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April 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2007 Piotr Zieliński
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Abstract

Sending large messages known to the recipient is a waste of bandwidth. Never-

theless, many fault-tolerant agreement protocols send the same large message be-

tween each pair of participating processes. This practical problem has recently been

addressed in the context of Atomic Broadcast by presenting a specialized algorithm.

This paper proposes a more general solution by providing virtual indirect chan-

nels that physically transmit message ids instead of full messages if possible. Indirect

channels are transparent to the application; they can be used with any distributed

algorithm, even with unreliable channels or malicious participants. At the same

time, they provide rigorous theoretical properties.

Indirect channels are conservative: they do not allow manipulating message ids

if full messages are not known. This paper also investigates the consequences of

relaxing this assumption on the latency and correctness of Consensus and Atomic

Broadcast implementations: new algorithms and lower bounds are shown.

1 Introduction

Sending large network messages that are known to the receiver is a waste of bandwidth.
Nevertheless, many fault-tolerant distributed protocols suffer from this problem. For
example, in Consensus and Atomic Broadcast algorithms commonly perform an all-to-all
message exchanges. Such an exchange involves O(n2) messages, and results in each of the
n processes receiving the same message O(n) times. The network bandwidth usage could
be significantly reduced if large messages were sent only to processes that do not know
them already.

This problem has been known for a long time, and many real-world protocols have
taken steps to mitigate it. For example, in the Network News Transfer Protocol [11], a
client can advertise the possession of a given article m with the IHAVE command. The
server can then ask the client to send m or not; this avoids unnecessary communication
if the server knows m already. Another example is rsync, a popular file synchronization
program [1]. Before synchronizing, both end-points compute and compare hashes of parts
of the file, so as to avoid transmitting parts already known to the other party. Both NNTP
and rsync reduce bandwidth usage at the expense of latency: if the recipient does not
know the message, three communication steps are needed instead of one (“do you have
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m?”, “no”, “here is m”). Since in point-to-point protocols, one cannot generally predict
whether the recipient knows the message or not, this increase in latency is impossible to
avoid.

The situation is different in group-oriented protocols, such as Atomic Broadcast, which
are multi-step by nature. This means that at the beginning of the second step each pro-
cess can reasonably believe that all the others have received the original broadcast as well
(Figure 2). From that point on, bandwidth can be saved by sending message identifiers
instead of full messages [12, 24]. Despite its apparent simplicity, this technique is sur-
prisingly difficult to implement correctly. Great care must be taken to avoid delivering
orphaned message ids, for which no correct process knows the corresponding full mes-
sage [10]. The first such an implementation has been recently proposed by Ekwall and
Schiper [10] for Atomic Broadcast.

One can imagine that a similarly careful analysis can be carried out for other dis-
tributed protocols such as Generic Broadcast, Atomic Multicast, or just other implemen-
tations of Atomic Broadcast [8]. However, the method in [10] suggests that the amount
of work involved is similar to actually designing a new protocol from scratch. It would
be easier if one could take any existing protocol and perform such a transformation au-
tomatically.

This paper proposes a solution. Instead of solving the problem on the protocol level, it
provides a new lightweight abstraction: indirect channels. In brief, if the channel believes
the receiver already knows the transmitted message, it sends a short message identifier
instead. If this belief turns to be wrong, the receiver requests the full message from the
sender. As in [10], care must be taken to avoid orphaned message identifiers.

Indirect channels differ from the NNTP/rsync synchronization method in that the
decision whether to send the full message or only the id is taken locally by the sender,
without consulting the recipient. This optimistic approach saves latency if the guess is
right (typical), at the expense of a higher latency in anomalous runs.

Indirect channels aim at bridging the gap between theory and practice. On the one
hand, they provide precise reliability guarantees required by theoretical abstractions. On
the other hand, their implementation gives room to system-specific tuning, which can
affects only the performance but not correctness. Cache-like memory management is a
good example: all possibly large data can be discarded at any time without breaking
the algorithm, with the performance degradation being the only penalty for an unlucky
removal.

Standard Atomic Broadcast [6] run over indirect channels exhibits a latency similar
to that of the algorithm in [10]. The advantage of indirect channels lies in the fact
that they can be used with any distributed protocol without modifications, even with
those tolerating malicious participants. Depending on the underlying channels, indirect
channels can provide several levels of reliability guarantees. All in all, indirect channels
allow an algorithm designer to separate the large-messages issue from the main problem.

By design, indirect channels conservatively avoid orphaned ids altogether. Is it possible
to improve the latency even further by tolerating orphaned ids in a controlled way? Atomic
Broadcast with Indirect Consensus [10] can tolerate orphaned ids in the first two steps.
This approach, however, is algorithm-specific and may require more processes for the
same fault resilience. I show a general method of achieving a limited orphan-tolerance
with any Atomic Broadcast without decreasing its resilience. This is done by separating
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the agreement on id ordering from that on id-to-message mappings, and running them
in parallel. Interestingly, no such improvement is possible with Consensus; this paper
presents lower bounds on the maximum latency improvement resulting from treating
small and large messages differently.

This paper is structured in the following way. Section 2 introduces indirect channels
and presents an implementation that handles crash-failures and reliable communication.
Section 2.2 extends the algorithm for unreliable communication and Byzantine failures.
Section 2.3 presents an experimental evaluation. Section 3 investigates further improve-
ments in latency of Consensus and Atomic Broadcast as a result of limited tolerance of
orphaned ids.

2 Indirect channels

I assume that the system consists of n processes p1, . . . , pn, which can fail only by crashing,
and use asynchronous reliable channels for communication: all messages between correct
processes eventually get delivered. Section 2.2 will relax these assumptions and consider
eventually reliable channels and Byzantine (malicious) participants.

2.1 Implementation of indirect channels

The objective of this section is to implement channels that save the network bandwidth
by physically transmitting a message only if the recipient does not known it. If the
sender believes that the recipient knows the message, it sends the message id instead.
In rare cases when this belief turns out to be wrong, the sender retransmits the full
message upon a request from the recipient. To be able to fulfil that request, the sender
must store its messages until the recipient acknowledges a successful reception or asks
for retransmission. In the meanwhile, if the cache management demands removing this
information from memory, the message must be preemptively sent to the recipient in full.

