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Efficient maximum-likelihood decoding of

spherical lattice codes

Karen Su, Inaki Berenguer, Ian J. Wassell and Xiaodong Wang

Abstract

A new framework for efficient and exact Maximum-Likelihood (ML) decoding
of spherical lattice codes is developed. It employs a double-tree structure: The
first is that which underlies established tree-search decoders; the second plays the
crucial role of guiding the primary search by specifying admissible candidates and
is our focus in this report. Lattice codes have long been of interest due to their
rich structure, leading to numerous decoding algorithms for unbounded lattices,
as well as those with axis-aligned rectangular shaping regions. Recently, spherical
Lattice Space-Time (LAST) codes were proposed to realize the optimal diversity-
multiplexing tradeoff of MIMO channels. We address the so-called boundary control
problem arising from the spherical shaping region defining these codes. This prob-
lem is complicated because of the varying number of candidates potentially under
consideration at each search stage; it is not obvious how to address it effectively
within the frameworks of existing schemes. Our proposed strategy is compatible
with all sequential tree-search detectors, as well as auxiliary processing such as the
MMSE-GDFE and lattice reduction. We demonstrate the superior performance
and complexity profiles achieved when applying the proposed boundary control in
conjunction with two current efficient ML detectors and show an improvement of
1dB over the state-of-the-art at a comparable complexity.

1 Introduction

The codebook of a lattice code can be described as the intersection of a (infinite) lattice
with a bounded shaping region. One of the critical advantages offered by lattice codes
is that the algebraic structure of the lattice lends itself to the use of efficient decoding
techniques, e.g., lattice decoding. Given the received signal vector, a naive lattice decoder
returns the closest point of the underlying lattice to that vector, ignoring the shaping
region entirely. Therefore its performance can be quite sub-optimal, since it must declare
a decoding failure if the closest point that it finds does not lie within the boundaries
of the codebook. This loss of optimality becomes increasingly more pronounced as the
dimensionality of the problem space grows, since the surface area of the shaping region
boundary grows exponentially with dimension, likewise the number of invalid points lying
just outside of it.

In the literature, the problem of ensuring that the decoder only considers feasible lat-
tice points, i.e., those lying within the shaping region, is referred to as boundary control [1].
It is already well-known how to enforce so-called axis-aligned, or justified, rectangular
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boundary control within the context of a tree-based lattice decoder. One of the main
contributions of our work is an efficient means of achieving boundary control within this
familiar decoding framework when the shaping region is spherical. Spherical lattice codes
are an important class of lattice code because their spherical boundaries ensure optimal
energy efficiency, i.e., given a fixed lattice, the average energy of a collection of K points
is minimized by selecting those contained in a sphere centered at the origin. Specifically,
our proposal extends the scope of established tree-based detectors to the Maximum Like-
lihood (ML) decoding of spherical Lattice Space-Time (LAST) codes at a computational
cost comparable to that of naive lattice decoding.

This class of codes is of particular interest because in their seminal work [2], Zheng
and Tse characterize the fundamental tradeoff between the diversity and multiplexing
gains that can be simultaneously obtained over a given multiple-antenna channel. The
authors also pose the then open problem of explicitly constructing coding schemes (for
channels more sophisticated than the 2 × 1 scenario considered in [3]) that achieve the
optimal tradeoff curve for any positive multiplexing gain. A solution to their challenge
has recently been presented by El Gamal et al. in the form of LAST codes [4], which are
shown to achieve the optimal diversity-multiplexing tradeoff under generalized minimum
Euclidean distance lattice decoding. LAST codes are a recent example of a spherically
shaped lattice code and so provide an appropriate setting for demonstrating the utility of
the current work.

We begin in Section 2 with an outline of the mathematical structure of the LAST
decoding problem. Next we present a generic lattice decoding framework that facilitates
the application of existing lattice decoding algorithms to new problems. Specifically
we are interested in tackling the ML decoding of spherical LAST codes, which requires
the specification of an efficient tree-based boundary control mechanism, as detailed in
Section 4. This innovation leads naturally to the development of two new ML LAST
decoding schemes, based respectively on the Schnorr-Euchner Adaptive (SEA) sphere
decoder and a priority-first tree search (PFTS) approach. Section 5 compares their ML
performance and competitive complexities to the profiles of current sub-optimal proposals.
Finally, concluding remarks are offered in Section 6.

2 Problem formulation and preliminaries

In this report we consider problems that can be modelled as the minimization of the
squared Euclidean distance metric to a target vector v over an m-dimensional discrete
search set C ⊂ R

m:

s∗ = argmin
s∈C

|v −Hs|2, (1)

where v ∈ R
n, H ∈ R

n×m and the search set is carved from an m-dimensional infinite
real lattice comprising all integer linear combinations of the columns of generator matrix
G ∈ R

m×m

Λ(G) , {ξ : ξ = Gz, z ∈ Z
m} (2)

by means of a translation vector u ∈ R
m and a shaping region S ⊆ R

m. Note that the
shaping region may be bounded or unbounded and is typically convex. The search set is
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then given by the intersection of a translate of the lattice with the shaping region:

C = (Λ(G) + u) ∩ S. (3)

Thus the decoding problem can be viewed as a constrained closest lattice point search
with lattice generator HG, translation vector Hu and an ellipsoidal shaping region HS.

To apply integer-based discrete search techniques, we are often interested in centering
the lattice Λ(G) underlying the search set at the origin. The subscript 0 notation is used
to denote entities defined with respect to this frame of reference. For instance, instead of
translating the lattice by u as in (3), we may translate the shaping region by u0 , −u

and make the following alternate definition of the search set:

C , C0 + u (4)

C0 , Λ(G) ∩ (S + u0) . (5)

Then minimization problem (1) can be written equivalently as

s∗ = u + G argmin
z∈Zm

{∣∣v −Hu︸ ︷︷ ︸
,v0

−Ξz
∣∣2 : Gz ∈ C0

}
, (6)

where we call Ξ , HG the effective generator matrix of the transformed lattice and search
set, seen from the perspective of the received signal space, and borrowing terminology
from the optimization literature we call the elements of z optimization variables and
|v0 −Ξz|2 the cost function. It is advantageous to consider the minimization problem
from the perspective of (6) because then the search set has an underlying Cartesian
product structure Z

m that lends itself easily to divide and conquer solution techniques.
We emphasize that the preceding ML decoding formulation is not restricted to space-

time systems. Some examples of important and topical communications problems that
can be modelled in this manner by appropriately defining parameters H, G, u and S
include the ML detection of QAM-modulated signals transmitted over MIMO fading
channels or in multi-user CDMA systems, lattice coded signals transmitted over AWGN
channels [5, Ch. 14], over SISO or MIMO fading channels, as well as LAST coded signals
transmitted over MIMO fading channels. The fading channels may be flat or frequency
selective, and may or may not be quasi-static; problem formulation (1) can be equally
applied to these cases.

We assume in this work an over-determined problem, i.e., that m ≤ n, and that
H is of full rank m. For communication over MIMO fading channels, this assumption
means that there are at least as many receive as transmit antennas. In the case where
MMSE regularization is being used at the receiver, it has previously been shown that
the full (receive) rank tree search techniques considered here are equally applicable to
under-determined problems where m > n [6].

