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Abstract

This thesis develops the local reasoning approach of separation logic for common forms of mod-
ularity such as abstract datatypes and objects. In particular, this thesis focuses on the modularity
found in the Java programming language.

We begin by developing a formal semantics for a core imperative subset of Java, Middleweight
Java (MJ), and then adapt separation logic to reason about this subset. However, a näıve adap-
tion of separation logic is unable to reason about encapsulation or inheritance: it provides no
support for modularity.

First, we address the issue of encapsulation with the novel concept of an abstract predicate,
which is the logical analogue of an abstract datatype. We demonstrate how this method can
encapsulate state, and provide a mechanism for ownership transfer: the ability to transfer state
safely between a module and its client. We also show how abstract predicates can be used to
express the calling protocol of a class.

However, the encapsulation provided by abstract predicates is too restrictive for some appli-
cations. In particular, it cannot reason about multiple datatypes that have shared read-access to
state, for example list iterators. To compensate, we alter the underlying model to allow the logic
to express properties about read-only references to state. Additionally, we provide a model that
allows both sharing and disjointness to be expressed directly in the logic.

Finally, we address the second modularity issue: inheritance. We do this by extending the
concept of abstract predicates to abstract predicate families. This extension allows a predicate to
have multiple definitions that are indexed by class, which allows subclasses to have a different
internal representation while remaining behavioural subtypes. We demonstrate the usefulness
of this concept by verifying a use of the visitor design pattern.
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1
Introduction

Software is unreliable. Currently, operating systems are susceptible to viruses, and commercial
software packages are sold with disclaimers not guarantees: software licences do not say the
program will function as intended or that it will not damage other data. Instead, they say that
the software is not sold for any purpose, it might damage your data and that if it does, there
is no entitlement to compensation. In many ways the situation is getting worse as software
products grow ever larger. However, the programmer has several weapons of varying power to
improve software reliability, in particular: types, testing and verification.

Types Types allow the compiler to guarantee certain errors do not occur in a program; for
example, multiplying an integer by a string. Each operation, or function, is specified to work
with certain types of value and the compiler guarantees that the program does not perform op-
erations on the wrong type of data. However, types fall short of eliminating all errors. Consider
the following:

int [] x = new int[30];
for(int n = 1; n <= 30; n++)

x[n] = 1;

This program fragment creates an array of 30 elements and assigns 1 to elements 1 to 30.
However, in Java arrays are numbered from 0: the array is defined from 0 to 29, not 1 to 30.
Therefore, on the last iteration of the loop, the assignment will fail. Fortunately, Java provides
dynamic checks for accesses outside the range of an array, so it will throw an exception. The
problem is worse for programming languages without dynamic checks, like C, as they have
unpredictable behaviour in the error cases.

Standard type systems do not eliminate this type of error. These properties can be checked
with dependent types [87] or static analyses [29], but there are many problems where type
checking or static analysis is undecidable or infeasible.

Testing Testing can be used to check more complicated properties. The program code is run
many times against different inputs to see if anything “goes wrong”. The inputs are selected to
attempt to cover all the possible executions, and then the program’s outputs are compared with
the expected results.

To help automate testing and localise errors, run-time assertions are used to find these
“wrong” states: for example, Microsoft Office has a quarter of a million run-time assertions [44].
Consider the following:
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if(debug && x.length < 30) throw new Error();
for(int n = 0; n <30 ; n++)

x[n] = 1;

The if statement checks that the array is of an appropriate length before proceeding and, if
not, throws a descriptive error. This helps track the location of the bug: the code fails quickly.
The key weakness of testing is that it is not possible to exhaustively test code: testing cannot
guarantee to remove all errors as we cannot consider all possible inputs.

Program verification Finally we turn to program verification: the “holy grail” of software reli-
ability. Rather than checking that a property holds for a number of inputs, program verification
allows one to formally prove, for all possible runs of the program, that the property will hold.
This allows us to make strong guarantees about the software. Floyd [39] and Hoare [45] pio-
neered the use of logic for program verification. Hoare’s logic provides pre- and post-conditions
for each command, written {P}C{Q}, which is read “if property P holds of the start state and C
terminates, then the final state will satisfy Q.” This is called partial correctness; total correctness
additionally guarantees the program will terminate. Hoare provided axioms and rules to derive
pre- and post-conditions for a given program, for example:

{P [E/x]}x := E{P}
{P}C1{Q} {Q}C2{R}

{P}C1;C2{R}

With rules of this form properties about a program’s final values can be shown. For example one
can prove an implementation of Euclid’s algorithm actually gives the greatest common divisor
of its two inputs.

Despite its many advantages program verification is rarely used in practice. One key reason
for this lack of use is that current program verification techniques do not scale. References and
pointers are a particular impediment for scalability as they allow apparently unrelated pieces of
code to affect each other’s behaviour (for a detailed background of this problem see §1.1.2).

However, recently, O’Hearn, Reynolds and Yang [65] have developed an approach called
local reasoning. Local reasoning deals with pointers and references, and has the potential to
scale, but thus far it has only been applied to C-like languages with no support for modularity.
This thesis builds a logic for Java by extending local reasoning to account for the modularity
found in Java, particularly encapsulation and inheritance. Encapsulation is where the internal
representation of an object is hidden from its clients, leaving the programmer free to change
their internal representation without requiring changes to the clients. Inheritance allows a class
to be extended with new features. This extended class can then be used in place of the original
class—this is a defining characteristic of object-oriented programming languages.

The rest of the introduction begins by discussing the relevant background material. In §1.2
we summarize the content and contribution of this thesis. We conclude the introduction by
discussing and comparing related methods for reasoning about Java.

1.1 Background

We now provide a summary of the relevant background work. We assume the reader is familiar
with Java, first-order logic and Hoare logic. There are two key difficulties when reasoning about
object-oriented programs: reference aliasing and dynamic dispatch. We begin by discussing
dynamic dispatch and a method for reasoning about it known as behavioural subtyping. We then
present the issues associated with reference aliasing and some approaches for reasoning about
aliases.
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1.1.1 Dynamic dispatch

In object-oriented languages like Java, the static type does not determine the precise class of
the runtime values. If a variable has static type C, then the runtime values could be an object
of class C or any subtype of C. This definition allows any instance of a subtype to be used in
place of its supertype without causing errors.1 For a class D to be a subclass of C, D must have
all the methods and fields of C and they must have the same types. We will refer to the type of a
variable or field as the static type, and the type of the object it actually refers to as the dynamic
type. For soundness, the dynamic type of a variable or field is always a subtype of the static type
(see §2.4).

Method calls in Java are determined by the dynamic type of the receiver not by its static
type. This is known as dynamic dispatch. Consider the following:

C x; x = new D(); x.m();

This will not call C’s m method, but instead will call D’s m method. Dynamic dispatch may seem
complicated, but it can be particularly useful. Consider the following:

Shape [] shapes;
...
for(Shape shape : shapes) {
shape.draw();

}

We omit the definition of Shape and its subclasses Circle and Triangle. This code uses an
array of Shape objects and applies draw() to each one using Java 5’s new for each construct.
Due to dynamic dispatch, the draw method of the dynamic type will be invoked, e.g. the draw

methods for a Circle or a Triangle class. The programmer does not have to rewrite this code
if new shapes are created.

Now consider reasoning about programs in the presence of dynamic dispatch. Consider the
following code fragment:

C m1(C x) {
x.m2()
return x;

}

Assume C.m2() has a specification {PC} {QC}. We could give m1 the specification {PC ∧ x :
C} {QC}, but this prevents a call to the method m1 where the type of x is a subtype of C. Assume
C has a single subtype D, which has the specification {PD} {QD} for method m2. We could
validate the method with the following specification:

{x 6= null ∧ PC ∧ PD} {QC ∨QD}

What happens if we introduce a new class? Reverifying m1 for every new class is clearly im-
practical for any realistic program. For example, the equal() method in the java.lang.Object
is overridden approximately 300 times in the Java 1.4 libraries. We cannot reason about 300
classes for a single call; we need to reduce the complexity.

In the programmer’s informal reasoning, the programmer makes a simplifying assumption
that the methods of each subclass behave, at some level, the same as the supertype’s method.
If we are to reason formally about dynamic dispatch, we need to capture this assumption. In
particular, we need to consider a new subtype relation that is appropiate for dynamic dispatch:
behavioural subtyping. In the rest of this subsection we will describe different definitions of
behavioural subtyping, and in §3.5 we present a new notion of behavioural subtyping.

1In Java the ideas of subtype, and subclass are conflated. Likewise in this thesis we will not separate the concepts.
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Figure 1.1: Visualization of behavioural specifications and subtyping.

Before we can define behavioural subtyping, we have to define behavioural types. Amer-
ica [3] considered the behaviour of a class to be specified by its methods’ specifications, and
the class’s invariants. A method’s specification is really a set of start states,2 PC, called its pre-
condition and a set of end states, QC, called its post-condition, such that if the method starts in
a state in PC and the method terminates, then the terminating state will be in QC. We illustrate
the idea of a specification in Figure 1.1 (A). This shows the states in PC are mapped to the states
in QC. The arrows are used to emphasis the mapping we are considering. A class’s invariant is
a property of a class instance that is true after every method call. Liskov and Wing [55] extend
behavioural types to also consider a history property: a relationship between any state and a
later state that the class or method must always preserve; for example a counter only goes up.

For a class to be a behavioural subtype of its superclass, it must preserve all of the parent’s
invariants, and its methods’ specifications must be compatible. Compatibility means that the
parent method’s pre-condition must imply the subclass method’s pre-condition and the subclass
method’s post-condition must imply the parent method’s post-condition. The set of states A
implies the set of states B, if and only if every state in A is also in B. We illustrate this in
Figure 1.1 (B): PC is the parent’s pre-condition, PD is the subclass’s pre-condition, QC is the
parent’s post-condition and QD is the subclass’s post-condition. In the diagram we represent the
implications by containment of one region within another: PC implies PD as PD contains PC,
likewise QD implies QC. Hence, we can see the mapping in (B) is a behavioural subtype of the
mapping in (A).

To allow the internal representation to be altered, America [3] uses a transfer function from
the internal values of the subclass to the parent’s internal values. This function can allow the
internal field names to be altered in the subtype. This function is similar to Hoare’s data abstrac-
tion function [46] that maps from the abstract values of a datatype to their actual representation.

2We can interpret a formula as the set of states for which the formula is true.
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Note: In this thesis we only use properties on method specifications to define behavioural sub-
typing. Invariants and transfer functions can be captured by the abstraction mechanism we add
to the logic.

To reduce the burden of discovering and verifying compatible method specifications Dhara
and Leavens [30, 31] proposed specification inheritance, which allows one to automatically gen-
erate specifications that ensure a class is a behavioural subtype of its parent. For each method,
we must show that it satisfies all of its supertypes’ specifications. For example if C is the only
supertype of D, and C’s method m has specification {PC} {QC} then D’s specification is of the form
{PC ∨ PD} {QC ∧QD}. It is easy to see this satisfies the requirements on method specifications.
We illustrate specification inheritance in Figure 1.1 (C). Again we can see this mapping is a be-
havioural subtype of (A). This approach generates specifications that are behavioural subtypes
even when the underlying specifications are not. Findler and Felleisen [37] show that generating
run-time tests from these forms of specification can produce misleading error messages.

Poetzsch-Heffter and Müller [72] have proposed a different form of specification inheritance:
each method must satisfy every specification of its supertypes’ corresponding methods, for exam-
ple if D has a method m with body s and has a single supertype C with specification {PC} {QC},
then we must prove both ` {PD}s{QD} and ` {PC}s{QC}. Hence every method body requires
multiple verifications.

This is more general than Dhara and Leavens’s specification inheritance as it allows s to
terminate in a state not satisfying QC as long as it does not start in a state satisfying PC. In
Figure 1.1 (D) we illustrate a method that is compatible at the behavioural level, but does
not satisfy the standard pair of implications [3, 55]. We consider D’s method to satisfy the
intersection of two specifications: one maps PC to Q and the other maps PD to QD. QD does not
have to be contained in QC, but Q must be contained in QC. This generalises Dhara and Leavens
specification inheritance, and moves beyond the standard pair of implications.

In §3.5 we define a new notion specification compatibility that captures Poetzsch-Heffter and
Müller’s notion of specification inheritance without the need for multiple verifications of each
method.

1.1.2 Aliasing

We have so far discussed methods for reasoning about dynamic dispatch. The second key stum-
bling block to reasoning about object-oriented languages, like Java, is reference aliasing. Con-
sider the following code:

...
x.f = 3;
y.f = 4;
ASSERT(x.f != y.f)

The assertion might initially seem to hold, but in languages with references, or pointers, multiple
names can refer to the same entity. This is aliasing. The assertion only holds if x and y reference
different objects.

Aliasing makes reasoning about programs considerably harder. It breaks Hoare’s original
assignment rule [45]: {P [E/l]} l = E; {P}. Consider an unsound use of this rule:

{x.f = 3 ∧ 4 = 4 ∧ x = y} y.f = 4; {x.f = 3 ∧ y.f = 4 ∧ x = y}

This is an instance of the assignment rule because x.f = 4 ∧ y.f = 4 ∧ x = y[4/y.f ] equals
x.f = 3∧ 4 = 4∧x = y. For any sensible semantics the post-condition is false as it implies 3 = 4.
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One solution to the problem of assignment with aliasing is Morris’s component substitu-
tion [59]. He modifies substitution to operate on components.

x.a[E/y.a] def= if x = y then E else x.a

Every time we make a possibly aliased assignment, we insert a conditional test for the cases
where it was aliased and where it was not. Alternatively one can see the components as an
array, for example seeing x.a as an array access a[x]. This then allows the Hoare logic rules
for array assignment to be used rather than introducing the conditional test. These methods
explicitly demonstrate the global nature of the store. Assignment to a particular component can
potentially affect any other assertion about that component.

In Hoare logic without aliased state one can write local specifications, and then infer global
specifications using the Hoare logic rule of invariance [4], or the specification logic rule of
constancy [77]:

{P}s{Q}
provided s does not modify any free variables of R

{P ∧R}s{Q ∧R}

Without aliasing the side-condition can be verified by a simple syntactic check of s. When
aliasing is present the check is no longer simply syntactic and more complex conditions about
aliasing and interference must be used.

This problem impacts on behavioural types. The simplest solution is to require methods to
be annotated with the details of how they alter the state. For example [43] the annotation
“modifies this.f1, x.f2;” specifies that the method only alters the receiver’s f1 field, and
x’s f2 field, no other state is modified. However, in the presence of behavioural subtyping these
clauses are too precise: subtypes usually modify more state than their parents modify (they are,
after all, extensions), but for soundness it can only modify the same or less. This is known as
the extended state problem.

This problem was addressed by Leino [54]. He proposed the use of data groups, which allows
the modifies clauses to be given in terms of abstract groups of fields. The membership of a
group is then specified by the class. Hence it is possible for a subclass to modify more state than
its parent, but it cannot modify data from any more data groups.

Whilst data groups solve some problems, they cannot directly deal with recursive data struc-
tures as the shape of the heap affects the values that are modified. Consider a method that modi-
fies a list. What is the modifies clause? For a three element list it might be x.tl,x.tl.tl, x.tl.tl.tl,
but clearly this approach does not scale. (One might imagine providing a regular expression for
the modifies clause, but this is perhaps too complicated.)

To extend modifies clauses to recursive data structures, some form of ownership has been
proposed [32, 60, 61, 79]. An object or field is said to own other objects or fields. If a field is
specified as modified, then that field and all of the other state it owns could be modified. We
will briefly describe some type systems that enforce ownership properties but refer the interested
reader to Clarke’s thesis [22] for a comprehensive survey of different type systems for reasoning
about ownership and aliasing.

Ownership types [15, 22, 23, 24] allow the programmer to enforce one object’s ownership
of another. In Figure 1.2, we demonstrate a typical ownership diagram: the two node objects
are owned by the list object, and the list and data objects are owned by a distinguished “world”
object. The objects owned by a particular object are viewed as its representation: ownership
types prevent external references into this representation, and hence enforce encapsulation of its
representation. Universes [32] take a similar approach to ownership types. They only prevent
the writing to the representation rather than any access. This allows universes to handle list
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World
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Figure 1.2: Example of ownership types [23]

iterators that are difficult to handle in ownership types. However, universes are less expressive
in representing nested ownership.

So far we have reviewed some of the difficulties with reasoning about aliased state and
described briefly some solutions. Now we will discuss local reasoning, which comes from obser-
vations of Burstall [20]. He noted that if you explicitly consider disjointness in the logic then you
can simplify your reasoning. He presented a series of examples on lists and trees, and presented
a predicate to assert two lists were acyclic and had disjoint domains. Bornat [12] has shown
how to extend this style of reasoning to a more general recursive datatype setting.

Based on Burstall’s observations about disjointness, Reynolds [76], and Ishtiaq and O’Hearn
[48] took a different approach. Rather than adding a predicate for disjointness, they added
a new logical connective for disjointness: a second form of conjunction P ∗ Q, which means
both P and Q hold, but in disjoint parts of the heap. Ishtiaq and O’Hearn [48] showed this
new connective was the multiplicative conjunction from the “Logic of Bunched Implications” by
O’Hearn and Pym [64].

This programming logic is now known as separation logic. It has a subtly different semantics
from standard Hoare logic as the triples are tight specifications: that is for {P}s{Q} to hold, P
must describe all the heap s needs during execution. This leads to the frame rule:

{P}s{Q}
provided s does not modify the free variables of R.3

{P ∗ R}s{Q ∗ R}

Although this rule has a side-condition, it is simple and syntactic as the issues with aliasing are
dealt with using the ∗ connective. There is no need for type systems to check uniqueness or
ownership. Additionally, if one precludes global variables then methods will always have an
empty modifies set, removing the need for modifies clauses: the specifications contain all the
information about the state that is modified.

The frame rule allows local reasoning: the code can be specified based solely on the state
it uses. Clients can then extend the specification to the global setting that accounts for all of
their additional state. This kind of reasoning is essential for open programs: programs where
the client cannot verify their requirements against the implementation, but must simply rely on
the specification provided.

3Bornat [13] has shown how to treat the framing of variables with ∗ , hence removing the side-condition.
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1.2 Content and contribution

We will now provide an overview of the thesis’s content and highlight its contribution.

Chapter 2 We begin the thesis by identifying Middleweight Java (MJ), a core imperative frag-
ment of Java. We formalize the type system for this fragment and give a novel operational
semantics, which we prove is type sound.
Contribution: The key contributions of this chapter are the development of the semantics and
type system and the proof of soundness.

Chapter 3 This chapter extends local reasoning to the Java programming language and serves
as an introduction to separation logic. A rule is given for dynamic dispatch based on a new
formulation of behavioural subtyping named specification inheritance. It describes how this for-
mulation is more flexible than standard behavioural subtyping. We illustrate the logic’s use
with a simple tree copy program and prove the logic is sound with respect to the semantics in
Chapter 2. We conclude by showing that the logic allows local reasoning, but does not provide
modular reasoning in the sense of encapsulation or inheritance.
Contribution: This chapter has two key contributions: a separation logic for Java and a new
definition of behavioural subtyping named specification compatibility.

Chapter 4 In this chapter we address the issues of encapsulation and abstract datatypes, by
developing a novel concept of an abstract predicate. Abstract predicates are the logical equivalent
of an abstract datatype. We show the encapsulation they provide allows ownership transfer [66]:
the ability for state to be safely transferred between the client and the module, or class. In
particular, we show how to reason about the object pool pattern [42]. We prove the extension is
sound and conclude the chapter with a discussion of related work, and a demonstration of how
to reason about a C-style memory manager.
Contribution: The key contribution of this chapter is the concept of an abstract predicate. Ad-
ditionally, we demonstrate that abstract predicates provide more flexible modularity than the
hypothetical frame rule [66].

Chapter 5 This chapter shows that the encapsulation provided by abstract predicates in sep-
aration logic is too strict to allow many common programming idioms, including list iterators.
We present a new model of separation logic that allows read sharing. In the standard presenta-
tion of separation logic, only a single datatype (or, in the concurrent setting, a thread) can have
access to a location in memory. In this chapter, we extend separation logic to allow multiple
datatypes to own read references to the same location and demonstrate this work with a list
iterator example. However, the initial presentation does not allow the disjointness of datastruc-
tures to be properly expressed. We present a model of named permissions and show that this
model is capable of representing disjointness in datatypes while allowing read sharing.
Contribution: This chapter has two key contributions: demonstrating the use of read-only
permissions with abstract predicates and presenting a model of separation logic that can express
both read sharing and disjointness.

Chapter 6 This chapter highlights the issues of reasoning about inheritance in separation logic.
We extend the concept of an abstract predicate to an abstract predicate family. The extension
allows a predicate to have one of many different definitions based on its argument’s type. We
demonstrate the utility of abstract predicate families with two examples: Cell/Recell [1] a simple
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example of subtyping; and the visitor design pattern [40]. We prove this extension is sound, and
conclude by discussing future work.
Contribution: The key contribution of this chapter is the abstract predicate family and the
demonstration of its utility when reasoning about object-oriented programs.

Chapter 7 This chapter concludes the thesis.

1.3 Related work

To conclude this chapter, we discuss other logics for reasoning about object-oriented languages,
and compare them to the logic developed in this thesis. We will not consider object-based
languages [1] and associated logics [2] for two reasons: firstly, we want our verification methods
to be close to programmers, who generally use class-based languages; and secondly, the class
hierarchy actually imposes a structure which helps with specification. Reus [74] has given
a denotational comparison between specifications for class- and object-based languages and
shows that the domains are simpler for class-based languages.

There are several Hoare-like logics embedded into theorem provers. Von Oheimb and Nip-
kow [84] embed a logic into Isabelle. The assertion language is part of Isabelle, and the asser-
tions use an explicit state parameter. They do not support any form of encapsulation, inheritance
or frame-like property. Poetzsch-Heffter and Müller [71] present a different logic for reasoning
about Java-like languages. Again, they use an explicit store in the logic. However, they give
axioms for manipulating the store [72]. Müller’s thesis [60] addresses the issues of modularity
by adding abstract fields with dependency information and universe types [32]. He provides
modifies clauses to provide a frame property. The modifies clauses are given in terms of
the abstract fields and the fields they depend on. The universe types [32] allow object invariants
to depend on other objects.

The syntax of Müller’s assertion language is closely related to Leavens et al.’s JML [53],
which attempts to unify many approaches to tool support by giving them a common syntax.
There are now a reasonable collection of tools for JML [19]: some compile dynamic checks
into the code; some provide test cases; and some do static verification. JML does not provide
any help with dealing with aliasing. Müller et al. [61] apply the ideas from Müller’s thesis on
integrating universes to JML to provide a modular frame property, but this is not part of the
language yet. Many of the tools use their own methods, and syntax, for dealing with aliasing.
One notable example of a JML tool is ESC/Java [29]. Interestingly it is not designed to be sound
or complete, but simply to find common errors.

In a similar vein to JML, Spec] of Barnett, Leino, and Schulte [6] allows assertions to be
statically verified. Any assertions that cannot be statically verified will be converted into run-
time checks. Many difficult features, such as invariants, are modelled using additional logical
fields: fields only required for the proof. These allow the invariant to be broken while the field
is false. The invariant is, in effect, this.inv ⇒ I: while the field is true, I must hold, otherwise
it may or may not hold. More complex schemes can be used where the invariant is a stack
of invariants corresponding to each of the superclasses’ invariants [5]. This work encodes the
ideas of object ownership into fields that represent object ownership. Recently, there has been a
proposal to extend this methodology to a concurrent setting [49].

A different, automated method has been taken by Fähndrich and DeLine [36]. They revisit
some work on compiler detected errors known as typestates [81], and have developed an object-
oriented extension. They use typestates as extended invariants: an invariant that has many
different, visible states. Typestates can be viewed as abstract predicates on an object’s state,
in a very similar way to the work developed in Chapters 4 and 6. Fähndrich and DeLine use
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typestates to check for errors in calling protocols. Their logic is considerable less expressive than
the logic developed in this thesis, but their aim was automatic checking, not correctness proofs.
They use the logic for an automatic protocol checker Fugue [28].

There have been a few works based on the component substitution ideas of Morris [59].
In particular, De Boer and Pierik [26, 27, 69, 70] have extended this to an object-oriented
setting and introduce a form of substitution for dynamic allocation of objects, [new/u]. Recently
Berger, Honda, and Yoshida [7] have also developed a logic based on Morris’s work [59]. They
add modal operators about locations, which are used to provide structural reasoning about
observations. The work differs fundamentally from separation logic as it does not have explicit
concepts of resource. Their logic can, however, deal with higher order functions.

Finally, Middelkoop’s recent Master’s thesis [56, 57] also adapts separation logic to reason
about Java. However, his work takes many different design decision to this thesis, and does not
attempt to solve any of the issues surrounding modularity.

The logics outlined above either do not provide support for modularity and framing, or if
they do, then the extensions are separate from the logic. For example, the logical rules might use
information from the type systems for ownership or uniqueness. However, this tight integration
can make it hard to express some dependencies. Consider the following code:

void m() {
if(x == null) {

<code modifying (1)>
} else {

<code modifying (2)>
}

}

Given a standard modifies clause we cannot express the dependency between the state and
what is modified: the method modifies the union of (1) and (2). To then get an accurate
specification we would than have to add assertions that say (1) is unchanged when x is not
null, and (2) is not changed otherwise. However, we have lost much of the advantage of
modifies clauses as the specifications must provide additional framing properties.

By using separation logic we automatically get notions of framing and ownership in the logic.
This provides a single unified logical view of these concepts rather than having to extend our
language with many different ideas. We believe this leads to a clearer logic and to simpler proof
techniques.
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Middleweight Java

In this chapter we define Middleweight Java, MJ, our proposal for an imperative core calculus
for Java. MJ contains the core object-oriented and imperative features of Java, in particular
block structured local state, mutable fields, inheritance and method overiding. MJ does not
contain interfaces, super calls, static fields, reflection, concurrency and inner classes.

It is important to note that MJ is an entirely valid subset of Java: all MJ programs are
literally executable Java programs. An alternative would be to allow extra-language features;
for example, Classic Java uses annotations and let bindings which are not valid Java syntax in
the operational semantics [38]. This is important as we want programmers to reason directly
about this code, without having to consider a separate language.

This chapter is structured as follows. We present MJ’s syntax in §2.1, its type system in
§2.2 and its single-step operational semantics in §2.3. In §2.4 we provide definitions for typing
configurations, and in §2.5 we present a proof of correctness of the type system, and conclude
in §2.6 with a discussion of related Java semantics.

2.1 Syntax

The syntax for MJ programs is given in Figure 2.1. An MJ program is a collection of class
definitions plus a sequence of statements, s, to be evaluated. This sequence corresponds to the
body of the main method in a Java program [41, §12.1.4].

For example, Figure 2.2 presents some typical MJ class definitions. This code defines two
classes: Cell which is a subclass of the Object class, and Recell which is a subclass of Cell.
The Cell class has one field, contents. The constructor simply assigns to the field the value
of the parameter. The Cell class defines a method set, which sets the field to a given value.

Recell objects inherit the contents field from their superclass, and also have another
field, undo. The constructor first calls the superclass’s constructor (which will assign the contents
field) and then sets the undo field to the null object reference. The Recell class definition
overrides the set method of its superclass.

As with Featherweight Java [47], FJ, we insist on a certain amount of syntactic regularity
in class definitions, although this is really just to make the definitions compact. We insist that
all class definitions (1) include a supertype (we assume a distinguished class Object); (2)
include a constructor (for simplicity we only allow a single constructor per class); (3) have a
call to super as the first statement in a constructor method; (4) have a return as the last
statement of every method definition except for void methods and constructor definitions (this

19
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Program
π ::= cd1 . . . cdn; s

Class definition
cd ::= class C extends C{fd cnd md}

Field definition
fd ::= C f ;

Constructor definition
cnd ::= C(C x){super(e); s}

Method definition
md ::= τ m(C x){s}

Return type
τ ::= C | void

Expression
e ::= x Variable

| null Null
| e.f Field access
| (C)e Cast
| pe Promotable expression

Promotable expression
pe ::= e.m(e) Method invocation

| new C(e) Object creation
Statement

s ::= ; No-op
| pe; Promoted expression
| if (e == e){s} else {s} Conditional
| e.f = e; Field assignment
| C x; Local variable declaration
| x = e; Variable assignment
| return e; Return
| {s} Block

Figure 2.1: Syntax for MJ programs

class Cell extends Object{
Object contents;
Cell (Object start){
super();
this.contents = start;

}
void set(Object update){
this.contents = update;

}
}

class Recell extends Cell{
Object undo;
Recell (Object start){
super(start);
this.undo = null;

}
void set(Object update){
this.undo = this.contents;
this.contents = update;

}}

Figure 2.2: Example MJ code: Cell and Recell

constraint is enforced by the type system); and (5) write out field accesses explicitly, even when
the receiver is this.

In what follows, again for compactness, we assume that MJ programs are well-formed, that
is we insist that (1) they do not have duplicate definitions for classes, fields and methods (for
simplicity we do not allow overloaded methods—as overloading is determined statically, over-
loaded methods can be simulated faithfully in MJ); (2) fields are not redefined in subclasses
(we do not allow shadowing of fields); and (3) there are no cyclic class definitions (for example
A extends B and B extends A). We do not formalise these straightforward conditions.
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Returning to the definition in Figure 2.1: a class definition contains a collection of field and
method definitions, and a single constructor definition. A field is defined by a type and a name.
Methods are defined as a return type, a method name, an ordered list of arguments, where an
argument is a variable type and name, and a body. A constructor is defined by the class name,
an ordered list of arguments and a body. There are a number of well-formedness conditions for
a collection of class definitions which are formalised in the next section.

The rest of Figure 2.1 defines MJ expressions and statements. We assume a number of
metavariables: f ranges over field names, m over method names, and x over variables. We
assume that the set of variables includes a distinguished variable, this, which is not permitted
to occur as the name of an argument to a method or on the left of an assignment. In what
follows, we shall find it convenient to write e to denote the possibly empty sequence e1, . . . , en

(and similarly for C, x, etc.). We write s to denote the sequence s1 . . . sn with no commas (and
similarly for fd and md). We abbreviate operations on pairs of sequences in the obvious way,
thus for example we write C x for the sequence C1 x1, . . . , Cn xn where n is the length of C and
x.

