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Executive summary

The project described in this report was undertaken withénRepartment for Transport’s sec-
ond call for proposals in the Horizons research programmdeiuthhe theme dihvestigating the
handling of large transport related dataset§he one year project started on 1 October 2005
with funding for Yunus Saatci as a post-graduate reseasatcage and with Richard Gibbens
as the principal investigator.

In this report we describe our findings from a project using ¢cbmbination of historical
and real-time MIDAS loop detector data for journey time pcédn. Phase one of the project
involved a short study of the data formats used by MIDAS twrédraffic count data and
described a revised data format including explicit indgximhis revised format, based on the
familiar ZIP file archiving tool allowed efficient random ass to the data necessary for high
throughput applications.

The project looked at the variability of journey times asrasys in three day categories:
Mondays, midweek days and Fridays. Two estimators usingtirea data were considered:
a simple-to-implement regression-based method and a noon@uwtationally demanding-
nearest neighbour method. Our example scenario of UK dagdakan from the M25 London
orbital motorway during 2003 and the results compared ims$eof the root-mean-square pre-
diction error. It was found that where the variability wasapest (typically during the rush
hours periods or periods of flow breakdowns) the regressidmaarest neighbour estimators
reduced the prediction error substantially compared wittage estimator constructed from
the historical mean journey time. Only as the lag betweerd#wsion time and the journey
start time increased to beyond around 2 hours did the pateéntimprove upon the historical
mean estimator diminish. Thus, there is considerable stmp@ediction methods combined
with access to real-time data to improve the accuracy im@ytime estimates. In so doing,
they reduce the uncertainty in estimating the generalipst af travel. The regression-based
prediction estimator has a particularly low computatiooadrhead, in contrast to the nearest
neighbour estimator, which makes it entirely suitable fooaline implementation.

Finally, the project demonstrates both the value of presgivistorical archives of transport
related datasets as well as provision of access to realmiessurements.



Contents

Executive summary
List of figures
Introduction

Journey time prediction methodologies

2.1 Basicmodelandnotation . . . ... .. ... ..........
2.2 Linear regression method using varying coefficients ...... . . . . . .. ..
2.3 Nearestneighbourmethods . . . . .. ... ... ........

Numerical results

3.1 TheMIDASdataset . . . . .. .. ... ... ... .......
3.2 Journeytimes . . . .. . . . ...
3.3 Comparison of methodologies . . . . ... ... ........
3.4 \Validation of parameter choices . . . . . .. .. ... ... ...

Conclusions
References
Figures
Appendix

Summary of phase one: data organization

A.l The MIDASTCDformat . . . ... ... .. ... ........
A.2 Revised storage formats to support randomaccess . . . ........ . . ...
A.3 Furtherrefinements . . . ... ... ... ... .. .......



List of Figures

OooO~NOOOTS, WN P

Spatio-temporal pattern of speed measurements onthe M25... . . . . ..
Journey timesforMondays . . . . . . . ...
Journey times for midweekdays . . ... ... .. ... .. ... ... ..
Journey timesforFridays . . . . . . . . .. ...
lllustration of linear relationship . . . . . ... ... .. ... .. .....
Fitted parameter surfacesferands . . . . . . . . ... ... ... ... ...
A near vertical linear relationship . . . . . ... ... ... ... ......
Linear regression model with predictionintervals . . . .. .. ... .. ..
RMS prediction errors forMondays . . . . . . . . ... L.
RMS prediction errors for midweekdays . . . . . . .. ... ... . ...
RMS prediction errors for Fridays . . . . . . .. ... ... .. ... ...
The effect ot in the linear regressionmethod . . . . . . .. ... ... ...
The effect of k small with distance functiom,(-) . . .. ... ... ... ..
The effect oft large with distance functiom,(-) . . . . . .. ... ... ...
The effect ofw with distance functiomn, () . . . . . . ... .. ... ... ..
The effect ofc small with distance functioma(-) . . . . . .. ... ... ...
The effect of large with distance functiomo(-) . . . . . . . ... ... ...
The effect ofw with distance functiomny(-) . . . . . . . ...



