
Technical Report
Number 668

Computer Laboratory

UCAM-CL-TR-668
ISSN 1476-2986

Optimistically Terminating Consensus

Piotr Zieliński

June 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2006 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Optimistically Terminating Consensus

Piotr Zieliński
University of Cambridge
Cavendish Laboratory

J J Thomson Avenue, Cambridge CB3 0HE, UK
piotr.zielinski@cl.cam.ac.uk

Abstract

Optimistically Terminating Consensus (OTC) is a variant of Consensus that
decides if all correct processes propose the same value. It is surprisingly easy to
implement: processes broadcast their proposals and decide if sufficiently many pro-
cesses report the same proposal. This paper shows an OTC-based framework which
can reconstruct all major asynchronous Consensus algorithms, even in Byzantine
settings, with no overhead in latency or the required number of processes. This
result does not only deepen our understanding of Consensus, but also reduces the
problem of designing new, modular distributed agreement protocols to choosing the
parameters of OTC.

Keywords: Consensus, fault tolerance, Byzantine faults.

1 Introduction

In the Consensus problem, a fixed group of processes communicating through an asyn-
chronous network cooperate to reach a common decision. Each of the processes proposes
a value, say a number, and then they all try to agree on one of the proposals. Despite the
apparent simplicity, Consensus is surprisingly difficult to solve in a fault-tolerant manner,
so that even if some processes fail, the others will always reach an agreement. Consensus
is also universal: it can be used to implement any sequential object in a distributed and
fault-tolerant way [15].

In the most popular approach to solve Consensus, a distinguished process, called
the leader or coordinator, tries to impose its proposal on the others. This succeeds if
sufficiently many processes accept the coordinator’s proposal. Otherwise, another process
becomes the coordinator and repeats the protocol. Coordinators keep changing until one
of them succeeds and makes all correct processes decide.

The method just described forms the basis of a great majority of asynchronous Con-
sensus protocols [4, 5, 7, 9, 16, 19, 21, 25, 29]. It is interesting that, despite this deep
similarity in structure, all these protocols were constructed independently, from scratch.
I argue that this non-modular approach results in wasted effort, especially with proto-
cols tolerating malicious participants. Indeed, a small change to such protocols usually
requires rewriting the already multiple-page long and repetitive proof.



Numbers Correctness Honesty Behaviour

correct honest according to the specification
n







f

{

m
{

faulty honest according to the specification until it stops
faulty malicious completely arbitrary

Figure 1: Categories of processes.

This paper shows a possible solution to this problem. It presents an agreement frame-

work that allows one to reconstruct all above Consensus protocols and construct new ones
just by changing a small simple part of the algorithm. This approach greatly simplifies
the design of new Consensus algorithms, especially in the most complicated Byzantine
model. I believe that it also contributes to a better understanding of the Consensus
problem itself.

This research focuses solely on the number of communication steps (latency) required
in favourable scenarios, when the first coordinator is correct. Therefore, by “reconstruct-
ing” I mean matching the latency and the number of required processes. Other factors,
such as memory requirements, message complexity, or channel properties, are beyond the
scope of this work.

One of the motivations for this research was an enormous success of the failure detec-
tion framework [6], which encapsulates details of timing assumptions into failure detectors.
What this paper proposes is encapsulating the details of individual rounds of Consensus
algorithms, such as the latency, message patterns, and the number and type of faults
tolerated, into a new abstraction called Optimistically Terminating Consensus (OTC).

The OTC approach is attractive for several reasons:

• The OTC framework can reconstruct all major asynchronous Consensus protocols
[4, 5, 6, 9, 16, 18, 19, 21, 24, 29], significantly more than any other agreement
framework [1, 2, 3, 13, 17, 28].

• Unlike other frameworks, OTC tolerates malicious processes. Consensus protocols
for such settings are the most difficult to design, and benefit from modularization
most.

• OTC instances are completely independent in their implementation and specifica-
tion, so it is possible to use several different implementations of OTC in the same
Consensus algorithm. For example, one might use a fast implementation for the
first round, and a more fault-tolerant one for the others.

• The OTC abstraction is implementable in purely asynchronous settings. All other
factors, such as choosing the proposals and the time for stopping a round, are clearly
separated from the OTC specification.

Solving Consensus is only one of possible uses of OTC, which can also be used to
obtain latency-optimal implementations of other agreement abstraction, notably Atomic
Commitment for distributed databases [31]. In all cases, simplicity of OTC allows one
to discover and verify new protocols automatically, which is especially handy for non-
standard failure models [31].

4



This paper is structured as follows. Section 2.2 specifies the system model and the
Consensus problem. Section 3 introduces the OTC abstraction and shows how it can be
used to solve Consensus. Sections 4, 5, and 7 present different OTC implementations that
are used to reconstruct a number of Consensus algorithms in Section 5. Section 8 shows
the optimality of those implementations, and Section 9 concludes the paper.

1.1 Related work

Agreement frameworks have been investigated before. Mostéfaoui and Raynal [26] pro-
posed a generic Consensus algorithm that could use one of the two failure detectors ♦S

and S [6]. Hurfin et al. [17] generalized this method by allowing the message exchange
pattern to be chosen for each round of the protocol. In other words, the designer could
specify their approach to the time vs. message complexity problem: whether they pre-
ferred a low latency or a small number of messages.Mostéfaoui et al. [28] extended the
choice of options here to include the leader elector Ω and randomization, however, the
protocols they presented have higher latency than ad-hoc solutions.

Boichat et al. [1] presented a modular deconstruction of Paxos into an eventual leader

elector, similar to Ω, and a ranked register. By modifying the implementation of these
two modules, they obtained Fast Paxos [1], Disk Paxos [12], and two variants of Paxos
for the crash-recovery model. Later, they replaced the ranked register with the eventual

register [2, 3].
Guerraoui and Raynal [13] unified the approaches outlined in the last two paragraphs.

They presented a Consensus algorithm that uses a new Lambda abstraction, which can be
implemented with different failure detectors in a modular way. Most known Consensus
protocols for crash-stop asynchronous systems with failure detectors can be implemented
in this framework without any latency overhead.

Recently, Guerraoui and Raynal [14] presented Alpha: an abstraction similar to Lambda
but with a slightly different goal. Alpha provides an agreement framework that allows one
to construct a Consensus algorithm for different communication models such as message
passing, shared memory, and independent disks.

Lampson [22] presented Abstract Paxos, which can be used to obtain Byzantine Paxos
[5], Classic Paxos [19], and Disk Paxos [12]. Recently, Li et al. [23] showed how to
deconstruct Classic Paxos and Byzantine Paxos using two new abstractions: a register

that encapsulates quorum operations and a token that encapsulates a proof that the leader
has read a particular value from the register.

2 Definitions

2.1 System model

This paper assumes a system consisting of a fixed number of processes. Out of the total
number n of processes, at most f can fail, out of which at most m in a malicious way,
where m ≤ f ≤ n are parameters of the model (Figure 1). Processes communicate
through asynchronous reliable channels: each message sent from one correct process to
another correct process will eventually be received (reliability) but the transmission time
is unbounded (asynchrony). To make Consensus solvable [11], I additionally assume ♦S,

5



Name Type Meaning Equivalent in Hurfin’s algorithm

propose(v) action propose v broadcast phase2(r, v) if no stop or propose before
stop action stop processing broadcast phase2(r,⊥) if no stop or propose before

decision(v) pred. if true, then v is the decision at least n− f messages phase2(r, v) received
valid(v) pred. if true, then an honest process proposed v at least one message phase2(r, v) received
possible(v) pred. if any process ever decides on v, then true less than n− f messages phase2(r,non-v) received

Figure 2: Summary of the primitives provided by OTC.

the weakest failure detector with this property [7]. Detector ♦S provides each process
with a constantly updated list of processes suspected to be faulty, and ensures:

Strong Completeness. Every faulty process will eventually be suspected by every
correct process.

Eventual Weak Accuracy. There is a process that will eventually never be sus-
pected by any correct process.

In the Byzantine model (m > 0), failure detection cannot be completely separated from
the main algorithm [8]. Thus, in this model, I assume eventual synchrony instead [10]:
there is unknown upper bound on message transmission times between correct processes.
For example, message transmission times cannot grow ad infinitum.

2.2 Consensus

In Consensus, processes propose values and are expected to eventually agree on one of
them. The following holds:

Validity. The decision was proposed by some process.

Agreement. No two processes decide differently.

Termination. All correct processes eventually decide.

In the Byzantine model, these requirements apply only to honest processes. Since
malicious processes can undetectably lie about their proposals, I also assume that Validity
must be satisfied only if all processes are honest in a particular run.

Let us start with the crash-stop model. The Consensus algorithm proposed by Hurfin
and Raynal [16], shown in Figure 3, assumes a majority of correct processes (n > 2f) and
progresses in a sequence of rounds r = 1, 2, etc. Each process pi keeps an estimate esti
of the decision, initially equal to its own proposal vi. In each round r, a deterministically
chosen coordinator pc broadcasts phase1(r, esti) containing its estimate estc, in an attempt
to make estc the decision (line 5).

