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Executive summary

The project described in this report was undertaken within the Department for Transport’s sec-
ond call for proposals in the Horizons research programme under the theme ofInvestigating the
handling of large transport related datasets. The one year project started on 1 October 2005
with funding for Yunus Saatci as a post-graduate research associate and with Richard Gibbens
as the principal investigator.

In this report we describe our findings from a project using the combination of historical
and real-time MIDAS loop detector data for journey time prediction. Phase one of the project
involved a short study of the data formats used by MIDAS to record traffic count data and
described a revised data format including explicit indexing. This revised format, based on the
familiar ZIP file archiving tool allowed efficient random access to the data necessary for high
throughput applications.

The project looked at the variability of journey times across days in three day categories:
Mondays, midweek days and Fridays. Two estimators using real-time data were considered:
a simple-to-implement regression-based method and a more computationally demandingk-
nearest neighbour method. Our example scenario of UK data was taken from the M25 London
orbital motorway during 2003 and the results compared in terms of the root-mean-square pre-
diction error. It was found that where the variability was greatest (typically during the rush
hours periods or periods of flow breakdowns) the regression and nearest neighbour estimators
reduced the prediction error substantially compared with anäıve estimator constructed from
the historical mean journey time. Only as the lag between thedecision time and the journey
start time increased to beyond around 2 hours did the potential to improve upon the historical
mean estimator diminish. Thus, there is considerable scopefor prediction methods combined
with access to real-time data to improve the accuracy in journey time estimates. In so doing,
they reduce the uncertainty in estimating the generalized cost of travel. The regression-based
prediction estimator has a particularly low computationaloverhead, in contrast to the nearest
neighbour estimator, which makes it entirely suitable for an online implementation.

Finally, the project demonstrates both the value of preserving historical archives of transport
related datasets as well as provision of access to real-timemeasurements.
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1 Introduction

The project described in this report was undertaken within the Department for Transport’s sec-
ond call for proposals in the Horizons research programme under the theme ofInvestigating the
handling of large transport related datasets. The one year project started on 1 October 2005
with funding for Yunus Saatci as a post-graduate research associate and with Richard Gibbens
as the principal investigator.

Phase one of the project reported on issues of MIDAS data organization [1] and phase
two [2] presented interim findings on journey time prediction methodolgies. This report gathers
together these interim reports into a final form.

Journey time prediction using sources of real-time measurement data has the potential to
assist travellers through the provision of more accurate estimates of journey times. Improving
the accuracy of the prediction by suitable methods that makeuse of real-time data helps to
reduce the overall uncertainty of journey times.

Rice & van Zwet [5] describe a simple-to-implement prediction methodology and report
successful results with US data in comparison with more sophisticated and harder-to-implement
methods. In this project we have examined in detail the performance of these methodologies
when used with real-time UK MIDAS loop detector data. A preliminary account of this inves-
tigation is given in [3, 6].

The work on data organization carried out in phase one of the project provided the essential
underpinning for our numerical investigations that followed and is briefly summaried here as
Appendix A.

Section 2 describes the basic model and defines the prediction methodologies considered.
Section 3 presents the results of our numerical investigations into journey times and the compar-
ison between the methodologies. Conclusions are given in Section 4. An executive summary
is also included.

2 Journey time prediction methodologies

2.1 Basic model and notation

The basic model and terminology are taken directly from Rice &van Zwet [5] and are briefly
summarized here as follows.

We suppose that there is avelocity field, V (d, ℓ, t), specifying the average speeds of vehicles
for daysd ∈ D, at loop detectors,ℓ ∈ {1, . . . , L} and for times (of day)t ∈ T . There may be
many daysd and journeys are traversed from loop1 to loopL. The time of day epochs,t, are
taken as every minute in the case of MIDAS data.

DefineT (d, t) for the time of travel from loop 1 to loop L starting at timet on dayd. T (d, t)
can be determined (approximately) from the velocity field onany dayd in the past.
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Define also, afrozen-fieldtravel time,T ∗(d, t), given by

T ∗(d, t) =
L−1∑

ℓ=1

2dℓ

V (d, ℓ, t) + V (d, ℓ + 1, t)
(1)

wheredℓ is the distance between loopsℓ andℓ + 1. This quantity will play a pivotal r̂ole in
the prediction methodolies. Notice that it may be very simply determined from speed measure-
ments as part of an online prediction algorithm.