1 Introduction

The project described in this report was undertaken withénRepartment for Transport’s sec-
ond call for proposals in the Horizons research programmdeiuthhe theme dihvestigating the
handling of large transport related dataset§he one year project started on 1 October 2005
with funding for Yunus Saatci as a post-graduate reseasatcage and with Richard Gibbens
as the principal investigator.

Phase one of the project reported on issues of MIDAS datanagigon [1] and phase
two [2] presented interim findings on journey time prediotinethodolgies. This report gathers
together these interim reports into a final form.

Journey time prediction using sources of real-time measent data has the potential to
assist travellers through the provision of more accuraienages of journey times. Improving
the accuracy of the prediction by suitable methods that mekeof real-time data helps to
reduce the overall uncertainty of journey times.

Rice & van Zwet [5] describe a simple-to-implement predictinethodology and report
successful results with US data in comparison with moreistipated and harder-to-implement
methods. In this project we have examined in detail the perdnce of these methodologies
when used with real-time UK MIDAS loop detector data. A prehary account of this inves-
tigation is given in [3, 6].

The work on data organization carried out in phase one ofithjeq provided the essential
underpinning for our numerical investigations that folemvand is briefly summaried here as
Appendix A.

Section 2 describes the basic model and defines the predicéthodologies considered.
Section 3 presents the results of our numerical investigainto journey times and the compar-
ison between the methodologies. Conclusions are given itidBet. An executive summary
is also included.

2 Journey time prediction methodologies

2.1 Basic model and notation

The basic model and terminology are taken directly from Ricea& Zwet [5] and are briefly
summarized here as follows.

We suppose that there ivalocity field V'(d, ¢, t), specifying the average speeds of vehicles
for daysd € D, at loop detectord, € {1,..., L} and for times (of day) € T'. There may be
many daysi and journeys are traversed from lobpo loop L. The time of day epochs, are
taken as every minute in the case of MIDAS data.

DefineT'(d, t) for the time of travel from loop 1 to loop L starting at timen dayd. 7'(d, t)
can be determined (approximately) from the velocity fieldaog dayd in the past.



Define also, drozen-fieldtravel time, 7%(d, t), given by

~

-1

2dy

T*(d, 1) =
(d?) V(d,0,t) + V(d,(+ 1,1)

(1)

~
Il

1

whered, is the distance between loopsand/ + 1. This quantity will play a pivotal @le in
the prediction methodolies. Notice that it may be very sing@termined from speed measure-
ments as part of an online prediction algorithm.

The historical average travel timé[t), for a journey starting at time of da#, is given by

T(t) ﬁ S T(d, 1) @)

deD

where| D] is the number of days in the sBt

The task of a journey time prediction method isetstimateT’(d, t + ¢) for time lagd > 0
given onlyinformation known at time on dayd. Timet is thedecision timefor estimating a
journey beginning after kg of § at timet + 6.

Two ndve estimates of the journey timé(d, ¢t + 9), are

1. T*(d,t), thefrozen-fieldestimator evaluated at the decision tirheand
2. T(t + 6), thehistorical mearestimator for journeys starting at time (of day)- 6.

The frozen-field estimatof[™(d, t), assumes, therefore, that speeds remain held perma-
nently fixed at their time values throughout the journey. We would expect that thisnagor
would behave best at small valuesipfvhere it is able to capture from the real-time measure-
ments known up to time specific features of the traffic profile on ddyAs § increases these
(frozen) features become less relevant compared to themiatmon captured by the long-run
historical average estimatdryt + §).

2.2 Linear regression method using varying coefficients

Rice & van Zwet observed in US loop detector data a strong dingationship between the
frozen field estimator]™*(d, t), and the exact observed journey tirfi&, t + ¢), of the form

T(d,t+6) = «(t,0)+ B(t,6)T"(d,t) + € 3)

wheree is a mean zero random variable and the coefficiefitsd) and3(t, ) vary with both
the decision timet, and the lag before the journey begins,Further details of such varying
coefficients models are given by Hastie & Tibshirani [4]. Pagameters of such a linear model
may be fitted through a weighted least squares procedurdwtimmizes

> (T(d,s) = aft,8) — B(t,6)T*(d,1))* K(t+ 6 + s) (4)

deD,seT
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whereK (+) is the Gaussian density with mean zero and variariagiven by

