Technical Report R

Number 67

Computer Laboratory

Natural deduction theorem proving
via higher-order resolution

Lawrence C. Paulson

May 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 Lawrence C. Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Natural Deduction Theorem Proving
via Higher-Order Resolution

Lawrence C Paulson
Computer Laboratory
University of Cambridge
May 20, 1985

An experimental theorem prover is described. Like LCF, it is
embedded in the metalanguage ML and supports backw,zifds,'prbgf :
using tactics and tacticals. The prover allows a wide class of’ logics
- to be introduced using Church’s representation of qua;'t'it.iﬁer,s in the
typed lamlsda-;:alculus. The inference rules are éxpreséed“as a sef of
generalized Horn clauses containing higher-order variables. Depth-
first subgoaling along inference rules is essentially linear resolution,
but using higher-order unification instead of first-order. This con-

stitutes a higher-order Prolog interpreter.

The rules of Martin-Lof’s Constructive Type Theory have been
entered into the prover. Special tactics inspect a goal and decide
which Type Theory rules may be appropriate, avoiding excessive
backtracking. These tactics can automatically derive the types of
many Type Theory expressions. Simple functions can be derived

interactively.

CONTENTS

The LCF interactive theorem prover
Quantifiers and higher-order variables
Representing logics in the typed A-calculus
LCF tactics using unification

Higher-order unification

Higher-order theorem provers

A preliminary implementation
Implementing Constructive Type Theory

Future work

10

10

12

16

1. The LCF interactive theorem prover

The LCF approach to theorem proving uses a natural deduction logic embed-
ded in a programmable metalanguage (ML) [5]. Terms and formulas of the logic
are values in ML: they have an explicit tree structure and can be decomposed and
built up by ML functions. Theorems are values of an abstract ML type: there are
no arbitrary constructors for theorems. Inference rules are functions from theo-
rems to theorems, while aztoms are special theorems recorded by LCF. Theorems
can only be created by applying inference rules to axioms and other theorems. A
derived rule is impiemented by composing inference rules into a new ML function.
Since both derived and primitive inference rules are ML functions, both can be
used in the same way. But a derived rule can be inefficient. Each time it is called,

it executes all the primitive inferences justifying it.

Most proofs are conducted backwards [24]. A goal is a representation of a
desired theorem; a tactic is a function that reduces a goal to a list of subgoals. In
LCF, this top-down decomposition of the goal must be followed by a bottom-up
reconstruction of the proof. Tactics provide high level assistance in the search for
a proof, but a theorem can only be produced by executing the primitive inference
rules, Therefore each tactic returns a validation, a function that produces a the-
orem achieving the goal, given theorems achieving the subgoals. LCF composes

the validations from the tactic steps in the proof.

Past LCF proofs have involved denotational semantics, verification of func-
tional programs, and verification of digital circuits [21]. Various logics have been
implemented: two versions of PPLAMBDA (for denotational semantics), a Logic
for Sequential Machines, a higher order logic, and Martin-Lof’s Constructive Type
Theory. Implementing a logic is a major undertaking: choosing a representation
of formulas, implementing several dozen inference rules and tactics, implementing
many more derived rules and higher level tools, implemeni;ing a theory database,
writing a parser and printer, and documenting all these things. Each rule checks
that it has received suitable premisses, then generates the conclusion. Each tactic
checks that it has received a suitable goal, then generates the subgoals giving the
corresponding rule as vzilida,tion. This uniform style of writing functions calls for

automation.

2. Quantifiers and higher-order variables

The rules of natural deduction are usually presented as pattern transforma-
tions. Patterns involve syntactic metavariables ranging over the various constructs
of the logic. For instance, if H ranges over lists of hypotheses, and A and B are
formulas, then A-introduction is often expressed:

HIFA HF B
HFAAB

The discharging of assumptions is easily expressed, as in the =>-introduction rule:
H, A+ B
H+-A=B
Rules that involve variables are troublesome. Let the metavariables T,y range

over (object) variables. Consider V-introduction:

H I Alz]
T Vy.Aly]

The restriction on z prevents contradictions such as

z not free in H (1)

z=0 !— z=0

z=0FVyy=0 falsely!
Fz=0=VYyy — 0
FVYzz=0=Vyy=0
FVYyy=0 contradiction!

