Technical Report A

Number 68

Computer Laboratory

HOL

A machine oriented formulation
of higher order logic

Mike Gordon

July 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1985 Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

9.

CONTENTS

Introduction
Overview of Higher Order Logic

Terms

3.1. Variablesand constants00
3.2. Function applications o0 oo
3.3, Lambda-terms ¢« .« oo o e e e e

Types
4,1. Type variables and polymorphism

Special Syntactic Forms

51, Infixes o0 e e e e e e e e
5.2. Binderso e e e e e e e
5.3. Pairsand tuples e
54, Lists . . .« o e e e e e e e e e e e e
5.5, Conditionals o e

Formulae, sequents, axioms and theorems
6.1. Definitionso e
6.2. Type definitions 0000

6.3. Inferencerules e e e e e e
Semantics

Theories)

8.1. The theory BOOL e e
8.1.1. Hilbert’s g-operator
8.1.2. Definitions of the-logical constants
8.1.3. Other constants in the theorysooL

8.2, Thetheory IND o v v v v v v v v e

Acknowledgements

10. References

(o> B < B2 1|

o]

10
10
11
11
12
12

13
13
13
17

19

20
21
21
22
23
24

26

26

A. Derived Rules and Theorems 29
©A.1l. Adding an assumption [ADD_ASSUM] 29
A.2. Undischarging [UNDISCH] 29
A..3. Symmetry of equality [SYM] 30
A..4. Transitivity of equality [TRANS] 30
A..5. Application of a term to a theorem [AP.TERM] 30
A..6. Application of a theorem to a term [AP.THM] 30
A..7. Modus Ponens for equality [EQMP] 31
A..8. Implication from equality [EQ.IMP_RULE] 31
A.9. T-Introduction [TRUTH] 31
A..10. Equality-with-T elimination [EQTELIM] 32
A..11. Specialization (V-elimination) [SPEC] 32
A..12. Equality-with-T introduction [EQT.INTRO] 32
A..13. Generalization (V-introduction) [GEN} 33
A..14. Simple a-conversion [SIMPLE_ALPHA] 33
A..15. p-conversion [ETA.CONV] 34
A..16. Extensionality [EXT].: 34
A..17. e-inftroduction [SELECT_INTRO] e e e 35
A..18. e-elimination [SELECTELIM] 35
A..19. F-introduction [EXISTS] 35
A..20. J-elimination [CHOOSE] 36
A..21. Use of a definition [RIGHT.BETAAP] 37
A..22. A-introduction [CONJ] 37
A..23. A-elimination [CONJUNCT1, CONJUNCT2] 37
A..24. Right v-introduction [DISJ1] 38
A..25. Left v-introduction [DISJ2] 39
A..26. V-elimination [DISJ.CASES] 39
A..27. Classical contradiction rule [CCONTR] 40

B. Predefined Theories : 41
B.1. The theory PROD e e e e e e e 41
B.2. Thetheory NUM ¢« i v v v it e e e e 42
B.3. The theory PRIMLREC . . « v v v v v v e e e e e e e e e e 44
B.4. The theory ARITHMETIC v v v v v v v v v v 45
B.5. The theory LIST . . .« o « v v v v v v i i vt e e e e e e e 46
C. The Primitive Recursion Theorem 49

1. Introduction

In this paper we describe a formal language intended as a basis for hardware
specification and verification. This language is not new; the only originality in
what follows lies in the presentation of details. Considerable effort has gone into
making the formalism suitable for manipulation by computer (e.g. it has a type
system for which there is a powerful type checking algorithm [Milner (78)]).

Any language intended for hardware specification and verification must be ca-
pable of representing the mathematics needed in reasoning about digital devices.
This includes theories of bits, bitstrings, numbers, pairs, lists, functions, Fourier
transforms etc., as well as the specialized theories of time that underlie formalisms

such as Interval Temporal Logic [Halpern et al.].

Mathematics is usually formalized in Set Theory, but for our purposes Higher
Order Logic is more appropriate. This is because the style of hardware specification

we want to support makes extensive use of higher order functions.

The logic described here underlies an automated proof generator called HOL.
This acronym will be used both for the computer system and for the logic em-
bedded in it. If disambiguation between these is needed I will call the former the
“HOL system” and the latter the “HOL logic”. .

Various other projects to automate Higher Order Logic are in progress. These
include the TPS theorem prover being developed at Carnegie-Mellon University
[Andrews et al] and the EKL proof checker at Stanford [Ketonen & Weening].
The idea of using Higher Order Logic for hardware specification and verification
is due to Keith Hanna of the University of Kent [Hanna & Daeche].

The HOL logic is a version of Church’s Simple Type Theory [Church] with two

additions:
e types can contain variables (7.e. can be polymorphic), and
e the Axiom of Choice is built in via Hilbert’s e-operator.

The exact syntax of the logic is defined relative to a theory, which determines
the types and constants that are available. Theories are developed incrementally
starting from the standard theories BooL (of truth-values or booleans) and D (of
individuals). Mechanisms are provided by the HOL system for setting up new

theories.

LY

2. Overview of Higher Order Logic

The HOL logic uses standard predicate calculus notation, for example:

Here t,

“P(z)” means “z has property P”,

“=t” means “not ¢”,

“ty A t,” means “¢; and ¢,”,

“t; V t,” means “¢; or t,”,

“ty D t,” means “¢; implies £,”,

“Vz. t[z]” means “for all z it is the case that ¢[z]”,
“Jz. t|z]” means “for some z it is the case that t[z]”,
“Qz. t[z]” means “there is a unique z such that ¢[z]”.

t; and ¢, stand for arbitrary terms, and ¢[z] stands for some term containing

the variable z.

The HOL logic uses four kinds of terms. These will be explained in detail later,

but here is a quick overview:

1.

]

Variables. These are sequences of letters or digits beginning with a letter.
For example: z, y, P, This_is_a_single_variable. Certain other strings are

allowed also (e.g. I'm_a_variable).

. Congtants. These have the same syntax as variables, but stand for fixed

values. Whether an identifier is a variable or a constant is determined by a
theory, this will be explained later. Examples of constants are: T, F (with
respect to the theory Boor of truth-values), 0, 1, 2, ... (with respect to
the theory NuM of numbers), + (with respect to the theory ariruMETIC Of

arithmetic).

. Function applications. These have the general form ¢; ¢, where ¢; and

i, are terms, an example is P 0. Brackets can be inserted around terms to
increasetreadability or to enforce grouping, thus P 0 is equivalent to P(0).
Binary function constants can be declared (with respect to a theory) to be
infixed. This provides a mechanism enabling one to write ¢; + ¢, instead of
+ 1y t. |

Lambda-terms. These denote functions and have the form Az. ¢ (where
 is a variable and ¢ a term). For example, An. n -+ 1 denotes the successor

function.

HOL provides some syntactic mechanisms to support conventional logical and
mathematical notations. For example, if one declares the constants D and + to
be infizes and the constant V to be a binder then Vn. P(n) O P(n + 1) is written
instead of V(An. D(P(n))(P(+ n 1))). '

Higher Order Logic generalizes First Order Logic by allowing higher order vari-
ables — i.e. variables ranging over functions and predicates. For example, the

induction axiom for natural numbers can be written as:
VP. P(O) A (Vn. P(n) D P(n + 1)) D Vn. P(n)

and the legitimacy of simple recursive definitions (the Peano-Lawvere Axiom

[MacLane and Birkhoff]) can be expressed by:
Vng. Vf. Als. (s(0) = no) A (Vn. s(n + 1) = f(s(n)))

Sentences like these are not allowed in first order logic: in the first example above

P ranges over predicates; in the second example f and s range over functions.

3. Terms

The four kinds of terms in the HOL logic are variables, constants, applications
(of a function to an argument) and abstractions (also called A-terms). These are

described in detail below.

3.1. Variables and counstants

Variables and constants stand for values. They can be any sequence of letters,
digits, primes (') or underlines () starting with a letter. In addition there are
some special symbols for the logical operators including: the equals sign (=), the
equivalence symbol (=), the negation symbol (—), the conjunction symbol (A), the
disjunction symbol (V), the implication symbol (D), the universal quantifier (V),
the existential quantifier (3), the unique existence quantifier (3!) and Hilbert’s
epsilon symbol (g). Other allowed variable or constant symbols are the pairing
symbol (comma: ,), the numerals 0, 1, 2 efc., the arithmetic functions +, —, X

and /, and the arithmetic relations <, >, < and >.

Whether an identifier is a variable or a constant is determined by a theory. For
example, A is a constant of the theory Boor, and + is a constant of the theory num.
One can thus only parse a term relative to a theory. We will use the convention
that sans serif identifiers and non-alphabetical symbols are constants, and italic

identifiers are variables. Arbitrary terms will usually be denoted by {, ¢y, t,, etc.

5

3.2. Function applications

Terms of the form t(¢;) are called applications or combinations. The subterm ¥,
is called the operator (or rator) and the term %, is called the operand (or rand or
argument). The result of such a function application can itself be a function and
thus terms like (¢, (£2))(¢s) are allowed. Functions that take functions as arguments

or return functions as results are called higher order.

To save writing brackets, function applications can-be written as f z instead of
f(z). More generally we adopt the usual convention that ¢, ¢, ¢3 - -+ ¢, abbreviates
(-+ ((t1 t2) ts) --- t,) t.e. application associates to the left.

3.8. Lambda-terms

HOL provides lambda-terms (also called M-terms or abstractions) for denoting
functions. Such a term has the form Az. ¢ (where ¢ is a term) and’denotes the
function f defined by:

flz) =t

For example, An. cos(sin(n)) denotes the function f such that:
f(n) = cos(sin(n))

thus: f(1) = cos(sin(1)), f(2) = cos(sin(2)) etc. The variable z and term ¢ are
called respectively the bound wariable and body of the A-expression Az. {. An
occurrence of the bound variable in the body is called a bound occurrence. If an
occurrence is not bound it is called free.