In lines 6–8, each process pi waits until it receives the estimate estc or its failure
detector ♦Si suspects the coordinator pc. It broadcasts phase2(r, auxi) with auxi being,
depending on which of the two conditions holds, the coordinator’s estimate etcc or a special
symbol ⊥, respectively. Note that reliability of the channels and Strong Completeness of
♦S ensure that at least one of these two conditions will eventually hold.

6



1 when process pi executes propose(vi) do
2 esti ← vi

3 for r = 1, 2, . . . do
4 c←

(

(r − 1) mod n
)

+ 1 { pc is the coordinator }

5 if i = c then broadcast phase1(r, esti)

6 wait for one of the following conditions:
7 if phase1(r, v) received from pc then auxi ← v

8 if pc is suspected by ♦Si then auxi ← ⊥

9 broadcast phase2(r, auxi)

10 wait for n− f messages phase2(r, auxj)
11 if all received auxj 6= ⊥ then bcast “decide on auxj”
12 if at least one auxj 6= ⊥ then esti ← auxj

13 when received “decide on v” do
14 broadcast “decide on v”
15 decide on v

16 halt

Figure 3: Consensus algorithm from [16].

After broadcasting in line 9, pi waits for n−f messages phase2(r, auxj), where auxj ∈
{estc,⊥}. If all n−f received auxj = estc 6= ⊥, process pi broadcasts “decide on auxj” to
all processes, including itself. Upon reception of such a message, the recipient rebroadcasts
it, decides on the specified value, and stops processing (lines 13–16).

Line 12 is arguably the most crucial part of the algorithm. It ensures that if some
process pi broadcast “decide on auxj” in line 11, all processes will update their estimates
to auxj. Indeed, the assumption f < 1

2
n implies that n− f > 1

2
n; since pi received

messages phase2(r, auxj) from a majority of processes, no process can receive messages
phase2(r,⊥) from a majority. After line 12, all processes pi have esti = auxj, so no
decision different than auxj can be reached in future rounds.

3 Optimistically Terminating Consensus

Optimistically Terminating Consensus (OTC) can be thought of as a version of Consensus
that guarantees Termination only if all correct processes propose the same value. The full
list of predicates and actions provided by this abstraction is shown in Figure 2. Before
giving a rigorous specification of OTC, I will introduce it informally by presenting an
OTC-based Consensus algorithm. This algorithm can implement different Consensus
protocols, depending on what OTC implementation is used.

The OTC-based Consensus algorithm, shown in Figure 4, is a revised version of
Hurfin’s algorithm from Figure 3. As in the original, each process keeps an estimate
esti and proceeds through a sequence of rounds. Each round r = 1, 2, . . . starts with
the coordinator pc broadcasting its current estimate estc. The rest of the round consists
of two parts: optimistic (lines 7–8) and pessimistic (lines 9–13).

7



1 when process pi executes propose(vi) do
2 esti ← vi

3 for r = 1, 2, . . . do
4 c←

(

(r − 1) mod n
)

+ 1
5 if i = c then broadcast phase1(r, esti)

6 execute { interrupt lines 7–8 when until holds }
7 wait for phase1(r, v) received from pc

8 OTCr.propose(v)
9 until pc suspected by ♦Si or “stop round r” received

10 OTCr.stop and broadcast “stop round r”

11 wait until OTCr.possible(v) holds for at most one v

12 wait until OTCr.possible(v)⇒OTCr.valid(v) for all v

13 if OTCr.possible(v) for some v then esti ← v

14 when OTCr.decision(v) or “decide on v” received do
15 broadcast “decide on v”
16 decide(v)
17 halt

Figure 4: Crash-stop Consensus using OTC.

3.1 Optimistic part, lines 7–8

Each round r = 1, 2, . . . uses its own, independent instance OTCr. OTC provides
each process with an action propose(v) to propose, and a predicate decision(v) to decide.
(Predicates are functions that operate on the process’ state and return immediately with-
out affecting the state.) Predicate decision(v), defined for all possible values v, is initially
false and becomes true when the process is sure that v is the decision. The semantic of
propose(v) and decision(v) is the same as in Consensus, except that the eventual decision
is guaranteed only if all correct processes proposed the same value. This paper assumes
v 6= ⊥.

In lines 7–8, each process waits for the coordinator’s estimate estc, and proposes it to
OTCr. If the coordinator is correct and not suspected, all correct processes will execute
OTCr.propose(estc). As a result, OTCr.decision(estc) will eventually become true at all
correct processes, which will decide on estc and halt (lines 14–17).

As shown in Figure 2, in Hurfin’s algorithm, OTCr.propose(v) corresponds to broad-
casting phase2(r, v). The predicate OTCr.decision(v) holds iff the process received at
least n− f messages phase2(r, v).

3.2 Pessimistic track, lines 9–13

In addition to propose and decision, OTC provides three other primitives: action stop and
predicates possible(v) and valid(v). Their purpose is to let processes keep their estimates
correct, and progress to the next round if no decision has been made.

While executing the optimistic part (lines 7–8), each process pi monitors its failure

8



detector ♦S. When pi suspects the coordinator, it interrupts the optimistic part and
executes OTCr.stop. It also informs other processes, who follow suit (lines 9–10). In
Hurfin’s algorithm, OTCr.stop corresponds to broadcasting phase2(r,⊥). Here, however,
pi can execute both OTCr.propose and OTCr.stop, which could lead to broadcasting both
phase2(r, estc) and phase2(r,⊥). To avoid this, OTCr allows pi to broadcast phase2 only
once, and ignores the second attempt (Figure 2).

Predicate OTCr.valid(v) holds at pi if pi is sure that at least one honest process
executed OTCr.propose(v). Predicate OTCr.possible(v) holds if pi cannot exclude the
possibility that OTCr has decided or will decide on v at some honest process. Therefore,
in lines 11–12, pi waits until it can be sure that no decision has been made in round r,
except possibly one value v, and that this v has indeed been proposed to OTCr by some
honest process. If such a v exists, pi adopts it as its new estimate. Line 11 ensures that
if OTCr.decision(v) holds at some process, then all processes will update their estimates
to v before starting the next round. This implies that no decisions other than v will be
reached in future rounds (Agreement). Line 12 ensures that only proposed values can
become estimates (Validity).

Predicate OTCr.valid(v) is initially false for all v and becomes true when pi has
sufficient evidence that v has been proposed by an honest process. In Hurfin’s algorithm,
OTCr.valid(v) holds iff pi received at least one message phase2(r, v).

Predicate OTCr.possible(v) is initially true for all v and becomes false when pi has
sufficient evidence that OTCr.decision(v) has never held and will never hold at any honest
process. In Hurfin’s algorithm, OTCr.possible(v) holds if pi received fewer than n − f

messages phase2(r, non-v), that is, either phase2(r,⊥) or phase2(r, v
′) with v′ 6= v.

The implementation of OTC must ensure that lines 11–12 do not block the algo-
rithm. In Hurfin’s algorithm, all correct processes eventually receive n − f messages
phase2(r, auxj) with auxj ∈ {estc,⊥}. This implies that OTCr.possible(v) can hold only
for v = estc because for any v 6= estc, “non-v” includes both estc and ⊥. On the other
hand, OTCr.possible(estc) means that less than n − f messages phase2(r,⊥) have been
received, which implies OTCr.valid(estc).

It is not difficult to see that the algorithm in Figure 4 with OTC implemented as in
Figure 2 implements Consensus. This is true for any OTC implementation, not only for
crash-stop settings but also, with minor modifications, for Byzantine settings. However,
to prove this claim, we need a rigorous specification of OTC first.

3.3 OTC properties

As summarized in Figure 2, OTC equips each process with two actions: propose(v) and
stop, as well as three predicates: valid(v), possible(v), and decision(v). These primitives
satisfy the following properties:

Integrity. If valid(v) holds at an honest process, then an honest process proposed v.

Possibility. If decision(v) holds at an honest process, then possible(v) holds at all
honest processes, at all times.

Permanent Validity. Statement possible(v) ⇒ valid(v) holds at any complete pro-
cess (see below).

9



decision(v)
at some honest process

possible(v) valid(v)

v proposed
by some honest process

v is unique

P
ossib

ility In
te

gr
it
y

Permanent Validity

Standard Validity

Standard Agreement

Perm
ane

nt
Agre

em
ent

Figure 5: OTC properties graphically.

Permanent Agreement. Predicate possible(v) holds for at most one v at any com-
plete process.

Optimistic Termination (q, k). If at most q out of n processes are faulty, all correct
processes propose v, and none of them executes stop, then decision(v) will hold
at all correct processes in k communication steps.

Properties Integrity and Possibility just formalize the definitions of predicates valid(v)
and possible(v) from Figure 2.

In Permanent Validity and Permanent Agreement, an honest process p is complete if
all correct processes executed stop, and p received all messages sent by those processes
before or during executing stop. These properties ensure that, if all correct processes
execute OTCr.stop in line 10 (Figure 4), then all of them will eventually be complete, so
lines 11 and 12 will not block. Note that p does not know which processes are correct, so
it does not know whether it is complete or not.

