
Technical Report
Number 657

Computer Laboratory

UCAM-CL-TR-657
ISSN 1476-2986

Security protocol design
by composition

Hyun-Jin Choi

January 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Hyun-Jin Choi

This technical report is based on a dissertation submitted
December 2004 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

The aim of this research is to present a new methodology for the systematic design

of compound protocols from their parts. Some security properties can be made accu-

mulative, i.e. can be put together without interfering with one another, by carefully

selecting the mechanisms which implement them. Among them are authentication, se-

crecy and non-repudiation. Based on this observation, a set of accumulative protocol

mechanisms called protocol primitives are proposed and their correctness is verified.

These protocol primitives are obtained from common mechanisms found in many se-

curity protocols such as challenge and response. They have been carefully designed

not to interfere with each other. This feature makes them flexible building blocks in

the proposed methodology. Equipped with these protocol primitives, a scheme for the

systematic construction of a complicated protocol from simple protocol primitives is

presented, namely, design by composition. This design scheme allows the combina-

tion of several simple protocol parts into a complicated protocol without destroying

the security properties established by each independent part. In other words, the com-

position framework permits the specification of a complex protocol to be decomposed

into the specifications of simpler components, and thus makes the design and verifi-

cation of the protocol easier to handle. Benefits of this approach are similar to those

gained when using a modular approach to software development.

The applicability and practicality of the proposed methodology are validated through

many design examples of protocols found in many different environments and with

various initial assumptions. The method is not aimed to cover all existent design is-

sues, but a reasonable range of protocols is addressed.

3

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Lawrence Paulson for tak-

ing me as his research student and guiding me throughout the course of my research.

His insight, enthusiasm and encouragement have helped me to make the research a

fulfilling experience. I greatly appreciate him for reviewing this dissertation and many

valuable suggestions.

Secondly, I would like to thank my former supervisor Prof. Ross Anderson for in-

troducing various interesting topics in the field and helping me to find out the topic of

my research. I should also thank him for many useful discussions about my research.

Thirdly, I should thank all my friends and colleagues at Cambridge, for their help,

support and friendship. I wish to express my gratitude especially to Andrew Faszer,

Islam Mohammad, Keri Faszer, Maria Fernanda Gonzalez, Rasmus Bertelsen, Samir El-

Bachir, Sigbjørn Hervik, Thierry Balzarq, Tomas Flaragan, Younes Mokrab, and Zdenek

Burger for their special friendship and interesting discussions concerning many differ-

ent subjects.

Finally, grateful thanks go to my mother and sister for suggesting me to start PhD

as well as encouraging me to finish it, and financial support from Korean government

is gratefully acknowledged.

4

Contents

List of Figures 9

List of Tables 10

1 Introduction 12

1.1 Overview . 12

1.2 Scope and Aims . 14

1.3 Outline of Dissertation . 15

2 Literature Review 17

2.1 Prudent Design Principles . 17

2.2 Fail-stop Protocols . 20

2.3 Design Logic . 23

2.4 Strand Space Approach . 27

2.5 Automatic Protocol Generation . 28

2.6 Protocol Derivation System . 31

3 Mathematical Preliminaries 33

5

3.1 Message Terms . 34

3.2 Inductive Relations . 35

3.3 Ideals and Coideals . 38

3.4 Events and Strands . 40

3.5 Bundles and Traces . 43

3.6 Protocols and Secrecy . 45

4 Composition Theory 48

4.1 Authentication with Agreement . 49

4.1.1 Authentication Tests . 49

4.1.2 Term Bindings and Protocol Primitives 53

4.2 Composability . 60

4.2.1 Authentication . 61

4.2.2 Secrecy . 64

4.2.3 Adding New Primitives . 68

4.3 Extending the Primitives . 71

4.3.1 Flexibility and Limitations . 71

4.3.2 Generalisation of Primitives . 72

4.4 Concurrent Goals . 73

4.4.1 Multi-run Interference . 73

4.4.2 Goals and Bindings . 76

5 Two-party Protocols 81

5.1 Design By Composition . 81

6

5.2 Two-party Protocol Composition . 82

5.2.1 p-Protocols and Semi-bundles . 83

5.2.2 Constituting a Session . 87

5.3 Design Example . 90

5.3.1 One-way Authentication . 90

5.3.2 Two-way Authentication . 93

5.3.3 The SSL and TLS Protocols . 96

6 Symmetric Protocols 100

6.1 Symmetric Protocol Design . 101

6.2 Authentication Servers and Trust . 102

6.2.1 Trust . 102

6.3 Composition . 105

6.3.1 Authenticated Delivery . 106

6.3.2 Correspondence . 109

6.3.3 Recentness . 113

6.4 Design Examples . 114

6.4.1 Mutual Authentication . 114

6.4.2 Protocols with Authentication Servers 114

7 Complex Protocols 123

7.1 New Requirements for Protocol Primitives 124

7.1.1 Anonymity . 124

7.1.2 Accountability . 126

7

7.2 Composition . 127

7.2.1 A Common Structure . 127

7.2.2 Mutual Equations . 129

7.3 Wireless Authentication Protocols . 132

7.3.1 System Model and Assumptions 132

7.3.2 Security Requirements . 133

7.3.3 Composition . 134

7.4 Secure Payments Protocols . 138

7.4.1 System Model and Assumptions 139

7.4.2 Security Requirements . 140

7.4.3 Composition . 142

8 Conclusions and Further Work 148

8.1 Conclusions . 148

8.2 Further Work . 149

Bibliography 150

8

List of Figures

2.1 APG Overview . 29

4.1 Three-party Composition . 79

5.1 Possible Orderings of Two Primitives . 88

6.1 Otway-Rees Protocol . 103

6.2 Comparison of Composition . 106

6.3 Information Delivery . 107

6.4 Authenticated Delivery . 108

6.5 Recentness . 113

6.6 p-protocol . 116

6.7 p-protocol after Adding an Extra Term 117

6.8 p-protocol for Key Agreement . 119

7.1 Three-party Composition . 127

7.2 Mutual Equations . 130

7.3 Protocol Structure . 137

9

7.4 Generic Model of a Payment System . 139

7.5 A Purchase Procedure . 142

10

List of Tables

6.1 Primitives . 115

11

1
Introduction

1.1 Overview

Due to the rapid growth of the Internet and the increasing need for E-commerce and

M-commerce, computer security has recently become a very hot topic. As many more

people go online and as more services such as banking, shopping, and trading are

offered online, it becomes critical to guarantee that these online services are safe and

secure to use. These guarantees are generally provided by means of security protocols.

Security protocols are communication protocols that use cryptographic transforma-

tions and whose primary purpose is to achieve security related goals. These goals typ-

ically include the authentication of the communicating parties and the establishment

of a secret session key. Despite their seeming simplicity, experience has shown that se-

curity protocols are extremely hard to be correctly designed on the first attempt. Quite

surprisingly, many proposed security protocols have later been found to be flawed. The

Needham-Schroeder symmetric key protocol [39] was shown to be flawed three years

after its publication by Denning and Sacco [15]. CCITT X.509 protocols were discovered

12

to be flawed by Burrows, Abadi, and Needham [7]. Gavin Lowe found the Needham

Schroeder public key protocol to be flawed in 1995, almost twenty years after its inven-

tion [31]. Many other examples exist. This pattern of protocol design, implementation

and flaw discovery has been repeated an alarming number of times in the years that

have followed Denning and Sacco’s discovery. This has been the main problem with

security protocols: too many of them have had flaws that were discovered too late, and

this has caused many people to become sceptical about security protocols in general.

Especially when flawed security protocols become widely deployed, there can be grave

consequences. Security protocols are already being used for electronic funds transfers,

and voting protocols have been proposed and may be used for elections in the near

future. Many more security protocols will be introduced with time. If a dishonest per-

son is the first to discover a flaw in one of these protocols, he could exploit it and steal

a large amount of money or influence the results of an election. Since the reward for

breaking some of these protocols is so large, serious and sophisticated attacks on these

protocols might increase as more services adopt them. Withstanding these attacks will

require a variety of analysis techniques to reduce the number of flaws in protocols

and to try to ensure that either no flaws can exist or any flaws that may remain will

not be easy to find. Many researchers have worked on applying formal techniques to

the analysis and verification of security protocols. BAN Logic, NRL Analyzer, FDR,

Spi calculus, Inductive method and Strand space theory [1, 7, 32, 36, 41, 52] are some of

them. Protocol correctness can be checked using these tools. However, these tools were

primarily developed for protocol verification rather than for design purposes.

Another problem in the design and verification of security protocols is the dif-

ficulty in specifying correctness criteria or protocol goals. Typically, many protocols

are poorly designed because their designers are unclear about the protocol goals they

should achieve. Specifying the requirements for security protocols formally clarifies

the problem that designers should solve and bridges the abstraction gap between in-

formal correctness criteria and formal protocol description. Understanding protocol

goals also helps designers to choose proper and unambiguous mechanisms in imple-

menting protocols. Without exact knowledge of protocol goals, it is a difficult task for

designers to select or implement correct mechanisms. However, no precise definitions

for security properties seem to be currently available, and even a precise notion of au-

thentication is still a topic of research [20,33,47]. One common mistake found in many

formal specifications of protocols is that protocols are usually specified at a high level,

where cryptographic services are expressed ambiguously by one uniform notation,

13

encryption. Many people use encryption mechanisms to provide both confidentiality

and integrity. However, using a uniform notation for any and all cryptographic ser-

vices results in an incomplete specification. Such a specification does not support a

sensible expression of the different kinds of cryptographic services needed in different

contexts. Therefore, the formal specification of a protocol should differentiate different

cryptographic services using different notations. In other words, the formal specifica-

tion needs to specify what the mechanism is being used for, not just what mechanism

it is.

The protocol design work is typically a repeated process of design and verification.

Due to many years of research on protocol verification, the analysis and verification of

protocols have become much easier. Nonetheless, the design process still heavily de-

pends on rules of thumb and designers’ experience. No reasonable systematic design

methodology is yet available, in spite of a relatively long history of the studies on these

issues. General principles, which advise things to follow and things to avoid in proto-

col design, can be helpful, but their applicability is very limited [2, 4]. Common mech-

anisms for guaranteeing freshness, achieving one-way authentication, avoiding replay

attacks, committing to an action without completing the action are some tools that de-

signers can use to construct a new protocol. Many security protocols are in a way some

combinations of these mechanisms. For example, a two-way mutual authentication

protocol can be seen as a combination of two one-way authentication protocols. How-

ever, it is yet unknown how to combine these mechanisms to build more complicated

protocols and how to derive more complicated protocols from simple ones without vi-

olating security guarantees that simple protocols satisfy. This lack of understanding on

protocol composition makes the design task harder, more time consuming, and it also

complicates the verification process.

1.2 Scope and Aims

The general aim of this research is to investigate modular construction of security pro-

tocols and to present a new methodology for systematic design of compound protocols

from their parts. A set of basic components called protocol primitives, which serve as

building blocks in the proposed methodology, are identified through the recognition

that many security protocols are built using common mechanisms such as challenge

and response [19]. A scheme for systematic constructions and derivations of a com-

14

plicated protocol from simple primitives is presented, namely, design by composition,

which allows to combine several simple protocol parts (protocol primitives) into a com-

plicated protocol without destroying security properties already established by each

independent part.

Many security properties such as authentication and secrecy are generally not pre-

served under protocol composition. Protocol composition is complicated because one

mechanism of a protocol may reveal information that should remain secret or may

degrade security properties achieved by another mechanism of the protocol. For ex-

ample, when two independent protocols of one-way authentication are combined to-

gether to build a compound protocol, it should be guaranteed that neither one of them

breaks the authentication achieved by the other. To preserve each security property of

a single protocol component in a combined authentication protocol, which is obtained

by a composition of single protocol components, the proposed composition scheme

should be accumulative. That is, the scheme should only allow to combine protocol

components in a way that accumulates security properties. Some security properties

can be made accumulative by carefully selecting the mechanisms which implement

them. Among them are such security properties as authentication, secrecy and non-

repudiation. Based on this observation, accumulative protocol mechanisms are pro-

posed and their correctness is verified.

Equipped with these mechanisms, the applicability and practicality of the pro-

posed methodology are validated through many design examples of protocols found

in many different environments and with various initial assumptions. The method is

not aimed to cover all existent design approaches, but a reasonable range of protocols

is addressed.

1.3 Outline of Dissertation

The layout of this dissertation is as follows. Chapter 2 reviews protocol design method-

ologies and concepts currently available, which include the design principles serving

as informal guidelines, the fail-stop protocol methodology, a simple design logic and

several automatic protocol synthesis schemes.

Chapter 3 deals with the practical and theoretical background material upon which

15

the proposed methodology is built. Strand space theory is explained and key concepts

such as ideal, coideal, etc are described. Regularity and discreetness properties of pro-

tocols are introduced and later used to prove secrecy goals of protocols.

Chapter 4 proposes a protocol composition methodology, which makes it possible

to design or derive complicated security protocols starting from protocol primitives.

Protocol primitives are presented and their properties are fully explained. Protocol

primitives are carefully engineered from mechanisms used in many existing security

protocols.

Chapter 5 shows how the proposed design methodology is used in the design of

two-party authentication protocols. Several design examples of authentication proto-

cols are presented and a protocol similar to TLS is derived from a simple mutual au-

thentication protocol.

Chapter 6 demonstrates the applicability of the proposed methodology by showing

many design examples of authentication protocols where an authentication server is

involved. The behaviour of a faithful authentication server is described and later used

in the composition of the protocols requiring such a server.

Chapter 7 extends the scope of the proposed methodology to the protocols required

in mobile network and secure payment systems. First, common structures of these pro-

tocols are identified and the idea of mutual equations is proposed in order to utilise

these structures. Second, the design issues of authentication protocols for mobile net-

work environments are discussed. Finally, the properties necessary for secure payment

protocols are defined and then a protocol which satisfies these requirements is shown

to be composable step by step from simple primitives.

Chapter 8 concludes the dissertation by discussing the main achievements of this

research and discusses further work to be done in this field.

16

2
Literature Review

This chapter reviews previous work relevant to the research presented in this disser-

tation. Section 2.1 gives a brief outline of design principles intended to act as “rules of

thumb” for protocol designers. Section 2.2 explains a design methodology based on the

notion of fail-stop protocols. Section 2.3 reviews a design logic for authentication proto-

col design. Section 2.4 describes a strand space approach based on authentication tests.

Section 2.5 addresses various automatic protocol generation schemes. Finally, Section

2.6 outlines a derivation system for security protocols.

2.1 Prudent Design Principles

Abadi and Needham [2] and Anderson and Needham [4] have proposed a set of prin-

ciples which were derived from the observation of the most common errors that have

been found in published protocols. These approaches of structured design rules are

complementary in many ways to formal proof approaches: On one hand, by following

these principles, designers are less likely to make common mistakes and fall victim to

17

confusion often found in a number of published protocols, and are more likely to pro-

duce protocols whose security is easy to evaluate by formal proof tools. On the other

hand, protocol flaws discovered through formal analysis may lead researchers to new

insights into the nature of robustness [4]. These principles are paraphrased as follows.

Abadi and Needham’s Principles for Design of Cryptographic Protocols

Principle 1: Every message should say what it means — the interpretation of the mes-

sage should depend only on its content.

Principle 2: The conditions for a message to be acted upon should be clearly set out so

that someone reviewing a design can see whether they are acceptable or not.

Principle 3: If the identity of a principal is essential to the meaning of a message, it is

prudent to mention the principal’s name explicitly in the message.

Principle 4: Be clear about why encryption is being done.

Principle 5: When a principal signs material that has already been encrypted, it should

not be inferred that the principal knows the content of the message. On the other

hand, it is proper to infer that the principal that signs a message and then en-

crypts it for privacy knows the content of the message.

Principle 6: Be clear what properties you are assuming about nonces. What may do

for ensuring temporal succession may not do for ensuring association — and

perhaps association is best established by other means.

Principle 7: The use of a predictable quantity can serve in guaranteeing newness,

through a challenge and response exchange. But if a predictable quantity is to be

effective, it should be protected so that an intruder cannot simulate a challenge

and later reply a response.

Principle 8: If timestamps are used as freshness guarantees by reference to absolute

time, then the difference between local clocks at various machines must be much

less than the allowable age of a message deemed to be valid. Furthermore, the

time maintenance mechanism everywhere becomes part of the trusted comput-

ing base.

18

Principle 9: A key may have been used recently, for example to encrypt a nonce, yet

be quite old, and possibly compromised. Recent use does not make the key look

any better than it would otherwise.

Principle 10: If an encoding is used to present the meaning of a message, then it should

be possible to tell which encoding is being used. In the common case where the

encoding is protocol dependent, it should be possible to deduce that the message

belongs to this protocol, and in fact to a particular run of the protocol, and to

know its number in the protocol.

Principle 11: The protocol designer should know which trust relation his protocol de-

pends on, and why the dependence is necessary. The reasons for particular trust

relations being acceptable should be explicit thought they will be founded on

judgement and policy rather than on logic.

Anderson and Needham’s Robustness Principles for Public Key Protocols

Principle 1: Sign before encrypting.

Principle 2: Be careful how entities are distinguished. If possible, avoid using the same

key for two different purposes, and be sure to distinguish different runs of the

same protocol from each other.

Principle 3: Be careful when signing or decrypting data that you never let yourself be

used as an oracle by your opponent.

Principle 4: Account for all the bits — how many provide equivocation, redundancy,

computational complexity and so on. Make sure that the redundancy you need is

based on mechanisms which are robust in the application context, and that any

extra bits cannot be used against you in some way.

Principle 5: Do not assume the secrecy of anybody else’s secrets (except possibly those

of a certification authority).

Principle 6: Do not assume that a message you receive has a particular form.

Principle 7: Be explicit about the security parameters of crypto primitives.

Principle 8: Robust security is about explicitness; one must be explicit about any prop-

erties which can be used to attack a public key primitive, such as multiplicative

19

homomorphism, as well as the usual security properties such as naming, typing,

freshness, the starting assumption and what one is trying to achieve.

These principles only act as “rules of thumb” for protocol designers, so the princi-

ples are not necessary for correctness, nor are they sufficient. There are many examples

of protocols which ignore one or more of the principles and yet are believed to be se-

cure, and there are also many examples of protocols which keep all the principles but

are still vulnerable. It is also recognised that principles may conflict with each other:

following one principle may result in the violation of another [50]. However, these

principles have been found to be very useful as a checklist for protocol designers. De-

sign principles can help to identify weaknesses in a protocol and they can be used as

a checklist to guard against certain attacks. In order to use the design principles ef-

fectively, protocol designers are in need of tools to help them to design protocols and

automatically check that the design principles are not violated.

2.2 Fail-stop Protocols

The secrecy assumption that a secret remains secret during an execution of a protocol

is paradoxical because whether a secret can remain secret may depend on whether

the protocol is secure. Thus, the assumption cannot be used to derive the security of

the protocol unless a separate mechanism can justify this assumption. To tackle this

problem, Gong and Syverson have proposed a new protocol design approach based

on the idea of fail-stop protocols [23]. In a fail-stop protocol, if a received message is

inconsistent with the protocol specification, then all those messages that are causally

after the altered message in term of Lamport’s definition of causality [30], will not

be sent. That is, a protocol execution automatically halts immediately after there is

any deviation from the designed protocol execution path. This restricts the effects of

active attacks on the protocol because active attacks only cause early termination of

a protocol execution. Thus, active attacks do not cause more or different messages to

be sent; so an attacker using active attacks cannot obtain more secrets than one using

passive eavesdropping. Therefore, only passive attacks need to be considered in the

verification process of the protocol. This makes the protocol verification process easier,

because such passive attacks and protection against them are much better understood

than active attacks.

20

Informally, a protocol is fail-stop if any attack interfering with a message sent in

one step will cause all causally after messages in the next step or later not to be sent.

The fail-stop design methodology is composed of three different steps:

Step 1: Verify that the given protocol is fail-stop.

Step 2: Validate the secrecy assumption of the protocol.

Step 3: Apply BAN-like logics to prove the secrecy of the protocol.

Step 1 and Step 2 can be repeated several times until the secrecy assumption be-

comes fully validated. To verify that a given protocol is fail-stop, it should be checked

whether the protocol confirms to one of the known specifications of fail-stop protocols.

The proposed specifications of fail-stop protocols by the authors are summarised as

follows.

1. The content of each message has a header containing the identity of its sender1,

the identity of its intended recipient, the protocol identifier, its version number, a

message sequence number, and a freshness identifer.

2. In symmetric cryptosystems, each message is encrypted under the key shared

between its sender and its intended recipient. In asymmetric cryptosystems, each

message is signed by the sender’s private key. The message can then be optionally

encrypted under the public key of the recipient.

3. An honest process follows the protocol and ignores all unexpected messages (FA:

a faithfulness assumption).

4. A process halts any protocol run in which an expected message does not arrive

within a specified timeout period (CR: a causality requirement).

If a message header uniquely identifies the position of the message within a pro-

tocol execution by means of a message sequence number included in the header, it is

impossible to use this message elsewhere without any modification of the message. In

a protocol which satisfies the above specification, every message is either encrypted

1When one can assume that encryption is sufficient proof of the sender’s identity, this requirement

can be omitted

21

under the key shared between its sender and recipient, or signed under the private

signing key of its sender, so no one else can make undetectable modifications without

obtaining these keys first, and any detectable modification will make the protocol run

stop immediately. Therefore, any protocol which satisfies the specifications above is

fail-stop.

To validate the security assumption that certain information is known only to a set

of participants, it needs to be shown that no other participants can obtain the informa-

tion through attacks. There are two types of secrets. The first type of secret includes

those used as keys to encrypt messages but which are not sent as message content dur-

ing a protocol execution. Clearly, these keys cannot be obtained by an attacker. The

other type includes secrets sent as message contents. In a fail-stop protocol, it is a bet-

ter strategy for an attacker to wait for the protocol to complete and to gather as many

messages as possible, that is, passive eavesdropping is better for him than active ma-

nipulation. The information that an attacker has gathered by recording the execution

of a protocol is easily deduced through the possession rules similar to the possession

rules of the GNY logic [22]. Showing that the attacker cannot possess the secret infor-

mation is enough to validate the secrecy assumption.

The last step is to apply BAN-like logics to verify the correctness of the protocol.

Since the secrecy assumption is already validated, the secrecy assumption can be used

to derive the security of the protocol. This makes protocol verification simple and more

credible.

The authors have also presented extensible fail-stop protocols that enjoy sequential

and parallel composition. Informally, a protocol is extensible fail-stop if adding any

last message to the protocol results in a fail-stop protocol. If all individual protocols or

building blocks are extensible fail-stop, then the analysis of an overall complex protocol

can be built on the analysis of the individual protocols. While many fail-stop protocols

are not extensible fail-stop, extensible fail-stop protocols are not substantially harder

to design than fail-stop protocols2.

This approach to secure protocol design does not help the designer in the actual

construction of the fail-stop protocol, it is more concerned with verification of the pro-

tocol. The designer has to construct a protocol, without a formal design framework,

2To be an extensible fail-stop protocol, the protocol needs to satisfy a causal consistency criterion

(CCC), which is expressed in terms of a faithfulness assumption (FA) and a causality requirement (CR).

22

which conforms to the definition of the fail-stop protocol and then the protocol is veri-

fied using an existing verification technique. As Gong and Syverson state, some proto-

cols may have other requirements which conflict with those of fail-stop protocols.

2.3 Design Logic

Buttyan et al. have proposed a design logic similar to the BAN logic for the synthesis of

security protocols [8], essentially reversing the inference rules of their BAN-like logic.

The approach uses a relatively abstract model to construct and verify a protocol. It is

based on the concept of the channel. Channels are abstract views of various types of

secure communication links between principals. The abstraction of a link as a channel

enables designers to design and analyse protocols without addressing the complex-

ity of the actual implementation issues. Indeed, instead of encryption or decryption

operations, channels with various access restrictions are used in the synthesis process.

A channel C is characterised by its set of readers r(C), those who can read a mes-

sage from the channel, and its set of writers w(C), those who can write a message to

the channel. To use a channel, a principal needs a capability to access the channel. This

capability is denoted as Cr for reading from the channel, Cw for writing to the channel,

respectively. If a principal P possesses Cr, then P is a reader of the channel C and de-

noted as P ∈ r(C). If a principal P possesses Cw, then P is a writer of the channel C and

denoted as P ∈ w(C). It is assumed that a principal can always detect a message ar-

rival on any channel that it can read. There are several types of channels with different

characteristics:

Public Channel: A channel which anybody in the system can write and read, i.e.

r(C) = w(C) = A, where A is the set of all principals.

Authentic Channel: A channel which anybody can read, but only one principal P

can write, i.e. r(C) = A and w(C) = {P}. Authentic channels can be implemented

by signatures.

Confidential Channel: A channel which anybody can write, but only one prin-

cipal P can read, i.e. r(C) = {P} and w(C) = A. Confidential channels can be

established by encryption with the public key of P .

23

Dedicated Channel: A channel which one principal P can read and one prin-

cipal Q can write, i.e. r(C) = {P} and w(C) = {Q}. Dedicated channels can be

constructed by combining the properties of the authentic channel with the prop-

erties of the confidential channel.

Closed Group Channel: A channel which a set of principals can write and the

same set of principals can read, i.e. r(C) = w(C) = A, where A is a set of prin-

cipals. Closed group channels can be implemented by using symmetric key en-

cryption and distributing the key to a set of principals.

Conventional Secret Channel: A channel which two principals P andQ can read

and write, i.e. r(C) = w(C) = {P,Q}.

The logic itself is similar to the BAN logic except some minor modifications on the

see (�) formula. That is, a principal sees information through a channel, written as

either P � C(X) which means P sees C(X), or P �X|C which means P sees X via C.

The synthetic rules are obtained by reversing the inference rules of the logic and

have the following general forms:

G

→֒ G1

→֒ G2

→֒ · · ·

→֒ Gn

which means that in order to reach the goal G all new goals G1, G2, · · · , Gn have to be

reached. A goal G can have the form G′/G′′, which means that either G′ or G′′ has to be

reached.

(Synthesis Rule 1) To recognise that a message X arrived via a channel C, a principal

P has to receive C(X) and it has to be able to read C.

P |≡(P �X| C)

→֒ P � C(X)

→֒ P ∈ r(C)

24

(Synthesis Rule 2) To see a message X , a principal P has to see a message (X,Y) that

contains X or it has to receive X via a channel C.

P �X

→֒ P � (X,Y)/P |≡(P �X| C)

(Synthesis Rule 3) To believe that a principal Q said X , a principal P has to believe

that Q said a message (X,Y) that contains X .

P |≡(Q|∼X)

→֒ P |≡(Q|∼(X,Y))

(Synthesis Rule 4) To believe that a principal Q said X , a principal P has to receive X

via a channel C that it can read and that it believes can be written only by Q, or P and

Q. Furthermore, Q has to see X .

P |≡(Q|∼X)

→֒ P � C(X)

→֒ P ∈ r(C)

→֒ P |≡(w(C) = Q)/P |≡(w(C) = {P,Q})

→֒ Q�X

(Synthesis Rule 5) To believe that a principal Q has recently said X , the following is

required: if X is a formula and P believes that Q is honest, then P has to receive X

via a channel C that it can read and that it believes can be written by Q, or P and Q.

Furthermore, P has to believe that X is fresh and Q has to believe X .

P |≡(Q‖∼X)

→֒ P � C(X)

→֒ P ∈ r(C)

→֒ P |≡(w(C) = Q)/P |≡(w(C) = {P,Q})

→֒ P |≡♯(X)

→֒ Q|≡X

25

Alternatively, P has to believe that Q said X and X is fresh.

P |≡(Q‖∼X)

→֒ P |≡(Q|∼X)

→֒ P |≡♯(X)

(Synthesis Rule 6) To believe that a message X is fresh, a principal P has to believe

that some part X ′ of X is fresh.

P |≡♯(X)

→֒ P |≡♯(X ′)

(Synthesis Rule 7) To believe that a principal Q believes a formula φ, a principal P has

to believe that Q has recently said φ and that Q is honest.

P |≡(Q|≡φ)

→֒ P |≡(Q‖∼φ)

→֒ P |≡((Q‖∼φ)→ (Q|≡φ))

(Synthesis Rule 8) To believe a formula φ, a principal P has to believe that Q has

recently said φ, and that a principal Q is honest and competent.

P |≡φ

→֒ P |≡(Q‖∼φ)

→֒ P |≡((Q‖∼φ)→ φ)

(Synthesis Rule 9) To believe a formula φ, a principal P has to believe a formula φ′ and

the implication φ′ → φ.

P |≡φ

→֒ P |≡φ′

→֒ P |≡(φ′ → φ)

Equipped with these rules, first, the designer identifies protocol goals and describes

them with the language of the logic. Then, the designer can generate the whole protocol

26

and the required assumptions in a systematic way by using the synthesis rules. Deriv-

ing a protocol from the goals involves repeated application of rules which decompose

the goals into simple goals. Synthesis rules are applied until all goals obtained belong

to the initial assumptions. The result of the process is a formal description of a protocol

in a BAN-like logic form. The clarity of the approach makes it an easy tool to use, but

the approach only provides a way of designing protocols at a highest abstraction level.

The use of logics to design protocols suffers from the same problem as the verification

of protocols using logics: the conversion of the protocol from the formal statements in

the BAN-like logic to the implementation, expressed in the ambiguous protocol nota-

tion, is an informal process which could lead to errors.

2.4 Strand Space Approach

Guttman has shown how authentication tests can be an effective tool in designing com-

plex protocols [24]. Authentication tests are common tools used to implement authenti-

cation mechanisms in many protocols. A successful authentication test guarantees the

existence and participation of the intended principal in a protocol run, thus serves as an

authentication proof. Generally speaking, two-party protocols are much better under-

stood and much easier to design than protocols with more than two participants. Thus,

when a complex protocol design problem is given, the problem is divided into two-

party subproblems. This is natural because most authentication and non-repudiation

goals are pairwise. Each subproblem can be easily solved using authentication tests.

After solving all these subproblems, a protocol which satisfies all these subgoals can

be composed from the subprotocols, if there is some common information which can

uniquely identify and combine all subprotocols into one. For example, a unique ses-

sion identifier can be inserted into the messages of each subprotocol in order to tell

which session each subprotocol belongs to. Alternatively, each participant can gener-

ate a message component using a shared secret together with some session identifiable

information which is cryptographically verifiable by the other participants, and send

the component to the other participants.

The design process of the approach has the following steps:

1. Formulate a number of precise goals that the protocol is intended to meet. Goals

that concern a subset of the principals may be achieved using subprotocols in-

27

volving only those principals.

2. For each goal, select an authentication test pattern and design an appropriate au-

thentication test mechanism that will satisfy the authentication goal exclusively.

Verify that the subprotocol achieves the goal.

3. Piece the subprotocols together to construct a single protocol and justify it using

strand space theory.

This approach is interesting because the method shows how to construct a com-

plicated protocol from several two-party protocols. However, the assumption that a

common shared secret exists among participants limits its applicability. The design

methodology proposed in this thesis is built upon this strand space idea and goes fur-

ther to extend the idea.

2.5 Automatic Protocol Generation

Several APG (Automatic Protocol Generation) schemes have recently been proposed

[12, 18, 43, 44]. The aim of these approaches is to provide a practical means of search-

ing reasonable but not necessarily optimal protocols which satisfy the given goals3.