We also make use of the following notational conveniences: Given a square M ×M

matrix A, let ai denote the ith column vector, aii the element in the ith row and column

position, and A\ii the square submatrix formed by removing the ith row and column.
We also denote by A−T the inverse transpose of matrix A. Note that in the discussions
to follow, the inverse transpose operator takes precedence over selection by index, i.e.,

A−T
i denotes the ith column of matrix A−T . Given a vector x, let xi denote the ith
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element and x
j
i the vector formed by extracting elements i to j. Let 0, 1 and ei denote

the all-zeros, all-ones and elementary vectors of appropriate length, and IM the M ×M

identity matrix.
Finally, we introduce some geometric notions that will be important in the discussions

to follow. For more convenient visualization, these entites are illustrated in Fig. 1. First
we define the affine sets

Fx
j (Ξ) ,

{
ξ :

〈
ξ −Ξjx,Ξ−T

j

〉
= 0

}
, x ∈ Z, (7)

in which the points of lattice Λ(Ξ) are embedded. Geometrically, Fx
j (Ξ) is a hyperplane

defined with respect to normal vector Ξ−T
j and offset x. Algebraically, it contains the

subset of lattice points where optimization variable zj takes a particular value x ∈ Z.
These affine sub-lattices may be defined as

Λx
j (Ξ) , Λ(Ξ\j) + Ξjx, x ∈ Z, (8)

where we refer to Ξj and x as the offset vector and offset coefficient, respectively, of affine
sub-lattice Λx

j (Ξ) and affine set Fx
j (Ξ). In particular, observe that Λx

j (Ξ)−Ξjx is nothing
more than a finite lattice having one less dimension than Λ(Ξ).

In addition, the orthogonal projection of a vector y onto affine set Fx
j (Ξ) is defined as

projFx
j
(Ξ)(y) , y −

〈
y,Ξ−T

j

〉
− x

∣∣Ξ−T
j

∣∣2 Ξ−T
j , (9)

and the corresponding squared orthogonal distance as

∥∥y −Fx
j (Ξ)

∥∥2

⊥
, min

ξ∈Fx
j
(Ξ)
|y − ξ|2 (10)

=
∣∣∣y − projFx

j
(Ξ)(y)

∣∣∣
2

. (11)

It should be clear that projFx
j
(Ξ)(y) is the point in the affine set that is closest in

Euclidean distance to y.

2.1 Detection of QAM-modulated signals transmitted over fad-

ing channels

Next, we briefly illustrate how the (uncoded) MIMO detection problem can be framed in
the previously described problem structure. In the flat fading case, the channel can be
modelled by an N ×M complex matrix Hc of fading coefficients, where N and M are the
numbers of receive and transmit antennas, respectively. The effective real channel matrix
can be expressed as

HQAM ,

[
Re{Hc} − Im{Hc}
Im{Hc} Re{Hc}

]
, HQAM ∈ R

nQAM×mQAM , (12)

where nQAM , 2N and mQAM , 2M are the numbers of real received and real transmitted
symbols per channel use, respectively. We employ complex B2

j -QAM modulation on the
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1 ,

offset vector Ξ1, coefficient -1)

Figure 1: Illustration of some relevant geometric entities with respect to the lattice gen-
erated by Ξ and an arbitrary vector y.

jth antenna, i.e., the transmitted symbols are each elements of Bj ×Bj finite rectangular
complex-plane lattice-constellations

Λj = {−B + 1, . . . ,−1, +1, +B − 1} ⊕ j{−B + 1, . . . ,−1, +1, +B − 1}, (13)

where ⊕ denotes Minkowski (set) summation. Then the search set from which transmitted
signal vectors are assumed to be drawn with equal probability can be written as the M -
fold Cartesian product of these rectangular lattices: CQAM = Λ1×· · ·×ΛM . Equivalently,
we can express it in the form of (3) as follows:

CQAM ,

(
Λ(Im) +

1

2
1

)
∩ SQAM

([
IM−IM

]
,
[
b
b

])
, (14)

where b = 1
2
[B1 · · · BM B1 · · · BM ]T ∈ R

m and the shaping region takes the form of a
(closed) rectangle

SQAM

([
IM−IM

]
,
[
b
b

])
,

{
ξ :

[
IM−IM

]
ξ ≤

[
b
b

]
, ξ ∈ R

m
}

(15)

having sides of length Bj. For the QAM-modulated MIMO detection problem, the gen-
erator matrix is GQAM , Im and the translation vector is uQAM , 1

2
1.

In the presence of circularly symmetric additive white (complex) Gaussian noise, the
resulting ML detection rule can be written in the form of minimization problem (1), where
we denote by vQAM the (real) received vector

vQAM ,
[
Re{vc}T Im{vc}T

]T
(16)

formed by stacking the real and imaginary components of the complex received signal
vector vc. It can also be written in the alternate form of (6) with the effective generator
matrix of the transformed lattice and search set given by ΞQAM = HQAM.
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We say that the shaping region is axis-aligned, or justified, with respect to the code
generator matrix GQAM because the rows of its normal matrix are multiples of the columns
of the dual of the code’s generator matrix G∗

QAM , G−T
QAM. Therefore each facet of shaping

region SQAM is associated with a single optimization variable zi and containment within
its boundary can be verified by considering the particular value taken by each variable
independently of the others. As we shall see, a simple decoupling of this form is not
possible when the shaping region is spherical, which is the essential cause of increased
complexity in the latter case.

2.2 Decoding of spherical LAST codes

The lattice decoding framework presented in this report is primarily demonstrated with
reference to the decoding of spherical LAST codes used in a MIMO fading environment.
Following the seminal paper on this work [4], next we detail the specific parameterization
of this problem.

Lattice Space-Time (LAST) codes are designed for the MIMO fading channel, which
can be modelled by an N × M complex matrix Hc of fading coefficients and a block
length of T channel uses, where N and M are the numbers of receive and transmit
antennas, respectively. In the case of quasi-static fading, where the fading coefficients
remain unchanged over the duration of the transmission block, the effective real channel
matrix can be expressed as a Kronecker product

HLAST , IT ⊗
[
Re{Hc} − Im{Hc}
Im{Hc} Re{Hc}

]
, HLAST ∈ R

nLAST×mLAST , (17)

where nLAST , 2NT and mLAST , 2MT are the numbers of real received and real transmit-
ted signals per codeword, respectively. The search set or codebook from which transmitted
codewords s are drawn with equal probability is given by

CLAST , (Λ(GLAST) + uLAST) ∩ SLAST(0, D), (18)

where as suggested by the name given to the codes, the shaping region takes the form of
a (closed) sphere

SLAST(0, D) ,
{
ξ : |ξ − 0|2 ≤ D, ξ ∈ R

m
}

(19)

of squared radius D centered at the origin. When it is clear from the context, parameters
will be omitted from sets such as Λ and S, as well as from entities such as n and m. The
specification of the lattice generator matrix GLAST ∈ R

m×m, translation vector uLAST ∈ R
m

and sphere squared radius D comprises the design of a spherical LAST code. Given a
selected generator matrix and translation vector, the choice of code radius governs the
code rate (i.e., logarithm of the number of codewords in the codebook), as well as the
(unnormalized) average power per codeword.

Again assuming circularly symmetric additive white (complex) Gaussian noise, the
resulting ML detection rule can be written in the form of minimization problem (1),
where we denote by vLAST the (real) received vector

vLAST ,
[
Re{vc[1]}T Im{vc[1]}T · · · Re{vc[T ]}T Im{vc[T ]}T

]T
(20)
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formed by stacking the real and imaginary components of the complex signal vectors
vc[1], . . .vc[T ] received during the designated fading block. It can also be written in the
alternate form of (6) with the effective generator matrix of the transformed lattice and
search set given by ΞLAST = HLASTGLAST.

