
Technical Report
Number 671

Computer Laboratory

UCAM-CL-TR-671
ISSN 1476-2986

Low-latency Atomic Broadcast
in the presence of contention

Piotr Zieliński

July 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2006 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Low-latency Atomic Broadcast

in the presence of contention

Piotr Zieliński

University of Cambridge
Cavendish Laboratory

piotr.zielinski@cl.cam.ac.uk

Abstract

The Atomic Broadcast algorithm described in this paper can deliver messages
in two communication steps, even if multiple processes broadcast at the same time.
It tags all broadcast messages with the local real time, and delivers all messages
in order of these timestamps. The Ω-elected leader simulates processes it suspects
to have crashed (♦S). For fault-tolerance, it uses a new cheap Generic Broadcast
algorithm that requires only a majority of correct processes (n > 2f) and, in failure-
free runs, delivers all non-conflicting messages in two steps. The main algorithm
satisfies several new lower bounds, which are proved in this paper.

1 Introduction

In a distributed system, messages broadcast by different processes at approximately the
same time might be received by other processes in different orders. Atomic Broadcast
is a fault-tolerant primitive, usually implemented on top of ordinary broadcast, which
ensures that all processes deliver messages to the user in the same order. Applications
of Atomic Broadcast include state machine replication, distributed databases, distributed
shared memory, and others [4].

As opposed to ordinary broadcast, Atomic Broadcast requires multiple communica-
tion steps, even in runs without failures. One of the goals in broadcast protocol design is
minimizing the latency in common, failure-free runs, while possibly allowing worse per-
formance in runs with failures. This paper presents an algorithm that is faster, in this
respect, than any previously proposed one, and requires only two communication steps,
even if multiple processes broadcast at the same time.

The definition of latency in this context can be a source of confusion. In this paper,
latency is the time between the atomic broadcast (abcast) of a message and its atomic
delivery. Note that some papers [5, 8] ignore the step in which the sender physically
broadcasts the message to other processes; in that case one step must be added to the
reported latency figure.

The algorithm presented here assumes an asynchronous system with a majority of
correct processes and the ♦S failure detector [2]. Motivated by the increasing availability

3



Fast Atomic Broadcast
- orders all messages
- 2-step latency if no failures

Generic Broadcast
- orders conflicting messages
- 2-step latency if no conflicts

Atomic Broadcast
- orders all messages
- possibly slow

Ordinary Broadcast
- does not order messages
- 1-step latency

negative
self-statements

if no conflicts

other statements

if conflicts

always

Figure 1: Layered structure of the Atomic Broadcast algorithm presented in this paper.

of services such as GPS or Network Time Protocol [9], I additionally assume that each
process is equipped with a (possibly inaccurate) real-time clock. The optimum latency of
two steps is achieved if the clocks are synchronized, and degrades gracefully otherwise. In
particular, no safety or liveness properties depend on the clock accuracy.

The algorithm employs a well-known method first proposed by Lamport [7]: senders
independently timestamp their messages, which are then delivered in the order of these
timestamps. The novelty of my approach consists of using real-time clocks in conjunction
with unreliable failure detectors [2] and Generic Broadcast [1, 12] to ensure low latency
and fault-tolerance at the same time.

The layered structure of the algorithm is shown in Fig. 1. Each process tags all its
abcast messages with local real time, and disseminates this information. Both positive
and negative statements are used (“m abcast at time 51” vs. “no messages abcast be-
tween times 30 and 50”). To achieve fault-tolerance, the Ω-elected leader occasionally
broadcasts negative statements on behalf of processes it suspects to have crashed (♦S).
Generic Broadcast is used to resolve conflicts that might occur if the leader’s suspicions
are wrong. Any Generic Broadcast algorithm can be used here, however, the new algo-
rithm in Sect. 5 is specifically tailored to this situation. It requires only a majority of
correct processes (n > 2f) and, in failure-free runs, delivers all non-conflicting messages
in two communication steps.

This paper is structured as follows. Section 2 formalizes the system model and gives a
precise definition of Atomic Broadcast. Section 3 presents the main ideas, which are then
transformed into an algorithm in Sect. 4. Section 5 describes a new Generic Broadcast
algorithm, that is optimized for the use by the main algorithm. Section 6 shortly discusses
some secondary properties of the algorithm. Section 7 presents three new lower bounds
that prove two-step delivery cannot be maintained if the system assumptions are relaxed
(for example, by eliminating real-time clocks). Section 8 concludes the paper.

4



1.1 Related Work

A run of an algorithm is good if the real-time clocks are accurate and there are no failures
or suspicions. In such runs, the algorithm presented here delivers all messages in two
steps. No such algorithm has been proposed before; out of over fifty Atomic Broadcast
protocols surveyed by Défago et al. [4], the only indulgent algorithm capable of delivering
all messages faster than in three steps was proposed by Vicente and Rodrigues [13]. It
achieves a latency of 2d+δ, where d is the single message delay and δ > 0 is an arbitrarily
small constant. The price for having a very small δ is high network traffic; the number of
messages is proportional to 1/δ. In comparison, my algorithm achieves the latency of 2d
with the number of messages dependent only on the number of processes.

Several broadcast protocols achieve a two-step latency in some good runs, such as
those with all messages spontaneously received in order (Optimistic Atomic Broadcast
[10, 14]) or those without conflicting messages (Generic Broadcast [1, 10, 12, 14]). In
comparison, the algorithm presented in this paper delivers messages in two steps in all
good runs.

Défago et al. [4] proposed a classification scheme for broadcast algorithms. According
to that scheme, the algorithm described in this paper is a time-based communication-
history algorithm for closed groups, similarly to the original Lamport’s algorithm [7],
which motivated it.

2 System Model and Definitions

The system model consists of n processes p1, . . . , pn, out of which at most f can fail by
crashing. Less than a half of all the processes are faulty (n > 2f). Processes communi-
cate through asynchronous reliable channels, that is, there is no time limit on message
transmission time, and messages between correct processes never get lost.

Each process is equipped with: (i) a possibly inaccurate, non-decreasing real-time
clock, (ii) an unreliable leader oracle Ω, which eventually outputs the same correct leader
at all correct processes, and (iii) a failure detector ♦S. Failure detector ♦S outputs a
list of processes that it suspect to have crashed. It ensures that (i) all crashed processes
will eventually be suspected by all correct processes, and (ii) at least one correct process
will eventually never be suspected by any correct process [3]. Detector ♦S is the weakest
suspicion-list-like failure detector that makes Atomic Broadcast solvable in asynchronous
settings. It can implement Ω [3], so the Ω assumption can, technically, be dropped.

In Atomic Broadcast, processes abcast messages, which are then delivered by all pro-
cesses in the same order. Formally [6],

Validity. If a correct process abcasts a message m, then all correct processes will even-
tually deliver m.