Let design space be the set of all possible or feasible designs, then the protocol de-

sign problem is to find feasible protocols from the design space within a reasonable

time limit. Intuitively, the protocol space of feasible protocols is infinite. Hence, APG

systems need a way to limit the number of candidate protocols generated, while not

omitting any potential protocols.

3In most cases, finding an optimal protocol is impossible due to the large size of the design space.

28

Protocol
Generator

Protocol
Screener

Candidate

Protocols

Goals and
Requirements

Output
Protocols

Figure 2.1: APG Overview

The first step of these approaches is to input the specification of the desired security

properties and the system requirements, then a protocol generator generates many fea-

sible protocols either randomly or with the help of some sophisticated techniques such

as genetic algorithms, simulated annealing, etc. A protocol screener analyses these can-

didate protocols to find out what they actually achieve. Given a candidate protocol, the

protocol screener should be able to examine the protocol and tell whether it is correct

or not, and the protocol screener needs to be highly efficient to find a good protocol in

a reasonable amount of time. If a generated protocol does not satisfy the goals speci-

fied, the protocol and any protocols derivable from it can be discarded using reduction

techniques. There are tradeoffs in reduction. If a protocol is removed early in the search

step, then it may reduce the size of the design space to search but it may also lose some

optimal protocols. On the contrary, if a protocol is removed later in the search step,

then it may suffer the state-space explosion but it may increase the chance of produc-

ing optimal protocols.

The efficiency of these searching frameworks for a reasonably good protocol de-

pends on several factors such as characteristics of the design space, evaluation (fitness

or metric) functions and search strategies. The characteristics of the design space de-

termine the way that required protocols are represented. Some approaches restrict the

design space to the protocols where principals act honestly [12, 18], whereas some ap-

proaches do not [43, 44].

Evaluation functions provide means to evaluate how feasible a protocol is and to

characterise precisely how the goodness of each protocol is. Providing a good evalua-

tion function is very difficult because there are too many factors to be considered, such

29

as the strength of assumptions made, the number of interactions with key servers, the

length of messages, the number of signatures required, and the amount of encryption

needed. To be a good evaluation function, it should prefer a protocol that achieves all

of its goals to one that achieves only half of them. Similarly, a good evaluation func-

tion should prefer a protocol with less initial assumptions to a protocol with more

assumptions. The number of messages in a protocol can be a good metric of efficiency,

thus it should also be considered. Formulating an accurate evaluation function seems

to be almost impossible and may be unnecessary. However, it is important to find a

reasonably good one because an evaluation function forms a crucial component of the

search framework, so it may significantly affect the success and the performance of the

technique.

Good search strategies offer schemes for searching the design space that examine

only a small fraction of possible protocols but still locate good ones. Various heuris-

tic techniques can be used, such as iterative deepening, simulated annealing, tabu

searches and genetic algorithms. The efficiency of search strategies determines how

good is the solution search strategies outcome in a short time.

APG approaches have several advantages over the current protocol design process,

especially compared with a manual design process. First, the approaches are fully auto-

matic. Second, as can be seen from some examples of two-party mutual authentication

and key distribution protocols with or without a trusted third party [43, 44], the pro-

tocols generated by APG methods offer higher confidence in their correctness because

they are already verified by powerful protocol analysers. The approach of automatic

protocol generation sounds attractive, but still it is unclear whether it is feasible to gen-

erate meaningful and correct protocols automatically. Especially, it is dubious whether

the approaches will scale up to more complicated protocols other than two-party mu-

tual authentication ones. With a small increase in principals and messages, the design

space which needs to be considered explodes exponentially, and so significantly more

aggressive reduction techniques are required. These reduction techniques are difficult

to develop due to the increased risk of optimal solutions being discarded by the tech-

nique, as more and more potential solutions are discarded.

30

2.6 Protocol Derivation System

Mechanisms such as Diffie-Hellman key exchange, nonces or timestamps to provide

freshness, and signatures for non-repudiation, are common in many authentication

and key exchange protocols. Thus, understanding how these mechanisms work and

how properties of a compound protocol can be obtained from properties of its parts, es-

pecially how various security properties can be accumulated, is crucial for the system-

atical derivation of complicated security protocols from simple ones. Datta et al. [13]

have presented a protocol derivation system for deriving security protocols from basic

components using a set of operations such as protocol composition, refinement and

transformation.

The system consists of two base protocol components, three transformations, and

seven refinement rules. Two protocol components are a Diffie-Hellman key exchange,

and a two-message signature challenge and response authentication protocol, which

act as basic building blocks for constructing larger protocols. A composition operation

combines two protocols together either sequentially or through parameter substitu-

tion. Suppose that pi and pj are two protocol components. If the postcondition of one

protocol pi matches the precondition of the other protocol pj , then these two protocols

can be sequentially composed as a new protocol [pi; pj], where [pi; pj] means every step

of pj comes sequentially after every step of pi. Moreover, if pi satisfies security prop-

erty ϕ with parameter ω, that is, after pi(ω), ϕ(ω) is true, then the substitution of the

parameter ω into µ will make the security property ϕ(µ) true. This parameter substitu-

tion together with sequential composition provides a way of composing a protocol. A

refinement rule replaces a single message in a protocol with another. A refinement rule

does not change the number of messages or the basic structure of the protocol, that is,

every refinement rule is nondestructive in the sense that applying the rule does not

destroy any security properties already gained. The following are the refinement rules

proposed by the authors of [13].

R1: [m]A ⇒ {|[m]A|}k, where [·]A is a signature operation with A’s signature key and

{| · |}k is an encryption with a shared key k. This refinement provides identity

protection against passive attackers.

R2: [m]A ⇒ [〈m, IDA〉k]A, where 〈·〉k is a hashing operation with a shared key k and

IDA denotes the public key certificate of A.

31

R3: [m]A ⇒ [m]A, 〈m, IDA〉k.

R4: [m]A ⇒ [m, IDB]A. This refinement provides protection against man in the mid-

dle attacks.

R5: gx ⇒ gx, nA, where nA is a fresh value. This refinement enables the reuse of expo-

nentials across multiple sessions.

R6: [m]A ⇒ [m]A, IDA. This refinement discharges the initial assumption that the

principals possess each other’s public key certificates.

R7: {|m|}k ⇒ {|m|}k, 〈role, {|m|}k〉k′

More refinement rules can be added later through the careful analysis of many pub-

lished protocols. Finally, a transformation operation acts on a single protocol, which ei-

ther moves data from a later message to an earlier one through the message component

move transformation, or reorders messages using a DoS (Denial of Service) prevention

cookie transformation technique. The protocol derivation system can systematically

derive many protocols incrementally, starting from simple components, and extend-

ing them by features and functions. The approach is elegant in many ways. However,

it is unclear whether or not the composition of the secrecy property proposed in the

approach still works when the secret is not of the form gx but of the form x. More-

over, no formal proofs of the correctness of the refinement and transformation rules

are presented in the paper, even though the validity of some of the rules is evident.

32

3
Mathematical Preliminaries

This chapter reviews the practical and theoretical background concepts which are nec-

essary for understanding the proposed design methodology. Section 3.1 shows how

message terms are modelled in this thesis. Section 3.2 outlines the fundamental oper-

ations on sets of terms and their properties. Some useful properties on fake messages

of the intruder are shown in the same section. Definitions of basic concepts such as

ideals and coideals, events and strands, and bundles and traces, which are borrowed

from strand space theory [51, 52], are given in Section 3.3, Section 3.4, and Section 3.5,

respectively. The notion of binding groups is also proposed in Section 3.4 to convey

the idea that a variable introduced by an agent during a protocol run is always linked

to a specific group of agents. Finally, the regularity and discreetness properties of a

protocol, as proposed by Millen and Ruess [38], are discussed in Section 3.6.

33

3.1 Message Terms

The formalisation task begins by defining the primitive data types that may occur as

message terms. A is the set of messages that can be sent between agents. In another

context we might use “principal” instead of “agent”. We call elements of A terms. The

set of terms A is assumed to be freely generated from two sets T, K:

• The set T ⊆ A is a union of a set of Constant terms C and a set of Variable terms

V, i.e. T = C ∪ V. The set C consists of terms which are session-invariant such as

protocol numbers or agent names. There are two special agents: a trusted server

Srv and an intruder Spy. The set of all agents is denoted as A. The set V consists

of terms which are session-variant such as nonces or timestamps. V and C are

assumed to be disjoint.

• The set K ⊆ A consists of cryptographic keys disjoint from T. Each key can be

private or public and short-term or long-term depending on the properties it sat-

isfies. A public key of agent A is denoted as pub(A), its corresponding private

key prv(A), and a symmetric key shr(A). The set of long-term keys of agent A is

denoted as KL(A) and the set of short-term keys as KS(A). Short-term keys are as-

sumed symmetric. A symmetric key is denoted as kAB or kBA, where kAB means

a shared key used by A to communicate with B. A pair of signature and verifica-

tion keys of A are denoted as (skA, vkA), and a pair of encryption and decryption

keys of A as (ekA, dkA). The variable k is used to refer one of these keys.

There are two unary and four binary operators:

• inv : K→ K

inv maps each member of a public and private key pair to its mate and maps each

symmetric key to itself. We write inv(k) as k−1.

• key : A→ K

key is a key generation function which cryptographically transforms a term or

terms into a key. This function does not necessarily need to be irreversible, but it

is assumed irreversible for simplicity.

• conf : K× A→ A

conf is a reversible cryptographic transformation of a message with a key, which

34

provides confidentiality to the message. Encryption is generally used for provid-

ing this property. We write conf(k,m) as {|m|}k.

• intg : K× A→ A

intg is a reversible cryptographic transformation of a message with a key, which

provides integrity to the message. We denote intg(k,m) as [m]k.

• hash : K× A→ A

hash is an irreversible (one-way) cryptographic transformation of a message with

or without a key. We use notation 〈m〉k for hash(k,m) and 〈m〉 for hash(∅,m).

• join : A× A→ A

join is a concatenation operation on messages. We denote join(a, b) as a · b.

We call conf, intg, and hash operations collectively as cryptographic operations or

cryptographic transformations and use Fk(·) to denote them when the operator itself is

unimportant for the discussion. Sometimes, we use Gk(·) only to refer to either the

operation conf or intg. All cryptographic operations are based on the free encryption

assumption where

Fk(m) = Fk′(m′)⇔ m = m′ ∧ k = k′

Definiton 1. (Simple, Composite and Basic Terms) A term is simple if it is not of the

form x · y. Otherwise, it is composite. All concatenated terms are composite. A composite

term can be divided into simple terms, and these simple terms are called components of the

composite term. Basic terms are the simple terms in the set V ∪ K excluding those constructed

by encryption.

Basic terms are the kinds of primitive data types that may be designed to be secrets.

Composite terms and Constant terms are never designed as secrets, though some com-

posite terms may have to be protected to maintain the secrecy of some of their compo-

nents or some Constant terms need to be protected for the protection of privacy.

3.2 Inductive Relations

The fundamental operations on sets S ⊆ A of terms as introduced by Paulson [41] are

Parts(S), Analz(S) and Synth(S). All three sets are defined inductively, as the least set

35

closed under specified extensions. The set Parts(S) is the set of all subterms of terms in

the set S. The set Parts(S) is obtained from S by repeatedly adding the components of

message terms and the bodies of cryptographically transformed message terms gener-

ated by Gk(·) operations. The set Analz(S) is the subset of Parts(S) consisting of only

those subterms that are accessible to Spy. The set Analz(S) is obtained from S by re-

peatedly adding the components of message terms and the bodies of cryptographically

transformed message terms generated by operations Gk(·) if k−1 is in Analz(S). The set

Synth(S) is the set of message terms constructible by Spy given the elements of S. The

set Synth(S) is obtained by adding all message terms constructible by concatenation

and cryptographic operations using terms and keys in S. These sets are formally de-

fined as follows.

Definiton 2. (Parts, Analz, and Synth) Let S be a set of terms. The set Parts(S) is the

smallest extension of S obtained by recursively including each component of concatenations

and the bodies of Gk(·) transformed message terms.

• S ⊆ Parts(S)

• if x · y ∈ Parts(S), then x ∈ Parts(S) and y ∈ Parts(S)

• if Gk(x) ∈ Parts(S), then x ∈ Parts(S)

Given a term x, a term y ∈ Parts(x) is called a subterm of x and denoted as y ⊑ x.

The set Analz(S) is the smallest extension of S closed under projection and inverse opera-

tions by keys in Analz(S).

• S ⊆ Analz(S)

• if x · y ∈ Analz(S), then x ∈ Analz(S) and y ∈ Analz(S)

• if Gk(x) ∈ Analz(S) and k−1 ∈ Analz(S), then x ∈ Analz(S)

Finally, the set Synth(S) is the smallest extension of S closed under concatenation and Fk(·)

transformation.

• S ⊆ Synth(S)

• if x ∈ Synth(S) and y ∈ Synth(S), then x · y ∈ Synth(S)

36

• if x ∈ Synth(S) and k ∈ Synth(S), then Fk(x) ∈ Synth(S)

The following properties are stated, for similarly defined sets in [41]. They are all

proved by straight forward inductions.

Proposition 1. The set operations Parts(S), Analz(S), and Synth(S) are closure operators, i.e.

they are extensive1, monotonic, and idempotent. Furthermore:

Parts(Analz(S)) = Parts(S)

Analz(Parts(S)) = Parts(S)

Parts(Synth(S)) = Parts(S) ∪ Synth(S)

Analz(Synth(S)) = Analz(S) ∪ Synth(S)

Spy can generate fake messages from analysable parts of a set of available terms.

This gives the definition of Fake(S).

Definiton 3. (Fake) Fake(S) = Synth(Analz(S)).

Some useful properties on Parts(Fake(S)) can be easily obtained from the definition

of Fake.

Lemma 1. (Fake-Parts)

1. Parts(Fake(S)) = Parts(S) ∪ Fake(S)

2. Parts(Fake(S)) ⊆ Synth(Parts(S))

Proof. Using the properties in Proposition 1.

Parts(Fake(S)) = Parts(Synth(Analz(S)))

= Parts(Analz(S)) ∪ Synth(Analz(S))

= Parts(S) ∪ Synth(Analz(S))

= Parts(S) ∪ Fake(S)

Moreover, Analz(S) ⊆ Parts(S) ⊆ Synth(Parts(S)), therefore,

Parts(Fake(S)) = Parts(S) ∪ Synth(Analz(S))

⊆ Synth(Parts(S))

1For example, S ⊆ Parts(S).

37

3.3 Ideals and Coideals

If S is a set of basic terms, then there exists a smallest set which should be protected

from Spy in order not to reveal any information on the basic terms in S [38, 51]. This

set is called the ideal of S and denoted as I[S]. The ideal is the smallest set of terms

that includes S and which is closed under concatenation with any terms and under

encryption with keys whose inverses are not in S. The k-ideal of S is denoted as Ik[S],

where k is the set of keys belonging to S. To protect a set of secrets S, all members of

Ik[S] should be protected from Spy. The ideal is formally defined as follows.

Definiton 4. (Ideals) Let k be a set of keys belonging to S. The k-ideal of S, Ik[S] is the

smallest set such that

1. S ⊆ Ik[S]

2. if x ∈ Ik[S] or y ∈ Ik[S], then x · y, y · x ∈ Ik[S]

3. If x ∈ Ik[S] and k−1 /∈ S, then Gk(x) ∈ Ik[S]

The smallest k-ideal containing x is denoted as Ik[x]. If k = K, then the ideal of S is the

closure of S under concatenation. We use I[·] instead of Ik[·] if k is clear from the context.

Under the assumption that any term not in the ideal may be already compromised

to Spy, it is necessary to protect this whole ideal because compromising any element of

the ideal effectively compromises some element of S.

It will be useful to note that any term in the ideal must have a subterm in the gen-

erating set S especially if S is constructed from a set of basic terms. This can be easily

proved by induction, but it is evident from the definition of the ideal.

Lemma 2. If x ∈ I[S], then there exists y ⊑ x such that y ∈ S and y is basic.

The complement of an ideal, which is called a coideal [38,51], is denoted by C[S]. The

coideal C[S] defines the set of terms that are public with respect to the set of secrets S,

i.e. terms whose release would not compromise any secrets in S.

Definiton 5. (Coideals) Given a set S and its ideal I[S], the coideal of S is the complement

of the ideal of S and denoted as C[S].

38

Coideals are interesting because they are closed under Spy analysis, thereby imply-

ing that protection of the ideal is sufficient.

Lemma 3. (Analz Closure) For a set S of terms:

Analz(C[S]) = C[S]

Proof. From the extensive property of Analz(·)

C[S] ⊆ Analz(C[S])

We now have to show

Analz(C[S]) ⊆ C[S]

This can be done by showing that C[S] is closed under the rules that expand Analz(·).

First, suppose x · y ∈ C[S], that is, x · y 6∈ I[S]. We have to show x, y ∈ C[S]. From the

definition of the ideal, if x ∈ I[S], then x · y ∈ I[S]. This contradicts the assumption

that x · y ∈ C[S]. Therefore, neither of x nor y is in I[S], i.e. x, y ∈ C[S]. Second, suppose

Gk(x) ∈ C[S] and k−1 ∈ C[S], then we have to show x ∈ C[S]. From the definition of the

ideal, Gk(x) ∈ C[S] implies either x 6∈ I[S], or x ∈ I[S] and k−1 ∈ I[S]. The first subcase

means x ∈ C[S] and the second subcase contradicts the assumption that k−1 ∈ C[S].

Therefore, x ∈ C[S].

A similar result can be proved for Synth(·) when the elements generating the coideal

are basic.

Lemma 4. (Synth Closure) For a set S of basic terms:

Synth(C[S]) = C[S]

Proof. From the extensive property of Synth(·)

C[S] ⊆ Synth(C[S])

Now we have to show

Synth(C[S]) ⊆ C[S]

This can be done by showing that C[S] is closed under the rules that expand Synth(·).

First, suppose x, y ∈ C[S]. We have to show x · y ∈ C[S]. In contradiction, assume

39

x · y ∈ I[S]. From the definition of the ideal, x · y ∈ I[S] either because x · y ∈ S or

x, y ∈ I[S]. The first subcase is impossible because S is composed of basic terms, and

the second subcase contradicts the assumption that x, y ∈ C[S]. Hence, x · y ∈ C[S]. We

now have to show that Fk(x) ∈ C[S] under the assumption x, k ∈ C[S]. Fk(x) implies

Gk(x) or 〈x〉k. Assume that Gk(x) ∈ I[S], either because Gk(x) ∈ S, or x ∈ I[S] and

k−1 6∈ I[S]. The first subcase is impossible because S is a set of basic terms, and the

second subcase contradicts the hypothesis that x ∈ C[S]. The same argument can be

applied for 〈x〉k. Therefore, Fk(x) ∈ C[S].

From the definition of the ideal, we can inductively define two different types of

sets of keys: penetrable keys and safe keys [52]. The set of penetrable keys is the set of

keys that may become known to Spy, and the set of safe keys is the set of keys which

are safe from Spy analysis.

Definiton 6. (Penetrable Keys) Let P0 be the set of keys which are initially known to Spy

before any protocol activity. The set of penetrable keys KP is recursively defined as follows.

1. KP0
= P0

2. KPi+1
= KPi

∪ X, where k ∈ X iff there is a term x originating from an agent and

x ∈ IK−1

Pi

[k]

3. KP =
⋃
i

KPi

Thus, a key becomes a penetrable key either because the key is already penetrated

before any protocol activity or because some regular agent, during the protocol runs,

emits the key in a message that could be penetrable by Spy.

Definiton 7. (Safe Keys) The set of safe keys is defined as KS = K− KP.

3.4 Events and Strands

Agents are non-deterministic machines with some internal state, communicating over

a public channel by sending and receiving messages. The internal state of an agent

determines what action an agent will take next. The behaviour of some agents is de-

termined by a protocol. Some agents such as Spy will not adhere to the protocol. She

40

can behave arbitrarily. Other agents may be partially faithful, for example, clients in

an electronic commerce protocol may try to cheat. We view a protocol as a constraint

on the possible actions of agents. More specifically, each agent is associated with a next

action defined by the protocol, which maps its current state into the set of possible

next actions. Spy is generally considered unconstrained by the protocol, while faithful

agents such as Srv are fully constrained.

As a first step towards formalising such a view of agents, we define an event, which

is an action of agent. Events take one of the following forms: e+(x) indicating that

term x is sent by an agent; e−(x) indicating that term x is received by an agent; (νx)

indicating that a basic term x is generated by an agent; and e−(x/p(x)) matching a term

x against a pattern p(x). We use e to refer to one of actions such as e+(x), e−(x), (νx),

(x/p(x)). An event can be subscripted by an agent identifer like eA to indicate where

the event happens.

Definiton 8. (Events) An event e is an action which an agent can perform to interact with

other agents, i.e. e ::= e+(x)|e−(x)|(νx)|(x/p(x)). The events e+(x) and e−(x) are called

external events and others are called internal events. The contents of a message of an external

event e is denoted by m(e).

We divide events into two categories: internal and external events. By internal events,

we mean events which happen within an agent. The contents of an internal event can-

not be seen by other agents unless there is an external event which carries the contents.

Hence, we only define the contents of external events. Actions such as decryption and

verification of terms are basically the same, so we use pattern matching actions for both

purposes. Variable generation actions need special attention. Whenever a new variable

term is introduced in a protocol run, i.e. when an action (νx) has been done by some

agent A, there is a group of agents to whom x is supposed to mean something. For ex-

ample, if A creates x as a secret, then there will be a group of agents who are permitted

to share the secret with A. If A generates x as an authentication challenge, there will be

a set of agents whom A wants to authenticate using x. This group of agents is called

the binding group of x.

Definiton 9. (Binding Group) When a new variable term x is introduced by an agent A

during a protocol run, there is a group of agents who are linked to x by A. This group of agents

is called the binding group of x and denoted as Bx. When x is used as a secret, the binding

group of x is called the secret group of x. Sometimes, we use notation (νx : Bx) instead of (νx)

in order to specify the binding group of a variable x.

41

Each agent is assumed to have a local notion of “before” and “after” such as Lam-

port’s clocks [30] that gives a total order on each agent’s events. These local clocks of

agents define an order between events. If event ei happens before event ej , then it is

denoted as ei < ej and we say that ei precedes ej .

Axiom 1. (Order Restriction)

1. e+(x) < e−(x)

2. (νx) < e+(x)

This axiom simply says that all sending events of a term x precede all receiving

events of the term x, and a new variable term cannot be sent before it is generated, that

is, no events on the right side can happen without their preceding events. Therefore,

the existence of the events on the right side always means the existence of the events on

the left side. Two events are independent if no order restriction exists between them.

Definiton 10. (Independent Events) Two events ei and ej are independent if ei 6< ej and

ej 6< ei.

If there is an order restriction between events, then the order relation between the

events can be obtained through the application of Axiom 1. In case of independent

events, the protocol specification has to provide the order relations among the inde-

pendent events to avoid ambiguity. This way, an agent can always predict which action

it should take next, and can define a total order among events it has done or seen so

far.

When an agent interacts with other agents, not all actions are visible to the agent.

An agent can only see either actions done by itself or their corresponding external

actions done by other agents. A sequence of actions which an agent has done is called

a strand. A parametric strand shows an agent’s local view of a protocol run defined by

a parameter known to the agent.

Definiton 11. (Strand) A parametric strand ξ(ω) is a sequence of actions which have been

done by one particular agent with a parameter ”ω”. We subscript it by the agent identifier like

ξA(ω) to display to whom the strand belongs, or we use |e1, e2, ..., em|A to mention the sequence

itself. If a particular event e is a part of the sequence ξA(ω), then we say e is in the strand and

denote it as e ∈ ξA(ω). The number of events in a strand is called the height of the strand and

denoted h(ξ(ω)).

42

Parametric strands are called strands for short with the notation ξ instead of ξ(ω).

Every strand has a total order among its events defined by the agent’s local clock and

the order restrictions imposed on its events.

3.5 Bundles and Traces

A strand space Σ = {ξAi
: Ai ∈ A} is a set of strands [25, 52]. A set of strands ψ ⊆ Σ

can interact with each other if message exchanges exist between them, that is, there are

at least two distinct strands ξAi
, ξAj

, where for some term x, e+(x) ∈ ξAi
and e−(x) ∈

ξAj
. Such a collection of strands which interact with each other is called a bundle. For

convenience, we write e ∈ ψ if e ∈ ξAi
where ξAi

∈ ψ.

Definiton 12. (Bundle) Let ψ be a set of strands, i.e. ψ = {ξAi
: Ai ∈ A}. ψ is a bundle if:

1. ψ is finite, i.e. each ξAi
has a finite height.

2. If e−(t) ∈ ξAi
, then there is a unique strand ξAj

∈ ψ, where e+(t) ∈ ξAj
. This relationship

is written as e+(t)→ e−(t).

3. ψ is prefix-closed, i.e. if ei ∈ ψ and ej precedes ei, then ej ∈ ψ. When the preceding event

is in the same strand, i.e. ej, ei ∈ ξAi
, this relationship is written as ej ⇓ ei.

4. ψ is acyclic, i.e. no two events ei and ej satisfy both ei < ej and ej < ei.

We do not assume that the communication medium is secure, and so we do not ex-

pect that a message is received only by its intended receiver. Rather, we treat message

send events as broadcasts to the world; any agent can receive any message that is sent.

Further, we make no assumptions about the correct behaviour of the network — mes-

sages may be completely lost, received by only some agents, or even duplicated due to

network failures and errors. This view is reflected in the definition of the bundle. In a

bundle, when a strand receives a message term x, there is a unique strand sending x

from which the message was immediately received. By contrast, when a strand sends

a message term x, many strands or none may immediately receive x.

Definiton 13. (Bundle Equivalence) Two bundles ψi and ψj are equivalent iff for all eA ∈

ψi ⇔ eA ∈ ψj , where A is not Spy. A set φ of bundles is invariant under bundle equivalences

if ψi ∈ φ and ψj is equivalent to ψj implies ψj ∈ φ.

43

The concept of a bundle is important: all possible runs of a protocol can be repre-

sented as bundles, and almost all correctness properties can be stated as properties of

bundles. The agreement and non-injective agreement properties of Lowe [33] are in-

variant under bundle equivalences. For instance, a non-injective agreement property

asserts that whenever a bundle contains a protocol strand (for instance, a responder

strand) of a certain height, then it also contains a matching strand (for instance, an ini-

tiator strand using the same parameter) of a suitable height. A bundle is an entangled

structure of a set of strands; a linearised version of a bundle is called a trace.

Definiton 14. (Traces) A trace of ψ, TR(ψ) is a totally ordered set of events which can occur

when events in the strands of ψ happen without violating local order relations of each strand

and order restrictions among events. The contents of a trace is denoted by m(TR), which is the

union of all contents of the events in the trace.

The definition above does not admit traces in which two events happen simulta-

neously. Such a possibility could be accommodated by replacing the notion of a total

order with the more general notion of a total pre-order. However, the extra structure

afforded by simultaneous events is inconsequential for the security properties.

A trace is a record of actions done so far by agents. Therefore any prefix of a trace

is also a trace.

Lemma 5. (Prefix Closure) If TR is a trace, then any prefix subsequence of TR is a trace.

The definition of a trace captures a notion of agent interaction in which agents are

completely free to send and receive messages. However, this notion does not take into

account the constraints on interaction imposed by protocol specifications or environ-

ments. Therefore, there is no limit to the number of intermediate events that can occur

between any two events. This is not true in real situations, so it is useful to restrict the

number of events between any two events to be finite. This restriction is imposed by

the assumption of Definition 12 that every bundle has a finite height, so traces in this

thesis are bounded.

Unused terms are those terms that do not appear in the trace, and which can be

used for nonces or secrets.

Definiton 15. (Unused Terms) A variable t is unused in TR if t is basic, t 6⊑ (νx) ∈ TR,

and t /∈ Parts(m(TR)). The set of unused variables in TR is denoted by Unused(TR)

44

3.6 Protocols and Secrecy

A protocol is defined as a set of rules which allow principals to generate traces by

adding actions, either performed by honest principals faithfully following the protocol

specification or introduced by Spy activity.

Definiton 16. (Protocol and Run) A protocol P is a set of rules which enable agents to add

an event e to a trace TR. Given a trace TR, if the next event defined by the protocol is e, then

this rule is denoted as (TR, e) ∈ P. The runs of a protocol, Runs(P), is a set of traces that could

be generated by a protocol P in an environment with Spy activity. Let I be a set of terms known

to Spy, then Runs(P) is defined inductively:

Rule 1 : ǫ ∈ Runs(P)

Rule 2 : If TR ∈ Runs(P) and (TR, e) ∈ P, then TR · e ∈ Runs(P), where TR · e represents

a trace obtained by adding e at the end of TR.

Rule 3 : If TR ∈ Runs(P) and e is an action done by Spy with m(e) ∈ Fake(m(TR)∪ I), then

TR · e ∈ Runs(P).

Rule 2 corresponds to the way of expanding a trace by an honest agent action,

while Rule 3 corresponds to the introduction of terms by Spy based on the Dolev-Yao

intruder model [17].

In each protocol run, terms such as long-term keys of principals or short-term se-

crets of the run have to be protected from Spy analysis. This set of secrets which should

be protected from Spy is defined as the protective domain of a protocol run.

Definiton 17. (Protective Domains) The x-protective domain Sx of a secret x is defined as

follows:

Sx = {x} ∪ {prv(A)|A ∈ Bx} ∪ {shr(A)|A ∈ Bx}

In order to protect x from Spy, not only x but also private keys and shared keys of

the members of Bx should be protected because compromise of these keys may reveal

x to Spy. Therefore, all of these keys should be elements of the x-protective domain.

Notice that only variable terms are allowed to be secrets.

45

A x-protective domain Sx is compatible with an initial knowledge set I if I does not

contain any of the secrets in Sx as its subterms.

Definiton 18. (I-Compatibility) Sx is compatible with I if Sx ∩ Parts(I) = ∅, and this kind

of protective domain is called I-compatible.

The following two lemmas are derivable from the definition of I-compatibility.

Lemma 6. If Sx is I-compatible, then I[Sx] ∩ Parts(I) = ∅.

Lemma 7. (Compatible Coideal) If Sx is I-compatible, then I ⊆ C[Sx].

According to Paulson’s regularity results [41], Spy never gets hold of any agent’s

long-term keys if they are never introduced by an honest agent as parts of messages.

A protocol is called regular if it protects long-term secrets this way.

Definiton 19. (Regularity) Let KL be a set of long-term keys to be protected. A protocol P is

regular if:

∀k ∈ KL, if (TR, e) ∈ P and k /∈ Parts(m(TR)), then k /∈ Parts(m(e))

Checking whether a protocol is regular is easy because we only need to see whether

long-term keys are used as parts of messages. Protocols used for long-term key distri-

bution purposes cannot be regular because long-term keys have to be introduced and

delivered as parts of messages. However, session keys can be distributed without af-

fecting the regularity property. From a design point of view, regularity simply means

that no long-term keys should be used as parts of messages in the process of a protocol

construction.

From the definition of the regularity, the regularity lemma follows.

Lemma 8. (Regularity) Let KL be a set of long-term keys to be protected. Suppose that

1. P is regular

2. k ∈ KL

3. k 6∈ Parts(I)

4. TR ∈ Runs(P)

46

then k 6∈ Parts(m(TR)).

Suppose Sx is a set of secret terms. The smallest set we should protect from Spy in

order not to reveal any element in Sx is I[Sx]. If Sx is I-compatible, no terms in I[Sx]

are obtainable by Spy from I (Lemma 6), as long as a trace generated by a protocol P

does not give any extra information to Spy. A trace which does not expose any terms

in I[Sx] is called discreet [38].