Although not immediately obvious, Permanent Validity and Permanent Agreement are
stronger versions of standard Validity and Agreement required by Consensus (Figure 5).
For example, consider an OTC run that violates Standard Agreement and decides on two
different values v and v′. By Possibility, possible(v) and possible(v′) hold at all processes
at all times. An extension of this run in which all correct processes execute stop and
become complete violates Permanent Agreement. Similarly, Permanent Validity implies
Standard Validity (Theorems A.1 and A.2).

3.4 Optimistic Termination

Optimistic Termination (q, k) of OTCr ensures that a round r with a correct and non-
suspected coordinator pc will decide on estc in 1+ k steps. In the first step, pc broadcasts
estc, which is proposed to OTCr by all correct processes (line 8). Optimistic Termination
guarantees that all correct processes decide k steps later, provided that at most q processes
are faulty. (No process ever executes OTCr.stop because they do not suspect pc.) Note
that the same OTCr can satisfy more than one Optimistic Termination condition.

This paper focuses on favourable runs, in which the first round coordinator is correct
and not suspected, and at most q processes are faulty. In such runs, the Consensus
algorithm from Figure 4 decides in k + 1 steps. For example, the OTC from Figure 2
satisfies Optimistic Termination (f, 1); the resulting Consensus algorithm decides in two
steps regardless of the number of faulty processes (which never exceeds f).

10



1 when process pi executes propose(vi) do
2 esti ← vi { decision estimates }
3 signedi ← ∅ { signed estimates }
4 for r = 1, 2, . . . do
5 start timerr

6 c←
(

(r − 1) mod n
)

+ 1
7 if i = c then broadcast phase1(r, esti, signedi)

8 execute { interrupt lines 9–12 when until holds }
9 wait for phase1(r, estc, signedc) from pc

10 if r = 1 or estc = esti or
11 >m messages in signedc have estj 6= esti then
12 OTCr.propose(v)
13 until timerr expired or
14 “stop round r” received > m times
15 OTCr.stop and broadcast “stop round r”

16 wait until OTCr.possible(v) holds for at most one v

17 wait until OTCr.possible(v)⇒OTCr.valid(v) for all v

18 if OTCr.possible(v) for some v then esti ← v

19 digitally sign esti and broadcast signed(r, esti)
20 wait for f + m + 1 signed messages signed(r, estj)
21 and store them in signedi

22 if >f messages in signedi have the same estj then
23 esti ← estj

24 when OTCr.decision(v) for the current r

25 or “decide on v” received > m times do
26 decide(v) and broadcast “decide on v”
27 wait until received “decide on v” > f + m times
28 halt

Figure 6: Byzantine Consensus using OTC.

To guarantee Termination of the Consensus protocol in any run, I assume that all
OTCr satisfy Optimistic Termination (f, k) for some k. Then, Strong Completeness of
♦S implies that in any round, all correct processes will either decide or pass line 9 in
Figure 4. Eventual Weak Accuracy of ♦S ensures that there will be a round with a
correct and non-suspected coordinator. That round will decide.

3.5 Byzantine Consensus

Although OTC solves crash-stop Consensus, its real aim greatly facilitate (re)-construction
Consensus algorithms for Byzantine settings (Figure 8). These protocols are notoriously
difficult to design, and require long, elaborate proofs of correctness. The main purpose of
the OTC framework is to stop designing such protocols being a nightmare.

To deal with malicious processes, the OTC Consensus algorithm from Figure 4 requires

11



a few modifications (Figure 6). Although individual instances OTCr are required to
remain correct even in the presence of malicious processes, different instances OTCr might
reach different decisions. Therefore, we need to ensure that, if some round decided on v,
no malicious coordinator pc can broadcast estc 6= v in a later round.

To solve this problem, at the end of each round, processes digitally sign and broadcast
their estimates esti. Each process pi waits for such estimates from f + m + 1 processes
and stores them in the variable signedi. Then, pi checks whether more than f of these
estimates are the same, and updates its own estimate if so. This ensures that, for any
v 6= esti, more than m signed estimates differ from v, so pi can prove that no decision,
other than possibly esti, has been made.

At the beginning of each round, the coordinator broadcasts not only its estimate estc
but also the f + m + 1 estimates signedc it received in the previous round. If a process
pi receives estc 6= esti, it checks whether more than m estimates in signedc received from
the coordinator are different from esti. This proves that no decision has been made yet,
and it is safe to accept the coordinator’s estimate estc.

Note that in favourable runs, in which all correct processes decide in the first round,
no digital signatures are used.

Since traditional failure detectors are not implementable in Byzantine settings [8], the
algorithm from Figure 6 assumes an unknown upper bound d on message transmission
times [10]. Each process starts its timerr at the beginning of each round r, and executes
OTCr.stop when timerr expires. The timeout periods grow from round to round, so that
they will eventually become longer than kd, for any fixed k.

Note that line 13 can never block the algorithm forever. For this reason, we can allow
a finite number rounds r to have OTCr that does not satisfy Optimistic Termination
(f, k).

Finally, minor modifications in lines 14, 25, 27 results from the fact that, in the Byzan-
tine model, one can trust only groups containing more than m processes (Appendix F).

4 Implementing OTC in one step

Figure 7 presents an implementation of OTC that satisfies Optimistic Termination (q, 1),
that is, decides in one step in favourable runs. It uses a new simple broadcast abstrac-
tion called monocast, which is similar to ordinary broadcast, except that each process is
allowed to broadcast only one message; the possible second and subsequent attempts are
silently ignored. A similar restriction applies to monoreceiving messages: the second and
subsequent messages received from the same process are ignored. This prevents malicious
senders from broadcasting multiple messages.

To prevent identity spoofing in the Byzantine case, I assume pairwise shared keys for
symmetric encryption and authentication [5]. The setup of such keys is beyond the scope
of this paper. It has little impact on performance as it needs to be done only once.

As shown in Figure 7, processes execute propose(v) by monocasting v, and stop by
monocasting ⊥. If a process executes both, the monocast abstraction ensures that the
first action wins and the other is ignored (compare with Figure 2).

For any process pi, predicates valid(v), decision(v), and possible(v) are determined by
monoreceived messages. Predicate valid(v) is true if pi has monoreceived v more than m

times. Since there are at most m malicious processes, at least one of the senders is honest,

12



Primitive Implementation / Definition

propose(v) monocast v

stop monocast ⊥

decision(v) v monoreceived at least n− q times
possible(v) non-v monoreceived at most q + m times
valid(v) v monoreceived more than m times

Figure 7: One step OTC implementation.

so it must have proposed and monocast v (Integrity). Predicate decision(v) holds if pi

monoreceived v at least n−q times. This means that if all n−q correct processes propose
v and do not execute stop, they will all decide in one communication step (Optimistic
Termination). Finally, predicate possible(v) is true if pi received values different from v

at most q + m times. If decision(v) holds, then at least n− q−m honest processes must
have monocast v. As a consequence, no process can monoreceive non-v values more than
q + m times, which makes predicate possible(v) true at all honest processes, at all times
(Possibility).

As just shown, the OTC algorithm in Figure 7 satisfies Integrity, Possibility, and
Optimistic Termination (q, 1) regardless of the values of parameters n, f , m, q. The other
two properties require (see the proof below):

Permanent Validity n > f + 2m + q

Permanent Agreement n > f + 2m + 2q

For example, using one-step OTC with q = m = f in the Byzantine Consensus from
Figure 6 requires n > 5f . In favourable runs, this algorithm decides in two steps: one for
the coordinator’s estimate est1 to reach other processes, and the other for OTC1 to decide.
Deciding in two steps given n > 5f matches the properties of [24]. Other reconstructions,
shown in Figure 8, will be discussed in Section 6.

Proof. Let pi be a complete process. By the definition of completeness, pi has monore-
ceived one message from each of the n− f correct processes. If possible(v) holds, then at
most q + m of these messages are other than v. This means that pi monoreceived at least
n− f − q −m > m messages v, which implies valid(v) (Permanent Validity).

For Permanent Agreement, assume that possible(v) and possible(v′) hold some values
v and v′. This means pi monoreceived at most 2q + 2m messages that are either non-v
or non-v′. Since pi has monoreceived at least n − f > 2q + 2m messages, at least one
of them is neither non-v nor non-v′. This message is v and v′ at the same time, which
implies v = v′ (Permanent Agreement).

Recall, that completeness of pi requires all correct processes to execute stop. Note
however that the above proof uses completeness only to ensure that pi monoreceived one
message from each correct process. Since stop and propose(v) both involve a monocast,
Permanent Validity and Permanent Agreement hold even if we replace “stop” by “stop
or propose” in the definition of completeness. This property is specific to one-step OTC
and will be used in Section 6.1.

