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Abstract

We describe how the functional correctness of a circuit design can be verified by
machine checked formal proof. The proof system used is LCF_LSM [1], a version
of Milner’s LCF [2] with a different logical calculus called LSM. We give a tutorial
introduction to LSM in the paper.

Our main example is the ECL chip of the Cambridge Fast Ring (CFR) [3].
Although the ECL chip is quite simple (about 360 gates) it is nevertheless real.
Minor errors were discovered as we performed the formal proof, but when the
corrected design was eventually fabricated it was functionally correct first time.

The main steps in the verification were:
e Writing a high-level behavioural specification in the LSM notation.

o Translating the circuit design from its Modula-2 representation in the Cam-
bridge Design Automation System [4] to LSM.
¢ Using the LCF_LSM theorem-proving system to mechanically generate a
proof that the behaviour determined by the design is equivalent to the
specified behaviour.
In order to accomplish the second of these steps, an interface between the Cam-
bridge Design Automation System and the LCF_LSM system was constructed.
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1. Imntroduction

The main purpose of this paper is to describe how we went about verifying
the functional correctness of a real circuit design. The actual proof was done
entirely by John Herbert as part of his PhD research on formal methods for design

aufomation.

Before describing the formal verification process we give an overview of our main
example, the ECL chip, followed by an introduction to the specification langua,ge
LSM and its rules of inference.

2. The Cambridge Fast Ring

The Cambridge Fast Ring (CFR) is a system for interconnecting digital devices.
It provides a closed loop communication path on which packets circulate and to
which devices can be attached. The CFR is designed to operate at around 100MHz
and is implemented using several chips which can be configured in a number of
ways. The main components are a high speed ECL chip, a CMOS chip and a 64k
DRAM. The circuit we verified is the ECL chip. y

2.1. The ECL Chip

The ECL chip provides the interface between the ring and the slower access logic
in the CMOS chip. It can perform modulation and demodulation if the ring links
use the Cambridge modulation system (see below), or can interface to direct data
inputs and outputs (e.g. for transmission systems using fibre optics). It transforms
serial data packets on the ring to 8 bit parallel packets for the slower logic and
does the reverse transformation for 8 bit wide packets from the slower logic. A
Cambridge Ring contains 4 fixed number of slots plus a gap which consists of zeros.
The gap is at least 6 bytes long and it may have an odd number of bits. The chip
must detect the end of the gap and signal this to the slower logic. A clock at the
byte frequency is produced by the chip. At the end of a gap this clock must be

reset.

The Cambridge modulation system is based on delay modulation. In the basic
scheme, data can'be transmitted using two lines and boolean values (denoted by
T and F) are encoded by the changes on the lines at successive clock ticks. The
value T corresponds to changes on both lines. A change on one line corresponds
to F. Neither line changing is an error (2 modulation error). The changes on the
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lines can be balanced so that each line is guaranteed to change at least once every

two clock periods. The clock can be recovered from the modulated data.

The ECL chip has the following pins:

gep

moderr

- e v - " o i W g o S S o TN e U e A G W A e e S e e e

ck8

gisd serin inb ina lin divcopy

lout 1na lnabar 1nb Inbbar serout

The functions of these pins are:

Inputs
gap

gisd

serin

ina, inb

1lin

divcopy

is asserted when the ECL chip is required to look for the end of
the gap between packets on the ring.

(gate in serial data) selects between the modulated data inputs
(ina and inb) and the serial data input (serin).

is a serial data input as might be used, for example, with a fibre

optic link.

are the inputs for data encoded in the Cambridge modulation
system. Differential receivers are used to derive the ECL inputs

from the ring signals.

is an 8-bit wide bus from the CMOS chip which carries the bytes
to be transmitted from the station.

when asserted, the chip is in its normal operating mode with data
received from the CMOS chip being output to the ring. When
divcopy is not asserted the input data from the ring is copied to

the ring outputs.




Outputs:

moderr

ck8

lout

lna, lnabar

Inb, Inbbar

gserout

is asserted if a modulation error has been detected in the modu-

lated data received from the ring.

is a clock signal to the CMOS logic at the byte frequency (1/8 of
the main clock frequency) with a stretched period when the gap
between packets is not an integral number of bytes.

is an 8-bit wide data bus to the CMOS logic which presents to
the slower logic the bytes received from the ring.

are the modulated data output lines which are interfaced to the
ring via drivers.

is the serial data output line.

The ECL chip was designed in the the Computer Laboratory by Andy Hopper

and has a complexity equivalent to about 360 gates.

3. Introduction to LSM

The kind of device that can be specified in LSM has the general form:

i1 i2 ... im
I .
I I
|----=mmm e [
| |
| |-==-=-- clock
| |
f-=mmmmmmmm e |
(. .
I !
ol o2 . on
Such a device has input lines i1 ,...,, im, output lines o1, ... , on and possibly

some internal registers x1, ..., xp. It is assumed to behave like a sequential machine

as follows:

e At each moment in time the values on the output lines are a function of

the values in the registers (the state) and the values on the input lines.

e The values in the registers stay constant until a clock pulse is received

on the clock line. (Exactly how a clock pulse is realised physically is left
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unspecified - it could, for example, actually be two voltage level changes,
or just a single pulse).

3.1. Behavioural Specification

To formally specify the behaviour of such a machine in LSM one must:

e Specify the value on each output line in terms of the values of the state

registers and the values on the input lines.
o Specify how the state changes when the device is clocked.