4. Types

The increased expressive power gained by allowing higher order variables is dan-

gerous. Consider the predicate P defined by:
Pz = (2)
from this definition it follows that:
PP = —(PP)

which is a version of Russell’s paradox. Russell invented a method for preventing

such inconsistencies based on the use of types [Hatcher|. HOL uses a simplification

6

o

of Russell’s type system due to Church [Church] with extensions developed by
Milner [Milner (78)].
Types are expressions that denote sets of values, they are either atomic or com-

pound. Examples of atomic types are:
bool, .ind, num, real

these denote the sets of booleans, individuals, natural numbers and real numbers
respectively, Compound typés are built from atomic types (or other compound

types) using type operators. For example, if o, 0y and o, are types then so are:
o list, 01—0>

where list is a unary type operator and — is an infixed binary type operator.
The type o list denotes the set of lists of values of type o and the type o,—0,
denotes the set of functions with domain denoted by ¢; and range denoted by o,.

In general compound types are expressions of the form:

(015 --. y0n)OD

where op is a type operator and oy, ..., 0, are types. If the operator has only
one argument then the brackets can be omitted (hence o list); the type oy—0 is
an ad hoc abbreviation for (oy,0,)fun. We will use lower case slanted identifiers

for particular types, and greek letters (mostly o) to range over arbitrary types.

We require each variable and constant occurring in a HOL term to be assigned a
type. Variables with the same name but different types are regarded as different.
We indicate that = has type ¢ by writing z:0. Thus z:0, is a different variable from
z:04 if and only if oy and o, are different. Starting from the types of the variables
and constants in a term the rules [Ty1] and [Ty2] below determine whether the
term is well-typed and if it is what its type is. If ¢ is a well-typed term with type o
we write f:0. Only well typed terms are allowed in HOL. This restriction ensures
that each term is meaningful (if ¢:0 then ¢ denotes a member of the set denoted
by o) and is sufficient to block the derivation of Russell’s paradox.

[Ty1] A term of the form ¢, ¢, is well-typed with type o if and only if for some
type o'
1. &, is well-typed with type o'—o0, and
2. t, is well-typed with type o'.

7

[Ty2] A term of the form Az. ¢ is well-typed with type o if and only if o has the

form oy—0, and:
1. z has type oy, and
2. t is a well-typed term with type 0.

In some formulations of higher-order logic the types of variables have to be writ-
ten down explicitly. For example, one would not be allowed to write Az. cos(sin(z))
but instead one would have to write Az:real. cos(sin{z:real)). In HOL we allow the
types of variables to be omitted if they can be inferred from the context (using
the declared types of the constants). The type inference algorithm used by the
HOL system is due to Robin Milner [Milner(78)]. In the absence of explicit type
information this algorithm makes the assumption that variables with the same
name have the same type and it would thus infer that both occurrences of z in
Az. cos(sin(z)) have type real. To get the term Az:bool. sin(cos(z:real)) (which is
a well-typed term of type bool—real that denotes a constant function) one must
write the types in explicitly. Note that in this term the bound variable has type
bool and is thus different from the other occurrence ;)f z with type real (which is

thus a free occurrence). X

Consider the term (z z) that was used in formulating Russell’s Paradox. This
has the form (¢; ¢;) with ¢; = z and ¢, = . Thus if (z z) is to be well-typed then
for some types o and o' the first occurrence of the variable z must have type o'—o
and the second occurrence type ¢'. Thus if the equation P z = —(g z) is to be
well-typed then the z to the left of the = must be different from at least one of
the two zs in the right of it (since these two zs have different types). In HOL it
is only valid to instantiate a variable with a ferm if the term has the same type
as the variable. It follows that one cannot derive the paradoxical P P = —(P P)
by instantiating = to P in P £ = —(z z) because whatever type P has it must be
different from the type of at least one of the zs to the right of the =. Russell’s

paradox is thus avoided.

HOL adopts the usual convention that o;—0;—03— -+ 0,—0 is an abbrevi-
ation for o,—(0,—(05— -+ (0ua—0) -+)) f.e. — associates to the right. This
convention blends well with the left associativity of function application because
if f has type oy— --- 0,—0 and 8y, ..., t, have types oy, ..., 0, respectively

then f t; - t, is a well-typed term of type o.

The notation Az; z, -+ z,. t abbreviates Az;. Az;. --- Az,. {. The scope

of the “” after a X extends as far to the right as possible. Thus, for example,

8

Ab. b= Az. T means Ab. (b = (Az. T)) not (Ab. b) = (Az. T).

4.1. Type variables and polymorphism

Consider the function twice defined by:

twice = Af. Az, f(f(z))

If f is a function then twice(f), the result of applying twice to f, is the function
Az, f(f(z)); twice is thus a function-reburning function, ¢.e. it is higher order. For
example, if sin is a trigonometric function with type real—real, then twice(sin) is
Az. sin(sin(z)) which is the function taking the sin of the sin of its argument, a
function of type real—real, and if not is a boolean function with type bool—bool,
then twice(not) is Az. not(not(z)) which is the function taking the double negation

of its argument, a function of type bool— bool.

What then is the type of the function twice? Since twice(sin) has type real—real
it would appear that twice has the type (real—real)—(real—real). However,
since twice(not) has type bool—bool it would also appear that twice has the type
(bool— bool)—(bool—bool). Thus twice would appear to have two different types.
In Church’s Simple Type Theory this would not be allowed and we would have
to define two functions, twice(eal . real)— (real—real) and twice(pool—bool)— (bool—bool)
say. In HOL, type variables are used to overcome this messiness; for example, if
o is a type variable then twice can be given the type (e—a)—(a—0o) and then
it behaves as though it has all instances of this that can be obtained by replac-
ing @ by a type. Types containing type variables are called polymorphic, ones
not containing variables are monomorphic. We shall call a term polymorphic or
monomorphic if its type is polymorphic or monomorphic respectively. We will use

a, B, v ete. for type variables.

An instance of a type ¢ is a type obtained by replacing zero or more type

variables in ¢ by types. Here are some instances of (a—a)—(a—a):

(real—real)— (real—real) -
(bool—bool)—(bool—bool)
((ce— bool)—(a:— bool))— ({a— bool)—(a— bool))

In these examples o has been replaced by real, bool and a—bool respectively.

The only instances of monomorphic types are themselves.

When constants are declared (a process that will be explained when we describe

theories) they must be given a type. If this type is polymorphic then for the
9

purposes of type checking the constant behaves as though it is assigned every
instance of the type. For example, if twice were declared as a constant with type
(a—a)—(a—a), then the terms twice(sin) and twice(not) would be well-typed.

5. Special Syntactic Forms

Certain applications are conventionally written in special ways, for example:
o + ty ty is written ¢; + 1,
o , 1 tp is written (y,1,)
o V()\z. t) is written Vz. ¢

The HOL logic enables constants to be given a special syntactic status (relative
to a theory) to support such forms. For example, + and , are examples of tnfizes
and V is an example of a binder. Some other ad hoc syntactic forms are also

allowed, these are explained below.

5.1. Infixes

Constants with types of the form oy—0,—03 can be declared, as tnfizes. If
f is an infixed constant then applications are written as ¢; f {; rather than as
f t; t,. Standard examples of infixes are the arithmetic functions +, X etc.The
infix status of a constant can be suppressed by preceding it with “$”. Thus $+ m n
is equivalent to m 4+ n. Whether a constant is an infix or not has no logical
significance, it is merely syntactic. The parser of the HOL system translates terms

of the form #; f ¢, into the same internal representation as terms of the form $f ¢, ¢,.

Examples of infixes are the following constants 6f the theory BooL:

: bool—bool—bool (Conjunction - i.e. “and”)

: bool—bool—bool (Disjunction - 7.e. “or”)

u < >

: bool—bool—bool (Implication - 4.e. “implies”)

i

: bool—bool—bool (Equivalence - i.e. “if and only if”)
Equality is also an infixed constant; it is polylflorphic:
= : a—a—bool

Equivalence (=) is equality (=) restricted to booleans. The constants A, V, D, =
and = are all infixes. The only primitive propositional constants are = and D, the
others can all be defined in terms of these. This is explained below in the section

on the theory BooL.

10

5.2. Binders

It is sometimes more readable to write f x. £ instead of f(Az. t). For example, in

HOL the quantifiers V and 3 are polymorphic constants:

V : (a— bool)—bool
3:

(a— bool)—bool

The idea is that if P : 0—bool, then V(P) is true if P(z) is true for all z and J(P)
is true if P(z) is true for some z. Instead of writing V(Az. t) and 3(Az.) it is nice
to be able to use the more conventional forms Vz. ¢ and Jz. .

Any constant f with a type of the form (oy—02)—0; can be declared to be a

binder. If this is done then instead of writing:
f(Azy. f(Azy. -+ Az, t) ---))

one can write:

fo, - z,. ¢

As with infixes, the binder status of a constant is purely syntactic and can be

suppressed with “§”.

Recall the statement of mathematical induction:
VP. P(0) A (Vn. P(n) D P(n+ 1)) D Vn. P(n)
This is a term of HOL of type bool; it is the same as the unreadable:

$Y(AP. $2(SA(P 0)($Y(An. $D(P n)(P($+ n 1)))))(8V(An. Pn)))

The quantifiers V and 3 are not primitive in HOL. In the section on the theory
BooL we explain how they can be defined. The existential quantifier is defined in

terms of Hilbert’s e-operator which is described later.

5.3. Pairs and tuples

A function of n arguments can be represented as a higher order function of 1 ar-
gument that returns a function of n-1 arguments. Thus Am. An. m?+n? represents
the 2 argument function that sums the squares of its arguments. Functions of this
form are called curried. An alternative way of representing multiple argument

functions is as single argument functions taking fuples as arguments. To handle

i1

tuples HOL has a binary type operator prod. If {y:0y and #,:0, then the term
(t1,t2) has type (o3, o2)prod and denotes the pair of values. The type (oy, o2)prod
can also be written as oy X0,. Another representation of the sum-squares function

would be as a constant, sumsq say, of type (numxnum)—num defined by:
sumsq(m,n) = m?+n’

A term of the form (fy,%;) is equivalent to the term §, ¢; £, where “” is a

polymorphic infixed constant of type a—f—(axp). Instead of having tuples as
primitive HOL (following LCF) treats them as iterated pairs. Thus the term:

(t17t2; vee 7tn—11 tn)
i1s an abbreviation for:
(tl, (tZ; oo ’(tn~l)tn) s))

i.e. “” associates to the right. To match this, the infixed type operator x also

assoclates to the right so that if ¢;:04, ..., {,:0, then:
(tl, cee ,tn) 01X v XOp,

The type operator prod can be defined in terms of fun and thus pairing need
¥

not be primitive. We show how to do this in Appendix B.