Figure 1 shows an implementation of the algorithm sketched above, which provides a
reliable indirect channel using a reliable underlying channel. For clarity, I use “ind-send”
and “ind-receive” for the indirect channel being implemented, and “send” and “receive”
for the underlying physical channel.

I assume each message m = (s, x) consists of a collection of small fields s, and a large
object x, whose transmitting is to be avoided if possible. In order to achieve this, each
such object x will be assigned an identifier idx the first time it is transmitted. Subsequent
transmissions will use idx instead of x.

Each process pi maintains two sequence numbers: idmi and idxi, both initially 0.
Number idmi is the next free identifier idm assigned to the whole message m = (s, x).
Number idxi is the next free idx to be assigned to a large object x. Several messages
m containing the same object x get different idm’s but the same idx. Identifiers idm are
unique locally to the issuing process, idx’s are unique globally.

Each process also maintains the set mappingsi of all known mappings (idx, x) from
object ids idx to actual objects x. For global uniqueness, each idx is of the form (pi, idxi),
where pi is the process that created the mapping (idx, x), called the originator of x, and
idxi is the object sequence number assigned by pi to x.
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1 idmi ← 0; idxi ← 0; mappingsi ← ∅; messagesi ← ∅

2 when pi ind-sends “m = (s, x)” to {q1, . . . , qk} do
3 idm ← idmi; increment idmi

4 if (idx, x) /∈ mappingsi for any idx then
5 idx ← (pi, idxi); increment idxi

6 insert (idx, x) into mappingsi

7 broadcast 〈map idx, x〉
8 send 〈short idm, s, idx〉 to {q1, . . . , qk}
9 for all p ∈ {q1, . . . , qk} do
10 insert (idm, s, idx, p) into messagesi

11 when pi removes (idm, s, idx, p) from messagesi do
12 let x be such that (idx, x) ∈ mappingsi

13 send 〈full idm, s, x〉 to p

14 when pi removes (idx, x) from mappingsi do
15 remove all (∗, ∗, idx, ∗) from messagesi {11–13}

16 when pi receives 〈ack idm〉 or 〈nack idm〉 from p do
17 remove all (idm, ∗, ∗, p) from messagesi

18 if 〈ack idm〉 then without triggering lines 11–13

19 when pi receives 〈map idx, x〉 do
20 insert (idx, x) into mappingsi

21 when pi receives 〈short idm, s, idx〉 from p do
22 wait until (idx, x) ∈ mappingsi for some x
23 or timeout elapsed
24 if (idx, x) ∈ mappingsi then
25 ind-receive “m = (s, x)”
26 send 〈ack idm〉 to p {at the first opportunity}
27 else
28 send 〈nack idm〉 to p

29 when pi receives 〈full idm, s, x〉 do
30 ind-receive “m = (s, x)”

Figure 1: Indirect channels
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Figure 2: A round of MR Consensus [18]

When a process pi wants to ind-send a message m = (s, x) to a set of processes
q1, . . . , qk, it first generates a new locally unique idm for m. Then, it checks whether
mappingsi contains (idx, x) for some idx. If not, pi generates a new globally unique
idx = (pi, idxi), adds the new mapping (idx, x) to mappingsi, and broadcasts it to other
processes. By doing so, pi becomes the originator of x. When a process pj receives this
mapping, it adds (idx, x) to mappingsj (lines 19–20).

After ensuring that mappingsi contains (idx, x), process pi sends 〈short idm, s, idx〉
to processes q1, . . . , qk. It also adds (idm, s, idx, p) to the set messagesi for all recipients
p ∈ {q1, . . . , qk}.

Both sets messagesi and mappingsi are caches: due to their potentially large size,
individual entries can be removed at any time by the cache management system. Set
messagesi consists of entries (idm, s, idx, p) stating that pi has not received any acknowl-
edgement from p for 〈short idm, s, idx〉 sent to it in line 8. To avoid message loss,
removing such an entry requires pi to send the full message to p (lines 11–13). When
a mapping (idx, x) is removed from mappingsi, all entries in messagesi containing idx

are removed as well, and the corresponding unacknowledged messages are sent in full
(line 13).

When a process pi receives 〈short idm, s, idx〉 (line 21), it waits until it knows the
mapping (idx, x), at which point it delivers m = (s, x) and sends 〈ack idm〉 to the sender.
If this does not happen within the timeout period, it sends 〈nack idm〉 instead. When the
sender receives one of those acknowledgement (lines 16–18), it removes the corresponding
entry from messagesi, if it has not been removed by the cache before. If the acknowl-
edgement is 〈nack idm〉, this removal triggers lines 11–13, which send the corresponding
full message to the recipient. Each such message is delivered directly to the application
(lines 29–30).

Behaviour in typical runs. Figure 2 shows an execution of the Mostefaoui-Raynal
(MR) Consensus algorithm [18] in a typical run. In the first step, the coordinator p1

broadcasts m = (s, x), where x is its proposal and s is some short bookkeeping informa-
tion. In the second step, each process pi broadcasts mi = (si, x) where si is short. With
normal channels, the potentially large proposal x is sent O(n2) times.

With indirect channels, p1 first broadcast 〈map idx, x〉 and 〈short idm, s, idx〉 to all
processes (lines 7 and 8). Each process pi adds (idx, x) to its mappingsi (lines 19–20).
In the second step, when pi broadcasts mi = (si, x), it notices (idx, x) ∈ mappingsi

(line 4), so it broadcasts only 〈short idmi
, si, idx〉. The recipients will all eventually

receive 〈map idx, x〉 from p1, reconstruct x, and deliver mi = (si, x). Messages 〈ack idmi
〉

will let pi know that all processes successfully reconstructed x. Process pi will remove the
corresponding entries from messagesi, which will prevent broadcasting 〈full idmi

, si, x〉
in the future (line 13).
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As a result, in typical runs of Consensus, the full proposal x is broadcast only once.
Note that, since each process must receive x somehow, this is the best one can achieve.
This property of indirect channels, independent of the algorithm running on top, can be
formalized as follows.

Theorem 2.1 (One-reception, see A.4). If all message delays between correct pro-
cesses are shorter than 1

2
timeout, and the caches never forget information, then each

correct process physically receives any large object x, originated at a correct process, at
most once.