Observe that in this case, to verify or to disprove membership in the spherical shaping
region, a particular vector of the values taken by all of the variables must be evaluated.
From a sequential decoding perspective, this characteristic of the problem means that we
cannot simply restrict the set of nodes under consideration at each level of the search
tree based on the known modulation orders. Thus leading to the challenge that we have
addressed in this work of minimizing the number of nodes expanded at each level of the
tree while still preserving the desired optimality of the solution.

3 Generic lattice decoding framework

Our goals in this section are twofold: First, we overview a lattice decoding framework
that facilitates the application of established decoders to new problems sharing the generic
structure of (6). As alluded to in Section 2, it employs a divide and conquer approach,
recursively decomposing the main minimization into residual problems having the same
structure, but of decreasing dimension. Secondly, we demonstrate how the so-called bound-
ary control problem can be tackled naturally within this framework. We keep our presen-
tation as general as possible, so as not to limit the scope of the framework. In Section 4,
we then highlight more specifically its utility in efficiently decoding spherical LAST codes.

We begin by considering the search set from the perspective of the received signal
space. In the absence of noise, the observed signals are drawn from a transformed codebook,
which can be defined as follows with respect to the underlying transformed lattice Λ(Ξ)
being centered at the origin:

T0 , HC0 (21)

= Λ(Ξ) ∩ (HS + Hu0︸︷︷︸
,a0

). (22)

We can then write the optimal cost of (6) as a function having two arguments: the target
vector v0 and a search set T0. We remark that both the target and the search set are
further embedded in a search space R

m of dimension m

g(v0, T0) = min
υ∈T0

|v0 − υ|2. (23)

Next, we recall that those lattice points υ ∈ T0 where variable zj takes a particular
value in Z are contained in affine set F zj

j (Ξ). Therefore we can divide the cost function into
two terms: a partial cost incurred by assigning a particular value to zj and a recursive cost
function evaluated over the remaining variables. The first term is precisely the squared
distance accumulated by projecting the target onto the affine set F zj

j (Ξ) associated with
the chosen value of zj. The second term is a function having the same structure as the
original cost function, and so before proceeding we need to specify its target and search
set arguments.

To do so, we start with a few observations about the affine set F zj

j (Ξ). It is of
dimension m − 1, since it represents the part of the search space that remains after one
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variable has been constrained. We may therefore call F z1

1 (Ξ) a residual search space.
It also follows that the recursive cost function, as well as its arguments, should all be
embedded in this residual search space. Hence we define a residual target as the projection
of the target onto a residual search space

v′
0 , projFz1

1
(Ξ)(v0), (24)

and a residual search set as the intersection of the search set with a residual search space

T ′
0 , T0 ∩ F z1

1 (Ξ). (25)

Armed with these notions and definitions, we can then decompose the optimal cost
function (23) by decoupling one of the optimization variables from the main problem.
Without loss of generality, let j = 1, then we can write the following:

g(v0, T0) = min
z1∈R1

[
‖v0 −F z1

1 (Ξ)‖2⊥ + g (v′
0, T ′

0 )
]
, (26)

where R1 is called the candidate range of values for variable z1 and will be discussed in
more detail shortly. This range may also be referred to as the set of admissible values in
the optimization literature. We say that z1 has been decoupled from the problem because
aside from the computation of its arguments, the recursive optimal cost function in the
right hand side of (26) is independent of z1.

In the next stage of the decomposition, another optimization variable is decoupled
recursively from the second term of (26) and the dimension of the residual search space
is again reduced by one. When all m variables have been decoupled from the problem,
the residual search space is of dimension zero and the recursion terminates.

To apply the ideas behind recursive decomposition (26) to lattice decoding, we require
efficient means of executing four critical tasks:

1. determining the candidate range for the variable under consideration,

2. finding the orthogonal distance from the residual target to an affine set,

3. computing the projection of the residual target onto an affine set, and

4. constructing the residual search set.

Tasks 2 and 3 can be realized by applying the QR factorization to the effective generator
matrix Ξ, as is done in many sphere decoders [1, 7–9] and detectors such as V-BLAST
[10, 11]. The following sections address Tasks 1 and 4, which may be referred to in the
literature collectively as boundary control. Please note that to enhance readability, proofs
are deferred to the Appendix.

3.1 Determining the candidate range

We determine the candidate range by applying a sort of relaxation to the representation
of the search set. Instead of considering whether there is at least one point in the discrete
search set where variable zj takes a particular value, we consider whether there is at least
one point in a continuous relaxation of the search set, namely in the shaping region, where
variable zj takes a particular value.
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Recall that the affine set Fx
j (Ξ), which contains those translated signal vectors where

variable zj takes a particular value x ∈ Z, is defined as a hyperplane with normal vector
Ξ−T

j and offset x. If the intersection of the shaping region with the affine set is empty for
some offset x ∈ Z, then there are no points in the search set satisfying zj = x and we say
that x is not a feasible value for variable zj.

Note that if, on the other hand, the intersection is non-empty for some offset x ∈ Z,
then there may or may not be a point in the search set satisfying zj = x. (A formal proof
is provided in the Appendix.) In this case we cannot declare that x is infeasible, and so
we call it a candidate value and keep it in the search set. Thus we define the candidate
range for variable zj as follows:

Definition 1: Given shaping region S ⊂ R
m and generator matrix Ξ ∈ R

n×m, let the
candidate range of values for variable zj be defined as

Rj , {x ∈ Z : S ∩ Fx
j (Ξ) 6= ∅}. (27)

Because the shaping region is connected, Rj is a sequence of consecutive integers that
can be described by specifying its lower and upper bounds. More precisely, we define the
shadow of the shaping region on a normal vector:

Definition 2: Given shaping region S ⊂ R
m and normal vector n ∈ R

m, let the (closed)
shadow of S on n be defined as the interval

shadn(S) ,

[
min
υ∈S
〈υ,n〉, max

υ∈S
〈υ,n〉

]
. (28)

The lower and upper bounds of the candidate range Rj are then given by the ceiling
of the lower bound in (28) and the floor of the upper bound in (28), respectively.

3.2 Constructing the residual search set

As before, we approach the task of constructing the residual search set by applying a
relaxation to its representation. Instead of trying to obtain a simple concise description
of the points in the discrete residual search set where variable zj takes a particular value,
we seek to describe a continuous relaxation of the residual search set, namely a residual
shaping region, where variable zj takes a particular value.

Recall from (25) that a residual search set is defined as the intersection of the search
set with a residual search space, i.e., with an affine set of the form Fx

j (Ξ). Therefore we
can arrive at the desired description by applying the definition directly:

T ′
0 = T0 ∩ Fx

j (Ξ) (29)

= Λ(Ξ) ∩
[
(HS + a0) ∩ Fx

j (Ξ)
]
, (30)

where the intersection of the shaping region with the affine set gives the residual shaping
region. In this way, the residual search sets can be constructed, and more importantly
represented, as the intersections of the transformed lattice Λ(Ξ) with a residual shaping
region, like the definition of the search set itself. This decomposition of the search set into
residual sets enables boundary control to be implemented in conjunction with decoding.
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3.3 Tree-based lattice decoding

The notion of tree-based lattice decoding arises naturally from the recursive decomposition
of (26) and forms the basis for many current detectors, most notably the sphere decoder [1,
8]. We associate with each (residual) problem a node in the tree, starting from the root
node, which corresponds to the main search. Next, we select an optimization variable to
decouple from the problem, say zj1 . The candidate range Rj1 then provides a superset
including all feasible values for zj1 .