K(z) = ! e v (5)
2T
The purpose of the Gaussian density(, ), is to produce smoothed estimates of the regres-
sion coefficients(t, §) andB(t, d) as both the decision timg,and the lagg, vary. The degree
of smoothing is adjusted by the choice of the variance pat@me The methodology then
yields aregression-basefburney time estimatof]'(d, t + §), given by

T(d,t + &) = a(t,8) + B(t,0)T*(d,t) . (6)

Observe that putting (¢, §) = o(t, 5)T(t + §) shows that the estimatdF,(d, ¢ + ), is, in
fact, a particular data-dependent linear combination @tto ndve estimators.

2.3 Nearest neighbour methods

In the simple nearest-neighbour method, the estimatorwhpy time, 7'(d,t + §), is given
by finding the previous day’, which most closely matches the observed speeds up tottime
on dayd, according to some well-defined distance measure. Hendayifl’ minimizes the
distance tal among all previous days then the nearest neighbour estimidtd’ (d, ¢ + ¢), is
given by

TNN(d,t +6) =T(d,t +6). (7)

Rice & van Zwet offer several alternatives of the distane€d, , d»), between two dayé,
andd,. Two such alternatives considered for evaluation are gagefollows

d17d2 Z T* d17 T*(d275>]2 (8)
t—w<s<t
and
ma(d,dp) = Y [V(di,l5) = V(da, ,9)] ©)

leL, t—w<s<t

wherew is awindow sizeparameter.

The nearest neighbour method can be readily extended to-tiearest neighbou{NN)
method. First, thé closest days{;, ds, .. ., d; are found. Then, the predictors derived from
each similar day are combined in a weighted-averaging sehetmere the weights are propor-
tional to the distance of each day to the present daylhe predictor for thé-NN method,

IRice & van Zwet also consider a third class of estimators dasea principal components procedure. We
have not considered such estimators here as Rice & van Zaieodifind them to improve over the regression or
nearest neighbour estimators.



TFNN(d, t 4 §), is hence given by

k
TN(d t+6) =Y wT(di,t + 0) (10)

=1

% and the distance function i&(d;, d). Note how the simple nearest
j=1"1\a,4;

neighbour method is equivalent to theNN method withk = 1.
Notice that determining the estimat®¥""V involves evaluating a distance for each day
according to the distance function as well as ranking thastarmtes to find thé closest days.

wherew; =

3 Numerical results

3.1 The MIDAS dataset

The data considered in this report consists of speed measuts collected per minute from 63
MIDAS loop detectors located on lane 2 (where the slow lameirmbered 1) of the clockwise
carriageway between junctions 9 and 14 on the M25 Londortadnimotorway. The spacing
between the loops],, is taken as 500m. The data considered ranged from 05:00:@® 20
(that is, 900 one minute intervals) on weekdays in 2003. Mgssalues reduced the origi-
nal 261 weekdays down to 231 ddyJhe split between days of the week was 39 Mondays,
142 midweek days and 50 Fridays. The resulting data formeslacity field V' (d, ¢, t) with
dimension231 x 63 x 900.

For comparison, the study by Rice & van Zwet included 34 days X6 loop detectors
along 48 miles of I-10 in Los Angeles.

Figure 1 shows a spatio-temporal plot of the speeds for desotay (Monday, 6 January
2003). During the period 06:30 to 10:00, and for much of tte&lrender consideration, vehicles
are travelling at relatively low speeds with a backwardgagating wave pattern in the speed
profile. Horizontal stripes can be seen in the plot to rougbiycide with bottlenecks forming
in the vicinity of junctions.

