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Translating HOL functions to hardware

Juliano Iyoda

Abstract

Delivering error-free products is still a major challenge for hardware and software
engineers. Due to the increasingly growing complexity of computing systems, there is a
demand for higher levels of automation in formal verification.

This dissertation proposes an approach to generate formally verified circuits automat-
ically. The main outcome of our project is a compiler implemented on top of the theorem
prover HOL4 which translates a subset of higher-order logic to circuits. The subset of the
logic is a first-order tail-recursive functional language. The compiler takes a function f

as argument and automatically produces the theorem

⊢ C implements f

where C is a circuit and implements is a correctness relation between a circuit and a func-
tion. We achieve full mechanisation of proofs by defining theorems which are composable.
The correctness of a circuit can be mechanically determined by the correctness of its
sub-circuits. This technology allows the designer to focus on higher levels of abstraction
instead of reasoning and verifying systems at the gate level.

A pretty-printer translates netlists described in higher-order logic to structural Verilog.
Our compiler is integrated with Altera tools to run our circuits in FPGAs. Thus the
theorem prover is used as an environment for supporting the development process from
formal specification to implementation.

Our approach has been tested with fairly substantial case studies. We describe the
design and the verification of a multiplier and a simple microcomputer which has shown
us that the compiler supports small and medium-sized applications. Although this ap-
proach does not scale to industrial-sized applications yet, it is a first step towards the
implementation of a new technology that can raise the level of mechanisation in formal
verification.
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Chapter 1

Introduction

The development of reliable systems is still a challenge to hardware and software engineers.
Computing systems are increasingly growing in complexity and size, which makes subtle
errors more likely to appear. Uncovered bugs in the development phase can cause severe
loss of money or, in safety-critical applications, even human life. According to Wired News
website, among the History’s Worst Bugs are the Intel Pentium floating point division and
the Ariane 5 Flight 501 [25]. These failures are estimated to have cost around half a billion
US dollars each. Although there is no definitive solution to this problem, formal methods
is the most rigorous set of techniques which provides high assurance of correctness.

Formal methods refers to techniques and tools based on mathematical logic which
ensure the quality and the correctness of a design by representing specifications and
implementations in a particular logical system. Formal verification is a rigorous deduction
in the logic (a theorem) which shows that an implementation meets the specification.
Theorem provers are software tools which mechanise a logical system and automate (as
much as possible) the proof of theorems.

This dissertation proposes an approach for automatic formal verification of hardware.
The specification is a subset of higher-order logic and the implementation is a circuit
represented in the logic. The theorem prover HOL4 [59] translates the source code into
a circuit and automatically proves that it meets the specification. In order to achieve a
fully mechanised verification, we develop a technology to compose proofs automatically.
We show the feasibility of this method in the development of small and medium-sized
applications. Although this technology does not scale to industrial-sized applications yet,
this thesis is a proof-of-concept that our approach is a promising first step in improving
the degree of mechanisation in hardware verification (on any scale) using theorem provers.

In what follows, we overview how theorem provers help in mechanising hardware ver-
ification followed by a description of the contributions of this dissertation and an outline
of the structure of the next chapters.

1.1 Mechanised Verification

There are two main techniques for mechanising hardware verification. Model checking
exhaustively verifies that a model of the system satisfies some property. Systems are
usually modelled as a finite state machines, which allows model checking to perform
fully automatic verification. Another advantage of model checking is the generation of
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counterexamples whenever a property does not hold. In contrast to model checking,
theorem proving can deal with infinite state spaces. A theorem prover mechanises a proof
system. Both the system and the properties are expressed inside some logic defined by
axioms and inference rules. Theorem provers are able to model complex systems due
to the high expressiveness of their logic. The disadvantage of using theorem provers is
the need for user guidance in constructing proofs (although in particular domains, full
automation is possible).

As our work is on theorem provers applied to hardware verification, we overview
previous work using this technology. For an excellent survey on the application of model
checking (and theorem provers) to hardware verification, see Kern and Greenstreet [49].

In the classic paper Why higher-order logic is a good formalism for specifying and
verifying hardware [27], Gordon shows that specialised hardware description languages
and specialised deductive systems are not needed for hardware verification. Formal logic
suffices. Higher-order logic is now a well established formalism for specifying and verifying
hardware [8, 19, 36, 55]. An advantage of this formalism is that higher-order functions
naturally model signals as functions from time (natural numbers) to values, like Booleans.
Moreover, it is possible to define additional mathematical theories on top of the logic and
use them in hardware modelling. There are different versions of higher-order logic.

The HOL4 system implements Church’s simple type theory with polymorphic types.
The early experiments with hardware verification described by Gordon [27] were later ex-
tended by Melham, who introduced abstraction mechanisms for functional, data and time
refinement [55]. Parallel to these developments, the verification of complete processors
and micro-architectures were undertaken (e.g., Viper [16] and ARM6 [23]). More recently,
Blumenröhr embedded the hardware description language Gropius [8] in HOL. This work
is based on pre-proved theorems, which allow the automatic generation of circuits whose
sub-modules are formally verified, thus providing a higher degree of mechanisation.

In VERITAS+ [36], classical non-constructive logic is extended with dependent types
and subtypes, thus enhancing its expressiveness and allowing polymorphism. The disad-
vantage of this extension is the loss of decidable type-checking. Dependent types and sub-
types are also features of the PVS [64] prover. Its particular specification language is based
on higher-order logic. Although PVS is a general purpose theorem prover, it has been
applied to several projects in hardware verification, like the verification of microprocessors
(AAMP5), arithmetic circuits and dynamic hardware reconfiguration algorithms [78, 79].

Hardware correctness has also been verified in first-order logic. The Boyer-Moore logic
is a first-order, untyped, quantifier free logic of total recursive functions. The Nqthm the-
orem prover [13], which mechanises the Boyer-Moore logic, has been extensively used in
hardware verification. For instance, Hunt et al. applied the prover to verify the correct-
ness of the microprocessors FM8501 and FM9001 [40, 41]. The user has to be familiar with
the heuristics employed in the prover in order to be able to guide Nqthm effectively [13].
The theorem prover ACL2 (A Computational Logic for Applicative Common Lisp) is
a recoded version of Nqthm which supports a subset of applicative Common Lisp [48].
Like Nqthm, ACL2 has also being used in several projects related to verification of hard-
ware. For instance, ACL2 was used to mechanically check the verification of a complex
pipelined microprocessor [70] and to formalise a finite state machine language applied to
the verification of a microprocessor [42].

There are several other theorem provers which have been applied to hardware verifica-
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tion. However it is not our intention to cover in detail all the previous work in hardware
verification here, but to illustrate how the efforts to tackle industrial-sized applications
and to achieve a greater degree of mechanisation using theorem provers evolved. The level
of mechanisation, abstraction and the scale of later work [13, 23, 55, 78] have shown a
significant improvement in comparison to early verification efforts [27, 36, 40]. Despite the
tremendous advances in the mechanisation of hardware verification which produced sev-
eral impressive cases of industrial-sized verifications, in general the process still requires
human input. Hardware proofs in a particular application domain may follow partic-
ular patterns of verification and, consequently, benefit from a specific automatic proof
technology, but in general theorem provers need user guidance.

In our work we experiment with an approach which minimises (or eliminates) any user
guidance in the verification process. As mentioned in the previous section, one of the aims
of this project is to evaluate the feasibility of this method to hardware specification and
verification. We have chosen to work with the HOL4 system. Although in principle any
other higher-order logic theorem prover could be used, hardware verification is intrinsically
related to the HOL4 system. It is the application which motivated its creation [29]
and which has been vastly explored and has contributed significantly to the system’s
development.

1.2 Contributions

This section lists the main contributions of this dissertation.

• We develop a compiler which takes a function f as argument and automatically
returns the theorem

⊢ C implements f

where C is a generated circuit and implements is a correctness relation between
implementation and specification (implements is formally defined in Section 2.4).
Both the circuit C and the function f are represented in HOL. In particular, C is
a HOL representation of a netlist. The function f lies in a subset of HOL which
constitutes a first-order tail-recursive functional language. The fully automatic ver-
ification is based on the principle of compositionality. The correctness of a complex
circuit can be mechanically determined by the correctness of its sub-circuits. This
is achieved by carefully designing the structure of our theorems.

• As a direct consequence of the automatic verification of circuits with respect to a
functional program, the designers do not have to reason and to interactively verify
systems at lower levels of abstraction like architectural, register-transfer or gate
level. The development process can start from a specification in higher-order logic
which is subsequently proved (interactively) to be implemented by a first-order tail-
recursive function. This is the lowest level of abstraction the designer has to reason
about during verification.

• We tested our approach to evaluate its feasibility. Our experiments and case stud-
ies have shown that our technology supports small and medium-sized applications.
Typically the compiler takes few hours to verify the correctness of circuits with
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approximately 700 components. Chapter 5 presents the verification of a simple mi-
crocomputer specified as functional program. We also developed a Booth multiplier
specified originally as part of the ARM6 verification project (Section 5.1). Crypto-
graphic algorithms like TEA [82] were verified by Konrad Slind at the University of
Utah [76].

• A fully functional prototype that links HOL4 to an FPGA has been implemented.
The complete development process can be carried out from the theorem prover.
The HOL netlist is informally translated to structural Verilog, which is compiled
and downloaded to an Altera FPGA by the Quartus II tool set.

1.3 The structure of this dissertation

In this section we outline the structure of the subsequent chapters.
Chapter 2 introduces the main concepts used in our approach. Initially we illustrate

our approach informally using fictitious source and target languages. This is followed by
a brief description of HOL and of how hardware is modelled and verified in the logic. We
conclude by describing how the concepts introduced informally at the beginning of the
chapter are formalised in HOL.

Chapter 3 presents several optimisation techniques and compilation steps for syn-
thesis. The optimisations are basically theorems which state the equivalence between a
circuit and its optimised version. We also describe a compilation step that introduces a
global clock to the system and the technology used to download the netlist in an FPGA.
The last section illustrates the complete verification process step-by-step.

Chapter 4 reports on the limitations of our approach and describes issues and prob-
lems we faced during the development of this project.

Chapter 5 shows the development of two case studies: an implementation of the
Booth multiplier and a simple microcomputer called the DIY microcomputer. We de-
veloped two different designs for the DIY. In the first one, only the CPU is modelled in
HOL. The second design includes a tiny memory connected to the CPU. We analyse the
strengths and weaknesses of our compilation method revealed by the case studies.

In Chapter 6, we describe several closely related work. We review projects based
on theorem provers and work on hardware synthesis of functional languages. We present
a comparative analysis of these approaches based on the abstraction level of the source
language and the level of automation of the verification.

Chapter 7 summarises our work and discusses the limitations and contributions of
our approach.

Part of Chapter 2 is also described by Gordon et al. [30] and Slind et al. [77]. Chapter 3
and Section 5.1 were also introduced by Slind et al. [76].



Chapter 2

Compilation

This chapter describes the compilation-by-proof approach. Section 2.1 informally de-
scribes the automatic verification using simple fictitious languages. Sections 2.2 and
2.3 overview higher-order logic and show how circuits are modelled and verified in the
logic. Finally, Section 2.4 presents the source and the target languages and formalises the
method introduced informally in Section 2.1.

2.1 Introduction

This section introduces the compilation and the verification method based on composable
entities. For simplicity, we use fictitious languages in our examples.

Our aim is to develop a compiler which takes a program f and automatically produces
a theorem

⊢ C implements f

where C is a generated circuit and implements is a correctness relation between imple-
mentation and specification (implements is formally defined in Section 2.4).

First we classify the commands or constructors of a language in two kinds: atomic and
composite. Atomic commands are those which do not depend on any sub-command to
exist. For example, assignments are atomic commands in imperative programming lan-
guages. Composite commands are those which are built from sub-commands. Sequential
composition and if-then-else are examples of composite commands.

A simple source language is used in this section to illustrate the compilation and the
verification method. Its BNF is shown below.

p ::= f1 | f2 | f3 | f4(p1, p2) | f5(p1, p2, p3)

The commands f1, f2 and f3 are atomic. The composite commands f4 and f5 take two
and three sub-commands as arguments, respectively. For example, f5(f4(f3, f2), f1, f2) is
a program written in this language.

In order to translate this language into hardware (without verifying it), we define a

11



12 CHAPTER 2. COMPILATION

corresponding circuit implementation for each language constructor.

7→f2

7→

f3

f1

f4

f5

7→

7→

7→

C1

C2

C3

C4

C5

Circuits are represented by boxes, reflecting their physical structure.
The compilation is carried out by simply replacing every occurrence of a command in

the source code by its corresponding circuit implementation. For example, the compilation
of f5(f4(f3, f2), f1, f2) produces

f5(f4(f3, f2), f1, f2) 7→
C5

C4
C3 C2 C1 C2

For this method to work, the circuit constructors must have the same interface. This
allows every circuit to connect to every other circuit. In the example above, the circuit C5

is connected to both primitive and composite sub-circuits. This is basically how SAFL [71]
translates a functional program to hardware.The key idea is to deal with composable
circuits.

This method inspired us to develop a similar approach concerning verification. The
main challenge is to prove theorems which state the correctness of the circuits and also
satisfy the composability property.

First we prove that the atomic circuits are correct.

implements f1

implements f2

implements f3

⊢

⊢

⊢

C1

C2

C3

The next step is to prove that the correctness of composite circuits depends on the
correctness of its sub-circuits.

⇒

implements g)

C4

C5

( Cf⊢ Cgimplements f) ∧ (

implements f5(e, f, g)

CgCf
implements f4(f, g)

Ce

⇒

⊢ ( implements e) ∧ ( implements f) ∧ (Cf Cg implements g)

CgCfCe
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The circuits Ce, Cf and Cg are implementations of the functions e, f and g, respectively.
Note that they are not necessarily atomic. The composability of these theorems comes
from the uniform structure of the antecedents and the consequents of the implication
“(C implements f)”. In addition to that, circuits and commands are also composable.
This property allows a proof assistant to build proofs of correctness automatically.

Figure 2.1 shows the compilation-by-proof of the program f5(f4(f3, f2), f1, f2). Steps

3. ( implements f) ∧ ( implements g)

C4

Cf Cg

Cf Cg
⇒ implements f4(f, g)

C2

C4

C3

C2C3

4. ( implements f3) ∧ ( implements f2)

⇒ implements f4(f3, f2)

C3

C4

C4
C2C3

C1 C2

Cg

C4

C5

C1 C2C2C3

C4

C5

C1 C2C2C3
9. implements f5(f4(f3, f2), f1, f2)

C31. implements f3

2. implements f2
C2

C1

C2

6. implements f1

5. implements f4(f3, f2)

8. ( implements f4(f3, f2)) ∧ ( implements f1) ∧ ( implements f2)

C5

CfCe

Cf CgCe
⇒ implements f5(e, f, g)

7. ( implements e) ∧ ( implements f) ∧ ( implements g)

⇒ implements f5(f4(f3, f2), f1, f2)

Figure 2.1: Verification of f5(f4(f3, f2), f1, f2).

1, 2 and 3 are the correctness theorems for circuits C3, C2 and C4, respectively. On step
4, the variables Cf and Cg of step 3 are specialised with the circuits C3 and C2. Step 5
eliminates the antecedent of step 4 by applying ∧-Introduction and modus ponens with
respect to steps 1 and 2. A similar proof is carried out from steps 6 to 9.

This example shows that we depend solely on ∧-Introduction, modus ponens and
specialisation of variables in order to verify the correctness of a circuit. The compilation
process incrementally constructs the source code on the right-hand side of implements.
This is easily mechanisable by a theorem proving system like HOL4 and requires no
user guidance. Notice that the proof of correctness of each circuit constructor presented
above is carried out in a interactive way, but the proof of any particular circuit is done
automatically. This idea is not new. Composable theorems have already been used to
implement algebraic compilers based on a refinement calculus [12, 69].

This section provided an informal description on how the automatic verification works.
Before formalising the concepts presented here, higher-order logic is introduced, followed
by an overview of hardware verification in this logic.
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2.2 A Brief Introduction to HOL

This section briefly introduces the HOL logic [28]. We intend to explain the logical
system from the hardware designer point of view. The terms HOL and higher-order logic
are used interchangeably to mean the particular formulation developed by Mike Gordon
at the University of Cambridge [26].

HOL is basically a predicate calculus with typed λ-calculus terms.
The predicate calculus of HOL allows variables to range over functions and predicates.

For example, Peano’s Mathematical Induction postulate is naturally formalised in HOL.

⊢ ∀P. P 0 ∧ (∀n. P n ⇒ P (SUC n)) ⇒ (∀n. P n)

The variable P ranges over predicates. If P holds for 0 and if whenever it holds for a
number n, it also holds for its successor (SUC n), then P holds for all natural numbers.
Table 2.1 summarises the predicate logic notation.

Term Description

T true
F false
¬t not t
t1 ∨ t2 t1 or t2
t1 ∧ t2 t1 and t2
t1 ⇒ t2 t1 implies t2
t1 = t2 t1 equals t2
∀x. t for all x : t
∃x. t for some x : t
εx. t an x such that : t
if t then t1 else t2 conditional

Table 2.1: Terms of the HOL logic.

The BNF for the untyped λ-terms is shown below.

M ::= c | v | (M N) | λv. M

The syntactical variables c and v range over constants and variables, respectively. Func-
tion applications have the form (M N) and λ-abstractions are of the form λv. M . For
example, (λx. x+1) denotes the function that takes a number and returns its successor.
The term ((λx. x+1) 5) evaluates to 6. Functions can take functions as arguments and
return functions as results. For example, the function (λn. λm. n+m) takes an argument,
say 3, and returns a function which takes a number and adds 3 to it: (λm. 3+m). Actually,
by defining new constants, it is possible to manipulate higher-order functions in a more
user-friendly way. For example, it is easy to define the constant add as (add n m = n+m).
In Section 2.3 we illustrate how higher-order functions are used to model circuits.

HOL is a typed logic. The version of higher-order logic presented here extends Church’s
simple type theory [15] with polymorphic types. For example, the equality operator = is
a higher-order function of type α→(α→bool). The type of its arguments is not defined a
priori . Type variables are represented by the Greek letters α, β, γ, etc. The type σ1→σ2
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denotes the set of all total functions from values of σ1 to values of σ2. In the Mathematical
Induction postulate presented above, the predicate P is of type num→ bool, where num

is the type of natural numbers. We can write P :num→bool to explicitly declare its type.

The HOL logic is actually built from a very small set of primitive definitions. The
primitive terms are those of the λ-expressions. The primitive constants are equality
(=: α→α→ bool), implication (⇒: bool→ bool→ bool) and the choice operator (ε : (α→
bool)→α). The primitive types are bool, ind (set of individuals) and the type operator
fun, which is abbreviated to the infix notation →. All other types and constants are
introduced in terms of these primitives by rules of definition, which guarantee to preserve
the consistency of the system. From the primitive definitions, it is possible to develop
a large library of theories like those for natural numbers, sets, lists, groups, etc. One of
the first attempts to derive portions of mathematics from logic is described in Principia
Mathematica by Russell and Whitehead [83] (but using a different logic).

There are quite a few theorem provers which mechanise HOL.

Isabelle is a generic theorem prover which provides a mechanism (a simple metalogic)
to allow different object logics to be represented in it. The Isabelle system already includes
several logics like Logic for Computable Functions, classical and intuitionistic first-order
logic and Zermelo-Fraenkel set theory. Its specialisation for higher-order logic is called
Isabelle/HOL [58].

HOL Light is an implementation of HOL built on top of a smaller and simpler logical
core in comparison to previous implementations [37, 38]. Although its logical kernel is
implemented in just about 400 lines of OCaml [60], HOL light is powerful enough to be
used in large verification projects.

ProofPower [65] is another implementation of HOL. It was originally implemented by
International Computers Ltd. (ICL) in collaboration with Program Validation Ltd. and
the universities of Kent and Cambridge. Their aim was to develop a tool to support both
HOL and the Z notation. In 1993 the first version of ProofPower was released. It was
applied to high assurance security systems and safety-critical software. Since 1997, it has
being developed by Lemma 1 Ltd.