Definiton 20. (Discreet Trace) A trace TR is I-discreet, if for all x-protective domains Sx

that are compatible with I,

m(TR) ⊆ C[Sx]

A protocol is secure with respect to its secrecy policy and the Spy’s initial knowl-

edge if every trace of possible runs of the protocol is discreet. The secrecy proof of a

protocol has a protocol independent part and a protocol dependent part. The proto-

col dependent part is expressed by the discreet property defined below. It says that if

the prior trace is discreet, the next message event generated by the protocol does not

compromise a secret. This has to be proved individually for each protocol.

Definiton 21. (Discreet Protocol) A protocol P is discreet if for all Runs(P), I, and a secret

x satisfying the conditions

1. (νx) ∈ TR ∈ Runs(P) such that TR is I-discreet

2. (TR · e) ∈ Runs(P)

3. Sx is compatible with I

it is the case that m(e) ⊆ C[Sx].

The protocol independent part of a secrecy proof is the Secrecy theorem [38].

Theorem 1. (Secrecy) If P is regular and discreet, then every trace in Runs(P) is I-discreet.

Proof. This can be proved by induction on the trace TR.

47

4
Composition Theory

This chapter proposes the concepts of agreement tests and discreetness, which enable

authentication and secrecy to be composable. Protocol primitives are implemented

based on the two proposed concepts and will later be used as basic building blocks

in composing complex protocols. Section 4.1 reviews the idea of authentication tests

and extends it using the agreement property in order to make authentication compos-

able. The section also shows how to implement protocol primitives which guarantee a

matching record of a run. Section 4.2 discusses the non-destructive property of authen-

tication and shows how to make protocol primitives non-destructive for composition

of authentication. The section proves regularity and discreetness of the proposed prim-

itives and their composition, which is important for the secrecy of sensitive data within

the primitives. Finally, Section 4.3 discusses how to integrate each independent primi-

tive into a single protocol so that all independent goals accomplished by each primitive

happen in a single session.

48

4.1 Authentication with Agreement

Challenge and response mechanisms, or authentication tests [26] are common meth-

ods for establishing authentication results. Many authentication protocols depend on

these schemes to achieve their authentication goals. It is easy to implement a protocol

accomplishing a single independent one-way authentication goal using an authentica-

tion test. A multi-way authentication protocol can be seen as a set of one-way authenti-

cation protocols. This opens the possibility of implementing a two-way authentication

protocol by combining two applications of a secure one-way authentication protocol.

Unfortunately, this method generally does not work because two-way authentication

is not simply twice one-way [6]. This does not necessarily mean that authentication

itself is not composable or that it cannot be composable. If authentication is compos-

able, then the design of complex protocols will be easier. Therefore, it is important to

understand whether or not authentication is composable. The main focus of this sec-

tion is to understand whether a new protocol can be built from several independent

protocols, preserving the goals already achieved by each independent protocol. This is

what composition means in this thesis.

The section starts by reviewing the definition of authentication tests, which pro-

vide mechanical ways of implementing one-way authentication, and then shows why

authentication tests are not composable.

4.1.1 Authentication Tests

The concept of authentication tests [26] is a generalisation of the challenge and re-

sponse mechanism. The basic idea behind the authentication test is simple. There are

some operations that Spy cannot do, so Spy cannot apply any non-trivial actions to

the messages containing the outputs of those operations. Those messages may be dis-

carded by Spy but if they are delivered to an honest participant, they will be delivered

unaltered. If one of those transformations of the message appears some time after a

message was sent, then only honest participants are responsible for the generation of

the transformed message. Therefore, this pair of messages may be regarded as an au-

thentication test. There are two main types of authentication tests: outgoing and incom-

ing, depending on the forms of challenge and response messages. An unsolicited test

is a weaker version of an authentication test which does not provide any guarantee of

49

the recency of the received message. The original definition of authentication tests is

as follows [26]:

Definiton 22. (Authentication Tests & Unsolicited Tests) Assume that x ∈ V, k ∈ KS

and k′ = inv(k), then incoming and outgoing authentication tests are defined as follows:

Outgoing Tests : If a term x has been transmitted in encrypted form {| · · · x · · · |}k′ and is

later received as a component of a different composite term, then a participant who pos-

sesses the key k must have been responsible for the emission of x.

Incoming Tests : If a term x has been transmitted as a component of a composite term and is

later received in an encrypted term y = {| · · ·x · · · |}k, then a participant who possesses

the key k must have been responsible for the generation of the message y.

Unsolicited Tests : If an encrypted term y = {| · · ·x · · · |}k is received, then a participant who

possesses the key k must have been responsible for the generation of the message y. It does

not provide the recency of the received message x.

Authentication tests are basic mechanisms for implementing entity authentication,

especially one-way authentication. More specifically, a single authentication test guar-

antees the aliveness of a specific correspondent who has a specific key. In principle,

any pair of messages (x, y) can be an authentication test if the latter can only be gener-

ated by the application of cryptographic operations on the former with the help of safe

keys. However, the definition above is too general to serve as a definition of authen-

tication in protocol design. The following protocol is an example of an authentication

test. The notations used for specifying the protocol are based on the strand space for-

malism. Each arrow represents a send event and its corresponding receive event(s) as

seen by the named principal. Message 1 is ambiguous in the sense that there is no way

for B to believe that the message is destined for him before he decrypts it. It should be

B, {|Na, A|}KB
. The same goes for Message 2. In the example, these destination identi-

ties are omitted because they do not affect secrecy.

Message 1 A→ ∗ : {|Na, A|}KB

Message 2 A← ∗ : Na

When A finished the protocol above, what can she conclude? Can she say that B

replied to her when she received Message 2? Unfortunately, there is nothing she can

50

conclude from the example protocol except thatB has recently performed some crypto-

graphic transformations using his safe key in response to someone’s request containing

Na. If B is a bad guy, then Message 2 may not come directly from B, but it may come

from some other participant C (6= B) who believes that he is talking with A:

Message 1 A→ ∗ : {|Na, A|}KB

Message 1’ B → ∗ : {|Na, A|}KC

Message 2 A← ∗ : Na

This might be acceptable in some situations but can cause serious problems in oth-

ers. As pointed out by many authors [20, 33, 47, 48], authentication comes in a num-

ber of flavours. For example, Gollmann has identified four different varieties, which

raises the question of which kind of authentication a given protocol is designed for, and

which kind it actually provides. Therefore, without knowing exactly what authentica-

tion means, it seems to be almost impossible to design protocols correctly. Technically

speaking, the definition of authentication tests covers the so called “recent aliveness” of

a correspondent among many possible definitions of authentication [20, 33]. For most

authentication protocols, especially for protocols which aim for mutual authentication,

the definition of authentication tests is too abstract to provide a guideline or a tool for

implementing correct authentication mechanisms. Particularly for the composition of

authentication, a stronger definition of authentication is required. Two most important

properties necessary for authentication to be composable are non-destructiveness and

non-constructiveness. By the non-destructiveness of a property, we mean that a property

should remain true starting from the point it becomes true. By the non-constructiveness

of a property, we mean that a property should not be true without the proper event

which makes it true. In the previous example, the authentication property is in a sense

constructive. Although, there is no event originating fromB which makes the authenti-

cation true betweenA andB, the authentication unexpectedly holds true. This happens

because of ambiguities among messages. The message generated by B in response to

A, and the message generated by C in response toB are identical in the example. There

is no way for A to differentiate between them. Therefore, either of the two can be used

to achieve the authentication. This makes the authentication property implemented in

the example constructive, and thus too weak.

It is generally required that a participant B should not finish running the protocol

believing that he has been running it with a participant A, unless A also believes that

51

he has been running the protocol with B. In other words, there should be a matching

record of a run for each participant who is running an instance of the protocol. Gavin

Lowe [33] calls this property agreement.

Definiton 23. (Agreement) A protocol guarantees to an initiatorA agreement with a respon-

derB on a set of data items x, if wheneverA (acting as initiator) completes a run of the protocol,

apparently with responderB, thenB has previously been running the protocol, apparently with

A, andB was acting as responder in his run, and the two participants agreed on the data values

corresponding to all the variables in x, and each such run of A corresponds to a unique run of

B.

This is the strongest authentication that a protocol can accomplish. As already seen

in the previous example, not all authentication tests satisfy this property. Some authen-

tication goals such as “aliveness” and “recent aliveness” might be achievable with-

out using authentication tests satisfying the agreement property, but using stronger

mechanisms than necessary does not cause any harm. The reason that we adopt the

agreement property as the meaning of authentication is that for most cases of proto-

col design and verification, we need to check not only whether some cryptographic

operations have recently been done by a particular agent but also for whom those op-

erations have been done. The former corresponds to authentication tests and the latter

to the agreement property. Many flaws in published authentication protocols are due

to the lack of proper inspections of the agreement property.

Authentication tests and the agreement property are easily formalised using strand

space theory. Suppose ψ be a bundle which contains all events of an instance of an

authentication test. Let ξ+
AB(ω) be a strand1 of A playing an initiator role supposedly

with a responderB and ξ−BA(ω) a strand ofB playing a responder role supposedly with

an initiator A, where ω is the parameter of the run. For an authentication test satisfying

the agreement property, whenever a participant finishes its part of a run of the test,

there is always its corresponding run in its partner’s strand.

Lemma 9. If ψ is a bundle built up through an authentication test, then for any authentication

tests satisfying the agreement property:

∀ψ • ξ+
AB(ω) ∈ ψ ⇒ ξ−BA(ω) ∈ ψ

1This notation can be understood as a generalisation of ξA(ω). +/− represents a role of a participant

during a single authentication test, it does not necessarily mean a role of the participant in a protocol

run.

52

Let [ξ−BA(ω)] represent a strand of B which contains all B’s actions prior to the last action of

ξ+
AB(ω), and let [ξ+

AB(ω)] represent a strand of A which contains all A’s actions prior to the

last action of ξ−BA(ω), then the following are true for any authentication tests satisfying the

agreement property.

∀ψ • ξ+
AB(ω) ∈ ψ ⇒ [ξ−BA(ω)] ∈ ψ

∀ψ • ξ−BA(ω) ∈ ψ ⇒ [ξ+
AB(ω)] ∈ ψ

Proof. All properties are obvious from the definitions of authentication tests and the

agreement property.

Authentication tests which satisfy the agreement property are called agreement tests.

Definiton 24. (Agreement Tests) An authentication test is an agreement test if it satisfies

the agreement property.

An agreement test is an enhanced version of an authentication test which guar-

antees authentication with the agreement property. This test is one of the strongest

authentication mechanisms. It can be used for any kind of authentication. In order to

implement mechanisms for agreement tests, the concept of term bindings is introduced

next.

4.1.2 Term Bindings and Protocol Primitives

When a participant A generates a variable such as a nonce or a secret during a protocol

run, there is a group of participants to whom she links the variable. This group is called

the binding group of the variable. For example, if A generates a nonce x to authenticate

B, then she will link x to A as initiator and B as responder. The linking between a

variable and its binding group is called a term binding.

Definiton 25. (Term Bindings) Given a variable x and its binding group Bx, we say that x

is term-bound to Bx and denoted as (x;Bx).

A variable can be bound to another variable, but at the moment we will not discuss

this issue. Here, all term bindings are assumed to mean a linking between a variable

and a set of agents, and Bx is considered to be an ordered tuple, that is, (A,B) is not

53

equal to (B,A). The meaning of each element in Bx is assumed to be defined by a

protocol specification, so more specifically, it should be written as (Ai(1), Bi(2)), where

superscript i(j) means the interpretation of the j-th element in the set. As an example,

authentication tests between A as an initiator and B as a responder using x are written

as (x; (Ai(1), Bi(2))), where i(1) is an initiator and i(2) is a responder. However, except

for the case when it is necessary to specify the interpretation of each element, it is

assumed that i(1) is an initiator and i(2) a responder. It is generally assumed that the

term-binding between x and Bx is unique, i.e. if an honest agent binds a variable x to

Bx, then it does not bind the same variable to a group of other agents.

The concept of term bindings makes authentication easier to understand and to de-

fine. Now, we can strengthen an authentication test and make it an agreement test. An

initiator sends a message containing a nonce and its binding group, and receives a mes-

sage confirming the term binding from the responder. In other words, every challenge

message should specify who are the sender and the receiver, and whenever a respon-

der creates a reply, he should clearly say in his reply what he meant by the message,

i.e. to whom he is replying. In protocols where all challenge and response messages

are implemented in such ways, when an initiator receives a reply, she can check the

binding group in the reply and if it is not what she expected, then she can stop the

protocol run. A protocol implemented this way is similar to a fail-stop protocol [23] in

that it stops as soon as it receives an inappropriate message.

There are several ways to implement agreement tests but not all agreement tests

are useful and only a small number of these tests are practical in implementations. We

propose a set of protocols or protocol steps which can be used as agreement tests. We

call the set of protocols protocol primitives or primitives. Protocol primitives are designed

for efficiency of communication in mind and will later be used as building blocks for

composing more complex protocols. Various types of protocol primitives are possi-

ble, depending on the keys used to generate reply messages and the forms of reply

messages. The following are the protocol primitives mainly utilised in this thesis. All

protocol primitives proposed are fail-stop in a sense that a primitive execution stops

immediately when there is any deviation from the designed primitive execution path.

For notational convenience, a binding group Bx is treated as a term, so instead of writ-

ing x,A,B, it is written as x,Bx if there is no confusion.

Symmetric Key Cryptosystem. Suppose that two different keys kAB and kBA are shared

between A and B (A uses kAB and B uses kBA to communicate with the other,

54

respectively), and suppose Bx = (A,B). Encryption is not assumed to provide

integrity.

Type 1 : A→ B : B, {|x,Bx|}kAB
, 〈x,Bx〉kAB

B → A : A, 〈x,Bx〉

Type 2 : A→ B : B, {|x,Bx|}kAB
, 〈x,Bx〉kAB

B → A : A, 〈x,Bx〉kBA

Type 3 : A→ B : x,Bx, 〈x,Bx〉kAB

B → A : A, 〈x,Bx〉kBA

As mentioned earlier, notations such as {|x,A|}KB
found in the Needham-Schroeder

public key protocol are not acceptable because when B sees the message, he has no

way to know its destination. Therefore, every message should clearly say who should

receive the message. In case of Type 3, remember that Bx contains the term B as a re-

sponder. Special attention should be paid to the term 〈x,Bx〉kAB
. Some message forms

in primitives are similar, so Type 2 and Type 3 may suffer replay attacks. There are

many ways to avoid this problem, such as introducing more redundancy to these

messages or using different hash functions in generating these messages. Several sug-

gested solutions can be used to tackle this problem. A more detailed explanation will

be given later. Assuming that each message has a different form, 〈x,Bx〉kAB
is denoted

as authkAB
(x,Bx). Technically, authk(∗) is used to represent a message originating from

someone who possesses the key k. It does not need to be an output of a private key

transformation because if there is a link proven to originate from someone with the

key k, then authk(∗) can be delivered using this link. The reason to use this notation in-

stead of a specific message is not to stick to some specific message format. For example,

if there is another message, say M , which is verified as originating from an agent with

k, then the overhead of an extra transformation, necessary for generating authk(x,Bx),

can be reduced by including (x,Bx) in M . We see authk(∗) as an evidence which shows

it originates from an agent with the key k. If encryption is assumed to provide integrity,

authk(∗) can be removed from Type 1 and Type 2 primitives.

55

Type 1 : A→ B : B, {|x,Bx|}kAB
, authkAB

(x,Bx)

B → A : A, 〈x,Bx〉

Type 2 : A→ B : B, {|x,Bx|}kAB
, authkAB

(x,Bx)

B → A : A, 〈x,Bx〉kBA

Type 3 : A→ B : x,Bx, authkAB
(x,Bx)

B → A : A, 〈x,Bx〉kBA

Asymmetric Key Cryptosystem. Let (sk∗, vk∗) be a pair of signature and verification

keys and (ek∗, dk∗) be a pair of encryption and decryption keys.

Type 1: A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx)

B → A : A, 〈x,Bx〉

Type 2: A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx)

B → A : A, 〈x,Bx〉skB

Type 3: A→ B : x,Bx, authskA
(x,Bx)

B → A : A, 〈x,Bx〉skB

All primitives above can be easily derived from symmetric key ones by changing

the keys used.

In order to specify authentication goals, using something like “this protocol should

achieve one-way authentication” is too vague. For example, the following protocol

gives a one-way authentication guarantee to A.

Message 1 A→ B : x,Bx

Message 2 A← B : A, 〈x,Bx〉k

However, there is a clear difference between the protocol above and the suggested

primitives in terms of B’s assurance. The suggested primitives guarantee to B that the

first message comes from A but the protocol above does not. This minor difference is

subtle but important especially in a design process. Hence, we need to know what each

56

participant sees at the end of a run, i.e. we need to know specifically which goals each

participant achieves when they finish a run of a primitive.

In order to prove that the primitives proposed above are agreement tests, it has to

be shown that A gets the guarantee that B is freshly authenticated and B is talking

with her, whereas B gets the guarantee that the challenge originates from A. Lemma

10 describes B’s guarantee as a responder and Lemma 11 describes A’s as an initiator.

Lemma 10. Whenever B finishes a run of a primitive as a responder supposedly with A, i.e. if

ξ−BA(ω) ∈ ψ for a bundle ψ, then [ξ+
AB(ω)] ∈ ψ.

∀ψ • ξ−BA(ω) ∈ ψ ⇒ [ξ+
AB(ω)] ∈ ψ

Proof. Let ξ−BA(ω) = |e−(m1), e
+(m2)|B, where m1 = (B, {|x,Bx|}k1

, authk2
(x,Bx)) or

(x,Bx, authk2
(x,Bx)), and m2 = (A, 〈x,Bx〉k3

) with Bx = (A,B). The values of k1, k2

and k3 are determined by the type of the primitive used in the run.

The strand [ξ+
AB(ω)] is composed of an event e+(m1), so we have to show that

e+(m1) ∈ [ξ+
AB(ω)] ∈ ψ. From the definition of the bundle, e+(m1) ∈ ψ. Each term

in m1 can be delivered separately, so let m1 = (y, authk2
(x,Bx)), where y is either

(B, {|x,Bx|}k1
) or (x,Bx). The term authk2

(x,Bx) can only originate from A playing an

initiator role because k2 = skA or kAB. Therefore,

e+(authk2
(x,Bx)) ∈ ξ

+
A∗

(ω)

If A is honest, then (νx) ∈ ξ+
A∗

(ω). Otherwise, it is possible that (νx) 6∈ ξ+
A∗

(ω). B will

send his reply m2 only when he receives m1. Therefore, e+(y) ∈ ψ. The binding group

in authk2
(x,Bx) should match with the binding group in y. If A is honest, then e+(y) ∈

ξ+
A∗

(ω). Therefore, e+(m1) ∈ ξ
+
AB(ω) because the binding groups in y and authk2

(x,Bx)

should match. If A is dishonest, she can forward a challenge message y′ containing x

to B, i.e. y′ originates from some participant C 6= A. However, to make B believe that

he is talking with A, she has to put her identity in Bx, which is not the same as the one

in y′. Therefore, y′ 6= y and e+(y) ∈ ξ+
AB(ω).

Hence, from e+(authk2
(x,Bx)) ∈ ξ

+
AB(ω) and e+(y) ∈ ξ+

AB(ω),

e+(m1) ∈ ξ
+
AB(ω) and [ξ+

AB(ω)] ∈ ψ

57

A’s guarantee can be verified in a similar way.

Lemma 11. Whenever A finishes a run of a primitive as an initiator supposedly with B, i.e. if

ξ+
AB(ω) ∈ ψ for a bundle ψ, then [ξ−BA(ω)] ∈ ψ.

∀ψ • ξ+
AB(ω) ∈ ψ ⇒ [ξ−BA(ω)] ∈ ψ

Notice thatB’s goal is achieved ahead ofA’s. It is possible to achieveA’s goal before

B’s by moving authk(∗) to the last position as follows.

Transformed Primitives:

Symmetric Key Cryptosystem.

Type 1’: A→ B : B, {|x,Bx|}kAB

B → A : A, 〈x,Bx〉

A→ B : B, authkAB
(x,Bx)

Type 2’: A→ B : B, {|x,Bx|}kAB

B → A : A, 〈x,Bx〉kBA

A→ B : B, authkAB
(x,Bx)

Type 3’: A→ B : x,Bx

B → A : A, 〈x,Bx〉kBA

A→ B : B, authkAB
(x,Bx)

Asymmetric Key Cryptosystem.

Type 1’: A→ B : B, {|x,Bx|}ekB

B → A : A, 〈x,Bx〉

A→ B : B, authskA
(x,Bx)

Type 2’: A→ B : B, {|x,Bx|}ekB

B → A : A, 〈x,Bx〉skB

A→ B : B, authskA
(x,Bx)

Type 3’: A→ B : x,Bx

B → A : A, 〈x,Bx〉skB

A→ B : B, authskA
(x,Bx)

58

The transformed primitives achieve the same properties as the original primitives

do if there is no confusion between 〈x,Bx〉k and authk(x,Bx). The only difference be-

tween these primitives is the order that goals are achieved, but more choices on primi-

tives will enrich the design methodology.

Lemma 12 describes B’s guarantee as a responder and Lemma 13 describes A’s as

an initiator, when they finish a run of a transformed primitive.

Lemma 12. Whenever B finishes a run of a transformed primitive as a responder supposedly

with A, i.e. if ξ−BA(ω) ∈ ψ for a bundle ψ, then [ξ+
AB(ω)] ∈ ψ.

∀ψ • ξ−BA(ω) ∈ ψ ⇒ [ξ+
AB(ω)] ∈ ψ

Proof. Let ξ−BA(ω) = |e−(m1), e
+(m2), e

−(m3)|B , where m1 = (B, {|x,Bx|}k1
) or (x,Bx),

m2 = (A, 〈x,Bx〉k3
) and m3 = authk2

(x,Bx) with Bx = (A,B).

We have to prove that [ξ+
AB(ω)] = |e+(m1), e

−(m2), e
+(m3)|A, given ξ−BA(ω) ∈ ψ. It

is obvious that e+(m3) ∈ ξ+
AB(ω) because only A can generate m3 if the forms of m3

and authk2
(x,Bx) do not cause any confusion. If A is honest, e−(m2) ∈ ξ

+
AB(ω) because

A only generates e+(m3) when there is a previous event e−(m2), and also e+(m1) ∈

ξ+
AB(ω).

Otherwise, ifA is dishonest,A cannot generate any authk2
(∗) with its binding group

B′x = (A′, B), where A′ 6= A. If such a message exists, then it can only originate from

A′. However, such a message can only make B to believe that he is talking with A′

if he generated a message m2 with the binding group Bx = (A′, B). If B generated a

message m2 with the binding group Bx = (A,B), i.e. if A modified the binding group

of the first message m1 originating from A′, to Bx = (A,B), B will not consider the run

as successful before B receives message m3 from A. Therefore, A′ will not receive the

authentication reply from B, and A′ will not consider the run as successful either. If A

generates m3, then A finishes all necessary steps for ξ+
AB(ω), even though she might not

have generated x.

Hence,

[ξ+
AB(ω)] ∈ ψ

Similarly, A’s guarantee as an initiator can be proven, that is, when A finishes a run

of a transformed primitive, there is a corresponding run of B as a responder.

59

Lemma 13. Whenever A finishes a run of a transformed primitive, as an initiator supposedly

with B, i.e. if ξ+
AB(ω) ∈ ψ for a bundle ψ, then [ξ−BA(ω)] ∈ ψ.

∀ψ • ξ+
AB(ω) ∈ ψ ⇒ [ξ−BA(ω)] ∈ ψ

This proves that all proposed primitives and transformed primitives are agreement

tests.

Theorem 2. All proposed primitives are agreement tests.

Proof. The theorem follows from Lemma 10, 11, 12, and 13.

The next question is whether the primitives are composable. In other words, given

that a primitive achieves the agreement property when it was executed alone, we want

to know whether it still achieves the same property i.e. the agreement property remains

valid when it is executed together with other primitives. If this is true, then there is

no interaction between primitives, so running multiple primitives together does not

destroy any properties achieved by a single primitive.

4.2 Composability

To make composition work, it should be verified that no interference occurs when sev-

eral primitives are executed together. In other words, each goal implemented by each

independent primitive should remain valid after composition.

Assume that p1(ω1) and p2(ω2) are primitives with parameters ω1 and ω2, respec-

tively. Let g1(ω1) and g2(ω2) be the goals realised by each primitive, respectively, when

executed alone. We use notation p1(ω1) ⊗ p2(ω2) to represent an entangled run of the

two primitives. By entangled runs, we mean running p1(ω1) and p2(ω2) together with-

out any order restrictions between them, and if the parameters are not important for

understanding, we use p1 and p2 instead of p1(ω1) and p2(ω2). Even though we allow

any orderings among the two entangled primitives, the order restrictions within each

primitive should always be kept.

It is simple to check whether p1’s goal g1 is affected by the execution of p2. When p2

is executed before p1, if p2 does not break any assumptions which p1 relies on, then g1

is unaffected by the execution of p2.

60

Remark 1. If any execution of p2 does not break assumptions on which p1 relies, then p1’s goal

g1 is non-destructive, i.e. the execution of p2 has no effects on g1.

If the property of Remark 1 is true, then we say g1 is non-destructive in p1 ⊗ p2,

similarly, g2 can be non-destructive in p1 ⊗ p2. If both g1 and g2 are non-destructive in

p1 ⊗ p2, then we can conclude that there is no interference between p1 and p2.

We have already shown the non-constructive property of authentication by adopt-

ing agreement tests as authentication mechanisms. If it is proven that authentication

has the non-destructive property as well as the non-constructive property, then we can

conclude that authentication is composable because authentication is not disturbed by

simultaneous runs of other primitives. Composability of secrecy is divided into two

sub-issues, composability of long-term secrets and short-term secrets.

4.2.1 Authentication

We first check whether the goals of authentication achieved by each primitive are

non-destructive. The non-destructiveness depends on initial assumptions, so two cases

need to be considered separately, one which uses signature operations for authentica-

tion (Type 2 and Type 3) and the other which does not (Type 1). In the former case, any

agreement properties achieved by a primitive remain true as long as signature keys

remain secret.

Lemma 14. Authentication goals accomplished by Type 2 and Type 3 primitives are non-

destructive in composition if long-term keys are assumed safe after composition.

Proof. In Type 2 and Type 3 primitives, the secrecy of nonce x has no effect on the

authentication guarantee as long as A sees it as fresh. A value only becomes fresh to A

when it was recently generated by her, so it is obvious to A whether a value is fresh or

not. Therefore, multiple instances of any primitives which belong to this category do

not interfere with each other if long-term keys used in primitives are safe. This means

that any authentications realised by a primitive or primitives in this category remain

valid after entanglement. This is true even if each primitive uses the same nonce to

achieve different authentication goals, because nonces are not seen as secret, and a

signature on a message unambiguously shows from where the message originates and

the binding group within the message also says with whom the responder is talking.

61

Moreover, the initiator will only accept a signed message from the responder whom

she initially planned to authenticate with the nonce. Spy can generate a signature but

the initiator will not accept it if Spy is not the member of the binding group of the nonce,

i.e. fake messages from Spy do not cause any harm. Therefore, all goals achieved by the

primitives belonging to this category are non-destructive.

Primitives in Type 1 assume that a nonce is secret, i.e. it is only known to the two

participants, e.g. A and B. Therefore, any events which reveal the nonce to some other

participants can destroy the authentication implemented by the primitives belonging

to this category. The following example shows a case when two Type 1 primitives

which use the same nonce to achieve different agreement goals are mixed together.

Message 1 A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx)

Message 2 A← B : A, 〈x,Bx〉

Message 1’ A→ C : C, {|x,B′x|}ekC
, authskA

(x,B′x)

Message 2’ A← C : A, 〈x,B′x〉

As can be seen from the given example, using the same nonce to achieve agreements

with two different participants is problematic because bothB and C can generate Mes-

sage 2’ and Message 2, and A has no way to differentiate them. Therefore, when A

finished a protocol run, there is no guarantee of a matching run. This occurred because

the authentication guarantees achieved by the primitives in this category rely on the

fact that a nonce x is secret between two participants. Hence, for authentication goals

achieved by Type 1 primitives to be non-destructive, the following should be met.

Lemma 15. Authentication goals accomplished by Type 1 primitives are non-destructive in

composition if the same nonce is not used for the authentication of more than two different

participants.

Proof. Let p1(x;Bx) and p2(x
′;Bx′) be two primitives of Type 1. If Bx ∩ Bx′ = ∅, then

the possibility that x = x′, i.e. the chance that two independent participants generate

the same nonce is negligible. Therefore, it can be assumed that x 6= x′ in this case. Two

primitives p1(x;Bx) and p2(x
′;Bx′) with x 6= x′ and Bx ∩ Bx′ = ∅ do not interfere each

other, so the goals achieved by one primitive are not affected by the execution of the

other. Therefore, the authentication property in this case is non-destructive. The other

62

case left is when Bx ∩ Bx′ 6= ∅. Suppose Bx = (A,B). The primitive p1(x;Bx) is discreet,

so the only way that a participant C (6= A,B) to know x is to get it from either A or B.

The participant A can forward the secret x to C, but this does not give any benefit to A.

Therefore, we can assume thatA does not use a secret for different purposes. When one

participant B forwards the secret x to a third participant C, the replies which B and

C generate are different, so B cannot simply forward C’s reply to make A believe that

the authentication is successful. In other words, A’s goal cannot be realised without a

direct reply from B. Hence, whenever A finishes a run successfully with B, there is a

matching record of the run of B.

This is a local restriction, i.e. each honest participant can place the restriction and

check it by himself, so it is easy to apply.

From Lemma 14 and 15 the following can be derived.

Theorem 3. If long-term keys are assumed safe, then authentications realised by primitives

are non-destructive as long as the same nonce is not used for the authentication of a different

participant.

Theorem 3 can be rephrased as follows.

Lemma 16. If there is the guarantee that each participant uses a different nonce for a different

authentication goal, the authentication goals realised by primitives p1 and p2 remain valid after

composition, i.e. the authentication goals g1 and g2 are still valid in p1 ⊗ p2.

According to Theorem 3, complex authentication goals of a protocol can be decom-

posed into a set of simple authentication goals, and each simple goal can be realised

using a protocol primitive. The authentication goals accomplished by a set of indepen-

dent primitives remain valid even in the presence of other primitives, as long as the

condition is met for each participant. This does not necessarily mean that the protocol

achieved this way is correct, because there is no guarantee that all goals are achieved in

the same session. However, the theorem is very important in the sense that it enables

protocol designers to achieve authentication goals by composition.

63

4.2.2 Secrecy

The other important goals of protocols concern secrecy. There are two types of secrets,

long-term and short-term. Secrecy of short-term secrets is generally dependent on se-

crecy of long-term secrets. Until now, long-term secrets such as signature keys or de-

cryption keys are assumed to be secret without any proof. Proof of secrecy of long-term

secrets is easy. If a protocol is regular, then it does not introduce any long-term secrets

as parts of messages by an honest participant.

Lemma 17. All proposed primitives are regular.

Proof. This is obvious from the message forms of the primitives. Long-term keys are

not parts of any messages introduced by any primitive.

Is a composition of primitives regular? Suppose that P be a composition of regular

primitives, i.e. P = p1 ⊗ p2. Let KL1
and KL2

be those sets of long-term keys used in

p1 and p2, respectively. By composition no new message is introduced; therefore, the

regularity of P depends on p1 and p2.

