatment of an object calculus
with the ability to query the heap. We have demonstrated a type system and
semantics, and shown that they are sound. Furthermore, by investigating query
in the setting of an object calculus, we have been able to explore typing issues
which may not otherwise have become apparent with a nominal type-system.

In the presence of query, relationships once again become a matter of inter-
object references. Instead of the complex structures of Section 1.2, however, heap
query is able to recover relationships from a single reference.

In the following chapter, we proceed to translate RelJ, our model for the in-
clusion of relationships in a class-based language, into Qς.

Chapter 5

Bridging the gap

In the preceding chapters we have given a class-based calculus and an object-
based calculus, both of which have facilities for managing relationships between
objects. In this chapter, we give a translation from RelJ to Qς in order to demon-
strate that Qς’s query mechanism allows the expression of RelJ-style relationships.
Much of the work involved in such a translation relates to the provision of class-
based features in an object-based language; once this is complete, the translation
of the relationship-based portions of RelJ is reasonably straightforward.

5.1 Translation overview

Our translation is heavily based upon that given by Abadi and Cardelli, which
translated a class-based (but not Java-like) language into the object-based calcu-
lus upon which Qς is based [1]. However, their source language lacks a number
of features present in RelJ, so the translation given here is somewhat more com-
plicated in order to accommodate mutually-referencing classes, null pointers and
errors. In particular, and unlike the Abadi-Cardelli translation, the translation
given here is type-directed, following the derivation of the translated terms’ RelJ
type.

We do not give translations to all of RelJ’s features: equality-testing and set
manipulation are omitted as their translations are rather cumbersome and do not
bear any relevance to our discussion.1 We also omit local variables and covari-
ant return types for methods: the former may be encoded using fields and the
latter can be easily recovered using the technique discussed in Section 5.1.3 for
retaining the covariance of RelJ’s from and to fields during translation.

1Equality testing involves extending Qς with access to an object’s identifier, or the addition
of serial numbers to objects which, in turn, requires the provision of naturals. Set manipulation
requires equality testing so that, when iterating over a set to remove an object, we can determine
whether the current object is that which should be removed. Neither of these is relevant to the
distinction between class-based and object-based languages, nor to the provision of relationships.

116 Bridging the gap

5.1.1 Class factories

Classes are encoded as factories, just as in the Abadi-Cardelli translation. A fac-
tory for class c has a new label which, when invoked, returns an object that
represents an instance of c. Therefore, a factory for c will have the following
form:

[new= ς(x : FactoryType)[. . . representation of new c-instance . . .], . . .]

where FactoryType is of the form below, in which [[c]] represents some appropriate
translation of c into a Qς type as discussed later in Section 5.3:

FactoryType≡ [new : [[c]], . . .]

In the Abadi-Cardelli translation, each factory is let-bound in the program. For
example:

let factoryc : A= [new= ς(x : A)a, . . .] in

let factoryd : B = [new= ς(x : B)b, . . .] in

. . .

In this encoding, however, factoryc may not refer to factoryd and is therefore un-
able to create instances of d by invoking factoryd .new. RelJ does allow mutually-
instantiating classes, however, so we collect all such factories in a single ob-
ject where self-application provides the necessary recursion to permit mutual-
instantiation:

let allFactories : FactoryType=
[c = ς(x : FactoryType). . . factory for c. . .
d = ς(x : FactoryType). . . factory for d. . .] in

. . .

Therefore, invoking allFactories.c yields a c-factory, so allFactories.c.new will re-
turn a new c-instance. The c-factory obtained in this way can use the self-
parameter x to generate d-instances by invoking x .d.new.

5.1.2 Pre-methods

The objects returned by the c factory’s new method will have labels corresponding
to each of c’s fields and methods. The fields will be rendered in the obvious way,
as labels with values. For the translation of methods, we use the pre-method
mechanism familiar from the Abadi-Cardelli translation.

A pre-method is a template for a c-instance’s method, where the identity of
the object — the value of this in RelJ — is a parameter. This parameter is
instantiated at object construction time. For example, the following RelJ method

Translation overview 117

declaration in class c:

A m(B y) { return y.f }

will be translated into the pre-method prem in c’s factory, which is now of the
following form:

[prem = ς(cFac : FactoryType)λ(xthis : [[c]])λ(y : [[B]])y. f
new= ς(cFac : FactoryType) . . .]

In subclasses of c, this method m is inherited, so factories for those subclasses
may simply refer to the pre-method from c’s factory. Therefore d ’s factory, where
d extends c will have the form:

[prem = ς(cFac : FactoryType)allFactories.c.prem,
new= ς(cFac : FactoryType) . . .]

When the time comes to construct a new c-instance and a factory’s new label is
invoked, it remains to resolve the chain of selections for inherited methods, to
create an object with labels for each of c’s fields and methods, and to instantiate
the new object’s pre-methods to methods by applying them to the new object’s
self-parameter:

new= ς(cFac : FactoryType)let wm : PreMethType= cFac.prem
in [f = ς(z : [[c]])initial value for f ,

m= ς(z : [[c]])wm(z),
. . .]

5.1.3 Relationships

So far we have only discussed the translation of classes, but the same strategy is
used when translating relationships into Qς. This strategy need only be extended
so that the to and from pseudo-fields are represented in the translation, as well
as the concept of relationship instance activity — whether or not the relationship
instance is ‘current’.

First, the new method of a relationship factory becomes an abstraction with
two parameters to represent the source and destination of the new relationship
instance:

new= ς(rFac : FactoryType)λ(x1 : [[n1]])λ(x2 : [[n2]]) . . .

Where n1 and n2 are r ’s source and destination types, respectively.
The source and destination instances cannot be stored in single fields, as Qς

cannot express our desire to give up mutability of those fields in exchange for
covariance. Instead, we assign them to a family of fields: a tor ′ field and a fromr ′

field for every r ′ that is a supertype of r (r included). Each fromr ′ field is assigned

118 Bridging the gap

the source type from the declaration of r ′ so that the type is as precise as possible;
similarly each tor ′ field. For example, consider the following two relationships:

relationship R1 extends Relation (A, B) { ... }
relationship R2 extends R1 (C, D) { ... }

where `R C≤ A and `R D≤ B. Instances of these two relationships have the
following forms, with types:

R1-instance: [fromR1 = ι1, toR1 = ι2, . . .]

[fromR1 : [[A]],toR1 : [[B]]]

R2-instance: [fromR1 = ι1, toR1 = ι2, fromR2 = ι1, toR2 = ι2]

[fromR1 : [[A]],toR1 : [[B]], fromR2 : [[C]], toR2 : [[D]]]

Suppose now that C declares a method not available in A. If from were modelled
with only one label, from, then its type would either have to be different between
the two instances, in which case the translation of R1 would not be a supertype
of R2, or it would have to be fixed at [[A]], in which case C’s method would not
be available when accessing from on instances of R2. By using a label for each of
the types at which the instance may be viewed — for R2-instances this includes
R2, R1 and Relation — the declared participant types are preserved. Accesses
to to or from are translated to the selection of the appropriate label according to
the static type of the receiver, which is sufficient for ensuring that the expected
fields and methods are available.

Immutability of the from and to labels is not assured by the Qς type system,
but well-typed RelJ programs will not contain assignments to to or from, so we
may expect the translation to be similarly free of such mutations.

Finally, we equip objects representing relationship instances with an extent
field, which we use in a manner familiar from Section 4.6.2 on zoned queries.
This extent label holds a reference to one of several global objects: extentr for
each relationship r, and none. An object’s extent label indicates both the dynamic
RelJ type of the object, and whether or not the object is ‘active’:

• When an instance’s extent field references extentr , this indicates that it is
an active instance of precisely type r. In RelJ terms, the instance would be
in ρ, and its dynamic type would be r.

• When extent references none, then the instance is no longer active — in RelJ

terms, it is no longer in ρ.

As we shall see, we only require these two states to be distinguishable by heap
query, so only the identity of these extent objects is important. We shall discuss the
use of the extent field when reviewing the implementation of RelJ’s relationship
manipulation and access operators in Section 5.3.

Translation overview 119

5.1.4 Null pointers and errors

Qς has no concept of null, which must be simulated in any translation from RelJ

programs to Qς programs. The particular difficulty when representing null is
that it occupies every reference type in RelJ, yet there is no such universal value
in Qς.