The system we use in this work is the HOL4 [59]. The HOL4 system is latest version
of a series of implementations first released in 1988. The HOL system was the first mech-
anisation of higher-order logic and was originally developed for hardware verification [28].
All of the systems mentioned above are descendants of the LCF system [56]. They follow
many of the design concepts and remarkable ideas created by Robin Milner.

The next section illustrates how higher-order logic can be used to naturally model
circuits and how hardware verification benefits from a proof assistant.

2.3 Hardware Verification in HOL

There are different ways of specifying the behaviour of a hardware component in higher-
order logic. They vary in the level of abstraction and style. This section describes the
model developed by Mike Gordon and Tom Melham for sequential circuits [27, 55].

The behaviour of a hardware component is described by a predicate which restricts
the observable values on its external wires. The component is regarded as a black box
(see Figure 2.2).
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Figure 2.2: Hardware component as a black box.

A predicate C, which specifies the behaviour of a component, is defined such that
C(in1, in2, . . . , inn, out1, out2, . . . , outm) is true if and only if the wires in1, in2, . . . , inn,
out1, out2 and outm drive observable values.

Wires are modelled as functions from time to some type. They represent the sequence
of values that appear on wires. Time is represented by natural numbers (type num)
and values are either Booleans (representing a single bit) or words of a given size. A
theory of n-bit words was formalised in HOL to support the verification of the ARM6
micro-architecture [23].

Figure 2.3 shows the specifications of an AND gate and a delay component.

in1

in2

out

AND(in1, in2, out) = ∀t. out t = (in1 t) ∧ (in2 t)⊢

outinp

⊢ DEL(inp, out) = ∀t. out (t+1) = inp t

DEL

Figure 2.3: Primitive components in HOL.

Note that the predicates are higher-order. The wires in1, in2, inp and out are functions
from time to Boolean (num → bool). The definition of AND states that for all times we
observe its external wires, the value of the output is the conjunction of the values of the
inputs at that time. The delay component specifies the value of the output in terms of the
value of the input at the previous time. At time zero, the value of the output is undefined.

The values of the external wires of a single component are restricted by its predicate.
In order to specify the behaviour of two components connected together, we simply conjoin
their predicates. The new specification restricts all wires of the composite circuit to satisfy
the constraints imposed by both sub-circuits. In order to hide internal wires we can simply
use the existential quantifier. Figure 2.4 shows the definition of a device which comprises
an AND gate connected to a delay component by the internal wire c.

2.3.1 Verification

This section describes a simple example that illustrates how we can formally verify prop-
erties of a given circuit. The example shows how to verify that a particular circuit built
from AND and NOT gates correctly implements an OR-gate.
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in1

in2

out
c

DEL

⊢ AND DEL(in1, in2, out) = ∃c. AND(in1, in2, c) ∧ DEL(c, out)

Figure 2.4: Circuit composition in HOL.

First we define the formal specification of the system, i.e. a predicate which specifies
the required behaviour of the circuit.

⊢ OR SPEC(in1, in2, out) = ∀t. out t = (in1 t) ∨ (in2 t)

The specification states that the value of the output is always the disjunction of the
inputs.

After specifying the required behaviour of the system, an implementation must be
formally defined (see Figure 2.5).

out

c1

c2

c3

in1

in2

OR IMP(in1, in2, out) = ∃c1 c2 c3. NOT(in1, c1) ∧ NOT(in2, c2) ∧
AND(c1, c2, c3) ∧ NOT(c3, out)

⊢

Figure 2.5: Is the output the disjunction of the inputs?

The specification of an inverter is similar to the definition of an AND gate showed in
the previous section.

⊢ NOT(inp, out) = ∀t. out t = ¬(inp t)

In order to prove that the circuit OR IMP correctly implements the specification
OR SPEC, we have to prove that if the values on the external wires in1, in2 and out
satisfy the constraints imposed by OR IMP, then they must also satisfy OR SPEC. This
notion of correctness is formalised by a logical implication.

∀in1 in2 out . OR IMP(in1, in2, out) ⇒ OR SPEC(in1, in2, out)

Proof: The proof starts by assuming that:

OR IMP(in1,in2,out)

Replacing OR IMP, AND and NOT by their definitions gives:

∃c1 c2 c3. (∀t. c1 t = ¬(in1 t)) ∧ (∀t. c2 t = ¬(in2 t)) ∧
(∀t. c3 t = (c1 t) ∧ (c2 t)) ∧ (∀t. out t = ¬(c3 t))
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Now we can move all the equations under the scope of a single ∀ quantifier.

∃c1 c2 c3. ∀t. (c1 t = ¬(in1 t)) ∧ (c2 t = ¬(in2 t)) ∧
(c3 t = (c1 t) ∧ (c2 t)) ∧ (out t = ¬(c3 t))

Replacing the equation (out t = ¬(c3 t)) with the right-hand sides of (c1 t = . . .),
(c2 t = . . .) and (c3 t = . . .) gives:

∃c1 c2 c3. ∀t. out t = ¬(¬(in1 t) ∧ ¬(in2 t))

De Morgan’s Law can now be applied to simplify to:

∃c1 c2 c3. ∀t. out t = (in1 t) ∨ (in2 t)

Eliminating the existential quantifier and using the definition of OR IMP yield:

OR SPEC(in1, in2, out)

Based on the assumption in the first step, we can conclude that

OR IMP(in1, in2, out) ⇒ OR SPEC(in1, in2, out)

By generalising the free variables, we prove that

∀in1 in2 out . OR IMP(in1, in2, out) ⇒ OR SPEC(in1, in2, out)

The theorem above is actually proved in fewer steps using the HOL4 system. For this
simple example, very little user-guidance is needed and even a pencil-and-paper proof is
easy to prove and check. However this is not the case for more elaborate implementations.
For instance, the case studies presented in Chapter 5 manipulate circuits with several
hundreds primitive components. This clearly makes manual or even interactive proof
long and tedious.

2.4 Compilation-by-proof in HOL

This section presents the formalisation in HOL of the concepts introduced in Section 2.1.
We use the same principles for hardware modelling and verification presented in the
previous section.

2.4.1 The Source Language

Our source language is a subset of HOL which constitutes a tail-recursive first-order
functional language.

A function is tail-recursive if its recursive calls are the last operation executed in the
body of the function, i.e. there are no operations to be carried out on the results of the
recursive calls. For example, the function mult below is tail-recursive.

⊢ mult(m,n, acc) = if (m = 0w) then acc else mult(m−1w , n, acc+n)



2.4. COMPILATION-BY-PROOF IN HOL 19

This function manipulates only 32-bit words (type word32 in HOL). The terms 0w and
1w represent the numbers 0 and 1, respectively. The function call mult(m,n, 0w) returns
m×n.

A standard definition of mult which is not tail-recursive is shown below.

⊢ mult standard(m,n) = if (m = 0w) then 0w else n+mult standard(m−1w , n)

Tail-recursive functions are of particular interest in hardware compilation because
they eliminate the problem of saving the state of the function before the recursive call.
In the example above, as mult(m−1w, n, acc+n) is the last operation to be executed,
the compiler will simply connect the arguments (m−1w, n, acc+n) back to the hardware
component that implements mult.

The abstract syntax of our source language is shown below.

e ::= c | x | (if e1 then e2 else e3 ) | f(e1, . . . , e(#f))
p ::= (f1(x1, . . . , x(#f1)) = e1), . . . , (fn(x1, . . . , x(#fn)) = en)

An expression is either a constant, a variable, a conditional or a function call. The term
#f denotes the arity of f . A program is simply a list of function definitions. A recursive
function must have the form:

f(x1, . . . , xn) = if e1 then e2 else f (e3 )

where e1, e2 and e3 do not contain a call to f . However, these expressions can contain
calls to other (recursive) functions provided that they are not mutually recursive.

For example, the function fact below uses the multiplier defined above to compute the
factorial of a number (whenever the accumulator acc is initialised to 1w).

⊢ fact(n, acc) = if (n = 0w) then acc else fact(n−1w , mult(n, acc, 0w))

A list containing the function definitions of mult and fact is an example of a typical
program in our source language.

(mult(m,n, acc) = if (m = 0w) then acc else mult(m−1w , n, acc+n)),
(fact(n, acc) = if (n = 0w) then acc else fact(n−1w , mult(n, acc, 0w)))

The Intermediate Language

We need to translate the source language into an intermediate form. The compiler trans-
forms the source code to one which contains only atomic operators, sequential and parallel
compositions, conditional constructors and tail-recursive calls. Atomic operators are the
primitive operators of the language, like addition or subtraction. These operators are part
of a library and are not built from sub-components (recall the notion of atomic commands
given in Section 2.1). The intermediate code is still a functional program, but it reflects
the structure of the circuit to be built. The constructors are called Atm (atomic), Seq

(sequential), Par (parallel), Ite (if-then-else) and Rec (see Figure 2.6).
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Figure 2.6: The intermediate language.

Each box depicted in Figure 2.6 represents a function which is eventually compiled
into a hardware block. The constructors are higher-order functions defined as:

⊢ Atm f = λinp. f inp
⊢ Seq f1 f2 = λinp. f2(f1 inp)
⊢ Par f1 f2 = λinp. (f1 inp, f2 inp)
⊢ Ite f1 f2 f3 = λinp. if (f1 inp) then (f2 inp) else (f3 inp)
⊢ Rec f1 f2 f3 = λinp. if (f1 inp) then (f2 inp) else (Rec f1 f2 f3 (f3 inp))

The atomic constructor acts as the identity function. It is used to identify the primitive
operators. The Seq constructor is a simple function composition. The term (Par f1 f2) is a
function that takes an argument, say v, and produces the pair (f1 v, f2 v). The conditional
constructor represents the usual if-then-else and the constructor Rec implements a tail-
recursive function.

HOL4 automatically translates a source program into its intermediate form. For ex-
ample, the function word2bool transforms a 32-bit word into a Boolean.

⊢ word2bool n = (if (n = 0w) then F else T)

Its intermediate code is shown below.

⊢ word2bool = Ite (Seq (Par (Atm λn. n)
(Atm λn. 0w))

(Atm λ(x, y). x = y))
(Atm λn. F)
(Atm λn. T)

The atomic operators which occur in word2bool are the identity function, the equality
and constant generators for zero, true and false. The constructor Ite takes three argu-
ments. The first is the test of the conditional. The parallel constructor produces the pair
(n, 0w), which is subsequently sent to the comparator via the sequential constructor. The
remaining arguments of Ite are the conditional branches. In the example above, they both
generate a Boolean constant. For a slightly more elaborate example, Figure 2.7 shows the
intermediate code for the function mult.
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⊢ mult(m,n, acc) = if (m = 0w) then acc else mult(m−1w ,n, acc+n)

⊢ mult = Rec (Seq (Par (Atm λ(m,n, acc). m)
(Atm λ(m,n, acc). 0w))

(Atm λ(x, y). x = y))
(Atm λ(m,n, acc).acc)
(Par (Seq (Par (Atm λ(m,n, acc). m)

(Atm λ(m,n, acc). 1w))
(Atm λ(x, y). x−y))

(Par (Atm λ(m,n, acc).n)
(Seq (Par (Atm λ(m,n, acc). acc)

(Atm λ(m,n, acc). n))
(Atm λ(x, y). x+y))))

Figure 2.7: Intermediate code for mult.

2.4.2 The Specification

Section 2.1 presented a correctness relation between a circuit C and a function f .

⊢ C implements f

In this section we formalise the notion of a circuit implementing a function.
A device is a black box which computes some function f via a four-phase handshaking

protocol (see Figure 2.8). Its external wires are load , inp, done and out . The wires load
and done are control signals; done indicates when the device is available and load is used
by the environment to trigger the device. Data are received and sent over the inp and
out buses, respectively.

v

f(v)

t+1 t′

load done

out

done
Dev f

inp out

inp

t

load

Figure 2.8: Handshaking device.

Figure 2.8 shows a timing diagram of the handshake protocol. At the start of a
transaction (say at time t) the device must be outputting T on done (to indicate it is
ready) and the environment must be asserting F on load , i.e. in a state such that a positive
edge on load can be generated. A transaction is initiated by asserting (at time t+1) the
value T on load , i.e. load has a positive edge at time t+1. This causes the device to
read the value, v say, input on inp (at time t+1) and to set done to F. The device then
becomes insensitive to inputs until T is next asserted on done, when the computed value
f(v) will be output on out .

The formal specification of the four-phase handshake protocol is defined by the pred-
icate Dev below, which uses the auxiliary predicates Posedge and HoldF.

A positive edge of a signal is defined as the transition of its value from low to high,
i.e. from F to T. There is no positive edge at time zero.

⊢ Posedge s t = if (t=0) then F else (¬(s (t−1)) ∧ (s t))
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The formula (HoldF (t1 , t2 ) s) says that a signal s holds a low value F during a half-
open interval starting at t1 to just before t2.

⊢ HoldF (t1, t2) s = ∀t. t1 ≤ t < t2 ⇒ ¬(s t)

The formula Dev f (load , inp, done, out) specifies the behaviour of the handshaking
device computing a function f .

⊢ Dev f (load , inp, done, out) =
(∀t. done t ∧ Posedge load (t+1)

⇒
∃t′. t′ > t+1 ∧ HoldF (t+1, t′) done ∧

done t′ ∧ (out t′ = f(inp (t+1)))) ∧
(∀t. done t ∧ ¬(Posedge load (t+1)) ⇒ done (t+1)) ∧
(∀t. ¬(done t) ⇒ ∃t′. t′ > t ∧ done t′)

The first conjunct in the right-hand side specifies that if the device is available and a
positive edge occurs on load , then there exists a time t ′ in future when done signals its
termination and the output is produced. The value of the output at time t ′ is the result of
applying f to the value of the input at time t+1. The signal done holds the value F during
the computation. The second conjunct specifies the situation where no call is made on
load and the device simply remains idle. Finally, the last conjunct states that if the device
is busy, it will eventually finish its computation and become idle. This liveness condition
prevents a circuit which constantly outputs F on done from satisfying any (Dev f).

Now we can formally state the notion of correctness for a circuit implementing a
function. A circuit C implements a device which computes the function f if, whenever
the values on the external wires load , inp, done and out satisfy the constraints imposed
by the circuit, then they also satisfy the constraints imposed by (Dev f).

⊢ C implements f =
∀load inp done out . C(load , inp, done, out) ⇒ Dev f (load , inp, done, out)

2.4.3 Automatic Verification

As shown in Section 2.1, for each language constructor we have to develop a corresponding
circuit constructor and prove its correctness. Let us assume that the circuit constructors
ATM, SEQ, PAR, ITE and REC have already been defined (their formal definitions are
presented in Section 2.4.4). This section presents the theorems that establish they are
correct implementations of the functions Atm, Seq, Par, Ite and Rec.

In order to verify circuits automatically, our theorems must have the same composable
structure of the theorems shown in Section 2.1. We prove the following theorems in the
HOL4 system.
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⊢ ∀f. (ATM f) implements (Atm f)

⊢ ∀G H g h.

(G implements g) ∧ (H implements h)
⇒ (SEQ G H) implements (Seq g h)

⊢ ∀G H g h.

(G implements g) ∧ (H implements h)
⇒ (PAR G H) implements (Par g h)

⊢ ∀E G H e g h.

(E implements e) ∧ (G implements g) ∧ (H implements h)
⇒ (ITE E G H) implements (Ite e g h)

⊢ ∀E G H e g h.

Total(e, g, h)
⇒ (E implements e) ∧ (G implements g) ∧ (H implements h)

⇒ (REC E G H) implements (Rec e g h)

Notice that ATM is a parameterised circuit which takes a function as argument. For ex-
ample, the circuit (ATM (λ(x, y). x+y)) implements the primitive operator (λ(x, y). x+y).
The circuits SEQ, PAR, ITE and REC take sub-circuits as arguments. We do not show
the proofs here. They are straightforward and are similar to the proof of correctness of
the circuit OR IMP (Section 2.3.1), but they are much longer and tedious to read. These
proofs are available in the examples directory of the HOL4 CVS repository [81]. The first
theorem is the base case of the compilation. The ATM circuit implements handshaking
devices that compute the primitive operator f . The theorems for SEQ, PAR and ITE state
that if their sub-circuits are correct, then the composite circuit is correct.

The theorem for REC has a pre-condition: the correctness of the circuit (REC E G H)
can only be established if the function (Rec e g h) terminates. This is necessary because
functions in HOL are total. Termination is characterised by the predicate Total.

⊢ Total(e, g, h) = ∃(variant : α→num).
(∀inp. ¬(e inp) ⇒ variant(h inp) < variant(inp))

Intuitively, this predicate is based on the fact that if the arguments of a function can be
related by a well-founded relation, then the function terminates. The predicate states
that if the input is not in the base case, then the recursive call will compute over a new
input (h inp) which is smaller in some sense than the current input inp.

In principle, the restriction of proving termination eliminates the possibility of an au-
tomatic verification. The theorem for REC has lost the pure structure of a composable
theorem. However, one of the facilities provided by the HOL4 system is the TFL pack-
age [74], which mechanises the proof of termination with little user guidance — the user
must provide only a proper variant.

For example, the compilation of the recursive function mult is done by calling the
function hwDefine.
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hwDefine ‘(mult(m:word32,n:word32,acc:word32) =

if m=0w then acc else mult(m-1w,n,acc+n)) measuring (w2n o FST)‘

The function mult is defined for 32-bit words. The variant is given by the function com-
position (w2n◦FST), which takes the first element of the tuple (m,n, acc) and transforms
a word into a natural number (the totality is defined in terms of the < relation for natural
numbers)1. This variant isolates the variable m, which is a key variable for TFL to prove
the termination of mult. The function hwDefine automatically returns the theorem below.

⊢ ∀load inp done out .
REC (SEQ (PAR (ATM λ(m,n, acc). m) (ATM λ(m,n, acc). 0w))

(ATM λ(x, y). x = y))
(ATM λ(m,n, acc). acc)
(PAR (SEQ (PAR (ATM λ(m,n, acc). m) (ATM λ(m,n, acc). 1w))

(ATM λ(x, y). x−y))
(PAR (ATM λ(m,n, acc). n)

(SEQ (PAR (ATM λ(m,n, acc). acc) (ATM λ(m,n, acc). n))
(ATM λ(x, y). x+y))))

(load , inp, done, out) ⇒ Dev mult (load , inp, done, out)

This theorem states that the circuit (REC (SEQ . . .) (ATM . . .) (PAR . . .)) implements a
handshaking device which computes the function mult. The proof is done essentially in
the same way of the proof shown in Figure 2.1.

2.4.4 The Implementation

This section describes our target language. Following the approach described in Sec-
tion 2.1, we define circuits which implement each constructor of the intermediate lan-
guage.

The circuits introduced in this section are defined in terms of the following primitive
components.

⊢ AND (in1, in2, out) = ∀t. out t = (in1 t ∧ in2 t)
⊢ OR (in1, in2, out) = ∀t. out t = (in1 t ∨ in2 t)
⊢ NOT (inp, out) = ∀t. out t = ¬(inp t)
⊢ MUX(sw , in1 , in2 , out) = ∀t. out t = if (sw t) then (in1 t) else (in2 t)
⊢ DEL (inp, out) = ∀t. out (t+1) = inp t

⊢ DELT (inp, out) = (out 0 = T) ∧ ∀t. out (t+1) = inp t

⊢ COMB f (inp, out) = ∀t. out t = f(inp t)

The components AND, OR, NOT and MUX are defined in a standard way. We introduce
two sequential components: DEL and DELT. The delays DEL and DELT output the value
of the current input one time-unit later. The only difference between them is that DELT

outputs T at time zero. The component (COMB f) is a combinational circuit which

1In the most recent version of the compiler, we can omit the measuring function in some cases. For
instance, mult can be defined by:
hwDefine ‘mult(m:num,n:num,acc:num) = if m=0 then acc else mult(m-1,n,acc+n)’

This facility is available to variables of type :num, but we still have to extend it to words.
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Figure 2.9: The implementation of DFF SPEC.

applies the function f to the input. This component is used to implement the primitive
operators of the language. Note that COMB is a parameterised circuit. A real circuit is
only synthesisable after applying COMB to some function, e.g. COMB (λ(x, y). (x = y)).
This indicates that (λ(x, y). x = y) is a primitive operator of the language.