As an example consider a counter:

Here the input lines are switch and in, the only output line is out and the
only state variable is n. The name of the device is COUNT; we write COUNT(n) (or
COUNT n) to show that the behaviour (to be described) depends on n. Suppose
the behaviour of COUNT is informally specified by:

o The value on the output line out is always the value in the register rep-
resented by the state variable n. We can express this with the output
equation:

out = n

e When the counter is clocked, if F is being input on line switch, then the
value of the state variable n becomes n+1, otherwise it becomes the value
input on line in, We express this by saying that when the clock ‘ticks’ the
counter’s behaviour changes from COUNT(n) to COUNT(switch->in|n+1),
where the expression switch->in|n+1 is a conditional and has value in if

switch is T and value n+1 if switch is F.

In LSM the behaviour of the counter is specified by:
COUNT(n) == dev{switch,in,out}.{out=n};COUNT(switch->in|n+1)

This definition has the form el == e2 where el is the expression COUNT(n) and e2
is a kind of expression called a behaviour spectfication which we describe in detail
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below (readers unfamiliar with LCF should think of == as equivalent to =). Notice
that the clocking is implicit in our notation (s.e. we don’t explicitly mention the
clock line). From now on we will not draw clock lines in diagrams, though they
will still be needed in actual hardware implementations. Our model of behaviour
abstracts away from the physical details of how state-changes are effected, and
treats devices as abstract sequential machines. In the ECL chip certain state
changes are clocked by a separate clock which is derived from the main clock. We
discuss how this is handled in LSM later.

A typical behaviour expression has the form:
dev{x1l,...,xm}.{li=el, ..., In=en};e

This denotes a sequential machine whose input and output lines are x1, ... ,xm.
If 11 is not listed among x1, ..., xm then it is an internal (or virtual) line, such
lines will be motivated later in the context of the ECL chip specification. The
expression ei gives the value output on line 1i. The new state after clocking is
specified by the expression e. Normally e will have the form D(et’,...,er’)
where D is a device name (e.g. COUNT) and el’, ... ,er’ are expressions giving the
new values of the state variables of D. If 11 occurs in e or in one of the ei then its
value there is determined by the equations {11=t1,...,1n=tn}.

An example of a behaviour specification is:
dev{i,o}.{o=n};REG(i)

This specifies a device that outputs the value of variable n on line o and then,

when clocked, becomes a device with behaviour REG(1) - i.e. becomes the device

REG in a state holding the value input in line 1. Suppose we specify REG by:
REG(n) == dev{i,o}.{o=n};REG(i)

then this defines REG to be a device which always outputs its state, and stores the
current value input, thus it delays by one clock cycle. Definitions of this form -

t.e. of the form:
D(al,...,ap) == dev{xi,...,xm}.{l1=el,...,1n=en};D(el’,...,ep’)

are called behaviour equations. They are used to directly specify sequential ma-
chines. We will shortly show how to give a structural specification of a machine
in LSM also.



The counter informally described above can be specified by the behaviour equa-
tion:
COUNT(n) == dev{switch,in,out}.{out=n};COUNT(switch->in|n+1)

The right hand side of this equation is the behaviour specification:
dev{switch,in,out}.{out=n};COUNT(switch->in{n+1) )

Note that this expression has no internal lines. An example of a behaviour speci-
fication with internal lines is:

dev{switch,in,out}.
{11=(switch->in|12),out=n, 12=ocut+1};
COUNT_IMP(11)

Here 11, and 12 are internal lines.

If the device COUNT_IMP has a behaviour satisfying:

COUNT_IMP (n) == dev{switch,in,out}.
{11=(switch->in|12),out=n, 12=out+1};
COUNT_IMP(11)
then the rule of unfolding (described later) enables us to ‘solve’ the equations for

the lines, and derive:
COUNT_IMP(n) == dev{switch,in,out}.
{11=(ewitch->in|n+1),out=n, 12=n+1};
" COUNT_IMP(switch->inin+1)
Note that in this formula 11 and 12 are no longer used anywhere. The pruning
rule (described later) will enable the equations for these variables to be removed
to get:

COUNT_IMP(n) == dev{switch,in,out}.
{out=n};
COUNT_IMP(switch->in|n+1)

Note that this equation for COUNT_IMP is similar to the equation specifying COUNT.
Because behaviour equations have unique solutions we can infer from this that:
COUNT(n) == COUNT_IMP(n)
If the state of a device remains constant over time it is called combinational.

Here are two examples:

switch %1 i2 }
| P |
| --mm oo I P
| MUX | | INC |
R | [---=--- |
| |
| |
o 0




The value on the output line o of the multiplexor MUX equals the value on line
i1 if the value on line switch is T, otherwise it is the value on line 12. Thus the
value on the output line is given by the output equation: o=(switch->11|i2).
The behaviour of MUX is thus specified by the behaviour equation:

MUX == dev{switch,il,i2}.{o=(switch->i1}i2)};MUX

Note the lack of state variables. The behaviour of INC is specified by the behaviour
equation:
ING == dev{i,o}.{o=i+1};INC

Thus INC is a combinational device that always outputs (on line o) one plus the

value input (on line 1).

3.2. Structural Specification

Behaviour specifications are used to directly specify what devices are supposed
to do. LSM can also be used to describe the structure of digital systems as the

interconnection of separate devices.

Renaming \

Consider the system below:

switch %n
| | ===
| | |
[=mmmmm e |
| MUX* |
[==mmmm e |
|
| 11 12
|
| REG’(n) |
I__.._._._..
| 1INC® |
| ===
out

This device is built from components similar to MUX, REG(n) and INC as described
above, except that the line names have been changed. The multiplexer MUX* is
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like MUX except that it has lines in, 12, 11 instead of 11, 12, o respectively. The
need to rename lines motivates the following kind of expression:

e rnf[l11=11";...;1n=1ln"]
This expression denotes a behaviour similar to that denoted by e except that each
line 1i is systematically renamed to 11, Suppose that MUX is as specified above,

t.e, it satisfies:
MUX == dev{switch,il,i2,0}.{o=(switch->i1|i2)};MUX
then if we specify MUX® by:
MUX’ == MUX rn[il=in;i2=12;0=11] ' .
then it will follow, using the renaming rule described later, that:
MUX® == dev{switch,in,12,11}.{11=(switch~->in|12)};MUX’
Note that line switch has not beep renamed.