Instead, we create distinguished objects to represent a null value of each RelJ

reference type. The null representative for type c clearly must have same type
as those objects representing instances of c. We determine whether an object
represents a genuine instance of c, or whether it represents null, by extending
Qς with booleans and conditionals so that we may equip each instance with a
flag, isNull, that we may test before subjecting the object to any field accesses
or method invocations. Where the flag is set, indicating that the target instance
represents null, we typically return a value representing a null-pointer error.
For example, x.f may be translated to:

if x .isNull then null-pointer error else x . f

In the RelJ semantics, a null-pointer error is immediately propagated to the
top level. In the translation, we use a similar technique as that used to emulate
null: we build objects that represent the error for all types (not just for reference
types), and then use a continuation-passing style to check sub-terms’ results for
error before proceeding with execution of the larger term that uses those results.
Whereas we only sought null when translating field lookup and method invoca-
tion, a null-pointer error may need to be propagated upwards through any RelJ

term. Values are therefore checked for error wherever they are used: for example,
in field accesses, in method invocations as receiver, parameter or return value, in
relationship manipulations, and so on; even the translations of statements yield
a return value, so that this may be checked for error. To accomplish this, all ob-
jects representing instances of RelJ reference types (or null for those types) are
equipped with a isNPE flag, which functions in the same way as the isNull flag
described previously. So that errors generated in statements may be propagated,
a representative of void is also created, which contains only an isNPE label. An
error from an expression returning a value of type set<n> is expressed as a list
with n’s error representation at the head.

The details of checking intermediate values for error are similar to the checks
conducted for null, so we leave the details for the full translation in the Sec-
tion 5.3. However, it should be noted here that the type-direction of the trans-
lation results from the need to represent null and null-pointer errors: when
translating an expression that may cause an error, we require the expression’s
RelJ type so that the correct error value may be selected.

120 Bridging the gap

5.1.5 Relationship manipulation

The translation of RelJ’s class-based and imperative features is reasonably obvi-
ous, given the environment established above: field access and update are trans-
lated to label selection and update respectively; method invocation to selection
and application; object allocation with new is translated to invocation of the ap-
propriate factory’s new method.

Of greater relevance is the implementation of RelJ’s relationship manipulation
and access operators. The relationship access operator ι:r, which yields the
set of r-objects relating ι to some other object, is immediately translated to a
heap query. The resulting query fixes the values of the fromr ′ labels to ι for all
supertypes r ′ of r, and fixes the extent label to the extentr object. The to labels
are not fixed. Thus, all active representatives of r are selected which relate ι to
some other object. So that the resulting objects have a type through which r ’s
field and methods may be accessed, the query also mentions field and method
labels, but their values are not fixed.

The translation of ι.r — the set of objects related to ι through r — simply
maps the selection of the tor label over the result of the translation of ι:r.

Relationship addition is translated to an appropriate call to the relationship
factory’s new method, whilst relationship removal uses a query similar to that
used in relationship access in order to obtain all relevant instances of the rela-
tionship. An update of each instance’s extent label to none is then mapped across
the result so that the instances no longer appear in the result of the query used
to access relationships.

5.2 Qς booleans and conditionals

We require conditional branches so that null values and error values may be
detected. We therefore assume a boolean type which includes the two boolean
values, true and false, and a conditional test. These may be included in Qς in
two ways: by extending the definition of Qς, or by encoding.

An extension of Qς’s type system and semantics is shown in Figure 5.1. The
extension is largely self-explanatory: a new type is introduced into the grammar
and the valid-type relation; no adjustment is required to the subtyping relation,
as it is reflexive by definition; the true and false values are always well-typed and
an if takes one boolean term for the test and two terms of the same type for the
continuation. The semantics of if is standard.

Alternatively, booleans may be encoded, as long there is a finite universe of
types,A , at which conditionals will be used; that is, the continuations of all uses
of if have type A ∈ A . The boolean values, true and false, are represented by
objects that have a family of continuation-selecting methods, testA, one for each
type at which the test might be required. Each method accepts an object with
a true- and a false-continuation, and selects one depending on the truth value
represented by the enclosing object. The encoding of if simply packages the con-

Qς booleans and conditionals 121

A, B ::= . . . | boolean extended type grammar

a, b ::= . . . | true | false | if a then b else b′ extended term grammar

E ::= . . . | if E then a else b extended context grammar

(IsTypBool)

`Qς E ok

E `Qς boolean

(Typ True)

E `Qς true : boolean

(Typ False)

E `Qς false : boolean

(Typ Cond)

E `Qς a : boolean E `Qς b : B E `Qς b′ : B

E `Qς if a then b else b′ : B

(Red Cond True)

(E[if true then a else b],σ) Qς (E[a],σ)

(Red Cond False)

(E[if false then a else b],σ) Qς (E[b],σ)

Figure 5.1: Extended grammar and rules for booleans and conditionals in Qς

boolean b= [testA : ChoiceA→ A A∈A]

true b= [testA = ς(x : boolean)λ(y : ChoiceA)y.true A∈A]

false b= [testA = ς(x : boolean)λ(y : ChoiceA)y.false A∈A]

ifA a then b else b′ b= a.testA([true= ς(y : ChoiceB)b,
false= ς(y : ChoiceB)b′])

where ChoiceB ≡ [true : B, false : B] and y does not occur in b, b′

Figure 5.2: Encoding of booleans and conditionals in Qς

122 Bridging the gap

tinuations in an object and passes it to the appropriate test method of the boolean
value to be tested. We must annotate if, written ifA, with the type expected of the
continuations so that the correct test method is used — in practice, this would be
eliminated by type-directing the translation of Qς programs with booleans.

As we shall use booleans to flag and detect null and errors, the universe
of types will be the set of translations of RelJ types from the program under
consideration (see the following section):

A ≡ {[[t]] | t ∈ T }

We are therefore free choose either strategy for acquiring booleans in Qς: we
assume their presence from here on.

5.3 Formalization of the translation

For the interested reader, we now give the translation of RelJ into Qς in full
detail. As discussed in the previous section, it is convenient to regard void as
a RelJ type for the purposes of the translation. For this chapter, therefore, we
assume void ∈ T , the set of types in a RelJ program.

5.3.1 Encoding RelJ types

In the previous section, we assumed a translation from RelJ types to Qς types,
denoted [[−]]. In fact, the situation is more complicated than previously sug-
gested: the nominal type system in RelJ allows us to avoid dealing explicitly with
recursion; for example, where classes hold references to themselves. Therefore,
rather than encoding a class c simply as an object type with labels for c’s fields
and methods, we must encode it as a recursive object type, µ(X).[. . .], where the
object uses X to type those fields and methods that refer to c recursively.

We denote the translation [[−]]φ , where φ is a mapping from class and re-
lationship names to type variables. φ indicates which classes we have already
‘seen’ whilst translating the type, so that the type variable may be used in place
of a (possibly infinite) repetition of the whole translated type. We write [[−]]
when φ is empty.

Figure 5.3 defines the translation for RelJ types. For reference types n, if n has
been assigned a type variable in φ, then that variable is used as the translation
for the type. Otherwise, a fresh type variable is bound and wraps an object
which contains labels for fields, methods, null- and error-checking and, in the
case of relationships, labels for the source, destination and activity flag for the
relationship instance. set<−> types are translated to Qς lists, and the void type
is an object with labels for trapping error conditions.

The recursive types resulting from the translation of classes and relationships
each give rise to a family of isomorphic types, accessed by type unfolding. Where
we wish to make the fields and methods available for access or invocation, the

Formalization of the translation 123

[[n]]φ b=







φ(c) if n ∈ dom(φ)
A if n ∈ dom(C)
B if n ∈ dom(R)

where, for fresh X 6∈ rng(φ) and φ′ = φ ∪ (n 7→ X):

A≡ µ(X).[f : [[F+n (f)]]
φ′ , f ∈dom(F+n)

m : [[M+
n (m)arg]]

φ′ → [[M+
n (m)ret]]

φ′ , m∈dom(M+
n)

isNull : boolean,
isNPE : boolean]

B ≡ µ(X).[extent : Top,
fromr : [[R(r)from]]φ

′
, r s.t. `Rn≤r

tor : [[R(r)to]]φ
′
, r s.t. `Rn≤r

f : [[F+n (f)]]
φ′ , f ∈dom(F+n)

m : [[M+
n (m)arg]]

φ′ → [[M+
n (m)ret]]

φ′ , m∈dom(M+
n)

isNull : boolean,
isNPE : boolean]

and, for non-reference types:

[[set<n>]]φ b= list of [[n]]φ

[[void]]φ b= [isNPE : boolean]

Figure 5.3: Translation of RelJ types to Qς types

type must be unfolded. We write [[t]]� for the unfolded translation of a type t:

A� b=

¨

A{{µ(X).A/X }} where A≡ µ(X).A
A otherwise

The unfolding of set<− > and void types has no effect.
We follow a simple convention for determining the type at which values and

terms are viewed: values are always passed and held in fields and variables at
their folded type, and are only unfolded for field access or method invocation.
This convention is usually enforced easily, although as queries in Qς are typed
list of [−] rather than list of µ(X).[−], some work is required when translating
relationship access.