The historical average travel time,T (t), for a journey starting at time of day,t, is given by

T (t) =
1

|D|
∑

d∈D

T (d, t) (2)

where|D| is the number of days in the setD.
The task of a journey time prediction method is toestimateT (d, t + δ) for time lagδ > 0

given onlyinformation known at timet on dayd. Time t is thedecision timefor estimating a
journey beginning after alag of δ at timet + δ.

Two näıve estimates of the journey time,T (d, t + δ), are

1. T ∗(d, t), thefrozen-fieldestimator evaluated at the decision time,t, and

2. T (t + δ), thehistorical meanestimator for journeys starting at time (of day)t + δ.

The frozen-field estimator,T ∗(d, t), assumes, therefore, that speeds remain held perma-
nently fixed at their timet values throughout the journey. We would expect that this estimator
would behave best at small values ofδ, where it is able to capture from the real-time measure-
ments known up to timet specific features of the traffic profile on dayd. As δ increases these
(frozen) features become less relevant compared to the information captured by the long-run
historical average estimator,T (t + δ).

2.2 Linear regression method using varying coefficients

Rice & van Zwet observed in US loop detector data a strong linear relationship between the
frozen field estimator,T ∗(d, t), and the exact observed journey time,T (d, t + δ), of the form

T (d, t + δ) = α(t, δ) + β(t, δ)T ∗(d, t) + ǫ (3)

whereǫ is a mean zero random variable and the coefficientsα(t, δ) andβ(t, δ) vary with both
the decision time,t, and the lag before the journey begins,δ. Further details of such varying
coefficients models are given by Hastie & Tibshirani [4]. Theparameters of such a linear model
may be fitted through a weighted least squares procedure which minimizes

∑

d∈D,s∈T

(T (d, s) − α(t, δ) − β(t, δ)T ∗(d, t))2
K(t + δ + s) (4)
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whereK(·) is the Gaussian density with mean zero and varianceσ2 given by

K(x) =
1

σ
√

2π
e−x2/2σ2

. (5)

The purpose of the Gaussian density,K(·), is to produce smoothed estimates of the regres-
sion coefficientŝα(t, δ) andβ̂(t, δ) as both the decision time,t, and the lag,δ, vary. The degree
of smoothing is adjusted by the choice of the variance parameter σ. The methodology then
yields aregression-basedjourney time estimator,̂T (d, t + δ), given by

T̂ (d, t + δ) = α̂(t, δ) + β̂(t, δ)T ∗(d, t) . (6)

Observe that puttingα(t, δ) = α′(t, δ)T (t + δ) shows that the estimator,̂T (d, t + δ), is, in
fact, a particular data-dependent linear combination of the two näıve estimators.

2.3 Nearest neighbour methods

In the simple nearest-neighbour method, the estimator of journey time,T (d, t + δ), is given
by finding the previous day,d′, which most closely matches the observed speeds up to timet

on dayd, according to some well-defined distance measure. Hence, ifday d′ minimizes the
distance tod among all previous days then the nearest neighbour estimator, TNN(d, t + δ), is
given by

TNN(d, t + δ) = T (d′, t + δ) . (7)

Rice & van Zwet1 offer several alternatives of the distance,m(d1, d2), between two daysd1

andd2. Two such alternatives considered for evaluation are givenas follows

m1(d1, d2) =

√ ∑

t−w≤s≤t

[T ∗(d1, s) − T ∗(d2, s)]
2 (8)

and
m2(d1, d2) =

∑

ℓ∈L, t−w≤s≤t

|V (d1, ℓ, s) − V (d2, ℓ, s)| (9)

wherew is awindow sizeparameter.
The nearest neighbour method can be readily extended to thek-nearest neighbour (k-NN)

method. First, thek closest days,d1, d2, . . . , dk are found. Then, the predictors derived from
each similar day are combined in a weighted-averaging scheme, where the weights are propor-
tional to the distance of each day to the present day,d. The predictor for thek-NN method,

1Rice & van Zwet also consider a third class of estimators based on a principal components procedure. We
have not considered such estimators here as Rice & van Zwet did not find them to improve over the regression or
nearest neighbour estimators.