3.2 Journey times

From the velocity field a travel tim&;(d, t), can be constructed for the journey from loop 1 to
loop 63 which starts at timeon dayd. Figure 2 shows in the top panel how the journey times
vary during the day for each of the individual 39 Mondays. rdey times are naturally seen
to increase during the morning slowdown period. (Severe¢ptions occur on Bank Holiday

2Missing values within the MIDAS speed data that formed gigant blocks over time and loops caused that
day to be rejected. More commonly, missing values occursautfhout parts of the day at one or more non-
adjacent sites. Less frequently, many sites producedmgissilues for just a single minute. In both of these cases,
the missing values were imputed by straightforward linaterpolation.
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Mondays.) During the middle portion of the day and again leetw17:00 and 19:00 there
are significant numbers of days when journey times have asee However, this feature is
much less pronounced than it is in the morning. In contrastdataset considered by Rice &
van Zwet has most congestion in the period from 15:00 onwards

The lower panel of Figure 2 shows a “box-and-whiskers” pliothe journey times. The
central bar shows the median journey time (over the 39 days}lee length of the box shows
the interquartile range (that is, from the 25% to the 75% @atites). The whiskers extend to
the furthest data point that is no more than 1.5 times thequogetile range from the box. Any
data points outside of the whiskers are plotted indivigudh addition, the orange filled dots
are the mean journey times. The plot makes clear that notamelyhe median journey times
longer between 06:30 and 10:00 but that the distributiomoifijey times is much more spread
out within this period.

Figures 3 and 4 show journey times on midweek days and Fridagpectively. The re-
sults for Fridays show considerably longer journey timethaafternoons compared with the
Mondays. Journey times for midweek days show a wide variatigourney times in both the
mornings and the afternoons but the effect is reduced cadpeith Fridays.

Figures 2—4 illustrate the strong day-of-week effect orrpey times and we have used
these three categories of weekdays (namely, Mondays, reiddagys and Fridays) to separately
estimate journey times.

The key linear relationship identified by Rice & van Zwet thadarlies the prediction
methodology is betweefi*(d,t) andT'(d,t + ¢). Figure 5 shows scatterplots of these two
guantities where the decision timg,s 08:00 and the lag ranges from 0 to 120 minutes and
the data is confined to just the 39 Mondays. Each plot also shimsvhistorical mean estimator
as a horizontal line. Notice how the slope of the regressmandiminishes as the lag increases.

Equation (4) was used to fit the regression coefficier{tso) and 3(t, ) by a standard
weighted least squares procedure. The regression-baseteyotime estimatoff(d, t) was
then obtained from the fitted coefficients through equat&)n (

Figure 6 shows how the fitted paramete(s, §) and3(¢, ¢) vary witht andd. The smooth-
ness of the surfaces is controlled by the paramet&hich here was taken as= 10 minutes.
(We discuss at length the choice of such parameters latexatidds 3.3 and 3.4.) The parame-
ter3 is seen to increase steeply with the lag during the earlymosh period with simultaneous
decreases in. This is explained by noting that at the start of the rush Ip@uiod journey times
increase rapidly and, as a result, the frozen-field estimegels to be multiplied by a larger fac-
tor 3 to better predict future journey times. Figure 7 shows halitiear relationship between
the frozen-field estimate and the journey time becomes mieeipsr, making the slopglarge
and correspondingly pushing down the intercept parameteékccordingly, we would expect
an improved estimator if this small number of outlier dayswamoved and the coefficients
fitted to the remaining data. Alternatively, a robust formegression could be used in place of
the least-squares approach which is less sensitive temitli

Figure 8 repeats the central scatterplot from Figure 5 wtierdéag is§ = 60 minutes. The



central sloping line gives the regression estimatorfor the journey time as a function of the
frozen field estimato?™. An important consequence that would follow from the adwpf
Gaussian errors in the statistical model 7oin (3) is that the many powerful techniques and
tools of Gaussian models can then be applied. In partictilarsame statistical model may
also be used to construcipaediction interval(shown in Figure 8 by the outer pair of sloping
lines). The prediction interval illustrated here givesgioa that we expect, given the statistical
model, to contain the exact journey time with a probability96%. The level of 90% is for
illustration only. It could either be higher or lower cormpesiding to intervals that are wider or
narrower, respectively.