The reader will note MJ has two classes of expressions: the class of ‘promotable expressions’,
pe, defines expressions that can be can be promoted to statements by postfixing a semicolon ‘;’;
the other, e, defines the other expression forms. This slightly awkward division is imposed upon
us by our desire to make MJ a valid fragment of Java. Java [41, §14.8] only allows particular
expression forms to be promoted to statements by postfixing a semicolon. This leads to some
rather strange syntactic surprises: for example, x++; is a valid statement, but (x++); is not!

MJ includes the essential imperative features of Java. Thus we have fields, which can be
both accessed and assigned to, as well as variables, which can be locally declared and assigned.
As with Java, MJ supports block-structure; consider the following valid MJ code fragment.

if(var1 == var2) { ; }
else {

Object temp;
temp = var1;
var1 = var2;
var2 = temp;

}

This code compares two variables, var1 and var2. If they are not equal then it creates a
new locally scoped variable, temp, and uses this to swap the values of the two variables. At the
end of the block, temp will no longer be in scope and will be removed from the variable stack.

2.2 Types

As with FJ, for simplicity, MJ does not have primitive types, sometimes called base types. Thus
all well-typed expressions are of a class type, C. All well-typed statements are of type void,
except for the statement form return e; which has the type of e, i.e. a class type. We use τ to
range over valid statement types. The type of a method is a pair, written C → τ , where C is a
sequence of argument class types and τ is the return type (if a method does not return anything,
its return type is void). We use µ to range over method types.

Expression types
C a valid class name, including a distinguished class Object

Statement types
τ ::= void | C

Method types
µ ::= C1, . . . , Cn → τ
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Java, and MJ, class definitions contain both typing information and code. This typing infor-
mation is extracted and used to typecheck the code. Thus before presenting the typechecking
rules we need to specify how this typing information is induced by MJ code.

This typing information consists of two parts: The subclassing relation, and a class table
(which stores the types associated with classes). First let us consider the subclassing relation.
Recall that in MJ we restrict class declarations so that they must give the name of class that they
are extending, even if this class is the Object class. We forbid the Object class being defined
in the program.

A well-formed program, π, then induces an immediate subclassing relation, which we write
≺1.1 We define the subclassing relation, ≺, as the reflexive, transitive closure of this immediate
subclassing relation. This can be defined formally as follows.

TR-IMMEDIATE
class C1 extends C2{. . .} ∈ π

C1 ≺1 C2

TR-TRANSITIVE
C1 ≺ C2 C2 ≺ C3

C1 ≺ C3

TR-EXTENDS
C1 ≺1 C2

C1 ≺ C2

TR-REFLEXIVE C ≺ C

A well-formed program π also induces a class table, δπ. As the program is fixed, we will
simply write this as δ. A class table, δ, is actually a triple, (δM, δC, δF), which provides typing
information about the methods, constructors, and fields, respectively. δM is a partial map from
a class name to a partial map from a method name to that method’s type. Thus δM(C)(m) is
intended to denote the type of method m in class C. δC is a partial map from a class name to
the type of that class’s constructor’s arguments. δF is a partial map from a class name to a map
from a field name to a type. Thus δF(C)(f) is intended to denote the type of f in class C. The
details of how a well-formed program π induces a class table δ are given below.

Notation: δ∆
M and δ∆

F define the types of the methods and fields that each class defines,
respectively. δM and δF are the types of the methods and fields a class defines and inherits,
respectively.

1This relation is also a partial function that uniquely defines all non-Object classes’ immediate superclass.
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Immediate definitions

δC(C) def= C where cnd = C(Cx){. . .}
δ∆

M (C) def= {m 7→ (C → C ′′) | C ′′m(Cx){. . .} ∈ md}
δ∆

F (C) def= {f 7→ C ′′ | C ′′f ;∈ fd}
where class C extends C ′{fd cnd md} ∈ π

Inherited definitions

δM(C)(m) def=

{
δ∆

M (C)(m) δ∆
M (C)(m) defined

δM(C ′)(m) otherwise

δF(C)(f) def=

{
δ∆

F (C)(m) δ∆
F (C)(m) defined

δF(C ′)(m) otherwise
where C ≺1 C ′

Note: The constructors are not inherited.

Until now we have assumed that the class definitions are well-formed. Now let us define
formally well-formedness of class definitions. First we will find it useful to define when a type
(either a method type or statement type) is well-formed with respect to a class table. This is
written as a judgement δ ` µ ok and δ ` τ ok which mean that µ and τ are a valid type given
the class table δ, respectively. (We define dom(δ) to be the domain of δF, δM or δC, which are all
equal.)

T-CTYPE
C ∈ dom(δ)

δ ` C ok
T-VTYPE δ ` void ok

T-MTYPE
δ ` C1 ok . . . δ ` Cn ok δ ` τ ok

δ ` C1, . . . , Cn → τ ok

Now we define formally the judgement for well-formed class tables, which is written ` δ ok.
This essentially checks two things: firstly that all types are valid given the classes defined in the
class table, and secondly that if a method is overridden then it is done so at the same type. The
judgements are given as follows
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T-FIELDSOK
∀f ∈ dom(δ∆

F (C)).( δ ` δ∆
F (C)(f) ok C ≺1 C ′ δF(C ′)(f) undefined )

δ `C δF ok

T-CONSOK
∀C ′ ∈ δC(C). δ ` C ′ ok

δ `C δC ok

T-METHOK
δ ` µ ok δm(C)(m) = µ C ≺1 C ′ m ∈ dom(δm(C ′)) ⇒ δm(C ′)(m) = µ

δ ` C.m ok

T-METHSOK
∀m ∈ dom(δM(C)). δ ` C.m ok

δ `C δM ok
T-CLASSOK

∀C ∈ dom(δ).( δ `C δF ok δ `C δM ok δ `C δC ok C ≺1 C ′ δ ` C ′ ok )

` δ ok

A typing environment, γ, is a map from program variables to expression types. We write
γ, x : C to denote the map γ disjointly extended so that x maps to C. We write δ ` γ ok to mean
that the types in the image of the typing environment are well-formed with respect to the class
table, δ.

We can now define the typing rules for expressions and promotable expressions. A typing
judgement for a given MJ expression, e, is written δ; γ ` e : C where δ is a class table and γ is a
typing environment. These rules are given in Figure 2.3. Our treatment of casting is the same
as in FJ [47]—thus we include a case for ‘stupid’ casting, where the target class is completely
unrelated to the subject class. This is needed to handle the case where an expression without
stupid casts may reduce to one containing a stupid cast. Consider the following expression,
taken from [47], where classes A and B are both defined to be subclasses of the Object class,
but are otherwise unrelated.

(A)(Object)new B()

According to the Java Language Specification [41, §15.16], this is well-typed, but consider
its operational behaviour: a B object is created and is dynamically upcast to Object (which has
no dynamic effect). At this point we wish to downcast the B object to A—a ‘stupid’ cast! Thus if
we wish to maintain a subject reduction theorem (that the result of a single step reduction of a
well-typed program is also a well-typed program) we need to include the TE-STUPIDCAST rule.
For the same reason, we also require two rules for typing an if statement. Java [41, §15.21.2]
enforces statically that when comparing objects, one object should be a subclass of the other.
However this is not preserved by the dynamics. Consider again the unrelated classes A and
B. The following code fragment is well-typed but at runtime will end up comparing objects of
unrelated classes.

if ((Object)new A() == (Object)new B()) { ... } else {...};

Definition 2.2.1. A valid Java/MJ program is one that does not have occurrences of TE-STUPIDCAST

or TS-STUPIDIF in its typing derivation.

A typing judgement for a sequence of statements, s, is written δ; γ ` s : τ where δ is a class
table and γ is a typing environment. We begin by presenting rules for a singleton sequence. As
we noted earlier, statements in Java can have a non-void type (see rule TS-RETURN). The rules
for forming these typing judgements are given in Figure 2.4.
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TE-VAR
δ ` γ ok ` δ ok

δ; γ, x : C ` x : C

TE-NULL
δ ` C ok δ ` γ ok ` δ ok

δ; γ ` null : C

TE-FIELDACCESS
δ; γ ` e : C2 δF(C2)(f) = C1

δ; γ ` e.f : C1

TE-UPCAST
δ; γ ` e : C2 δ ` C1 ok

δ; γ ` (C1)e : C1

provided C2 ≺ C1

TE-DOWNCAST
δ; γ ` e : C2 δ ` C1 ok

δ; γ ` (C1)e : C1

provided C1 ≺ C2

TE-STUPIDCAST
δ; γ ` e : C2 δ ` C1 ok

δ; γ ` (C1)e : C1

provided C2 ⊀ C1 ∧ C1 ⊀ C2

TE-METHOD
δ; γ ` e : C ′ δ; γ ` e1 : C1 . . . δ; γ ` en : Cn

δ; γ ` e.m(e1, . . . , en) : C
provided δM(C ′)(m) = C ′

1, . . . , C
′
n → C

∧ C1 ≺ C ′
1 . . . Cn ≺ C ′

n

TE-NEW
δ; γ ` e1 : C ′

1 . . . δ; γ ` en : C ′
n

δ; γ ` new C(e1, . . . , en) : C
provided δC(C) = C1, . . . , Cn

∧ C ′
1 ≺ C1 . . . C ′

n ≺ Cn

Figure 2.3: Typing rules for expressions

Java allows variable declarations to occur at any point in a block. To handle this we introduce
two typing rules for sequencing: TS-INTRO for the case where the first statement in the sequence
is a variable declaration, and TS-SEQ for the other cases. An alternative approach would be to
force each statement to return the new typing environment. We feel that our presentation is
simpler.

Finally in Figure 2.4 we define the typing of the super call in the constructor of a class. A call
to the empty constructor in a class that directly extends Object is always valid, and otherwise
it must be a valid call to the constructor of the parent class. The expressions evaluated before
this call are not allowed to reference this [41, §8.8.5.1]. This is because it is not a validly
initialised object until the parent’s constructor has been called.

Note: We could remove the subtyping from the individual rules and add a single subtype rule.
However this would allow implicit casting where Java does not.

Before we give the typing rules involving methods we first define some useful auxiliary
functions for accessing the bodies of constructors and methods.
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TS-NOOP
` δ ok δ ` γ ok

δ; γ `; : void

TS-PE
δ; γ ` pe : τ

δ; γ ` pe; : void

TS-IF
δ; γ ` s1 : void δ; γ ` s2 : void δ; γ ` e1 : C ′ δ; γ ` e2 : C ′′

δ; γ ` if (e1 == e2){s1} else {s2} : void
provided C ′′ ≺ C ′ ∨ C ′ ≺ C ′′

TS-STUPIDIF
δ; γ ` s1 : void δ; γ ` s2 : void δ; γ ` e1 : C ′ δ; γ ` e2 : C ′′

δ; γ ` if (e1 == e2){s1} else {s2} : void
provided C ′′ ⊀ C ′ ∧ C ′ ⊀ C ′′

TS-FIELDWRITE
δ; γ ` e1 : C1 δ; γ ` e2 : C2 δF(C1)(f) = C3

δ; γ ` e1.f = e2; : void
provided C2 ≺ C3

TS-VARWRITE
δ; γ ` x : C δ; γ ` e : C ′

δ; γ ` x = e; : void
provided C ′ ≺ C ∧ x 6= this

TS-RETURN
δ; γ ` e : C

δ; γ ` return e; : C

TS-BLOCK
δ; γ ` s1 . . . sn : void

δ; γ ` {s1 . . . sn} : void

TS-INTRO
δ; γ, x : C ` s1 . . . sn : τ

δ; γ ` C x; s1 . . . sn : τ
provided x /∈ dom(γ)

TS-SEQ
δ; γ ` s1 : void δ; γ ` s2 . . . sn : τ

δ; γ ` s1 s2 . . . sn : τ
provided s1 6= C x;

T-COBJECT
C ≺1 Object

δ; γ,this : C ` super() : void

T-CSUPER
δ; γ′ ` e : C ′

δ; γ ` super(e); : void
provided γ(this) = C ∧ γ = γ′ ] {this : C} ∧ δC(C ′) = C

∧ C ≺1 C ′ ∧ C ′ ≺ C

Figure 2.4: Typing rules for statements
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T-MDEFN
δ; {this : C, x : C} ` s : τ

δ ` mbody(C,m) ok
provided mbody(C,m) = (x, s) ∧ δM(C)(m) = (C → τ)

T-MBODYS
∀m ∈ δM(C). δ ` mbody(C,m) ok

δ ` C mok

T-CDEFN
δ;this : C, x : C ` super(e); : void δ;this : C, x : C ` s : void

δ ` C cok
provided δC(C) = C ∧ cnbody(C) = (x,super(e); s)

T-PROGDEF
∀C ∈ δ.( δ ` C cok δ ` C mok )

δ ` π ok

Figure 2.5: Typing MJ programs

Method Body mbody(C,m) def=

{
(x, s) md i = C ′′m(Cx){s}
mbody(C ′,m) m /∈ md1 . . .mdn

where class C extends C ′{fd cnd md1 . . .mdn} ∈ π

Constructor Body cnbody(C) def= (x, s)
where class C extends C ′{fd C(C ′′ x){s}md} ∈ π

We can now formalise the notion of a program being well-typed with respect to its class table.
This is denoted by the judgement δ ` π ok. Informally this involves checking that each method
body and constructor body is well-typed and that the type deduced matches that contained in
δ. We introduce two new judgement forms: δ ` C mok denotes that the methods of class C are
well-typed, and δ ` C cok denotes that the constructor method of class C is well-typed. The
rules for forming these judgements are given in Figure 2.5.

2.3 Operational semantics

We define the operational semantics of MJ in terms of transitions between configurations. A
configuration is a four-tuple, containing the following information:

1. Heap: A pair of finite partial functions, the first maps object identifiers, oids, to class
names, and the second maps pairs of oids and fields to values (oids and null).2

2. Variable Stack: This essentially maps variable names to oids. To handle static block-
structured scoping it is implemented as a list of lists of partial functions from variables to
values. (This is explained in more detail later.) We use ◦ to denote stack cons.

3. Term: The program (a closed frame) to be evaluated.

4. Frame stack: This is essentially the program context in which the term is currently being
evaluated.

This is defined formally in Figure 2.6. CF is a closed frame (i.e. with no hole) and OF is an
open frame (i.e. requires an expression to be substituted in for the hole). Additionally we have

2This is different to the original design of MJ, in [9]. The changes are to streamline the presentation in the later
chapters, see §3.2.
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Configuration
config ::= (H,VS ,CF ,FS )

| (H,VS ,EF ,FS )
Frame stack

FS ::= F ◦ FS | []
Frame

F ::= CF | OF
Closed frame

CF ::= s | return e; | { }
| e | super(e);

Open frame
OF ::= if (• == e){s} else {s}

| if (v == •){s} else {s}
| •.f | • .f = e;
| | v.f = •; | (C)•
| v.m(v, •, e) | • .m(e)
| new C(v, •, e)
| super(v, •, e);
| x = •; | return •;

Exception frame
EF ::= NPE | CCE

Values
v ::= null | o

Variable stack
VS ::= MS ◦VS | []

Method scope
MS ::= BS ◦MS | []
Block scope
BS ::= is a finite partial function from variables

to pairs of expression types and values
Heap

H ::= (Hv,Ht)
Ht ::= is a finite partial function from oids to

class names
Hv ::= is a finite partial function from oids

paired with field names to values

Figure 2.6: Syntax for the MJ operational semantics

frames that correspond to exceptional states, described in §2.3.2. We use H(o) as a shorthand
for applying the second function in H to o, and H(o, f) for applying the first to (o, f). We use
the obvious shorthands for dom and function update, for example o ∈ dom(H) means o is in the
domain of H ’s first function.

In the following example we demonstrate how the variable scopes correctly model the block
structure scoping of Java. The left hand side gives the source code and the right the contents of
the variable stack.

Note: We could use only a single level of list, but this complicates other issues, as we can define
a variable to have different types in two different non-nested scopes. Also we could collapse
the third and fourth elements of a configuration and consider only non-empty stacks: we would
simply be replacing a comma with a cons.

1: B m(A a) {
2: B r;
3: if(this.x == a){
4: r = a;
5: } else {
6: A t;
7: t = a.m1();
8: r = a.m2(t,t);
9: }

10: return r;
11: }

← VS
← ({a 7→ (A, v1)} ◦ []) ◦VS
← ({r 7→ (B,null),a 7→ (A, v1)} ◦ []) ◦VS

← ({} ◦ {r 7→ (B,null),a 7→ (A, v1)} ◦ []) ◦VS
← ({t 7→ (A,null)} ◦ {r 7→ (B,null),a 7→ (A, v1)} ◦ []) ◦VS
← ({t 7→ (A, v3} ◦ {r 7→ (B,null),a 7→ (A, v2)} ◦ []) ◦VS
← ({t 7→ (A, v3} ◦ {r 7→ (B, v4),a 7→ (A, v2)} ◦ []) ◦VS
← ({r 7→ (B, v4),a 7→ (A, v2)} ◦ []) ◦VS

← VS

Before calling this method, let us assume we have a variable scope, VS . A method call should not
affect any variables in the current scopes, so we create a new method scope, {a 7→ (A, v1)} ◦ [],
on entry to the method. This scope consists of a single block scope that points the argument a
at the value v1 with a type annotation of A. On line 2 the block scope is extended to contain
the new variable r. On line 5 we assumed that this.x 6= a and enter into a new block. This
has the effect to adding a new empty block scope, {}, into the current method scope. On line
6 this new scope is extended to contain the variable t. Notice how it is added to the current
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top scope, as was the variable r. Updates can, however, occur to block scopes anywhere in the
current method scope. This can be seen on line 8 where r is updated in the enclosing scope. On
line 9 the block scope is disposed of, and hence t cannot be accessed by the statement on line
10.

We find it useful to define two operations on a variable stack, VS , in addition to the usual
list operations. The first, VS (x), evaluates a variable, x, in the top method scope, MS (in the
top list of block scopes). This is a partial function and is only defined if the variable name is in
the scope. The second, VS [x 7→ v], updates the top method scope, MS , with the value v for the
variable x. Again this is a partial function and is undefined if the variable is not in the scope.

((BS ◦MS ) ◦VS )(x) def=

{
BS (x) x ∈ dom(BS )
(MS ◦VS )(x) otherwise

([] ◦VS )(x) def= [](x) def= undefined

((BS ◦MS ) ◦VS )[x 7→ v] def=

{
(BS [x 7→ (v, C)] ◦MS ) ◦VS BS (x) = ( , C)
BS ◦ ((MS ◦VS )[x 7→ v]) otherwise

([] ◦VS )[x 7→ v] def= [][x 7→ v] def= undefined

where we treat

BS ◦ (MS ◦VS ) = (BS ◦MS ) ◦VS
BS ◦ undefined = undefined

2.3.1 Reductions

This section defines the transition rules that correspond to meaningful computation steps. In
spite of the complexity of MJ, there are only seventeen rules, one for each syntactic constructor.

We begin by giving the transition rules for accessing, assigning values to, and declaring vari-
ables. Notice that the side condition in the E-VARWRITE rule ensures that we can only write to
variables declared in the current method scope. The E-VARINTRO rule follows Java’s restriction
that a variable declaration cannot hide an earlier declaration within the current method scope.3

(Note also how the rule defines the binding for the new variable in the current block scope.)

E-VARACCESS (H,VS , x,FS ) → (H,VS , v,FS )
provided VS (x) = v

E-VARWRITE (H,VS , x = v; ,FS ) → (H,VS ′, ; ,FS )
provided VS ′ = VS [x 7→ v]

E-VARINTRO (H, (BS ◦MS ) ◦VS , C x; ,FS ) → (H, (BS ′ ◦MS ) ◦VS , ; ,FS )
provided x /∈ dom(BS ◦MS ) ∧ BS ′ = BS [x 7→ (null, C)]

Now we consider the rules for constructing and removing scopes. The first rule E-BLOCKINTRO

introduces a new block scope, and leaves a ‘marker’ token, {}, on the frame stack. The second
E-BLOCKELIM removes the token and the top block scope. The final rule E-RETURN leaves the
scope of a method, by removing the top scope, MS .

3This sort of variable hiding is, in contrast, common in functional languages such as SML.
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E-BLOCKINTRO (H,MS ◦VS , {s},FS ) → (H, ({} ◦MS ) ◦VS , s, ({ }) ◦ FS )

E-BLOCKELIM (H, (BS ◦MS ) ◦VS , { },FS ) → (H,MS ◦VS , ; ,FS )

E-RETURN (H,MS ◦VS ,return v; ,FS ) → (H,VS , v,FS )

Next we give the transition rules for the conditional expression. One should note that the
resulting term of the transition is a block.

E-IF1 (H,VS , (if (v1 == v2){s1} else {s2}; ),FS ) → (H,VS , {s1},FS )
provided v1 = v2

E-IF2 (H,VS , (if (v1 == v2){s1} else {s2}; ),FS ) → (H,VS , {s2},FS )
provided v1 6= v2

Next we consider the rules dealing with objects. First let us define the transition rule dealing
with field access and assignment, as they are reasonably straightforward.

E-FIELDACCESS (H,VS , o.f,FS ) → (H,VS , v,FS )
provided (o, f) ∈ dom(H) ∧ H(o, f) = v

E-FIELDWRITE (H,VS , o.f = v; ,FS ) → (H ′,VS , ; ,FS )
provided (o, f) ∈ dom(H) ∧ H ′ = H[(o, f) 7→ v]

Now we consider the rules dealing with casting of objects. Rule E-CAST simply ensures that
the cast is valid (if it is not, the program should enter an error state—this is covered in §2.3.2).
Rule E-NULLCAST simply ignores any cast of a null object reference.

E-CAST (H,VS , ((C1)o),FS ) → (H,VS , o,FS )
provided H(o) = C2 ∧ C2 ≺ C1

E-NULLCAST (H,VS , ((C)null),FS ) → (H,VS ,null,FS )

Let us consider the transition rule involving the creation of objects. The E-NEW rule creates
a fresh oid, o, and extends the heap with the new heap object consisting of the class C and sets
all the fields to null. As we are executing a new method (the constructor), a new method
scope is created and added on to the variable stack. This method scope initially consists of just
one block scope, that consists of bindings for the method parameters, and also a binding for the
this identifier. The method body s is then the next term to be executed, but importantly the
continuation return o; is placed on the frame stack. This is because the result of this statement
is the oid of the object, and the method scope is removed.

E-NEW (H,VS ,new C(v),FS ) → (H ′, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided H ′ = H[o 7→ C][(o, f) 7→ null] ∧ δC(C) = C

∧ cnbody(C) = (x, s) ∧ o /∈ dom(H)
∧ BS = {this 7→ (o, C), x 7→ (v, C)}

Next we consider the transition rule for the super statement, which occurs inside construc-
tor methods. This rule is basically the same as the previous, without the construction of the
new object in the heap. It inspects the stack to determine the type of this, and hence which
constuctor body the super call refers to.
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E-SUPER (H,VS ,super(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided VS (this) = (o, C) ∧ C ≺1 C ′

∧ BS = {this 7→ (o, C ′), x 7→ (v, C)} ∧ δC(C) = C
∧ cnbody(C ′) = (x, s)

Next we can give the transition rule for method invocation. Invocation is relatively straight-
forward: note how a new method scope is created, consisting of just the bindings for the method
parameters and the this identifier. The reader should note the method body is selected by the
dynamic, or run-time, type of the object, not its static type. We require two rules as a method
returning a void type requires an addition to the stack to clear the new method scope once the
method has completed. Recall that in E-METHOD rule, the last statement in the sequence s will
be a return if the method is well typed.

E-METHOD (H,VS , o.m(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return e; ) ◦ FS )
provided mbody(C,m) = (x, sreturn e; ) ∧ H(o) = C

∧ BS = {this 7→ (o, C), x 7→ (v, C)} ∧ δM(C)(m) = C → C ′

E-METHODVOID (H,VS , o.m(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided H(o) = C ∧ δM(C)(m) = C → void

∧ mbody(C,m) = (x, s) ∧ BS = {this 7→ (o, C), x 7→ (v, C)}

Finally we have two reductions rules for fully reduced terms. The first rule deals with com-
pleted statements, and the second for evaluated expressions.

E-SKIP (H,VS , ; , F ◦ FS ) → (H,VS , F,FS )

E-SUB (H,VS , v, F ◦ FS ) → (H,VS , F [v],FS )

To assist the reader, all the reduction rules are repeated in full in Figure 2.7. There are a
number of other reduction rules, which simply decompose terms. These rules essentially embody
the order of evaluation, and are given in Figure 2.8.

2.3.2 Error states

A number of expressions will lead us to a predictable error state. These are errors that are
allowed at run-time as they are dynamically checked for by the Java Virtual Machine. Java’s
type system is not capable of removing these errors statically. The two errors that can be gen-
erated, in MJ, are NullPointerException, written here NPE [41, §15.11.1,§15.12.4.4], and
ClassCastException [41, §5.5], CCE.

E-NULLFIELD (H,VS ,null.f,FS ) → (H,VS , NPE,FS )

E-NULLWRITE (H,VS ,null.f = v,FS ) → (H,VS , NPE,FS )

E-NULLMETHOD (H,VS ,null.m(v1, . . . , vn),FS ) → (H,VS , NPE,FS )

E-INVCAST (H,VS , (C)o,FS ) → (H,VS , CCE,FS )
provided H(o) = (C ′, F)

∧ C ′ ⊀ C

Definition 2.3.1 (Terminal configuration). A configuration is said to be completed if it is of the
form (H,VS , v, []) or (H,VS , ; , []), and is an exception if it is of the form (H,VS ,EF ,FS ). A
configuration is said to be terminal if it is completed or an exception. We call a configuration
stuck if it cannot reduce, that is config is stuck iff ¬∃config ′.config → config ′.
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E-VARACCESS (H,VS , x,FS ) → (H,VS , v,FS )
provided VS (x) = v

E-VARWRITE (H,VS , x = v; ,FS ) → (H,VS ′, ; ,FS )
provided VS ′ = VS [x 7→ v]

E-VARINTRO (H, (BS ◦MS ) ◦VS , C x; ,FS ) → (H, (BS ′ ◦MS ) ◦VS , ; ,FS )
provided x /∈ dom(BS ◦MS ) ∧ BS ′ = BS [x 7→ (null, C)]

E-BLOCKINTRO (H,MS ◦VS , {s},FS ) → (H, ({} ◦MS ) ◦VS , s, ({ }) ◦ FS )

E-BLOCKELIM (H, (BS ◦MS ) ◦VS , { },FS ) → (H,MS ◦VS , ; ,FS )

E-RETURN (H,MS ◦VS ,return v; ,FS ) → (H,VS , v,FS )

E-IF1 (H,VS , (if (v1 == v2){s1} else {s2}; ),FS ) → (H,VS , {s1},FS )
provided v1 = v2

E-IF2 (H,VS , (if (v1 == v2){s1} else {s2}; ),FS ) → (H,VS , {s2},FS )
provided v1 6= v2

E-FIELDACCESS (H,VS , o.f,FS ) → (H,VS , v,FS )
provided (o, f) ∈ dom(H) ∧ H(o, f) = v

E-FIELDWRITE (H,VS , o.f = v; ,FS ) → (H ′,VS , ; ,FS )
provided (o, f) ∈ dom(H) ∧ H ′ = H[(o, f) 7→ v]

E-CAST (H,VS , ((C1)o),FS ) → (H,VS , o,FS )
provided H(o) = C2 ∧ C2 ≺ C1

E-NULLCAST (H,VS , ((C)null),FS ) → (H,VS ,null,FS )

E-NEW (H,VS ,new C(v),FS ) → (H ′, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided H ′ = H[o 7→ C][(o, f) 7→ null] ∧ δC(C) = C

∧ cnbody(C) = (x, s) ∧ o /∈ dom(H)
∧ BS = {this 7→ (o, C), x 7→ (v, C)}

E-SUPER (H,VS ,super(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided VS (this) = (o, C) ∧ C ≺1 C ′

∧ BS = {this 7→ (o, C ′), x 7→ (v, C)} ∧ δC(C) = C
∧ cnbody(C ′) = (x, s)

E-METHOD (H,VS , o.m(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return e; ) ◦ FS )
provided mbody(C,m) = (x, sreturn e; ) ∧ H(o) = C

∧ BS = {this 7→ (o, C), x 7→ (v, C)} ∧ δM(C)(m) = C → C ′

E-METHODVOID (H,VS , o.m(v),FS ) → (H, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
provided H(o) = C ∧ δM(C)(m) = C → void

∧ mbody(C,m) = (x, s) ∧ BS = {this 7→ (o, C), x 7→ (v, C)}

E-SKIP (H,VS , ; , F ◦ FS ) → (H,VS , F,FS )

E-SUB (H,VS , v, F ◦ FS ) → (H,VS , F [v],FS )

Figure 2.7: MJ reduction rules
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EC-SEQ (H,VS , s1 s2 . . . sn,FS ) → (H,VS , s1, (s2 . . . sn) ◦ FS )

EC-RETURN
(H,MS ◦VS ,return e; ,FS )
→ (H,MS ◦VS , e, (return •; ) ◦ FS )

EC-EXPSTATE (H,VS , e; ,FS ) → (H,VS , e,FS )

EC-IF1
(H,VS ,if (e1 == e2){s1} else {s2}; ,FS )
→ (H,VS , e1, (if (• == e2){s1} else {s2}; ) ◦ FS )

EC-IF2
(H,VS ,if (v1 == e2){s1} else {s2}; ,FS )
→ (H,VS , e2, (if (v1 == •){s1} else {s2}; ) ◦ FS )

EC-FIELDACCESS (H,VS , e.f,FS ) → (H,VS , e, (•.f) ◦ FS )

EC-CAST (H,VS , (C)e,FS ) → (H,VS , e, ((C)•) ◦ FS )

EC-FIELDWRITE1 (H,VS , e1.f = e2; ,FS ) → (H,VS , e1, (•.f = e2; ) ◦ FS )

EC-FIELDWRITE2 (H,VS , v1.f = e2; ,FS ) → (H,VS , e2, (v1.f = •; ) ◦ FS )

EC-VARWRITE (H,VS , x = e; ,FS ) → (H,VS , e, (x = •; ) ◦ FS )

EC-NEW (H,VS ,new C(v, e, e),FS ) → (H,VS , e, (new C(v, •, e)) ◦ FS )

EC-SUPER (H,VS ,super(v, e, e),FS ) → (H,VS , e, (super(v, •, e)) ◦ FS )

EC-METHOD1 (H,VS , e.m(e),FS ) → (H, e, (•.m(e)) ◦ FS )

EC-METHOD2 (H,VS , v.m(v, e, e),FS ) → (H,VS , e, (v.m(v, •, e)) ◦ FS )

Figure 2.8: MJ syntax decomposition reduction rules

2.3.3 Example execution

To help the reader understand our operational semantics, in this section we will consider a
simple code fragment and see how the operational semantics captures its dynamic behaviour.