For performance reasons, 〈map idx, x〉 and 〈short idm, s, idx〉 in lines 7 and 8 are sent
in a single message broadcast to all processes. If {q1, . . . , qk} $ {p1, . . . , pn}, processes
pj /∈ {q1, . . . , qk} just ignore 〈short〉. Since 〈map idx, x〉 is a large message, piggybacking
〈short idm, s, idx〉 is cheap.

Behaviour in anomalous runs. In runs with message with delays longer than 1

2
timeout

or caches forgetting their entries too quickly, indirect channels no longer guarantee one-
reception and can send the same object multiple times. In the worst case, when entries
are removed from messagesi and mappingsi almost immediately, each message m = (s, x)
will be transmitted in full in line 13. This is in addition to messages sent in lines 7 and 8,
so both latency and bandwidth usage is higher in comparison to just using the underlying
channels. Nevertheless, reliability of indirect channels is guaranteed in any run:

Theorem 2.2 (Reliability, see A.2). If the underlying channel is reliable, then each
message ind-sent by a correct process to another correct process will eventually be ind-
received.

Duplicate messages. If caches forget entries too quickly, indirect channels can deliver
the same message twice: first in line 25 after reconstructing it from 〈short〉 and later
in line 29 after receiving 〈full〉 sent in line 13. In theory, such duplicates can be easily
avoided by processes remembering idm’s of received messages. Nevertheless, I believe
that duplicate-suppression is usually better done at the application level, for the following
reasons.

Remembering received ids requires memory that, in the worst case, grows linearly with
the number of received messages. Methods of dealing with this problem are application-
specific and include imposing a near-FIFO order by using a sliding window as in TCP [23],
employing Bloom filters [5], common in anonymity systems [13], and others. Algorithms
that proceed in rounds or epochs will usually discard all messages from the previous
ones, so storing duplicate-information can be limited to current round. Most Consensus
and Atomic Broadcast algorithms are not affected by duplicates so this problem can be
ignored. Finally, Section 2.2 will show that duplicates can be eliminated altogether when
one is willing to accept some message loss.

Delaying acknowledgements. Sending an 〈ack〉 immediately after receiving every
message might be expensive. To mitigate this problem, a process can buffer 〈ack〉s and
piggyback them on other messages; most agreement protocols reply to received messages
(almost) immediately (Figure 2). In general, the 〈ack〉 buffering delay should be small

8



enough to avoid spontaneous cache entry removal at the sender (lines 11–13) and resending
the message in full. The more frequently messages are sent, the sooner the cache entries
get removed, and the shorter the acceptable 〈ack〉 delay is. At the same time, high
message frequency means a short waiting time for the opportunity for piggybacking an
〈ack〉.

Consider a very simple model of this situation. Let d be the message delay, and f the
frequency of each process broadcasting messages. With immediate 〈ack〉s, each process’s
cache needs to be able to store each object for 2d time, which means storing 2df objects
at any given time. When 〈ack〉s are piggybacked on the next broadcast message (1/f
wait on average), the storage requirement grows from 2df to (2d + 1/f) · f = 2df + 1.
This means that using delayed 〈ack〉s requires the cache to be able to store only 1 more
object on average. This additional amount of required space (1 object) is constant and
independent on message delay or frequency.

Cache issues. As opposed to [10], where all mappings are kept forever, entries in
mappingsi and messagesi in the algorithm in Figure 1 can be removed at any time.
The strategy for entry removal is beyond the scope of this paper; the possibilities include
general strategies such as LRU or LFU [22] and application-specific techniques from dis-
tributed garbage collection [2]. If the sender removes an entry from mappingsi too early,
it might need to send more messages in lines 7 and 13. If the receiver removes a mapping
too early, it may have to send 〈nack〉s, which will also increase the latency and force
the sender to broadcast full objects in lines 16–18. Removing mapping entries too late
increases memory requirements for the cache.

To sum up, using a cache increases the complexity of the algorithm, however, it makes
it more practical for real systems with limited memory. Most importantly, the flexibility
of the cache removal strategy allows for free system-specific tuning without the fear of
breaking the algorithm.

2.2 System extensions

So far I have assumed the crash-stop failure model and reliable channels. This section will
relax those assumptions and present variants of the algorithm from Figure 1 for Byzantine
settings and eventually reliable channels. Interestingly, operating with the latter model
results in a significant simplification of the indirect channel implementation.

Eventually reliable channels. The algorithm in Figure 1 implements reliable chan-
nels, provided that the underlying channels are reliable as well. However, typical network
connections are lossy, and implementing reliable channels on top of unreliable ones requires
the sender to store all messages whose reception has not been confirmed. As opposed to
the entries of mappingsi and messagesi in the indirect channel algorithm, this informa-
tion cannot be freely discarded. As a result, a faulty recipient can always force the sender
to use an unbounded amount of memory [3].

Fortunately, many distributed algorithms [8, 17] require channels that are only even-
tually reliable: the channels can be lossy until in a certain (unknown) time, after which
they are permanently reliable. In practice, this period permanent reliability need not
be infinite, but just long enough for the algorithm to do some useful work (in the order
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of several message delays) [15]. Therefore, it can be assumed that standard lossy net-
works satisfy this definition; in the worst case, the algorithm will stall until the network
is reliable for a sufficiently long period of time.

Can the algorithm in Figure 1 be used with eventually reliable channels? Yes, Corol-
lary A.3 shows that in if the underlying channels are eventually reliable, then the indirect
channels are eventually reliable as well. Moreover, significant simplifications can be made,
if all entries in mappingsi are kept for at least twice a message delay plus timeout after
last access. In this case, messages 〈ack〉 and 〈nack〉 will always remove elements from
messagesi (lines 16–18) before the cache has a chance to by executing lines 14–15. We can
therefore assume that then lines 11–13 need to be executed only as a result of receiving
a 〈nack〉 in line 15. With this observation, one can remove the set messagesi entirely
along with the code that references it (lines 9–15). This will require changing lines 16–18
to

15 on receive 〈nack idm, s, idx〉 from p do
16 if (idx, x) ∈ mappingsi for some x then
17 send 〈full idm, s, x〉 to p

A failure of the test in line 16 means that the information about x had been removed
from mappingsi: no retransmission is possible and the message m = (s, x) will be lost.