Before presenting the implementations of the intermediate language constructors, we
introduce two auxiliary circuits.

The circuit POSEDGE detects a positive edge on the input (see Figure 2.10(a) on
page 26).

⊢ POSEDGE(inp, out) = ∃c0 c1. DELT(inp, c0) ∧ NOT(c0, c1) ∧ AND(c1, inp, out)

The specification DFF SPEC describes a device which outputs the value of the input
whenever there is a positive edge on the signal sel .

⊢ DFF SPEC(d , sel , q) =
∀t. q (t+1) = if (Posedge sel (t+1)) then (d (t+1)) else (q t)

One possible implementation of DFF SPEC is defined below (see Figure 2.9).

⊢ DFF(d , sel , q) = ∃c sw . POSEDGE(sel , sw) ∧ DEL(q, c) ∧ MUX(sw , d , c, q)

It is easy to prove that the circuit DFF is an implementation of the DFF SPEC.

⊢ DFF(d , sel , q) ⇒ DFF SPEC(d , sel , q)

Recall that the language constructors Atm, Seq, Par, Ite and Rec presented in Sec-
tion 2.4.1 are functions which perform general computations like sequential execution or
recursion. As shown in Section 2.4.2, a circuit implements a function f if it behaves like a
handshaking device that computes f . Therefore, we develop, for each language construc-
tor, a corresponding circuit which implements the functionality of the constructor over
a handshaking interface. Figures 2.10 and 2.11 show these handshaking circuits, where
the local wires l, i, d and o represent the external wires load , inp, done and out of a
sub-circuit. The circuits ATM, SEQ, PAR, ITE and REC implement the functions Atm,
Seq, Par, Ite and Rec, respectively.

In what follows, we describe the behaviour of these five circuits. All of them satisfy
the properties shown in Section 2.4.3.
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Figure 2.10: Implementation of composite devices.

ATM
⊢ ATM f (load , inp, done, out) =

∃c0 c1. POSEDGE(load , c0) ∧ NOT(c0, done) ∧
COMB f (inp, c1) ∧ DEL(c1, out)

We assume that the primitive operators are combinational. The atomic constructor
encapsulates the combinational circuit (COMB f) inside a handshaking interface, where
f is a primitive operator of the language. The computation of an atomic circuit takes
exactly one time-unit. As soon as a positive edge on load is detected, done outputs F

and DEL stores the value of f applied to the current value of inp. At the next observable
time, the circuit is ready again and out returns valid data.

SEQ
⊢ SEQ G H (load , inp, done, out) =

∃c0 lG dG oG dH.

NOT(dH, c0) ∧ OR(c0, load , lG) ∧ G(lG, inp, dG, oG) ∧
H(dG, oG, dH, out) ∧ AND(dG, dH, done)

The circuit SEQ takes two sub-circuits G and H and connect them in sequence. For
the handshaking protocol of the entire circuit to work, the sub-circuits must also be
handshaking circuits. If the sequential computation is not finished, the circuit ignores
any calls on load (see the OR-gate in Figure 2.10(c)). Actually, all handshaking circuits
have this behaviour.

PAR
⊢ PAR G H (load , inp, done, out) =

∃c0 c1 l dG oG dH oH.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, l) ∧
G(l, inp, dG, oG) ∧ H(l, inp, dH, oH) ∧
DFF(oG, dG, out1) ∧ DFF(oH, dH, out2) ∧
AND(dG, dH, done) ∧ (out = λt. (out1 t, out2 t))

The parallel circuit triggers both of its sub-circuits G and H at the same time (see the wire
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l in Figure 2.10(d)). The computation finishes when both sub-circuits finish. In order to
output valid results from both sub-circuits, their outputs are stored in DFFs, which are
triggered by the positive edge that occurs on dG and dH when the circuits G and H finish
their computation.

ITE

⊢ ITE E F G (load , inp, done, out) =
∃c0 c1 c2 c3 c4 lE iGH dE oE lG lH dG oG oH dH sel .

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, lE) ∧
E(lE, inp, dE, oE) ∧ POSEDGE(dE, c2) ∧ DFF(oE, dE, sel) ∧
DFF(inp, lE, iGH) ∧ AND(c2, oE, lG) ∧ NOT(oE, c3) ∧
AND(c2, c3, lH) ∧ G(lG, iGH, dG, oG) ∧ H(lH, iGH, dH, oH) ∧
MUX(sel , oG, oH, out) ∧ AND(dG, dE, c4) ∧ AND(c4, dH, done)

The if-then-else circuit ITE takes three sub-circuits E, G and H as arguments. The circuit
E tests the condition and the circuits G and H compute the conditional branches. The
result of the test is stored in a DFF connected to a multiplexer (Figure 2.11(a)).
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Figure 2.11: The conditional and the recursive constructors.
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REC

⊢ REC E F G (load , inp, done, out) =
∃c0 c1 c2 c3 c4 c5 c6 c7 sel lE iE iGH dE oE lG lH dG dH oH.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, c2) ∧
OR(c2, sel , lE) ∧ POSEDGE(dH, sel) ∧ MUX(sel , oH, inp, iE) ∧
DFF(iE, lE, iGH) ∧ E(lE, iE, dE, oE) ∧ POSEDGE(dE, c3) ∧
AND(c3, oE, lG) ∧ NOT(oE, c4) ∧ AND(c4, c3, lH) ∧ G(lG, iGH, dG, out) ∧
H(lH, iGH, dH, oH) ∧ DEL(dH, c5) ∧ AND(dH, c5, c7) ∧ AND(dG, dE, c6) ∧
AND(c6, c7, done)

The recursive function is very similar to the conditional one. It also takes three circuits
E, G and H as arguments. The only difference is that it connects the output of H to the
input of E to implement the tail-recursion. A delay is connected to the done signal of H

in order to distinguish a recursive call from the complete termination of the computation
(Figure 2.11(b)).

2.5 Summary

This chapter presented the main ideas related to the compilation-by-proof method. We
started by introducing the notion of automatic verification via composable theorems,
followed by the introduction of higher-order logic and hardware verification.

Then, the source language was presented together with an intermediate language,
which is the one manipulated by the compiler. This language structures the source code
in terms of the composable functions Atm, Seq, Par, Ite and Rec.

For each of these constructors, we defined five circuit constructors which implement
them: ATM, SEQ, PAR, ITE and REC.

The notion of correctness for circuits implementing functions is given via the concept of
a handshaking device which computes a function. We showed that each circuit constructor
is correct, provided that their sub-circuits are correct. As usual in verification tasks, proofs
of correctness are not mathematically challenging, but rather long and tedious. Our proofs
take nearly 3,000 lines of ML [81] and took several months of work.

As the main aim of this chapter is to introduce the principles and concepts involved
in our compilation, we have not addressed issues like clocked circuits generation or opti-
misations. These steps are presented in the next chapter.



Chapter 3

Optimisations and Synthesis

Chapter 2 focused on the fundamental concepts underlying our compiler. However in order
to deal with more realistic designs, we implement optimisations and integrate HOL4 with
external tools for FPGAs. This chapter describes these features.

The optimisations aim to reduce the size of a circuit and its execution time. Section 3.1
presents four optimisations introduced to the compiler.

In order to run our circuit, we transform it into a clocked synchronous circuit, translate
it to Verilog and download it to an FPGA. Section 3.2 describes how to introduce a
clock signal using time refinement. The translation of clocked circuits to Verilog and the
integration of HOL4 to an FPGA are presented in Section 3.3. The last section shows a
simple example which illustrates all the steps of the compilation.

3.1 Optimisations

In what follows we introduce four optimisations: the circuits PRECEDE and FOLLOW, the
extension of the primitive constructors, whole program compaction and let-expressions.

PRECEDE and FOLLOW

In the last chapter we defined handshaking circuits for every constructor of the language.
In particular, the atomic constructors implement a handshaking interface to encapsulate
a combinational circuit1. We can eliminate some of these internal handshakes by directly
connecting a combinational part to another circuit.

We create two circuit constructors which connects a combinational component in se-
quence to another circuit without introducing a handshake. These constructors are intro-
duced during the compilation of (Seq g h), where g or h is combinational.

⊢ PRECEDE g H (load, inp, done, out) =
∃v. COMB g (inp, v) ∧ H(load, v, done, out)

⊢ FOLLOW G h(load, inp, done, out) =
∃v. G(load, inp, done, v) ∧ COMB h (v, out)

The circuit (PRECEDE g H) connects the combinational circuit (COMB g) to the input

1Combinational circuits are those whose output is a function of the present input only.

29
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of circuit H, while (FOLLOW G h) connects (COMB h) to the output of circuit G (see
Figure 3.1).

inpload

done out

v

COMB g

H

(a) PRECEDE g H

load

outdone

inp

v

G

COMB h

(b) FOLLOW G h

Figure 3.1: PRECEDE and FOLLOW.

In order to include these constructors in the compilation, we have to prove their
correctness:

⊢ (H implements h) ⇒ ((PRECEDE g H) implements (Seq g h))
⊢ (G implements g) ⇒ ((FOLLOW G h) implements (Seq g h))

This technique is applied when either g or h in (Seq g h) is combinational. If both are
combinational, then the following optimisation is more effective.

Extending the primitive operators
The same principle of eliminating handshakes which motivated the creation of PRECEDE

and FOLLOW can be applied to the constructors Seq, Par and Ite. If we include these
constructors in the library of the primitive operators of the language, the compiler elimi-
nates their handshakes provided that their arguments are primitive operators (or are built
from primitive operators only). If they are not combinational, the compiler generates the
usual handshake circuits SEQ, PAR and ITE. See below the transformations performed
by the compiler assuming that e, g and h are primitive operators of the language or can
be recursively reduced to a netlist of primitive operators only.

The sequential composition is transformed into two combinational circuits in series.

⊢ COMB (Seq g h) (inp, out) =
∃c. COMB g (inp, c) ∧ COMB h (c, out)

The parallel composition is broken into two different combinational components.

⊢ COMB (Par g h) (inp, out1 ⋄ out2) =
COMB g (inp, out1) ∧ COMB h (inp, out2)

Note that the output of (COMB (Par g h)) is a concatenation of two signals, namely out1

and out2. We concatenate signals by using the operator ⋄.

⊢ s1 ⋄ s2 = (λt. (s1 t, s2 t))

The conditional operator is implemented by a multiplexer.

⊢ COMB (Ite e g h) (inp, out) =
∃c0 c1 c2. COMB e (inp, c0) ∧ COMB g (inp, c1) ∧

COMB h (inp, c2) ∧ MUX(c0, c1, c2, out)
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These optimisations connect as many combinational components as possible in order
to reduce the amount of handshakes. In addition to the transformations presented above,
the process of reducing a circuit to a netlist of primitive operators makes use of auxiliary
transformations.

For example, assuming that (λn. n) and (λn. 1w) are defined as primitive operators,
the compiler generates the following simplifications.

⊢ COMB (λn. n) (inp, out) = (inp = out)
⊢ COMB (λn. 1w) (inp, out) = CONSTANT 1w out

where CONSTANT is a primitive hardware component defined as

⊢ CONSTANT v out = ∀t. out t = v

Whole program compaction
A source program is a list of functions. Any optimisation like the ones performed above
is restricted to the scope of a function.

Whole program compaction or inline expansion replaces every function call by the body
of the function. This produces a monolithic source program defined by a single function,
namely the function main. This pre-compilation is performed before any optimisation
step.

The optimisations can now have a global view of the program. For example, we are now
able to introduce PRECEDE and FOLLOW between circuits that were initially allocated to
different functions. Without whole program compaction these circuits had to necessarily
communicate via a handshake.

Let-expressions
This is an idea by Scott Owens from the University of Utah. In our compilation, when-
ever we have the same function being called more than once, several instances of its
corresponding circuit are generated for each call. Although this approach produces a fast
circuit (as no hardware block is shared and no arbiter is needed), it also produces a large
circuit.

One solution that can give more flexibility to the compiler is the introduction of
let-expressions. A let-expression has the form (let v = e1 in e2) where v is a variable
structure, i.e. it is either a single variable or, recursively, a non-empty tuple of “varstructs”
(e.g. (x, (m,n), y)). How a let-expression is implemented as a circuit is shown below.

⊢ (λinp. let v = (f1 inp) in (f2 (inp, v))) = Seq (Par (λx. x) f1) f2

The designer can replace several calls to the same function by a single call. For
example, the program below shows how three calls to the function inc are replaced by a
single call using the variable y, thus preventing three circuit implementations of inc from
being generated.

⊢ inc n = n+1w
⊢ main n = let y = (inc n) in (y+y+y)

We can still optimise the compilation of let-expressions. In the expression (let v = e1 in e2),
if e1 is combinational, then the expression is synthesised into a circuit consisting of e1 driv-
ing wires corresponding to v that are inputs to the circuit corresponding to e2. If e1 is
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not combinational, the usual compilation in terms of Seq and Par takes place. In the
example above, if inc is not declared combinational, then main is compiled to a circuit
with 30 components (10 of which are registers) and 28 variables, but if inc is declared to
be combinational, then main compiles to a circuit with 7 variables and 9 components (2
of which are registers).

Results
The optimisations presented above address two issues: the elimination of handshakes
and the elimination of circuit duplication. The handshake elimination can sometimes
produce aggressive optimisations in the sense that almost all handshakes are eliminated.
The only exception is for handshakes that appear in the circuit REC. The optimisations
reduce the size of the circuit and, by eliminating handshakes, minimise the clock ticks per
computation. However there is a trade-off here as they also generate long combinational
paths and eventually force the clock to slow down (the next section shows how the clock
signal is introduced).

The user has control over most of the optimisations. Whole program compaction can
be applied by using an alternative compiler called inlineCompile. A let-expression is
just an extra language feature available to the user, and the primitive constructors of the
language can be defined by the user, although the compiler initialises a default library
which includes Seq, Par and Ite.

We tried our optimised compiler with arithmetic and cryptographic hardware [76].
The arithmetic example is a version of the Booth Multiplier (see Section 5.1). The op-
timisations reduce the circuit size of the multiplier in 32%. The cryptographic hardware
implements an encryption algorithm called TEA [82]. In this case, the circuit had a 50%
reduction. It is not possible to tell precisely how much reduction is expected because the
optimisations depend on the structure of the source program.

3.2 Clock Introduction

This section presents the concepts and technology developed by Tom Melham on time
abstractions [55] and shows how we use them to generate clocked circuits.

First let us recall the definitions of the sequential components DEL and DELT intro-
duced in Chapter 2.

⊢ DEL (inp, out) = ∀t. out (t+1) = inp t

⊢ DELT (inp, out) = (out 0 = T) ∧ ∀t. out (t+1) = inp t

These definitions describe components which output the value of the current input one
time unit later. Note that these sequential circuits are abstract components which can be
implemented, for instance, by rising edge-triggered Dtypes. In this case, DEL and DELT

are regarded as specifications in the ‘cycle level‘ timescale which abstract away points of
time which have no rising edge of a clock triggering the Dtypes.

In order to create an implementation of DEL and DELT using edge-triggered Dtypes
we need to refine their behaviour to a finer-grained timescale which allows us to repre-
sent clock edges. The Dtypes are modelled at a concrete or finer-grained timescale (see
Figure 3.2).
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Figure 3.2: Time projection.

Before introducing the specification of a Dtype, we define the predicate Rise, which
captures the notion of a rising edge of a clock.

⊢ Rise s t = ¬s(t) ∧ s(t+1)

Note that this is similar to Posedge, except that (Posedge s 0) is always F and (Rise s)
is defined to be true just before a rising edge, whereas (Posedge s) is true just after the
edge. Also Posedge is used at the ‘cycle level’ timescale, but Rise is used at the concrete
timescale. In this section, the variable t always represents time in the fine-grained concrete
timescale.

The component DTYPE is similar to the DFF, but operates in the concrete timescale.

⊢ DTYPE v (clk , d, q) = (q 0 = v) ∧
(∀t. q (t+1) = if (Rise clk t) then (d t) else (q t))

The predicate DTYPE represents a parameterised circuit which takes as argument the
initial value of the output and stores the value of the input at every rising edge of the
clock.

Now we can refine our sequential components and implement them using DTYPEs.
The following theorems are proved following Melham’s book [55].

⊢ (InfRise clk) ⇒ ∀d q. (∃v. DTYPE v (clk , d, q)) ⇒ DEL(d @ clk , q @ clk)
⊢ (InfRise clk) ⇒ ∀d q. DTYPE T (clk , d, q) ⇒ DELT(d @ clk , q @ clk)

The term (s @ clk) is a signal whose sequence of values is the result of sampling s at the
rising edges of clk . The theorems state that a DTYPE (running in the concrete time) is
an implementation of DEL (or DELT) if we observe it at the rising edges of clk . The term
(InfRise clk) asserts that clk has infinitely many rising edges. The formal definitions of
the @ operator and InfRise can be seen in Melham [55].

Combinational components are still the same in the concrete timescale. Although the
concrete time is in a finer-grained timescale, a model in which we abstract away delays
can still be considered accurate.

⊢ AND(in1, in2, out) ⇒ AND(in1 @ clk , in2 @ clk , out @ clk)
⊢ OR(in1, in2, out) ⇒ OR(in1 @ clk , in2 @ clk , out @ clk)
⊢ NOT(inp, out) ⇒ NOT(inp @ clk , out @ clk)
⊢ MUX(sw , in1, in2, out) ⇒ MUX(sw @ clk , in1 @ clk , in2 @ clk , out @ clk)
⊢ COMB f (inp, out) ⇒ COMB f (inp @ clk , out @ clk)

In what follows we show how these theorems are introduced in the compilation process.
In the last chapter we saw that the compiler returns a circuit C whose components are
defined in the cycle level timescale.

⊢ ∀load inp done out . C(load , inp, done, out) ⇒ Dev f (load , inp, done, out)
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The compilation continues by instantiating load , inp, done and out to (load @ clk),
(inp @ clk), (done @ clk) and (out @ clk), respectively, and then by performing some de-
ductions using the above theorems and the monotonicity of existential quantification and
conjunction with respect to implication. The final theorem is shown below.

⊢ ∀load inp done out .
(InfRise clk)
⇒ Cclk(load , inp, done, out)

⇒ Dev f (load @ clk , inp @ clk , done @ clk , out @ clk)

The term Cclk represents the circuit with combinational components and clocked DTYPEs
only. The final theorem shows that if we observe the clocked circuit Cclk at the rising
edges of clk , then it behaves like a handshaking device which computes the function f .

Clock introduction is carried out fully automatically by proof in HOL4.

3.3 Translating HOL Circuits to Verilog

The clocked synchronous hardware generated in HOL4 is ‘pretty-printed‘ to Verilog. There
are no formal methods involved in this step. Our main motivation for doing this transla-
tion was to be able to download and run our circuits in an FPGA.

As circuits in HOL are already in a register transfer level, the translation is straight-
forward. A DTYPE is defined in Verilog as:

module dtype (clk,d,q);

parameter size = 31;

parameter value = 1;

input clk;

input [size:0] d;

output [size:0] q;

reg [size:0] q = value;

always @(posedge clk) q <= d;

endmodule

The dtype module allows us to change the size of the data and its initial value during its
instantiation. The parameters size and value above are defined with the default values
31 and 1, respectively. Notice that in order to implement DEL and DELT, the DTYPEs
occur in our circuits in two forms: (∃v. DTYPE v (clk , d, q)) and (DTYPE T (clk , d, q)).
The implementation in Verilog above initialises the D-type registers with 1, thus satisfying
both kinds of DTYPEs (as (∃v. DTYPE v (clk , d , q)) can be initialised with any value).

The remaining components are implemented using the primitive operators of Verilog.
For example, the circuit (AND(in1, in2, c) ∧ NOT(c, out)) is implemented as:

wire in1; wire in2, wire c; wire out;

assign c = in1 && in2;

assign out = ~ c;

Once HOL4 generates a Verilog file, it is possible to simulate our designs or run them
in an FPGA. We have used an Altera FPGA (Excalibur) and the software Quartus II
to compile, download and run the circuits. For simulations, we used GPL-Cver [31]
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(an open-source Verilog simulator) and GTKWave [33] (a wave viewer). We developed
a package of functions in HOL4 to interface with Quartus II and the FPGA. The four
steps for programming the FPGA and running our circuits are shown diagrammatically
in Figure 3.3.