— 8 —



T kNN(d, t + δ), is hence given by

T kNN(d, t + δ) =
k∑

i=1

wiT (di, t + δ) (10)

wherewi = m(d,di)
Pk

j=1
m(d,dj)

and the distance function ism(d1, d2). Note how the simple nearest

neighbour method is equivalent to thek-NN method withk = 1.
Notice that determining the estimatorT kNN involves evaluating a distance for each day

according to the distance function as well as ranking those distances to find thek closest days.

3 Numerical results

3.1 The MIDAS dataset

The data considered in this report consists of speed measurements collected per minute from 63
MIDAS loop detectors located on lane 2 (where the slow lane isnumbered 1) of the clockwise
carriageway between junctions 9 and 14 on the M25 London orbital motorway. The spacing
between the loops,dℓ, is taken as 500m. The data considered ranged from 05:00 to 20:00
(that is, 900 one minute intervals) on weekdays in 2003. Missing values reduced the origi-
nal 261 weekdays down to 231 days2. The split between days of the week was 39 Mondays,
142 midweek days and 50 Fridays. The resulting data formed a velocity fieldV (d, ℓ, t) with
dimensions231 × 63 × 900.

For comparison, the study by Rice & van Zwet included 34 days and 116 loop detectors
along 48 miles of I-10 in Los Angeles.

Figure 1 shows a spatio-temporal plot of the speeds for a single day (Monday, 6 January
2003). During the period 06:30 to 10:00, and for much of the road under consideration, vehicles
are travelling at relatively low speeds with a backward-propagating wave pattern in the speed
profile. Horizontal stripes can be seen in the plot to roughlycoincide with bottlenecks forming
in the vicinity of junctions.

3.2 Journey times

From the velocity field a travel time,T (d, t), can be constructed for the journey from loop 1 to
loop 63 which starts at timet on dayd. Figure 2 shows in the top panel how the journey times
vary during the day for each of the individual 39 Mondays. Journey times are naturally seen
to increase during the morning slowdown period. (Several exceptions occur on Bank Holiday

2Missing values within the MIDAS speed data that formed significant blocks over time and loops caused that
day to be rejected. More commonly, missing values occured throughout parts of the day at one or more non-
adjacent sites. Less frequently, many sites produced missing values for just a single minute. In both of these cases,
the missing values were imputed by straightforward linear interpolation.
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Mondays.) During the middle portion of the day and again between 17:00 and 19:00 there
are significant numbers of days when journey times have increased. However, this feature is
much less pronounced than it is in the morning. In contrast, the dataset considered by Rice &
van Zwet has most congestion in the period from 15:00 onwards.

The lower panel of Figure 2 shows a “box-and-whiskers” plot of the journey times. The
central bar shows the median journey time (over the 39 days) and the length of the box shows
the interquartile range (that is, from the 25% to the 75% percentiles). The whiskers extend to
the furthest data point that is no more than 1.5 times the interquartile range from the box. Any
data points outside of the whiskers are plotted individually. In addition, the orange filled dots
are the mean journey times. The plot makes clear that not onlyare the median journey times
longer between 06:30 and 10:00 but that the distribution of journey times is much more spread
out within this period.

Figures 3 and 4 show journey times on midweek days and Fridays, respectively. The re-
sults for Fridays show considerably longer journey times inthe afternoons compared with the
Mondays. Journey times for midweek days show a wide variation in journey times in both the
mornings and the afternoons but the effect is reduced compared with Fridays.

Figures 2–4 illustrate the strong day-of-week effect on journey times and we have used
these three categories of weekdays (namely, Mondays, midweek days and Fridays) to separately
estimate journey times.

The key linear relationship identified by Rice & van Zwet that underlies the prediction
methodology is betweenT ∗(d, t) andT (d, t + δ). Figure 5 shows scatterplots of these two
quantities where the decision time,t, is 08:00 and the lagδ ranges from 0 to 120 minutes and
the data is confined to just the 39 Mondays. Each plot also shows the historical mean estimator
as a horizontal line. Notice how the slope of the regression line diminishes as the lag increases.

