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Abstract

Routing on the Internet is policy-based, meaning that each node is free to decide how to assign
costs to paths. This freedom is important since the nodes areautonomous, competing organiza-
tions whose path preferences may be dictated by external factors (such as economic or political)
rather than simply by path length. Although shortest-path routing is well-understood, little is
known about the complexity of policy routing. The only knownalgorithms for policy routing
use routing trees – for each destination, construct a routing tree and forward packets along it.

A negative result of Griffin et al. shows that routing tree-based algorithms (including the
Internet routing algorithm, BGP) may not converge when arbitrary policies are used, and de-
ciding whether they will is NP-complete. Yet there are no better algorithms known for policy
routing; one possible reason is that the problem is much harder than shortest-path routing.

We study the complexity of policy routing withforbidden-setpolicies – each node specifies
a set of forbidden nodes and wants to route on paths that avoidthem. We begin by proving
some new intractability results and reviewing known ones about routing tree-based algorithms.
We show that routing trees are both impractical (they may notexist) and intractable (deciding if
they exist is NP-complete) for forbidden-set policies on tree-like networks. We also prove the
first communication complexity results for deciding if stable routing trees exist – for general
policies, we show that communication exponential in the network size is needed. This implies
that routing trees are a bad choice, even for some simple policy routing problems.

We describe the first compact forbidden-set routing schemesthat do not suffer from non-
convergence. For degree-d n-node graphs of treewidtht, our schemes use spaceÕ(t2d) bits per
node; a trivial scheme usesO(n2) and routing trees usẽO(n) per node1. We also show how to do
forbidden-set routing on planar graphs between nodes whosedistance is less than a parameterl.
We prove a lower bound on the space requirements of forbidden-set routing for general graphs,
and show that the problem is related to constructing an efficient distributed representation of all
the separators of an undirected graph. Finally, we considerrouting while taking into account
path costs of intermediate nodes and show that this requireslarge routing labels. We also study
a novel way of approximating forbidden-set routing using quotient graphs of low treewidth.

1These results have since been improved and extended [CT07]
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CHAPTER 1

Introduction

1.1 Introduction

A fundamental task for any communications network is routing – the process of discovering
paths between nodes in the network and using them for communication. Without a path con-
necting two nodes, they cannot send packets to each other andso the problem of deciding
reachability is crucial to any routing algorithm. The basicjob of any routing algorithm is to
allow nodes to route on paths having low cost – but what do we mean by a low-cost path? The
usual view of routing is to assign weights to edges, and definethe cost of a path as the sum of
its edge costs. This is known as the shortest-path routing problem.

We study a problem motivated by routing in networks having the following properties:

1. There is no centralized control, so all decisions should be made usinglocal information.

2. The nodes areautonomous, meaning they are free to make their own independent deci-
sions (we shall explain later what these decisions are).

3. The network is large, so nodes cannot store a piece of information for every other node,
i.e. we wanto(n) space per node.

The Internet is an example of such a network – each node may be an independent orga-
nization with its own economic aims, possible competing with other organizations to provide
connectivity in the network. We shall not be interested in the economics of Internet routing, but
we shall be interested in the routing problems that such a situation creates. We begin by de-
scribing at a high level, how Internet routing is done. Lateron, we shall use this as an abstract
model for routing in which we can prove various results.

The main protocol used for routing on the Internet is known asthe Border Gateway Protocol
(BGP). It works roughly as follows: a node advertises to its neighbours the route it currently
uses to each destination. A node with many neighbours will thus learn about many routes to
some destinationj. It then selects one of these routes as the route that it will use to send data to
j; subsequently, it can advertise this route to all of its neighbours. This process repeats until the
set of routes stabilises (and so the protocol converges), and each node discovers at least one route
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8 Chapter 1. Introduction

to every destination (if such a route exists). Since there may be many possible routes to choose
from, a crucial decision a node must make is route selection:given all the currently available
routes to a destinationj, which one should it choose? In the early days of the Internet(when it
was known as ARPANET), each node simply chose theshortestavailable path [MW77]. In this
case, the algorithm we have just described can be seen as a distributed algorithm for solving
the shortest-path problem, and indeed it is possible to showthat this algorithm will converge in
finite time and every node will discover the shortest path to every destination.

However, today’s Internet no longer consists of machines owned and run by a single organ-
isation; instead it consists of independent competing organisations whose routing preferences
are influenced by external factors other than path length, such as commercial relationships with
other organizations in the network. For this reason, shortest-path routing is often not appro-
priate or desirable (the shortest path fromu may go via another organization thatu wishes to
avoid). BGP allows nodes complete freedom to pick routes according to localrouting policies,
and this leads us to thepolicy routingproblem – each node has a policy that defines how it
assigns costs to paths, and each node wants to route on paths that are of low cost to itself. Very
little is known about the complexity of policy routing, in contrast to the problem of shortest-
path routing, which is very well-understood. Our aim is to develop an understanding of policy
routing, and how to design good algorithms for routing with specific classes of policies.

1.2 Chapter 3: Routing trees

We begin by discussing a simple but widely-used method of routing, that we shall refer to as a
‘routing tree’-based scheme. Imagine that we want to send packets on shortest paths between
nodes. Arouting treefor a nodev is simply a spanning tree rooted atv. Imagine that we con-
struct a forest of routing trees, one for each node in the network. Then to route to a destination
v, we find its routing tree and forward the packet along the edges of the tree until it reaches the
root. The set of shortest paths to each nodev is a routing tree forv. Therefore we can construct
the forest by running an efficient distributed shortest-path algorithm, and storing at each node
the parent node for each routing tree. This scheme uses spaceO(n) at each node for a network
of n nodes (from now on, we shall usen to denote the number of nodes).

For routing in autonomous networks with no centralized control, we need our routing trees
to satisfy an additional property, calledstability. A routing tree isstableif no node in the tree
can switch to a lower cost path without creating a cycle in thetree. Throughout the thesis, we
shall assume that stable routing trees are the only ones thatwe can use for routing. The reason
for this is that if the nodes are autonomous, then given the choice between a path of high cost
and a path of low cost to a destination, we have to assume that they will pick the low cost
path for routing to that destination. The collection of shortest paths to some node has a useful
property, sometimes referred to as the principle of optimality: any subpath of a shortest path is
a shortest subpath. This property implies that a shortest-path routing tree will always be stable,
if all nodes prefer shorter paths over longer paths. In modelling policy routing, we shall assume
that each nodeu has a policycu that assigns a nonnegative costcu(P ) to each pathP . Clearly,
it is possible to construct a set of policies so that the principle of optimality no longer holds. In
this case, it is natural to ask if we can still construct stable routing trees.

Griffin et al. [GSW02] answered this question in the negative.Furthermore, they showed
that given a set of policies (encoded in a particular way) anda network, it is NP-complete to
decide whether there exists a stable routing tree to some fixed destination. This intractability
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result is particularly surprising because it models how routing actually happens on the Internet
– not only is it possible that the BGP algorithm may not converge to a solution (i.e. a set of
stable routing trees), but it is NP-complete to decide if it will do so. Why then do we still use
BGP? The main answer is that it still works ‘in practice’, but as the Internet grows and we
become more reliant on it as a means of communication, this answer will eventually not be a
good enough one.

In light of this hardness result, there are two natural ways in which we might hope to attack
the problem, if we wish to construct useful algorithms for the policy routing problem. One di-
rection is to restrict the class of policies allowed in the hope that the reduction in expressiveness
will permit an efficient algorithm. Another direction is to restrict the class of networks.

Feigenbaum et al. [FKMS05] investigated the first direction. They studied the simple class
of next-hop preferenceswhere the cost of a path depends only on its next-hop. They showed that
a stable routing tree always exists and so deciding solvability is trivial. Gao and Rexford [GR00]
suggested that next-hop preferences capture the effect of ASes having different commercial
relationships with neighbouring ASes. However, there are many desirable classes of policies
that cannot be expressed in terms of next-hop preferences. For example, the government of
countryX may want to avoid any path that goes through some other country Y , perhaps because
X is afraid thatY may do bad things to its packets, or because it does not wantY to know
who it is communicating with. This motivates theforbidden-set routingproblem, introduced
by Feigenbaum et al. [FKMS05]: each nodeu has a forbidden setS(u) ⊆ V (G) of nodes,
and the costcu(P ) of a pathP from u is the number of nodes it contains fromS(u), i.e.
cu(P ) = |S(u) ∩ P |. In addition to being a relevant and interesting class of routing policies,
the problem is interesting from a graph theory point of view,since there is no pathP from u to
v with cu(P ) = 0 iff S(u) separatesu andv in G.

In Chapter 3, we further the study of routing trees for the policy routing problem. Our main
results are following.

• We show that deciding if there exists a stable routing tree where the nodes use forbidden-
set preferences is NP-complete, even on bounded treewidth graphs. This shows that even
if we severely restrict both the class of policyand the class of networks, deciding solv-
ability is still intractable. This rules out the possibility of using a single routing tree for
policy-based routing, even in simple cases.

• We show that a small change in policy can give a huge change in complexity of deciding
solvability – it is trivial for next-hop preferences but NP-complete for two-hop prefer-
ences. We conjecture that there exists a dichotomy theorem for SPP solvability, i.e. for a
given class of policy, it is either NP-complete or trivial.

• We prove the first communication complexity results for solvability; in particular, any
distributed algorithm must communicate2Ω(n) bits over at leastΩ(n) edges in the worst-
case. We also prove lower bounds for the class of forbidden-set preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally check if the
current path assignment is a stable routing tree. We show anΩ(n) lower bound on the
proof size and give a proof labeling scheme of sizeO(n), hence this is tight in the worst
case.

These results suggest that routing trees are not a good idea for policy routing, even for simple
networks (bounded treewidth) and simple policies (forbidden-set).
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1.3 Chapter 4: Towards compact forbidden-set routing

In Chapter 4 we forget about using routing trees, and try to develop a model that will allow us to
construct efficient routing schemes for the forbidden-set routing problem. The results of Griffin
et al. [GSW02] show that for policy routing, it may be impossible to construct a stable routing
tree and so it is not always possible to route on lowest-cost paths using this method.

Consider the following simple (non-tree-based) scheme for policy routing. Each nodew
stores a table where the entry(u, v) specifies the next hop fromw on the path fromu to v of
lowest cost tou. When a nodeu wants to send a packet to destinationv, it writes into the header
of the packet the string〈u, v〉. Now when some nodew receives this packet, it looks up the entry
〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost path
to each destination. However, the downside is that each router now storesO(n2) entries in its
local routing table, which is too demanding in a large network. With a routing tree, all the
sources whose paths pass through the same nodew to the same destinationv must agree to use
the same path fromw and therefore each node can storeO(n) entries. However, we know that
stable routing trees are not guaranteed to exist, so we cannot always route on lowest-cost paths
(even though the path clearly exists in the network!).

The above scheme can be seen as a simple instance of the following model of routing. Each
node is assigned a data structure (called its routing table)and a label, which identifies the node
to other nodes. Routing is then done as follows: if nodeu wants to route tov it writes v’s
label into the packet header. Nodes can then use their routing tables andv’s label to decide how
to forward the packet through the network. This model is known ascompact routingand was
introduced in a series of papers by Peleg and Upfal [PU89] whoshowed how to do stretch-k
routing usingnO(1/k) bits per label. Cowen [Cow99] showed how to route on stretch-3 shortest
paths using̃O(n2/3) bits per node1. These are both substantial improvements on theO(n) space
required by simply using routing trees. Indeed, a routing scheme is said to becompactif the
space requirement at each node iso(n), i.e. sublinear in the number of nodes in the network.
For more details about localized and compact data structures for shortest-path routing, we refer
the reader to the excellent survey paper by Gavoille and Peleg [GP03]. In fact, it is known that
compact routing is almost-optimal for approximate shortest-path routing: Thorup and Zwick
[TZ01b] have given a scheme that routes on paths of stretch three (a path has stretchk if its
length is within a factork of optimal) using routing tables of sizẽO(n1/2) andO(log n)-bit
labels. By a proven conjecture of Erdos, related to the girth of a graph, this space requirement
is optimal to within logarithmic factors.

The question we wish to answer is the following: for the special case of forbidden-set rout-
ing, can we do better than spaceO(n2) per node, while still being able to route onall forbidden-
set-avoiding paths? We answer this in the positive by constructing a compact routing scheme
that routes on the shortest pathu− v that avoidsS(u). Our main results are the following. Let
k be the size of the largest forbidden set, i.e.k = maxu |S(u)|, and letd be the degree ofG.

• We show how to do forbidden-set routing on trees usingO(k log n) bits per node. How-
ever, the problem on trees is simple since a setS is a separator ofu, v in T iff at least one
element ofS lies on the unique path betweenu, v.

• For the class of bounded cliquewidth graphs, we can construct a forbidden-set routing
scheme usingO(dk log2 n) bits per node and labels of sizeO(log n) bits. However, the

1f(n) = Õ(g(n)) if ∃c ≥ 0 such thatf(n) = O(g(n) logc n)
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S(b) = {e, a}

Figure 1.1 : The only good path from a to g is marked in bold. The same path in reverse is not
a good path from g to a

hidden constant may be a tower of exponentials in the cliquewidth, making the scheme
quite impractical, but nevertheless hinting at the existence of more efficient schemes.

• For graphs of treewidtht, we give a forbidden-set routing scheme usingO(t2dk log2 n)-
bit labels.

• We give a space lower bound ofΩ(n) bits per node for any forbidden-set routing scheme
in general graphs.

We argue that for policy-based routing on the Internet, compact routing schemes are bet-
ter than using routing trees. Since no routing trees are everconstructed, our routing schemes
can send packets on all lowest-cost paths between nodes, whenever they are reachable in the
network. In contrast, packets can be sent only if a stable routing tree exists where the source
node is not assigned the empty path (and deciding if such a tree exists is NP-complete even
with forbidden-set policies on bounded treewidth graphs).So far nothing is known about the
viability of compact routing schemes for policy routing. Inparticular, it may be that the space
requirements are higher thanΩ(n) per node. The idea of using compact routing on the Internet
has been suggested elsewhere. For example, Krioukov et al. [KFY04] suggest that existing
compact routing schemes perform excellently for Internet-like topologies. However, this ig-
nores the freedom offered by policy routing, which is the main attraction of BGP. Until there
exists a scheme that can handle policy routing (even for restricted policies such as forbidden-
set), there will remain no viable alternative to BGP. We believe that our algorithms take us an
important step closer towards this goal, and also provide some interesting and difficult questions
along the way.

1.4 Chapter 5: Handling intermediate nodes

In the previous chapter, we constructed forbidden-set routing schemes under the assumption that
intermediate nodes will always forward packets, even if thepath on which they are forwarding
the packets is costly to them. We call a pathgoodif all its subpaths have zero cost. An example
of this is shown in Figure 1.1. Note that for shortest-path routing this is not an important
concern, because every subpath of a shortest path is itself ashortest path. The problem of
routing on good paths can be seen to model a common situation in BGP routing: if nodes
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only advertise paths of zero cost (to themselves), then no node will ever discover a non-good
path. It is important to note that this ‘goodness’ property is implicit in stable routing trees –
if u has a lower cost path available than its current one then it will choose it, regardless of the
preferences of other nodes that may need to route throughu (although this may be restricted by
the requirement that the new path does not create a cycle). Since we are interested in compact
routing schemes, we ask ourselves the following question: what difference does routing on only
good paths make to the complexity of routing schemes for the forbidden-set routing problem?

In Chapter 5, we show that the answer is somewhat negative – taking into account the costs
of intermediate nodes makes the problem much more difficult.Let k be the size of the largest
forbidden set, i.e.k = maxk |S(u)|. Our main results are the following.

• We show that if the forbidden sets are of size at mostk then on trees, labels of size
Ω(
√

n + k log n) are required to decide if there is a good path between two nodes. This
should be compared with theO(log n) bound shown in Chapter 4 for simply routing on
zero-cost paths to the source node.

• We prove an almost-optimal̃O(
√

kn) upper bound and show various time-space tradeoffs
for centralized versions of the problem.

• We also show that routing can be done usingÕ(k)-bit routing tables and labels, but a
packet may traverseΩ(n) edges before being returned if a good path does not exist.

Our results imply that it may not be practical to construct forbidden-set routing schemes that
take into account costs incurred by intermediate nodes, unless we are willing to sacrifice features
such as the ability to decide if there exists a good path before sending the packet.

1.5 Chapter 6: Approximating forbidden-set routing

We finish by considering an approach toapproximatingforbidden-set routing. We partition
the network into connected clusters and instead of choosingarbitrary subsets of nodes, the
forbidden sets are a subset of these clusters. This has the effect of avoiding whole clusters
rather than individual nodes. We define the problem of obtaining a cluster graph with good
graph-theoretic properties, and motivate the problem of obtaining a cluster graph with bounded
treewidth. We show that if we can construct a cluster graph having small treewidth, then we can
apply our forbidden-set routing schemes from Chapter 4 to it.This may be of interest when the
network lends itself naturally to clustering.

We begin by considering an approach inspired by the work of Feigenbaum et al. [FKMS05]
– they considered a relaxed version of shortest-path routing where each link has a number of
objective values associated with it, representing for example its delay, its bandwidth and other
metrics. All nodes agree on these values, in the same way thatall nodes agree on the weights
of edges for shortest-path routing. Each node has an individual cost function, which is a convex
combination of the objective values assigned to edges (for example, one node may be interested
in paths minimizing the sum of delays, while another may be interested in paths minimizing
another metric). They showed that using a small number of routing trees (instead of a single
routing tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does
not immediately imply a space-efficient routing scheme, though. We shall show how to use
their construction to build a space-efficient compact routing scheme with a small increase in
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the approximation factor. We can then observe that this multiple objective cost problem can be
seen as a special case of clustering the network and assigning costs to clusters. Since we are
interested in forbidden-set routing, it is natural to ask ifwe can cluster the graph so as to obtain
efficient forbidden-set routing algorithms for it.



CHAPTER 2

Preliminaries

In this chapter, we give some useful preliminary definitionsand background to areas and basic
results that we shall frequently refer to.

2.1 Graph theory

We assume familiarity with basic concepts in graph theory; see [Wil86] for a good reference
text on graph theory. We shall model the network by an undirected simple graphG = (V,E)
havingn nodes andm edges. The size of a graph is the number of nodes in the graph. Given
a graphG, its node set is denotedV (G) and its edge setE(G). The degreeof a nodeu in
G is denoted bydegG(u) and themaximal degreeof a node ofG is denoted by∆(G). The
neighbourhoodof a nodeu ∈ V (G) is denoted byNG(u) = {v ∈ V (G) : {u, v} ∈ E(G)} and
the neighbourhood of a set of nodesS ⊆ V (G) is denoted byN(S) =

⋃
s∈S N(s)\S. We shall

drop the subscripts when it is clear which graph we are referring to. Thetransitive closure, or
reachability graphof a graphG is denoted byG∗.

A path is a sequence of nodes such that from each of its nodes there isan edge to the next
node in the path, and no nodes are repeated. Thelength of a path is the number of edges
contained in the path. Acycle is a path, except that the start and end nodes are the same. A
graph isacyclic iff it contains no cycles of length> 1. We shall denote the empty path byǫ.
If P = v1, . . . , vk andQ = vk, . . . , vr thenPQ = v1, . . . , vr is the concatenation ofP andQ
(ǫP = P = Pǫ). A Hamiltonianpath is one that visits each node of the graph exactly once. A
graph that contains a Hamiltonian path is called Hamiltonian. The distance fromu to v in G is
the length of the shortest path fromu to v and is denoted bydG(u, v).

A separator(cut) is a set of nodes (edges) whose removal disconnects the graph into con-
nected subgraphs. A cut is denoted by(X,Y ) whereX,Y ⊆ V (G) and thevalue(or size) of
the cut is the number of edges needed to partition the graph into (X,Y ). A graph isk-connected
(k-edge-connected)iff it remains connected after removing anyk − 1 nodes (edges). A graph
is k-connected iff it containsk node-disjoint paths between any two nodes. Theconnectivity
κ(G) of a graphG is the minimum number of nodes needed to disconnectG. By convention,
Kn has connectivityn− 1 and a disconnected graph has connectivity 0.

14
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Figure 2.1 : An example of a graph and a tree decomposition of width 2

2.1.1 Graph layouts

A linear layout, or layout, of an undirected graphG = (V,E) with n nodes is a bijective
functionφ : V → {1, . . . , n}. Given a layoutφ of a graphG and an integeri, we define the set
L(i, φ,G) = {u ∈ V |φ(u) ≤ i} and the setR(i, φ,G) = {u ∈ V |φ(u) > i}. We shall useL(i)
andR(i) whenφ andG are obvious. Theedge cutat positioni of φ is defined as

Θ(i, φ,G) = |{{u, v} ∈ E|u ∈ L(i) ∧ v ∈ R(i)}|.

A common way to represent a layout is to align the nodes horizontally, mapping each nodeu
to its positionφ(u). Thecutwidthof a layout ismaxi∈{1,...,n} Θ(i, φ,G) and thecutwidthof a
graph is the minimum cutwidth over all possible layouts ofG, denoted bycw(G).

2.1.2 Treewidth

Many problems have efficient algorithms when restricted to trees. The notion of treewidth,
introduced by Robertson and Seymour [RS86] as part of their work on graph minors, captures
the idea that a graph may be ‘tree-like’. It is often possibleto construct efficient algorithms for
difficult problems, when restricted to small treewidth graphs. We shall make frequent reference
to the concept of treewidth, so we define it here for reference. A tree decompositionof a graph
G = (V,E) is a pair(X,T ) whereT = (I, F ) is a tree and each node ofi of T is associated
with a subsetXi ⊆ V with the following properties.

1. TheXi’s cover the nodes ofG, i.e.
⋃

i∈I Xi = V ;

2. For every edge{v, w} ∈ E, there is some nodei ∈ T wherev, w ∈ Xi;

3. For everyv ∈ V , the set{i ∈ I|v ∈ Xi} is a connected subtree ofT .
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Thewidth of a tree decomposition(X,T ) is defined asmaxi∈I |Xi| − 1. The treewidthof
a graphG is the minimum width over all tree decompositions ofG, and we shall denote it by
tw(G). For example, trees have treewidth one and cliques have unbounded treewidth. Figure
2.1 shows an example of a graph and a tree decomposition. In some cases,T will be considered
to be a rooted tree, in which case a specific node ofT shall be its root. A tree decomposition
with T a rooted tree is called a rooted tree decomposition. For a node i ∈ I, we call the setXi

thebagof i. More details about the history and uses of treewidth can be found in the paper by
Bodlaender [Bod93b].

2.2 Labeling schemes

Implicit in any distributed algorithm is a representation of the network, and many network
representations are inherently global; for example each node is assumed to know the entire
network. A common distributed representation of a graph is to assign nodes unique identifiers
from {1, . . . , n} and then store at each node the identifiers of its neighbours.In such a scheme,
answering a query such as ‘what is the distance betweenu andv?’ may require access to data
distributed across the entire network, e.g. by running a shortest path algorithm. Another idea
is to use a completely local representation of the network, for example having each node know
the entire graph. The problem is that both these representations are inefficient: the first has high
query time and second has high space requirements at each node.

Labeling schemes were introduced in [KNR92]. Assume thatP (x1, . . . , xk) is some graph
property on nodesx1, . . . , xk that we want to answer, e.g.P (x1, x2) = d(x1, x2) orP (x1, . . . , xk) =
1 iff the subgraph induced byx1, . . . , xk is a clique. AP -labeling scheme(L, f) consists of
two things:

1. A marker algorithmthat takes as input the graph and assigns a labelL(v) to each nodev
(L is called alabelingof the nodes);

2. A decoder algorithmf such thatf(L(x1), . . . , L(xk)) = P (x1, . . . , xk).

Thesizeof a labeling is the maximum size of a label given to some node.For a family of graphs
G we denote a labeling scheme by(L, f), whereL is the labeling computed by the marker on
the particular graphG ∈ G andf is the decoder algorithm (that depends only on the marker
algorithm, not the particularG ∈ G).

The labelingL can be viewed as a distributed data structure, with the decoder as a distributed
algorithm that answersP (x1, . . . , xk) using data only stored atx1, . . . , xk. If the labels are short
then they can be given as part of the query, by using them in place of the traditionallg n-bit
node identifier (e.g. in packet headers). We shall be interested in themaximumlabel size rather
than thetotal label size since the graph given to the marker algorithm is unknown and so any
node could be assigned a label of the maximum size, which would require that each node has
sufficient memory to store it. Clearly, a good bound on the individual label size gives a good
bound on the total size but not the other way around. It is alsoclear that labels of unrestricted
size can be used to encode any desired property (by storing the entire graph). For a labeling
scheme to be useful the labels should be short (say of length polylogarithmic in the number of
nodes), and the time to answer a query given the labels be small (also polylogarithmic).
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2.2.1 An example – adjacency labeling

We now give an example of adjacency labeling in trees, to givea better understanding of the
local nature of these schemes. Adjacency labeling schemes were first introduced in [KNR92] for
the implicit representation of graphs. In particular, a labeling scheme using2 log n-bit labels
for the class of trees was given, which we now describe. Givenan n-node treeT , labels are
assigned to nodes as follows. Choose a root and associate a unique identifierID(v) ∈ {1 . . . n}
with each nodev ∈ T , then assign a nodev with parentw the label(ID(v), ID(w)) (the rootr
is assigned the label(ID(r), 0)). Now, given two labels(ID(v), ID(w)) and(ID(v′), ID(w′)),
the nodesv, v′ are neighbours iff eitherID(v) = ID(w′) or ID(v′) = ID(w). The scheme can
be extended to families of graphs having separators of bounded size such asc-decomposable
graphs (e.g. bounded genus graphs and bounded treewidth graphs).

Another basic result in the area of graph labeling concerns distance labeling schemes. A
distance labeling scheme is a labeling scheme(L, f) wheref(u, v) is the distance between two
nodesu, v in the graph. It has been shown [KNR92] that a class of2Ω(n1+ǫ) n-node graphs must
use adjacency labels (and thus distance labels) whose totalcombined length isΩ(n1+ǫ) bits.
Hence, at least one label must be ofΩ(nǫ) bits. More specifically, for the class of all unweighted
graphs, any adjacency (and hence distance) labeling schememust assign some node a label of
sizeΩ(n) bits.

Given theΩ(n) lower bound for general graphs, a large amount of research has tackled the
problem of constructingapproximatedistance labeling schemes. Thorup and Zwick [TZ01a]
give a distance labeling scheme with approximation factor2k−1 usingÕ(kn1/k) bits per label,
which is essentially optimal by a 1963 girth conjecture of Erdos that has been proven for certain
small values ofk includingk = 2.

2.3 Communication complexity

In Chapters 3 and 4 we shall make use of results from communication complexity. Therefore,
we give some basic concepts here but for further informationand details of proofs, we refer the
reader to the excellent and interesting book [KN97] by Kushilevitz and Nisan.

Let X,Y, Z be arbitrary finite sets and letf : X × Y → Z be an arbitrary function. There
are two players, Alice and Bob, who wish to evaluatef(x, y) for some inputsx ∈ X and
y ∈ Y . The difficulty is that Alice only knowsx and Bob only knowsy. Thus, to evaluate the
function, they will need to communicate with each other. Thecommunication will be carried
out according to some fixed protocolP (which depends only on the functionf ). The protocol
consists of the players sending bits to each other in turn, until the value off(x, y) can be
determined. We are usually only interested in the amount of communication between Alice and
Bob, so we ignore the internal computations each of them makes. Thus, Alice and Bob are
assumed to both have unlimited computational power. Thecostof a protocolP on input(x, y)
is the number of bits communicated on that input. The cost of aprotocolP is the worst case
cost ofP over all inputs(x, y). Thecommunication complexityof f is the minimum cost of a
protocol that computesf .

Although we assume that the players have unlimited computational power, the way that the
choices are made at each step of the protocol can have an impact on the amount of communica-
tion required. Thedeterministiccommunication complexity of a functionf , denotedD(f), is
the minimum cost of any deterministic protocol that computesf , i.e. one that makes no random
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choices and computes the answer deterministically. Therandomizedcommunication complex-
ity is defined similarly, except that the protocols used by the players are randomized, and the
result must be known with a sufficiently high probability. The book [KN97] gives several exam-
ples of functions whose deterministic complexity isΩ(n), yet there exist randomized protocols
that use onlyO(log n) bits of communication (for example, the set equality function).

We shall also be interested in nondeterministic communication protocols. In a nondeter-
ministic protocol, we can imagine the presence of an all-powerful prover who knows the inputs
of both players (and hence the answer). Therefore, the communication required is equiva-
lent to that needed to verify a nondeterministic guess of theanswer. For example, consider
the disjointness functionDISJ on n-bit strings whereDISJ(P,Q) = 1 iff P ∩ Q = ∅. If
DISJ(P,Q) = 1 then there exists an indexi such thatPi = Qi. The prover can tell both
playersi and they can verify thatPi = Qi with O(log n) bits of communication. We define
the nondeterministiccommunication complexity of a functionf is the minimum cost of any
nondeterministic protocol that verifies thatf(x, y) = 0 for anyx ∈ X, y ∈ Y , and is denoted
N0(f). Similarly, theco-nondeterministiccommunication of a functionf is the minimum cost
of any nondeterministic protocol that verifies thatf(x, y) = 1 for anyx ∈ X, y ∈ Y , and is
denotedN1(f).

2.4 Boolean circuits

In Chapter 3 we make use of boolean circuits and boolean functions in proving some of our
lower bound results for the complexity of finding stable routing trees. Results on the complexity
of boolean functions also underly some of our results in the last section of Chapter 3. Therefore
we now give a brief overview of the main (mostly simple) concepts that we shall use; for more
details and related results in this deep and interesting area, we refer the reader to the book by
Clote and Kranakis [CK02].

A boolean circuitis a directed acyclic graph with labeled nodes as follows:

• Inputnodes have fan-in 1 and are labeled with a variablexi or a constant in{0, 1}.

• Gatenodes have fan-ink > 0 and are labeled with a boolean function∧(AND), ∨(OR),
¬(NOT) on thek inputs. In the case that the label is¬, the fan-in is restricted to be 1.

• Outputnodes have fan-out 0.

A boolean formulais a boolean circuit having only one output gate. The edges ofa circuit are
calledwires. Thedepthof a circuit is the maximum distance from an input to an outputgate.
It is important to note that any circuit can be modified, by using de Morgan’s laws, to push all
the negations to the input gates, without changing the depthof the circuit. Therefore, we will
assume wlog that all gates are one of∧,∨, and that the negated versions of each variable are
available as inputs, i.e.x1 andx1. Similarly, adjacent gates of the same type can be combined
together, so we assume wlog that a circuit contains levels alternating between∨ and∧ gates.
A Πk

d formula is a boolean formula of depthd where the top level gate (the output) is a∧ gate,
and with fan-in bounded byk. A Σk

d formula is defined similarly, except that the top level gate
is a∨ gate.Π1 andΣ1 formulae are single literals and correspond to input gates in the circuit.
Figure 2.2 shows an example of aΠ3 formula.
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Figure 2.2 : A Π3 formula ((x1 ∧ x2) ∨ (x2 ∧ x3)) ∧ ((x2 ∧ x3) ∨ (x2 ∧ x3))



CHAPTER 3

Routing Trees

In this chapter we consider policy-based routing using routing trees. The chapter is structured in
two parts. In the first part, we use the formalism of routing algebras and the stable paths problem
to show hardness results on the computational complexity ofpolicy-based routing using routing
trees, even for simple policies. These extend other resultsdue to Feigenbaum et al. [FKMS05]
and Griffin et al. [GSW02].