5.4. Lists

The theory List (see Appendix B) introduces types o list, together with constants
Nil and Cons of types « list and a— (o list)— (o list) respectively. A term with
type o list denotes a list of values all of type o. Nil is the empty list; HOL

Cons t;(Cons t,---(Cons &, Nil)--)).
The difference between lists and tuples is:
1. different lists of a given type can contain different numbers of elements, but
all tuples of a given type contain exactly the same numbers of elements;
2. the elements of a list must all have the same type but elements of tuples

can have different types.

5.5. Conditionals

The theory BooL contains a constant Cond which is defined so that Cond ¢ ¢, %,
means “if ¢ then #; else t,”. The special syntax (¢ — ¢; | ¢,) is provided for such

terms. The original conditional notation due to McCarthy used “,” instead of “|”.

12

6. Formulae, sequents, axioms and theorems

Unlike first order logic HOL has no separate syntactic class of formulae, their

role is played by boolean terms (i.e. terms of type bool).

A sequent (T',t) consists of a finite set of boolean terms I' called the assumptions
together with a boolean term ¢ called the conclusion. Think of (I',t) as asserting

that “if every term in I’ is equivalent to T then so is ¢”.

A theorem is a sequent that is either an aziom or follows from theorems by a
rule of inference. Axioms are sequents that are just postulated to be theorems;
rules of inference are procedures for deducing new theorems from existing ones. If

(T, %) is a theorem we write I' I ¢, if ' is empty we write F ¢.

6.1. Definitions

Definitions are axioms of the form F ¢ =1{ where c is a new constant and ¢ is a
closed term (z.e. a term without any free variables) that doesn’t contain c¢. Such
a definition just introduces the constant ¢ as an abbreviation for the term {. The
requirement that ¢ may not occur in ¢ prevents definitions from being recursive,

this is to rule out inconsistent ‘definitions’ like + ¢ = c+ 1. A function definition:
Ff= Azy - z,. 8

can be written as:
Ffoy ooz =

The HOL system currently permits the user to postulate arbitrary axioms when
he builds a theory. This freedom is dangerous begause inconsistent axioms can
be introduced (e.g. by postulating + T =.F). As was shown by Russell and
Whitehead [Hatcher], with suitable definitions, all of classical mathematics can be
constructed from logic together with the assumption that there are infinitely many
individuals (the Axiom of Infinity). It .would thus appear reasonable to restrict

the user to only making definitions and we eventually plan to do this.

6.2. Type definitions

Types denote sets. For example, the primitive type bool denotes the set of two
truth-values and the primitive type ind denotes some infinite set of individuals.
Compound types denote sets built by forming sets of functions. For example,

ind—bool denotes the sets of functions from the set of individuals to the set of

i3

truth-values. Using the techniques described in Appendix B it is possible to rep-
resent any useful set as a subset of some set constructed from the truth-values and
individuals. Unfortunately the representing sets are often quite complicated and
it is useful to have some abstraction mechanism for hiding the details. The moti-

vation for this is similar to the motivation for data abstraction in programming.

As an example, let us consider how we might represent times consisting of hours
and minutes. Such a time can be represented by a pair (hours,mins) where
hours and mins are numbers. Now it turns out (see Appendix B) that numbers
can be represented as a subset of the set individuals, and pairs (z:04, y:02) can be
represented as functions of type o3—0y—bool. Thus times can be represented as

objects of type ind—ind— bool.

Suppose we want a function to increment the hour component of times. We
might define a constant, Inc_Hour say, of type (ind— ind— bool)—(ind—ind— bool)
to represent this. It would be nice if we could make this type more intelligible by
somehow introducing a new type, time say, so that Inc_Hour had type time— time.
A simple approach would be to use abbreviations so that time and ind—ind— bool
would be interchangeable. The problem with this is that there is no way of making
explicit which uses of ind—ind— bool represent times and which, ones represent

other things.

As another example consider places; these could also be represented as pairs
of numbers (i.e. (m,n) specifies 2-D coordinates), so the type ind—ind—bool
could be the representing type for places also. One might thus introduce the
abbreviation place for ind—ind—bool. But then the function Inc_Hour would be
just as applicable to places as it is to times. Clearly one wants some way of
indicating when something of type ind—ind—bool is intended to be a place and
when it is intended to be a time. This is achieved in HOL by keeping the types
ind—ind—bool, time and place distinct and then introducing axioms that say that

they are 4somorphic (i.e. in one-to-one correspondence).

Types oy and o, are isomorphic if and only if there exist functions f,:0,—0, and

fa:0p— 0y (called isomorphisms) such that:

F Vil)]_:(fl. fz(f]_ 2:1) = T
b Vzgioy. fi(f2 22) = ©2

If o, is a new type and o, its representing type, then f; should be thought of as a
representation function that maps elements of the new type 'to the corresponding

elements of the old type that represent them. The function f, is the inverse to fi

14

and can be thought of as an abstraction function mapping representations to the
‘abstract’ objects of the new type they represent.
To make the types time and place isomorphic to ind—ind—bool we must intro-

duce isomorphisms:

Rep_Time : time—(ind—ind— bool)
Abs_Time : (ind—ind—s bool)—time
Rep_Place : place—(ind—ind— bool)
Abs_Place : (ind—ind— bool)—s place

A Term of type ind—ind— bool can be explicitly ‘coerced’ fo a term of type time
or to a term of type place by applying to it the appropriate abstraction function
— 1.e. Abs_Time or Abs_Place respectively. If Inc_Hour had type fime— time then
a term Inc_Hour ¢ would not be well-typed if ¢ had type ind—ind—bool, but any
term of the form Inc_Hour(Abs_Time ¢) would be well-typed.

Usually one does not want to define a new type to be isomorphic to all of some
existing type, but only to a subset of it. For example, one might only want pairs
(hours, mins) to be the representation of a time if hours < 24 and mins < 60.
The subsets of the set of pairs of numbers corresponding to times and places
can be specified by suitably defined predicates Is_Time and Is_Place. If times are

constrained as above but any pair of numbers can répresent a place then:

F Is_Time(hours, mins) = (hours < 24) A (mins < 60)
F Is_Place(m,n) = T

Instead of requiring types time and place to be isomorphic to all of ind—ind—bool
we really want them to be isomorphic to the subsets specified by the predicates
Is_Time and Is_Place respéctively. We show how to axiomatize this requirement
shortly.

As well as defining types it is also convenient to be able to define type operators.
For example, to represent pairs one would like to define a binary type operator
prod. The way one does this is to use a representing type for (o, ay)prod that
contains the type variables a; and ;. As is explained in Appendix B, a suitable

type for this purpose is a;—ay— bool.

Types in HOL must be non-empty; the reason for this is explained later in the
section on Hilbert’s g-operator. Thus one can only define a new type isomorphic

to a subset specified by a predicate P if + Jz. P(z).
15

To summarize, a new type is defined by:

1. Specifying an existing type.

2. Specifying a subset of this type.

3. Proving that this subset is non-empty.

4. Specifying that the new type is isomorphic to this subset.
More formally, to define a new type (ay,...,a,)op one must:

1. Specify a type, oop say, called the representing type. This should only
contain the type variables ay, ..., a,. The type (o4,...,a,)op is intended

to be isomorphic to a subset of op.

2. Specify a term, Pop say, of type oop— bool called the subsét predicate. This
defines the subset of oqp that (,...,an)op is to be isomorphic to.

3. Prove F 3dzio0p. Pop .

4. Introduce a new constant, Rep,, say, of type (a,...,an)op—0op called
the representation function, together with appropriate axioms (see below),
to specify the isomorphism from (ay,...,a,)op to the subset of oop de-
termined by Pop. (We only need to take the representation function as

primitive, the abstraction function can be defined as its inverse).

To specify Rep,, we must assert an axiom that says that it is a one-fo-one

mapping and also that it is onto the subset of oop determined by Pop.

To make this formal the theory BooL (see below) provides a polymorphic constant
One_One defined by:

F OneOne = Af:a—f.Vxz; 25 (f 20 = f 22) D (21 =)

Thus One_One f is true if and only if f is one-to-one. BooL also provides a constant
Onto_Subset defined by:

 OntoSubset = Af:a—pf. AP:f—bool. Vz:6. (P z) = (Fz":a. z = [')

Thus Onto_Subset f P is true if and only if the range of f is the subset determined
by P.
The axiom that characterizes Rep,y, as an isomorphism from (oy...,p)op onto

the subset of oop determined by Ppp is:

I (One_One Rep,,) A (Onto_Subset Rep,p, Pop)

16

Defining a new type (oy,...,o,)op in a theory TH consists of introducing op as
a new n-ary type operator of TH, Rep,, as a new constant of TH and the above

axiom as a new axiom of TH. Such a type definition is only valid if:
¢ op isn’t already a type operator of TH,
e Rep,, isn’t already a constant of Tn and
o | dzioop. Pop is a theorem of TH.

Examples of type definitions are given in Appendix B.

6.3. Inference rules

Inference rules are procedures for deriving new theorems. In the HOL system
they are represented as functions in ML [Gordon et al. (78), Gordon (82)]. There
are eight primitive inference rules, all other rules are derived from these and the
axioms (see Appendix A for some example derivations). Below are listed the prim-
itive inference rules in standard natural deduction notation. The metavariables t,
t1, ty etc. stand for arbitrary terms. The theorems above the horizontal line are
called the hypotheses of the rule and the theorem below the line is called the result.
Each rule says that its result can be deduced from its hypotheses, provided any
restrictions mentioned below the rule hold. The first three rules below have no
hypotheses, their results can always be deduced. The identifiers in square brackets

are the names of the rules in the HOL system.

Assumption introduction [ASSUME]

Reflexivity [REFL]

Fit=t

Beta-conversion [BETA_CONV]

F oAz b))t = 4]t/ 2]
17

o Where t,[t,/z] is the resultof substituting £, for = in ¢,, with the restriction

that no free variables in ¢, become bound after substitution into #;.