Uniform Agreement. If a process delivers a message m, then all correct processes even-
tually deliver m.

Uniform Integrity. For any message m, every process delivers m at most once, and
only if m was previously abcast.

5



p1

p2

p3

〈empty p1, 1, 10〉
〈mesg p1, 11, a〉

11

a

〈empty p2, 1, 31〉
〈mesg p2, 32, c〉

32

c

〈empty p3, 1, 42〉
〈mesg p3, 43,d〉

43

d

〈empty p1, 12, 60〉
〈mesg p1, 61,b〉

61

b

〈empty p2, 33, 43〉

83

〈empty p2, 44, 61〉

101

〈empty p3, 44, 61〉

101

deliver a, c

83

deliver d

123

deliver a, c

83

deliver d

101

deliver a, c

72

deliver d

123

deliver b

141

deliver b

141

deliver b

141

Figure 2: A run that uses ordinary broadcast for all statements (not fault-tolerant). One
step is 40 units of time. The fault-tolerant version is shown in Fig. 4.

Uniform Total Order. If some process delivers message m′ after message m, then every
process delivers m′ only after it has delivered m.

I measure latency in communication steps, where one communication step is the max-
imum message delay d between correct processes (possibly ∞). Processes do not know d.
In good runs, the algorithm described in this paper delivers all messages in two commu-
nication steps (2d), regardless of the number of processes abcasting simultaneously. In
other runs, the performance can be worse, however, the above four properties of Atomic
Broadcast always hold (Sect. 6).

3 Atomic Broadcast Algorithm

The algorithm employs a well-known method proposed by Lamport [7]: senders indepen-
dently timestamp their messages, which are then delivered in the order of these times-
tamps. In the scenario in Fig. 2, messages a, b, c, d are tagged by their senders with
timestamps 11, 61, 32, and 43. As a result, they should be delivered in the order: a, c,
d, and b.1

3.1 Runs without Failures

How can we implement this idea is a message-passing environment? To deliver messages
in the right order, a process, say p3, must know the timestamps of messages a, b, c, d, and
that no other messages were abcast. Let the abcast state of pi at time t be the message
(if any) abcast by pi at time t. For example, the abcast state of p2 at time 32 is c, and
empty at time 34.

Processes share information by broadcasting their abcast states. When a process pi

abcasts a message m at time t, it broadcasts two statements (as separate messages):

1For simplicity, I assume that timestamps are (possibly very large) integers whose last digit is the
process number, so that no two messages can carry the same timestamp.

6



1. A positive statement 〈mesg pi, t,m〉 saying that pi abcast message m at time t.

2. A negative statement 〈empty pi, t
′+1, t−1〉 saying that pi abcast no messages since

abcasting its previous message at time t′ (t′ = 0 if m is the first message abcast by
pi).

In the example in Fig. 2, the following statements are broadcast:

〈empty p1, 1, 10〉, 〈mesg p1, 11, a〉, 〈empty p1, 12, 60〉, 〈mesg p1, 61,b〉,

〈empty p2, 1, 31〉, 〈mesg p2, 32, c〉, 〈empty p3, 1, 42〉, 〈mesg p3, 43,d〉.

After receiving these statements, we have complete information about all processes
abcast states up to time 32. We can deliver messages a and c, in this order, because we
know that no other messages were abcast with a timestamp ≤ 32. On the other hand, d
cannot be delivered yet, because we do not have any information about the abcast state
of process p2 after time 32. If we delivered d, and later found out that p2 abcast e at time
42, we would violate the rule that messages are delivered in order of their timestamps
(43 6< 42).

To deliver d, we need p2’s help. When p2 learns that p3 abcast a message at time 43,
it announces its abcast states by broadcasting 〈empty p2, 33, 43〉 (Fig. 2). Similarly,
when p2 and p3 learn about b, they broadcast 〈empty p2, 44, 61〉 and 〈empty p3, 44, 61〉
respectively. Note that p1 does not need to broadcast anything, because by the time it
learnt about c and d, it had already broadcast the necessary information while abcast-
ing b. After receiving all these statements, we now have complete information about all
processes abcast states up to time 61. In addition to previously delivered a and c, we
can now deliver d and b as well. Note that, in the failure-free case, the order in which
processes receive statements is irrelevant.

3.2 Dealing with Failures

What would happen if p2 crashed immediately after sending c? Process p2 would never
broadcast the negative statement 〈empty p2, 33, 43〉, so the algorithm would never deliver
d and b.

To cope with this problem, the current leader (Ω) broadcasts the required negative
statements on behalf of all processes it suspects (♦S) to have failed. For example, if p1

is the leader, suspects p2, and learns that p3 abcast d at time 43, then p1 broadcasts
〈empty p2, 1, 43〉. This allows message d to be delivered.

Allowing p1 to make negative statements on behalf of p2 opens a whole can of worms.
To start with, 〈empty p2, 1, 43〉 blatantly contradicts 〈mesg p2, 32,b〉 broadcast earlier
by p2. A similar conflict occurs if p1 is wrong in suspecting p2, and p2 decides to abcast
another message e, say at time 42. In general, two statements conflict if they carry
different information about the abcast state of the same process at the same time.

The problem of conflicting statements can be solved by assuming that, if a process
receives two conflicting statements, then the first one wins. For example, receiving

〈mesg p2, 32,b〉, 〈empty p2, 1, 43〉, 〈mesg p2, 42, e〉

is equivalent to
〈mesg p2, 32,b〉, 〈empty p2, 33, 43〉.

7



We can ensure that all processes receive all conflicting statements in the same order by
using Generic Broadcast [1, 12] to broadcast them. Unlike Atomic Broadcast, Generic
Broadcast imposes order only on conflicting messages, which leads to good performance
in runs without conflicts.

3.3 Latency Considerations

In order to achieve a two-step latency in good runs, all positive statements must be
delivered in two communication steps. Negative statements are even more problematic,
because they may be issued one step after the abcast event that triggered them (e.g.,
〈empty p2, 33, 43〉 triggered by p3 abcasting d at time 43 in Fig. 2). Therefore, negative
statement must be delivered in at most one step. The following observations show how
to satisfy these requirements.

Observation 1: No conflicts in good runs

Good runs have no suspicions, so processes issue statements only about themselves. These
self-statements never conflict. Since no conflicting statements are issued, Generic Broad-
cast will deliver all statements in two communication steps [1, 12].

Observation 2: No conflicts involving negative self-statements

Statements made by processes can be divided into three groups: positive self-statements,
negative self-statements, and negative statements made by the leader. Negative self-
statements do not conflict with any of these because (i) self-statements do not conflict
because they talk about different processes or times, and (ii) negative statements do not
conflict because they carry the same information “no messages”. Therefore, negative self-
statements do not require Generic Broadcast; ordinary broadcast, which takes only one
communication step, is sufficient.