In the second part of the chapter, we consider the stable paths problem as a problem in
distributed computing and prove the first communication complexity lower bounds for it. In
the final section, we describe the notion of proof labeling schemes, which provide a distributed
representation of a solution that is locally verifiable. We prove a lemma that lets us use our
communication lower bounds to give lower bounds on the proofsize of deciding solvability of
a stable paths problem.

The aim of this chapter is to convince the reader that routingtrees are not practical for
policy-based routing, even for seemingly simple policies such as forbidden-set routing.

3.1 The stable paths problem

That BGP is not guaranteed to converge was first observed by Varadhan et al. [VGE96]. More
recently, Griffin et al. [GSW02] introduced thestable paths problem(SPP) as a tool to model
the instabilities that can arise from using routing tree-based algorithms such as BGP. They use
the following motivating analogy:If Dijkstra’s algorithm solves the shortest path problem then
BGP solves the stable paths problem.

We now describe the stable paths problem. LetG = (V,E) be an undirected rooted graph,
with the root having identifier 0. All nodes wish to establisha path to the root. For each node
v ∈ V , the set ofpermitted pathsfrom v to the root is denoted byΣv. Each node has a total
order(Σv,⊑v) over its permitted paths. We assume that for allv, Σv contains the empty path
ǫ, andǫ ⊑v σ for all σ ∈ Σv, i.e. any nonempty path is preferable to the empty path. Astable
paths instanceis writtenS = (G, Σ,⊑) whereΣ = {Σv} and⊑= {⊑v}.

A path assignmentπ is a function that assigns a permitted pathπ(v) ∈ Σv to each node
v ∈ V (the root’s assigned path isπ(0) = ǫ0). We say that a pathP = v1 . . . vr0 assigned to
v = v1 is consistentwith a path assignmentπ if for all vi ∈ P, vi 6= v implies that the path

20
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Figure 3.1 : An instance of the stable paths problem. The nodes’ path preferences are ordered
from most preferred to least preferred, and the routing tree representing the solution is marked
with bold edges.

π(vi) is a subpath ofP . A path assignmentπ is valid if for all v, the pathπ(v) is consistent with
π. Intuitively, the assigned paths of a valid path assignmentare confluent, i.e. they form a tree
rooted at node 0.

Valid assignments are important as this is how routing takesplace over the Internet; routers
examine the destination of incoming packets and simply forward them to the next hop on the
route to that destination, which is the parent in the tree rooted at the destination. The problem
is that even thoughπ may be valid, some nodev might prefer (perhaps for economic reasons)
another pathP ′ ∈ Σv to its assigned pathP = π(v). Therefore, as long asP ′ is also consistent
with π, v may (at its own will) switch to usingP ′. We say that an assignmentπ is stable at node
v if there is no other permitted path inΣv consistent withπ that v prefers overπ(v). A path
assignmentπ is stable, or is asolution toS, iff it is stable at every node. Stable routing trees
are important since we assume that the only routing trees that we can use for routing are those
corresponding to stable path assignments. A stable paths instanceS = (G, Σ,⊑) is solvable
if there exists a solution toS, and unsolvable otherwise. We can now define the problem SPP-
SOLVABILITY:

Problem SPP-SOLVABILITY
Input: A stable paths instanceS = (G, Σ,⊑).
Output: Is S solvable?

The main difference between the stable paths problem and theshortest paths problem is that
the latter always has a unique solution, while the former mayhave one, none or many solutions.
As an example, consider the network in Figure 3.1. A stable solution is indicated with bold
edges. Note that node 5 prefers path 5210 to the empty path, but the path 210 is not part of this
solution, so node 5 is assigned the empty path. It is easy to see that there is no stable solution
where node 5 is assigned a nonempty path – node 3 will always prefer (and be able to switch
to) path 30 and so node 1 will always be able to choose path 130 over 10. Therefore node 2
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will have to choose path 20 and so node 5 will be assigned the empty path. Also, note that
although node 2 prefers the path 210 to the path 20, it will never be able to use this path in a
stable solution because node 3 will always be able to choose path 30 and so node 1 will always
be able to choose path 130.

3.1.1 Results of this chapter

Compared to the shortest paths problem, very little is known about the complexity of the sta-
ble paths problem. Griffin et al. [GSW02] showed that decidingSPP-SOLVABILITY is NP-
complete for general graphs. Given this result, there are two natural ways that we could hope
to reduce the complexity. We could restrict the class of policies allowed, in the hope that the
reduction in expressiveness will permit efficient algorithms. Another direction is to restrict the
class of networks allowed, in the hope that this will allow more efficient algorithms.

Feigenbaum et al. [FKMS05] investigated restricting the policy. They studied the class
of next-hop preferenceswhere the cost of a path can depend only on the next-hop on the path.
They showed that deciding solvability is trivial since a stable routing tree always exists. Gao and
Rexford [GR00] suggest that next-hop preferences capture theeffect of ASes having different
commercial relationships with neighbouring ASes, in the sense that the cost of a path depends
only on whether the next-hop is a customer or provider etc. (they do not capturetransit policies
where the next-hop depends on the previous hop). There are many useful policies that cannot
be expressed in terms of next-hop preferences. For example,a nodeu may wish to avoid any
route that goes through nodev, perhaps becausev is a competitor who may dropu’s data or due
to some economic agreement between them. This leads to theforbidden-set routingproblem:
each nodeu has a forbidden setS(u) ⊆ V of nodes where the cost tou of a path is the number
of nodes it contains fromS(u). Forbidden-set preferences capture a fundamental yet expressive
class of routing policies, so showing that we can handle themefficiently would be an important
positive result. Our main results are the following:

• We show (by a simple extension of a result of [FKMS05]) a strongly negative result –
deciding solvability for forbidden-set preferences on bounded treewidth graphs is NP-
complete. Thus, even if we severely restrict both the class of policy and the class of
graphs, the problem of deciding solvability is still intractable. This almost certainly rules
out the possibility of using a single routing tree for policy-based routing.

• We show that a small change in policy can give a huge change in complexity of decid-
ing solvability – deciding solvability of an SPP is trivial for next-hop preferences but
NP-complete for the class of two-hop preferences. We conjecture that there exists a di-
chotomy theorem for the problem of deciding solvability, i.e. for a given routing algebra
it is either NP-complete or trivial.

• We prove that any distributed algorithm that decides if there is a set of stable paths must
communicate2Ω(n) bits across each of at leastΩ(n) edges in the worst-case. We also
prove lower bounds for the communication complexity of solvability using forbidden-set
preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally decide
whether the current routing tree is stable, and prove anΩ(n) lower bound on the label
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size. We show that this is tight in the general case by giving aproof labeling scheme
usingO(n)-bit labels.

3.2 Routing algebras

In this section we describe the formalism ofrouting algebrasintroduced by Sobrinho [Sob03].
We then describe how they naturally generate instances of the stable paths problem. This allows
us to completely separate the complexity of the policy from the complexity of the graph used.
Note that the path preferences⊑ overΣ implicitly encode information about the graphand the
policy. The advantage of using the routing algebra formalism is that it separates policy and net-
work. This will enable us to understand what makes certain policy classes hard by studying their
algebraic properties, independent from the class of graphsused. In the work presented here, we
do not study the link between algebraic features of policiesand the complexity of the SPPs that
they generate. Our main use for routing algebras is to succinctly and accurately describe the
policy classes that were are interested in studying. As related work, Chau et al. [kCGG06]
have investigated how the algebraic features of policies affect the convergence properties of
Bellman-Ford-style iterative algorithms. However, the general problem of understanding how
the algebraic properties of routing algebras relate to the convergence properties of algorithms
and their complexity is still an open problem.

We shall now introduce routing algebras. Routing algebras can be thought of as generalising
shortest-path routing in the following way. Consider Figure3.2(a): there is a path fromv to w
of weightm and nodeu has an edge to nodev of weightn, henceu has a path tow of weight
at mostn + m. Now let us generalise this as in Figure 3.2(b). Each edge hasa label l ∈ L,
and each path is described by asignatureσ ∈ Σ. We assume that there is a special ‘zero’
signatureǫ ∈ Σ (similar to the zero element of a group) that denotes the empty path. Paths are
composed using the binary operator⊕ : L × Σ → Σ (paths are assumed to begin at the root,
and are extended towards the source node). Finally, there isa totally-ordered set ofweights
(W,≤) and acost functionf : Σ → W . We can now define arouting algebraA as the tuple
A = (L, Σ, ǫ,⊕, (W,≤), f).

3.2.1 Generating stable paths problems

Routing algebras naturally generate instances of the stablepaths problem. Given a routing
algebraA and a rooted graphG with edges labelled fromL, we say thatA generates an instance
A(G) of a stable paths problemas follows. For every path from a node inG to the root node,
its signature is generated by recursively applying⊕ to the labels along the path. Every node
then ranks its paths to the root using the cost functionf , and a node prefers a pathP with
signatureσ to a pathP ′ with signatureσ′ iff f(σ) ≤ f(σ′). We can now define the problem
of solvability, restricted to SPP instances that are generated by some routing algebra. LetA =
(L, Σ, ǫ,⊕, (W,≤), f) be a routing algebra.

ProblemA-SPP-SOLVABILITY
Input: An undirected rooted graphG with edges labeled fromL
Output: Is the stable paths problem instanceA(G) solvable?
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Figure 3.2 : How path lengths are computed in the shortest path setting (a), and how path
signatures are computed in the routing algebra setting (b).

3.2.2 Next-hop routing

We now present a routing algebra for the next-hop policy routing problem. In this case, the
cost of a path can depend only on the next hop on the path. Feigenbaum et al. [FKMS05]
studied the class of next-hop preferences and showed that deciding solvability is trivial since a
stable routing tree always exists. The reason for this is that we can take the labeled rooted graph
and build a minimum weight spanning tree rooted at the root ofthe graph. Such a tree always
exists, and by the optimality property of minimum spanning trees (that every subpath of an
optimal path is also an optimal subpath), this tree includesthe minimum weight edge adjacent
to each node. The class of next-hop preferences capture the effect of ASes having different
commercial relationships with neighbouring ASes, and thismodel was suggested by Gao and
Rexford [GR00] as a policy class for BGP routing where convergence would be guaranteed.
The figure below shows a routing algebraNH for next-hop preferences. The algebra takes
weights assigned to edges (representing the next-hop preferences) and computes the cost of a
path from a node to the destination by setting the cost of the path to be equal to the cost of
the first edge on the path. This operation is implemented by the composition operator⊕, as
described in Figure 3.2.

L = N

Σ = N

W = (N,≤)

f(c) = c

l ⊕ c = l

Figure 3.3 : A routing algebra NH for the next-hop preferences routing problem

Any SPP instance generated by a next-hop preferences algebra is always solvable [FSS04],
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Figure 3.4 : The bad triangle gadget. There is no stable set of paths that form a tree rooted at
the center node, due to the cyclic preferences of the outer nodes.

thus the complexity of deciding if there exists a stable routing tree, i.e.NH-SPP-SOLVABILITY,
is trivial.

3.2.3 Two-hop routing

We now consider a class of policies that we call two-hop preferences. Here, each node can rank
paths based only on the first two hops on each path. It might seem natural that this provides a
small degree of extra expressiveness over next-hop preferences, but here we prove the surprising
result that deciding solvability of two-hop preference SPPs is NP-complete. This shows that
there is a complete change in the character of the problem in going from next-hop to two-hop
preferences, and so there must be some important property ofthe algebra that permits this.

To prove this, we make use of the following important construction of [FKMS05] known as
‘bad triangle’, which is a variation of the bad gadget construction introduced by Griffin et al.
[GSW02]. The bad triangle is shown in Figure 3.4. It is not difficult to see that this network has
no stable solution, and that the preferences can be ordered using the first two hops. Consider any
routing tree that has the center noder as its root, for exampleaa′0, cbb′0, bb′0 (we can assume
that the inner nodes all go directly to the center). Since node b prefers pathbaa′0 to bb′0, it will
switch tobaa′0 without creating a cycle. But nowc takes the path viaa, which is less preferred
than the pathcc′0, soc will switch to this path. But nowa will prefer to switch to the pathacc′0,
which will force b to switch tobb′0, which will in turn forcec to switch back tocbb′0. This
process clearly continues for ever, and for any possible routing tree. Therefore the bad triangle
has no stable routing tree to its center. However, it is important to note that if we are using the
bad triangle as part of a larger network and at least one ofa, b, c has an alternative path to the
centre (for example, using some external path) that is more preferred than any path in the bad
triangle then we say that this ‘breaks’ the bad triangle. It can be seen that this allowsall other
nodes in the triangle to have paths to the centre node using edges only from the bad triangle.

We can now prove our main result for two-hop routing preferences.

Theorem 3.2.1 LetA be a routing algebra for two-hop preferences. ThenA-SPP-SOLVABILITY
is NP-complete.

Proof. The proof is by a reduction from the 3-SAT problem, which is known to be NP-complete
[GJ90]. Given a 3CNF formula, we shall take the clauses and encode them into bad triangle
gadgets, one for each clause (for this reduction we shall ignore the nodesa′, b′, c′ in the bad
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Figure 3.5 : Encoding a 3-SAT instance into an SPP instance using 2-hop preferences. The
SPP is solvable iff the formula is satisfiable.

triangle). We shall then take these gadgets and connect themto the destination via a long chain
of nodes. The network is shown in Figure 3.5. The clauses are encoded by the edges between
the bad triangles and theyi nodes as follows. For each nodev in a bad triangle, there is an
edge(v, yi) iff v represents either of the literalsxi or xi. Assumev represents the literalxi.
Thenv prefers any path through the bad triangle to any path containing xi, and vice-versa ifv
represents the literalxi. We claim that there is a solution iff the 3-CNF formulaf is satisfiable.

Let (v1, v2, v3, c) be a bad triangle, with nodec at the centre (the bad triangle can be con-
structed using 2-hop preferences). Assume thatv1 represents the literalxi, v2 is xj andv3 is xk.
Thenv3’s path preferences are as follows (remembering that we can only order paths based on
the first two hops):

v3 yk xk > v3 v2 c > v3 c · > v3 yk xk > v3 v1 yi > v3 v2 yj

and similarly forv1, v2 (using the bad triangle preferences). The order expresses thatv3 prefers
to route throughxk than to route through the bad triangle (the second and third items), which
are preferred to routing throughxk. The last item says thatv3 prefers to go through the bad
triangle than to escape through the otheryi nodes.

Claim 1: Any satisfying assignment forf gives a solution to the SPP instance.

Proof. Assign theyi nodes paths consistent with the satisfying assignment, as in [FKMS05].
Then each bad triangle will have at least one node that has itsmost preferred path through the
yi’s, so the other nodes can then route through their bad triangles.
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Claim 2: Every solution to the SPP instance gives a satisfying assignment forf .

Proof. We will prove that if there are no satisfying assignments then there is no solution. Iff
has no satisfying assignment then there is no assignment of paths to theyi nodes such that every
bad triangle has at least one node with its top preference path available (sincef is unsatisfiable).
Assume now that in some bad triangle, some nodev3 breaks up the triangle by going via itsyi

node. Then the other two nodesv1, v2 will prefer to route via the bad triangle rather than escape
via v3 andyi. But thenv3 would now prefer to go via the bad triangle. Hence no bad triangle
will be broken up and there is no solution.

The above claims establish thatf is satisfiable iff the SPP instance is solvable.

Remark. The original 3-SAT reduction in [GSW02, Theorem V.1] also only uses two-hop
preferences.

The above result raises several interesting questions:whydoes changing from next-hop to
two-hop preferences result in a completely different character of problem, and in general, what
makes deciding solvability of some stable paths problems hard and others easy? This is an open
problem, and something that is outside the scope of this thesis.

3.3 Forbidden-set routing

There are many natural and desirable classes of policy that cannot be expressed using next-hop
preferences, or even using two-hop preferences. For example, the government of countryX
may want to avoid any path that goes through some other country Y , perhaps becauseX is
afraid thatY may do bad things to its packets, or because it does not wantY to know who
it is communicating with. Another example is that nodes may have economic agreements to
not forward traffic for each other, and so they should avoid paths passing through each other’s
networks. This motivates theforbidden-set routingproblem, introduced by Feigenbaum et al.
[FKMS05]: each nodeu has a forbidden setS(u) ⊆ V (G) of nodes, and the costcu(P ) of
a pathP from u is the number of nodes it contains fromS(u), i.e. cu(P ) = |S(u) ∩ P |. In
addition to being an interesting class of routing policies,the problem is interesting from a graph
theory point of view, since there is no pathP from u to v with cu(P ) = 0 iff S(u) separatesu
andv in G.

We shall begin by presenting a routing algebra for the class of forbidden-set preferences,
in Figure 3.6. Applying the algebra to a graphG can be described as follows – for a directed
edgee = (x, y), let cu(e) = 1 iff v ∈ S(u), and0 otherwise. A labell ∈ L assigned to an
edgee contains two things – the first endpoint of the edge and a vector describing the costcu(e)
of the edgee to each nodeu in the network. We shall use this vector to add up the cost of a
path to each individual node, then finally project out the component that we are interested in.
A signatureσ ∈ Σ contains the first node on the path described byσ, and the cost of the path
to each node. The operator⊕ accumulates the costs by doing component-wise addition on the
cost vectors, and sets the new first node on the path. Finally,the functionf projects out the
element of the cost vector corresponding to the current firstnode on the path.

In their paper, Feigenbaum et al. [FKMS05] considered a similar problem but using costs
taken from{0, 1, 2}. They showed that deciding solvability of the resulting SPPis NP-complete.
We now show how a simple extension to this result shows thatFS-SPP-SOLVABILITY is also
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L = {1, . . . , n} × {0, 1}n
W = (Z,≤)

Σ = {1, . . . , n} × Zn

(u, c)⊕ (v, d) = (u, c + d)

f((v, d)) = dv

Figure 3.6 : A routing algebra FS for the forbidden-set routing problem

NP-complete, and hence constructing stable routing trees for forbidden-set preferences is an
intractable problem for general graphs.

3.3.1 Forbidden-set solvability is NP-complete

In this subsection we show thatFS-SPP-SOLVABILITY is NP-complete by a reduction from
Π2-SAT. In the second part of the chapter we use this reduction to characterise the commu-
nication complexity of deciding solvability by proving a lower bound on the communication
complexity of decidingΠ2-SAT. Recall that for each family of boolean circuits, there is an
associated satisfiability decision problem:

Problem Π2-SATISFIABILITY
Input: A Π2 formulaf , given as a circuit.
Output: Is f satisfiable?

The above problem is known to be NP-complete [GJ90]. We now show how to encodeΠ2-SAT
into forbidden set routing preferences. We make use of the bad triangle presented earlier for the
two-hop preferences reduction. Feigenbaum et al. [FKMS05]show how the bad triangle can be
expressed using fs-preferences: setS(a) = {a′, b, b′}, S(b) = {b′, c, c′} andS(c) = {c′, a, a′}.
It can be verified that this corresponds to the bad triangle constructs for the case of two-hop
preferences earlier, so it follows that this small network also has no stable solution.

Theorem 3.3.1FC-SPP-SOLVABILITY is NP-complete.

Proof. The proof is by reduction from 3-SAT. The proof is essentially that of Feigenbaum et
al., except that we show that we only need costs in{0, 1} instead of{0, 1, 2}. We feel that the
proof is quite important, therefore we state it in full. Given a set of variables{x1, . . . , xn} and
a set of clauses{C1, . . . , Cm}, where clauseCi contains three literalsxi1, xi2, xi3, we construct
a stable paths instance with fs-preferences, which is solvable iff the 3-CNF formulaφ = (x11 ∨
x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3) is satisfiable.

The network is constructed as in Figure 3.7 with the destination node0. Each clauseCi is
represented by a bad triangle as described above, with the three outer nodesvi1, vi2, vi3 repre-
senting the three literals of the clause. Ifvij corresponds to the literalxk, then{xk, x

′
k} is in

vij ’s forbidden set (this corresponds to settingvij ’s subjective cost ofxk to 2 in [FKMS05]). If
it corresponds toxk, then{xk, x

′
k} is in vij ’s forbidden set.

We now show that any stable solution gives a satisfying assignment to the formula. In
this case, the assignment shall consist of all the literals on the path fromyn to 0 in the stable
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Figure 3.7 : The reduction from 3-SAT to FS-SPP-SOLVABILITY

solution. Since no path can contain bothxi andxi, and every stable solution contains a path
through theyi nodes, the assignment constructed in this way is valid. Now we show that it is
also a satisfying assignment. Since each bad triangle is unsolvable, there must be at least one
node in each bad triangle that has a route to0 through theyi nodes. Each nodevjk could always
route to0 through its centrecj, using a path of cost 1, and so it only routes through theyi if this
is a path of zero cost, which is the case only if the literal corresponding tovjk is true. Since
there exists such a node for every bad triangle, every clauseis satisfied and so the assignment is
a satisfying assignment.

We now show that any satisfying assignment to the formula gives a stable solution. We can
find this stable solution by constructing a path using the true literals of the assignment, from
yn to 0. We then assign to all nodesvjk corresponding to a true literal the long route through
yn. This route has zero cost tovjk, and so it cannot strictly prefer any other route. Since the
satisfying assignment has at least one true literal in each clause, at least one node in every bad
triangle has a path of zero cost fromyn to 0, and so each bad triangle is ‘broken up’, leaving the
remaining nodes to route tor on stable paths through their bad triangle centres.

3.3.2 NP-completeness on bounded treewidth graphs

We now show that decidingFS-SPP-SOLVABILITY is NP-complete on graphs of bounded
treewidth. This implies that forbidden-set routing using routing trees is almost certainly im-
practical even for very restricted classes of graphs that appear in practice (for example, even if
we wanted to do fs-routing only on the Internet backbone and if the backbone was strongly tree-
like). This shows that the problem has a very difficult core; for comparison, many NP-complete
problems such as maximum independent set are solvable in linear time on bounded treewidth
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Figure 3.8 : A tree decomposition of the forbidden set reduction graph. The Ti represents the
nodes of the ith bad triangle, each containing 7 nodes. Since each bag contains at most 8
nodes from G, the graph has treewidth at most 7.

graphs.

Theorem 3.3.2FS-SPP-SOLVABILITY is NP-complete on graphs of treewidth at least 7.

Proof. Figure 3.8 shows a suitable tree decomposition of the graph used in the reduction of
Theorem 3.3.1 with treewidth 7, and this completes the proof(the definition of treewidth can be
found in the preliminaries in Chapter 2).

We now pause to consider the results of this chapter so far. The main message is that even
with simple tree-like networks (treewidth at most 7) and simple policies (forbidden-set), the
problem of deciding if there exists a stable routing tree remains NP-complete.

3.4 Communication complexity of solvability

In this second part of the chapter, we shall consider the stable paths problem as a problem in
distributed computing, and prove the first communication complexity lower bounds for it. We
then describe the notion of proof labeling schemes, which provide a distributed representation
of a solution that is locally verifiable. We prove a lemma thatlets us use our communication
lower bounds to give lower bounds on the proof size of deciding solvability of a stable paths
problem.

We begin by proving a communication complexity lower bound for SPP-SOLVABILITY.
The lower bound relies on a construction that gives a large set of long stable paths, and this
is based on a recursive construction of the DISAGREE gadget that was used by Griffin et al.
[GSW02] in their original reduction from 3-SAT to SPP-SOLVABILITY. The idea of the con-
struction is as follows. The DISAGREE gadget has nodesx, x and the root0. Both x andx
prefer to go through each other to reach the root, but are alsohappy to go direct to the root.
Hence there are exactly two stable states. We say that the gadget is in the configurationx if all
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Figure 3.9 : The two stable states of the DISAGREE gadget.
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Figure 3.10 : The construction 3-DISAGREE. The path preferences are recursively constructed
from right to left, with the most preferred path at the top of each list.

paths to0 pass throughx, and in the configurationx if all paths to0 pass throughx, as in Figure
3.9.

The gadgetj-DISAGREE is constructed by joining togetherj DISAGREE gadgets as fol-
lows. Let 1-DISAGREE be equal to DISAGREE, and formj-DISAGREE by adding a copy of
DISAGREE on{xj, xj} to (j − 1)-DISAGREE and using the nodexj−1 in place of the root
node. We will say that the nodesx1, x2, . . . , xj form thespineof j-DISAGREE. Figure 3.10
shows 3-DISAGREE.

Now we define the policies of the nodes inj-DISAGREE. LetΣx1 = (x1x10, x10) and
Σx1 = (x1x10, x10), as for DISAGREE. Recursively defineΣxi

andΣxi
as follows:

Σxi
=
(
xixiΣxi−1

, xiΣxi−1

)
Σxi

=
(
xixiΣxi−1

, xiΣxi−1

)

wherexiΣxi−1
is the order obtained by prefixing all the paths inΣxi−1

by xi and then adding
them in their original order. The construction is a recursive extension of DISAGREE, wherexi

prefers all paths to 0 that pass throughxi (in the order thatxi−1 prefers them) to those not passing
throughxi and vice-versa. The next lemma proves the main property of this construction.
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Figure 3.11 : The construction bad gadget

Lemma 3.4.1 The SPP defined byn-DISAGREE has2n distinct stable states where each path
has lengthn.

Proof. We show an injection between the powerset of{1, . . . , n} and the set of stable path
assignments to nodes inTn (the function is actually a bijection but we do not require this). For
a setX ⊆ {1, . . . , n}, if i ∈ X then assign theith DISAGREE gadget of the construction the
configurationx, otherwise assign it the configurationx (see Figure 3.9). It is clear that this path
assignment forms a tree rooted at the node 0, that each path through the structure has length at
leastn, and that there are2n distinct assignments (the set of configurations of the gadgets).

We show that every such assignment is stable by induction on the length of the spine. The
assignment to 1-DISAGREE is stable since it is just the gadgetDISAGREE. Assume the as-
signmentπ to j-DISAGREE specified by the injection is stable. Assume that the (j+1)th DIS-
AGREE gadget is placed in the configurationx (the casex is similar). Then nodexj+1 is
assigned the pathxj+1π(xj) and nodexj+1 is assigned the pathxj+1xj+1π(xj). Sinceπ(xj)
is part of a stable assignment, the only thing that could makethe new assignment unstable
is for the (j+1)th gadget to switch to configurationx, but this cannot happen as the assigned
configurationx is already stable.

We are now ready to prove the lower bound by an approximability-preserving reduction
from set-disjointness. We will make use of the bad gadget [GSW02], as shown in Figure 3.11.
The useful property of bad gadget is that it has no stable pathassignment, and hence no solutions
to the stable paths problem on it.

Figure 3.12 shows the network used for the lower bound. It is built by taking the bad gadget
and adding a path so that if the sets are not disjoint then the bad gadget can be broken up, and
then SPP becomes solvable.

We shall encode a large set into the path preferencesΣC of nodeC as follows. For some
setX ∈ 2{1,...,n} and an elementX ∈ X , define the pathPX asPX(i) = xi if i ∈ X and
PX(i) = xixi otherwise1. We encodeX by adding for everyX ∈ X the pathC(PX0) to ΣC , in
any order. The set of paths atC includes all the paths going to the root node 0, including those
not in the setX. However,C prefers the pathC0 (avoiding n-DISAGREE) over any path that
passes through n-DISAGREE but represents an element not inX.

1We use2S to denote the powerset ofS
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Figure 3.12 : The reduction from set-disjointness to SPP-SOLVABILITY, for n = 3 and the sets
X = {{2, 3}, {3}}, Y = {{1, 2}, {3}, {2}} ⊆ 2{1,2,3} . A stable solution is shown by the bold
edges.

The nodey3 encodes a setY in a similar way – for everyY ∈ Y we add the pathy3CPY 0.
In addition, we add toΣy3 the bad gadget pathsy3y4y2y00, y3y00, y3C0 and the empty pathǫ in
that order, so that the paths corresponding toY are preferred to any path that goes through the
centery0 of the bad gadget andy1 prefers to go through the bad gadget than taking the shortcut
pathC0.

The idea is that if there is no valid assignmentπ that is stable at nodey3 then the system
reduces to bad gadget, hence there is no assignment that is stable aty3, hence no assignment is
stable. The next lemma completes the proof by giving the reduction from the set-disjointness
problem.

Lemma 3.4.2 Consider the reduction (as in Figure 3.12), for two arbitrary setsX,Y ⊆ 2{1,...,n}.
The setsX,Y are not disjoint iff there exists a stable path assignment.

Proof. We first prove the⇐ direction: every solution gives a counterexample to disjointness.
Let π be a solution, i.e. a stable assignment whereπ(u) is the path assigned to nodeu. Then
π(y3) must pass through the DISAGREE gadget (otherwiseπ would not be a solution since one
side of the network would reduce to bad gadget). Therefore,C must have a path through the
DISAGREE gadget that it prefers to the pathC0. Hence the pathsy3π(C) andπ(y3) must be
equal, and this represents an element in the intersection ofthe two sets.

Now consider the⇒ direction: not-disjoint implies there exists a solution. If the sets are not
disjoint then there must exist some (not necessarily stable) path assignment such thaty3π(C)
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andπ(y3) are equal. By Lemma 3.4.1, there exists a path assignment thatis stable at all the
nodes inn-DISAGREE that is consistent withπ(C). Hence a stable solutionπ exists.

We say that a distributed algorithmsolvesa problem if it terminates in finite time with at
least one node knowing the answer. We do not need to consider the communication model in our
lower bounds (and so they hold for both synchronous and asynchronous models); all we require
is that some node knows the answer. In this sense, our bounds are purely information-theoretic.
In the following proof, we require that all the nodes in one part (corresponding to either Alice
or Bob) know the answer, but it also holds for the case when a single node knows the result,
since it can broadcast the result using onlyO(n) bits of communication. We can use Lemma
3.4.2 and the communication complexity of set-disjointness [KN97] to prove the following.

Theorem 3.4.3 Any distributed algorithm that computes SPP-SOLVABILITY with probability
at least2/3 must send at leastΩ(2n/2) bits acrossO(1) links in the worst case.

Proof. Let there be two players Alice and Bob where Alice knows only the setP and Bob knows
only the setQ. Partition the network into two parts by cutting the edges{C, y1}, {y0, 0}. Now
Alice and Bob can respectively construct their parts of the network knowing only their set. Now
assume that Alice and Bob run a protocol that decides SPP-SOLVABILITY with probability p.
We show that they can solve set-disjointness on sets of size2n, with the same probabilityp. It
is known that any protocol that solves disjointness on sets of sizer with probability at least2/3
must useΩ(r) bits [KN97]. Since the construction of Figure 3.12 contains2n + O(1) nodes,
this gives a lower bound ofΩ(2n/2) for networks of sizen.

Remarks. The theorem implies that any distributed algorithm must incur high congestion,
since an exponential number of bits must be sent over a constant number of edges. Assuming
that it takes one unit of time to send one bit, we also get a strong lower bound on the time
to solve the problem, since the cut between the two parts of the network is of constant size
(even assuming that all nodes are computationally unbounded). Note that if messages are of
unbounded size the number of rounds required is constant, since each node can simply send its
entire list of preferred paths.