Equation (4) was used to fit the regression coefficientsα(t, δ) andβ(t, δ) by a standard
weighted least squares procedure. The regression-based journey time estimator̂T (d, t) was
then obtained from the fitted coefficients through equation (6).

Figure 6 shows how the fitted parametersα(t, δ) andβ(t, δ) vary with t andδ. The smooth-
ness of the surfaces is controlled by the parameterσ which here was taken asσ = 10 minutes.
(We discuss at length the choice of such parameters later in Sections 3.3 and 3.4.) The parame-
terβ is seen to increase steeply with the lag during the early rushhour period with simultaneous
decreases inα. This is explained by noting that at the start of the rush hourperiod journey times
increase rapidly and, as a result, the frozen-field estimateneeds to be multiplied by a larger fac-
tor β to better predict future journey times. Figure 7 shows how the linear relationship between
the frozen-field estimate and the journey time becomes much steeper, making the slopeβ large
and correspondingly pushing down the intercept parameterα. Accordingly, we would expect
an improved estimator if this small number of outlier days was removed and the coefficients
fitted to the remaining data. Alternatively, a robust form ofregression could be used in place of
the least-squares approach which is less sensitive to outliers.

Figure 8 repeats the central scatterplot from Figure 5 wherethe lag isδ = 60 minutes. The
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central sloping line gives the regression estimator,T̂ , for the journey time as a function of the
frozen field estimatorT ∗. An important consequence that would follow from the adoption of
Gaussian errors in the statistical model forT̂ in (3) is that the many powerful techniques and
tools of Gaussian models can then be applied. In particular,the same statistical model may
also be used to construct aprediction interval(shown in Figure 8 by the outer pair of sloping
lines). The prediction interval illustrated here gives a region that we expect, given the statistical
model, to contain the exact journey time with a probability of 90%. The level of 90% is for
illustration only. It could either be higher or lower corresponding to intervals that are wider or
narrower, respectively.

It may be worth concluding this section by describing how theregression estimator would
be implemented. Using historical data, such as that shown inFigure 2, the regression model
is fitted and the sloping lines on Figure 8 are computed. This part of the calculation is done
offline and the results are saved for use by the online part of the algorithm. At the decision
time, t, the frozen field estimatorT ∗ is obtained from the current speed measurements (in our
example journey this involves a simple calculation (given by equation (1)) using the speed val-
ues recorded by the 63 MIDAS loop detectors). The regressionestimatorT̂ and the prediction
interval are then looked up from the saved results of the offline calculation. For the example
shown in Figure 8, if the online calculation ofT ∗ yields a value of 30.00 minutes then the
regression estimator iŝT = 22.31 minutes and the 90% prediction interval is (15.39,29.24).
If the frozen field estimator was instead a value of 60.00 thenthe regression estimator would
be T̂ = 34.51 minutes and the 90% prediction interval would be (27.56,41.45). The historical
mean estimator,T , is computed from historical measurements alone and in boththese cases,
independent of online measurements, it is 28.08 minutes.

3.3 Comparison of methodologies

Figure 9 shows how the root-mean-square prediction errors on Mondays for our four estimators
varies ast varies throughout the period between 05:00 and 20:00 and with the lags,δ, increas-
ing from 0 to 120 minutes. The historical mean estimator is not affected by the choice of lag,δ,
except that the curves shown shift leftwards by the amountδ. The frozen-field estimator has
larger root-mean-square prediction error as the lag,δ, increases and the relative importance of
recent information recedes. The regression-based estimator has the lowest root-mean-square
prediction error. During the period 6:30 to 10:00 it has morethan halved the error compared
to the historical mean. Later in the day, when journey times are far less variable there is little
benefit to be obtained from the regression approach comparedto simply using the historical
mean. As the lag,δ, is allowed to increase the error in the regression-based estimator, T̂ , ap-
proaches that of the historical mean. The frozen-field estimator,T ∗, can have a large prediction
error for even moderate values around 30 minutes of the lag. Figure 9 also includes the nearest
neighbour estimatorT kNN calculated withk = 4, a window size parameter ofw = 20 minutes
and them1(·) distance function. The performance of theT kNN estimator is quite similar to the
regression estimator.
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Figures 10 and 11 show the prediction errors for the cases of midweek days and Friday,
respectively. A similiar comparison applies in these two categories. However, the prediction
error with the historical mean estimator is rather greater in the case of Friday afternoons than
occurs on the Mondays. Therefore, there is considerable scope for using real-time information
to reduce the prediction error of journey times as can be seenwith both the regression and
nearest neighbour estimators.