The register REG’ in the diagram above is defined by renaming the lines of the
generic register REG by:
REG’ (n) == REG(n) rn[i=11;0=out]
Using the renaming rule we can prove that if REG is defined as above, f.e. by:-
REG(n) == dev{i,o}.{o=n};REG(i)

then:
REG’ (n) == dev{li,out}.{out=n};REG" (11}

similarly we can define:
INC® == INC rn[i=out;o=12]

and then deduce:
INC' == dev{out,12}.{12=out+1};INC"’

Note that instead of defining MUX', REG® and INC® by renaming lines of MUX, REG
and INC, we could have defined them directly by the behaviour equations:

MUX’ == dev{switch,in,12,11}.{11=(switch->in[12)};MUX’
REG’ (n) == dev{ll,out}.{out=n)};REG° (11}
INC® == dev{out,12}.{12=out+1};INC’

Joining

To represent a schematic diagram, the first step is to define its components
(either directly, or by renaming) so that lines which are to be connected have the
same name. For example, in the diagram above we have arranged that output
line of MUX’ is the same as the input line to REG* (namely 11). The next step is
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to write down an expression which denotes the result of connecting together the
component devices. LSM has a special kind of expression for this purpose:
[l et |[e2] ... 1 enll

This denotes the device that results from connecting together the devices specified
by the ei’s by joining lines with the same name. The lines of the resulting device
are the union of the lines of each of the the component devices ei.
For example, if MUX*, REG"' and INC' are as above, then:
[l MUX* | REG’(n) | INC® ]

denotes the device with structure:

switch 1n
b -
| P
| mmmmmemee !
| MUx’ |
| -mmmmmeeeee |
|
---------- |
|
| REG’(n) |
3
| INC® |
[--mmmmm
11 out 12
Hiding

. In the diagram above the lines 11 and 12 are output lines. To represent the
diagram in which these lines are internal we need another kind of expression.
e hide{1l1,...,1n}

If e represents a system specified by a diagram with lines 11,...,In, then the ex-
pression above represents the system specified by the same diagram except that

lines 11,...,1n are internalised.



For example, the diagram:

switch in

11 12

out

can be represented by the expression:
[l MUX* | REG'(n) | INC" |] hide{11,12}

One can also explain the effect of hiding in terms of behaviour equations. Sup-
pose COUNT_IMP1 is like COUNT_IMP (as described above) except that lines 11 and

12 are no longer internal, s.e.:

COUNT_IMP1 (n) == dev{switch,in,out,11,12}.
{11=(switch->in[12),out=n, 12=out+1};
COUNT-IMP1(11) -

Hf we define:
COUNT_IMP2(n) == COUNT_IMP1(n) hide{11,12}

then it can be deduced that:

COUNT_IMP2 (n) == dev{switch,in,out}.
{11=(switch->in|12), out=n, 12=out+i};
COUNT_IMP2(11)

Notice that in this behaviour equation lines 11 and 12 are internal, whereas in the

equation for COUNT_IMP1 they are output lines.

10




It is not necessary to introduce the constants MUX®, REG® and INC’. One can
simply write:
{1 Mux rn[il=in;i2=12;0=11]
| REG(n) rn[i=11;0=0ut]
| INC rn{i=out;0=12] |] hide{l11,12}
When diagraming such expressions we will draw in explicit names to indicate
how the lines of the devices have been renamed. For example, the expression above

will be drawn as:

switch %n
I B EEEES
| o
|--mmnmoeeeee |
| MUX |
R |
11 12
|-
| REG(n) |
"
| INe | Y
I
[T
out

Note that MUX, REG and INC (as defined by behaviour equations above) have
different line names to those in this diagram. For example, MUX was defined to
have lines 11, 12 and o instead of in, 12 and 11. This illustrates our convention

of using the names in diagrams to indicate renaming.

3.3. Terms and Types
LSM expressions contain terms such as 1, n, n+1 and (t->in{12). There are
three kinds of such terms:
1. Constants (e.g. 1 and T).
2. Varjables (e.g. n and 12).

3. Function applications of the form e1(e2) (or el e2) where el is a function

and e2 its argument.

The terms n+1 and (t->in|12) are abbreviations for the function applications

(+n) 1 and ((COND t)in)12 respectively. Functions are terms; for example, + and
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COND are constants.

Each LSM term has a fype. A type is either atomic or compound. Examples of
atomic types are num (the type of the constants 0, 1, 2 etc.) and bool (the type
of the constants T and F). Compound types are built as follows:

o If ty1l and ty2 are types then so is tyl—ty2. It is the type of functions
with arguments of type ty1 and results of type ty2.

o If tyl and ty2 are types then so is tylxty2. It is the type of pairs with
first component of type tyl and second component of type ty2.

The constant + has type (numxnum) —num and for any type fy the constant COND
has type bool— ((tyxty) —ty).
We indicate that term t has type ty by writing t:ty. For example, 1:num,

T:bool, +: (numXnum) —num,

Expressions denoting sequential machines are terms of type dev. For example,
MUX:dev, INC:dev, REG:num—dev, COUNT:num—dev efc..

We adopt the convention that variables are written in lower case.