Substitution [SUBST]

Fl l_ t1=t2 I‘z I’" t[tI]
yul', t[tzl

o Where t[t;] denotes a term ¢ with some free occurrences of ¢, singled out

and t[t;] denotes the result of replacing these occurrences of ¢; by £;, with
the restriction that the context f[| must not bind any variable occurring

free in either ¢; or £,.

e I'; UT, is the set union of I'y and I's.
Abstraction [ABS]

P I‘ t1 = tz
I' b (2. t;) = (Az. 1)

e Provided z is not freein I'.

Type instantiation [INST_TYPE]

'kt
T F o tlogy oo yonfon, oo y0n]
o Where t[oy, ... ,0n/c1, ... ,ap] is the result of substituting in parallel
the types 0y, ..., 0, for type variables ay, ..., ay in ¢, with the restriction
that none of oy, ..., o, occurin I',

Discharging an assumption [DISCH]

I' -t
F—{H} F Dt

e Where I' — {t,} is the set subtraction of {;} from I'.

Mecdus Ponens [MP]

| AP S T 2 ', F ¢
ryul, F ¢t

18

7. Semantics

In this section we give a very informal sketch of the intended semantics of the
HOL logic.

The essential idea is that types denote sets and terms denote members of these
sets. Only well-typed terms are considered meaningful. If term ¢ has type o then

t should denote a member of the set denoted by o.

The meaning of a type depends on the interpretation of the type variables (as
sets) that it contains. A type o containing type variables ay,...,q,, denotes a
function from m-tuples of sets to sets, such a function is not itself a set but is a
class. For example, the type a— o denotes the ‘class function’ that maps a set X
to the set of functions from X to X (i.e. a—a denotes X = {f | f: X—X}).

Polymorphic constants are interpreted as functions of the interpretations of the
type variables in their type. For example, the standard meaning of the constant
lia— o is the function that maps a set X (the interpretation of) to the identity
function on X.

The meaning of a term depends on the interpretation of the constants, free
variables and type variables in it. The interpretation of a term ¢ with type variables
Qyy ..., 0y and free variables zy:04,..., £,:0, is a function from m+n-tuples of sets
to sets. More specifically, it is a function from tuples (X, ..., Xy, v, ..., v,) where
each X; is a set and each v; is a member of the interpretation of o; (where oy is
interpreted with respect to the interpretation of ay,...,q,, as Xj,..., X,,). For
example, the interpretation of (Az:a. z) y with respect to the tuple (X,v) is v,
where X is the interpretation of & and v € X is the interpretation of y (i.e. the
term (Az:on z) y denotes (X, v) — v).

Type variables are regarded as implicitly universally quantified at the outermost
level. Thus a theorem F (Azia. z) y = y asserts that with respect to every
interpretation of o as a (non-empty) set X the interpretation of Az:a. z is a
function which when applied to the interpretation, v say, of y yields v.

Type variables are really just ordinary variable of type ‘set’. Polymorphic con-
stants are just functions of such variables. It might be better to make this explicit

in the syntax by, for example, forcing one to define | by:
F (o) = dzia.

rather than:
FI1 = Azia. 2

19

The syntax and semantics of type variables are currently being studied by sev-
eral logicians. A closely related area is the theory of ‘second order’ A-terms like
Aa. Az:a. z, perhaps such terms should be included in the HOL logic.

8. Theories

A theory consists of a set of types, type operators, constants, definitions, axioms
and theorems. The usual definition of a theory in textbooks on mathematical logic
is a bit different from the HOL notion of a theory. In particular, following LCF,
the theorems in a HOL theory are just those that have been explicitly proved and
saved by a user of the system. In logic, one usually says that a theory contains all
the (possibly infinitely many) theorems that follow from the definitions; no termi-
nological distinction is drawn between theorems that have actually been proved
and those that could in principle be proved (t.e. that logically follow).

Theories can have other theories as parents; if TH1 is a parent of TH2 then all the
types, constants, definitions, axioms and theorems of TH1 are available for use in
TH2. The structure with nodes consisting of theories and edges corresponding to
parenthood relations is required to be a directed acyclic graph. If :I‘Hl is a parent
of TH2 we say TH2 is a descendant of TH1. The theories that are built into the HOL

system have the parenthood structure shown below (parents are drawn above their

descendants).
BOOL
|
|
________ [—
IND PROD
NUM
PRIM_REC
ARITHMETIC
________ [
l
LIST
|
I
HOL

The theories BooL and IND are primitive and are described in detail below. All

the other theories we need (see Appendix B) can be defined in terms of them.

20

8.1. The theory sooL

The most basic theory is Boor. This has a descendant theory ivp that introduces
the type ind of individuals together with the Axiom of Infinity that says there are
infinitely many individuals. This axiom, together with the axioms in BooL and the
rules of inference of HOL, permits the development of all of classical mathemaftics.

The only primitive logical constants in HOL are D, = and &. The first two
of these denote logical implication and equality, the third is Hilbert’s g-operator

which is described below.

8.1.1. Hilbert’s s-operator

If t[z] is a boolean term containing a free variable z of type o, then the Hilbert-
term ez. t[z] denotes some value of type o, a say, such that [a] is true. For
example, the term en. n < 10 denotes some unspecified number less than 10 and
the term en. (n2 = 25) A (n > 0) denotes 5.

If there is no a of type o such that ¢[a] is true then ez. t[z] denotes a fixed but
unspecified value of type o. For example, en. —(n = n) denotes an unspecified
number. One of the axioms of HOL states that if J=. t[z] is true then it follows
that t[ez. ¢[z]] is true also.

It must be admitted that the e-operator looks rather suspicious. For a thorough
discussion of it see [Leisenring]. It is useful for naming things one knows to exist
but have no name. For example, the Peano-Lawvere axiom asserts that given a
number ny and a function f:num—num, there exists a unique sequence s defined

recursively by:

(s(0) = ng) A (Vn. s(n+1) = f(s(n)))

Using the e-operator we can define a function, Rec say, that returns s when given

the pair (ng, f) as an argument:
Rec(ng, f) = e&s.(s(0) =mng) A(Vn. s(n+ 1) = f(s(n)))

Rec(ng, f) denotes the unique sequence whose existence is asserted by the Peano-

Lawvere Axiom. It follows from this axiom that:
(Rec(ng,)0 = ny) A (Vn. Rec(ng, f)(n+ 1) = f(Rec(nqg, f)n))

Many things that are normally primitive can be defined using the e-operator.

For example, the conditional term Cond ¢ ¢; ¢, (meaning “if ¢ then ¢, else ¢,”) can

21

be defined by:
Condtt, t, = ex. ((=T)D(z=t)) A (t=F)D(z=1t))

One can use the g-operator to simulate A-abstraction: if the variable f does not
occur in the term ¢, then the function Az. t is equivalent to ef. Vz. f(z) =t (“the
function f such that f(z) = ¢ for all 7). This idea can be used to create functional
abstractions that cannot be expressed with simple A-terms. For example, the

factorial function is denoted by:

ef.Vr. (§(0) =1) A (f(n+1)=(n+1)x f(n))

Terms like this can be used to simulate the kind of pattern matching mechanisms
found in programming languages like Hope [Burstall et al] and Standard ML
[Milner (84)].

The inclusion of e-terms into HOL ‘builds in’ the Axiom of Choice [Hatcher].
In Set Theory, the Axiom of Choice states that if § is a family of sets then
there exists a function, Choose say, such that for each non-empty X € § we have
Choose(X) € X. As sets are not primitive in HOL, we must reformulate Choose
to act on the characteristic functions of sets rather than sets themselves. The
characteristic function of a set X is the function fx with range {T)', F} defined by
fx(z) = T if and only if z € X. If P is any function with range {T,F}, we call P
non-empty if for some z it is the case that P(z) = T (so fx is non-empty if and only
if X is non-empty). The HOL version of the Axiom of Choice asserts that there
exists a function, Select say, such that if P is a non-empty function with range
{T,F} then P(Select(P)) = T. Intuitively Select P is just Choose{z | P = = T}.

Hilbert’s e-operator is a binder that denotes Select. More precisely ¢ is a binder
with type (a— bool)—a which is interpreted so that if P has type o— bool then:

o $2(P) denotes some fixed (but unknown) value z such that P(z) = T if

such a value exists;

o if no such value exists (¢.e. P(z) = F for all) then $¢(P) denotes some

unspecified value in the set denoted by o.

Having e-terms forces every type to be non-empty because the term ez:o.T
always denotes a member of o.
8.1.2. Definitions of the logical constants

There are only three primitive logical constants in HOL, namely D, = and e.

These are all constants of the theory Boor. Within this theory the other logical

22

constants can be defined by:

—
l

= ((Az. z) = (Az. 7))

$¥ = AP. P=(\z. T)

$3 = AP. P($¢ P)

F = Vb b

= Ab. bDF

$A = by by Vb, (by D (b2 D b)) Db

$V = Aby by Vb.(by D b) D ((bz D b) D b)

= Aby by. (b D by) A (b2 D by)

= AP. ($3 P)A(Vz y. (P z)A(P y) D (z=1y))

T T T T T T T T T
4

&8
ol

These definitions may seem rather obscure, but it turns out that all the usual .
properties can be derived from them starting from the rules of inference and the

following axioms:

F W (b=T)V(b=F)

F by by (by D b3) D (b2 D by) D (by = b2)
FVf. (e fz)=f

VP z. P D P($e P)

These are the only non-definitional axioms in the theory Boor. In Appendix A
we show how the standard rules of logic can be derived from these axioms, the
definitions of the logical constants and the primitive rules of inference. The only
other non-definitional axiom in HOL is the Axiom of Infinity which is part of the

theory Inp.

8.1.3. Other constants in the theory BooL

It is convenient to include in BOOL the definitions of One_One and Onto_Subset
that are used when making type definitions, as well as some other well-known and

useful constants.