Figures 9–11 taken together show that when the prediction error in the historical mean is
high it is possible for the regression and nearest neighbourmethods to dramatically reduce
the prediction error, at least for short to medium lags. For longer lags, over 2 hours (say), all
estimators will finally approach the performance of the historical mean.

It is quite surprising that despite investigating a wide choice of parameters (k andw for the
nearest neighbour estimator andσ for the regression estimator) we were unable to observe any
significant improvement of the nearest neighbour procedureover the regression procedure. The
regression procedure has rather minimal online requirements as discussed above compared to
the nearest neighbour procedure which must compute an online search for thek closest days.

3.4 Validation of parameter choices

We now discuss the approach followed to select the parametervalues used above. For the case
of the regression estimator we must select the smoothing parameterσ. Figure 12 shows how
the prediction errors for the Mondays varied asσ was allowed to vary within the range from 5
to 100 minutes. Variation ofσ within the range from 5 to 20 had little effect on the prediction
errors. Only whenσ was allowed to increase further to 50 and 100 was there any noticeable
deterioration in the prediction error. Hence, our selection of σ = 10 minutes used earlier.

For the nearest neighbour method there are rather more parameters to select. There is the
choice ofk, the number of closest neighbours to consider, and the window size parameterw.
In addition, there is the choice of distance function,m1(·) or m2(·) to use.

Figures 13–15 concern the effects ofk andw when them1(·) distance function is used.
Conversely, Figures 16–18 use them2(·) distance function. For both distance functions the
effects ofk andw are similar. Ask increases from 1 to about 4 there is a small improvement in
the prediction error but beyond 4 ask increases further to 25 the prediction error grows slighly
again. Hence, our use earlier ofk = 4. In the case of the window size parameterw the optimal
choice appears to be around 20.

Finally, the choice of distance function itself appears to have little effect and we have chosen
to work withm1(·) which involves the frozen field quantities directly rather than the speeds.

4 Conclusions

In this report we describe our findings from a project using MIDAS loop detector data for
journey time prediction. We have found that the simple-to-implement regression-based method
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of Rice & van Zwet [5] works well in our example scenario of UK data taken from the M25
London orbital motorway in 2003. Phase one of the project involved a short study of the
data formats used by MIDAS to record traffic count data and described a revised data format
including explicit indexing. This revised format, based onthe familiar ZIP file archiving tool
allowed efficient random access to the data necessary for high throughput applications.

The project looked at the variability of journey times across days in three day categories:
Mondays, midweek days and Fridays. The regression-based estimator together with ak-nearest
neighbour estimator were studied and the results compared in terms of the root-mean-square
prediction error. It was found that where the variability was greatest (typically during the rush
hours periods or periods of flow breakdowns) the regression and nearest neighbour estimators
reduced the prediction error substantially compared with anäıve estimator constructed from
the historical mean journey time. Only as the lag between thedecision time and the journey
start time increased to beyond around 2 hours did the potential to improve upon the historical
mean estimator diminish. Thus, there is considerable scopefor prediction methods combined
with access to real-time data to improve the accuracy in journey time estimates. In so doing,
they reduce the generalised cost of travel. The regression-based prediction estimator has a
particularly low computational overhead, in contrast to the nearest neighbour estimator, which
makes it entirely suitable for an online implementation.

Finally, the project demonstrates both the value of preserving historical archives of transport
related datasets as well as provision of access to real-timemeasurements.

— 13—



References

[1] R.J. Gibbens and Y. Saatci. Road traffic analysis using MIDAS data: Phase one interim
report: data organization. Computer Laboratory, University of Cambridge. DfT Horizons
project H05-217, February 2006.

[2] R.J. Gibbens and Y. Saatci. Road traffic analysis using MIDAS data: Phase two interim
report: journey time prediction. Computer Laboratory, University of Cambridge. DfT Hori-
zons project H05-217, June 2006.