3.4. Summary of LSM

If xi, x2, ... , 11, 12, ... ,11°, 12", .. are variables and t1, t2, ... are ferms
and e, el, e2, ... are expressions (f.e. terms of type dev) then LSM®s notations

for specifying devices are:
e Behaviour specification:
dev{xi,...,xm}.{11=t1,...,In=tn};e

e Renaming:

e rnf11=11°;...;1n=1n"]
e Joining:

[l et | e21] ... | en ] °
o Hiding:

e hide{11,...,1n}
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4. Verification by Formal Proof

We will explain the various proof rules of LSM by showing how they can be used
to verify the COUNT example discussed above. We hope that the reader can deduce
the general form of these rules from this.

We want to prove that a correct implementation of COUNT(n), where:

COUNT(n) == dev{switch,in,out}.{out=n};COUNT (switch->in|n+1)

is:

switch }n
I B EEE
| I
|- m o menene !
| MUX |
R |
11 12
[ ——
| REG(n) |
''''' 3
| INC |
|--==--- !
I
[ ——
out

This diagram can be represented in LSM by introducing a constant COUNT_IMP
defined by:
COUNT_IMP(n) == [| MUX rn[il=in;i2=12;0=11]
| REG(n) rn[i=11;o0=out]

| INC rn[i=out;o=12] |]
hide{11,12}

Where the primitives used in this implementation are specified by:

MUX == dev{switch,il,i2,0}.{o=(switch->i1]i2)};MUX
REG(n) == dev{i,o}.{o=n};REG(i)
INC == dev{i,o}.{o=i+1};INC

We wish to verify that:
COUNT(n) == COUNT_IMP(n)

There are seven steps in proving this.
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4.1. Unfolding Definitions

We start by expanding the definitions of the primitives in COUNT_IMP by replacing
each instance of a left hand side of a behaviour equation by the corresponding right
hand side. The behaviour equations defining the primitives used in COUNT_IMP are:

MUX == dev{ewitch,il,i2,0}.{o=(switch->ii]i2)};MUX
REG(n) == dev{i,o}.{o=n};REG(i)
INC == dev{i,o}.{o=i+1};INC
The definition of COUNT_IMP is:
COUNT_IMP(n) == [[| MUX raf[it=in;i2=12;0=11]

| REG(n) rnl[i=11;o0=out]
| INC rnli=out;o0=12] 1]
hide{11,12}
Unfolding the definitions of the primitives in this yields the equation:

COUNT_IMP n ==
[| (dev{switch,il,i2,0}.{o=(switch->i1]i2)};MUX) rnlil=in;i2=12;0=11]
| (dev{i,o}.{o=n};REG i) rn[i=11;o0=out]
| (dev{i,o}.{o=i+1};INC) rnli=out;o=12] |]
hide{11,12}

4.2. Line Renaming

The next step is to perform line renaming. For example, we replace:
(dev{switch,il,i2,0}.{o=(witch->11]i2)};MUX) rn[ii=in;i2=12;0=11]

by:
dev{switch,in,12,11}.{11=(switch->in]12)}; (MUX rn[il=in;i2=12;0=11])

The result of renaming is:

COUNT_IMP n ==
[] dev{switch,in,12,11}.{11=(switch->in|12)}; (MUX rnl[il=in;i2=12;0=11])
| dev{l1,out}.{out=n}; (REG 11) rn[i=11;0=out]
| dev{out,12}.{12=out+1};INC rnli=out;o=12] |]
~hide{11,12}

4.3. Combining Equations

Now we come to the main step. We take the union of the output equations
from each of the components to get a single set of equations for all the lines in
the composite device. We also gather together the ‘next-state’ expressions of the

components to get the following single expression for the whole:
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COUNT_IMP n ==
dev
{switch, in, out}.
{11=(switch->in|12),out=n,12=out+1};
[} MUX rnl[it=in;i2=12;0=11]
| (REG 11) rn[i=11;o0=out]
| INC rn[i=out;o0=12] |]
hide{11i,12}

Note that the set of input and output lines of the behaviour deduced for the
combined device consists of the union of the lines of the component devices minus
the hidden lines.

4.4. Folding

The ‘next-state’ part of the behaviour specification in this equation matches the
right hand side of the definition of COUNT_IMP. The behaviour specification can
thus be simplified by substituting in the appropriate instance of the left hand side
of the definition of COUNT_IMP. The result of this is:

COUNT_IMP n ==
dev
{switch,in, out}.
{1i=(switch->in[12),out=n,12=ocut+1}; \

COUNT_IMP 11

4.5. Unwinding Equations

The set of equations for the values on the lines can now be solved. This consists
in replacing: _
{11=(Bwitch->in|12),0ut=n, 12=out+1}

by:
{11=(switch->in|n+1),out=n,12=n+i}

to get:

COUNT_IMP n ==

dev
{switch,in,out}.
{1i=(switch->in|n+1),out=n,12=n+1};
COUNT_IMP(switch->in[n+1)

4.6. Pruning Equations for Internal Lines

Next we notice that the equations for lines 11 and 12 are not used anywhere.
Since these lines are internal we can delete the equations for them to get:
COUNT_IMP n == dev{switch,in, out}.{out=n};COUNT_IMP(switch->in|n+1)

15



4.7. Uniqueness of Solutions to Behaviour Equations

Notice that the last equation we derived shows that COUNT_IMP satisfies the same
equation that was used to define the specification COUNT. From this we can deduce
that: :

COUNT(n) = COUNT_IMP(n)
because behaviour equations have unique solutions [5].

Although the COUNT example just done is trivial, it illustrates all the steps needed

to verify the ECL chip.

5. Specification of the ECL Chip in LSM

Before giving a behaviour equation which specifies the ECL chip we must de-

scribe some of the types and constants that are needed.