Consider the following MJ code whose effect is to swap the contents of two variables var1
and var2, using a temporary variable t.

if(var1 == var2) {
;

} else {
Object t;
t = var1;
var1 = var2;
var2 = t;

}

We consider its execution in a configuration where MS maps var1 to a value, say v1, and var2
to a value, say v2.

(H,MS ◦VS ,if (var1 == var2){; } else {. . .},FS)
→ (H,MS ◦VS ,var1, (if (• == var2){; } else {. . .}) ◦ FS)
→ (H,MS ◦VS , v1, (if (• == var2){; } else {. . .}) ◦ FS)
→ (H,MS ◦VS , (if (v1 == var2){; } else {. . .}),FS)
→ (H,MS ◦VS ,var2, (if (v1 == •){; } else {. . .}) ◦ FS)
→ (H,MS ◦VS , v2, (if (v1 == •){; } else {. . .}) ◦ FS)
→ (H,MS ◦VS , (if (v1 == v2){; } else {. . .}),FS)

At this point there are two possibilities: we will consider the case where v1 6= v2.

Note: For compactness, we use O for Object.
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→ (H, ({}) ◦MS ◦VS ,O t; . . . , ({}) ◦ FS)
→ (H, ({}) ◦MS ◦VS ,O t; , (t = var1; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (null,O}) ◦MS ◦VS , ; , (t = var1; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (null,O)}) ◦MS ◦VS , (t = var1; . . .), ({}) ◦ FS)
→ (H, ({t 7→ (null,O)}) ◦MS ◦VS ,t = var1; , (var1 = var2; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (null,O)}) ◦MS ◦VS ,var1, (t = •; ) ◦ (var1 = var2; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (null,O)}) ◦MS ◦VS , v1, (t = •; ) ◦ (var1 = var2; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (null,O)}) ◦MS ◦VS ,t = v1; , (var1 = var2; . . .) ◦ ({}) ◦ FS)

At this point we update the variable stack; note how the update does not change the type.

→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS , ; , (var1 = var2; . . .) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS ,var1 = var2; . . . , ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS ,var1 = var2; , (var2 = t; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS ,var2,var1 = •; ◦(var2 = t; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS , v2,var1 = •; ◦(var2 = t; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ◦VS ,var1 = v2; , (var2 = t; ) ◦ ({}) ◦ FS)

Let MS ′ be a variable scope which is the same as MS except that var1 is mapped to v2 instead
of v1.

→ (H, ({t 7→ (v1,O)}) ◦MS ′ ◦VS , ; , (var2 = t; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ′ ◦VS ,var2 = t; , ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ′ ◦VS ,t, (var2 = •; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ′ ◦VS , v1, (var2 = •; ) ◦ ({}) ◦ FS)
→ (H, ({t 7→ (v1,O)}) ◦MS ′ ◦VS ,var2 = v1; , ({}) ◦ FS)

Let MS ′′ be a variable scope which is the same as MS ′ except that var2 is mapped to v1.
→ (H, ({t 7→ (v1,O)}) ◦MS ′′ ◦VS , ; , ({}) ◦ FS )
→ (H, ({t 7→ (v1,O)}) ◦MS ′′ ◦VS , {},FS )
→ (H,MS ′′ ◦VS , ; ,FS )

At this point the execution of the if statement has been completed and its temporary variable,
temp has been removed from the scope. The variable stack has had the values of var1 and
var2 correctly swapped.

2.4 Well-typed configuration

To prove type soundness for MJ, we need to extend our typing rules from expressions and
statements to configurations. We write δ ` (H,VS ,CF ,FS ) : τ to mean (H,VS ,CF ,FS ) is well-
typed with respect to δ and will result in a value of type τ (or a valid error state). We break this
into three properties, written: δ ` H ok, δ,H ` VS ok and δ,H,VS ` CF ◦ FS : void→ τ .

The first property, written δ ` H ok, ensures that every field points to a valid object or null,
and all the types mentioned in the heap are in δ.

TH-OBJECTTYPED
H(o) = C C ≺ τ δ ` C ok

δ,H ` o : τ

TH-NULLTYPED
δ ` C ok

δ,H ` null : C

TH-OBJECTOK
H(o) = (C) ∀f ∈ dom(δF(C)). δ,H ` H(o, f) : δF(C)(f)

δ,H ` o ok

TH-HEAPOK
∀o ∈ dom(H). δ,H ` o ok

δ ` H ok
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The second property, written δ,H ` VS ok, constrains every variable to be either a valid
object identifier, or null.

TV-EMPTY δ,H ` [] ok

TV-MSEMPTY
δ,H ` VS ok

δ,H ` [] ◦VS ok

TV-STACK
δ,H ` MS ◦VS ok ∀(v, C) ∈ cod(BS ). δ, H ` v : C

δ,H ` (BS ◦MS ) ◦VS ok

We generalise the final property to type arbitrary framestacks, written δ,H,VS ` FS : τ →
τ ′. It types each frame in the context formed from the heap and variable stack. This requires us
to define a collapsing of the context to form a typing environment. We must extend the typing
environment to map, in addition to variables, object identifiers, o, and holes, •, to values. The
collapsing function is defined as follows.

heaptype((Ht,Hv)) def= Ht

stacktype((BS ◦MS )) def= {x 7→ C | (x 7→ C, v) ∈ BS} ] stacktype(MS )

stacktype([] ◦VS ) def= ∅
context(H,MS ◦VS ) def= heaptype(H) ] stacktype(MS )

The syntax of expressions in framestacks is extended to contain both object identifiers and
holes. Hence we require two additional expression typing rules.

TE-OID
o : C ∈ γ δ ` γ ok ` δ ok

δ; γ ` o : C

TE-HOLE
• : C ∈ γ δ ` γ ok ` δ ok

δ; γ ` • : C

We can now define frame stack typing as shown in Figure 2.9. We have the obvious typing
for an empty stack. We require special typing rules for the frames that alter variable scoping:
TF-STACKBLOCK, TF-STACKMETHOD, TF-STACKMETHOD2 and TF-STACKINTRO. We also require
a rule, TF-SEQUENCE, for unrolling sequences because the sequence can contain items to alter
scoping. We then require two rules for typing the rest of the frames; one for frames that require
an argument, called TF-STACKOPEN, and one for frames that do not, called TF-STACKCLOSED.

2.5 Type soundness

Our main technical contribution in this chapter is a proof of type soundness of the MJ type
system. In order to prove correctness we first prove two useful propositions in the style of Wright
and Felleisen[86]. The first proposition states that any well typed non-terminal configuration
can make a reduction step.

Proposition 2.5.1 (Progress). If config is not terminal and δ ` config : τ then
∃config ′.config → config ′ .

Proof. By case analysis of CF . By considering all well typed configurations, we can show how
each term can reduce.
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TF-STACKEMPTY δ,H, (BS ◦ []) ◦ [] ` [] : τ → τ

TF-ERROR δ,H,VS ` EF ◦ FS : τ → τ ′

TF-STACKBLOCK
δ,H,MS ◦VS ` FS : void→ τ

δ,H, (BS ◦MS ) ◦VS ` ({}) ◦ FS : τ ′ → τ

TF-STACKMETHOD
δ,H,VS ` FS : τ → τ ′

δ,H, (BS ◦ []) ◦VS ` (return •; ) ◦ FS : τ → τ ′

TF-STACKMETHOD2
δ; context(H,MS ◦VS ) ` e : τ H,VS ` FS : τ → τ ′

δ,H,MS ◦VS ` (return e; ) ◦ FS : τ ′′ → τ ′

TF-STACKINTRO
δ,H, (BS [x 7→ (null, C)] ◦MS ) ◦VS ` FS : void→ τ

H, (BS ◦MS ) ◦VS ` (C x; ) ◦ FS : τ ′ → τ
provided x /∈ dom(BS ◦MS )

TF-SEQUENCE
δ,H,VS ` (s1) ◦ (s2 . . . sn) ◦ FS : τ → τ ′

δ,H,VS ` (s1s2 . . . sn) ◦ FS : τ → τ ′

TF-STACKOPEN
δ; context(H,VS ), • : C ` OF : τ H,VS ` FS : τ → τ ′

δ,H,VS ` OF ◦ FS : C → τ ′

provided OF 6= (return •; )

TF-STACKCLOSED
δ; context(H,VS ) ` CF : τ H,VS ` FS : τ → τ ′

δ,H,VS ` CF ◦ FS : τ ′′ → τ ′

provided CF 6= (return e; ) ∧ CF 6= ({})
∧ CF 6= s1 . . . sn ∧ n > 1 ∧ CF 6= C x

Figure 2.9: Frame stack typing

Case: CF = (return e; ) As it is well typed we know VS = MS ◦ VS ′. This has two possible
cases of reducing. Either e = v and can reduce by E-RETURN or e 6= v and can reduce by
EC-RETURN.

Case: CF = ({}) As this is well typed, we know VS = (BS ◦ MS ) ◦ VS ′ and hence this can
reduce by E-BLOCK.

Case: CF = C x; As it is well typed, we know VS = (BS ◦MS )◦VS ′ and also x /∈ context(VS ).
From the definition of context we can see that this gives x /∈ dom(BS ◦MS ) and hence it
can reduce by E-VARINTRO.

Case: CF = x We know that x must be in context(H,VS ), and as x cannot be in H it must
come from VS and more precisely in MS , where VS = MS ◦ VS ′, hence it can reduce by
E-VARACCESS.

Case: CF = o Either FS 6= [] and reduces by E-SUB, or FS = [] which is a terminal framestack.
Case: CF = null Either FS 6= [] and reduces by E-SUB, or FS = [] which is a terminal frames-

tack.
Case: CF = e.f This can be broken into three cases. Either e = null and reduces by E-

NULLFIELD; e = o and reduces by E-FIELDACCESS; or e 6= v and reduces by EC-FIELDACCESS.
Case: CF = e′.m(e1, . . . , en) If e′ 6= v then EC-METHOD1 will apply. If any of e1, . . . , en are

not values then EC-METHOD2 will be applied. Otherwise we have the case where CF =
v′.m(v1, . . . , vn) in which case E-METHOD applies if v′ = o or E-NULLMETHOD if v′ = null.

Case: CF = new C(e1, . . . , en) reduces by EC-NEW when ei 6= v or E-NEW otherwise.
Case: CF = (C)e Either e 6= v and reduces by EC-CAST; e = o and reduces by either E-CAST or



TYPE SOUNDNESS 37

E-INVCAST depending on the type of o; or e = null and reduces by E-NULLCAST.
Case: CF =; Either FS 6= [] and reduces by E-SKIP; or FS = [] which is a terminal state.
Case: CF = s1 . . . sn reduces by EC-SEQ.
Case: CF = if (e1 == e2){s1} else {s2} . Either e1 6= v1 and reduces by EC-IF1; e2 6= v2 ∧

e1 = v1 and reduces by EC-IF2; or e1 = v1 ∧ e2 = v2 can reduce by either E-IF1 and E-IF2
depending on the test .

Case: CF = x = e Either e = v and can reduce using E-VARWRITE if x is in the environment.
The typing rule tells us that context(H,VS ) ` x : C, hence it is in the environment.
Otherwise e 6= v which can reduce by EC-VARWRITE.

Case: CF = e.f = e′ Either e 6= v and reduces using EC-FIELDWRITE1; e = v ∧ e′ 6= v′ reduces
using EC-FIELDWRITE2; e = o ∧ e′ = v′ and reduces using E-FIELDWRITE; or e = null ∧
e′ = v′ reduces using E-NULLWRITE.

Case: CF = e; reduces by EC-EXPSTATE.
Case: CF = super(e1, . . . , en) If all the expressions are values then this can reduce by E-

SUPER, otherwise it can reduce by EC-SUPER.

Next we find it useful to prove the following few lemmas. The first states that subtyping on
frame stacks is covariant.

Lemma 2.5.2 (Covariant subtyping of frame stack). if δ,H,VS ` FS : τ1 → τ2 and τ3 ≺ τ1 then
∃τ4.H,VS ` FS : τ3 → τ4 and τ4 ≺ τ2.

Proof. By induction on the size of FS . The base case, FS = [], holds trivially as TF-STACKEMPTY

is covariant. For the inductive step we must show that if FS is covariant, then so is F ◦ FS . If
F is closed then trivially holds as it ignores the argument. We only need consider open frames.
First consider return •; as this affects the typing environment. Holds because it is covariantly
typed if the remainder of the frame stack is covariant. The remaining open frames require us to
prove:

δ; γ, • : τ ` OF : τ1 ∧ τ2 ≺ τ ⇒ ∃τ3.δ; γ, • : τ2 ` OF : τ3 ∧ τ3 ≺ τ1

We proceed by case analysis on OF .

Case: OF = if (• == e){s1} else {s2}; Holds, because e, s1 and s2 do not contain • they are
unaffected by the change in type and using TS-IF or TS-STUPIDIF the statement is well-
typed if τ2 is a valid type.

Case: OF = if (v == •){s1} else {s2}; Similar to previous case.
Case: OF = •.f Holds as τ2 ≺ τ and field types cannot be overridden, hence we know δF(τ2)(f) =

δF(τ)(f).
Case: OF = •.f = e; Similar to previous case.
Case: OF = •.m(e1, . . . , en) Similar to previous case, except we use the fact method types can-

not be overridden.
Case: OF = x = •; We know from the assumptions that

δ; γ, • : τ ` x : C δ; γ, • : τ ` • : τ τ ≺ C

δ; γ, • : τ ` x = •; : void
As the sub-typing relation is transitive and τ2 ≺ τ , we can see this is well typed for • : τ2,
and the result type is the same.

Case: OF = v.f = •; Similar to previous case.
Case: OF = v.m(v1, . . . , vi−1, •, ei+1, . . . , en) Similar to previous case.
Case: OF = new C(v1, . . . , vi−1, •, ei+1, . . . , en) Similar to previous case.
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Case: OF = super(v1, . . . , vi−1, •, ei+1, . . . , en) Similar to previous case.
Case: OF = (C)• The result type of this frame does not depend on the argument type. The

three possible typing rules for this case combined to only require • is typeable. Hence this
case is trivial.

Next we prove that adding a new heap object preserves the typing.

Lemma 2.5.3 (Heap extension preserves typing). If δ,H,VS ` FS : τ → τ ′, o /∈ dom(H) and
δ ` C and δ,H ` VS ok then (1) δ,H[o 7→ C][o, f 7→ null],VS ` FS : τ → τ ′ and (2)
δ,H[o 7→ C][o, f 7→ null] ` VS ok.

Proof. First we prove (1) by induction on the length of FS . All the rules for typing the frame
stack follow by induction, except for TF-OPENFRAME, TF-CLOSEDFRAME and TF-METHOD2. To
prove these it suffices to prove

δ; γ ` F : τ ∧ δ ` C ⇒ δ; γ, o : C ` F : τ

where o /∈ dom(γ).
We can see δ ` γ ok ∧ δ ` C ⇒ δ ` γ, o : C ok from the definition of γ ok. We can

use this to prove all the axioms of the typing judgement. The rules follow directly by induction
except for TS-INTRO. For this rule, we must prove that x and o are different. This is true as they
are from different syntactic categories.

To prove (2) we induct over the structure of VS . We require the following

δ,H ` v : τ ⇒ δ,H[o 7→ C][o, f 7→ null] ` v : τ

which holds directly from the definitions.

We require two lemmas for dealing with typing sequences when they are added to the frame
stack.

Lemma 2.5.4 (Block). If δ,H,MS ◦ VS ` FS : void→ τ and δ; context(H, (BS ◦MS ) ◦ VS ) `
s : void, then δ,H, (BS ◦MS ) ◦VS ` s ◦ {} ◦ FS : void→ τ

Lemma 2.5.5 (Return). If δ,H,VS ` FS : τ → τ ′ and δ; context(H,MS ◦ VS ) ` s1 . . . sn : τ ,
then δ,H,MS ◦VS ` s1 ◦ . . . ◦ sn ◦ FS : void→ τ ′ where sn is of the form return e;

The two lemmas have very similar proofs. We present the proof for the first lemma.

Proof. We prove this by induction on the size of s.

Base case: Assume δ,H,MS ◦ VS ` FS : void → τ and δ; context(H, (BS ◦MS ) ◦ VS ) ` s :
void by TF-CLOSEDFRAME and TF-BLOCK we can derive δ,H, (BS ◦MS ) ◦ VS ` s ◦ {} ◦ FS :
void→ τ as required.

Inductive case: Assume property holds for s and show it holds for s1s. Assume:

δ,H,MS ◦VS ` FS : void→ τ (2.1)

δ; context(H, (BS ′ ◦MS ) ◦VS ) ` s1s (2.2)

Prove:
δ,H, (BS ′ ◦MS ) ◦VS ` s1s ◦ {} ◦ FS : void→ τ (2.3)

We proceed by a case analysis of s1.
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Case: s1 = Cx; From (2.2) we can deduce δ; context(H, (BS ′[x 7→ (C,null)] ◦MS ) ◦ VS ) ` s :
void. Using this and specialising the the inductive hypothesis allows us to deduce δ,H, (BS ′[x 7→
(C,null)] ◦MS ) ◦VS ` s ◦ {} ◦FS : void→ τ . This is exactly what we require to prove (2.3),
which completes this case.

Case: s1 6= Cx; From (2.2) we can deduce

δ; context(H, (BS ′ ◦MS ) ◦VS ) ` s : void (2.4)

δ; context(H, (BS ′ ◦MS ) ◦VS ) ` s1 : void (2.5)

Specialising the inductive hypothesis and using (2.4) gives us δ,H, (BS ′◦MS )◦VS ` s◦{}◦FS :
void→ τ , which combined with (2.5) gives (2.3), and completes this case.

We can now prove the second important proposition of our reduction system, which states
that if a configuration can make a transition, then the resulting configuration is of the appropri-
ate type. (This is sometimes referred to as the “subject reduction” theorem.)

Proposition 2.5.6 (Type preservation). If δ ` config : τ and config → config ′ then ∃τ ′. δ `
config ′ : τ ′ where τ ′ ≺ τ .

Proof. By case analysis on the → relation. The decomposition rules, in Figure 2.8, and E-
SKIP follow by trivially restructuring the proof trees. The remaining rules we prove as follows.
Assume

a. δ ` H ok
b. δ,H ` VS ok
c. δ,H,VS ` CF ◦ FS : void→ τ
d. (H,VS ,CF ,FS ) → (H ′,VS ′,CF ′,FS ′)

We must prove the following

1. δ ` H ′ ok
2. δ,H ′ ` VS ′ ok
3. δ,H ′,VS ′ ` CF ′ ◦ FS ′ : void→ τ ′ ∧ τ ′ ≺ τ

Case: E-SUB If FS = CF ◦ FS ′ then holds trivially.
Otherwise FS = OF ◦ FS ′.

1. Holds by assumptions as heap is unchanged.
2. Holds by assumptions as stack is unchanged.
3. Holds due to

δ; context(H,VS ), • : τ ′ ` OF : τ ′′ ∧ δ; context(H,VS ) ` v : τ ′

⇒ δ; context(H,VS ) ` OF [v/•] : τ ′′

which is shown by induction on OF .

Case: E-RETURN

1. Holds as heap is unchanged.
2. Holds as new stack is a sub stack of the old one.
3. Holds as returned value only depends on the heap.
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Case: E-VARACCESS Let F = x

1. Holds as heap is unchanged
2. Holds as stack is unchanged
3. As stack is well typed, if x evaluates to v, then v’s type is a subtype of x’s static type.

Using covariant lemma rest of framestack is well-typed.

Case: E-VARWRITE Let F = x = v;

1. Holds as heap is unchanged.
2. For F to be well-typed v must be a sub-type of x’s static type. So updated stack is

well-formed.
3. Holds as new frame stack is contained in the old one, with a skip prepended.

Case: E-VARINTRO

1. Holds as heap is unchanged.
2. New entry in stack is well-typed, so new stack is well-typed.
3. New framestack is typed by rearranging the old ones proof.

Case: E-IF1

1. Holds as heap is unchanged.
2. Holds as stack is unchanged.
3. New framestack is typed, because all the elements were typed by the previous one.

Case: E-IF2 Identical to previous case.
Case: E-BLOCKINTRO

1. Holds as heap is unchanged.
2. Adding an empty block to a well-typed stack results in a well-typed stack.
3. Holds as consequence of lemma 2.5.4.

Case: E-CAST

1. Holds as heap is unchanged.
2. Holds as stack is unchanged.
3. Holds directly by covariant lemma.

Case: E-FIELDWRITE Let F = o.f = v;

1. As F is well typed we know that v is a subtype of the field’s type the heap update
leaves it well typed.

2. Holds as the stack in unchanged.
3. New framestack is typed, because all the elements were typed by the previous one,

and the typing information in the heap is unchanged.

Case: E-FIELDACCESS Let F = o.f

1. Holds as heap is unchanged.
2. Holds as stack is unchanged.
3. As heap is well-typed, we know H(H(o, f)) ≺ δF(H(o), f). Hence the new stack is

typed by the covariant lemma.

Case: E-METHOD Let F = o.m(v)

1. Holds as the heap is unchanged.
2. As frame stack was well-typed if v has type C then C ≺ C ′ and δF(H(o), C) = C ′ → C.

Therefore new scope is well-typed.
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3. As the new scope gives the same scope as the method was type-checked against, we
can use lemma 2.5.5 and the covariant lemma to show the new framestack is well-
typed. Covariant lemma is required as the return e; could be a more specific type
than the method signature gives.

Case: E-METHODVOID Same as previous case, with a trivial alteration for the return .
Case: E-NEW

1. The heap is extended with an object. This extension has all the required fields, and
their values are all null. So the new heap is well-typed.

2. Follows by similar argument to previous case, with the heap extension lemma 2.5.3.
3. Follows by similar argument to previous case, but covariant lemma is not required,

and heap extension preserves typing is require 2.5.3.

Case: E-SUPER 1. Holds as heap is unchanged.
2. Follows by similar argument to previous case.
3. Follows by similar argument to previous case.

We can now combine the propositions 2.5.1 and 2.5.6 to prove the type safety of the MJ type
system.

Theorem 2.5.7 (Type safety). If config : τ and config → ∗ config ′ then config ′ : τ ′ where τ ′ ≺ τ
and either config ′ is terminal or not stuck.

2.6 Related Work

There have been many works on formalizing subsets of Java. Our work is closely related to, and
motivated by, Featherweight Java [47]. We have upheld the same philosophy, by keeping MJ a
valid subset of Java. However FJ lacks many key features we wish to reason about. It has no
concept of state or object identity, which is essential for developing usable specification logics.
Our work has extended FJ to contain what we feel are the important imperative features of Java.

Another related calculus is Classic Java [38], which embodies many of the language features
of MJ. However, Classic Java is not a valid subset of Java, as it uses type annotations and
also uses let-binding to model both sequencing and locally scoped variables. Hence several
features of Java, such as its block structured mutable state and unusual syntactic distinction
of promotable expressions are not modelled directly. However, Felleisen et al.’s motivation is
different to ours: they are interested in extending Java with mixins, rather than reasoning about
features of Java.

Eisenbach, Drossopoulou, et al. have developed type soundness proofs for various subsets
of Java [33, 34]. They consider a larger subset of Java than MJ as they model exceptions
and arrays, however they do not model block structured scoping. Our aim was to provide
an imperative core subset of Java amenable to formal proof, rather than to prove soundness
of a large fragment. Syme [82] has formalised Eisenbach, Drossopoulou, et al.’s semantics in
Isabelle.

There have been other fragments of Java formalised in theorem provers. Nipkow and Ohe-
imb [62] formalize a subset of Java in the Isabelle theorem prover. More recently, Nipkow and
Klein have formalized a larger subset of Java, named Jinja [51]. They also model the bytecode
and compiler in the theorem prover.





3
A logic for Java

In this chapter we present a programming logic for reasoning about Java. Although the logic
described in this chapter is unable to reason about forms of abstraction commonly found in
object-oriented languages (namely encapsulation and inheritance) it forms a basis for the logics
in the rest of the thesis. Additionally it serves as an introduction to separation logic.

We choose to build our logic on top of the separation logic by O’Hearn, Reynolds and oth-
ers [76, 48, 65, 75], as it addresses the problems of aliasing (see §1.1.2 for details). Separation
logic extends Hoare logic with spatial connectives, which allow assertions to define separation
between parts of the heap. This separation provides the key feature of separation logic—local
reasoning—specifications need only mention the state that they access. This local reasoning ap-
proach has proved itself successful when considering some real-world algorithms, including the
Schorr-Waite graph marking algorithm [88] and a copying garbage collector [11].

Until now, all the work on separation logic has focused on simple, imperative, low-level lan-
guages. In this chapter we present an extension to separation logic to allow reasoning about
Java-like languages, that is languages with features that are prevalent in the real-world includ-
ing encapsulation and inheritance. It is known that separation logic solves the problems caused
by aliasing. However a näıve adaptation of this approach falls short of reasoning about encap-
sulation and inheritance. Solutions to these issues will be presented in Chapters 4 and 6.

The rest of the chapter is structured as follows. First we present a simplification of MJ that
is well suited to separation logic. In §3.2 we describe the storage model we will reason about,
and then, in §3.3, we give the syntax and semantics of separation logic assertions. In §3.4 we
present the Hoare logic rules to reason about Java, and then in §3.5, we present an additional
rule to reason about dynamically dispatched method calls. We then give an example of copying
a tree in §3.6, and present a full semantic account of the logic and its soundness in §3.7. We
conclude, in §3.8, by discussing encapsulation and inheritance.

3.1 Inner MJ

In order to allow clean and elegant separation logic rules, we make a few simplifications to MJ,
and call this subset Inner MJ. The first and most important simplification is that statements are
not allowed multiple indirections: a statement can only perform a single read or write of a field.
Additionally, for compactness, we remove void methods. The simplifications to the syntax are
presented in Figure 3.1; the original syntax is given on page 20.

43
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Method definition
md ::= C m(C1 x1, . . . , Cn xn){s return x; }

Expressions
e ::= x | null

Statements
s ::= x = y.f ; | x = (C)y; | x = new C();

| x.f = e; | x = y.m(e); | C x;
| {s} | ; | if (e == e){s}else {s}

Figure 3.1: Syntax of Inner MJ

Additionally, we make a semantic restriction on method and constructor bodies that they
do not modify their parameters. This reduces the complexity of reasoning about method and
constructor calls. This may at first sound restrictive but simply assigning each parameter to a
new local variable allows modification. This restriction removes the need to consider the call by
value arguments to a method.

Although we have simplified the syntax, we have not removed any computational power. A
simple transformation from full MJ to Inner MJ is given in Figure 3.2. We write LeMz for the
transformation on expressions to statements. This replaces e by a series of small statements
which evaluate the expression. The final statement stores the result in z. We then define the
transformation on statements LsM. This evaluates each expression, stores its result in a variable,
and then evaluates the statement for these variables. The transformation on a program simply
transforms all the method and constructor bodies. In Lemma 3.7.17 on page 61 we prove this
translation preserves program semantics.

3.2 Storage model

Recent work on separation logic has allowed reasoning about pointer datastructures with ad-
dress arithmetic [65, 75]. This includes complicated doubly linked lists where only the XOR
of the forwards and backwards pointers is stored in the heap. This reasoning is powerful and
interesting, but it does not represent the programmer’s view of memory in Java: Java does not
provide address arithmetic. Obviously, this model can be used to represent Java’s memory by
compiling field locations away, but representing the compilation in the logic seems an unnec-
essary burden on the proof. It would be analogous to reasoning about a high-level language
by considering the assembly language to which it is compiled. The original work on separation
logic [76, 48] considered the heap to be a partial finite function from locations to unlabelled
records:

H : Locations ⇀fin Values+

where Locations correspond to oids from the previous chapter, and Values are oids and null.

Note: In particular many models consider a simplification to just pairs, Values× Values, rather
than unlabelled records, Values+

In order to represent objects in this model, we can replace the tuple by a partial finite func-
tion from field names to values:

H : Locations ⇀fin (Fields ⇀fin Values)

This model is similar to those used in object-oriented semantics [9, 33, 38]. It is useful to be
able to split an object into its different aspects, e.g. a ColourPoint class has a location and a
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Expressions

LxMz = z = x;

LnullMz = z = null;

Le.fMz = {D y; LeMyz = y.f ; }
L(C)eMz = {D y; LeMyz = (C)y; }

Le.m(e1, . . . , en)Mz = {D y;D1 y1; . . . ;Dn yn; LeMyLe1My1 . . . LenMyn

z = y.m(y1, . . . , yn); }
Lnew C(e1, . . . , en)Mz = {D1 y1; . . . ;Dn yn; Le1My1 . . . LenMyn

z = new C(y1, . . . , yn); }
Statements

L; M = ;

Le; M = {D y; LeMy}
Lif (e1 == e2){s1}else {s2}M = {D1 y1;D2 y2; Le1My1Le2My2

if (y1 == y2){Ls1M}else {Ls2M}}
Le1.f = e2M = {D1 y1;D2 y2; Le1My1Le2My2y1.f = y2; }

Lx = e; M = LeMx

Lreturn e; M = D y; LeMyreturn y;

L{s}M = {LsM}
LC x; M = C x;

Ls sM = LsMLsM

LεM = ε

provided the static types of e, e1, . . . , en are D,D1, . . . , Dn respectively, and y, y1, . . . , yn are always fresh
variables.

Figure 3.2: Transformation of expressions and statements

colour. We want to consider methods that modify the location property without having to reason
about the colour property, hence it is important to be able to split an object. Later we will see
that this simplifies the logic, as it allows the rules to be given with respect to just the fields used
by a command. The frame rule can then be used to extend the specifications to the rest of the
object, as well as to other objects. However, in this model it is difficult to define the composition
of heaps such that an oid can be in both heaps as long as the two heaps have different fields for
that oid.

By uncurrying the partial finite functions, we get a natural definition that allows splitting at
the field level.

H : Locations× Fields ⇀fin Values

Finally, we store each object’s type. This could be done using a special field. In order to
allow sharing of the immutable type information we distinguish it as in the definition below.1

1Java does not allow the explicit disposal of an object and an object can never change type, i.e. the type of an
object is immutable, so it does not matter who knows it. If one allows disposal of objects then sharing this information
would be somewhat dangerous, and methods described in Chapter 5 should be employed for such sharing.
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Definition 3.2.1 (Heap). A heap, H, is a pair of finite partial functions: the first stores the fields,
Hv, and the second stores the types of objects, Ht.