Finally, we translate typing environments by mapping the translation of types

124 Bridging the gap

nullc b= fold([[c]], [l = ς(z : [[c]]�)z.l l∈dom(F+c)∪dom(M
+
c),

isNull= true

isNPE = false])

nullr b= fold([[r]], [l = ς(z : [[r]]�)z.l l∈dom(F+r)∪dom(M
+
r),

l ′ = ς(z : [[r]]�)z.l ′ l ′∈{fromr′ ,tor′ |`Rr≤r ′},
extent= none,
isNull= true

isNPE = false])

Figure 5.4: Qς terms which act as factories of null values for RelJ reference types

across the environment’s assigned types — variables are not modified:

[[Γ]](x) = [[t]] where Γ(x) = t

5.3.2 Translation of terms

We now proceed to set up a translation relation from well-typed RelJ expressions
and statements to Qς terms. When expression e (or statement s), which is well
typed in the presence of environment Γ, may be translated to Qς term a we write:

Γ `R e : t Â a Γ `R s Â a

Before we can define this translation, however, we must establish encodings for
null and for errors, and a strategy for detecting and propagating such errors.

null values

Figure 5.4 gives the definitions for null-encodings for each RelJ reference type,
n. So that the null encoding for n inhabits the same type as the encoding of non-
null n-instances, these encodings have labels to represent n’s fields and methods
and, in the case of relationships, labels for source and destination pointers as
discussed earlier. These labels all take method bodies of the form:

ς(x : [[n]]�)x .l

Such labels will infinitely recurse if selected, but our translation will raise an
error before such a selection is made on an object representing null. Notice that
the methods’ self parameters are annotated with the unfolded form of n’s type,
as labels may not be selected from a folded term. Finally, these objects have their
isNull flags set to true. RelJ permits the passage of null through the program, as
long as no field access or method invocations are performed upon it: the null
representatives’ error flags are therefore set to false.

Formalization of the translation 125

npec b= fold([[c]], [l = ς(z : [[c]]�)z.l l∈dom(F+c)∪dom(M
+
c),

isNull= false

isNPE = true])

nper b= fold([[r]], [l = ς(z : [[r]]�)z.l l∈dom(F+r)∪dom(M
+
r),

l ′ = ς(z : [[r]]�)z.l ′ l ′∈{fromr′ ,tor′ |`Rr≤r ′},
extent= none,
isNull= false

isNPE = true])

npeset<n> b= cons(npen,nil)

npevoid b= [isNPEt = true]

Figure 5.5: Qς terms to construct error values for RelJ types t ∈ T

The following proposition specifies that n’s null representative is well-typed
in the Qς type system:

Proposition 5.1. For a well-formed program, (C,R, s), and for every reference type
n ∈ dom(C)∪ dom(R):

; `Qς nulln : [[n]]

Thus, we have a null representative for every reference type in the translated
RelJ program, just as null can be typed with any such type in the RelJ type system.

void value

For the encoding of statements, we define a term that generates a void value.
This is simply an object containing a label that allows checking for error condi-
tions. The void value’s error flag is set to false, indicating that the statement
from which it originates did not attempt to dereference null:

void b= [isNPE = false]

Naturally, we require that this representation of a void value inhabits the Qς
equivalent of the void type:

Proposition 5.2.
; `Qς void : [[void]]

Errors

Just as for null, we have encodings for null-pointer errors, given in Figure 5.5.
However, we have a representative for every RelJ type, including void so that we

126 Bridging the gap

ckNPE x : n= a at t ′ in b b= let x : [[n]] = a
in if unfold(x).isNPE then npet ′ else b

ckNPE x : set<n>= a at t ′ in b b= let x : [[set<n>]] = a
in match x : [[set<n>]] with
cons(y, ys)⇒
if unfold(y).isNPE then npet ′ else b
| nil⇒ b

ckNPE x : void= a at t ′ in b b= if a.isNPE then npet ′ else b

ckNull x : n= a at t ′ in b b= ckNPE x : n= a at t ′ in
if unfold(x).isNull then npet ′ else b

Figure 5.6: Constructs to check for null values and error conditions, where y
and ys are fresh in the continuation b

may check for error conditions resulting from statements. For reference types,
the principle is the same as for null encodings. Errors arising from expressions
returning a value of type set<n> are encoded simply by wrapping n’s error rep-
resentative in a singleton list.

Proposition 5.3. For a well-formed program, (C,R, s), and for every type t ∈ T :

; `Qς npet : [[t]]

Detecting and propagating errors

When executing a statement or expression, execution must halt when a sub-
expression evaluates to an error, just as errors are propagated to the top level
in the RelJ semantics. To do this, we use the ckNPE construct, which we write
as if it were a Qς term, but which has a translation to ‘pure’ Qς as given in
Figure 5.6:

ckNPE x : t = a at t ′ in b

The above checks the sub-expression a, which is a translation of a RelJ term of
type t, for error. If there is no error, then the continuation, b, is executed, wherein
it may make use of a’s result in the variable x . The continuation b represents the
translation of the surrounding statement or expression, which had RelJ type t ′.
Where a does evaluate to an error — that is one which has a true isNPE flag —
then the continuation in b is discarded, and the error value appropriate to t ′ is
returned.

Formalization of the translation 127

The details of the implementations in Figure 5.6 are routine: the result of
the sub-expression is assigned to a variable for later use in the continuation; the
variable’s value is checked for error (possibly after being unfolded, or unwrapped,
depending on type); and the continuation is offered as the non-error continuation
to the conditional.

Error values are only generated when a field access or method invocation is
attempted on null value. We use a similar strategy to trap nulls as that used for
detecting error, using the ckNull construct:

ckNull x : n= a at t in b

If a is null, then an error value appropriate to type t is returned. If not, contin-
uation b is executed, which will usually be the translation of a RelJ field access
or method invocation. For brevity, ckNull includes a check which ensures that a
does not evaluate to an error — progress is impossible whether a is an error or
null.

Where we have more than one sub-expression to check for null or for error,
we use the following shortened form:

ckNPE x : n= a, x ′ : n′ = a′ at t in b

which is equivalent to:

ckNPE x : n= a at t in ckNPE x ′ : n′ = a′ at t in b

Similarly, where one sub-expression needs to be checked for null, and the other
only for error (recall that the check for null contains an implicit error-check),
we write:

ckNull x : n= a ckNPE x ′ : n′ = a′ at t in b

as shorthand for:

ckNull x : n= a at t in ckNPE x ′ : n′ = a′ at t in b

We need only specify the surrounding type once in the shortened form, as the
type of the overall expression is identical regardless of which sub-expression is
being examined.

Finally, we assume that the variables used by the above terms are fresh wher-
ever they are introduced.

Translation environment

When translating RelJ terms, we assume that variables to represent the various
relationship extents are present in the environment, and that there is a variable
through which the instance factories may be accessed. This environment is there-

128 Bridging the gap

(Trans Null)

`R n

Γ `R null : nÂ nulln

(Trans Var)

Γ(x) = t

Γ `R x : t Â x

(Trans New)

`R c

Γ `R new c() : c Â instFacs.c.new

(Trans Fld)

Γ `R e : nÂ a F+n (f) = t

Γ `R e. f : t Â ckNull x : n= a at t in unfold(x). f

(Trans FldAss)

Γ `R e : nÂ a Γ `R e′ : t ′ Â b F+n (f) = t ′′ `R t ′ ≤ t ′′

Γ `R e. f = e′ : t ′ Â ckNull x : n= a ckNPE y : t ′ = b at t ′ in
fold([[n]],unfold(x). f ⇐ ς(x : [[n]]�)y)

(Trans Call)

Γ `R e : nÂ a Γ `R e′ : t Â b M+
n (m) = (x , t ′, t ′′, mb) `R t ≤ t ′

Γ `R e.m(e′) : t ′′ Â ckNull y : n= a ckNPE z : t = b at t ′′ in unfold(y).m(z)

Figure 5.7: Translation of standard class-based features of RelJ into Qς

fore of the form:

none : Top, extentr : Top r∈dom(R), instFacs : Factories

where Factories is the type of the object with factories for each reference type.
These variables are established in the preamble of the translated program, which
is given at the end of this chapter. For now, we assume their presence and, in the
case of instFacs, that it contains a label for each reference type n from which a
factory for n may be obtained.