13



Algorithm m q Steps Type of OTC1 Requirements

crash-stop [7, 16, 19, 29] 0 f 2 single-value one-step n > f + 2m + q = 2f
Cheap Paxos [21] 0 0 2 single-value one-step n′> f + 2m + q = f

Brasileiro et al. [4] 0 f 1∗ multi-value one-step n > f + 2m + 2q = 3f
cheap one-step Consensus 0 0 1∗ single-value one-step n′> f + 2m + 2q = f

Kursawe [18] f 0 2 multi-value one-step n > f + 2m + 2q = 3f
Martin and Alvisi [24] f f 2 multi-value one-step n > f + 2m + 2q = 5f
one-step Byzantine (1) f 0 1∗ multi-value one-step n > f + 2m + 2q = 3f
one-step Byzantine (2) f f 1∗ multi-value one-step n > f + 2m + 2q = 5f
Castro and Liskov [5] f f 3 multi-value two-step n > f + m + q = 3f

Zieliński [30] f q/f/f 2/3 multi-value multi-step† n > f + m + f + q

Dutta et al. [9] m q/f/f 2/3 multi-value multi-step† n > f + m + f + min {m, q}
multi-step Byzantine m q/q′/f 2/3/4 multi-value multi-step† n > f + m + q′ + min {m, q}

† All multi-step algorithms additionally require n > f + 2m + 2q and n > 2f + m.

Figure 8: Reconstructing various Consensus protocols in the OTC framework.

4.1 Single-value OTC

In the crash-stop Consensus algorithm in Figure 4, processes use the coordinator’s esti-
mate estc as their proposal to OTCr (line 8). Since the crash-stop model does not allow
malicious coordinators, all values proposed to OTCr are the same (estc). Some OTC
implementations for this model can explicitly assume that this is the case; I call them
single-value OTCs, as opposed to the normal, multi-value OTCs, which tolerate different
proposals.

Single-value OTCs differ from multi-value OTCs in that they do not have to explicitly
satisfy Permanent Agreement, which in that case follows automatically from Permanent
Validity. Indeed, assume that possible(v)⇒ valid(v) for all v. If possible(v) holds for two
different v, then valid(v) holds for two different v, which implies that two different values
have been proposed by honest processes. This contradicts the single-value assumption that
all honest processes propose the same value. Standard Agreement follows from Standard
Validity in a similar way.

Automatic satisfaction of Permanent Agreement means that single-value OTCs might
require fewer processes than multi-value OTCs. For example, one-step OTC from Figure 7
requires n > f+2m+2q to implement multi-value OTC, but only n > f+2m+q for single-
value OTC. Setting m = 0, q = f leads to a two-step crash-stop Consensus algorithm that
requires n > 2f , the same as in Hurfin’s and similar algorithms [7, 16, 19, 29] (Figure 8).

5 Implementing OTC in two steps

In the Byzantine model, the requirements on n can be further reduced by using multiple-
step OTC implementations implemented as chains of one-step OTC instances:

A1 → A2 → · · · → Ak.

Processes propose their value to the first instance A1. Then, decisions are propagated
along the chain: if a process reaches a decision v in instance Ai, it immediately proposes
v to the next instance Ai+1. The decision of the last instance Ak becomes the final

14



decision. Stopping the algorithm involves stopping all instances A1, . . . , Ak. Each Ai

uses a separate instance of monocast.
The predicate valid is taken from the first instance, whereas predicates possible and

decision come from the last instance:

valid(v)
def

= validA1
(v),

possible(v)
def

= possibleAk
(v),

decision(v)
def

= decisionAk
(v).

Properties Integrity and Possibility of A1 → · · · → Ak follow immediately from analo-
gous properties of instances A1 and Ak, respectively. For Optimistic Termination, assume
that at most q processes are faulty and none of them executes stop. Each instance Ai

satisfies Optimistic Termination (q, 1): if all correct processes propose v to Ai, they will
all decide on v in one step, and propose it to Ai+1. By simple induction, A1 → · · · → Ak

satisfies Optimistic Termination (q, k).
Theorems C.2 and C.3 prove that A1 → · · · → Ak≥2 requires:

Permanent Validity n > f + m + q

Permanent Agreement n > f + m + q

Since these requirements are the same for any k ≥ 2, let us focus on the two-step OTC
algorithm A1 → A2, which satisfies Optimistic Termination (q, 2).

For example, using this two-step OTC with q = m = f in the Byzantine Consensus
from Figure 6 results in a three-step algorithm that requires n > 3f , which matches the
properties of [5].

6 Reconstructing Consensus algorithms

Figure 8 shows an (incomplete) list of Consensus algorithms that can be (re)constructed
in the OTC framework. Each row specifies the maximum number of malicious processes
m and the number of communication steps in which a decision is made in favourable runs
(with at most q faulty processes).

The remaining columns provide information on how to construct a matching algorithm
in the OTC framework. They show the type of the first round OTC and the resulting
requirements on n. The OTCs used in other rounds are not shown because they do
not affect the latency in favourable runs. For these rounds, I assume single-value one-
step OTC in crash-stop settings and a multi-value two-step OTC in Byzantine settings.
With q = f , these OTCs require n > 2f and n > 2f +m, respectively, which are necessary
to implement Consensus anyway [20]. Note that Cheap Paxos [21] also requires n > 2f
processes in general, but uses only n′ > f primary processes in the first round (which is
the only round executed in favourable runs).

6.1 Eliminating the first coordinator

Some algorithms in Figure 8 require “1∗” steps. In these, processes propose their Consen-
sus proposals to OTC1 directly, instead of waiting for the coordinator’s proposal. This

15



Theorem Opt. Termination Proposals Necessary condition Shows optimality of

Theorem G.1 (q1, 1) single-value n > f + q1 + 2m one-step single-value OTC
Theorem G.2 (q1, 1) multi-value n > f + 2q1 + 2m one-step multi-value OTC
Theorem G.3 (qk, k) single-value n > f + qk + m two-step OTC
Theorem G.4 (q1, 1) and (q2, 2) multi-value n > f + q2 + m + min {q1,m} multi-step OTC

Figure 9: Summary of OTC lower boundsproved in Appendix G.

saves one communication step but decides in the first round only if all correct processes
propose the same value. To tolerate runs in which processes propose different values, one
must use a multi-value OTC1, even in crash-stop settings. For example, multi-value one-
step OTC with m = 0, q = f allows us to reconstruct the one-step Consensus algorithm
from [4]. Setting q = 0 leads to a new algorithm that requires only n′ > f primary pro-
cesses and decides in one step provided that all primary processes are correct and propose
the same value. The same technique with m = f , gives us two new analogous one-step
Byzantine Consensus algorithms that require n > 5f and n > 3f , respectively.

With no coordinator to fail, proposing to OTC1 directly ensures that all correct pro-
cesses execute OTC1.propose. Assuming a one-step implementation of OTC1, this is
sufficient to ensure that lines 11–12 in Figure 4 will not block (Section 4). For this reason,
OTC1.stop is not necessary any more, and lines 9–10 can be eliminated from round 1.

Eliminating OTC1.stop implies that the first round does not use failure detectors
(which process would they monitor if there is no coordinator?) As a result, OTC1, satis-
fying Optimistic Termination (q, 1), does not require q = f (Section 3.4). The same holds
for the Byzantine model.

7 Multi-step OTC

There is a trade-off between OTC implementations: one-step OTCs are fast but require
many processes, whereas two-step OTCs are slower but can work with fewer processes.
This section presents the multi-step OTC algorithm, which satisfies the three Optimistic
Termination conditions (q1, 1), (q2, 2), and (q3, 3) at the same time. It consists of three
OTC chains from Section 5 executed in parallel:

A1 with q = q1,

B1 → B2 with q = q2,

C1 → C2 → C3 with q = q3.

Instances A1, B1, and C1 share the same monocast instance; each proposed value is
proposed to all three chains at the same time. In other words, propose(v) consists of
proposeA1

(v), proposeB1
(v), and proposeC1

(v). Stopping the algorithm involves stopping
all six one-step OTC instances.

16



OTC predicates are defined as:

valid(v)
def

= validA1
(v) ∨ validB1

(v) ∨ validC1
(v)

decision(v)
def

= decisionA1
(v) ∨ decisionB2

(v) ∨ decisionC3
(v)

possible(v)
def

=
(

possibleA1
(v) ∧ ¬∃ v′ 6= v : validC2

(v′)
)

∨ possibleB2
(v) ∨ possibleC3

(v)

In other words, the multi-step predicate valid(v) is true if it holds for at least one of the
instances A1, B1, C1. Similarly, decision(v) holds if it holds for at least one of A1, B2,
C3. Predicate possible(v) is an improved version of the more natural definition

possible(v)
def

= possibleA1
(v) ∨ possibleB2

(v) ∨ possibleC3
(v).

It states that v is a possible decision of A1 only if validC2
(v′) holds for no v′ 6= v. Indeed,

honest processes propose v′ to C2 only after deciding on v′ in C1. Instances A1 and C1

share the same proposals and monocast instances, so they cannot reach different decisions
v and v′ (Lemma B.3).

The system of three chains A1, B1 → B2, C1 → C2 → C3 implements OTC. Properties
Integrity, Possibility, and Optimistic Termination (qi, i) for i = 1, 2, 3 follow easily from
the analogous properties of the individual chains. The same applies to Permanent Validity,
which therefore requires

n > f + 2m + q1, n > f + m + q2, n > f + m + q3.