Note that messages 〈nack〉 contain now more information, so line 27 needs to be
changed to

27 send 〈nack idm, s, idx〉

One of the consequences of sending 〈full〉 only in response to an explicit 〈nack〉
(line 17) is that no duplicate messages can be received. Also, since no action is taken
after receiving an 〈ack〉, those messages do not need to be sent at all, and line 25 can be
removed. These two observations eliminate the need for explicit message duplication and
〈ack〉 piggybacking discussed earlier. This considerable simplification of the algorithm
assumes that all entries in mappingsi are kept long enough; if they are not, messages may
get lost.

Byzantine processes and hash identifiers. Since channels are point-to-point ab-
stractions that offer no guarantees if either endpoint is malicious, the algorithm in Fig-
ure 1 handles malicious participants with almost no modifications. The only problem is
posed by processes external to the sender-receiver system, namely the originator pi of an
object, because it can convince two honest processes to map the same idx into different
objects. This problem can be solved by changing the form of idx from (pi, idxi) to H(x),
where H is a secure hash function. When a process receives a mapping (idx, x) in line 19,
it verifies whether idx = H(x), which prevents malicious processes from spreading false
mappings. In fact, the new form of idx eliminates the concept of an explicit originator
from the algorithm entirely.

Hash-based message identifiers idx = H(x) can also be useful in crash-stop settings.
As opposed to idx = (pi, idxi), the same object x sent by different processes gets the same
idx. For example, if all processes propose the same x to a Consensus instance, processes
can reconstruct x from received idx without having to wait for the possible high-latency
message 〈map〉 broadcast in line 7. The downside of hash-based identifiers might be their
size, computational cost, and the probabilistic guarantees they offer.
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Dynamic groups. The broadcast in line 7 assumes a system consisting of a fixed set
of n processes. In more dynamic settings, the mapping 〈map idx, x〉 should be broadcast
only to the intended recipients of x, direct or indirect, as determined by the application.
The originator of x includes this set R of the recipients in idx. Later, when some process
re-sends x to a process p /∈ R, for example if p joined the group just after the originator
created idx, then x is sent directly using 〈full〉. Such situations are atypical and should
not have much impact on the overall performance.

Note on failure detectors. The algorithm in Figure 1 uses timeouts. I believe that
failure detectors [6] are inadequate for implementing indirect channels because (i) they
too powerful but (ii) not powerful enough.

First, classic failure detectors cannot be implemented in Byzantine settings [9]. Second,
failure detectors cannot be used to implement indirect channels over eventually reliable
channels. This is because per-process failure detection offered by failure detectors is not
fine-grained enough to deal with individual messages being lost between correct processes
(Theorem B.2). Failure detectors can therefore only be used with reliable channels.

To implement reliable indirect channels, one cannot use any of the simplifications
described in earlier in this section: the original algorithm in Figure 1 must be used. This
algorithm uses timeouts to ensure that processes do not wait indefinitely for messages
that might never arrive (line 23). The downside of this approach is that if the timeout
is too short, then unnecessary 〈nack〉 and 〈full〉 messages are sent. This decreases
the performance, but crucially, it does not affect the correctness of the algorithm (safety
or liveness). In other words, indirect channels can be implemented correctly in purely
asynchronous settings.

Now, failure detectors are too powerful to be implemented a purely asynchronous
system. This is because they need to satisfy two families of properties: completeness
(eventually all faulty processes suspected) and accuracy (eventually no correct processes
suspected). Typical problems solved with failure detectors, such as Consensus or Atomic
Broadcast, require both properties to achieve correctness. On the other hand, indirect
channels require only a timeout equivalent of completeness, not accuracy. Thus, using
failure detectors is overkill, and would make a wrong impression about the solvability of
the problem itself.

2.3 Applications

Indirect channels can be used to improve throughput and latency of any distributed
algorithm that tend to transmit the same object often, in particular Consensus and Atomic
Broadcast protocols. For the latter case, Ekwall and Schiper [10] designed a specialized
protocol and showed theoretically and experimentally that it improves both latency and
throughput.

Following Ekwall and Schiper [10], I conducted an experimental evaluation of indirect
channels using Neko [24], a Java framework for prototyping and evaluating distributed al-
gorithms. Three Atomic Broadcast protocols were tested, with message payloads ranging
from 100 to 10,000 bytes. Each protocol-payload combination was run for 60 seconds with
three Ethernet-connected computers, one of which was constantly abcasting 50 messages
with the given payload per second. The average latencies are shown in Figure 3.
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Figure 3: Experimental evaluation of three Atomic Broadcast protocols

The first Atomic Broadcast algorithm is the standard Chandra and Toueg (CT) pro-
tocol [6] which embeds the payload in all its messages. The second protocol is also CT,
but run over indirect channels, broadcasting each payload only once. The Neko imple-
mentation of [10] is not publicly available yet, so instead I tested a simplified but unsafe
version of it, essentially CT with Consensus on message ids instead of full messages. The
simplified version cannot be slower than the full algorithm [10], which is sufficient for this
comparison.

Results. For small payload sizes, the latencies of all three protocols were similar. For
the payload size over 5kB, the latency of CT started growing, whether that of the other
two protocols remained relatively constant. This is because CT embeds the large payload
in every message, whereas the other two algorithm broadcast the full payload only once.
As a result, their latencies are dominated by small messages and are not significantly
affected by the payload size.

3 Further improvements in latency

The indirect channel implementation in Figure 1 improves network usage by transmitting
ids instead of full messages. As shown in [10] and here, this technique reduces both
bandwidth usage and latency. Note that no further reduction in bandwidth is possible
because each recipient must receive the full message at least once, and this is what indirect
channels guarantee in typical runs (one-reception property).

The optimality of the resulting latency is not that clear. Indirect channels are con-
servative in that they do not allow the application to manipulate the message id before
the full message is known. Without this assumption, failures in the system could force
the application to decide on an orphaned id without a corresponding message [10]. This
section will investigate whether the latency of Consensus and Atomic Broadcast can be
further improved by processing short and long messages in parallel.