[3] R.J. Gibbens and W. Werft. Data gold mining.Significance, 2(3):102–105, September
2005.

[4] T. Hastie and R. Tibshirani. Varying coefficients model.J. R. Stat. Soc. B., 55(4):757–796,
1993.

[5] John Rice and Erik van Zwet. A simple and effective method for predicting travel times
on freeways. IEEE Transactions on Intelligent Transportation Systems, 5(3):200–207,
September 2004.

[6] W. Werft. Travel time prediction in road networks. MPhilin Statistical Science, Statistical
Laboratory, University of Cambridge, 2005.

— 14—



0

10

20

30

40

50

60

70

05:00 10:00 15:00 20:00

J9

J10

J11

J12

J13

J14

Speeds (mph) on M25 (clockwise) Mon 6 Jan 2003

Figure 1: A spatio-temporal plot of the speeds (measured in mph) on lane 2 of the clockwise
carriageway of the M25 between junctions 9 and 14 on Monday, 6January 2003. There is
a region of severe congestion in the morning rush hour where speeds are much reduced and
have a backward-propagating wave-like profile. Bottlenecksroughly coincide with junctions
as shown by the horizontal stripes.
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Journey times on 39 Mondays
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Figure 2: The top panel shows journey times on 39 Mondays during 2003 starting at times
ranging from 05:00 to 20:00. The lower panel shows the distribution of journey times by
means of box-and-whiskers plots. Journey times are not justlonger during the morning rush
hour period but also more spread out.
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Journey times on 142 midweek days
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Figure 3: The top panel shows journey times on 142 midweek days (Tuesday, Wednesday and
Thursday) during 2003 starting at times ranging from 05:00 to 20:00. The lower panel shows
the distribution of journey times by means of box-and-whiskers plots. Median journey times
rise during the morning and evening rush hours and there are many outlier days with longer
journey times.
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Journey times on 50 Fridays
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Figure 4: The top panel shows journey times on 50 Fridays during 2003 starting at times
ranging from 05:00 to 20:00. The lower panel shows the distribution of journey times by means
of box-and-whiskers plots. Median journey times rise significantly from mid-day onwards
along with a very wide variation in journey times.
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Linear regression model for varying lags, δ
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Figure 5: The figure illustrates the linear relationship between the frozen-field estima-
tor T ∗(d, t) and the journey timeT (d, t + δ). Here the decision time,t, is fixed at 8:00 on
Mondays and the lag,δ, increases from 0 to 120 minutes. Both the historical mean andleast-
squares regression are shown.
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Figure 6: The panel on the left shows the values ofα(t, δ) as the start time,t, varies throughout
the period 05:00 to 20:00 and as the lag,δ, increases from 0 to 90 minutes. The panel on the
right shows the variation ofβ(t, δ).
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Linear regression model for varying lags, δ

Frozen field predictor, T*, (min)

E
xa

ct
 jo

ur
ne

y 
tim

e,
 T
, (

m
in

)

10

20

30

40

0 30 60 90 0 30 60 90

10

20

30

40

10 20 30 40

0 30 60 90

10 20 30 40

0 30 60 90

Figure 7: This figure shows how the regression-based method reflects the rapidly increasing
journey times during rush hour periods by moving to a more vertical linear relationship.
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Linear regression model with prediction interval
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Figure 8: This figure shows properties of a linear model with Gaussian errors. The central
sloping line is the regression estimator,T̂ as a function of the frozen-field estimatorT ∗ using
the data for Mondays only. The outer pair of sloping lines area 90% prediction interval for the
journey time given a value for the frozen-field estimator. The horizontal line gives the historical
mean journey time.
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RMS prediction errors for Mondays

Time of day

R
M

S
 p

re
di

ct
io

n 
er

ro
r 

(m
in

)