Theorem D.1 shows that Permanent Agreement requires

n > f + 2m + 2q1, n > f + m + q2 + min {m, q1}.

The former requirement ensures Permanent Agreement of instance A1. The other is
necessary for Permanent Agreement between decisions made by A1 and the two other
chains.

7.1 More Consensus algorithms

The multi-step OTC described in this section allows us to (re)construct the last three
algorithms from Figure 8. In favourable runs, both [9, 30] decide in two steps if at most q

processes are faulty, and in three steps otherwise. Algorithm [30] assumes that all faulty
processes are malicious (m = f), whereas [9] works for any m ≤ f . They can both be
reconstructed by using multi-step OTC with q1 = q and q2 = q3 = f for the first round.
By setting q2 < q3 = f , one can construct a multi-step Byzantine Consensus algorithm
that subsumes all known Byzantine Consensus algorithms, and is sometimes able to decide
in the first round even when [9] cannot, for example: n = 8, m = q = 1, q′ = 2, f = 3.

8 Lower bounds

Figure 9 summarizes four lower bound theorems proved in Appendix G. Each of them
states the minimum number of processes n necessary to implement OTC with a given
Optimistic Termination property. The theorems show that the requirements of OTC
implementations presented in this paper are optimal.

17



9 Conclusion and future work

This paper introduced Optimistically Terminating Consensus, a variant of Consensus that
decides if all correct processes propose the same value. Unlike condition-based Consen-
sus [27], OTC is designed to be used to implement full Consensus protocols. For this
reason, it provides stronger Validity and Agreement properties, which allow another OTC
instance to take over if the current one failed.

OTC is simple to implement, even with malicious participants: processes broadcast
their proposals and decide if sufficiently many processes report the same proposal. This
simple one-step implementation is sufficient to reconstruct a large number of Consensus
algorithms [4, 6, 16, 18, 19, 21, 24, 29]. By combining several instances of one-step
OTC, one can reconstruct even more protocols [5, 9, 30]. New Consensus algorithms can
be obtained: cheap one-step crash-stop Consensus, two variants of one-step Byzantine
Consensus, and a Byzantine Consensus algorithm that subsumes [5, 9, 30]. For all OTC
implementations presented in this paper, the number of processes n required is optimal.

In comparison to other agreement frameworks [1, 2, 3, 13, 17, 28], the OTC approach
makes it possible to (re)construct the highest number of known and new Consensus al-
gorithms. Firstly, OTC allows us to (re)construct Consensus protocols not only for the
crash-stop model, but also for the much more difficult Byzantine model. Secondly, indi-
vidual OTC instances are fully self-contained and independent, which gives us additional
modularity and flexibility in designing agreement protocols. Thirdly, OTC implementa-
tions are simple and fully asynchronous, which makes it possible to discover new imple-
mentations automatically [31].

The concept of OTC greatly simplifies the design of new Consensus algorithms, espe-
cially in the most complicated, Byzantine, model. I also believe that with this overhead-
free modular construction comes a deeper understanding of the Consensus problem itself.
Encouraged by this, I envisage applying similar ideas to other agreement abstractions as
a probable direction of my future work.

References

[1] Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Deconstruct-
ing Paxos. Technical Report DSC/2002/032, Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, January 2001.

[2] Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Deconstruct-
ing Paxos. ACM SIGACT News, 34, 2003.

[3] Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Reconstruct-
ing Paxos. ACM SIGACT News, 34, 2003.

[4] Francisco Brasileiro, Fab́ıola Greve, Achour Mostéfaoui, and Michel Raynal. Con-
sensus in one communication step. Lecture Notes in Computer Science, 2127:42–50,
2001.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Pro-

ceedings of the Third Symposium on Operating Systems Design and Implementation,
pages 173–186, New Orleans, Louisiana, February 1999. USENIX Association.

18



[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[7] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving Consensus. Journal of the ACM, 43(4):685–722, 1996.

[8] Assia Doudou, Benôıt Garbinato, and Rachid Guerraoui. Encapsulating failure de-
tection: From crash to Byzantine failures. In Proceedings of the 7th International

Conference on Reliable Software Technologies, pages 24–50, June 2002.

[9] Partha Dutta, Rachid Guerraoui, and Marko Vukolic. Asynchronous Byzantine Con-
sensus: Complexity, resilience and authentication. Technical Report 200479, EPFL,
September 2004.

[10] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed Consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[12] Eli Gafni and Leslie Lamport. Disk Paxos. In International Symposium on Distributed

Computing, pages 330–344, 2000.

[13] Rachid Guerraoui and Michel Raynal. The information structure of indulgent Con-
sensus. Technical Report PI-1531, IRISA, April, 2003.

[14] Rachid Guerraoui and Michel Raynal. The alpha and omega of asynchronous Con-
sensus. Technical Report PI-1676, IRISA, January 2005.

[15] Maurice P. Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In Proceedings of the 7th Annual ACM Symposium on Principles of Distributed

Computing, pages 276–290, New York, NY, USA, 1988.

[16] Michel Hurfin and Michel Raynal. A simple and fast asynchronous Consensus pro-
tocol based on a weak failure detector. Distributed Computing, 12(4):209–223, 1999.

[17] Michel Hurfin, A. Mostfaoui, and Michel Raynal. A versatile family of Consensus
protocols based on Chandra-Toueg’s unreliable failure detectors. IEEE Transactions

Comput., 51(4):395–408, 2002.

[18] Klaus Kursawe. Optimistic asynchronous Byzantine agreement. Technical Report
RZ 3202 (#93248), IBM Research, January 2000.

[19] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, December
2001.

[20] Leslie Lamport. Lower bounds on asynchronous Consensus. In André Schiper,
Alex A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao, editors, Future Direc-

tions in Distributed Computing, volume 2584 of Lecture Notes in Computer Science,
pages 22–23. Springer, 2003.

19



[21] Leslie Lamport and Mike Massa. Cheap Paxos. In Proceedings of 2004 International

Conference on Dependable Systems and Networks, pages 307–314, Florence, Italy,
June 2004.

[22] Butler Lampson. The ABCD of Paxos. In Proceedings of the twentieth Annual ACM

Symposium on Principles of Distributed Computing, page 13. ACM Press, 2001.

[23] Harry C. Li, Lorenzo Alvisi, and Allen Clement. The game of Paxos. Technical
Report CS-TR-05-24, The University of Texas at Austin, Department of Computer
Sciences, May 2005.

[24] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine Paxos. Technical Report
TR-04-07, University of Texas at Austin, Department of Computer Science., 2004.

[25] Achour Mostéfaoui and Michel Raynal. Leader-based Consensus. Technical Report
1372, IRISA, 2000.

[26] Achour Mostéfaoui and Michel Raynal. Solving Consensus using Chandra-Toueg’s
unreliable failure detectors: A general quorum-based approach. In Proceedings of the

13th International Symposium on Distributed Computing, pages 49–63, London, UK,
1999. Springer-Verlag.

[27] Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. Conditions on input vec-
tors for Consensus solvability in asynchronous distributed systems. In Proceedings

of the 33rd Annual ACM Symposium on Theory of Computing, pages 153–162. ACM
Press, 2001.

[28] Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. A versatile and modular
Consensus protocol. In Proceedings of International IEEE Conference on Dependable

Systems and Networks, pages 364–373, 2002.

[29] André Schiper. Early Consensus in an asynchronous system with a weak failure
detector. Distributed Computing, 10(3):149–157, April 1997.

[30] Piotr Zieliński. Paxos at war. Technical Report UCAM-CL-TR-593,
Computer Laboratory, University of Cambridge, June 2004. Available at
http://www.cl.cam.ac.uk/TechReports/.

[31] Piotr Zieliński. Minimizing latency of agreement protocols. PhD thesis, Computer
Laboratory, University of Cambridge, 2006. Technical Report UCAM-CL-TR-667.
Available at http://www.cl.cam.ac.uk/TechReports/.

20



A General OTC

Theorem A.1. If an OTC algorithm satisfies Permanent Validity, Possibility, and In-

tegrity, then it also satisfies Standard Validity.

Proof. Consider a run r1 in which some honest, but not necessarily correct, process p

decides on v. To show Standard Validity, we have to prove that some honest process
executed propose(v).

Consider a run r2 which is identical to r1 except that, at some time t, after process
p decided, all correct processes execute stop and no honest process executes any propose

actions after that time. Runs r1 and r2 are identical until time t, so process p decides on
v in run r2 as well.

In run r1, all correct processes execute stop at time t, so every correct process q will
eventually enter a complete state. At that time, predicate possible(v) must hold at q

because process p decided on v (Possibility). Permanent Validity implies that valid(v)
must hold as well. Then, the Integrity property implies that an honest process executed
propose(v) in run r2; this must have happened before time t because no honest process ex-
ecuted propose afterwards. Since runs r1 and r2 are identical until time t, the same honest
process must have executed propose(v) in run r1 as well, which implies the assertion.

Theorem A.2. If an OTC algorithm satisfies Permanent Agreement and Possibility,

then it also satisfies Standard Agreement.