H : H def= (Locations× Fields ⇀fin Values)× (Locations ⇀fin Classes)

We write H⊥H′ to mean two heaps are disjoint and compatible:

(H′
v, H′

t)⊥(H′′
v , H′′

t )
def= dom(H′

v)⊥dom(H′′
v) ∧ H′

t = H′′
t

We write H ∗ H for the composition of two heaps:

(H′
v, H′

t) ∗ (H′′
v , H′′

t )
def=

{
(H′

v ◦ H′′
v , H′

t) (H′
v, H′

t) ∩ (H′′
v , H′′

t ) = ∅
undefined otherwise

where ◦ is union of disjoint partial functions. Finally we define an order on heaps ⊆

H1 ⊆ H2
def= ∃H3.H1 ∗ H3 = H2

Note: This definition is the same as in the previous chapter. Classes is the set of all class names.

Again we use the same shorthands for accessing the first and second components of the
heap: (Hv, Ht)(o) = Ht(o) and (Hv, Ht)(o, f) = Hv(o, f). We use the obvious shorthands for dom
and function update that can always be disambiguated by context, i.e. (o, f) ∈ dom(H) checks
that (o, f) is in the domain of the first component of H.

A stack is defined as in the previous chapter. We also use ghost2 variables that do not
interfere with program execution. Ghost variables are used to express protocols of method calls,
so they require a global scope. We cannot simply use the program stack as this cannot define
a variable across method calls: it only contains local variables. So we define a ghost stack that
maps ghost variables, e.g. X, Y, etc. to values.

A logical state is a triple of the form (VS , H, I) where VS is a program variable stack, H is a
heap and I is a ghost variable stack.

3.3 Assertion language

The key difference between the assertion languages of separation logic and Hoare logic is the
introduction of the spatial, or multiplicative, conjunction *. The spatial conjunction P ∗Q means
the heap can be split into two disjoint parts in which P and Q hold respectively.

There are two flavours of separation logic: classical and intuitionistic [48]. In classical
separation logic the spatial conjunction does not admit weakening or contraction, while in in-
tuititionistic separation logic it admits weakening, but not contraction. Also unlike classical
separation logic, intuitionistic separation logic does not have an empty heap predicate: true is
the unit of both ∗ and ∧.

In this thesis we will use the intuititionistic version. This is because Java is a garbage
collected language, hence it does not have an explicit dispose primitive. State is deallocated
when it is inaccessible. As intuitionistic separation logic admits weakening, the following holds
P ∗ Q ⇒ Q. This allows state to be ignored, hence we do not need to explicitly dispose state. If
the language was not garbage collected, then intuitionistic separation logic would allow memory
leaks.

2These variables are sometimes called auxiliary or logical variables.
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VS , H, I |= false def= never

VS , H, I |= true def= always

VS , H, I |= P ∧Q
def= VS , H, I |= P and VS , H, I |= Q

VS , H, I |= P ∨Q
def= VS , H, I |= P or VS , H, I |= Q

VS , H, I |= P ⇒ Q
def= ∀H′ ⊇ H. if VS , H′, I |= P then VS , H′, I |= Q

VS , H, I |= ∀x.P
def= ∀v ∈ Values. VS [x 7→v], H, I |= P

VS , H, I |= ∃x.P
def= ∃v ∈ Values. VS [x 7→v], H, I |= P

VS , H, I |= e.f 7→e ′ def= H(JeKVS ,I, f) = Je ′KVS ,I

VS , H, I |= e : C
def= H(JeKVS ,I) = C

VS , H, I |= e = e ′ def= JeKVS ,I = Je ′KVS ,I

VS , H, I |= P ∗ Q
def= ∃H1, H2. H1 ∗ H2 = H, VS , H1, I |= P and VS , H2, I |= Q

VS , H, I |= P −∗Q
def= ∀H1. if H1⊥H and VS , H1, I |= P then VS , H1 ∗ H, I |= Q

where JXKVS ,I = I(X), JnullKVS ,I = null and JxKVS ,I = VS (x).

Figure 3.3: Semantics of the assertion language

However, Reynolds noted that intuitionistic separation logic does not correctly model garbage
collected languages [76] as assertions can be made about inaccessible state. Consider the fol-
lowing code fragment:

x = new C(); x = null;

The constructed object is not accessible. In the programming logic, given the usual seman-
tics [48], it is possible to prove it exists in the heap after the assignment of null. If we model
the garbage collector operationally, then we can prove the object may have been garbage col-
lected. Therefore our assertion language would be unsound. Calcagno and O’Hearn [21] present
a solution to this problem where they alter the semantics of the existential quantifier to correctly
model garbage collected languages. Fortunately, we can avoid these complications as we do not
model the garbage collector operationally, and hence it is sound to remain in “vanilla” intuition-
istic separation logic.

Formulae in our assertion language are given by the following grammar

P,Q ::= true | false | P ∧Q | P ∨Q | P ⇒ Q | ∀x.P | ∃x.P
| P ∗ Q | P −∗Q | e.f 7→e ′ | v : C | e = e

Expressions, e, are extended from Figure 3.1 to allow ghost variables as well.
For intuitionistic logic we require all assertions to satisfy the monotonicity, or persistency,

constraint.

Definition 3.3.1 (Monotonicity constraint). P satisfies the monotonicity constraint if whenever
VS , H, I |= P and H ⊆ H′, then VS , H′, I |= P

The monotonic subsets of the powerset of states form a Heyting algebra. We provide the
formal semantics of formulae in Figure 3.3. The intuitionistic connectives (∨,∧,⇒) and quanti-
fiers (∀,∃) are interpreted in the usual way [48]. In addition to the intuitionistic connectives we
have the new spatial connectives ∗ and −∗, along with the predicates e = e ′, e : C and e.f 7→e ′.
Taking these in reverse order: the predicate e.f 7→ e ′ consists of all the tuples (VS , H, I) where
the heap, H, consists of at least the single mapping from the location given by the meaning of e
and the field f to the value given by the meaning of e ′. e : C is true if the evaluation of e gives
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mods(x = . . .) def= {x}
mods(x.f = e; ) def= mods(; ) def= {}

mods(C x; s) def= mods(s) \ x

mods(ss) def= mods(s) ∪mods(s)
mods({s}) def= mods(s)

mods(if (e1 == e2){s1}else {s2})
def= mods(s1) ∪mods(s2)

Figure 3.4: Modifies property for Inner MJ

a value of dynamic type3 C. e = e ′ is true in any state where the expressions evaluate to the
same value. The spatial conjunction P ∗ Q means the heap can be split into two disjoint parts
in which P and Q hold respectively. Heaps of more than one element are specified by using the
∗ connective to join smaller heaps. Finally, the adjoint to ∗ , written P −∗ Q, means that if the
heap can be extended with any disjoint heap satisfying P then the resultant heap will satisfy Q.

The essence of “local reasoning” is that, to understand how a piece of code works, it should
only be necessary to reason about the memory the code actually accesses (its so-called “foot-
print”). Ordinarily, aliasing precludes such a principle but the separation enforced by the ∗
connective allows this intuition to be captured formally by the following rule.

L-FRAME
` {P}s{Q}

` {P ∗ R}s{Q ∗ R}
provided s does not modify the free variables of R: mods(s) ∩ FV (R) = ∅

The side-condition is required because ∗ only describes the separation of heap locations and
not variables, without this restriction s could modify stack variables in R altering R’s validity;
see [13] for more details. We give the definition of mods( ) in Figure 3.4.

By using this rule, a local specification concerning only the variables and parts of the heap
that are used by s can be arbitrarily extended as long as the extension’s free variables are not
modified by s. Thus, from a local specification we can infer a global specification that is appro-
priate to the larger footprint of an enclosing program. Consider a function that operates on a
list:

{list(i)}m(i){list(i)}

This specification says that if provided a list, i, then if m returns it will leave i still satisfying list.
Implicitly, anything not mentioned is unchanged by the call. Hence we can derive a specification

{list(i) ∗ P}m(i){list(i) ∗ P}

where P represents the other state we might know about. We have gone from a local specifi-
cation describing what we use, to a global specification that additionally describes the context:
this means we do not need to provide a different specification for each call site.

3.4 Java rules

Now we provide the logic for reasoning about Java. A judgement in our assertion language is
written as follows:

Γ ` {P}s{Q}
3We use dynamic type to mean the class the object was created with, and static type for the type of an expression

denoting that object. For example C x = new D(); The static type of x is C but the dynamic type of x is D.
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This is read: the statement, s, satisfies the specification {P} {Q}, given the method and con-
structor hypotheses, Γ. These hypotheses are given by the following grammar:

Γ := ε | {P}η(x){Q},Γ
η := C.m | C

However, when it simplifies the presentation, we will treat Γ as a partial function from method
and defining class name, C.m, and constructor names, C, to specifications. For the hypotheses,
Γ, to be well-formed each method, C.m, and constructor, C, should appear at most once; and
each specification’s free program variables should be contained in the method’s arguments and
ret. We will only consider well-formed Γ.

First we present the rules for field manipulation. We give small axioms in the style of
O’Hearn, Reynolds, and Yang [65]. Field write requires the heap to contain at least the sin-
gle field being written to, and the post-condition specifies it has the updated value. Implicitly
the rule specifies no other fields are modified, and hence it can be extended by the frame rule to
talk about additional state. The field access rule simply requires the state to be known and sets
the variable equal to the contents. The ghost variables X and Y are used to allow x and y to be
syntactically the same variable without needing a case split or substitution in the rule definition.

L-FWRITE Γ ` {x.f 7→ }x.f = y; {x.f 7→y}

L-FREAD Γ ` {X = x ∧X.f 7→Y }y = x.f ; {X.f 7→Y ∧ y = Y }

Note: These rules highlight our choice to have fields assertions as the primitive assertion about
the heap. The rules are given in terms of just the fields they use, and the frame rule dictates
what happens to the other values. If the primitive assertions described entire objects, we would
need to give the rules in terms of the whole object and say how the other fields were affected by
this assignment.

Next we present the rules associated with types. The first ensures that a cast will complete
successfully: the object identifier being cast must be a subtype of the target type or null. The
L-STYPE rule allows static typing information to be exploited in the proof: if we can prove that
it meets the specification for all subtypes and null, then it meets the specification without any
typing information.

L-DOWNCAST Γ ` {P [x/y] ∧ (x : C ∨ x = null)}y = (D)x{P}
provided C ≺ D.

L-STYPE
Γ ` {P ∧ x = null}s{Q} ∀C ≺ D. Γ ` {P ∧ x : C}s{Q}

Γ ` {P}s{Q}
provided x has static type D.

Note: The L-STYPE proof rule is not local: it requires knowledge of all the classes that exist.
Hence it will not lead to open proofs, i.e. proofs open to the extension of the class hierarchy.
Later we will use this rule with a restriction on the class hierarchy to derive the rule for dynamic
dispatch.

Next we give the rules for reasoning about methods. These are essentially the same as the
standard function rules [75]. The method call rule states that if the pre-condition of C.m holds
and the receiver is of type C, then the post-condition will hold after the call. The L-RETURN rule
allows the method’s return value to be matched with the call’s return variable using the special
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variable ret . This command is logically equivalent to ret = v;: we give this rule to match the
Java syntax.

L-CALL {P}C.m(x){Q},Γ ` {P ∧ this : C}ret = this.m(x); {Q}

L-RETURN Γ ` {P [v/ret ]}return v; {P}

The arguments, receiver and return variable of a method, and constructor, can all be special-
ized to arbitrary variables using the variable substitution rule, L-VARSUBST. The rule is similar
to that given by Reynolds [75]. The first side-condition is the same as given by Reynolds, and
prevents the substitution creating assignment to an expression. The second is because we make
a distinction between ghost variables and program variables, and hence ghost variables cannot
appear in the program text. The third restriction is because return implicitly uses a variable
ret , but ret is not syntactically free in returnx;.

L-VARSUBST
Γ ` {P}s{Q}

Γ ` {θ(P )}θ(s){θ(Q)}
provided θ = [e1, . . . , en/x1, . . . , xn];

• if xi is modified by s, then ei is just a variable not free in any other ej;
• if xi is in the free variables of s, then ei is restricted to program expressions, expressions not

containing ghost variables; and
• if s contains return then θ(ret) = ret .

Note: We allow θ to alter this, as it simplifies the L-CALL rule.

Next, we give the rules for reasoning about constructors. Before we give the rules we define
the shorthand new(C, x) as meaning x.f1 7→null ∗ . . . ∗ x.fn 7→null where dom(δF(C)) =
f1, . . . , fn. The L-NEW rule is similar to the L-CALL rule with the additional post-condition
giving the object’s type. The first statement in a constructor definition is always a super call.
We validate a super call in the same way as new, but the post-condition about the object’s type
is not added, and the pre-condition requires the fields to exist (and be initialized to null).

L-NEW Γ, {P}C(x){Q} ` {P}this = new C(x); {Q ∧ this : C}
L-SUPER Γ, {P}D(x){Q} ` {P ∗ new(D,this)}super(x); {Q}

provided the super call is in class C constructor and C ≺1 D.

Now we give the rules for introducing assumptions about definitions of methods and con-
structors, given in Figure 3.5. We define a new judgement Γ1 
 Γ2 to allow the introduction
of mutually recursive methods. Γ1 
 Γ2 means the bodies of the methods in Γ2 can be ver-
ified assuming all the method calls satisify the specifications in Γ1. The method introduction
rule, L-DMETHOD, checks that the body, s, meets the specification assuming it is invoked on the
correct class. The constructor introduction rule, L-DCONSTR, verifies the body with both the
pre-condition and the new fields for the object. It is not given the pre-condition this : C as the
constructor is also called by the super call. The remaining three rules are used to introduce
and manipulate these definitions. These rules are similar in style to those used by von Oheimb
[83] to reason about mutually recursive procedures.

Finally, the standard rules are presented in Figure 3.6. As we allow allocation of new vari-
ables at any point in a sequence, we require two sequencing rules. The first is for the case where
the first command is not a variable allocation. The second is where a new variable is being
created. This requires that the new variable does not get passed out of this sequence.
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L-DMETHOD
Γ ` {P ∧ this : C}s{Q}

Γ 
 {P}C.m(x){Q}
provided mbody(C,m) = (x, s)

L-DCONSTR
Γ ` {new(C,this) ∗ P}super(e); s{Q}

Γ 
 {P}C(x){Q}
provided cnbody(C) = (x,super(e); s).

L-DSPLIT
Γ 
 Γ1 Γ 
 Γ2

Γ 
 Γ1,Γ2

L-DWEAKEN
Γ 
 Γ1

Γ,Γ2 
 Γ1

L-DINTRO
Γ,Γ′ 
 Γ′ Γ,Γ′ ` {P}s{Q}

Γ ` {P}s{Q}

Figure 3.5: Definition rules

L-IF
Γ ` {P ∧ x = y}s1{Q} Γ ` {P ∧ ¬(x = y)}s2{Q}

Γ ` {P}if (x == y){s1}else {s2}{Q}
L-SKIP Γ ` {P}; {P}

L-BLOCK
Γ ` {P}{s}{Q}

Γ ` {P}s{Q}

L-SEQ1
Γ ` {P}s1{R} Γ ` {R}s2...sn{Q} s1 6= Cx;

Γ ` {P}s1s2...sn{Q}

L-SEQ2
Γ ` {P}s1...sn{Q} x /∈ FV (P ) ∪ FV (Q)

Γ ` {P}C x; s1...sn{Q}

L-CONSEQUENCE
P ⇒ P ′ Γ ` {P ′}C{Q′} Q′ ⇒ Q

Γ ` {P}C{Q}

L-VARELIM
Γ ` {P}s{Q}

Γ ` {∃x.P}s{∃x.Q}
provided x is not free in s.

Figure 3.6: Standard Rules
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The whole program is verified by

{true}Object(){true} ` {P}s{Q}

Note: There is an implicit context of the program π.

3.5 Dynamic dispatch

The method call rule, L-CALL, defined earlier does not account for dynamic dispatch. As ex-
plained in §1.1.1, the usual approach to dealing with dynamic dispatch is to use behavioural
subtyping. We present a generalised notion of behavioural subtyping: specification compatibil-
ity.

Definition 3.5.1 (Specification compatibility). We define specification compatiblity, ` {PD} {QD} ⇒
{PC} {QC}, iff forall s if modifies(s) ⊆ {ret} then Γ ` {PC}s{QC} is derivable from Γ `
{PD}s{QD}, that is a proof of Γ ` {PC}s{QC} exists whose only assumption is Γ ` {PD}s{QD}.

The quantification over the statement sequence s in the definition restricts the derivation to
the structural rules: L-CONSEQUENCE, L-FRAME, L-VARELIM and L-VARSUBST. The frame rule,
L-FRAME, can only introduce formula that do not mention ret . If the derivation only uses the rule
L-CONSEQUENCE, specification compatibility degenerates to standard behavioural subtyping.

From now on in this thesis we will restrict method and constructor environments to well-
behaved environments, that is where subtypes must have compatible specifications with their
supertypes’ specification.

Definition 3.5.2 (Well-behaved environments). For each {PC}C.m(x){QC} in Γ, if D ≺ C, then
{PD}D.m(y){QD} is in Γ and ` {PD[x/y]} {QD[x/y]} ⇒ {PC} {QC}

The substitution, [x/y], in the definition is required to allow methods to use different argu-
ment names.

Specification compatibility generalises behaviour subtyping to allow variable manipulation.
Consider the following specifications

{this.f 7→ } {this.f 7→ } (3.1)

{this.f 7→X} {this.f 7→X} (3.2)

If code expects the behaviour of (3.1) then clearly it would be fine with (3.2): it is a refinement.
However, the standard behavioural subtyping implications would not allow this as this.f 7→
⇒ this.f 7→X does not hold. Hence we must add rules to allow variable manipulation in

behavioural subtyping.
Not only does specification compatibility generalize behavioural subtyping in its manipula-

tion of variables, but it also allows specification intersections. Consider the following pair of
specifications

Method Pre-condition Post-condition
C.m PC QC

D.m (PC ∧X = 1) ∨ (PD ∧X = 2) (QC ∧X = 1) ∨ (QD ∧X = 2)

Note: We use the ghost variable X to allow us to encode the intersection of the specification
{PC} {QC} with {PD} {QD}. We assume Pc and QC do not contain X.
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If you are in a state satisfying PC then you will end up in a state satisfying QC for D.m. This is
not a standard behavioural subtype in the same way a function from int ∨ bool → int ∨ bool is
not a subtype of int → int. However, something that maps ints to ints and bools to bools is a
subtype of int → int. We need to be more expressive in how the output depends on the input:
α ∈ {int, bool}.α → α, or (int → int) ∧ (bool → bool). In our specifications the ghost variable X
is used like the α to ensure that only the extra states of the pre-condition end in the extra states
of the post-condition. This subtyping does satisfy specification compatibility:

`

{
(PC ∧X = 1)

∨ (PD ∧X = 2)

} {
(QC ∧X = 1)

∨ (QD ∧X = 2)

}

`

{
X = 1 ∗

(
(PC ∧X = 1)

∨ (PD ∧X = 2)

)} {(
(QC ∧X = 1)

∨ (QD ∧X = 2)

)
∗ X = 1

}
` {PC ∧X = 1} {QC ∧X = 1}
` {PC ∧ = 1} {QC ∧ = 1}

` {PC} {QC}

The key to the proof is the L-FRAME rule, which lets us preserve the value of the ghost variable
across the call. In standard Hoare logic the invariance rule [4], or constancy rule [77], could
be used. Specification compatibility allows us to model the specification inheritance used by
Poetzsch-Heffter and Müller [72].

Given our assumption that all method and constructor environments are well-behaved (Def-
inition 3.5.2), we can combine the static method call rule, L-CALL, with the static typing rule, L-
STYPING, to derive the following useful rule concerning dynamic dispatch.

L-CALLDYN

Γ, {P}C.m(x){Q} ` {P ∧ this 6= null}ret = this.m(x){Q}

provided this has static type C.

This derived rule allows us to reason about an unknown set of methods with a single speci-
fication. At link time we must check the methods are specification compatible.

Proposition 3.5.3 (Derivation of dynamic dispatch rule). Assuming the methods are specification
compatible, then the dynamic dispatch method call rule L-CALLDYN is derivable.

Proof. The following holds for any C that is a subtype of D as (1) is given by specification
compatibility. Assume wlog Γ contains {PC}C.m{QC} and {PD}D.m{QD}. The leaf is verified
by the L-CALL rule.

Γ ` {PC ∧ this : C}ret = this.m(x); {QC}··· (1)
Γ ` {PD ∧ this : C[x/y]}ret = this.m(y)[x/y]{QD[x/y]}

Γ ` {PD ∧ this 6= null ∧ this : C}ret = this.m(y){QD}


(3.3)

Semantically, any statement with a precondition false can have any postcondition.

Γ ` {this : D ∧ PD}ret = this.m(y); {QD}

Γ ` {false}ret = this.m(y); {QD}

Γ ` {P ∧ this = null ∧ this 6= null}ret = this.m(y); {QD}

 (3.4)

Putting these together with the L-STYPE rule, we can derive the dynamic dispatch rule.

(3.3) (3.4)
Γ ` {PD ∧ this 6= null}ret = this.m(y){QD}
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class Tree extends Object {
Tree l; Tree r;

Tree(Tree l, Tree r) {
super();
this.l = l;
this.r = r;

}

Tree clone() {
Tree l,r,l2,r2;
l = this.l;

if(l != null) l2 = l.clone();
else l2 = null;

Tree r = this.r;
if(r != null) r2 = r.clone();
else r2 = null;

Tree nt = new Tree(l2,r2);
return nt;

}
}

Figure 3.7: Tree example source code.

In Section 3.8, we will show that specification compatibility is too restrictive for many pro-
grams, and in Chapter 6 we will address this.

3.6 Example: Tree copy

Now we illustrate the use of this logic with a simple example of a tree class and a clone method.
The source code is given in Figure 3.7.

Before we can specify the clone method, we extend our logic slightly to reason about trees,
by adding the following predicate to the logic. In the next chapter we will formally define
recursive predicates.

tree(i) def= i = null ∨ ∃j, k. i.l 7→j ∗ i.r 7→k ∗ tree(j) ∗ tree(k)

Using this predicate, we can then specify the constructor and clone method as

Method Pre-condition Post-condition
Tree(l,r) tree(l) ∗ tree(r) tree(this)
Tree.clone() tree(this) tree(this) ∗ tree(ret)

Note: Although the specification does not prevent the clone method being called on a null
objects, the L-CALL rule does.

The constructor is verified with its precondition and the fields defined by the class:{
tree(l) ∗ tree(r) ∗ this.l 7→null ∗ this.r 7→null

}{
true

}
super(){
true

}{
tree(l) ∗ tree(r) ∗ this.l 7→null ∗ this.r 7→null

}
We verify the super call using the frame rule. The superclass is Object, and Object’s con-
structor’s specification is {true} {true}.{
tree(l) ∗ tree(r) ∗ this.l 7→null ∗ this.r 7→null

}{
this.l 7→null

}
this.l = l;{
this.l 7→l

}{
tree(l) ∗ tree(r) ∗ this.l 7→l ∗ this.r 7→null

}
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We verify the assignment to the l field using the frame rule and the assignment rule.{
tree(l) ∗ tree(r) ∗ this.l 7→l ∗ this.r 7→null

}{
this.r 7→null

}
this.r = r;{
this.r 7→r

}{
tree(l) ∗ tree(r) ∗ this.l 7→l ∗ this.r 7→r

}
and the r field in the same way.{
tree(l) ∗ tree(r) ∗ this.l 7→l ∗ this.r 7→r

}{
tree(this)

}
Finally, we use the rule of consequence to put the post-condition in as it appears in the specifi-
cation.

We can verify the clone method as follows. First we verify the code for copying the left hand
subtree.{
this.l 7→j ∗ tree(j)

}{
this.l 7→j

}
l = this.l;{
this.l 7→l ∧ l = j

}{
this.l 7→l ∧ l = j ∗ tree(j)

}{
this.l 7→l ∗ tree(l)

}{
tree(l)

}
if(l != null){

tree(l) ∧ l 6= null
}

l2 = l.clone();{
tree(l) ∗ tree(l2)

}
else{

tree(l) ∧ l = null
}{

tree(l) ∧ l = null ∧ null = null
}

l2 = null;{
tree(l) ∧ l = null ∧ l2 = null

}{
tree(l) ∗ tree(l2)

}{
tree(l) ∗ tree(l2)

}{
this.l 7→l ∗ tree(l) ∗ tree(l2)

}
We can provide a similar proof for the right hand subtree. Using these proofs we can complete
the proof as{
tree(this) ∧ this : Tree

}{
this.l 7→j ∗ this.r 7→k ∗ tree(j) ∗ tree(k)

}
Tree l2,r2,l,r;{

this.l 7→j ∗ this.r 7→k ∗ tree(j) ∗ tree(k)
}{

this.l 7→j ∗ tree(j)
}

l = this.l;
if(l != null)

l2 = l.clone();
else

l2 = null;{
this.l 7→l ∗ tree(l) ∗ tree(l2)

}{
this.l 7→l ∗ this.r 7→k ∗ tree(l) ∗ tree(k) ∗ tree(l2)

}{
this.r 7→k ∗ tree(k)

}
r = this.r;
if(r != null)

r2 = r.clone();
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else
r2 = null;{

this.r 7→r ∗ tree(r) ∗ tree(r2)
}{

this.l 7→l ∗ this.r 7→r ∗ tree(l) ∗ tree(r) ∗ tree(l2) ∗ tree(r2)
}{

tree(this) ∗ tree(l2) ∗ tree(r2)
}{

tree(l2) ∗ tree(r2)
}

Tree nt = new Tree(l2,r2);{
tree(nt)

}{
tree(this) ∗ tree(nt)

}
return nt;{

tree(this) ∗ tree(ret)
}

Again the frame rule is used to allow the additional state to be preserved by the call, without
any additional proof burden.

3.7 Semantics

Now we will relate the semantics of the previous chapter with the logic given in this chapter,
and hence prove its soundness. The typing of configurations from the previous chapter would
consider heaps containing objects with missing fields as invalid. However, the logic works ex-
plicitly with partially defined objects so we relax the conditions on a heap being well-formed,
originally given on page 34. We no longer require that every field of an object exists, but still
require it to point to the correct type if it does. This relaxed rule is as follows:

TH-OBJECTOK
∀f ∈ dom(H(o, )). δ, H ` H(o, f) : δF(H(o))(f)

δ, H ` o ok

This weakening of the type system leads to two additional reduction rules

E-FIELDACCESSFAIL (H,VS , o.f,FS ) → (H,VS , NSFE,FS )
provied (o, f) /∈ dom(H)

E-FIELDWRITEFAIL (H,VS , o.f = v; ,FS ) → (H,VS , NSFE,FS )
provided (o, f) /∈ dom(H)

These exceptional states correspond to the NoSuchFieldException in Java.
To simplify the proofs we want to consider (H,VS , s, []) as well-typed when s is a method

body, i.e. ends in return . This is forbidden by the type rules in the previous chapter. We modify
the case for the empty framestack to accept any variable scoping.

TF-STACKEMPTY δ, H,VS ` [] : τ → τ

and relax the definition of a completed configuration:

compl(config) def= ; ∃H,VS , ζ, v.(H,VS , ζ, []) = config ∨ (H,VS , v, []) = config

where ζ ranges over return v; and ;.
The logic will be used to remove the runtime exceptions: NSFE and the null pointer and

class cast exception from the previous chapter. We define safety, in the style of Yang [88], to
mean a configuration cannot get to an exceptional state.

Definition 3.7.1 (Safety). A configuration is safe iff it cannot reduce to a stuck state that is not
completed configuration, i.e.

config safe def= ∀config ′.(config →∗ config ′ ∧ stuck(config ′) ⇒ compl(config ′))
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Note: Safety is a stronger property than type safety enforced in the previous chapter: a safe
program will not dereference null, or perform an invalid cast.

We then prove the standard properties, following Yang [88], of the operational semantics for
the soundness of the frame rule. For compactness we use (H,VS , F,FS ) ∗ H′ as a shorthand for
(H ∗ H′,VS , F,FS ).

Lemma 3.7.2 (Safety monotonicity). If config safe then for any disjoint extension H′ the extended
configuration is safe: config ∗ H′ safe.

Proof. Assume config ∗ H′ reduces to an error state. Then config must also reduce, possibly
earlier, to an error state. But we know config safe, so the original assumption must be wrong.

Lemma 3.7.3 (Heap locality). If (H0,VS , s, []) safe and (H0 ∗ H1,VS , s, []) →∗ (H′,VS ′, ζ, [])
then ∃H′

0.H
′
0 ∗ H1 = H′ and (H0,VS , s, []) →∗ (H′

0,VS ′, ζ, []).

Proof. We prove

config safe ∧ config ∗ H0 → (H,VS , s,FS )
⇒ ∃H1.config → (H1,VS , s,FS ) ∧ H1 ∗ H0 = H

by case analysis of the reduction relation.

In what follows we find it useful to use a subset of the reduction relation that satisfies certain
properties.

Definition 3.7.4 (Predicated reduction). Assuming we have a reduction relation config → config
and a predicate, φ, on a configuration, we define a restricted reduction relation where every
configuration must satisfy a predicate as

φ(config)

config
φ→∗ config

φ(config ′′) config
φ−→∗ config ′ config ′ → config ′′

config
φ−→∗ config ′′

We find it particularly useful to induct over the recursive depth of a computation.

Definition 3.7.5 (Recursive depth). We define recursive depth, rdepth, as the number of return
statements in a given framestack:

rdepth(FS ) =


0 FS = [] ∨ FS = return e; ◦[]
1 + rdepth(FS ′) FS = return e; ◦FS ′ ∧ FS ′ 6= []
rdepth(FS ′) FS = F ◦ FS ′ ∧ F 6= return e;

We consider return e; ◦[] to have a zero recursive depth as the return will remain on the
stack as there is no where to return to. We extend this to configurations in the obvious way, and
define a predicate rdepthn that holds if the depth is less than or equal to n.

Lemma 3.7.6 (Bounded depth reductions contains all finite reductions).

config →∗ config ′ iff there exists an n such that config
rdepthn−−−−−→∗config ′.

Proof. No finite reduction sequence can generate an infinite depth frame stack: each reduction
step can introduce at most one return .
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Rather than proving properties about the reduction relation in all possible contexts, we will
show that the context does not affect the reduction. First we define a relation for when a
computation does not affect its context.