5

10

15

20

0 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 120

5

10

15

20

0 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 120

5

10

15

20

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

Estimators
Historical mean
Frozen field

k−Nearest neighbour
Regression

Figure 9: The figure shows the root-mean-square prediction errors for the four estimators with
data from Mondays only over the range of start times and as thelag, δ varies from 0 to 120
minutes. The regression-based estimator has improved overthe historical and frozen-field es-
timators. The nearest neighbour estimator appears to compare well to the regression estimator.
The benefits in terms of reduced prediction error diminish when the lag becomes large or when
there is little inherent variability in the journey times.
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RMS prediction errors for midweek days
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Figure 10: The figure shows the root-mean-square predictionerrors for the four estimators with
data from midweek days only over the range of start times and as the lag,δ varies from 0 to 120
minutes.
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RMS prediction errors for Fridays
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Figure 11: The figure shows the root-mean-square predictionerrors for the four estimators
with data from Fridays only over the range of start times and as the lag,δ varies from 0 to 120
minutes.
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Effect of σ
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Figure 12: This figure shows for the Monday data the effect of the smoothing parameterσ on
the prediction errors of the regression estimator. A choiceof σ = 10 minutes was selected as
optimal.
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Effect of k
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Figure 13: This figure uses them1(·) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methods.As k increases from 1 to 4
there is a small improvement in the prediction errors. The window size parameter was held
fixed at 20.
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Effect of k
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Figure 14: This figure uses them1(·) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methods.As k increases from 4 to 25
there is a small increase in the prediction errors. The window size parameter was held fixed
at 20.
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Effect of w

Time of day

R
M

S
 p

re
di

ct
io

n 
er

ro
r 

(m
in

)

2

4

6

8

0 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 120

2

4

6

8

0 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 1200 15 30 45 60 75 90 105 120

2

4

6

8

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

05:00 10:00 15:00

0 15 30 45 60 75 90 105 120

w=5
w=10

w=20
w=50

w=100

Figure 15: This figure uses them1(·) distance function and looks at the effect of the window
size parameterw. The prediction error is minimal whenw is around 20. The value ofk was
held fixed at 4.
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Effect of k
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Figure 16: This figure uses them2(·) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methods.As k increases from 1 to 4
there is a small improvement in the prediction errors. The window size parameter was held
fixed at 20.
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Figure 17: This figure uses them2(·) distance function and looks at the effect of the choice
of k, the number of neighbours in the nearest neighbour methods.As k increases from 4 to 25
there is a small increase in the prediction errors. The window size parameter was held fixed
at 20.
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Effect of w
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Figure 18: This figure uses them2(·) distance function and looks at the effect of the window
size parameterw. The prediction error is minimal whenw is around 20. The value ofk was
held fixed at 4.
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A Summary of phase one: data organization

This appendix briefly summarizes the work in phase one of thisproject concerning the organi-
zation of a MIDAS data repository. A full description of the work is given in [1].

A.1 The MIDAS TCD format

Loop detectors are positioned in each lane of the carriageway at a given geographical position
on the road network. Each day’s worth of per minute data from agiven site is aggregated
across a set of sites at acontrol office(CO). While there may be only tens of CO’s, each one
may handle data from several hundred loop detector sites. The data for all the sites at a given
CO for a given day is assembled into a single TCD file. The TCD file format consists of a
single flat file of binary data that lists in unspecified order the data for each site separated by
small amounts of header information giving the site’s address and the number of lanes. The
individual measured values are stored as either one byte or two byte values and are therefore
reasonably compact. In summary, a TCD file is generated for each (CO,date) pair and a typical
file size may be in the range of 5–10 MB.

For the TCD format, extracting data for a given subset of sitesis not straightforward as
there is no way, other than by reading through the file, to select portions of data for particular
sites. This became an obstacle in some earlier attempts by one of us (RJG) to use the MIDAS
data in the TCD format for high throughput applications.

A.2 Revised storage formats to support random access

In phase one of this project we have converted the data storedin TCD format into an alternative
format, based on the popular ZIP file format (such files commonly have the.zip file exten-
sion). This archive file format includes a directory sectionimplementing a lookup mechanism
between an archive member name and the byte offset within thefile where that member is
stored together with its length (other metadata is also stored for each archive member relating
to dates, ownerships and miscellaneous comments). ZIP filescan be manipulated using both
command-line tools (zip andunzip) which allow insertion and extraction of member files
as well as through readily available software libraries which support similar facilities for use
within programming languages.

Other common file archive formats, notably thetar format commonly used as a tape stor-
age format on Unix systems, lack such a directory and in essence provide only sequential access
to archive members in the same manner as the TCD format. Thus, the ZIP file format seemed a
natural first choice to consider in place of the TCD format. It has the advantages that it is eas-
ily manipulated with commonly available tools and libraries and, importantly, allows random
access to the data which is necessary for high throughput performance.