Note that = is the universal variable in two distinct formulas, z=0and z =0 =
Yy.y = 0.

How can we formalize the V-introduction rule (1), with its English restriction
on z and the substitution implicit in the [--] notation? Higher-order variables
come to the rescue, using Church’s type theory — a representation of logic in the
typed A-calculus. Let term be the type of terms, and form the type of formulas.
The binary connectives like conjunction and implication are easily handled: let A
and = have type form — (form — form). If A € form and B € form, then
also AA B € form.

To handle quantifiers, introduce the symbol IT of type (term — form) —

form. Let B be a function from terms to formulas: B € term — form. Then

3

B(t) € form for all t € term, and II(B) represents the formula Vy.B(y). If A[y] is
a formula with free variable y, then Ay.A[y] has type term — form and IT(Ay.A[y])
represents Vy.A[y]. The sole binding operator is A. The rule for V-introduction

becomes
H | B(z) .

m z not free in H, B (2)
Remember to read II(B) as Vy.B(y). There is a new restriction on z: it may not
appear in B. The dependence of B{z) upon z is purely one of function applica-
tion. The [-] notation has become (-:-); B-conversion handles all questions of
substitution. The corresponding V-elimination rule is simply

H II(B)

H - B(t)

The V-introduction rule (2) is not yet ready to be automated. It contains
the English restriction that the variable z must not appear in B or H. Apart
from this restriction the variable name has no significance. So we might as well
reformulate the rule to insist upon a particular name that cannot possibly appear
in B or H. Extend the object syntax with a family of constant symbols ally g
for all hypotheses H and formulas B. Now symbols and expressions are mutually
recursive: H and B are part of the symbol ally . Clearly ally p cannot appear

in H or B since expressions are finitely constructed.

Using the new constants, V-introduction becomes

H}F B(ﬂllH,B)

T 1(B) (3)

Compare with Schmidt’s natural deduction rules for Skolemization [24]. He tags a
Skolem constant with B’s free variables rather than with B itself. Suppes suggests
similar rules for quantifiers, with helpful discussion [27] (pages 80-100). Existential
quantifiers can be handled as negated universals, or with another constant ¥ of
type (term — form) — form. Other rules involving bound variables, such as

J-elimination, are Skolemized in the same way.

Perhaps the hypotheses H should not be a subscript of all. There is noth-
ing similar in the literature on Skolemization. Rules like (3) slow down my im-

plementation because H often gets bound to a large expression. The simpler

4

V-introduction rule

H + B(allp)

H\-TI(B)
resembles Robinson’s [23]. His logic includes ezemplification terms, a version of
Hilbert’s e-operator. The rule allows allp to appear in the hypotheses H. Its
soundness is clear if we only accept models that assign allg a value y, if such

exists, to make B(y) false. In such a model, if B(allg) is true then so is II(B).

Thus the family of symbols ally 5 can be understood syntactically as a way
of choosing a name, or semantically as a choice function. One reason for using
the subscripted symbol ally p instead of the function application all(H, B) is to
avoid making all explictly a function in the object language. The choice function
all may be unacceptable in a constructive logic. The symbol ally g is atomic,
while all(H, B) contains well-formed subexpressions all and all(H). I tried the
all(H, B) kind of Skolemization: the numerous subexpressions were an intolerable

burden on the implementation of higher-order unification.

3. Representing logics in the typed A-calculus

The previous discussion suggests a practical computer representation of formal
logics. Logical expressions are represented in the typed A-calculus, built up from
constants, free and bound variables, abstractions, and combinations. We also have

infinitely many Skolem constants subscripted by A-expressions.

Each term has a type, denoted by Greek létters o, g, Types are recursively

formed: there is a set of ground types, and also function types a — f3.
e Each variable z;nd constant has a type.
o If z has type o and ¢ has type 8 then the abstraction Az.t has type o — 5.
e If ¢ has type o — f and u has type a then the term #(u) has type 8.

There is a ground type for each syntactic class: terms, formulas, hypotheses,

sequents, etc. A variable of type term ranges over terms of the logic.

A logic consists of inference rules of the form

P, ... P,
Q

5

A rule without premisses (m = 0) is a theorem. There are two meta-rules, which

produce new rules:

1. Any instance of a rule is a rule: any free variable may be substituted by

an expression of the same type.