Lemma 18. A composition of primitives p1 ⊗ p2 is regular if the following conditions hold.

1. p1 and p2 are regular.

2. ∀k1 ∈ KL1
, ∀m2 • k1 6⊑ m2, where m2 is a message generated by p2.

3. ∀k2 ∈ KL2
, ∀m1 • k2 6⊑ m1, where m1 is a message generated by p1.

Proof. From the regularity of p1 and p2,

∀k1 ∈ KL1
,∀m1 • k1 6⊑ m1

∀k2 ∈ KL2
,∀m2 • k2 6⊑ m2

Let KL = KL1
∪KL2

, then from Condition 2 and 3,

∀k ∈ KL,∀m1,m2 • k 6⊑ m1 ∧ k 6⊑ m2

Therefore, p1 ⊗ p2 is regular.

64

Lemma 18 provides a way to build a regular protocol by composition. If long-term

keys are never used as nonces or short-term secrets, then protocols created through

composition of primitives are obviously regular, so the following is clear.

Lemma 19. A composition of regular primitives is regular if KL ∩ V = ∅, where KL is the set

of long-term keys, and V the set of variables.

Proof. A composition of regular primitives which do not use long-term keys as nonces

or short-term secrets satisfy the conditions of Lemma 18.

A proof on short-term secrets is more difficult than one on long-term secrets, be-

cause it depends on the structure and order of messages within a protocol. If the en-

cryptions in primitives are for confidentiality, then it has to be shown that x, either in

Type 1 or Type 2 is secret. Let I be a set of terms known to Spy, and Sx be a protec-

tive domain of x, i.e. a set of terms to be protected from Spy for x to remain secret,

Sx = {x} ∪ {prv(Y)|Y ∈ Bx} ∪ {shr(Y)|Y ∈ Bx}. Assume that Sx is I-compatible, i.e.

I[Sx] ∩ Parts(I) = ∅. This is true if x is freshly generated by an honest participant. If

Spy ∈ Bx, then there is nothing to prove because x is already known to Spy, so Spy 6∈ Bx

for the proof of secrecy of x.

Lemma 20. Suppose that x is a short term secret. If its protective domain Sx is I-compatible,

then all primitives are discreet.

Proof. Let p be a primitive and e be an event generated by p.

When p is a Type 3 primitive: There is no short-term secret to be protected, so S∗ = ∅

and I[S∗] = ∅. Obviously, ∀e •m(e) ⊆ C[S∗]. Therefore, all primitives belonging to this

type are discreet.

When p is a Type 1 or Type 2 primitive: Let x be a secret to be protected and its

binding group be Bx = (A,B). If no keys are shared between A and B, then Sx =

{x,prv(A),prv(B)}. Let (TR, e) ∈ p and x ∈ Unused(TR), where TR is I-discreet. Since

TR and Sx are I-discreet, Analz(TR∪ I) ⊆ C[Sx]. We have to show that ∀e •m(e) ⊆ C[Sx].

We only prove a simplified version of Type 2 in asymmetric cryptosystems but all

others can be derived similarly2.

2From the definition of the ideal, the hashed output always belongs to the coideal, so we will drop

authk(∗).

65

Two message rules in Type 2 are:

Rule 1: ∃A,B, x • (νx : Bx) ∈ TR ∧ Bx = {A,B}

∧m = A′ → B : B, {|x,Bx|}ekB

Rule 2: ∃A,B,A′, x • (νx : Bx) ∈ TR

∧m = A′ → B : B, {|x,Bx|}ekB
∈ TR

∧m′ = B → A : A, 〈x,Bx〉skB

Case 1: Rule 1

m = A′ → B : B, {|x,Bx|}ekB

and (νx : B′x) ∈ TR. If B ∈ B′x, then prv(B) ∈ Sx and the encrypted term is in the

coideal. Otherwise, if B 6∈ B′x, then prv(B) 6∈ Sx, so the encrypted term is in the

coideal. This fact, together with A 6∈ I[Sx] yields m 6∈ I[Sx].

Case 2: Rule 2

m′ = B → A : A, 〈x,Bx〉skB

and there must exist

m = A′ → B : B, {|x,Bx|}ekB

If A ∈ Bx then m′ 6∈ I[Sx], and we are done. Suppose that A 6∈ Bx. Then we must

show that x ∈ C[Sx]. It is trivial for x if B 6∈ Bx because x is then exposed in m and

TR is I-discreet. We must show that x 6∈ Sx if we assume that B ∈ Bx and A 6∈ Bx.

Find the earliest occurrence of the subterm m = B, {|x,Bx|}ekB
. That is, there is a

message m′′ whose content has m as a subterm, and m is not a part of the prior

trace TR′.

m′′ might be either faked or honest. If m′′ is faked, then

m′′ = Parts(Fake(m(TR′) ∪ I)) = Parts(m(TR′) ∪ I) ∪ Fake(m(TR′) ∪ I)

Since m 6∈ Parts(m(TR′) ∪ I), it must have been synthesised, meaning x,Bx ∈

Fake(m(TR′) ∪ I) ⊆ C[Sx], so x 6∈ Sx.

If m′′ is honest, inspection of the rules and the message component types shows

thatm′′ = m and Rule 1 holds. But the analysis of Rule 1 has already been covered

in the first case.

This shows that all primitives are discreet.

66

From Lemma 17, 20 and Theorem 1, the following is derivable.

Theorem 4. Given a primitive p, every trace in Runs(p) is I-discreet.

Special attention should be paid to Lemma 20 regarding the agreement of a se-

cret value achieved by primitives. We only showed that every message belongs to the

coideal, but we have not shown thatA knows the value itself after finishing a run of the

suggested primitives. For example, Spy can generate a nonce x and Spy can then send

a message containing the nonce to B with a fake identification in it, e.g. Bx = (A,B).

In this case, even if a reliable network environment is assumed, where every message

finally arrives to its destination, it is still impossible for B to prove that A knows the

value before she demonstrates it. However, this is not the case with the suggested

primitives because of authk(∗), which is ignored in the proof above. Spy cannot gen-

erate the encrypted form and authk(∗) together with a fake identification without the

knowledge of k. Hence, if we assume a reliable network environment, at least we can

say that A knows the value itself with the proposed primitives.

In case of a short-term secret, we do not assume that there are more than two par-

ticipants who know the secret. This holds for most published protocols. It might be

possible to share a secret among three participants, such as a group key found in

many group protocols, but we mainly focus on applications where a short-term se-

cret is shared between two participants, except for the case when a trusted third party

distributes a shared key. For example, in the Otway-Rees protocol, a shared key al-

ways becomes known to A, B, and Srv. However, this is a special case because we fully

trust Srv, but under asymmetric key environments, it seems to be more prudent to use

different shared keys between different participants.

We have seen that a single primitive is discreet when it is executed alone. Two

primitives running together do not seem to interfere with each other if one does not

reveal any secret that the other primitive is using. Let x1 be a secret established by p1,

and x2 be a secret established by p2. Depending on the primitives used, either x1 or x2

may not be a secret, but for simplicity, both of them are assumed to be secrets. For a

composition p1⊗ p2 to be discreet, one primitive should not reveal the secret which the

other primitive is using, i.e. the following conditions should be satisfied.

Lemma 21. Let x1 and x2 be secrets established by p1 and p2, respectively. A composition of

primitives p1 ⊗ p2 is discreet, if the following conditions hold:

67

1. p1 and p2 are discreet.

2. ∀m2 •m2 ⊆ C[Sx1
], where m2 is a message generated by p2.

3. ∀m1 •m1 ⊆ C[Sx2
], where m1 is a message generated by p1.

The second and third conditions are obvious, otherwise, x1 might be revealed by

some message of p2 or similarly x2 by some message of p1. These conditions can be eas-

ily enforced if a different secret is used for each different run, but there are cases where

the same secret should be used again, for example, in re-authentication protocols. In

case of two-party protocols, only two cases need to be considered, when Bx1
= Bx2

and when Bx1
= (A,B), Bx2

= (B,A). With multi-party protocols, it is more difficult to

check this property but the cases when Bx1
∩ Bx2

= ∅ can be ignored, because if x1 and

x2 are assumed to be freshly generated, then these cases are probabilistically negligible,

that is to say, it is almost impossible for two participants to generate the same secret.

4.2.3 Adding New Primitives

A new protocol primitive can be added to an existing set of protocol primitives. In this

subsection, we identify conditions that the new primitive should satisfy in order to

make composition remain safe after its addition to the set.

Let S = {p1, p2, . . . , pn} be a set of protocol primitives which are proven to be safe

in composition, i.e., any composition of the primitives in the set should be both non-

destructive and non-constructive. Let p be a primitive which claims to achieve certain

goals, say a secrecy goal g1 and an authentication goal g2. Two different types of goals

are defined in a primitive. A goal can be a property which all protocol steps in the

primitive should satisfy like secrecy goals, or it can be a property which becomes true

by a specific event or by a set of events of the primitive like authentication goals. Any

primitives which achieve these types of goals can be considered as possible candidates

for additions. However, not all protocol steps can be defined as a protocol primitive.

We only consider pairwise goals in designing a protocol primitive, so the first condition

that a protocol primitive should satisfy is the agreement property. For every goal of

a primitive it should be clear to each participant who is his corresponding partner

in achieving the goal. Otherwise, there is a possibility that a participant believes he

achieved a certain goal even though there is no corresponding partner to that goal, so

68

the goal does not satisfy the non-constructive property. The concept of binding groups

for nonces and secrets is introduced in the previous section to avoid such confusion.

Requirement 1. A protocol primitive should satisfy the agreement property.

Whether the primitive p actually achieves g1 and g2 is out of the scope of this thesis.

Protocol primitives are generally smaller in size than protocols themselves, so these

proofs can comparably be easier to do with existing proof tools like Athena and NRL

analyser.

After the verification of the claimed goals of p, it needs to be shown that the goals of

the primitive p do not interfere with the goals in S. In other words, the goals of p should

remain valid in composition with any primitives in S, and the goals of the primitives

in S should remain valid in composition with p. The non-interference can be achieved

by the non-destructive property and the non-constructive property. Different types of

goals have different requirements to satisfy these properties. Here we only consider

secrecy and authentication goals.

In case of secrecy goals, the non-constructive property implies that a secret value

cannot suddenly be shared between two participants from nothing, i.e. a secret can

only be created from secrets or nonces. This is also true in Diffie-Hellman based schemes

because x is a secret in gx, so without the secret x, a common secret gxy cannot be con-

structed. The non-destructive property of secrecy goals is related with the regularity

and the discreetness. By the regularity, no long-term secrets should be used as part of

messages in a protocol.

Requirement 2. A primitive should be regular, i.e. no long-term secrets should be used as a

part of messages in the primitive.

If long-term secrets of p are a subset of long-term secrets of S, then the regularity of

{p} ∪S is guaranteed by the regularity of p and S by Lemma 18. If long-term secrets of

p are not a subset of long-term secrets of S, it has to be shown that {p} ∪ S is regular

with respect to the union of long-term secrets of p and S. The proof of the regularity

can be done by inspecting whether any message in p or S uses a long-term secret as a

part of the message.

Requirement 3. A primitive should be discreet with respect to the set of existing primitives

and vice versa.

69

The discreetness property of the primitive p is more difficult to prove. Two things

need to be considered. First, a secret is assumed to be a shared value between two

participants. By “shared” we mean that at least each participant knows with whom he

is supposed to share the value. Otherwise, the discreetness of the primitive cannot be

verified. This is one of the reasons for using the concept of binding groups. Second, the

discreetness of p should be shown with respect to its own secret as well as secrets in

S. It first has to be shown that p is discreet and then for each primitive in S, it has to

be shown that Lemma 21 holds. Alternatively, it can be shown that messages in S ∪ p

belong to the intersection of all coideals of short-term secrets {x1, x2, . . . , xn, x
′} in S,

where xi is a secret used in primitive pi and x′ is a secret used in p. In other words,

m ⊆ C[Sx], where m is a message generated by S ∪ p and C[Sx] = C[Sx1
] ∩ C[Sx2

] ∩

· · · ∩ C[Sxn
] ∩ C[Sx′]. By showing that p is regular and discreet with respect to S, the

non-destructive property and the non-constructive property of g1 of p are proved.

The non-constructive property of authentication goals implies that no event in S

should materialise the goal g2 of p. In other words, without a certain e of p, the goal

g2 should not be achieved, i.e. e should be the only event that materialises the goal g2.

Ensuring the freshness of a challenge usually does not provide this property because

the reply may not contain information showing for whom the reply is made. Similar

message forms among primitives will also make it difficult to avoid attacks such as

cut and paste. Therefore, it is necessary to differentiate between authentication replies

coming from different participants and to differentiate between replies belonging to

different sessions. Former can be done by adding the binding group of a challenge

in each reply and latter can be done by adding an index or a session identifier after

composition.

The non-destructive property of authentication goals is related to the secrecy of

long-term and short-term values used for the authentication. Therefore, the regularity

and the discreetness of those secrets should also be shown. However, this alone is not

enough because using the same nonce twice can also destroy an authentication goal as

shown in the example of Section 4.2.1. So no nonces should be used for the authentica-

tion of more than one participant.

Requirement 4. No nonces should be used for the authentication of more than one participant

either in a primitive or in composition.

When a primitive satisfies Requirement 1, 2, 3, and 4, it has been shown in the pre-

70

vious subsections that the primitive has the non-interference property in composition.

4.3 Extending the Primitives

Only a limited number of primitives are presented in this thesis. However, protocol de-

signers do not need to stick to only these primitives. Any protocol steps can be served

as a primitive, if they satisfy the agreement, the discreetness, and the regularity prop-

erties. A new family of primitives can be generated and used in design, if it can be

verified that they satisfy the required properties. In this way, designers can build a li-

brary of verified primitives, and can reference them whenever necessary. This section

discusses a generalisation of primitives, and its advantages and limitations.

4.3.1 Flexibility and Limitations

Different applications may require different primitives, and many different techniques

are available to achieve the same aim. In some applications, instead of using a long-

term key for authentication, a new short-term key can be generated from a shared

secret and then this key can be used to authenticate the other participant. In the fol-

lowing example, f is a pseudo-random function or a key generation function and c is

an agreed constant term among the participants.

A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx) A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx)

B → A : A, 〈x,Bx〉 B → A : A, 〈x,Bx〉skB

m m

A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx) A→ B : B, {|x,Bx|}ekB
, authskA

(x,Bx)

B → A : A, 〈Bx〉f(x) B → A : A, 〈c〉f(x,Bx)

Under the ideal cryptography assumption, all the primitives above might be the

same according to strand space theory, i.e. in terms of the guarantees they provide to

each participant. Therefore, one might be flexibly exchangeable with the others if only

correspondence among participants is considered. In other words, a protocol designed

using the upper primitives can be transformed to use the lower ones. This exchange-

ability between primitives provides more diverse options in protocol design. However,

in real applications where the ideal cryptography assumption does not hold; there

71

might be a difference between them. For example, if x is a weak secret, which usually

holds in password authentication, the primitive in the bottom second column suffers

dictionary attacks, even though the one above does not.

Generally speaking, the choice of primitives depends on many factors such as ap-

plications, costs of cryptographic operations, and environments where the protocol is

supposed to run. Generalising all these factors and finding the optimal primitive for all

applications is difficult. It is also difficult to suggest every possible mechanism for each

application. The decision which one fits better should be made case by case. Starting

from a small number of primitives, designers can later add a new primitive and prove it

correct using existing verification methods. Primitive verification is usually easier than

protocol verification in terms of complexity. Moreover, these newly introduced prim-

itives can later be reused in designing a new application. This provides some level

of flexibility in selecting appropriate primitives in design, and enables reusability of

design and implementation.

4.3.2 Generalisation of Primitives

Until now, a nonce is assumed to be a single variable, but it can be extended to a vector,

or more precisely an ordered set of terms, by replacing x by a set of terms ~x without

changing Bx. This way, generalised versions of the primitives can be obtained, and the

following is one example.

p: M1 A→ B : ~x,B~x, authskA
(~x,B~x)

M2 B → A : A, 〈~x,B~x〉skB

Not all terms in the vector need to be variables: constant terms can be members

of the vector too. However, in order to keep the regularity property of the primitives,

long-term keys must not be members of the vector. It is also assumed that no agent

name appears in the vector, since it can be included in the binding group instead of

the vector if necessary. This way, we separate agent names from any other terms. As

an example, ~x = (x1, x2) can be used as a parameter of a primitive, where x1 may be a

nonce and x2 may be a participant’s set of preferences for encryption and hashing. If

x is a member of a vector ~x, it is written as x ∈ ~x. How to interpret each term in the

vector should be specified by the protocol specification.

72

Replacing a variable in a primitive by a vector does not change any properties

which the primitive achieves and the extension is defined as follows.

Definiton 26. The extension of p(x;Bx), namely p(~x;B~x) is defined as p(~x/x;Bx), where each

variable x in p(x;Bx) is substituted by ~x, and Bx = B~x. ~x must not contain any long-term safe

keys or participant names.

When we mention a primitive, we now mean this generalised version, and we as-

sume two participants engaged in a run are A (as an initiator) and B (as a responder),

so we use the notation p(~x) instead of p(~x;B~x).

4.4 Concurrent Goals

Previous subsections showed that authentication and secrecy goals achieved by primi-

tives are preserved after composition. For a composition to be correct, all protocol goals

accomplished by the primitives used in the composition should happen in a single ses-

sion. This subsection discusses how to ensure that all these independent goals happen

in a single session.

4.4.1 Multi-run Interference

It is previously shown that each primitive, as a single protocol, does not interfere with

other primitives. However, due to the similarity in the forms of messages in prim-

itives, the non-interference property does not hold when more than two primitives

are regarded as a single protocol. Let P be a composition of two primitives p1 and p2,

i.e. P = p1 ⊗ p2, where p1 and p2 are shown as below, with x 6= y, Bx = (A,B) and

By = (B,A).

p1: M1 A→ B : x,Bx, authskA
(x,Bx)

M2 B → A : A, 〈x,Bx〉skB

p2: N1 B → A : y,By, authskB
(y,By)

N2 A→ B : B, 〈y,By〉skA

Even though p1 or p2 as a single independent protocol is non-interfering, as a part

of P, one does interfere with the other. When A is running multiple instances of Pwith

73

B, playing a different role in each run, if A receives a message of the form either M2 or

N2, this message can be interpreted either as a message of a run of primitive p1 where

she plays an initiator role or as a message of a run of primitive p2 where she plays

a responder role. This is an inherent problem in the proposed method because the

method repeatedly uses protocol primitives which have structurally similar message

forms. Generally speaking, in a composition P = p1 ⊗ p2 ⊗ · · · ⊗ pn, messages of pi

might be wrongly identified as messages of pj , where i 6= j. This type of confusion

should be prevented, otherwise it allows Spy to mount attacks such as cut and paste

attacks. Various approaches can be used to tackle the problem. One way is to use an

index, which differentiates each primitive from the others as in the following example.

p1: M1 A→ B : x,Bx, authskA
(1, x,Bx)

M2 B → A : A, 〈1, x,Bx〉skB

p2: N1 B → A : y,By, authskB
(2, y,By)

N2 A→ B : B, 〈2, y,By〉skA

This solution is very simple and it works regardless of the number of primitives

used in the protocol. An index in each message indicates to which primitive the mes-

sage belongs, so it clears the confusion among similar messages. The scheme is similar

to the method which puts a message number in each message in a protocol. Notice

that an index needs to be inserted only in cryptographically transformed messages,

because putting an index in cleartext messages does not serve any purpose.

Changing message forms in each primitive can also be a solution: more redundancy

can be added (actually adding an index belongs to this, since it increases redundancy),

or terms within a message can be reordered. Alternatively, each primitive can use a

different hash function to produce its messages. For example, a hash function h1 can

be used for the first primitive, h2 for the second primitive, etc. In environments where

only one hash function is available, each hash function can still be generated by using

methods such as hi = 〈i, ∗〉∗. If an index in a message is interpreted as a hash function

number in the previous example, the hashing method is also derivable from the vector

~xi = (i, x).

Consequently, regardless of the solution used to avoid confusion, a vector ~xi = (i, ~x)

can be used as a parameter to generate each primitive. This enables designers to sep-

arate design from implementation to some degree. In the design stage, designers can

ignore which method will be adopted to solve the confusion problem, and later in

74

the implementation stage, the decision can be made without damaging any properties

achieved in the design stage. For example, if communication costs are more expensive

than computation costs, the scheme which generates a smaller size of the total mes-

sages might be preferable. Our interest lies in design rather than implementation, so

the indexing method is used here, without specifying the actual implementation. From

now on, ~xi means (i, ~x), i.e. p(~xi) means a primitive p with parameter (i, ~x).

The non-interference property of indexed primitives can be proven using the strand

formalism. A run of a primitive produces a bundle. Suppose ψi(ωi) is a bundle pro-

duced by a run of a primitive pi(ωi) with a parameter ωi = ~xi,B~x(= {A,B}). Let

ξi
AB(ωi) and ξi

BA(ωi) be the parts of the bundle that A and B see, respectively. That

is, ψi(ωi) = {ξi
AB(ωi), ξ

i
BA(ωi)}, or more specifically ψi(ωi) = {ξi+

AB(ωi), ξ
i−
BA(ωi)} if A is

an initiator and B is a responder within the run. Under the assumption that each prim-

itive has an index number, the agreement property can be extended as follows. The

lemma means that there is no confusion between runs formed by different indexed

primitives.

Lemma 22. If pi⊗ pj is a composition of indexed primitives, the following holds, where ψi is a

bundle formed by a run of pi.

∀ψi • ξ
i+
AB(ωi) ∈ ψi ⇒ [ξi−

BA(ωi)] ∈ ψi

∀ψi • ξ
i−
BA(ωi) ∈ ψi ⇒ [ξi+

AB(ωi)] ∈ ψi

Proof. It suffices to show two things: 1. Given a strand ξi+
AB(ωi) or ξi−

BA(ωi), there exists

a corresponding strand, i.e. [ξk−
BA(ωi)] or [ξk+

AB(ωi)], respectively. 2. These two strands are

in the same bundle which is formed by pi.

From the agreement property of primitives, i.e. from Lemma 9 and Theorem 2, the

following is true.

∀ψi • ξ
i+
AB(ωi) ∈ ψi ⇒ ∃k • [ξk−

BA(ωi)] ∈ ψi

∀ψi • ξ
i−
BA(ωi) ∈ ψi ⇒ ∃k • [ξk+

AB(ωi)] ∈ ψi

Let ψ = {ξi+
AB(ωi), ξ

k−
BA(ωi)} be a bundle formed by two strands, ξi+

AB(ωi) and ξk−
BA(ωi).

ψ is a bundle since it is closed under the → and ⇓ relations of strand space theory.

Therefore, for a send event e+ ∈ ψ, there should be a receive event e− ∈ ψ, where

m(e+) = m(e−). If i ⊑ m(e+), then i ⊑ m(e−). Hence i = k.

75

From Lemma 22, the following theorem is derivable.

Theorem 5. If p1 ⊗ p2 ⊗ · · · ⊗ pn is a composition of indexed primitives, the following holds,

where ψi is a bundle formed by primitive pi.

∀ψi • ξ
i+
AB(ωi) ∈ ψi ⇒ [ξi−

BA(ωi)] ∈ ψi

∀ψi • ξ
i−
BA(ωi) ∈ ψi ⇒ [ξi+

AB(ωi)] ∈ ψi

The theorem above is a generalisation of Lemma 22. It basically means that in a

protocol composed of a set of indexed primitives, each primitive does not interfere

with the others.

4.4.2 Goals and Bindings

In composition, a protocol is defined as a set of primitives with a predefined total

order, and each primitive is defined by its parameter, i.e. a variable or a set of variables

and its binding group. For a protocol produced by composition to be correct, goals

accomplished by independent primitives should be inseparable from each other or the

existence of one goal should guarantee the existence of some other goal. The simplest

way to achieve such inseparability or dependency of goals is using a unique session

identifier: adding a unique number to all the messages of the primitives that should

occur together in a single session. In two party protocols, all terms generated by a

protocol run are visible to both participants. Therefore, a unique session identifier will

provide enough information for the participants to decide to which session a primitive

run belongs. However, in some cases, such as protocols where a trusted third party is

involved, some terms are not visible to some participants. Therefore, adding a unique

identifier may not be sufficient.

Suppose P = pi ⊗ pj is a composition of two primitives. Let gi and gj be the goals

accomplished by the primitives pi and pj , respectively. A run of P is composed of a

run of pi and a run of pj . Let pi(~xi;B~x) and pj(~yj;B~y) be the runs which should be

linked together. The goals accomplished by pi(~xi;B~x) and pj(~yj;B~y) are gi(~xi;B~x) and

gj(~yj;B~y), respectively. As a protocol is assumed to have a total order, there exists an

order among the goals. Assume that gi(~xi;B~x) ≤ gj(~yj;B~y). In order to make the two

76

goals happen in a single session, some extra information is necessary. The extra infor-

mation is called the binding information of the two primitives. A term which contains

the binding information is called a binder. The binding information is generally de-

fined as the union of the parameters of the primitives which need to happen together

in a single run. For example, the binding information of the two primitives above can

be defined as (~x, ~y,B~x ∪ B~y). A binder of the binding information can be any term(s)

which delivers the binding information. For example, 〈~x, ~y,B~x ∪ B~y〉 can be a binder of

(~x, ~y,B~x ∪ B~y). If more than one binder are necessary in composing a run, each binder

needs to include an index to differentiate it from the others, i.e. (k, ~x, ~y,B~x ∪B~y). If nec-

essary, a term or terms in a binder can be hashed or rearranged, e.g. (k, 〈~x〉, ~y,B~x ∪ B~y),

(k, 〈~x〉, 〈~y〉,B~x ∪ B~y), (k, 〈~x〉, ~y, 〈B~x ∪ B~y〉), or (k, ~x,B~x, ~y,B~y).

A hash output of the binding information is generally preferable as a binder since

it protects secrets which may be part of the binding information. In this case, to pre-

vent any confusion which might happen between authentication replies and binders,

hash functions are divided into two disjoint sets, H1 and H2. Since both binders and

authentication use hash functions to generate their values, it is assumed that binders

are generated by a hash function in H2 and authentication replies by a hash function in

H1. This does not necessarily mean that different hash functions should be used in an

implementation. Binders generally contain more terms than authentication replies, so

the confusion does not happen. Alternatively, a binder can replace an authentication

reply if the binder includes all the information of the authentication reply.

The ways of adding binders depend on the binding groups in primitives. If B~y has

no intersection with B~x, then the goals gi and gj are regarded as independent. Without

any interaction between the members in B~x and B~y, it is impossible to bind the two

primitives together. Therefore, the two goals are seen as independent. We divide the

cases to be considered into two groups, depending on the number of principals in

composition, i.e. two-party and three-party cases. We do not consider cases of more

than three principals.

Let ei and ej be the events which make gi(~xi;B~x) and gj(~yj;B~y) true, respectively.

Assume gi ≤ gj , i.e. ei ≤ ej . Let B~x be (A,B). Two subclasses of composition are as

follows.

77

Two-party Composition

Given that B~x = (A,B), two cases need to be considered when the binding groups in P

are composed of the same members, i.e. either when B~y = (A,B) or when B~y = (B,A).

When B~y = (A,B): The binding information is c = (~x, ~y,B~x) since B~x = B~y. From

the binding information c, both participants know the runs which constitute the

binding information, i.e. pi(~x;B~x) and pj(~y;B~y). Only A or B should be allowed

to send a binder. Therefore, the message m sent by one of the participants, which

contains the binding information, will be either 〈c〉skA
or 〈c〉skB

in asymmetric key

cryptosystems, and 〈c〉kAB
or 〈c〉kBA

in symmetric key cryptosystems.

The position of m within the protocol sequence should be decided carefully. It

might be possible to addm after ej , but it is generally preferable to addm no later

than ej , i.e. e(m) ≤ ej , since it enables each participant to deduce the event ej from

m. Each participant agrees on the events belonging to the same run before the

event ej . If m is added after ej , then there is a possibility that one participant, the

one who sends m, finishes a run successfully, but the other participant may not

know which two primitive runs constitutes a single session, since m may not be

delivered to the other participant due to some network problem. This is generally

not a desirable situation. More detailed explanations together with applications

will be given in Chapter 5.

When B~y = (B,A): This case is the same as the previous case, if c = (~x, ~y,B~x) is inter-

preted as the binding information of the two parameters, (~x;B~x) and (~y;B~y).

It is obvious that given the binder defined above, the two participants can decide which

two primitive runs belong to the same session.

Three-party Composition

Three-party composition is more complicated than two-party composition. Many cases

need to be considered to cover all possible combinations of primitives. Some possible

cases of B~y are shown in Figure 4.1. The remaining cases of three-party composition can

be obtained from the figure by reversing the directions of the primitive pi, i.e. pi(~x;B~x)

where B~x = {B,A}.

78

u u u u

u u u u

u u u u

u u u u

-

�

�

�

-

�

(c). {A,C} (d). {C,A}

(a). {C,B} (b). {B,C}

�

�

A B C A B C

A B C A B C

ej

ei

ej

ei

ej

ei

ej

ei

Figure 4.1: Three-party Composition

In two-party composition, both participants know all the events that occurred dur-

ing a run based on the events they performed. However, this is not the case with three-

party composition. Those events in which a participant is not directly engaged, might

not be visible to the participant. For example, in case (a), C might not know whether

ei has happened between A and B. In other words, the existence of some events is not

clearly visible to some participants.

In three-party composition of Figure 4.1, only one participant sees both events, and

the other two participants do not. Let pi be a part of a protocol which A and B are

engaged in. After finishing a run of pi with a parameter ω, one or both of the partici-

pants A and B might contact C to achieve some other goals. For example, A may send

to B some information, which B cannot understand without the help of C, or which

B can use to communicate with C. Sometimes, C might be interested in the existence

of some specific interactions between A and B. Especially when the participant who

sees all the events is a trusted authentication server, the binding problem of three-party

composition becomes much easier. We will discuss this problem in Chapter 6.

Except for the cases when some trust relations exist among participants or when a

secret is shared between two participants who are not directly engaged in a run, it is

very difficult to prove the existence of a certain event, since some events are invisible

79

to some participants. For example, adding a unique identifier does not provide any

evidence to C that some events have happened between A and B even though it might

piece some runs of primitives together. The cases when C plays a role of a verifier

or C shares a secret with either of A or B will be described through some interesting

examples in Chapter 7 .

80

5
Two-party Protocols

Two-party security protocols are one of the most common and basic forms of security

protocols found in published literature [11]. As demonstrated by Guttman [24], three-

party protocols can be implemented using two-party protocols. However, in spite of a

long history of research on the subject, little is known about their design principles.

This chapter demonstrates how to construct two-party authentication protocols by

composition of protocol primitives using the theories presented in the previous chap-

ter. Section 5.1 explains design by composition. Section 5.2 shows how to maintain the

discreetness property of composition and how to compose a single agreed run from

any composition of primitives in two-party environments. Finally, Section 5.3 shows

examples of applications.

5.1 Design By Composition

Regardless of design methodologies, it is important for protocol designers to know

exactly what they are planning to achieve in a new protocol because any mistakes in the

81

process lead to flaws in the protocol obtained. Authentication and secrecy are generally

considered as the two most important protocol goals. Non-repudiation is another goal

to be considered in some cases. Protocol goals are usually given to designers either as

protocol specifications or requirements.