Recall from (26) that each candidate value x ∈ Rj1 generates a partial cost, namely
the squared distance from the target to the appropriate affine set, as well as a residual
problem having the same structure as the main problem, but of one less dimension. Within
the context of the search tree, the size of the candidate range for the next variable to be
decoupled |Rj1| gives the number of children generated by the current node. The weight
of the connecting branch to each child is given by the partial cost incurred by assigning a
particular value x to variable zj1 , and each child node iteslf is associated with a residual
problem.

Continuing in this way, we select subsequent variables to decouple from the residual
problems, zj2 , . . . , zjm

, and extend the tree to its full depth of m + 1 levels. Each leaf
node of the tree represents a point in the search set. The corresponding value of the
cost function is computed by accumulating the partial costs incurred at each stage of the
decomposition, i.e., by computing the sums of the weights of the branches along the path
from the root node to the leaf in question. Thus the search tree encapsulates all possible
values of the cost function in the weights of its leaf nodes.

We emphasize that although the structure of the tree, i.e., the number of levels and
the possibly varying number of children at each node, underlies the decoding operation,
only the properties of the root node are known at the outset. Within this context,
decomposition (26) becomes a tool for computing the properties of the children of a node,
and hence of exploring the tree. We refer to a lattice decoder whose operation is governed
by the tree as a tree-based lattice decoder. This class includes optimal sphere decoders [1,8]
and sub-optimal successive detectors [10, 11], but excludes parallel detection strategies
(e.g., linear channel equalization by direct inversion followed by integer quantization).

Because the number of nodes may be exponential in m, it is the task of an efficient
Maximum Likelihood (ML) decoder is to find the smallest weight leaf node while exploring
as few other nodes as possible. However, we note that there is a problem-dependent
minimum set of nodes that must be explored in order to guarantee that the solution
returned is optimal. We close our presentation on the generic lattice decoding framework
with a brief remark on the node data structure:

The state information maintained at each node must be sufficient to describe the
corresponding residual problem. To this end, it must include at least the residual target,
its dimension and a description of the residual search set, e.g., for decoding spherical
LAST codes, the residual translation vector and squared radius of the shaping region.
In addition, redundant computations can be reduced by storing the lower and upper
bounds of the candidate range associated with its children, as well as the node’s own
weight, which is given by the accumulation of the partial costs incurred due to previously
constrained variables. A complete description of the proposed data structure is provided
in the Appendix.
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4 Maximum-likelihood decoding for spherical lattice

codes

To see how the previously described framework can be applied to the decoding of spherical
LAST codes, let us first consider the graphical view of the LAST decoding problem as
shown in Fig. 2. The codebook is illustrated in the form of transformed lattice Λ(Ξ) and
codebook T0 with ellipsoid shaping region E(a0,H

−1, D).1

F2
1 (Ξ)

F1
1 (Ξ)

F−1
1 (Ξ)

v0

F−2
1 (Ξ)

v0

a0

Ξ2

Ξ1

Ξ−T
2

Ξ−T
1

F0
1 (Ξ)

〈υ,Ξ−T
1 〉 =

〈
a0,Ξ

−T
1

〉
F0

1 (Ξ)

F−2
1 (Ξ)

F−1
1 (Ξ)

F1
1 (Ξ)

F2
1 (Ξ)

Shadow of T0 on Ξ−T
1

Ellipsoid shaping region
E(a0,H

−1, D)

Figure 2: Transformed lattice Λ(Ξ) and codebook T0 for LAST decoding problem with
m = 2 and ellipsoid shaping region E(a0,H

−1, D), along with its shadow on Ξ−T
1 . The

affine set F−1
1 (Ξ) is highlighted for further commentary.

The corresponding search tree that arises from a decomposition of the cost function
for this decoding problem is provided in Fig. 3.

v0

(no children)

z1 = −2 z1 = −1 z1 = 0 z1 = 1

z2 = 2z2 = 2z2 = 1

projF−1

1
(Ξ)(v0)

z =
[
1
2

]
z =

[−2
1

]
z =

[
0
2

]

projF−2

1
(Ξ)(v0) projF0

1
(Ξ)(v0) projF1

1
(Ξ)(v0)

Figure 3: A tree-based decomposition for computing values of the cost function given
transformed LAST codebook T0 shown in Fig. 2.

We note in particular that for a spherical LAST code each node, even those at the same
level, may have a different number of children, or no children at all. For instance, the
node associated with the projection of the target v0 onto affine set F−1

1 (Ξ) illustrates such
a case. To see how this sort of scenario can arise from a geometric perspective, consider

1The spherical shaping region, transformed by the channel matrix H, becomes an ellipsoidal shaping
region from the perspective of the received signal space.
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again the codebook depicted in Fig. 2. Observe that although the offset coefficient of the
associated affine set, i.e., −1, is in the shadow of the shaping region shadΞ−T

1

(E), there
are in fact no elements of the codebook s = Gz such that z1 = −1. Recall that in this
case we call −1 a candidate value for variable z1, but it is not in fact a feasible value.

To find the desired candidate ranges, we find it computationally simpler to work in
the codeword domain, where the shaping region is spherical. A similar result for the case
of an ellipsoidal shaping region can also be easily derived from the following:

Proposition 1: Given (closed) sphere S(u0, D) ⊂ R
m with centre u0 ∈ R

m and squared
radius D, and normal vector n ∈ R

m, the shadow of S on n is given by

shadn

(
S

)
=

[
〈u0,n〉 −

√
D |n| , 〈u0,n〉+

√
D |n|

]
. (31)

Having determined the candidate range for the variable under consideration, applica-
tion of the tree-based lattice decoding framework involves specifying rules for computing
the properties of a child node from those of its parent, or equivalently, the parameters of
a residual problem from those of its parent. As discussed previously, a key ingredient in
these derivations is the affine set associated with the variable under consideration and the
value to which it is being constrained. Given this affine set, the residual target is then
the projection of the target onto it, the partial cost (or branch weight) is the orthogonal
distance from the target to the affine set, and again working in the codeword domain, the
following result enables us to easily compute the parameters of the residual search set:

Proposition 2: Given (closed) sphere S(u0, D) ⊂ R
m with centre u0 ∈ R

m and squared
radius D, normal vector n ∈ R

m and offset b ∈ R, the intersection of S with hyperplane

P(n, b) , {υ : 〈υ,n〉 = b} (32)

is an (m− 1)-dimensional sphere that can be written as S(u′
0, D

′)∩P(n, b) where centre

u′
0 = projP(n,b)(u0) (33)

and squared radius

D′ = D − ‖u0 − P(n, b)‖2⊥ (34)

Proposition 2 allows us to construct the residual search set or residual codebook when
decoding spherical LAST codes by means of the same two parameters used in the definition
of the codebook itself, namely the residual translation vector u′

0 of the shaping region and
its residual squared radius D′.

4.1 Priority First Tree Search LAST Decoder

The Priority First Tree Search LAST (PFTS-L) decoder maintains an ordered list of
nodes Nb defining the border between the explored and unexplored parts of the tree,
which initially contains only the root node. In each iteration, it selects and expands the
border node with the smallest weight. The expanded node is then deleted from Nb, since
it is no longer on the border, and replaced by two new ones: its first child and its next
sibling. Traversal of the tree continues in this priority-first fashion until a leaf node is
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encountered. Spherical boundary control as detailed in this report is employed by the
PFTS-L decoder.