F OneOne = Afia—f.Vzy ;. (f o1 = f x5) D (21 = 33)

I OntoSubset = Af:a—f. AP.Vz. (P z) = (3z":a. z = f «)
F Onto = AMfia—f.Vy.dz.y=f =

Flnv = Afia—p. Ay.ex.y=f

F $o = Af:f—q. Agia—pf. Az. f(g =) (o0 is an infix)
Fi= Azia.z

23

The following theorems follow from these definitions:

OneOne f F (inv flof =1
Onto f F foflnv f) = I

The definition of the conditional function also included in BooL:
F Condttyt, = ex. ((=T)D(z=4)) A ((t=F)D(z=1))
From this definition it is straightforward to deduce that:
F Vzy 3. (Cond T z; 24 = 1) A (Cond F z; 25 = x,)
There is a special syntax for conditionals: (£ — #; | {;) means Cond # ¢, t,.

8.2. The theory mwp

If there are m distinct elements of type oy and n distinct elements of type o,
then there are n™ of type o;—0,. Thus, starting with the two element type bool
one can only generate types containing finitely many elements using —. There
are infinitely many numbers, so there is no hope of constructing a representing
type for numbers from bool and —. To get over this problem we postulate a
new primitive type ind that has infinitely many distinct elements. The theory b
introduces this type ind and has one axiom, called the Axiom of Infinity:

F 3f:ind—ind. One.One f A —(Onto f)

It may not be obvious that this implies there are infinitely many distinct elements

of type ind, to see that it does first define:

I Suc_Rep = ef:nd—ind. One_One f A —(Onto f)
Then it follows from the Axiom of Infinity that:

I One_One Suc_Rep A —{Onto Suc_Rep)

From the second conjunct of this and the definition of Onto it follows that if we
define:

I Zero_Rep = ey:ind. Vz. =(y = Suc_Rep z)

24

then:
F Vz. =(Zero_Rep = Suc_Rep z)

From this and the definition of One_One it is easy to show that the sequence of
terms Zero_Rep, Suc_Rep Zero_Rep, Suc_Rep(Suc_Rep Zero_Rep) etc. are all dis-
tinct. Thus, if we denote the result of applying Suc_Rep to Zero_Rep n times by
Suc_Rep" Zero_Rep, then the set of elements of this form with n = 1,2,3...1s an
infinite set. Thus the Axiom of Infinity does indeed imply that there are infinitely

many distinct elements of type ind.

25

9. Acknowledgements

The use of higher-order logic for hardware specification and verification has been
pioneered by Keith Hanna [Hanna & Daeche]. The HOL system is quite similar to
his VERITAS system.

I was inspired to move from an ad hoc special purpose logic (namely LCF_LSM
[Gordon (83)]) to ‘pure logic’ by the elegant work of Ben Moszkowski on using
Interval Temporal Logic (ITL) for hardware description [Halpern et al]. One
of the design goals of the HOL logic was to construct a framework to support
reasoning in ITL. How this is done will be the subject of a future paper.

In formulating details of the HOL logic I was helped by advice from the logicians
Mike Fourman and Martin Hyland. In particular, Mike Fourman explained to me
how numbers could be represented (see Appendix B) and how types should be
defined.

The HOL system is based on Cambridge LCF [Paulson] which, in turn, evolved
from Robin Milner’s Edinburgh LCF [Gordon et al. (79)]. Many ideas (and much
code) from LCT are incorporated in HOL.

I have had many valuable discussions with the various users'of HOL. These in-
clude Albert Camilleri, Nives Chaplin, Inder Dhingra, John Herbert, Tom Melham
and Edmund Ronald from Cambridge, and Jeff Joyce from the University of Cal-
gary. Several of these people provided criticisms and comments on a draft of this
paper.

Francisco Corella (of Schlumberger Palo Alto Research) pointed out several er-
rors in the first version of this paper as well as making some good suggestions for

improvements.

10. References

[Andrews et al.]
P. Andrews, D. Miller, E. Longini Cohen and F. Pfenning. Automating
Higher Order Logic. Contemporary Mathematics 29, 1984.

[Boyer & Moore]
R. Boyer and J Moore. A Computational Logic. Academic Press. New
York, 1979,

26

[Burstall et al.]
R. Burstall, D. MacQueen and D. Sannella. HOPE: An Ezperimental Ap-
plicative Language. Report CSR-62-80, Computer Science Department,
Edinburgh University, 1980.

[Church]
A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic 5, 1940.

[Gordon et al. (78)]
M. Gordon, R. Milner, L. Morris, M. Newey and C. Wadsworth. A meta-
language for interactive proof in LCF. In the Proceedings of the Fifth ACM
SIGACT-SIGPLAN Conference on Principles of Programming Languages.
Tucson, Arizona, 1978,

[Gordon et al. (79)]
M. Gordon, R. Milner and C. Wadsworth. Edinburgh LCF: A mechanised
logic of computation. Lecture Notes in Computer Science Number 78,
Springer-Verlag, 1979.

[Gordon (82)]
M. Gordon. Representing a Logic in the LCF Metalanguage. In Tools and
Notions for Program Construction (ed. D. Neel), Cambridge University
Press, 1982.

[Gordon (83)]
M. Gordon. LOF_LSM. University of Cambridge Computer Laboratory

Technical Report No. 41, 1983.

[Halpern et al.]
J. Halpern, Z. Manna and B. Moszkowski. A hardware semantics based
on temporal intervals. In the proceedings of the 10-th International Collo-

quium on Automata, Languages and Programming, Barcelona, Spain, 1983.

[Hanna & Daeche]
F. K. Hanna and N. Daeche. Specification and Verification using Higher-
Order Logic. Proceedings of the 7th International Conference on Computer
Hardware Design Languages. Tokyo, 1985. Electronics Laboratory, Uni-
versity of Kent at Canterbury, 1983.

[Hatcher]
W. Hatcher. The Logical Foundations of Mathematics. Pergamon Press,

1982.

27

[Ketonen & Weening|
J. Ketonen and J. Weening. EKL - An Interactive Proof Checker. Stanford
University, 1983.

[Leisenring]
A. Leisenring. Mathematical Logic and Hilbert’s ¢-Symbol. Macdonald &
Co. Ltd. London, 1969. :

[MacLane and Birkhoff]
S. MacLane and G Birkhoff. Algebra. The Macmillan Company, 1967.

[Milner (78)]
R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences 17, 1978. ’

[Milner (84)]
R. Milner. A Proposal for Standard ML. Proceedings'of the 1984 ACM
Symposium on LISP and Functional Programming, Austin, Texas, 1984.

[Paulson]
L. Paulson. The Revised Logic PPLAMBDA: A Reference Manual. Uni-
versity of Cambridge Computer Laboratory Technical Report Number 36,
1983. A Higher Order Implementation of Rewriting. Science of Computer
Programming, 1983. Tactics and Tacticals tn Cambridge LCF. University
of Cambridge Computer Laboratory Technical Report Number 39, 1983.

28

A. Derived Rules and Theorems

We outline below how the standard rules of logic can be derived from the axioms

and definitions in Boor using the primitive inference rules of the HOL logic.
The derivations that follow consist of sequences of numbered steps each of which:
e is an axiom, or ‘
e 3 hypothesis of the rule being derived, or

e follows from preceding steps by a rule of inference (either primitive or

previously derived).

Theorems will be treated as rules that have no hypotheses (thus a derivation of a
theorem is like the derivation of a rule but without any hypotheses). Note that
there are rules without hypotheses that are more general than theorems. For
example, for any terms ¢, and ¢, the theorem F (Az. t;)t, = ¢;[t2/z] follows from
BETA_CONV. This rule thus generates a theorem for each pair of terms ¢y, ¢, and
is thus equivalent to infinitely many theorems. There is no single theorem in the
HOL logic equivalent to BETA_CONV.

A..1. Adding an assumption [ADD_ASSUM]

I+t

T, ¢ F ¢
18 - f [ASSUME]
2.T + ¢ [Hypothesis]
3.T F Dt [DISCH 2]
4. T, ¢ ¢t [MP 3,1]

A..2. Undischarging [UNDISCH]

'k 408

T, & F ¢,
Lt kot [ASSUME]
22T F ¢ Dty [Hypothesis]
3.1, t F t MP 2,1]

29

A..3.. Symmetry of equality [SYM]

Tk ty=t
Tk ty=t,
1L.T F oty =t
2. bt =1
3.0 b ty=t,

A..4. Transitivity of equality [TRANS]

F]_ i_ t1=t2

I‘z [" t2=t3

I‘]_UI‘Z I" t1=t3

1., F fh=ts
2. Fl }_ tl-:tz

3.Tyull, F ¢ =1s

A..5. Application of a term to a theorem [AP_TERM]

r i_ t1:t2

F'EFté =t

I.I‘}_tl:tz
2. Ftti=tt
3.0 F it =11,

A..6. Application of a theorem to a term [AP_THM]

T i" tl'—:tz

T }" t1t=t2

lfl’t1=t2
2. "‘tlt:tlt
3T F tt=1¢

30

t

[Hypothesis]
[REFL]
[SUBST 1,2

[Hypothesis]
[Hypothesis]
[SUBST 1,2]

[Hypothesis]
[REFL]
[SUBST 1,2]

[Hypothesis]
[REFL]
[SUBST 1,2

oo W

Ne

. Modus Ponens for equality [EQ_MP]

Pl‘_t1:t2 I‘Z}—tl
T,UT, F ¢,

.I‘l }" tlztz
.I‘g I_ t]_
LIyul, oty

.8. Implication from equality [EQ_IMP_RULE]

I‘ I" t1=t2

I‘l’_tljtz FI"‘tthl

Tt =t

Lt F oty

Tyt F ot

Tkt ot

D' Fity=t

tzl—t'z

N R

Tk 8Dt

T F it DtyandT F £, D4

. T-Introduction [TRUTH]

T

. F T=((z. z) = (\z. 2))
k(0 2) =g 2)) =T
. F Oz 2) = (As. 2)
CFT

31

[Hypothesis]

[Hypothesis|

[SUBST 1,2] °

[Hypothesis]
[REFL]
[EQ_MP 1,2]
[DISCH 3]
[SYM 1]
[REFL]
[EQ_MP 5,6]
[DISCH 7]

[4,8]

[Definition of T]