In the standard latency model, in which all messages have the same transmission delay
d, the latency of those two abstractions is fairly well studied. Asynchronous Consensus
requires at least two communication steps (2d) [7, 16] and several algorithm achieve that
bound [6, 18]. Similarly, asynchronous Atomic Broadcast requires three steps (3d) [25],
again with many matching algorithms [6].
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I am not aware of any previous theoretical study of the impact of different size-
dependent message delays on the latency of agreement protocols. This section attempts
to shed some light on the problem by considering the following simple model. Assume
there are only two kinds of messages: small with a transmission delay d and large with a
longer delay of D > d. I will investigate the latency of Consensus and Atomic Broadcast
in this model, by presenting relevant algorithms and lower bounds.

3.1 Consensus

In the Consensus problem, all processes propose and then agree on one of the proposals
[14]. The following conditions should be met: (i) only proposals can become decisions,
(ii) no two processes decide differently, (iii) all correct processes eventually decide.

Even in failure-free runs, Consensus requires two communication steps [7, 16] (Fig-
ure 2). If proposals are “large”, then so are all used messages, and the resulting latency
is 2D. If run over indirect channels, the second step of a Consensus algorithm [6, 18] uses
short ids instead of full messages, thereby reducing the overall latency to d + D. This is
an upper bound.

As for a lower bound, two communication steps are needed in any case, so the latency
cannot be lower than 2d. At the same time, all processes must receive the winning
proposal, which gives us a lower bound of max {2d,D}.

The discrepancy between those bounds (max {2d,D} < d + D) poses a question
whether there is a Consensus algorithm that cleverly manipulates the message ids while
waiting for the full messages, and then immediately decides. The answer is “no”. Theo-
rem B.3 states that in any agreement problem, the decision value must be known, but not
committed, one communication step (d units of time) in advance. Since large messages
are known only after D units of time, the total latency cannot be reduced below D + d.

Indirect Consensus [10] and Consensus over indirect channels achieve the same latency,
however, the latter approach works with any Consensus algorithm, without modifications.
In particular, it tolerates the same number of faulty participants as in the original version.
In comparison, the indirect version of MR Consensus [10] requires less than a third pro-
cesses faulty (n > 3f), despite the original tolerating less than a half (n > 2f) [18]. The
reason for this discrepancy is that, with indirect channels, ids without corresponding full
messages do not count towards the n− f quorum in the second phase of MR, preventing
orphaned ids.

3.2 Atomic Broadcast

In Atomic Broadcast, processes broadcast messages, and then deliver all of them in the
same order [8]. Formally, we require the following properties: (i) if a correct process
broadcast a message m, then all correct processes will eventually deliver m; (ii) if a
process delivers a message m, then all correct processes eventually deliver m; (iii) for any
message m, every process delivers m at most once, and only if m was previously abcast;
and (iv) if some process delivers message m′ after message m, then every process delivers
m′ only after it has delivered m.

Standard Atomic Broadcast protocols require three communication steps, with large
messages used in all three steps (latency 3D). Running such protocols over indirect
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channels limits the large messages to the first step only, thereby reducing the latency to
D + 2d. This is an upper bound.

As for a lower bound, we can use the same reasoning as in Section 3.1. Three commu-
nication steps are needed (3d), and the messages must be known one step before delivery
(D + d) (Theorem B.3). The resulting lower bound max {3d,D + d} < D + 2d leaves us
with the same question as before: is there an algorithm that attains it?

This time the answer is “yes” and [10] provide an example. In the second step of their
Atomic Broadcast algorithm, processes can propose ids to Indirect Consensus without
knowing the full messages. Achieving this with indirect channels is not straightforward
because they do not allow orphaned id manipulation. One might try to modify some
indirect-channel-based Consensus algorithm to allow such manipulations, but the result
would be algorithm-specific.

Instead, this section shows how the latency of any three-step Atomic Broadcast al-
gorithm can be reduced to max {3d,D + d}, without affecting its fault-tolerance (unlike
MR-based [10]). My approach is to split the Atomic Broadcast problem into two inde-
pendent problems:

1. Agreement on the order of delivered message ids, which can be solved by Atomic
Broadcast on message ids (latency 3d).

2. Agreement on the mapping from message ids to full messages, which can be solved
by Generic Broadcast [4, 21] over indirect channels (latency D + d).

Assuming the implementations of the two above broadcast abstractions, as well as two
failure detectors: Ω and ♦S [6], I will now present an Atomic Broadcast algorithm with
the latency of max {3d,D + d} in typical runs.

3.2.1 Algorithm

The details of the algorithm are shown in Figure 4. Each process pi maintains three
variables: the next message sequence number idmi, and two sets of mappings from ids
to messages: the set mymappingsi of mappings proposed by pi and the set mappingsi of
globally accepted mappings. Both sets mymappingsi and mappingsi are initially empty.

To broadcast a large message m, process pi first generates a new unique idm =
(pi, idmi) and adds the mapping (idm,m) to mymappingsi. Process pi then broadcasts
〈id idm〉 using Atomic Broadcast, and the mapping 〈map idm,m〉 using Generic Broad-
cast. Generic Broadcast [4, 21] is a version of Atomic Broadcast that is especially fast
when messages do not conflict. In our case, two messages 〈map idm,m〉 conflict if they
map the same idm into different messages m. In typical runs, such conflicts do not oc-
cur because the idm’s assigned by processes are unique. In runs with failures, multiple
mappings with the same idm may be sent, as we will see later.

Whenever a process pi receives 〈map idm,m〉, it adds the mapping (idm,m) to mappingsi,
unless mappingsi contains a mapping for idm already. Since all processes receive multiple
mappings for a given idm in the same order, Generic Broadcast ensures that all processes
end up mapping a given idm to the same message.