By definition and as suggested by its name, the PFTS-L explores the nodes of the
search tree in order of increasing node weight. Therefore when the smallest weight border
node is a leaf, it returns the corresponding point in the search set z, along with its weight
σ, and terminates. Pseudocode for the PFTS LAST decoder is provided for the interested
reader in the Appendix and a Matlab implementation of the decoder can be found at the
Matlab Central File Exchange [12].

To isolate and establish the benefits afforded by spherical boundary control, the be-
haviour of the PFTS-L decoder may be benchmarked against its naive predecessor called
PFTS-N. This standard priority-first lattice decoder does not implement any boundary
control. It simply returns the closest lattice point to the target, which may or may not
be a valid codeword.

Because of its ordered traversal of the search tree, the priority-first approach requires
the maintenance of a priority queue that is able to return the smallest weight leaf node
quickly. It turns out that such a queue can be efficiently implemented using a systolic
hardware architecture [13]; this design is able to fetch the smallest weight leaf node in
constant time. In addition, because of its node expansion philosophy, the PFTS-L is able
to return not only the closest lattice point, but also the next closest and subsequent lattice
points, again in order of increasing distance from the target. Thus making it particularly
suitable for dealing with punctured codebooks as discussed in Remark 2.

4.2 Schnorr-Euchner Adaptive LAST sphere decoder

The SEA LAST (SEA-L) sphere decoder applies the same depth-first approach as its
counterpart for uncoded MIMO fading channels, which is studied in [1]. Pseudocode for
the LAST SEA decoder is provided for the interested reader in the Appendix and a Matlab
implementation of the decoder can be found at the Matlab Central File Exchange [14].

A primary benefit of the depth-first approach is that only a fixed amount of memory
needs to be allocated for the decoding stage. However, because its underlying philosophy
is one of enumeration of the lattice points lying within some distance of the target, it is
only suitable for certifying the optimality of the closest lattice point. It may or may not
be possible to certify that of the next closest or subsequent points. Like the priority-first
approach, the SEA-L requires a variable amount of runtime.

We close our discussion on these proposed lattice decoders for spherical LAST codes
with some important remarks on the optimality properties of the algorithms and on their
efficient implementation through the QR factorization of the code generator matrix G.

Remark 1: (On axis-aligned sphere decoding) We can contrast the search tree of Fig. 3
to the complete (m+1)-level B-ary tree that underlies the operation of a standard sphere
decoder. Then we find that the sphere decoder can be described as a lattice decoder
employing axis-aligned rectangular boundary control, which results in ML decoding for
lattice codes whose shaping regions share this structure. The axis-aligned property means
that each variable zj takes values in some fixed alphabet, independently of the values taken
by variables zi, i 6= j. Equivalently, from a tree-based decoding perspective, each node
has the same number of children, corresponding to the cardinality B of the alphabet.
Although the standard algorithm can easily be extended to allow the alphabet associated
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with each variable to vary on a global scale, it cannot be trivially modified to incorporate
dependence on the values taken by the other variables, as is necessary to perform efficient
decoding over more general search spaces.

Remark 2: (On decoder optimality) To achieve the desired code rate in the LAST
code design procedure, it is sometimes the case that the codebook C is actually a proper
subset of (Λ(G)+u)∩S(0, D). More specifically, the code may be punctured by removing
some so-called outer shell codewords, i.e., those whose 2-norms satisfy |s|2 > D− ǫ, from
the codebook. In this case the closest feasible lattice point returned by the proposed
detectors may not actually be an element of the punctured codebook. For such codes, the
performance of the SEA LAST decoder is slightly sub-optimal. However, the decoding
error can be detected by appending a test for codebook membership to the end of the
decoder. Such a test can be implemented far more efficiently than a brute force exhaustive
membership check, since only those codewords in the outer shell need to be considered.

On the other hand, because of its ordered traversal approach, the PFTS is able to
achieve true ML performance. If the codebook membership test fails, then it can continue
searching for the next closest lattice point(s), until it finally returns a point that is in the
punctured codebook.

Remark 3: (On efficient implementation) In an efficient implementation, we pre-
process the code generator matrix G by applying a QR factorization to obtain orthogonal
matrix QG and upper triangular equivalent transform matrix P. The translation vector
of the shaping region is orthogonally transformed to ũ , QT

Gu0 and the candidate range
for the first variable to be constrained zm is then given by

Rm =

{⌈
ũm

pmm

−
√

D

|pmm|

⌉
, . . . ,

⌊
ũm

pmm

+

√
D

|pmm|

⌋}
, (35)

Equation (35) takes such a simple form because P and P−1 are upper triangular, and so
P−T is lower triangular and P−T

m = 1
pmm

em.
It is important to observe that it is entirely possible for the lower bound of the integer

set in (35) to be greater than its upper bound. In this case we make the logical interpre-
tation that Rj = ∅. From an algebraic perspective, this scenario corresponds precisely
to the case where a node, having Rj as the candidate range of values for its child nodes,
does not generate any children.

The simplification offered by the upper triangular form of equivalent generator matrix
P also extends to the computation of the parameters of the residual search sets. For the
first variable to be constrained zm the residual translation vector and residual squared
radius are as follows:

ũ′ =
[

ũ\m
pmmx

]
(36)

D′ = D − (ũm − pmmx)2
, (37)

where x ∈ Rm is the value under consideration.

5 Performance and complexity results

In this section we discuss the performance and complexity profiles arising from two spher-
ical LAST codes that have been designed for the M = N = T = 2 quasi-static Rayleigh
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flat fading channel scenario. Their underlying lattices are generated by the (A) randomly
chosen [4] and (B) minimum error rate [15] generator matrices reported in the literature

and their codebooks contain 256 codewords each, for a communication rate of 4 bits
channel use .

We present selected performance results, given by average codeword error rates, and
complexity results, given by average complexity and node exploration exponents, obtained
using a number of decoding strategies derived from the ideas detailed in this report.
In particular, we consider the behaviours of naive lattice decoders operating without
any boundary control and LAST decoders using spherical boundary control, based on
both the SEA and PFTS tree search strategies, all with and without the well-known
complexity and/or performance benefits afforded by the Minimum Mean Squared Error
Generalized Decision Feedback Equalizer (MMSE-GDFE) and Lattice-Reduction Aided
(LRA) detection. The specific configurations of the decoders are summarized in Table 1.

Decoder MMSE-GDFE LRA Boundary Memory Decoder

label front end detection control [nodes] optimality

SEA-N (Naive) no no none m = 2MT sub-optimal

SEA-N+MMSE-GDFE yes no none m sub-optimal

PFTS-N no no none ∞ sub-optimal

SEA-L no yes/no spherical m ML

SEA-L+MMSE-GDFE yes yes/no spherical m pseudo-ML (pML)

PFTS-L no yes/no spherical ∞ ML

PFTS-L+MMSE-GDFE yes yes/no spherical ∞ pseudo-ML (pML)

PFTS-L+MMSE-GDFE+LRA yes yes spherical τ sub-optimal

Table 1: Summary of principal characteristics of lattice decoders under consideration.

First we consider in Fig. 4 the average codeword error rates attained under various
decoding strategies:
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(a) LAST code from [4].
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(b) LAST code designed for minimum error
rate [15].

Figure 4: Average codeword error rate vs. average received SNR per codeword for the
(sub-optimal) naive lattice and ML LAST decoders, shown both with and without the
MMSE-GDFE front end.
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We may immediately observe a large gap, e.g., of almost 5dB at a target codeword
error rate of 10−2, between the performance of the naive lattice decoder without boundary
control and the ML curve. Although a part of this gap is recovered by the efficient naive
decoder using MMSE-GDFE pre-processing (but no boundary control) proposed in [4], we
see that there remains about 1dB of room for improvement. Also shown is the gap between
the various error rates and the outage curve, i.e., the probability that the channel is too
singular to support communication at the design rate. A gain of 1dB when performance
is so close to outage is particularly difficult to obtain.