Definition 3.7.7 (Stack contains predicate). We define a predicate, ends, for checking a frames-
tack ends in a particular framestack.

endsFS ,VS
def= {(H,VS ′ ◦VS ,CF ,FS ′) | FS ′ = FS ′′ ◦ FS ∧ VS ′ = MS ◦VS ′′}

Lemma 3.7.8 (Context change).

(H,MS ◦ [], s, []) →∗ (H′,MS ′ ◦ [], ζ, []) ⇐⇒

(H,MS ◦VS , s,FS )
endsFS,VS−−−−−−→∗(H′,MS ′ ◦VS , ζ,FS )

Proof. We prove the stronger fact:

(H,VS ◦VS 1,CF ,FS ◦ FS 1)
endsFS1,VS1−−−−−−−−→∗(H′,VS ′ ◦VS 1,CF ′,FS ′′ ◦ FS 1) ⇒

(H,VS ◦VS 2,CF ,FS ◦ FS 2)
endsFS2,VS2−−−−−−−−→∗(H′,VS ′ ◦VS 2,CF ′,FS ′′ ◦ FS 2)

By induction on the length of the reduction. The base case holds trivially. The inductive case
requires

(H,VS ◦VS 1,CF ,FS ◦ FS 1) → (H′,VS ′ ◦VS 1,CF ′,FS ′ ◦ FS 1) ⇒
(H,VS ◦VS 2,CF ,FS ◦ FS 2) → (H′,VS ′ ◦VS 2,CF ′,FS ′ ◦ FS 2)

This can be shown by case analysis of the rules.

This lemma shows that if we consider the empty context, then that is equivalent to consid-
ering all computations that ignore their context.

Lemma 3.7.9 (Method reduction ignores context).

(H,MS ◦VS , s,FS ) →∗ (H′′,VS ′′,CF ′′,FS ′′) ∧ ¬endsFS ,VS (H′′,VS ′′,CF ′′,FS ′′) ⇒

∃H′,MS ′, ζ. (H,MS ◦VS , s,FS )
endsFS,VS−−−−−−→∗(H′,MS ′ ◦VS , ζ,FS )

Proof. We can ignore exceptional reduction as it is ruled out by the assumption.4 Consider the
last state in the reduction that satisfies the ends predicate. The only reduction rules that can
leave the ends relation are: E-RETURN, E-SKIP and E-SUB, but these all operate on states of the
form (H′,MS ′ ◦VS , ζ,FS ).

By showing method reduction ignores its context we can see it is valid to only consider
method reduction in the empty context.

Lemma 3.7.10 (Expression evaluation). JeKVS ,I respects the operational semantics,

(H,VS , e, []) →∗ (H,VS , v, []) ⇐⇒ v = JeKVS ,I

Proof. Trivial as e can only be null or a variable.

The rules given earlier used substitution to model assignment; next we link update and
substitution semantically.

4If we consider exceptions to be caught, then this would not hold. We would need to extend ζ to exceptions.
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Definition 3.7.11 (Substitution on a stack). Let θ be a substitution of the form: [e1, . . . , en/x1, . . . , xn].
We define a relation between stacks

VS , I ≺θ VS ′, I′ def= ∀e. JeKVS ,I = v ⇔ Jθ(e)KVS ′,I′ = v

It is important to note VS [x 7→ JeKVS ,I] ≺[e/x] VS holds, that is this relation contains the
update on stacks under the syntactic substitution used in the logic.

Lemma 3.7.12 (Substitution preserves truth). If VS and I are related by θ to VS ′ and I′ then
θ(P ) is satisfied by VS , H, I iff P is satisfied by VS ′, H, I′.

Proof. We prove

VS , I ≺θ VS ′, I′ ⇒ (VS , H, I |= P ⇔ VS ′, H, I′ |= θ(P ))

by induction on the structure of P . Holds at leaves by definition of the relation.

The following lemma is used to prove L-VARSUBST is sound.

Lemma 3.7.13 (Substitution preserves reduction).

VS 1 ≺θ VS 2 ⇒ ((H,VS 1, s, []) safe ⇔ (H,VS 2, θ(s), []) safe) (3.5)

(H,VS 1, s, []) →∗ (H′,VS ′
1, ζ, []) ∧ VS 1 ≺θ VS 2

⇒ ((H,VS 2, θ(s), []) →∗ (H′,VS ′
2, ζ, []) ∧ VS ′

1 ≺θ VS ′
2) (3.6)

(H,VS 2, θ(s), []) →∗ (H′,VS ′
2, ζ, []) ∧ VS 1 ≺θ VS 2

⇒ ((H,VS 1, s, []) →∗ (H′,VS ′
1, ζ, []) ∧ VS ′

1 ≺θ VS ′
2) (3.7)

provided θ = [e1, . . . , en/x1, . . . , xn];
• if xi is modified by s, then ei is just a variable not free in any other ej;
• if xi is in the free variables of s, then ei is restricted to program expressions, expressions not

containing ghost variables; and
• if s contains return then θ(ret) = ret .

Proof. We can see that this holds for expressions from the definition of the substitution relation.
Hence we can consider statements with only values and no expressions. The method call and
constructor cases follow directly from Lemmas 3.7.8 and 3.7.9. The only case of interest is the
update variable. We must show VS 1[x 7→v] ≺θ VS 2[θ(x) 7→v], which holds trivially.

Now we define the semantics of the proof system.

Definition 3.7.14. We write Γ |= {P}s{Q} to mean if the specifications in Γ are true of the
methods and constructors in the program, then so is {P}s{Q}, i.e.
Γ |= {P}s{Q} def= |= Γ ⇒ |= {P}s{Q}

where

|= Γ def= ∀{P}η(x){Q} ∈ Γ. |= {P}η(x){Q}
|= {P}C.m(x){Q} def= |= {P ∧ this : C}s{Q} where mbody(C,m) = (x, s)
|= {P}C(x){Q} def= |= {P ∗ new(this, C)}s{Q} where cnbody(C) = (x, s)
|= {P}s{Q} def= ∀VS , H, I.

VS , H, I |= P ∧ ∃τ(δ ` (H,VS , s, []) : τ)

⇒
(

(H,VS , s, []) safe
∧ ((H,VS , s, []) →∗ (H,VS ′, ζ, []) ⇒ (VS ′, H′, I ] JζK |= Q)

)
where Jreturn v; K = {ret 7→v} and J; K = ∅.
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Note: The semantics are defined in an implicit context of a program, π, and a class table, δ.

Now we come to the key contribution of this chapter: the soundness of the logic.

Theorem 3.7.15 (Soundness). If Γ ` {P}s{Q}, then Γ |= {P}s{Q}

Proof. As we have recursive method calls we must prove this initially by induction on the recur-
sive depth [71, 83].5 We define
|=n {P}s{Q}

def= ∀VS , H, I.
VS , H, I |= P ∧ ∃τ(δ ` (H,VS , s, []) : τ)

⇒

(
(H,VS , s, []) safe

∧ ((H,VS , s, [])
rdepthn−−−−−→∗(H,VS ′, ζ, []) ⇒ (VS ′, H′, I ] JζK |=∆f

Q)

)
By Lemma 3.7.6, |= {P}s{Q} is equivalent to ∃n. |=n {P}s{Q}. Hence, we prove

Γ ` {P}s{Q} ⇒

(
(∀n. |=n Γ ⇒ |=n+1 {P}s{Q})

∧ |=0 {P}s{Q}

)
Γ 
 Γ′ ⇒ (∀n |=n Γ ⇒ |=n+1 Γ′) ∧ |=0 Γ′

by rule induction. This induction is valid by Lemma 3.7.6. The definition introduction rules, Fig-
ure 3.5, all follow directly from their definition. The frame rule follows from Lemmas 3.7.2 and
3.7.3 and the free variable restriction. The variable substitution rule follows from Lemma 3.7.13.
The L-STYPE rule follows directly from the definition of a well-formed configuration. Sequenc-
ing follows from the type preservation proof and the usual argument. The L-CALL, L-NEW,
L-SUPER rules all follow from induction on the recursive depth, and that they do not modify
their parameters.

Finally in this section, we show that the transformation preserves the semantics, but first we
must show that adding fresh variables does not affect the reduction.

Lemma 3.7.16 (Fresh variables or new blocks do not affect reduction). Adding a fresh variable,
or a fresh block of variables, does not affect expression or statement reduction, i.e. if

(H,MS ◦ [],CF , []) →∗ (H′,MS ′ ◦ [], ζ, [])

where MS = MSa◦BS ◦MS b, MS ′ = MS ′
a◦BS ◦MS ′

b, and CF is a statement sequence
or an expression.

then
(H,MS 1 ◦ [],CF , []) →∗ (H′, (MS ′

1 ◦ [], ζ, [])

where MS 1 = MSa ◦ BS [z 7→v] ◦MS b and MS ′
1 = MS ′

a ◦ BS [z 7→v] ◦MS ′
b and z not

mentioned in CF .

and

(H, (MS 2 ◦ {} ◦ BS ◦ MS 2) ◦ VS ,CF , []) →∗ (H′, (MS ′
1 ◦ {} ◦ BS ′ ◦ MS ′

2) ◦ VS , ζ, [])

where MS 2 = MSa ◦ {} ◦ BS ◦MS b and MS ′
1 = MS ′

a ◦ {} ◦ BS ◦MS ′
b and if CF is of

the form s1 . . . Cx; . . . s2 then MSa is non-empty.

Note: Above we abuse the use of ◦ to additionally mean stack append, in addition to cons.

5The (H,VS , s, []) safe does not depend on the recursive depth, so even programs that do not terminate are safe.



ENCAPSULATION AND INHERITANCE 61

class Cell extends Object {
Object cnts;
...
void set(Object o) {
this.cnts = o;

}

Object get() {
Object temp;
temp = this.cnts;
return temp;

}
}

class Recell extends Cell {
Object bak;
...
void set(Object o) {
Object temp;
temp = this.cnts;
this.bak = temp;
this.cnts = o;

}
}

Figure 3.8: Source of Cell and Recell (Constructors omitted)

Proof. By induction on the structure of CF .

Lemma 3.7.17 (Transformation preserves semantics). The transformation defined in Figure 3.2
preserves the semantics: i.e.

π ` (H,VS , s, []) →∗ (H′,VS ′, ; , []) ⇒ LπM ` (H,VS , LsM, []) →∗ (H′,VS ′+, ; , [])

where VS+ is either VS or VS extended with a single variable in the top frame.

Proof. We prove the following

Φ(n) ∧Ψ(n) ⇒ Φ(n + 1) ∧Ψ(n + 1)

where

Φ(n) def= ∀H,VS , π, s, H′,VS ′.

π ` (H,VS , s, [])
rdepthn−−−−−→∗(H′,VS ′, ζ, []) ⇒

LπM ` (H,VS , LsM, []) rdepthn−−−−−→∗(H′,VS ′+, ζ, [])

and

Ψ(n) def= ∀π, H,VS , e, H′,VS ′, v, z.

π ` (H,VS , e, [])
rdepthn−−−−−→∗(H′,VS ′, v, []) ⇒

LπM ` (H,VS + [z 7→ , C], LeMz, [])
rdepthn−−−−−→∗(H′,VS ′ + [z 7→v, C], ; , [])

where ((BS ◦MS ) ◦VS ) + [x 7→(v, C)] is a shorthand for (BS [x 7→ (v, C)] ◦MS ) ◦VS .
We can prove this by induction on the translation, and use Lemma 3.7.16 to deal with the

variables and block scopes the translation introduces.

3.8 Encapsulation and inheritance

Although this logic allows reasoning about programs that manipulate pointer datastructures, it
does not provide support for abstraction (encapsulation) or inheritance. Consider the definition
of the Cell class given in Figure 3.8. We can provide the obvious specifications to the Cell
class’s methods:
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Method Pre-condition Post-condition
Cell.set(o) this.cnts 7→X this.cnts 7→o

Cell.get() this.cnts 7→X this.cnts 7→X ∧ ret = X

These specifications can easily be verified using the rules described earlier. However, the spec-
ifications are sensitive to changes in the implementation. Renaming the cnts field would alter
all the proofs using the Cell, even if they only used the get and set methods. We are lacking
the common abstractions afforded to us by object-oriented programming.

Worse still, we cannot provide support for inheritance. Consider the standard subtype of
Cell, Recell [1], also given in Figure 3.8. Consider giving its set method the obvious specifi-
cation.

Method Pre-condition Post-condition
Recell.set(o) this.cnts 7→X

∗ this.bak 7→
this.cnts 7→o
∗ this.bak 7→X

This code is clearly a well-behaved subtype of Cell yet it is not specification compatible with
its parent, because Recell.set has a footprint of two fields, while Cell.set has a footprint of
one field. This is an example of the extended state problem mentioned in Chapter 1. The only
way to gain specification compatibility is to modify the Cell’s specification to account for the
Recell’s specification, i.e.

Method Pre-condition Post-condition
Cell.set(o) this.cnts 7→X

∗ (this : Recell
⇒ this.bak 7→ )

this.cnts 7→o
∗ (this : Recell
⇒ this.bak 7→X)

Recell.set(o) this.cnts 7→X
∗ (this : Recell
⇒ this.bak 7→ )

this.cnts 7→o
∗ (this : Recell
⇒ this.bak 7→X)

Adapting specifications in this way is perhaps feasible in small programs, but does not yield a
scalable solution. In particular it would not be possible for open programs, i.e. programs where
only part of the source is available.

The remainder of this thesis presents solutions to the complex problems of encapsulation
and inheritance. In the next chapter we add support for encapsulation to the logic using a novel
concept of an abstract predicate. In Chapter 6 we extend this concept to additionally deal with
inheritance. The result is, we claim, the first program logic that is expressive enough to reason
about real-world code written in realistic object-oriented languages, such as Java.
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Abstract predicates

In the previous chapter we presented a logic for Java. However, that logic was not powerful
enough to express the abstraction that encapsulation provides to object-oriented programs. In
this chapter we extend the logic from the previous chapter with reasoning that supports encap-
sulation.

Various researchers have proposed the enrichment of a program logic to view the data ab-
stractly (as in data groups [54]), or the methods/procedures abstractly (as in method groups [52,
80]). In contrast, we propose to add the abstraction to the logical framework itself, by intro-
ducing the notion of an abstract predicate. Intuitively, abstract predicates are used like abstract
data types. Abstract data types have a name, a scope and a concrete representation. Operations
defined within this scope can freely exchange the datatype’s name and representation, but oper-
ations defined outside the scope can only use the datatype’s name. Similarly abstract predicates
have a name and a formula. The formula is scoped: code verified inside the scope can use both
the predicate’s name and its body, while code verified outside the scope must treat the predicate
atomically. We do not reason directly about Java access modifiers private and protected, but
provide a more abstract notion of scoping.

In separation logic it is common to use inductively defined predicates to represent data types,
for example §3.6. In essence we allow predicates to additionally encapsulate state and not just
represent it. This gives us two key advantages: (1) the impact of changing a predicate is easy to
define; and (2) by encapsulating state we are able to reason about ownership transfer [66].

The rest of this chapter is structured as follows. We begin by giving the proof rules associated
with abstract predicates. In §4.2, we provide examples to illustrate the use and usefulness of
abstract predicates. Then in §4.3 we give the semantics and prove the new rules are sound. We
conclude with a discussion of related work.

Note: A different version of this work, which uses a simple language of functions rather than
Java, was presented at POPL [67].

4.1 Proof rules

We extend the assertion language given in Chapter 3 with predicates. We write α to range
over predicate names and use a function arity() from predicate names to a natural number
representing the predicate’s arity.

63
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We extend judgements to contain predicate definitions as follows:

Λ; Γ ` {Q1}s{Q2}

This is read “the statements, s, satisfy the specification {Q1} {Q2}, given the method and con-
structor hypotheses, Γ, and predicate definitions, Λ.” Predicate definitions are given by the
following grammar:

Λ := ε | (α(x) def= P ), Λ

For the predicate definitions, Λ, to be well-formed we require that each predicate, α, is contained
at most once; the free variables of the body, P , are contained in the arguments, x; and P is a
positive formula.1 We will only consider well-formed Λ. When it simplifies the presentation, we
will treat Λ as a partial function from predicate names to formulae. We define Λ(α)[e] as P [e/x]
where Λ contains α(x) def= P . Additionally, we extend the definition rules in Figure 3.5 (page 51)
to include the predicate definitions.

Note: In this thesis we only use abstract predicates to represent inductively defined datastruc-
tures (such as lists and trees), so the definitions are all continuous. However, the rules and
semantics do not require the definitions to be continuous, only that the definitions have a fixed
point.

The exchange between definitions and names occurs in the following two axioms2 concern-
ing abstract predicates:

OPEN (α(x) def= P ),Λ |= α(e) ⇒ P [e/x]

CLOSE (α(x) def= P ),Λ |= P [e/x] ⇒ α(e)

These axioms embody our intuition that if (and only if) an abstract predicate is in scope (that is,
it is contained in Λ) then we can freely move between its name and its definition. These axioms
are used in the rule of consequence, L-CONSEQUENCE.

L-CONSEQUENCE
Λ |= P ⇒ P ′ Λ; Γ ` {P ′}C{Q′} Λ |= Q′ ⇒ Q

Λ; Γ ` {P}C{Q}

Taking the analogy with abstract datatypes: the rule of consequence can be seen as a subtyping
rule, and the axioms open and close are the coercions, or subtyping relation, allowed when the
datatype is in scope.

Next we present the rule to enforce the scoping of predicate definitions:

L-DINTROABS
Λ′,Λ; Γ,Γ′ 
 Γ′ Λ; Γ,Γ′ ` {P}s{Q}

Λ; Γ ` {P}s{Q}
provided P , Q, Γ and Λ′ do not contain the predicate names in dom(Λ′); and dom(Λ) and dom(Λ′)
are disjoint.

This rule allows a class, or package, author to use the definition of some abstract predicates,
yet the client can only use the abstract predicate names. The methods and constructors in Γ′

are within the scope of the predicates defined in Λ hence verifying the the bodies can use the
predicate definitions. The client code, s, is not in the scope of the predicates, so it can only use

1A positive formula is one where predicate names appear only under an even number of negations. This ensures
that a fixed point can be found; this is explained in further detail in Definition 4.3.3 and Lemma 4.3.4.

2We present them as semantic implications as a complete proof theory for separation logic is not known.
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the predicates atomically through the specifications in Γ′. The predicate names cannot occur in
the conclusion’s specification, {P} {Q}.

The side-conditions for this rule prevent both the predicates escaping the scope of the mod-
ule, and repeated definitions of a predicate.

In fact, the previous definition introduction rule, L-DINTROABS, is a derived rule in our
system. It is derived from the standard definition introduction rule and two new rules for
manipulating abstractions. The first, L-ABSWEAK, allows the introduction of new definitions.

L-ABSWEAK
Λ; Γ ` {P}C{Q}

Λ,Λ′; Γ ` {P}C{Q}
provided dom(Λ′) and dom(Λ) are disjoint

The second, L-ABSELIM, allows any unused predicate to be removed.

L-ABSELIM
Λ,Λ′; Γ ` {P}C{Q}

Λ; Γ ` {P}C{Q}
provided the predicate names in P , Q, Γ and Λ are not in dom(Λ′).

We can derive the L-DINTROABS rule in the following way:

L-DINTRO
Λ,Λ′; Γ,Γ′ 
 Γ′

L-ABSWEAK
Λ; Γ,Γ′ ` {P}s{Q}

Λ,Λ′; Γ,Γ′ ` {P}s{Q}

L-ABSELIM
Λ,Λ′; Γ ` {P}s{Q}

Λ; Γ ` {P}s{Q}

4.2 Examples

To demonstrate the utility of abstract predicates, we shall present a couple of examples.

4.2.1 Connection pool

Our first example is a database connection pool. Constructing a database connection is generally
an expensive operation, so this cost is reduced by pooling connections using the object pool
design pattern [42, Chapter 5]. Programs regularly access several different databases, hence we
require multiple connection pools and dynamic instantiation. The connection pool must prevent
the connections being used after they are returned: ownership must be transferred between the
client and the pool.

We assume a library constructor, Conn(db), to construct a database connection. This routine
takes a single parameter that specifies the database, and returns a handle to a connection. The
specification of this constructor uses a predicate conn to represent the state of the connection.{
true

}
Conn(db)

{
conn(this,db)

}
Note: In a more realistic implementation, such as JDBC [35], several arguments would be used
to specify how to access a database. Additionally an instance of the Factory pattern would be
used so that the correct database driver could provide the connection.

We use two classes, given in Figure 4.1, to represent the state of a connection pool: ConnPool
represents the connection pool, and ConnList holds the connections. We reflect this in the logic
by defining two abstract predicates: cpool and clist. The cpool predicate is used to represent a
connection pool; and the clist predicate is used inside the cpool to represent a list of connection



66 ABSTRACT PREDICATES

class CList {
Conn hd;
CList tl;
CList(Conn hd, CList tl) {
this.hd = hd;
this.tl = tl;

}
}
class ConnPool {
Object db; CList l;
ConnPool(Object db) {
this.db = db;
this.l = null;

}
Conn getConn() {
CList l;
Conn c;
Object db;

l = this.l;
db = this.db;
if(l == null) {
c = new Conn(db);

} else {
c = l.hd;
l = l.tl;
this.l = l;

}
return c;

}
void freeConn(Conn y) {
CList t; CList n;
t = this.l;
n = new CList(y,t);
this.l = n;

}
}

Figure 4.1: Source code for the connection pool

predicates.

cpool(x, db) def= ∃i. x.l 7→ i ∗ x.db 7→db ∗ clist(i, db)

clist(x, db) def= x = null ∨ (∃ij. x.hd 7→ i ∗ x.tl 7→j ∗ conn(i, db) ∗ clist(j, db))

The connection pool has three operations: ConnPool to construct a pool; getConn to get a
connection; and freeConn to free a connection. These are specified as follows.

Method Pre-condition Post-condition
ConnPool(db) true cpool(this,db)
getConn() cpool(this, db) cpool(this, db)

∗ conn(ret , db)
freeConn(y) cpool(this, db) ∗ conn(y, db) cpool(this, db)

We give the Inner MJ code that implements these operations in Figure 4.1.
Now let us consider how we could use this class in a proof. We present a simple example

where we assume no other classes are used. First we break the proof up using the L-DINTROABS
rule.

(A)

Λ; Γ 
 Γ′

(B)

Λ; Γ `

cpool(this, db)
∗ conn(y, db)
∧ this : ConnPool

s′{cpool(this, db)}

Λ; Γ 


{
cpool(this, db)
∗ conn(y, db)

}
ConnPool
.freeConn(y){cpool(this, db)}

Λ; Γ 
 Γ

(C)

ε; Γ`{P}s{Q}

ε; ε ` {P}s{Q}
where Γ is the method and constructor specifications for the ConnPool class; Γ′ is the same
specifications excluding freeConn; Λ is the predicate definitions for cpool and conn; s is the
client code; and s′ is the body of freeConn.

We will only present branches (B) and (C). First we present (B): the proof that the
freeConn implementation satisfies its specification. This illustrates the use of abstract predi-
cates:
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{
cpool(this, db) ∗ conn(y, db) ∧ this : ConnPool

}{
∃i. this.l 7→ i ∗ this.db 7→db ∗ clist(i, db) ∗ conn(y, db)

}
t=this.l;{

this.l 7→t ∗ this.db 7→db ∗ clist(t, db) ∗ conn(y, db)
}

n=new CList(y,t);{
this.l 7→t ∗ this.db 7→db ∗ n.hd 7→y ∗ n.tl 7→t ∗ clist(t, db) ∗ conn(y, db)

}
this.l=n{

this.l 7→n ∗ this.db 7→db ∗ n.hd 7→y ∗ n.tl 7→t ∗ clist(t, db) ∗ conn(y, db)
}{

this.l 7→n ∗ this.db 7→db ∗ clist(n, db)
}{

cpool(this, db)
}

In this proof the definitions from Λ of both cpool and clist are used with OPEN and CLOSE to give
the following three implications

cpool(this, db) ⇒ ∃i. this.l 7→ i ∗ this.db 7→db ∗ clist(i, db)
n.hd 7→y ∗ n.tl 7→t ∗ clist(t, db) ∗ conn(y, db) ⇒ clist(n, db)
this.l 7→n ∗ this.db 7→db ∗ clist(n, db) ⇒ cpool(this, db)

These are used with the rule of L-CONSEQUENCE to complete the proof. It is essential that Λ is
known in (B) for these implications to hold.

Next we present, and attempt to verify, a fragment of client code using the connection pool
(branch (C)). It demonstrates both correct and incorrect usage, which causes the verification to
fail. The example calls a function, useConn, that uses a connection.{
cpool(x, db)

}
y = x.getConn();{

cpool(x, db) ∗ conn(y, db)
}{

conn(y, db)
}

useConn(y);{
conn(y, db)

}{
cpool(x, db) ∗ conn(y, db)

}
x.freeConn(y);{

cpool(x, db)
}

useConn(y){
???
}

The client gets a connection from the pool, uses it and then returns it. However, after returning
it, the client tries to use the connection. This command cannot be validated as the precondition
does not contain the conn predicate. Even though this predicate is contained in cpool, the client
is unable to expand the definition because it is out of scope. We do not have Λ in this branch
of the proof. This illustrates how abstract predicates capture “ownership transfer”, a notion
first coined by O’Hearn et al. [66]. The connection passes from the client into the connection
pool stopping the client from directly accessing it, even though the client has a pointer to the
connection.

It is essential to be able to create new instances of a datatype. We conclude this section with
a second example client that demonstrates the instantiation of abstract predicates. A connection
pool library wants many instances of a connection pool; generally one per database. This can
be easily handled by constructing the required number of ConnPool instances. Assume we have
two different databases, db1 and db2.{
true

}
y = new ConnPool(db1);{

cpool(y,db1)
}

z = new ConnPool(db2);
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{
cpool(y,db1) ∗ cpool(z,db2)

}
This code creates two connection pools. The parameter prevents us returning the connection to
the incorrect pool.{
cpool(y,db1) ∗ cpool(z,db2)

}
x = z.getConn();{

cpool(y,db1) ∗ cpool(z,db2) ∗ conn(x,db2)
}

y.freeConn(x){
???
}

The freeConn call can only be validated if db1 = db2.3

This example has illustrated that abstract predicates capture the notion of “ownership trans-
fer”. We will compare our support for ownership transfer to theirs in §4.4.2.

4.2.2 Ticket machine

Our next example is a simple ticket machine. Consider the following specifications:

Function Pre-condition Post-condition
getTicket() true Ticket(ret)
useTicket(x) Ticket(x) true

To call useTicket you must have called getTicket; each usage consumes a ticket. Trying to
use a ticket twice fails:{
true

}
x = getTicket();{

Ticket(x)
}

useTicket(x);{
true

}
useTicket(x);{

???
}

The second call to useTicket fails, because the first call removed the Ticket.
Any client that is validated against this specification must use the ticket discipline correctly.

In fact the module is free to define the ticket in any way, e.g. Ticket(x) def= true. Although
duplication of this ticket would be logically valid, true ∗ true ⇔ true, the client does not know
this, and hence cannot.

4.2.3 Aside: Permissions interpretation

To better understand the previous example we turn to the permissions interpretation of separa-
tion logic. O’Hearn [63] has recently given separation logic an ownership, or permissions, in-
terpretation: 7→ is the permission to read and write a memory location. (This has been extended
by Bornat, Calcagno, O’Hearn and Parkinson [14] to separate read and total permissions; we
will detail this in Chapter 5.) In the previous example, the Ticket predicate is the permission
to call useTicket once. The call consumes this permission. Using the permissions interpreta-
tion of separation logic, abstract predicates allow modules to define their own permissions. The
concept of ownership transfer can be seen as transferring permission to and from the client.

3Given the specification it is always valid to return a connection to a pool if it is to the correct database. A tighter
specification could be given to restrict returning to the allocating pool. See the malloc example in §4.4.1.
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4.3 Semantics

In the previous sections we have introduced informally the notion of abstract predicates and
detailed a couple of examples to demonstrate their usefulness. In this section we formalize
them precisely and show that the two abstract predicate rules are sound: L-ABSWEAK and L-
ABSELIM.

First we define the semantics of an abstract predicate. We define semantic predicate envi-
ronments, ∆, as follows:

∆ :
∏

α : A.(Valuesarity(α) → P(H))⊥

where A is the set of predicate names. We use an indexed, or dependent, product to represent a
function from predicate name to definition of the correct arity. Later we require the combination
of disjoint ∆s, so the always false definition is different from an undefined predicate, hence we
lift the lattice. The reader might have expected the use of P(H×S ×I) where S is the set of all
stacks and I is the set of all ghost stacks. However, this breaks substitution as the predicate can
depend on variables that are not syntactically free.

The semantics of a predicate is as follows:

VS , H, I |=∆ α(e) def= α ∈ dom(∆) ∧ H ∈ (∆α)[JeKVS ,I]

We lookup the definition in ∆, evaluate the arguments with respect to the stack, VS , supply
the arguments to the definition, and check the heap is contained in the result. The remaining
semantics are defined the same as in §3.3 with the predicate environment added in the obvious
way.

Lemma 4.3.1. Semantic predicate environments form a complete lattice.

Proof. The powerset gives us a complete lattice. Any function from a set to a complete lattice is
also a complete lattice. Lifting a complete lattice is a complete lattice, and a product of complete
lattices is a complete lattice.

The complete lattice has the following ordering

∆ v ∆′ def= ∀α.∀v : Valuesarity(α).∆(α) 6= ⊥ ⇒ ∆(α)(v) ⊆ ∆′(α)(v)

and the least upper bound of this order is written t and defined as:⊔
i∈I

(∆i)
def= λα.λv : Valuesarity(α).

⋃
i∈I

⊥
(∆i(α)(v))

where
⋃

i∈I
⊥Xi

def=

{
⊥ ∀i ∈ I.Xi =⊥⋃

i∈I∧Xi 6=⊥ Xi otherwise

Lemma 4.3.2. Formulae only depend on the predicate names they mention, i.e. if ∆ defines all the
predicate names in P, and ∆ and ∆′ are disjoint, then

∀VS , H, I. VS , H, I |=∆ P ⇔ VS , H, I |=∆t∆′ P

Proof. By induction on the structure of P .