⇒ Cclk(load, inp, done, out)
⊢ (InfRise clk)

⇒ Dev f (load @ clk , inp @ clk

done @ clk , out @ clk)

HOL

PC

(a) Proof producing synthesis.

UART.v

Cir.v

HOLQuartus II

PC

(b) Verilog compilation.

Parallel
Cable

FPGA PC

Quartus II

device.sof

(c) Download the object file.
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HOLUART
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UARTCir
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(d) Run the circuit.

Figure 3.3: The design process.

(a) Proof Producing Synthesis. The first step is the automatic proof of the certifying
theorem

⊢ ∀load inp done out .
(InfRise clk)
⇒ Cclk(load , inp, done, out)

⇒ Dev f (load @ clk , inp @ clk , done @ clk , out @ clk)

This step has been covered mostly in the previous chapter.

(b) Verilog compilation. The pretty-printer translates the circuit Cclk to Verilog and
saves it in a file (called Cir.v in Figure 3.3(b)). In order to communicate with
the FPGA, we developed the Verilog program UART.v which connects our devices
to a UART interface available on the FPGA board.2 This program is not formally
verified. Both files are sent to Quartus II for compilation (by “compilation” we mean
timing analysis, routing, fitting and generation of an object file used to program the
FPGA).

(c) Download the object file. Quartus II generates the object file device.sof and
uses it to program the FPGA via a parallel cable.

(d) Run the circuit. After programming the FPGA, we can now run the circuit. We
developed a C program that communicates with the serial cable connected to the
FPGA. This program can actually be accessed from Moscow ML (i.e., from HOL4),
thanks to an ML code provided by Ken Friis Larsen. After the FPGA is pro-
grammed, we generate a file which contains an ML function which calls the circuit.
The user has to load this file (using the ML command “use”) in order to be able to
run the circuit interactively.

2This code was adapted from the micro-UART program developed by Jeung Joon Lee. http://www.
cmosexod.com/micro_uart.htm
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3.4 A Simple Example

This section presents a simple example to illustrate the entire design process step-by-step.
Our source program is a simple function that increments a 32-bit word by one.

⊢ Inc n = n+1w

First the compiler transforms the source code to the intermediate language.

⊢ Inc = Seq (Par (λn. n) (λn. 1w)) (λ(x, y). x+y)

Let us now assume that (λn. n), (λn. 1w) and (λ(x, y). x+y) are the only primitive
operators of the language. In this case, the compilation produces the theorem:

⊢ FOLLOW (PAR (ATM λn. n) (ATM λn. 1w))
(λ(x, y). x+y) (load , inp, done, out)

⇒ Dev Inc (load , inp, done, out)

This circuit contains three handshakes: one for the PAR and two for the ATMs.
We can still reduce the number of handshakes by considering Seq and Par primitive

operators of the language. In this case, the compiler implements all functions as combi-
national.

⊢ ATM (Seq (Par (λn. n) (λn. 1w)) (λ(x, y). x+y)) (load , inp, done, out)
⇒ Dev Inc (load , inp, done, out)

Recall that it is not always possible to implement a Seq or Par as combinational hardware.
If their arguments are non-primitive operators (like Rec), then the handshaking circuits
SEQ or PAR are generated. However, in the example above all the elements are reducible
to a netlist of primitive operators.

Replacing the definition of ATM gives

⊢ (∃v0 v1. (∃v2 v3. DELT(load , v2) ∧ NOT(v2, v3) ∧ AND(v3, load , v0)) ∧
NOT(v0, done) ∧
COMB (Seq (Par (λn. n) (λn. 1w)) (λ(x, y). x+y)) (inp, v1) ∧
DEL(v1, out))

⇒ Dev Inc (load , inp, done, out)

The sub-term (COMB . . .) is reduced to a netlist of primitive operators by applying
the theorems shown in Section 3.1 (see the sub-section extending the primitive operators).

COMB (Seq (Par (λn. n) (λn. 1w)) (λ(x, y). x+y)) (inp, v1)

= ∃v3 v4. COMB (Par (λn. n) (λn. 1w)) (inp, v3 ⋄ v4) ∧
COMB (λ(x, y). x+y) (v3 ⋄ v4, v1)

= ∃v3 v4. COMB (λn. n) (inp, v3) ∧ COMB (λn. 1w) (inp, v4) ∧
COMB (λ(x, y). x+y) (v3 ⋄ v4, v1)

= ∃v3 v4. (inp = v3) ∧ CONSTANT 1w (inp, v4) ∧
COMB (λ(x, y). x+y) (v3 ⋄ v4, v1)

= ∃v4. CONSTANT 1w (inp, v4) ∧ COMB (λ(x, y). x+y) (inp ⋄ v4, v1)



3.4. A SIMPLE EXAMPLE 37

The first step serialises the arguments of Seq. Note that as the parallel constructor takes a
concatenated signal as argument, the variables v3 and v4 are introduced. The second step
simplifies the parallel composition, followed by the elimination of the primitive operator
(λn. n) and the introduction of the primitive circuit CONSTANT. The final step eliminates
the variable v3.

After the rewriting, the compiler proves

⊢ ∃v0 v1 v2 v3 v4.

DELT(load , v2) ∧ NOT(v2, v3) ∧ AND(v3, load , v0) ∧
NOT(v0, done) ∧ CONSTANT 1w v4 ∧
COMB (λ(x, y). x+y) (inp ⋄ v4, v1) ∧ DEL(v1, out))

⇒ Dev Inc (load , inp, done, out)

The next step prepares the circuit for the introduction of the clock signal. The compiler
eliminates the existential quantifier and specialises the variables with (@ clk).

⊢ DELT(load @ clk , v2 @ clk) ∧ NOT(v2 @ clk , v3 @ clk) ∧
AND(v3 @ clk , load @ clk , v0 @ clk) ∧ NOT(v0 @ clk , done @ clk) ∧
CONSTANT 1w (v4 @ clk) ∧ COMB (λ(x, y). x+y) ((inp ⋄ v4 ) @ clk , v1 @ clk) ∧
DEL(v1 @ clk , out @ clk))
⇒ Dev Inc (load @ clk , inp @ clk , done @ clk , out @ clk)

By using the theorems presented in Section 3.2, we replace all sequential components
operating at cycle level timescale by their implementations based on DTYPEs. The final
theorem is shown below.

⊢ (InfRise clk)
⇒ (∃v0 v1 v2 v3 v4.

DTYPE T (clk , load , v2 ) ∧ NOT(v2, v3) ∧
AND(v3 , load , v0 ) ∧ NOT(v0, done) ∧
CONSTANT 1w v4 ∧ COMB (λ(x, y). x+y) (inp ⋄ v4, v1) ∧
(∃v. DTYPE v (clk , v1 , out)))

⇒ DEV Inc (load @ clk , inp @ clk , done @ clk , out @ clk)

We can now generate a Verilog code for Inc (Figure 3.4) and program the FPGA. The
ML function programFPGA takes the theorem above (called inc cir), generates a Verilog
code of it and runs Quartus II to compile and download it to the FPGA. Quartus II
actually compiles the circuit Inc integrated with the UART module. See below a snapshot
of this step.

- programFPGA inc_cir;

Info: *******************************************************

Info: Running Quartus II Shell

. . . lots of messages from Quartus II appear.
At the end, an ML file is created in the directory ./quartus:

*************************************************************

New function created: inc_fn

at directory ./quartus
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module dtype (clk,d,q);
parameter size = 31;
parameter value = 1;
input clk;
input [size:0] d;
output [size:0] q;
reg [size:0] q = value;

always @(posedge clk) q <= d;
endmodule

module inc (clk,load,inp,done,out);
input clk,load;
input [31:0] inp;
output done;
output [31:0] out;
wire clk,done;
wire [31:0] v0;
wire [0:0] v1;
wire [0:0] v2;
wire [0:0] v3;
wire [31:0] v4;

dtype dtype 2 (clk,load,v3); defparam dtype 2.size = 0;
assign v2 = ~ v3;
assign v1 = v2 && load;
assign done = ~ v1;
assign v4 = 1;
assign v0 = inp+v4;
dtype dtype 3 (clk,v0,out); defparam dtype 3.size = 31;
endmodule

Figure 3.4: The circuit Inc in Verilog.

In order to use it, type in:

FileSys.chDir "quartus"; use "main.sml"; FileSys.chDir "..";

*************************************************************

If we load this file, the function inc fn becomes available.

- FileSys.chDir "quartus"; use "main.sml"; FileSys.chDir "..";

> val ERR = fn : string -> string -> exn

> val ’a inc_inp2bits = fn : ’a list -> ’a list

> val ’a inc_bits2out = fn : ’a list -> ’a list

> val inc_fn = fn : bool list -> bool list

The ML function generated always manipulates Boolean lists. The file loaded also con-
tains auxiliary functions which help in converting more standard inputs and outputs into
Boolean lists. We are not going to use them in this example.

In order to run the FPGA, we can simply call inc fn over a 32-bit word, which in
this case is represented by a Boolean list with 32 elements.

- inc_fn [false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,

false,false,false,false,true];

> val it =

[false,false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,true, false]

:bool list
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The circuit received 32 bits representing the number 1w and returned 32 bits representing
2w.

All the steps described in this section are done automatically in HOL4.

3.5 Summary

This chapter introduced two kinds of optimisations: one based on elimination of hand-
shakes (PRECEDE, FOLLOW and the extension of primitive operators) and another based
on circuit duplication avoidance (let-expressions). Whole program compaction allows the
elimination of handshakes to operate on a global scope. These techniques reduce the size
of our case studies considerably (from 30% to 50% reduction). The drawback for hand-
shaking elimination is the generation of long combinational paths, which slow down the
clock.

We also addressed the problem of refining our circuit descriptions into a fine-grained
timescale. The model presented in the previous chapter deals with observations of a
circuit made at each clock cycle. In order to produce a clocked synchronous system, we
applied the technology on time abstraction developed by Melham [55].

Finally, we described how our circuits are converted to Verilog and how we integrate
HOL4 with Quartus II and an Altera FPGA.



Chapter 4

Limitations and Problems

This chapter describes problems, issues and limitations of our approach. Some of the
problems were uncovered by our case studies (Chapter 5) while others were found during
the development of the compiler.

4.1 Atomic Circuits Not Verified

We assume that primitive operators of the language are available in a library of previously
verified combinational circuits. For example, the circuit (COMB (λ(x, y). x+y)) imple-
ments a combinational adder. We have neither implemented nor proved the correctness
of such operators. Ideally these circuits should had been implemented by primitive gates
and proved correct. We omit these proofs mainly because our work is focused on syn-
thesis of systems specified at a higher level of abstraction. Moreover, there is previous
work on verification of basic circuits which we could re-use [3, 14]. And, in any case, the
verification task has to stop at some point. We have chosen to rely on the synthesis of
basic circuits provided by Quartus II.

4.2 Combinational Loops

We found out that our circuit constructors produce combinational feedback loops1. The
loops appear through the circuit POSEDGE. Figure 4.1 shows how it happens when we
compile the function (neg(b) = ¬b) with no optimisations.

Similar loops occur inside PAR, ITE and REC. The combinational loops passed unno-
ticed almost until the completion of the project. We did not notice any unstable behaviour
when running the FPGA or during the simulations. Although the Quartus II compiler
warns about the possible occurrence of a combinational loop involving the variable inp,
we did not spot it – possibly because the loop happens through the variable done (not
inp). The process of proving circuit correctness also did not reveal the problem. As our
formal model assumes zero combinational delay, we are not able to detect combinational
loops from the proofs.

As both the FPGA and the simulations work as expected, the combinational loops do
not appear to be a problem, despite the fact that they are generally regarded as a “bad

1This was recently pointed out by Martin Ellis from Newcastle University as well.

40
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Figure 4.1: Combinational loop in (SEQ (ATM (λx. x)) (ATM (λx. ¬x))).

practice”2.
In what follows we discuss this problem and suggest some solutions.

The false-implies-anything problem

The notion of correctness used in this work is formalised in terms of a logical implication.

⊢ ∀load , inp, done, out . C(load , inp, done, out) ⇒ Dev(load , inp, done, out)

A well known problem associated with correctness expressed in terms of logical implication
is the false-implies-anything problem [6, 55].

Whenever C(load , inp, done, out) is false so is the implementation, thus one needs to
show that for those signals load and inp that arise in practice the circuit model is always
consistent.

One solution to this problem is to prove that for every input value assigned to load
and inp, there exists output values which are consistent.

∀load , inp. ∃done, out . C(load , inp, done, out)

A circuit with a harmful combinational loop does not satisfy this condition. The proof
of correctness of such circuits usually reduces to the proof of implications like

. . . ∧ (some wire t = ¬(some wire t)) ∧ . . . ⇒ Dev(load , inp, done, out)

The left hand side reduces to false and the theorem can be proved.

2Not only have all examples in this dissertation worked, but so have substantial cryptographic examples
supplied by our colleagues at the University of Utah.
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Empirical investigation

This section informally describes why the circuit shown in Figure 4.1 is consistent. Fig-
ure 4.2 shows the simulation of the circuit of Figure 4.1. We can see that no inconsistent

clk

done
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v0[0]
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v2[0]
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v4[0]
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v6[0]

v7[0]

v8[0]
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v11[0]
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Figure 4.2: Well-behaved simulation with combinational loop.

values are generated for this circuit. The absence of inconsistent values for this particular
circuit can be explained by analysing the variables v7, v11 and load . The current state of
this circuit is defined by the state of the DELTs (wires v7 and v11) and the value of load .
These variables can be assigned to 8 different values. We manually checked them and
discovered that inconsistent values appear only when load , v7 and v11 are false. None of
the 7 remaining states generates inconsistent values. Moreover, it is easy to check that
they also define a next state which is also well-behaved. As the circuit is initialised in a
well-behaved state (DELTs initialise with true), the circuit never reaches the bad state.
We believe this to be the explanation for the correct behaviour of the other circuits we
generated.

The analysis described above suggests that one could use a model checker to show the
absence of bad states on synthesised circuits, although the ideal solution is the proof of
consistency for all circuits generated.

Possible solutions

A general and complete solution to this problem is to define the predicate OK which states
that a circuit is consistent (i.e. the circuit can be satisfied by some values assigned to the
free variables).

⊢ OK C = ∀load , inp. ∃done, out . C(load , inp, done, out)

This theorem states that for every input values assigned to load and inp, there exists
output values which are consistent.

In order to implement this solution one has to prove that

⊢ ∀f. OK (ATM f)
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For each composite circuit, we have to prove that it is consistent provided that its
sub-circuits are consistent. For instance, in order to check the consistency of SEQ we
have to prove that

⊢ ∀E G. (OK E) ∧ (OK G) ⇒ (OK (SEQ E G))

Another possible solution to this problem is to change the implementation of POSEDGE

(see Figure 4.3). By adding an extra delay component we eliminate the possibility of any
combinational path to occur through POSEDGE. This solution has a significant impact
on the definition of Dev and on the correctness theorems. The extra delay added to
POSEDGE will require the reverification of the correctness of each circuit constructor and
will generate larger and slower circuits.

inp

c1

DELT

c0

DELT

out

Figure 4.3: Another implementation for POSEDGE.

We have not proved the consistency of our circuits yet. Our main priority in this
project was to establish a proof-of-concept of our approach, especially with respect to
its scalability. However we do recognise the importance and the necessity of formally
verifying the absence of problems caused by the combinational loops.

4.3 Proof Effort

The formalisation in HOL of the definitions and proofs takes 3,130 lines of ML code (2,971
of which are proofs). These figures do not include comments or the compiler code. The
proofs took about 4-5 months of work. It takes 24 minutes to prove all theorems needed
in our compilation method3. Note that these proofs need to be done just once. The HOL4
system allows us to quickly load previously proved theorems. Although 2,971 lines of code
sounds like a rather long proof, usually proofs carried out by theorem provers are much
longer than pencil and paper proofs. This happens mainly because it requires fine-grained
proof steps in comparison with proofs described as a mix of formal mathematical language
and say, the English language.

It is hard to tell if verifying a compiler would be easier than verifying language con-
structs. Although it seems to be easier to prove the correctness of the result of the
compiler (in our cases, the circuits SEQ, PAR, etc.) instead of proving the correctness
of the compiler itself, we have no firm evidence to support our claim. There are data
available on the effort to verify compilers (for instance, Blazy et al. [7] and Leroy [50]

3We used an Intel R© Pentium R© 4, 3.2GHz, 1GB RAM.
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report 41,000 lines of Coq statements used in the verification of a C compiler), but a fair
analysis should compare compilations of the same source language and using the same
theorem prover.

4.4 Undefined Values

Our circuits deal only with the Boolean values T and F or words of bits. We did not
consider the four valued logic usually employed to model signal values in digital circuits.
As undefined (unknown) values and high impedance (open circuit) are abstracted away
in our models, our simulations were showing several occurrences of undefined values. In
general, our circuits are not able to establish a Boolean value to the signal done if some
wire has an undefined value. Figure 4.4 shows the simulation of a device which computes
factorial. Once undefined values are carried into the circuit by load , it never asserts done
in future.

clk

done

inp

load

out

0 s 10 ns 15 ns

0 5

1

Figure 4.4: Undefined values on the simulation of factorial.

We overcome this problem by configuring the simulation according to our model. We
initialise all the DFFs and the environment (i.e. load and inp) to well-defined values.
Notice that this problem did not happen to FPGAs. As the board initialises all wires
with well-defined values, we have never seen any initialisation delay on the signal done.
If we assign well-defined values to load and inp from time zero, the simulation of the
factorial circuit works as expected. Figure 4.5 shows the computation of factorial of 5.

clk

load

done

inp

out

0 s 100 ns 200 ns 300 ns 400 ns 485 ns

5

1 5 20 60 120

Figure 4.5: Well-behaved simulation of factorial of 5.

4.5 Industrial-scale Specifications

As we show in Chapter 5, our approach does not scale to an industrial-level application
yet. The main emphasis in this work was to produce a proof-of-concept for the automatic
verification of circuits. We should now put more effort into optimising the compiler.
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4.6 Summary

This chapter described problems and limitations of our approach.
The fact that atomic circuits are not verified may reduce one’s confidence in the

reliability of our circuits. However, this was a design decision we took as our main aim
was to develop a proof-producing technology. Moreover, there are several previous work
which developed verified circuits which we can use to implement our atomic operators
(although we have not tried to integrate them with our compiler yet).

Combinational loops passed unnoticed almost until the end of the project. The Verilog
compiler, the proofs of correctness, the simulations and the tests with the FPGA did not
help us to spot this problem earlier.

The main theorems took a reasonable amount of time to prove, mostly because of
their size. Usually formal verification of hardware and software is not an intellectually
challenging task (in comparison to the field of pure mathematics), but demands proof of
theorems of substantial size. Our experiments have not produced yet conclusive results
that our approach requires less work in comparison to other techniques like compiler
verification.

It took a lot of time for us to fix the undefined values of the simulations. Although
our final solution was simple (we adjusted the simulator to adhere to our mathematical
model), we spent a long time trying to change our circuits in order to have a well-behaved
simulation.

Finally, a problem uncovered by one of our case studies was the lack of scalability of
our compiler. Industrial-sized projects are still too large for the compiler to handle. See
more details in Chapter 5.



Chapter 5

Case Studies

This chapter illustrates our approach by describing the development of two case studies.
The first one is an implementation of the Booth multiplier used in the verification of the
ARM6 micro-architecture. The second case study is a subset of the DIY microcomputer.
We develop two different designs for this machine. The first one models only the CPU
and assumes that it interacts with a memory running outside the FPGA. The second
design specifies the CPU and the memory, i.e. both are implemented in the FPGA.
Section 5.3 summarises the performance of the compiler for both case studies and reports
the difficulties faced during their development.

5.1 Booth Multiplier

The specification of our Booth multiplier was developed by Fox [22] as part of the veri-
fication of the ARM6 micro-architecture. Although the ARM6 implementation of multi-
plication is a variant of the standard Booth’s algorithm, its main idea is still preserved.