3.4.1 Communication complexity of FS-SPP-SOLVABILITY

In this subsection we prove a lower bound on the communication complexity of deciding solv-
ability when forbidden-set preferences are used. We first extend the reduction of Theorem 3.3.1
to encode satisfiability ofΠ3 formulae. The original construction only encodedΠ2 formulae,
but it can be easily verified that if we use forbidden sets of size 2k, then this corresponds to
adding a level of AND gates at the bottom level of the circuit,i.e. Πk

3 formulae. Without affect-
ing the solvability of the construction, we can partition its nodes into two sidesA andB, with
the chain ofxi’s andyi’s in A, and half the bad triangles inA and the other half inB. We add
extra nodesy′

n, 0
′ in B and edges{y′

n, yn}, {0′, 0}, with all the bad triangles inB connecting to
y′

n instead ofyn. This ensures that the cut(A,B) contains at most two edges.
Now, any balanced partition of the clauses between two players Alice and Bob corresponds

to a balanced partition of the bad triangles as above. Therefore, any distributed algorithm
that computesFS-SPP-SOLVABILITY must communicate at leastΩ(g(n)) bits across the cut
(A,B), whereg(n) is the communication complexity ofΠk

3-SAT.
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Finally, we can replace the two edges in the cut(A,B) by two lines each ofn/2 edges
without affecting either the solvability of the construction, or the forbidden sets required. Di-
etzfelbinger [Die97] proves a version of the linear array conjecture implying that asymptoti-
cally, no distributed algorithm can do any better than to simply use these new nodes as relays,
and therefore must send at leastΩ(g(n)) bits over at leastΩ(n) edges. We shall show that
g(n) = Ω(n log n) in the deterministic case, which implies the following lower bound.

Lemma 3.4.4 Any deterministic distributed algorithm that computesFS-SPP-SOLVABILITY
must communicate at leastΩ(n log n) bits overΩ(n) edges in the worst case.

To prove this lemma, we now prove a lower bound on the communication complexity of
decidingΠk

3-SAT. Consider someΠk
3 formulaf = f1∧f2 onn variables with at mostn clauses,

and give Alicef1 and Bobf2. Nothing appears to be known about the communication com-
plexity of deciding satisfiability off .

In fact, we conjecture that in the deterministic case, nothing can beat the simple protocol of
Bob sending his whole formulaf2 to Alice. Since each clause of aΠk

2 formula can be described
with log

(
2n
k

)
= O(k log(n/k)) bits, this simple protocol uses at mostO(nk log(n/k)) bits.More

precisely, we conjecture that the following holds.

Conjecture 3.4.5 Let P be any two-party deterministic protocol that decides satisfiability of
any Πk

3 formula onn variables with at mostn gates, where the top gate is an AND, and the
gates have unbounded fan-in except for the bottom level, which have fan-in at mostk. Then
there exists a formulaf = f1 ∧ f2 such thatP communicates at leastΩ(nk log(n/k)) bits on
the input(f1, f2).

Conjecture 3.4.6 Let P be as above but forΠk
2 formulae onn variables with at mostn gates,

i.e. ink-CNF. Then the same lower bound as above holds.

We can prove the conjectures in the case thatf is a Π2
2 formula with n variables andn

clauses. For largerk > 2, the problemΠk
2-SAT is at least as hard asΠ2

2-SAT and so the same
lower bound applies. Since the trivial protocol uses communication linear ink, this means that
the trivial protocol is asymptotically optimal for deciding Πk

2-SAT with constantk.
We now state the lower bound in terms of the number of gates andwires of a boolean func-

tion as this leads to an appealing way of describing the current bounds. Any boolean function
with m wires andn gates can be described using at mostcm log n bits for some constantc, yet
we can only show a lower bound ofΩ(n log n) bits. Therefore, this gap is due to some gates
being connected to many wires (which occurs when the fan-in is large). Note thatΠk

2 formulae
with large values ofk have a large number of wires.

Lemma 3.4.7 Let P be a deterministic two party protocol for deciding satisfiability of a for-
mula withm wires andn gates. Then there exists a formulaf = f1 ∧ f2 such thatP communi-
cates at leastΩ(n log n) bits on the input(f1, f2).

Proof. We give two proofs of the lemma; the first one can only prove a lower bound of
Ω(n log n) bits but is simpler to state, and the second proof is more general and may help
to prove the conjecture in more general cases.

For the first proof, we appeal to theΩ(n log n) bits communication lower bound for deciding
st-connectivity, which was proved in [HMT88]. We can reducefrom st-connectivity to 2-SAT
as follows:
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• Make one variable for each node in the graph.

• If the edge(u, v) is in the graph, include the clause(u⇒ v), i.e. (v ∨ u).

• Also, include the clauses(s) ∧ (t).

Then the formula is satisfiable if and only if there is no path froms to t in the graph. The lower
bound in [HMT88] holds for sparse graphs (where the number ofedges is linear in the number
of nodes). It can be seen that the reduction described above produces formulae with a number
of clauses linear in the number of edges in the graph. It follows from the result of Hajnal et al.
[HMT88] that we can find a constantc such that the communication complexity of 2-SAT is at
leastcn log n, where the formulae have at mostn variables and at mostn clauses (and so they
have at mostn gates andc′n wires, for some constantc′).

The above lower bound is for 2-SAT, and we want to get a stronger bound fork-SAT, where
the number of wires isk times the number of gates. With this in mind, we give a reduction from
a partition problem that we now describe.

A partition of a setS is a set{S1, . . . Sk} of disjoint subsets, calledblocks, of S whose
union isS. We say that a partitionP refinesa partitionQ iff every block ofP is contained in
some block ofQ, i.e. ∀Pi ∈ P , ∃Qj ∈ Q such thatPi ⊆ Qj. Thejoin of two partitionsP,Q is
denotedP ∨ Q, and is the finest partitionR such that bothP andQ are refinements ofR (i.e.
R refines every partitionR′ that is also refined by bothP andQ). The problem PARTITION is
as follows:

Problem PARTITION:
Input: Two partitionsP,Q of {1, . . . , s}
Output: Are elements 1,2 in the same block in the partitionP ∨Q?

We can construct a reduction toΠ2
2-SAT as follows. Alice has a partitionP and Bob has a

partitionQ. Given a partitionP = {P1, . . . , Pk} of {1, . . . , n}, order its blocks (the order can
be chosen arbitrarily) and letP (i) = j iff i ∈ Pj. Alice then constructs a formulaf1 as follows.
For eachi ∈ {1, . . . , n} with P (i) = j then add the two clauses(yi ∨ xj)∧ (xj ∨ yi) to f1. Bob
constructs a formulaf2 in the same manner with the partitionQ, but uses variableszi in place
of thexi. Letf = f1∧f2, thenf is a 2-CNF formula andf1, f2 can each be constructed with no
communication between Alice and Bob. Now, the elements 1,2 are in the same block inP ∨Q
iff the formula(f ∧ y1 ∧ y2) is unsatisfiable.

The idea of the construction can be easily explained with an example. Consider the two
partitionsP = {{1, 3}, {2, 4}} andQ = {{1, 4}, {2}, {3}}. We construct the formulae as
follows:

f1 = (y1 ∨ x1) ∧ (x1 ∨ y1) ∧ (y3 ∨ x1) ∧ (x1 ∨ y3)

∧ (y2 ∨ x2) ∧ (x2 ∨ y2) ∧ (y4 ∨ x2) ∧ (x2 ∨ y4)

f2 = (y1 ∨ z1) ∧ (z1 ∨ y1) ∧ (y4 ∨ z1) ∧ (z1 ∨ y4)

∧ (y2 ∨ z2) ∧ (z2 ∨ y2) ∧ (y3 ∨ z3) ∧ (z3 ∨ y3).

Now we can test satisfiability off1∧ f2∧ y1∧ y2 by deciding whether 1,2 are in the same block
in P ∨ Q. The intuition is that a ‘path’ from element 1 to element 2 will force the variables
y1, y2 to take the same value in any satisfying assignment of the formula. Sincey1 is true, this
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forcesx1 to be true, which forcesy3 to be true (since 1,3 are in the same block inP ). Since
y3 is now true, this forcesz1 to be true (since the first block ofQ also contains the element 1).
This in turn forcesy4 to be true (sinceQ contains the block{1, 4}), which forcesx2 to be true.
Finally, y2 becomes true, which contradicts the clausey2 we already had, and so the formula
cannot be satisfiable. It is useful to think of thexi as communicating within the same formula
fi, and theyi as communicating between the two different formulae.

It is known [HMT88, Reference [8]] that the deterministic communication complexity of
deciding PARTITION on sets of sizes is log(Bs − Bs−1) = Ω(s log s) whereBs is thesth
Bell number. It follows that any two-party deterministic protocol that decides satisfiability of
a 2-CNF formula onn variables and withO(n) clauses, must communicate at leastΩ(n log n)
bits.

Combined with the reduction described above, this proves Lemma 3.4.4.
Remarks. Since aΠ2 formula is a special case of aΠ3 formula, with fan-in 1, the previous

lower bounds immediately apply toΠ1
3 formulae. However, there is hope that we can prove the

conjecture forΠ3 formulae, as they are more expressive thanΠ2 formulae. We have tried to
prove the conjecture for larger values ofk but without much success.

The following idea may be helpful. WithΠ3 formulae, we can express each block of a
partition of{1, . . . , n} with a single clause, rather than using 1 clause per element (as in theΠ2-
SAT reduction above). Therefore, a reduction from PARTITION to Π3-SAT can be obtained as
follows. Recall that thejth block of a partitionP is denotedPj. For each blockPj ∈ P , Alice
adds the following two clauses tof1:


xj ∨

∧

k∈Pj

yk


 ∧


xj ∨

∧

k∈Pj

yk


 .

Bob does the same forQ, using variableszi in place of theyi. The same claim holds as for the
original reduction, except that we now only use two clauses per block of each partition, whereas
the reduction toΠ2-SAT uses two clauses perelement.

We can consider the nondeterministic communication complexity of the problem, which
will be useful later. It is known [KN97] that the deterministic and nondeterministic communi-
cation complexities are related byD(f) = O(N0(f)N1(f)) (recall thatD,N0, N1 are the de-
terministic, nondeterministic and co-nondeterministic communication complexities). Lemma
3.4.7 proves thatD(Π2-SAT) = Ω(n log n), where the formula has at mostn clauses andn
variables. Observe thatN1 = O(n) (the complexity of verifying that a formula is satisfi-
able) since a satisfying assignment (if one exists) can be described withO(n) bits. Therefore,
N0 = Ω(n log n)/N1 = Ω(log n) bits.

3.4.2 A randomized lower bound

We can show anΩ(n) randomized lower bound forΠk
2-SAT by a reduction from the set dis-

jointness problem.

Lemma 3.4.8 LetP be a two party randomized protocol for decidingΠk
2-SAT. There exists an

input such thatP communicates at leastΩ(n) bits on this input.

Proof. Assume thatm = 2l is a power of two. The proof is by reduction from set-disjointness
on sets of sizem. Assume that Alice has a setP ⊆ {0, . . . ,m−1} and Bob has a setQ ⊆
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{0, . . . ,m−1}, and there exists a randomized protocolP that computesf(φ1, φ2) = 1 if φ1∧φ2

is satisfiable and0 otherwise, whereφ1, φ2 areΠk
2 formulae. Assume that the protocol has error

probabilityp.
We can associate a subsetY ⊆ {0, . . . ,m−1} with its characteristic Boolean functionfY :

{0, 1}l → {0, 1} by settingf(y) = 1 iff y ∈ Y . Alice constructs the CNF formulaφP for the
truth table offP corresponding to the characteristic function of her setP by making a clause
for every 0-entry in the table, i.e. at most2l = m clauses each of sizel. This is done as follows:
for an assignment of values to theyi’s such thatf(y1, . . . , yl) = 0, add a clause containingxi

if yi = 1, andxi if yi = 0 (each clause is a disjunction of literals). Therefore, the clause is not
satisfied iff the element does not appear inY . So, for a setting of variables corresponding to an
element inY , all the clauses are satisfied. Therefore the formulaφP ∧ φQ is satisfiable iff there
is an element common to bothP andQ, i.e. they are not disjoint. Similarly, Bob constructs the
CNF formulaφQ corresponding to the characteristic function of his setQ.

This gives a protocol to decide disjointness with the same error probabilityp. The lemma
follows since the randomized communication complexity of disjointness on sets of sizen is
Ω(n) bits [KN97].

3.4.3 Communication complexity of (Σk
2 ∧ Σk

2)-SAT

As an interesting aside we can show that the communication complexity of deciding satisfiabil-
ity of (Σk

2 ∧ Σk
2) formulae, i.e. the conjunction of twok-DNF formulae, is exponentially lower

than fork-CNF formulae whenk = O(1). This is quite surprising.
We can decide satisfiability of a formulaf1 ∨ f2 (where Alice hasf1 and Bob hasf2) using

a single bit, regardless of the complexity off1, f2. It might be tempting to blame the high
communication complexity on that fact that the formulaf is split at a conjunction rather than a
disjunction. We now show that this is not the case, by giving an efficient protocol for deciding
satisfiability off1 ∧ f2, wheref1, f2 are eachk-DNF formulae. The problem is as follows:

Problem (Σk
2 ∧ Σk

2)-SAT
Alice’s Input: A k-DNF formulaf1 onn variables{x1, . . . , xn} having≤ n clauses.
Bob’s Input: A k-DNF formulaf2 onn variables{x1, . . . , xn} having≤ n clauses.
Output: Is f1 ∧ f2 satisfiable?

Lemma 3.4.9 The deterministic communication complexity of(Σk
2 ∧ Σk

2)-SAT isO(log n), for
fixedk.

Proof. We give a recursive protocol for the conjunction of twok-DNF formulae, for any con-
stantk. We prove the existence of our protocol by inductively constructing a protocol for
deciding satisfiability of the conjunction of twok-DNF formulae, by assuming that we have a
protocol for satisfiability of the conjunction of two(k − 1)-DNFs, which (inductively) satisfies
our time bound. This will give a communication bound that depends exponentially onk.

A k-DNF formulaf is bad iff there is a set of at mostk variables so that every term off
contains as a literal one of these variables (appearing either negated or unnegated). Iff is not
bad, we call itgood. We make use of the following lemma.

Lemma 3.4.10 If f1 is a goodk-DNF andf2 is a non-emptyk-DNF, thenf1 ∧ f2 is satisfiable.
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Proof. Pick an arbitrary termt of f2. If f1 ∧ f2 is not satisfiable then every termu of f1 must
contain a variable fromt (occurring negated inu iff it occurs unnegated int). But thenf1 is
bad.

The protocol is as follows. We assume that Alice and Bob both remove any inconsistent
terms in their formulae before beginning the protocol. Alice first checks if her formula is good.
If it is, f1 ∧ f2 is satisfiable unlessf2 is empty, in which case it is unsatisfiable. They useO(1)
bits of communication to discuss this. We then do the corresponding check with Alice and Bob
switching roles. So we can henceforth assume that bothf1 andf2 are bad, so by the lemma
there is a setS1 of at mostk variables, occurring in every term of Alice’s formula and a set S2

of at mostk variables, occurring in every term of Bob’s formula. Alice now sendsS1 to Bob
and Bob sendsS2 to Alice, usingO(k log n) bits of communication in total. They now run the
protocol for(k − 1)-DNFs on the22k subproblems corresponding to fixing the variables in the
setS1 ∪ S2, trying all possible truth assignments. They output “satisfiable” if and only if one of
these runs says “satisfiable”.

For the communication complexity bound, letC(n, k) = O(k log n)+22kC(n, k−1), which
givesC(n, k) = k24k2

log n. Therefore for fixedk the protocol usesO(log n) bits.

3.5 Proof labeling schemes

Solvability of an SPP is aglobal property of the network, yet in a large network we would
like to be able to verify that the assigned routing tree is indeed a solution, by using onlylocal
information. For example, if each nodei is assigned a pathπ(i), we would like to construct
a distributed representation ofπ in order that we canlocally andverifiably check if the path
assignmentπ is stable. This is the idea of proof labeling schemes, which were introduced by
Korman et al. [KKP05].

Imagine that there is some graph propertyP that we want to verify (e.g. can the current
graph be coloured withk colours?) and that we have a candidate solution (e.g. a colouring of the
nodes) that is encoded by giving each node a local state and a label. We assume that the decoder
algorithm, when run at a nodev, can observe the state ofv and the labels ofv’s neighbours.
The decoder must be able to verifiably check if the property holds, i.e. the neighbours cannot
convince a node that the property holds if in actual fact it does not.

3.5.1 Definition

We now define proof labeling schemes as in [KKP05]. Amarker algorithmM is an algorithm
that given a graphG, assigns a labelL(v) to each nodev. For a marker algorithm and a node,
let Adj′L(v) be a set of fields, one field per neighbour. Each field corresponding to an edge
e = (v, u) contains the labelL(u). Let AdjL(v) = 〈sv, L(v), Adj′L(v)〉. Informally, AdjL(v)
contains the labels given to all ofv’s neighbours, along with the edges connectingv to them. It
also containsv’s state and labelL(v).

A decoder algorithmD is an algorithm that can be run separately at each node. WhenD is
run at a nodev, its input isAdjL(v) and its output is denoted byD(v, L). The idea is that the
decoder algorithm, when run at a nodev, can seev’s state in addition to the labels forv and all
its neighbours.

Let f be some boolean function over a family of graphsG. A proof labeling schemeπ =
(M,D) for f overG consists of a marker algorithmM and a decoder algorithmD, such that
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the following properties hold:

1. For every graphG ∈ G, if f(G) = 1 thenD(v, L(M,G)) = 1 for every nodev ∈ G,
whereL(M,G) is the labeling produced byM onG.

2. For every graphG ∈ G, if f(G) = 0 then forany labelingL there exists a nodev ∈ G
such thatD(v, L) = 0, i.e. the property cannot be verified at some point in the network.

Thesizeof a proof labeling schemeπ is the maximum number of bits assigned to some label
over all graphsG ∈ G and nodesv ∈ G. For a familyG of graphs and a functionf , theproof
sizeof f onG is the smallest size of any proof labeling scheme forf onG.

3.5.2 Proof size and communication complexity

We now prove a lemma that relates the size of any proof labeling scheme for a problem to
the communication complexity of any protocol for the same problem, when played between
two players. We combine this with our communication complexity results for the problem of
deciding solvability of a stable paths instance (SPP-SOLVABILITY) to obtain lower bounds for
the size of proof labeling schemes for SPP-SOLVABILITY.

Let f be a boolean graph property on graphsG ∈ G for some familyG (in our case later on,
f will be the property ‘is a particular routing tree onG stable?’). We shall partition the nodes
of G between two players Alice and Bob, in order to construct the two-party communication
problem associated withf andG. Let (X,V \ X) be a (not necessarily balanced) partition of
the nodes ofG. Denote byN(X,V \X)(f,G) the nondeterministic communication complexity of
the best protocol forf on the familyG, when run on the graphG and this partition of nodes. To
avoid confusion, we useAdj(X) for the neighbours ofX, andÃdj(X) = Adj(X) ∩ (V \X)
for the set of neighbours of nodes inX that are in the other side of the partition. We can now
prove the main result of this section.

Lemma 3.5.1 Letf be a graph property on a family of graphsG. The proof size off is at least

max
G∈G

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|
,

and the total label size is at leastmaxG∈G maxX⊆V N(X,V \X)(f)−O(1).

Proof. Let G ∈ G be a graph. LetL(v) be the label assigned to nodev by the marker algorithm
M , and letD be the corresponding decoder algorithm. Given a labeling ofthe nodes and
a partition(X,V \ X) of nodes, we construct a reduction showing how we can use a proof
labeling scheme forf onG to construct a two party nondeterministic protocol to solvef onG,
when the players are given nodesX andV \X.

Alice is given the nodesX and Bob is givenV \ X as in Figure 3.13, and they each non-
deterministically guess a labeling for their nodes. Note that Alice and Bob can independently
run the decoder algorithm on the nodes in their part of the graph that have no neighbours in the
other side. Therefore we can assume thatD(v, L) = 1 for all the nodes in(X \ Ãdj(V \ X))

and(V \X)\ Ãdj(X), since Alice and Bob can discuss this usingO(1) bits of communication.
Now they just need to run the decoder on the remaining nodes, as follows. Bob sends the labels
L(Ãdj(X)) to Alice who runs the decoder on the remaining nodes inX, and then Alice sends
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X (Alice) V \X (Bob)

Ãdj(X)
Ãdj(V \X)

Figure 3.13 : Illustrating Lemma 3.5.1

to BobL(Ãdj(V \X)) who runs the decoder on the remaining nodes ofV \X. They can then
discuss withO(1) bits whether the decoder failed on any node ofG, and hence computef(G).

The protocol that is described above has nondeterministic communication complexity at
most|L(Ãdj(X))|+|L(Ãdj(V \X))|+O(1) on the graphG, since the labels are communicated
by simply sending their bit string representations. It follows that for any graphG ∈ G that is
partitioned into(X,V \X),

∑

v∈V

|L(v)|+ O(1) ≥ |L(Ãdj(X))|+ |L(Ãdj(V \X))|+ O(1) ≥ N(X,V \X)(f,G),

which gives the lower bound on the total label size. For the individual label size, we can
divide the above inequality by|Ãdj(X) ∪ Ãdj(V \X)|. Therefore at least one node in the set
Ãdj(X) ∪ Ãdj(V \X) must be assigned a label of size at least

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|

bits. Finally, we take the maximum of this quantity over all graphsG ∈ G, since the size of a
proof labeling scheme is the maxmimum label size over all graphsG ∈ G.

Remarks. The bound on individual size can be improved if a smaller number of labels are
sent, since the middle term in the inequality concerns fewernodes and so the denominator can
be made smaller. A better strategy may be possible in e.g. bounded treewidth graphs.

Intuitively, since the marker algorithm can examine the whole graph in order to construct the
proof labeling, the marker algorithm can be thought of as playing the role of the ‘all-powerful
prover’ in nondeterministic complexity [KN97]. In this waythe bound on the label size fol-
lows naturally from the bound on the communication requiredfor Alice and Bob to verify a
nondeterministic guess of a solution tof(G).

The lemma implies that in order to get a good lower bound on theproof size off , we should
look for a partition involving few nodes having edges in bothsides of the partition, yet where
the functionf still has high nondeterministic communication complexityon this partition.
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3.5.3 Proof labeling schemes for solvability

We now apply the above lemma to some of our communication complexity lower bounds, to
obtain lower bounds on the proof size for deciding solvability in networks.

Lemma 3.5.2 The proof size of SPP-SOLVABILITY isΩ(n) bits.

Proof. Theorem 3.4.3 shows that we can solve disjointness onΩ(2n/2)-element sets by a re-
duction to SPP-SOLVABILITY. A closer look at the reduction shows that the SPP is solvable
iff the two sets are not disjoint. Since the decoder algorithm can only decide locally if the
graph propertyf doesnot hold (since the property holds globally iff there is no node where
it does not hold locally, i.e. there is no node that has a proofof non-solvability), we need to
consider the communication complexity of proving that twor-element sets are disjoint, i.e. the
co-nondeterministic complexityN1(DISJ) = Ω(log r) bits [KN97].

Since the reduction in Theorem 3.4.3 is from sets of sizeΩ(2n/2), it follows from Lemma
3.5.1 that the total label size is at leastΩ(n) bits. For the proof size, the network partition used
in the reduction has at mostO(1) nodes having edges in both sides and so the proof size is also
Ω(n).

The lower bound is almost tight since we can construct a prooflabeling scheme using
O(n log n) bits per label. Assume thatT = {πi} is a stable routing tree where the path
πv is assigned to nodev. Let p(v) be the parent ofv in T (p(v) = ǫ iff v is the root or
πv = ǫ, i.e. v is assigned the empty path). We construct the labelsL(v) = π(v), and the state
sv = (cv, π(v), p(v)), i.e. v’s cost function,v’s path and the parent ofv in T .

The decoder algorithm is givenAdjL(v) = 〈sv, L(v), Adj′L(v)〉 and outputsD(v, L) = 1 iff
all of the following hold, and 0 otherwise.

1. p(v) is a neighbour ofv in G (for the root, assume thatǫ is a neighbour ofv);

2. v ◦ L(p(v)) = π(v) (the paths form a confluent routing tree);

3. For all neighboursu of v in G such thatv 6∈ L(u), we havecv(L(v)) ≤ cv(v ◦ L(u)) (the
path assignments are stable and switching cannot create a cycle).

Note that the functioncv(·) can be computed by consultingv’s local state. We now claim
that the scheme satisfies both properties of a proof labelingscheme:
Claim. Let π be a stable solution and letL be the labeling computed as above forπ. Then there
is no nodev whereD(v, L) = 0.
Proof. Assume thatπ is a stable solution and that there is some nodev such that at least one of
the three properties above fails to hold. Then we show thatL, which equalsπ, is not a solution
– a contradiction.

If the first property fails then the set of pathsπ does not exist inG and soπ is not a solution.
If the second property fails then the set of paths ofπ, which are the same asL, do not form a
confluent routing tree. If the third property fails then there exists a neighbouru of v such thatv
would prefer the path viau, and switching would not create a cycle. Therefore if any of these
properties fail to hold then the labelingL is not a solution.
Claim. If the SPP is unsolvable then for any labelingL there exists a nodev with D(v, L) = 0.
Proof. If the SPP is unsolvable then by definition there does not exist a stable solutionπ. Now
consider any labelingL. We show that there is a nodev such thatD(v, L) = 0.
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We can assume wlog that the labeling is a valid path assignment, i.e. the paths form a
confluent rooted tree, rooted at 0. If this were not the case then some node would clearly fail
at properties 1 or 2. Therefore we can assume that both properties 1 and 2 hold at all nodes. It
remains to show that property 3 fails at some nodev. Assume, to the contrary, that property 3
holds at all nodes under the labelingL. But then all nodes have a path (possibly the empty path)
that they would not switch from. By definition, this is exactlya stable path, and so there must
be some nodev whereD(v, L) = 0.

It is important to note that the above lower bounds are independent of the distributed repre-
sentation of a solution.

Proof size of unsolvability

We can also consider the problem of decidingunsolvabilityof an SPP, i.e. the function SPP-
UNSOLVABILITY, which is the negation of the function for SPP-SOLVABILITY.

Lemma 3.5.3 The proof size of SPP-UNSOLVABILITY isΩ(2n/2) bits.

Proof. We use the same construction as for the previous lemma, but now the function is true
iff the SPP is unsolvable iff the two sets are not disjoint. Therefore, the decoder outputs true iff
no node has a proof of solvability. In this case, we need to consider the complexity of proving
that two sets are not disjoint, i.e. the nondeterministic complexityN0(DISJ). It is known that
N0(DISJ) = Ω(r) [KN97] for r-element sets. Applying Lemma 3.5.1 as in the previous proof
shows that the proof size isΩ(2n/2) bits.

Intuitively, the proof size of unsolvability is so high because a node must be able to reject a
false proof, which is at least as hard as verifying a proof of solvability of the SPP.

3.5.4 Forbidden-set preferences

For the forbidden-set routing algebras, Theorem 3.3.1 gives a reduction fromΠ3-SAT where
the formula is satisfiable iff the network is solvable. The discussion following Lemma 3.4.7
implies thatN0(Π3-SAT) = Ω(log n) bits. A similar argument to Lemma 3.5.2 shows that the
proof size ofFS-SPP-SOLVABILITY isΩ(log n) bits (the reduction in Theorem 3.3.1 can be
modified to haveO(1) nodes having edges in both sides by adding two extra nodes0′ connected
to 0, andy′

n connected toyn, where0, yn are in one side and0′, y′
n are in the other side and

all previous connections from the bad triangles to0, yn are now connected to0′, y′
n instead.

This modification does not affect the solvability of the construction.) We have been unable to
improve theO(n) upper bound of the general protocol. Therefore it is open as to whether there
exists a more compact distributed representation of a solution (and hence a better proof labeling
scheme) forFS-SPP-SOLVABILITY.

3.6 Discussion

At this point it is worth discussing the results for the threerouting algebras we have considered:
forbidden-set, two-hop and next-hop. First let us considerthe complexity of deciding solvability
– of all these, only next-hop routing does not give an NP-complete problem, but it is trivial as
there always exists a solution. This gives the following open problem.
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• Fully characterise the relationship between the algebraicproperties ofA and the com-
putational (or communication) complexity ofA-SPP-SOLVABILITY. The results of this
chapter show only that some algebras generate hard instances (NP-complete, or exponen-
tial communication) and others generate easy instances (trivial).As yet, there is no known
algebraA whereA-SPP-SOLVABILITY is neither trivial nor NP-complete.

We conjecture that for any non-trivial routing algebra (an algebra is non-trivial if it can gen-
erate both solvable and unsolvable SPP instances), the problem of deciding solvability is NP-
complete. In addition to the strong negative results in thischapter, this would be a strong ar-
gument against the use of stable routing trees for policy-based routing. Feamster et al.[FJB05]
have also considered the additional problem of verifying ifan iterative algorithm will converge
on a collection of policies fromanyinitial state. They call this propertysafetyand show that any
SPP that is both solvable and safe must have policies that areessentially equivalent to ranking
based on path lengths.

Now we consider the communication complexity of deciding solvability. Let us call an
SPP instance generated using the forbidden-set algebraFS asparseinstance if the size of each
forbidden set is bounded, anddenseotherwise. In the case of sparse forbidden-set instances,
Lemma 3.4.4 implies that no deterministic distributed algorithm for deciding solvability can
do better than sending all the forbidden sets to a central node, using a spanning tree of the
network. For dense instances, it is open as to whether the policies can be compressed to save
communication (and hence space in a proof-labeling scheme), by utilising redundancy in the
policies. Also, it is an interesting open question as to whether one can do better (in both the
sparse and dense cases) by using randomization.

However, for next-hop algebras, constructing a solution (with minimum cost) reduces to
constructing a (minimum cost) spanning tree and therefore it is possible to do useful intermedi-
ate computation in the network in order to save communication. For two-hop algebras, there is
still anΩ(n log n) bits communication bound on the associated two-party game,but the stretch-
ing trick that we used for the forbidden-set case fails, because it would require policies that
could distinguish between paths, based on nodes at a distanceΩ(n) from the source node.
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Towards Compact Routing

4.1 Introduction

In the previous chapter, we showed several intractability results for the problem of constructing
and verifying stable routing trees for forbidden-set routing. In this chapter, we shall forget
about using routing trees and try to construct alternative routing schemes. To do this, we study
the model of compact routing, for which good schemes are known for shortest-path routing.
We then show how to construct compact routing schemes to solve for the forbidden-set routing
problem for various classes of graphs.

Routing tree-based schemes construct a forest of routing trees, one for each destination,
and forward packets along the tree for each destination. Therefore, each node stores one port
number for each destination, i.e.O(n log n) bits. A routing tree isstableiff no node can switch
to a strictly lower-cost path without creating a cycle. The difficulty with routing tree-based
schemes is that since nodes are free to choose paths, we have to assume that stable routing trees
are the only ones that can exist. Unfortunately, stable trees may not exist and deciding if they
do is intractable, both in communication and computation. Our goal is to route onall lowest-
cost paths while still having low space requirements, preferably sublinear inn (we will show
that this is impossible for general graphs, but possibly achievable for some restricted classes of
graphs).