The ECL chip specification makes use of a family of atomic types booln where n
is a positive number. These are the types of n-tuples of booleans. A type trigger
is also used; there are just two constants of this type, ON and OFF. The values
ON and OFF correspond to the presence and absence respectively of an abstract
synchronised clocking event. We could have used bool, T and F instead of trigger,
ON and OFF but we wanted to make it explicit that we were abstracting away from
the particular clocking scheme used. We discuss our approach to clocking in more
detail later.

The following constants will be used:
e NOT:bool—bool - the complement function.

e AND: (boolxbool) —bool - the conjunction function. It can be infixed (e.g.
one can write t1 AND t2 instead of (AND t1)t2).

e OR: (boolxbool)—bool - the disjunction function. It can be infixed.

e EQV: (boolxbool)—bool - the logical equality function. It can be infixed.

e =: (tyxty) —bool (where ty is any type) is the general equality function.
It can be infixed.

e CLOCKEVENT:trigger—bool - this ;naps ON to T and OFF to F.

e MK_BOOLn: (boolX...xbool) —booln - converts an n-tuple of booleans to

something of type booln.
e BmELn:boolm—bool - extracts the nth bit of an m-tuple.

e ELn:bool8—bool - abbreviation for BS8ELn.
16




e SHIFTUPn: (boolnxbool) —booln - shifts into the least significant posi-
tion (the most significant bit of the n-tuple is lost).

e RINGCOUNTn :booln—booln - creates an n-tuple consisting of its argument
moved one bit to the right, filled with the inverse of the previous rightmost
bit.

e IMP_INV - is the complement function and is used to map from some specifi-
cation states to implementation states (e.g. IMP_INV stpreva = stholda).

The complete behavioural specification of the ECL chip is given in Appendix 1.
This specification uses several internal lines. These can be thought of as virtual
lines, since there may be no actual physical lines in the implementation repre-
senting them. Such virtual lines are useful for structuring the specification. For
example, the line exringdata is used to name the value of the data bit received
from the ring. Other parts of the expression can use exringdata instead of the
expression (gisd->NOT stserdatal (stchangea AND stchangeb)). There is no

actual line carrying this value in the implementation.

Some state changes in the specification depend on conditional expressions of the
form (CLOCKEVENT zzz) where zzz is some term of type trigger. "l‘hese are state
changes which depends on a clock other than the ‘main clock’. An LSM term
of type dev represents a sequential machine which has an implicit clock. It is
common in synchronous circuits to derive from the main clock other clocks which
are then used to effect certain state changes. The basic clock implicit in LSM
defines the fundamental ‘tick’ of the logical state machine. Whether a state using
a derived clock is re-evaluated or remains unchanged at a particular ‘tick’ of the
fundamental clock is determined by its derived clock being ON or OFF. Thus the
values ON and OFF indicate the presence or absence of a clocking event synchronous

with the fundamental clock ‘tick’.
This technique of dealing with several clocks seems to work well for devices that:
e are synchronous,
e define a single basic clock to which all other clocks can be explicitly related.

By introducing the special type trigger we have abstracted away from the
actual clocking scheme used. Thus the clocking events may correspond to positive
or negative edges or pulses, and the implementation could use edge-triggered or

pulsed sequential devices.

17



6. Implementation of the ECL Chip

The ECL chip is implemented using the following components:

INV :dev
NOR2 :dev
NOR3 - :dev
DTYPELQ :bool—dev
DTYPE2Q :bool—dev
DTYPE2QBAR :bool—dev
DTYPE1QQBAR :bool—dev
DTYPE2QQBAR :bool—rdev

single input inverter

two input NOR gate

three input NOR gate

D flipflop one input q output

D flipflop two inputs q output

D flipflop two inputs gbar output

D flipflop one input q, gbar outputs
D flipflop two inputs q, gbar outputs

We take these devices to be primitive and specify them by:

INV ==

dev{in, out}.{out = NOT in};INV

NOR2 ==

dev{in0, in1,out}.{out = NOT(inO OR ini)};NOR2

NOR3 ==

dev{in0,in1,in2, out}.{out = NOT((in0 OR ini) OR in2)};NOR3

DTYPE1Q b ==

dev{data,q}.{q = b};DTYPE1Q(data)

DTYPE2Q b

dev{datal,data2,q}.{q = b};DTYPE2Q(datal OR data2)

DTYPE2QBAR b ==

dev{datai,data2,qbar}.{qgbar = NOT b};DTYPE2qBAR(datal OR data2)

DTYPE1QQBAR b ==

dev{data,q,qbar}.{q = b, gbar = NOT b};DTYPE1QQBAR(data)

DTYPE2QRBAR b ==

dev{datai,data2,q,qbar}.{q = b, gbar = NOT b};DTYPE2QGBAR(datal OR data2)

Circuit diagrams for parts of the ECL chip are given in the Appendix 2. The

first of these diagrams corresponds to the following LSM structural specification:

IMP_ECL(stpreva,stchangea,stmoderr,stprevb,stchangeb,
stserdata,stdata,stdshift4,stgap,stgapend,
sth,strc,stdl,stdr,stleft,stlna,stlnb,stphase,stserout) ==

SHIFT4 stdshift4)
DETGAP(stgap, stgapend, sth)
RINGCOUNT strc

SHIFTREGS(stdl,stdr,stleft)

DEMOD(stpreva,stchangea,stmoderr,stprevb,stchangeb,stserdata,stdatu)

| MODUL(stlna,stlnb,stphase,stserout) 1]
hide{di0,dii,data,d21,d2r,gapendbar}
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The reference description of the ECL chip implementation that we worked from
was expressed, not in LSM, but in the notation used by the Cambridge Design
Automation System, a stylised subset of Modula-2. To interface to this we wrote
a translator from the subset of Modula-2 to LSM. For efficiency reasons the trans-
lator directly creates the equation that would result from unfolding, unwinding,
pruning etc. The LSM specification of the primitive components is encoded in the
Cambridge DA system and the translator creates the LSM which describes the

behaviour of the implementation.