Translation of class-based features

The translation of a RelJ expression e to Qς term a is written:

Γ `R e : t Â a

where we assume that e has type t in the presence of environment Γ. We define
the translation for the class-based portions of RelJ in Figure 5.7, where we do not
repeat the constraints imposed by the RelJ type system unless they add clarity. We

Formalization of the translation 129

assume throughout this translation that a RelJ term translated at some type can
indeed be assigned that type:

Γ `R e : t Â a implies Γ `R e : t

(Trans Null) translates null to its appropriately-typed representative from
the nulln family.

Program variables are left untranslated by (Trans Var), as variable names are
preserved by the translation of methods to pre-methods, given later.

(Trans New) translates the allocation of a new class instance to the invoca-
tion of the appropriate factory’s new method, via the instFacs variable that will be
established in the translation preamble.

Field lookup is translated in the obvious way in (Trans Fld): ckNull is used
to ensure that the receiver is not null (or error) and, where this is not the case,
the receiver is unfolded to expose its labels, and the field’s label is selected.

Field update is translated by (Trans FldAss) in a similar way, with an addi-
tional check to ensure that the new value does not represent error (it is allowed
to be null). The result of the update must also be folded, so that it conforms to
the convention for reference type encodings.

Finally, method call is translated by (Trans Call). We check the receiver is
not null and that the argument is not an error before selecting the method’s label
from the unfolded receiver, and applying the resulting function to the argument.

Translation of relationship-based features

The translation of relationship access is based on find, defined in Figure 5.8. The
find construct takes the name of a relationship, r, and two terms, a and b, which
represent the source and destination of the r-instances to be returned. We allow
b to be left blank, written find(r, a,?), where we only want to fix the source
address.

The evaluation of find(r, a, b) uses query to emulate the function of ρ from
RelJ’s operational semantics. This query fixes the values of the from and to labels
to a and b respectively, and fixes the result objects’ extent labels to extentr .

2 The
query does not fix values for the labels which represent fields, methods, isNull or
isNPE, but we require their presence in the query so that the type makes all the
objects’ features available to the continuing computation.

The result of the query will have type list of [[r]]�, which does not conform
to the typing convention for translated reference types — we require the result
to be passed as [[set<r>]], which is equivalent to list of [[r]]. Therefore, we fold

each member of the resulting list to the [[r]] type using foldall, whose definition
is also given in Figure 5.8. The definition of foldall is based on map, which shall
also be used in later portions of the translation. The map construct takes a list-

2Recall that we assume extentr exists as a variable in scope, which will be established when we
give translations to entire programs.

130 Bridging the gap

find(r, a, b) b= foldall(r,
〈extent : Top= extentr ,
fromr ′ : [[R(r ′)from]] = a r ′ s.t. `Rr≤r ′ ,
tor ′ : [[R(r ′)to]] = b r ′ s.t. `Rr≤r ′ ,
f : [[F+r (f)]] = ? f ∈dom(F+r),
m : [[M+

r (m)arg]]→ [[M
+
r (m)ret]] = ? m∈dom(M+

r),
isNull : boolean,
isNPE : boolean〉)

foldall(r, a) b=map(a,λ(x : [[r]]�)fold([[r]], x), [[r]])

map(a,λ(x : A)b, B) b= [nex t = ς(s : [nex t : list of A→ list of B])λ(z : list of A)
match z : list of A with

cons(y, ys)⇒ cons((λ(x : A)b)(y), s.next(ys)) |
nil⇒ nil].next(a)

Figure 5.8: Query-based implementation of RelJ’s relationship store, with auxil-
liary functions foldall and map

generating term, a function to be applied to the list’s members, and a return type
for that function. Its implementation is standard; an object with a single method
is used to iterate over successive members of the list. In the case of foldall, the
function folds each list member so that they have type [[r]] as required by our
typing convention.

Figure 5.9 gives translations for RelJ’s relationship-based features, most of
which are based on find. The simplest use of the query occurs in (Trans RelInst),
which checks the receiver for error and null, before using find to obtain all r-
instances which relate the receiver to some other object.

A similar strategy is used in (Trans RelObj), but to obtain the objects related
to the receiver through r, rather than the r-instances themselves, we map the
selection of each object’s tor label across the result.

The translations of from and to in (Trans To) and (Trans From) are equiva-
lent to the translation of field access, except that the appropriate label is selected
based on the receiver’s static type in order to obtain the most precise type, as
discussed in Section 5.1.3.

(Trans RelAdd) implements the RelJ’s add operator. After the operands are
checked for error and null, we use find to search for an instance of r between
them. If such an instance exists, it is returned; otherwise, the new method of r ’s
factory is invoked to create a fresh instance.

(Trans RelRem) is structured similarly. Where no r-instance exists between
the operands, then the appropriate null representative is returned. If an r-
instance does exist, then its extent label is modified to none so that it no longer

Formalization of the translation 131

(Trans RelInst)

Γ `R e : nÂ a

Γ `R e:r : set<r>Â ckNull x : n= a at set<r> in find(r, x ,?)

(Trans RelObj)

Γ `R e : n1 Â a

Γ `R e.r : set<R(r)to>Â ckNull x : n1 = a at set<R(r)to> in
let ys : [[set<r>]] = find(r, x ,?) in
map(ys,λ(z : [[r]])unfold(z).tor , [[R(r)to]])

(Trans From)

Γ `R e : r Â a

Γ `R e.from :R(r)from Â ckNull x : r = a atR(r)from in unfold(x).fromr

(Trans To)

Γ `R e : r Â a

Γ `R e.to :R(r)to Â ckNull x : r = a atR(r)to in unfold(x).tor

(Trans RelAdd)

Γ `R e1 : n3 Â a Γ `R e2 : n4 Â b
R(r) = (_, n1, n2, _, _) `R n3 ≤ n1 `R n4 ≤ n2

Γ `R r.add(e1,e2) : r Â ckNull x : n3 = a, y : n4 = b at r in
let z : [[set<r>]] = find(r, x , y) in
match z : [[set<r>]] with
cons(z′, zs′)⇒ z′ |
nil⇒ instFacs.r.new(x)(y)

(Trans RelRem)

Γ `R e1 : n3 Â a Γ `R e2 : n4 Â b
R(r) = (_, n1, n2, _, _) `R n3 ≤ n1 `R n4 ≤ n2

Γ `R r.rem(e1,e2) : r Â
ckNull x : n3 = a, y : n4 = b at r in
let z : [[set<r>]] = find(r, x , y) in
match z : [[set<r>]] with
cons(z′, zs′)⇒ fold([[r]],unfold(z′).extent⇐ ς(w : [[r]]�)none) |
nil⇒ nullr

Figure 5.9: Translations RelJ’s relationship-based features

132 Bridging the gap

(Trans Empty)

Γ `R εÂ void

(Trans Exp)

Γ `R e : t Â a Γ `R s Â b

Γ `R e; s Â ckNPE x : t = a at void in b

(Trans For)

Γ `R e : set<n1>Â a Γ, x 7→ n2 `R s1 Â b1 Γ `R s2 Â b2

`R n1 ≤ n2

Γ `R for (n2 x : e) {s1}; s2 Â
ckNPE y : set<n2>= a at void in

ckNPE z : void= for(y,λ(x : [[n2]])b1) at void in b2

for(a,λ(w : [[n]])b)b=[next= ς(s : [nex t : list of [[n]]→ [[void]]])
λ(x : list of [[n]])
match x : list of [[n]] with
cons(y, ys)⇒
ckNPE z : void= (λ(w : [[n]])b)(y) at void in

s.next(ys) |
nil⇒ void].next(a)

Figure 5.10: Translation of statement sequences

appears in the find query — the instance is rendered inactive.

Proposition 5.4. For a well-formed RelJ program, the translation of a well-typed
expression:

Γ `R e : t Â a

will be well-typed in the presence of the assumed environment containing instFacs
and extent objects, combined with the translation of e’s typing environment, Γ:

none : Top, extentr : Top r∈dom(R), instFacs : Factories, [[Γ]] `Qς a : [[t]]

Statements

RelJ statements are translated by the rules in Figure 5.10. Statements are not
explicitly assigned types in the RelJ type system, so the translation relation is
written:

Γ `R s Â a

where we assume s is well-typed in the presence of environment Γ.
In general, individual statements are translated to a Qς term of type [[void]].

Once that void value is checked for error, it is discarded and the remaining state-
ments are left as the continuation. The resulting chain of let-bindings is termi-
nated by the translation of an empty statement to void by (Trans Empty).

Formalization of the translation 133

Expressions in statement position are translated as usual by (Trans Exp), but
their results are discarded after being checked for error.