2. The composition of two rules is a rule: if
P Pu Q- Q
Qi R ’
are rules (1 < ¢ < n), then so is

Q Qiy P - Py Qiyr Qg
7 i

Natural deduction'is easily represented, though it is not built in. In the logic

of the previous section, I is a infix constant of type hyp — (form — sequent).

In LCF the fundamental abstract type is theorem; here the fundamental ab-
stract type is rule. LCF rules are functions; here rules are data structures. Com-
position of rules buids proof trees, with forwards and backwards proof as special
cases. More advanced proof methods can be implemented. The resolutson method
is to unify the conclusion of one rule with a premiss of another, composing the
corresponding instances of the rules. Theorem-proving tools employing unifica-
tion have been used in some LCF proofs. Unification is particularly difficult when

higher-order variables are present. These issues are discussed below.

4. LCF tactics using unification

Brian Monahan implemented several resolution tactics for Edinburgh LCF [18].
These work on the current goal’s assumption list, adding resolvents as new assump-
tions. Previous resolution tactics used one-way matching; Monahan implemented
proper unification. Monahan also automated the construction of simple inference
rules and tactics. His function METARULE turns any theorem PyA...AP,, = Q
into the rule L’é—”m. His METATAC produces the corresponding tactic. Their
generality is limited because LCF’s logic, PPLAMBDA, does not have variables

ranging over formulas.
Sokolowski used Edinburgh LCF to prove the soundness of Hoare axiomatic

rules with respect to a denotational definition of a simple programming language

6

[26]. The proof consists mainly of the systematic expansion of definitions. LCF’s
simplifier expands definitions by rewriting, but Sokolowski decided to structure his
proof in terms of derived inference rules rather than rewrite rules. He implemented

his own tools for depth-first search using backwards chaining along inference rules.

Previously each LCF goal had to be expressed in full. Sokolowski’s innovation
was to allow patiern variables in goals, and allow tactics to instantiate pattern
variables by unification. Existential goals are the most obvious use for pattern
variables: to prove 3z.P(z) it suffices to prove P(t), for any term ¢{. LCF and
other theorem provers require the user to supply this ezistential witness right
away. Sokolowski’s tactics allow to be inferred later in the proof. (Sokolowski
was using Edinburgh LCF, which lacks existential quantifiers. The same reasoning

holds for universal quantifiers in assumptions.)

This approach requires an environment to contain values for the pattern vari-
ables as they are discovered. A unification tactic takes an environment as well as a
goal. It returns an extended environment along with the subgoals and validation.
After all subgoals have been solved, the validation must be given the final environ-
ment as well as a list of theorems. Sokolowski implemented uniﬁcat%on tactics and
simple backtracking tactics in ML. His code ran slowly because LCF provided little
support for unification. His treatment of environments during sequential compo-
sition (the tactical THEN) could be criticised. Despite these faults, Sokolowski’s
tactics verified the Hoare rules with remarkable clarity, capturing the high-level

structure of the proofs.

5. Higher-order unification

Unifying two terms ¢ and u means solving the equation ¢ = u, determining
values for the variables of ¢ and u. For ordinary unification, terms are recursively
built up from variables z and function applications F(ty,...,t,). (Boldface let-
ters denote constants.) Two terms are equal only if they have exactly the same
structure above their variables. Typically terms and variables are untyped. It is
decidable whether two terms can be unified; if they can be, then a most general

unifier can be efficiently computed [12].
Higher-order unification amounts to solving equations in the typed A-calculus |

7

[7,9]. Two terms are equal if they can be made identical by some sequence of «,

f, and n conversions:
a renaming of bound variable, Az.t = Ay.t[y/z]
B substitution of argument into function body, (Az.t)u = t{u/z]
n extensionality of ﬁ;nctions, Az.t(z) =t if z is not free in the function ¢

Let t(uy,..., u,) abbreviate (... (#(u;))...)(x,). As asubterm of some larger term,
t(tg,...,%,) is rigid if ¢ is a constant or bound variable, and flextble if ¢ is a free
variable.