The delivery task at each process pi consists of an infinite loop. In each iteration,
pi first waits for the idm of a message, atomically broadcast in line 5. Then, it waits
for the mapping for idm to become known (by executing line 9). If, during this waiting,

14



1 idmi ← 0; mappingsi ← ∅; mymappingsi ← ∅

2 when pi abcasts m do
3 generate new idm = (pi, idmi); increment idmi

4 insert (idm,m) into mymappingsi

5 broadcast 〈id idm〉 with Atomic Broadcast
6 broadcast 〈map idm,m〉 with Generic Broadcast

7 when pi gbdelivers 〈map idm,m〉 do
8 if (idm,m′) /∈ mappingsi for no m′ then
9 insert (idm,m) into mappingsi

10 task delivery at pi is
11 loop forever
12 wait until 〈id idm〉 is abdelivered from some p
13 execute {interrupt lines 13–16 when until holds}
14 wait until pi is the Ω-leader and suspects p
15 broadcast 〈map idm,⊥〉 using Generic Broadcast
16 until (idm,m) ∈ mappingsi for some m
17 if m 6= ⊥ then
18 deliver m
19 else
20 send 〈retry idm〉 back to p

21 when pi receives 〈retry idm〉 do
22 if (idm,m) ∈ mymappingsi for some m then
23 remove (idm,m) from mymappingsi

24 abcast(m) {lines 2–6}

Figure 4: Atomic Broadcast

pi becomes the Ω-elected leader and suspects the sender of idm, it broadcasts an empty
mapping 〈map idm,⊥〉. This ensures that idm will be mapped to some value (⊥ or m),
and the potential failure of the sender of idm will not prevent the system from delivering
other messages.

When the mapping for idm becomes finally known, pi checks whether it is empty or
not. If it is not empty, then the message m is atomically delivered. If not, the process
sends a request to the sender to retry broadcasting the message (with a new idm). If the
failure detector is ♦P , then each correct sender will eventually not be suspected, and its
broadcasts will succeed.

With weaker failure detectors (♦S), this is not guaranteed. In this case, the sender
should respond to 〈retry idm〉 by abcasting 〈full m〉 using the underlying Atomic
Broadcast directly, instead of executing lines 2–6. If in line 12 a process receives 〈full m〉
instead of 〈id idm〉, it should deliver m straightaway and start a new iteration of the loop.
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1 when process pi gbcasts m do
2 broadcast m using Reliable Broadcast

3 when pi receives m do
4 broadcast 〈conflicts m, confm〉 where confm is
5 the sequence of previously received m′ conflicting with m

6 when pi receives n− f msgs 〈conflicts m, confm〉 do
7 if m is regular and confm is empty then
8 deliver m unless delivered before
9 else
10 for all regular m′ in all confm do
11 FIFO-abcast m′

12 FIFO-abcast m

13 when pi abdelivers m do
14 deliver m unless delivered before

Figure 5: Two-Class Generic Broadcast

3.2.2 Latency analysis

Consider the latency of the algorithm in runs in which no process fails during abcasting
its messages. In such runs, Atomic Broadcast of 〈id idm〉 takes 3d units of time, and
Generic Broadcast of 〈map idm,m〉 over indirect channels takes D + d because the only
possible conflicting mapping 〈map idm,⊥〉 is never sent. As a result, all messages m are
atomically delivered in max {3d,D + d} time. This is a lower bound, as shown before.

One problem with the above analysis is that Generic Broadcast can be implemented
with a two-step latency only if less than a third of processes are faulty (n > 3f) [20].
Ekwall and Schiper [10] report the same requirement in order to use a two-step MR Con-
sensus algorithm [18]. Is the condition n > 3f necessary for achieving the max {3d,D + d}
latency?

No. This section shows a variant of Generic Broadcast that delivers messages in two
steps while requiring only n > 2f . Messages 〈map〉 in Figure 4 can be divided into two
classes: regular 〈map idm,m〉 and special 〈map idm,⊥〉. Note that: (i) regular messages
never conflict with each other, and (ii) only regular messages need to be delivered quickly.
Another example of regular and special messages can be read and write requests in systems
in which writes are rare.

Figure 5 shows an implementation of Two-Class Generic Broadcast. To broadcast a
message m, a process sends it using reliable broadcast [15]. Upon receiving m, each process
rebroadcasts it along with the sequence confm of previously received messages conflicting
with m. When a process receives n−f such messages, it first checks whether m is regular
and all confm’s are empty, and delivers m if so. Otherwise, all regular messages in all
confm’s are broadcast using an underlying FIFO Atomic Broadcast protocol, followed by
m itself. All duplicates are explicitly removed on delivery.

Two messages m1 and m2 can conflict only if one of them is special. They can therefore
be delivered in different orders at different processes only if (i) exactly one of them, say
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m1, is regular and is delivered in line 8, and (ii) some process abcasts m2 in line 12 without
abcasting m1 in line 11. The first means that n− f processes received m1 before m2, the
second that n− f processes received m2 before m1. This contradicts the assumption that
n > 2f . Note that no Atomic Broadcast is used in the absence of conflicting messages.

Using Two-Class Broadcast over indirect channels, allows one to reduce the latency of
any three-step Atomic Broadcast implementation to max {3d,D + d} without reducing its
fault-tolerance. This should be contrasted with the indirect version of MR-based Atomic
Broadcast, which reduces fault-tolerance from n > 2f to n > 3f [10].

3.3 Other broadcast abstractions

Optimistic Atomic Broadcast [19] and Generic Broadcast [4, 21] require two communi-
cation steps (2D) in runs with spontaneous order and no conflicts, respectively. Using
indirect channels, the latency can be reduced to D + d, which is also a lower bound by
Theorem B.3.

4 Conclusion

Excessive bandwidth usage caused sending the same large messages several times can be
reduced by transmitting their ids whenever possible . Although this method has been
widely used in many real-world point-to-point protocols [1, 11], applying it to fault-
tolerant group protocols is surprisingly difficult [10]. For both families, the existing solu-
tions are problem-specific.

This paper proposed a more general solution by providing virtual indirect channels
that physically send a full message only during its first transmission; all other transmis-
sion use the message id only. Indirect channels are transparent to the application and have
no latency overhead in typical runs. As a result, they can be used with any distributed
algorithm, without modifications, even with unreliable channels and malicious partici-
pants. While providing rigorous theoretical properties at all times, the implementation
lends itself to system-specific tuning through cache configuration, making it attractive for
practical systems.

Running Consensus algorithms over indirect channels produces protocols with opti-
mum latency and fault-tolerance. In the case of Atomic Broadcast, the latency of any
implementing protocol can be further improved by handling message ordering and id map-
ping separately. The resulting latency and fault-tolerance are lower bounds, however, the
problem whether this can be achieved just by using more sophisticated indirect channels
is an open question.
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[10] Richard Ekwall and André Schiper. Solving atomic broadcast with indirect consensus.
In Proceedings of the International Conference on Dependable Systems and Networks
(DSN 2006), pages 156–165. IEEE Computer Society, 2006. ISBN 0-7695-2607-1.