The for iterator is given a translation by (Trans For). The target set is
checked for error, after which the set is processed by for, based on map from Fig-
ure 5.8. Unlike map, for checks the result of each step for error before discarding
it and making the recursive step: if an error has occurred, an error value of void
type is immediately returned and no recursion takes place. Notice also that the
translation of the for iterator’s body is expected to have a free variable, x , which
is then λ-bound when the body is passed to for.

Proposition 5.5. For a well-formed RelJ program, the translation of a well-typed
statement:

Γ `R s Â a

will be well-typed in the presence of the assumed environment and the translation of
the typing environment, Γ:

none : Top, extentr : Top r∈dom(R), instFacs : Factories, [[Γ]] `Qς a : [[void]]

5.3.3 Instance factories

As discussed in the previous section, we enclose all instance factories in a single
object, so that classes and relationships may instantiate one another. This col-
lection of factories will therefore have the following type, where Factoryn is an
n-indexed family of types, one for each n-factory.

Factories b= [c : Factoryc
c∈dom(C), r : Factoryr

r∈dom(R)]

The factories themselves have the following types, which reflect the new methods
that yield fresh instances, and the pre-methods from which those instances are
constructed:

Factoryc b= [new : [[c]],
prem : [[c]]→ [[M+

c (m)arg]]→ [[M
+
c (m)ret]]

m∈dom(M+
c)]

Factoryr b= [new : [[R(r)from]]→ [[R(r)to]]→ [[r]],
prem : [[r]]→ [[M+

r (m)arg]]→ [[M
+
r (m)ret]]

m∈dom(M+
r)]

Recall that there is a pre-method entry for every method contained in the class or
relationship, but that the pre-method defers to the supertype’s pre-method when
that method is inherited.

We now give Qς implementations of factories for RelJ classes and relation-
ships. These are based on the generation of pre-methods, which is specified by
(Trans Meth) in Figure 5.11. (Trans Meth) uses the translation relation of
the previous section to construct pre-methods by translating the method body’s
statement, s, and return expression, e. The statement body’s value is checked for

134 Bridging the gap

(Trans Meth)

Mn(m) = (x , t, t ′,{ s return e; })
{x 7→ t,this 7→ n} ∪L `R s Â a
{x 7→ t,this 7→ n} ∪L `R e : t ′ Â b

n `R mÂ λ(this : [[n]])λ(x : [[t]])ckNPE y : void= a at t ′ in b

Figure 5.11: Translation of RelJ methods, m, to Qς pre-methods, a.

error before the return expression is evaluated. Notice that the free variables rep-
resenting the method’s formal parameter and this are λ-bound in the resulting
pre-method.

The definitions of factories for classes and relationships are given in Fig-
ure 5.12. Factories for classes are defined by (Trans Class). A factory for a class,
c, contains a constructor, new, and a collection of pre-methods, prem for each
(possibly inherited) method m. Where c declares m, the translation of (Trans

Meth) is used to obtain a pre-method; where m is inherited, the pre-method is
imported from the superclass’s factory. When constructing an object, the methods
are let-bound in order to resolve the resulting indirections, before being installed
in the new object alongside labels for fields, null- and error-checking. When a
method label is later selected on this newly-generated instance, the pre-method
is applied to the self-parameter to produce a method which, when given an ar-
gument, will perform the method’s action. The self-parameter must be folded, as
per our typing convention. Fields are given suitable initial values by initSel.

Factories for relationships are derived from (Trans Rel), and have much the
same form as those for classes, with the addition of the from and to labels, and the
extent label which is used by the find query to isolate those r-instances which are
current, and to exclude instances of r ’s sub-relationships from the query result.

Proposition 5.6. For a well-formed (C,R, s), and for all reference types n, the
n-factory:

`R nÂ an

will be well-typed in the presence of the assumed environment containing instFacs
and extent objects:

none : Top, extentr : Top r∈dom(R), instFacs : Factories `Qς an : Factoryn

Programs

We now arrive at the top-level of our translation, which brings together the facto-
ries into a single, translated program, and which is given by (Trans Program) in
Figure 5.13. The class and relationship factories are installed in a single object in
the presence of a preamble which sets up the extent objects none and extentr for

Formalization of the translation 135

initSel(t) b=

(

nullt if t = n

nil otherwise

(Trans Class)

C(c) = (c′,F ,M) ∀m ∈ dom(M) : c `R mÂ am

`R c Â [new= ς(cFac : Factoryc)
�

let wm : [[c]]→ [[M+
c (m)arg]]→ [[M

+
c (m)ret]]
= cFac.prem in

�m∈dom(M+
c)

[f = ς(z : [[c]]�)initSel(t) f ∈dom(F+c),
m= ς(z : [[c]]�)wm(fold([[c]], z)) m∈dom(M+

c),
isNull= false

isNPE = false],
prem = am

m∈dom(M),
prem′ = instFacs.c′.prem′

m′∈dom(M+
c)\dom(M)]

(Trans Rel)

R(r) = (r ′, n1, n2,F ,M) ∀m ∈ dom(M) : r `R mÂ am

`R r Â [new= ς(rFac : Factoryr)λ(x1 : [[n1]])λ(x2 : [[n2]])
�

let wm : [[r]]→ [[M+
r (m)arg]]→ [[M

+
r (m)ret]]
= rFac.prem in

�m∈dom(M+
r)

[extent= extentr ,
fromr ′ = x1

r ′ s.t. `Rr≤r ′ ,
tor ′ = x2

r ′ s.t. `Rr≤r ′ ,
f = ς(z : [[r]]�)initSel(t) f ∈dom(F+r),
m= ς(z : [[r]]�)wm(fold([[r]], z)) m∈dom(M+

r),
isNull= false,
isNPE = false],

prem = am
m∈dom(M),

prem′ = instFacs.r ′.prem′
m′∈dom(M+

r)\dom(M)]

Figure 5.12: Translation of RelJ classes and relationships into Qς factories

136 Bridging the gap

(Trans Program)

; `R s Â a ∀c ∈ dom(C) : `R c Â ac ∀r ∈ dom(R) : `R r Â ar

`R (C ,R , s)Â let none : Top= [l = ς(x : [l : Top])x .l] in
let extentr : Top= clone(none) in r∈dom(R)

let instFacs : Factories=
[c = ς(x : Factories)x .c c∈dom(C),
r = ς(x : Factories)x .r r∈dom(R)] in






let instFacn : Factoryn = an in

let _ : Factories=
instFacs.n⇐ ς(x : Factories)instFacn in







n∈dom(C)∪dom(R)

...
in a

Figure 5.13: Translation of RelJ programs into Qς

each relationship r. Notice that we install the factories after creation of the inst-
Facs object, so that the factory objects are instantiated only once — if the instFacs
object were to have methods of the form ς(x : Factories)ac , a new factory would
be created for every factory access. Finally, the translation of the program’s ‘main’
statement forms the body of the resulting nest of let-bindings to yield a closed
Qς term that represents the original RelJ program.

Proposition 5.7. For well-formed program (C,R, s):

`R (C,R, s)Â a implies ; `Qς a : [[void]]

5.4 Conclusion

This chapter demonstrated how RelJ programs may be translated to Qς. It is
important to note that whilst RelJ’s model of class-based programming is very
different to Qς’s object-based model — indeed, significant effort was required to
provide an environment in which RelJ’s model could be supported — the imple-
mentation of RelJ relationships was straightforward, using heap query. Thus, we
have shown that the relationship store of RelJ is merely an abstraction of infor-
mation already available in the heap, which may be exposed by query.

Chapter 6

Conclusion

In this thesis, we have seen how relationships are well-represented in models
of object-oriented systems, and therefore in programmer intuition, but not in
object-oriented languages themselves. We conducted a formal exploration of re-
lationships in object-oriented languages with RelJ and Qς.

RelJ introduced relationships in a class-based language with the same status
as classes: relationships in RelJ have fields and methods, they can extend other
relationships, their instances can be referenced and relationships can themselves
take part in other relationships. Relationships in RelJ are implemented using the
relationship store, which is an abstract representation of the heap and encap-
sulates much of the complexity involved in maintaining relationship structures.
This complexity was particularly evident in the demonstration of a semantics of
relationship inheritance that differs from traditional class inheritance.

Based on the observation that the relationship store is derivable from the
heap, we described Qς, a strongly-typed object calculus with heap query. Rela-
tionships are once again reunited with inter-object references, but query elimi-
nates the complex machinery required to encode them. We demonstrated this by
giving a translation from RelJ to Qς. The translation of RelJ’s class-based features
into Qς was rather cumbersome owing to RelJ’s comparatively liberal, nominal
type system and the need to emulate null. However, the relationship-based fea-
tures were easily translated into heap queries.

For both RelJ and Qς, we gave a formal type system and semantics, and
showed that no well-typed programs in either language can get into an unsafe
state.