Higher-order unification is sems-decsdable: if the terms cannot be unified, the
search for unifiers may diverge. Although a complete set of unifiers can be recur-
sively enumerated, it may be infinite. Unifying the term f(z) with the constant
A gives the two unifiers {f = Az.A} and {f = Az.z, = = A}. Unifying f(z) with
A(By,...,B,) gives ¢ + 2 unifiers:

{f =2z.A(By,...,B))}
{f =Xzz, z=A(By...,B)}
{f =2z.A(By,...,Biy,7,Bi4y,...,B), z=B} t=1,...,q

Unifying f(=,, z,) with A(By,...,B,) gives ¢® + ¢ + 3 unifiers. The search space
can easily become unmanagable.

Sometimes both ternfs begin with a function variable. Unifying f(¢4,...,t,)
with g(us,...,%,) yields an explosion of counterintuitive solutions [9]. Huet calls

this the flex-flex case. It always has the trivial solution
{f=2zy...z,.h, g=Ay...y..h} .

Most implementations of higher-order unification use Huet’s search algorithm,
with procedures SIMPL and MATCH [7]. SIMPL essentially does first-order uni-
fication. Each term is put into normal form. Outermost lambdas are stripped
off; the bound variables become part of the context, behaving much like con-
stants. The input pair of terms is broken into a set of disagreement pairs to be
unified. A rigid-rigid pair (F(ty,...,t;),F(uy,...,u,)) is simplified to the set of
pairs (¢, u1),..., (tg, ug). HF # G then (F(t,,...,t,), G(u,, +++, Ug)) is recognised

as non-unifiable. A pair (z,t) has the most-general unifier {z = ¢} if z does not

8

occur in t. The occur-check is subtle: z and f(z) are unified by both {f = Ay.z}
and {f = Ay.y}. Huet’s rigid path occur-check gives a practical sufficient condition

for £ and ¢ to be unifiable.

MATCH guesses instantiations of function variables. A flez-rigid pair

(f(tl, .. ‘stp)aF(ul"-';uq»

gives rise to as many as p + 1 possible substitutions for f. For ¢ = 1,2,..., let h;
be a new variable of appropriate type, and let v; denote the term hy(zy,...,%p).
We have

f=2Xzy...2, F(v1,...,v,), by imstation;

f =2z ...55.3(vy,..., V), forcertaini=1,...,p, by projection.

The projection rule applies when the type of z; allows m to be chosen to give
f the correct type. Formally, if the type of f is @y — -+ — a, — B, then o
must be 7, — - -+ — Y, — B. Huet also has an algorithm for unification without

n-conversions, when many more independent substitutions are possible.

This choice of substitutions creates an OR tree, most simply searched in depth-
first order. One of these substitutions is chosen, applied to all the disagreement
pairs, and the search continues. Many of the substitutions from the projection
rule are immediately rejected if ¢; begins with a constant different from F. The

imitation rule reduces the original disagreement pair to the pairs

(hl(th""tp)’ul)’ sy (hq(tl""’tp)1u’<1)'

Huet’s algorithm reports success when only flex-flex pairs remain. A theorem
prover can store these as constraints on future unifications, or produce the trivial

solution.

Of course theorem proving is undecidable, but it is unfortunate that our ba-
sic inference step is also undecidable. Other difficult unification problems can
arise. For example, A-introduction could be expressed to form the union of the

hypotheses:
H, + A H, |- A,

H,UH, A ANA,

Now unification must also handle U, an associative, commutative, and idempotent

operator. To avoid this complexity the logic must be reformulated.

9

6. Higher-order theorem provers

The earliest applications of higher-order unification extended resolution to
higher-order logic [9]. Huet’s constrained resolution postpones branching in unifi-
cation [8]. Rather than returning multiple unifiers in a resolution step, it records
the remaining disagreement pairs as a constraint on the new clause. Further res-

olutions may satisfy the constraints or render them clearly unsatisfiable.

The TPS theorem prover uses sophisticated heuristics in the search for higher-
order unifiers [15]. In MATCH it chooses a disagreement pair likely to cause the
least branching of the tree. It hashes disagreement sets to determine whether a
new set is subsumed by an older one. Though the subsumption test is expensive
it cuts the search space substantially and prevents some searches from diverging.
TPS uses general matings rather than resolution. The mating approach unifies
subformulas against each other without reducing everything to clause form. TPS
can automatically prove Cantor’s Theorem, that every set has more subsets than
elements [1]. ,

The EKL proof checker uses higher-order matching of rewrite rules [11]. The
AUTOMATH project has investigated several higher-order A-calculi, reminiscent
of Martin-Ldf’s type theory, as languages for machine-checked proof [10]. Gordon’s
HOL is a version of LCF for proving theorems in Church’s higher-order logic [6].
The logics of HOL, EKL, and TPS are all descended from Church’s.