Proof. Consider a run r1 in which some honest process p decides on v and another honest
process p′ decides on v′. To show standard Agreement, we have to prove that v = v′.

Consider a run r2 which is identical to r1 except that, at some time t, after both p

and p′ decided, all correct processes execute stop. Runs r1 and r2 are identical until time
t, so processes p and p′ decide on v and v′, respectively, in run r2 as well.

In r2, all correct processes executed stop at time t, so every correct process q will
eventually enter a complete state. At that time, predicates possible(v) and possible(v′)
must hold at q because processes p and p′ decided on v and v′, respectively (Possibility).
Permanent Agreement implies the assertion (v = v′).

B One-step OTC

Theorem B.1 (Strong Standard Validity). Assume that n > f+m+q. If decision(v)
holds at an honest process, then valid(v) holds at all complete processes.

Proof. Predicate decision(v) implies that at least n−q−f correct processes have monocast
v. Consider a complete process p. Every execution of stop involves monocasting, so p

has monoreceived messages from all correct processes. At least n − q − f > m of these
messages are v, so valid(v) holds.

Theorem B.2 (Weak Permanent Validity). Assume that n > f+m+q. If possible(v)
holds at a complete process, then an honest process executed propose(v).

21



Proof. Consider a complete process p. Every execution of stop involves monocasting,
therefore p has monoreceived messages from all n − f correct processes. Predicate
possible(v) holds, so at most q + m of these messages were different from v. There-
fore, at least n− f − q −m > 0 of these messages were v, which means that at least one
correct process monocast v, which implies the assertion.

Lemma B.3 (Standard Agreement). If n > m + 2q, then no two honest processes

decide on different values.

Proof. Assume decision(v) holds at some honest process p. Thus, p has monoreceived
v from at least n − q processes, which implies that at least n − q −m honest processes
proposed v. To obtain a contradiction, assume that decision(v) holds, possibly at different
processes, for at least two different v. Since no honest process proposes two different
values, 2(n−q−m) > n−m honest processes proposed something. This contradicts with
the fact that there are only n−m honest processes.

Lemma B.4 (Standard Validity). Assume n > m + q. If decision(v) holds at an

honest process, then some honest process proposed v.

Proof. Predicate decision(v) at an honest process, it must have monoreceived v from at
least n − q processes. Since n − q > m, at least one of these processes must be honest,
which implies the assertion.

C Two-step OTC

Lemma C.1. Assume n > f + m + q and consider a chain A1 → · · · → Ak of one-step

OTC instances Ai. If possibleAk
(v) holds at a complete process, then an honest process

proposed v in A1.

Proof. By induction on k. The base case k = 1 follows directly from Theorem B.2. For
k > 1, if possibleAk

(v) holds at a complete process, then the inductive assumption for the
subchain A2 → · · · → Ak implies that an honest process p proposed v to A2. To execute
proposeA2

(v), process p must have decided on v in A1. Since n > f + m + q ≥ m + q,
Lemma B.4 applied to A1 implies the assertion.

Theorem C.2 (Permanent Validity). Assume n > f + m + q and consider a chain

A1 → · · · → Ak with k ≥ 2. For any complete process, possible(v)⇒ valid(v) for all v.

Proof. Predicate possible(v)
def

= possibleAk
(v), so Lemma C.1 applied to the subchain

A2 → · · · → Ak implies that an honest process p proposed v to A2. To execute
proposeA2

(v), process p must have decided on v in A1. Theorem B.1 implies the as-
sertion.

Theorem C.3 (Permanent Agreement). Assume n > f +m+q and consider a chain

A1 → · · · → Ak with k ≥ 2. For any complete process, possible(v) holds for at most one v.

Proof. Predicate possible(v)
def

= possibleAk
(v), so Theorem B.2 applied to Ak implies that

some honest process p proposed v in Ak. To execute proposeAk
(v), process p must have

decided on v in Ak−1. Since n > f +m+ q ≥ m+2q, Lemma B.3 applied to Ak−1 implies
the assertion.

22



D Multi-step OTC

Theorem D.1 (Permanent Agreement). Assume that

n > f + 2m + 2q1,

n > f + m + q2 + min {m, q1},

n > f + m + q3.

For any complete process, possible(v) holds for at most one v.

Proof. Predicate possible(v) is defined as

possible(v)
def

=
(

possibleA1
(v) ∧ ¬∃ v′ 6= v : validC2

(v′)
)

∨ possibleB2
(v) ∨ possibleC3

(v)

The assumption n > f + 2m + 2q1 implies Permanent Agreement of A1, whereas the
other two assumptions imply Permanent Agreement of chains B1 → B2 and C1 → C2 →
C3 (Theorem C.2). Therefore, predicates possibleA1

(v), possibleB2
(v), and possibleC3

(v)
can each hold for at most one v. To complete the proof, consider three values vA, vB, vC ,
which – if they exist – satisfy

possibleA1
(vA) ∧ ¬∃ v′ 6= vA : validC2

(v′),

possibleB2
(vB),

possibleC3
(vC).

We need to prove that all existing vA, vB, vC must be the same. In other words, we have
to show that vA = vB, vA = vC , and vB = vC .

• Equality vA = vC. Since n > f + m + q3, Theorem C.2 states that the subchain
C2 → C3 satisfies Permanent Validity. Therefore, possibleC3

(vC) ⇒ validC2
(vC),

which implies vA = vC .

• Equality vB = vC. If possibleC3
(vC), then Lemma C.1 used for the subchain C2 → C3

implies that an honest process proposed vC to C2, which implies that vC was a
decision in C1. Similarly, Theorem B.2 applied to B2 implies that vB was a decision
in B1. The assumption q3 ≥ q2 implies that decisionB1

(vB)⇒ decisionC1
(vB). Since

n > f + m + q3 ≥ m + 2q3, Lemma B.3 implies that vB = vC .

• Equality vA = vB. Showing vA = vB requires considering two cases of the assumption
n > f + m + q2 + min {m, q1}:

– Case n > f +m+q2+m. In this case, instance B2 satisfies Permanent Validity.
As a result, possibleB2

(vB)⇒ validB2
(vB)⇔ validC2

(vB), so vA = vB.

– Case n > f + m + q2 + q1. Theorem B.2 applied to B2 implies that vB was a
decision in B1. This implies that at least n− q2− f correct processes proposed
vB to B1. On the other hand, possibleA1

(vA) at a complete process implies
that at most q1 + m correct processes proposed a non-vA to A1. If vA 6= vB,
then vB is non-vA, so n − q2 − f ≤ q1 + m, which contradicts the assumption
n > f + m + q1 + q2.

23



E Crash-stop Consensus

Theorem E.1 (Termination). Assume that all instances OTCr satisfy Optimistic Ter-

mination (f, k) for some k. All correct processes will eventually decide.

Proof. If some correct process p halts, then all correct processes will eventually decide.
Indeed, p must have broadcast “decide on v” in line 15. This message will eventually be
received by all correct processes, which will all decide on v and halt (lines 14–17). We
can therefore assume that no correct process halts.

I will show that, in any round r started by all correct processes, either all of them will
decide or proceed to the next round. Let pc be the coordinator of round r. There are two
cases:

1. No correct process ever suspects pc after starting round r, which implies:

• No correct processes ever executes OTCr.stop.

• By Strong Completeness of ♦S, coordinator pc is correct. Therefore, all correct
processes will eventually receive phase1(r, estc) broadcast by pc in line 5, and
execute OTCr.propose(estc).

Therefore, Optimistic Termination (f, k) of OTCr ensures that all correct processes
will decide.

2. Some correct process suspects pc after starting round r. This process will broadcast
“stop round r”, line 10, and as a result all correct processes will eventually execute
OTCr.stop. Thanks to Permanent Validity and Permanent Agreement of OTCr, all
correct processes will eventually satisfy the conditions in lines 11–12, and progress
to round r + 1.

The Termination property can only be violated if Case 2 holds for all rounds r. This
is impossible, however, because Weak Eventual Accuracy of ♦S implies that there will
eventually be a round r such that its coordinator pc will never be suspected.

F Byzantine Consensus

F.1 Validity

Lemma F.1. If an honest process decides on v, then OTCr.decision(v) holds at some

honest process for some round r.

Proof. Let p be the first honest process to decide on v. Process p can decide in two cases
(line 25):

1. It received messages “decide on v” from more than m processes. One of these
message must come from an honest process that decided on v before, which conflicts
with the definition of p as the first process to do so.

2. Predicate OTCr.decision(v) holds at p, which proves the assertion.

24



Lemma F.2. If all processes are honest, then any esti has been proposed by some process.

Proof. By induction on the round number r. At the beginning of the first round, esti = vi,
the value proposed by process pi. For the induction step, assume that the assertions hold
for round r. We have to prove that the assignments in lines 18 and 22 preserve the
assertion.

If “esti ← v” in line 18 is performed, then aOTCr.possible(v) holds and so does
OTCr.valid(v) (line 17). Integrity of OTCr implies that some honest process p executed
OTCr.propose(v). We assume all processes to be honest, so v = estc, the estimate held
by the coordinator pcr

at the beginning of round r. By the inductive assumption, estc has
been proposed by some honest process.