4 Implementation

Figure 3 presents the details of the algorithm sketched in Sect. 3. It can be conceptually
divided into two parts: broadcasting (lines 1–13) and delivery (lines 14–28).

4.1 Broadcasting Part (Lines 1–13)

Each process pi maintains two variables: timei and tmax
i . The read-only variable timei is

an integer representing the current reading of pi’s clock. Its value increases at the end
of every “block” (e.g. lines 2–6), but remains constant within it. Variable tmax

i represents
the highest time for which pi broadcast a statement about its abcast state. For example
tmax
1 = 61 after p1 abcast a and b (Fig. 4). Initially tmax

i = 0.
To abcast a message m, a process pi first broadcasts 〈active timei〉, which informs

other processes that some message was abcast at time timei. Then, pi broadcasts one
negative and one positive statement using ordinary and Generic Broadcast, respectively.
They inform other processes that pi abcast m at time timei, and nothing between tmax

i +1
and timei − 1. Finally, pi updates tmax

i .

8



1 tmax
i ← 0 { the highest timestamp used so far }

2 when pi executes abcast(m) do
3 broadcast 〈active timei〉 using ordinary broadcast
4 broadcast 〈empty pi, tmax + 1, timei − 1〉 using ordinary broadcast
5 broadcast 〈mesg pi, timei,m〉 using Generic Broadcast
6 tmax

i ← timei { timei increases after this line }

7 when pi received 〈active t〉 in the past and tmax
i < t ≤ timei do

8 broadcast 〈empty pi, t
max
i + 1, t〉 using ordinary broadcast

9 tmax
i ← t { timei increases after this line }

10 when change in tmax
i or the output of the failure detector or leader oracle do

11 if pi considers itself a leader
12 for all suspected processes pj 6= pi do
13 broadcast 〈empty pj, 1, timei〉 using Generic Broadcast

14 task delivery at process pi is
15 todeliveri ← ∅; knowni[j]← ∅ for all j = 1, . . . , n
16 repeat forever
17 wait for a statement delivered by ordinary or Generic Broadcast
18 if negative statement 〈empty pj, t1, t2〉 delivered then
19 knowni[j]← knowni[j] ∪ [t1, t2]
20 if positive statement 〈mesg pj, t,m〉 delivered then
21 if t /∈ knowni[j] then
22 send 〈active t〉 to itself
23 add (m, t) to todeliveri

24 knowni[j]← knowni[j] ∪ {t}
25 else if pi = pj then abcast(m) { the sender tries again }
26 let tknown

i = max{ t | [1, t] ⊆ knowni[j] for all j }
27 for all (m, t) ∈ todeliveri with t ≤ tknown

i , in the order of increasing t do
28 atomically deliver m; remove (m, t) from todeliveri

Figure 3: Atomic Broadcast algorithm with a two-step latency in good runs. It requires
the ♦P failure detector; see Sect. 4.3 for the modifications required for ♦S.

9



p1

p2

p3

〈active 1〉
〈empty p1, 1, 10〉
〈mesg p1, 11, a〉

11

a
〈active 32〉

〈empty p2, 1, 31〉
〈mesg p2, 32, c〉

32

c
〈active 43〉

〈empty p3, 1, 42〉
〈mesg p3, 43, d〉

43

d

〈active 61〉
〈empty p1, 12, 60〉
〈mesg p1, 61, b〉

61

b

〈empty p2, 33, 43〉

83

〈empty p2, 44, 61〉

101

〈empty p3, 44, 61〉

101

deliver a

91

deliver c

112

deliver d

123

deliver b

141

deliver a

91

deliver c

112

deliver d

123

deliver b

141

deliver a

91

deliver c

112

deliver d

123

deliver b

141

Figure 4: A example run of the fault-tolerant algorithm from Fig. 3. Generic Broadcast
of statements 〈mesg〉 takes two steps; the related messages are not shown.

When pi receives 〈active t〉 with tmax
i < t ≤ timei, it broadcasts 〈empty pi, t

max
i +1, t〉

and updates tmax
i . This informs other processes that pi abcast no messages between tmax+1

and t. If tmax
i ≥ t, then pi has already reported its abcast states for time t and before, so

no new statement is needed.
The condition t ≤ timei makes sure that tmax

i < timei at all times, so that the abcast
function does not a issue a conflicting self-statement in line 5. This condition always holds
in good runs: t > timei would mean that the message 〈active t〉 arrived from a process
whose clock was at least one communication step ahead of pi’s. In this case, pi simply
waits until t ≤ timei holds, and then executes lines 7–9.

Lines 10–13 are executed when a leader process pi experiences a change in tmax
i or in

the output of its failure detector ♦S or the leader oracle Ω. In these cases, pi issues the
appropriate negative statements on behalf of all processes it suspects to have crashed.

4.2 Delivery Part (Lines 14–28)

The delivery tasks delivers messages in the order of their timestamps. Each process pi

maintains two variables: todeliveri and knowni. Variable todeliveri contains all times-
tamped messages (m, t) that have been received but not atomically delivered yet. For
example, at time say 80, todeliver2 = {(a, 11), (c, 32)} (Fig. 4).

Variable knowni is an array of sets. Each knowni[j] is the set of all times for which
the abcast state of pj is known, initially ∅. For example, at time 80, known2[1] = [1, 10],
where [t1, t2] = { t | t1 ≤ t ≤ t2 }. Time 11 /∈ known2 because 〈mesg p1, 11, a〉, sent using
Generic Broadcast, will arrive at p2 two communication steps after being sent, that is, at
time 91. Each set knowni[j] can be compactly represented as union of intervals [t1, t2];
most of the time knowni[j] = [1, t] for some t.

In each iteration of the infinite loop (lines 16–28), the delivery task waits for a state-
ment delivered by ordinary or Generic Broadcast. After receiving 〈empty pj, t1, t2〉, pro-
cess pi updates its knowledge about pj by adding the interval [t1, t2] to knowni[j]. For
〈mesg pj, t,m〉, pi first checks whether it has received any information about the abcast

10



state of pj at time t before. If not, pi schedules message m for delivery by adding the pair
(m, t) to todeliveri. Process pi also adds {t} to knowni[j] to reflect its knowledge of the
abcast state of pj at time t. Sending 〈active t〉 in line 22 is necessary to ensure Uniform
Agreement on messages abcast by faulty processes. Messages 〈active t〉 broadcast by
such processes can get lost, so line 22 serves as a backup.