It may be worth concluding this section by describing howrdmgression estimator would
be implemented. Using historical data, such as that shovidiigare 2, the regression model
is fitted and the sloping lines on Figure 8 are computed. Tais @f the calculation is done
offline and the results are saved for use by the online pateftgorithm. At the decision
time, ¢, the frozen field estimatdf* is obtained from the current speed measurements (in our
example journey this involves a simple calculation (givgreguation (1)) using the speed val-
ues recorded by the 63 MIDAS loop detectors). The regresstimator!’ and the prediction
interval are then looked up from the saved results of thenefftialculation. For the example
shown in Figure 8, if the online calculation @f* yields a value of 30.00 minutes then the
regression estimator i = 22.31 minutes and the 90% prediction interval is (15.39,29.24).
If the frozen field estimator was instead a value of 60.00 therregression estimator would
beT = 34.51 minutes and the 90% prediction interval would be (27.5@8)L. The historical
mean estimatof], is computed from historical measurements alone and in thetbe cases,
independent of online measurements, it is 28.08 minutes.

3.3 Comparison of methodologies

Figure 9 shows how the root-mean-square prediction erroMandays for our four estimators
varies ag varies throughout the period between 05:00 and 20:00 aridtiétlagsy, increas-
ing from 0 to 120 minutes. The historical mean estimator isaffected by the choice of lag,
except that the curves shown shift leftwards by the améurithe frozen-field estimator has
larger root-mean-square prediction error as thedamcreases and the relative importance of
recent information recedes. The regression-based estirhas the lowest root-mean-square
prediction error. During the period 6:30 to 10:00 it has mitva@n halved the error compared
to the historical mean. Later in the day, when journey tinresfar less variable there is little
benefit to be obtained from the regression approach comparsithply using the historical
mean. As the lag), is allowed to increase the error in the regression-basdasr, 7', ap-
proaches that of the historical mean. The frozen-field egoni/ ™, can have a large prediction
error for even moderate values around 30 minutes of the lggré&9 also includes the nearest
neighbour estimatdF*V" calculated withi = 4, a window size parameter of = 20 minutes
and them, (+) distance function. The performance of th&"" estimator is quite similar to the
regression estimator.



Figures 10 and 11 show the prediction errors for the casesdieek days and Friday,
respectively. A similiar comparison applies in these twtegaries. However, the prediction
error with the historical mean estimator is rather greatehe case of Friday afternoons than
occurs on the Mondays. Therefore, there is considerablgeson using real-time information
to reduce the prediction error of journey times as can be sgnboth the regression and
nearest neighbour estimators.

Figures 9-11 taken together show that when the predicti@r &r the historical mean is
high it is possible for the regression and nearest neighbmthods to dramatically reduce
the prediction error, at least for short to medium lags. Bager lags, over 2 hours (say), all
estimators will finally approach the performance of thedrisal mean.

It is quite surprising that despite investigating a wideicamf parametersi(andw for the
nearest neighbour estimator andor the regression estimator) we were unable to observe any
significant improvement of the nearest neighbour procedweethe regression procedure. The
regression procedure has rather minimal online requirésrediscussed above compared to
the nearest neighbour procedure which must compute anecsgiarch for thé closest days.

3.4 Validation of parameter choices

We now discuss the approach followed to select the paramaliees used above. For the case
of the regression estimator we must select the smoothirenpeters. Figure 12 shows how
the prediction errors for the Mondays variedsawas allowed to vary within the range from 5
to 100 minutes. Variation of within the range from 5 to 20 had little effect on the predinti
errors. Only whernr was allowed to increase further to 50 and 100 was there angeadie
deterioration in the prediction error. Hence, our selectboc = 10 minutes used earlier.

For the nearest neighbour method there are rather more paento select. There is the
choice ofk, the number of closest neighbours to consider, and the wirsilze parametew.

In addition, there is the choice of distance function,-) or ms(-) to use.

Figures 13-15 concern the effectsioindw when them,(-) distance function is used.
Conversely, Figures 16-18 use thg(-) distance function. For both distance functions the
effects ofk andw are similar. Ask increases from 1 to about 4 there is a small improvement in
the prediction error but beyond 4 &sncreases further to 25 the prediction error grows slighly
again. Hence, our use earlierfot= 4. In the case of the window size parametethe optimal
choice appears to be around 20.

Finally, the choice of distance function itself appearsaoedilittle effect and we have chosen
to work with m (-) which involves the frozen field quantities directly rathiean the speeds.