4.2 Motivation

Shortest-path routing can be done by storing at each nodew a table that lists for every destina-
tion v, the next-hop on the shortest path fromw to v. It is easy to see that the paths used for
routing in this way form a forest of shortest-path trees rooted at each destination. Since every
subpath of a shortest path is also a shortest path, a shortest-path routing tree is always stable.
The results of Griffin et al. [GSW02] show that for policy-based routing it may be impossible
to construct a stable routing tree, so it is not always possible to route on lowest-cost paths using
this method. Consider the following simple scheme for policy-based routing. Each nodew
stores a table where the entry(u, v) specifies the next hop fromw on the path fromu to v of
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lowest cost tou. When a nodeu wants to send a packet to destinationv, it writes into the header
of the packet the string〈u, v〉. Now when some nodew receives this packet, it looks up the en-
try 〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost
path to each destination. However, the downside is that eachrouter now storesO(n2) entries in
its local routing table, which is too demanding in a large network. With a routing tree, all the
sources whose paths pass through the same nodew to the same destinationv must agree to use
the same path fromw and therefore each node can store at mostO(n) entries.

The central question we want to answer is this:can we reduce the space to belowO(n2) per
node, while still being able to route on all lowest-cost paths?Consider the case of shortest-path
routing; it is known [GPPR04] thatΩ(n) bits are required if we wish to route on exactly shortest
paths, but this can be reduced if we are willing to accept approximately-shortest paths. We say
that a path has stretchk if it has cost within a factork of the optimal path. Proven cases of a
conjecture of Erdos imply that any scheme that routes on paths of stretch three must use space
Ω(n1/2) at some node (as remarked in [TZ01b]).

A promising direction is to make use of a compact and localized representation of the graph
– each node is assigned a data structure (called its routing table) and a label, which identifies
the node to other nodes. Routing is then done as follows: if nodeu wants to route tov it writes
v’s label into the packet header. Nodes can then use their routing tables andv’s label to decide
how to forward the packet through the network. This is known ascompact routingand was first
introduced by Peleg and Upfal [PU89]. More details about localized data structures for routing
can be found in the excellent survey paper by Gavoille and Peleg [GP03]. Compact routing has
been extremely successful for approximate shortest-path routing: Thorup and Zwick [TZ01b]
gave an almost-optimal stretch-3 scheme using routing tables of sizeÕ(n1/2) andO(log n)-bit
labels1 where each routing decision takes just constant time.

We argue that for policy-based routing on the Internet, compact routing schemes are better
than using routing trees. Since no routing trees are constructed, compact routing schemes can
send packets whenever two nodes are reachable. In contrast,packets can be sent only if a stable
routing tree exists where the source node is not assigned theempty path (and deciding if such
a tree exists is NP-complete even with forbidden-set policies on bounded treewidth graphs).
So far nothing is known about the viability of compact routing schemes for policy routing. In
particular, it may be that the space requirements are higherthanΩ(n) per node.

The idea of using compact routing on the Internet has been suggested elsewhere, for example
[KFY04]. However, the suggestion is to make use of the schemes for approximate shortest-path
routing. The freedom offered by policy routing is importantand therefore until a scheme exists
that can handle policy routing (even for restricted policies such as forbidden-set), there will
remain no viable alternative to BGP.

4.3 Preliminaries

We now introduce the model of routing that we will use for thisand subsequent chapters.
Readers familiar with compact routing may wish to skip this section. A routing schemeis a
distributed algorithm for delivering packets between processors in a network. Assume that a
labeling of the nodes of the network has been given. Each packet has aheaderthat contains the
label of the destination of the packet and perhaps some additional information that can be used

1f(n) = Õ(g(n)) if ∃c ≥ 0 such thatf(n) = O(g(n) logc n)
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Figure 4.1 : A model of a router

to guide the routing of the packet. Each edge adjacent to a processor is identified by itsport
number. Each processor stores a local data structure calledtherouting table. When a processor
receives a packet on an incoming port, it uses its routing table, the incoming port number and
packet header to decide whether the packet has reached its destination or, if not, which outgoing
port the packet is to be sent on and what the new header should be.

Let G be a graph representing a communication network. We shall assume thatG is con-
nected, undirected and unweighted. Each node ofG has an identifierID(u) ∈ {1, . . . , n}.
However, the routing scheme uses a routing labelL(u) to identify u. The difference between
the identifiers and labels is that the labels may be used to encode additional information about
nodes, which may enable more efficient routing strategies tobe used. Given a graph with labels
L(·), arouting functionR onG is a distributed algorithm for routing onG. The algorithm builds
a path from the source to the destination by selecting, at each intermediate node, the next link on
which to forward the packet. More precisely,R = (P,H) whereP is theport functionandH is
theheader function. For any two distinct nodesu, v, R computes arouteu = u0u1 . . . ur = v,
a sequenceh0h1 . . . hr of headers, and a sequencep0p1 . . . pr of output port numbers. The port
numbers identify the links connected to a given node, and maybe particular to that node; for
example a link connectingx to y may have a different port number inx to its port number in
y. The port numbers at a nodeu are uniquely chosen from{1, . . . , deg(u)}. The restriction of
R to u is calledu’s local routing function, and this is what we shall refer to asu’s local data
structure.

Figure 4.1 shows the model of a router that we use. A message arriving at a nodeui through
an input portqi is given a new headerhi+1 = H(ui, qi, hi) and is forwarded on the output port
pi = P (ui, qi, hi). We require thatq0 = pr = 0, andh0 = L(v), i.e. the initial header provided
by the source is the label for the destination node.

A routing strategyis an algorithm that computes, for a graphG, a routing functionR on
G. Therefore, the strategy consists of a preprocessing stagethat assigns labels to nodes and
constructs the distributed data structures necessary. A routing scheme can be thought of as an
implementation of a function. Anoblivious routing function is a routing function that only
depends on the header, and not the input port. Adirect routing function is an oblivious routing
function that only depends on the destination, and therefore h0 = h1 = · · · = hr = L(v). The
routing functions we shall consider are all oblivious, and some of them are also direct. Direct
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routing has the advantage that it is usually faster, as routing decisions can be made quickly. A
routing scheme is said to becompactif the local data structures are sublinear in size, i.e.o(n)
bits, and the packet headers are all polylogarithmic in size, i.e. at mostlogc n bits for some
constantc.

4.4 Deciding if there exists a zero-cost path

We begin by considering a simpler problem than routing. Thepath cost labelingproblem is
as follows: given a graphG and costs{cu(v)}, assign labelsL(v) to nodes so that given only
L(u), L(v), we can compute the minimum costcu(P ) of a pathP from u to v. We shall call
such a label apath cost labelfor the costs{cu}. Throughout the chapter, we shall assume that
the costs represent forbidden-set policies, i.e.cu(P ) = |S(u) ∩ P | for a pathP from u to v, so
we will refer to the forbidden setsS(u) instead of the costs. In thezero-costpath problem, we
are only interested in whether there is a pathP of zero cost fromu to v. Let dG(u, v) represent
the (unweighted) distance betweenu, v in the graphG. Then the zero-cost path problem is
equivalent to deciding whetherS(u) is a separator ofu, v in G. This relationship implies that
our problem may also be of interest from a graph theory perspective – constructing small zero-
cost labels is equivalent to constructing an efficient distributed localized representation of all
the separators of a graph.

The motivation for this problem is that any routing scheme that can route on approximately
lowest-cost paths must be able to distinguish between the case where there exists a path of zero
cost and when there is no zero-cost path. The problem is analogous to deciding reachability in
graphs (labels of sizeO(log n) bits suffice to decide reachability in undirected graphs – simply
label each node with the identity of its connected component). We can now state our first result.
Let k be an upper bound on the size of a forbidden set, i.e.k ≥ maxu |S(u)|.

Theorem 4.4.1 Let nodes have forbidden-set policies of maximum sizek, with cost as defined
above. Then any undirected graphG has zero-cost path labels of sizeO(k∆(T ) log n) bits,
where∆(T ) is the degree of a minimum degree spanning tree ofG. Given the labels, we can
decide whether there is a zero-cost path in timeO(log k∆(T )).

We shall prove Theorem 4.4.1 by first proving a similar resultfor the case where the sets
S(u) are sets of edges rather than nodes. In this case, we are interested in deciding if a setS(u)
is a cut betweenu, v in G. First we shall assume that the setsS(u) are edges instead of nodes,
so we are interested in the problem of detecting cuts. Assumealso that|S(u)| ≤ k. An Euler
tour of a graph is a cycle that traverses each edge exactly once, although it may visit a node
more than once. Euler’s theorem says that a graph has an Eulertour iff every node has even
degree. We can assume thatG is Eulerian by doubling up each edge into its two directed edges,
so deleting an edge fromG corresponds to deleting two edges from its Euler tour. For each node
u, partition the tour into at most2k − 1 intervals corresponding to deleting the setS(u). Now
build an auxiliary graphH(u) on the intervals where two intervals are adjacent iff they both
have an occurrence of the same node. Now we consider reachability in the graphH(u). Let
R(u) be the set of nodes ofH(u) that can be reached from an interval containing an occurrence
of nodeu. (It is easy to see that all the nodes inH(u) whose intervals contain an occurrence of
the same nodev, form a clique inH(u). Therefore for a nodev in G, we can arbitrarily pick a
node ofH(u) containing an interval ofv in order to determine reachability inH(u).)
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The label for nodeu contains two things:

1. The set of intervalsR(u) (usingO(k log n) bits);

2. The positionP (u) on the Euler tour of some (arbitrarily-chosen) occurrence of nodeu
(usingO(log n) bits).

Now, given two labelsL(u), L(v), we check whetherP (v) is contained in an interval ofR(u).
If not, thenS(u) is auv-cut in G. The intervalsR(u) can be stored in an interval search tree
(a binary search tree where the key for an interval is its lower limit) so that we can make the
decision in timeO(log k) (assuming thatO(log n)-bit comparisons take constant time).

Proof of Theorem 4.4.1.If S(u) is a set of nodes, things are harder (it seems). We could
delete all adjacent edges to a node, but this would incur a factor of ∆(G), the maximum degree
of a node inG. Alternatively, if G has a Hamiltonian cycle, we can use the Hamiltonian cycle
in place of the Euler tour, but cutting nodes instead of edges. For more general graphs, we can
do the following. Construct a minimum-degree spanning treeT of G (i.e. a tree whose maximal
degree is smallest), and then construct the Euler tour of thetreeT (this tour contains at most
2(n− 1) edges after doubling up the edges ofT ). Now, we can build the auxiliary graphH(u)
where two intervals are adjacent iff at least one of the following holds:

1. both intervals both have an occurrence of the same node;

2. one interval contains an occurrence ofu and the other an occurrence ofv, and the edge
(u, v) is in E(G) \ E(T ).

The setR(u) and the labels are constructed as for the edge case. Now, eachnode appears at
most∆(T ) times in the tour, soR(u) contains at mostO(k∆(T )) intervals. Therefore the labels
are of size at mostO(k∆(T ) log n) bits. As for the edge case, we can store the setR(u) in an
interval search tree, so the decoder takes timeO(log k∆(T )) = O(log n).

Note that finding a minimum-degree spanning tree is NP-hard –G has a Hamiltonian cycle
iff it has a spanning tree with degree two. So for the ring, we can use the above construction to
find labels of sizeO(k log n). Graphs of bounded independence number,1/O(1)-tough graphs
and almost allr-regular graphs (for fixedr ≥ 3) have spanning trees of bounded degree, so
they have labels ofO(k log n) bits. There are many cases where the bound is far from tight;
for example, then-star hasO(1)-bit labels (we just need to store whether each forbidden set
contains the center node) but any spanning tree has degreeΩ(n). We believe that it is possible
to improve the space bound (possibly at the expense of a higher running time), but we have been
unable to do so.

4.5 A forbidden-set routing scheme

We now consider the forbidden-set routing problem, i.e. routing packets on paths that avoid
the source node’s forbidden set. Imagine how we might use thecost labels constructed in the
previous section to guide the routing of packets through thenetwork. We begin with an example
– consider the network of Figure 4.2 where nodeu wants to send a packet tov on a path that
avoids nodesb, e. Shouldu first send the packet toa or c? Either node is not in the forbidden
set ofu, so assume thatu sends it toc. Now c has to decide where next to send it. We can write
the set{b, e} into the packet header so thatc knows not to forward it tob. Perhaps we can also
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Figure 4.2 : Motivating distance separator labels. Consider a packet from u that arrives at d

with destination v, and forbidden set {b, e}. Where should d forward the packet? The distance
separator labels allow d to compute the distances to v in G \ {b, e} from each of its neighbours.
It can then forward the packet to the neighbour that minimizes this distance.

write into the packet header the route that the packet has taken so far (although this will violate
our requirement of small packet headers). Thenc knows that the packet just came fromu, so
the only alternative is to send tod. But then what should it do? Should the packet go toa or
to f? The problem is thatd does not know thata cannot reachv while avoidingb, e, without
returning tod. One possible solution is to construct aflooding protocol, where each node sends
the packet to all its neighbours except those in the setS(u). Although this would ensure that the
packet reaches the destination if there exists a zero-cost path, it is extremely inefficient in terms
of communication complexity and congestion. We want aforwarding protocolwhere packets
are only forwarded, not replicated.

4.5.1 Distance separator labels

This motivates the following approach: what if we could construct labels in a different way,
so that intermediate nodesw can decide which of their neighbours cannot reach the destination
without returning to the current path? We could then guarantee that the packet always makes
progress towards the destination, i.e. the distance inG \ S to the destination always decreases.

Definition 4.5.1 (Distance separator label)Adistance separator labelis a labelL(v) such that
givenL(u), L(v) andL(s1), . . . , L(sk), we can computedG\S(u, v), whereS = {s1, . . . , sk}.

If S is a separator ofu, v in G then by definition,dG\S(u, v) = ∞, and we shall define
dG\S(u, s) = ∞ for all s ∈ S. We shall call such labelsdistance separator labelssince they
measure the distance in a graph with a given set of nodes removed. Finally, note that we are



4.5. A forbidden-set routing scheme 51

interested in measuring the unweighted distances inG \ S, not the path costs using thecu(v).
The distances inG \ S will be used to guide the packet through the network.

Imagine that we have assigned distance separator labels to nodes in an undirected graphG,
and each node knows its forbidden setS(u) ⊆ V (G) (the separator labels are constructed with-
out any knowledge of these sets). Also assume that each nodeu knows the distance separator
label for each of its neighboursu1 . . . ud, with |L(ui)| ≤ l for all ui. We can then route on a
shortest zero-cost path fromu to v in G as follows: the source nodeu writes the labelsL(v) and
L(s) for eachs ∈ S(u) into the packet header. It then sends the packet to its neighbour ui that
minimizes the distancedG\S(u)(ui, v). This is done by consulting the distance separator labels
(if all the distances are∞ thenu declares that there is no zero-cost path). Each intermediate
nodew does a similar thing – it examines the incoming packet and forwards it to the neighbour
wi that minimizes the distancedG\S(u)(wi, v) (without changing the packet header).

If there exists a path of zero-cost fromu to v, this scheme always routes packets on the
shortest zero-cost path, i.e. a path not containing any element ofS(u) and having length equal
to dG\S(u)(u, v). This is because a packet is always forwarded to a node that iscloser to the
destination inG \ S(u) than the current node. Ifu, v are not connected inG \ S(u) thenu can
detect this sincedG\S(u)(ui, v) =∞ for all its neighboursui. Since each nodeu stores the label
for itself, the labels for each of its neighbours and each element ofS(u) (usingO(lk∆(G)) bits)
and the packet headers contain the label of the destination and the labels ofS(u) (usingO(lk)
bits), we have shown the following.

Lemma 4.5.2 Assume that a family of graphsG have distance separator labels of sizel bits and
forbidden sets of size at mostk. Then every graphG ∈ G has a forbidden-set routing scheme
usingO(lk∆(G))-bit routing tables andO(lk)-bit packet headers. Packets are sent on shortest
paths inG \ S(u).

Remarks. It is important to note that we needexactdistances; approximate distances will
not suffice. If the labels only returnc-approximate distances, i.e. a distanced̂G\S(u, v) where

(1/c)d̂G\S(u, v) ≤ dG\S(u, v) ≤ cd̂G\S(u, v),

then the scheme may create routing loops (since the packet header does not store the route).
Figure 4.3 gives a simple example of this. With exact distances, the distance labels ensure that
the scheme does not create loops in the routing. It is not clear if we can make use of approximate
distance labels for routing, without using large packet headers to store the path taken so far.

Our job is now to find efficient distance separator labels for various graph families, in order
to construct forbidden-set routing schemes using the abovelemma.

4.5.2 A lower bound

Before continuing, we give a lower bound on the size of labels required by any forbidden-set
routing algorithm. The lower bound is for the problem of deciding if there exists a zero-cost
path between two nodes, but this is also a lower bound for any forbidden-set routing algorithm
that can decide if there exists a zero-cost path before sending the packet. The lower bound is
approximately linear in the size of the forbidden sets, and also holds for trees. Therefore, for
smallk, sayO(log n), it might be possible to construct routing schemes with sublinear space
requirements.
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Figure 4.3 : How routing loops can occur using approximate instead of exact distances. The
distances shown are 2-approximate distances to the destination e, but there is a routing loop
a, b, c, . . .

Theorem 4.5.3 Any forbidden-set routing algorithm onn-vertex trees with forbidden sets of
size at mostk must assign labels of size at leastΩ(k log n/k) bits in the worst case.

Proof. Consider a tree with rootu andn childrenu1 . . . un. Eachui can independently select
as its forbidden set an arbitrary subset of sizek of {u1, . . . , un}. For every distinct collection of
forbidden sets{S(u1), . . . , S(un)}, it can be seen that there exists a distinct pair of nodesui, uj

whose reachability has changed. Each of these requires a different set of labels to be assigned

to the graph, so at leastΩ
((∑k

i=0

(
n
i

))n)
= Ω((n/k)nk) distinct labelings of the graph are

required. Taking logs and dividing byn, it follows that at least one of these nodes must receive
a label of sizeΩ(k log n/k) bits. We can also prove a bound for the case whereS(·) is a set of
edges – let eachS(ui) independently choose a subset of then edges and then the same argument
also applies.

4.6 Distance separator labels

In the previous section we motivated the construction of efficient distance separator labels,
by showing how they can be used to construct a reasonably efficient distributed forbidden-
set routing scheme. In this section we try to construct efficient (by which we mean of size
polylogarithmic in the number of nodes in the graph) distance separator labels.

4.6.1 Trees

We shall show how to exploit the very simple structure of trees, namely that there is a unique
path between each pair of nodes, to construct efficient separator labels for them. Assume that
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we have a rooted tree (the root can be chosen arbitrarily, since it is not important for deciding
if a node is a separator of two nodes – the unique path is the same regardless of the root). It
is well-known that we can assign labels of size2⌈log n⌉ bits to nodes, so that given the labels
L(x), L(y) we can decide in constant time ifx is an ancestor ofy [KNR92]. This is done as
follows. Do a depth-first traversal from the root, labeling each nodev with its identifierID(v)
in the depth-first traversal. For each nodew, let fw be the descendant ofw with the largest
identifier. Theancestor labelfor v is defined asL(v) = (ID(v), fv). A nodev is a descendant
of w iff ID(v) ∈ [ID(w), fw].

We also need the related concept of the least common ancestor. A nodew is the least
common ancestor(LCA) of two nodesu, v iff w is the unique node that is furthest from the
root and on both the paths fromu andv to the root. Peleg [Pel00] showed that we can assign
O(log2 n)-bit labels such that givenL(u), L(v) we can deduce the LCA ofu, v. We can also
deduce its ancestor label by storing a mapping from the identifiers of ancestors stored in a label
to their ancestor labels with a constant increase in label size. More recently, Alstrup et al.
[AGKR02] showed the following theorem.

Theorem 4.6.1 ([AGKR02]) There is a linear-time algorithm that labels the nodes of a rooted
treeT with distinct labels of lengthO(log n) bits such that from the labels ofu, v ∈ T we can
compute in constant time the label ofLCA(u, v).

Remarks. It should be noted that the difference between the schemes ofAlstrup and Peleg
is that Alstrup’s scheme only computes theLCA label for the LCA, whereas Peleg’s scheme
computes theidentifierof the LCA. Peleg has also shown a lower bound ofΩ(log2 n) for any
labeling scheme that computes the identifier of the LCA node. We shall be able to make use of
Alstrup’s scheme, and therefore use onlyO(log n)-bit labels.

Our scheme relies on the following observation: a nodew is auv-separator inT iff LCA(u, v)
is an ancestor ofw andw is an ancestor of eitheru or v. A setS = s1, . . . , sk is auv-separator
in T iff at least one member ofS is auv-separator inT , so to see ifS is a separator we can
test each member ofS independently. We can solve this using Alstrup’s LCA labeling scheme
as follows. LetJ be the LCA label for nodeu. Then we compute the LCA label for the node
LCA(u,w) and check if it equalsJ . If so, u is an ancestor ofw. Therefore Alstrup’s LCA
labels suffice to decide the ancestor relation.

The separator label foru is simply Alstrup’s LCA label foru in T . GivenL(u), L(v) and
L(s1), . . . , L(sk), we compute the LCA label forLCA(u, v) using the scheme of Alstrup et
al. [AGKR02] and then test if eachsi is auv-separator ofT using the observation described
above. Therefore the label hasO(log n) bits. To construct distance separator labels forT , we
can combine any distance labeling scheme [GPPR04] for trees with the separator labels. To
compute the distancedT\S(u, v), use the separator labels to decide whetherdT\S(u, v) = 0; if
not, thendT\S(u, v) = dT (u, v), so we can use the distance labeling scheme. Peleg et al. showed
that unweighted trees have distance labeling schemes usingO(log2 n) bits per label (and this
is known to be tight). By combining these two scheme, we get distance separator labels using
O(log2 n) bits. This is asymptotically optimal, since there is a lowerbound ofΩ(log2 n) bits
for distance labeling in trees [GPPR04].

Interestingly, the size of the distance separator label is dominated by the size of the distance
label, not the separator label. It is an interesting question whether we can do better if we accept
approximate distances in distance separator labels. In general, there are an exponential number
of possible separators, so at this stage it is not obvious whether the scheme for trees can offer
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much insight into how to deal with more general graphs.

4.6.2 Bounded cliquewidth graphs

We now consider the class of bounded cliquewidth graphs. Thecliquewidthof a graph is a
measure of its complexity, closely related to treewidth butmore powerful since every graph
having bounded treewidth has bounded cliquewidth but the converse is not true (cliques have
cliquewidth two but unbounded treewidth). For a given graphits cliquewidth is defined as the
minimum number of distinct labels required to construct thegraph by only using the following
operations:

• create a node with a given label;

• p→ q: relabel all the nodes having some labelp to another labelq;

• p× q: connect every node having labelp to all the nodes having labelq.

We can therefore represent a graph by its algebraic expression, or term tree where the leaves
are labelled nodes of the graph and the interior nodes of the tree represent either a relabelling
operationp→ q or a join operationp× q.

Many graph problems can be formulated in monadic second-order logic (MS), by using
logical operations(∧,∨,¬), quantification(∀,∃), membership tests(∈,⊆) and adjacency tests
({u, v} ∈ E) over subsets(X1, X2, . . .) of nodes of a graph. As an example, consider the
following graph property.

“is the subgraph of G induced byZ connected?”
Partition(U, V, Z) ≡ (Z = U ∪ V ) ∧ (U ∩ V = ∅) ∧ (U 6= Z) ∧ (V 6= Z)
Adjacent(U, V ) ≡ ∃u, v(u ∈ U ∧ v ∈ V ∧ ({u, v} ∈ E(G)))
Connected(Z) ≡ ∀U, V (Partition(U, V, Z) =⇒ Adjacent(U, V ))

A propertyP is said to beMS-definableif it can be expressed in MS logic. Agraph property
is a property where the variables denote the nodes of the graph under consideration. Courcelle
and Vanicat showed that for any MS-definable graph property,we can construct small labels
that can be used to efficiently decide the property:

Lemma 4.6.2 ([CV03]) Letq be an integer andP (x1, . . . , xn) an MS-definable graph property.
LetG a graph withn nodes cliquewidth at mostq. Then we can assign to nodes ofG labels of
sizeO(log n) bits so that given onlyL(x1), . . . , L(xk), we can decideP (x1, . . . , xk) in worst-
case timeO(k log n). The constants in the big-oh notation depend only onq andP .

We now show that the property required by distance separatorlabels is MS-definable, which
will enable us to appeal to the above result.

Lemma 4.6.3 Bounded cliquewidth graphs have separator labels of sizeO(log n) bits, and a
decoder with worst-case time complexityO(k log n).

Proof. We first show that the graph property “a set of nodes is auv-separator” is MS-definable.
We can use the propertyConnected to construct the following property.

“is the subgraph induced byZ connected andx, y ∈ Z?”
Connected(x, y, Z) ≡ (x ∈ Z ∧ y ∈ Z ∧ Connected(Z))
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Now we can express our desired property of deciding if there is a zero-cost path fromx to y.
We can do this by testing if there exists a set of nodesS such thatS does not contain a forbidden
set and there exists a path through only the nodes ofS from x to y.

“is there a path x to y that avoids nodes inZ?”
Path(x, y, Z) ≡ ∃S((Z ∩ S = ∅) ∧ Connected(x, y, S))

It is clear that the propertyPath(x, y, Z) is MS-definable, and it is not difficult to check that
Path(x, y, Z) holds iff Z is not auv-separator inG.

In the same paper, Courcelle and Vanicat defined an optimization versionmin(ϕ) of an
MS-definable propertyϕ. Here, there is a free variable that denotes a set of nodes andthe
cardinality of the set denoted by the free variable is minimized. Using this, we can compute
distance separator labels by appealing to the following theorem.

Lemma 4.6.4 ([CV03]) Letq be an integer andP (x1, . . . , xn) an MS-definable graph property.
Let G a graph onn nodes with cliquewidth at mostq. Then we can assign to nodes ofG
labels of sizeO(log2 n) bits so that given onlyL(x1), . . . , L(xk), we can compute the value
min P (x1, . . . , xk) in worst-case timeO(k log2 n). The constants in the big-oh notation depend
only onq andP .

Combining this with the routing scheme in Lemma 4.5.2 gives the following result.

Theorem 4.6.5 Bounded cliquewidth graphs have a forbidden-set routing scheme, with routing
tables of sizeO(∆(G)k log2 n) bits and packet headers of sizeO(k log2 n) bits.

Proof. We just need to show how to define the property of distance separator labels as a monadic
second-order logic optimization property over the graph nodes. This is easily done using the
following:

“what is dG(u, v)?”
dG(u, v) + 1 = min(ϕ) whereϕ(u, v, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z)

“what is dG\S(u, v)?”
dG\S(u, v) + 1 = min(ϕ) where
ϕ(u, v, S, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z) ∧ (S ∩ Z = ∅)

In both cases, the cardinality of the setZ is one greater than the length of the path. Combining
the distance separator labels with the routing scheme in Lemma 4.5.2 gives the stated result.

Remarks

The bounded-clique width scheme suffers from two major problems:

1. A clique decomposition of the graph needs to be given to thealgorithm. Unfortunately, it
is known that given a graphG and a positive integerq, the problem of deciding ifG has
clique width at mostq is NP-complete [FRRS06], for arbitrary values ofq. However, a
result of Oum [iO05] gives, for fixedq, a cubic algorithm that computes a clique decom-
position of width2O(q), which is enough if we are only interested in graphs having clique
width bounded by some fixed integer.
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Figure 4.4 : The cograph generated by the term +(s,×(y, +(z,×(+(u, v), +(w, t))))) and its
term tree. The set {y, w, t} is a uv-separator.

2. The hidden constant in the label size is huge – ifh is the number of quantifier alternations
in the formula forP , then the constant is a tower of exponentials in the clique width,
having heightO(h) :

222···2
q

The second problem is due to the tree automaton approach usedby Courcelle and Vanicat to
construct the labels. Since their result is for general MS-definable properties, a result of Grohe
and Frick [FG04] implies that (unless P=NP), this tower of exponentials is unavoidable. There-
fore, although the general scheme is somewhat impractical for our specific problem of distance
separator labels, it is important since it shows that labelswhose size is only polylogarithmically-
dependent onn are possible. Our aim will now be to try to reduce the dependence on the
cliquewidth (or other graph parameter) to polynomial or even linear for various, often more
specific, families of graphs. We do this by exploiting the simple structure offered by separators
in graphs.

4.6.3 Cographs

Before tackling graphs with small tree width, we warm up by consideringcographs, which
are graphs having clique width at most two. The family of cographs can be defined using two
operations:

• disjoint union: for graphsG,H on disjoint vertices,G + H is the graph formed by the
union of the edges and vertices ofG andH.

• complete product: G×H is the graph formed by taking the union ofG andH and adding
edges{u, v} for all u ∈ G, v ∈ H.

We can write the algebraic expression for a cograph as a term tree as in Figure 4.4. Each node
is labeled by itsaccess pathfrom the root, which describes how to reach the node in the term
tree. In the figure, we getL(u) = +2 × 2 + 2 × 1 + 1 where the numbers 1,2 indicate which
child to take at each level in the path. These labels are of size O(h) bits whereh is the height
of the term tree.

Let T be a term tree defining a cographG. Given the labels for two nodesu, v andk nodes
S = {s1, ..., sk}, the setS is auv-separator iff
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• The least common ancestorw = LCA(u, v) is labeled with ‘+’, and;

• For every ancestorz of w labeled ‘×’, with zi the child ofz whose subtree containsw, all
the descendants ofz3−i must be inS.

FromL(u), L(v) we can findw, z and hence check the first property. We can then examine the
access paths fors1, . . . , sk and check the second property by seeing if these paths contain the
entire subtree rooted atzi (since we know that the term tree is a binary tree). As an example,
consider Figure 4.4 and deciding whetherS = {y, w, t} is a separator ofu, v. The LCA ofu, v
is labeled with ‘+’, and for the highest node labeled ‘×’, we havey ∈ S. For the other ancestor
labeled ‘×’, we also have thatw, t ∈ S. ThereforeS is auv-separator.

Remarks

The diameter of a cograph is at most two, so we only consideredthe problem of deciding
whether a given set is a separator (rather than computing thedistance around this set). This will
be enough to introduce the more involved scheme for treewidth k graphs in the next section. We
may hope that we could arrange for the term tree to be of heightO(log n); however this is not
possible using the algebra here – for a counterexample, takethe cograph with nodes1, . . . , n
where nodei links to every nodej < i if i is even, and is not linked to any nodej < i if i
is odd. The cograph expression is unique and of heightn, hence we would assign some nodes
labels of sizeΩ(n) bits.

4.6.4 Treewidth k graphs

A graph having treewidthk can be expressed as the nondisjoint union of graphs of sizek + 1,
arranged as nodes in a tree such that the set of tree nodes containing some graph node forms a
connected subtree of the tree. Small treewidth graphs are aninteresting class of graphs to study
for several reasons: firstly, they capture a common class of networks (those having a tree-like
structure, for example the Internet backbone) and secondly, the concept of treewidth is weaker
than cliquewidth – any graph with treewidthk has cliquewidth at most2.2k − 1 [CR05]. For
this reason, we can use the result for bounded cliquewidth graphs to handle bounded treewidth
graphs, but ifk is nonconstant then we immediately get a huge blowup in labelsize. Addition-
ally, if we can show how to construct distance separator labels for treewidthk graphs then it
might give us insight into how to handle cliquewidthk graphs.

We will show, as our main technical result, how to construct distance separator labels for
treewidthk graphs usingO(k2 log2 n) bits (Theorem 4.6.10). For comparison, the best known
distance labeling scheme for these graphs uses labels of size O(k log2 n) bits, so we will have
paid an additional factork to encode distances under node deletions. For graphs of small
treewidth, egk = O(log n), this is a small penalty, which means that compact (i.e.O(n)-bit
labels) forbidden-set routing may be possible.