Definition 4.3.3 (Positive and negative formulae).
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pos(P ∧Q) = pos(P ) ∧ pos(Q)
pos(P ∨Q) = pos(P ) ∧ pos(Q)
pos(P ∗ Q) = pos(P ) ∧ pos(Q)
pos(e = e) = true
pos(e.f 7→e) = true
pos(P −∗Q) = neg(P ) ∧ pos(Q)
pos(P ⇒ Q) = neg(P ) ∧ pos(Q)
pos(α(v)) = true

neg(P ∧Q) = neg(P ) ∧ neg(Q)
neg(P ∨Q) = neg(P ) ∧ neg(Q)
neg(P ∗ Q) = neg(P ) ∧ neg(Q)
neg(e = e) = true
neg(e.f 7→e) = true
neg(P −∗Q) = pos(P ) ∧ neg(Q)
neg(P ⇒ Q) = pos(P ) ∧ neg(Q)
neg(α(v)) = false

Lemma 4.3.4. Positive formulae are monotonic with respect to semantic predicate environments,
i.e.

pos(P ) ∧ ∆ v ∆′ ∧ VS , H, I |=∆ P ⇒ VS , H, I |=∆′ P

Proof. We prove the following stronger result

∆ v ∆′ ⇒ (pos(P ) ∧VS , H, I |=∆ P ⇒ VS , H, I |=∆′ P )
∧ (neg(P ) ∧VS , H, I |=∆′ P ⇒ VS , H, I |=∆ P )

by induction on the structure of P .

Now let us consider the construction of a semantic predicate environment from an abstract
one, Λ. The abstract predicate environment does not necessarily define every predicate, so
constructing a solution requires additional semantic definitions, ∆, to fill the holes. We use the
following function to generate a fixed point:

step(∆,Λ)(∆
′) def= λα ∈ dom(Λ).λn ∈ Narity(α).{H | VS , H, I |=∆′t∆ Λ(α)[n]}

where Λ contains the definitions we want to solve; and ∆ are the predicates not defined in
Λ. step is monotonic on predicate environments, because of Lemma 4.3.4 and that all the
definitions are positive. Hence by Tarski’s theorem and Lemma 4.3.1 we know a least fixed
point always exists. We write JΛK∆ for the least fixed point4 of step∆,Λ.

Consider the set of all solutions of Λ of the form ∆ t JΛK∆:

close(Λ) def= {∆ t JΛK∆| dom(∆) = A \ dom(Λ)}

Next we consider a property of fixed points, and a couple of properties of this function.

Lemma 4.3.5. Consider two monotonic functions: f1 : A×B → A and f2 : A×B → B where A
and B are complete lattices. Consider the simultaneous fixed point (a, b):

fix (x, y).(f1(x, y), f2(x, y)) = (a, b) (4.1)

and the fixed point with one argument provided:

fix (x).(f2(a′, x)) = b′(a′) (4.2)

The fixed points are equal: b′(a) = b

Note: This Lemma is actually a corollary of Bekič’s theorem [85, Page 163]. We present the
following simplified proof for completeness.

4We could generalise the semantics to consider all possible fixed points. We use least fixed points to simplify the
semantics.
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Proof. We know b is a solution to fixed point equation in (4.2) from (4.1) as f1(a, b) = a.
Therefore b′(a) ⊆ b. Now prove (a, b′(a)) is a pre-fix point of equation in (4.1). This requires

(f1(a, b′(a)), f2(a, b′(a))) ⊆ (a, b′(a)) (4.3)

The second element of the pair follows from (4.2). We know b′(a) ⊆ b and f1 monotone, so
f1(a, b′(a)) ⊆ f1(a, b). From (4.1) we know f1(a, b) = a. Hence, proving the inequality, (4.3)
for the first element of the pair. Therefore (a, b′(a)) is a prefix point of 4.1, but (a, b) is the least
prefix point, so b ⊆ b′(a). Hence they are equal.

Lemma 4.3.6. Adding new predicate definitions refines the set of possible semantic predicate envi-
ronments, i.e.

close(Λ1) ⊇ close(Λ1,Λ2)

Proof. Consider an arbitrary element of close(Λ1,Λ2): JΛ1,Λ2K∆t∆ = ∆t∆1t∆2, dom(∆1) =
dom(Λ1) and dom(∆2) = dom(Λ2). First show JΛ1K∆t∆2 = ∆1. This follows directly from
Lemma 4.3.5 by defining f1(a, b) def= stepΛ1;∆ta(b) and f2(a, b) def= stepΛ2;∆tb(a). From these
definitions we get fix (x).f1(x,∆2) = JΛ1K∆t∆2 and fix (x, y).(f1(x, y), f2(x, y)) = (∆1,∆2). So
by the Lemma 4.3.5 we know JΛ1K∆t∆2 = ∆1, therefore JΛ1,Λ2K∆ t∆ = JΛ1K∆t∆2 t∆ t∆2 ∈
close(Λ1). Therefore every element is contained in close(Λ1).

Lemma 4.3.7. The removal of predicate definitions does not affect predicates that do not use them.
Given Λ which is disjoint from Λ′ and does not mention predicate names in its domain; we have

∀∆ ∈ close(Λ).∃∆′ ∈ close(Λ,Λ′). ∆ � dom(Λ′) = ∆′ � dom(Λ′)

where f � S is {a 7→b|a 7→b ∈ f ∧ a /∈ dom(S)}

Proof. We only need consider α ∈ dom(Λ). Consider ∆1 t ∆2 = JΛ,Λ′K∆ where dom(∆1) =
dom(Λ) and dom(∆2) = dom(Λ′). Using Lemma 4.3.2 we get ∀∆′. JΛK∆t∆′ = JΛK∆ = JΛK∆t∆2 .
By the proof of the previous Lemma we know

∀α ∈ dom(Λ). JΛK∆t∆′(α) = JΛK∆t∆2(α) = JΛ,Λ′K∆(α)

Therefore, for every element in close(Λ), there is an element in close(Λ,Λ′) that agrees on all
the definitions not in dom(Λ′).

We define validity with respect to an abstract predicate environment, written Λ |= P , as
follows:

∀VS , H, I,∆ ∈ close(Λ). VS , H, I |=∆ P

Theorem 4.3.8. OPEN and CLOSE are valid, i.e.

(α(x)
def
= P ),Λ |= α(e) ⇒ P [e/x]

(α(x)
def
= P ),Λ |= P [e/x] ⇒ α(e)

Proof. Directly from definitions.

We are now in a position to define a semantics for our reasoning system. We write Λ; Γ |=
{P}s{Q} to mean that, if every specification in Γ holds for the methods and constructors, and
every abstract predicate definition in Λ is true of a predicate environment, then so is {P}s{Q}:

∀∆ ∈ close(Λ). ∆ |= Γ ⇒ ∆ |= {P}s{Q}

The rest of the definitions are modified in the obvious way to pass the abstract predicate envi-
ronment around.

Given this definition we can show that the two new rules for abstract predicates are sound.
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Command Description Rule

x=[e] read heap location e


e = Z
∧ Z 7→Y

ff
x = [e]


Z 7→Y
∧ x = Y

ff
[e]=e ′ write e ’ to heap location e {e 7→ }[e] = e ′{e 7→e ′}

dispose e dispose of heap location e {e 7→ }dispose e{empty}

while(B)s while B holds execute s
{R ∧B}s{R}

{R}while (B)s{R ∧ ¬B}

newvar x in s new local variable x
{P}s{Q}

{P}newvar x in s {Q}
where x /∈ FV (P ) ∪ FV (Q)

Figure 4.2: Details required for Malloc and free

Theorem 4.3.9. Abstract weakening, L-ABSWEAK, is sound.

Proof. Direct consequence of definition of judgements and Lemma 4.3.6.

Theorem 4.3.10. Abstract elimination, L-ABSELIM, is sound.

Proof. Follows from Lemmas 4.3.2 and 4.3.7.

4.4 Discussion

We conclude this chapter by considering, in detail, an example of a memory manager and three
related works: the hypothetical frame rule, higher-order separation logic, and typestates.

4.4.1 Malloc and free

In this subsection we present an example of a memory manager that allocates and deallocates
variable sized blocks of memory. We present the example for two reasons: it demonstrates
that abstract predicates are applicable to non-object-oriented programming; and it allows us to
present a better comparison with the hypothetical frame rule. (This example was suggested to
us by O’Hearn.)

In this example we use a different model of separation logic, as we require disposal and
address arithmetic. Recalling the discussion from §3.3 this requires a move from intuitionistic
separation logic to classical separation logic to exclude weakening on the spatial connective, ∗ :
we do not want memory leaks. This alters the semantics of 7→ to mean that the heap contains
a single cell, rather than at least a single cell. We have an additional assertion empty for the
empty heap. The heap is accessed by integers, rather than oids and fields, and we use e to range
over integer expressions. We present a summary of the programming language in Figure 4.2.
This language is similar to those used in most recent separation logic papers [65, 75, 67].

We also use some additional features for handling arrays, described by Reynolds [75]: the
iterated separating conjunctions, ~e2

x=e1
.P ; and a system routine allocate that allocates vari-

able sized blocks. Intuitively, the iterated separating conjunction, ~e2
x=e1

.P , is the expansion
P [e1/x] ∗ . . . ∗ P [e2/x] where x ranges from e1 to e2. If e2 is less than e1, it is equivalent to
empty. More formally its semantics are:
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VS , H, I |=∆ ~e2
x=e1

.P
def= (Je1KVS ,I = n1 ∧ Je2KVS ,I = n2) ⇒
((n1 ≤ n2 ⇒ VS , H, I |=∆ P [n1/x] ∗ ~n2

x=n1+1.P )

∧ (n1 > n2 ⇒ VS , H, I |=∆ empty))

Returning to the example, consider the following näıve specifications, which demonstrate
the difficulties in reasoning about a memory manager:

Function Pre-condition Post-condition
malloc(n) empty ~n−1

i=0 .(ret + i 7→ )
free(x) ~n−1

i=0 .x+ i 7→ empty

malloc returns an array n cells long starting at ret , and free consumes an array n cells long
starting at x. The problem is with free’s specification: it does not specify how much memory is
returned as n is a free variable.

The standard specification [50] of free only requires it to deallocate blocks provided by
malloc. It is undefined on all other arguments. Using abstract predicates we are able to provide
an adequate specification.

Function Pre-condition Post-condition
malloc(n) empty ~n−1

i=0 .(ret + i 7→ ) ∗ Block(ret ,n)
free(x) ~n−1

i=0 .x+ i 7→ ∗ Block(x, n) empty

The Block predicate is used as a modular certificate, or permission, that malloc actually pro-
duced the block. The client cannot construct a Block predicate as its definition is not in scope.

Typical implementations of malloc and free store the block’s size in the cell before the
allocated block [50]. This can be specified directly by defining the Block predicate as follows.

Block(x, n) def= (x− 1) 7→n

This allows free to determine the quantity of memory returned. More complicated specifica-
tions can be used which account for padding and other bookkeeping.

We can give a simple implementations of both malloc and free, which call system routines
to construct (allocate) and dispose (dispose) the blocks.5

malloc n =(newvar x in x=allocate(n+1);
[x]=n; return x+1)

free x =(newvar n in n=[x-1];
while(n≥0) (n=n-1; dispose(x+n))

Both of their implementations can be verified; here we present the proof of malloc:{
empty

}
x=allocate(n+1);{

~n
i=0. (x+ i) 7→

}{
x 7→ ∗ ~n

i=1. (x+ i) 7→
}

[x]=n;{
x 7→n ∗ ~n

i=1. (x+ i) 7→
}

return x+1{
(ret − 1) 7→n ∗ ~n

i=1. (ret − 1 + i) 7→
}{

(ret − 1) 7→n ∗ ~n−1
i=0 . (ret + i) 7→

}{
~n−1

i=0 . (ret + i) 7→ ∗ Block(ret ,n)
}

5One could extend the specification to have an additional memory manager predicate that contains a free list, as
in the connection pool example.
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The final step in this proof abstracts the cell containing the block’s length, hence the client cannot
directly access it. The following code fragment attempts (but fails) to break this abstraction:{
empty

}
x=malloc(30);{

~29
i=0. (x+ i) 7→ ∗ Block(x, 30)

}
[x-1]=15;{

???
}

free(x);

The client attempts to modify the information about the block’s size. This would be a clear
failure in modularity as the client is dependent on the implementation of Block. Fortunately, we
are unable to validate the assignment as the pre-condition does not contain x− 1 7→ . Although
the Block contains the cell, the client does not have the definition in scope and hence cannot
use it.

This example has demostrated that abstract predicates are applicable even in languages
without direct support for abstraction. The C memory manager uses encapsulation, but this
abstraction is not protected by the run-time or the language design. However, it can be pro-
tected at the logical level using abstract predicates. Abstract predicates provide encapsulation
to languages that do not have encapsulation.

4.4.2 Hypothetical frame rule

The first attack on modularity in separation logic was made by O’Hearn, Reynolds and Yang [66].
They added static modularity to separation logic. They hide the internal resources of a module
from its clients using the hypothetical frame rule.

In this section we present a detailed comparison between abstract predicates and the hypo-
thetical frame rule. In particular we compare the different forms of modularity they allow.

O’Hearn, Reynolds and Yang extend separation logic with the following rule,6 known as
hypothetical frame rule, to allow the hiding of information.

Γ, {P1}k1{Q1}[X1], . . . , {Pn}kn{Q}[Xn] ` {P}s{Q}

Γ, {P1 ∗ R}k1{Q1 ∗ R}[X1, Y ], . . . , {Pn ∗ R}kn{Q ∗ R}[Xn, Y ] ` {P ∗ R}s{Q ∗ R}

This rule can be used to derive a modular procedure definition rule, which they use to explain
the modularity they enable.

Γ ` {P1 ∗ R}s1{Q1 ∗ R}
...

Γ ` {Pn ∗ R}sn{Qn ∗ R}
Γ, {P1}k1{Q1}[X1], . . . , {Pn}k1{Qn}[Xn] ` {P}s{Q}

Γ ` {P ∗ R}let k1 = s1, . . . , kn = sn in s end{Q ∗ R}

Note: The rule additionally has several side-conditions on free variables, and also on the form
of R, which we discuss later.

In this rule, R is the hidden resource that is only available to the procedures, or functions,
k1, . . . , kn. The parameterless procedures can modify the resource R, but the procedures must
always restore R before they return. Returning to the motivating example of the memory man-
ager, R could be a list of unallocated fixed size7 blocks of memory. malloc and free can

6Side-conditions omitted.
7The memory manager verified with the hypothetical frame rule can only allocate fixed size blocks of memory. It

cannot be used with variable sized blocks as described earlier.
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temporarily break this invariant but it must always hold when they return. The client code,
s, is verified without R, and hence is unable to directly modify the free list. Returning to the
memory manager, a client should only modify the free list using malloc and free, it should not
have direct access to this list. This rule describes the partitioning between the client’s and the
module’s state.

This partitioning of resources allows “ownership transfer”: state can safely be transferred
between the module and the client without fear of dereferencing dangling pointers. This allows
reasoning about examples such as a simple memory manager, which allocates fixed size blocks
of memory, and a queue.

Though this is a significant advance, their work is severely limited as it only models static
modularity. Their modules are based on Parnas’ work on information hiding [68], which deals
with single instances of the hidden data structure: there is only one R and it is statically scoped.
It cannot be used for many common forms of abstraction, including ADTs and classes, where we
require multiple dynamically scoped instances of the hidden resource.

Abstract predicates can represent dynamically scoped abstractions. Their use captures “own-
ership transfer.” Our connection pool example captures all the key properties of O’Hearn et al.’s
idealization of a memory manager. In addition in §4.4.1 we showed that abstract predicates
could be used to represent modular permissions, or certificates, and hence verify a memory
manager for variable sized blocks. O’Hearn, Reynolds and Yang’s [66] idealization of a mem-
ory manager does not support variable sized blocks. Their specifications cannot be extended
to cover this without exposing the representation of the block. Additionally, it is impossible for
them to enforce that malloc must provide the blocks that free deallocates without extending
the logic.

There are several side-conditions to the modular procedure definition rule:

1. s does not modify variables in R, except through using k1, . . . , kn;

2. Y is disjoint from P , Q, s, and the context
Γ, {P1}k1{Q1}[X1], . . . , {Pn}k1{Qn}[Xn];

3. si only modifies variables in Xi and Y ; and

4. R is precise.

The first three clauses restrict the use of variables. The variables X1, . . . , Xn can appear in
both the procedure specifications and the invariant, but cannot be modified by the client. These
variables are required to specify the protocol, or behaviour, of the procedures. In addition global
“hidden” variables Y are also used to represent the invariant’s state. These variables all require
careful restriction on how they can be modified.

Abstract predicates do not suffer these complications because they express behaviour using
arguments to the predicates: these arguments can be seen by anyone, but can only be modified
if the underlying definition is known. There is no need for a special modifies clause.

Clause 4 restricts the forms of invariants the modular procedure definition rule can use.
Without these restrictions it is unsound. Consider the following counterexample, in classical
separation logic, due to Reynolds. 1 represents a one element heap, 0 represents a zero element
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heap.

` {true}skip{true}
` {(0 ∨ 1) ∗ true}skip{0 ∗ true}

Γ ` {0 ∨ 1}k{0}
Γ ` {1}k{0}

Γ ` {0 ∨ 1}k{0}
Γ ` {0}k{0}

Γ ` {0 ∗ 1}k{0 ∗ 1}
Γ ` {1}k{1}

Γ ` {1 ∧ 1}k{1 ∧ 0}
Γ ` {1}k{false}

` {1 ∗ true}let k = skip in k end{true ∗ false}
` {1 ∗ true}let k = skip in k end{false}

where Γ = {0 ∨ 1}k{0}.
In classical separation logic precise sizes of heaps can be expressed so 1 ∧ 0 is false. Clearly

the code above will terminate but the proof above shows it will not terminate. The logic is
unsound!

The problem arises in the rule of conjunction:

Γ ` {P}s{Q} Γ ` {P2}s{Q2}
Γ ` {P ∧Q}s{P2 ∧Q2}

If we are using the information hiding outlined above, then we really have a hidden ∗R attached
to each pre- and post-condition. However, we cannot directly rewrite the proof rule with these.
We must insert a use of the rule of consequence.

Γ ` {P ∗ R}k{Q ∗ R} Γ ` {P2 ∗ R}k{Q2 ∗ R}
Γ ` {P ∗ R ∧ P2 ∗ R}k{Q ∗ R ∧Q2 ∗ R}

Γ ` {(P ∧ P2) ∗ R}k{(Q ∧Q2) ∗ R}

(4.4)

This leaves us with two implications to prove:

(P ∧ P2) ∗ R ⇒ P ∗ R ∧ P2 ∗ R

Q ∗ R ∧Q2 ∗ R ⇒ (Q ∧Q2) ∗ R

However, in classical separation logic, the second implication only holds for precise assertions [66].

A predicate P is precise if and only if for all states (VS , H, I) there is at most one
subheap Hp of H for which VS , Hp, I |= P holds.

For soundness, O’Hearn, Reynolds and Yang restrict their rule to use only these precise asser-
tions.8

The soundness of abstract predicates is less subtle and has no need to restrict the forms of
predicates; except to ensure recursive definitions exist.

To summarize, the hypothetical frame rule can only deal with static modularity: modularity
with a single hidden resource. It cannot deal with dynamic modularity: modularity where the
hidden resource can be dynamically allocated. Hence it cannot be used to reason about abstract
datatypes or objects. When reasoning about static modularity the proofs are more compact and
elegant with the hypothetical frame rule. However, all these proofs can be encoded into abstract
predicates.We do not believe the converse is true: the static nature of the hypothetical frame
rule prevents simple reasoning about abstract datatypes.

8In intuitionistic separation logic there is a different restriction called supported [66].
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class Footballer {{
true

}
Footballer() {...}{
Healthy(this)

}
{
Healthy(this)

}
play() {...}{
Tired(this)

}
{
Tired(this)

}
pub() {...}

{
Aching(this)

}
{
Tired(this)

}
warmDown() {...}{
Healthy(this)

}
{
Aching(this)

}
longRest() {...}{
Healthy(this)

}
}

Figure 4.3: Simple protocol example

4.4.3 Higher-order separation logic

In this chapter we have built a logic for reasoning about encapsulation and abstract types. It is
well-known that abstract types are related via the Curry-Howard correspondence to existential
types [58]. Abstract predicates appear to be analogous, but at the level of the propositions them-
selves. In recent unpublished work, Birkedal and Torp-Smith [10] show how to use existential
quantifiers to model abstract predicates. They use the higher-order separation logic of Biering,
Birkedal and Torp-Smith [8] and present the connection pool example given earlier. In addition
to modelling abstract predicates with existentially quantified predicates, they also show how to
use universal quantifiers to model parametric datatypes.

Similarly Reddy [73] has extended specification logic [78] to allow existential quantification
over predicates. This quantification allows him to represent the encapsulation of state, and
hence objects and abstract datatypes.

4.4.4 Typestates

Finally we discuss typestates as they allow similar styles of proofs to those presented in this
chapter.

Fähndrich and DeLine [36] have developed a simple method for protocol checking in class-
based languages. This work is based on Typestates of Strom and Yemini [81]. Typestates were
initially developed to help compiler writers in formalizing checking for programming errors
such as accessing uninitialized variables. Each variable has a Typestate associated to it, e.g.
x : (int × uninitialized), y : (int × initialized). The Typestate can be altered by operations, e.g.
assigning an initialized variable to an uninitialized variable alters the Typestate to initialized.

Fähndrich and DeLine extend this to allow the programmer to express protocols for a class.
We illustrate the protocol ideas with a simple example of a footballer and how certain actions
affect the footballer’s state. We give the specifications in Figure 4.3 and present a state diagram
in Figure 4.4. Note the dotted transition in the state diagram is not represented in the specifi-
cation. Unfortunately this specification might leave the average footballer unhappy as he would
not be able to go to the pub without playing football and ending up Aching . We could change
the specification to the pub() method to be:9{

Tired(this) ∨Healthy(this)
}

pub() {...}{
Aching(this)

}
9Not shown in Figure 4.4.
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Healthy

Tired

Aching

play()

warmDown()

pub()

longBreak()

Footballer()

pub()

Figure 4.4: State diagram for protocol

This is still unsatisfactory as we really want the footballer to be able to go to the pub if healthy
and still be healthy afterwards. Fähndrich and DeLine’s logic cannot express this, because they
cannot express dependencies between input and output states. Our logic is able to express this
through the use of ghost variables{

(X = 1 ∧ Tired(this)) ∨ (X = 2 ∧Healthy(this))
}

pub() {...}{
(X = 1 ∧Aching(this)) ∨ (X = 2 ∧Healthy(this))

}
The logic developed in this thesis is more expressive than Fähndrich and DeLine, but their

aims are different: their logic is designed to automatically check protocols, rather than to prove
correctness of programs. Their logic also deals with inheritance in a similar way to that de-
veloped in Chapter 6, but they give more structure to the Typestates than we give to abstract
predicate families, which allows them to more easily inherit method bodies, but restricts the
potential changes a subclass can make. This is discussed in more detail in § 6.5.



5
Read sharing

In the previous chapter we presented abstract predicates and showed their utility in reasoning
about encapsulation. However, abstract predicates necessarily prevent sharing between data-
structures.1 If a predicate represents some state, then no other disjoint predicate can represent
the same piece of state. This is required to prevent updates to one data-structure affecting
another’s representation (the raison d’être of separation logic!).

However, it is perfectly reasonable to have several data-structures with read access to the
same state, for example list iterators. A list iterator requires access to the internal structure of a
list: several iterators can validly traverse a single list as long as they do not modify it. To reason
about this we need shared read access.

In this chapter we will extend separation logic to allow shared read access, and explain this
extension using the permissions interpretation of separation logic, given in §4.2.3. In the pre-
vious chapter we saw how abstract predicates could be used to generate modular permissions:
the permission to use a method or function. The permissions interpretation liberates us from
seeing the field predicate, e.f 7→ e ′, as simply describing a part of the heap, but instead as the
permission to read and write to that part of the heap. With this interpretation in mind it is
reasonable to consider other predicates that give us weaker permissions, in particular, read-only
permissions.

In this chapter, we introduce a “read-only points-to” predicate,→. We must ensure that a
write permission and a separate read permission cannot exist to the same cell, otherwise our
model would be unsound. The classic concurrent example of multiple readers and a single
writer [25] keeps a count of the number of readers to the resource. We will mirror this in the
logic.

One problem Bornat et al. [14] identified with counting read-only permissions is that ∗ can
no longer be used to express disjointness. In particular, the obvious definition of a read-only
tree admits directed acyclic graphs. We address this problem by considering a new model of
separation logic which uses sets of named permissions.

The rest of the chapter is organised as follows. In §5.1 we present a sound logic for read-only
assertions, and in §5.2 demonstrate its use. In §5.3 we show that ∗ no longer expresses disjoint-
ness, and present an extension to the logic that solves this problem. In §5.4, we present an
abstract model that embodies both permissions idioms, and then in §5.5 we present the instan-
tiations of these models and show the named model properly contains the counting model. We

1This is not completely true because one can use standard classical conjunction, but this removes much of the
benefit of using separation logic.
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conclude by demonstrating some other idioms of permission accounting that can be expressed
in the named permissions model.

Collaboration This chapter is based on joint work with Richard Bornat, Cristiano Calcagno,
and Peter O’Hearn. The author discovered the counting model independently of Calcagno,
O’Hearn and Bornat. This lead to a collaborative publication about read-only permissions in
a non-object-oriented setting [14]. This chapter extends that published work by demonstrating
how read-only permissions can be used with datatypes, and solves the open problem of combin-
ing disjointness and shared access. The presentation of the abstract semantics, in §5.4, is due to
Calcagno.

5.1 Counting

In this section we present a simple extension that allows the counting of read-only permissions.
The counting logic mirrors the programming paradigm of reference counting by keeping a count
of the number of read permissions to a field.

This model uses two types of permissions: source permissions, e.f n7−−→ e ′, and read-only
permissions, e.f→e ′. We define a source permission e.f n7−−→e ′ as a permission that has issued n
read permissions to e.f . This definition gives rise to the following axiom:

e.f n7−−→e ′ ⇔ e.f→e ′ ∗ e.f n+17−−−−→e ′

If we have a source permission that has issued n read permissions, it is equivalent to a source
permission that has issued n + 1 read permissions and a read permission. This axiom allows the
source permission to dispense and collect read permissions to the cell. We have a distinguished
source permission written e.f 07−→ e ′, which represents a total, or write, permission. We use the
shorthand e.f 7→e ′ for such a total permission.

There is an additional axiom that is required for some proofs:

e.f 07−→e ′ ∗ e.f→e ′′ ⇐⇒ false

This prevents us having a total permission and a read permission. It also prevents us having two
source permission to the same field.

We generalise the field read axiom to only require a read permission to the field. The other
axioms are unchanged as they require total permissions.2

L-FREAD Γ ` {x = X ∧X.f→Y }z = x.f ; {X.f→Y ∧ z = Y }

Note: As we are working in an intuitionistic setting we can have permissions leaks: state can
no longer be modified because part of the permission has been lost. This may at first seem
unsettling but it allows us to define an immutable location. ∃n. e.f n7−−→ e ′ is a location that can
never be modified as we do not know how many permissions have been removed.

5.2 Example: List iterators

In this section we present our motivating example of a list class with iterators. An iterator has
a constructor and two methods, hasNext and next. The hasNext method returns true if there

2One might say the other axioms have all the occurrences of e.f 7→ e ′ replaced with e.f
07−→ e ′. Our shorthand

makes this syntactic substitution.
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class Iter {
List n;
Iter(List x) {
this.n = x;

}
boolean hasNext() {
return this.n!=null;

}
Object next() {
List hd = this.n.hd;
List temp = this.n.tl;
this.n = temp;
return hd;

}
}

class List {
Object Hd;
List tl;
...
Iter iterator() {
return new Iter(this);

}
...

}

Figure 5.1: List iterator source

Method Pre-condition Post-condition
x.iterator() list(x, n) list(x, n + 1) ∗ iter(ret,x)
x.hasNext() iter(x, y) (ret = true ∧ iterb(x, y))

∨ (ret = false ∧ iter(x, y))
x.next() iterb(x, y) iter(x, y)
Iter(x) listR(x) iter(this,x)

Table 5.1: Specifications for iterator methods

are more elements to be examined, and next returns the next element. We give the source code
in Figure 5.1 and its specification in Table 5.1. The implementation uses booleans to aid clarity;
this can easily be encoded into Inner MJ. The specifications use two predicates to represent an
iterator: iter is just the datastructure for an iterator, and iterb is the same with a constraint that
it has a current element: the current node is not null. The predicates are defined as:

iter(x, y) def= ∃z. x.n 7→z ∗ listR(z) ∗ (listR(z)−∗ listR(y))

iterb(x, y) def= ∃z. x.n 7→z ∗ listR(z) ∗ (listR(z)−∗ listR(y)) ∧ z 6= null

The second predicate is used to prevent clients trying to access the next element when it does
not exist.

Note: The use of two predicates represents the calling protocol of the class, and mirrors the
work on Typestates [36] mentioned in §4.4.4.

Now we define the predicates for representing a list:

list(i, n) def= (∃k, l. i.hd n7−−→k ∗ i.tl n7−−→ l ∗ list(l, n)) ∨ i = null

listR(i) def= (∃k, l. i.hd→k ∗ i.tl→ l ∗ listR(l)) ∨ i = null

The n parameter is used to count the number of passive readers of the list. listR is the read-only
list predicates that allows multiple iterators over the same list.3

We have a lemma about these list definitions: it allows read-only list segments to be formed
from a list source.

3In what follows we will adopt the convention that a subscript R on predicates represents read-only state.
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Lemma 5.2.1. list(i, n) ⇔ listR(i) ∗ list(i, n + 1)

Proof. By induction on the length of the list segment.