Although several of these theorem provers support natural deduction, none use
the higher-order representation of inference rules proposed here. The resolution-
based systems use resolution as the only inference rule. My proposal may be seen

as a two-level system of logic with resolution of inference rules.

7. A preliminary implementation

The theorem prover consists of about 2200 lines of Standard ML [17]. The
compiler is David Matthew’s Poly/ML, developed on a Cambridge VAX/750 com-

puter running Berkeley Unix. The prover includes
¢ a data structure for terms and types, with simple utility functions
e a naive implementation of Huet’s higher-order unification algorithm

10

e tactics for using higher-order Horn clauses in backwards proof
e 2 collection of functions for interactively growing a tree of goals
e the rules of Martin-Lof’s type theory, a special printer, and special tactics.

Only the last of these items, about 25% of the code, is specific to Martin-Lof’s
logic. Variables (for unification) are represented by integers. Each bound variable
is also represented by an integer, referring to the depth at which it is bound [3].
The unification function returns a possibly infinite stream of unifiers. Streams
are an abstract type implemented as usual: each member contains a function for
computing the rest of the stream.

Tactical proof is now an AND/OR tree, not an AND tree like in LCF [24]. Each
tactic may return a stream of decompositions of the goal. Each decomposition is
a rule BzPm stating that the goal @ can be reduced to the goals Py, ..., P,. No

Q
validation function is needed, since the key objects are rules rather than theorems.

The tactic RulesTac takes a collection of rules and unifies the conclusion of each
rule against the goal. There are two levels of choice: several rules may apply; a
rule may have several unifiers with the goal. The tactical DEPTH_FIRST applies
a tactic in depth-first search to completely solve a goal. If the \tactic returns
an empty stream of decompositions, depth-first search cannot proceed and the
goall is abandoned. Sokolowski used depth-first search for backwards chaining
along hypotheses [26]. I find it effective with introduction rules. Together with
RulesTac it constitutes a higher-order Prolog interpreter. It can execute simple
Prolog programs (slowly).

The unification function spends a lot of time in the occur-check. Before binding
a variable = to a term ¢, it must scan ¢ for occurrences of z. The goals with
their assumption lists are represented by ever-growing terms that are scanned
repeatedly. Most Prolog compilers omit the occur-check, but it is essential here to
enforce the formalized constraints “z not free in H, B.” I have achieved reasonable
efficiency by simple means. Ideas from the fast first-order unification algorithms
might allow a speedup.

The original goal may contain variables representing “don’t care” values or
information to be inferred. Other variables crop up as existential witnesses. Many
variables appear in more than one goal. When a unification tactic instantiates a

variable, the environment effectively substitutes the new value in the other goals.

11

The existential witnesses. develop step by step. To minimize backtracking, goals
must be tackled in a sensible order, propagating constraints to other goals. Search
is often constrained by the structure of the goal; if the goal has a variable in a
critical place, the search becomes unconstrained. A goal is too flezible if certain

of its variables give too many choices for the next step of the search.

I am experimenting with a depth-first tactical that delays goals that are too
flexible. DEFLEX repeatedly applies a tactic to a goal and its subgoals. The
tactic can reject a goal as too flexible by raising an exception, giving some of the
goal’s free variables. A rejected goal is not abandoned but queued, along with the
free variables. The queued goals are re-examined after all the other goals have
been solved. If any of the free variables have become instantiated, the goal can be
reconsidered. Goals that are still too flexible are returned as subgoals. Goals can
also be rejected as inappropriate for the particular tactic. This allows a layered

approach: first attack all goals of one kind, then clean up the remaining goals.

The interactive goal package maintains a tree of subgoals. The user can apply
a tactic to any number of the goals. A goal is called closed when first created,
and open when a tactic has reduced it to zero or more subgoals. When applying a
tactic, the package uses the first set of subgoals produced, saving the remainder of
the stream. The user can explicitly backtrack any open goal. This takes the next
set of subgoals, discarding the previous set along with any following proof steps.
The backtrack command fails if that goal has no more subgoal decompositions to

try. The package does not record the most recent choice point for backtracking.