Using the circuit description of the Cambridge DA system means that the circuit
being verified is identical to the one being operated upon by the simulation and
layout tools.

7. Verifying the ECL Chip

The functional correctness of the ECL chip is expressed by the equation:
SPEC_ECL(states) == IMP_ECL(states)

where states ranges over state vectors (which are 19-tuples).

The structure of the proof matches the structure of the circuit as described in
Appendix 2. Thus each component is first specified and verified and the resulting
lemmas are then used to show that the top-level specification of the whole chip is
correctly implemented. The verification of each component is just like the COUNT
example, except that the unfolding, unwinding efc. is done automatically by the
Modula-2 to LSM translator.

We briefly describe the specification and verification of a simple component of
the ECL chip - the demodulator (called DEMOD).

The specification of the demodulator is:
SPEC_DEMOD(stpreva,stchangea,stmoderr.stprevb,stchangeb,stserdata,stdataout)

dev{ina, inb,serin,gisd,moderr,di0,dil,dataout}.
{moderr = stmoderr,
di0 = (gisd -> F | stchangea AND stchangeb),
dil = (gisd -> stserdata | F),
dataout = stdataout};
SPEC_DEMOD(ina,
NOT (ina EQV stpreva),
(NOT stchangea) AND (NOT stchangeb),
inb,
NOT (inb EQV stprevb),
serin,
(gisd -> NOT stserdata | stchangea AND stchangeb))
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The Modula-2 description of the demodulator component is:

(cf. circuit diagram for DEMOD in Appendix 2)
BEGIN -

BeginNode("Demodulator®, *“DEMOD*);

(*# Create and initialise some data structures *)
(* Main code to construct device *)

inabar := Not("inabar", ina);
dTypel2(inabar, ck, holda, holdabar);

lal := Nor2(*lai", ina, holda);

1la2 := Nor2(*1a2", inabar, holdabar);
dType22(lal, la2, ck, changea, changeabar);
errout := Nor2("errout", changea, changeb);

inbbar := Not("inbbar", inb);
dTypel2(inbbar, ck, holdb, holdbbar);

1b1 := Nor2("1lbi*, inb, holdb);

1b2 := Nor2("1b2", inbbar, holdbbar);
dType22(1bi, 1b2, ck, changeb, changebbar);

serinbar := Not("serinbar®, serin);
dTypell (serinbar, ck, sholddata);
gisdbar := Not("gisdbar"“, gisd);

di0 := Nor3("diO", changeabar, changebbar, gied);
di1 := Nor2("dil", sholddata, gisdbar);

dType21(di0, dil, ck, data);

OutputPin(1, moderr);
OutputPin(2, dio0);
OutputPin(3, di1);
OutputPin(4, data);
InputPin(b, ina);
InputPin(6, inb);
InputPin(7, serin);
InputPin(8, gisd);

EndNode ("DEMOD") ;
END Demod.

This is translated automatically to:

IMP_DEMOD(stholda,stchangea,stmoderr,stholdb,stchangeb,stsholddata,stdata) ==
dev{ina,inb,serin.gisd,moderr,dio,dil,datn}.

{moderr = stmoderr,

di0 = (NOT(((NOT stchangea) OR (NOT stchangeb)) OR gisd)),

dil = (NOT(stsholddata OR (NOT gisd))),

data = stdata};

IMP_DEMOD(NOT ina,
(NOT(ina OR stholda)) OR (NOT((NOT ina) OR (NOT stholda))),

NOT(stchangea OR stchangeb),
NOT inb,
(NOT(inb OR stholdb)) OR (NOT((NOT inb) OR (NOT stholdb))),

NOT serin, . .
(NOT(((NOT stchangea) OR (NOT stchangeb)) OR gisd)) OR

(NOT(stsholddata OR (NOT gisd))))
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Some of the abstract states of the specification do not have identical correspond-
ing states in the implementation. A function is defined which maps from the
specification states to the implementation states. The function IMP_INV maps
stpreva, stprevb and stserdata to stholda, stholdb and stsholddata re-
spectively.

To verify the demodulator design we must show that:

SPEC_DEMOD(IMP_INV stpreva,stchangea,stmoderr,IMP_INV stprevb,
stchangeb, IMP_INV stserdata,stdata) ==
IMP_DEMOD(stpreva,stchangea,stmoderr,stprevb,stchangeb, stserdata,stdata)

to prove this we must prove the following lemmas:

(gisd -> F | stchangea AND stchangeb) =
NOT((NOT stchangea OR NOT stchangeb) OR gisd)

(gisd -> stserdata | F) = NOT((IMP_INV stserdata) OR NOT gisd)

NOT (ina EQV stpreva) = NOT(ina OR (IMP_INV stpreva))
OR NOT(NOT ina OR NOT (IMP_INV stpreva))

NOT stchangea AND NOT stchangeb = NOT(stchangea OR stchangeb)

NOT (inb EQV stprevb) = NOT(inb OR (IMP_INV stprevb))
OR NOT(NOT inb OR NOT (IMP_INV stprevb))

(gisd -> stserdata | stchangea AND stchangeb)) =
NOT(((NOT stchangea) OR (NOT stchangeb)) OR gisd)
OR NOT((IMP_INV stserdata) OR (NOT gisd))

These are all straightforward to do using the LCF part of LCF_LSM. The overall
structure of the verification process can be summarised by:

T T T Iy * T — *
| Structural Specification | | Behavioural Specification |
| in Modula-2 | | in LSM |
e T T LT T —— * T T ——— *
| I
e rerepep— * ]
| Translator | [ .
Ko m e " |
| |
Fom ot e e * |
| Structural Specification | |
| in LSM | I
H o e —————— * |
| I
[-=-==-mm=- | R |
I |
o o o e e o *
| LCF_LSM Proof Generator |
S *



7.1. Uncovering Design Errors

The purpose of verification in the context of practical circuit design is as much
the discovery of errors as the proof of their absence. Most hardware designers con-
verge on a solution via a process of successive approximation. It is very important
to be able to locate inconsistencies between the specification and implementation.
In the ECL chip verification, no major design flaws were found but some incorrect
wiring of the implementation was discovered. There were also some mistakes in
the initial spéciﬁcation. As formal verification proceeds the specification becomes
tighter. Failure of verification can result in changes to the implementation or the

specification.