Next we present proofs that the constructor, Iter(), and the methods, iterator() and
hasNext() meet their specifications. First we consider Iter():{
ListR(x) ∗ this.n 7→null

}
this.n = x;{
ListR(x) ∗ this.n 7→x

}{
ListR(x) ∗ (ListR(x)−∗ ListR(x)) ∗ this.n 7→x

}{
iter(this,x)

}
This proof follows directly from the definitions of −∗ and iter. We can prove the iterator

method with Lemma 5.2.1 as follows.{
list(this, n)

}{
list(this, n + 1) ∗ listR(this)

}
return new Iter(this);{

list(this, n + 1) ∗ iter(ret ,this)
}

Finally we give the proof for hasNext:{
iter(this, y)

}{
∃z. this.n 7→z ∗ listR(z) ∗ (listR(z)−∗ list(y))

}
Object t = this.n;{

this.n 7→t ∗ listR(t) ∗ (listR(t)−∗ listR(y))
}

return t != null;{
ret = (t 6= null) ∧ this.n 7→t ∗ listR(t) ∗ (listR(t)−∗ listR(y))

}{
((ret = true ∧ t 6= null) ∨ (ret = false ∧ t = null))

∗ this.n 7→t ∗ listR(t) ∗ (listR(t)−∗ listR(y))

}
{
(ret = true ∧ iterb(this, y)) ∨ (ret = false ∧ iter(this, y))

}
Now we present an example of client code incorrectly using an iterator:{

list(l, 0)
}

Iter x;{
list(l, 0)

}
x = l.iterator();{

list(l, 1) ∗ iter(x,l)
}{

iter(x,l)
}

if(x.hasNext()){
iterb(x,l)

}
o = x.next();{
iter(x,l)

}
else{
iter(x,l)

}
x.next();{
???
}{

???
}{

list(l, 1) ∗ ???
}

The client constructs an iterator, checks if it has a next element, but then attempts to move to
the next element in both branches of the if. However, this cannot be validated as the iterb

predicate is not in the pre-condition. The verification has prevented a null pointer exception
without any additional runtime checks.
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Now let us consider how we can modify a list. With Java’s linked list implementation, chang-
ing a list and then using an iterator created before the change throws an exception. Here is an
excerpt from the API:4

The iterators returned by [the list’s] iterator and listIterator methods are fail-
fast: if the list is structurally modified at any time after the iterator is created, in
any way except through the Iterator’s own remove or add methods, the iterator
will throw a ConcurrentModificationException. Thus, in the face of concurrent
modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-
deterministic behavior at an undetermined time in the future.

We want the logic to prevent this exception statically. We could disallow updates if the list has
iterators, e.g.

Method Pre-condition Post-condition
List.reverse() list(this, 0) list(ret , 0)

The specification stops us calling reverse if the list has any iterators. This is too restrictive:
using an iterator after a modification is the problem, not their existence. Consider the following
specification:

Method Pre-condition Post-condition
List.reverse() list(this, n) ∗

~n
i=1(∃z.(iter(z,this) ∨ iterb(z,this))

list(ret , 0)

See §4.4.1 for an explanation of the iterated separating conjunction, ~n
i=1.

Although the pre-condition implies list(this, 0) the client must treat the predicates ab-
stractly, so cannot know this.

This allows us to have iterators to the list, but at the point we call reverse all n iterators will
be absorbed back into the list and hence cannot be used. Consider the following usage example{
list(x, 0)

}
y = x.iterator();{
list(x, 1) ∗ iter(y,x)

}
z = y.hasNext();{
list(x, 1) ∗ (z = true ∧ iterb(y,x)) ∨ (iter(y,x) ∧ z = false)

}
if( z ){

list(x, 1) ∗ iterb(y,x)
}{

list(x, 1) ∗ ~1
i=1(iterb(y,x))

}
x = x.reverse();{
list(x, 0)

}
w = y.next(); (1){
???
}

else
;

When we reach (1) we will not be able to validate the function call as the reverse will have
swallowed the iterator predicate. Pleasingly the static verification fails at the same point the
actual libraries would throw an exception.

Note: We would also prevent a call to hasNext if the iterator has been invalidated, which does
not throw an exception in the actual Java 1.4.1 implementation (but arguably should).

4http://java.sun.com/j2se/1.4.2/docs/api/java/util/LinkedList.html

http://java.sun.com/j2se/1.4.2/docs/api/java/util/LinkedList.html
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5.3 Disjointness

So far we have seen a logic for read-only permissions and used it to reason about list iterators.
Bornat et al. [14] have noted that this logic, and the other logics in [14], are not capable of
expressing disjointness: a formula cannot simply5 enforce that a read-only tree is not a direct
acyclic graph (DAG). Consider the following formula:

treer(i)
def= i = null ∨ (i.l→j ∗ treer(j) ∗ i.r→k ∗ treer(k))

From a single node we can generate several read only references to that node:

k.l 7→null ∗ k.r 7→null ⇒ k.l 27−→null ∗ k.r 27−→null ∗ treer(k) ∗ treer(k)

Clearly, if we have another node where both branches point to k, then we can construct a “tree”
in the following way:

i.l 7→k ∗ i.r 7→k ∗ treer(k) ∗ treer(k) ⇒ treer(i)

This is not a tree!
This problem arises as ∗ no longer represents disjoint heaps, or even disjoint permissions:

we can have the same permission twice, i.e. two read permissions to a single cell. Any two read
permissions on a field look identical and we cannot distinguish them.

To distinguish permissions we need to give them names. Consider a countably infinite set of
permissions P. The key idea is that we can use subsets of P. Hence we can count by considering
the size of sets, and disjointness by considering the names of the elements. Later we will see
how to allow the division of sets. We annotate the points-to relation with non-empty subsets
of P: e.f

p7−→ e ′. Any non-empty subset of P is a read permission and the whole set P is the
total permission. Again we define a shorthand e.f 7→ e ′ for e.f P7−−→ e ′. Additionally, to use this
logic we require some operations on sets: disjoint union, set difference, set cardinality and set
equality; and also an existential over subsets of P. The subsets, p, are semanticly treated like
ghost variables, and can be eliminated using L-VARELIM. We could redefine the list predicates
given earlier, on Page 81, as:

list(i, n) def= (∃k, l, p. i.hd
P\p7−−−→k ∗ i.tl

P\p7−−−→ l ∗ list(l, n) ∗ |p| = n) ∨ i = null

listR(i) def= (∃k, l, p. i.hd p7−→k ∗ i.tl p7−→ l ∗ listR(l) ∗ |p| = 1) ∨ i = null

We present a general encoding in §5.5.1 of the counting model into this model.
There are two axioms for permissions in the logic:

DISJOINT e.f
p7−→e ′ ∗ e.f

p7−→e ′ ⇔ false

SPLIT (p1 ] p2 = p) ⇔ (e.f
p17−−→e ′ ∗ e.f

p27−−→e ′ ⇔ e.f
p7−→e ′)

where p, p1 and p2 are all non-empty

The first, DISJOINT, means we cannot have the same permission set twice and the second, SPLIT,
allows us to split and combine disjoint permission sets.

5Elaborate mechanisms where trees carry sets of locations could be used, but this solution could hardly be called
simple.
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Note: One might have expected DISJOINT to be defined as e.f
p7−→ e ′ ∗ e.f

p′
7−−→ e ′ ∧ p ∩ p′ 6= ∅ ⇔

false. This is derivable as

p ∩ p′ 6= ∅∧ p∩p′
7−−−−→ ∗ p∩p′

7−−−−→ ⇔ false

⇒ p ∩ p′ 6= ∅∧ p\p′
7−−−−→ ∗ p′\p7−−−−→ ∗ p∩p′

7−−−−→ ∗ p∩p′
7−−−−→ ⇔ false ∗ p\p′

7−−−−→ ∗ p′\p7−−−−→
⇒ p ∩ p′ 6= ∅∧ p7−→ ∗ p′

7−−→ ⇔ false

Again the only programming axiom that needs changing is the field read axiom:

L-FREAD Γ ` {x = X ∧X.f
p7−→Y ∧ |p| ≥ 1}y = x.f{X.f

p7−→Y ∧ Y = y}

Earlier we showed that the counting model cannot simply express read-only trees without
admitting DAGs. However, in this model we can simply state that each node in the tree must
have the same permission set. Consider the formula:

tree(i, p) def= i = null ∨ (∃j, k. i.l p7−→ j ∗ i.r p7−→ k ∗ tree(j, p) ∗ tree(k, p))

This definition cannot admit sharing. We can prove this by induction on the definition of tree.
By induction we can see that tree(x, p) can only contain locations with permission set p. Hence
tree(j, p) ∗ tree(k, p) implies the locations representing tree(j, p) and tree(k, p) are disjoint.
Hence, we cannot have sharing: only a tree.

5.4 Abstract semantics

In this section, we provide a semantic model of read-only permissions in separation logic. We
use the abstract model of permissions due to Calcagno [14]. We begin by giving this model in
terms of a partial commutative semi-group of permissions: (M, ∗ ). We write m for an element
of M and redefine heaps, from page 45, as

H : H def= (Locations× Fields ⇀ M× Values)× (Locations ⇀ Classes)

That is each field is represented by a value and an element from the permissions semi-group.
We define composition on field values as

(m1, v1) ∗ (m2, v2)
def=

{
(m1 ∗ m2, v1) v1 = v2, and m1 ∗ m2 is defined.
undefined otherwise

and then extend this to value heaps as

• Hv1 ∗Hv2 is defined iff Hv1(l, f) ∗ Hv2(l, f) is defined for all (l, f) ∈ (dom(Hv1)∩dom(Hv2))

• (Hv1 ∗ Hv2)(l, f) def=


Hv1(l, f) Hv2(l, f) is undefined
Hv2(l, f) Hv1(l, f) is undefined
Hv1(l, f) ∗ Hv2(l, f) otherwise

We write H1 ∗ H2 for composition of heaps, which is defined as:

(Hv1 , Ht1) ∗ (Hv2 , Ht2)
def=

{
((Hv1 ∗ Hv2), Ht1) Hv1 ∗ Hv2 ∧ Ht1 = Ht2

undefined otherwise
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E-FIELDACCESS (H,VS , o.f,FS ) → (H,VS , v,FS )
where (o, f) ∈ dom(H) and H(o, f) = m, v and m ∈ M.

E-FIELDWRITE (H,VS , o.f = v; ,FS ) → (H ′,VS , ; ,FS )
where (o, f) ∈ dom(H) and H ′ = H[(o, f) 7→mw, v] and H(o, f) = mw, v′

E-NEW (H,VS ,new C(v),FS ) → (H ′, (BS ◦ []) ◦VS , s, (return o; ) ◦ FS )
where cnbody(C) = (x, s), ∆c(C) = C, H ′ = H[o 7→C][(o, f) 7→(mw,null)]
o /∈ dom(H), and BS = {this 7→(o, C), x 7→(v, C)}

Figure 5.2: Alterations to operational semantics for read-only permissions

We define the semantics of the points-to relation as

VS , H, I |= e.f m7−−→e ′ def= H = {(JeKVS ,I, f) 7→(m, Je ′KVS ,I)} ∧m ∈ M

and define the logical ∗ using the new heap composition operator, ∗ .
We define a distinguished element of M, mw that corresponds to a write permission such that

∀m ∈ M. m ∗ mw is undefined (5.1)

The semantics of the language must be altered to accomodate the permissions model. Only
the rules for manipulating the heap require any changes: the new definitions of E-FIELDACESS,
E-FIELDWRITE and E-NEW are given in Figure 5.2.

The alterations to the semantics correspond to run-time checks that the relevant permissions
are available. These new semantics with the constraint (5.1) allow us to show the heap locality,
Lemma 3.7.3, and the safety monotonicity, Lemma 3.7.2, properties hold. Hence the frame rule
is still sound.

Theorem 5.4.1. Permissions model is sound.

Proof. The field read rule is sound with these semantics, and so is the frame rule. The rest of
the soundness proof remains unchanged.

5.5 Concrete models

Now we consider instantiating the abstract model for the two logics given earlier.

Counting model We can define the permissions semi-group for the counting model as: (Z, ∗1)
where

z1 ∗1 z2 =


undefined z1 ≥ 0 ∧ z2 ≥ 0
undefined (z1 ≥ 0 ∨ z2 ≥ 0) ∧ z1 + z2 < 0
z1 + z2 otherwise

Note: We equate −17−−−→with the read permission→.

Theorem 5.5.1. The counting axioms are sound.

e.f n7−−→e ′ ⇐⇒ e.f −17−−−→e ′ ∗ e.f n+17−−−−→e ′

e.f 07−→e ′ ∗ e.f −17−−−→e ′ ⇐⇒ false

Proof. Directly from the definition of the semi-group.
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Named model We can define the permissions semi-group for the named permissions model
as: (Pnon-empty(P),]), where Pnon-empty(P) is the set of non-empty subsets of P.

Additionally, we must add a few simple set operations to the syntax of formula, e.g. cardi-
nality, set minus and quantification over sets, and provide them with the obvious semantics. We
will not go into the rather tedious detail here.

Theorem 5.5.2. DISJOINT and SPLIT are sound.

Proof. Direct from the definition of the semi-group.

5.5.1 Encoding the counting model in the named model.

Next, we show the semantics of the named model properly encodes the semantics of the count-
ing model. To aid clarity we write, Hc, Hn, P c, and Pn for heaps (H) in the counting and
named models, and formulae (P ) in the counting and named models respectively. We define
the translation from terms in the counting logic to terms in the named logic as follows:

Je.f n7−−→e ′K def= ∃p. e.f
P\p7−−−→e ′ ∧ |p| = n

Je→e ′K def= ∃p. e.f
p7−→e ′ ∧ |p| = 1

The source permission with n missing read-only permissions is the set of permissions with n
elements missing. The read-only permission is represented by a singleton set of permissions. We
omit the obvious definition for the other predicates and connectives.

We must also define a translation from the named model’s heaps to counting model’s heaps.
First, we define a predicate on the permissions in the named model. The predicate identifies the
permissions that correspond to permission in the counting model:

fin(p) def= ∃n. |p| = n ∨ |P \ p| = n

We restrict permissions to finite and cofinite sets as their cardinality can be represented by an
integer. We then define a translation from the elements of the named permissions semi-group to
the counting permissions semi-group.

JpK def=


−n |p| = n

n |P \ p| = n

undefined otherwise

Lemma 5.5.3. Translation preserves the semi-group action for finite and cofinite permissions, that
is

n1 ∗1 n2 = Jp3K ⇒ ∃p1, p2. Jp1K = n1 ∧ Jp2K = n2 ∧ p1 ] p2 = p3 (5.2)

Jp1K ∗1 n2 = n3 ⇒ ∃p2, p3. Jp2K = n2 ∧ Jp3K = n3 ∧ p1 ] p2 = p3 (5.3)

∀p1, p2 ∈ fin. p1 ] p2 is defined ⇒ Jp1K ∗1 Jp2K = Jp1 ] p2K (5.4)

Proof. The three properties can be shown from the definitions of the semi-group and using case
analysis: (5.2) and (5.4) by case analysis on positive and negative ns; and for (5.4) by case
analysis on finite and cofinite sets.

We extend the restriction on permissions, fin( ), to heaps in the obvious way, and extend the
translation on permissions to heaps in the obvious way. We can extend the previous lemma to
heaps.
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Theorem 5.5.4. Encoding counting model into named model is sound and complete. For all for-
mulae, P c, in the counting model, the following holds for all heaps in the named model:

JHnK = Hc ⇒ (VS , Hn, I |= JP cK ⇐⇒ VS , Hc, I |= P c)

Proof. By induction on the structure of P c. The ∗ and −∗ cases require the previous lemma, and
7→ follows from encoding. Other cases follow trivially.

5.5.2 Other models

To conclude this chapter, we will discuss how the named permissions model can be used to rep-
resent other permissions idioms. Bornat et al. [14] identify two key idioms for the dissemination
of read-only permissions: counting, given earlier, and splitting. In this subsection we first show
how to represent splitting and then we how to properly combine splitting and counting.

Infinite splitting

Boyland [16] first proposed the idea of permissions with weights. The key idea is to split a
permission into two pieces such that they sum to the same weight as the original. This idea
of splitting is very useful in algorithms which divide work recursively, such as parallel tree
substitution [14]. The key to this idiom is that splitting can occur to an unbounded depth: a
permission can always be split into two permissions. This style of reasoning exists in the general
model due to the following fact: any countably infinite set can be split into two countably infinite
sets, i.e.

|p| = |N| ⇔ ∃p1, p2. |p1| = |p2| = |N| ∧ p = p1 ] p2

When combined with SPLIT this allows any infinite read permissions to be split into two infinite
read permissions.

Note: This does not precisely model the fractional permissions of Bornat et al. [14], as they use
rational numbers to name these permissions. This additional structure can be encoded into this
model, if required, by considering a bijection between the permissions set, P, and an interval in
Q. However, this does not present any interesting problems.

Combining splitting and counting

We conclude by showing how splitting and counting can be combined. We want to allow the
following:

1. split permissions that have been counted;

2. split permissions that can count, i.e. split source permissions; and

3. count permissions that can count, i.e. count source permissions.

Notation: We use X ↔ Y to mean a bijection exists from X to Y .
Counting removes finite sets from an infinite set: P ↔ P + 1; and splitting takes an infinite

set and produces two infinite sets: P ↔ P + P. Everything needs an infinite set, but counting
only provides finite sets: we need to count infinite sets!

We can make the following two observations:

p ↔ p′ ⇒ p× P ↔ p′ × P
P ↔ P× P
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Hence, we can count infinite sets with

(P× P) ↔ (P× P) + (1× P)

Clearly, 1× P is infinite so we can count permissions, that themselves can count or be split.
Now let us provide an example of how one might use these ideas for multilevel counting.

We will write prodp for a bijection from P × P to p, a countably infinite set. We will write f(p)
as a shorthand for {v|f(v′) = v ∧ v′ ∈ p}. We have three important facts about this bijection:

p = prodp(P× P)
prodp((P \ (p′ ] p′′))× P) ] prodp(p′′ × P) = prodp((P \ p′)× P)

|p′| ≥ 1 ⇒ |prodp(p′ × P)| = |P|

Let us consider how we could use this to do multilevel counting. We define a predicate to
represent counting permissions for a resource:

counter(x, p, n) def= ∃p′′. x
p\prodp(p′′×P)7−−−−−−−−−−−−→ ∧ |p′′| = n ∧ |p| = |P|

This definition leads to the following equivalence, which can be used to construct and destruct
counters.

|p| = |P| ∧ x
p7−→ ⇔ counter(x, p, 0)

Now we want implications to allow us to count out permissions

counter(x, p, n) ⇔ counter(x, p, n + 1) ∗ (x p′
7−−→ ∧ |p′| = |P|) ∗ counted(p, p′)

We need an additional predicate to represent the information that p′ is a permission counted
from p. This can be defined as

counted(p, p′) def= ∃p′′. p′ = prodp(p′′ × P) ∧ |p′′| = 1

These predicates show how this model supports multilevel counting.

5.6 Concluding remarks

The named permissions model is highly expressive and for many examples using a simpler
model, such as counting, may be useful. One issue is a sensible syntax for representing the
different idioms. The predicates for counting given above abstract the details of the required
bijections, and similar predicates can be provided for splitting. However, it may be that a better
syntax can be found for expressing the permissions. Ross and Bornat have independently sug-
gested using strings to represent permissions. This may prove a more concise notion than the
sets and bijections used above, but this remains further work.





6
Inheritance

So far we have given a logic that is capable of reasoning about programs which use encapsula-
tion. There is a second form of abstraction used in object-oriented programming: inheritance.
In this chapter we present the extensions required to allow reasoning about inheritance.

We present an extension to abstract predicates, called abstract predicate families, that allow
each class to specify its own definition for that class. This allows subtypes to have a differ-
ent internal representation. We demonstrate the usefulness of abstract predicate families by
considering the Cell/Recell classes, and an extended example of the visitor design pattern [40].

The rest of the chapter is structured as follows. We begin, in §6.1 by discussing the difficulties
in reasoning about inheritance. In §6.2, we present our solution: abstract predicate families. In
§6.3, we illustrate their use with two examples. In §6.4, we present the formal semantics of this
extension. We conclude, in §6.5, by discussing an open issue of reverifying inherited methods
and present some possible solutions.

6.1 The problem

First let us revisit the problem shown in §3.8 to highlight why standard separation logic (even
extended with abstract predicates) cannot deal with inheritance. Consider the Cell class and a
subclass that has backup, Recell, presented in Figure 6.1. We give the obvious specifications

class Cell extends Object {
Object cnts;

void set(Object o) {
this.cnts = o;

}

Object get() {
Object temp;
temp = this.cnts;
return temp;

}
}

class Recell extends Cell {
Object bak;

void set(Object o) {
Object temp;
temp = this.cnts;
this.bak = temp;
this.cnts = o;

}

}

Figure 6.1: Source code for Cell and Recell classes

91
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Method Pre-condition Post-condition
Cell.set(n) this.cnts 7→ this.cnts 7→n

Recell.set(n) this.cnts 7→X
∗ this.bak 7→

this.cnts 7→n
∗ this.bak 7→X

Table 6.1: Specifications of set methods.

of the set methods in Table 6.1. Unfortunately these specifications do not satisfy specification
compatibility, or behavioural subtyping.

We require the following two implications to hold

pre(Cell,set) ⇒ pre(Recell,set)
post(Recell,set) ⇒ post(Cell,set)

where pre(C,m) denotes the pre-condition for the method m in class C, and post denotes the
post-condition.

Given the specifications in Table 6.1, these implications can never hold as they require a
one element heap to be the same size as a two element heap. What about abstract predicates?
The specification for Recell must use a different abstract predicate to Cell as it has a different
body, that is we define the abstract predicates as

ValCell(y, x) def= y.cnts 7→x (6.1)

ValRecell(x, y, z) def= x.cnts 7→y ∗ x.bak 7→z (6.2)

and the specifications as

Method Pre-condition Post-condition
Recell.set(n) ValRecell(this, X, ) ValRecell(this,n, X)
Cell.set(n) ValCell(this, ) ValCell(this,n)

Unfortunately the predicates are treated parametrically: no implications hold between them.
As it stands, abstract predicates do not, by themselves, help with behavioural subtyping.

They provide support for encapsulation but not inheritance. In an object-oriented setting we
require predicates to have multiple definitions, hence we introduce abstract predicate families
where the families are sets of definitions indexed by class. An instance of an abstract predicate
family is written α(x;~v) to indicate that the object x satisfies one definition from the abstract
predicate family α with arguments ~v. The particular definition satisfied depends on the dynamic
type of x. In object-oriented programming an object could be from one of many classes; ab-
stract predicate families provide a similar choice of predicate definitions when considering their
behaviour.

6.2 Abstract predicate families

We define abstract predicate family definitions, Λf , with the following syntax.

Λf := ε | (αC(x;x) def= P ),Λf

Λf is well-formed if it has at most one entry for each predicate and class name pair, and the free
variables of the body, P , are in its argument list, x;x. The first argument is distinguished as it
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is used to index by class. We use a semi-colon, ;, to separate this distinguished arguments, and
commas to separate the remaining arguments. We treat Λf as a function from predicate and
class name pairs to predicate definitions. Each entry corresponds to the definition of an abstract
predicate family for a particular class.

One can think of an abstract predicate family as a predicate that existentially hides the type:

α(e; e) ≈ ∃C. Λf (α, C)[e; e] ∧ e : C

This is not the complete truth as it does not account for partial definitions, where the whole class
hierarchy is unavailable. This intuition mirrors the static typing of an object: void m(C c) {...}

is a method that expects something that behaves like a C: it might not be a C but it will be a sub-
type of C. Abstract predicate families mirror this in the logic by allowing assertions that require
a state satisfying a property but where the property’s precise definition is unknown.

This semantic intuition, leads to the obvious adaptation of the OPEN and CLOSE axioms from
Chapter 4.

OPEN Λf |= (x : C ∧ α(x;x)) ⇒ Λf (α, C)[x;x]

CLOSE Λf |= (x : C ∧ Λf (α, C)[x;x]) ⇒ α(x;x)
where α, C ∈ dom(Λf ).

To OPEN or CLOSE a predicate we must know which class contains the definition, and must have
that definition in scope.

Our example shows the need to alter the arity of the predicate to reflect casting; the Recell’s
Val predicate has three arguments while the Cell’s only has two. Hence we provide the follow-
ing pair of implications:

WIDEN Λf |= α(x;x) ⇒ ∃y.α(x;x, y)

NARROW Λf |= ∃y.α(x;x, y) ⇒ α(x;x)

As we allow change in arity we must provide an operation to provide too few or too many
arguments to the definition. We use square brackets to denote this unusal argument application
operation.

(αC(x;x) def= P )[e; e] def=

{
P [e/x, e1/x] |e1| = |x| and e = e1, e2

∃y.P [e/x, (e, y)/x] |e, y| = |x|

If we give a predicate more variables than its definition requires, it ignores them, and if too few,
it treats the missing arguments as existentially quantified. This definition of substitution is used
to give the families’ version of OPEN and CLOSE.

Note: We can OPEN predicates at incorrect arities as the substitution will correctly manipulate
the arguments. An alternative approach would be to restrict opening to the correct arity, and
use WIDEN and NARROW to get the correct arity. However, this alternative approach complicates
the semantics.

Again we have two rules for introducing and eliminating abstract predicate families.
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ABSTRACT WEAKENING
Λf ; Γ ` {P}C{Q}

Λf ,Λf ′; Γ ` {P}C{Q}
provided dom(Λf ′) and dom(Λf ) are disjoint.

ABSTRACT ELIMINATION
Λf ,Λf ′; Γ ` {P}C{Q}

Λf ; Γ ` {P}C{Q}
provided the predicate names in P , Q, Γ and Λf are not in doma(Λf ′)
and doma(Λf ) is defined as {α|(α, C) ∈ dom(Λf )}.

Abstract predicate families are less symmetric than abstract predicates: weakening allows
the introduction for a particular class and predicate, while elimination requires the entire family
of definitions to be removed, i.e. it must remove all the classes’ definitions for a predicate. This
is because it is not possible to give a simple syntactic check for which parts, i.e. classes, of a
family will be used.

6.3 Examples

Next we will present a couple of examples to illustrate the use of abstract predicate families.

6.3.1 Cell/Recell

Let us return to our original motivating example. We define an abstract predicate family, Val ,
with the definitions for Cell and Recell given earlier in equations (6.1) and (6.2).

We have to validate four methods: Cell.set, Cell.get, Recell.set and Recell.get.
Even though the bodies of Cell.get and Recell.get are the same, we must validate both,
because they have different predicate definitions. We will return to this point in §6.5.

The proofs all follow in a straightforward manner: we present the proof of the Recell’s set
method here.{
Val(this;X, ) ∧ this : Recell

}{
this.cnts 7→X ∗ this.bak 7→ ∧ this : Recell

}
temp = this.cnts;{

this.cnts 7→X ∗ this.bak 7→ ∧ this : Recell ∧X = temp
}

this.bak = temp;{
this.cnts 7→X ∗ this.bak 7→temp ∧ this : Recell ∧X = temp

}
this.cnts = o;{

this.cnts 7→o ∗ this.bak 7→temp ∧ this : Recell ∧X = temp
}{

this.cnts 7→o ∗ this.bak 7→X ∧ this : Recell
}{

Val(this;o, X)
}

Additionally, we must prove the method specifications are compatible, defined in the sense
of definition 3.5.2 (Page 52). The compatibility of the set method follows from the rule of
L-CONSEQUENCE and L-AUXVARELIM.

` {Val(this;X, )} {Val(this;n, X)}
` {Val(this; , )} {Val(this;n, )}
` {Val(this; )} {Val(this;n)}

The two get methods have the same specification, so are obviously compatible.
A client that uses these methods does not need to worry about dynamic dispatch. Consider

the following method:
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Method Pre-condition Post-condition
NonNullCell.set(x) Val(this; ) ∧ x 6= null Val(this;x)
NonNullCell.get() Val(this;X) Val(this;X) ∧X 6= null

∧X = ret

ValNonNullCell(x; y) def= x.cnts 7→y ∧ y 6= null

Table 6.2: Specification for NonNullCell.

m(Cell c) {
c.set(c);

}

This code simply sets the Cell to point to itself. The code is specified as

Method Pre-condition Post-condition
m(c) Val(c; ) Val(c; c)

Now consider calling m with a Recell object.{
true

}
Recell r = new Recell(x);{

Val(r;x, ) ∗ r : Recell
}{

Val(r;x, )
}{

Val(r; )
}

m(r);{
Val(r;r)

}{
Val(r;r, )

}{
Val(r;r, ) ∗ r : Recell

}
We use L-CONSEQUENCE to cast the Val predicate to have the correct arity. We need not consider
dynamic dispatch at all because of specification compatibility.

The specification of method m is weaker than we might like. Based on the implementation
we might expect the example’s post-condition {Val(r;r,x)}. However, there are several bodies
that satisfy m’s specification: for example c.set(x);c.set(c);. We can set the Cell to have
any value, as long as the last value we set is the Cell itself. This body acts identically on a Cell

to the previous body, however on a Recell it acts differently. Hence only using the specification
we cannot infer the tighter post-condition. This could be deduced if m was specified for a Recell
as well.

Now let us briefly consider another Cell class: a NonNullCell. It specifies the arguments
to set must not be null. We present its specification in Figure 6.2. A NonNullCell is not a
subtype of Cell as we cannot replace Cell with a NonNullCell, i.e. x.set(null); can only
be called on a Cell. However, it is possible to make Cell a subtype of NonNullCell. We must
alter the specification of Cell so that it has two predicate families: one for the non-null state,
and one for the null state. We present the specifications and predicate definitions in Figure 6.2.
Now we can show the specification compatibility of these two methods as follows. First we
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Method Pre-condition Post-condition
set(y) Val(this; )

∨ NVal(this)
(y = null ∧NV al(this)) ∨
(y 6= null ∧Val(this;y))

get() Val(this;x) ∧X = 1
∨ NVal(this) ∧X = 2

(X = 1 ∧Val(this;x) ∧ ret = x ∧ x 6= null)
∨ (X = 2 ∧NVal(this) ∧ ret = null)

ValCell(x; y) def= x.cnts 7→y ∧ y 6= null

NValCell(x) def= x.cnts 7→null

Figure 6.2: New specification for Cell class.

present the set method.{
V al(this;x)

∨ NV al(this)

} {
(y = null ∧NV al(this))

∨ (V al(this; y) ∧ y 6= null)

}
{

y 6= null ∗

(
V al(this;x)

∨ NV al(this)

)} {(
(y = null ∧NV al(this))

∨ (V al(this; y) ∧ y 6= null)

)
∗ y 6= null

}
{y 6= null ∧ V al(this;x)} {V al(this; y)}

Although it is possible for the Cell’s set method to end in a state that is not expected by the
NonNullCell’s post-condition, this proof shows it is not possible to end in an unexpected state if
the NonNullCell’s pre-condition is satisfied. We use the frame rule to preserve the pre-condition
that y 6= null across the call.

Note: We have used the ghost variable to encode the specification intersection as described in
§3.5.