Background: distance labeling for small treewidth graphs

Before tackling distance separator labels, we shall review some distance labeling schemes for
treewidthk graphs. We will make use of the following definition. A graphG has a 1/3-balanced
separator of sizer(n) if there is a set ofr(n) vertices whose removal breaks the graph into two
connected components of size at leastn/3. The graphG has arecursive1/3-balanced separator
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L(u) = 〈(4, d(u, 4)), (5, d(u, 5)), (6, d(u, 6)), (1, (d(u, 1)), (2, d(u, 2)), (3, d(u, 3))〉

Figure 4.5 : A decomposition tree for a graph with small recursive separators. Each node of
the tree is a separator in the graph, and the distance label for a node u stores its distance to
each of the nodes in its ancestor separator nodes. To find the distance from u to v, the decoder
returns the minimum value of d(u, w) + d(w, v) over all nodes w in the least common ancestor
node of u, v.

of sizer(n) if it has a 1/3-balanced separator of sizer(n), and both the components obtained
by removing the separator also have recursive 1/3-balancedseparators. Therefore, the graph
can be recursively decomposed until we reach singletons, giving a binary decomposition tree
of heightO(log n). It is known that treewidthk graphs have recursive 1/3-balanced (or simply
balanced) separators of sizek.

Peleg et al. [GPPR04] showed how to easily extend a distance labeling scheme for trees
to one for graphs with small recursive separators. In a tree,the label foru stores the distance
d(u,w) to every ancestorw of u in the decomposition tree. One can extend this by storing the
distanced(u,w), for every nodew that is in an ancestor node in the decomposition tree. Then to
compute the distance betweenu andv, it suffices to compute their least common ancestorS in
the decomposition tree and then to computed(u, v) = minw∈S(d(u,w) + d(w, v)). This works
because every path betweenu, v must go through some nodew ∈ S. Since each separator is of
size at mostc and the tree is of heightO(log n), each label stores at mostO(c log n) distances
usingO(c log2 n) bits. Figure 4.5 illustrates this technique for distance labeling. More precisely,
they showed the following result.

Theorem 4.6.6 ([GPPR04])Let R(n) =
∑

i≤log3/2 n r
(
(2

3
)in
)
≤ r(n) log n. For a family of

graphsG having recursive balanced separators of sizer(n), every graph inG has distance
labels of size at mostO(R(n) log n + log2 n) bits. Moreover, the distance can be computed in
timeO(log n) given two labels.

The above result immediately implies that treewidthk graphs have distance labels of size
O(k log2 n) bits. Peleg [Pel99] describes an alternative method for constructing approximate
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distance labels, based on a hierarchy of tree covers. Atree coverof a graphG is a family
F = {T1, . . . , Tk} of trees with the following two properties:

1. Each tree dilates distances, i.e.dTj
(u, v) ≥ dG(u, v) for all u, v.

2. For any pair of nodesu, v, there exists a treeTi such thatdTi
(u, v) = dG(u, v).

If a graph has a tree cover of sizek then it has distance labels of sizeO(k log n) bits. This
follows since we can compute distance labels of sizeO(log n) bits for each tree, and then simply
pick the tree that minimizes the distance. In fact, we can usethe tree cover for routing; we use
an extralog k bits in the packet header to specify the tree to route on, and each node maintains
information for routing onk trees. This can be seen as a natural extension of using a single
routing tree, which was the model we used to prove our negative results in Chapter 3.

It is easy to observe that all graphs have linear-sized tree covers, consisting of then shortest
path trees ending at each node. In the worst-case, this is tight since the complete graphKn does
not have a tree cover of sizen/2−1: the union of the trees must cover all the edges of the graph,
otherwise the scheme would not be able to report that the endpoints of some edge are adjacent
(and at distance one). Since each tree has at mostn− 1 edges and the undirected clique has

(
n
2

)

edges, any tree cover of it must use at least
(

n
2

)
/(n− 1) > n/2− 1 trees.

The scheme of Peleg uses a tree cover construction that exhibits a tradeoff between the
number of trees each node appears in (the overlap) and the depth of each tree. By constructing
trees with depth2i for i = 1 . . . log n, each node appears in a small number of trees and for
every pair of nodes, there exists a tree that contains them both. Usingo(log3 n) bit labels,
the scheme can provide distance estimates accurate up to a factor of

√
2 log n, for arbitrary

undirected unweighted graphs.
Now we consider graphs of treewidth at mostk. As described above, the schemes described

by Peleg et al. [GPPR04] construct distance labels for these graphs by building a decomposition
tree using the property of small recursive separators. It isnot clear if it is possible to use
decomposition trees to construct separator labels (since we need to encodeall separators), nor is
it clear that the tree decomposition associated with treewidth graphs can also be used efficiently.
Therefore, we shall take a different approach and make use ofan alternative representation of
small treewidth graphs, based on algebraic expressions.

Algebraic expressions for treewidth k graphs

Every graph of treewidthk can be represented by an algebraic expression (or term) oversome
domain of sources{1, . . . , k + 1}. A j-source graph is a graph with at mostj distinguished
nodes calledsources, each tagged with one ofj distinct labels. Courcelle [Cou07, ACPS93]
shows that a graph has treewidthk if and only if it is the value of some term tree whose leaves
are(k + 1)-source graphs and where every non-leaf node is labeled withone of the following
operations, illustrated in Figure 4.6.

• Parallel composition: The graphG // H is obtained from the disjoint union of graphsG
andH where sources having the same label are fused together into asingle node.

• Erasure: Let a be a label. Then the unary operationfga(G) erases the labela and the
corresponding source inG is no longer a source inG.
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Figure 4.6 : The parallel composition and erasure operations for constructing graphs of
treewidth k

The term tree can be constructed given a tree decomposition of the graph – Corollary 2.1.1 of
[Cou07] shows that given a tree decomposition of widthk of a graph, it is possible to construct
in linear time a term tree using at mostk + 1 source labels. The nodes of the term tree are the
bags of the tree decomposition; hence the height and degree are unchanged. We now give a
brief sketch of how to construct the term tree. Let us assume that we have a tree decomposition
(T,X) of width k of a graphG, i.e. every bag contains at mostk + 1 nodes. Then it is possible
to colour the nodes ofG using at mostk + 1 colours so that no two nodes in the same bag of
the tree decomposition have the same colour. We can construct a term tree recursively: ifT is
a single node, then the term tree is the graph with sources being the nodes inT . Otherwise, let
r be the root ofT and letT1, . . . , Tp be its subtrees. For each subtreeTi, associate its source
graphGi on at mostk sources, where nodex is thejth source iffx is assigned the colourj in
the colouring ofG. Recursively compute the termst1, . . . , tp. For everyi, let Ai be the set of
sources that are inGi but not the root ofT . Then we can representG by the term

fgA1
(t1) // . . . // fgAp

(tp) // X(r)

wherefgAi
(ti) is the graph obtained fromti by forgetting the sourcesAi andX(r) is the set of

edges between nodes ofG in the bagr of T . The details of this construction are not important
for the presentation of our algorithm, since we shall simplyassume that we are given some term
tree that evaluates to the graphG.

We shall assume that the term tree has heightO(log n), since the following result of Bod-
laender shows that we can always convert a tree decomposition of some graph into a binary one
of logarithmic height with only a constant increase in the width.

Lemma 4.6.7 ([Bod89]) Given a tree decomposition of widthk and a graphG with n nodes,
one can compute a binary tree decomposition ofG of depth at most2 log5/4(2n) and width at
most3k + 2 in timeO(n).

Therefore, we can always assume that if we are given a tree decomposition of widthk of ann-
node graph then we can construct a balanced term tree for the graph onO(k) labels and having
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heightO(log n). From now on, we shall usek′ = 3k + 3 = O(k) to denote the number of
distinct source labels in the (balanced) term tree.

We assume that there are no sources remaining after evaluating the term tree, i.e. all sources
have been erased below the root. Therefore the nodes of the graph can be put in bijection with
erasure operations; we shall usev to refer to both the node inG and its unique corresponding
erasure operation in the term tree. For a nodeu, we shall useG(u) to denote the graph that
results from evaluating the subtree of the term tree rooted at u.

Each nodeu shall have astateq(u) assigned to it. This is ak′ × k′ matrix describing the
reachability of sources inG(u) – in this matrix, the entry(p, q) is 1 iff the source labeledp
can reach the source labeledq in the graphG(u), and 0 otherwise. For convenience, we shall
use the equivalence relationp ∼ q to denote reachability of sourcep, q in some source graph.
By definition of parallel composition, ifp ∼ q in G(u) and q ∼ r in G(v), thenp ∼ r in
G(u) // G(v).

It can sometimes be confusing when there are several sourceswith the same label on an
access path (due to erasing then introducing a new source with the same label using// ). To
make things simpler, we shall add subscripts to the source labels to uniquely identify them; for
example, instead ofp appearing several times on a path, we may havep1, p2, . . .. This does not
affect the correctness of the term tree; since we never have two sources with the same label in
the same graphG(u), we shall never have two sourcespi, pj appearing at the same time. From
now on, we assume that our source labels are subscripted in this way. This assumption will be
helpful when we try to construct separator labels.

Finally, it will be easier to deal with binary term trees thanones having a mixture of
unary and binary operations, so we compress a parallel composition operation followed by
a sequence of erase operations into a single binary operation as in [CV03]; the sequence
fga(fgb(· · · (G // H))) becomesG // fga,fgb...

H. All nodes of the graph associated with an
erase nodeu are now associated with the compressed operation containing the erasure opera-
tion u. In particular, we shall associateu with the graphG(u) obtained by applying the parallel
composition operation butnot the sequence of erasure operations. Therefore the source associ-
ated withu still exists inG(u). We write ‘the access path foru’ to denote the unique path from
the root tou in the term tree,excludingthe nodeu, as this simplifies the exposition. As a result,
the set of nodes adjacent to the access path foru always containsu.

A connectivity labeling scheme

We begin by constructing a labeling scheme that allows us to determine if two nodes are con-
nected inG, and then extend it to compute connectivity when nodes are removed. As in [CV03],
we shall store in the labelL(u) a string describing the access path foru and the state for every
node adjacent to the access path. In addition, the label contains the source label of the nodeu in
G(u) (recall thatu is always a source node inG(u)). If u has the source labelsu then the string
is of the form

Q(u) = (f1, i1)q(s3−i1(u1)) (f2, i2)q(s3−i2(u2)) . . . (fh, ih)q(s3−ih(uh)) su

whereh is the height of the term tree,f1 . . . fh are the operations on the path (e.g.// fga...),
i1 . . . ih ∈ {1, 2} indicate which child to take ands1(u) (respectivelys2(u)) denote the left
(respectively right) child ofu. The statesq(s3−i1(u1))q(s3−i1(u2)) . . . q(s3−i1(uh)) are the states
of nodes adjacent to the access path foru. Since each set of at mostk′ erasure operations can
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Figure 4.7 : (a) A graph and (b) a term tree that evaluates to the graph. The two paths from v3

to v5 are drawn in red and blue (dashed). Deleting v1 removes the source node a2, so would
remove the red path.
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CONSTRUCT-LABELS(G)

1 (X, I)← a tree decomposition ofG of width k
2 Convert(X, I) into a binary tree decomposition of width3k + 2 and heightO(log n)
3 Compute a binary balanced term treeT from (X, I) with k′ = 3k + 3 labels [Cou07]
4 for each nodeu ∈ T
5 do su ← the source label ofu in G(u)
6 Q(u)← the access path foru and the states of nodes adjacent to the access path
7 L(u)← (su, Q(u))

Figure 4.8 : An algorithm to construct connectivity labels L(u) for treewidth k graphs

be identified withk′ bits and the term tree has heightO(log n), the access path can be described
usingO(k′ log n) = O(k log n) bits. The reachability matrices adjacent to the path are stored
using(2 log n)k′2 = O(k2 log n) bits, so the labels have sizeO(k2 log n) bits. Figure 4.8 gives
an algorithm to construct these labels.

The decoder algorithm works as follows. Let the root of the tree ber, and let nodesu, v
have source labelssu andsv in the graphsG(u), G(v). The following lemma shows how to use
the reachability matrices for nodes adjacent to the access paths foru, v to construct a path from
u, v in G, if one exists. The idea is to construct a set of paths involving only the source nodes
of the graphsG(w) for nodesw adjacent to the access paths foru, v. Sequences of non-source
nodes on each path (i.e. source nodes that have been erased below eitheru, v in the tree) are
contracted into a single edge in these paths. Joining these paths together will give a path inG.

Lemma 4.6.8 Let su, sv be the source labels ofu, v in G(u), G(v). Thenu, v are connected in
G iff we can find a sourcep ∈ G(x) for some ancestorx of LCA(u, v), and sequences of parallel
compositions establishing the following:

1. (su ∼ p) using the states of nodes adjacent to the access path foru;

2. (sv ∼ p) using the states of nodes adjacent to the access path forv;

Proof. First consider the ‘→’ direction. At each parallel compositionG(u) // G(v), the con-
nectivity of the sources in the resulting graph is completely determined by the connectivity
of the sources inG(u) and the connectivity of the sources inG(v). In particular,p ∼ r in
G(u) // G(v) iff p ∼ q in G(u) andr ∼ q in G(v), for someq in bothG(u), G(v). There-
fore, any sequence of parallel composition operations as inthe claim corresponds to a path
connectingu, v in G(root) = G.

Now we consider the other direction. Recall our assumption that all sources are eventually
erased. If we cannot find sequences of parallel compositionsas in the statement of the lemma,
then this implies that there is a nodex in the term tree wherex is an ancestor of LCA(u, v),
the graphG(x) has no sources, andsu 6∼ sv in G(x). Since at each parallel composition, the
connectivity of the resulting graph is completely determined by the connectivity of the sources
of the child graphs, it is impossible to find a sequence that establishessu ∼ sv by any sequence
of compositions involvingG(x). Thereforeu, v remain unconnected in the graph corresponding
to any ancestor ofx ∈ T ; in particular this holds forG(root) = G.
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CONNECTED(L(u), L(v), L(s1), . . . , L(sk))

� Let S = {s1, . . . , sk}
� ReturnsTRUE iff u, v are connected inG \ S

1 for eachsi ∈ S
2 do Recompute the stateq(x) for every nodex on the access path forsi

using the source graphG(x) \ S
3 Let the sources foru, v besu, sv

4 Decide whethersu, sv are connected, as in Lemma 4.6.8

Figure 4.9 : A decoder algorithm for separator labels on treewidth k graphs

The proof of the above lemma implies that ifu, v are connected inG, we can find a path by
examining only the connectivity of sources in the graphsG(u), G(v) and the graphs associated
with nodes that are adjacent to the access paths ofu, v from the root. Replacing the entryi, j in
the reachability matrix forG(u) by the distance fromsi to sj in G(u) allows us to find the length
of every path fromu to v. Just as the sources are the only nodes that determine connectivity
under parallel composition, they also completely determine the distance, i.e.

dG(u) // G(v)(p, r) = min
q

dG(u)(p, q) + dG(v)(q, r).

This modification gives distance labels of sizeO(k2 log2 n) bits for treewidthk graphs. How-
ever, it is already known that treewidthk graphs haveO(k log2 n)-bit distance labels [GPPR04],
so this bound is larger by a factor ofk. We now show that these larger labels capture more
structure of the graph, in particular they capture the structure of separators that will allow us to
construct distance separator labels using the same label size.

As an example, Figure 4.7 shows a term tree and the graph that it evaluates to. In the figure,
two paths between nodesv3 andv5 are drawn, and sources that fuse together are joined with
dashed lines (in the final graph, these are a single node). We can apply Lemma 4.6.8 by tracing
subpaths in the leaf graphs and joining them together using the parallel composition operations.
For example, we can takep to be the source labeledc2, thenc1 ∼ c2 using the labelL(v3) and
a1 ∼ c2 using the labelL(v5).

Constructing separator labels

We now show how to decide if two nodes are connected inG \ S for some setS of nodes. We
first give a somewhat inefficient scheme, then we show how to reduce the space requirement
later. For each nodeu and each subsetS of source labels (whereS ⊆ {1, . . . , k′}), we store a
reachability matrix for sources inG(u) \ S (each nodeu ∈ G corresponds to a unique source
in G(u)). Then we use the reachability matrices forG(x) \ S for nodesx on the access paths
for s1, . . . , sk to compute new reachability matricesGS(x) for nodes inQ(u), Q(v) (where the
access paths fors1, . . . , sk become adjacent to the access paths foru, v).

We now proceed in a similar way to Lemma 4.6.8; we use the new informationGS(x) for
x ∈ Q(u) ∪Q(v) to construct subpaths, then join them together using the parallel composition
operations in the term tree. However, we place a restrictionon the sources that we are allowed
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CONSTRUCT-SOURCE-CONNECTIVITY-GRAPH(G)

1 while (G contains a non-source node)
2 do Let u be any non-source node inG
3 Add edges{x, y} between all neighboursx, y of u
4 Removeu from G

Figure 4.10 : The procedure to construct the source connectivity graph

to use in our subpaths – ifsi is the source corresponding to a nodes ∈ S (recall that we add
subscripts to make identification easier) then we are not allowed to use the sourcesi in the
subpaths. More precisely, for each nodex in the term tree we construct subpaths usingGS(x).
Since there are at most2k′

O(log n) reachability matrices adjacent to each access path, the labels
are of sizeO(2k′

k′2 log n) = O(23kk2 log n) bits. The decoder algorithm is shown in Figure 4.9.
We can now employ the same argument as before to turn our separator labels into distance

separator labels, with an additionalO(log n) factor in the label size. We do this as before:
replace each of the2k′

reachability matrices by a matrix storing the distance between sources
in the graph where some setS of sources have been removed. All the distances used involve
paths that avoid the sources representing nodes in the forbidden setS, and therefore the paths
that remain are exactly those that do not intersectS.

Reducing the space requirements using source connectivity graphs

For each nodev and its graphG(v), we can avoid storing2k′

matrices by constructing a graph
G′(v) on thek′ sources, which we call thesource connectivity graph. This graph will have the
property that for any setS of source nodes, the reachability of sources inG′(v) \ S equals the
reachability of sources inG(v) \ S. Therefore, we can replace the2k′

= O(23k) reachability
matrices by a single graph onk′ nodes.

Constructing the graph is easy – for any path between two sources, we contract all its sub-
paths containing only non-source nodes into a single edge. More precisely, we want to solve the
following problem. Given a graphG onn nodes and havingk distinguished source nodes, con-
struct a graphG′ on thek source nodes so that the following holds: for any setS ⊆ {1, . . . , k}
of sources and two sourcessi, sj, we want that 1si andsj are connected inG \ S iff they are
connected inG′ \ S. We can constructG′ using the procedure shown in Figure 4.10.

For each non-source nodeu, the procedure turns the neighbourhood ofu into a clique then
removesu; if u has only one neighbour then this does nothing. The graph remaining at the end
of the procedure is the desired graphG′. It is easy to check that the nodes ofG′ are exactly
the source nodes inG (they are the only nodes never contracted). We now show that the graph
it computes has the property described above, i.e. it captures the connectivity of sources when
only sources are removed. An example is shown in Figure 4.11.

Lemma 4.6.9 The graph computed by the above procedure has the desired property, i.e for any
setS ⊆ {1, . . . , k} of source nodes and two sourcessi, sj 6∈ S, we have thatsi and sj are
connected inG \ S iff they are connected inG′ \ S.

Proof. We begin by making two claims about the graph computed by the procedure.
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Figure 4.11 : A graph and its source connectivity graph. The source connectivity graph pre-
serves reachability between sources under deletion of sources. The source nodes are filled
and the non-source nodes are drawn unfilled.

Claim 1: The graphG′ contains no paths not inG. Every path inG′ corresponds to some
(possibly non-unique) path inG. Consider a pathsi1si2 . . . sir in G′. Then it is easy to see that
there must exist a pathsi1Pi1i2si2Pi2i3 . . . Pir−1irsir in G where thePij are paths inG containing
only non-source nodes.
Claim 2: The source connectivity graphG′ contains all paths between sources inG. Since all
non-source pathsPij in G betweensi, sj are contracted into a single edge inG′, every path of
the formsi1Pi1i2si2Pi2i3 . . . Pir−1irsir in G corresponds to the unique pathsi1si2 . . . sir in G′.

The lemma now follows from the claims. If two sources are connected inG \ S then there
exists a path between them that avoids the sources inS, and by claim 2 there also exists a path
in G′ that avoidsS. If two sources are connected inG′ \ S then there exists a path between
them that avoidsS, and by claim 1 there also exists a path between them inG that avoids the
sources inS, and possibly uses some non-source nodes. Since the setS only contains source
nodes, these pathsPij still exist inG \ S.

Using the above construction gives the following labeling scheme: construct the labels as
before, except that we store the ‘source connectivity graph’ for G(u) in place of the2k′

reach-
ability matrices for sources inG(u). Note that for each nodeu and set of sourcesS, we can
take the source connectivity graph forG(u) and compute the reachability matrix for sources in
G(u)\S. Therefore, the decoder algorithm can simulate the decoderalgorithm using the reach-
ability matrices. This reachability matrix can be computedin time O(k′2 log k′) = O(k2 log k)
by running an all-pairs shortest path algorithm on the source connectivity graph and ignoring
nodes inS.

For distance separator labels, we shall show how to assign weights to the edges of the source
connectivity graph such that the minimum weight path in the source connectivity graph between
si, sj equals the length of the shortest path betweensi, sj in G that only uses non-source nodes.
Furthermore, we show that this property is preserved under deletion of sources. We call this
graph the source distance graph, and the algorithm to construct it is given below (as before, the
input graphG has a distinguished set ofk source nodes).

The graphG′ constructed by the above procedure has the following property: for any setS
of source nodes and two sourcessi, sj 6∈ S, dG′\S(si, sj) = dG\S(si, sj). The reason that we
only contract edges connected to non-source nodes is that otherwise there may be an edge in
G′ that represents a path containing a source nodesj, and then settingsj ∈ S would give an
incorrect distance using this edge. An example of the construction is given in Figure 4.13.

For each graphG(u) in the term tree, we can use its source connectivity graph to reconstruct
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CONSTRUCT-SOURCE-DISTANCE-GRAPH(G)

1 Setw(u, v) = w(v, u) = 1 for all edges{u, v} of G, and∞ otherwise
2 while (G contains a non-source node)
3 do Let u be any non-source node inG
4 For each pair of neighboursx, y of u
5 Setw(x, y) = w(y, x) = min{w(x, u) + w(u, y), w(x, y)}
6 Removeu from G (also setw(v, u) = w(u, v) =∞ for all v)

Figure 4.12 : The procedure to construct the source distance graph
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Figure 4.13 : An example of a graph and its source distance graph. The distances between
sources are preserved under deletion of source nodes. Note that deleting the source node s4

increases the distance between s1, s3.
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the distance matrix for sources inG(u) \ S for any setS of sources. This allows us to simulate
the scheme where we explicitly construct the2k′

distance matrices, so we can use the argument
in that case to construct separator distance labels and to argue for its correctness. Since the edge
weights in the source connectivity graph may be in the range[1, n], the graph can be represented
usingO(k′2 log n) bits. Therefore the distance separator labels are of sizeO(k2 log2 n) bits. We
have now proved the following result.

Theorem 4.6.10The family of treewidthk graphs has separator labels of sizeO(k2 log n) bits,
and distance separator labels of sizeO(k2 log2 n) bits.

Remarks

Unfortunately, the problem of determining whether the treewidth of a given graph is at most
a given integerk is NP-complete [ACP87] (although, for constantk there exist linear-time
algorithms [Bod93a]). Our algorithm works even when the treedecomposition given to it is
not optimal – the only cost we pay is that thek in the label size becomes the treewidth of the
decomposition given to the algorithm. There exist polynomial-time approximation algorithms
that compute tree decompositions with treewidth a factorO(

√
log k) of optimal, wherek is

the optimal treewidth of the graph [Ami02, FHL05]. Therefore for graphs having non-constant
treewidthk, we can use anO(ρ)-factor approximation algorithm to obtain distance separator
labels of sizeO(ρ2k2 log2 n) = O(k2 log2 k log2 n) bits in polynomial time.

4.7 A partial forbidden-set routing scheme for planar graphs

We now show how to utilise some of our results for small treewidth graphs to obtain results
for some special types of planar graphs. Eppstein [Epp00], improving on a previous result of
Baker [Bak94], showed the following connection between bounded-genus graphs and treewidth,
known as the ‘diameter-treewidth property’.

Lemma 4.7.1 (Eppstein [Epp00])Let G be a graph with genusg and diameterD. ThenG
has treewidthO(gD).

It follows immediately from Theorem 4.6.10 on treewidthk graphs that genus-g graphs with
diameterD have distance separator labels of sizeO(g2D2 log2 n) bits.

Eppstein [Epp95] considered the following problem on planar graphs: given a nonegative
integerl, construct a centralized data structure so that given two nodes, we can decide if their
distance is at mostl, and if so, construct a path between them. We now show how to obtain
a similar result for the case of forbidden-set routing, but using a distributed data structure (the
labels). Fix some nonnegative integerl. We shall assign labels to nodes so that given the labels
for u, v and the nodes ofS ⊆ V (G), we can either return the distancedG\S(u, v) or determine
that it is greater thanl. Once we can do this, we can use the labels with the routing scheme of
Section 4.5 to route on a shortest path inG \ S if dG\S(u, v) ≤ l. Since these labels represent
a restricted version of distance separator labels, we shallcall them ‘distance-l separator labels’.
We will make use of the following planar graph covering result of Eppstein.

Lemma 4.7.2 (Eppstein [Epp95])LetG be a planar graph andl a nonnegative integer. Then
in timeO(n) we can find a collection of subgraphsGi with the following properties:
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1. For every nodev of G, the l-neighbourhood2 of v is contained in one of the subgraphs
Gi;

2. Every node ofG is included in at most two subgraphsGi;

3. Every subgraphGi has treewidthO(l).

By applying Theorem 4.6.10 separately to each subgraphGi we can construct distance-l
separator labels of sizeO(l2 log2 n) bits. If dG(u, v) ≤ l for two nodesu, v then the only way
thatdG\S(u, v) > dG(u, v) for some setS is if some nodes ofS are within a distancel from
u in G. Therefore, if the distance inG \ S is at mostl then it suffices to consider only those
elements ofS that lie within a distancel of u. The above lemma guarantees that we shall only
have to consider a single subgraph to do this. Therefore, we have the following result.

Theorem 4.7.3 Let G be a planar graph andS(u) ⊆ V (G) the forbidden set of nodeu, with
k ≤ maxu |S(u)| for all u. Let l be a nonnegative integer such thatdG(u, S(u)) ≤ l for all u.
Then we can construct a distributed forbidden-set routing scheme such that for anyu, v, we can
route on the shortest path that avoidsS(u), or declare that their distance inG \S(u) is greater
thanl. The routing tables haveO(k∆(G)l2 log2 n) bits and the labelsO(kl2 log2 n) bits.

Remarks. Ideally, we would like to have a scheme that can route betweenall pairs of
nodes, still with the restriction thatd(u, S(u)) ≤ l for all u. However, the problem is that even
if dG\S(u)(u, v) > l, we could still have thatdG\S(u)(u, v) > dG(u, v). We would need to be
able to know which nodex on the ‘fringe’ of the subgraphGi containingu that we should
route to, in order to reachv on the shortestS(u)-avoiding path. We could then route tox using
the forbidden-set routing scheme inGi, and then fromx to v using any shortest-path routing
scheme.

4.7.1 Lower bounds for distance separator labels

We now prove an easy lower bound on the size of separator labels by a reduction from adjacency
labeling. We shall parametrise our lower bound byk, the maximum size of a separator that we
are interested in detecting. The motivation for this is thatk would correspond to the maximum
size of any forbidden set in a forbidden-set routing scheme.

Proposition 4.7.4 Assume that we are only interested in detecting separators ofsize at most
k ≤ n. At least one node must be assigned a separator label of sizeΩ(k) bits onn-node graphs
in the worst case.

Proof. Let G = ((U, V ), E) be an undirected bipartite graph on the node setsU, V where
U = {u1, . . . , un}, V = {v1, . . . , vk}. ConstructG′ by adding a nodet connected to each node
of V as in Figure 4.14. Now consider two nodesu ∈ U andv ∈ V . It is clear thatu is not
adjacent tov in G iff V \ {v} is a separator betweenu andt in G′ (we can use the separator
labels for the setV \{v} andu, v to decide whether this is the case). There areΩ(2nk/2) distinct
bipartite graphsG, and for any two such graphsG1, G2 there are two nodesu, v whereu, v are
adjacent inG1 but not inG2. The corresponding graphsG′

1, G
′
2 must also have two nodesu, v

whereV \ {v} does not separateu, t in G′
1 but does inG′

2. Therefore the sum of all the labels

2Thel-neighbourhood of a nodev is the set of nodes at distance at mostl from v.
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Figure 4.14 : Illustrating the lower bound for separator labels (Proposition 4.7.4). Nodes ui, vj

are not adjacent iff the set V \ {vj} is a separator of ui and t.

assigned to nodes must be at leastΩ(log 2nk/2) = Ω(nk) bits, so some node must be assigned a
label of sizeΩ(k) bits.

Remarks. Even whenk is unrestricted, the lower bound does not appear to be tight.By
storing the entire graph in each label, we can get a trivialO(n2) upper bound. Unfortunately,
nothing better is known for general graphs and so theΩ(n) lower bound leaves a large gap. It is
worth examining the lower bound to see that it is most likely far from tight. In particular, it does
not seem to make good use of the combinatorial nature of the problem since each nodev is im-
plicitly associated with its witness setV \ {v}. For this reason, we expect that the lower bound
can be strengthened toΩ(n3/2) or evenΩ(n2) but we have been unable to do so. Most likely,
the current construction will not suffice and some more insight into how the structure of the for-
bidden sets affects the connectivity of the graph will be needed. The interesting (but seemingly
difficult) case is whenk is small, sayO(log n). In this case, it would be very interesting to show
that we can construct sublinear-sized separator labels forgeneral graphs.

For the case of distance separator labels, the situation is somewhat different – if the setS
is empty then it reduces to the problem of distance labeling in undirected graphs. It is known
that there are graphs onn nodes andm edges where some node must be assigned a label of size
Ω(m/n log(n2/m)) bits [CHKZ02]. Therefore, distance separator labels must beof sizeΩ(n),
regardless of the size of the setS allowed. This immediately gives the following lower bound.

Proposition 4.7.5 There aren-node graphs where some node must be assigned a distance sep-
arator label of sizeΩ(n) bits, regardless of the size of the setS.

Since distance separator labels are more general than separator labels, the remarks made
above for separator labels also apply here; in particular, we do not expect thatΩ(n) is a tight
lower bound for distance separator labels in general graphs. Unfortunately, we have not been
able to prove anything stronger and improving this is a completely open problem.

4.8 Decremental graph connectivity

In this final section, we use some of the techniques for constructing separator labels, combined
with a novel reduction to orthogonal range searching, to show how to solve dynamic graph
connectivity with good worst-case query time. We then show how to use this technique to
construct efficient algorithms for solving the problem ofk-edge witness.
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Definition 4.8.1 (k-vertex witness) Given a graphG, thek-vertex witness problem is to pre-
processG so that givenk nodesS, we can quickly decide whetherS is a separator ofu, v in G,
i.e. whetherS is a witness to the fact thatu, v are notk-connected inG.