If t ∈ knowni[j], then the leader suspected pj to have crashed, and broadcast a
conflicting negative statement on pj’s behalf, which was delivered before 〈mesg pj, t,m〉.
Since message m cannot be delivered with timestamp t, its sender tries to abcast it
again, with a new timestamp. In the future, if m cannot be delivered with the new
timestamp, its sender will re-abcast it yet again, and so on. If the failure detector is ♦P ,
all correct processes will eventually be permanently not suspected, so some re-abcast of
m will eventually result in delivering m. For dealing with ♦S, see Sect. 4.3.

After processing the statement received in line 17, pi attempts to deliver abcast mes-
sages. It first computes the largest time tknown

i for which it knows the abcast states of all
processes up to time tknown

i . This ensures that todeliveri contains all non-yet-delivered
messages abcast by time tknown

i . Process pi delivers all these messages in the order of
increasing timestamps and removes them from todeliveri.

4.3 Dealing with ♦S by Leader-Controlled Retransmission

With the ♦S failure detector, the algorithm from Fig. 3 might fail to deliver messages
abcast by senders that are correct but permanently suspected by the leader (this cannot
happen with ♦P ). This problem can be solved by letting the leader re-abcast all messages,
instead of each process doing so itself.

In this scheme, each process pi maintains a set Bi of messages it abcast but not
delivered yet. Periodically, it sends Bi to the current leader, who re-abcasts all m ∈ Bi

on pi’s behalf. Since Ω guarantees an eventual stable leader, each message abcast by a
correct pi will eventually be delivered (Validity). Some messages might be delivered twice,
so an explicit duplicate elimination must be employed.

5 Cheap Generic Broadcast

The Atomic Broadcast algorithm from Sect. 4 assumes that, in failure-free runs, the
underlying Generic Broadcast delivers all non-conflicting messages in two communication
steps. Achieving this with existing Generic Broadcast algorithms requires n > 3f [1, 12,
14].

Figure 5 presents a Generic Broadcast algorithm, which is similar to [1] but requires
only n > 2f (cheapness). As opposed to other Generic Broadcast algorithms, it achieves a
two-step latency only in failure-free runs (otherwise n > 3f would be a lower bound [11]).
As a bonus, all non-conflicting messages are delivered in three steps even in runs with
failures, so the algorithm in Fig. 5 could be seen as a generalization of three-step Generic
Broadcast protocols that require n > 2f [1, 12]. To deal with conflicting messages, the
algorithm employs an auxiliary Atomic Broadcast protocol, such as [2]. Real-time clocks
are not used.

To execute gbcast(m), the sender sends 〈first m〉 using Reliable Broadcast [6]. When
a process pi receives 〈first m〉, it first checks whether any messages conflicting with m

11



1 seen1
i ← ∅; seen2

i ← ∅; quicki ← ∅

2 when pi executes gbcast(m) do { broadcast m using Generic Broadcast }
3 broadcast 〈first m〉 using (non-uniform) Reliable Broadcast

4 when pi receives 〈first m〉 do
5 add m to seen1

i

6 if seen1
i ∩ C(m) = ∅ { C(m) is the set of messages conflicting with m }

7 then fifo broadcast 〈second good m〉
8 else fifo broadcast 〈second bad m〉

9 when pi receives 〈second good m〉 from all processes do
10 deliver m if not delivered already { two-step delivery }

11 when pi receives 〈second * m〉 from n− f processes do
12 add m to seen2

i

13 if all “*” are “good” and seen2
i ∩ C(m) = ∅

14 then add m to quicki; broadcast 〈third good m ∅〉
15 else broadcast 〈third bad m conflicts i〉 where conflicts i = quicki ∩ C(m)

16 when pi receives 〈third * m conflictsj〉 from n− f processes pj do
17 if all “*” are “good”
18 then deliver m if not delivered already { three-step delivery }
19 else atomically broadcast 〈atomic m conflicts〉 with conflicts =

⋃
j conflictsj

20 when a process atomically delivers 〈atomic m conflicts〉 do
21 deliver all m′ ∈ conflicts if not delivered already
22 deliver m if not delivered already

Figure 5: Generic Broadcast algorithm that achieves a two-step latency in good runs and
requires only n > 2f (cheapness).

have reached this stage before. (C(m) is the set of messages conflicting with m.) Process
pi then broadcasts 〈second good m〉 or 〈second bad m〉 accordingly. In failure-free
runs, pi receives 〈second good m〉 from all processes, and delivers m immediately (two
steps in total, Fig. 6a).

When process pi receives n − f 〈second * m〉 messages, it checks whether all of
them are “good” and no conflicting m′ has reached this stage before. The appropriate
〈third good m *〉 or 〈third bad m *〉 message is broadcast. In the “good” case, pi adds
m to quicki, the set of messages that may be delivered without using the underlying
Atomic Broadcast protocol. In the “bad” case, the 〈third〉 message also contain the set
of “quick” messages conflicting with m.

When pi receives n−f messages 〈third good m ∅〉, it delivers m straight away (three
steps in total, Fig. 6b). Thus, if m is delivered in this way, m ∈ quickj for at least
n− f processes pj. As a result, for any m′ ∈ C(m), all messages 〈third * m′ conflictsj〉
broadcast by these processes have m ∈ conflictsj. Since n > 2f , any two groups of n− f
processes overlap, so any process pi receiving n−f messages 〈third * m′ conflictsj〉, will
have m ∈ conflictsj for at least one of them.

When pi receives n−f messages 〈third * m′ conflictsj〉, not all “good”, it atomically

12



p1

p2

p3

gbcast(m) in line 2 line 7 lines 14 and 10 line 18

〈first m〉 〈second good m〉 〈third good m ∅〉

(a) No conflicts, no failures: delivery in 2 steps. Line 14 gets executed before
line 10, but this order does not matter.

p1

p2

p3

gbcast(m) in line 2 line 7 line 14 line 18

lines 14 and 10

〈first m〉 〈second good m〉 〈third good m ∅〉

(b) No conflicts, one failure: delivery in 3 steps. Note that some processes can
deliver earlier than others.

p1

p2

p3

gbcast(m) in line 2 line 8 line 15 line 19

〈first m〉 〈second bad m〉 〈third bad m {m′}〉 〈atomic m {m′}〉

Atomic
Broadcast

line 22

(c) Message m conflicts with a previously gbcast m′, the latency depends on the
underlying Atomic Broadcast protocol.

Figure 6: Several runs of the Generic Broadcast protocol from Fig. 5 with n = 3 and
f = 1. The apparent synchrony in the diagrams is only for illustrative purposes.

broadcasts m′ along with the union conflicts of all n − f received sets conflictsj. As
explained above, conflicts contains all messages m ∈ C(m′) that might be delivered in
lines 10 or 18. Processes deliver m′ in line 22 only after delivering all m ∈ conflicts in line
21. Otherwise, different processes could deliver m′ (line 22) and messages m ∈ conflicts
(line 18) in different orders.