This gap can be completely closed by the proposed ML detectors, or roughly halved
by applying the proposed ML strategies, i.e., with boundary control, to the problem
following MMSE-GDFE pre-processing. The resulting pseudo-ML performance curve is
labelled “p-ML” in the plots. By carefully comparing Figs. 4(a) and 4(b), we also see
that the minimum error rate spherical LAST code achieves a slightly better performance
profile than the unoptimized code. This benefit persists for all of the detection algorithms.

Next, Fig. 5 compares the average complexity exponents of the detectors under con-
sideration. Observe that the complexities of the SEA-L decoders, both with and without
MMSE-GDFE pre-processing, are slightly higher but comparable to that of the naive
lattice decoder with the MMSE-GDFE front end. This increase in computational cost is
consistent with the improved performance profile that is offered by the SEA-L decoders.
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Figure 5: Average complexity exponent vs. average received SNR per codeword for the
(sub-optimal) naive lattice, and ML SEA-L and PFTS-L decoders, shown both with and
without the MMSE-GDFE front end.

More interestingly, our simulations reveal an almost full unit gap between the com-
plexity exponents attained when using the two different LAST codes, a phenomenon that
appears to persist broadly over all detection strategies.

In addition to the complexity exponents of the various decoders, it is also insightful to
investigate their node exploration exponents. By comparing the curves shown in Fig. 6
obtained using the SEA-N, SEA-L and SEA-N+MMSE-GDFE decoders, we observe that
the naive lattice decoders actually expand the largest numbers of nodes. This effect
can be mitigated at lower SNRs by MMSE regularization alone via the MMSE-GDFE
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front end, or at relatively high SNRs by boundary control alone. Recall that there is
a 1dB performance penalty incurred when using MMSE regularization in this scenario.
Considering the curves labeled SEA-N+MMSE-GDFE and SEA-L+MMSE-GDFE, we
see that combining boundary control and MMSE regularization at higher SNRs yields
additional benefit.

While the curves presented in Fig. 6 have the same shapes as their complexity ex-
ponent counterparts in Fig. 5, we also note that a significant further reduction in node
exploration requirements can be obtained through the use of a priority-first PFTS-L
strategy compared to the depth-first SEA-L. The priority-first schemes enjoy an almost
constant reduction in their exploration exponents, across all SNRs, due to the exclusion
of the operations relating to the maintenance of an ordered nodelist. These curves are
indicative of the complexity behaviour of hardware implementations of the decoders, since
the operations associated with expanding a single node in either case (including partially
sorting the nodelist and fetching the smallest weight node) can be executed by specialized
hardware in a single clock-cycle [13,16].
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Figure 6: Average node exploration exponent vs. average received SNR per codeword for
the (sub-optimal) naive lattice, and ML SEA-L and PFTS-L decoders, shown both with
and without the MMSE-GDFE front end.

In the implementation whose exploration exponents are shown in Fig. 6, we use a
naive lattice decoder based on the Schnorr-Euchner enumeration with adaptive radius
reduction. By definition it must expand at least as many nodes as an equivalent naive
implementation based on priority-first search, i.e., νSEA−N ≥ νPFTS−N. However, we observe
that the number of nodes expanded by the naive SEA-based decoder is often larger than
that explored by the PFTS-L decoder. In fact, we can show that its lower bound, νPFTS−N,
may also be larger than the number of nodes explored by the PFTS-L strategy.

Proposition 3: Given target v and lattice decoding problem parameters H, G, u and
S, as well as naive and ML lattice decoders PFTS-N and PFTS-L employing ordered
traversal, the following statements hold:

1. The squared search radii C2 of the two decoders satisfy C2
PFTS−N ≤ C2

PFTS−L.
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2. The numbers of nodes ν expanded by the two decoders do not necessarily satisfy
νPFTS−N ≤ νPFTS−L.

The result, which may seem counter-intuitive at first, arises because the PFTS-L de-
coder only expands those nodes whose associated residual targets lie both inside the search
sphere, as well as on affine sets that correspond to candidate values of the optimization
variables. Therefore, in many (but clearly not all) cases it actually expands fewer nodes
than the naive PFTS-N.

As is to be expected, any reduction in the number of nodes explored by the PFTS-L
decoder comes at the cost of additional space complexity. Because of the recursive nature
of the SEA-L, the number of nodes that it maintains at any time is upper bounded by
the height of the search tree, i.e., its space complexity (in node data structures) is upper
bounded by m. On the other hand, the true space requirements of the PFTS-L depend
on number of nodes expanded at runtime. In a practical implementation, a finite priority
queue of fixed size τ would be used, the size of which may be traded-off against some cost
to performance as illustrated in Fig. 7. We observe that as τ → m, both the performance
and complexity characteristics of the PFTS-L decoder approach that of the SEA-L.
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Figure 7: Performance and complexity profile attained by practical fixed memory PFTS-L
decoders, which make use of both the MMSE-GDFE front end and LRA detection, shown
here for a minimum error rate LAST code [15].

Finally, it is interesting to highlight the role that LRA detection can play alongside
the decoding schemes considered in this section. For the algorithms achieving ML or
pML performance, spherical boundary control is necessarily being enforced through the
parallel tree decoder structure. Therefore, applying lattice reduction does not affect their
performance at all; it only has an impact on their complexity, the nature and extent of
which is illustrated in Fig. 8.

Observe that the MMSE-GDFE front end plays a very significant role in the lower SNR
regime, whereas the complexity reduction supported through LRA detection becomes
relatively more significant in the higher SNR regime. Debatably, at such point we may
no longer be so interested in this reduction, as even the unassisted detector’s complexity
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Figure 8: Average number of expanded nodes vs. average received SNR per codeword
for PFTS-L decoder, both with and without the MMSE-GDFE front end and with and
without LRA detection, shown here for a minimum error rate LAST code [15].

will have nearly converged to its minimum, on average. What we do note is that the
combination of the two pre-processing techniques affords the greatest benefit, i.e., their
effects are complementary and cumulative. We also remark that LRA detection has been
observed to play a more significant role in the performance of sub-optimal schemes, such
as the fixed memory version of the PFTS-L decoder. Thus we may conjecture that LRA
detection is a more critical consideration for performance enhancement of sub-optimal
schemes than it is for complexity reduction of optimal decoding strategies.

6 Conclusions

In this report we have presented a generic framework for the efficient ML decoding of
spherical lattice codes. Specifically we apply it to the spherical LAST codes pioneered
in [4] and demonstrate that a 1dB improvement in performance over the naive decoder
with MMSE-GDFE pre-processing is available at a comparable complexity. Within our
framework, the problem of boundary control is handled naturally, alongside the decod-
ing process, by means of a parallel tree-based structure. In fact, for delay-limited rather
than processing-limited applications, traversal of the two trees can be done in parallel,
as there is no data-dependence between them. Such a strategy would further reduce
the required computation time. We have demonstrated the performance and complexity
profiles of various flavours of decoders making use of the proposed spherical boundary con-
trol mechanism through extensive simulation, including consideration of the isolated and
joint effects of MMSE-GDFE pre-processing, LRA detection and fixed space complexity
constraints.
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Appendix

Proof of Proposition 1

Proposition 1: Given (closed) sphere S(u0, D) ⊂ R
m with centre u0 ∈ R

m and squared
radius D, and normal vector n ∈ R

m, the shadow of S on n is given by

shadn

(
S

)
=

[
〈u0,n〉 −

√
D |n| , 〈u0,n〉+

√
D |n|

]
. (38)

Proof We consider first the upper bound of the shadow:

max
υ∈S
〈υ,n〉 = max

υ∈Rm

{〈
u0 +

√
Dυ,n

〉
: |υ| = 1

}
(39)

= 〈u0,n〉+
√

D

〈
n

|n| ,n
〉

(by Cauchy-Schwarz inequality) (40)

= 〈u0,n〉+
√

D|n|. (41)

The analogous result for the lower bound can be shown in a similar manner.