4 Conclusions

In this report we describe our findings from a project usind>®§ loop detector data for
journey time prediction. We have found that the simplerplement regression-based method



of Rice & van Zwet [5] works well in our example scenario of UKtaldaaken from the M25
London orbital motorway in 2003. Phase one of the projectlred a short study of the
data formats used by MIDAS to record traffic count data andrilesd a revised data format
including explicit indexing. This revised format, basedtba familiar ZIP file archiving tool
allowed efficient random access to the data necessary fhithigughput applications.

The project looked at the variability of journey times asagys in three day categories:
Mondays, midweek days and Fridays. The regression-basathésr together with &-nearest
neighbour estimator were studied and the results comparegims of the root-mean-square
prediction error. It was found that where the variabilitysigreatest (typically during the rush
hours periods or periods of flow breakdowns) the regressidmaarest neighbour estimators
reduced the prediction error substantially compared wittage estimator constructed from
the historical mean journey time. Only as the lag betweerd#wsion time and the journey
start time increased to beyond around 2 hours did the pateatimprove upon the historical
mean estimator diminish. Thus, there is considerable stmp@ediction methods combined
with access to real-time data to improve the accuracy im@yutime estimates. In so doing,
they reduce the generalised cost of travel. The regredssad prediction estimator has a
particularly low computational overhead, in contrast t® tiearest neighbour estimator, which
makes it entirely suitable for an online implementation.

Finally, the project demonstrates both the value of presgtwistorical archives of transport
related datasets as well as provision of access to realrieasurements.
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Speeds (mph) on M25 (clockwise) Mon 6 Jan 2003
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Figure 1: A spatio-temporal plot of the speeds (measuredph)ran lane 2 of the clockwise
carriageway of the M25 between junctions 9 and 14 on Mondalartuary 2003. There is
a region of severe congestion in the morning rush hour whaegeds are much reduced and
have a backward-propagating wave-like profile. Bottleneckghly coincide with junctions
as shown by the horizontal stripes.
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Journey times on 39 Mondays
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Figure 2: The top panel shows journey times on 39 Mondaysndu2D03 starting at times
ranging from 05:00 to 20:00. The lower panel shows the tistion of journey times by
means of box-and-whiskers plots. Journey times are notqguger during the morning rush
hour period but also more spread out.



Journey times on 142 midweek days
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Figure 3: The top panel shows journey times on 142 midweek (lByesday, Wednesday and
Thursday) during 2003 starting at times ranging from 05®2Q:00. The lower panel shows
the distribution of journey times by means of box-and-whiskplots. Median journey times
rise during the morning and evening rush hours and there arg/ mutlier days with longer
journey times.



Journey times on 50 Fridays
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Figure 4: The top panel shows journey times on 50 FridaysnduiO03 starting at times
ranging from 05:00 to 20:00. The lower panel shows the thstion of journey times by means
of box-and-whiskers plots. Median journey times rise digantly from mid-day onwards
along with a very wide variation in journey times.
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Linear regression model for varying lags,
—— Linear regression Historical mean
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Figure 5. The figure illustrates the linear relationshipwestn the frozen-field estima-
tor 7*(d,t) and the journey timéd'(d,t + ¢). Here the decision timeg, is fixed at 8:00 on
Mondays and the lag, increases from 0 to 120 minutes. Both the historical mean eamst-
squares regression are shown.
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Figure 6: The panel on the left shows the valuea(@f §) as the start time, varies throughout
the period 05:00 to 20:00 and as the lagincreases from 0 to 90 minutes. The panel on the
right shows the variation of(¢, ¢).
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Linear regression model for varying lags,
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Figure 7: This figure shows how the regression-based me#iftetts the rapidly increasing
journey times during rush hour periods by moving to a morécarlinear relationship.



Linear regression model with prediction interval
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Figure 8: This figure shows properties of a linear model widu&sian errors. The central
sloping line is the regression estimatdras a function of the frozen-field estimatbt using
the data for Mondays only. The outer pair of sloping linesa®@®% prediction interval for the
journey time given a value for the frozen-field estimatore hlorizontal line gives the historical
mean journey time.