In what follows we give the intuition behind the standard Booth’s multiplication al-
gorithm before describing the ARM6 version.

First we introduce an extended notation for binary numbers. The Booth code [39]
allows negative bits to be represented: a 1 means −1. For example,

0110 = 0·23 + 1·22 + 1·21 + 0·20 = 6

0110 = 0·23 + 1·22 + (−1)·21 + 0·20 = 2

Booth’s multiplier algorithm speeds up the multiplication by using subtraction as
well as addition. It is based on the observation that a number, say, 7 can be coded as
8−1: 0111 = 1000−0001 = 1001. Booth performs fewer additions than the standard
multiplication algorithm. For example, the multiplication of 0101×0111 (5×7) is shown
in Figure 5.1.

In this example, Booth’s algorithm requires only 2 additions in comparison to the 3
additions of the standard method. Note that the first addition is actually the subtraction
of 5 — we add 11111011 (−5) to the result.

Booth’s algorithm infers the Booth code of the multiplier by analysing its blocks of
consecutive 1’s. For instance, note that 011110 = 100010. The multiplicand is subtracted
from the result whenever a 10 occurs in the multiplier (scanning from right to left). This

46
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Figure 5.1: Differences between the standard and Booth’s algorithms.

pattern defines the beginning of a 1’s block, which is equivalent of having a 1 in the Booth
code. Similarly, the multiplicand is added to the result whenever a 01 is detected, which
indicates the end of a 1’s block and, consequently, the occurrence of a 1 in the Booth
code. If the bits 00 or 11 are detected, no arithmetic operation is needed — these states
represent the middle of a 1’s block or a 0’s block. In both cases, they are converted to 0’s
blocks in the Booth code.

5.1.1 The Compilation

The complete code is shown in Figure 5.2. We changed the syntax of the original specifi-
cation to the one that our compiler accepts.

The multiplication is implemented by the processor’s control logic, which uses the ALU
and a barrel shifter. The program analyses two bits of the multiplier in each iteration
(starting from the least significant ones). The state of the system is defined by the tuple
(mul,mul2,borrow2,mshift,rm,rd): mul stores the current two bits under evaluation;
mul2 contains the remaining bits; borrow2 is the most significant bit of mul; mshift stores
the number of shifts to be applied; rm is the multiplicand and rd accumulates the final
result. The only recursive function is APPLY NEXTd. TFL [73] can prove its termination
automatically if the function FST is given as measure function (FST returns the first
element of a pair). A complete description of this specification is presented by Fox [22].

We instantiated the ARM6 Booth’s multiplier to 32-bit numbers. The compilation
generates the theorem

⊢ InfRise clk
⇒ (∃v0 v1 v2 . . . v249.

CONSTANT F v1 ∧ CONSTANT 0w v0 ∧ COMB w2n (inp2, v13) ∧
. . . AND(v112, v123, v249) ∧ AND(v249, v247, done))

⇒ Dev MULTd (load @ clk , (inp1 ⋄ inp2 ) @ clk , done @ clk , out @ clk)

This netlist contains 252 primitive components. The compilation takes 3 minutes (running
in an Intel R© Pentium R© 4, 3.2GHz, 3.7GB RAM).

In order to establish a connection between MULTd and the standard 32-bit multipli-
cation, Fox also proved that

⊢ MULTd = MULT32

The function MULT32 is the standard definition of multiplication for 32-bit numbers.



48 CHAPTER 5. CASE STUDIES

else if BITS 31 3 (w2n w) = 0 then 2
else if BITS 31 5 (w2n w) = 0 then 3
else if BITS 31 7 (w2n w) = 0 then 4
else if BITS 31 9 (w2n w) = 0 then 5
else if BITS 31 11 (w2n w) = 0 then 6
else if BITS 31 13 (w2n w) = 0 then 7
else if BITS 31 15 (w2n w) = 0 then 8
else if BITS 31 17 (w2n w) = 0 then 9
else if BITS 31 19 (w2n w) = 0 then 10
else if BITS 31 21 (w2n w) = 0 then 11
else if BITS 31 23 (w2n w) = 0 then 12
else if BITS 31 25 (w2n w) = 0 then 13
else if BITS 31 27 (w2n w) = 0 then 14
else if BITS 31 29 (w2n w) = 0 then 15

else 16

DURd w = if BITS 31 1 (w2n w) = 0 then 1

MOD CNTWd n = n MOD (WL DIV 2)
MSHIFTd(borrow,mul,count1) = count1 * 2 +

if borrow /\ (mul=1) \/
~borrow /\ (mul=2) then 1 else 0

if ~borrow2 /\ (mul = 0) \/ borrow2 /\ (mul = 3) then
else if borrow2 /\ (mul = 0) \/ (mul = 1) then

ALUd(borrow2,mul,alua,alub) =

else alua - alub

alua

NEXTd(mul,mul2,borrow2,mshift,rm,rd) =

(BITS 1 0 (BITS (HB-2) 0 mul2),
BIT 1 mul,

MOD CNTWd (mshift DIV 2 +1)),
ALUd(borrow2,mul,rd,rm << mshift))

BITS HB 2 (BITS (HB-2) 0 mul2),
MSHIFTd(BIT 1 mul,BITS 1 0 (BITS (HB-2) 0 mul2),

rm,

INITd(a,rm,rs,rn) = (BITS 1 0 (w2n rs),
if (BITS 1 0 (w2n rs)) = 2 then 1 else 0,
rm, if a then rn else 0w)

F,BITS HB 2 (w2n rs),

MULTd(a,b) = BOOTHMULTIPLYd(F,a,b,0w)

BOOTHMULTIPLYd(a,rm,rs,rn) = PROJ RDd(STATEd(DURd rs,a,rm,rs,rn))

PROJ RDd(mul,mul2,borrow2,mshift,rm,rd) = rd

STATEd(t,(a,rm,rs,rn)) = APPLY NEXTd(t,INITd(a,rm,rs,rn))

APPLY NEXTd(t,inp) = if t=0 then inp
else APPLY NEXTd(t-1,NEXTd inp)

alua + alub

Figure 5.2: The specification of the ARM6 Booth’s algorithm.

Our pretty-printer generated a Verilog file with 524 lines of code (after deleting the
comments):

module dtype (clk,d,q);

parameter size = 31;

parameter value = 1;

input clk;

input [size:0] d;

output [size:0] q;

reg [size:0] q = value;

always @(posedge clk) q <= d;

endmodule

module MULTd (clk,load,inp1,inp2,done,out);

input clk,load;

input [31:0] inp1;

input [31:0] inp2;

output done;
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output [31:0] out;

wire clk,done;

wire [31:0] v0;

wire [0:0] v1;

...

wire [0:0] v249;

assign v1 = 0;

assign v0 = 0;

assign v13 = inp2;

...

assign done = v249 && v247;

endmodule

This design is downloaded into the ExcaliburTM FPGA with 100,000 gates. It used 3,897
logical elements (93% of the total amount available). We also simulated it using GPL-Cver
and and GTKWave [31, 33]. Figure 5.3 shows the multiplication of 5×7.
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done
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Figure 5.3: Simulation of the ARM6 Booth’s algorithm computing 5×7.

The multiplier specified in Figure 5.2 implements a variant of the Booth’s algorithm in
terms of state functions. Although we know a Booth’s multiplier could be specified by a
smaller code, this case study tested the performance of our compiler with a medium-sized
specification.

5.2 The DIY Microcomputer

The book How Computers Do Math by Maxfield and Brown [53] introduces the way in
which computers work. The authors explain it by developing a calculator called the DIY
Calculator. The DIY Calculator is programmed in the assembly language of a simple
microcomputer, which we call here the DIY microcomputer or simply, the DIY.

We choose this microprocessor as a case study mainly because its development has
been thoroughly documented. In addition to that, it has the right size for our purposes
(neither too complex like a real computer, nor too simple like a toy). There is also a
physical implementation of the DIY carried out by final year students at the Newcastle
University1. This implementation was modelled in VHDL and downloaded to an Altera
UP2 FPGA, thus enabling us to compare our approach with this traditional development
method (although we have not produced this analysis yet). This section describes the
subset of the DIY used in our case study.

1The project was supervised by Albert Koelmans. For more information, see:
http://www.diycalculator.com/popup-m-phyver.shtml
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The DIY microcomputer comprises a CPU, a memory and input/output ports. The
CPU has an 8-bit data bus, a 16-bit address bus and contains a small number of registers.
The CPU is initialised whenever we drive a logical zero (or F in HOL) on the reset line.
All control signals are active low. The CPU interfaces with the memory via the control
signals read and write, and the buses data and addr (address). There are nine registers in
the CPU, namely: ACC (accumulator), PC (program counter), IR (instruction register),
SP (stack pointer), TMP (temporary register), OV (overflow flag), N (negative flag), Z

(zero flag) and C (carry bit). Figure 5.4 shows the external interface of the DIY together
with its registers. The size of each register is shown next to their names.
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PC 16

8

16

32

1

1
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Figure 5.4: The DIY CPU.

The carry bit is originally a 1-bit register, but we decided to define it as an 8-bit register
in order to manipulate it with 8-bit numbers without having to use type conversions. The
symbol

˜
which precedes control signals in Figure 5.4 indicates that the signal is active

low.
The address bus is 16-bit wide — therefore it addresses 216 or 65,536 memory locations.

Each location is 8-bit wide. In order to read a byte from the memory, the DIY sets read to
zero and sends the address through the addr bus. The memory returns the byte requested
on the data bus. In order to write a byte in the memory, the DIY sets write to zero and
sends the data and address on the buses data and addr, respectively.

Before presenting the instructions of the DIY, we briefly explain the addressing modes
we use.

In the immediate addressing mode, the byte that follows the instruction in memory is
the actual operand. For example, consider the instruction LDA (load) using immediate
addressing. Suppose that the byte following its opcode in memory has value 4. The
execution of this instruction loads the contents of the accumulator with the value 4.

Implied addressing mode is used by instructions that do not take any arguments. For
example, the instruction INCA adds one to the contents of the accumulator. In this case,
the DIY does not need to read any byte following the instruction as the argument is
already known, namely the value 1.

In the absolute addressing mode, the instruction in memory is followed by two bytes
which are the least and the most-significant bytes of a 16-bit address. This address points
to the actual operand in memory (or points to the next instruction in case of a jump).

Tables 5.2 and 5.3 (see pages 58 and 59) show the instructions implemented in our
case study. Note that these instructions are just a subset of all instructions provided
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by the DIY. We indicate the addressing modes of each instruction by the suffixes IMM

(immediate), IMP (implied) and ABS (absolute).
We develop the DIY in two different ways. The CPU Design models only the DIY

CPU, while the Microcomputer Design models both the CPU and a (tiny) memory. In
what follows we present these designs separately and compare them in the last section.

5.2.1 The CPU Design

This section presents the formal specification of the DIY CPU. In this design, we im-
plement a CPU as a function that computes a single interaction with the memory. The
external interface of the system is shown in Figure 5.5.

˜read

˜write

˜reset

8 data’8

addr

DIYdata
16

’regs regs

Figure 5.5: The DIY interface.

The function DIY takes as inputs the signal reset and the byte data, and returns the signals
read, write, data′ and addr. However, as we are dealing with a pure functional language,
we have to include all registers as part of the external interface. The variables regs and
regs′ are tuples which comprise all DIY registers in addition to a variable called step:
(ACC, PC, IR, step, SP, TMP, OV, N, Z, C). The variable step stores the current state of
the CPU (explained below). We assume that the environment does not change the value
of regs.

The function DIY models the state machine shown in Figure 5.6. The only instruc-
tion not implemented in this version of the DIY is the load using immediate address-
ing (LDA IMM). In the state FETCH, the CPU reads an instruction in memory and
stores it in the register IR. The states LD LSB and LD MSB read the least and the most-
significant bytes of the operand address, respectively. In the state RUN the CPU executes
the instruction.

We present an outline of the source code in what follows. The complete code can be
seen in Section A.

The top-level function simply tests in which state the processor is and returns the next
state and requests to the memory.

FETCH LD MSB RUNLD LSB

Implied address instruction

Jump

Failed jump

Figure 5.6: The DIY states.
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diy (reset:bool, data:word8, ACC:word8, PC:word16, IR:word8, step:word4,

SPTMPOVNZC: word16 # word32 # bool # bool # bool # word8)

= if (~reset) then

...

else if step = FETCH then

...

else if step = LD_LSB then

...

else if step = LD_MSB then

...

else alu(data,ACC,PC,IR,step,SPTMPOVNZC)

The names FETCH, LD LSB, LD MSB and RUN are constants whose values are 0, 1, 2 and 3,
respectively. The variable step is a 4-bit word which stores values from 0 to 3 representing
the current state. The first case tests if the CPU is reset. In this case, the CPU requests
to read the first byte in memory and sets the next state to FETCH.

if (~reset) then

((* read *) F, (* write *) T, (* addr *) 0w, (* data *) data,

ACC, (* PC *) 1w, (* IR *) 0w, FETCH, SPTMPOVNZC)

else if step = FETCH then ...

Comments in ML and HOL4 are enclosed by (* and *).
In the FETCH state there are three possible sub-cases to analyse. If the instruction uses

implied addressing, then the next state is RUN. If the instruction is a jump which failed
its test, the function ignores the jump and reads the next instruction. In this case, the
next instruction is located at PC+3w as we have to skip the operand (and the next state
is still FETCH). Otherwise, the next state is LD LSB.

else if step = FETCH then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in if (~(isJUMP(data)) \/ testJUMP(data,OVNZC)) then

(F,T,PC,data,ACC,PC+1w,data,

if implied_addr(data) then RUN else LD_LSB, SPTMPOVNZC)

else (F,T,PC+2w,data,ACC,PC+3w,data,FETCH,SPTMPOVNZC)

else if step = LD_LSB then ...

In the LD LSB state, we store the least-significant byte of the operand address at the
temporary register. The primitive operator @@ implements word concatenation.

else if step = LD_LSB then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in (F,T,PC,data,ACC,PC+1w,IR,LD_MSB,SP,(* TMP *) (0w:word24) @@ data,

OVNZC)

else if step = LD_MSB then ...

The LD MSB checks if the instruction is a store (STA ABS). In this case, it writes the
contents of the accumulator in the memory. If the instruction is a jump, the PC is assigned
to the value of the operand and the next state is FETCH. Otherwise, we move to RUN.

else if step = LD_MSB then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in (IR=STA_ABS, (* write *) ~(IR = STA_ABS),

(* addr *) (data @@ ((7 >< 0) TMP):word8):word16,

(* data *) ACC, ACC,

if isJUMP(IR) then ((data @@ ((7><0) TMP):word8)+1w) else PC,

IR, if isJUMP(IR) then FETCH else RUN, SP, TMP, OVNZC)

else ...
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The primitive operator >< takes two numbers h and l representing bit positions and a
word w, and extracts the word w[h : l] (shown here in a Verilog-like notation). This
operator is used to extract the least-significant byte of the operand’s address stored in
TMP.

The state RUN simply calls the function alu.

else alu(data,ACC,PC,IR,step,SPTMPOVNZC)

The function alu executes the instruction. The code below shows the execution of
load and add (LDA ABS and ADD ABS).

val (alu_def,_,alu_dev0,alu_comb,_) = hwDefine2

‘alu (data:word8,ACC:word8,PC:word16, IR:word8, step:word4, SP:word16,

TMP:word32, OV: bool, N:bool, Z:bool, C:word8)

= if IR = LDA_ABS then

((* read *) F, (* write *) T, (* addr *) PC,

(* data *) data, (* ACC *) data, (* PC *) PC+1w,

(* IR *) IR, (* step *) FETCH, SP, TMP, OV,

(* N *) word_msb(data),(* Z *) data=0w, C)

else if IR = ADD_ABS then

let result = ACC+data

in (F,T,PC,data, (* ACC *) result,

PC+1w, IR, FETCH, SP, TMP,

(* OV *) add_ov(ACC,data),

(* N *) word_msb(result),

(* Z *) result=0w,

(* C *) b2w(w2n(ACC) > (255-w2n(data)))

)

...

The load instruction simply stores the byte on data in the accumulator. The addition
stores the result of (ACC+data) in the accumulator. The auxiliary function add ov tests if
the addition overflows. The primitive operators w2n and n2w convert a word to a number
and a number to a word, respectively. The next state is FETCH.

After compiling (and automatically verifying) the DIY CPU, we downloaded it to an
FPGA and ran a small program on it. We tested the CPU by running Euclid’s Greatest
Common Divisor (GCD) for two unsigned 16-bit numbers.

while (a != b)

if a > b then

a := a-b

else

b := b-a

return a

We use the ML interface described in Chapter 3 to communicate with the CPU. We de-
velop a memory simulator in ML to interact with the FGPA and code the GCD algorithm
in the DIY machine language. The program has 129 lines of code as we had to develop
sub-routines which implement a 16-bit comparator and a 16-bit subtracter (recall that
the standard DIY instructions deal with 8-bit numbers). Unfortunately, the serial cable
connection acts as a very slow bus. For instance, it takes about 30 seconds to compute
GCD(64326, 33254), where most of this time is being used for communicating the PC to
the FPGA. This is one of the reasons which motivated us to develop the Microcomputer
Design.
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The DIY CPU connects to input/output ports via memory. Our memory simulator
does not implement interactive input/output. We simply store input and output values
at a particular address in memory.

5.2.2 The Microcomputer Design

The Microcomputer Design implements the DIY CPU together with functions that access
the memory. The memory is a variable that is initially sent to the top-level system and
is manipulated by the functions read and write (Figure 5.7). Like the CPU Design, the
specification is also based on states. However the notion of state is different from the
one presented in Section 5.2.1. As the memory is now part of the system, it is possible
to execute one instruction completely in a single function call. In the previous section a
state was a fine-grained intermediate step of the execution of a single instruction.

write mem’value
mem

addr read

mem

addr

value

Figure 5.7: Memory functions.

The top-level system takes a memory as input and returns the resulting memory after
running the program it contains (see Figure 5.8). An initial state for the DIY registers is
created before running the program. The function next state executes a single instruction
on each call. If the program terminates, the system outputs the possibly modified memory.

mem

(initial state, mem)
finished?

(state’,mem’)

(state’,mem’)
mem’

DIY

next state

Figure 5.8: The DIY interface.

Recall that we must prove that our functions terminate. However if we have to take
a memory as input and run whatever program is in it, we cannot guarantee beforehand
that this program terminates, and consequently, that the DIY computing it terminates.
To overcome this problem we define two criteria for termination. The first one is based
on the memory position reached by the program. We define a constant address called
end of program. If the DIY reaches that position, then it indicates that the program has
finished. However, the program might loop and end up never reaching the termination
address. So, a second criterion is used to guarantee termination. We introduce a simple
counter that allows the DIY to execute 2,000,000 instructions before halting.

The top-level function takes a memory as input and calls the function run, which
executes the program stored in the memory. The state of the system is represented by
the tuple (mem, ACC, PC, OV, N, Z, C), which is initialised by diy.

diy(mem:word104) = run(2000000w,(mem,0w,0w,F,F,F,0w))
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Notice that we use a tiny memory of 13 bytes only. This is mostly due to a limitation of
our Verilog compiler (see a discussion on this issue in Section 5.3).

The function run is a recursive function. It stops whenever the program counter PC
reaches the end of program address or the step counter is zero. Notice that the function
diy above initialises step to 2,000,000. Every recursive call decrements the value of step
and calls the function next state. The measure function (w2n o FST) is used by TFL to
prove run’s termination.

run(step:word32, (mem:word104,ACC:word8,PC:word16,

OVNZC:bool # bool # bool # word8))

= (if (step = 0w) \/ (PC = end_of_program) then mem

else run(step-1w,next_state(mem,ACC,PC,OVNZC)))

measuring (w2n o FST)

The function next state executes the instruction in memory pointed by the program
counter and returns the new state of the system.

next_state (mem:word104,ACC:word8,PC:word16,

OVNZC:bool # bool # bool # word8)

= let (IR,op2,op1) = (read(mem,PC),read(mem,PC+2w),read(mem,PC+1w)) in

let addr = op2 @@ op1

in if IR = STA_ABS then

let mem’ = write(mem,addr,ACC) in (mem’,ACC,PC+3w,OVNZC)

else if IR = LDA_IMM then

let (OV,N,Z,C) = OVNZC in (mem,op1,PC+2w,OV,word_msb(op1),op1=0w,C)

else if testJUMP(IR,OVNZC) then

(mem,ACC,addr,OVNZC)

else (mem, alu(IR,read(mem,addr),ACC,PC,OVNZC))

First the function reads the instruction and its two consecutive bytes (op1 and op2). In
the absolute addressing mode these bytes are the least and the most-significant bytes
of the operand’s address. If the instruction is a store, the function write is called to
generate an updated memory. A load using immediate addressing stores the contents of
op1 in the accumulator. If the instruction is a jump, then PC points to (op2 @@ op1).
The remaining instructions are executed by alu.