In conflict-free runs, no “bad” messages are sent, so all messages are delivered in at
most three steps (Figs. 6ab). Figure 6c shows that runs with conflicting messages can
have a higher latency, which depends on the latency of the underlying Atomic Broadcast.
Finally, observe that fifo broadcast used for 〈second〉 messages ensures that, if m was
delivered in line 10, no m′ ∈ C(m) will reach line 12 before m, so m will be delivered in
line 18 by all correct processes.

13



p1

p2

p3

b

〈active 61〉
〈empty p1, 11, 60〉

〈empty p2, 43, 61〉
〈empty p3, 43, 61〉

p1

p2

p3

b

〈mesg p1, 61,b〉

Figure 7: Typical message patterns involved in a single abcast.

6 Discussion

6.1 Message Complexity

Figure 7 shows messages related to abcasting a single message b. The upper diagram
shows ordinary broadcast traffic related to 〈active〉 and 〈empty〉. The lower one presents
a typical message pattern involved in Generic Broadcast of 〈mesg p1, 61,b〉. All messages
in the upper diagram can therefore be piggybacked on the corresponding messages in
the lower diagram. Thus, the message complexity of the Atomic Broadcast algorithm
described here is the virtually the same as that of the underlying Generic Broadcast
algorithm. This holds despite Atomic Broadcast achieving a two-step latency in all good
runs, even in those with conflicting messages.

6.2 Inaccurate Clocks

In Fig. 4, assume p3’s clock is skewed and it timestamps d with 23 instead of 43. Message
c, timestamped 32, will be delivered after d, timestamped with 23. If d is delivered in
exactly two steps (time 123 = 43 + 2 · 40), then c will be delivered in two steps and
43− 32 = 11 units of time (123 = 32+2 · 40+11). In general, the latency will be at most
two communication steps plus the maximum clock difference ∆ between two processes.
By updating the clock whenever a process receives a message “from the future”, one can
ensure that ∆ is at most one communication step. In the worst case, this reduces real-time
clocks to scalar clocks [7], and ensures the latency of at most three steps in failure-free
runs with inaccurate clocks.

6.3 Latency in Runs with Initial Failures

Consider a run in which all incorrect processes crash at the beginning and failure detectors
do not make mistakes. In such runs, the current leader issues negative statements on be-
half of the crashed processes. As opposed to negative self -statements, which use ordinary
broadcast and are delivered in one step, the leader-issued ones use Generic Broadcast and
take three steps to be delivered (or two if n > 3f). Therefore, the total latency in runs
with initial/past failures grows from two to four steps (or three if n > 3f).

14



One communication step can be saved by eliminating line 11 from Fig. 3, so that every
process (not only the current leader) can gbcast negative 〈empty〉 statements on behalf of
processes it suspects. In particular, any sender can now execute line 13 immediately after
abcasting in lines 2–6, without waiting for the leader to receive its 〈active〉 message in
line 7. This saves one communication step and reduces the total latency to that of Generic
Broadcast (two steps if n > 3f and three otherwise).

6.4 Latency in Runs with General Failures

We have just seen that in runs with reliable failure detection, the total latency can be
increased by at most one step. The picture changes considerably when failure detec-
tors start making mistakes. First, if a crashed process is not (yet) suspected, no new
messages can be delivered because the required 〈empty〉 statements are not broadcast.
Second, if a correct process is wrongly suspected, Generic Broadcast must deliver con-
flicting statements (from both the sender and the leader), which can significantly slow it
down (Fig. 6c).

The above two problems cannot be solved at the same time: short failure detection
timeouts motivated by the first increase the frequency of the other. To reduce the resultant
high latency, the following technique can be used. When a process believes to be suspected,
it should use the leader to abcast messages on its behalf rather than abcast them directly
(a scheme similar to that in Sect. 4.3).

7 Lower Bounds

The Atomic Broadcast algorithm presented in this paper requires a majority of correct
acceptors (n > 2f) and the ♦S failure detector. These requirements are optimal [2], as is
the latency of two communication steps [11]. Additional lower bounds hold for algorithms,
such as this one or [13], which guarantee the latency lower than three communication steps
in all good runs: Appendix Cproves that no Atomic Broadcast algorithm can guarantee
latency lower than three steps in runs in which (i) processes do not have access to real
time clocks, or (ii) external processes are allowed to abcast (the open-group model[4]), or
(iii) a (non-leader) process fails.

Conditions (ii) and (iii) represent a trade-off between two-step and three-step algo-
rithms. The latter usually allow external processes to broadcast, and guarantee good
performance if at most f non-leader processes fail. On the other hand, two-step deliv-
ery requires synchronized real-time clocks, all processes correct, and no external senders.
(External processes can still abcast by using the current leader as a relay, but this incurs
an additional step.)

The algorithm shown here relies on ♦S to ensure that faulty processes do not hamper
progress. I suspect that Ω alone is insufficient to achieve a two-step latency in all good
runs, however, this is still an open question.

15



8 Conclusion

The Atomic Broadcast algorithm presented in this paper uses local clocks to timestamp
all abcast messages, and then delivers them in order of these timestamps. Processes
broadcast both positive and negative statements (“message abcast” vs. “no messages
abcast”). For fault-tolerance, the leader can communicate negative statements on behalf
of processes it suspects to have crashed.

Negative self-statements do not conflict with anything, so they are announced using
ordinary broadcast. Other statements are communicated using a new Generic Broadcast
protocol, which ensures a two-step latency in conflict-and-failure-free runs, while requiring
only n > 2f . Since no statements conflict in good runs, the Atomic Broadcast protocol
described in this paper delivers all messages in two steps. Interestingly, this speed-up is
achieved with practically no message overhead over the underlying Generic Broadcast.
As opposed to [13], no network traffic is generated if no messages are abcast.

Although the presented algorithm is always correct (safe and live), it achieves the op-
timum two-step latency only in runs with synchronized clocks, no external processes, and
no failures. These three conditions are required by any two-step protocol, which indicates
an inherent trade-off between two- and three-step Atomic Broadcast implementations.
It also poses an interesting question: how much power exactly do (possibly inaccurate)
real-time clocks add to the asynchronous model?

Acknowledgements

I would like to thank the referees for many insightful comments and suggestions that
allowed me to improve this paper.

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Thrifty Generic Broadcast. In Proceedings of the 14th International Sympo-
sium on Distributed Computing, pages 268–282, Toledo, Spain, 2000.

[2] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[3] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving Consensus. Journal of the ACM, 43(4):685–722, 1996.

[4] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, 2004.