8.. Implementing Constructive Type Theory

Martin-Lof’s Type Theory is an attempt to formalize constructive reasoning
[19,20]. The rules for each logical connective express its constructive interpretation
as operations on proof objects, giving interpretation of propositions as types. For
instance, a proof of AAB is a pair {a,b), where a is a proof of A and b is a proof of B.
The proof objects for the connectives constitute a simple functional programming
language. It can express all provably terminating computations. “Propositions
as types” allows a small family of primitives to provide a full system of logical

connectives, data structures, and programs. A data type can express a complete

12

formal specification. The type of a sorting function can assert that its output is a
sorted permutation of its input.
Constructive Type Theory has several kinds of rules:

e Formation rules build types from other types.

o Introduction rules build elements of types.

e Elimination rules specify control structures, called selectors, for each type.

o Equality rules give the result of evaluating expressions.
There are four kinds of judgement (theorem): .
e A type means that A is a type.
e A = B means that 4 and B' are equal types.
e a € A means that a is an element of type A.

e o = b c A means that a and b are equal elements of type A.

Judgements can be hypothetical. Hypotheses have the form z; € A4,, ..,
r, € A,, where the A; are well-formed types. Under these assumptions z; € A;
is a valid judgement. Verifying this requires searching down the list of hypotheses

to find z;. The rules on the computer use the Prolog style of list processing:

H |- A type HlFa€c A
Hac Al ac A HbeB Il acA

One of the virtues of Prolog is that a rule can specify more than one direction
of information flow: programs can run backwards. Proving Martin-L6f theorems
via unification can solve different classes of problems. The judgement a € A has

several mednings, including

e a is a program of type A4,

e ¢ is a program with specification A,

e a is a proof of the proposition A.
Beginning with a pfbgrain a, proving @ € A by unification determines the type of
a remarkably as Milner’s algorithm for type tnference does [16]. Beginning with a ‘

specification A, proving a € A amounts to the program synthests of a. Beginning

with a proposition A, proving a € A gives a constructive proof of A .

Martin-Lof’s system has attracted increasing attention from computer scien-

tists interested in formal verification and derivation of programs. Petersson has

13

incorporated it into Edinburgh LCF, producing the Gothenburg Type Theory sys-
tem [22]. Chisholm used this to derive a parser [4]. Constable and his colleagues
are modifying LOF to implement a related type theory [2]. My original aim was
to implement unification tactics for proving theorems in Martin-Lof’s type theory.

I now hope to handle a broad class of formal logics.

The rules are normally presented within a higher-order framework. Though
published material is scarce [14], insiders know that these rules are based on a
theory of expressions. Each expression has an arity written as a jumble of paren-
theses. Apart from the peculiar notation, these expressions are simply the typed
A-calculus with a single ground type. There is a two-level type system; arities are
the lower-level types. Consider the similarity between the V-introduction rule and

Martin-Lof’s rule of I-introduction;

HF Atype H,ze At b(z) € B(z)
H '+ Ay.b(y) € [yea B(y)

z not free in H,b, B

This rule is already higher-order; we need only Skolemize x. My computer for-
mulation uses a Skolem constant pri, p for product introduction. There is no
subscript H (which I hope is all right):

H I A type H, pri,p € A F b(pri, p) € B(pri, p)
H F X(b) € (A4, B)

The ML definition of this rule is

val ProdIntrRl =
let val pri = skolem ("pri", [bi,Bi]) in
prepare_rule :
(elemG$$ [lambda$bl, Prod$A$B1] $ H :-
[typeG $ A $ H,
elemG$$ [bipri, Bipril $ ((pri,A) ::* H)]) end;

I have written tactics for solving problems in Type Theory. The simplest
problem is to check that a type A is well-formed. This is solved by repeatedly
using formation rules to prove the judgement A type. Anothier common problem
is to construct some element of a type A. This is clearly undecidable: it amounts
to proving the proposition represented by A. Yet repeated use of introduction

rules can perform a large portion of the proof.