RMS prediction errors for Mondays
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Figure 9: The figure shows the root-mean-square predictimmsefor the four estimators with
data from Mondays only over the range of start times and atathe varies from 0 to 120
minutes. The regression-based estimator has improvedioedristorical and frozen-field es-
timators. The nearest neighbour estimator appears to gemnnsl to the regression estimator.
The benefits in terms of reduced prediction error diminiskemvthe lag becomes large or when
there is little inherent variability in the journey times.
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RMS prediction errors for midweek days
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Figure 10: The figure shows the root-mean-square predietians for the four estimators with
data from midweek days only over the range of start times arhelagy varies from 0 to 120
minutes.
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RMS prediction errors for Fridays
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Figure 11: The figure shows the root-mean-square predieroors for the four estimators
with data from Fridays only over the range of start times astha lagy varies from 0 to 120
minutes.
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Figure 12: This figure shows for the Monday data the effechefdmoothing parameteron

the prediction errors of the regression estimator. A choice = 10 minutes was selected as

optimal.
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Figure 13: This figure uses the,(-) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methasl%.increases from 1 to 4
there is a small improvement in the prediction errors. Thedew size parameter was held

fixed at 20.
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Figure 14: This figure uses the,(-) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour metlfslk.increases from 4 to 25
there is a small increase in the prediction errors. The wingize parameter was held fixed
at 20.
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Figure 15: This figure uses the, (-) distance function and looks at the effect of the window
size parametew. The prediction error is minimal whem is around 20. The value d&f was
held fixed at 4.
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Figure 16: This figure uses the,(-) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methasl%.increases from 1 to 4
there is a small improvement in the prediction errors. Thedew size parameter was held
fixed at 20.
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Figure 17: This figure uses the,(-) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour metlfslk.increases from 4 to 25
there is a small increase in the prediction errors. The wingize parameter was held fixed
at 20.
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Figure 18: This figure uses the,(-) distance function and looks at the effect of the window
size parametew. The prediction error is minimal whem is around 20. The value d&f was
held fixed at 4.
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A Summary of phase one: data organization

This appendix briefly summarizes the work in phase one ofgftagect concerning the organi-
zation of a MIDAS data repository. A full description of thewk is given in [1].

A.1 The MIDAS TCD format

Loop detectors are positioned in each lane of the carriagetva given geographical position
on the road network. Each day’s worth of per minute data frogivan site is aggregated
across a set of sites atcantrol office(CO). While there may be only tens of CO’s, each one
may handle data from several hundred loop detector sites.d@ta for all the sites at a given
CO for a given day is assembled into a single TCD file. The TCD fitenfd consists of a
single flat file of binary data that lists in unspecified order tlata for each site separated by
small amounts of header information giving the site’s adsli@nd the number of lanes. The
individual measured values are stored as either one byimbyte values and are therefore
reasonably compact. In summary, a TCD file is generated fdr @©,date) pair and a typical
file size may be in the range of 5-10 MB.

For the TCD format, extracting data for a given subset of sgawot straightforward as
there is no way, other than by reading through the file, toctglertions of data for particular
sites. This became an obstacle in some earlier attemptsébgfars (RJG) to use the MIDAS
data in the TCD format for high throughput applications.

A.2 Revised storage formats to support random access

In phase one of this project we have converted the data stoigdD format into an alternative
format, based on the popular ZIP file format (such files comynbave the. zi p file exten-
sion). This archive file format includes a directory seciimplementing a lookup mechanism
between an archive member name and the byte offset withifilthevhere that member is
stored together with its length (other metadata is alsedtéor each archive member relating
to dates, ownerships and miscellaneous comments). ZIPcAlede manipulated using both
command-line toolszi p andunzi p) which allow insertion and extraction of member files
as well as through readily available software librariesclsupport similar facilities for use
within programming languages.

Other common file archive formats, notably ther format commonly used as a tape stor-
age format on Unix systems, lack such a directory and in esganovide only sequential access
to archive members in the same manner as the TCD format. TheuZ]® file format seemed a
natural first choice to consider in place of the TCD format.ds the advantages that it is eas-
ily manipulated with commonly available tools and librariend, importantly, allows random
access to the data which is necessary for high throughpidrpgnce.