Proof of Proposition 2

Proposition 2: Given (closed) sphere S(u0, D) ⊂ R
m with centre u0 ∈ R

m and squared
radius D, normal vector n ∈ R

m and offset b ∈ R, the intersection of S with hyperplane

P(n, b) , {υ : 〈υ,n〉 = b} (42)

is an (m− 1)-dimensional sphere that can be written as S(u′
0, D

′)∩P(n, b) where centre

u′
0 = projP(n,b)(u0) (43)

and squared radius

D′ = D − ‖u0 − P(n, b)‖2⊥ (44)

Proof We begin by recalling the definition of a sphere:

S = {ξ : |ξ − u0|2 ≤ D, ξ ∈ R
m}. (45)

The intersection of a sphere and a hyperplane is clearly a lower-dimensional sphere. It
remains to determine the precise values of the solution sphere’s centre and squared radius
parameters. By symmetry, the centre of the solution sphere must be of the form u0 + αn

for some scaling factor α. In particular, let υ = ξ − u0 = υ‖ + υ⊥ such that 〈υ⊥,n〉 = 0.
Then it follows that 〈ξ,n〉 = 〈u0,n〉 + 〈υ‖,n〉 = b. Therefore the component of υ that is
parallel to normal vector n has a fixed 2-norm of

|υ‖| =
b− 〈u0,n〉
|n| . (46)

The centre of the solution sphere is then

u′
0 = u0 + |υ‖|

n

|n| (47)
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and since we also have that |υ|2 = |υ‖|2 + |υ⊥|2 ≤ D, its squared radius is given by the
upper bound on the squared 2-norm of the component of υ that is orthogonal to normal
vector n, i.e., that lies within hyperplane P(n, b):

|υ⊥|2 ≤ D − |υ‖|2. (48)

Proof of Proposition 3

Proposition 3: Given target v and lattice decoding problem parameters H, G, u and
S, as well as naive and ML lattice decoders PFTS-N and PFTS-L employing ordered
traversal, the following statements hold:

1. The squared search radii C2 of the two decoders satisfy C2
PFTS−N ≤ C2

PFTS−L.

2. The numbers of nodes ν expanded by the two decoders do not necessarily satisfy
νPFTS−N ≤ νPFTS−L.

Proof Because the search set underlying the operation of the PFTS-L is a subset of that
of the PFTS-N, it follows that the optimal cost returned by the PFTS-N is less than or
equal to that returned by the PFTS-L. This optimal cost is precisely the squared search
radius C2.

Intuition might suggest at this point that the number of nodes expanded by the two
decoders should also obey the same inequality relationship. However, whereas the PFTS-N
expands all nodes associated with residual targets located within its (open) search sphere
S(v0, C

2
PFTS−N), the PFTS-L only expands nodes associated with admissible candidates, or

equivalently those lying within the intersection of its (open) search sphere S(v0, C
2
PFTS−L)

and the collection of infinite strips defined by the shadows of the code shaping region S
on the problem-dependent normal vectors.

Ξ1
v0

Ξ2

Ξ−T
1

CPFTS−N

(a) By the PFTS-N, νPFTS−N = 3.

Ξ1
v0

Ξ2

Ξ−T
1

CPFTS−L

E

(b) By the PFTS-L, νPFTS−L = 2.

Figure 9: Nodes expanded by PFTS naive and ML lattice decoders for LAST decoding
problem shown in Fig. 2, where the target is shown as a filled dot, residual targets as
empty dots and feasible points in the search set as gray dots.
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A simple counterexample where νPFTS−N > νPFTS−L is provided in Fig. 9: The smaller
search sphere of the PFTS-N shown in Fig. 9(a) contains three (residual) targets, while
the intersection of the larger search sphere of the PFTS-L and the appropriate shaping
region shadows shown in Fig. 9(b) contains only two.

Pseudocode for the SEA and PFTS LAST decoders

Finally, we present complete detailed pseudocode descriptions of two LAST decoders
based on the SEA and PFTS approaches. We assume that the (square) upper triangular
transform matrices R and P, arising from the QR factorizations of transformed lattice
generator Ξ and of the code lattice generator G, respectively, and the border nodelist
Nb are available throughout as global variables. The node data structure is defined as an
11-tuple comprising

• its weight σ in R≥0,

• its parent dimension d′ in Im,

• its parent residual target vector ỹ′ in R
d′ ,

• its associated vector of applied constraint values ž in Z
m−d′+1,

• its position with respect to its siblings q in Z>0,

• the weight of its parent node σ′ in R≥0,

• the constraint value of its previous sibling x− in R,

• its parent residual translation vector ũ′ in R
d′ ,

• its parent residual squared radius D′ in R≥0,

• the lower bound of its candidate range xmin in Z, and

• the upper bound of its candidate range xmax in Z.

The SEA LAST decoder makes use of the same FirstChild-L and NextSibling-L functions
as the PFTS LAST decoder. However, instead of maintaining the nodes in a heap (or
other data structure of choice), the SEA expands them recursively. We assume that the
functions are appropriately modified to return the computed child and sibling node data
structures to RecursiveExpand-L. Fixed memory implementations of the PFTS-L and SEA-
L lattice decoders with spherical boundary control can be found at the Matlab Central
File Exchange (please see [12] and [14], respectively).
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Algorithm 1 Priority-First Tree Search LAST Decoder PFTS-L(v,H,G,u, D)
Input: The target vector v, the channel matrix H, the lattice generator matrix G, its translation

vector u, and the squared radius D of the spherical code shaping region.

Output: A vector z∗ such that s∗ = Gz∗ + u ∈ C and |v −Hs∗|2 ≤ |v −Hs|2 ∀ s ∈ C, where
C = (Λ(G) + u) ∩ S(0,D), and the radius C of the optimal search sphere.

Pre-compute (once per LAST code):
1: (QG,P)← QR(G) Factor code lattice generator matrix
2: ũ← −QT

Gu Project translation vector onto codeword space

3: xmin ←
⌈

eum

pmm

−
√

D
|pmm|

⌉
Compute lower bound of candidate range

4: xmax ←
⌊

eum

pmm

+
√

D
|pmm|

⌋
Compute upper bound of candidate range

Pre-process (once per fading block):
5: Ξ← HG Compute effective generator matrix
6: (QΞ,R)← QR(Ξ) Factor effective generator matrix

Decode (once per received word):
7: ṽ← QT

Ξ(v −Hu) Offset and project target onto search space

8: x[0] ← ev
m

r
mm

Compute root unconstrained value

9: x[1] ← FirstValue-L(x[0], xmin, xmax) Determine first candidate value
10: σ ← d2(ṽm, rmmx[1]) Compute weight of first child of root node
11: Nb ← {(σ,m, ṽ, x[1], 1, 0, x[0], ũ,D, xmin, xmax)} Put first child of root on border
12: repeat
13: (z, σ)← SmallestWeightLeaf-L(Nb) Find (next) smallest weight leaf node
14: until Gz + u ∈ C
15: Return z∗ = z and C∗ =

√
σ Report optimal solution and search radius

Function 2 SmallestWeightLeaf-L(Nb)
Input: The border nodelist Nb (global variable).