The function alu executes the current instruction and returns the new state of the
system. As the variable PC points to the current instruction (using absolute addressing),
it is incremented by 3 in order to skip the operands and to point to the next instruction.
In this design we did not implement the instructions using implied addressing (we discuss
this issue in the next section).

alu (IR:word8,data:word8, ACC:word8, PC:word16, OV:bool, N:bool,

Z:bool, C:word8) =

if IR = LDA_ABS then

(data,PC+3w,OV,word_msb(data),data=0w,C)

else if IR = ADD_ABS then

let res = ACC+data

in (res,PC+3w,add_ov(ACC,data),word_msb(res),res=0w (* Z *),

b2w(w2n(ACC) > (255-w2n(data))) (* C *))

...

else (ACC,PC+3w,OV,N,Z,C)‘;

As this design implements a very small memory, we could only run tiny programs
which execute two or three instructions. This contrasts with the CPU Design described
above, where any program smaller than 64KB could be executed. However, in order
to achieve a reasonable performance with the CPU Design, we have to implement the
memory on the board in order to replace the slow serial cable connection.
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Booth CPU only CPU+Memory
Instructions — 25 20
Chip areaa 93% 34% 70%

Compilation timeb HOL 3 min. 3.3 hr 55 min.
Quartus II 8 min. 5 min. 2 hr

Primitive components Dtype 36 15 34
Combinational 216 784 604

Total 252 799 638

aWe used an FPGA with 100,000 gates.
bRunning on an Intel R© Pentium R© 4, 3GHz, 3.7GB RAM

Table 5.1: Case study analysis.

5.3 Result Analysis

In this section we analyse the performance of the compiler for the Booth multiplier, the
CPU and the Microcomputer Designs and report the strengths and weaknesses of our
approach uncovered by these case studies.

The Booth multiplier is a medium-sized design whose circuit could be employed as
co-processor. The compiler had a fairly acceptable performance. Most of the total com-
pilation time was spent by Quartus II (see Table 5.1).

Regarding the DIY machine, both designs specified state machines implemented by
a long nested if-then-else manipulating large tuples (the states). As our specification
language is intrinsically stateless, the state is a variable which has to be taken as argument
by the functions. These particular features combined make the compiler to generate large
logical terms that slow the compilation process down significantly. The impact of these
large terms on the compilation time of both designs made us restrict our implementation
to a subset of the complete DIY instruction set. For example, we have not specified
any instruction related to subroutines or to the stack pointer. In particular, we did not
implement instructions using immediate addressing in the Microcomputer Design in order
to reduce the depth of nested if-then-elses in the specification (see Table 5.1).

Note that the Microcomputer Design used 70% of the chip area, which in principle
would allow us to implement a larger memory. However, the tiny memory size of 13
bytes was imposed mostly by Quartus II, which was running out of memory during the
compilation of long-sized variables.

The limitations of our compilation method revealed by the DIY case study show that
we have to constantly create or adapt our optimisations according to the application. In
particular, nested if-then-elses manipulating large tuples – a combination of features
not tested previously – generated a term explosion. One of the causes of this explosion
is the generation of large tuples from a binary Par. A possible solution to overcome this
problem is the definition of constructors like, say Par4 (and PAR4) to generate 4-tuples
and eventually reduce the size of the terms.

Another issue is the fact that pure functional languages are not suitable for state-based
applications. The solution adopted by Beyer et al. [4] was to extend the Verilog pretty-
printer with facilities to generate next-state functions and memories from special PVS
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functions like (ns : State×Input → State×Output)2. The Verilog code manipulates the
state inside a module. The external interface deals only with Input and Output . Although
this is a valid alternative to be considered, it relies on the fact that the pretty-printer is no
longer an obvious syntactical transformation between two netlist notations, thus reducing
our confidence in the correctness of the outcome.

In contrast to these issues, our approach provided two important facilities.
First the high level of abstraction of our source language allows us to specify a Booth

algorithm as a state machine and the DIY microcomputer in a very concise way. The
specification in HOL abstracts away several low-level details of implementation described
by Maxfield and Brown [53]. For example, the DIY Data Book shows in full detail how
the registers connect to the ALU and how the data and the address buses work3. Notice
that we did not have to specify the bus protocol between the memory and the CPU in the
Microcomputer Design. The compiler automatically generates the low-level connection
between components.

Second, the compiler produced a verified circuit. In the worst case, it took HOL4 3.3
hours to complete. This is definitely a long compilation time if we consider no verifica-
tion. However, the theorem prover actually verified automatically that a netlist with 799
components implements a handshaking device which computes the function diy.

We can conclude that our compiler is adequate to medium-sized projects like a co-
processor, but it still has limitations considering a larger system like a microcomputer.

2The work proposed by Beyer et al. [4] is not proof-producing, but follows a more standard approach.
3The Official DIY Data Book comes in the CD-ROM accompanying the book.
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Instruction Description

LDA IMM

LDA ABS

Loads the contents of a byte of data in the memory into the accumulator.
Flags affected: N (set if the accumulator is negative) and Z (set if the accu-
mulator is zero).

STA ABS
Stores the contents of the accumulator to a byte in the memory. Flags af-
fected: none.

ADD ABS
Adds the contents of a byte in memory to the contents of the accumulator
and stores the result in the accumulator. Flags affected: OV, N, Z and C.

ADDC ABS Same as ADD, except that it adds the contents of the carry flag as well.

SUB ABS
Subtracts the contents of a byte in memory from the contents of the accu-
mulator and stores the result in the accumulator. Flags affected: OV, N, Z

and C.

SUBC ABS Same as SUB, except that it subtracts the carry flag as well.

AND ABS

Applies a bit-wise AND operation to the contents of a byte in memory and
the contents of the accumulator and stores the result in the accumulator.
Flags affected: N and Z.

OR ABS
Applies a bit-wise OR operation to the contents of a byte in memory and the
contents of the accumulator and stores the result in the accumulator. Flags
affected: N and Z.

XOR ABS

Applies a bit-wise XOR operation to the contents of a byte in memory and
the contents of the accumulator and stores the result in the accumulator.
Flags affected: N and Z.

CMPA ABS

Compares the contents of a byte in memory with the contents of the accu-
mulator assuming that both are unsigned values. The accumulator and the
memory are not affected. Flags affected: Z (set if the values are equal) and
C (set if the accumulator is greater than the byte in memory).

Table 5.2: Instructions of the DIY.
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Instruction Description

JMP ABS
Jumps unconditionally to the address stored in the two consecutive bytes in
memory following the instruction code. Flags affected: none.

JC ABS Jumps to a new address if the carry flag C is 1. Flags affected: none.

JNC ABS Jumps to a new address if the carry flag C is 0. Flags affected: none.

JN ABS Jumps to a new address if the negative flag N is 1. Flags affected: none.

JNN ABS Jumps to a new address if the negative flag N is 0. Flags affected: none.

JO ABS Jumps to a new address if the overflow flag OV is 1. Flags affected: none.

JNO ABS Jumps to a new address if the overflow flag OV is 0. Flags affected: none.

JZ ABS Jumps to a new address if the zero flag Z is 1. Flags affected: none.

JNZ ABS Jumps to a new address if the zero flag Z is 0. Flags affected: none.

SHL IMP

Shifts the contents of the accumulator one bit to the left. A zero is inserted
in the least-significant bit of the accumulator and the most-significant bit of
the accumulator is stored in the carry flag C. Flags affected: N, Z and C.

SHR IMP

Shifts the contents of the accumulator one bit to the right. The most-
significant bit of the accumulator does not change, while the least-significant
bit of the accumulator is stored in the carry flag C. Notice that this is an
arithmetic shift right. Flags affected: N, Z and C.

ROLC IMP

Rotates the contents of the accumulator one bit to the left through the carry
flag. The least-significant bit of the accumulator stores the original value
of C, while the carry flag stores the most-significant bit of the accumulator.
Flags affected: N, Z and C.

RORC IMP

Rotates the contents of the accumulator one bit to the right through the carry
flag. The most-significant bit of the accumulator stores the original value of
C, while the carry flag stores the least-significant bit of the accumulator.
Flags affected: N, Z and C.

INCA IMP Adds 1 to the contents of the accumulator. Flags affected: N and Z.

DECA IMP Subtracts 1 from the contents of the accumulator. Flags affected: N and Z.

Table 5.3: Instructions of the DIY.



Chapter 6

Related Work

In this chapter we overview previous work on synthesis and verification of hardware using
theorem provers and functional languages. Although this is not an extensive survey on
hardware verification, it provides a glimpse of more closely related work. In the last
section we compare them with our approach.

6.1 LAMBDA

LAMBDA (Logic And Mathematics Behind Design Automation) is a tool-set to support
interactive synthesis which integrates proof and design [19, 21]. The LAMBDA theo-
rem prover sets a goal (correctness theorem) to be proved through synthesis. The user
builds the circuit incrementally by connecting primitive hardware components using the
schematic interface DIALOG. Each refinement step automatically simplifies the goal. The
process continues until a circuit that implements the specification is constructed.

6.2 VERITAS+

The approach called Formal Synthesis is, like LAMBDA, based on goal-directed and
interactive design that develops a circuit and its proof of correctness simultaneously [36].
VERITAS+ is the logic used to describe and synthesise circuits. It is an extension of
classical (non-constructive) typed higher-order logic with dependent types and subtypes
[20]. The designer interactively refines a behavioural specification into a structural design
via proof.

6.3 DDD

The Digital Design Derivation (DDD) is an interactive transformation system that syn-
thesises high-level specifications into hierarchical boolean systems [44]. The specifications
are tail-recursive lambda abstractions (S-expressions in the Lisp dialect Scheme [66]),
which essentially describe finite-state machines. For example, the function factorial is
defined by Johnson et al. [45] as

(letrec ([FACT (lambda (N ACC)

(if (zero? N)

60
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ACC

(FACT (- N 1) (* M ACC)))) ])

(FACT X 1)

The tail-recursive call is interpreted as a transfer of control to FACT when the registers N

and ACC are simultaneously updated to the value (- N 1) and (* M ACC), respectively.
DDD automates semantic preserving transformations like folding, unfolding and the

distributive law for conditionals:

(if T (F A) (F B)) ⇐⇒ (F (if T A B))

System factorisation laws allow more elaborate architectural decomposition transforma-
tions, which rearrange the system hierarchy into communicating modules [43]. The user
guides the application of these transformations in order to refine and optimise the speci-
fication until a synthesisable design is reached.

The DDD system contributes to the interplay between verification (construction of
a proof of correctness after the fact) and derivation (correct-by-construction design).
According to Bose [11], the decomposition and restructuring of the system by correct-
by-construction transformations deal with the uninteresting portion of the design. The
smaller building blocks that remain to be checked are better addressed by verification.

6.4 Gropius

Gropius is a hardware description language defined as a subset of HOL [8, 9, 10, 67].
It comprises four languages ranging from gate-level abstractions (Gropius 0) to system
level structures (Gropius 3). The algorithmic level (Gropius 2) provides control structures
like if-then-else, sequential composition and while loop. The atomic commands are DFGs
(data flow graphs) represented by lambda abstractions. The compiler initially combines
every while loop into a single one at the outermost level of the program:

PROGRAM out default (LOCVAR vars (WHILE c (PARTIALIZE b)))

The body b of the WHILE loop is an acyclic DFG. The list out default provides initial
values for the output variables. The term LOCVAR declares the local variables vars
and PARTIALIZE converts a non-recursive (terminating) DFG into a potentially non-
terminating command. The compiler then synthesises a handshaking interface which
encapsulates this program. Each of these hardware blocks are now regarded as primitive
blocks or processes at the system level. Processes are connected via communication units
(k-processes) which implement delay, synchronisation, duplication, splitting and joining
of a process output data (actually there are 10 different k-processes [8]). Just like in our
approach, there are previously proved theorems which provide a correct implementation
for every process and k-process.

6.5 Occam Synthesis

Bowen and He also applied the compositionality principle in the compilation of occam

into netlists. This work was built from previous work for software compilation [12, 69].
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The compilation is based on the refinement calculus and the algebraic laws of occam.
Both source and target languages are subsets of occam.

For each language constructor, there is an implementation also described in occam

which refines the source code. The assignment can be regarded as an atomic constructor.

⊢ (x := e) ⊑ C

C is an occam program in a particular normal form which represents a netlist:

var s, f, l, w ; Init ; (while ¬f do Step) ; Final ; end s, f, l, w

The variables s and f represent the control wires start and finish, respectively. The list of
variables l and w are wires connected to delays and combinational components, respec-
tively. The procedure Init assigns initial values to delays and stable states to combina-
tional components. The activity of the circuit in one clock cycle during its computation
is described by Step in terms of multiple assignments. Finally, the procedure Final de-
fines the state of the circuit after the completion of its operation. We omit details of the
interpreter which links the normal form occam program to a netlist-like notation [12].

The sequential composition of two circuits is refined by the function Merge.

⊢ (C1 and C2 are well defined) ⇒ C1 ; C2 ⊑ Merge(C1, C2)

Merge(C1 ,C2 ) transforms C1 and C2 into a single circuit described in the normal form
provided that C1 and C2 are well defined, i.e. they do not share output wires.

In addition to sequential composition, conditional command, while loop and channels
have also been defined in a similar way. The compilation can be fully mechanised provided
that the operators are monotonic with respect to ⊑. For instance, (P1 ⊑ C1) ∧ (P2 ⊑
C2) ⇒ (P1 ; P2) ⊑ (C1 ; C2).

6.6 Ruby

Ruby is a language for specifying and reasoning about hardware using a relational calcu-
lus [46]. A circuit is specified as a relation which enforces that the values of its outputs
are consistent with those of its inputs.

The language provides combinators to specify circuit layouts which, together with
their mathematical properties, provide a calculational style for design exploration. For
example, the composition of two circuits (or relations) R and S is denoted by R; S. The
composition is defined by x (R; S) z ⇐⇒ ∃y. (x R y) ∧ (y S z). Intuitively, the
composition R; S suggests a connection between two circuits made from one side of R to
the other side of S. The associativity of composition is an example of the mathematical
properties of these geometric combinators, which allow a correct-by-construction design.

6.7 Functional Languages

6.7.1 µFP

The functional language µFP is an extension of Backus’ FP for specifying circuits at
the structural level [2, 72]. The circuits are defined in terms of primitive functions over
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booleans, numbers and lists and higher-order functions, the combining forms , which com-
pose hardware blocks in different structures (sequence, parallel, conditional etc). Alge-
braic laws allow the designer to transform an abstract specification into a concrete circuit.

6.7.2 Lava

Lava is a hardware description language embedded in the functional language Haskell
[5, 47]. Like Ruby and µFP, Lava also provides combinators that capture common circuit
patterns. It also takes advantage of some of the Haskell features like monads and type
classes to allow multiple interpretations of a single circuit description. For example, a
half adder can be defined as:

halfAdd (a,b) =

do carry <- and2 (a,b)

sum <- xor2 (a,b)

return (carry,sum)

Two interpretations for this half adder are presented by Bjesse et al. [5]. The standard
interpretation is the identity monad, which simply evaluates the function in the boolean
domain. Executing the program halfAdd(high,high) produces the pair (high,low). Al-
ternatively, the symbolic interpretation generates descriptions of circuits to be provided
to external tools. For example, running the half adder code under the symbolic interpre-
tation generates the netlist

["b3" := And [BitVar "b1", BitVar "b2"],

"b4" := Xor [BitVar "b1", BitVar "b2"]].

These circuits can be verified with respect to a relation that restricts the values of the
inputs and outputs. For example, the following code poses the question whether a full
adder with low carry is equivalent to a half adder.

question =

do a <- newBitVar -- fresh variables

b <- newBitVar

out1 <- halfAdd (a,b)

out1 <- fullAdd (low,a,b)

equals (out1,out2)

The fresh variables a and b are the inputs of both circuits.
In order to check this formula, the function verify takes the description of the question

(under the symbolic interpretation) and generates a file containing a logical formula. The
execution of verify question >>= print generates input to an external theorem prover
like Otter [54] and Gandalf [80] and prints its result (in this case, Valid).

6.7.3 Lustre

Lustre is a functional language operating on streams [34]. A stream can be considered
a finite or an infinite sequence of values of the same type. Lustre takes a synchronous
dataflow approach. A program has a cyclic behaviour: at the nth execution cycle, all the
streams are ‘evaluated‘ to their nth value.
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For example, a program which detects a positive edge on the Boolean stream

X = (x1, x2, x3, . . .)

is defined below.

node POSEDGE (X:bool) return (Y:bool);

let

Y = false -> X and not pre(X);

tel

The components in Lustre are called nodes. The operator -> initialises the stream Y with
the value false. The remaining values of Y evaluate to true if the current value of X is
true and its previous value pre(X) is false. Otherwise, Y is false.

Formal verification of Lustre programs is achieved by program comparison. This ap-
proach is similar to the one adopted by Lava. Given two programs (a specification and an
implementation), a verification program runs the specification and the implementation in
parallel over the same inputs. It returns some correctness relation between the specifica-
tion and the implementation outputs. The Lustre compiler produces an automaton for
this system and checks if the output is always true.

6.7.4 Hydra

Hydra is a software system which comprises a hardware description language (embed-
ded in Haskell) and a set of tools for simulation, synthesis and timing analysis [61, 62].
The language allows different semantics to correspond to the same circuit specification —
thanks to Haskell’s function overloading based on type. For example, the same specifica-
tion of, say, an inverter can be executed if applied to a Boolean or can generate a netlist
if applied to a wire name. It also provides facilities to define general n-bit circuits (circuit
patterns) and interactive formal equational reasoning [63].

6.7.5 Hawk

Hawk is another hardware description language based on Haskell [18]. It has been used
in the specification and verification of complex microprocessor pipelines at the micro-
architectural level. The designer benefits from several features like polymorphism, type-
classes, higher-order functions, lazy evaluation and state monad.

The language has a built-in type signal used to model wires. The signals can be
regarded as infinite sequences where the clock cycle is the index. For example:

toggle = True, False, True, False, ...

primes = 2, 3, 5, 7, 11, 13, 17, ...

The signal toggle alternates between True and False and the signal primes produces
a prime number at every clock tick. Hawk also provides several built-in functions to
construct and manipulate signals. For instance, bundle transforms a pair of signals into
a signal of pairs:

bundle (primes,toggle) = (2,True), (3,False), (5,True), ...
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The components of a microprocessor are functions from signals to signals. A simulation
is produced by solving the mutually dependent equations of the specification using lazy
evaluation.

The micro-architectural components satisfy simple algebraic laws, which are used to
simplify a pipelined micro-architecture. These transformation laws have been mechanised
in the Isabelle theorem prover [51, 52].

6.7.6 ReFLect

reFLect is a strongly typed functional language designed and implemented at Intel’s Strate-
gic CAD Labs [32]. The language has reflection features like quotation and anti-quotation
constructs in a LISP-like fashion.

The language has being designed for applications in industrial hardware design and
theorem proving. In particular, circuit descriptions are functional programs which can
be simulated, exported to other design tool, or transformed by functions that traverse its
abstract syntax (thanks to the quotation and anti-quotation facilities).

A hardware design language is embedded in reFLect and its circuits are constructed
from primitives using higher-order functions in a similar approach adopted by Sheeran in
µFP [72].