The assignment esti ← v in line 22 is performed only if more than f processes report
to have the same estimate v. Since f ≥ m, at least one of these processes is honest, so
the assertion holds.

Theorem F.3 (Validity). If all processes are honest and one of them decides on v, then

v was proposed by some process.

Proof. Lemma F.1 shows that OTCr.decision(v) holds at some process. By Standard
Validity of OTCr, at least one honest process must have executed OTCr.propose(v). We
assume all processes to be honest, so v = estc, the estimate held by the coordinator pcr

at
the beginning of round r. Lemma F.2 states that estc has been proposed by some honest
process, which proves the assertion.

F.2 Agreement

Lemma F.4. If, after line 18 of round r, all honest processes have the same estimate

esti = est, then the same will be true for round r + 1. Moreover, no honest process will

execute OTCr+1.propose(v) for any v 6= est.

Proof. Consider any honest process p. In line 20, p has received f + m + 1 messages
signed(r, estj). At least f + m + 1−m > f of them come from honest processes, so they
carry the same estj = est. As a result, all honest processes pi have esti = est at the end
of round r (line 23).

In round r + 1, an honest process can execute OTCr+1.propose(v) for v 6= esti = est,
only if it signedc contains > m signed estimates estj 6= est. This is impossible, however,
because all signed(r, estj) from honest pj have estj = est.

Finally, if any process executes esti ← v in line 18, then the OTCr+1.valid(v) holds,
so an honest process executed OTCr+1.propose(v), which implies v = est.

Theorem F.5 (Agreement). If no two processes decide on different values.

Proof. To obtain a contradiction, assume that two different values, v and v′, become
decisions. Lemma F.1 shows that both OTCr.decision(v) and OTCr′ .decision(v′) must
hold at some processes p and p′ and some rounds r and r′. If r = r′, then Standard
Agreement of OTCr = OTCr′ guarantees that v = v′. Therefore, r 6= r′, and without loss
of generality, we can assume r < r′.

25



Since OTCr.decision(v) holds at some process, OTCr.possible(v) holds at all processes
at all times. In particular, each honest process pi will execute line 18, and have esti = v.
By inductive application of Lemma F.4, we get that no honest process proposes anything
other than v to OTCr′ . Standard Validity of OTCr′ implies the assertion.

F.3 Termination

The algorithm assumes that n > 2f + m.

Lemma F.6. If a correct process halts, then all correct processes will eventually decide

and halt.

Proof. The assumption implies that some process received more than f + m messages
“decide on v”. More than m of them must have been sent by correct processes, so all n−f

correct processes will eventually receive these messages, decide on v, and broadcast “decide
on v” (line 25). Therefore, all correct processes will eventually receive n − f > f + m

such messages, and halt.

Lemma F.6 showed that Termination is ensured if at least one correct process halts.
Thus, to prove Termination, we can assume that no correct process ever halts.

Lemma F.7. Assume that more than m correct processes executed OTCr.stop. Then, all

correct processes will start round r + 1 within three communication steps.

Proof. Let us measure time in communication steps, with 0 being the current time. By
time 1, all correct processes will have received more than m messages “stop round r”,
and executed OTCr.stop (lines 13–14). Permanent Validity and Permanent Agreement of
OTCr guarantee that the conditions in lines 16–17 will be satisfied at all n − f correct
processes by time 2. Therefore, all of them will have received n − f > f + m messages
signed(r, estj) in line 20 and started timerr by time 3.

Lemma F.8. All correct processes start round r within three communication steps from

the first correct process to do so.

Proof. Since all processes start the Consensus algorithm at the same time, the assertion
obviously holds for r = 1. For any r > 1, consider the first correct process p to start
timerr. In round r−1, process p must have received more than n+f messages signed(r−
1, estj), out of which more than m were sent correct processes (line 19). Therefore, these
m correct processes must have broadcast “stop round r − 1” in line 15. Lemma F.7
concludes the proof.

Lemma F.9. Let r be any round with a correct coordinator pcr
, and OTCr satisfying

Optimistic Termination (f, k) for some k. If pcr
ever starts round r and the timeout for

timerr is sufficiently long, then all correct processes will decide in that round.

Proof. Let p be the first correct process to start timerr. Let us measure time in commu-
nication steps, with the start of timerr by process p as time 0.

Lemma F.8 ensures that the coordinator ck starts its timerr and broadcasts message
phase1(r, estc, signedc) by time 3. By time 4, all correct processes receive this message,

26



and execute OTCr.propose(estc), provided that the test in lines 10–11 does not fail (see
below). Optimistic Termination (f, k) satisfied by OTCr ensures that all correct pro-
cesses will decide by time 4 + k. This of course requires that no correct process executes
OTCr.stop before; for this reason I assume that the timeout for timerr is “sufficiently
long”, which means longer than 4 + k communication steps.

We still have to show that the test in lines 10–11 will not fail. This is obvious for
r = 1. For r > 1, consider the set signedcr

at the end of round r − 1 at the coordinator
pcr

. The conditional assignment in line 22 ensures that no value, except possibly estcr
,

occurs in signedcr
more than f times. Therefore, for any esti 6= estcr

in line 11 of round
r, the set signedc will contain at least f + m + 1 − f > m estimates estj 6= esti, which
proves the assertion.

Lemma F.10. All correct processes will eventually start each round r.

Proof. By induction on r. Obvious for r = 1. If all correct process starts round r, then all
their timers will eventually expire and they will eventually execute OTCr.stop in line 15.
The assertion follows from Lemma F.7.

Theorem F.11 (Termination). Assume all, except for possibly a finite number, in-

stances OTCr satisfy Optimistic Termination (f, k) for some k. All correct processes will

eventually decide and halt.

Proof. To obtain a contradiction, assume that no correct process ever halts (Lemma F.6).
Lemma F.10 shows that all correct processes will start all rounds r.

Timeouts for successive rounds grow indefinitely. Therefore, there will eventually be
a round r with a correct coordinator pcr

, with OTCr satisfying Optimistic Termination
(f, k), and with the timeout longer than 4 + k communication steps. Lemma F.9 states
that all correct processes will decide in round r.

G Lower bounds

All the proofs share a similar structure. They assume there is an OTC algorithm that
does not require the given condition, and construct a sequence of runs that leads to a
contradiction. The runs are illustrated with standard message-exchange diagrams. All
messages shown have the same delay d; the messages not shown are delayed by the
system and arrive at their destinations after all events shown in the diagram occurred.
The diagrams use for crash events and for malicious behaviour. Some of the proof
ideas are borrowed from [9].

All the lower bound in this section assume f, q > 0. The case f = 0 corresponds
to solutions that are not fault-tolerant. If q = 0, all the bounds become weaker than
n > 2f + m, which is necessary to solve Consensus anyway [20].

To provide stronger results, the proofs in this section assume a weaker version of the
Optimistic Termination conditions which additionally assumes that no honest process
proposes anything other than v.

A process is semi-complete if possible(v) holds for at most one v and valid(v) ⇒
possible(v) for all v. Permanent Validity and Permanent Agreement imply that every
complete process is semi-complete.

27



Theorem G.1. Any single-value OTC algorithm satisfying Optimistic Termination (q1, 1)
requires n > f + q1 + 2m.

Proof. To obtain a contradiction, consider a one-step single-value OTC algorithm with
n ≤ f +q1+2m. Figure 10 shows four runs of this algorithm. Processes have been divided
into four groups: Q, F , M1, M2, with sizes of at most q1, f , m, m, respectively. Sets Q

and F are not empty. In all runs, all processes from the same group behave identically.
In run r1, processes in Q crash at time 0, and all the other processes are correct, propose

1, and send their messages to processes F . (Other messages sent are, as explained before,
significantly delayed.) Since at most q1 processes failed, Optimistic Termination (q1, 1)
requires processes F to decide in, what F perceive as, one communication step (by time
d).

In run r2, all processes are correct, except for those in F , which crash at the beginning.
Only processes in group M1 propose (1), the others do not propose anything. At some
time t > d, all correct processes execute stop. At time t+d, processes Q have received all
messages sent by correct processes at time t or before. Permanent Validity and Permanent
Agreement imply that processes Q are semi-complete (possible(v) holds for at most one
v and valid(v)⇒ possible(v) for all v).

In run r3, all processes are correct, except for those in M2. Processes in M2 are
malicious and send a message to F claiming that they proposed 1, whereas in fact they
did not propose anything. Apart from that, processes M2 behave correctly. Processes F

and M1 propose 1 and send messages to processes F .
At time d, processes F cannot distinguish r3 from r1, so they decide on 1. Now,

consider the state of processes Q at time t + d. Predicate possible(1) holds because
processes F decided on 1 (Possibility). Processes Q cannot distinguish r3 from r2, so
their states are semi-complete. This implies possible(1) ⇒ valid(1), so valid(1) holds as
well.