6.1 Future work

We conclude by reviewing some opportunities for further investigation:

Query and encapsulation Without query, an object must be able to follow a
chain of references to another object in order to access it. Heap query eliminates

138 Conclusion

this restriction so that all parts of the heap may be accessed regardless of refer-
ences. As a result, encapsulation of aggregate objects is threatened: techniques
to encapsulate aggregate objects by restricting aliasing [4, 6, 17, 22, 44] lose
much of their power in the presence of query. The issue of encapsulation cer-
tainly deserves more work: in particular, the ability for objects to tag themselves
as ‘unqueryable’, or the division of the heap into disjoint queryable sections as in
Section 4.6.2 may help to preserve encapsulation. How objects are allocated to
such zones — that is, what precisely constitutes an object that ought to be en-
capsulated — remains an open problem, though various concepts of ownership
seem promising [4, 23].

Garbage collection Garbage collectors normally dispose of unreferenced ob-
jects, but these objects may now appear in the results of heap queries. Whilst
better encapsulation will help inform decisions about which objects ought to be
garbage collected, it is also important that the collector does not dispose of ob-
jects that may appear in query results that are still being examined: cooperation
between the query engine and the garbage collector will be required.

Query for class-based languages Willis et al.’s work on run-time heap query
for Java [76] gives an indication of how Qς’s query operator might be mapped
into a more mainstream language. Nevertheless, the formal work of Qς must be
carried over to the class-based world, especially when considering the application
of orthogonal techniques to help restore encapsulation boundaries. It is possible
that hiding queries inside abstractions like RelJ’s relationships might prove less
dangerous to encapsulation in general.

Improving the query language Qς’s query language is relatively simple, but
more complex object-based query languages exist, notably Object Query Lan-
guage (OQL) from the ODMG [20] and native query expressions in LINQ [54].
Whilst filtering mechanisms and joins can be encoded with Qς’s simple queries
combined with iterator objects, a more expressive query language would be de-
sirable in practice.

Accessing databases Language extensions have been proposed that permit
database queries to be expressed natively in object-oriented programming lan-
guages, such as the LINQ and Cω extensions to C# [11, 54]. Alongside native
queries, these provide a more flexible model for supporting the representation of
XML and relational data from databases. It would be interesting to investigate
the rôles of relationships and heap query in strategies for handling data from
object-oriented and object-relational databases.

Development experience Whilst researchers may freely generate new exten-
sions to programming languages and software engineering techniques, it is ul-

Future work 139

timately the experience of programmers that will decide the usefulness and the
form of relationship abstractions in the field. How developers use relationships in
practice may only be determined by observation, but a flexible formal model is vi-
tal for determining whether features demanded by programmers can be provided
safely.

Implementation Implementations of languages and libraries supporting rela-
tionships exist [2, 59, 62], as do implementations heap query [76]. Whilst RelJ
and Qς could be adopted as formal models for such implementations, it would be
both interesting and useful to implement RelJ and Qς directly. By equipping the
C# run-time environment or the Java virtual machine with relationships/query,
they can be represented natively and securely in bytecode, though established
techniques would undoubtedly be used in the implementation [59, 76]. Further-
more, it is essential that any such implementation be flexible enough that models
can be adjusted as programmer experience is evaluated — such flexibility may
even be desirable at the language level so that programmers may apply their
intuition to select an appropriate implementation of relationships.

Guide to notation

This guide summarizes the notation used in this thesis, divided into three groups:
notation for RelJ, notation for Qς and notation for the translation, which inherits
notation from both the language formalisms.

RelJ (Chapters 2, 3 and 5)

Symbols
Symbol Description
� see Judgements
• Context hole (Fig. 2.10, p. 53)
↑ι see Compound forms
`R see Judgements

 R Execution relation (Fig. 2.13, p. 58)
[−] see Compound forms
〈−〉 see Compound forms
〈〈−〉〉 see Compound forms
t Least upper bound of one or more types (p. 49)

Γ Typing environment (p. 45)

γ Local variable store (p. 55)
ε Empty statement (Fig. 2.3, p. 41)
ι Object identifier/address (p. 54)
ρ Relationship store (p. 54)
σ Heap (p. 54)

C Class lookup table (p. 42)
E Evaluation context (Fig. 2.10, p. 53)
Ee for expressions
Es for statements
F Field lookup table (p. 42)
Fn for reference type n

142 Guide to notation

Symbols (continued)
Symbol Description
F+n including inherited fields
L Local variable lookup table (p. 43)
M Method lookup table (p. 42)
Mn for reference type n
M+

n including inherited methods
P Abstract program (p. 42)
R Relationship lookup table (p. 43)
T Set of valid program types (p. 42)

R Term (Fig. 2.3, p. 41)

c Class name (Fig. 2.3, p. 41)
e Expression (Fig. 2.3, p. 41)
f Field name (Fig. 2.3, p. 41)
l Assignment target, l-value (Fig. 2.3, p. 41)
m Method name (Fig. 2.2, p. 40)
mb Method body (Fig. 2.3, p. 41)
mc Multiplicity constraint (Fig. 3.6, p. 77)
n Reference type (Fig. 2.3, p. 41)
o Object (p. 54)
p Program (Fig. 2.3, p. 41)
r Relationship name (Fig. 2.2, p. 40)
s Statement (Fig. 2.3, p. 41)
t Type (Fig. 2.3, p. 41)
v Value (Fig. 2.3, p. 41)
w Error (p. 53)
x Variable name (Fig. 2.2, p. 40)

Compound forms
Form Description
− `R − see Judgements
R[x ′/x] Substitution of x with x ′ in term R (p. 53)
φ[a 7→ b] Update map φ such that a maps to b (p. 45)
σ ↑ι f Find f ’s implementation for ι (Fig. 3.2, p. 72)
E[e] Context instantiation (p. 52)
〈σ,ρ,γ, R〉 Configuration (p. 55)
〈σ,ρ,γ, w〉 Error configuration

〈σ,ρ,γ, R〉 R 〈σ,ρ,γ, R〉 Execution step (Fig. 2.13, p. 58)
〈〈c|| f1 : v1, . . .〉〉 Class instance/Object (p. 54)
〈〈r, ι1, ι2|| f1 : v1, . . .〉〉 Relationship instance (p. 54)
〈〈r, ι1, ι2, ι|| f1 : v1, . . .〉〉 with shared inheritance (p. 71)

143

Judgements
Judgement Description
`R � The program is well-formed (Fig. 2.9, p. 52)
`R t t is a well-formed type (Fig. 2.9, p. 52)
`R t1 ≤ t2 t1 is a subtype of t2 (Fig. 2.5, p. 45)
Γ `R γ Locals store γ agrees with Γ (Fig. 2.12, p. 56)
Γ `R σ Heap σ is well-formed in Γ (Fig. 2.12, p. 56)
Γ `R 〈σ,ρ,γ, e〉 : t Expression configuration is well-typed (Fig. 2.12, p. 56)
Γ `R 〈σ,ρ,γ, s〉 Statement configuration is well-typed (Fig. 2.12, p. 56)
Γ `R e : t e has type t in environment Γ (Fig. 2.6, p. 46)
Γ `R o Object o is well-formed in Γ (Fig. 2.12, p. 56)
Γ `R s s is well-typed in environment Γ (Fig. 2.6, p. 46)
n `R f f is a well-declared field of n (Fig. 2.8, p. 50)
n `R m m is a well-declared method of n (Fig. 2.8, p. 50)

Qς (Chapters 4 and 5)

Symbols
Symbol Description
? Query wildcard (Fig. 4.4, p. 93)
`Qς see Judgements
B see Compound forms
→ see Compound forms
[−] see Compound forms
〈〈−〉〉 see Compound forms

ι Object address (Fig. 4.1, p. 88)
λ Abstraction binder (Fig. 4.1, p. 88)
µ Recursive type binder (Fig. 4.2, p. 89)
σ Store (p. 101)
ς Self-parameter binder (Fig. 4.1, p. 88)

E Evaluation context (Fig. 4.11, p. 102)

A, B Type (Fig. 4.2, p. 89)
E Environment (p. 96)
FV(a) Free variables in a (p. 91)
O Object type (Fig. 4.2, p. 89)
Q Queryable type (Fig. 4.4, p. 93)
X , Y Type variable (Fig. 4.1, p. 88)

a, b Term (Fig. 4.1, p. 88)
c Configuration (p. 101)

144 Guide to notation

Symbols (continued)
Symbol Description
l Label (Fig. 4.1, p. 88)
lv List value (Fig. 4.4, p. 93)
m Method definition (Fig. 4.1, p. 88)
o Object (Fig. 4.1, p. 88)
qv Queryable value (Fig. 4.4, p. 93)
v Value (Fig. 4.1, p. 88)
w, x , y, z Variable (Fig. 4.1, p. 95)