Separator labels can be seen as a distributed version of thek-vertex witness problem. The
k-edge witness problem is defined similarly but we want to knowwhetheru andv arek-edge-
connected. These two problems are closely related to the well-studied problem ofdecremental
graph connectivity. Here, we wish to construct a data structure that efficientlysupports the
following operations on a graph: DELETE(u, v), which deletes edge{u, v} from the current
graph, CONNECTED(u, v), which returnsTRUE iff u, v are still connected. The node version
of the problem is similar, except that we instead support DELETE(u), which deletes a single
node and all its adjacent edges. It is easy to see thatk-vertex witness can be solved using a
decremental connectivity algorithm – delete the setS of nodes, test connectivity ofu, v and
then reinsert the nodes deleted. In fact, the best known bounds fork-vertex witness (andk-edge
witness) are obtained in this way.

We are interested in worst-case bounds because the problemswe are trying to solve are
fundamental network problems and therefore are most likelyto be used as subroutines in higher-
level applications. Without a good worst-case bound on the performance of the underlying
algorithms, it is difficult for algorithms that use them to provide good performance guarantees
of their own. Despite much work, the best known worst-case time for DELETE(u, v) is O(

√
n)

due to Eppstein et al. [EGIN97] who improved the result of Frederickson [Fre83] fromO(
√

m)
to O(

√
n) per update using the sparsification technique.

All known algorithms that have better update time haveamortizedtime bounds. The first
algorithm with polylogarithmic update time was given by Henzinger, King and Thorup [HK99,
HT97]. They gave a fully dynamic algorithm (supporting bothinsertions and deletions) such
that for a sequence ofΩ(m0) update operations (wherem0 is the number of edges in the initial
graph), an update takes expected amortized timeO(log2 n) and a connectivity query takes time
O(log n/ log log n). This gives an algorithm fork-edge witness with update timeO(log2 n)
and amortized expected query timeO(k log2 n). This query time is amortized over the updates
made, so this is not a worst-case bound for a singlek-edge witness query.

Holm et al. [HdLT01] obtained a deterministic version of thealgorithm withO(log2 n)
amortized time per update. However, as before, this time bound is amortized over a large
sequence of edge insertions followed by deletions. Therefore, there is no guarantee that the cost
of a deletion will be small when taken over some isolated set of k edge deletions.

We improve the worst-case bound fork-edge witness in general graphs when the number of
deletions is fairly small, i.e.k = O(

√
n). Our algorithms are simple, and reduce the problem

of maintaining decremental connectivity to maintaining fully dynamic connectivity (supporting
both insertions and deletions) on some auxiliary graphH, which usually has size linear in
the number of deletions already performed. We can then use known algorithms to maintain
connectivity onH, and answer queries onG by quickly translating them to queries onH. An
artifact of our approach is that the time for a deletion depends on the number of nodes or edges
already deleted from the original graph, which explains whyit only works for small numbers of
deletions. Our main results for this are the following:

• We give an algorithm for decremental connectivity that handles thekth edge deletion in
worst-case timeO(k log n) and answers connectivity queries in timeO(k2). The down-
side is that it may use spaceO(n∆(G)2).
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• Using the above algorithm, we solvek-edge witness in general graphs with worst-case
query timeO(k2 log n) and spaceO(k2n2). This improves theO(k

√
n) bound of Eppstein

[EGIN97] for k = O(
√

n). Our algorithm uses a novel reduction from orthogonal range
searching.

• Let T be a spanning tree of G with degree∆(T ). We give a decremental connec-
tivity algorithm using spaceO(n2 log n/ log log n), handling thekth deletion in time
O(∆(T )2 log n + k log n) and connectivity queries inO(k2). For Hamiltonian graphs,
graphs with bounded independence number,1/O(1)-tough graphs and almost allr-regular
graphs (for fixedr ≥ 3), this givesO(k log n) time for deletions.

4.8.1 Preliminaries

We begin by describing the algorithm of Henzinger and King (HK) [HK99], since our algorithm
works in a conceptually similar way. They achieve both polylogarithmic update and query time
but this bound is expected and amortized overΩ(m0) updates, wherem0 is the number of edges
in the initial graph. We remove this amortization but at the cost of additional space and an
update time that depends linearly on the the number of edges deleted thus far.

They maintain a spanning forest of the graph, starting with some arbitrary spanning treeT
(we assume that the graph is initially connected). When a treeedgee is removed fromT it
breaksT into two subtreesT1, T2; and a replacement edgee′ for e needs to be found (if one
exists) to reconnectT1, T2 into another spanning treeT ′ = T1 ∪ T2 ∪ {e′}. To do this, they
maintain a partition of the edges intoO(log n) levels; to find a replacement fore, the nontree
edges in a particular level are randomly sampled. If one of them connectsT1 to T2, then the
trees are reconnected using this edge. Otherwise, all the nontree edges adjacent to nodes ofT1

are searched exhaustively. By carefully managing this partitioning and sampling, they obtain
good amortized bounds on the update times.

They also employ a technique to efficiently represent the trees in a linear form, which allows
trees to be efficiently spliced or reconnected at a given edge. This data structure is known as the
Euler tour tree. Since we also make use of it, we shall now describe it.

Euler tours

An Euler tour of a graph is a path that traverses every edge exactly once in each direction.
Henzinger and King [HK99] use an Euler tour of a spanning treeT of G, constructed by calling
the following procedure with the root node.

ET(v)

� Constructs an Euler tour of the tree
1 visit v
2 for each childu of v
3 do ET(u)
4 visit u

Figure 4.15 : Constructing an Euler tour of a tree
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Each edge is visited twice (traversed once in each direction) and every degree-d noded
times. Each time any nodeu is encountered in the tour, we call this anoccurrenceof u and
denote the set of occurrences ofu by O(u). We shall refer to a particular occurrence by its
unique position in the tour. If the sequenceET (T ) is stored in a balanced binary search tree,
then one may insert an interval or splice out an interval (delete an edge of the tour) in time
O(log n), while maintaining the balance of the tree.

Some of our algorithms use an Euler tourET (G) of the entire graphG instead of a spanning
tree. In this case, we can use the well-known theorem of Eulerthat states that a graph has an
Euler tour iff every node has even degree. Therefore a simpletrick to ensure thatG has an Euler
tour is to ‘double up’ each undirected edge so that it gets traversed once in each direction.

Sparse connectivity certificates

The concept of a sparsek-connectivity certificate is important for some of our algorithms. A
sparsek-connectivity certificatefor a graphG is a subgraphG′ of G, containing at mostkn
edges, such that any cut of value at mostk in G has the same value in the certificate. The idea
of using such a certificate is that if we are only interested indetecting cuts (or separators, if we
are in the node case) of size at mostk, then without any penalty we can work on the sparse
graphG′ instead of the (possibly dense) graphG.

Nagamochi and Ibaraki [NI92] show how to construct a sparsek-connectivity certificate
in linear-time. The problem is also known to be in NC [NH98] and can be solved using a
distributed algorithm [Thu95, JM96].

4.8.2 The algorithm

We now present our algorithm for solvingk-edge witness for general graphs using a centralized
algorithm. As described earlier, Henzinger and King [HK99]use an Euler tour data structure to
represent a spanning tree ofG. In contrast, we shall construct an Euler tour of theentire graph.

The algorithm can be explained as follows. We maintain an auxiliary undirected graphH
where we associate with each node ofH a connected interval ofET (G) (i.e. a connected
subpath of the Euler tour) and the nodes ofH form a disjoint partition of the subpaths of
the tour. There is an edge between two nodes ofH iff there is some nodeu ∈ V (G) with
an occurrence in both intervals. We denote byh(u) a node ofH whose interval inET (G)
contains an occurrence ofu (if there is more than one, choose one arbitrarily). For an integer
i corresponding to an occurrence of a node, we denote byh(i) the (unique) node ofH whose
interval on the tour containsi (the version used will be clear from the context).

For a nodeu ∈ V (G), let Hu be the subgraph ofH induced by the nodes whose intervals
contain an occurrence ofu. Let h1, h2 be any two nodes ofHu, then there must be an edge
{h1, h2}. It follows that the subgraphHu is a clique, for allu. We shall represent the graphH
by storing a balanced binary search tree (e.g. a 2-3 tree) on the intervals associated with nodes
of H. This allows us to find the nodeh(u) in worst-case timeO(log |H|). The following lemma
states a simple property ofH.

Lemma 4.8.2 Nodesu, v ∈ V (G) are connected inG iff h(u), h(v) are connected inH.

Proof. First, note that sinceHu, Hv are cliques, we can choose to compute reachability between
any pair of nodesa ∈ Hu, b ∈ Hv. The lemma now follows from the definition ofH – every
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Figure 4.16 : The box (2, 4)× (3, 5) is empty iff there are no edges between the intervals [2 . . 3]

and [4 . . 5] on the graph

path fromu to v in G corresponds to a set of paths fromh(u) to h(v) in H, and every path from
h(u) to h(v) in H corresponds to a collection of paths fromu to v in G.

Now we can describe our algorithm.H starts as a singleton representing the entire tour
ET (G). To delete an edge{u, v} ∈ E(G) the Euler tour is spliced at this edge in timeO(log n).
This corresponds to splitting exactly one nodeh of H into two new nodesh1, h2 with N(h) =
N(h1) ∪ N(h2). Therefore to construct the new edges ofh1 andh2, we do not need to test for
edges between all the nodes ofH – it suffices to test only the old edges ofh to see if they are
also edges ofh1 or h2. By definition ofH, there is an edge between two nodes ofH iff their
corresponding intervals in the Euler tour both contain an occurrence of some nodeu ∈ V (G).
We shall show that this ‘edge test’ can be done in worst-case time O(log m) = O(log n) for
each edge by making use of orthogonal range trees.

To maintain connectivity onH under node insertions and both edge deletions and insertions
we can use any fully dynamic connectivity algorithm. A simple method is to store the adjacency
list representation ofH; each edge insertion and deletion then takes timeO(1), and connectiv-
ity queries can be answered by running a depth-first search intime O(|V (H)| + |E(H)|) =
O(|H|2). An alternative is to use the fully-dynamic algorithm of Eppstein et al. [EGIN97],
which handles edge insertions and deletions in timeO(

√
|H|) and answers connectivity queries

in timeO(1).
To answer connectivity queries, we use the fact that the subgraphHu is a clique, so one node

of Hu can reach some nodeh of H iff all of Hu can reachh. A connectivity query foru, v is
then handled by findingh(u), h(v) and then calling CONNECTEDH(h(u), h(v)). To handle the
query CONNECTEDwe simply call CONNECTEDH , sinceG is connected iffH is connected.

Reduction from orthogonal range searching

The crucial part of our algorithm is the ability to test for anedge in the auxiliary graphH. We
do this by using a reduction to two-dimensional orthogonal range searching as follows. Arange
tree is a data structure that supports two operations on a two-dimensional space: INSERT(x, y),
which inserts a point(x, y), and BOX-EMPTY((x1, y1), (x2, y2)), which returns true iff the
box with corners(x1, y1) and (x2, y2) does not contain any points (sometimes we shall use
BOX-NOT-EMPTY for the negation of this function).

Given an undirected graphG and a unique identifierI(u) ∈ [1 . . n] for each nodeu, each
undirected edge{u, v} of G is mapped to two points(I(u), I(v)) and(I(v), I(u)) on ann× n
grid. Then there is an edge inG with endpoints having identifiers in both the intervals[a . . b]
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and[c . . d] iff the box (a, c)× (b, d) is nonempty (fora ≤ b, c ≤ d) as illustrated in Figure 4.16.
Orthogonal range searching has been extensively studied during the last thirty years, with many
applications to databases and computational geometry. There are several dynamic algorithms
having efficient worst-case update and query times. This is the first time we know of that they
have been used for graph connectivity. The transformation described above may also be of
independent interest.

The transformation described above is used as follows, and illustrated in Figure 4.17. For
each ordered pair of occurrencesui, uj of nodeu, add a point(ui, uj) to the space and associate
with each node ofH a unique interval[i . . j] (with i ≤ j) on the Euler tour. Then the two
nodes ofH associated with the intervals[a . . b] and [c . . d] are adjacent inH iff there exists
some nodeu ∈ V (G) with occurrences in[a . . b] and [c . . d] in the tour, which occurs iff the
box (a, c) × (b, d) is nonempty. The algorithm of this section does not need to remove points
(splitting nodes ofH keeps track of the deleted edges ofG), so a static range tree algorithm will
suffice (in contrast, the algorithm of the next section requires a dynamic range tree). Chazelle
[Cha88] has given an algorithm for the static case that storesr points with spaceO(r) and
answers emptiness box queries in worst-case timeO(log r).

The decremental connectivity algorithm is given in full in Figure 4.18, and the procedure
for k-edge witness in Figure 4.19.

Complexity

Let DELETE[k] denote the worst-case time taken by DELETE for any sequence ofk edges.
Assume thatk edges have been deleted fromG. Then the graphH has at most2k + 1 nodes,
since each edge ofG appears twice in the Euler tour ofG. Also, it takes timeO(log n) to
splice out an interval of the Euler tour, and each range tree query takes timeO(log n). If
we use the adjacency list representation ofH, then the times for each line are as shown in
the code above. The loop at line 6 of DELETE is repeatedO(∆(H)) = O(k) times and so
DELETE[k] = O(k log n). Therefore the procedurek-EDGE-WITNESS takes worst-case time
O(k2 log n).

Alternatively, using the fully-dynamic connectivity algorithm of Eppstein et al. makes lines
4,5,8,9 take timeO(

√
|H|) and line 11 takes timeO(∆(H)

√
|H|), so DELETE[k] = O(k3/2 +

k log n), but CONNECTED(u, v) and CONNECTEDnow takeO(log k) time. This might be more
useful if the algorithm was being used for decremental connectivity. However, for solvingk-
edge witness, using the adjacency representation ofH gives the best time bound.

The space requirement is dominated by the cost of storing thepoints representing the node
occurrences in the range tree. Since each nodev ∈ V (G) appearsdG(v) times in the tour, there
aredG(v)2 points in the range tree corresponding tov. Using the range tree of Chazelle [Cha88]
gives a data structure usingO(

∑
v∈G dG(v)2) = O(n∆(G)2) bits of space.

For k-edge witness we are only interested in cuts of size at mostk, and so we can reduce
the space requirement by using sparsek-connectivity certificates. The modified algorithm is the
same except that we replaceG with its sparsek-connectivity certificateG′ in INITIALISE . The
correctness follows from the connectivity properties of the connectivity certificate. The space
complexity is reduced to that needed to store the node occurrences in the range tree for the Euler
tour of the certificate, i.e.O(

∑
v∈V dG′(v)2) = O(n2k) bits in the worst case that we have a

complete bipartite graph on2k nodes. The query time is unchanged, as it only depended on the
set of edges being deleted.
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(a)  The graph G

(b) An Euler tour of G

(only edges corresponding to
occurrences of node c are drawn)

Deleting edges {a,e} and {c,d}
cut the tour at the points indicated
by the dashed vertical lines

The edges of H indicate regions of 

(c) The graph H corresponding
to deleting {a,e} and {c,d}.

the tour containing occurrences
of the same node

Figure 4.17 : A graph G and an Euler tour of G with the edges between occurrences of the
same node marked. The dashed lines represent the splicing of the tour from deleting edges
{a, e} and {c, d}. The auxiliary graph H at this point is shown below. There is no path between
any nodes of H containing occurrences of e and b, therefore {a, e}, {c, d} is a cut between e, b

in G.
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INITIALISE(G)

1 Double up each edge ofG
2 ET (G)← an Euler tour ofG
3 for each nodeu
4 do O(u)← the set of occurrences ofu in ET (G)
5 for each pairui, uj ∈ O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 LetH be a graph with a single node[1 . . 2m].

DELETE({u, v})
1 for each appearance{i, i + 1} of edge{u, v} in ET (G)
2 do EULER-TOUR-DELETE({i, i + 1}) � O(log n)

� Split h into two new nodesh1, h2

3 h← [a . . b] = h(i) � O(log |H|)
4 h1 ← INSERT-NODEH([a . . i]) � O(1)
5 h2 ← INSERT-NODEH([i + 1 . . b])

� Check for an edge betweenh1 andh2

6 if BOX-NOT-EMPTY((a, i + 1), (i, b)) � O(log n)
7 then INSERT-EDGEH(h1, h2) � O(1)

� Check for edges betweenN(h) andN(h1), N(h2)
8 for each neighbourh′ = [c . . d] of h in H
9 do if BOX-NOT-EMPTY((a, c), (i, d)) � O(log n)

10 then INSERT-EDGEH(h1, h
′) � O(1)

11 if BOX-NOT-EMPTY((i + 1, c), (b, d))
12 then INSERT-EDGEH(h2, h

′)
13 DELETE-NODEH(h) � O(∆(H))

CONNECTED(u, v)

� Returns true iffu, v are connected inG
1 return CONNECTEDH(h(u), h(v)) � O(|H|2)

CONNECTED

� Returns true iffG is connected
1 return CONNECTEDH � O(|H|2)

Figure 4.18 : The decremental connectivity algorithm
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k-EDGE-WITNESS(u, v, {x1, y1}, . . . , {xk, yk})
1 G′ ← a sparsek-connectivity certificate ofG
2 INITIALISE(G′)
3 LetH contain a single node[1 . . 2m]
4 for eachi ∈ {1, . . . , k}
5 do DELETE({xi, yi})
6 return CONNECTED(u, v)

Figure 4.19 : The algorithm for k-edge witness

Note that this idea can be applied to any decremental connectivity algorithm when we are
only interested in cuts of small value. Since there are algorithms [Tho00] that use spaceO(m),
this would transform them to use spaceO(kn) for solvingk-edge witness.

4.8.3 An more space-efficient algorithm for tree-like graph s

In this section we reduce the space requirement of the previous algorithm but increase the
query time for general graphs. For graphs having a spanning tree with small maximum degree,
however, we shall show how to maintain a small query time.

Let T be a spanning tree ofG having degree∆(T ). We give a decremental connec-
tivity algorithm that uses spaceO(n2 log n/ log log n) and handles thekth deletion in time
O(∆(T )2 log n + k log n). It answers connectivity queries in timeO(k2) and therefore gives an
O(k∆(T )2 log n+k2 log n)-time algorithm fork-edge witness, which isO(k2 log n) for Hamil-
tonian graphs, graphs of bounded independence number,1/O(1)-tough graphs and almost all
r-regular graphs (for fixedr ≥ 3). As before we can use a different algorithm to maintain con-
nectivity on the auxiliary graph, and this givesO(∆(T )2 log n + k3/2 log n) time for deletions
but withO(log k) query time.

The algorithm is more similar to that of Henzinger and King [HK99] than the one of the
previous section, in that we use a spanning forest rather than the Euler tour of the entire graph.
The main difference is that instead ofmaintaininga spanning forest ofG, we do not bother to
replace tree edges when they are deleted. Instead we keep track of the fragmented parts of the
forest as tree edges are deleted, and use this to answer connectivity queries efficiently.

Initialisation

The algorithm works as follows. Consider an undirected connected graphG = (V,E) and
a spanning treeT = (V, F ) of G. We construct the Euler tourET (T ) of T (note that in the
previous section we used the Euler tour ofG), and maintain an undirected graphH whose nodes
represent intervals on the Euler tour ofT . As before, we build a range tree with a point for each
pair of occurrences of the same nodeu, i.e. the setO(u)×O(u). Therefore there are at most

∑

v∈V

degT (v)2 ≤
(
∑

v∈V

degT (v)

)2

≤ (2n− 2)2

points since in any treeT we have
∑

v∈T degT (v) = (n− 1).
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We must also handle the nontree edges ofG. Assume that there arem′ such nontree edges.
We do this by adding to the range tree for each nontree edge{u, v} ∈ G, a point(ui, vj) for
each pair of occurrences inO(u) × O(v). Since each nodev appears in the Euler tour ofT
degT (v) times, the number of nontree edge points is

∑

{u,v}∈E\F
degT (u)degT (v) ≤

∑

{u,v}∈E

degT (u)degT (v) =

(
∑

v∈V

degT (v)

)2

≤ 4n2

for any spanning treeT . If the number of nontree edges is small (e.g.G is tree-like) then it
makes sense to bound this bymin (m′∆(T )2, 4n2) (by subtracting the sum containing the tree
edges). Combining the space requirements for tree and nontree edges, the algorithm uses at
mostmin (8n2, (m′ + n)∆(T )2) points in total.

Deleting an edge

Assume that we represent the auxiliary graphH with its adjacency list (so that edge operations
takeO(1) time). Deleting a tree edge is handled as before: we delete the two appearances of
the edge from the Euler tour ofT , each of which splits some node ofH into two nodes. We
then test for edges adjacent to the new nodes ofH using emptiness queries on the range tree.
This takes total timeO(k log n) afterk edges have been deleted (since the graphH will contain
at mostO(k) nodes).

Deleting a nontree edge{u, v} has no effect on the Euler tour ofT , but now we must delete
all the points(ui, vj) ∈ O(u)×O(v) from the range tree, corresponding to the edge{u, v} and
the occurrences ofu andv in T . After deleting each point(ui, vj) we do a range query to check
that an edge still exists inH between the nodes whose intervals containui, vj. If this check
fails then we delete the corresponding edge fromH. In total, this requiresO(∆(T )2) emptiness
queries in the worst-case.

Answering connectivity queries

Connectivity queries are answered exactly as before: to answer CONNECTED(u, v), we find
h(u) andh(v) and check whetherh(u) can reachh(v) in H. As before, the correctness of this
follows from Lemma 4.8.2 and that the subgraphsHu are cliques inH.

Complexity

Mortensen [Mor03] has given a dynamic range tree data structure that handles emptiness queries
and deletions in worst-case timeO(log r), and uses spaceO(r log r/ log log r) to storer points.
If we use this algorithm then we obtain a decremental connectivity algorithm that handles the
kth deletion in worst-case timeO(∆(T )2 log n + k log n) and uses spaceO(r log r/ log log r),
wherer = min(8n2, (m′ + n)∆(T )2).

It is clear that our algorithm relies on constructing a spanning tree of the graph having small
maximum degree. In fact, it actually requires a spanning tree such that if{u, v} is a nontree
edge ofG, then the productdegT (u)degT (v) should be small. There are several results known
about graphs with spanning trees of small degree. Let∆∗(G, T ) be the smallest integerd such
thatG has a spanning tree of maximum degreed. Determining∆∗(G, T ) exactly is NP-hard,
since∆∗(G, T ) = 2 iff G has a Hamiltonian path, which is NP-complete [GJ90]. On the
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other hand, Furer and Raghavachari [FR94] give a polynomial-time approximation algorithm
that outputs a spanning treeT with degree at most∆∗(G, T ) + 1. A theorem of Dirac [Dir52]
says that if each node ofG has degree at leastn/2, thenG contains a Hamiltonian cycle, and
therefore a spanning tree of degree 2. It is known that almostall r-regular graphs (forr ≥ 3)
have a Hamiltonian cycle.

An alternative characterisation of∆∗(G, T ) is in terms of thetoughnessof the input graph.
A graphG = (V,E) is t-toughif the number of connected components ofG\S is at most|S|/t
for every separatorS ⊆ V . In 1989, Win proved the following theorem.

Theorem 4.8.3 ([Win89]) Let t be a positive integer. Every1/t-tough graphG has a spanning
tree of degreet + 2, i.e. ∆∗(G, T ) = O(t).

Combining the above theorem with the algorithm of this section gives the following result.

Theorem 4.8.4 Let G be1/t-tough. Then we can solve decremental connectivity onG, han-
dling thekth deletion in timeO(t2 log n + k log n) and answering connectivity queries in time
O(k2). The algorithm uses spaceO(n2 log n/ log log n) bits. Furthermore, only polynomial
preprocessing time is required.

The above theorem immediately implies that we can also solvek-edge witness in worst-case
timeO(kt2 log n + k2 log n) on1/t-tough graphs.

Remarks. If the number of edges inG \ T is zero (i.e.G is a tree) then we can ignore the
analysis in the case of the nontree edges and so thekth deletion takes timeO(k log n). Similarly,
if the number of nontree edges is small (for example,G is ‘tree-like’), it may be possible to do
better. For example, a good randomized bound may be possibleby considering the probability
of deleting a nontree edge at each step. We leave it as an open problem to obtain such bounds.
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INITIALISE

1 T ← a minimum degree spanning tree ofG
2 ET (T )← the Euler tour ofT
3 for each nodeu ∈ T
4 do O(u)← the set of occurrences ofu in ET (T )
5 for each pair of occurrencesui, uj ∈ O(u)×O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 for each nontree edge{u, v} ∈ G
8 do for each pair of occurrencesui, vj ∈ O(u)×O(v)
9 do RANGE-TREE-INSERT(ui, vj)

10 H ← a graph with a single node representing the interval[1 . . n].

DELETE({u, v})
� Assumev is the parent ofu

1 if {u, v} is a tree edge
2 then for each appearance{i, i + 1} of edge{u, v} in ET (G)
3 do EULER-TOUR-DELETE({i, i + 1}) � O(log n)

� Split h into two new nodesh1, h2

4 h← [a . . b] = h(i) � O(log |H|)
5 h1 ← INSERT-NODEH([a . . i]) � O(1)
6 h2 ← INSERT-NODEH([i + 1 . . b])

� Check for an edge betweenh1 andh2

7 if BOX-NOT-EMPTY((a, i + 1), (i, b)) � O(log n)
8 then INSERT-EDGEH(h1, h2) � O(1)

� Check for edges betweenN(h) andN(h1), N(h2)
9 for each neighbourh′ = [c . . d] of h in H

10 do if BOX-NOT-EMPTY((a, c), (i, d)) � O(log n)
11 then INSERT-EDGEH(h1, h

′) � O(1)
12 if BOX-NOT-EMPTY((i + 1, c), (b, d))
13 then INSERT-EDGEH(h2, h

′)
14 DELETE-NODEH(h) � O(∆(H))
15 else � {u, v} is not a tree edge
16 do for each pair of occurrencesui, vj ∈ O(u)×O(v)
17 do RANGE-TREE-DELETE(ui, vj)

� Check for an edge betweenh(ui) andh(vj)
18 h1 ← [a . . b] = h(ui) � O(log |H|)
19 h2 ← [c . . d] = h(vj)
20 if BOX-EMPTY((a, c), (b, d)) � O(log n)
21 then DELETE-EDGEH(h1, h2) � O(1)

Figure 4.20 : The decremental connectivity algorithm for graphs having a spanning tree with
low degree



CHAPTER 5

Handling Intermediate Nodes

The previous chapter considered the problem of routing froma sourceu to a destinationv,
using the lowest-cost path tou. However, the routing process relies on intermediate nodes
forwarding packets towards the destination, possibly along paths that are of high cost to them.
If we assume that the nodes are autonomous, competing organisations (such as the autonomous
systems on the Internet), then these intermediate nodes maysimply drop these packets. This
type of behaviour is can be seen in the BGP Internet routing algorithm – nodes may choose to
only advertise routes that are of low cost to them, so nodes can only discover routes where every
subpath is also of low cost to its source. This problem does not arise in shortest-path routing,
since every subpath of a shortest path is also a shortest subpath, and therefore the intermediate
nodes will always route on shortest subpaths.

In this chapter, we extend the routing model of the previous chapter to take into account the
costs incurred by intermediate nodes, when we use forbidden-set policies. We shall call a path
Puv a good path if all of it subpathsPwv have zero cost, i.e.cw(Pwv) = 0. We shall also assume
thatk is an upper bound on the size of a forbidden set, i.e.k ≤ maxv |S(u)|. Our main results
are the following.

• Taking into account intermediate nodes is hard. Consider anyrouting scheme that can
decide if there exists a good pathbeforesending the packet. We show that such a scheme
must assign labels to nodes (not just routing tables) of sizeΩ(

√
n + k log n/k) bits. This

lower bound holds even for trees, and stands in contrast to theO(k log n) bound shown in
the previous chapter for distance labels in trees. Since thelabels are placed in the packet
header, this makes routing on ‘good’ paths infeasible.

• We show that the lower bound is almost tight by giving a schemethat can decide if there
is a good path in trees. Our scheme uses labels of sizeΩ̃(

√
kn) bits and makes routing

decisions in timeO(log kn). We also show how to extend the scheme to compute a 2-
approximation to the sum of costs along the path usingÕ(

√
kn) bits per label.

• We show that it is possible to avoid the lower bound by not checking if there is a good
path before sending the packet, and instead letting the packet return if it cannot be routed
on a good path. In this case, we show a simple routing scheme that works in general

82
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graphs, and uses̃O(k)-bit labels. The price is that the packet headers may become large,
and a packet may travel the diameter of the graph before beingreturned.

• Finally, we show how to construct centralized algorithms for the problem, with various
time-space tradeoffs.

Recall that each node assigns a non-negative cost to every other nodecu(v) = 1 iff v ∈ S(u)
and0 otherwise. Define thecost tou of a pathPuv ascu(Puv) =

∑
w∈Puv

cu(w), and the full
cost (or simply cost) ofPuv as

c(Puv) =
∑

w∈Puv

cw(Pwv) (5.1)

wherePwv is the subpath ofPuv from w to v. A good path is then a path with zero cost, and
a ‘forbidden-set-avoiding’ (fs-avoiding) path is a path with cost zero to the source node. If
there exists a good path fromu to v then we say thatu can reachv, and we call the problem of
deciding if there is a good pathfs-reachabilityfor short.

5.1 An Ω(
√

n) lower bound

Section 4.6.1 showed that trees enjoyO(log n)-bit separator labels. Let us now consider the
problem of deciding if there is a good path fromu to v. The most obvious idea might be for
L(u) to store the separator labels for the forbidden sets of each of its ancestorsw, and then to
use these to check that none of them is auv-separator. Unfortunately this scheme would require
Ω(n) bit labels in the case of a line. We now show that labels of sizeΩ(

√
n) bits are required to

decide if the path is good in a tree.

Theorem 5.1.1 Any labeling scheme for fs-reachability onn-node trees with forbidden sets of
sizek must assign to some node a label of size at least

√
n + Ω(k log n/k) bits.

Proof. Consider the tree as in Figure 5.1 with a setU of
√

n leavesu1, ..., u√
n each linked to

the root nodew by node-disjoint paths of length
√

n. The forbidden sets are either empty or
contain a single element from the setU of leaves. Now,ui can reachuj (for i 6= j) iff there is
no node on the pathui to w whose forbidden set containsuj. By assigning forbidden sets in
this way to the nodes on the paths, the nodes on each path fromui to w can collectively select
one of

∑√
n

j=0

(√
n

j

)
= 2

√
n subsets ofU , and for each distinct choice, a distinct labeling of the

setU ∪ {ui} = U is required.
Since the paths from the{ui} to the children ofw are node-disjoint, the labelings required

are independent for each path (since the forbidden sets chosen on node-disjoint paths will not
interfere with the output of the decoder) and so we can apply the above argument independently
to each path – for each of the2

√
n distinct choices of nodes on the path fromu1 to w, there are

2
√

n distinct choices of nodes on the path fromu2 to w (and each of these requires a distinct
labeling) and so on. Hence there are at least2

√
n2

√
n . . . 2

√
n

︸ ︷︷ ︸√
n

= 2n distinct labelings of the

nodes ofU . As |U | = √n, it follows that at least one node inU must be assigned a label of size
1√
n

log 2n =
√

n bits.
This bound holds fork = 1 and we have been unable to extend it to depend onk. However,

we can combine it with the lower bound of Theorem 4.5.3 to obtain an Ω(
√

n + k log n/k)
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√
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w

Figure 5.1 : The
√

n lower bound of Theorem 5.1.1

bound, i.e. whenk is approximately greater than
√

n the lower bound grows linearly with
k.