6.7.7 SAFL

SAFL (Statically Allocated Functional Language) is a first-order functional language [57,
71]. A user program consists of a sequence of function definitions in which all recursive
calls are tail-recursive. The compiler translates each function into a single hardware block.
Its high-level of abstraction allows the exploitation of powerful program analyses and
optimisations not available in traditional synthesis systems. For instance, the functional
properties of SAFL allow equational reasoning and therefore the application of semantic-
preserving source-to-source manipulations.

6.7.8 SASL

SASL (Statically Allocated Stream Language) is an extension of SAFL which improves
its I/O model and implements common functional features such as closures and lazy
evaluation [24].

The idea behind this extension is to address the limitations of SAFL’s call-return I/O
mechanism. For instance, no pipelining or state held between calls are possible. SASL’s
I/O model treats input and output as lazily evaluated lists (called streams). Instead of
dealing with a potentially infinite lists, lazy lists store only the information required to
generate the lists. For instance, the input streams are not read until they are needed.

SASL’s functions process a combination of scalar values and lazy lists. Contrary to
the evaluation of lists, scalar variables are evaluated eagerly.

6.7.9 SHard

Shard [68] is a prototype compiler which transforms a functional subset of Scheme [66] into
hardware. The compiler supports tail and non tail-recursive functions. Non tail-recursive
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functions are transformed into tail-recursive ones by converting them to continuation-
passing style (CPS) [1].

The compilation is carried out by several phases of source-to-source transformations
based on control flow analysis. The outcome of the main compilation phases is mapped
to a dataflow circuit which connects instances of 9 generic hardware components. Each
component implements a generic computation like parallel composition or conditional.

This intermediate representation can either be simulated in Scheme or implemented
in VHDL for synthesis in an FPGA. No formal verification is performed.

6.8 Comparative Analysis

LAMBDA and VERITAS+ are approaches based on theorem proving systems. Both syn-
thesis and verification are performed simultaneously in an interactive way. Each new
project has to be verified under user guidance. In our approach we pre-verified (interac-
tively, but only once) primitive composable circuits, which allows the synthesis and the
verification to be carried out automatically, except for the proof of termination. DDD
follows a slightly different approach. It combines synthesis by algebraic refinement (se-
mantic preserving transformations) and direct proof. However, its synthesis process also
depends on substantial user guidance.

Ruby’s emphasis is on circuit layout. The language provides a large set of geometric
combinators which allow correct-by-construction design exploration. Our approach does
not address layout issues, but emphasises the functional correctness.

Gropius has a similar verification method based on pre-proved theorems which provide
correct implementations. In addition to that, Gropius also offers a large variety of inter-
faces. The key difference to our approach is the lack of composable theorems to certify
the correctness of top-level systems combined by the k-processes. The theorems prove the
correctness of each sub-system.

Several approaches use a functional language as a hardware description language.
Lustre, SHard, SAFL and SASL model hardware systems at the behavioural level. Hawk
specifications are at the micro-architectural level. The other functional languages de-
scribed above model circuits at the structural level, which is equivalent to our target
language.

The main difference between Lustre, Hawk and SASL and our source language is
the usage of streams. In Lustre, streams have a special impact on loops. While our
source language uses tail-recursive function calls, the elements of a Lustre stream represent
iterations. For each function call, either one step of the iteration is executed or the end
of the loop is reached (the environment resets the loop).

Our approach is partially inspired by SAFL, especially the ideas in Richard Sharp’s
PhD [71]. However, instead of proposing a concrete functional language, our source lan-
guage is a subset of higher-order logic. The compilation of SAFL into circuits applies the
compositionality principle to primitive hardware components. However, SAFL synthesis
is not based on correct-by-construction transformations and the compiler has not been
verified. Inspired by the SAFL’s compilation method, we proposed a similar compilation
which, instead of using composable circuits, uses composable theorems.

The same compositionality principle adopted by SAFL (and which inspired our compi-
lation) was previously used by Bowen and He for the compilation of occam. They regard
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compilation as a task of program refinement following a previous approach for software
compilation [69]. The theorems are identical to ours in nature (with respect to composi-
tionality), but the underlying concepts and formalism are different. The theorems were
proved from refinement calculi and algebraic laws of occam. Our proofs are in higher-
order logic and are built from axioms, primitive constants and primitive and derived rules
of inference of HOL. Their approach is also amenable to mechanisation, which has been
done in Prolog.

6.8.1 Summary

The comparative analysis is summarised in Table 6.1.

Level of Abstraction Verification
Structural Behavioural Automatic Semi-automatica

LAMBDA
√ √

VERITAS+
√ √

DDD
√ √

Gropius
√ √

b

occam
√ √

Ruby
√ √

µFP
√ √

Lava
√ √

Lustre
√ √

Hydra
√ √

Hawk
√

c
√

reFLect
√ √

SAFL
√

SASL
√

SHard
√

HOL4
√ √

d

aSemi-automatic or manual verification.
bExcept at the top-level system.
cActually, micro-architectural level.
dSemi-automatic proof of termination sometimes required.

Table 6.1: Comparative analysis.

In what follows, we describe the main features that distinguish our approach.
High level of abstraction. Our source language is the subset of higher-order logic

which constitutes a pure first-order functional language. The idea is to allow the designer
to focus on a solution at a higher level of abstraction without having to manipulate and
reason about circuits at the gate level.

Automatic verification. The translation of a tail-recursive function to a circuit is
done by proof. Our compiler automatically generates a circuit in a theorem which certifies
its correctness. There is no need for interactive user guidance in the verification process
(except for termination, although such proofs are produced mostly automatically thanks
to the TFL package [74]).
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Theorem prover as a compiler. Our compiler is built on top of the HOL4 sys-
tem [59]. The designer can use all the facilities provided by HOL4 to interactively prove
properties of the tail-recursive programs, which are mathematical functions in HOL. Al-
ternatively, the circuit development can start from a specification in higher-order logic,
which can be formally refined interactively to tail-recursive definitions. Once this re-
finement or abstraction is achieved, the compiler automatically links (by the correctness
theorems) the top level specification to the generated circuit. In either case, the lowest
level of abstraction involved in interactive verification is that of a tail-recursive function.
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Conclusion

We have presented an approach to create formally verified circuits. In this project we
faced two main challenges: the translation of a high-level functional language to gate-
level netlists; and the development of a fully automatic verification method which proves
that a circuit implements a function.

Instead of verifying the compiler, we verify the correctness of five circuit constructors.
First we developed circuit constructors for each source language constructor. Circuit con-
structors are parameterised circuits which are built from undefined sub-circuits. They do
not compute anything in particular, but we proved that they implement general compu-
tations like sequential composition or conditional commands. These theorems have been
proved interactively following a standard approach. However, they satisfy an interesting
property. The theorems have a particular structure which allows HOL4 to automatically
compose them in order to prove new, more elaborate, but still composable theorems. At
the end of the process, we reach a theorem which precisely states the correctness of the
synthesised design. Circuits are extracted from the correctness theorems.

The main outcome of this work is a compiler which automatically generates a theorem
stating that a circuit implements the source code. The compiler is a proof-of-concept
which supports the ideas we developed to mechanically compose proofs. We have tested
our ideas with some fairly substantial case studies, and more examples have been done
by our colleagues in Utah [76].

7.1 Lessons Learnt

The undefined values and the combinational loop problems (sections 4.2 and 4.4) are good
examples of the limitations of formal methods. The meaning of a formally verified system
must be interpreted with care. We must have a clear understanding of the scope and the
limitations of a mathematical model. By applying formal methods to our approach, we
do not claim the development of perfect, infallible systems. Proofs of correctness are only
as good as their underlying model and therefore nearly guarantee that an implementation
meets its specification.

The mathematical model employed must capture the real world behaviour precisely.
For example, if our real world is an FPGA, then it seems reasonable to deal with Boolean
values only. However, if the real world is a simulator or any other technology in which
intermediate values between T and F could strongly affect a circuit’s behaviour, then we

69



70 CHAPTER 7. CONCLUSION

should use a four valued logic. For our purposes, the simpler model based on Boolean
values seems to be adequate. Although our model also does not formalise detailed aspects
of a circuit like transistor-level behaviour, electrical effects or signal propagation time,
our methodology could, in principle, still be used with any detailed hardware models and
eventually capture aspects related to say, combinational loops.

Our experiences have shown that neither a single mathematical model nor an elaborate
specification is able to cover all aspects involved in the production of totally reliable
systems. See the seminal papers by Cohn [17] and Hall [35] on these issues. Nevertheless,
we can still find examples that, we hope, illustrate how effective formal methods can be.
We found few bugs when running our circuits from the FPGA. One of the most difficult
to catch happened during the tests of the circuit implementing the encryption algorithm
TEA. The circuit was apparently computing the encryption and the decryption correctly,
but only occasionally did it satisfy the formally verified property that a message does
not change by an encryption followed by a decryption. After debugging the compiler,
we found out that it was caused by translating the HOL4 arithmetic shift right to the
Verilog logical shift right. Another bug occurred during tests of the Booth multiplier.
The multiplication was working only for few random values. We later discovered that it
was caused by a bug in the software used to connect HOL4 to the serial cable. In spite
of finding bugs in our system, we never found any bug related to the components which
were formally verified.

7.2 Final Remarks

We have developed a proof-producing compilation method based on composable theorems.
We show how automatic composition of proofs can raise the level of mechanisation in
hardware verification. The user is no longer required to carry out proofs at the gate level.

As future work, more optimisations should be proposed to make the compiler feasi-
ble to larger projects. Alternatively, the same technology could be applied to different
domains. For instance, our approach is currently being used to verify software. Konrad
Slind, Guodong Li and Scott Owens from the University of Utah are developing a compiler
to translate a subset of HOL to a subset of the ARM machine code [75].

It is too early to claim that this method will be considered practical in developing
compilers. Our compiler is based on an incipient technology which does not scale to
industrial-sized applications yet. However it is just the first attempt to produce a fully
automatic verification of circuits with respect to a functional program. Its contributions
to hardware verification make us believe it is a technology worth at putting more efforts
on in future.
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The DIY Specifications

This chapter presents the complete specifications of the DIY microcomputer for both
designs presented above. We include the whole programs here for completeness and to
give an idea of the scale that can be handled by our compiler.

Some functions in ML are used to define the specifications. The function Define

takes a high-level specification of a HOL function and defines it in the logic. The function
hwDefine2 extends Define by returning, in addition to the usual function definition, some
auxiliary theorems like those stating the correctness of the circuit, or the ones specifying
the function in the intermediate language. These auxiliary theorems are used by the
compiler in a later phase of the development process (not shown here). The expression
(e::l) denotes a list whose head is e and tail is l, while (val v = e;) defines the constant
v to have the value of e.

A.1 The CPU Design

(*----------------------------------------------------------------------------*)

(* Instructions *)

(*----------------------------------------------------------------------------*)

val STA_ABS_def = Define ‘STA_ABS = 153w:word8‘;

val LDA_ABS_def = Define ‘LDA_ABS = 145w:word8‘;

val LDA_IMM_def = Define ‘LDA_IMM = 144w:word8‘;

val JNO_ABS_def = Define ‘JNO_ABS = 238w:word8‘; (* not overflow *)

val JO_ABS_def = Define ‘JO_ABS = 233w:word8‘; (* overflow *)

val JNC_ABS_def = Define ‘JNC_ABS = 230w:word8‘; (* not carry *)

val JC_ABS_def = Define ‘JC_ABS = 225w:word8‘; (* if carry *)

val JNN_ABS_def = Define ‘JNN_ABS = 222w:word8‘; (* not negative *)

val JN_ABS_def = Define ‘JN_ABS = 217w:word8‘; (* negative *)

val JNZ_ABS_def = Define ‘JNZ_ABS = 214w:word8‘; (* not zero *)

val JZ_ABS_def = Define ‘JZ_ABS = 209w:word8‘; (* zero *)

val JSR_ABS_def = Define ‘JSR_ABS = 201w:word8‘; (* subroutine *)

val JMP_ABS_def = Define ‘JMP_ABS = 193w:word8‘; (* unconditional *)

val ADD_ABS_def = Define ‘ADD_ABS = 17w:word8‘;

val ADDC_ABS_def = Define ‘ADDC_ABS = 25w:word8‘;

val SUB_ABS_def = Define ‘SUB_ABS = 33w:word8‘;

val SUBC_ABS_def = Define ‘SUBC_ABS = 41w:word8‘;

val AND_ABS_def = Define ‘AND_ABS = 49w:word8‘;

val OR_ABS_def = Define ‘OR_ABS = 57w:word8‘;

val XOR_ABS_def = Define ‘XOR_ABS = 65w:word8‘;
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val CMPA_ABS_def = Define ‘CMPA_ABS = 97w:word8‘;

val SHL_IMP_def = Define ‘SHL_IMP = 112w:word8‘;

val SHR_IMP_def = Define ‘SHR_IMP = 113w:word8‘;

val ROLC_IMP_def = Define ‘ROLC_IMP = 120w:word8‘;

val RORC_IMP_def = Define ‘RORC_IMP = 121w:word8‘;

val INCA_IMP_def = Define ‘INCA_IMP = 128w:word8‘;

val DECA_IMP_def = Define ‘DECA_IMP = 129w:word8‘;

val instructions =

[LDA_IMM_def, LDA_ABS_def, STA_ABS_def, JC_ABS_def, JMP_ABS_def,

JN_ABS_def, JNC_ABS_def, JNN_ABS_def, JNO_ABS_def, JNZ_ABS_def,

JO_ABS_def, JSR_ABS_def, JZ_ABS_def, ADD_ABS_def, ADDC_ABS_def,

SUB_ABS_def, SUBC_ABS_def, AND_ABS_def, OR_ABS_def, XOR_ABS_def,

CMPA_ABS_def, SHL_IMP_def, SHR_IMP_def, ROLC_IMP_def, RORC_IMP_def,

INCA_IMP_def, DECA_IMP_def];

(*----------------------------------------------------------------------------*)

(* b2w *)

(* Converts a Boolean into an 8-bit word *)

(*----------------------------------------------------------------------------*)

val (b2w_def,_,b2w_dev0,b2w_comb,_)= hwDefine2

‘b2w(b) = if b then (1w:word8) else (0w:word8)‘;

(*----------------------------------------------------------------------------*)

(* Constants *)

(* There are four steps to execute an instruction using absolute addressing: *)

(* 1. Fetch the instruction (FETCH), *)

(* 2. Load the least-significant byte of the operand (LD_LSB) *)

(* 3. Load the most-significant byte of the operand (LD_MSB) *)

(* 4. Execute the instruction (RUN) *)

(*----------------------------------------------------------------------------*)

val FETCH_def = Define ‘FETCH = 0w:word4‘;

val LD_LSB_def = Define ‘LD_LSB = 1w:word4‘;

val LD_MSB_def = Define ‘LD_MSB = 2w:word4‘;

val RUN_def = Define ‘RUN = 3w:word4‘;

val constants = FETCH_def :: LD_LSB_def :: LD_MSB_def ::

RUN_def :: instructions;

(*----------------------------------------------------------------------------*)

(* abs *)

(* 8-bit numbers ranging from 128 to 255 (interpreted as unsigned) correspond *)

(* to the negative values from -128 to -1. This function converts numbers *)

(* from 128 to 255 into its absolute value in the signed system. *)

(* Example. abs(255) = 1 (unsigned 8-bit numbers whose value is 255 is *)

(* interpreted as -1 in the signed system. *)

(*----------------------------------------------------------------------------*)

val (abs_def,_,abs_dev0,abs_comb,_) = hwDefine2

‘abs(n:num) = (255-n)+1‘;

(*----------------------------------------------------------------------------*)

(* add_ov *)

(* Takes two signed 8-bit numbers and checks if their addition generates *)

(* overflow. *)

(*----------------------------------------------------------------------------*)

val (add_ov_def,_,add_ov_dev0,add_ov_comb,_) = hwDefine2
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‘add_ov (a:word8,b:word8)

= (word_msb(a) /\ word_msb(b) /\ (abs(w2n a)+abs(w2n b) > 128)) \/

((w2n(a) < 128) /\ (w2n(b) < 128) /\ (w2n(a)+w2n(b) > 127))‘;

(*----------------------------------------------------------------------------*)

(* sub_ov *)

(* Takes two signed 8-bit numbers and checks if their subtractoin generates *)

(* overflow. *)

(*----------------------------------------------------------------------------*)

val (sub_ov_def,_,sub_ov_dev0,sub_ov_comb,_) = hwDefine2

‘sub_ov (a:word8,b:word8)

= (word_msb(a) /\ (w2n(b) < 128) /\ (abs(w2n a)+(w2n b) > 128)) \/

((w2n(a) < 128) /\ word_msb(b) /\ ((w2n a)+abs(w2n(b)) > 127))‘;

(*----------------------------------------------------------------------------*)

(* isJUMP *)

(* Tests an instruction code to identify if it is a jump *)

(*----------------------------------------------------------------------------*)

val (isJUMP_def,_,isJUMP_dev0,isJUMP_comb,_) = hwDefine2

‘isJUMP (ins:word8) = w2n(ins) > 192‘;

(*----------------------------------------------------------------------------*)

(* alu *)

(*----------------------------------------------------------------------------*)

val (alu_def,_,alu_dev0,alu_comb,_) = hwDefine2

‘alu (data:word8,ACC:word8,PC:word16,

IR:word8, step:word4,

SP:word16, TMP:word32, OV: bool, N:bool, Z:bool, C:word8)

= if IR = LDA_ABS then

(

(* read *) F, (* write *) T, (* addr *) PC,

(* data *) data, (* ACC *) data, (* PC *) PC+1w,

(* IR *) IR, (* step *) FETCH, (* SP *) SP,

(* TMP *) TMP, (* OV *) OV, (* N *) word_msb(data),

(* Z *) data=0w, (* C *) C

)

else if IR = ADD_ABS then

let result = ACC+data

in

(F,T,PC,data,

(* ACC *) result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) add_ov(ACC,data), (* N *) word_msb(result),

(* Z *) result=0w, (* C *) b2w(w2n(ACC) > (255-w2n(data)))

)

else if IR = ADDC_ABS then

let result = ACC+data+C

in

(F,T,PC,data,

(* ACC *) result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) add_ov(ACC,data+C), (* N *) word_msb (result),

(* Z *) result=0w,

(* C *) b2w(w2n(ACC) > (255-(w2n(data)+w2n(C))))

)

else if IR = SUB_ABS then

let result = ACC-data
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in

(F,T,PC,data,

(* ACC *) result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) sub_ov(ACC,data), (* N *) word_msb(result),

(* Z *) result=0w, (* C *) b2w(w2n(data) > w2n(ACC))

)

else if IR = SUBC_ABS then

let result = ACC - (data + C)

in

(F,T,PC,data,

(* ACC *) result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) sub_ov(ACC,data+C), (* N *) word_msb (result),

(* Z *) result = 0w,

(* C *) b2w(w2n(data)+w2n(C) > w2n(ACC))

)

else if IR = AND_ABS then

let result = word_and data ACC

in

(F,T,PC,data, result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result=0w, (* C *) C

)

else if IR = OR_ABS then

let result = word_or data ACC

in

(F,T,PC,data, result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result=0w, (* C *) C

)

else if IR = XOR_ABS then

let result = word_xor data ACC

in

(F,T,PC,data, result, PC+1w, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result=0w, (* C *) C

)

else if IR = CMPA_ABS then

(F,T,PC,data, ACC, PC+1w, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) N,

(* Z *) ACC=data, (* C *) b2w(w2n(ACC) > w2n(data))

)

else if IR = SHL_IMP then

let result = ((7><0) (ACC << 1):word8):word8

in

(F,T,PC-1w,data,result,PC,IR,FETCH,SP,TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w, (* C *) b2w(word_msb ACC)

)

else if IR = SHR_IMP then

let result = ((7><0) (ACC >> 1):word8):word8

in

(F,T,PC-1w,data,result,PC, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w, (* C *) b2w(word_lsb ACC)

)

else if IR = ROLC_IMP then
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let result = (((7><0) (ACC << 1):word8):word8) + C

in

(F,T,PC-1w,data,result,PC, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w, (* C *) b2w(word_msb ACC)

)

else if IR = RORC_IMP then

let result = ((8><1)