Suppose that a protocol needs to accomplish a set of goals. There are various ways

to implement these goals. Conventional design methodologies usually try to tackle all

these goals as a whole instead of solving them one by one. However, it is not easy to

find a protocol which satisfies all the goals at the same time. As the number of goals

increases, it becomes more difficult and takes more time to find a correct protocol us-

ing conventional methodologies. On top of that, the correctness of the protocols pro-

duced by conventional methodologies is normally not guaranteed. In order to solve

these problems of conventional approaches, we provide a way in which designers can

work with each goal individually, one by one, without concerning themselves with the

other goals. We call this type of design methodology design by composition or in short

composition. Devising solutions for one goal at a time is obviously much easier for de-

signers than providing solutions serving multiple goals. In composition, for the given

set of goals, each goal in the set is implemented individually using a non-interfering

mechanism, which is proven to be correct, and then all these mechanisms are tied to-

gether using binders to make all the goals happen at the same time. In the design, each

authentication or secrecy goal is implemented by protocol primitives and under the

assumption that long-term keys are safe from Spy. Authentication subgoals are consid-

ered before secrecy subgoals

Protocol design by composition is similar to modular approaches or top-down

methodologies which are commonly used in software design. That is to say, proto-

col composition not only provides a way of building up complex goals from a group

of simple goals, making it easier to verify their correctness, but also guarantees the

correctness of the protocol constructed by the approach.

5.2 Two-party Protocol Composition

This section explains how to compose a two-party protocol from protocol primitives

and also describes how to bind these protocol primitives together.

82

5.2.1 p-Protocols and Semi-bundles

Suppose that G = {g1, g2, . . . , gn} is the set of goals which a protocol should implement,

where gi is an authentication or secrecy goal achieved by a pair of participants, A and

B. The first step of composition is to select an appropriate primitive which achieves

each subgoal in G. Let PG = {p1, p2, . . . , pn} be a set of primitives, which are selected

to implement the protocol, i.e. a set of primitives which cover all the goals in G. Let

P = p1⊗ p2⊗ · · · ⊗ pn. The events in each primitive pi have a particular order o(pi) that

the composition P cannot violate. A protocol is a set of message rules agreed between

participants, so the composition P as a protocol also has an order o(P). The order o(P)

is generally defined by two things, the orders of each primitive, o(p1), o(p2), ..., o(pn),

and the order of the goals o(G). If secrecy goals are ignored in G, then a goal gi is accom-

plished by a specific event of pi. Therefore, the order of the goals to be achieved deter-

mines the order of the events in the composition. In other words, the order of the goals

can be understood as design constraints imposed on the order of the events. Putting

more constraints on the order of the events reduces the complexity of the design. Un-

der the assumption that a protocol has a total order, o(G) can initially be introduced by

the protocol requirements or it can later be added by the designer to provide a total

order to the protocol.

Assume that the order o(P) is commonly understood among participants as an

agreement before the start of a protocol run, then a set of primitives together with

the order o(P) define a primitive protocol or p-protocol.

Definiton 27. (p-protocols) Given a set of primitives Pg = {p1, p2, . . . , pn} with some pre-

defined order o(P), a p-protocol P of Pg is defined as a composition of all the primitives in the

set, which does not violate any orders o(pi), and is denoted as follows.

P = |p1 ⊗ p2 ⊗ · · · ⊗ pn|

A p-protocol can be understood as a collection of actions which might happen if all

the primitives in the set are executed by the order o(P). In case of two-party protocols,

the order is assumed to be a total order. A p-protocol is an intermediate form defining

the basic structure of the final protocol.

Let pi(ωi) be a primitive with ωi = (ai;Ba). Even though each participant may play

a different role in a different primitive, as a whole he only plays one role, say A an

initiator and B a responder. Therefore, a binding group BAB = (A,B) can replace all

83

the binding groups in the primitives, i.e. pi(ai;BAB). From this point forward, when a p-

protocol is mentioned, it is assumed that this step is already applied to the p-protocol,

and the notation pi(ai) is used instead of pi(ai;BAB).

Each primitive pi of P will produce a bundle composed of two strands, denoted as

ψi(ai) = {ξpi

AB(ai), ξ
pi

BA(ai)}. At the end of a p-protocol run, each participant has a view

of the protocol run, formulated as a sequence of events in a strand. Let these strands

be ξPAB(ωA) and ξPBA(ωB), respectively, i.e.

ξPAB(ωA) =
⋃

i

ξpi

AB(ai) and ξPBA(ωB) =
⋃

i

ξpi

BA(bi)

Technically speaking, these two strands together may not form a trace of a single

run of P because each participant may see a different part as a part of a specific run

when multiple instances of the protocol are executed concurrently. In other words,

although each run of a primitive forms a bundle, P as a whole may not form a bundle

since the parameters which each participant sees might not be the same. The collection

of strands that each participant sees in a run of a p-protocol is called a semi-bundle. A

semi-bundle shows how a participant understands a specific run among multiple runs.

Definiton 28. (Semi-bundles) Given a p-protocol P between two agents A and B, where

P = |p1 ⊗ p2 ⊗ · · · ⊗ pn|, a semi-bundle of each participant in a run of P is defined as follows,

where | . . . |A represents events on strand A.

ξPAB(ωA) = |p1(a1)⊗ p2(a2)⊗ · · · ⊗ pn(an)|A

ξPBA(ωB) = |p1(b1)⊗ p2(b2)⊗ · · · ⊗ pn(bn)|B

where ωA and ωB are parameters which participants use to define a single run, and for each ai

and bi, it is not necessary ai = bi.

Remark 2. Notice that we need not have ω = (a1, a2, . . . , an,BAB) because some redundant

elements can be removed from each ai.

A p-protocol is regular if no long-term safe keys are used as a part of protocol mes-

sages. Therefore, a p-protocol obtained from a set of regular primitives is regular. Some

primitives in Pmay generate short-term secrets. Let PS = {p′1, p
′

2, . . . , p
′

m} be the set of

primitives which generate short-term secrets i.e. PS ⊆ PG, and SP = {s1, s2, . . . , sm} be

84

the set of those short-term secrets generated by PS. Let Ssi
be the protective domain of

a secret si, and SP be the union of all the protective domains of P, i.e.

SP =
⋃

i

Ssi
= SP ∪ {prv(X)|X ∈ BAB} ∪ {shr(X)|X ∈ BAB, }1

If P is discreet, then P does not emit a secret to a participant C (6= A,B). A discreet

status ofPwould result in every trace of a run of the protocol being discreet, and also in

every trace of multiple runs of the protocol being discreet. Notice that the discreetness

property of a protocol is not particularly related with a single run. From Lemma 21,

the following should hold for a p-protocol to be discreet.

1. For each pi ∈ PS, pi is discreet.

2. For every message mj generated by a primitive pj (6= pi), mj ⊆ C(SP).

Each primitive inPS is supposed to be discreet by the choice of the primitive, so, the

first condition is true. The second condition is generally true, if any short-term secret

used in pi is not used again as a parameter of any other primitive in PN (= PG − PS).

More specifically, any term in the ideal of si should not be used as a parameter of

any primitive of PG. However, if it is assumed that two participants of the protocol

are honest and they only use basic terms as nonces or secrets, then not using a secret

again as a parameter of a different primitive is sufficient to guarantee the discreetness

property of the protocol.

Lemma 23. A p-protocol P of two-party composition is discreet, if two participants of the

protocol only use basic terms as nonces or secrets, and if for each secret si ∈ SP and for all wj ,

si is not used in wj , where wj is the parameter of primitive pj (j 6= i).

Proof. Assume that SP is I-compatible, where I is an initial knowledge set of Spy. Other-

wise, there is no secret to be protected. Suppose that P is a composition of two different

types of primitives, PS and PN, as previously defined. The primitives in PS do not re-

veal any secret due to the discreetness property of the primitives. Each primitive pi in

PS generates two types of messages, encrypted or hashed. From the definition of the

1When an agent has more than one private or secret key, a private or secret key whose inverse key is

not used to encrypt any secret in SP does not need to be included in SP.

85

ideal, all hashed messages automatically belong to C(SP). An encrypted message {|x|}k

belongs to I[SP], either when {|x|}k ∈ I[SP], or when x ∈ I[SP] and k−1 6∈ I[SP]. The

first case does not happen because only basic terms are allowed as secrets. The sec-

ond case is impossible because long-term keys are assumed safe from Spy and for each

encrypted term, a corresponding binding group is included in the term. Therefore, all

messages generated by the primitives in PS are discreet.

Moreover, if these secrets are not used as a part of the parameter of pi in PN, then no

elements in SP are revealed by messages of PN. When a secret si is initially unknown

to Spy, the only way for Spy to get it is to possess a term x ∈ I[si]. To show that terms

generated by PN belong to C[SP], assume that x is one of those terms generated by

PN but belongs to the ideal. Messages generated by PN are either hashed or plain.

Hashed terms do not belong to the ideal, so x is not a hashed term. The term x belongs

to I[SP], either when x = a · b and a ∈ I[SP] or b ∈ I[SP], or when x = {|y|}k and

y ∈ I[SP] and k−1 6∈ I[SP]. The first case contradicts the assumption that secrets are not

used as a part of the parameters of the primitives in PN by honest participants, and

Spy does not know the secrets. For the second case to happen, an honest participant

who knows the secrets should generate {|y|}k as part of the messages of the primitives

in PN. However, this is impossible if only basic terms are used as nonces by honest

participants. Moreover, for any given challenge, the primitives in PN do not generate

any encrypted terms as an output, so Spy cannot use the primitives as an oracle. Hence,

P is discreet.

In conclusion, composition of primitives is discreet if there is no duplicate use of a

variable, especially a secret. Moreover, adding any terms in the coideal to P does not

break the discreetness property of P, so the following holds.

Lemma 24. Given a discreet p-protocol P and its I-compatible set of secrets SP, a protocol P′

which obtained by adding events e to P is discreet if m(e) ⊆ C(SP).

Basically, any terms belonging to the coideal can be added to P to generate a new

discreet protocol, but we put some restrictions on this in generating a protocol P′. First,

we only add terms which are produced by hash functions. Signatures without message

recovery feature are assumed to be produced after hashing, therefore, adding these

terms does not destroy the discreetness property. Second, we do not add terms ran-

domly. For example, if a certain term is unknown, its hashing cannot be calculated.

Generally speaking, a term y which needs a term x as its hash input comes after x.

86

However, if it is assumed that every term x originating from A is known to A at the

start of a run, then using a hash value as in the protocols of Anderson et al. [3], that

is, sending a hash output before sending its input, is not a violation of the restriction.

However, if the hash output needs an input from B, then the output can be available

after a receiving event of the input from B.

5.2.2 Constituting a Session

As shown in the previous subsection, a semi-bundle does not form a bundle, so it does

not guarantee the existence of its corresponding semi-bundle. This happens because a

p-protocol composed of more than two primitives lacks information on which primi-

tive runs are directly related. Therefore, binding information is necessary to help both

participants agree on the parameter of a run. In two-party protocols, all messages gen-

erated in a run are visible to both participants, so the simplest solution is to add a

global session identifier, a unique number which defines a specific session. Suppose

sid is a unique number generated by a participant A. There is no need for sid to be a

random number: it can be a sequential number. Let ωi be a parameter of a primitive

pi, i.e. ωi = (ai,Bai
). Replace ai with a′i = (sid, ai). Now, each message contains a ses-

sion identifier, and each participant can identify primitive runs belonging to the same

session. Notice that the integrity of the session identifier is protected by authk(a
′

i,Ba′

i
)

message.

The other solution is to add an extra message, called a binder, containing the nec-

essary binding information. For example, in order to bind primitive runs p1(a1;B),

p2(a2;B), . . ., pn(an;B), a message delivering c = (a1, a2, . . . , an,B) can be added. This

message can originate from either participant, A or B. The origination does not mat-

ter as long as it comes from one of the two participants involved in a protocol run.

However, the message might reveal some secrets, so instead of c, its hash is generally

preferred. For two-party protocol composition, either 〈c〉skA
or 〈c〉skB

will serve as the

binder.

The position of a binder in a p-protocol P should be decided carefully. The events in

P are supposed to have a total order, o(P). Therefore, the events can be sorted accord-

ing to the order o(P). If o(P) is not defined yet, then any order can be used provided the

order of each primitive o(pi) is not violated. For example, ifP = p1⊗p2, where pi is com-

posed of events ei1 and ei2, then Figure 5.1 shows all possible orderings when merging

87

of messages is not considered. Two adjacent events may be merged if they originate

from the same participant, but this does not make any difference in the discussion.

-

�

�

-

u u

u u

u u

u u

e∗22(= el)

e21

e∗12

e11
A B

-

�

�

-

u u

u u

u u

u u

e∗22(= el)

e∗12

e21

e11
A B

-

�

�

-

u u

u u

u u

u u

e∗12(= el)

e∗22

e21

e11
A B

(a) (b) (c)

Figure 5.1: Possible Orderings of Two Primitives

The starred events are authentication replies. The last starred event el in each or-

dering is important because it finishes a protocol run. A binder mc can be added any

place between events in the orderings above, but special attention needs to be paid to

the following cases.

e−l < e+(mc) and e−l , e+(mc) occur in the same participant : The last event e−l is assumed

to finish a run. Therefore, if e+(mc) comes after e−l , then the participant A per-

forming the event e−l achieves all the goals in the session defined by the binder

mc, but the other participant B may not know the binding before he receives

mc even though he might have performed all corresponding events of the ses-

sion. Moreover, the message mc can be lost during its transmission. This is not a

favourable situation even though it does not necessarily lead to flaws in the pro-

tocol. In order to avoid this situation, the order restriction e+(mc) ≤ e+
l is added to

o(P), which makes the event e+
l happen only after e−(mc) occurred, i.e. the sender

of the last message does not send the last message before he receives the mes-

sage mc. For example, in the Needham-Schroeder public key protocol, A sends

the message {|NB|}ekB
only after she received {|NB, NA|}ekA

, where {|NB, NA|}ekA
is

mc.

e+(mc) ≤ e+
l and e+l , e+(mc) occur in the same participant : e+(mc) happens before e+l .

Assume that both are the events ofA communicating withB. If there is no receive

88

event between them, i.e. A sends e+(mc) and then sends e+
l without receiving

any message from B, then their corresponding events, e−(mc), e
−

l , may not oc-

cur in the same order. This gives a possibility that e−(mc) happens after e−l on B.

Therefore, the situation previously described may happen in this case, too. When

indexes in the messages are ignored, generally m(el) ⊑ mc and both events e+
l ,

e+(mc) originate from the same participant. Therefore, mc is enough to deliver all

necessary information of m(el), that is, el can be deleted from the p-protocol.

The two rules above ensure that either A or B performs events in the order, either

e−(mc) < e+l or e−(mc) ≤ e−l . Generally speaking, the two events, e−(mc) and the last

event which lies on the same strand as e−(mc), i.e. either e−l or e+
l , define the order

restriction. The order of the protocol after adding the binder is obtained by adding the

order restriction to o(P).

Let P′ be the protocol obtained by adding binding events to P. The following is

derivable.

Lemma 25. If P′ = |p1 ⊗ p2 ⊗ · · · ⊗ pn ⊗ po|, where po is a set of binding events added using

the rules above, then P′ satisfies the agreement property.

∀ψ • ξP
′

AB(ω) ∈ ψ ⇒ [ξP
′

BA(ω)] ∈ ψ

∀ψ • ξP
′

BA(ω) ∈ ψ ⇒ [ξP
′

AB(ω)] ∈ ψ

where ξP
′

AB(ω) = |p1 ⊗ p2 ⊗ · · · ⊗ pn ⊗ po|A and ξP
′

BA(ω) = |p1 ⊗ p2 ⊗ · · · ⊗ pn ⊗ po|B .

Proof. From Theorem 5, the following holds for each run of primitive pi.

∀ψi · ξ
pi

AB(ai) ∈ ψi ⇒ [ξpi

BA(ai)] ∈ ψi

∀ψi · ξ
pi

BA(ai) ∈ ψi ⇒ [ξpi

AB(ai)] ∈ ψi

For a participant A to finish a run successfully, all actions she should perform have

to be done, if she is honest. The last action she performs can be either a receive event

or a send event.

Last event is a receive event e−l : if a binder mc is added by A, then e+(mc) < e+l

due to the first rule above. Therefore, B receives mc before he performs e+
l . If mc

89

originates from B, then the second rule forces e−(mc) ≤ e−l . Therefore, the binder

always becomes known before the last event and both participants can agree on

a specific run.

Last event is a send event e+
l : if a binder mc is added by A, then e+

l is replaced with

e+(mc), so either B finishes a successful run when mc is delivered to B, or he

does not achieve all of his goal when mc is not delivered. If mc is added by B,

then it comes before the event e+
l , otherwise, A will not generate e+

l . Therefore,

both agrees on a specific run.

Therefore, both participants always agree on a specific parameter before they finish

a run, and the parameter links all primitive runs belonging to the run, i.e. the agree-

ment property is satisfied.

Lemma 25 enables designers to compose a protocol which satisfies the agreement

property. Sometimes, it is preferable to put a binder no later than the first authentica-

tion reply, because this enables both participants to agree on the parameter of a specific

run as early as possible. This kind of binding is called early binding. Early binding is not

always possible, but it is recommended because it provides the binding information to

both participants before the first authentication reply in a composition, so that both

participants know which primitives belong to the same session before the first authen-

tication reply arrives.

5.3 Design Example

This section shows how to use the proposed method through examples of applications

such as one-way authentication, two-way authentication and SSL/TLS-like protocols.

5.3.1 One-way Authentication

One-way authentication is the simplest form of authentication. It only authenticates

one party, for example, a wireless access point will authenticate a user, but not the other

way around. Several applications such as password authentication protocols use this

type of authentication. One disadvantage of one-way authentication is that it leaves an

90

unauthorised party as a potential launch pad for denial of service attacks. Transform-

ing a protocol to make it resilient to denial of service attacks is usually possible by in-

troducing mechanisms such as client puzzles [5,14,29], which lies outside of the scope

of this thesis. One-way authentication is interesting as a building block for more com-

plicated protocols. Understanding how to compose a compound one-way authentica-

tion protocol from simple primitives will help assessing the feasibility of more complex

composition. This subsection shows some interesting examples of one-way authenti-

cation composition.

A primitive as an authentication test can implement one-way authentication. Most

security protocols that rely on a simple challenge and response mechanism can be im-

plemented with a single primitive. There are, however, other applications that require

a more complex mechanism for one-way authentication which may not be achievable

with a single primitive, such as re-authentication. One way of generating those com-

plex mechanisms is to use a composition of primitives. Any two or more primitives

can be combined together to generate a new mechanism for one-way authentication.

Let p1 and p2 be the two primitives as shown below, where B = (A,B).

p1: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

M2 B → A : A, 〈1, x,B〉skB

p2: N1 A→ B : y,B, authskA
(2, y,B)

N2 B → A : A, 〈2, y,B〉skB

Notice that the binding group B in {|1, x,B|}ekB
can be removed because it is in-

cluded in authskA
(1, x,B). The events within each primitive have a specific order, i.e.

o(p1) : e+(M1) < e−(M1) < e+(M2) < e−(M2)

o(p2) : e+(N1) < e−(N1) < e+(N2) < e−(N2)

These orders cannot be violated after composition. The events of p1 are independent

of the events of p2. Let P be a composition of p1 and p2, that is, P = p1 ⊗ p2. Any

rearrangement of the events of P is possible provided it does not violate the order

of each primitive. For example, the messages with the same direction can be merged

together to produce the following P.

P: M ′

1 A→ B : y,B, {|1, x,B|}ekB
, authskA

(1, x,B), authskA
(2, y,B)

M ′

2 B → A : A, 〈1, x,B〉skB
, 〈2, y,B〉skB

91

In order to piece the two primitives together, a binder should be added. The union

of the parameters is the binding information, so c = (x, y,B). An index is not necessary

because only one binder is necessary in this example. Two different versions of the

binding are possible depending on who is responsible for the binding. As mentioned

in the previous chapter, all events are visible to both participants in this case, so the

binder can be added using the rules presented earlier.

When A is responsible for the binding

P1: M ′

1 A→ B : y,B, {|1, x,B|}ekB
, authskA

(1, x,B), authskA
(2, y,B)

M ′′

1 A→ B : 〈c〉skA

M ′

2 B → A : A, 〈1, x,B〉skB
, 〈2, y,B〉skB

When B is responsible for the binding

P2: M ′

1 A→ B : y,B, {|1, x,B|}ekB
, authskA

(1, x,B), authskA
(2, y,B)

M ′′

2 B → A : 〈c〉skB

M ′

2 B → A : A, 〈1, x,B〉skB
, 〈2, y,B〉skB

Given c, either as 〈c〉skA
or as 〈c〉skB

, both participants can determine which two

primitive runs belong together, so the composition together with the binder satisfies

the agreement property. However, the second example needs more explanation since

it does not remove the possibility that the binder arrives at B later than the second

authentication reply. Therefore, it might be better to remove the second authentication

reply to avoid such a situation. If indexes are ignored, then x,B ⊑ c and y,B ⊑ c, so

these terms can be removed if necessary, i.e. the binder can replace any of these authen-

tication replies as well as any auth messages if the binder and these messages have the

same direction. Generally, this kind of removal produces more efficient protocols but

it is up to designers to decide whether to keep these redundant terms or not.

The addition of the binding events puts more order restrictions on o(P). For exam-

ple, if M ′

2 is assumed to be the last message of the protocol P1, the order restriction

e−(〈c〉skA
) < e+(M ′

2), meaning that B generates M ′

2 after receiving 〈c〉skA
, should be

added to o(P) to produce o(P1). Both P1 and P2 can be rearranged if the rearrangement

does not violate the orders o(P1) and o(P2), respectively.

When A is responsible for the binding

92

P′

1: M1 A→ B : y,B, {|1, x,B|}ekB
, 〈c〉skA

M2 B → A : A, 〈1, x,B〉skB
, 〈2, y,B〉skB

When B is responsible for the binding

P′

2: M1 A→ B : y,B, {|1, x,B|}ekB
, authskA

(1, x,B), authskA
(2, y,B)

M2 B → A : A, 〈1, x,B〉skB
, 〈c〉skB

or A, 〈c〉skB

This kind of composition allows designers to generate more complicated primi-

tives. Primitives with more than two variables, each serving different purposes can be

produced. In the example, x can be used as a secret and y as a nonce. The structures of

the protocol can further be changed if necessary. The following is one example which

does not violate the order o(P1). Either by merging or reordering messages, many dif-

ferent protocols can be produced without worrying about their security guarantees.

P′′

1: M ′

1 A→ B : y,B, 〈c〉skA

M1 A→ B : {|1, x,B|}ekB

M2 B → A : A, 〈1, x,B〉skB
, 〈2, y,B〉skB

5.3.2 Two-way Authentication

Two-way authentication, or mutual authentication, is a common two party protocol.

The design of two-way authentication protocols is similar to the previous example of

one-way authentication. Any two or more primitives can be combined to generate a

two-way authentication protocol. Suppose p1 and p2 are the selected primitives which

are shown below, where A is an initiator and B a responder.

p1: M1 A→ B : Bx, {|1, x,Bx|}ekB
, authskA

(1, x,Bx)

M2 B → A : A, 〈1, x,Bx〉skB

p2: N1 B → A : y,By, authskB
(2, y,By)

N2 A→ B : B, 〈2, y,By〉skA

Let P = p1⊗p2, where both Bx and By are replaced by B = (A,B). The events within

each primitive have a specific order, and the event e+(M1) should precede any other

events because A is an initiator, i.e.

e+(M1) < e−(M1) < e+(M2) < e−(M2)

93

e+(N1) < e−(N1) < e+(N2) < e−(N2)

e+(M1) < e+(N1)

As shown in Figure 5.1, three different orderings are possible. However, (a) and (b)

can be regarded as the same case by merging two events e12 and e21, i.e. by removing

the order restriction, e12 ≤ e21 or e21 ≤ e12. The two events can later be rearranged,

i.e. the order restriction can later be added. The way a binder is inserted is the same

as in one-way authentication examples. In one-way authentication examples, two au-

thentication replies are merged, which removes any order restriction between them.

However, in two-party protocols, that is not possible. Therefore, the last event or last

message of the protocol should be decided before adding a binder. The starred events

are e(M2) and e(N2). Therefore, the following cases need to be considered separately.

When e(M2) < e(N2)

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

M ′ B → A : y,B, 〈1, x,B〉skB
, authskB

(2, y,B)

N2 A→ B : B, 〈2, y,B〉skA

When e(N2) < e(M2)

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

N1 B → A : y,B, authskB
(2, y,B)

N2 A→ B : B, 〈2, y,B〉skA

M2 B → A : A, 〈1, x,B〉skB

Let c be the binding information which binds the two primitives, i.e.c = (x, y,B).

The following protocols are some examples of early binding. In the first protocol, a

binder can be added by A, but A cannot generate c without B’s challenge, so for early

binding, the binder should be added by B. In the second protocol, both participants

can add the binder, but the example only shows the case when the binder is added by

A.

When e(M2) < e(N2)

94

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

M ′

2 B → A : 〈c〉skB

M2 B → A : y,B, 〈1, x,B〉skB
, authskB

(2, y,B)

N2 A→ B : B, 〈2, y,B〉skA

When e(N2) < e(M2)

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

N1 B → A : y,B, authskB
(2, y,B)

N ′

2 A→ B : 〈c〉skA

N2 A→ B : B, 〈2, y,B〉skA

M2 B → A : A, 〈1, x,B〉skB

Two messages can be merged together if there is no order restriction which prevents

the merge. If necessary, c can replace the authentication reply if they are the same

direction, since x,B ⊑ c and y,B ⊑ c

When e(M2) < e(N2)

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

M ′′

2 B → A : y,B, 〈c〉skB

N2 A→ B : B, 〈2, y,B〉skA

When e(N2) < e(M2)

P: M1 A→ B : B, {|1, x,B|}ekB
, authskA

(1, x,B)

N1 B → A : y,B, authskB
(2, y,B)

N ′′

2 A→ B : B, 〈c〉skA

M2 B → A : A, 〈1, x,B〉skB

In this example, further optimisation is possible because there are dependencies be-

tween events. For example, in the first case, an honest participant A generates the last

message N2 only when she performed a previous event e(M1). Therefore, it is possi-

ble to remove authskA
(1, x,B) from the protocol. A does not generate the last message

without having a previous event e(M1), and Spy cannot generate the last message be-

cause Spy does not own the key skA. Therefore, when B receives the last message he

can conclude that it comes fromA. However, this protocol does not necessarily achieve

the same properties which the original one does, so in applying this optimisation, de-

signers need to be careful. The protocols can be rearranged if necessary for the same

reason as in the previous example.

95

5.3.3 The SSL and TLS Protocols

Secure web servers, and many other kinds of servers that want to protect data from

prying eyes during transmission, often use the Secure Socket Layer (SSL), originally

developed by Netscape. Transport Layer Security (TLS) is a refinement of SSL, which

ensures privacy between communicating applications and their users on the Internet.

When a server and client communicate, TLS guarantees that no Spy may eavesdrop

or tamper with any message. TLS works by using a private key to encrypt data that

should be transferred over the Internet. Both Netscape Navigator and Internet Ex-

plorer support this type of protocol, and many Web sites use the protocol to obtain

confidential user information, such as credit card numbers. The goals verified in [42]

with regard to TLS are as follows.

1. ‘The peer’s identity can be authenticated . . . using public key cryptography’

2. ‘The negotiated secret is unavailable to eavesdroppers, . . . and for any authen-

ticated connection the secret cannot be obtained, even by an attacker who can

place himself in the middle of the connection’

3. ‘No attacker can modify the negotiation communication without being detected

by the parties’

These are the main goals of the protocol but they do not cover all philosophies be-

hind the design. Therefore, with the goals in mind only, it is not easy to come up with

a protocol like TLS. Moreover, it is very difficult to figure out all the minor details in

TLS. Instead we start from the given main goals and then modify the protocol obtained

in order to get a protocol like TLS. Here, we only show the version of TLS which re-

quires certificates from both client C and server S. The other versions can be obtained

in similar ways. Let [C, ekC]skCA
and [S, ekS]skCA

be the certificates of the client and the

server, respectively, and assume that these certificates are known to each other. This

assumption can later be removed by adding a message which contains each certificate

before any use of the key. In TLS, the server is assumed not to reveal any secret re-

ceived from clients. If not, the protocol cannot guarantee what it claims [42]. This is a

strong assumption because any message secretly delivered to the server can be used to

generate a secret short-term key, which is not generally true. Based on this assumption,

the following message can deliver a secret to the server. Remind that ~xi = (i, ~x).

96

p1: L1 C → S : B~x, {|~x1,B~x|}ekS
, authskC

(~x1,B~x)

Due to the auth message, the delivery is authenticated. A dishonest client cannot

just forward the encrypted term coming from other participant with a changed auth

message to the server because of B. In this case, the binding group inside the encrypted

term will not include the client, so the server will not accept it as coming from the

client. Therefore, to be accepted by the server, the client should be included in the

binding group, which means the client knows the secret. Under this circumstance, after

the delivery of a secret from a client to the server, the client and the server can use

it to authenticate each other. Let p1 and p2 be the primitives shown below, where fc

and fs are two different pseudo random number generators taking ~x as their inputs,

B~y = (C, S) and B~z = (S,C).

p2: M1 C → S : B~y, ~y

M2 S → C : 〈~y2,B~y〉fs(~x)

M3 C → S : authfc(~x)(~y2,B~y)

p3: N1 S → C : B~z, ~z

N2 C → S : 〈~z3,B~z〉fc(~x)

N3 S → C : authfs(~x)(~z3,B~z)

Assume that ~x is a shared secret between C and S, the primitives p2 and p3 are regu-

lar and discreet, and they are agreement tests. To merge the two primitives, replace the

binding groups in each primitive with B = (C, S) and define an order among messages

in the composition p2 ⊗ p3. The following shows one possible ordering.

p2 ⊗ p3: M1 C → S : B, ~y

N1 S → C : B, ~z

N2 C → S : 〈~z,B〉fc(~x)

M2&N3 S → C : 〈~y,B〉fs(~x), authfs(~x)(~z3,B)

M3 C → S : authfc(~x)(~y2,B)

The binding information of the two primitives is c = ~y, ~z,B. Either C or S can

add a binder to link relevant primitives. As mentioned earlier, any term which can be

interpreted as c can be a binder. For this example, 〈c〉fc(~x) and 〈c〉fs(~x) will be used as

the binders. Adding 〈c〉fc(~x) will produce the following protocol.

97

P: M1 C → S : B, ~y

N1 S → C : B, ~z

N2 C → S : 〈c〉fc(~x)

M ′

2 S → C : 〈~y,B〉fs(~x), authfs(~x)(~z3,B)

M3 C → S : authfc(~x)(~y2,B)

If 〈c〉fs(~x) is added again to P, which is generally unnecessary because the two prim-

itives are already bound, but it does not cause any harm either, then the following

protocol is produced.

P: M1 C → S : B, ~y

N1 S → C : B, ~z

N2 C → S : 〈c〉fc(~x)

M ′

2 S → C : 〈c〉fs(~x)

M3 C → S : authfc(~x)(~y2,B)

M3 is mainly used to prove that ~y originates from C, but which can be shown by

〈c〉fc(~x), so it is possible to remove M3. P together with the delivery of the secret pro-

duces the following protocol. Notice that L1 can be placed anywhere beforeM ′

2 because

~x is first used by S in M ′

2.