This lower bound rules out the possibility of extending the separator label scheme of the
previous chapter with only a small (polylogarithmic) increase in size. For the tree in Figure 5.1,
it is quite easy to achieve a matching upper bound: for each nodeu ∈ U , the labelL(u) stores
(usingO(

√
n) bits) for every other nodev ∈ U , whetheru has a good path tov. Unfortunately,

this strategy is doomed to fail for the complete binary tree,whereu would end up storing
reachability separately forΩ(n) leaves.

5.2 A Õ(
√

kn) upper bound

In this section we show an almost optimal upper bound on the label size for trees. Define
fT (u, v) = 1 iff there is a good path fromu to v in T . First we look at two simple cases from
which we derive the scheme for general trees.

Line scheme.On the line, labels of size3⌈log n⌉ bits suffice: number the nodes from left to
right, then store inL(v) the position ofv and the positions of the two closest nodes left(v) and
right(v) that cannot reachv, from each side ofv. GivenL(u) andL(v), the decoder declares
thatu can reachv iff u lies between left(v) and right(v). Notice that the label size is independent
of k, the size of the forbidden sets.

Tree scheme.Next, consider a complete binary tree onn nodes – each of then/2 leaves
may be independently unreachable fromu so listing these regions as for the line will useΩ(n)
bits. However,O(kh log n) bit labels suffice for a tree of heighth: the label foru stores, for
every ancestorw of u, 〈f(u,w), f(w, u), LSEP (S(w))〉, whereLSEP (S(w)) are the separator
labels forS(w) in the tree. GivenL(u) andL(v), the decoder finds the least common ancestor
w of u andv and checks thatf(u,w) = 1, f(w, v) = 1 and that none of the forbidden sets on
the pathu to w areuv-separators in the tree. This scheme is clearly inefficient for a long path.

The above discussion shows that, while lines and complete trees have efficient schemes,
each fails on the other case. We now show how to tradeoff between the two schemes to obtain
a scheme with labels of size at mostÕ(

√
kn) bits. We first need some preliminary definitions.

A separatorof a rooted treeT is a nodew whose removal partitions the tree into connected
components, each with at mostn/2 nodes. In 1869, Jordan proved that such a node always
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Figure 5.2 : An example of a separator tree.

exists and can be obtained in the following way. Pick an arbitrary nodeu from the tree. Ifv
partitions the tree into components of size at mostn/2 then we are done. Otherwise, there exists
a component with more thann/2 nodes – letu be the node adjacent tov in that component,
changev to u and repeat the process. Since there are a finite number of nodes in the tree, and
each node is visited at most once, this process terminates inlinear time and finds a separatorw.

The separators can be used to build aseparator treeT ′ for T as follows. First, find a
separatorw of T and make it the root ofT ′. Then, recursively construct the separator trees of
the components ofT \ {w} and make the roots of these trees the children ofw in T ′. It is clear
that the separator tree has depthO(log n) and can be constructed in timeO(n log n) since we
can find the separator nodes in time linear in the size of the subtrees. An example of a separator
tree is illustrated in Figure 5.2. We also need the notion of apainting. Apaintingχ of a tree
T partitions the nodes ofT into disjoint subsetsShallow(χ) andDeep(χ). An α-painting is a
painting with the following properties:

1. The shallow nodes induce a connected subtree ofT with at mostn/α leaves;

2. For every nodev ∈ T , there are at mostα deep nodes on the path fromv to the root.

The following ‘painting lemma’ is key to the labeling schemeand shows how we can tradeoff
the space required between the deep and shallow nodes.

Lemma 5.2.1 For anyn-node treeT and any integer1 ≤ α ≤ n, there exists anα-painting of
T , computable in linear time.

Proof. Assume that the tree is rooted; if not then choose a root node arbitrarily. We claim that
the following procedure is suitable: for all subtrees ofT having depth exactlyα, paint all their
nodes deep1. All remaining nodes (above these subtrees) ofT are painted shallow.

Condition (1) of the definition of a painting implies that all the shallow nodes must be above
all the deep nodes. Now we just have to look for the frontier between the shallow nodes (above)

1The depth of a subtree is the length of its longest path from the root to a leaf.
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and the deep nodes (below). Consider all the nodes whose subtrees have depth exactlyα. Each
such subtree has at leastα nodes in it, so there may be at mostn/α such subtrees in the tree. If
we paint all these subtrees deep and everything above them shallow, then (1) is clearly satisfied
and the subtree induced by the shallow nodes contains at mostn/α leaves.

It is easy to see how to do the painting in timeO(n): do a depth-first search from the root
of the tree, keeping track of the height of nodes on the current path. On the way back up, if the
height of a node is at mostα, then paint it deep, otherwise paint it shallow2. This takes time
O(|V |+ |E|) = O(n).

For some setX ⊆ V of nodes, we defineX∗ ⊆ X as theancestor-free subsetof X. X∗

is the unique maximal subset ofX where no distinct pair of nodes inX∗ are ancestors of each
other. We can define it asX∗ = {x ∈ X|∄y ∈ X : y 6= x andy is an ancestor ofx}. For
example, ifX is a set of leaves thenX∗ = X, and if X is a path thenX∗ is the node ofX
closest to the root.

In the remainder, we shall use the following notation:T [w] is the treeT rerooted atw,
idT (w) is the identifier of nodew in a depth-first search of a rooted treeT , andAT (X) is the
set of ancestor labels for a setX ⊆ V in a treeT .

The labeling scheme

We now describe the labeling scheme for trees. The idea is to first compute the separator tree
for T . Then for every ancestorw of u in the separator tree, we rerootT at w and do the
following to T [w]: for all the deep ancestors ofu, we apply the strategy for the binary tree (i.e.
L(u) contains the separator labels for their forbidden sets); for the remaining shallow nodes, we
apply the strategy for the line to each path of shallow nodes from the root to a shallow leaf.

The marker algorithm. The marker algorithm works as follows. Consider some treeT
rooted atw, a paintingχ of T , and a nodeu with w an ancestor in the separator treeT ′. The
deep nodes on the pathPuw are stored inL(u), and the ancestor-free subset of shallow nodes
beloww that cannot reachv (have no fs-avoiding path tov) is stored inL(v). This is done for
each ancestorw of u in the separator tree. The marker algorithm is given in Figure 5.3 and
uses a recursive procedure, initially called with the entire treeT . It is clear that the marking
is done in polynomial time. Note that each tree is rerooted atits separator before painting it.
The reason for this is that if we used the painting ofT rather thanT [w], then the shallow/deep
tradeoff given by the painting lemma would not carry throughto the size of the labels. This is
because the path fromu to v must be ‘split’ at the same node used as the root in the painting,
i.e. the separatorw.

The decoder algorithm. The decoder algorithm is given in Figure 5.4. GivenL(u), L(v),
its first computes the least common ancestorw of u, v in the separator tree forT , and then checks
(1) u can reachw (usingL(u)), (2)w can reachv (usingL(v)) and (3)S(Puw)∩Pvw = ∅, where
S(Puw) is the union of forbidden sets of the nodes onPuw. The third check is conducted in two
parts. In the first part, the decoder uses the labelL(u) to examine the forbidden sets of deep
nodes onPuw. In the second part, it usesL(v) to examine the subtrees ofT [w] containing nodes
not having a good path tov.

2The height of a node is the minimum distance from it to a leaf.
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MARKER(T ):
Let n = |V (T )| andk = maxv∈T |S(v)|.

1. If T contains a single nodew, setL(w)← (1, {}, {}, fT (w,w), fT (w,w), 0) and return.

2. Find and remove a separatorw of T , breakingT into subtrees{Ti} of size≤ |T |/2.

3. Recursively callM(Ti); let each nodev ∈ Ti be given the labelLi(v).

4. Letχ be a
√

n/k-painting ofT [w] i.e. paint the nodes ofT as if it were rooted atw.

5. For each nodev ∈ Ti do the following:

(a) LetDeep(v) = S(Deep(χ) ∩ Pvw) be the forbidden nodes of the deep nodes on the
path fromv to w.

(b) LetS = {u ∈ (Shallow(χ) \ Ti) | fT (u, v) = 0} be the shallow nodes that cannot
reachv and letShallow(v) = S∗ ⊆ S be its ancestor-free subset, using the ancestor
relation fromT [w].

(c) Construct the sublabelJ (v) for nodev as follows:

J (v)← (idT (v),AT [w](Deep(v)),AT [w](Shallow(v)), fT (v, w), fT (w, v), i)

(d) Append this tov’s label in the componentTi by doingL(v)← J (v) ◦ Li(v)

Figure 5.3 : The marker algorithm
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DECODER(L(u), L(v)):
Assume thatL(u), L(v) are of the form

L(u) = J1(u) ◦ . . . ◦ Jp(u)

L(v) = J1(v) ◦ . . . ◦ Jq(v)

1. If q = 1 thenv is the separator ofT , so return the value off(u, v) ∈ J1(u). If p = 1 then
return the value off(u, v) ∈ J1(v). Forp, q > 1 let

J1(u) = (id(u), Deep(u), Shallow(u), f(u,w), f(w, u), i)

J1(v) = (id(v), Deep(v), Shallow(v), f(v, w), f(w, v), j)

2. If i 6= j thenu, v are in different subtrees andw is the least common ancestor ofu, v in
the separator tree. Do the following:

(a) Check thatu can reachw and thatw can reachv via forbidden-set avoiding paths
(by checkingf(u,w) ∧ f(w, v)) It remains to decide whether any of the forbidden
sets of nodes on the pathPuw appear on the pathPwv.

(b) UsingL(u), check that none of the forbidden nodes inDeep(u) are ancestors ofv
in T [w], by checking thatid(v) 6∈ [i, j] for all [i, j] ∈ Deep(u).

(c) UsingL(v), check that none of the unreachable nodes inShallow(v) are ancestors
of u in T [w], by checking thatid(u) 6∈ [i, j] for all [i, j] ∈ Shallow(v).

Return thatf(u, v) = 1 iff all the above are satisfied.

3. If i = j thenu, v are in the same subtree. In this case, discard the sublabelsJ1(u) and
J1(v) and invoke the decoder recursively on the labels

L′(u) = J2(u) ◦ . . . ◦ Jp(u)

L′(v) = J2(v) ◦ . . . ◦ Jq(v),

returning the value ofD(L′(u), L′(v)).

Figure 5.4 : The decoder algorithm
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5.2.1 Proof of correctness

Lemma 5.2.2 The labeling scheme〈M,D〉 is correct, i.e.D(L(u), L(v)) = fT (u, v).

Proof. For L(u), L(v), let w = LCA(u, v) and considerT [w]. We know thatu can reachv iff
(1) u can reachw, (2)w can reachv and (3) none of the forbidden sets of nodes on the pathPuw

appear on the pathPwv. Conditions (1) and (2) are handled by just looking atL(u) andL(v)
independently.

To see that the decoder correctly decides (3), note that every node on the pathPuw is either
painted deep or shallow. The forbidden sets of the deep nodeson this path are stored inL(u),
and only those that are in the same subtree ofT [w] are stored in the label. Hence if one of them
is an ancestor ofv, then it must be on the pathPwv. It remains to check that none of the shallow
nodes on the pathPuw have forbidden sets on the pathPwv.

Imagine that there is some shallow nodey on the pathPuw where an element ofS(y) is on
the pathPwv, so thatv is unreachable fromy. Some ancestor ofy in T [w] must be in the set
of unreachable shallow nodes stored inL(v). Finally, if no shallow node on the pathPuw has a
forbidden set that intersects the pathPwv, then no unreachable shallow node stored inL(v) is
an ancestor ofu.

5.2.2 Complexity

The efficiency of the labeling scheme relies on the observation that it is possible to paint the
nodes of the tree so that there are not too many deep nodes on each path (and henceL(u) does
not need to store too many forbidden sets), and so that the subtrees containing shallow nodes
that cannot reachu can be described with a small amount of space.

Our initial idea was to use the painting as described in the LCAlabeling scheme of [Pel00]:
a node is painted light if its subtree contains at most half the nodes of the subtree of its parent.
This guarantees that each node has at most one heavy child andthat every node has at most
O(log n) light ancestors. However, this is not what we need as we can construct instances
where the forest induced by the heavy nodes would haveΩ(n) leaves and therefore require lots
of space. The following lemma gives the main result of this section.

Theorem 5.2.3 The labeling computed byM(T ) has labels of sizẽO(
√

kn) bits and the de-
coder algorithm answers queries in timeO(log kn) on this labeling.

Proof. Assume that the paintingχ used by the marker algorithm on each subtree is anα-
painting, for some integer1 ≤ α ≤ n. Lemma 5.2.1 implies that in a subtree withn nodes and
forbidden sets of size at mostk, the setShallow(v) will contain at mostn/α nodes and the set
Deep(v) will contain at mostkα nodes.

Since each ancestor label requires2 log n bits to store the interval of identifiers of its de-
scendants, the sublabelsJ (v) are each of size at most(kα + n/α)(2 log n) + 3 log n + 2 ≤
3(kα + n/α) log n bits (for large enoughn such thatkα + n/α ≥ 3). Since the separator tree
has depth at mostlog n, the recursion has≤ log n levels, so each label is composed of at most
this number of sublabels.

It follows that there is a scheme with labels of at most3(kα + n/α) log2 n bits for any
choice1 ≤ α ≤ n. Minimizing the quantitykα + n/α givesα =

√
n/k, and using this

choice ofα for each subtree of sizen and with forbidden sets of size at mostk (note that the
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value ofα is recomputed for each subtree) gives a labeling scheme using labels of size at most
3(k
√

n/k + n/
√

n/k) log2 n = 6
√

kn log2 n bits.
The time complexity of the decoder is dominated by step (2), which is executed exactly

once per query. Step (2a) takes timeO(1). For steps (2b) and (2c), consider the following
related problem: there is a setS of intervals{[li, ri]} (whereli, ri ∈ {1, . . . , n}) and we want to
decide if some integerx ∈ [1, n] is contained in any of the intervals. This can be done in worst-
case timeO(log n) using aninterval tree, as described in [PS85]. The tree uses spaceO(|S|),
where|S| is the number of intervals stored. Using this method to storethe ancestor labels of
the forbidden sets, step (2b) takes timeO(log |Deep(v)|) = O(log kα) and step (2c) takes time
O(log |Shallow(v)|) = O(log n/α). The decoder may iterateh times before executing step (2),
whereh is the height of the separator tree. Since the separator treehas depthlog n, the decoder
takes total timeO(log n + log(kα) + log(n/α)) = O(log kn).

Remarks. Note that the constant factors involved are small— fork = 1 the lower bound is√
n and the upper bound is6

√
n log2 n.

5.2.3 An example

Figure 5.5 shows a treeT that we will use to illustrate the labeling scheme. The same tree is
drawn in Figure 5.2.3 with the shallow nodes filled and the deep nodes unfilled. Each node
is drawn with its identifier from a depth-first search of the tree (note that the identifiers are
recomputed for each subtree in the recursion). The forbidden sets are indicated by the dashed
edges in the figure:

S(c) = {j, o}, S(d) = {f}, S(e) = {g}, S(f) = {p}, S(m) = {b}

We first rootT at its separatorw. To compute the sublabel for nodei we first find the union
of the forbidden sets of its deep ancestors. The forbidden set of the nodef containsp, whose
ancestor label inT is [16, 18]. Next we find the set of shallow nodes inT \ T1 that i cannot
be reached from (nodes in the treeT1 containingi are not considered as this part of the label is
only used for nodes in different subtrees). This is the set{a,m, n}, whose ancestor-free subset
is a. The ancestor label fora is [10, 18]. Finally, we check ifi can reach the root ofT and if
the root can reachi (which it cannot, due to the forbidden set ofe). This gives the sublabel
(9, {[16, 18]}, {10, 18}, 1, 0, 1).

The next sublabel fori is computed by repeating this process on the subtreeT1, as shown in
the figure. Note that at each level the subtrees are repaintedand the identifiers are recomputed,
hence a node has an identifier for each subtree. The final labels are shown in the figure. As an
example of the non-symmetry of the fs-reachability relation, it can be seen thatf(c, q) = 1 but
f(q, c) = 0.

5.3 A 2-approximate scheme

For general graphs, our aim is to efficiently route on good paths. Since the path is unique in a
tree, this reduces to deciding if the path is good or not. However, it may be acceptable to use
paths of low cost (recall that cost of a path isc(Puv) =

∑
w∈Puv

|S(w) ∩ Pwv|)). We have been
unable to construct an efficient labeling scheme to compute the exact cost of a path, but we can
give a 2-approximate scheme with a logarithmic increase in label size. Letk be the maximum
size of a forbidden set.
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Figure 5.5 : The tree used for the example and the first two levels of its recursive partitioning.

Theorem 5.3.1 There exists a 2-approximate labeling scheme for trees for the costc(Puv) using
labels of sizẽO(

√
kn) bits and answering queries in timeO(log kn).

Proof. We augment the labeling scheme of Section 5.2 with a technique for approximately
counting the number of forbidden elements intersected. First consider a line as in the top of
Figure 5.7, where a dashed directed edge(u, v) means thatv ∈ S(u). The key observation
is that fori ≤ j, the costc(Pij) equals the number of crossing edges going from left to right
that have both endpoints in[i, j], and for fixedi this number is monotone increasing withj.
Therefore the label for the root node in the figure stores the positions of the⌈lg kn⌉ = O(log kn)
intervals to the right of it, which have cost1, 2, 4, . . . , kn. It is easy to see that this indeed gives
a 2-approximation to the actual cost.

This extends naturally to a 2-approximate scheme for trees –we apply the scheme for the
line down every path of the tree. A region is now a subtree, identified by the root of the subtree,
i.e. its ancestor label. The tree at the bottom of Figure 5.7 illustrates this. We do this for the
subtree induced by the shallow nodes. There are at mostn nodes and hence at most⌈lg kn⌉
intervals on each path. By Lemma 5.2.1, the subtree induced bythe shallow nodes has at most
n/α leaves. Therefore, the marker algorithm can be modified so that each sublabelJ (u) stores
at most(n/α)O(log kn) intervals of shallow nodes, so this gives only a logarithmicincrease in
the label size.

The forbidden sets of the deep ancestors ofu can be handled in a similar way. Instead of
storing only the ancestor labels of forbidden sets of deep ancestors ofu, we store ancestor labels
denoting each of thelog kn intervals. We construct (for each ancestorw of u in the separator
tree) O(log kn) intervals (representing subtrees), where the identifier ofv is contained inr
intervals iff the path fromw to v intersects between2r and2r+1 elements of the forbidden sets
of u’s deep ancestors . In addition,L(u) can store thenumberof forbidden nodes intersected
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L(c) = (3, {}, {[10, 18]}, 1, 1, 1) ◦ (6, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(i) = (9, {[16, 18]}, {[10, 18]}, 1, 0, 1) ◦ (4, {}, {[5, 8]}, 1, 1, 2) ◦
◦(3, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(q) = (17, {}, {}, 1, 1, 2) ◦ (8, {}, {}, 1, 1, 3) ◦ (1, {}, {}, 1, 1, 0)

Figure 5.6 : Illustrating the marker algorithm. Shallow nodes are filled and deep nodes are
unfilled, and a dashed edge (i, j) means that j ∈ S(i)
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root

r = 1r = 0 r = 2 r = 3 · · ·
r = lg kn

Figure 5.7 : Illustrating the 2-approximation of c(Pij). The cost of a path from the root to a node
j is the number of crossing edges with both endpoints on the path. For a node j in region r,
the algorithm returns 2r.

on the paths to and fromw in place of the boolean valuef(u,w). This increases the label size
by a constant factor (since we already payO(log n) to store the separator labels).

For the time complexity, the intervals in the ancestor labels can be stored in an interval tree
[PS85] such that in worst-case timeO(k + lg n) we can list allk intervals that contain a given
integer. Since there are at mostO(log kn) intervals that contain an identifier (by construction
in both the shallow and deep cases), we can compute the numberof intervalsr containing an
identifier in timeO(log kn), hence a 2-approximation2r to the cost in each case. This is the
same time complexity as in the original decoder. Since we have a 2-approximation to the cost of
intersecting the forbidden sets of the deep ancestors ofu and the cost of intersecting the shallow
nodes ofT [w] (in addition to the exact cost of the pathsPuw andPwv), adding them together
gives a 2-approximation to the cost ofPuv.

5.4 Bounded-distance forbidden sets

One of the difficulties that the algorithm must handle is thatthe forbidden setS(u) may contain
nodes that are far away fromu, as large as the diameter ofG. In practical scenarios, we expect
that the forbidden set ofu will contain nodes that are ‘near’ tou, perhaps within its own cluster.
Another factor is the following: in graphs with good connectivity, it is likely that the minimum
size of auv-separator will increase with the distance fromd(u, v), and therefore the forbidden
sets will only interfere with routing to nodes far away, if the forbidden set contains a large
number of nodes.
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Based on this observation, we consider a restricted policy where the setS(u) may only
contain nodes within some bounded distanceδ of u. As before, assume that the forbidden sets
are of size at mostk. Define theδ-fs-reachability problem to be fs-reachability except that for
every nodeu, every node ofS(u) lies within a distanceδ of u, i.e. d(u, S(u)) ≤ δ. We shall
give a lower bound on label size for the problem ofδ-fs-reachability.

Note that1-fs-reachability is no harder than routing with next-hop preferences (where the
cost cu(Puv) depends only on the next hop). In this case, we can make use of the fact that
the costc(Puv) is equal to the cost of the same path in the directed graphG′ where the edge
(u, v) has weightcu(v) (we assume thatcu(v) is finite). We can therefore make direct use of
the distance labeling schemes from e.g. Gavoille et al. [GPPR04]. Note that only the weights
are directed inG′, i.e. there is an edge(i, j) iff there is an edge(j, i). Hence reachability
is undirected and can be done withO(log n)-bit labels, but the distances are not symmetric.
Together with the distance labeling schemes of Gavoille et al. [GPPR04], this gives a next-hop
cost labeling scheme usingO(log2 n)-bit labels for trees. It can most likely be extended to other
classes of graphs supporting an efficient distance labelingscheme (with directed edge weights).

5.4.1 Lower bound for trees

We start by extending the lower bound of Theorem 5.1.1 toδ-fs-reachability. The idea is simple
– for smallδ we flatten the tree, creating a large number of short paths.

Lemma 5.4.1 Any δ-fs-reachability labeling scheme withδ ≤ 2
√

n must assign some node a
label of sizeΩ(δ log n/δ2) bits onn-node trees.

Proof. The argument is similar to the lower bound of Theorem 5.1.1. Consider the tree having
2n/δ node-disjoint paths each of lengthδ/2. Each path to the root can independently choose a
set of leaves of size at least

(
2n/δ
δ/2

)
and by a similar argument to Theorem 5.1.1 the label size is

bounded below by

1

2n/δ
log

(
2n/δ

δ/2

)2n/δ

≈ (δ/2) log(2n/δ − δ/2)− (δ/2) log(δ/2)

= (δ/2) log(4n/δ2 − 1)

and this holds forδ/2 ≤ 2n/δ, i.e. δ ≤ 2
√

n.

5.4.2 Lower bound for general graphs

When the forbidden setS(u) contains only neighbours ofu, we can prove anΩ(n) lower bound
on the label size for general graphs.

Lemma 5.4.2 Any1-fs-reachability labeling scheme fork = 1 must use labels of sizeΩ(
√

n)
bits.

Proof. The proof is by reduction from reachability on directed graphs. Given a directed graph
G on n nodesv1 . . . vn, construct the undirected bipartite graphH on node setsV1 andV2 as
follows. In V1 there aren nodesv1 . . . vn and the setV2 contains a node(i, j) for each edge
(vi, vj) of G. Now for each directed edge(vi, vj) of G, add the undirected edges(vi, (i, j)) and
(vj, (i, j)) to H. Finally assign the nodes inV2 the forbidden setsS((i, j)) = {vi} (the nodes in
V1 all have empty forbidden sets). Figure 5.4.2 illustrates this construction.



5.5. Compact routing on good paths 95

v1 // v2

v4 // v3

``BBBBBBBB

OO

⇒

v1

CC
CC

CC
CC

C (1, 2) S((1, 2)) = {v1}

v2

{{{{{{{{{

CC
CC

CC
CC

C (3, 1) S((3, 1)) = {v3}

v3

{{{{{{{{{

CC
CC

CC
CC

C (3, 2) S((3, 2)) = {v3}

v4 (4, 3) S((4, 3)) = {v4}
G H

Figure 5.8 : The reduction in Lemma 5.4.2

We claim thatvi can reachvj in G iff there exists a good path fromvi to vj in H. The “⇒”
direction is clear – if there is a pathP = vi1 , vi2 , . . . , vik with no repeated nodes inG, then
the pathP ′ = vi1 , (i1, i2), vi2 , . . . , (ik−1, ik), vik is a good path inH. For the other direction,
assume thatP ′ is a good path inH from vi1 to vik . We claim that the pathP corresponds to a
path inG. Each node inV2 has degree exactly two, and the forbidden sets ensure that inany
good path ofH containing. . . , vi, (i, j), vj, . . ., the edge(vi, vj) exists inG.

Given a 1-fs-reachability scheme forH usingr bits per label we can construct a directed
reachability labeling scheme forG usingr bits per label by settinglG(vi) = lH(vi). Since there
exist n-node directed graphs that require reachability labels of size Ω(n) bits [CHKZ02], the
construction gives a family ofO(n2)-node graphs requiringΩ(n) bits per label.

For the case where the size of the forbidden sets is unbounded, we can show anΩ(n) lower
bound, which is clearly optimal in the worst-case.

Lemma 5.4.3 Any1-fs-reachability labeling scheme must use labels of sizeΩ(n) bits when the
forbidden sets are unbounded in size.

Proof. We can prove the lemma by reduction from adjacency in directed bipartite graphs.
Given a bipartite graph((V1, V2), E) on node setsV1, V2 with edges directed fromV1 to V2,
we construct the same graph((V1, V2), E

′) but with undirected edges, and forv ∈ V1, S(v) =
V2 \N(v) (N(v) is the set of neighbours ofv). It is clear that there is a good path fromv1 ∈ V1

to v2 ∈ V2 iff (v1, v2) ∈ E. It follows (by a similar argument to [CHKZ02]) that there are2Ω(n2)

distinct labelings ofO(n) nodes, and so at least one node must be assigned a label of sizeΩ(n)
bits.

5.5 Compact routing on good paths

The lower bound of Theorem 5.1.1 implies that any scheme thatdecides if there exists a good
path betweenu, v by consulting onlyL(u), L(v) must use labels of sizeΩ(

√
n) bits. This is

much too large to place in the headers of packets. In this section we show that it is possible to re-
duce this space by using a compact routing scheme. We describe a scheme that usesO(k log n)
bits of storage at each node and uses labels of sizeO(log n) bits in each packet header. How-
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ever, this comes at a price – a packet may travel overΩ(n) edges before the algorithm realises
that there does not exist a good path.

5.5.1 Overview of compact routing on trees

Our scheme makes use of any compact routing scheme for trees,so we begin by giving an
overview of compact routing on trees. The standard ‘interval routing’ technique due to Santoro
and Khatib [SK85] is as follows. We root the tree arbitrarilyand do a depth-first traversal,
labeling each node with its identifier in the depth-first traversal. This is known as the ancestor
label for the node. For each nodew, let fw be the descendant ofw with the largest identifier.
By the property of the ancestor labels, a nodev is a descendant ofw iff v ∈ [w, fw]. A packet
destined forv that arrives tow is routed as follows: ifw = v then the packet has reached its
destination. Ifv 6∈ [w, fw], the packet is sent to the parent ofw, using the parent pointer of
w. Otherwise, a search among the childrenw1, . . . , wd of w is performed and the packet is
forwarded to the last childwi whose identifier is smaller than or equal tov’s.

The packet headers are only of sizeO(log n) bits, but the routing table at a nodew is of
sizeO(deg(w) log n) bits, making this inefficient for large degree nodes. Furthermore, routing
decisions at these large degree nodes take timeO(deg(w)). This scheme has been improved; the
most space-efficient scheme for trees is due to Thorup and Zwick [TZ01b] (and independently
in [FG01]). Their scheme uses routing tables and labels of size (1 + o(1)) lg n bits, and each
routing decision takes constant time.

Interestingly, it is known that an address space larger thanlg n bits is needed for efficient
routing on trees – if the address space is{1, . . . , n} and the packet header only contains the
destination address then [EGP03] implies that no loop-freerouting strategy can guarantee a
local memory space better thanO(

√
n) bits on every family of graphs, including trees.

5.5.2 A scheme for routing on good paths

Our scheme is simple and makes use of any compact routing scheme for trees such as that of
Thorup and Zwick (TZ) [TZ01b] (or the scheme in [FG01]). The routing table for a nodeu
stores the separator labels foru and the nodes inS(u) in addition to the requirements of the TZ
routing scheme. To send a packet fromu to v, the labelL(v) that is placed in the packet header
by the TZ routing scheme is augmented with the separator label for v. Therefore the packets
have headers of sizeO(log n) + (1 + o(1)) lg n = O(log n) bits, and the routing tables are of
sizeO(k log n) bits.

Now consider a packet that originated atu and arrives atw, destined forv. Using the
separator labels,w checks whether the setS(w) is a wv-separator inT . If so, the packet is
returned tou (using the routing scheme in place). Otherwise it is forwarded to the next node
using the TZ routing scheme. Since each TZ routing decision takes constant time and deciding
if a set of sizek auv-separator takes timeO(k), each routing decision takes timeO(k).

The reason that this scheme breaks theΩ(
√

n) space lower bound is that reachability is
not decided locally atu; in the worst-case, the packet may traverseΩ(n) links before being
returned, and so the worst-case time complexity of this scheme can beΩ(n). In many cases,
such a delay is not acceptable and moreover,u cannot know that it cannot reachv until it tries
sending the packet. On the other hand, ifu is to be able to decide reachability with only local
information, then it must use spaceΩ(

√
n) and receive a label of sizeΩ(

√
n) from v.



5.6. Nondistributed data structures 97

Algorithm Space Time Space× Time
Table method O(n2) O(1) O(n2)

Theorem 5.2.3 Õ(
√

kn3/2) O(log kn) Õ(
√

kn3/2)

Theorem 5.6.1 Õ(n2/α + kn) O(kα + log n
α
) Õ(n2

α
log n

α
+ kn2 + αk2n)

(1 ≤ α ≤ n)

Figure 5.9 : Summarising the space-time tradeoffs for deciding whether there exists a good
path in forbidden-set routing.

Instead of returning the packet if there is no path of zero cost, we can consider the following
operation: route a packet fromu to v iff there is a pathPuv with c(Puv) ≤ r. Given the separator
labels foru, v, S, we can determine the size of the intersection|Puv∩S| by counting the number
of nodes ofS that are auv-separator. By using an extra field oflg r ≤ lg n bits into the packet
header, the nodes can keep track of the cost of the path so far and return the packet if the cost
exceedsr at any point. The routing table and header sizes are stillO(k log n) andO(log n) bits.