The LCF_LSM system gives a clear indication of where errors are located when

the formal proof fails. A typical failure might result in:
Unsolved goal: "state0 = NOT stateO" ["x OR y = T"]

This indicates that the system cannot prove "state0 = NOT state0" when x OR
y has the value T. If the specification is correct then we must change the design -
maybe insert an inverter or reconnect some signals in that particular part of the

circuit,

8. Conclusions

As others have found, the lemmas needed to prove hardware correct are mostly
trivial. We conjecture that the entire ECL chip proof could be done automatically
by, for example, the VERIFY system [6]. This is in marked contrast to the situa-
tion with software verification; there the verification conditions produced by real
programs are usually well beyond the current state-of-the-art in automatic theo-
rem proving. This is one of the reasons why we believe that hardware verification

by formal proof will become practical sooner than software verification by proof.

LSM, although nice and simple, is clumsy for expressing certain kinds of things.
We found it necessary to introduce extra state variables to hold past values,

whereas it would have been more natural to have a notation for denoting these

values directly.

The use of two separate descriptive formalism, LSM and Modula-2, was messy
and necessitated the writing of a translator. Although this was straightforward,
it introduced one more place where insecurity could creep in. Also it forced the

user to. learn two languages, where one should have been enough.
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Despite the various problems just mentioned, we believe that hardware verifica-
tion by formal proof is here to stay. In some cases it is already the only feasible
way of attaining satisfactory security. Recently John Cullyer of The Royal Signals
and Radar Establishment (RSRE) has been arguing that the quality of embed-
ded aerospace systems is declining [7]. This is happening just at the time when
the integrity of these systems is becoming more essential. Future aircraft control
systems will carry a much heavier burden, as the aircraft being controlled will
be designed in ways that make them unflyable manualfy. According to Chullyer,
future aerospace microprocessors will have to be formally specified and verified.
Until recently this was not considered feasible, but the group at RSRE have de-
signed and proved correct (by manual proof using LSM) a simple processor called
VIPER. This establishes that the task is possible, and so contractors will no long
be able to claim that it is unreasonable to require them to do formal verification.
Aircraft are not the only source of life-critical closed-loop control systems, other
examples include nuclear reactors, chemical plants and medical devices (such as

microprocessor controlled pacemakers).

9. Current Research and Future Prospects

We have implemented a successor to LCF_LSM which overcomes the lack of ex-
pressiveness mentioned in the previous section. The new system is also based on
LCF but uses classical Higher-Order Logic instead of LSM. There are no special
hardware oriented terms in the new system because everything can be expressed
directly in logic. For example, joining and hiding can be represented by conjunc-
tion and existential quantification respectively. This idea of using a pure logic,

rather than an ad hoc calculus such ags LSM, is due to Keith Hanna.

Only register-transfer level specifications can be expressed in LSM since every-
thing is assumed to be a sequential machine. This precludes the verification of
certain kinds of implementations whose functioning depends on asynchronous de-
lays. For example, the normal implementation of a D-type register uses NAND
gates, the state being held in feedback loops. To verify such a register one must
take into account the delay in combinational devices. We have been working orn
this by studying several levels of behavioural description, together with mappings
between them. This work fits nicely into the Higher Order Logic framework; it is
based on ideas from the VERITAS project [8].

The LCF system is a proof assistant, the user proves theorems by setting up
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goals and then invoking proof strategies (called tactics in LCF jargon). Many
trivial lemmas which are well within the current capabilities of automatic theorem
proving have to be done manually. Although we are slowly developing a set of
general purpose tactics, our current repertoire does not provide as much automa-
tion as is possible. LCF_LSM is satisfactory for LCF experts, because they can
usually see what tactics are needed for a given goal, but it is unusable by anyone
else, e.g. circuit designers. We plan to increase the automation by adding more
powerful theorem-proving strategies. In particular, we hope to incorporate ideas
from Barrow’s impressive VERIFY system and the Boyer-Moore Theorem Prover.
We also hope to add tactics corresponding to well known decision procedures (such
as Presburger arithmetic). We still think theorem-proving experts will sometimes
be needed, but we hope to reduce the need for them as much as possible.

The function of a complex system must be specified and verified along a number

of dimensions. Typically one must specify:
e Detailed timing (minimum clocking rate, gate delays etc.).
e Register-transfer behaviour.

e Relationships between abstractions (numbers, bitstrings efc.) and realisa-

tions (truth values, voltages etc.).

For each of these aspects of behaviour there exist specialised languages: inter-
val arithmetic for timing, I.SM for register-transfer behaviour and the theory of
homomorphisms for data-type relationships. Each aspect of behaviour is usually
analysed using different tools operating on different representations. For example,
timing analysers work from circust descriptions, simulators often require procedural
models (Modula-2 programs in the case of the Cambridge Design Automation Sys-
tem) and functional verifiers manipulate sentences in formal logics like LSM. There
are important connections between the various different aspects of behaviour, for
instance a ‘high-level’ behavioural .deseriptions may only be valid provided cer-
tain timing requirements are met (e.g. a régister may only have a desired latching
behaviour if the signals conform to specified setup and hold times). It is thus
important to be able to state conditions which guarantee the consistency between
different kinds of descriptions. This is much easier if the descriptions are expressed
in a unified framework. We believe that Higher-Order Logic provides the basis for
such a framework. Various design automation tools can be viewed as logical in-
ference rules. For example, a timing analyser can be viewed as a rule for inferring
gentences about timing relationships from sentences describing the structure of a

circuit. Recent work by Ben Moszkowski [9] has shown how logic specification can
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be the basis of efficient simulators.