Finally, in run r4, all processes are correct except for those in group M1. No process
proposes anything, but processes in M1 maliciously behave as if they had proposed 1.
All processes except for F execute stop at time t. At time t + d, processes Q cannot
distinguish runs r4 and r3, so valid(1) holds. This violates Integrity, because no (honest)
process proposed 1 in this run.

Theorem G.2. Any multi-value OTC algorithm satisfying Optimistic Termination (q1, 1)
requires n > f + 2q1 + 2m.

Proof. To obtain contradiction, consider a one-step multi-value OTC algorithm with n ≤
f +2q1+2m. Figure 10 shows five runs of the algorithm. Processes have been divided into
five groups: Q1, Q2, F , M1 and M2 with sizes of at most q1, q1, f , m, and m, respectively.
Sets Q1 and F are not empty. In all runs, all processes from the same group behave
identically.

In run r1, all processes are correct, except for F , which crash at time 0. Processes
Q1 and M1 propose 0, whereas processes in Q2 and M2 propose 1. At some time t > d,
all correct processes execute stop. Permanent Validity and Permanent Agreement imply
that processes Q1 are semi-complete at time t + d

In run r2, all processes are correct and propose 1 and send messages to F , except
for those in group Q1, which crash at time 0 without proposing anything. Optimistic

28



Termination (q1, 1) requires processes F to decide on 1 in one communication step, that
is, by time d.

In run r3, all processes are correct, except for those in M1, which are malicious. Pro-
cesses Q2, F , and M2 propose 1 and send messages to F . Processes in Q1 and M1 propose
0, but M1 maliciously send messages to F claiming they have proposed 1; otherwise pro-
cesses M1 behave correctly. At time t, all processes execute stop, except for those in group
F .

At time d, processes F cannot distinguish runs r3 and r2, so they decide on 1. At time
t + d, processes Q1 cannot distinguish runs r3 and r1, so they enter semi-complete states.
Predicate possible(1) holds because processes F decided on 1 (Possibility).

In run r4, all processes are correct and propose 0 and send messages to F , except
for those in group Q2, which crash at time 0 without proposing anything. Optimistic
Termination (q1, 1) requires processes F to decide on 0 by time d.

In run r5, all processes are correct, except for those in M2, which are malicious.
Processes Q1, F , and M1 propose 0 and send messages to F . Processes in Q2 and M2

propose 1, but M2 maliciously send messages to F claiming that they have proposed 0;
otherwise processes M2 behave correctly. At time t, all processes execute stop, except for
those in group F .

At time d, processes F cannot distinguish runs r5 and r4, so they decide on 0. At time
t + d, processes Q1 cannot distinguish runs r5 and r1, so they enter semi-complete states.
Predicate possible(0) holds because processes F decided on 0.

At time t + d processes Q1 cannot distinguish runs r3 and r5, so in both cases they
are semi-complete states with both possible(0) and possible(1) holding. This violates the
definition of semi-completeness.

Theorem G.3. Any single-value OTC algorithm satisfying Optimistic Termination (qk, k)
requires n > f + qk + m.

Proof. To obtain contradiction, consider a single-value OTC algorithm with n ≤ f+m+qk.
Figure 12 shows three runs of this algorithm. Processes have been divided into three
groups: F , M , Q with sizes of at most f , m, qk, respectively. Sets Q and F are not
empty. In all runs, all processes from the same group behave identically.

In run r1, all processes are correct and propose 1, except for those in group Q, which
crash at time 0 and propose nothing. Optimistic Termination (qk, k) requires that pro-
cesses F eventually decide on 1, say at time t1.

Run r2 is the same as r1, except that processes Q do not crash. At time t1, processes F

cannot distinguish r2 and r1, so they decide on 1. At some time t > t1, processes F crash,
and processes M and Q execute stop. Permanent Validity and Permanent Agreement
imply that processes Q enter semi-complete states at time t + d. Predicate possible(1)
holds at processes Q because processes F decided on 1, and semi-completeness implies
that valid(1) holds as well.

In run r3, all processes except M are correct. No processes propose anything. Processes
M maliciously behave as in run r2, for example, by claiming that processes F reported to
have proposed 1. At time t, processes M and Q execute stop. At time t + d, processes Q

cannot distinguish runs r3 and r2, so valid(1) holds. This violates Integrity, as no process
proposed anything in r3.

29



Theorem G.4. Any OTC algorithm satisfying Optimistic Termination (q1, 1) and (q2, 2)
requires n > f + m + q2 + min {q1,m}.

Proof. To obtain contradiction, consider an OTC algorithm satisfying Optimistic Termi-
nation (q1, 1) and (q2, 2) with n ≤ f + m + q2 + min {q1,m}. Figure 13 shows five runs of
this algorithm. Processes have been divided into four groups: F , M , Q2 and MQ1 with
sizes of at most f , m, q1, and min {m, q1}, respectively. Sets Q2 and F are not empty. In
all runs, all processes from the same group behave identically.

In run r1, all processes, except for MQ1, are correct, propose 1 and send their messages
to F . Processes MQ1 crash at time 0 without proposing anything. Optimistic Termination
(q1, 1) makes processes F decide on 1 at time d.

In run r2, all processes are correct, except for M , which are malicious. Processes F

and Q2 propose 1 and send their messages to F . Processes MQ1 propose 0 and send their
messages to M . Malicious processes M propose 0 but send messages to F claiming that
they have proposed 1. At time d, they behave as if they received 0 from F , otherwise they
behave correctly. At some time t > 2d, all processes except for F execute stop and send
messages to Q2. At time d, processes F cannot distinguish runs r1 and r2, so they decide
on 1 in both of them. Thus, possible(1) holds at all processes at all times (Possibility).

In run r3, processes Q2 crash at time 0. All other processes are correct and propose 0.
No first round messages, nor second round messages to F , are delayed. Optimistic Ter-
mination (q2, 2) makes processes F decide on 0 by time 2d.

Run r4 is similar to r3, except that processes in Q are correct, propose 1, but do
not send any messages. Processes MQ1 are malicious and pretend, to all processes other
than F , that they have neither received nor sent any messages at time d. At time t, all
processes except for F execute stop and send messages to Q2. At time 2d, processes F

cannot distinguish runs r3 and r4, so they decide on 0 in both of them. Thus, possible(0)
holds at all processes at all times (Possibility).

In run r5, all processes, except for Q2, propose 0 and send their messages to M .
Processes Q2 propose 1 and do not send anything. All processes are correct, except those
in F , which crash at time d. At time t, all correct processes execute stop and send
messages to Q2. As a result, Permanent Validity and Permanent Agreement imply that
the states of processes Q2 at time t+d are semi-complete. Processes Q2 cannot distinguish
runs r2, r4, and r5, so both possible(0) and possible(1) hold, which violates the definition
of semi-completeness.

30



Q

F

M1

M2

0 d

1

1

1

propose

1

1

1

decide 1

(a) Run r1

0 d t t + d

Q

F

M1

M2

1

propose

S
T

O
P

semi-complete

(b) Run r2

0 d t t + d

Q

F

M1

M2

1

1

propose

1

1

1

decide 1

S
T

O
P

semi-complete
possible 1

valid 1

(c) Run r3

0 t t + d

Q

F

M1

M2

1 S
T

O
P

semi-complete
possible 1

valid 1

(d) Run r4

Figure 10: Runs examined in the proof of Theorem G.1.

31



0 t t + d

Q1

Q2

F

M1

M2

0

1

0

1

S
T

O
P

semi-complete

(a) Run r1

0 d

Q1

Q2

F

M1

M2

1

1

1

1

1

1

1
1

decide 1

(b) Run r2

0 d

Q1

Q2

F

M1

M2

0

0

0

0

0

0

0

0

decide 0

(c) Run r4

0 d t t + d

Q1

Q2

F

M1

M2

0

1

1

0

1

1

1

1

1

decide 1

S
T

O
P

semi-complete
possible 1

(d) Run r3

0 d t t + d

Q1

Q2

F

M1

M2

0

1

0

0

1

0

0

0

0

decide 0

S
T

O
P

semi-complete
possible 0

(e) Run r5

Figure 11: Runs examined in the proof of Theorem G.2.

32



0 t1 t t + d

F

M

Q

1

1

decide 1

(a) Run r1.

F

M

Q

1

1

decide 1

S
T

O
P

semi-complete
possible 1

valid 1

(b) Run r2.

F

M

Q

S
T

O
P

semi-complete
possible 1

valid 1

(c) Run r3.

Figure 12: Runs examined in the proof of Theorem G.3.

33



0 d 2d

F

M

Q2

MQ1

1

1

1

decide 1
(a) Run r1

0 d 2d t t + d

F

M

Q2

MQ1

1

0

1

0

0
1

decide 1

S
T

O
P

possible 1
(b) Run r2

F

M

Q2

MQ1

0

0

0

decide 0
(c) Run r3

F

M

Q2

MQ1

0

0

1

0

decide 0

S
T

O
P

possible 0
(d) Run r4

F

M

Q2

MQ1

0

0

1

0

S
T

O
P

semi-complete
(e) Run r5

Figure 13: Runs examined in the proof of Theorem G.4.

34