Compound forms
Form Description
(a,σ) Configuration (p. 101)
x B a Variable x is fresh for term a (p. 91)
A<: B A is a subtype of B (Fig. 4.8, p. 98)
A→ B Function type (Fig. 4.2, p. 89)
[f1 : m1, . . .] Object definition (Fig. 4.1, p. 88)
[f1 : A1, . . .] Object type (Fig. 4.2, p. 89)
φ[ι 7→ o] Store update (p. 101)
〈l1 = m1, . . .〉 Heap query (Fig. 4.4, p. 93)
〈〈z |ψ(z)〉〉 Deterministic list comprehension (p. 103)
a{{x ′/x}} Substitution of x ′ for x in term a (p. 91)
A{{X ′/X }} Substitution of X ′ for X in type A (p. 91)

Judgements
Judgement Description
`Qς E ok E is a well-formed environment (Fig. 4.6, p. 96)
E `Qς A A is a well-formed type in E (Fig. 4.7, p. 97)
E `Qς A<: B A is a subtype of B in E (Fig. 4.8, p. 98)
E `Qς a : A a has type A in the presence of E (Fig. 4.9, p. 99)
E `Qς σ Store σ is well-formed (Fig. 4.10, p. 102)
E `Qς (a,σ) : A Configuration is well-typed (Fig. 4.10, p. 102)

Translation (Chapter 5)

Most notation for the translation is inherited from the formalizations of RelJ and
Qς, with the following additions:

Notation
Description

A Finite collection of types (p. 120)
[[t]] Translation of RelJ type t (Fig. 5.3, p. 123)

145

Notation (continued)
Description

[[t]]� unfolded (p. 122)
[[Γ]] Translation of RelJ environment (p. 123)
`R (C,R, s)Â a Program translation (Fig. 5.13, p. 136)
`R nÂ a Class/relationship translation (Fig. 5.12, p. 135)
n `R mÂ a Method translation (Fig. 5.12, p. 135)
Γ `R e : t Â a Expression translation (Figs. 5.7–5.9, p. 128)
Γ `R s Â a Statement translation (Fig. 5.10, p. 132)

Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996. (Cited
on pages 14, 85, 86, 88, 95, 97, 100, and 115.)

[2] A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for a strongly
typed object-oriented database programming language. In Proceedings of
VLDB, pages 565–575. Morgan Kaufmann, 1991. (Cited on pages 26, 27,
and 139.)

[3] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model
with roles. In Proceedings of VLDB, pages 39–51. Morgan Kaufmann, 1993.
(Cited on page 71.)

[4] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy
from mechanism. In Proceedings of ECOOP, volume 3086 of Lecture Notes
in Computer Science, pages 1–25. Springer Verlag, 2004. (Cited on pages 9,
15, 22, and 138.)

[5] C. A. Alexander. A pattern language. Oxford University Press, 1977. (Cited
on page 15.)

[6] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In
Proceedings of ECOOP, volume 1241 of Lecture Notes in Computer Science,
pages 32–59. Springer Verlag, 1997. (Cited on pages 9, 15, 22, and 138.)

[7] C. Anderson. Type inference for Javascript. PhD thesis, Department of Com-
puting, Imperial College, March 2006. (Cited on page 14.)

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaar-
den, and M. Woodger. Revised report on the algorithm language ALGOL 60.
Communications of the ACM, 6(1):1–17, 1963. (Cited on page 10.)

[9] S. Balzer, P. Eugester, and T. R. Gross. Relations: Abstracting object col-
laborations. Technical Report 539, Department of Computer Science, ETH
Zurich, 2006. (Cited on pages 33 and 82.)

148 BIBLIOGRAPHY

[10] S. Balzer, T. R. Gross, and P. Eugster. A relational model of object collabora-
tions and its use in reasoning about relationships. In Proceedings of ECOOP,
to appear. Springer Verlag, 2007. (Cited on page 26.)

[11] G. Bierman, E. Meijer, and W. Schulte. The essence of Cω. In Proceedings of
ECOOP, volume 3586 of Lecture Notes in Computer Science, pages 287–311.
Springer Verlag, 2005. (Cited on pages 83 and 138.)

[12] G. M. Bierman and A. Wren. First-class relationships in an object-oriented
language. In Proceedings of ECOOP, volume 3586 of Lecture Notes in Com-
puter Science, pages 262–286. Springer Verlag, 2005. (Cited on page 29.)

[13] G. M. Bierman and A. Wren. First-class relationships in an object-oriented
language. Technical Report 642, Computer Laboratory, University of Cam-
bridge, August 2005. (Cited on page 75.)

[14] G. M. Bierman, M. J. Parkinson, and A. M. Pitts. MJ: A core imperative
calculus for Java and Java with effects. Technical Report 563, University of
Cambridge Computer Laboratory, 2003. (Cited on pages 29 and 44.)

[15] G. Booch. Object-oriented analysis and design with applications. Benjamin-
Cummings Publishing Co., second edition, 1994. (Cited on pages 10
and 16.)

[16] J. Bosch. Design patterns as language constructs. Journal of Object-Oriented
Programming, 11(2):18–32, 1998. (Cited on pages 16, 20, and 25.)

[17] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encap-
sulation. In Proceedings of POPL, volume 38(1) of SIGPLAN Notices, pages
213–223. ACM Press, 2003. (Cited on pages 15, 22, and 138.)

[18] British Standards Institute and B. Stroustrup. The C++ Standard: Incorpo-
rating Technical Corrigendum No. 1. John Wiley & Sons, 2003. (Cited on
pages 10, 29, and 71.)

[19] M. Broy and E. Denert, editors. Software pioneers: contributions to software
engineering. Springer Verlag, 2002. (Cited on page 10.)

[20] R. G. G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kauf-
mann, 2000. (Cited on pages 27, 31, 38, and 138.)

[21] P. P.-S. Chen. The entity-relationship model – toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9–36, 1976. (Cited on pages
9, 10, 16, and 18.)

[22] D. G. Clarke and T. Wrigstad. External uniqueness is unique enough. In
Proceedings of ECOOP, volume 2743 of Lecture Notes in Computer Science,
pages 176–200. Springer Verlag, 2003. (Cited on pages 22 and 138.)

149

[23] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object
containment. In Proceedings of ECOOP, volume 2072 of Lecture Notes in
Computer Science, pages 53–76. Springer Verlag, 2001. (Cited on pages 9,
15, 22, 85, and 138.)

[24] E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970. (Cited on page 111.)

[25] W. R. Cook. A proposal for making Eiffel type-safe. Computer Journal, 32
(4):305–311, 1989. (Cited on page 23.)

[26] O.-J. Dahl and K. Nygaard. Class and subclass declarations. In Proceedings
of Simulation Programming Languages, pages 158–174, 1967. (Cited on
page 10.)

[27] D. Dean, E. W. Felten, and D. S. Wallach. Java security: From HotJava to
Netscape and beyond. In IEEE Symposium on Security and Privacy, pages
190–200. IEEE Computer Society Press, 1996. (Cited on page 23.)

[28] E. W. Dijkstra. Letters to the editor: Go to statement considered harmful.
Communications of the ACM, 11(3):147–148, 1968. (Cited on page 10.)

[29] S. Drossopoulou. An abstract model of Java dynamic linking and loading.
In Proceedings of TIC, volume 2071 of Lecture Notes in Computer Science,
pages 53–84. Springer Verlag, 2000. (Cited on page 42.)

[30] S. Drossopoulou and S. Eisenbach. Java is type safe — probably. In Pro-
ceedings of ECOOP, volume 1241 of Lecture Notes in Computer Science, pages
389–418. Springer Verlag, 1997. (Cited on pages 23, 29, and 59.)

[31] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle:
Dynamic object re-classification. In Proceedings of ECOOP, volume 2072 of
Lecture Notes in Computer Science, pages 130–149. Springer Verlag, 2001.
(Cited on page 71.)

[32] S. Ducasse, M. Blay-Fornarino, and A. M. Pinna-Dery. A reflective model
for first class dependencies. In Proceedings of OOPSLA, volume 30(10) of
SIGPLAN Notices, pages 265–280. ACM Press, 1995. (Cited on page 22.)

[33] Ecma International. Standard ECMA-262: The ECMAScript language spec-
ification. Iuniverse, third edition, December 1999. (Cited on pages 14
and 85.)

[34] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized con-
straints for C# generics. In Proceedings of ECOOP, volume 4067 of Lecture
Notes in Computer Science, pages 279–303. Springer Verlag, 2006. (Cited
on pages 14 and 95.)