A tool was written in Java (using thejava.util.zip standard Java library package) to
read TCD files and convert them to a ZIP file based storage layout. A single ZIP file was con-
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structed for each TCD file in a repository of MIDAS TCD files. Thus, each ZIP file contained
the data for a given (CO,date) pair. Within the ZIP file, the data for different sites was stored
with each variable corresponding to a different archive member. Thus a day’s worth of mea-
sured values could be directly extracted for any given variable at any site within the CO. The
content of the values remained identical to the binary representation used in the TCD format.
Additional metadata was constructed in a archive member foreach site specifying details such
as the number of lanes and another archive member was provided to hold metadata pertaining to
the entire ZIP file. In the future, such metadata might include mappings between site addresses
and a variety of geographical location information and details of any missing or corrupt data.

The repository considered in the experiments described in this report consists of MIDAS
traffic data from 1995 till mid-2004 and comprises some 30,000 TCD files occupying 137 GB
of disc storage. The Java converter tool ran in about 4 hours constructing an equivalent number
of ZIP files occupying some 165 GB of disc storage. The additional storage requirement of the
ZIP files is due to the extra directory information saved within each ZIP file. This additional
storage represents a price or overhead for faster access to data at such fine levels of granularity.

A.3 Further refinements

Further refinements can be made to the data organization. A new custom directory layout, less
elaborate than the one used in ZIP files, could have been designed. However, the small gain in
the run time of reading the directory each time the ZIP file is opened and the reduction in storage
overhead that would have resulted would have been at the expense of extra inconvenience. In
place of standardly available tools and libraries bespoke software would be required.

The file format chosen reflects that used in the TCD files but withthe additional feature
of random access rather than sequential access. A more radical change of the data layout
could, for example, implement a single ZIP file foreachsite and use the archive members to
distinguish between data for different days. This would assist applications requiring access to
data for different days at thesamesite since the overhead of opening the ZIP file and reading
the directory information would be amortized over the accesses to data on different days. A
potential disadvantage of this layout is that the insertionof new data over time requires the
modification of many ZIP files. In contrast, the layout adopted for our experiments requires
just one new ZIP file to be added for each day. ZIP files once created thus remain immutable
and this invariant can often help where backup of data is required. In our experiments, backup
was not essential since the repository could be re-created within several hours by re-running
the converter on the original (and carefully backed-up) TCD data.

The ZIP file format maintains the directory information thatimplements the name lookup
within the file as a simple table. Whenever the ZIP file is openedfor reading, this directory is
read and a suitable data structure (usually a hash table) is built in memory. Thus the size of the
directory, or equivalently the granularity at which data isstored, will affect the speed at which
ZIP files can be opened. Smaller directory tables would implyless overhead from opening the
ZIP file but yield access to data in more aggregated forms. We have not explored this trade-off
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further here though further improvements are certainly possible. Alternative approaches might
maintain the hash table itself, or equivalent index, withinthe file thus avoiding the need to build
it each time the ZIP file is opened for reading. The BerkeleyDB library is one such approach
which uses the highly effective B-tree data structure to maintain its index.

Our use of ZIP files does not include the use of compression which is an optional featured
supported by the tools and libraries standardly available.The use of compression would cer-
tainly save some disc space at the expense of additional timeto decompress the data whenever
it is read.

One particularly radical alternative would be to dispense with file archive formats and just
use the file system itself to provide access to data by file directory and file name. However,
taking a data repository of the size being considered here would require many millions of
separate files (one per day per site per variable, say) and quickly run into operating system
constraints that limit the total numbers of files. Although,specially configured file systems can
be constructed to handle this situation this would add significant additional burdens to use of
the data.

The phase one report [1] describes a series of benchmark experiments to investigate running
times for a programme to extract MIDAS data in the varying formats and using tools imple-
mented in both Python (an interpreted scripting language) and Java. Full results are given in the
phase one report but the experiments clearly demonstrated the value of augmenting a MIDAS
repository with an indexing capability to support efficientrandom access to a fine grain level
of data.
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