P ⊗ p1: L1 C → S : B, {|~x1,B|}ekS
, authfc(~x)(~x1,B)

M1 C → S : B, ~y

N1 S → C : B, ~z

N2 C → S : 〈c〉fc(~x)

M ′

2 S → C : 〈c〉fs(~x)

Any rearrangement which does not violate the orders of each primitive is allowed.

However, for this example, ~x should be known before it is used as the input of the func-

tions, fc and fs. A rearrangement similar to TLS will produce the following protocol,

which does not violate any order restrictions. The correctness of the protocol follows

from the theories presented in previous sections.

98

Pf : M ′

1 C → S : B, ~y Client Hello

N1 S → C : B, ~z Server Hello

L1 C → S : B, {|~x1,B|}ekS
Client Key Exchange

M ′′

1 &N2 C → S : authfc(~x)(~x1,B), 〈c〉fc(~x) Client Finished

M ′

2 S → C : 〈c〉fs(~x) Server Finished

This protocol is not exactly the same as the TLS Handshake protocol, but shares

many of its features. Notice that the protocol achieves all the goals listed in [42]. If a

session identifier is added in each message of the protocol, the protocol also allows the

client to resume a secure session with the server like the TLS Handshake protocol.

99

6
Symmetric Protocols

Many authentication protocols based on symmetric key cryptography have been pro-

posed after the seminal work of Needham and Schroeder [39,40]. The client and server

based distributed computing environments of the mid 80’s and early 90’s created many

demands on authentication protocols using symmetric key cryptography. Symmetric

key cryptography is very easy to use, and usually very fast too. On the other hand,

symmetric keys must be kept secure. However, the distributed computing environ-

ment has dramatically changed in the past few years by the introduction of fast CPUs,

mobile ad-hoc networks, peer to peer, and ubiquitous computing. These changes have

made authentication protocols based on public key cryptography preferable in many

applications because public keys are safe to be published anywhere. Nevertheless, pub-

lic key cryptography has its limitations: it is slower and requires larger keys than sym-

metric key cryptography, and involves CPU-intensive computations, which makes it

less suitable for small, battery powered devices. This chapter discusses design issues

on protocols based on symmetric key cryptography, in short, symmetric protocols. The

outline of the chapter is as follows. Section 6.1 investigates the distinctive features of

symmetric protocols, mainly regarding issues concerning design by composition. We

100

inspect the structural problem occurring in a symmetric protocol due to its symmet-

ric use of keys, and suggest a possible solution for the problem so that the proposed

composition methodology can work in this environment. Section 6.2 describes what

trust means in symmetric protocols using authentication servers. Section 6.3 examines

several design rules useful for the composition of symmetric protocols. Finally, Section

6.4 demonstrates the utility of the proposed methodology through design examples of

several applications.

6.1 Symmetric Protocol Design

Symmetric key authentication protocols can be divided into two categories depending

on how the freshness of key distribution messages is determined. One category uses

challenge and response, and the other is based on timestamps [15]. Protocols using

timestamps need fewer messages than the ones based on nonces [21], the downside

being that they require synchronised clocks. On the other hand, protocols based on

nonces require good random number generators and state storage, in order to pre-

vent certain types of attacks such as reflection and replay. The protocols presented in

this chapter mainly make use of nonces since nonce-based protocols are easily trans-

formable into timestamp-based ones if synchronised clocks are provided. Symmetric

key protocols can also be divided into two categories depending on whether they need

authentication servers for a protocol run. Symmetric key environments have a dis-

advantage in key management since every pair of participants should share a secret

key to communicate with each other. To overcome this disadvantage, authentication

servers are usually introduced so that each participant shares a secret key with the

servers instead, and the servers intervene in communication between participants.

The design of symmetric protocols is structurally very similar to that of asymmetric

protocols. However, due to the different assumptions on the underlying cryptosystem,

some features are distinctive. It is important to know the differences, especially the dif-

ferences which need to be considered regarding protocol composition. First, role asym-

metry is not guaranteed in symmetric environments due to the symmetric use of the

same secret key. Role asymmetry means that two participants playing different roles

should generate distinctive cryptographically transformed terms. In asymmetric envi-

ronments where long-term private keys are not shared between participants, there is

less confusion regarding the origin of cryptographically transformed terms, whereas in

101

symmetric environments where private keys are shared among participants, such con-

fusion is unavoidable without extra information. In Woo and Lam’s Π protocol [53],

for example, the origins of the two messages M3 and M5 cannot be easily determined

due to the overlapped use of shared keys for different purposes.

M1 A→ B: A

M2 B → A: Nb

M3 A→ B: {|Nb|}kAS

M4 B → S: {|A, {|Nb|}kAS
|}kBS

M5 S → B: {|Nb|}kBS

Although the same problem can occur in asymmetric environments too, it is more

likely to occur in symmetric environments. In order to avoid such confusion and to

simulate role asymmetry, we adopt the recommendation of RFC1994 [49] and use a

different key for each participant, i.e. if k is a shared key between A and B, then A uses

kAB and B uses kBA instead of k, where kAB and kBA are different and derivable from

k by both participants. One example of the key derivation function for a participant A

is kAβ = h(A, k), where k is a shared key between participants A and β.

Second, authentication servers are generally trusted to behave honestly. What and

how much participants should trust the authentication servers may differ from appli-

cation to application. However, a certain level of trust is always required in design and

verification of protocols. This issue is discussed in the next section.

6.2 Authentication Servers and Trust

This section discusses trust on authentication servers from a design point of view, and

shows how it affects a design.

6.2.1 Trust

The meaning of trust differs from application to application, and it is difficult to for-

malise correctly, even though it plays an important role in protocol verification and

design. In protocols that require authentication servers, protocol correctness requires

102

more than the existence of communication channels between participants and the ap-

propriate authentication servers. Correctness is critically dependent on the ability of

the servers to faithfully follow the protocols. Each participant bases its judgment on its

own observations made from messages sent and received, and its trust in the server’s

judgment.

Authentication servers in symmetric protocols are assumed to behave in a particu-

lar way in a protocol run. Among those behaviours are “secrecy” and “faithfulness”.

Authentication servers are trusted not to divulge the secrets of participants. If every

term that an authentication server sends is regular, long-term secret keys are safe from

Spy. That is to say, the only way that Spy gets to know a long-term secret key is to get it

directly from the participant who shares the key with the authentication server. How-

ever, this is unlikely to happen unless the participant is compromised. Authentication

servers sometimes send a short-term secret to particular participants, helping them to

create a common secure channel. In this case, authentication servers are not allowed

to send the secret to any other participants. In other words, for a short-term secret

originating from the authentication servers to be secure, every protocol step that the

authentication servers take has to be discreet. Consequently, by the secrecy of authen-

tication servers, every protocol step that authentication servers perform is required to

be regular as well as discreet.

Secrecy Condition: All outputs of an authentication sever should be discreet and reg-

ular.

M1 A→ B : M,A,B, {|Na,M,A,B|}kAS

M2 B → S : M,A,B, {|Na,M,A,B|}kAS
, {|Nb,M,A,B|}kBS

M3 S → B : M, {|Na, k|}kAS
, {|Nb, k|}kBS

M4 B → A : M, {|Na, k|}kAS

Figure 6.1: Otway-Rees Protocol

Authentication servers are also trusted to faithfully follow the protocol specifica-

tion. First, authentication servers should check all relevant information inside an input

message before generating a meaningful output message. As Boyd and Mao pointed

out, the responsibility of authentication servers regarding input validation is usually

not described clearly, and this lack of detailed explanation sometimes invites unwanted

attacks [34]. They note that in the Otway-Rees authentication protocol, the authentica-

103

tion server should not only check the form of the input message M2 but also check

whether all the plaintext information inside the encrypted terms of M2 match each

other. In other words, the authentication server should accept a message of the form

(X1, A1, B1, {|Y1, Y2, A2, B2|}k1
, {|Z1, Z2, A3, B3|}k2

) as an input message only if k1 = kA1S ,

k2 = kB1S , X1 = Y2 = Z2, A1 = A2 = A3, and B1 = B2 = B3. Therefore, for any

given output of the authentication server, if the authentication server is faithful, there

exists a corresponding input. For example, when A receives M4, she can infer from M4

that a certain input has happened in the authentication server. Second, all outputs the

authentication server generates should have the specific form defined by the proto-

col specification. For example, the output (M, {|Na, k|}kAS
, {|Nb, k|}kBS

) always comes as

one unit, i.e. the server’s output always consists of one basic term and two encrypted

terms. Hence, when A receives the message M4, she can conclude that the authentica-

tion server has generated a term {|x, k|}kB′S
for some x, because M4 should be a part

of some output generated by the server. Third, the authentication server is assumed

to keep the binding group of an input message in the output it generates. Based on

this assumption, A can conclude that B′ = B, i.e. {|x, k|}kBS
is the message that the au-

thentication server produced, because the binding group of the nonce Na includes B.

If A binds Na to more than one different binding group, then the authentication server

will generate outputs accordingly with different binding group. This way, the authen-

tication server does not need to maintain a record of all nonces. An honest participant

should not bind a nonce to more than one different binding group to avoid the con-

fusion which might happen due to multiple bindings of a single nonce. Finally, any

secrets generated by the authentication server should be fresh.

In order to provide a specification of a faithful authentication server in composition,

the authentication server is regarded as a program, which has input and output condi-

tions specified by the protocol specification. In conclusion, in protocol composition, a

faithful authentication server is required to satisfy the following conditions.

Definiton 29. (Faithful Authentication Servers) Suppose S be an authentication server of

a protocol P. Let iS be the set of input terms which satisfy the input conditions of the protocol,

and oS be the set of possible output terms of the authentication server. If S is faithful, then the

following statements hold.

1. S produces an output only for an input x satisfying the input condition, i.e. x ∈ iS ,

therefore, for an output of S, there always exists a corresponding input.

104

2. If yi is a component of a term that can be verified to originate from S, then there exists an

output y ∈ oS containing yi as a component.

3. S does not change the binding group in the input messages when it generates an output.

4. All secrets generated by S are fresh.

6.3 Composition

The composition of two-party protocols is basically the same as that of asymmetric

protocols, if each participant sharing a secret key k is assumed to use a different key

derived from k. Our interest is mainly in the composition issues regarding the proto-

cols using an authentication server. The composition can be divided into two different

stages. One is before having any common secret between two participants and the

other is after sharing a secret. The latter is basically the same as two-party protocols

sharing a secret, which are already discussed in the previous chapter, therefore, the

main focus on this section will be the former.

Let pi be an indexed protocol primitive with the following protocol steps, where

~xi = (i, ~x).

pi M1 A→ S : B~x, {|~xi,B~x|}kAS
, authkAS

(~xi,B~x)

M2 A← S : A, 〈~xi,B~x〉kSA

or

pi M1 A→ S : B~x, ~x, authkAS
(~xi,B~x)

M2 A← S : A, 〈~xi,B~x〉kSA

These primitives are designed to communicate with the authentication server S,

since both participants cannot directly talk to each other before they agree on a secret.

Figure 6.2 shows the difference between two-party protocols and the protocols with an

authentication server. In (a),A directly communicates withB, soA can check whether a

reply fromB is fresh or not, whereas in (b),A does not directly communicate withB, so

she has no way to check that. The same is true whenB receives a reply. Therefore, in (b),

when A finishes a run of the primitive, she cannot infer what B has done without the

105

e

u

e

u

A
-

�

�

-

B
M1

N1

M2

N2
e

u

e

u

(a) Without a Server (b) With a Server

e

u

e

u

BA S
M1

N1

M2

N2
e

u

e

u-

�

�

-

Figure 6.2: Comparison of Composition

help of S. This section shows how to compose a protocol in such an environment, using

the agreement property together with the faithfulness assumption of the authentication

server.

6.3.1 Authenticated Delivery

An authentication server plays many different roles. It delivers a message coming from

one participant to the other, and it generates a fresh key and distributes it to a group

of participants. Moreover, the authentication server is the only entity which can see all

parameters used in a single run. For example, in the Otway-Rees protocol, the authen-

tication server knows that Na and Nb are the variables of a specific run. There are two

different types of information, one originating from the authentication server itself and

the other from protocol participants. The key k in {|Na, k|}kAS
of the Otway-Rees pro-

tocol is an example of the former and Nb in {|B, k,Na, Nb|}kAS
of the Yahalom protocol

is an example of the latter. Let ~y be the information delivered by the authentication

server, possibly in an encrypted form if the information is secret. Figure 6.4 shows the

cases when ~y originates from two different sources, S and B.

Assuming that the delivered information is secret, the delivery mechanism of the

authentication server in both cases is the same, i.e. the server will send A an encrypted

term such as {| · · · ~y · · · |}kSA
. The following shows an unsolicited test implementing the

106

u

u

BA S

u

u-

� ~y

�
�

�
�

��+

(a)

created by S

(b)

created by B

e

u

e

u

BA S

e

u

e

u-

� ~y

� ~y

-

Figure 6.3: Information Delivery

delivery.

p′ M A← S : {|~y|}kSA

This protocol step p′ is regular, but it is not discreet because the message M does

not say to A with whom ~y is shared. To make it discreet, S should provide the binding

group of ~y as shown below.

p′ M A← S : {|~y|}kSA
, authkSA

(~y,B~y)

Based on the assumption that the authentication server is faithful, the authentica-

tion server will only send the secret ~y to the participants in B~y. If B~y is provided by A

in (a) and by B in (b), then it can be proven that Spy cannot get the secret unless Spy is

a member of B~y, which shows that the delivery is discreet.

The delivery mechanism alone is not useful, because the recipient of the informa-

tion has no idea whether the information is fresh or not. The information delivery

mechanism p′ and a protocol primitive pi can be merged together to produce an au-

thenticated delivery mechanism. The primitive pi is the only protocol primitive needed

for the example, so the index is unnecessary. Suppose B = B~x = B~y.

107

e

u

e

u

A
-

�

�

�

S
M1

M2

〈cSA〉kSA

M ′

e

u

e

u

Figure 6.4: Authenticated Delivery

pi M1 A→ S : B, ~x, authkAS
(~x,B)

M2 A← S : A, 〈~x,B〉kSA

p′ M ′ A← S : {|~y|}kSA
, authkSA

(~y,B)

⇓

p′i M1 A→ S : B, ~x, authkAS
(~x,B)

M2&M
′ A← S : A, 〈~x,B〉kSA

, {|~y|}kSA
, authkSA

(~y,B), 〈cSA〉kSA

⇓

p′i M1 A→ S : B, ~x, authkAS
(~x,B)

M2 A← S : A, {|~y|}kSA
, 〈cSA〉kSA

Notice that this is an instance of two-party composition, so the method proposed in

the previous chapter can be applied here. Message M ′ and M2 can be merged together

because their directions are the same. Let cSA be the binding information which pieces

pi and p′ together, i.e. cSA = (~x, ~y,B). Early binding will put a binder of the binding

information from S to A, e.g. 〈cSA〉kSA
because A cannot produce the binder before

she receives the message M ′. After adding 〈cSA〉kSA
, the redundant terms 〈~x,B〉kSA

and

authkSA
(~y,B) can be removed since ~x,B ⊑ cSA and ~y,B ⊑ cSA. Similarly, the following

primitive with an index can be produced using composition

p′i M1 A→ S : B, {|~xi,B|}kAS
, authkAS

(~xi,B)

M2 A← S : A, {|~y|}kSA
, 〈~xi, ~y,B〉kSA

Both primitives above are agreement tests, so they can be used as protocol prim-

108

itives. These primitives are especially useful in designing key distribution protocols

and re-authentication protocols. Key distribution protocols can use the primitives to

deliver a secret key, and re-authentication protocols can use the primitives to deliver a

token containing a key and a timestamp (the key’s lifetime). Notice that if ~y = null,

then primitive p′i is equal to pi.

Regarding the freshness of the information, there is a difference between the cases

(a) and (b) of Figure 6.4. In case of (a), if A trusts that S only generates fresh infor-

mation, then she can verify that ~y is fresh from the variable she knows, i.e. from the

nonce included in ~x. However, this is not true in case of (b), because the composition

of primitives does not guarantee that the information was recently sent by B. How to

ensure that this information is freshly delivered by B will be discussed in Section 6.3.3.

6.3.2 Correspondence

In two-party protocols, whenA finishes her part of a run, from the actions she has done,

she knows the corresponding actions performed by her partner. However, in protocols

with an authentication server, this is not the case. For example, in the Otway-Rees

protocol, what A and B see at the end of a protocol run might be the following series

of events if messages unrecognisable by each participant are ignored.

M1 A→ S : M,A,B, {|Na,M,A,B|}kAS

M4 A← S : M, {|Na, k|}kAS

M2 B → S : M,A,B, {|Nb,M,A,B|}kBS

M3 B ← S : M, {|Nb, k|}kBS

With the events above alone, it is impossible forA andB to derive all properties that

the protocol achieves. This is the same in case of composition. Putting several primi-

tives together does not automatically guarantee that all goals of the primitives happen

together. In order to verify the correctness of the Otway-Rees protocol, the authentica-

tion server should be faithful, i.e. the server accepts an input of the form M1 ∪M2 and

produces an output of the formM3∪M4. These input and output forms are specified by

the protocol specification, which designers have to produce by composition. In other

words, the protocol specification is unknown during composition, so it is impossible

109

to define input and output forms of the authentication server. In composition, to tackle

this problem, all messages destined to the authentication server are initially regarded

as the input and all message originating from the server as the output. Later, if there is

a change in the input, then it can accordingly be updated in the protocol specification.

Let PG = {p1, p2, . . . , pn} be a set of indexed primitives used to compose a pro-

tocol, where n different participants communicate with an authentication server. A

p-protocol of PG, namely P = |p1 ⊗ p2 ⊗ · · · ⊗ pn|, is defined as the set of primitives

together with a predefined order o(P). Suppose B = (A1, A2, . . . , An, S) is the bind-

ing group of P, and let each participant Ai playing a role Ri execute pi(~ai;B). Notice

that S is included in the binding. Generally, replacing the binding group Bx of pi in P

with B can affect the discreetness property of the primitive since B and Bx are not the

same. However, the discreetness property of the primitive can be proven before the

replacement. In other words, if pi(x;Bx) is discreet, then pi(x;B) is also discreet, but

if pi(x;B) is discreet, then pi(x;Bx) is not necessarily discreet. Therefore, adding extra

terms to the binding group of the primitive, which is already proven discreet, does not

cause any harm to the secret x. Under the assumption that the authentication server is

faithful, the input of the authentication server is defined as the union of the messages

originating from each participant Ai, and the output of the authentication as the union

of the messages originating from the server. To simplify the discussion, assume that

n = 2, i.e. P = p1 ⊗ p2, and each primitive pi is shown as below, where ~αi = (i, ~α),

B = (A,B, S), cSA = (~a,~c,B), cSB = (~b, ~d,B). The input of the authentication server is

M1 ∪N1 and the output M2 ∪N2.

p1 M1 A→ S : B, {|~a1,B|}kAS
, authkAS

(~a1,B)

M2 A← S : A, {|~c1|}kSA
, 〈cSA〉kSA

p2 N1 B → S : B,~b, authkBS
(~b2,B)

N2 B ← S : B, {|~d2|}kSB
, 〈cSB〉kSB

At the end of a run each participant has its own view of the protocol run, formulated

as a sequence of events in a strand, and let these strands be ξP,1
AS (ω;B) and ξP,2

BS (µ;B) for

A and B, respectively. Each participant has its own corresponding run of the authenti-

cation server due to the agreement property of primitives.

Lemma 26. If P = |p1 ⊗ p2|, ψ is a bundle formed by P, and the authentication server is

faithful, then

∀ψ • ξP,1
AS (ω;B) ∈ ψ ⇒ [ξP,1

SA (ω;B)] ∈ ψ

110

∀ψ • ξP,2
BS (µ;B) ∈ ψ ⇒ [ξP,2

SB (µ;B)] ∈ ψ

Proof. From the agreement property of indexed primitives,

∀ψ • ξP,1
AS (ω;B) ∈ ψ ⇒ [ξP,1

SA (ω; (A,B′, S))] ∈ ψ

∀ψ • ξP,2
BS (µ;B) ∈ ψ ⇒ [ξP,2

SB (µ; (A′, B, S))] ∈ ψ

Assume that B′ 6= B. The authentication server is faithful, so for S to generate an

output containing ~a with B′ = (A,B′, S), there should be an input originating from A,

which contains~a and B′. However, this contradicts the fact thatA finished a run with S,

i.e. the existence of ξP,1
AS (ω;B) means that S generated the output term 〈cSA〉kSA

, where

x,B ⊑ cSA. Similarly, B’s guarantee can be proven.

In the opposite direction, from a run of the authentication server, its corresponding

strand can be derived. In other words, when the authentication server has finished its

part of a run, there exists its corresponding run of each participant engaged in the run.

Lemma 27. If P = |p1 ⊗ p2|, ψ is a bundle formed by P, and the authentication server is

faithful, then

∀ψ • ξP,1
SA (ω;B) ∈ ψ ⇒ [ξP,1

AS (ω;B)] ∈ ψ

∀ψ • ξP,2
SB (µ;B) ∈ ψ ⇒ [ξP,2

BS (µ;B)] ∈ ψ

A faithful authentication server generates an output only when a correct input was

given. Therefore, if there is a corresponding run of an initiator in the authentication

server, then there should be a corresponding run of a responder in the authentication

server, too.

Lemma 28. If the authentication server is faithful, then

∀ψ • (ξP,1
SB (ω;B) ∈ ψ ⇒ ∃µ • ξP,2

SB (µ;B) ∈ ψ)

∀ψ • (ξP,2
SB (µ;B) ∈ ψ ⇒ ∃ω • ξP,1

SA (ω;B) ∈ ψ)

From Lemma 26, 27 and 28 together with the faithful assumption of the authen-

tication server, each participant can now infer its corresponding run(s) of the other

participant(s) from the existence of its matching run(s) of the authentication server.

111

Theorem 6. If P = |p1 ⊗ p2 ⊗ · · · ⊗ pn|, ψ is a bundle formed by P, and the authentication

server is faithful, then

∀ψ • (ξP,i
AiS

(ωi;B) ∈ ψ ⇒ ∀Aj ∈ B,∃µj • [ξP,j
AjS(µj;B)] ∈ ψ)

This is only obtainable due to the agreement property of protocol primitives and

the assumption on the server’s faithful behaviour. Sometimes, a weaker result, which

can be obtained from some primitives satisfying authentication tests not agreement

tests, is also useful in designing a protocol. Let p′i be a protocol primitive which does

not contain term authkS∗
(·), i.e.:

p′i M1 A→ S : B~a,~a

M2 A← S : A, 〈~ai,B~a〉kSA

Lemma 27 and 28 do not hold in this case, even though Lemma 26 is true. Notice

that Theorem 6 only guarantees the existence of a certain set of strands, but the theorem

does not guarantee the recentness of those strands, since each Ai does not generate

any cryptographically transformed term containing a nonce coming from the other

participants.

A Secrecy Condition of authentication servers can be proven if the authentication

server is faithful.

Lemma 29. If ξPS =
⋃

i ξ
Pi
SAi

(∗;B) is the union of actions performed by the faithful authentica-

tion server in P = |p1 ⊗ p2 ⊗ · · · ⊗ pn|, then ξPS is discreet and regular.

Proof. The regularity of ξPS follows from the regularity of each primitive pi used in the

composition. Let SP be a set of short term secrets generated by S, then its protective

domain is SP = SP ∪ {kSX , kXS|X ∈ B}. Two types of messages are generated by S

in P, either hashed or encrypted ones. Hashed terms belong to the coideal of SP. For

an encrypted term {|~b|}kSX
, there always exists a hashed term 〈~a,~b,B′〉kSX

. From the

assumption that S is faithful, for S to generate the output 〈~a,~b,B′〉kSX
, there should be

a corresponding input message originating from X , which contains ~a and its binding

group B′. Suppose that B 6= B′, since a variable can be bound to more than one different

binding group by a participant. Let Y be a participant who belongs to B′ but does not

belong to B, then Y cannot get any term x ∈ SP, because S’s output always happens

together with a hashed term containing the binding group B. This shows that ξPS is

discreet.

112

6.3.3 Recentness

u

u

BA S

e

u

e

-

�

� u
〈cBS〉kBS

� MSA

-

Figure 6.5: Recentness

The composition of primitives in the proposed way does not provide any guarantee

that the participants were recently running a protocol. The guarantee on a participant’s

recent involvement in a run can be achieved in two different ways. One participant

can directly check the other participant’s involvement using a challenge and response

mechanism after both agree on a shared key, or the goal can be accomplished through

the help of the authentication server.

Let ~a be a nonce generated by A and MSA be its reply from S; then any crypto-

graphically transformed term containing ~a and originating from B can be a proof of

B’s recentness. Such a term can only be checked by the authentication server. Let cBS

be binding information such that ~a,B~a ⊑ cBS (cBS needs to include the binding group

to make it distinct from other c′

BS generated by B playing a different role). When S re-

ceives a term such as 〈cBS〉kBS
fromB, S can check whether the variable and its binding

group in the term match the challenge~a coming fromA. If they match, then S generates

its reply MSA to A. Therefore, A only receives her reply when there exists a term from

B containing a fresh nonce she generated. Two things need to be considered regarding

cBS . Notice that if a nonce ~bj created by B is included in cBS , i.e. ~ai,~bj,B~ai
⊑ cBS , then

cBS becomes the binding information of two primitives, pi(~ai; (A, S)) and pj(~bj; (B,S)).

Some care needs to be taken when the message coming from A in the example above

is encrypted. In this case, B cannot see the content of the message, so he cannot cre-

ate cBS . It is still possible to generate a cryptographically transformed term from the

113

encrypted message, but we do not use such a scheme because it has many drawbacks.

To solve the problem, we use a primitive with two nonces. The primitive replaces the

original one whenever the situation mentioned above happens.

p M1 A→ S : B, a′, {|~ai,B|}kAS
, authkAS

(a′,~ai,B)

M2 A← S : A, 〈a′,~ai,B〉kSA
or A, 〈~ai,B〉kSA

The reason of using the primitive above is to make the binding easier. A provides a

plaintext nonce a′ together with an encrypted variable, so whenB needs to generate the

binding information cBS , he can use a′ instead of the encrypted term, i.e.a′,Ba′ ⊑ cBS

for the recentness guarantee of B’s involvement, or a′,~bj,Ba′ ⊑ cBS for the recentness

guarantee of B’s involvement together with the binding.

6.4 Design Examples

This section shows how the proposed method can be applied to mutual authentication,

key transport and agreement, and key distribution.

6.4.1 Mutual Authentication

The design of two-party mutual authentication protocols without an authentication

server is basically the same as that of asymmetric protocols, if two distinctive keys

are used by each participant. All properties verified in the previous chapter hold here,

hence, nothing more needs to be mentioned.

6.4.2 Protocols with Authentication Servers

Symmetric protocols with authentication servers or trusted third parties are one of the

most common forms found in published literature. Some examples are the Needham-

Schroeder symmetric key protocol, the Otway-Rees protocol, and the Yahalom proto-

col. These protocols are structurally different but share many common features. This

subsection shows how to design and derive such protocols starting with a simple com-

position of two primitives.

114

p11 M1 A→ S : A,B, S, {|~a1, A,B, S|}kAS
, authkAS

(~a1, A,B, S)

M2 A← S : A, {|~c1|}kSA
, 〈cSA〉kSA

p12 N1 B → S: A,B, S, {|~b2, A,B, S|}kBS
, authkBS

(~b2, A,B, S)

N2 B ← S : B, {|~d2|}kSB
, 〈cSB〉kSB

p21 M1 A→ S : A,B, S,~a, authkAS
(~a1, A,B, S)

M2 A← S : A, {|~c1|}kSA
, 〈cSA〉kSA

p22 N1 B → S : A,B, S,~b, authkBS
(~b2, A,B, S)

N2 B ← S : B, {|~d2|}kSB
, 〈cSB〉kSB

p31 M1 A→ S : A,B, S, {|~a1, A,B, S|}kAS
, authkAS

(~a1, A,B, S)

M2 A← S : A, 〈c′

SA〉kSA

p32 N1 B → S : A,B, S, {|~b2, A,B, S|}kBS
, authkBS

(~b2, A,B, S)

N2 B ← S : B, 〈c′

SB〉kSB

p41 M1 A→ S : A,B, S,~a, authkAS
(~a1, A,B, S)

M2 A← S : A, 〈c′

SA〉kSA

p42 N1 B → S : A,B, S,~b, authkBS
(~b2, A,B, S)

N2 B ← S : B, 〈c′

SB〉kSB

Table 6.1: Primitives

Assume that S is an authentication server with faithful behaviour and each par-

ticipant shares a secret key with S. Any two primitives using symmetric keys can be

combined together to generate a new protocol. However, it is very important to specify

the cardinality of the binding group in each primitive before any composition, since the

authentication server’s behaviour depends on it. We can simply assume that each bind-

ing group’s cardinality is the same. It is possible to design a protocol without making

them same but it does not seem to have any special advantages, so we simply assume

them equal and denote the size as n. For this example, we assume that n = 3, i.e. two

participants and an authentication server (the design of protocols where n > 3 can

be done similarly). Any primitives can be used but for the examples, the primitives

shown in Table 6.1 are mainly used, where an indexed vector ~αi denotes (i, ~α), and

the subscript i in p∗i represents the participant’s location (or role) within the binding

group, i.e. p∗1 and p∗2 represent p∗1(~a1; (A, ·, S)) and p∗2(~b2; (·, B, S)) respectively. Let

B = (A,B, S), cSA = (~a1,~c,B), cSB = (~b2, ~d,B), c′

SA = (~a1,B) and c′

SB = (~b2,B). For

notational convenience, we use pi to denote pji.

115

u - u
M1

XXXXXXXXXXXXXXXXXXzu � u
N1

-u
N2

u

�

u

M2

A S B

6Redirection

Figure 6.6: p-protocol

Let P = |p1 ⊗ p2| be a simple composition of any two primitives in the table. For

P to be a p-protocol, o(P) should be determined. Except M1, which should be the first

message, all other events can be arranged as designers want if they do not violate each

local order o(pi). Our assumption on the authentication server also limits the choice

of possible o(P). The authentication server is supposed to generate an output message

after receiving all input messages, so e(N1) ≤ e(M2). A p-protocol satisfying these

restrictions structurally looks like Figure 6.6, where M1 is redirected to B instead of S.

The redirection is up to the designers’ decision, but if the redirection is not performed,

then one more message should be added in order to notify B that A wants to start a

run.

A protocol consists of a simple composition, therefore all properties verified in the

previous section hold here too. That is, when A finishes a run of the protocol, it is

guaranteed that a corresponding strand exists in B, but it is not guaranteed that the

strand is recent. Depending on protocol needs, the simple protocol can be enhanced by

adding events delivering extra or hidden information.

Key Establishment: Key Transport or Key Agreement

Key establishment either by key transport or key agreement is a common goal of proto-

cols using an authentication server. A key transport mechanism is a key establishment

technique where one participant creates or otherwise obtains a secret value, and se-

curely transfers it to the other(s) [37]. Basically, one participant sends a secret to the

other via the authentication server, and the authentication server delivers the secret

116

to the other participant. The wide-mouthed frog protocol is a famous example of this

kind. Either of the participants can play the role of a secret sender, but we assume that

B plays that role in the example given below. Assuming that A and B are two partic-

ipants, p21 and p32 might be a desirable choice of the primitives for the key transport

because only B needs to send a secret to S.