[11] C. Feather. Network News Transfer Protocol (NNTP). RFC 3977 (Proposed Stan-
dard), October 2006. URL http://www.ietf.org/rfc/rfc3977.txt.

[12] P. Felber. The CORBA Object Group Service: A Service Approach to Object Groups
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[20] Fernando Pedone and André Schiper. On the inherent cost of Generic Broadcast.
Technical Report IC/2004/46, Swiss Federal Institute of Technology (EPFL), May
2004.
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[22] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement strate-
gies. ACM Comput. Surv., 35(4):374–398, 2003. ISSN 0360-0300.

[23] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001. URL
http://www.ietf.org/rfc/rfc3168.txt.
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A Correctness proofs

A.1 Indirect channels

Lemma A.1. If (idm, s, idx, p) ∈ messagesi then (idx,m) ∈ mappingsi for some m.

Proof. True at the beginning, we need to prove that every action preserves this prop-
erty. Removing (idx, x) from mappingsi removes all (∗, ∗, idx, ∗) from messagesi (line 15).
Adding (idm, s, idx, p) to messagesi can only happen after ensuring that (idx, x) ∈ mappingsi

(line 10).

Theorem A.2 (Reliability). If the underlying channel is reliable, then each message
m = (s, x) ind-sent by a correct process pi to another correct process pj will eventually be
ind-received.

Proof. Executing ind-send will add (idm, s, idx, pj) to messagesi, and send 〈short idm, s, idx〉
to pj, which pj will eventually receive. Because of the timeout involved, wait in lines
22–23 will eventually terminate. If (idx, x) ∈ mappingsj, then m = (s, x) will be deliv-
ered. Otherwise, 〈nack idm〉 will be sent back to pi, which will remove (idm, s, idx, pj)
from messagesi if it is there. Therefore, (idm, s, idx, pj) is at some point removed from
messagesi, which involves sending 〈full idm, s, x〉 to pj (line 13), so pj will ind-receive
it. If lines 11–13 were not triggered, then pi received 〈ack idm〉 from pj (line 18), which
means that pj ind-received m = (s, x).

Corollary A.3 (Eventual reliability). If the underlying channel is eventually reliable,
eventually each message m indirect-sent by a correct process to another correct process
will eventually be ind-received.

Theorem A.4 (One-reception). If all message delays d between correct processes sat-
isfy 2d < timeout, and the caches never forget information, then each correct process
physically receives any large object x, originated at a correct process, at most once.

Proof. It is sufficient to to show that the only time object x is physically sent is by the
originator pk in line 7, as part of 〈map idx, x〉. This mapping will be in mappingsk forever.
No other process pi can send x without indirect-receiving it first in line 26, which requires
(idx, x) ∈ mappingsi. Therefore, any subsequent execution of ind-send will encounter
(idx, x) ∈ mappingsi and line 7 will not be executed.

Assume the originator broadcasts the initial 〈map idx, x〉 at time 0. All correct pro-
cesses receive this mapping by time d. Any idx sent in line 8 at time t ≥ 0, will arrive at
the recipient p at a time t′ between t and t+d. Since t′+ timeout > t+2d > d, lines 22–23
will never time out. Similarly, max {t′, d} ≤ t+d, so the 〈ack idx〉 will arrive back at the
sender by time t + 2d < t + timeout , and (idm, s, idx, p) will be removed from mappings
without triggering lines 11–13. No 〈nack〉s will ever be sent and caches hold information
long enough, so no removal attempt will be made before. As a result, line 13 will never
be executed.

Theorem A.5 (Byzantine validity). If an honest process pi ind-received m = (s, x),
and the sender is honest, then it has indirect-sent m = (s, x).
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Proof. The sender must have sent 〈short idm, s, idx〉 such that (idx, x) ∈ mappingsi.
An honest process puts (idx, x) in mappings either in line 6 or in line 20, both cases
ensuring that idx = H(x). Assuming no hash collisions, two honest processes cannot
resolve the same idx to a different message. If an honest process ind-receives m = (s, x)
from another honest process, then the sender must have sent 〈short idm, s, idx〉 in line 8,
after executing ind-send m in line 2.

A.2 Atomic Broadcast

Lemma A.6. If (idm,mi) ∈ mappingsi and (idm,mj) ∈ mappingsj, then mi = mj.

Proof. If mi 6= mj, then the assumption implies that pi gbdelivered (idm,mi) before
(idm,mj), but pj gbdelivered (idm,mj) before (idm,mi). Since (idm,mj) conflicts with
(idm,mi), this contradicts the Uniform Partial Order property of the underlying Generic
Broadcast.

Lemma A.7. Lines 13–16 will eventually terminate at any correct process.

Proof. The Total Order property of the underlying Atomic Broadcast implies that all
processes abdeliver idm’s in line 12 in the same order. For the sake of contradiction,
consider the first idm for which lines 13–16 do not terminate at some correct process pi.

If the sender pj is correct, then it has gbcast 〈map idm,m〉 in line 6, so eventually
(idm,m′) ∈ mappingsi for some m′, which implies the assertion. Therefore, assume pj

is faulty. By the choice of idm and Uniform Agreement of Atomic Broadcast, all correct
processes executed line 12 for idm. By the choice of idm and Uniform Agreement of Generic
Broadcast, lines 13–16 will terminate for idm at no correct process. Therefore, eventually
a correct leader will gbcast 〈map idm,⊥〉 in line 15. By Validity of Generic Broadcast,
lines 13–16 will terminate at all correct processes, which proves the assertion.

Theorem A.8 (Validity). If a correct process broadcast a message m, then all correct
processes will eventually deliver m.

Proof. Validity of the underlying Atomic Broadcast implies that all correct processes will
eventually abdeliver idm in line 12. Lemma A.7 ensures that lines 13–16 will eventually
terminate. If no process suspects the sender, then 〈map idm,⊥〉 has never been gbcast in
line 15, and Integrity of Generic Broadcast implies that 〈map idm,m〉 gbcast in line 6 is
the only possible in line 7. Therefore (idm,m) ∈ mappingi in line 17, and m is delivered.