[SYM 1]
[REFL]
[EQ_-MP 2,3]

A..10. Equality-with-T elimination [EQT_ELIM]

'Het=T
'+t
LT Fit=T
2T T=t
3. T
4. T F ¢

A..11. Specialization (V-elimination) [SPEC]

T'F V.t
' F t[t'/]

L]

[Hypothesis]
[SYM 1]
[TRUTH]
[EQ-MP 2,3]

t[t' /z] denotes the result of substituting ¢' for free occurrences of z in ¢, with

the restriction that no free variables in #' become bound after substitution.

l. F V=(AP.P=(z.T)) [INST_TYPE applied to the definition of V]
2.7 F V()iz. t) [Hypothesis]
3.T + (AP. P = (\z. T))(Me. t) [SUBST 1,2]
4. + (AP. P = (Az. T))(Az. §) = ((Az. t) = (Az. T)) [BETA_CONV]
5.7 F (s t) = (Az. T) [EQMP 4,3]
6.7 + Az t)t'=(Az. T) # [AP_THM 5
7. F (Mz.) ' = t[t'/1] [BETA_CONV]
8. T I t[t'/z] = (\o. t) ¢ [SYM 7]
9.T b t[t'/z] = (Az. T) ¢ [TRANS 8,6]
0. F Qo T) ¢ =T [BETA_CONV]
1T - t[t')g] =T [TRANS 9,10
12. T+ ¢[t'/z} [EQT_ELIM 11]

A..12. Equality-with-T introduction [EQT_INTRO]

1. F Vb by (b D by) D (b D b1) D (b = by) [Axiom]
2. F Vb (£ Dby) D (by Dt) D (¢ =by) [SPEC 1]
3. F (oT)o(To)d(t=T) [SPEC 2]
4. F T [TRUTH]
5. FtOT [DISCH 4]
6. F(Tot)d(E=T) [MP 3,5]
7.T F i | [Hypothesis|
8.T TOt [DISCH 7]
9.7 F¢=T [MP 6,8]
A..13. Generalization (V-introduction) [GEN]
Mkt
' - V.t

o Where z is not free in T'.

IL.T F ¢ [Hypothesis]
2.T F ¢t=T [EQTINTRO 1]
3.T F (Az. £) = (Az. T) [ABS 2]
4. F V(z. §) =V()z. t) [REFL]
5. F V=(AP.P=(\z.T)) [INST_TYPE applied to the definition of V|
6. F Y(Az. t) = (AP. P = (Az. T))(Az. t) [SUBST 5,4]
7. F (AP. P =(Xz. T))(Az. t) = ((Az. t) = (Az. T)) [BETA_CONV]
8. b V(Az. t) = ((Az. £) = (Az. T)) [TRANS 6,7]
9. F ((Az. t) =(A2. T)) =VY(z. T) [SYM 8]
10. I' + V(Az. §) [EQ-MP 9,3]

A..14.

Simple a-conversion [SIMPLE_ALPHA]

= (AZEI. t 231) = (Azg. t IEQ)

¢ Where neither z; nor z, occur free in t.

33

1. F Qzpotz)e=tx [BETA_CONYV]
2. F sy tm) o=tz [BETA_CONV]
3. Ftz=(Az,. t) [SYM 2]
4, F Azt o) z= (A2 t x,) o [TRANS 1,3]
5. F (Az. (Azy. t 21) z) = (Az. (Az2. £ 33)) [ABS 4]
6. F Vf.(dz. fa)=f [Appropriately type-instantiated axiom]
7. F Az (Azy. t 2)z) = Az L3y [SPEC 6]
8. (A (Aza. t 25)) = Aza. £ 35 [SPEC 6]
9. F (Azy. ¢ @) = (Az. (Azy. t 7y)2) [SYM 7]
10. F (Azyp. t 31) = (Az. (Azg. t 5)x) [TRANS 9,5]
1. F (Azy. t zy) = (Az,. £ 25) [TRANS 10,8]

A..15. p-conversion [ETA_.CONV]

F (A t2) =t o

e Where z' does not occur free in ¢ (we use z' rather than just z to motivate
the use of SIMPLE_ALPHA in the derivation below).

1. FVf.(Qz. fa)y=Ff [Appropriately type-instantiated axiom]
2. F (Az.tz)=t [SPEC 1]
3. F (A2, t7') = (\z. t x) [SIMPLE_ALPHA]
4. F (M.t)=t [TRANS 3,2]

A..16. Extensionality [EXT]

' Ve.lyz=t 2

' =1
e Where z is not free in I', ¢; or {,.
I.T FVe.tyz=t 2 [Hypothesis]
2.7 Fthz=tx ' [SPEC 1]
3.T + (Mz. ¥) = (Az. £, x) [ABS 2]
4. F Az tyz) =1 [ETA_CONV]

34

5. F ty = (Az. ¢) [SYM 4]
6. T F ¢t =z &) [TRANS 5,3]
7. F (Az. bty z) =1, [ETA_CONV]
8.7 F ¢, =t, [TRANS 6,7]

A..17. e-introduction [SELECT_INTRO]

'k ity

I' F ti(ety)
1. v VP z. PzD P(e P) [Suitably type-instantiated axiom]
2. b bty Dti(e ty) [SPEC 1 (twice)]
3T F &4ty [Hypothesis]
4.7 F (e ty) [MP 2,3]

A..18. g-elimination [SELECT_ELIM]

Iy F ti(ety) Foy tyv 8
ryul, + ¢
e Where v occurs nowhere except in the assumption ¢; v of the second hy-
pothesis.
1.0, v F £ [Hypothesis]
2., F tyvDt [DISCH 1]
3.0, - Yu. fuDt [GEN 2]
4.7, F (e ty) Dt [SPEC 3]
5. I F ti(e ty) [Hypothesis]
6. Tyul', ¢ [MP 4,5]

A..19. Z-introduction [EXISTS]

I F #ts]
I' + Jz. ¢z

o Where #,[t,] denotes a term f; with some free occurrences of #, singled

out, and ¢[z] denotes the result of replacing these occurrences of ¢; by =,
subject to the restriction that = doesn’t become bound after substitution.

35

F (e t]2))ts = talta] [BETA_CONV]

1.
2. F tylts] = (Aa. ti[z])ts [SYM 1
3.T F #t,] [Hypothesis]
4. T F (Az. 4[=z])ts [EQ-MP 2,3]
5.7 F (Ma. ti[z])(e(As. ti[z]) [SELECT_INTRO 4]
6. I 3=AP. P(c P) INST_TYPE applied to the definition of J|
7. F 30z tifz]) = (\P. P(e P))(As. ty[z]) [AP_THM 6]
8. F (AP. P(e P))(\=z. t;[z]) = (Az. t1[z])(e(Az. t1[=])) [BETA_CONV]|
9. b 3z tya]) = (Az. 4[s])(e(Az. t[2])) [TRANS 7,8
10. F (Az. t[=])(e(Ae. t1]z])) = I(Az. ty[x]) [SYM 9]
11. T F 3z, t4(z]) [EQ-MP 10,5]

A..20. 3J-elimination [CHOOSE]

Fl F dz. t[:C] Fz, t['U] ot
Flurg ot !

e Where t[v] denotes a term ¢ with some free occurrences of the variable
v singled out, and t[z] denotes the result of replacing these occurrences

of v by =, subject to the restriction that z doesn’t become bound after

substitution.
1. F 3=)P. P(¢ P) [INST_TYPE applied to the definition of J]
2. F 3z t[z]) = (\P. P(e P))(rz. t{z]) [AP_THM 1]
3. Ty F 3z t[z]) [Hypothesis]
4.T, + (AP. P(e P))()z. t[z]) [EQ-MP 2,3]
5. F (AP. P(e P))(Xz. t[z]) = (Az. t[z])(e(Az. t[z])) [BETA_CONV]
6. 'y F (Az. t[z])(e(Az. t[z]) [EQ_-MP 5 4]
7. F (Az. tz))v = t[o] [BETA_CONV]
8. F t[v] = (Az. t[z])v [SYM 7]
9. Ty, tlo] F ¢ [Hypothesis]
10. Ty F to) D¢ [DISCH 9]
11. Ty + (Az. t{z])v D ¥ [SUBST 8,10]

36

12. Ty, (\z. t[z])v + ¢ [UNDISCH 11]
13. T, UT, F ¢ [SELECT_ELIM 6,12]

A..21. Use of a definition [RIGHT_BETA_AP]

' F t=2zy -z U2y, ..., 2]
T F tt- by =t[ts,..., 0]

o Where none of the ¢; contain any of the z;.

1.T F ¢t =Xz 2. ¥'[zy,...,2,] [Suitably type-instantiated hypothesis]
2. F bty by =(Azg - . Uy, .oy zn)) E1- o 8 [AP_THM 1 (n times)]
3. F (Azy vz Wz, oy mp)) £y by = PlE, .., 4] [BETALCONV (n times)]
4T bttty =t[t,..., 0 [TRANS 2,3]

A..22. A-introduction [CONJ]

' ¢ Ty
nurl, F & At
I F A =Xby by Vb (b1 D (b2 D b)) Db [Definition of A]
2. bt Aty=Vb (i D(t,D5) Db [RIGHT_BETAAP 1]
3.4, D, Db) F ¢, D (1, Db) [ASSUME]
4. T, F & [Hypothesis]
5T, 4D Db) F 8,00 [MP 3,4]
6.7, F ¢, [Hypothesis]
7.T,UT,, ;D (Db F b [MP 5,6]
8.TyUT, (4, D (t,Db) Db [DISCH 7]
9. T UL, F Vb. (D2 D0)) Db [GEN 8]
10. [;UT, b ¢ A [EQ.MP (SYM 2),9]

A..23. A-elimination [CONJUNCT1, CONJUNCT2]

't At
'+t | A e

37

T b W N =

F AN =)\bl bg. Vb. (b1 D (bz D) b)) :)b
}“ tl A thVb (tlD(thb))Db

B A o PRV

Tk Vo. (t, D (2 D0) Db
T FEF@D@EDH)DY
Lt By

o F Dt

. E D@2 DtH)

A

T F (Dt D)) Dty
Ll F oty

o AR 7}

Dt Dty)

N A S

I F ¢ andT F ¢,

. Right V-introduction [DISJ1]

'kt
' -4 vi

F oV =Adby b V. (b D) D (b D0) Db

R V=Y (&D0) D (Db Db
T F
Db F Db

T, t,ObF b

I,tDbF (B2Db8)Db

T E (D) D(@Db) Db
LRV (4Db8)D(Db)Db
B A ARV

38

|Definition of A]
[RIGHT_BETA_AP 1]
[Hypothesis]
[EQ-MP 2,3]
[SPEC 4]
[ASSUME]
[DISCH 6]
[DISCH 7]

[MP 5,8

[SPEC 4]
[ASSUME]
[DISCH 11]
[DISCH 12

y [MP 10,13]
[9,14]

[Definition of V|
[RIGHT_BETA_AP 1]
[Hypothesis]
[ASSUME]

[MP 4,3]

[DISCH 5]

[DISCH 6]

[GEN 7]

[EQ-MP (SYM 2),8]

fa—y

A..26.