((word_ror ((ACC @@ (((0><0) C):word1)):word9) 1):word9)):word8

in

(F,T,PC-1w,data,result,PC, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w, (* C *) b2w(word_lsb ACC)

)

else if IR = INCA_IMP then

let result = ACC+1w

in

(F,T,PC-1w,data,result,PC, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w,(* C *) C

)

else if IR = DECA_IMP then

let result = ACC-1w

in

(F,T,PC-1w,data,result,PC, IR, FETCH, SP, TMP,

(* OV *) OV, (* N *) word_msb(result),

(* Z *) result = 0w, (* C *) C

)

else

(F,T,PC,data,data,PC+1w, IR, FETCH, SP, TMP,

(* OVNZC *) OV,N,Z,C

)

‘;

(*----------------------------------------------------------------------------*)

(* testJUMP *)

(* Takes the instruction code and the status registers and check if a jump *)

(* has to be executed. *)

(*----------------------------------------------------------------------------*)

val (testJUMP_def,_,testJUMP_dev0,testJUMP_comb,_) = hwDefine2

‘testJUMP (INS:word8,OV:bool,N:bool,Z:bool,C:word8) =

((INS=JC_ABS) /\ (C=1w)) \/ ((INS=JNC_ABS) /\ (C=0w)) \/

((INS=JN_ABS) /\ N) \/ ((INS=JNN_ABS) /\ ~N) \/

((INS=JO_ABS) /\ OV) \/ ((INS=JNO_ABS) /\ ~OV) \/

((INS=JZ_ABS) /\ Z) \/ ((INS=JNZ_ABS) /\ ~Z) \/

(INS=JMP_ABS)‘;

(*----------------------------------------------------------------------------*)

(* implied_addr *)

(* Tests if an instruction uses implied addressing mode. *)

(*----------------------------------------------------------------------------*)

val (implied_addr_def,_,implied_addr_dev0,implied_addr_comb,_) = hwDefine2

‘implied_addr(INS) =

(INS=INCA_IMP) \/ (INS=DECA_IMP) \/ (INS=SHL_IMP) \/ (INS=SHR_IMP) \/

(INS=ROLC_IMP) \/ (INS=RORC_IMP)‘;
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(*----------------------------------------------------------------------------*)

(* DIY Calculator *)

(* *)

(* The input: *)

(* *)

(* reset :bool (active low) *)

(* data :word8 (from memory) *)

(* regs :word8 # word16 # word8 # word4 # word16 # word32 *)

(* # bool # bool # bool # word8 *)

(* *)

(* The output: *)

(* *)

(* read :bool (active low) *)

(* write :bool (active low) *)

(* addr :word16 (address) *)

(* data :word8 (to memory) *)

(* regs :word8 # word16 # word8 # word4 # word16 # word32 *)

(* # bool # bool # bool # word8 *)

(* *)

(* The registers (regs): *)

(* *)

(* ACC :word8 (accumulator) *)

(* PC :word16 (program counter) *)

(* IR :word8 (instruction register) *)

(* step :word4 (state) *)

(* SP :word16 (stack pointer) *)

(* TMP :word32 (temporary register) *)

(* OV :bool (overflow flag) *)

(* N :bool (negative flag) *)

(* Z :bool (zero flag) *)

(* C :word8 (carry flag) *)

(*----------------------------------------------------------------------------*)

val (diy_def,_,diy_dev0,diy_comb,_) = hwDefine2

‘diy (reset:bool,data:word8,ACC:word8,PC:word16,

IR:word8, step:word4,

SPTMPOVNZC: word16 # word32 # bool # bool # bool # word8)

= if (~reset) then (* C.11-C.12 *)

(F,T,0w:word16,data,ACC,1w:word16,0w:word8,0w:word4,SPTMPOVNZC)

else if step = FETCH then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in

if (~(isJUMP(data)) \/ testJUMP(data,OVNZC)) then

(* The instruction code is stored in IR.

Request the LS byte of the operand’s addr

*)

(

(* read *) F,

(* write *) T,

(* addr *) PC,

(* data *) data,

(* ACC *) ACC,

(* PC *) PC+1w,

(* IR *) data,

(* step *) if implied_addr(data) then RUN else LD_LSB,
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(* remaining *) SPTMPOVNZC

)

else (* Jump which failed the test: skip the operands *)

(

(* read *) F,

(* write *) T,

(* addr *) PC+2w,

(* data *) data,

(* ACC *) ACC,

(* PC *) PC+3w,

(* IR *) data,

(* step *) FETCH,

(* SP *) SPTMPOVNZC

)

else if step = LD_LSB then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in

(* The LS byte of the operand’s addr is stored in TMP

Request the MS byte of the operand’s addr

*)

(

(* read *) F,

(* write *) T,

(* addr *) PC,

(* data *) data,

(* ACC *) ACC,

(* PC *) PC+1w,

(* IR *) IR,

(* step *) LD_MSB,

(* SP *) SP,

(* TMP *) (0w:word24) @@ data,

(* remaining *) OVNZC

)

else if step = LD_MSB then

let (SP:word16,TMP:word32,OVNZC) = SPTMPOVNZC

in

(* The MS+LS is placed at the addr bus in order to read

the operand.

*)

(

(* read *) IR=STA_ABS, (* If IR=STORE, disable read *)

(* write *) ~(IR = STA_ABS),(* If IR=STORE, enable write *)

(* addr *) (data @@ ((7 >< 0) TMP):word8):word16,

(* data *) ACC, (* If IR=STORE data=ACC else don’t care *)

(* ACC *) ACC,

(* PC *) if isJUMP(IR) then ((data @@ ((7><0) TMP):word8)+1w) else PC,

(* IR *) IR,

(* step *) if isJUMP(IR) then FETCH else RUN,

(* SP *) SP,

(* TMP *) TMP,

(* OVNZC *) OVNZC

)

else alu(data,ACC,PC,IR,step,SPTMPOVNZC)

‘;
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A.2 The Microcomputer Design

(*----------------------------------------------------------------------------*)

(* Instructions *)

(*----------------------------------------------------------------------------*)

val STA_ABS_def = Define ‘STA_ABS = 153w:word8‘;

val LDA_ABS_def = Define ‘LDA_ABS = 145w:word8‘;

val LDA_IMM_def = Define ‘LDA_IMM = 144w:word8‘;

val JNO_ABS_def = Define ‘JNO_ABS = 238w:word8‘; (* not overflow *)

val JO_ABS_def = Define ‘JO_ABS = 233w:word8‘; (* overflow *)

val JNC_ABS_def = Define ‘JNC_ABS = 230w:word8‘; (* not carry *)

val JC_ABS_def = Define ‘JC_ABS = 225w:word8‘; (* if carry *)

val JNN_ABS_def = Define ‘JNN_ABS = 222w:word8‘; (* not negative *)

val JN_ABS_def = Define ‘JN_ABS = 217w:word8‘; (* negative *)

val JNZ_ABS_def = Define ‘JNZ_ABS = 214w:word8‘; (* not zero *)

val JZ_ABS_def = Define ‘JZ_ABS = 209w:word8‘; (* zero *)

val JSR_ABS_def = Define ‘JSR_ABS = 201w:word8‘; (* subroutine *)

val JMP_ABS_def = Define ‘JMP_ABS = 193w:word8‘; (* unconditional *)

val ADD_ABS_def = Define ‘ADD_ABS = 17w:word8‘;

val ADDC_ABS_def = Define ‘ADDC_ABS = 25w:word8‘;

val SUB_ABS_def = Define ‘SUB_ABS = 33w:word8‘;

val SUBC_ABS_def = Define ‘SUBC_ABS = 41w:word8‘;

val AND_ABS_def = Define ‘AND_ABS = 49w:word8‘;

val OR_ABS_def = Define ‘OR_ABS = 57w:word8‘;

val XOR_ABS_def = Define ‘XOR_ABS = 65w:word8‘;

val CMPA_ABS_def = Define ‘CMPA_ABS = 97w:word8‘;

val SHL_IMP_def = Define ‘SHL_IMP = 112w:word8‘;

val SHR_IMP_def = Define ‘SHR_IMP = 113w:word8‘;

val ROLC_IMP_def = Define ‘ROLC_IMP = 120w:word8‘;

val RORC_IMP_def = Define ‘RORC_IMP = 121w:word8‘;

val INCA_IMP_def = Define ‘INCA_IMP = 128w:word8‘;

val DECA_IMP_def = Define ‘DECA_IMP = 129w:word8‘;

val instructions =

[LDA_IMM_def, LDA_ABS_def, STA_ABS_def, JC_ABS_def, JMP_ABS_def,

JN_ABS_def, JNC_ABS_def, JNN_ABS_def, JNO_ABS_def, JNZ_ABS_def,

JO_ABS_def, JSR_ABS_def, JZ_ABS_def, ADD_ABS_def, ADDC_ABS_def,

SUB_ABS_def, SUBC_ABS_def, AND_ABS_def, OR_ABS_def, XOR_ABS_def,

CMPA_ABS_def, SHL_IMP_def, SHR_IMP_def, ROLC_IMP_def, RORC_IMP_def,

INCA_IMP_def, DECA_IMP_def];

(*----------------------------------------------------------------------------*)

(* Constants *)

(* End of program is the highest address in memory available. *)

(* We have no space for a big memory, so if a program reaches address 12, *)

(* then it means it is finished. This constant is used as a termination *)

(* condition *)

(*----------------------------------------------------------------------------*)

val end_of_program_def = Define ‘end_of_program = (12w:word16)‘;

val constants = end_of_program_def :: instructions;

(*----------------------------------------------------------------------------*)

(* b2w *)

(* Converts a Boolean into an 8-bit word *)

(*----------------------------------------------------------------------------*)
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val (b2w_def,_,b2w_dev0,b2w_comb,_)= hwDefine2

‘b2w(b) = if b then (1w:word8) else (0w:word8)‘;

(*----------------------------------------------------------------------------*)

(* abs *)

(* 8-bit numbers ranging from 128 to 255 (interpreted as unsigned) correspond *)

(* to the negative values from -128 to -1. This function converts numbers *)

(* from 128 to 255 into its absolute value in the signed system. *)

(* Example. abs(255) = 1 (unsigned 8-bit numbers whose value is 255 is *)

(* interpreted as -1 in the signed system. *)

(*----------------------------------------------------------------------------*)

val (abs_def,_,abs_dev0,abs_comb,_) = hwDefine2

‘abs(n:num) = (255-n)+1‘;

(*----------------------------------------------------------------------------*)

(* add_ov *)

(* Takes two signed 8-bit numbers and checks if their addition generates *)

(* overflow. *)

(*----------------------------------------------------------------------------*)

val (add_ov_def,_,add_ov_dev0,add_ov_comb,_) = hwDefine2

‘add_ov (a:word8,b:word8)

= (word_msb(a) /\ word_msb(b) /\ (abs(w2n a)+abs(w2n b) > 128)) \/

((a <+ 128w) /\ (b <+ 128w) /\ (w2n(a)+w2n(b) > 127))‘;

(*----------------------------------------------------------------------------*)

(* sub_ov *)

(* Takes two signed 8-bit numbers and checks if their subtractoin generates *)

(* overflow. *)

(*----------------------------------------------------------------------------*)

val (sub_ov_def,_,sub_ov_dev0,sub_ov_comb,_) = hwDefine2

‘sub_ov (a:word8,b:word8)

= (word_msb(a) /\ (b <+ 128w) /\ (abs(w2n a)+(w2n b) > 128)) \/

((a < 128w) /\ word_msb(b) /\ ((w2n a)+abs(w2n(b)) > 127))‘;

(*----------------------------------------------------------------------------*)

(* write *)

(* Takes a memory, address and value as input and returns a new memory after *)

(* writing the value in the received address *)

(* This function writes from address 3 to 12 only due to lack of memory for *)

(* compiling the longer IFs *)

(*----------------------------------------------------------------------------*)

val (write_def,_,write_dev0,write_comb,_) = hwDefine2

‘write(mem:word104,addr:word16,data:word8):word104 =

if addr=3w then

((((103 >< (8+(3*8))) mem):word72 @@

data):word80) @@

((((3*8)-1) >< 0) mem): word24

else if addr=4w then

((((103 >< (8+(4*8))) mem):word64 @@

data):word72) @@

((((4*8)-1) >< 0) mem): word32

else if addr=5w then

((((103 >< (8+(5*8))) mem):word56 @@

data):word64) @@

((((5*8)-1) >< 0) mem): word40
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else if addr=6w then

((((103 >< (8+(6*8))) mem):word48 @@

data):word56) @@

((((6*8)-1) >< 0) mem): word48

else if addr=7w then

((((103 >< (8+(7*8))) mem):word40 @@

data):word48) @@

((((7*8)-1) >< 0) mem): word56

else if addr=8w then

((((103 >< (8+(8*8))) mem):word32 @@

data):word40) @@

((((8*8)-1) >< 0) mem): word64

else if addr=9w then

((((103 >< (8+(9*8))) mem):word24 @@

data):word32) @@

((((9*8)-1) >< 0) mem): word72

else if addr=10w then

((((103 >< (8+(10*8))) mem):word16 @@

data):word24) @@

((((10*8)-1) >< 0) mem):word80

else if addr=11w then

((((103 >< (8+(11*8))) mem):word8 @@

data):word16) @@

((((11*8)-1) >< 0) mem):word88

else if addr=12w then

data @@

((((12*8)-1) >< 0) mem):word96

else mem‘;

(*----------------------------------------------------------------------------*)

(* read *)

(* This function takes a memory and an address and returns the value stored *)

(* in that addres. *)

(*----------------------------------------------------------------------------*)

val (read_def,_,read_dev0,read_comb,_) = hwDefine2

‘read(mem:word104,addr:word16) =

((UNCURRY word_extract) (7+(w2n addr)*8,(w2n addr)*8) mem):word8‘;

(*----------------------------------------------------------------------------*)

(* testJUMP *)

(* Takes the instruction code and the status registers and check if a jump *)

(* has to be executed. *)

(*----------------------------------------------------------------------------*)

val (testJUMP_def,_,testJUMP_dev0,testJUMP_comb,_) = hwDefine2

‘testJUMP (INS:word8,OV:bool,N:bool,Z:bool,C:word8) =

((INS=JC_ABS) /\ (C=1w)) \/ ((INS=JNC_ABS) /\ (C=0w)) \/

((INS=JN_ABS) /\ N) \/ ((INS=JNN_ABS) /\ ~N) \/

((INS=JO_ABS) /\ OV) \/ ((INS=JNO_ABS) /\ ~OV) \/

((INS=JZ_ABS) /\ Z) \/ ((INS=JNZ_ABS) /\ ~Z) \/

(INS=JMP_ABS)‘;

(*----------------------------------------------------------------------------*)

(* alu *)

(* The system state is characterised by the tuple (memory,ACC,PC,OVNZC). *)

(* This function takes the instruction register, a data (operand), *)

(* the accumulator, the program counter and the status register (OVNZC) and *)
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(* returns the new value of part of the state (ACC,PC,ONVZC) *)

(*----------------------------------------------------------------------------*)

val (alu_def,_,alu_dev0,alu_comb,_) = hwDefine2

‘alu (IR:word8,data:word8,

ACC:word8,PC:word16,OV: bool,N:bool,Z:bool,C:word8) =

if IR = LDA_ABS then

(data,PC+3w,OV,word_msb(data),data=0w,C)

else if IR = ADD_ABS then

let res = ACC+data

in

(res,PC+3w,add_ov(ACC,data),word_msb(res),res=0w (* Z *),

b2w(w2n(ACC) > (255-w2n(data))) (* C *))

else if IR = ADDC_ABS then

let res = ACC+data+C

in

(res,PC+3w,add_ov(ACC,data+C),word_msb(res),res=0w (* Z *),

b2w(w2n(ACC) > (255-(w2n(data)+w2n(C)))) (* C *))

else if IR = SUB_ABS then

let res = ACC-data

in

(res,PC+3w,sub_ov(ACC,data),word_msb(res),res=0w (* Z *),

b2w(data >+ ACC) (* C *))

else if IR = SUBC_ABS then

let res = ACC-(data+C)

in

(res,PC+3w,sub_ov(ACC,data+C),word_msb(res),

res=0w (* Z *),

b2w((w2n(data)+w2n(C)) > w2n(ACC)) (* C *))

else if IR = AND_ABS then

let res = word_and ACC data

in

(res,PC+3w,OV,word_msb(res),res=0w (* Z *),C)

else if IR = OR_ABS then

let res = word_or ACC data

in

(res,PC+3w,OV,word_msb(res),res=0w (* Z *),C)

else if IR = XOR_ABS then

let res = word_xor ACC data

in

(res,PC+3w,OV,word_msb(res),res=0w (* Z *),C)

else if IR = CMPA_ABS then

(ACC,PC+3w,OV,N,ACC=data (* Z *),b2w(ACC >+ data))

else (ACC,PC+3w,OV,N,Z,C)‘;

(*----------------------------------------------------------------------------*)
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(* next_state *)

(* The system state is characterised by the tuple (memory,ACC,PC,OVNZC). *)

(* This function takes a state and returns the new state after executing one *)

(* instruction. *)

(*----------------------------------------------------------------------------*)

val (next_state_def,_,next_state_dev0,next_state_comb,_) = hwDefine2

‘next_state (mem:word104,

ACC:word8,PC:word16,OVNZC:bool # bool # bool # word8)

= let (IR,op2,op1) = (read(mem,PC),read(mem,PC+2w),read(mem,PC+1w)) in

let addr = op2 @@ op1

in if IR = STA_ABS then

let data = write(mem,addr,ACC) in

(data,ACC,PC+3w,OVNZC)

else if IR = LDA_IMM then

let (OV,N,Z,C) = OVNZC in

(mem,op1,PC+2w,OV,word_msb(op1),op1=0w,C)

else if testJUMP(IR,OVNZC) then

(mem,ACC,addr,OVNZC)

else (mem, alu(IR,read(mem,addr),ACC,PC,OVNZC))‘;

(*----------------------------------------------------------------------------*)

(* run *)

(* This function takes a step counter and a state (memory,ACC,PC,OVNZC) and *)

(* runs the program in memory until it reaches the end_of_program address. *)

(* As every function must terminate, we have to prevent this program from *)

(* executing an infinite loop. So, we run the DIY a finite number of times. *)

(* It finishes after running n steps or after reaching end_of_program address.*)

(*----------------------------------------------------------------------------*)

val (run_def,_,run_dev0,run_comb,run_tot) = hwDefine2

‘(run(step:word32, (mem:word104,ACC:word8,PC:word16,

OVNZC:bool # bool # bool # word8))

=

(if (step = 0w) \/ (PC = end_of_program) then mem

else run(step-1w,next_state(mem,ACC,PC,OVNZC))))

measuring (w2n o FST)‘;

(*----------------------------------------------------------------------------*)

(* diy *)

(* Takes a memory and runs the program it contains. If the program does not *)

(* terminate in 2,000,000 steps (instructions executed) it returns the *)

(* partial results computed up to that point. *)

(*----------------------------------------------------------------------------*)

val (diy_def,_,diy_dev0,diy_comb,_) = hwDefine2

‘diy(mem:word104) = run(2000000w,(mem,0w,0w,F,F,F,0w))‘;



Bibliography

[1] Andrew Appel and Trevor Jim. Continuation-passing, closure-passing style. In Pro-
ceedings of the ACM Conference on Principles of Programming Languages, pages
293–302, 1989.

[2] John Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM, 21(8):613–
641, August 1978.

[3] Christoph Berg, Christian Jacobi, and Daniel Kroening. Formal verification of a basic
circuits library. Proceedings of the International Conference on Applied Informatics,
Innsbruck (AI 2001), pages 252–255, 2001.

[4] Sven Beyer, Christian Jacobi, Daniel Kroening, and Dirk Leinenbach. Correct hard-
ware by synthesis from PVS.
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf, 2002.

[5] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design
in Haskell. ACM SIGPLAN Notices, 34(1):174–184, January 1999.

[6] Paul E. Black. Is ”implementation implies specification” enough? 12th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’99), Nice, France,
1999.

[7] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C com-
piler front-end. In FM 2006: Formal Methods, volume 4085 of Lecture Notes in
Computer Science, pages 460–475. Springer-Verlag, 2006.
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