150 BIBLIOGRAPHY

[35] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Pro-
ceedings of POPL, pages 171–183. ACM Press, 1998. (Cited on pages 14
and 29.)

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstrac-
tion and reuse of object-oriented design. In Proceedings of ECOOP, volume
707 of Lecture Notes in Computer Science, pages 406–431. Springer Verlag,
1993. (Cited on page 15.)

[37] A. D. Gordon, P. D. Hankin, and S. B. Lassen. Compilation and equivalence
of imperative objects. In Proceedings of FSTTCS, volume 1346 of Lecture
Notes in Computer Science, pages 74–87. Springer Verlag, 1997. (Cited on
pages 85 and 86.)

[38] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification,
Second Edition: The Java Series. Addison-Wesley Longman Publishing Co.,
2000. (Cited on pages 10, 29, 44, and 95.)

[39] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class relationships:
putting icing on the UML cake. In Proceedings of OOPSLA, volume 39(10)
of SIGPLAN Notices, pages 301–314. ACM Press, 2004. (Cited on page 20.)

[40] J. Guttag. Abstract data types and the development of data structures.
Communications of the ACM, 20(6):396–404, 1977. (Cited on page 10.)

[41] W. Harrison, C. Barton, and M. Raghavachari. Mapping UML designs to
Java. In Proceedings of OOPSLA, volume 35(10) of SIGPLAN Notices, pages
178–187. ACM Press, 2000. (Cited on page 19.)

[42] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specify-
ing behavioral compositions in object-oriented systems. In Proceedings of
ECOOP/OOPSLA, volume 25(10) of SIGPLAN Notices, pages 169–180. ACM
Press, 1990. (Cited on page 22.)

[43] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969. (Cited on page 10.)

[44] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Pro-
ceedings of OOPSLA, volume 26(10) of SIGPLAN Notices, pages 271–285.
ACM Press, 1991. (Cited on pages 9, 15, 22, and 138.)

[45] S. Hwang and S. Lee. Modelling semantic relationships and constraints in
object-oriented databases. In Proceedings of SIGBDP TDES, pages 396–416.
ACM Press, 1990. (Cited on page 27.)

[46] I. Jacobson. Object-oriented software engineering. ACM Press, 1992. (Cited
on page 16.)

151

[47] I. Jacobson, G. Booch, and J. E. Rumbaugh. The unified software develop-
ment process. Addison-Wesley, 1999. (Cited on pages 9, 10, and 16.)

[48] A. C. Kay. The early history of Smalltalk. In Proceedings of HOPL, volume
28(3) of SIGPLAN Notices, pages 69–95. ACM Press, 1993. (Cited on page
10.)

[49] B. B. Kristensen. Complex associations: Abstractions in object-oriented
modeling. In Proceedings of OOPSLA, volume 29(10) of SIGPLAN Notices,
pages 272–286. ACM Press, 1994. (Cited on page 25.)

[50] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-based debugging of
object-oriented programs. In Proceedings of OOPSLA, volume 32(10) of
SIGPLAN Notices, pages 304–317. ACM Press, 1997. (Cited on page 26.)

[51] B. Liskov and S. Zilles. Programming with abstract data types. In Proceed-
ings of SIGPLAN symposium on Very High Level Languages, volume 9(4) of
SIGPLAN Notices, pages 50–59. ACM Press, 1974. (Cited on page 10.)

[52] Y. D. Liu and S. F. Smith. Interaction-based programming with classages. In
Proceedings of OOPSLA, volume 40(10) of SIGPLAN Notices, pages 191–209.
ACM Press, 2005. (Cited on pages 25 and 82.)

[53] M. Lutz. Programming Python. O’Reilly, third edition, August 2006. (Cited
on page 29.)

[54] E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling object, rela-
tions and XML in the .NET framework. In SIGMOD International Conference
on Management of Data, pages 706–706. ACM Press, 2006. (Cited on page
138.)

[55] Microsoft Corporation. Microsoft C# Language Specifications. Microsoft
Press, 2001. (Cited on pages 10 and 29.)

[56] J. Noble. Basic relationship patterns. Pattern Languages of Program Design,
4, 1999. (Cited on pages 9 and 19.)

[57] J. Noble and J. Grundy. Explicit relationships in object-oriented develop-
ment. In Proceedings of TOOLS, pages 2–13. IEEE Computer Society, 1998.
(Cited on pages 9 and 22.)

[58] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 15(12):1053–1058, 1972. (Cited on
page 10.)

[59] D. J. Pearce and J. Noble. Relationship aspects. In Aspect-Oriented Software
Development (AOSD), pages 75–86. ACM Press, 2006. (Cited on pages 26
and 139.)

152 BIBLIOGRAPHY

[60] B. C. Pierce. Types and programming languages. MIT Press, 2002. (Cited on
pages 88, 94, 97, and 100.)

[61] J. E. Rumbaugh. Controlling propagation of operations using attributes on
relations. In Proceedings of OOPSLA, volume 23(11) of SIGPLAN Notices,
pages 285–296. ACM Press, 1988. (Cited on page 25.)

[62] J. E. Rumbaugh. Relations as semantic constructs in an object-oriented
language. In Proceedings of OOPSLA, volume 22(12) of SIGPLAN Notices,
pages 466–481. ACM Press, 1987. (Cited on pages 9, 22, 24, and 139.)

[63] J. E. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented modeling and design. Prentice-Hall, 1991. (Cited on pages 10
and 16.)

[64] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable
units of behaviour. In Proceedings of ECOOP, volume 2743 of Lecture Notes
in Computer Science, pages 248–274. Springer Verlag, 2003. (Cited on page
14.)

[65] A. V. Shah, J. H. Hamel, R. A. Borsari, and J. E. Rumbaugh. DSM: An object-
relationship modeling language. In Proceedings of OOPSLA, volume 24(10)
of SIGPLAN Notices, pages 191–202. ACM Press, 1989. (Cited on page 24.)

[66] J. M. Smith and D. C. P. Smith. Database abstractions: Aggregation and gen-
eralizations. ACM Transactions on Database Systems, 2(2):105–133, 1977.
(Cited on pages 18 and 35.)

[67] J. Soukup. Implementing patterns, pages 395–412. ACM Press/Addison-
Wesley, 1995. (Cited on page 20.)

[68] P. Stevens and R. Pooley. Using UML: Software engineering with objects and
components. Addison-Wesley, 1999. (Cited on pages 9 and 32.)

[69] B. Stroustrup. What is object-oriented programming? IEEE Software, 5(3):
10–20, 1988. (Cited on page 11.)

[70] Sun Microsystems Inc. JHAT: Java Heap Analysis Tool.
http://java.sun.com/javase/6/docs/technotes/tools/share/
jhat.html, 2006. (Cited on page 26.)

[71] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings of
OOPSLA, volume 22(12) of SIGPLAN Notices, pages 227–242. ACM Press,
1987. (Cited on pages 10 and 14.)

[72] W3C. XML path language (XPath). http://www.w3.org/TR/xpath,
November 1999. (Cited on page 83.)

153

[73] R. L. Wexelblat, editor. History of programming languages. ACM Press, 1981.
(Cited on page 10.)

[74] J. Whaley and M. Rinard. Compositional pointer and escape analysis for
Java programs. In Proceedings of OOPSLA, volume 34(10) of SIGPLAN No-
tices, pages 187–206. ACM Press, 1999. (Cited on page 22.)

[75] M. V. Wilkes, D. J. Wheeler, and S. Gill. The Preparation of Programs for an
Electronic Digital Computer (Charles Babbage Institute Reprint). MIT Press,
1984. (Cited on page 10.)

[76] D. Willis, D. J. Pearce, and J. Noble. Efficient object querying for Java. In
Proceedings of ECOOP, volume 4067 of Lecture Notes in Computer Science,
pages 28–49. Springer Verlag, 2006. (Cited on pages 26, 138, and 139.)

[77] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994. (Cited on pages 52
and 101.)

	702.pdf
	Introduction
	Object-orientation
	Encoding relationships
	Thesis
	Contribution
	Related work

	RelJ: Relationships for Java
	Core language
	Relationships
	Language definition
	Type system
	Semantics
	Soundness
	Correctness
	Conclusion

	Extending RelJ
	An alternative model of relationship inheritance
	Relationships with multiplicities
	Other extensions
	Conclusion

	Qsigma: An object calculus with heap query
	Core language
	Heap query
	Type system
	Semantics
	Soundness
	Extensions
	Conclusion

	Bridging the gap
	Translation overview
	Qsigma booleans and conditionals
	Formalization of the translation
	Conclusion

	Conclusion
	Future work

	Guide to notation
	Bibliography