Let P = |p21(~a1,~c1;B) ⊗ p32(~b2;B)|, where B = (A,B, S). Let ~c = ~b, which means

the authentication server will deliver~b through ~c to A. The values in ~c1 will be replaced

with the corresponding values~b2 except the index of ~c1. At the end of a run, the authen-

tication server will have~b delivered from B. Moreover, this information comes with its

binding group information, i.e. B. Delivering ~b securely to a participant in the bind-

ing group is not difficult. Adding an encrypted term from the authentication server

to the participant might be enough, but would not provide any evidence to A that

the delivered information originated recently from B. Therefore, a cryptographically

transformed term of~a originating fromB should be included before the server delivers

~b. A term 〈cBS〉kBS
will do the job, where ~a,B ⊑ cBS or ~a,~b,B ⊑ cBS

u - u
M1

XXXXXXXXXXXXXXXXXXzu � u
N1, 〈cBS〉kBS

-u
N2

u

�

u

M2

A S B

6Redirection

Figure 6.7: p-protocol after Adding an Extra Term

Figure 6.7 shows the p-protocols after adding an extra term, and the following

shows a possible rearrangement of messages in the figure. The last two messages orig-

inating from the authentication server can change their positions if necessary.

117

P A→ S : B,~a, authkAS
(~a1,B)

B → S : B, {|~b2,B|}kBS
, authkBS

(~b2,B), 〈cBS〉kBS

∗ ← S : A,B, {|~c1|}kSA
, 〈cSA〉kSA

, 〈c′

SB〉kSB

⇓ ~b = ~c and if cBS = ~a,~b,B

P A→ ∗ : B,~a, authkAS
(~a1,B)

B → ∗ : B, {|~b2,B|}kBS
, 〈~a,~b,B〉kBS

∗ ← S : A,B, {|~b1|}kSA
, 〈~a1,~b,B〉kSA

, 〈~b2,B〉kSB

⇓

P A→ B : A,B, S,~a, authkAS
(~a1, A,B, S)

B → S : A,B, S,~a, authkAS
(~a1, A,B, S), {|~b2, A,B, S|}kBS

, 〈~a,~b, A,B, S〉kBS

S → B : B, 〈~b2, A,B, S〉kSB

S → A : A, {|~b1|}kSA
, 〈~a1,~b, A,B, S〉kSA

Key agreement is a key establishment technique in which a shared secret is derived

by two (or more) participants as a function of information contributed by each of these,

ideally such that no participant can predetermine the resulting value. Key agreement

can be seen as an extension of the key transport protocol proposed above. Similarly, p11

and p12 might be a preferable choice for the purpose, since both participants send se-

crets. The same order restrictions applied in the previous example hold here. Let ~a = ~d

and ~b = ~c. That is, the values in ~d2 will be replaced with the corresponding values ~a1

except the index of ~d2, and the values in ~c1 will be replaced with the corresponding

values~b2 except the index of ~c1. The primitive p11 is replaced with the following primi-

tive to make binding simpler before composition since the participant B cannot see the

nonce coming from A.

p′11 M1 A→ S : B, a′, {|~a1,B|}kAS
, authkAS

(a′,~a1,B)

M2 A← S : A, {|~c1|}kSA
, 〈cSA〉kSA

To show that A was recently involved in the run, A has to generate a term either

using a newly agreed key generated through the key generation function or using the

nonce originating from B and sends it to B. Assuming that A knows a secret key, a

one-way authentication procedure which authenticates A can be added to finish the

protocol as shown in Figure 6.8. Notice that message M ′

1 can be removed if ~b contains

a nonce (not a secret) which can later be used as a challenge. The following is a pos-

sible rearrangement of messages in the figure, where M ′

1 and M ′

2 can be any one-way

authentication protocol between A and B using the newly agreed key.

118

u - u
M1

N1, 〈cBS〉kBS

XXXXXXXXXXXXXXXXXXzu � u

-u
N2

u

�

u

M2

A S B

6Redirection

u - u
M ′

2

u� u
M ′

1

BA

Figure 6.8: p-protocol for Key Agreement

P A→ S : B, {|~a1,B|}kAS
, authkAS

(~a1,B)

B → S : B, {|~b2,B|}kBS
, authkBS

(~b2,B), 〈cBS〉kBS

B ← S : A,B, {|~c1|}kSA
, 〈cSA〉kSA

, {|~d2|}kSB
, 〈cSB〉kSB

B → A : M ′

1

A→ B : M ′

2

⇓ ~c = ~b, ~d = ~a

P A→ S : B, {|~a1,B|}kAS
, authkAS

(~a1,B)

B → S : B, {|~b2,B|}kBS
, 〈cBS〉kBS

B ← S : A,B, {|~b1|}kSA
, 〈cSA〉kSA

, {|~a2|}kSB
, 〈cSB〉kSB

B → A : M ′

1

A→ B : M ′

2

⇓

P A→ B : A,B, S, {|~a1, A,B, S|}kAS
, authkAS

(~a1, A,B, S)

B → S : A,B, S, {|~a1, A,B, S|}kAS
, authkAS

(~a1, A,B, S),

{|~b2, A,B, S|}kBS
, 〈~a,~b, A,B, S〉kBS

S → B : A,B, {|~b1|}kSA
, 〈~a,~b, A,B, S〉kSA

, {|~a2|}kSB
, 〈~a,~b, A,B, S〉kSB

B → A : M ′

1

A→ B : M ′

2

119

One-way Authentication through the Authentication Server

In environments where each participant shares a secret key with an authentication

server, an authentication procedure between participants goes through the authentica-

tion server. The authentication can be performed with the help of the authentication

server, or the authentication server can deliver a secret so that both participants can

communicate directly to authenticate each other. The former is the focus of the dis-

cussion here, and the latter will be covered below, under key distribution. Woo and

Lam’s Π protocol series implements a one-way authentication mechanism in such an

environment. One participant A wants to authenticate another participant B. The im-

portant thing is thatA should be guaranteed thatB was recently involved in the run by

the authentication server. The primitive p41 might be a desirable choice for the purpose

since no secret needs to be sent by A.

In order to provide that B was recently engaged in a run, there should be a term

originating from B containing A’s challenge, and the authentication server will reply

back toA only whenA’s challenge is contained inB’s reply. This can be easily achieved

by adding a term ~a,B ⊑ cBS in p41, which results in a protocol like the following.

P A→ S : B,~a, authkAS
(~a1,B)

B → S : 〈cBS〉kBS

A← S : A, 〈c′

SA〉kSA

⇓

P A→ B : B,~a, authkAS
(~a1,B)

B → S : B,~a, authkAS
(~a1,B), 〈~a,B〉kBS

S → A : A, 〈~a1,B〉kSA

Key Distribution

Key distribution is very similar to key agreement, except that a shared key origi-

nates from the authentication server. This can be easily achievable from the key agree-

ment protocol above by sending a new key k through {|~c|}kSA
and {|~d|}kSB

, i.e. ~c = ~d = k.

Each participant receives the shared key as a response to his challenge, so the freshness

of the key is guaranteed.

P A→ B : B, {|~a1,B|}kAS
, authkAS

(~a1,B)

B → S : B, {|~a1,B|}kAS
, authkAS

(~a1,B), {|~b2,B|}kBS
, 〈cBS〉kBS

S → A : A,B, {|~k1|}kSA
, 〈cSA〉kSA

, {|~k2|}kSB
, 〈cSB〉kSB

120

Re-authentication

The design of re-authentication or repeated authentication protocols can be done

through composition by merging the key transport (or the key agreement) protocol and

mutual authentication protocol proposed above. However, most cases of re-authentication

protocols, a shared key has a limited lifetime specified by a timestamp, which is de-

fined by either B or S. Therefore, when the authentication server generates a shared

key, a timestamp has to be bound with it and should be part of the messages which the

server sends to each participant, e.g. ~c = ~d = (k, t), where t is a timestamp. The server

will send a key with a timestamp to A, together with a token. A token is an encrypted

message from which B can recover the key and the timestamp. If the timestamp is

provided by B instead of S, then p12 can be extended to include the timestamp, i.e.

p12 N1 B → S: B, {|~b2, t,B|}kBS
, authkBS

(~b2, t,B)

N2 B ← S : B, {|~d2, t|}kSB
, 〈cSB〉kSB

The binding information cSB should also include the timestamp. Then the primitive

can be merged with the extended p21, where cSA also includes t.

p21 M1 A→ S : B,~a, authkAS
(~a1,B)

M2 A← S : B, {|~c1, t|}kSA
, 〈cSA〉kSA

Putting everything together produces the following protocol.

P M1 A→ S : B,~a, authkAS
(~a1,B)

N1 B → S: B, {|~b2, t,B|}kBS
, authkBS

(~b2, t,B)

M2 A← S : B, {|~c1, t|}kSA
, 〈cSA〉kSA

N2 B ← S : B, {|~d2, t|}kSB
, 〈cSB〉kSB

The authentication server has to deliver a fresh key, the timestamp, and B’s nonce,

and a token to A, so ~c1 = k,~b, and ~d2 = k. The addition of a binder 〈~a,~b, t,B〉kBS
by B

produces the following protocol.

P A→ B : B,~a, authkAS
(~a1,B)

B → S : B,~a, authkAS
(~a1,B), {|~b2, t,B|}kBS

, 〈~a,~b, t,B〉kBS

S → A : A, {|~b1, k, t|}kSA
, 〈~a1,~b, k,B〉kSA

, {|k, t|}kSB
, 〈~b2, k, t,B〉kSB

A→ B : B, {|k, t|}kSB
, 〈~b2, k, t,B〉kSB

121

For the repeated authentication part, any two-party symmetric authentication pro-

tocol using the key k (two different keys should be derived from k to provide role

asymmetry) and preferably the nonce ~b as a challenge can be merged to the protocol

above. If the first message of the added two-party symmetric authentication protocol

has the same direction as the last message of the protocol above, then both messages

can be merged together to reduce the number of message rounds of the final protocol.

In this chapter, we showed how to use the proposed composition methodology

in the design of authentication protocols where an authentication server is involved.

As can be seen from examples, the composition method makes the design of those

protocols much easier to handle.

122

7
Complex Protocols

This chapter discusses complex design problems such as wireless authentication pro-

tocols and secure payments protocols. The design of these protocols demands new

features, namely anonymity and accountability. There exist many different ways of

implementing these services. For example, anonymity can be implemented through

pseudonym schemes or blind group signatures. The main focus of this chapter is to

show that the proposed composition theory is unaffected by the integration of these

services into protocol primitives. In this way, the properties proven in previous chap-

ters can be used for the design of protocols requiring these new features.

The outline of the chapter is as follows. Section 7.1 shows how to incorporate anonymity

and accountability schemes into the proposed methodology without destroying the es-

tablished theory. Section 7.2 investigates a common message structure which appears

in many examples, and proposes more efficient ways to utilise the structure. Section 7.3

discusses how to design authentication protocols in environments where users have

mobility. Many different levels of anonymity are identified and the protocols which

satisfy the anonymity requirements are presented. Section 7.4 extends the applicability

123

of the proposed methodology in the design of secure electronic payment protocols.

7.1 New Requirements for Protocol Primitives

So far, our interest has been in the implementation of mechanisms for authentication

and secrecy. However, some protocols need goals which do not belong to authentica-

tion and secrecy. Anonymity and accountability are among them. This section explains

how to incorporate these goals into the proposed methodology.

7.1.1 Anonymity

Anonymity is the state of being not identifiable within a set of subjects, namely the

anonymity set, the set of all possible subjects who might cause an action [45]. A sender

may be anonymous within a set of potential senders, his sender anonymity set, and a

recipient may be anonymous within his recipient anonymity set. Both anonymity sets

may be disjoint, be the same, or they may overlap. Given the items of interests (IOIs),

anonymity can also be defined as unlinkability between IOIs and a certain anonymity

set. In protocol design, the IOIs are user identities and anonymity is to achieve some

kind of transaction or exchange of messages without revealing the identity of some or

all of the participants, i.e. sender anonymity, recipient anonymity, or relationship anonymity.

Technically speaking, anonymity in security protocols means not only that the name

of the participants should not appear directly, but also that the identities of the partici-

pants should not be deducible from the information that is available.

Maintaining anonymity is desirable in a variety of electronic commerce applica-

tions. For example, if someone were to vote electronically, he probably would not want

anyone to know the candidate for whom he voted, or if one were to use electronic cash

to purchase a product, he may not want his identity to be known since this information

could be used to trace his spending patterns, and perhaps spam him with junk mail.

Although achieving anonymity can be an important design criterion in cryptographic

systems, it comes at a cost. If the systems are not carefully designed, the overall security

of the system could be compromised.

Unlike secrecy, not the messages themselves but their association with particular

124

participants needs to be protected. In the proposed methodology, anonymity means

that a subset of the elements in the binding group of the event is unlinkable to the

event. A simple way to implement this unlinkability is using encryption. Like secrecy,

user identities in each message, or the binding group can be encrypted in order to

implement the required anonymity service. However, it is impossible to implement a

high level of anonymity using this scheme only. More viable solutions are pseudonym

schemes.

Pseudonym Schemes

Pseudonym systems allow users to interact with multiple organisations anonymously,

using pseudonyms. The pseudonyms cannot be linked, but are formed in such a way

that a user can prove to one organisation a statement about his relationship with an-

other. Such a statement is called a credential. A single-use credential is a credential that

a user may safely use once. A multiple-use credential may safely be transferred to as

many organisations as the user wishes without having to interact further with the

issuing organisation. We assume that there exists an infrastructure where users re-

main anonymous to organisations. The infrastructure is composed of users, issuing

organisations and verifying organisations. Users are known to each organisation un-

der a different pseudonym, indeed possibly under multiple pseudonyms. The infras-

tructure includes procedures by which a user and an organisation establish a new

pseudonym, pseudonym establishment protocols, and allow users to obtain credentials,

credential issuing protocols and to show them, credential verification protocols. For a higher

level of anonymity, especially for protection against traffic analysis attacks, not only

pseudonyms, but also schemes such as DC-net and MIX-net [9,10,16,27,28,46] should

be provided by the underlying systems.

Using pseudonym systems for anonymity services has several advantages for de-

signers. A protocol can initially be designed without considering the anonymity ser-

vice and then pseudonym schemes can later replace real user identities with their

pseudonyms to provide the service. This provides some degree of separation between

anonymity services and authentication and secrecy services in the design. Importantly,

replacing real identities of users with their corresponding pseudonyms does not break

any agreement properties already verified before the replacement, including authenti-

cation and secrecy. Therefore, we can always add anonymity services at the end of the

125

design. However, designers should know what kind of anonymity services the proto-

col should implement, such as sender anonymity, recipient anonymity or relationship

anonymity.

Sometimes, hiding real user identities is not enough to provide anonymity, because

there can be a protocol step which reveals user sensitive information. For example, it

is possible to trace a specific user from a sequence number in a protocol run, if each

user uses a distinctive sequence number. Let SU be the set of those terms which can

reveal the real identity of user U . Suppose Vo is the verifying organisation. Let kV be a

secret key either known to both U and Vo or only to Vo. Any pseudonym U ′ of U should

belong to the coideal generated by SU ∪ {kV } in order to hide the real identify of U ,

that is, U ′ ∈ C[SU ∪ {kV }]. Notice that the protocol obtained after replacing U ′ with U

is discreet with respect to SU ∪ {kV }. Moreover, if it is required for two pseudonyms

U ′ and U ′′ of U to be unlinkable, then each pseudonym should include some random

information.

7.1.2 Accountability

While anonymity can protect an individual, there are also quite legitimate reasons for

identifying people, especially where security and the risk of abusive behaviour are

involved. This property of identifying responsibility to someone or for some activity is

called accountability. With the advent of electronic commerce, cryptographic protocols

are being adapted for implementing commercial transactions, and may need to provide

accountability for protocol participants.

Definiton 30. (Accountability) Accountability of a principal A for a statement ϕ(ω) regard-

ing a principal B is the ability of B to make a third participant C conclude that ϕ(ω) is true

and it originates from A.

The digital signature is the most common way to implement accountability. In order

to make A responsible for a statement ϕ(ω), A needs to sign the statement with her

signing key, i.e. [ϕ(ω)]skA
. Sometimes, not only the identity of the principal responsible

for the statement, but also some extra information such as to whom and for what the

principal is responsible, or the period of the responsibility needs to be included in the

statement. To correctly implement accountability, all the necessary information which

constitutes the responsibility should be explicitly included in the statement.

126

Accountability cannot simply be implemented by putting several primitives to-

gether. However, accountability can be added to the protocol at the end of composi-

tion. This can be done either by adding an extra message [ϕ(ω)]skA
for each statement

or by signing existing terms.

7.2 Composition

This section examines a common structure which often appears in the design of multi-

party protocols and suggests the concept of mutual equations to help the design of

these protocols.

(a)

(b) (c)

C A B C A B

C A B

-

-

-

-

-�

-

-

-

-

-

u

u

u

u

u u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

~x

~y

~x

~y

〈c1〉skC

〈c1〉skC

~x

〈c1〉skC

〈c2〉skA

~z

-〈c1〉skC

Figure 7.1: Three-party Composition

7.2.1 A Common Structure

In many examples of three-party protocol design, we face situations where two par-

ticipants’ authentication or agreement procedure depends on the information coming

127

from another participant as shown in Figure 7.1. Generally speaking, one participant

C says something ~x to A and ~y to B. Suppose that A and B can prove that ~x and ~y orig-

inate from C, respectively. If A and B trust C, then this situation becomes similar to

the situation where two participants communicate via an authentication server, such

as the Key Distribution protocol where a trusted server sends a secret key to both par-

ticipants. In mobile network environments, a mobile user will trust its home domain,

and a foreign domain and the home domain will trust each other after authentication.

If A and B do not trust C, then they might be interested in knowing whether ~x and

~y match each other. For example, in secure payment systems, a customer sends order

information ~x to a merchant and payment information ~y to an acquirer during a pur-

chase procedure, and the merchant and the acquirer later check whether ~x and ~y are

consistent. In other words, given the two subprotocols shown in Figure 7.1 (a), if C is

trusted by both participants A and B or if C is the person who has to show either A

or B that ~x and ~y are related, then C can send both A and C some extra information

which binds ~x and ~y . The binding information will be the union of the parameters i.e.

c = ~x∪ ~y and it should originate from C. Generally, 〈c〉skC
can be the binder. However,

sometimes, this binder might not provide enough information about the binding. For

example, when ~x should be hidden from B, B cannot check c because ~x is unknown

to him. To solve this problem, a term which contains the information ~x and belongs to

the coideal of ~x can be used instead of ~x, e.g. c = 〈~x〉 ∪ ~y. In this case, C should deliver

〈c〉skC
and 〈~x〉skC

to B for the binding.

Assume that c1 = ~x ∪ ~y is used as the binding information. Figure 7.1 (b) shows

the structure after adding the binders to both A and B. The binder should be sent to

all participants who should know the binding information. Notice that the position of

the binder comes before the second subprotocol as mentioned in Chapter 5. From the

binder, each participant knows the parameter of the run which he was not involved in.

By comparing the information they received from C, A andB can check whether ~x and

~y are related, if none of them are in collaboration with C. After receiving the binders, A

andB can use c1 to link another subprotocol between them. Assume that a subprotocol

betweenA andB should be part of the whole protocol, and let ~z be the parameter of the

run of the subprotocol. This subprotocol can be bound to the other subprotocols using

the binding information c2 = c1 ∪ ~z. The binding information is sufficient enough

to bind the subprotocols, i.e. it can be interpreted as the binding information of two

primitives between A and B, one with c1 and the other ~z. Therefore, the case becomes

the same as two-party composition and all rules of two-party composition are valid

128

here, too, including the proof that the two subprotocols are bound by the binder. Either

of the participants A and B can add the binder. In case of A, the binder will be 〈c2〉skA

as shown in (c).

7.2.2 Mutual Equations

In order to utilise the structure of Figure 7.1 (a) more efficiently, let us introduce the

concept of mutual equations. When ~x = ~y, it is easy to prove that C sent the same

information to both participants when they finish a successful run. Instead of sending

the same information, some complicated equation(s) can be agreed by the participants.

When the participants receive some data from C, they can evaluate the equations with

the data they received, and then check whether the outputs match each other. We call

these equations mutual equations.

Definiton 31. (Mutual Equations) Let f be an equation fA(~x′A) = fB(~y′B) agreed by par-

ticipants. The equation f is a mutual equation (of A by B) if it satisfies the following.

1. (~yB)1···n and (~xA)1···n are either known or provable to originate from C. These values can

be delivered in secure ways if necessary.

2. When a set of fresh values (~yB)1···n are given toB,B can generate their outputs (fB(~y′B))1···n,

where ~yB ⊆ ~y′B.

3. Given y′ ∈ ~yB , A can calculate a fresh output fA(~x′A)(= fB(~y′B)), where ~xA ⊆ ~x′A

4. It is impossible to calculate fA(x) or fB(x) without x.

Any equations can be mutual equations, but for all mutual equations, it is required

that the output fi(x) should be impossible to calculate without its input x. Therefore,

if x or a part of x is a secret, then only the participant possessing x can calculate the

output fi(x). Hash and signature functions are commonly used to form these equations

e.g. yB = 〈xA〉, yB = 〈xA〉skC
. The identity function can also be used to generate these

equations, if ~xA and ~yB are delivered from C in secure ways e.g. yB = xA. Two or

more functions can be combined to create these equations e.g. if fA1(xA) = fB1(yB)

and fA2(x
′

A) = fB2(y
′

B) are mutual equations, then fA1(xA) · fA2(x
′

A) = fB1(yB) · fB2(y
′

B)

and 〈fA1(xA)〉 · fA2(x
′

A) = 〈fB1(yB)〉 · fB2(y
′

B) are also mutual equations. Encryptions

are not used as parts of mutual equations because mutual equations are proposed as

129

u

u

u

u

u u

-

-

-�

~xA

~yB

fA(~x′A) = fB(~y′B)

C A B

Figure 7.2: Mutual Equations

a checking mechanism for information rather than as a hiding mechanism. The reason

for ~xA ⊆ ~x′A or ~yB ⊆ ~y′B is to allow each participant to use its own private information

in generating the output.

Mutual equations are especially useful to check whether the information received

by A or B from C are equivalent or related, i.e. both participants can confirm that the

other participant possesses the same information using the equation they agreed on.

Mutual equations also guarantee that the existence of a certain event means the exis-

tence of its corresponding event. For example, in Figure 7.2, if the equation matches,

then A knows that a send event e+(~yB) originating from C happened in the recent

time period defined by ~xA. Well defined mutual equations can simplify the design of

three-party protocols. These equations can also be used as authentication tests. Tech-

nically speaking, any instance of authentication tests can be transformed into mutual

equation(s). Some examples of mutual equations found in published protocols are as

follows.

Key Distribution

id(k) = id(k)

where id is the identity function which always returns the same value that is used

as its argument. In this case ~xA = ~yB = k.

Global Systems for Mobile Communication (GSM)

A3(kU ,RAND) = XRES

where A3 is the authentication algorithm used in GSM, kU is a long-term secret

key, which is unique and only known to the mobile user U and his home author-

130

ity, and RAND is a random number generated by the AuC (Authentication Cen-

ter) to produce the SRES (Signed Response) or the XRES (Expected Response).

The AuC generates a set of (RAND, XRES) pairs and passes them to V , i.e. ~xU = ∅

and ~yV = (RAND,XRES)1···n. To authenticate U , V sends RAND to U and U gen-

erates SRES using the function A3 with inputs kU and RAND, and returns SRES

to V where it is compared with the XRES. If they match, the authentication is

successful.

Universal Mobile Telecommunications System (UMTS)

f1(kU ,AMF,SQN) = MAC

f2(kU ,RAND) = XRES

f3(kU ,RAND) = CK

f4(kU ,RAND) = IK

f5(kU ,RAND) = AK

where f1 and f2 are message authentication functions, network and user, respec-

tively; f3 and f4 are key generation functions, cipher key and integrity key, re-

spectively; f5 is the anonymity key derivation function; AMF is an authenticated

management field; SQN is a sequence number; CK is a cipher key, IK is an integrity

key, and AK is an anonymity key, respectively. AUTN (Authentication Token) is de-

fined (SQN ⊕ AK, AMF, MAC) and AV (Authentication Vector) (RAND, XRES, CK, CK,

IK, AUTN). In this case, ~xU = ∅ and ~yV = (AV)1···n, i.e. U ’s home network sends

nothing to U but sends V a set of (AV)1···n, which V can use to authenticate U .

For the authentication, V sends the parameters RAND and AUTN to U . U checks

whether AUTN can be accepted and, if so, produces a response SRES which is sent

back to V . V compares the received SRES with XRES, and if they match then V

considers the authentication and the key agreement exchange to be successfully

finished.

Secure Electronic Transactions

f1(OD) · 〈PI〉 = 〈OD〉 · f1(PI) (= f2([〈OD〉 · 〈PI〉]skC
))

where f1 is a simple hash function and f2 is a signature verification function,

· represents concatenation, OD represents an order description and PI payment

information. Let z = [〈OD〉 · 〈PI〉]skC
. Customer C sends (OD, 〈PI〉, z) to the mer-

chant M and (〈OD〉,PI, z) to the acquirer A, i.e. ~xA = (〈OD〉,PI, z) and ~yM =

131

(OD, 〈PI〉, z). The acquirer verifies the merchant if the merchant provides x′ and

the hash output of x′ equals the first term of f2(z) i.e. 〈x′〉 = 〈OD〉.

Mutual equations provide more diverse ways of implementing protocols. As can be

seen in the GSM example, mutual equations also provide schemes to authenticate two

participants by supplying a set of question and answer pairs to particular participants

instead of sending them a secret key.

7.3 Wireless Authentication Protocols

Wireless networks can be an effective way to extend network access. However, they

are not simply a continuation of a wired Local Area Network (LAN). On a wireless

network everyone can hear from everyone else, so wireless LANs or mobile network

environments add a new level of threat to network security such as privacy of com-

munications, accountability for use and availability of service. Generally, the security

of wireless communications can be compromised much more easily than that of wired

communications. The situation gets further complicated if the users are allowed to

cross security domains. Mobile networked computing is also raising some important

questions on anonymity and privacy issues. For example, being reachable at any loca-

tion and at any time creates concern about privacy issues among the potential users.

Hence, these issues need to be properly dealt with in a design by composition.

The section is concerned with the design of authentication protocols for mobile

networked computing environments. It develops mobile user authentication protocols

in intra and inter domain situations using symmetric-key cryptosystems. The protocols

provide varying degrees of anonymity of the communicating users to other system

users.

7.3.1 System Model and Assumptions

A mobile user has its home where it is registered on a long-term basis. Users of a given

domain are registered with the Authentication Server (AS) of that domain. The AS of

a domain can be replicated or partitioned within the domain but the set of all parti-

tioned and duplicated ASs represents a single domain-level authority, called the home

132

authority or the home domain. Assume that each mobile user has a universal identity,

which is stored in a personal device such as a Subscriber Identity Module (SIM) card.

The universal identity of a mobile user is only known to some organisation which is

assumed not to reveal the identity. Generally, the mobile user’s home domain can play

the role of the organisation, if the identity does not need to be protected from its home

domain. A mobile user can move to a domain outside its home domain. This domain

is called a foreign authority or a foreign (or visiting) domain. When accessing the network

in a foreign domain, a mobile user needs to be authenticated to the foreign domain

(generally through the home domain) before using any services.

A mobile user U and its home domainH share secret keys kUH and kHU , respectively

and a foreign domain V and H share kVH and kHV , respectively.

7.3.2 Security Requirements

The security goals which may need to be achieved after the successful execution of a

wireless authentication protocol are as follows:

A1 Entity authentication: A mobile user and its home domain need to authenticate

each other (or only the mobile user) before the home domain grants the mobile

user to access any services, and a foreign domain should similarly authenticate a

mobile user, either with or without the help of the mobile user’s home domain.

A2 Mutual agreement on data for further authentication: For communication either

between a mobile user and its home domain or between a mobile user and a

foreign domain, some fresh data value such as a secret key needs to be mutually

agreed among the participants who need further communication at the end of a

protocol run.

In addition to the authentication requirements, wireless authentication protocols have

further goals such as privacy.

133

Privacy

Privacy is one of the most important issues in the design of wireless authentication

protocols. The required level of privacy depends on various factors such as the cost

incurred by providing the service. The subjects of privacy are a mobile user U , his

home domain H , a visiting (or foreign) domain V , legitimate network entities such as

other authorised third parties involved in a transaction, and Spy. The objects of privacy

are the identity of the user, the identity of its home domain, the identity of its visiting

domain, etc.

C1 Hiding User Identity from Spy: This is the simplest privacy requirement. For ex-

ample, the current location of a mobile user should not be directly associated to

the user’s identity. Generally speaking, the basic requirement is that analysis of

successive aliases should not lead to the disclosure of the real user’s identity.

C2 Hiding User Identity from Foreign Authorities: There is no need for a foreign

authority to know the real identity of the mobile user. What it needs is only a

proof of the solvency of the entity accessing the service and enough information

to bill the user’s home authority.

C3 Hiding Relationship between the User and Authorities: A stronger privacy re-

quirement is to hide the existing relationship between a mobile user and its home

domain from other entities in order to prevent the disclosure of the user’s iden-

tity by inference. For example, each time the user accesses the network, if the

identity of its home domain is not protected, then information about the user’s

real identity may be inferred by analysing the traffic between the foreign and the

home authorities.

7.3.3 Composition

Our design of the protocols starts from a two-party authentication protocol between

a mobile user U and its home network H , and then merges the protocol with another

two-party authentication protocol and generates a three-party protocol. User authenti-

cation protocols based on symmetric key cryptography are considered here. Symmet-

ric key cryptography is particularly suitable for situations where minimal computer

134

power and less computational time are required, which are usually the characteristics

of mobile environments.

Intra-Domain Protocol

The intra-domain protocol is for authentication between a mobile user U and its home

network H . This protocol can provide either one-way or mutual authentication. When

a mobile user is in its home network and wants to use the services provided by the

home network, this protocol is used. After the required authentication, H may send a

secret key or a set of secret keys to U , so that U can use it for future conversations.

For mutual authentication of U and H , any two protocol primitives mentioned in

the previous chapter can be selected. The authentication of U byH can be implemented

in many different ways. This example uses a timestamp or a single-use pseudonym.

Both of them use unsolicited tests with time-sensitive values, in order to reduce the

number of message rounds for the authentication procedure. Let U ′ and H ′ be identi-

ties of U and H , either real or temporary, and let the binding group B be (U ′, H ′). An

unsolicited test using a timestamp is shown below, where t is a timestamp.

p1 L1 U → H : B, t, authkUH
(t,B)

Alternatively, a single-use pseudonym, which is an output of a time-sensitive value

such as U ′ = f(t, U), can replace the timestamp. From now on, let the primitive p1

represent either of the two primitives. For the authentication of H by U , we can use the

following protocol primitive. No secret needs to be sent from U to H , so the choice of

the primitive is justified. The vector ~k1 is a set of secret keys (or a single key) generated

by H in response to U ’s request.

p2 M1 U → H : B, ~x, authkUH
(~x1,B)

M2 U ← H : U ′, {|~k1|}kHU
, 〈~x1, ~k,B〉kHU

Merging the two primitives together produces the following p-protocol.

p1 L1 U → H : B, t, authkUH
(t,B)

p2 M1 U → H : B, ~x, authkUH
(~x1,B)

M2 U ← H : U ′, {|~k1|}kHU
, 〈~x1, ~k,B〉kHU

135

The two primitives can be bound by adding the binding information, say c. The

union of the parameters of p1 and p2 is (t, ~x1,B), so c = (t, ~x,B). Early binding puts

the binder 〈c〉kUH
from U to H , and the binder replaces authkUH

(t,B) and authkUH
(~x1,B)

since t,B ⊑ c and ~x1,B ⊑ c.

p1 ⊗ p2 L1&M1 U → H : B, t, ~x, authkUH
(t,B), authkUH

(~x1,B), 〈c〉kUH

M2 U ← H : U ′, {|~k1|}kHU
, 〈~x1, ~k,B〉kHU

⇓

p1 ⊗ p2 M ′

1 U → H : B, t, ~x, 〈t, ~x,B〉kUH

M2 U ← H : U ′, {|~k1|}kHU
, 〈~x1, ~k,B〉kHU

When U receives the last message M2, due to the agreement property of the primi-

tive p2 together with the binder c, its corresponding record of a run exists on H . Simi-

larly a receiving event e−(M ′

1) lies on H . This is a two-party composition, so the binder

added in the protocol links the two primitives.