A tool was written in Java (using theava. uti | . zi p standard Java library package) to
read TCD files and convert them to a ZIP file based storage layosihgle ZIP file was con-



structed for each TCD file in a repository of MIDAS TCD files. Thaach ZIP file contained
the data for a given (CO,date) pair. Within the ZIP file, theadat different sites was stored
with each variable corresponding to a different archive toemThus a day’s worth of mea-
sured values could be directly extracted for any given éeiat any site within the CO. The
content of the values remained identical to the binary isgation used in the TCD format.
Additional metadata was constructed in a archive membegdoh site specifying details such
as the number of lanes and another archive member was pddeitéeld metadata pertaining to
the entire ZIP file. In the future, such metadata might inelathppings between site addresses
and a variety of geographical location information and ietd any missing or corrupt data.
The repository considered in the experiments describeldisnréport consists of MIDAS
traffic data from 1995 till mid-2004 and comprises some 30,00D files occupying 137 GB
of disc storage. The Java converter tool ran in about 4 haurstaucting an equivalent number
of ZIP files occupying some 165 GB of disc storage. The aduiigtorage requirement of the
ZIP files is due to the extra directory information saved witbach ZIP file. This additional
storage represents a price or overhead for faster acceatatatdsuch fine levels of granularity.

A.3 Further refinements

Further refinements can be made to the data organizationwAungtom directory layout, less
elaborate than the one used in ZIP files, could have beenrdzsigHowever, the small gain in
the run time of reading the directory each time the ZIP filgpisreed and the reduction in storage
overhead that would have resulted would have been at thens@pd extra inconvenience. In
place of standardly available tools and libraries bespok&vare would be required.

The file format chosen reflects that used in the TCD files but ighadditional feature
of random access rather than sequential access. A moralratiange of the data layout
could, for example, implement a single ZIP file fachsite and use the archive members to
distinguish between data for different days. This wouldsasgplications requiring access to
data for different days at theamesite since the overhead of opening the ZIP file and reading
the directory information would be amortized over the asesdo data on different days. A
potential disadvantage of this layout is that the inserbbmew data over time requires the
modification of many ZIP files. In contrast, the layout addpler our experiments requires
just one new ZIP file to be added for each day. ZIP files onceenldgaus remain immutable
and this invariant can often help where backup of data isireduln our experiments, backup
was not essential since the repository could be re-creaiiihvgeveral hours by re-running
the converter on the original (and carefully backed-up) T@ad

The ZIP file format maintains the directory information tivaplements the name lookup
within the file as a simple table. Whenever the ZIP file is opdonedeading, this directory is
read and a suitable data structure (usually a hash tablajlisromemory. Thus the size of the
directory, or equivalently the granularity at which datatsred, will affect the speed at which
ZIP files can be opened. Smaller directory tables would ing8g overhead from opening the
ZIP file but yield access to data in more aggregated forms. &e hot explored this trade-off
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further here though further improvements are certainlsids. Alternative approaches might
maintain the hash table itself, or equivalent index, withiafile thus avoiding the need to build
it each time the ZIP file is opened for reading. The BerkeleyDBaty is one such approach
which uses the highly effective B-tree data structure to ta&ints index.

Our use of ZIP files does not include the use of compressionhikian optional featured
supported by the tools and libraries standardly availablee use of compression would cer-
tainly save some disc space at the expense of additionat¢imecompress the data whenever
itis read.

One particularly radical alternative would be to dispen#é wle archive formats and just
use the file system itself to provide access to data by filettirg and file name. However,
taking a data repository of the size being considered hemddm@quire many millions of
separate files (one per day per site per variable, say) amtlguun into operating system
constraints that limit the total numbers of files. Althougpecially configured file systems can
be constructed to handle this situation this would add &gamt additional burdens to use of
the data.

The phase one report [1] describes a series of benchmarkiegres to investigate running
times for a programme to extract MIDAS data in the varyingrfats and using tools imple-
mented in both Python (an interpreted scripting language)Yava. Full results are given in the
phase one report but the experiments clearly demonstia¢edbtue of augmenting a MIDAS
repository with an indexing capability to support efficieahdom access to a fine grain level
of data.