14

The tactic FormTac is simply a call of RulesTac giving all the formation rules.
Likewise there is an IntrTac, etc. These are work badly with backtracking: if a
variable is encountered an infinite stream of types may be generated. The tactic
FlexFormIntrTac uses DEFLEX to handle variables sensibly in the formation and
introduction rules. For tile goal A type, it raises an except}on unless A is rigid
{(not a variable). For a € A either a or A must be rigid. '

The tactic TypeCheckTac is similar but uses elimination rules as well as for-
mation and introduction rules. For a € A it requires a to be rigid, since if a is
a variable then all the elimination rules apply. TypeCheckTac handles the type-
checking problems that have come up in my experiments. For instance it can check

the type of the addition operator. It solves the goal
A(B)A(m) rec(m, (z, y)suce(y), k) € 4,

producing the binding A = Nat — Nat — Nat.

The selectors are higher-order combinators. Even with syntactic sugar they
make Type \Theory programs tedious to write and difficult to read. I am interested
in the interactive derivation of programs that meet speciﬁcations.\ The simplest
kind of specification consists of equations, one for each possible input pattern (like
ML function definitions). Experimental tactics for equality rules can handle some
examples with little user guidance.

For the predecessor function the tactics discover that pred = \(z) rec(z, (y, 2)y, z)

with type T' = Nat — Nat by solving the goal
€), (pred[[zero] =Nat 0 X J]| pred[succk} =na¢ k) .
predeT keNat

For the projection function fst, the tactics discover that fst = A(z) split((y, 2)y,)
with type T' = (Nat x Nat) — Nat:

UAS Z H ‘ H fStH(i)j)] :Nati
[teT icNat jeNat

In this example the tactics discover a binding for f involving the selectors when

and split, and determine that N = Nat:

ze JI I f(nl{i,5)) =~ i x f(inr(i) =y j

tcNat jeNat

15

Recursive functions are harder to handle. The simple rec form of arithmetic
addition can be discovered. Deriving addition as a function of type Nat — Nat —
Nat requires computation on both numbers and function types. The recursion
equations must be simplified as the proof proceeds. Recursive disagreement pairs

often cause the unification algorithm to diverge.

9. Future work

These results show that higher-order unification can support practical theorem

proving. Much work remains before more interesting proofs can be attempted.

Skolemization has been the number one trouble spot. For each logic, the
Skolemized forms of its rules must be justiﬁed. Constructive logics offer special
challenges. Efficiency requires Skolem constants to have as few subscripts as pos-

sible. The unification algorithm must be extended to handle subscripts.

LCF’s stmplifer does most of the work in proofs. Using equations as rewrite
rules, it reduces a goal to a simpler one. Some form of simplifier is essential,
though the present framework favours a decomposition approach: one goal may

be reduced to several,

Higher-order unification usually behaves well. Most of the time just first-order
unification takes place. For this reason there is no need to hash disagreement
sets and detect subsumption, while the TPS group found subsumption essential.
Unification may loop if asked to solve recursion equations. Some examples cause

the search space to explode.

LCF’s theory package maintains a data base of constants, types, axioms, and
theorems on disc. LOF provides no way of storing relevant tactics and rules with
a theory. A theory is also a logical notion. The logic should include inference rules
for constructing and combining theories.

The user interface is crude. In LCF the logic is integrated with the ML com-
piler, syntax and all. There is no proper way to extend the Standard ML parser
and printer. Logical formulas must be written in abstract syntax; the printer
must be explicitly invoked. Goals are designated by number. A high-resolution
display and pointing device would make life much easier, even in this early stage

of development.

16

The theorem prover is one of the first large programs written in Standard
ML, and the first run on Matthew’s ML compiler. My experiences with both the
language and the compiler are positive. ML’s type system catches many bugs.
Even sophisticated code often works after the first successful compilation. Subtle
bugs can crop up weeks later, though. Debugging is especially hard when the
compiler itself may contain bugs. There were many compiler bugs at first, but
Matthews quickly fixed most of them. Compiled code runs fast: examples involving
dozens of higher-order unifications need only seconds of VAX computer time. A
profiling command lists the time and storage used by each function. This makes

it easy to tune the code.
Acknowledgements. David Matthews has put considerable effort into the Standard
ML compiler written in his language Poly. I thank the SERC for funding this. I

have discussed these ideas with many people, particularly those involved with TPS.