Inter-Domain Protocol

When a mobile user U travels to a foreign domain V , and requests a service in V , V

needs to authenticate U before providing the service. The first authentication is usually

done through the help of the mobile user’s home authority H , since V cannot verify

the mobile user directly. After the first authentication, in order to make consecutive

runs more efficient, the home network can send a set of secret keys or formulas to the

foreign domain and the mobile user, respectively.

To pick the proper protocol primitives for the design, each participant’s guarantee

needs to be examined carefully. Assuming that the home domain sends a set of secret

keys only to the verified participants, it is easily derivable that two authentication pro-

tocol primitives are necessary for the design of the protocol: one between U and H and

the other between V and H . The authentication between U and H can be achieved by

the intra-domain protocol. To clarify whose service the mobile user is trying to use, all

participants need to be mentioned, possibly in each message. This is accomplished by

extending B to (U ′, V ′, H ′). This extension should be done carefully. If there exists a se-

cret x between U and H , which should not be revealed to V , the discreetness property

of x should be proven before the extension.

136

u - u
M ′

1

u� M ′

2

u u-�

u - u

u

u

u�u

N1

N2

u

U V H

Figure 7.3: Protocol Structure

The authentication between V andH can be achieved in a similar way. Any protocol

primitive can be selected for the purpose. Let p2 be the protocol primitive selected. Let

~y2 be a nonce with an index, chosen by V to authenticate H with its binding group B,

and ~k2 be a set of secret keys or formulas generated by H in response to V ’s request.

p2 N1 V → H : B, ~y, authkVH
(~y2,B)

N2 V ← H : V ′, {|~k2|}kHV
, 〈~y2, ~k,B〉kHV

Putting the two protocols together with some order relations among events in the

primitives forms a simple p-protocol P shown in Figure 7.3. Notice that every message

from and to U should go through V due to the structural restrictions imposed on the

network environment, i.e. the mobile user is in the foreign domain. The protocol steps

of P are as follows.

P M ′

1 U → V : B, t, ~x, 〈t, ~x1,B〉kUH

N1 V → H : B, ~y, authkVH
(~y2,B)

N2 V ← H : V ′, {|~k2|}kHV
, 〈~y2, ~k,B〉kHV

M ′

2 U ← V : U ′, {|~k1|}kHU
, 〈~x1, ~k,B〉kHU

As shown in the previous chapter, if ~k1 and ~k2 share a common element, for exam-

ple, such as a shared key, then the two primitives are inseparable, i.e. the existence of

137

one primitive guarantees the existence of the other, and vice versa.

Each participant’s pseudonym can replace their real identity for the privacy ser-

vices. The pseudonym of U should belong to the coideal of U . In order to provide C1

privacy, SU = {U, kHU , kUH , kHV , kVH} should be protected. Any pseudonym U ′, which

U ′ ⊆ C[SU] and is recognisable by H can be used, such as {|U |}kUH
, or {|U |}kUV

between

U and V and then {|U |}kVH
between V and H . For C2 privacy, S′U = {U, kHU , kUH}

should be protected. Any pseudonym U ′, which U ′ ⊆ C[S′U] and is recognisable by

H can be used, such as 〈U〉kUH
. Generally, a random number r is added in generating

a pseudonym to make it harder to link each session to a specific user, i.e. {|U, r|}kUH
.

Assuming that underlying infrastructure provides mechanisms such as onion routing

or mix-nets, C3 privacy can be provided by using pseudonyms for both U and H such

as U ′ = 〈U, r〉kUH
and H ′ = 〈H, r〉kHU

.

The protocol is structurally the same as the Key Distribution protocol of the previ-

ous chapter. There are various ways to make V to authenticate U . The simplest way is

to send a secret key or keys which can be used between V and U as most published

protocols in this application do. The other way is to formulate a mutual equation and

send corresponding input data of the equation to each participant since N2 and M2

satisfy the structural requirements of the mutual equation. The application of the GSM

equation produces the following protocol.

P M ′

1 U → V : B, t, ~x, 〈t, ~x1,B〉kUH

N1 V → H : B, ~y, authkVH
(〈~y2,B〉)

N ′

2 V ← H : V ′, {|(AV)1···n|}kHV
, 〈~y2, (AV)1···n,B〉kHV

M ′′

2 U ← V : U ′, 〈~x1,B〉kHU

7.4 Secure Payments Protocols

From 1994 to 1996, payment protocols for all kinds of payment models were proposed,

including the Secure Electronic Transactions (SET) protocol. However, today only two

approaches for secure payments over the Internet are practically relevant: the SET pro-

tocol and encryption of credit card data via SSL or its successor TLS. The SET protocol

was initiated by the two largest credit card companies, MasterCard and VISA. Its main

goal is to develop a very secure protocol to make it absolutely safe to buy products

and services on the Internet. According to the Business Description of the SET pro-

138

tocol, it aims to provide confidentiality of customer’s account details and purchases,

ensure payment integrity and accountability, and authenticate both merchants and cus-

tomers [35].

This section identifies security requirements for general electronic payment pro-

tocols and shows how to implement a payment protocol similar to the SET protocol

using the methodology proposed.

7.4.1 System Model and Assumptions

Payment System Provider

Issuer Acquirer

Customer Merchant

?

�

Payment

6

Clearing

-

Figure 7.4: Generic Model of a Payment System

The generic model of the payment system is shown in Figure 7.4. The payment system

is operated by a payment system provider who maintains a fixed business relationship

with a number of banks. Banks act as credit card account issuers to customers, and

as acquirers of payment records from merchants. Each issuer has a Bank Identification

Number (BIN) assigned when an issuer signs up with a payment system provider. Each

customer receives his credit card from an issuer, and is assigned a Personal Identifica-

tion Number (PIN). It is also assumed that the customer is using a computer to execute

the payment protocol A merchant signs up with the payment system provider and

with a specific bank, called an acquirer, to accept deposits. Like a customer, a merchant

needs a secure device that stores the merchant’s secret keys and performs the payment

protocol. Clearing between acquirers and issuers is done using the existing financial

139

networks. Two important procedures for the electronic payment are authorisation and

settlement.

Authorisation: The process by which a customer’s credit card is verified as valid and

that it has the credit available to make a transaction. Authorisation also verifies

that the billing information the customer has provided matches with the infor-

mation in his credit card company.

Settlement: The process by which transactions with authorisation codes are sent to the

merchant. Settlement is a sort of electronic bookkeeping procedure that causes all

funds from captured transactions to be routed to the merchant’s acquiring bank

for deposit.

7.4.2 Security Requirements

This section considers a range of security requirements for each participant involved

in the payment process: issuer, acquirer, customer and merchant. They range from

mandatory security requirements to optional features.

Issuer/Acquirer Requirements

The issuer and the acquirer are assumed to enjoy some degree of mutual trust. More-

over, it is assumed that an infrastructure enabling secure communication between

these participants is already in place. Therefore, we see them as one unit and unify

their respective requirements.

A1 Proof of transaction authorisation by customer: When the acquirer debits a certain

credit card account by a certain amount, the acquirer must be in possession of an

unforgeable proof that the owner of the credit card has authorised this payment.

This proof must not be replayable or usable as a proof for some other transac-

tion. This means it must certify at least the amount, currency, goods description,

merchant identification, and delivery address Note also that in this context the

merchant may be an adversary, and even such a merchant must not be able to

generate a fake debit.

140

A2 Proof of transaction authorisation by merchant: When the acquirer authorises a pay-

ment to a certain merchant, the acquirer must be in possession of an unforgeable

proof that this merchant has asked that this payment be made to him.

Merchant Requirements

M1 Proof of transaction authorisation by acquirer: The merchant needs an unforgeable

proof that the acquirer has authorised the payment. Note that the amount and

currency, the time and date, and information to identify the transaction must be

certified.

M2 Proof of transaction authorisation by customer: Before the merchant receives the trans-

action authorisation from the acquirer, the merchant might need an unforgeable

proof that the customer has authenticated it.

Customer Requirements

C1 Impossibility of unauthorised payment: It must be impossible to charge a customer’s

credit card without possession of the credit card number, PIN and the customer’s

secret signature key. This must remain the case even if the customer has engaged

in many prior legitimate transactions. Two requirements are:

Impossibility: Unauthorised payments are impossible provided the acquirer is

honest and his secret key is not available to Spy.

Disputability: The customer can prove not having authorised a payment even if

the acquirer’s secret key is available to Spy.

C2 Proof of transaction authorisation by acquirer: The customer might need to have proof

that the acquirer authorised the transaction. This receipt from the acquirer is not

essential, but might be convenient.

C3 Receipt from merchant: The customer might need a proof that the merchant who

has previously made the offer has received payment and promised to deliver the

goods. This takes the form of undeniable receipt.

The following requirements might also be desirable.

141

P1 Privacy: Customers might require privacy of order and payment information. For

example an investor purchasing information on certain stocks may not want com-

petitors to know which stocks he is interested in.

P2 Anonymity: Customers might also want anonymity from Spy as well as the mer-

chant.

7.4.3 Composition

Each participant A possesses two pairs of keys: (ekA, dkA) for encryption and decryp-

tion, (skA, vkA) for signature and verification. Each participant also holds two cor-

responding certificates for the public keys. A public key certificate of ekA, namely,

Cert(A, ekA) (= [A, ekA]skCA
) is issued by a certification authority and it is assumed

that there exists a public key infrastructure which supports the process of certification

and verification of this certificate. A customer C also has a credit card data and its PIN.

u - u

u u�

L1

L2

u - u
M1

u� M2

u - u

u

�u

N1

N2
u

u

C M A

Figure 7.5: A Purchase Procedure

A normal purchase procedure might go as follows: C browses M ’s website and

decides on items to purchase. C sends his order description possibly with the payment

information to M . C may also send the payment information directly to A, so that

142

A can check the validity of the payment information that he received from M . For

authorisation, M forwards the payment information to A, since M cannot check its

validity due to requirement P1. A checks the payment information and if it is correct,

sends an authorisation code to M . A also needs to send the authorisation code to C in

order to inform C that the purchase is authorised. M completes the order by sending

the goods ordered and the confirmation to C. Finally, M captures the transaction from

his bank and C’s bank sends a credit card bill to C. The procedure is shown in Figure

7.5.

The procedure can be divided into three subprotocols, based on the interactions

among the participants: three two-party protocols, i.e. one between C and M , another

C and A, and the other M and A, respectively. Each message is labelled accordingly in

Figure 7.5 Alternative orderings are also possible. For example, N1 can be located any

place between L1 and N2. Notice that the messages within the dashed box in Figure

7.5, i.e. L1, M1, N1, and N2, satisfy the structural requirement of mutual equations. To

utilise this structure, mutual equations can be formulated to implement the subproto-

col composed of the messages N1 and N2, if necessary.

To implement the first subprotocol (the protocol between C and M), an appropriate

primitive needs to be carefully selected. The selection is based on the needs for delivery

of secrets. For this subprotocol, C needs to send his order description secretly to M but

M does not need to send any secret to C. Therefore, the following primitive is suitable,

where B = (C,M,A):

p1 L1 C →M : B, {|~x1,B|}ekM
, authskC

(~x1,B)

L2 M → C : C, 〈~x1,B〉skM

The values of ~x are closely related to the order description, which might include

values such as the items selected by C, amount of each item, total price, currency, date,

the merchant’s identity, and delivery address. Any omission of a critical value in ~x

can cause serious problems on the protocol implemented, so all required data values

should be included. To trace and record each transaction, a unique transaction number

may need to be added in ~x. The transaction number makes the composition of the

subprotocols easier. Let OD be the order description which includes all this information,

i.e. OD = (~x1,B), then

143

p1 L1 C →M : B, {|OD|}ekM
, authskC

(OD)

L2 M → C : C, 〈OD〉skM

To implement the second subprotocol (the protocol betweenC andA), the following

primitive can be used. The selection of the primitive is sound since C should send the

payment information secretly to A, possibly with some extra information, and A does

not need to send any secret to C.

p2 M1 C → A : B, {|~y2,B|}ekA
, authskC

(~y2,B)

M2 A→ C : C, 〈~y2,B〉skA

The values of ~y are mainly connected with the payment information, which in-

cludes total price, currency, date, the merchant’s identity, the customer’s credit card

number, its expiration date and PIN. Let PI be the payment information, i.e. PI =

(~y2,B), then

p2 M1 C → A : B, {|PI|}ekA
, authskC

(PI)

M2 A→ C : C, 〈PI〉skA

In other to combine the primitives p1 and p2, a binder should be added. The bind-

ing information of p1 and p2 is c1 = (~x, ~y,B). Unfortunately, 〈c1〉skC
does not work in

this case: M and A have no way to verify the binder due to the privacy requirements.

Some of possible binders which are understandable by both participants M and A

and which satisfy the privacy requirements are 〈〈~x〉, 〈PI〉,B〉skC
, 〈〈OD〉, 〈~y〉,B〉skC

, and

〈〈OD〉, 〈PI〉〉skC
. These solutions require extra terms to be sent to a certain participant.

For example, if the binder is 〈〈~x〉, 〈PI〉,B〉skC
, then 〈x〉skC

should be sent to A to help

A’s verification of the binder. Adding one of the binders above produces the following

interim protocol, where c1 = (〈OD〉, 〈PI〉):

P L1 C →M : B, {|OD|}ekM
, authskC

(OD), 〈c1〉skC
, 〈PI〉skC

M1 C → A : B, {|PI|}ekA
, authskC

(PI), 〈c1〉skC
, 〈OD〉skC

M2 A→ C : C, 〈OD〉skA

L2 M → C : C, 〈PI〉skM

For the last subprotocol, the following primitive can be used, where ~z3 represents a

nonce with a corresponding index:

144

p3 N1 M → A : B, {|~z3,B|}ekA
, authskM

(〈~z3,B〉)

N2 A→M : M, 〈~z3,B〉skA

Notice that a mutual equation can be formed to implement this subprotocol. In this

example, formulating a mutual equation is not simple because of the privacy require-

ment P1. Generally speaking, the simplest way to formulate an mutual equation is to

simulate the Key Distribution equation. In other words, a third party just sends a com-

mon value to the two participants. For this example, the common value need not be a

secret because it is only used for the verification of what C said. Let χ be the intersec-

tion of OD and PI. If χ is not empty, and contains enough information to verify both

OD and PI, then χ can be used as the common value. For example, χ contains a unique

transaction number, date, the customer identity, the merchant identity, etc. Alterna-

tively, we can generate an artificial common value by combining each hash output of

OD and PI, i.e. χ = 〈OD〉·〈PI〉 or 〈〈OD〉 · 〈PI〉〉. This scheme has several advantages: The

scheme can be used for the cases where more than two participants need to generate

a formula. The scheme keeps all the information in OD and PI. M can generate 〈OD〉

from OD and A can generate 〈PI〉 from PI, so each needs the other participant to finish

the verification of the equation. The introduction of this mutual equation produces a

dual signature similar to that used in the SET protocol.

Alternatively, the binding information can be added byM in order to bind p2 and p3

through a binder = 〈OD,PI, ~z3〉skM
. However, PI is unaccessible by M and OD should

be protected from A so, the binder will be 〈〈OD〉, 〈PI〉, ~z3〉skM
. Adding the binder pro-

duces the following interim protocol, where c2 = (〈OD〉, 〈PI〉, ~z3):

P L1 C →M : B, {|OD|}ekM
, authskC

(OD), 〈c1〉skC
, 〈PI〉skC

M1 C → A : B, {|PI|}ekA
, authskC

(OD), 〈c1〉skC
, 〈OD〉skC

N1 M → A : B, {|~z3,B|}ekA
, authskM

(~z3,B), 〈c2〉skM

N2 A→M : M, 〈~z3,B〉skA

M2 A→ C : C, 〈PI〉skA

L2 M → C : C, 〈OD〉skM

From c2,A andM know that p3(~z3;B) belongs to the same session where p1(OD) and

p2(PI) belong. The binding information c2 does not need to be delivered to C because

C does not need to know the binding.

145

The composition only provides ways of combining primitives, i.e. it provides guar-

antees for the existence of a certain event. However, it does not implement the ac-

countability required. For the enforcement of accountability, extra signature messages

imposing the accountability on the associated participant can be added, or terms in the

interim protocol can be changed. Generally speaking, the second approach requires

fewer messages in the final protocol. The security requirements of each participant are

achieved as follows;

Issuer/Accquirer

A1: implemented by 〈c1〉skC
, possibly together with {|PI|}ekA

and 〈~x1〉skC
.

A2: implemented by 〈c2〉skM
, possibly together with {|~z3,B|}ekA

Merchant

M1: not implemented.

M2: implemented by 〈c1〉skC
.

Customer

C1: implemented by 〈c1〉skC
.

C2: implemented by 〈PI〉skA
.

C3: implemented by 〈OD〉skM
.

For M1, the following change can be made in a message.

〈~z3,B〉skA
⇒ 〈〈OD〉, {|PI|}ekA

, 〈~z,B〉〉skA

The privacy requirement P1 is implemented by the protocol and P2 can be imple-

mented if the customer uses a pseudonym, which is only identifiable by Issuer/Acquirer,

instead of his real identity.

The final protocol after redirections or merges of messages, and removals of redun-

dant messages might be the following:

P′ M1 C →M : B, {|OD|}ekM
, {|PI|}ekA

, 〈c1〉skC
, 〈OD〉skC

, 〈PI〉skC

M2 M → A : B, {|PI|}ekA
, {|~z3,B|}ekA

, 〈c1〉skC
, 〈OD〉skC

, 〈c2〉skM

M3 A→M : M, 〈〈OD〉, {|PI|}ekA
, 〈~z,B〉〉skA

, 〈PI〉skA

M4 M → C : C, 〈OD〉skM
, 〈PI〉skA

146

The protocol above implements the SET purchase procedure. The main benefit of

design by composition is that a complex protocol design problem can be decomposed

into a set of simpler protocol design problems, which are usually much easier to solve

and to verify their correctness.

147

8
Conclusions and Further Work

This dissertation has proposed a new methodology for security protocol design and

has demonstrated its utility through several applications. All of the techniques have

been validated with mathematical proofs. Section 8.1 discusses the main achievements

of this research and Section 8.2 identifies further avenues in which the work should be

extended in the future.

8.1 Conclusions

The main achievements of the research are summarised in the following statements.

Authentication and secrecy, which are two most important goals of security pro-

tocols, are shown to be composable. First, protocol primitives are presented to im-

plement composable authentication and secrecy, and their properties such as agree-

ment, regularity, and discreetness are verified using strand spaces. Second, as a new

design method, design by composition is proposed to exploit the composability of au-

148

thentication and secrecy provided by protocol primitives. Composition is a technique

for implementing a more complex protocol using simpler protocols. The composition

framework allows the specification of a complex protocol to be decomposed into the

specifications of simpler components, which makes the design and verification of the

protocol easier to handle. Benefits of this approach are similar to those gained when

using a modular approach to software development. On the one hand, complex rea-

soning about an overall protocol can be reduced to simpler reasoning about a collection

of components, and on the other hand, complex goals can be built up from a group of

simple goals by adding binding information to those simple goals. Protocol compo-

sition in this way makes protocol design simpler and safer than most existing design

methodologies, because it is systematic. Protocol composition also provides reusabil-

ity in protocol design, in the sense that verified primitives or protocols of one applica-

tion can be reused as parts of another application. Finally, based on the understanding

of the composition, many interesting examples, including mobile authentication pro-

tocols and secure payment protocols, are demonstrated to be composable and their

correctness is verified.

8.2 Further Work

A number of areas for further work have emerged from this research.

Message Refinement Rules

Composition rules alone are not satisfactory to explain certain design mechanisms

found in the literature. Many existing protocols show that a complicated protocol can

be reached from a simple protocol by gradually strengthening either contents or struc-

tures of messages starting from a simple protocol. This design process is called protocol

derivation by refinement. Intuitively, refinement means either a straight substitution of

a new message for an existing message or a reordering of messages, and derivation is

a way of getting a new protocol P′ from an existing protocol P by the application of

refinements on P. Not all refinements on a protocol can be justified, and some of them

are useless if the strength of the protocol becomes weakened after the refinements. To

keep the security properties after executing several refinements, each refinement rule

should be accumulative. Accumulative refinement rules can be identified through the

149

examination of published protocols and their correctness can also be verified. These

rules together with composition rules will make the composition scheme a more pow-

erful tool to use in protocol design.

Message Optimisation Rules

The protocols produced by composition are generally not optimal. To generate more

efficient protocols, some message terms can be combined or redundant messages can

be removed from the protocols during composition. For example, in protocols using

a faithful authentication sever, some binding groups do not need to be included in

generating authentication replies by the sever because the server does not change the

binding group received from a participant. When the participant receives the authen-

tication reply from the server, he knows the binding group even though it is not in-

cluded in the reply. Moreover, when two or more participants trust each other, some

components of messages do not need to be delivered to the other participants. A better

understanding of these message optimisation rules will help the composition approach

to produce more efficient protocols.

150

Bibliography

[1] ABADI, M., AND GORDON, A. D. A calculus for cryptographic protocols: The Spi

calculus. In Proceedings of the 4th ACM Conference on Computer and Communications

Security (1997), ACM Press, pp. 36–47.

[2] ABADI, M., AND NEEDHAM, R. Prudent engineering practice for cryptographic

protocols. IEEE Transactions on Software Engineering 22, 1 (1996), 6–15.

[3] ANDERSON, R., BERGADANO, F., CRISPO, B., LEE, J.-H., MANIFAVAS, C., AND

NEEDHAM, R. A new family of authentication protocols. ACM Operating Systems

Review 32, 4 (1998), 9–20.

[4] ANDERSON, R., AND NEEDHAM, R. Robustness principles for public key proto-

cols. In Proceedings of CRYPTO (1995), pp. 236–247.

[5] AURA, T., NIKANDER, P., AND LEIWO, J. DoS-resistant authentication with client

puzzles. In Proceedings of International Security Protocols Workshop (2001), Springer-

Verlag, pp. 170–177.

[6] BIRD, R., GOPAL, I., HERZBERG, A., JANSON, P., KUTTEN, S., MOLVA, R., AND

YUNG, M. Systematic design of two-party authentication protocols. In Proceedings

of CRYPTO (1991), pp. 44–61.

[7] BURROWS, M., ABADI, M., AND NEEDHAM, R. A logic of authentication. Pro-

ceedings of the Royal Society 426, 1871 (1989), 233–271.

[8] BUTTYAN, L., STAAMANN, S., AND WILHELM, U. A simple logic for authenti-

cation protocol design. In Proceedings of the 11th Computer Security Foundations

Workshop (1998), IEEE Computer Society Press, pp. 153–162.

151

[9] CHAUM, D. L. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM 24, 2 (1981), 88 – 84.

[10] CHAUM, D. L. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of Cryptology 1, 1 (1988), 65 – 75.

[11] CLARK, J. A., AND JACOB, J. L. A survey of authentication protocol literature.

Tech. Rep. 1.0, 1997.

[12] CLARK, J. A., AND JACOB, J. L. Searching for a solution: Engineering tradeoffs

and the evolution of provably secure protocols. In Proceedings of IEEE Symposium

on Security and Privacy (Oakland, CA, 2000), IEEE Computer Society Press, pp. 14–

17.

[13] DATTA, A., DEREK, A., MITCHELL, J. C., AND PAVLOVIC, D. A derivation sys-

tem for security protocols and its logical formalization. In Proceedings of the 16th

Computer Security Foundation Workshop (Pacific Grove, CA, 2003), IEEE Computer

Society Press, pp. 109 – 125.

[14] DEAN, D., AND STUBBLEFIELD, A. Using client puzzles to protect TLS. In Pro-

ceedings of the 10th USENIX Security Symposium (2001), pp. 1 – 8.

[15] DENNING, D., AND SACCO, G. Timestamps in key distribution protocols. Com-

munications of the ACM 24, 8 (1981), 533–536.

[16] DESMEDT, Y., AND KUROSAWA, K. How to break a practical MIX and design

a new one. In Proceedings of EUROCRYPTO (2000), vol. 1807 of Lecture Notes in

Computer Science, pp. 557–572.

[17] DOLEV, D., AND YAO, A. On the security of public-key protocols. IEEE Transaction

on Information Theory 30, 2 (1983), 198–208.

[18] FOLEY, S. N., AND ZHOU, H. Towards an architecure for autonomic security

protocols. In Proceedings of International Security Protocols Workshop (Cambridge,

England, 2003), Springer-Verlag, pp. 25–30.

[19] GOETHALS, J.-M., AND QUISQUATER, J.-J. Authentication procedures. In Proceed-

ings of the Workshop on Cryptography, (1983), vol. 149 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 283–288.

152

[20] GOLLMANN, D. What do we mean by entity authentication. In Proceedings of IEEE

Symposium on Security and Privacy (Oakland, CA, 1996), IEEE Computer Society

Press, pp. 46–54.

[21] GONG, L. Lower bounds on messages and rounds for network authentication

protocols. In ACM Conference on Computer and Communications Security (1993),

ACM Press, pp. 26–37.

[22] GONG, L., NEEDHAM, R., AND YAHALOM, R. Reasoning About Belief in Cryp-

tographic Protocols. In Proceedings of IEEE Symposium on Research in Security and

Privacy (1990), IEEE Computer Society, pp. 234–248.

[23] GONG, L., AND SYVERSON, P. Fail-stop protocols: An approach to designing

secure protocols. In Proceedings of the 5th International Working Conference on De-

pendable Computing for Critical Applications (DCCA-5) (1995), pp. 44–55.

[24] GUTTMAN, J. D. Security protocol design via authentication tests. In IEEE Com-

puter Security Foundation Workshop (Nova Scotia, Canada, 2002), IEEE Computer

Society Press, pp. 24–26.

[25] GUTTMAN, J. D., AND FÁBREGA, F. J. T. Authentication tests and the structure of

bundles. Theoretical Computer Science.

[26] GUTTMAN, J. D., AND THAYER, F. J. Authentication tests. In Proceedings of IEEE

Symposium on Security and Privacy (2000), pp. 96–109.

[27] JAKOBSSON, M. A practical mix. In Proceedings of Eurocrypt (1998), vol. 1403 of

Lecture Notes in Computer Science, pp. 448–461.

[28] JAKOBSSON, M. Flash mixing. In Symposium on Principles of Distributed Computing

(1999), pp. 83–89.

[29] JUELS, A., AND BRAINARD, J. Client puzzles: A cryptographic defense against

connection depletion attacks. In Proceedings of Networks and Distributed Security

Systems (1999), pp. 151–165.

[30] LAMPORT, L. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21, 7 (1978), 558 – 565.

[31] LOWE, G. An attack on the Needham-Schroeder public-key authentication proto-

col. Information Processing Letters 56, 3 (1995), 131–133.

153

[32] LOWE, G. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Tools and Algorithms for the Construction and Analysis of Systems (1996),

vol. 1055 of Lecture Notes in Computer Science, Springer-Verlag, pp. 147–166.

[33] LOWE, G. A hierarchy of authentication specifications. In Proceedings of the

10th IEEE Computer Security Foundations Workshop (1997), IEEE Computer Society

Press, pp. 31 – 43.

[34] MAO, W., AND BOYD, C. Towards the Formal Analysis of Security Protocols. In

Proceedings of the 6th Computer Security Foundations Workshop (1993), IEEE Com-

puter Society Press, pp. 147–158.

[35] MASTERCARD, AND VISA. SET Secure Electronic Transaction specification: Busi-

ness description.

[36] MEADOWS, C. A. The NRL Protocol Analyzer: An Overview. Journal of Logic

Programming 26, 2 (1996), 113–131.

[37] MENZIES, A. J., VON OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of Ap-

plied Cryptography. CRC Press, New York, 1996.

[38] MILLEN, J. K., AND RUESS, H. Protocol-independent secrecy. In Proceedings

of IEEE Symposium on Security and Privacy (2000), IEEE Computer Society Press,

pp. 110 – 209.

[39] NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentication

in large networks of computers. Communications of the ACM 21, 12 (1978), 993–999.

[40] NEEDHAM, R. M., AND SCHROEDER, M. D. Authentication revisited. ACM Op-

erating System Review 21, 7 (1987), 7–7.

[41] PAULSON, L. The inductive approach to verifing cryptographic protocols. Journal

of Computer Security 6, 1 (1998), 85–128.

[42] PAULSON, L. C. Inductive analysis of the Internet protocol TLS. ACM Transactions

on Information and System Security 2, 3 (1999), 332–351.

[43] PERRIG, A., AND SONG, D. A first step towards the automatic generation of secu-

rity protocols. In Proceedings of IEEE Symposium on Security and Privacy (Oakland,

CA, 1998), IEEE Computer Society Press, pp. 73–83.

154

[44] PERRIG, A., AND SONG, D. Looking for diamonds in the desert — extending

automatic protocol generation to three-party authentication and key agreement

protocols. In Proceedings of the 13th IEEE Computer Security Foundation Workshop

(2000), IEEE Computer Society Press, pp. 64–76.

[45] PFITZMANN, A., AND KÖHNTOPP, M. Anonymity, unobservability, and

pseudeonymity — a proposal for terminology. In International Workshop on De-

signing Privacy Enhancing Technologies (2001), Springer-Verlag, pp. 1–9.

[46] RACKOFF, C., AND SIMON, D. R. Cryptographic defense against traffic analysis.

In ACM Symposium on Theory of Computing (1993), ACM Press, pp. 672 – 681.

[47] ROSCOE, A. W. Intensional Specifications of Security Protocols. In Proceedings

9th IEEE Computer Security Foundations Workshop (1996), IEEE Computer Society

Press, pp. 28–38.

[48] SCHNEIDER, S. Using CSP for protocol analysis: the Needham-Schroeder public

key protocol. Tech. rep., 1996.

[49] SIMPSON, W. PPP challenge handshake authentication protocol (chap).

[50] SYVERSON, P. Limitations on design principles for public key protocols. In Pro-

ceedings of IEEE Symposium on Security and Privacy (1996), IEEE Computer Society

Press, pp. 62–73.

[51] THAYER, J., AND GUTTMAN, J. D. Honest ideals on strand spaces. In Proceedings

of the 11th Computer Security Foundations Workshop (1998), IEEE Computer Society

Press, pp. 66 – 78.

[52] THAYER, J., HERZOG, J., AND GUTTMAN, J. Strand spaces: Proving security pro-

tocols correct. Journal of Computer Security 7, 2-3 (1999), 191–230.

[53] WOO, T. Y. C., AND LAM, S. S. A lesson on authentication protocol design. ACM

Operating Systems Review 28, 3 (1994), 24 – 37.

155