5.6 Nondistributed data structures

Any labeling scheme usings bits per label on some familyF of graphs can be converted into
a non-distributed data structure onF usingO(ns) bits of space and supporting queries with
the same time complexity as the decoder. Therefore, Theorem5.2.3 implies a non-distributed
data structure for fs-reachability using̃O(

√
kn3/2) bits space and having query time complexity

O(log kn).
There are of course many non-distributed data structures for fs-reachability. One could build

a table that lists for each pair of nodesu, v whether there is a good path fromu to v, usingO(n2)
space and havingO(1) time complexity (and of course this would work for general graphs).

For trees, we can achieve a tradeoff between query time and space. For1 ≤ α ≤ n the
scheme of Section 5.2.2 has labels of sizeŝ = Õ(n/α + kα) and timet = O(log kn), so the
label size is minimized by choosingα =

√
n/k. This gives a non-distributed data structure

that may use spacenŝ = Õ(
√

kn3/2) in the worst case. We now show how to construct data
structures using space betweenÕ(kn) andÕ(n2) but at the expense of increased query time.

Theorem 5.6.1 For every1 ≤ α ≤ n, there is a non-distributed data structure for forbidden-
set reachability onn-node trees using spacẽO(n2/α + kn) and answering queries in time
O(kα + log(n/α)).

Proof. We will show how with a small modification we can reduce the space required tõO(kn)
but at the expense of an increased query time. Instead of storing the set of deep ancestors (and
their forbidden sets) of each node usingÕ(knα) space as in the distributed labeling scheme of
Section 5.2, in a centralized data structure all this can be stored once using̃O(kn) space. This
gives a data structure having spaces = Õ(n2/α + kn) instead ofÕ(n2/α + knα). Note that
the strategy for shallow nodes is unchanged.

However, the search tree method used in Theorem 5.2.3 to store the ancestor label intervals
cannot be used, since it constructs a different binary search tree for every node. The best
alternative we can find is the following: by the painting lemma (Lemma 5.2.1), the deep nodes
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induce a forest of height3 at mostα below the shallow subtree. Hence for any nodeu, its
deep ancestors can be found in timeα and the ancestor intervals for their forbidden sets can be
checked to see if they contain the destinationv in time O(|Deep(u)|) = O(kα). The shallow
nodes are handled as before (using a balanced binary search tree) in timeO(log(n/α)). This
gives total timeO(kα + log(n/α)).

Table 5.9 gives a summary of the space-time tradeoffs obtained in this section. Forα = n/k,
Theorem 5.6.1 gives a data structure with spaceÕ(kn) yet having query timeO(n + log k) =
O(n). These results show that, even on a simple family of graphs (trees), the problem still
allows for some non-trivial algorithms.

5.7 Dynamic labeling schemes

So far we have considered only static labeling schemes, where the network and the forbidden
sets are fixed in advance. These schemes rely on a centralizedmarker algorithm that is given an
entire description of the network and uses this to output theentire set of labels. Therefore while
the labels allow the problem to be solved using local information, the process of generating the
labels has been centralized. In a dynamic network where nodes may join or leave and policies
are updated, it is desirable to update the distributed representation offered by the labels in an
efficient and distributed fashion. A centralized marker algorithm clearly limits the applicability
of such labeling schemes in real dynamic networks.

Korman et al. [KPR02] describe a general method for converting a static labeling scheme
onn-node trees to a fully dynamic one with only alog n factor increase in the label size. Since
the new marker algorithm is now a distributed algorithm, itscommunication complexity (to
recompute the labels after a change) is an important property. Korman et al. show that if the
static scheme has adistributedmarker algorithm that computes the labels in the static setting
and sendsMC messages (of sizeO(log n)) then it can be converted into a distributed marker
algorithm for updating the labels in the dynamic setting with amortized message complexity
O((log n)MC).4

We shall show that (assuming we use the notion of shallow sets) we can do no better asymp-
totically than to recompute from scratch when there is a change. To transform our static scheme
into a dynamic scheme we need to convert the sequential marker algorithm into an efficient
distributed one. Let us consider a distributed marker algorithm having three distinct phases:

1. Painting. As in the proof of Lemma 5.2.1, nodes of depth at mostα are painted deep,
and the rest are painted shallow. This can be done efficientlyby a distributed depth-first
search of the treeT .

2. Deep nodes.For each nodev, the algorithm computes the part of the label that con-
tains the forbidden sets of the deep ancestors ofv. This can be done by propagating the
forbidden sets of the deep nodes down to each of their deep descendants. Since all de-
scendants of a deep node are also deep, each path is no longer thanα and there may be
O(n) deep leaves. Therefore, the total number of forbidden elements sent over edges is
O(nkα) = O(

√
kn3/2) (by settingα =

√
n/k).

3The height of a forest is the maximum height of any tree in the forest
4In fact, the value ofn depends on the size of the network at a particular time, but weassume for simplicity

that it never grows by more than a polynomial factor.
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Figure 5.10 : The tree used in the proof of Lemma 5.7.1. The forbidden sets of nodes h1 . . . hn

choose a permutation of {v1 . . . vn}. The nodes h1 . . . hn are all painted shallow.

3. Shallow nodes. The final step is to inform each nodev about its setShallow(v), i.e.
the shallow nodes that cannot reachv. However, this step appears to be costly – the
following lemma shows thatanydistributed algorithm that computes these sets must have
high communication complexity.

Lemma 5.7.1 Any distributed algorithm that terminates with every nodev knowingShallow(v)
must communicateΩ(n log n) bits overΩ(n) edges in ann-node tree, even fork = 1.

Proof. Assume that the parameter1 ≤ α ≤ n is given. Now construct the following tree, as in
Figure 5.7 – there is a rootr, a path of(n + α) nodesh1, . . . , hn+α hanging fromr andn nodes
v1, . . . , vn, each being a child ofr. Consider some permutationσ of {1, . . . , n} whereσ(i) is
the ith element of the permutation. Fori = 1, . . . , n, setS(hi) = {vσ(i)} ashi’s forbidden set.
The set{S(h1) . . . S(hn)} is a permutation over the nodes{v1, . . . , vn}.

Now we show how to reduce from the two-party communication problem of deciding set-
disjointness. Partition the nodes between the two players Alice and Bob as follows: give Alice
the long path (and implicitlyσ) and Bob the nodesv1, . . . , vn andr. By construction, all the
nodesh1, . . . , hn will be painted shallow and thereforeShallow(vj) = {hi} iff σ(i) = j. There-
fore, given the sets{Shallow(vi)}, Bob can know the permutationσ.

Define the uniquerank encodingof a permutation by replacing each symbol in the permu-
tation by its rank among the remaining symbols. For example,the rank encoding of 341562
is 331221. The rank encoding of a permutation can be expressed as a binary string by re-
placing each symbol by its unique binary expansion. There are (n − i) possible values for
theith symbol in the rank encoding of a permutation of{1 . . . n} and so every binary string of∑n−1

i=0 log i = lg(n!) bits corresponds to a unique rank encoding and hence a uniquepermutation
of {1, . . . , n}.

Now for the reduction – given setsP,Q ⊆ {1, . . . , n}, Alice receivesP and Bob receives
Q. Alice computes the unique permutationσ corresponding toP and uses this to construct the
forbidden sets in her side of the tree. Then they run the protocol to compute the shallow sets.
From this, Bob can determineσ and thus alsoP . He can then locally decide ifP,Q are disjoint.

Since the randomized communication complexity of disjointness on sets of sizer is Ω(r)
bits, at leastΩ(lg(n!)) = Ω(n log n) bits must cross the cut between Alice and Bob, which
consists of a single edge. We can replace this edge by a path ofn edges. It is known [Die97]
that asymptotically, these nodes can no better than to act asrelays, and so each must have
Ω(n log n) bits communicated across it.

The lemma implies that fork = O(1) the following algorithm is asymptotically optimal for
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computing the shallow sets: broadcast the entire tree (including the forbidden sets) to all nodes
using Õ(kn2) bits then let each node locally compute its label using the centralized marker
algorithm.

It is worth noting that this lower bound does not exclude the possibility of a labeling scheme
with bothO(

√
n)-bit labels and low communication complexity, but such a scheme would have

to avoid using the shallow sets as defined here.

5.8 Discussion

The most interesting open issue here is to investigate fs-reachability on other families of graphs
such as those of small treewidth (although we have been unable to show good bounds for these
families). Knowing the complexity of fs-reachability on more general graphs would be inter-
esting as reachability is a fundamental problem for any routing scheme.

We have been unable to prove a stronger lower bound for general graphs than in Section 5.1.
In fact, we conjecture that it does not get any harder than fortrees:

Conjecture 5.8.1 For any graph familyF , there is a labeling scheme for fs-reachability onF
(with k = O(1)) havingΘ̃(

√
n)-bit labels.

Roughly, the intuition behind the conjecture is that to obtain a good lower bound, one should
find a large setA of nodes where, for each distinct pair of nodesu, v ∈ A, there is a pathPuv

that contains a ‘large’ numberc of nodes disjoint from any other pathPwx where at least one
of w, x is notu, v. The tree construction in Section 5.1 has this property withc = Ω(

√
n) and

attempting to increase this forces the paths to be non-disjoint. However, it is not clear how to
efficiently encode the reachability information for a largenumber of paths between any pair of
nodes.

Classical reachability on undirected graphs has a scheme with lg n-bit labels: label each
node with the identity of its connected component. On the other hand, it is known that directed
reachability requires labels of total sizeΩ(m log n2/m) bits on somen-nodem-edge graph
[CHKZ02]. Forbidden-set reachability is at least as hard as undirected reachability: just set
all the forbidden sets to be the empty set. Below is a simple reduction showing that it is no
harder than directed reachability. Hence for forbidden sets of sizeO(1), the label size for fs-
reachability lies somewhere between undirected and directed reachability.

Lemma 5.8.2 Forbidden-set reachability on undirected graphs is no harder than directed-
graph reachability.

Proof. Given an undirected graphG on n nodesv1 . . . vn and a forbidden setS(v) for each
nodev, construct the bipartite graphH on 2n nodesx1 . . . xn andy1 . . . yn where there is an
edge(xi, yj) iff there is a good path fromvi to vj in G. It is easy to see that inH, xi can reachyj

iff they are neighbours, and so the adjacency relation inH represents the fs-reachability relation
in G.



CHAPTER 6

Approximating Forbidden-set Routing

In Chapter 4 we showed that there is anΩ(k log n/k) lower bound on the space requirements
(per node) for any forbidden-set routing scheme, wherek is an upper bound on the size of
a forbidden set (Theorem 4.5.3). For smallk, this means that good routing schemes may be
possible. However, we believe that for general graphs thereis a lower bound ofΩ(n) bits. To
avoid this bound, it is natural to think about ways of relaxing the problem, for example are
we happy with an approximate solution? The difficulty with such an idea is that the problem
of deciding if there exists a path of zero cost between two nodes is a decision problem not an
optimization problem, so there is no natural notion of approximation.

In this chapter we consider one such approach toapproximatingthe forbidden-set routing
problem. We partition the network into connected clusters and instead of choosing arbitrary
subsets of nodes, the forbidden sets must choose a subset of these clusters. This has the effect
of grouping nodes together and treating them as the same nodefor the purposes of forbidden-set
routing. We define the problem of obtaining a cluster graph that has good graph-theoretic prop-
erties, and motivate the problem of obtaining a cluster graph with bounded treewidth (deciding
if there is a cluster graph with treewidth at mostk may be an NP-complete problem, even though
deciding if a given graph has treewidth at mostk can be done in linear time). We show that if
we can construct a cluster graph having small treewidth, then we can apply our forbidden-set
routing schemes from Chapter 4 to it.

We begin, however, by considering an approach inspired by the work of Feigenbaum et al.
[FKMS05] – they considered a relaxed version of shortest-path routing where each link has a
number of objective values associated with it, for example delay, packet loss, bandwidth and
so on. All nodes agree on these values, in the same way that allnodes agree on the weights of
edges for shortest-path routing. Each node has an individual cost function, which is a convex
combination of the objective values assigned to edges (for example, one node may be interested
in paths minimizing the sum of delays, while another may be interested in paths minimizing
another metric). They showed that a small number of routing trees (instead of a single routing
tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does not imme-
diately imply a space-efficient routing scheme, since each node would store a small number of
trees for each destination, giving super-linearω(n) routing table sizes.. We shall show how to
use their construction to build a space-efficient compact routing scheme with a small increase
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in the approximation factor. We can then observe that this multiple objective cost problem can
be seen as a special case of clustering the network and assigning costs to clusters. Since we are
interested in forbidden-set routing, it is natural to ask ifwe can cluster the graph so as to obtain
efficient forbidden-set routing algorithms for it.

6.1 Compact routing with a small number of objective costs

In this section we consider a variation on the forbidden-setrouting model introduced by Feigen-
baum et al. [FKMS05]. They considered a restricted model where each nodew is assignedd
objectivecosts〈l1(w), . . . , ld(w)〉, which are assumed to be integers bounded by a polynomial,
i.e. less thannc for some constantc. Then the policy of a nodeu is a probability distribution
overd local variables0 ≤ λi(u) ≤ 1 for i = 1, . . . , d such that

∑d
i=1 λi(u) = 1. The policy

can be interpreted as defining the cost tou of routing throughw as a convex combination of the
objective costs assigned tow, i.e.

cu(w) =
d∑

i=1

λi(u)li(w).

The motivation for this cost model is that the costs may represent objective measurements such
as latency and packet loss, but nodes may assign different opinions to their relative importance.
They showed that for the case ofd = 2, a small number of routing trees suffices to route on
approximately-optimal paths. This is a promising result, since Feigenbaum et al. showed that
finding a single minimal-cost tree in the case of 2 metrics is APX-hard.

Theorem 6.1.1 ([FKMS05]) Assume that the costsl1(·), . . . , ld(·) are at mostnc. Fix some
destination nodev. Given anyǫ > 0, there is a set of routing treesT1, . . . , Tr with r =
O(1

ǫ
(log n + log 1

ǫ
)) such that the following holds – for each nodeu, there exists a treeTtu

such thatcu(Ttu) ≤ (1 + ǫ)cu(P
∗
uv), whereP ∗

uv is the path fromu to v minimizingcu(·) (i.e. of
minimum cost tou).

Proof. Let α = (1 + ǫ). Each treeTt in the collection is the shortest-path tree for a specific
convex combination of the two metricsl1(·), l2(·). We name the trees after the metrics they
optimize:

T∞ : l1(·), with ties broken by minimuml2(·).
T−∞ : l2(·), with ties broken by minimuml1(·).
Tt : lt(·) = αt

1+αt l1(·) + 1
1+αt l2(·) for t ∈ {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k} wherek =

⌈logα (2ǫ−1nc+1)⌉.
Thus, there are a total ofr = 2k + 3 = O(log n) trees. These trees can be constructed

with r shortest-path computations on node-weighted graphs (using e.g. Dijkstra’s algorithm)
and hence can be done in polynomial time. The proof goes on to show that the collection of
trees do indeed achieve the desired approximation factor.

They also showed that for generald > 2, approximatelyO(4d logd n) routing trees are
sufficient (depending on the parametersǫ and the sizenc of the costsli(·)). Using their result we
can construct a routing scheme by applying the theorem separately to each node as a destination:
construct a functiont(u, v) = arg mini dTi

(u, v) wheret(u, v) = k means that the treeTk

contains the lowest cost path fromu to v out of all the trees constructed. Each node also stores
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the port number for the edge to its parent in each tree. Thenu can route tov by sending a
packet to its parent inTt(u,v)), writing t(u, v) in the packet header to indicate which tree the
packet should be sent on. The problem with using this as a routing scheme is that each node
stores a routing table of sizeO(n log r) bits to identify the tree used for each destination.

Before presenting the scheme, we need to deal with the fact that the above result is for
node-weighted graphs, but the compact shortest-path routing schemes we will use require edge-
weighted graphs. We therefore apply a simple transformation as follows. Given an undirected
node-weighted graphG = (V,E) on n nodes wherev has weightl(v), we compute the edge-
weighted dualG′ = (V ′, E ′) on w with 2n nodes as follows (the construction is shown in
Figure 6.1). The node setV ′ = V ∪ {v′|v ∈ V } contains the nodes ofV and a nodev′ for
every nodev of V . The edge setE ′ = E ∪ {{v, v′}|v ∈ V } contains the edges ofE and an
edge{v, v′} for every nodev of V . For an edge{u, v} whereu, v ∈ V , assign it the weight
l(u, v) = l(v, u) = l(u) + l(v). For an edge{v, v′}, assign it the weightl(v). It is easy to
see that2dG(u, v) = dG′(u′, v′) for u, v ∈ V (G), and that ifPu′v′ is a path fromu′ to v′ in G′

then the subpathPuv obtained by removing the first and last edges ofPu′v′ is a path inG. The
following simple lemma shows that the edge-weighted graph has the same lowest cost paths as
in the original graph, so we can apply any routing scheme toG by using the corresponding node
v ∈ G′.

Lemma 6.1.2 If Puv is the lowest-costuv-path (lcp) in the dual graphG′ thenPuv is also the
lcp in G.

Proof. Assume for the sake of contradiction thatPuv is the lcp inG′ and some other pathP ′
uv

is the lcp inG. Let cG(P ) denote the cost inG of the pathP andcG(v) denote the weight of
a nodev (similarly, cG′({u, v}) denotes the cost of an edge{u, v} in the dualG′). Therefore,
cG(Puv) > cG(P ′

uv). Now consider the cost of the pathP ′
uv in G′. We will show thatcG′(Puv) >

cG′(P ′
uv), contradicting the assumption thatPuv is the lcp inG′. We know that for a pathPuv

from u to v, cG(Puv) = 1
2
(cG′(Puv) + cG(u) + cG(v)). It follows that

cG′(Puv) = 2cG(Puv)− cG(u)− cG(v)

> 2cG(P ′
uv)− cG(u)− cG(v)

= cG′(P ′
uv),

soPuv cannot be the lcp inG′.
We now show how to construct a routing scheme based on Theorem6.1.1 by combining

it with a compact approximate shortest-path routing schemeR such as Thorup-Zwick (TZ)
[TZ01b]. We also assume that we have access to distance labels giving the lengths of the
paths used by the routing scheme. Our modification is quite simple – letG = (V,E) be an
undirected unweighted graph, and denote byGt = (V,E) the node-weighted graph with node
weights given bylt(·). For eacht = 1, . . . , r we compute the edge-weighted dualG′

t of Gt and
then run the routing schemeR on G′

t. This gives for each node a sequence of labelsL(v) =
L1(v), . . . , Lr(v) and routing tablesRT (v) = RT1(v), . . . , RTr(v) whereLt(v), RTt(v) are
the label and routing table given tov in G′

t byR (we assume that the labelsLt(v) also contain
information for the distance labeling scheme).

Routing fromu to v in G is done as follows. Nodeu is given the labelsL(v), L(v′) for
the destinationv ∈ G and runs the distance decoder onLi(u

′) andLi(v
′) in G′ to compute

the approximate distanceŝdG′

i
(u′, v′) for i = 1, . . . , r. Let tu be the value ofi for which the
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Figure 6.1 : Constructing the edge-weighted dual G′ from the node-weighted graph G.

reported distancêdG′

i
(u′, v′) is smallest. Nodeu then uses the routing tableRTtu(u) and label

Ltu(v) ∈ L(v) to compute the port number of the outgoing edge for the next hop w on the
path inG. It uses the routing schemeR to construct the packetP to be sent tow and adds the
identifiertu and the labelLtu(v) to the header ofP .

When a packet containingLtu(v) and tu is received by an intermediate nodew, it uses
the routing tableRTtu(v) andLtu(v) to compute the port number for its next outgoing edge,
computes the next packet (keepingLtu(v) andtu in the header) and forwards it (we assume that
the routing schemeR is able to decide when the packet has reached its destination).

Lemma 6.1.3 If the routing schemeR routes on paths of stretchs using routing tables of size
RT and distance labels of sizeL, then the routing scheme described above uses routing tables
of sizer.RT , labels of sizer.L and routes fromu to v on a pathPuv wherecu(Puv) ≤ s(1 +
ǫ)cu(P

∗
uv), whereP ∗

uv is the path fromu to v minimizingcu(·).
Proof. The main observation is the following: for any destinationv, since each of the treesTi

is a shortest-path routing tree in the graphGi, any stretch-s shortest-path routing scheme forGi

will produce a pathPuv from u to v of length within a factors of dGi
(u, v). Since the path inTi

is within a factor(1 + ǫ) of optimal with respect to the costsci in G, it follows that the pathPuv

in Gi is also within a factors(1 + ǫ) of optimal with respect to the costsci in G.
The compact routing scheme TZ [TZ01b] has stretch 3, uses routing tables and distance

labels of sizeÕ(n1/2). This gives the following result.

Theorem 6.1.4 Assume thatd = 2. Given anyǫ > 0, there is a compact routing scheme that
routes packets fromu to v on a pathPuv satisfyingcu(Puv) ≤ 3(1+ ǫ)cu(P

∗
uv). The scheme uses

routing tables and labels of sizẽO(n1/2

ǫ
(log n + log 1

ǫ
)).

6.2 Approximate separator labels

We now show that the model described in the previous section leads to a natural notion of
approximation for constructing separator labels. If we setall the costsli(v) to be binary values
we can consider the clustersVi = {v | li(v) = 1}, and can require that they form a disjoint
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partition ofG into connected components. If we also require that the nonzero λi all take the
same value, then we have a simple structure where each node chooses a set of clusters.

Define thequotient graphcorresponding to the partitionΠ = {V1, . . . , Vd} as the undirected
graphG|Π = (V ′, E ′) whereV ′ = {V1, . . . , Vd} (i.e. each cluster of the partition is contracted
into a single node) andE ′ = {{Vi, Vj} | ∃x ∈ Vi, y ∈ Vj where{x, y} ∈ E(G)} (i.e. if
there is an edge between two nodes in different clusters thenthere is an edge in the quotient
graph between the nodes representing the clusters). The set{Vi | λi 6= 0} then corresponds to
choosing a set of nodes in the quotient graph to avoid, which corresponds to a set of nodes in
G.

For forbidden-set routing (where the sets are arbitrary subsets of nodes), we would need to
haven objective costs per node (dimensions), so Theorem 6.1.1 would constructΩ((log n)n)
routing trees. However, it is clear thatn trees suffice to allow choosing the exact lowest-cost
path for every node, regardless of the policies. Therefore,it would be good if we could make use
of the simple structure described above to improve these bounds. We now show that if we can
construct quotient graphs with good properties then we can efficiently approximate forbidden-
set routing. It is an approximation in the sense that forbidden sets are now arbitrary subsets of
the set of clusters in the partition rather than arbitrary subsets of nodes, so nodes are grouped
together in the forbidden sets by the partition chosen.

We will apply the compact forbidden-set routing scheme developed in Chapter 4 directly on
the quotient graph. Given any labelingL for the quotient graphG|Π, we construct a labeling
L′ for G by assigning to all the nodes in a clusterVi the labelL(Vi) for Vi in G|Π. Given a set
of labels for nodes inG, the decoder forL′ simply runs the decoder forL on the labels. If the
partition is chosen so thatG|Π has good properties (e.g. bounded cliquewidth) then the labeling
L′ will be as ifG has the same good properties but the price we pay is that the scheme treats all
nodes ofG in the same cluster as being the same node. Note that this is anapproximation since
if there is a fs-avoiding path in the quotient graph then there is also a fs-avoiding path in the
original graph (if the query set now contains all the nodes contained in the forbidden clusters).

Routing is done as follows onG - for each edge{X,Y } in the quotient graph, we store two
nodesx ∈ X, y ∈ Y where{x, y} ∈ G. Then we route on the quotient graph using the compact
forbidden-set routing scheme, and route in connected components between the corresponding
nodes inG using a separate shortest-path routing scheme (eg Thorup-Zwick). We now define
the problem of constructing a quotient graph with small cliquewidth since we have separator
labels withO(log n) bits on bounded cliquewidth graphs.

Problem CLIQUEWIDTH- k QUOTIENT GRAPH
Input: A connected graphG.
Output: A partitionΠ of V (G) into connected components,

such thatG|Π has cliquewidth at mostk.
Objective: Maximize the size of the quotient graph, i.e.|Π|

Remarks. Note that the parameterk is not part of the input. Also note that the problem
of asking for a quotient graph with minimum cliquewidth is trivial, since taking the partition
Π = {{V (G)}} always gives a solution with cliquewidth 1 (sinceG|Π is the graph having one
node). Ifk is part of the input then the problem is NP-complete, since Fellows et al. [FRRS06]
have recently shown that given a graphG and an integerk, deciding whether the cliquewidth of
G is at mostk is NP-complete, by asking whether|Π| = n. However, the recognition problem
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(for fixedk, is the cliquewidth ofG at mostk?) is still open, and since our problem is closely-
related to (and at least as hard as) the recognition problem,we leave it as an intriguing open
problem.

We can also consider the similar problem TREEWIDTH-k QUOTIENT GRAPH. Since
there is a linear-time algorithm for deciding if the treewidth of a graph is at mostk [Bod93a],
this may be a more tractable problem (ifk is part of the input then it is NP-complete [ACP87]).
For the casek = 1, the problem is asking for the largest integers such that there is a partition
of the nodes ofG whose quotient graph is a tree ofs nodes. This can can be solved in linear
time by contracting all cycles ofG using the linear-time biconnected components algorithm of
Tarjan [TV84]. One idea for solving this in practice may be touse similar heuristics to those
for treewidth, such as the minimum-degree heuristic [Bod05], as shown below. This procedure

TREEWIDTH-k QUOTIENT GRAPH

1 G′ ← G
2 repeat
3 if treewidth(G′) ≤ k � O(n) time [Bod93a]
4 then return G′

5 else choose a nodev ∈ G of minimum degree
6 contractv with all its neighbours

Figure 6.2 : Illustrating the minimum-degree heuristic for TREEWIDTH-k QUOTIENT GRAPH

is guaranteed to terminate sinceG is connected and we eventually reach the singleton graph,
which has treewidth0. We leave it as an open problem to construct efficient solutions for larger
values ofk.



CHAPTER 7

Discussion

In this thesis, we have studied the problem of routing in large distributed networks where nodes
are free to define their own routing policies. In particular,we focused on the case where each
node is free to specify a set of nodes that it wishes to avoid – this gives rise to the forbidden-
set routing problem. Although we have succeeded in answering some basic questions about
the complexity of forbidden-set routing – some in the negative (such as can we efficiently use
routing trees), and some in the positive (for example, our forbidden-set routing algorithms for
small treewidth and bounded cliquewidth graphs), we feel that our work represents a small step
toward understanding how to deal with the additional complexity of policy-based routing. From
a practical point of view, we believe that developing efficient and reliable algorithms for policy
routing is important – as the number of nodes using policy routing increases, the intractability
and space problems associated with routing-tree based schemes such as BGP will only become
amplified. We propose the model of compact routing as the way forward for policy routing
algorithms, but at the moment very little is known about the problem, even for the simple case
of forbidden-set policies. From a theoretical point of view, the forbidden-set routing problem
has fundamental open questions related to graph theory and other areas that are likely to be of
independent interest (for example, how to construct an efficient distributed representation of
all the separators in a graph). In this final chapter we try to suggest interesting directions and
summarise some of the open questions arising from our work.

7.1 SPPs and routing trees

In Chapter 3 we presented some negative results about using routing trees for forbidden-set (and
more generally, policy-based) routing. We used this as an argument against the use of routing
trees. Although the NP-completeness results rule out even the simple case of forbidden-set
preferences, it may be that there is a class of policies that are tractable yet more expressive than
next-hop preferences. It would be very interesting to understand how the algebraic properties of
a routing algebra relate to the complexity of solving the SPPinstances that it generates – for ex-
ample, what makes deciding solvability of SPPs with two-hoppreferences NP-complete, while
those with next-hop preferences are always solvable? The discussion in Section 3.6 contains
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more details about these open problems.
Another interesting problem (perhaps of independent interest) is to consider thek-SAT com-

munication complexity conjecture – Lemma 3.4.7 proves it for k = O(1) and only holds in the
deterministic case. It would be interesting to prove or disprove the conjecture for larger values
of k. We have only been able to prove a weaker randomized lower bound – whether we can do
better with randomization is open.

7.2 Compact routing schemes

Since this is the first time that the problem of forbidden-setrouting (and in general, compact
algorithms for policy routing) have been studied, there arenaturally many fundamental open
problems remaining. Here we list what we consider to be some of the most important problems
associated with the work in this chapter.

Open problem 1: Construct distance separator labels for other graph families.
One direction is to attempt to construct distance separatorlabels for cliquewidth graphs

using labels of size polynomial, or even linear, in the cliquewidthcw(G). Alternatively, it would
be interesting to prove a lower bound for the label size involving the cliquewidth. One difficulty
in extending the treewidth scheme to handle small cliquewidth graphs may be in constructing
a binary term tree of small height that represents the graph.For treewidthk graphs, we relied
on a result that enables us to convert any tree decompositionof width k into a balanced one
with heightO(log n) and widthO(k). For cliquewidth graphs, no such result is known; if we
want abalancedterm tree (having heightO(log n)), it is not known if we can avoid suffering
an exponential increase in the cliquewidth. In the case of treewidth, we made use of the fact
that there is only a linear increase in treewidth. It is an open problem to reduce this cliquewidth
blowup to even a polynomial factor increase [CV03].

Open problem 2: Tighten the gap between the upper and lower bounds for the size of
distance separator labels for general graphs.

We showed anΩ(n) bits lower bound, but there is nothing better than the trivial O(n2)
bound for general graphs (store at each node a copy of the entire graph). Can this be improved
to O(n3/2) or O(n1+ǫ) bits, or is it optimal? One way of attacking this may be to try to prove
that treewidthk graphs have separator labels of sizeÕ(k) bits. If this were true, then sincen
is an upper bound of the treewidth of any graph withn nodes (construct a tree decomposition
having a single bag), ãO(n) upper bound for general graphs would follow. We believe thatthis
problem has deep connections with many other areas of graph theory.

Open problem 3: Construct a more efficient routing scheme by removing the dependency
on the degree ofG.

We showed how to construct forbidden-set routing schemes byusing distance separator
labels and a simple routing scheme using these distances. However, the simple routing scheme
involves storing the neighbours for each node, so we pay a factor O(∆(G)) in addition to the
size of the distance separator labels and the size of the forbidden sets. We believe that it is
possible to apply similar ideas to those of Cowen [Cow99] and Thorup and Zwick [TZ01b] by
using carefully-selected ‘landmarks’ in the graph to reduce the space requirements. This would
immediately improve many of our results in Chapter 4.

Open problem 4: Investigate randomization and approximation as a means of reducing the
complexity.



7.2. Compact routing schemes 109

The motivation for approximate shortest-path routing is primarily due to theΩ(n) lower
bound in the case of exact shortest-path routing in general graphs. Since we also have a high
Ω(n) lower bound for the problem of deciding if a given set of nodesis a separator of two nodes,
we would like to investigate if we can circumvent this, but obviously at the cost of something
else. One interesting idea, pioneered by Karger [Kar94] in his work on network cuts, is to use
randomization. Is it possible to construct smaller separator labels that give a correct answer with
high probability? If, in addition we are interested in distance separator labels then it might be
possible to consider approximate distance separator labels – given labels foru, v, S, we would
like to compute an approximation to the distancedG\S(u, v). If we can achieve sublinear label
sizes in this case then that would be a good result.
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