REFERENCES

(1] P.B. Andrews, D. A. Miller, E. L. Cohen, F. Pfenning, Automating higher-
order logic, in: W. W. Bledsoe and D. W. Loveland, editors, Automated
Theorem Proving: After 25 Years, American Mathematical Society (1984),
pages 169-192,

[2] J. L. Bates, R. L. Constable, Proofs as programs, ACM Transactions on
Programming Languages and Systems 7 (1985), pages 113-136.

[3] N. G. de Bruijn, Lambda calculus notation with nameless dummies, a ool
for automatic formula manipulation, with application to the Church-Rosser
Theorem, Indagaiiones Mathematicae 34 (1972), pages 381-392.

[4] P. Chisholm, Derivation of a parsing algorithm in Martin-Lof’s theory
of types, Dept. of Computer Science, Heriot-Watt University, Edinburgh
(1985). |

[5] M. J. C. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF: A
Mechanised Logic of Computation, Springer LNCS 78 (1979).

[6] M. J. C. Gordon, HOL: A machine oriented formulation of higher order
logic, Computer Lab., University of Cambridge (1985).

17

[7] G.P. Huet, A unification algorithm for typed A-calculus, Theoretical Com-
puter Science 1 (1975), pages 27-57.

[8] G. P. Huet, A mechanization of type theory, Third International Joint
Conference on Artificial Intelligence (1973).

[9] D. C. Jensen, T. Pietraykowski, Mechanizing w-order type theory through
unification, Theoretical Computer Science 3 (1976), pages 123-171.

[10] L. S. van Benthem Jutting, Checking Landau’s ‘Grundlagen’ in the AU-
TOMATH system, PhD Thesis, Technische Hogeschool, Eindhoven (1977).

[11] J. Ketonen, EKL— A mathematically oriented proof checker, in: R. E.
Shostak, editor, Seventh Conference on Automated Deduction, Springer

LNCS 170 (1984), pages 65-79.

[12] A. Martelli, U. Montanari, An efficient unification algorithm, ACM Trans-
actions on Programming Languages and Systems 4 (1982), pages 258-282.

[13] P. Martin-L&f, Constructive mathematics and computer programming, in:
L. J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewski (editors), Logic, Method-
ology, and Science VI, North Holland (1982), pages 153-175.

[14] P. Martin-Lf, Intuitionistic type theory, Unpublished notes prepared by
G. Sambin (1980).

[15] D. A. Miller, E. L. Cohen, P. B. Andrews, A look at TPS, in: D. W. Love-
land, editor, Sizth Conference on Automated Deduction, Springer LNCS
138 (1982), pages 50-69.

[16] R. Milner, A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17 (1978).

[17] R. Milner, A proposal for Standard ML, ACM Symposium on Lisp and
Functional Programming (1984), pages 184-197. |

(18] B. Q. Monahan, Data Type Proofs using Edinburgh LCF, PhD Thesis, Uni-
versity of Edinburgh (1984).

[19] B. Nordstrdm, Programming in Constructive Set Theory: some examples,

ACM Conference on Functional Programming Languages and Computer

Architecture (1981) pages 141-153.
18

[20] B. Nordstrdm and J. Smith, Propositions and specifications of programs in
Martin-Lof’s type theory, BIT 24 (1984), pages 288-301.

[21] L. C. Paulson, Lessons learned from LCF: A Survey of Natural Deduction
Proofs, Computer Journal 28 (1985), to appear.

[22] K. Petersson, A programming system for type theory, Report 21, De-
partmeﬁt.éf Computer Sciences, Chalmers University, Goteborg, Sweden
(1982).

[23] J. A. Robinson, Logic: Form and Function, Edinburgh University Press,
1979.

[24] D. Schmidt, A programming notation for tactical reasoning, in: R. E. Shos-
tak, editor, Seventh Conference on Automated Deduction, Springer LNCS
170 (1984), pages 4456-459.

[25] S. Sokolowski, A note on tactics in LCF, Report CSR-140-83, Dept. of
Computer Science, University of Edinburgh (1983).

[26] S. Sokolowski, An LCF proof of the soundness of Hoare’s logic, Report
CSR-146-83, Dept. of Computer Science, University of Edinburgh (1983),

to appear in ACM Transactions on Programming Languages and Systems.

[27] P. Suppes, Introduction to Logic, van Nostrand (1957).

19