Output: The constraint value vector ž and weight σ of the smallest weight unexplored leaf node, i.e.,
the smallest weight leaf node lying outside input border nodelist Nb. The updated border
nodelist reflecting any newly explored nodes is also returned (global variable).

1: (σ, d′, ỹ′, ž, q, σ′, x−, ũ′,D′, xmin, xmax)← Get&DeleteMin(Nb) Smallest weight node
2: while d′ > 1 do Until leaf node selected
3: Call FirstChild-L(σ, d′, ỹ′, ž, ũ′,D′) Expand node
4: Call NextSibling-L(d′, ỹ′, ž, q, σ′, x−, ũ′,D′, xmin, xmax)
5: (σ, d′, ỹ′, ž, q, σ′, x−, ũ′,D′, xmin, xmax)← Get&DeleteMin(Nb) Smallest weight node
6: end while
7: Return ž and σ Return constraints and weight of smallest weight leaf
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Function 3 FirstChild-L(σ, d′, ỹ′, ž, ũ′, D′)
Input: The weight σ, the parent dimension d′, the parent residual target ỹ′ and the constraint values

ž of the node, as well as the residual translation vector ũ′ and residual squared radius D′ of
its parent.

Output: The updated border nodelist Nb (global variable).
1: d← d′ − 1 Determine current residual dimension
2: ũ← (ũ′ − pd′ ž1)\d′ Compute current residual translation vector

3: D ← D′ − d2(ũ′
d′ , pd′d′ ž1) Compute current residual squared radius

4: xmin,c ←
⌈

eud

pdd

−
√

D
|pdd|

⌉
Compute lower bound of candidate range

5: xmax,c ←
⌊

eud

pdd

+
√

D
|pdd|

⌋
Compute upper bound of candidate range

6: if xmax,c ≥ xmin,c then If there are any children

7: ỹ← (ỹ′ − rd′ ž1)\d′ Compute current residual target

8: x[0] ← eyd

r
dd

Compute current unconstrained value

9: x[1] ← FirstValue-L(x[0], xmin, xmax) Determine first candidate value
10: σc ← σ + d2(ỹ

d
, rddx[1]) Compute new child node components

11: žc ←
[
x[1]
ž

]

12: x−
c ← x[0]

13: Insert (σc, d, ỹ, žc, 1, σ, x−
c , ũ,D, xmin,c, xmax,c) into Nb Put child on border

14: end if

Function 4 FirstValue-L
(
x[0], xmin, xmax

)

Input: The unconstrained target x[0] and the lower and upper bounds xmin and xmax of the candi-
date range of the node.

Output: The constraint value x[1] of the first child node.

1: x[1] ←Round
(
x[0]

)
Ensure x[1] ∈ [xmin, xmax]

2: if x[1] > xmax then
3: x[1] ← xmax
4: else if x[1] < xmin then
5: x[1] ← xmin
6: end if
7: Return x[1]

Function 5 NextSibling-L(d′, ỹ′, ž, q, σ′, x−, ũ′, D′, xmin, xmax)

Input: The parent dimension d′, the parent residual target ỹ′, the constraint values ž and the position
q of the node, the weight σ′ of its parent, the constraint value x− of its previous sibling, as
well as the residual translationũ′ and residual squared radius D′ of its parent, and the lower
and upper bounds xmin and xmax of its candidate range.

Output: The updated border nodelist Nb (global variable).

1: if q ≤ xmax − xmin then If there are more siblings
2: x[q] ← ž1 Get current constraint value
3: x[q+1] ← NextValue-L(q, x[q], x

−, xmin, xmax) Determine next candidate value

4: σs ← σ′ + d2(ỹ′
d′

, rd′d′x[q+1]) Compute new sibling node components

5: žs ←
[
x[q+1]

ž
l

2

]

6: qs ← q + 1
7: x−

s ← x[q]

8: Insert (σs, d
′, ỹ′, žs, qs, σ

′, x−
s , ũ′,D′, xmin, xmax) into Nb Put sibling on border

9: end if
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Function 6 NextValue-L
(
q, x[q], x[q−1], xmin, xmax

)

Input: The position q and the constraint value x[q] of the node, as well as that of its previous sibling
x−, and the lower and upper bounds xmin and xmax of its candidate range.

Output: The constraint value x[q+1] of the next sibling node.

1: x[q+1] ← x[q] − q·Sign
(
x[q] − x[q−1]

)
Ensure x[q+1] ∈ [xmin, xmax]

2: if x[q+1] > xmax then
3: x[q+1] ← xmax − q

4: else if x[q+1] < xmin then
5: x[q+1] ← xmin + q

6: end if
7: Return x[q+1]

Algorithm 7 Schnorr-Euchner Adaptive LAST Decoder SEA-L(v,H,G,u, D)
Input: The target vector v, the channel matrix H, the lattice generator matrix G, its translation

vector u, and the squared radius D of the spherical code shaping region.

Output: A vector z∗ such that s∗ = Gz∗ + u ∈ C and |v −Hs∗|2 ≤ |v −Hs|2 ∀ s ∈ C, where
C = (Λ(G) + u) ∩ S(0,D), and the radius C of the optimal search sphere.

Pre-compute (once per LAST code):
1: (QG,P)← QR(G) Factor code lattice generator matrix
2: ũ← −QT

Gu Project translation vector onto codeword space

3: xmin ←
⌈

eum

pmm

−
√

D
|pmm|

⌉
Compute lower bound of candidate range

4: xmax ←
⌊

eum

pmm

+
√

D
|pmm|

⌋
Compute upper bound of candidate range

Pre-process (once per fading block):
5: Ξ← HG Compute effective generator matrix
6: (QΞ,R)← QR(Ξ) Factor effective generator matrix

Decode (once per received word):
7: ṽ← QT

Ξ(v −Hu) Offset and project target onto search space

8: x[0] ← ev
m

r
mm

Compute root unconstrained value

9: x[1] ← FirstValue-L(x[0], xmin, xmax) Determine first candidate value
10: σ ← d2(ṽm, rmmx[1]) Compute weight of first child of root node
11: RecursiveExpand-L(σ,m, ṽ, x[1], 1, 0, x[0], ũ,D, xmin, xmax) Expand first child of root
12: Return z∗ = z and C∗ =

√
σ Report optimal solution and search radius
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Function 8 RecursiveExpand-L
(
σ, d′, ỹ′, ž, q, σ′, x−, ũ′, D′, xmin, xmax

)

Input: The current search radius C (global variable) and a node data structure.

Output: The current best solution vector z (global variable) and the current search radius C (global
variable).

1: if d′ > 1 then Expand node
2: nc ← FirstChild(σ, d′, ỹ′, ž, ũ′,D′)
3: if σ(nc) < C2 then
4: RecursiveExpand(nc)
5: end if
6: ns ← NextSibling(d′, ỹ′, ž, q, σ′, x−, ũ′,D′, xmin, xmax)
7: if σ(ns) < C2 then
8: RecursiveExpand(ns)
9: end if

10: else if σ < C2 then Smaller weight leaf node found
11: C ← Sqrt(σ)
12: z← ž
13: end if
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