[5] Paul Ezhilchelvan, Doug Palmer, and Michel Raynal. An optimal Atomic Broadcast
protocol and an implementation framework. In Proceedings of the 8th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems, pages 32–41,
January 2003.

16



[6] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, Cornell University, Computer
Science Department, May 1994.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[8] Achour Mostéfaoui and Michel Raynal. Low cost Consensus-based Atomic Broad-
cast. In Proceedings of the 2000 Pacific Rim International Symposium on Dependable
Computing, pages 45–52. IEEE Computer Society, 2000.

[9] NTP. Network Time Protocol, 2006. URL http://www.ntp.org/.

[10] Fernando Pedone and André Schiper. Optimistic Atomic Broadcast: a pragmatic
viewpoint. Theoretical Computer Science, 291(1):79–101, 2003.

[11] Fernando Pedone and André Schiper. On the inherent cost of Generic Broadcast.
Technical Report IC/2004/46, Swiss Federal Institute of Technology (EPFL), May
2004.

[12] Fernando Pedone and André Schiper. Generic Broadcast. In Proceedings of the 13th
International Symposium on Distributed Computing, pages 94–108, 1999.

[13] Pedro Vicente and Lúıs Rodrigues. An indulgent uniform total order algorithm
with optimistic delivery. In Proceedings of 21st Symposium on Reliable Distributed
Systems, Osaka, Japan, 2002. IEEE Computer Society.

[14] Piotr Zieliński. Optimistic Generic Broadcast. In Proceedings of the 19th Inter-
national Symposium on Distributed Computing, pages 369–383, Kraków, Poland,
September 2005.

A Atomic Broadcast Proofs

Lemma A.1. timei > tmax
i at the beginning of every “block” (lines 2, 7, 10).

Proof. Initially, timei > tmax
i = 0. Then, tmax

i is set only in lines 6 and 9 to values ≤ timei.
The assertion holds because timei increases at the end of every “block” (after lines 6, 9,
13).

Theorem A.2 (Uniform Integrity.). For any message m, every process delivers m at
most once, and only if m was previously broadcast.

Proof. Process pi atomically delivers m only if (m, t) ∈ todeliveri. Since t is the unique
timestamp assigned by abcast(m), message m can be delivered at most once. Also, pi

must have delivered 〈mesg pj, t,m〉 in line 17, which implies that pj actually abcast m.
Line 25 reabcasts m only if it cannot be delivered with its current timestamp.

Lemma A.3. Let pi and pj be processes. If pi delivered m with timestamp t, and tknown

j ≥
t, then pj delivered m with timestamp t as well.

17



Proof. The assumption implies that pi received 〈mesg pk, t,m〉 before any 〈empty pk, t1, t2〉
with t1 ≤ t ≤ t2 for some pk. Message 〈mesg pk, t,m〉 must have been sent in line 5,
using Generic Broadcast. Since statements 〈empty pk, t1, t2〉 with t1 ≤ t ≤ t2 conflict
with 〈mesg pk, t,m〉, they must have been sent in line 13, also using Generic Broadcast.

As tknown
j ≥ t, process pj received at least one of the above statements, and since they

have all been sent using Generic Broadcast, it also received 〈mesg pk, t,m〉 first. There-
fore, pj added (m, t) to todeliverj and, since tknown

j ≥ t, it delivered m with timestamp
t.

Lemma A.4. If pi and pj both delivered m, they did so with the same timestamp.

Proof. To obtain contradiction, assume that pi delivered m with timestamp ti, and pj

with timestamp tj ≥ ti. Since tknown
j ≥ tj ≥ ti, Lemma A.3 implies that tj = ti. The case

tj ≤ ti is analogous.

Theorem A.5 (Uniform Total Order.). If some process pi delivers message m′ after
message m, then every process pj delivers m′ only after it has delivered m.

Proof. Assume pi delivered m with timestamp t, and then m′ with timestamp t′ > t.
If pj delivered m′, it must have done so with timestamp t′ (Lemma A.4). Therefore
tknown
j ≥ t′ > t, so Lemma A.3 implies that pj delivered m with timestamp t < t′, that is,

before m′.

Lemma A.6. If all correct processes receive 〈active t〉, then all correct processes will
eventually have tknown ≥ t.

Proof. Receiving 〈active t〉 by a correct process pi ensures that eventually tmax
i ≥ t

(line 9). Therefore, process pi has announced all its abcast states up to time tmax ≥ t, so
eventually [1, t] ⊆ knownj[i] for all correct pj and correct pi.

Some correct process pl will eventually: become the permanent leader (Ω), suspect
(♦S) all incorrect processes pi, and have tmax

i ≥ t, possibly as a result of receiving
〈active t〉. When the last of these events happens, pl will broadcast 〈empty pl, 1, timel〉
with timel ≥ tmax

l ≥ t (line 13, Lemma A.1), so eventually [1, t] ⊆ knownj[i] for all correct
pj and incorrect pi.

The conclusions of the two last paragraphs imply the assertion.

Theorem A.7 (Uniform Agreement.). If a process delivers a message m, then all
correct processes eventually deliver m.

Proof. If a process atomically delivers a message m with timestamp t, then it must have
delivered 〈mesg p, t,m〉 for some p in line 17. By Uniform Agreement of Generic Broad-
cast, each correct process pj will eventually deliver 〈mesg p, t,m〉 and send 〈active t〉
to itself. Lemma A.6, ensures that all correct processes pi will eventually have tknown

i ≥ t.
Lemma A.3 implies the conclusion.

Lemma A.8. Let pi be a (correct) process that is eventually never suspected. Eventually,
every message m abcast by pi will be delivered by all correct processes pj.

18



Proof. If process pi abcasts m finitely many times, then consider the last such abcast, at lo-
cal time t. Since pi is correct, all correct processes pj will eventually deliver 〈mesg pi, t,m〉
and add (m, t) to todeliverj, because abcasting m again in line 25 contradicts the assump-
tion that the previous abcast of m was the last one.

Consider the case when pi abcasts m infinitely many times. Since pi is eventually
never suspected, there is a maximum t′ for which 〈empty pi, 1, t

′〉 in line 13 is broad-
cast. Therefore, one of the abcasts of m will happen at local time t > t′. As a result,
〈mesg pi, t,m〉 will not conflict with any other statement, so all correct processes pj will
add (m, t) to todeliverj.

We have proved that eventually (m, t) ∈ todeliverj for all correct pj, whether m
is abcast finitely many times or not. This implies that all correct processes pj sent
〈active t〉 to themselves, so by Lemma A.6 they will all eventually have tknown

j ≥ t,
which implies the assertion.

With ♦P , all correct processes will eventually never be suspected, so Lemma A.8
implies:

Corollary A.9 (Validity). If a correct process broadcasts a message m, then all correct
processes will eventually deliver m.