10.
11.

. Left V-introduction [DISJ2]

| A i
F'Ft Vi

Fdy Via=Vb(tiDb)D(,Db) Db

B A o 2%

Db F Db

T, D0 F b

Ik (220 Db

T FE#Db)D(E:Db0) Db
TR VL (@ Db)D(D8) Db

[Definition of V]
[RIGHT_.BETA_AP 1]
[Hypothesis]
[ASSUME]

[MP 4,3]

[DISCH 5]

[DISCH ¢}

[GEN 7]

39

' -4 Vi [EQ_-MP (SYM 2),8]
V-elimination [DISJ_CASES]
' -t Vi Iy, & B 8 Ty 82 F 8
‘ Furur, F ¢
BV = Aby b VB (b D) D (b Db) Db [Definition of V]
Fity Via=Vb.(tiDb)D({Db)Db [RIGHT_BETA_AP 1]
N AR o VAN [Hypothesis|
I' FVb. (44 D0)D (2 D0) Db [EQ-MP 2,3]
TR D)D) D [SPEC 4]
Tyt B2 [Hypothesis]
Ty b Dt [DISCH 6]
LTUly B ((2D8) D [MP 5,7]
Ty, B [Hypothesis]
Ty bty Ot [DISCH 9]
rur,url, ¢ [MP 8,10]

00276

—

o e S S . T S S
D ~J S T AW N = O

© ® N e s oA W W

Classical contradiction rule [CCONTR]

T, -t + F
T F ¢

F~=Xb.bDF
.k —t=tDF
T, =t FF

I F ~t>F

T (tDF)DF

t=FF t=F
I't=F F (FOF)DF
FFF

FFDOF

T, t=F+ F

. FF=Vbb

D, t=F F Vb. b

Iy t=F F ¢

V. (b=T) VvV (b=F)
L @=T)V (t=F)
=T kFit=T

=T F ¢

S A ol /

40

[Definition of —|
[RIGHT_BETA_AP 1]
[Hypothesis]

[DISCH 3]

[SUBST 2,4]
[ASSUME]

[SUBST 6,5]
[ASSUME]

[DISCH 8]

[MP 7,9]

[Definition of F|
‘[SUBST 11,10]
[SPEC 12}

[Axiom]

[SPEC 14]
[ASSUME]
[EQT-ELIM 16]
[DISJ_CASES 15,17,13]

B. Predefined Theories

We describe below how the various non-primitive theories in HOL can be defined.

B.1. The theory rrop

To define pairs in HOL we introduce a new theory prop with parent BooOL
which contains the definition of the binary type operator prod. Values of type
(01, 02)prod represent pairs whose first component has type o; and whose second
component has type o,. We will define an infix “«” of type a—f—{a, f)prod such
that if £;:0y and ty:05 then (f;,%2) is a pair with first component ¢, and second
component ;.

The pair (¢,:01, t;:0,) will be represented by the function Az y. (z = £,)A(y = ¢,)
which has type o;—0,—bool. We thus define (o, f)prod to be isomorphic to the
subset of @—@— bool consisting of those functions f which have the property that
F Jab. f=Ary. (z=a)A(y=0).

If we define the constants Mk_Pair and Is_Pair by:

F Mk.Pair = dab. Az y. (z=0a)A(y=0")
F Is_Pair = Af.Jab. f =Mk Pairab

then we can formally define the type (o, 8)prod as follows:
1. The representing type is a—gG—bool. .)
2. The subset predicate is Is_Pair.
3. F 3f.Is_Pair f because + Is_Pait(Az y. (x = ez":a. T) Ay = ey":f. T))
4. The representation function is R'ép_Pair:(a,ﬁ)prod—>(a——>ﬂ~—>boo])

Making this type definition introduces the axiom:

F (One_One Rep_Pair) A (Onto_Subset Rep_Pair Is_Pair)

Types of the form (o}, 02)prod will henceforth be written as oy x0,. If we define:
F Abs_Pair = Inv Rep_Pair
then we can define the usual pairing operations by:

F $, = Az, Ay:0. Abs_Pair(Mk_Pair z y) (, is an infix)
F Fst = Ap:axpB.ex. dy. p = (z,¥)

41

F Snd = Ap:axpf. ey. 3z. p = (z,9)
It follows from these definitions that:

F Vz y. Fst(z,y) ==
F Vz y. Snd(z,y) =y
F Vp:axB. p= (Fst p, Snd p)

B.2. The theory ~um

We now sketch out how numbers can be defined. The idea is tha.t num will be
represented by the subset of ind consisting of Zero_Rep and all elements of the

form Suc_Rep” Zero_Rep. It would be nice if we could simply define:
F 1s_.Num = Xgz. (z = Zero_Rep) V In. z = Suc_Rep" Zero_Rep

but we can’t because Suc_Rep"” Zero_Rep isn’t a term (and even if it were the
superscript n presupposes numbers have already been defined). The trick we use

is the following:)
F Is.Num = Az. VP. (P Zero_Rep) A (Vy. P y D P(Suc_Rep y)) D Pz
It is straightforward to show from this definition that:

F Is_Num Zero_Rep
F Vz. ls_Num z D Is_-Num(Suc_Rep z)

We can now define the type num as follows:
1. The representing type is ind.
2. The subset predicate is Is_Num.
3. F 3Jz.Is_Num z because F Is_Num Zero_ée;-).
4. The representation function is Rep_Num:num-—»ind.

To show that the type num defined this way is in fact the type of numbers we

outline how Peano’s postulates can be proved as theorems. These postulates are:

e There is a number 0.

LS

e There is a function Suc called the successor function such that if n is a

number then Suc n is a number.

42

¢ 0 is not the successor of any number.
o If two numbers have the same successor then they are equal.

o If a property holds of 0 and if whenever it holds of 2 number then it also
holds of the successor of the number, then the property holds of all numbers.

This postulate is called Mathematical Induction.
To define 0 and the successor function Suc it is useful to first define the inverse to

the representation function Rep_Num.

F Abs_ Num = Inv Rep_Num

We can then define:

F 0 = Abs_Num Zero_Rep
I Suc = Abs_Num o Suc_Rep o Rep_Nurh

Peano’s postulates follow from these definitions. We will only sketch the proof of
this. The first two postulates hold because 0:num and Suc:num—num. Because
we chose Zero_Rep not to be in the range of Suc_Rep we can prove the following

theorem which formalizes the third i)ostula,te:
F Vm. =(Suc m =0) .-

Because Suc_Rep is one-to-one we can prove the following formalization of the

forth postulate:
F Vm n. (Suc m = Suc n) D (m = n)
The fifth postulate, Mathematical Induction, follows from the definition of Is_Num.

F VP:num—bool. P 0 A (Vm. P m D P(Sucm))DVm. P m

The numerals 1, 2, 3 efc. are defined by:

F 1 = SucO

F 2 = Suc(Suc 0)

F 3 = Suc(Suc(Suc 0))
. .
L

Because Suc is one-to-one these denote an infinite set of distinct values of type

nuin.

43

B.3. The theory priv_reo

The usual theorems of arithmetic can be derived from Peano’s postulates. The
first step in doing this is to provide a mechanism for defining functions recursively.

For example, the usual ‘definition’ of + is:

FO+m = m
F (Suc m) +n = Suc(m + n)

Unfortunately this isn’t a definition. In order to convert such recursion equations

into definitions we need the Primitive Recursion Theorem:

F Voo, Vfia—num—a. 3fun:num—o.
(fun 0==z) A
(Vm. fun(Suc m) = f(fun m)m)

The proof of this theorem from Peano’s postulates is well known and was straight-
forward to do in the HOL system. As the details are fairly tricky (and boring) we
have relegated them to Appendix C. To show that the Primitive Recursion The-
orem solves the problem of defining + one specializes it by taking z to be An. n
and f to be Af' a'. An. Suc(f' n), this yields:

F 3fun. (fun 0= (An. n)) A
(Vm. fun(Suc m) = (Af' «'. An. Suc(f’' n)) (fun m) m)

which is equivalent to:

F 3fun. (fun 0 n=mn) A '
(fun(Suc m)n = Suc(fun m n))

Thus, if we define 4 by:

F + = efun.Vmn. (fun O n=n) A
(fun(Suc m)n = Suc(fun m n))

then it follows from the axiom for the ¢-operator that:

}—' 04+n =n
F (Suc m)+n = Suc(m + n)

as desired.

44

The method just used to define + generalizes to any primitive recursive defini-

tion. Such a definition has the form:

funOzy -+ 2, = fizy - 2z,

fun (SUC m) Ty o Ty = f2 (funmwl ? x")mwl e,

where fun is the function being defined and f; and f, are given functions. To

define a fun satisfying these equations we first define:

 Prim_Rec = Az f. efun. (fun 0 =g) A
(Vm. fun(Suc m) = f(fun m)m)

It then follows by the axiom for the e-operator and the Primitive Recursion The-

orem that:

F PrimRecz fO = z
F Prim_Rec z f (Suc m) = f (Prim_Recz f m) m

A function fun satisfying the primitive recursive equations above can thus be
defined by:

F fun = PrimRec fy \fmazy -~ 3. o (f 21 - Zp) mzy -)
An example of a primitive recursion in this form is the definition of +:

F 4+ = Prim_Rec (Azy. 1) (Af m z,. Suc(f z))
This can be expressed more compactly as:

F + = Prim_Rec | (\f m. Suc o f)

The HOL system automatically converts primitive recursive equations into defi-
nitions using Prim_Rec, and then proves that the constant so defined satisfies its

‘defining’ equations.