We hope to use the new system we are developing as the top-level user-interface
for a vertfication oriented design environment. This top-level, like LCF, will be
based on the functional language ML[10]. Although logic sentences will be the
primary formalism used for hardware specification, it is planned to interface other
existing tools to the system. These tools will be made into ML functions which

operate on logic sentences.
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12. APPENDIX 1: Specification of the ECL Chip

The top level specification of the ECL chip in LSM uses the state variables
listed below. These are abstract states and do not necessarily correspond to values

actually stored in distinct registers. '

States
stpre;za,

stprevdb

stchangea,

stchangeb

stserdata
stmoderr
stdata

stshift4

stgap

stgapend

gth

strc

~T -

hold the values on lines ina and inb respeétively at the previous
clock tick.

hold the value T if the value on the corresponding line (ina or
inb respectively) has changed over the two previous clock ticks;
otherwise they hold F.

holds the value on the serial data line.
is T if 2 modulation error occurred, otherwise it is F.

holds the value of the data received from the ring. If the line gisd
(“gate in serial data”) has been asserted then this corresponds

to serial data otherwise it is the demodulated data.

is a 4-bit shift register which delays the data received from the

ring by 4 clock periods.

samples (at the byte frequency) the value of the gap line.

has the value T when the end of a gap between packets has been

reached; otherwise it has the value F.

is a 2-bit state which is used in a ringcounter at the end of a gap

to count 3 periods during which the gap input is disabled.

is the state of the ringcounter which is used to generate the byte

frequency clock (ck8).
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stdl , stdr

stleft

stlna , stlnb

stphase

stserout

are fwo 8-bit shift registers which hold the bytes received from
the ring and received from the CMOS logic. The registers are
used to convert parallel data to serial data and serial to parallel.

is inverted on successive bytes and is used to switch between the
use of registers stdl and stdr in the conversion of data.

hold the values which are to be output on the lines 1na and 1nb

respectively.

is inverted on each clock tick and is used to balance the value
changes on lines lna and 1nb . (At least one line is always
changed and by balancing the changes evenly we reduce the pos-

sible electrical degradation of signals.)

holds the value to be output as serial data onto the ring. In the
copy mode this is the data received from the ring; in the divide
mode (the usual case) it is data in the shift regfsters stdl and
stdr which has been received from the CMOS chip.

29



The LSM specification of the ECL chip is:

SPEC_ECL(stpreva,stchangea,stmoderr, stprevb,stchangeb,
stserdata,stdata,stdshift4, stgap,stgapend,
sth,strc,stdl,stdr,stleft,stlna,stlnb,stphase,stserout) ==
dev{ina,inb,serin,gisd,moderr,ck8,gap,lin,divcopy, lout, Ina, Inabar, Inb, Inbbar,serout}.

{moderr = gtmoderr,

exringdata = (gisd-> stserdata | (stchangea AND stchangeb)),
= B4EL3 stdshift4,

stateOh = MK_BOOL2(T,T),

nogapbar = (sth = stateOh) AND (NOT reset),

regdate2 = (EL2 stdl) OR (EL2 stdr),

reset = (stgapend AND regdata2),

po = (B4ELO strc) AND (B4EL3 strc),

stateOrc = ME_BOOLA(T,T,T,T),

state0to3 = B4EL3 strc,

statedto7 = NOT(B4EL3 strc),

state7rc = MK_BOOL4(T,T,T.F),

ckcond = B4EL2 strc AND ((NOT stgapend) OR stateOto3),

ck8 = (statedto? -> (reset->0ON|(ckcond->ON|OFF)) | OFF),

left = ptleft,

right = NOT stleft,

ckl = ((left OR p0) -> ON | OFF),

ckr = ((right OR p0) -> ON | OFF),

detaout = (divcopy -> (right->(EL7 stdl)|(EL7 stdr)) | exringdata),

lout = (right-> stdr | stdl),

Ina = gtlna,

Inabar = NOT stlna,

Inb = gtlnb,

Inbbar = NOT stlnb,

serout = gtserout} ;

SPEC_ECL(ina,

NOT (ina EQV stpreva),

gNgT stchangea) AND (NOT stchangeb),

inb,

NOT.(inb EQV stprevb),

serin,

exringdata,

SHIFTUP4(stdshift4, stdata),

(CLOCKEVENT ck8 -> gap | stgap),

(NOT reset ->

(stgapend->stgapend| (stgap AND nogapbar->exringdata|F))|F),

(CLOCKEVENT ck8 -> (nog&pbar->state0h| RINGCOUNT2 sth) | sth),

(reset -> state0 | (stgapend AND statedto7 ->
((strc=state7rc)->state7rc |[RINGCOUNT4 strc)|
RINGCOUNT4 strc)),

(CLOCKEVENT ckl -> (left ->lin|SHIFTUP8(stdl,d4)) | stdl),

(CLOCKEVENT ckr -> (right—)lin|SHIFTUP8(stdr,d4)) | stdr),

(CLOCKEVENT ck8 -> NOT stleft | stleft),

((stphase OR dataout) -> NOT stlna | stlna),

((NOT stphase) OR dataout) -> NOT stlnb | stlnb),

NOT stphase,

dataout)
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13. APPENDIX 2: Circuit Diagrams
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