The modifications required for ♦S were described in Sect. 4.3.

Theorem A.10 (Latency). Let d be the maximum message delay between correct pro-
cesses (possibly∞). In good runs, a message m abcast at time t is delivered by all processes
by time t + 2d.

Proof. The assumption implies that each process pi will receive 〈active t〉 by time t+d,
which will ensure tmax

i ≥ t. By definition of tmax
i , process pi announced its abcast state

for each time t′ ≤ tmax
i ≤ t, by either: (i) broadcasting 〈mesg pi, t

′,m′〉 in line 5, at
time t′ ≤ t, using Generic Broadcast (2 steps), or (ii) broadcasting 〈empty pi, t1, t2〉 with
t1 ≤ t′ ≤ t2 in line 8, at time t + d or before, using ordinary broadcast (1 step). In both
cases, the appropriate statement will be delivered at all processes pj by time t + 2d. As
a result, t′ ∈ knownj[i] for all processes pi and times t′ ≤ t, which ensures tknown

j ≥ t.
The theorem assumption implies that each process pj will deliver 〈mesg pi, t,m〉 by

time t+2d. Since good runs have no suspicions, no conflicting statements are broadcast, so
(m, t) ∈ todeliverj by time t + 2d. Combining this with tknown

j ≥ t proves the assertion.

B Generic Broadcast Proofs

Theorem B.1 (Validity). If a correct process gbcasts a message m, then all correct
processes will eventually deliver m.

Proof. The assumption implies that all n − f correct processes will receive 〈first m〉,
so all correct processes will receive 〈second * m〉 from n − f processes, so all correct
processes will receive 〈third * m *〉 from n− f processes. If all correct processes receive
only messages 〈third good m *〉, then they will all deliver m in line 18. Otherwise, at
least one correct process receives at least one message 〈third bad m *〉. This process
will then abcast 〈atomic m *〉 and, by Validity of the underlying Atomic Broadcast, all
correct processes will deliver m in line 22.

19



Theorem B.2 (Uniform Agreement). If a process delivers a message m, then all cor-
rect processes eventually deliver m.

Proof. If a process delivers m in two steps (line 10), then it received 〈second good m〉
from all processes. Therefore, all correct processes eventually receive 〈second * m〉 from
n − f processes, and all “*” are “good”. All processes received 〈first m〉 before any
〈first m′〉 with m′ ∈ C(m), and 〈second * m〉 messages are fifo-broadcast, so all
processes receive 〈second * m〉 before any 〈second * m′〉 with m′ ∈ C(m). As a re-
sult, the condition in line 13 always holds for m. Thus, all correct processes broadcast
〈third good m ∅〉, so all correct processes deliver m in line 18. No process abcasts
〈atomic m *〉.

If a process delivers m in three steps (line 18), then it received 〈third good m *〉
from n− f processes, each of which received 〈second good m〉 from n− f processes, at
least one of which is correct. Since 〈first m〉 was reliably broadcast in line 3, all correct
processes will receive 〈first m〉, and the proof of Theorem B.1 implies the assertion.

If a process delivers m in line 21 or 22, then the Uniform Agreement property of
Atomic Broadcast implies the assertion.

Theorem B.3 (Uniform Integrity.). For any message m, every process p delivers m
at most once, and only if m was previously broadcast.

Proof. The second part is straightforward as messages are only delivered if they have not
been delivered before.

If p delivered m in two steps (line 10), then it received 〈second good m〉 from all
processes, each of which received 〈first m〉 from the sender of m.

If p delivers m in three steps (line 18), then it received 〈third * m *〉 from some
process, which received 〈second * m〉 from some process, which received 〈first m〉 from
the sender of m.

If p delivers m in line 22, then some process abcast 〈atomic m *〉; the rest of the
proof as above.

If p delivers m in line 21, then some process received 〈third * m′ conflictsj〉 with m ∈
conflictsj. This means that m ∈ quickj at process pj, which received 〈second good m〉,
which implies the assertion.

Theorem B.4. For any two conflicting messages m and m′, it is impossible that one
process p delivers m without having previously delivered m′, and another process q delivers
m′ without having previously delivered m.

Proof. If some process receives n−f > n/2 messages 〈second good m〉, then a majority
of processes received 〈first m〉 before 〈first m′〉. Similarly, if some process receives
n− f messages 〈second good m′〉, then a majority of processes received 〈first m′〉 be-
fore 〈first m〉. Since majorities cannot be disjoint, assume, without loss of generality,
that no process receives n− f messages 〈second good m〉. (In the other case, the sym-
metry of the assertion allows us to exchange p ↔ q and m ↔ m′). Obviously, p cannot
deliver m in lines 10 or 18. Since m ∈ quicki for no pi, no message 〈third * m conflicts i〉
with m ∈ conflicts i is ever sent, so p cannot deliver m in line 21 either. The only pos-
sibility left is p delivering m in line 22 after atomically delivering 〈atomic m *〉 in line
20.

20



In which line can q deliver m′? Since p delivers m without having previously deliv-
ered m′, no 〈atomic m′ *〉 or 〈atomic * conflicts〉 with m′ ∈ conflicts is delivered by p
before 〈atomic m *〉. The Total Order of Atomic Broadcast implies that if q delivers m′

in line 21 or 22, it must have delivered m before.
Since p delivers m in line 22 without having previously delivered m′, some process

must have abcast 〈atomic m conflicts〉 with m′ /∈ conflicts. This means that a majority
of processes pi broadcast 〈third * m conflicts i〉 with m′ /∈ conflicts i, so they must have
added m to seen2

i in line 12 before adding m′.
If q delivers m′ in line 18, then it received 〈third good m′ *〉 from a majority of

processes pi, which must have added m′ to seen2
i before adding m. The previous paragraph

showed that a majority of processes pi added m and m′ to seen2
i in the opposite order.

This contradiction proves that q could not deliver m′ in line 18.
Finally, if q delivered m′ in line 10, then all processes received 〈first m′〉 before

〈first m〉. By the fifo property, no process pi added m to seen2
i before m′, however, we

proved that a majority of processes did so. This final contradiction shows that q could
not deliver m′ without delivering m before, which proves the assertion.

Corollary B.5 (Uniform Partial Order.). If some process pi delivers message m′ af-
ter message m conflicting with m′, then every process pj delivers m′ only after it has
delivered m.

C Lower Bounds

This section proves several impossibility results for Atomic Broadcast protocols that tol-
erate at least one faulty process (f > 0).

C.1 Latency below three steps requires real-time clocks

Theorem C.1. Only Atomic Broadcast algorithms that use real-time clocks can guarantee
a latency of less than three communication steps in all good runs.