B.4. The theory arirameric

The theory ariraMmETIC, Which is a descendant of PRIM_REG, contains the defini-
tions of standard arithmetic functions and relations. These include the primitive
recursive infixes +, — and X which are defined so that:

F (04+n=mn) A ((Suc m)+ n = Suc(m + n))
45

F (0—n=0) A ((Suc m)—n = ((m < n) — 0| Suc(m — n)))
F (0xn=0) A ((Suc m) x n=(m x n)+n)

The division function is an infix / defined by:
F m/n = ez.m=nxg=

This satisfies:
dz.m=nxz F m=nx(m/n)

The arithmetic relation < is defined in the theory priM_REC (see Appendix C), the
other relations are defined in ARITHMETIC by:

Fm>n = (n<m)
Fm<n = (m<n)V (m=n)
Fm>n = (m>n) VvV (m=n)
The HOL system has many built-in elementary consequences of these definitions,

they are proved when the system is constructed from its source files.

B.5. The theory ust

The theory LisT contains the definition of a unary type operator list. Values of
type o list are finite lists of values of type 0. The standard list processing functions

are also defined in visT, these are:

Nil : o list

Cons : a— (o list)—(« list)
Hd : (a list)—a

Th: (a list)—(o list)

Null: (o list)— bool

The definitions of these functions (which are given later) ensures that they satisfy

the usual ‘axioms’, namely:

F Null Nil
F Vz I. =(Null(Cons z)
F Vz l. Hd(Cons z) = =

46

F Vz I Tl(Cons z {) =1
F Vi. Cons(Hd I)(TI 1) =1

In addition we want lists to have the following property which is analogous to

induction for numbers:

F VP. (P Nil) A (V. (P 1) D Vs. P(Cons z 1)) DV Pl

We allow the following alternative notation for lists: the empty list Nil can be
written as [] and a list of the form Cons ¢;(Cons ¢, ---(Cons £, Nil)---) can be

We will represent lists of type o list by pairs (f,n) where f is a function of
type num—o, and n is a number giving the length of the list. The idea is that

the head (Hd) of such a list will be f(0) and the tail (TI) will be represented by
((An. f(n +1)),n —1). The Cons-function is represented by Cons_Rep which is
defined so that:

- ConsRep & (f,n) = (M. (i =0) > o | f(i — 1)), n+1)

In order that equality (i.e. =) has the right meaning on lists we require that if
(fi,n) and (f2, n) represent lists and have the property that:

then (f1,n) = (f2,n). We thus define the subset predicate Is_List by:
F Is_List = Ap:(num—a)xnum. Vi. (z > (Snd p)) D ((Fst p) i = ez:.T)

Thus if + Is_List(f:o,n) then for ¢ > n it will be the case that f i = ez:0.T,
we use the g-operator to chose an arbitrary (but fixed) value. It follows from this
definition that:

F Is_List(fi,n) A
Is_List(f2, n) A
(Vi. 6 <n)D(frt=fa1))D
((fi,n) = (f2rn))

The formal definition of o Iist is:

47

1. The representing type is (num—a)x num.

2. The subset predicate is Is_List.

3. F dp. Is_List p because + ls_List(()\i:nz{m. ez T), 0).

4. The representation function is Rep_List:x 1ist—->((num—>a)><ngm).

In order to define the list processing functions it is convenient to first define the

inverse to Rep_List:
F Abs_List = Inv Rep_List
using this we can now define:

I Nil = Abs_List((Ai:num. ez:0.T),0)

I Cons = Az:a L list. Abs List(Cons_Rep = (Rep_List I))
F Hd = Mo list. ex. 3'. I = Cons z I

- Tl = Mo list. el'. 3z. 1= Cons z I

F Null = Ao list. I = Nil

We leave it to the reader to check that these definitions work (admission: I've

not checked the details myself yet — the version of the theory risT in the HOL

system currently has the list ‘axioms’ as axioms).

48

C. The Primitive Recursion Theorem

In this appendix we outline a proof of the Primitive Recursion Theorem. The

goal is to prove:

F Voo, Viio—num—o. Afun:pum—a.
(fun 0=1z) A
(Ym. fun(Suc 'm) = f(fun m)m)

It turns out to be sufficient to prove a slightly weaker result called the Simple

Recursion Theorem, this is:

F Vzio. Vfio—a. Afuninum—a.
(fun 0=2z) A
(Vm. fun(Suc m) = f(fun m))

To establish this we explicitly construct the function fun from z and f by defining
a constant Simp_Rec that can be proved to satisfy:

F Vm z f. (Simp_Rec z f 0 = z) A
(Simp_Rec z f (Suc m) = f(Simp_Rec z f m))

Defining Simp_Rec and showing it has this property is the hard part of the proof.

Here now is the actual sequence of theorems generated using the HOL system.
Note that, unlike TPS [Andrews et al.] or the Boyer-Moore theorem prover [Boyer
& Moore], the HOL system is not fully automatic. To generate the theorems that
follow the user has to tell the system how to do the proofs. The language used for
giving this advice is ML [Gordon et al. (78)].

To define Simp_Rec we need to use the less-than relation <. The natural def-
inition of < is by primitive recursion, however until we have shown that such
recursive definitions are sound we cannot use them. The following non-recursive

definition of < works (note that it is higher order).
Fm<n = 3P (Vi. P(Suci) DPi) A Pm A =(P n)

From this it is routine to use Peano’s postulates to deduce the following elementary
lemmas about <. These lemmas are not intrinsically interesting, they are just the

ones needed to fill in the defails of the proof of the Primitive Recursion Theorem

49

that T omit below. I list them here as they might be helpful to some enthusiastic

reader who wants to generate these omitted details as an exercise.

Vm n. (Suc m = Suc n) = (m = n)
Vn. =(n < n)
Vmn.(Sucm)<nDdDm<n

Vn. =(n < 0)

0 < (Suc 0)

Vm n. m < n D (Suc m) < (Suc n)

Vn. n < (Suc n)

Vm n. m < n>m < (Suc n)
Vmn.m< (Sucn) D (m=n) vV (m<n)
Vmn. (m=n) V (m < n)Dm< (Suc n)
Vmn.m< (Sucn) = (m=n) vV (m<n)
VYm n. m < (Suc n) D =(m =n) D (m < n)
Vn. 0 < (Suc n) :

Vn. (Suem=n)DdDm<n

Vn. =(Suc n = n)

Vm n. (m=n)D ~(m < n)

Vm n. m < n D -(m=n)

- T T T T T T T T T T T T T T T

In order to define Simp_Rec we first define a relation Simp_Rec_Rel, the idea
is that Simp_Rec_Rel fun = f n is true if fun behaves like the function we are

wanting to define (by simple recursion from z and f) for arguments less than n.

F Simp_RecRel funz fn =
(fun 0 =z) A (Ym. m < n D (fun(Suc m) = f(fun m)))

Using Simp_Rec_Rel we can define functions fung, funy, fung, ... such that fun,

satisfies the simple recursion equation for arguments less than n, .e.:

- Vz f o (fun, z fO=2) A
(Vm. m < n D (fun, z f (Suc m) = f(fun, = f m)))

A definition of fun, that works is fun, = Simp_Rec_Fun z f n where:
F Simp_Rec.Funz f n = efun. Simp_Rec_Rel fun z f n

Since fun, (i.e. Simp_Rec_Fun z f n) ‘works’ for all arguments less than n, and

since n is always less than n + 1, it follows that the function fun defined by

50

fun n = An. fun,q; n works on all arguments. This fun is just Simp_Rec z f

where:
 Simp.Rec ¢ f n = Simp.Rec_Fun z f (Suc n) n

To formally verify the argument above we first use the definition of Simp_Rec_Fun

and the property of the e-operator to prove:

F (3fun. Simp_RecRel fun z fn) =
((Simp_Rec.Fun z f n 0 =gx) A
(Vm. m < n D (Simp_Rec_Fun z f n (Suc m) =
f(Simp_Rec_Fun = f n m))))

By induction on n one can show:
F Vz f n. 3fun. Simp_Rec_Rel fun z f n

and hence:

F Vz f n. (Simp_.RecFunz f n0=2z) A
(Vm. m < n D (Simp_Rec_Fun z f n (Suc m) =
f(Simp_Rec_Fun z f n m)))

This shows that the functions fung, fun;, fun,, ... exist and have the necessary

properties, namely:

F Vo fn fun,z f0 = =
F ¥Yman. (m <nD(fun, z f (Sucm) = f(fun, z f m)))

Next we must show that if n < m; and n < m, then fun,, n = fun,, n. An

induction on n yields:

FVaommyz fon<mgD
n < my D
(Simp_Rec_Fun z f m; n = Simp_Rec_Fun z f my, n)

From the definition of Simp_Rec, and the following property of <:

F Vm.m < (Suc m) A m < (Suc(Suc m))

51

one can use the properties of fun, to establish:

 Vz f. (Simp_Rec z f 0=1z) A
(Vm. Simp_Rec z f (Suc m) = f(Simp_Rec z f m))

The Simple Recursion Theorem follows directly from this.

To prove the full Primitive Recursion Theorem we define:
F Prim_Rec_Fun z f = Simp_Rec (An. z) (Afun n. f(fun(Pre n))n)
where Pre is defined by:
F Prem = ((m =0)— 0] en. m=Suc n))
Using:
F (en.m=n)=m
it is easy to show:
F (Pre 0 =0) A (Vm. Pre(Suc m) =m)
We conclude the proof by defining:
F PrimRecz fm = Prim_Rec_Fun z f m (Pre m)
and then using the Simple Recursion Theorem to prove:

F Vz f. (Prim_Rec z f 0 ==z) A
(Vm. Prim_Rec z f (Suc m) = f(Prim_Rec z f m)m)

The Primitive Recursion Theorem follows directly from this.

Q.E.D.

52