If the sender is suspected, then the condition in line 17 might not hold. In this case,
the sender will receive 〈retry idm〉 in lines 21–24 and repeat the abcasting procedure
in lines 2–6, with a new idm. Eventual Accuracy of ♦P ensures that a correct sender
will eventually not be suspected, so some repetition of lines 2–6 will eventually succeed
in atomically delivering m in line 18.

Theorem A.9 (Uniform Agreement). If a process pi delivers a message m, then all
correct processes eventually deliver m.
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Proof. If pi abdelivers idm1
, idm2

, . . . , idm in line 12, then Lemma A.7 and Uniform Agree-
ment of the underlying Atomic Broadcast ensure that all correct processes will do so
as well. Since (idm,m) ∈ mappingsi, Uniform Agreement of Generic Broadcast and
Lemma A.6 ensure that eventually (idm,m) ∈ mappingsj at all correct processes pj. This
implies the assertion.

Theorem A.10 (Uniform Integrity). For any message m, every process delivers m at
most once, and only if m was previously abcast.

Proof. Let p be the abcaster of m and id1, ... be ids assigned to m by p in line 4. Any
idk+1 is assigned to m as a result of p receiving “retry idm”, which is sent only if (idk,⊥) ∈
mappingsi at some process pi. By Lemma A.6 (idk,m) cannot hold at any process pi.
The only idk for which (idk,m) ∈ mappingsi can hold is the last in the sequence id1, ...
(if it exist). This proves the first part of the assertion.

For the second part, if m is delivered (line 18), then (idm,m) ∈ mappingsi for some
idm. This means that 〈map idm,m〉 was gbcast in line 6, which implies the conclusion.

Theorem A.11 (Uniform Total Order). If some process pi delivers message m′ after
message m, then every process pj delivers m′ only after it has delivered m.

Proof. Let idm1
, ..., idm, ..., idm′ , ... be the sequence of ids delivered by process pi in line

12. Process pj delivered idm′ , so Uniform Total Order of the underlying Atomic Broadcast
implies that pj must have delivered idm, which then passed the test (idm,m′′) ∈ mappingsj

in line 16 for some m′′. Since (idm,m) ∈ mappingsi, Lemma A.6 implies m′′ = m, which
implies the conclusion.

A.3 Two-class Broadcast

Lemma A.12. If all n−f correct processes receive m in line 3, then all correct processes
will eventually deliver m.

Proof. Those processes broadcast 〈conflict m, confm〉, so all correct processes will ex-
ecute lines 6–12. If m is regular and all confm at all correct processes are empty, then all
of them will deliver m in line 8. Otherwise, some correct process will abcast m in line 12,
which will eventually be delivered by all correct processes.

Theorem A.13 (Validity). If a correct process broadcasts a message m, then all correct
processes will eventually deliver m.

Proof. The assumption implies that all n − f correct processes will receive m; the con-
clusion follows from Lemma A.12.

Theorem A.14 (Uniform Agreement). If a process delivers a message m, then all
correct processes eventually deliver m.

Proof. If the delivery occurs in line 14, then the assertion follows from Uniform Agree-
ment of the underlying Atomic Broadcast. If the delivery occurs in line 8, then n − f
processes broadcast 〈conflict m, confm〉, at least one of them correct (n > 2f). Re-
liable broadcast used in line 2 ensures that eventually all n − f correct processes will
receive m. Lemma A.12 implies the assertion.
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Theorem A.15 (Uniform Integrity). For any message m, every process delivers m at
most once, and only if m was previously abcast.

Proof. Explicit duplicate elimination ensures the first part of the assertion. For the second
part, if m is delivered, some process must have received 〈conflicts m, confm〉 in line 6,
so some process must have received m in line 3, which implies the conclusion.

Theorem A.16 (Uniform Partial Order). If some process delivers message m2 after
a conflicting message m1, then every process delivers m2 only after it has delivered m1.

Proof. If none of those messages is delivered in line 8, then the conclusion follows from
Uniform Total Order of the underlying Atomic Broadcast. If one of the messages (m) is
delivered in line 8, then it is regular, and the other one (m′) must be special (because
regular messages do not conflict). Moreover, at least n− f processes must have received
m before m′ (empty confm), so each process abcasting m′ has at least one m ∈ confm′ , so
it abcasts m before. The FIFO property implies that all processes deliver m before m′.

B Impossibility results

Definition B.1 (One-reception for failure detectors). If all processes are correct,
there are no suspicions, and the caches never forget information, then each correct process
physically receives any large object x at most once.

Theorem B.2. If the underlying channel can lose messages, then one-reception cannot
be achieved with standard failure detectors.

Proof. Assume all caches hold all information forever, all processes are correct, and none
are ever suspected. Consider a run in one process p ind-broadcasts a large message m every
second or so. In this run, the actual message m, which should be physically broadcast at
most once, arrives at all other processes at time t. Call this run r(t).

Now consider another run r′ in which this single broadcast is lost; note that r′ does not
depend on t. To guarantee eventual reliability, all processes will eventually, say at time t′,
have to start delivering messages m broadcast by p. Therefore, all processes will have to
receive m by time t′. Consider any run r(t) with t > t′. These runs are indistinguishable
until time t, so they both receive m at time t′, but r(t) also receives m at time t > t′.
This violates the one-reception property.

Theorem B.3. Time D + d is required for asynchronous agreement protocols.

Proof. To obtain contradiction, consider an algorithm that decides before D + d in every
execution in which all processes are correct and there is no message loss. With broadcast
protocols, assume that process p1 broadcasts m1 at time 0, and no other broadcast takes
place. For Consensus, assume each process pi proposes a different value mi at time 0;
without loss of generality we can assume that all processes decide on m1. For both,
broadcasts and Consensus, the decision (delivery) must happen before time D + d.

Consider a scenario in which p1 is faulty, and all large messages sent by p1 to other
processes are lost (but no others). This scenario is indistinguishable from the previous one
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to processes other than p1 until time D, and to process p1 until time D + d. As a result,
process p1 decides on m1 before time D + d, and say crashes at time D + d. No other
process will ever receive m1 but it will be required to decide on it by Uniform Agreement.
This is a contradiction.
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