Proof. To obtain a contradiction, assume the existence of an Atomic Broadcast algorithm
that does not use real-time clocks but in good runs delivers all messages within K < 3
communication steps. I will show that such an assumption leads to a contradiction.

Consider a family of good runs r(k) for k = 0, 1, . . . , n, in which processes p1 and p2

abcast two messages m1 and m2, respectively, at time 0, and no other messages are
abcast. All processes are correct and almost all messages have the latency of d. The only
exceptions are some messages sent at time 0: those from process p1 to processes p1, . . . , pk,
and those from p2 to pk+1, . . . , pn. These messages have the latency of d − ε, for some
small ε > 0 which will be defined later. All other messages have a latency of d.

I will first prove that, for any k = 1, . . . , n, runs r(k) and r(k − 1) deliver messages
m1 and m2 in the same order. For each i ∈ {k − 1, k}, consider the run rk(i), which is
identical to r(i), except that all messages sent by process pk to other processes at time
d − ε or later are lost. Runs r(i) and rk(i) are identical until time d − ε. Since all
messages sent after time 0 have latencies d, runs r(i) and rk(i) are indistinguishable to
processes other than pk until time 2d− ε, and to pk itself until 3d− ε. Since K < 3, we

21



p1

p2

p3

0 d 2d

0 d− ε 2d− ε

(a) r(0)

p1

p2

p3

1− 2ε 2− 2ε 3− 2ε

0 d− ε 2d− ε

(b) r′

Figure 8: Runs r(0) and r′ used in the proof of Theorem C.1.

have 3d − ε > Kd for sufficiently small ε. This means that process pk delivers the same
message first in both runs r(i) and rk(i). Uniform Total Order and Uniform Agreement
imply that all correct processes deliver the same message first in r(i) and rk(i).

To show that the runs r(k) and r(k − 1) deliver the same message first, it is then
sufficient to show the same for runs rk(k) and rk(k − 1). Runs rk(k) and rk(k − 1) differ
only in the delays of messages sent by processes p1 and p2 to process pk at time 0. However,
these messages arrive at pk at time d−ε or later, and from that time all messages from pk

to other processes are lost. Therefore, these two runs are indistinguishable to any correct
process p 6= pk, which delivers the same message first in both of them.

We have shown that, for any k = 1, . . . , n, runs r(k) and r(k − 1) deliver messages
m1 and m2 in the same order. Simple induction on k shows that the same is true for
runs r(0) and r(n). Without loss of generality, assume m1 is delivered first in both runs,
and focus on run r(0). (The other case, in which m2 is delivered first, is analogous and
requires considering run r(n).) In run r(0), shown in Fig. 8, all message latencies are d,
except for those sent by process p2 at time 0; these have the latency of d− ε.

Consider a good run r′ which is identical to r(0) except that process p1 abcasts m1

at time d − 2ε instead of at time 0. Figure 8 shows that runs r′ and r(0) are causally
identical, so processes without real-time clocks cannot distinguish them. As a result, the
same message (m1) is delivered first in both of them.

In run r′, process p1 cannot deliver m1 before getting feedback from other processes,
which takes two communication steps (until time 3d− 2ε). Since message m2, abcast at
time 0, is delivered after m1, process p1 cannot delivered it before time 3d−2ε either. Since
K < 3, this is bigger than Kd for sufficiently small ε, which contradicts the assumption
that, in good runs, all messages are delivered in K < 3 steps.

C.2 Dealing with faulty processes requires three steps

Definition C.2. A run is timely if failure detectors do not suspect any correct processes.

Theorem C.3. Consider two (possibly external) processes q1 and q2 No Atomic Broadcast
algorithm can guarantee a latency of less than three communication steps in all timely runs
with all processes correct except for possibly one of q1 and q2.

By taking q1 and q2 as external processes, we obtain

22



Theorem C.4. No Atomic Broadcast algorithm that allows external processes to abcast
messages can guarantee a latency of less than three communication step in all good runs.

On the other hand, taking q1 and q2 to be two main processes other than the leader,
we get

Theorem C.5. No Atomic Broadcast algorithm can guarantee a latency of less than three
communication step in all timely runs with at most one non-leader process being faulty.

To prove Theorem C.3, assume that such an Atomic Broadcast algorithm does exist.
We will be considering runs in which process q1 abcasts message m1, and process q2

message m2, both at time 0. First, consider a run r, in which all processes are correct and
all messages have latencies d. Without loss of generality, we can assume that message m1

is delivered first in this run. Otherwise, we can simply exchange the roles of processes q1

and q2.
Consider a family of runs r(k) with k = 0, . . . , n. Run r(k) is identical to r, except

that process q1 is faulty and crashes at some time in the future, say 3d. All messages sent
by process q1 to processes p1, . . . , pk have the latency 3d instead of d; the latencies of
messages from q1 to other processes remain d. Process q2 is correct. All messages between
correct processes have a latency of d, so all correct processes deliver message m2 before
time 3d.

The only difference between run r and r(0) is the correctness of process q1; these runs
are indistinguishable to any process before time 3d, so r(0) delivers message m1 first. I
will later show that, for any k, runs r(k − 1) and r(k) deliver the same message first. By
simple induction, run r(n) delivers message m1 before m2. We have previously seen that,
in run r(n), all correct processes deliver m2 before time 3d, so m1 must also be delivered
before that time. However, in run r(n), no process other than q1 knows about m1 before
time 3d, so it is impossible for all correct processes to deliver m1 before that time. This
contradiction proves the assertion.

Runs r(k − 1) and r(k) deliver the same message first

For each i ∈ {k − 1, k} consider a run rk(i) which is identical to r(i), except that process
pk is faulty and crashes at time 3d, and process q1 is correct (unless q1 = pk). All messages
from pk to other processes sent at time d or later are lost. Runs r(i) and rk(i) are identical
until time d, so they are indistinguishable to processes other than pk until time 2d. For
process pk, these two runs seem the same until time 3d.

We have already shown that, in run r(i), all correct processes, in particular process
pk, deliver at least one message (m2) before time 3d. Since pk cannot distinguish runs r(i)
and rk(i) before that time, it delivers the same message first in both runs. Uniform Total
Order and Uniform Agreement imply that all correct processes deliver the same message
first in runs r(i) and rk(i).

To show that runs r(k− 1) and r(k) deliver the same message first, it is now sufficient
to show the same for runs rk(k−1) and rk(k). Before time 3d, these runs differ only in the
latency of messages from process q1 to process pk. These two runs are indistinguishable
to pk until time d but, from that time on, all messages from pk to other processes are lost.
As a result, other processes cannot distinguish runs rk(k − 1) and rk(k) before time 3d,
so they must deliver the same message first in both runs. This way, we have proved that
runs r(k − 1) and r(k) deliver the same message first.

23