Next we present a similar proof for the get() method.{
Val(this;x) ∧X = 1

∨ NVal(this) ∧X = 2

} {
(X = 1 ∧Val(this;x) ∧ ret = x 6= null)

∨ (X = 2 ∧NVal(this) ∧ ret = null)

}

(

Val(this;x) ∧X = 1

∨ NVal(this) ∧X = 2

)
∗ X = 1



(

(X = 1 ∧Val(this;x) ∧ ret = x 6= null)

∨ (X = 2 ∧NVal(this) ∧ ret = null)

)
∗ X = 1


{Val(this;x) ∧X = 1} {Val(this;x) ∧ x = ret ∧ x 6= null}

{∃X. Val(this;x) ∧X = 1} {Val(this;x) ∧ x = ret ∧ x 6= null}
{Val(this;x)} {Val(this;x) ∧ x = ret ∧ x 6= null}

This proof is slightly more complicated as we must eliminate the ghost variable X and preserve
its value across the call using the frame rule. However, once again we see that although the
method has a more general post-condition, it is a valid replacement for the non-null version.

6.3.2 Visitor pattern

Now let us consider an extended example using the visitor design pattern [40]. The visitor pat-
tern allows code in object-oriented programs to be function-oriented rather than data-oriented.
That is, all the methods for a particular operation are grouped in a single class, rather than
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class Visitor {
void visitC(Const x) {;}
void visitP(Plus x) {;}
}

class Ast extends Object {
void accept(Visitor x) {;}

}

class Const extends Ast {
int v;

void accept(Visitor x) {
x.visitC(this);

}
}

class Plus extends Ast {
Ast l; Ast r;
void accept(Visitor x) {
x.visitP(this);

}
}

Figure 6.3: Source code for formulae and visitor classes.

grouping all the operations on a particular type of data in a single class. In functional lan-
guages, such as ML, a particular operation (function) is defined using pattern matching. The
visitor pattern allows object-oriented programmers to express this common idiom by allowing
matching on an object’s type without using the instanceof keyword found in Java. We con-
sider an imperative, external visitor [18] as we do not wish to focus on any of the complexities
in typing visitors [17].

We consider a visitor over a very simple syntax of formulae with just addition of two terms
and constants. We present the source code in Figure 6.3. In this example we will use a primitive
type of integer, int, but for compactness we will not formally extend the logic or language’s
semantics. The Visitor class has two methods: the first, visitC is invoked when the visitor
visits a Const node; and the second, visitP is for a Plus node. The Visitor class is a template
that should be overridden to produce more interesting visitors.1 We define three classes to
represent an abstract syntax tree of these formulae: Ast which is used as a common parent
for the term constructors; Const that represents constant terms; and Plus that represents the
addition of two terms. We define a single method, accept, in Ast that is overridden in each
of the subclasses. The Const class represents an integer constant, and calls visitC when it
accepts a visitor. The Plus class represents an addition of two formulae and calls visitP when
it accepts a visitor. The double invocation of calling accept followed by visit is called double
dispatch, and allows the case switch to occur without any downcasts or instanceof checks. We
will return to this point in the proof later.

Before we can formally specify the visitor, we must extend the logic to have values of the
formulae’s syntax:

τ ::= n | τ + τ

µ ::= • | τ + µ | µ + τ

We underline the plus constructor, +, to distinguish it from the arithmetic operaton, and use
µ[µ′] to mean replace • by µ′ in µ. We give the specifications for the visit and accept methods
in Table 6.3. There are many choices one can make for the specification of a visitor. The µ
parameter is used to allow the evaluation to depend on the context. In the example that follows
we use the context to allow us to accumulate the value of the expression as we traverse it, rather
than having to calculate it in a bottom up fashion. One can remove the µ parameter from the
predicates if we do not want context sensitive visitors. That is, the state of the visitor does not
depend on its context. One might have expected the methods all to have post-conditions of

1One would normally make the Visitor class abstract, but this is not in our syntax. Instead, we can make its
constructor’s pre-condition false (not presented). Thus it can never be instantiated.
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Method Pre-condition Post-condition
visitC(x) x : Const ∧Ast(x, τ) ∗ Visitor(this, µ) Visited(this;x, τ, µ)
visitP(x) x : Plus ∧Ast(x, τ) ∗ Visitor(this, µ) Visited(this;x, τ, µ)
accept(x) Ast(this, τ) ∗ Visitor(x, µ) Visited(x;this, τ, µ)

Table 6.3: Specifications for accept and visit methods.

class Calc
extends Visitor {

int amount;
void visitC(Const x) {

this.amount += x.n;
}
void visitP(Plus x) {

x.l.accept(this);
x.r.accept(this);

}
}

Figure 6.4: Source code for Calc visitor

the form Visited(. . .) ∗ Ast(x, τ). However, this kind of specification prevents us altering the
structure of the expression.

We define the Ast predicate family for the three classes.

AstAst(x, τ) def= false
AstConst(x, τ) def= x.v 7→n ∧ τ = n

AstPlus(x, τ) def= x.l 7→ i ∗ x.r 7→j ∗ Ast(i, τl) ∗ Ast(j, τr) ∧ τ = τl + τr

Note: Defining the predicate for the Ast class as false prevents any invocation of its methods.

We are now in a position to verify the accept methods for the Plus and Const classes. We
only present the Plus case as the Const case is very similar.{
Ast(this : τ) ∗ Visitor(x;µ) ∧ this : Plus

}
x.visitP(this);{
Visitor(x;this, τ, µ)

}
The verification of the method call introduces the current class’s type: this is exactly what is
required to meet visitP’s specification. This method call simply provides information about
which type of node this is to the Visitor: it is providing a case select using dynamic dispatch.
This proof does not need changing no matter how many subclasses of Visitor are added.

Let us consider an actual visitor implementation. The implementation given in Figure 6.4
calculates the value of the formulae. We can define the Visitor predicate for this class as

VisitorCalc(x;µ) def= x.amount 7→ lcalc(µ)

VisitedCalc(x; y, τ, µ) def= x.amount 7→(lcalc(µ) + calc(τ)) ∗ Ast(y; τ)
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where we define the function calc and lcalc as:

calc(τ) def=

{
n τ = n

calc(τ1) + calc(τ2) τ = τ1 + τ2

lcalc(µ) def=


0 µ = •
lcalc(µ1) µ = µ1 + τ

calc(τ) + lcalc(µ1) µ = τ + µ1

The lcalc function is used to calculate the accumulated total from the context: the sum of
everything to the left of the hole, •, i.e. the nodes we have already visited.

We verify the visitP method as2{
x : Plus ∧Ast(x; τ) ∗ Visitor(this;µ) ∧ this : Calc

}{
P ∗ x.l 7→ i ∗ x.r 7→j ∗ Ast(i, τ1) ∗ Ast(j, τ2) ∗ Visitor(this;µ)

}{
x.l 7→ i ∗ Ast(i, τ1) ∗ Visitor(this;µ, •)

}
x.l.accept(this);{

x.l 7→ i ∗ Visited(this; i, τ1, µ)
}{

P ∗ x.l 7→ i ∗ x.r 7→j ∗ Ast(j, τ2) ∗ Visited(this; i, τ1, µ)
}{

P ∗ x.l 7→ i ∗ x.r 7→j ∗ Ast(i, τ1) ∗ Ast(j, τ2) ∗ Visitor(this;µ[τ1 + •])
}{

x.r 7→j ∗ Ast(j, τ2) ∗ Visitor(this;µ[τ1 + •])
}

x.r.accept(this);{
x.r 7→j ∗ Visited(this; j, τ2, µ[τ1 + •])

}{
P ∗ x.l 7→ i ∗ x.r 7→j ∗ Ast(i, τ1) ∗ Visited(this; j, τ, µ)

}{
Visited(this;x, τ, µ)

}
where P = x : Plus ∧ this : Calc ∧ τ = τ1 + τ2

This proof follows from the following two formulae.

x : Calc ⇒ Visited(x; y, τ, µ) ⇔ Visitor(x;µ[τ + •]) ∗ Ast(y, τ)(
Ast(i, τ1) ∗ x.l 7→ i ∗ x.r 7→j ∧ y : Calc
∗ Visited(y; j, τ2, µ[τ1 + •]) ∧ x : Plus

)
⇔ Visited(this;x, τ1 + τ2, µ)

Both of which follow directly from lcalc(µ) + calc(τ) = lcalc(µ[τ + •]) which can be shown by
induction on µ.

We can produce different subclasses of Visitor to perform many different functions, such
as checking whether an AST contains a particular constant, or to clone an AST. As the proof is
modular we only need to verify the new classes we write: we know all the other classes interact
correctly.

Next we consider a subclass of Visitor that mutates the structure of an expression by
removing any addition of zero. First, we present a function that operates on the abstract syntax.

rz(τ1 + τ2)
def=


rz(τ1) rz(τ2) = 0
rz(τ2) rz(τ1) = 0
rz(τ1) + rz(τ2) otherwise

rz(n) def= n

This function would simplify 0+(3+4) to 3+4, and 0+0 to 0. It cannot remove all occurrences
of zero, but it removes all additions of zero. We present a program that does this in Figure 6.5.
We have used MJ syntax extended with booleans for compactness and legibility. The Visitor
does an in-place removal: it does not allocate any storage; instead it just modifies the original
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class RemoveZeros
extends Visitor {

boolean isZero;
boolean isChanged;
Ast newl;

void visitC(Const c) {
if(c.n==0) {
this.isZero = true;

}
}

void visitP(Plus p) {
p.l.accept(this);
if(this.isZero) {
this.isChanged = false;
this.isZero = false;
p.r.accept(this);
if(!this.isChanged) {
this.newl = p.r;

this.isChanged = true;
}

} else {
if(this.isChanged) {
p.l = this.newl;
this.isChanged = false;

}
p.r.accept(this);
if(this.isZero) {
this.isChanged = true;
this.newl = p.l;
this.isZero = false;

}
else if(isChanged) {
p.r = this.newl;
this.isChanged = false;

}
}

}
}

Figure 6.5: Source code of RemoveZeros visitor

structure. Rather than explain the rather difficult corners cases we will present the proof. This
highlights why each item is required. We use RZ as a shorthand for RemoveZeros. We specify
the Visitor and Visited predicates as follows

VisitorRZ(x;µ) def= x.newl 7→ ∗ x.isZero 7→ false ∗ x.isChanged 7→ false

VisitedRZ(x; y, τ, µ) def= x.newl 7→a ∗ x.isZero 7→b ∗ x.isChanged 7→c

∗ ((c ∧Ast(a; rz(τ)) ∨ (¬c ∧Ast(y; rz(τ))) ∧ (b ⇔ rz(τ) = 0)

The isZero variable specifies that the expression just visited is equivalent to zero: it might have
been a single constant 0 or any composite expression with only zero constants, e.g. 0 + 0. The
isChanged variable indicates if the removal of zeros altered the top node, and hence we must
now link to a sub-term and the newl variable denotes this sub-term. We present an overview
of the proof in Figure 6.6. We do not present all the tedious details, but instead consider the
highlighted part of the proof in Figure 6.7. The most interesting step is at the end where we use
weakening to remove the p.l and p.r fields.

This proof demonstrates the support that abstract predicate families provides for inheritance.
The imperative nature of the visitor is well suited to separation logic. The reader should note
that this algorithm is non-trivial to implement: indeed, the author’s initial implementation had
several small mistakes. Although testing would have caught some of these errors, formal verifi-
cation guarantees none still exist.

6.4 Semantics

In this section we consider the extensions to the semantics of §4.3 sufficient to model abstract
predicate families. The semantic predicate environment as defined in §4.3 has to be extended to
handle the arity changes that predicate families require. We define a semantic predicate family

2Rather than present the code broken into simple Inner MJ statements, we will present a proof skeleton using
MJ statements.
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{
p : Plus ∧Ast(p; τ) ∗ Visitor(this;µ) ∧ this : RZ

}{
p : Plus ∧ p.l 7→ i ∗ Ast(i; τ1) ∗ p.r 7→j ∗ Ast(j; τ2) ∗ τ1 + τ2 = τ

∗ Visitor(this;µ) ∧ this : RZ

}
p.l.accept(this);{

p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ Ast(j; τ2) ∗ τ1 + τ2 = τ
∗ Visited(this; i, τ1, µ) ∧ this : RZ

}
if(this.isZero) {{
p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ Ast(j; τ2) ∗ τ1 + τ2 = τ
∗ Visited(this; i, τ1, µ) ∧ this.isZero 7→ true ∧ this : RZ

}
this.isZero = false;
this.isChanged = false;{
p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ Ast(j; τ2) ∗ τ1 + τ2 = τ

∗ Visitor(this;µ) ∧ this : RZ ∧ rz(τ1) = 0

}
p.r.accept(this);{
p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ τ1 + τ2 = τ
∗ Visited(this; j, τ2, µ) ∧ this : RZ ∧ rz(τ1) = 0

}
if(!this.isChanged) {

this.newl = p.r;
this.isChanged = true;

}{
Visited(this; p, τ, µ)

}


Figure 6.7

} else {{
p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ Ast(j; τ2) ∗ τ1 + τ2 = τ
∗ Visited(this; i, τ1µ) ∧ this.isZero 7→ false ∧ this : RZ

}
if(this.isChanged) {
p.l = this.newl;
this.isChanged = false;

}{
∃k. p : Plus ∧ p.l 7→k ∗ p.r 7→j ∗ Ast(j; τ2) ∗ Ast(k, rz(τ1)) ∗ τ1 + τ2 = τ

∗ Visitor(this;µ) ∧ this : RZ ∧ rz(τ1) 6= 0

}
p.r.accept(this);{
∃k. p : Plus ∧ p.l 7→k ∗ p.r 7→j ∗ Ast(k, rz(τ1)) ∗ τ1 + τ2 = τ

∗ Visited(this; j, τ2, µ) ∧ this : RZ ∧ rz(τ1) 6= 0

}
if(this.isZero) {
this.isChanged = true;
this.newl = p.l;
this.isZero = false;

}
else if(isChanged) {
p.r = this.newl;
this.isChanged = false;

}{
Visited(this; p, τ, µ)

}
}{

Visited(this; p, τ, µ)
}

Figure 6.6: RemoveZeros’ proof overview.
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{
p : Plus ∧ p.l 7→ i ∗ p.r 7→j ∗ τ1 + τ2 = τ ∧ this : RZ ∧ rz(τ1) = 0

∗ Visited(this; j, τ2, µ)

}
{
p.l 7→ i ∗ p.r 7→j ∗ rz(τ) = rz(τ2) ∧ this : RZ
∗ Visited(this; j, τ2, µ) ∧ this.isChanged 7→

}
b = this.isChanged;{

p.l 7→ i ∗ p.r 7→j ∗ rz(τ) = rz(τ2) ∧ this : RZ
∗ Visited(this; j, τ2, µ) ∧ this.isChanged 7→b

}
if(!b) {{
p.l 7→ i ∗ p.r 7→j ∗ rz(τ) = rz(τ2) ∧ this : RZ
∗ Visited(this; j, τ2, µ) ∧ this.isChanged 7→ false

}
t = p.r;{

p.l 7→ i ∗ p.r 7→ t ∗ rz(τ) = rz(τ2) ∧ this : RZ
∗ Visited(this; t, τ2, µ) ∧ this.isChanged 7→ false

}
By expanding the definition of Visitedp.l 7→ i ∗ p.r 7→ t ∗ rz(τ) = rz(τ2) ∧ this : RZ ∗ Ast(t; rz(τ2))

∗ this.newl 7→ ∗ this.isChanged 7→ false
∗ this.isZero 7→c ∗ (c ⇔ rz(τ2) = 0)


By replacing rz(τ2) with rz(τ){

p.l 7→ i ∗ p.r 7→ t ∧ this : RZ ∗ Ast(t; rz(τ)) ∗ this.newl 7→
∗ this.isChanged 7→ false ∗ this.isZero 7→c ∗ (c ⇔ rz(τ) = 0)

}
this.newl = t;{

p.l 7→ i ∗ p.r 7→ t ∧ this : RZ ∗ Ast(t; rz(τ)) ∗ this.newl 7→ t
∗ this.isChanged 7→ false ∗ this.isZero 7→c ∗ (c ⇔ rz(τ) = 0)

}
this.isChanged = true;{

p.l 7→ i ∗ p.r 7→ t ∧ this : RZ ∗ Ast(t; rz(τ)) ∗ this.newl 7→ t
∗ this.isChanged 7→ true ∗ this.isZero 7→c ∗ (c ⇔ rz(τ) = 0)

}
By the definition of Visited{

p.l 7→ i ∗ p.r 7→ t ∗ Visited(this; p, τ, µ)
}

} else {{
p.l 7→ i ∗ p.r 7→j ∗ rz(τ) = rz(τ2) ∧ this : RZ
∗ Visited(this; j, τ2, µ) ∧ this.isChanged 7→ true

}
By expanding the definition of Visitedp.l 7→ i ∗ p.r 7→j ∗ rz(τ) = rz(τ2) ∧ this : RZ ∗ this.newl 7→k

∗ Ast(k; rz(τ2)) ∗ this.isChanged 7→ true
∗ this.isZero 7→c ∗ (c ⇔ rz(τ2) = 0)


By replacing rz(τ) with rz(τ2){

p.l 7→ i ∗ p.r 7→j ∧ this : RZ ∗ this.newl 7→k ∗ Ast(k; rz(τ))
∗ this.isChanged 7→ true ∗ this.isZero 7→c ∗ (c ⇔ rz(τ) = 0)

}
By the definition of Visited{

p.l 7→ i ∗ p.r 7→j ∗ Visited(this;p, τ, µ)
}

;
}{

Visited(this; p, τ, µ) ∗ p.l 7→ ∗ p.r 7→
}

By weakening{
Visited(this; p, τ, µ)

}
Figure 6.7: Part of RemoveZeros’ proof
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environment as
∆f : A× Classes ⇀

(
N+ → P(H)

)
This is a partial function from pairs of predicate, A, and class name, Classes, to semantic
definitions. An abstract predicate family is defined for all arities, so the semantic definition must
be a function from all tuples of non-zero arity. This semantically supports the change in arity
required by WIDEN and NARROW.

We can now give the semantics of the new abstract predicate family assertion as follows

VS , H, I |=∆f
α(e; e) ⇔ H ∈ (∆f (α, C))[Je; eKVS ,I] ∧ H(JeKVS ,I) = C

The assertion α(e; e) holds for some heap H, iff JeKVS ,I has class C, and H satisfies the predicate
definition for C, given arguments Je, eKVS ,I, in the predicate family α.

To ensure that WIDEN and NARROW hold we restrict our attention to argument refineable
environments.

Definition 6.4.1 (Argument refineable). A semantic predicate family environment is said to be
argument refineable if adding an argument cannot increase, or decrease, the set of accepting
states, i.e.

AR(∆f ) ⇔ ∀α, n, n. ∆f (α)[n;n] =
⋃
n′

∆f (α)[n;n, n′]

Next we prove this semantics condition allows the arity change provided by WIDEN and
NARROW.

Proposition 6.4.2. Argument refinement coincides precisely with WIDEN and NARROW: ∀VS , H, I, α, n, n.

AR(∆f ) ⇐⇒ (VS , H, I |=∆f
α(n;n) ⇔ ∃n′. α(n;n, n′))

Proof. Straight from the definitions of argument refineable, and the semantics of abstract pred-
icate families and existential quantifiers.

Again the semantic predicate family environment is a complete lattice. The lattice has the
following order:

∆f v ∆′
f

def= ∀α, C, n, n. (α, C) ∈ dom(∆f ) ⇒ ∆f (α, C)[n;n] ⊆ ∆f (α, C)[n;n]

Again, the least upper bound of the order is written t. Lemmas 4.3.1 and 4.3.4 can be extended
to semantic predicate family environments as follows:

Lemma 6.4.3. Argument refineable predicate family environments form a complete lattice with
respect to v.

Proof. We must show that the least upper bound of a set of argument refineable environments
is also argument refineable.

(∀i.AR(∆i
f )) ⇒ AR(

⊔
i

∆i
f )

That is shown by

H ∈ (
⊔
i

∆i
f )(α)[n;n] ⇔ ∃i. H ∈ ∆i

f (α)[n;n]

⇔ ∃i, n′. H ∈ ∆i
f (α)[n;n, n′]

⇔ ∃n′. H ∈ (
⊔
i

∆i
f )(α)[n;n, n′]

⇔ H ∈
⋃
n′

(
⊔
i

∆i
f )(α)[n;n, n′]
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Lemma 6.4.4. Positive formulae are monotonic with respect to semantic predicate family environ-
ments

∆f v ∆′
f ∧ VS , H, I |=∆f

P ⇒ VS , H, I |=∆′
f

P

Proof. By induction on P .

However extending Lemma 4.3.2 is less straightforward, as it is not possible to tell which
predicate name, class name pairs are used in a formula.

Lemma 6.4.5. Formulae only depend on the abstractions they mention. If ∆f contains all the
abstractions in P, and doma(∆f ) ∩ doma(∆′

f ) = ∅, then

∀VS , H, I. VS , H, I |=∆f
P ⇔ VS , H, I |=∆ft∆′

f
P

Proof. By induction on P .

Now let us consider the construction of semantic predicate family environments from their
abstract syntactic counterparts. We define a new function, stepf , that accounts for the first
argument’s type and uses the special substitution,

stepf
(Λf ,∆f )

(∆′
f )(α, C)[n;n] def= {H | H(n) = C ∧VS , H, I |=∆ft∆′

f
Λf (α, C)[n;n]}

This function is monotonic on predicate family environments, because of Lemma 6.4.4 and that
all the predicate definitions are positive. Hence by Lemma 6.4.3 and Tarski’s theorem we know
a fixed point must always exist. We write JΛf K∆f

as the least fixed point of stepf
(Λf ,∆f )

.

Lemma 6.4.6 (The fixed point is argument refineable). If AR(∆f ) then AR(JΛf K∆f
)

Proof. We show any fixed point is argument refineable. We know the following two equations
hold:

VS , H, I |=∆f
Λf (α, C)[n;n] ∧ n : C ⇐⇒ H ∈ ∆f (α, C)[n;n]

VS , H, I |=∆f
Λf (α, C)[n;n] ⇔ ∃n′. Λf (α, C)[n;n, n′]

The first follows from the definition of the fixed point, and the second follows from the definition
of substitution on predicate family definitions. Combining these we get: for some n′

VS , H, I |=∆f
Λf (α, C)[n;n] ∧ n : C

KS

��

ks +3 H ∈ ∆f (α, C)[n;n]

VS , H, I |=∆f
Λf (α, C)[n;n, n′] ∧ n : C ks +3 H ∈ ∆f (α, C)[n;n, n′]

Hence any fixed point is argument refineable.

Consider the following set of solutions:

close(Λf ) def= {JΛf K∆f
t∆f | ((A× Classes) \ dom(∆f )) = dom(Λf ) ∧ AR(∆f )}

This satisfies the analogues of Lemmas 4.3.6 and 4.3.7.

Lemma 6.4.7. Adding new predicate definitions refines the set of possible semantic predicate envi-
ronments.

close(Λf ) ⊇ close(Λf ,Λf ′)
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Proof. Identical to proof of Lemma 4.3.6.

Lemma 6.4.8. The removal of predicate definitions does not affect predicates that do not use them,
i.e. given Λf which is disjoint from Λf ′ and does not mention predicates in its domain; we have

∀∆ ∈ close(Λf ).∃∆′
f ∈ close(Λf ,Λf ′). ∆f � dom(Λf ′) = ∆′

f � dom(Λf ′)

where f � S is {a 7→b|a 7→b ∈ f ∧ a /∈ dom(S)}

Proof. Identical to proof of Lemma 4.3.7 with Lemma 6.4.5 replacing Lemma 4.3.2.

Validity is defined identically to the previous section, i.e.

Λf |= P
def= ∀VS , H, I,∆f ∈ close(Λf ).VS , H, I |=∆f

P

Theorem 6.4.9. OPEN and CLOSE are valid, i.e.

Λf |= α(e; e) ∧ e : C ⇒ Λf (α, C)[e, e/x, x]
Λf |= Λf (α, C)[e, e/x, x] ∧ e : C ⇒ α(e; e)

where (α, C) ∈ dom(Λf ).

Proof. Direct from definition of validity and the definition of the fixed point.

Theorem 6.4.10. WIDEN and NARROW are valid, i.e.

Λf |= α(e; e) ⇒ ∃X.α(e; e, X)
Λf |= α(e; e, e ′) ⇒ α(e; e),

Proof. Direct from the definition of validity, Lemma 6.4.2 and Lemma 6.4.6.

We are now in a position to define the semantics for our reasoning system. We write Λf ; Γ |=
{P}C{Q} to mean that if every specification in Γ is true of a method environment, and every
abstract predicate family in Λf is true of a predicate family environment, then so is {P}C{Q},
i.e.

Λf ; Γ |= {P}C{Q} def= ∀∆f ∈ close(Λf ). (∆f |= Γ) ⇒ ∆f |= {P}C{Q}

Given this definition we can show that the two new rules for abstract predicate families are
sound.

Theorem 6.4.11. Abstract weakening is sound.

Proof. Direct consequence of the definition of judgements and Lemma 6.4.7.

Theorem 6.4.12. Abstract elimination is sound.

Proof. Follows from Lemmas 6.4.5 and 6.4.8
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6.5 Reverification for inherited methods

We conclude this chapter by briefly discussing the issues of reverifying inherited methods. We
will not give details of these ideas as proper consideration would require super calls to methods
(calling a parent’s version of a method), which neither our operational semantics or program-
ming logic supports.

In the development given so far we must verify every method of every class, even if the
method is inherited. This is due to the method bodies being verified with respect to the current
class’s type:

L-DMETHOD
Λf ; Γ ` {P ∧ this : C}s{Q}

Λf ; Γ 
 {P}C.m(x){Q}
where mbody(C,m) = (x, s)

Prior to this chapter we do not actually require this : C in method verification, so we could
alter the proof rules and hence allow methods to be inherited without reverification. However,
the examples in this chapter depend completely on it. This assertion is required to OPEN and
CLOSE the predicate families. Without it, the proofs simply fail.

We need to restrict changes to abstract predicate family definitions to allow the reuse of
proofs in subtypes. We begin by presenting a generalized notion with respect to an abstract
relation, and then provide two concrete relations.

We assume a relation, �, that constrains the changes of abstract predicate families between
types. Rather than proving each method with the defining class’s precise type as in L-DMETHOD,
we will consider proving for all types that are related:

∀D � C. {P ∧ this : D} {Q} (6.3)

We use C,D for variables over class names.
In particular the relation must be transitive and reflexive. Reflexive means (6.3) contains

the original proof required for the method call. Transitive means that if we have a proof for C
of the form (6.3), and D is related to C, then we also have a proof of the form (6.3) for D. The
programmer must prove that all classes related by � can inherit this method.

The subtype must prove it is contained in the relation, to inherit a method without reverifying
the method body.

We briefly consider two possible relations: (1) if the predicate family definitions are un-
changed in the subtype; and (2) if the predicate family definitions are “proper” extensions.

(1) If we do not change any of the definitions a method uses then it should be valid to inherit
the method. We define the relation D�{α1,...,αn}C as holding only if all the predicates α1, . . . , αn

are defined the same for both classes, that is

Λf ` D �{α1,...αn} C ⇐⇒ ∀αi ∈ {α1, . . . , αn}. Λf (αi, C) = Λf (αi, D)

This relation is useful when a method uses no predicate families, because �{} is the universal
relation. This allows any subtype to inherit that method. This is useful for the template method
pattern [40]. This is where a class defines the outline or skeleton of an algorithm, leaving the
details of the specific implementations to the subclasses. The method specifying the algorithm
uses methods to manipulate the underlying data, so it does not depend on the representation,
and hence the subclass can change it. Consider adding the following method into the Cell class.

Object swap(Object new) {
Object old;
old = this.get();
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this.set(new);
return old;

}

It is always valid to inherit this method into a subtype of Cell as it does not depend on the cell’s
representation. In particular, in a subclass, twiceCell, whose representation is:

V alue(this;x) def= this.contents 7→x ∗ this.contents2 7→x

It is perfectly valid to inherit the swap method, but not the set or get method.
The first relation does not allow extension without reverifying methods. We have made some

progress considering the following relation:

Λf ` D �{α1,...αn} C ⇐⇒
∃P. Λf (αi, C) = λ(x;x).PC ∧ Λf (αi, D) = λ(x;x, y).PD ∧

PC ∗ P = PD ∧ FV (P ) ⊆ {x, y}

This relation expresses that a class’s definition contains its parent’s definition, PC ∗ P = PD,
and that the extra specification does not depend on the free variables of the parent’s definition,
FV (P ) ⊆ {x, y}. The second condition is required so the parent cannot invalidate the subclass’s
predicate. For example in the twiceCell example its definition contained the Cell’s definition,
but treating it like the Cell’s definition would break the property that contents and contents2

have the same value. Using this relation one must alter the definition of OPEN and CLOSE to
account for the extra state that the subtype has introduced.

These ideas are related to the stacks of specifications of Fähndrich and DeLine [36]. Their
work allows extensions in a similar form to this relation. To properly express modularity, they
make calls to the superclass’s methods, which our semantics does not support.

Abstract predicate families help in allowing classes to change their implementation, and we
leave open how best to tame them to reduce the verification burden.





7
Conclusion

This thesis has presented a logic, based on the local reasoning approach of O’Hearn, Reynolds,
and Yang [65], to reason about Java. We have demonstrated several extensions to separation
logic designed to allow reasoning about languages with class-based modularity. In particular, we
have extended separation logic with three key features: abstract predicates; read-only points-to
predicates; and abstract predicate families.

The first, abstract predicates, allows reasoning about encapsulation. They are relevant not
only to class-based languages, but also to any language with dynamically hidden encapsulated
state, such as abstract datatypes. They can be used to prove a struct in C is used as an abstract
datatype, by disallowing code that depends on the struct’s layout. Abstract predicates do not
just allow data encapsulation, but also protocol specification. They can be used to enforce a call
sequence of methods in a similar fashion to Typestates [36].

The second extension, the read-only points-to predicate, allows datastructures read access
to state, which is essential for many common idioms. Although important for datatypes and
classes, the read-only predicate is essential for many concurrent algorithms [13, 14].

The third and final extension is the notion of an abstract predicate family. This concept
allows abstract predicates to have multiple definitions indexed by class. This allows each class
to define how it represents a datatype. We have shown the utility of this concept by reasoning
about the Visitor design pattern.

7.1 Open questions

We conclude this thesis by outlining a series of open issues:

Integrating hypothetical frame rule with abstract predicates There are currently two ways
to deal with information hiding in separation logic: abstract predicates and the hypothetical
frame rule. These two approaches have different strengths and weaknesses. We conjecture
the two approaches could successfully be combined in a logic, as they appear to be orthogonal
concepts. However, the semantic development in this thesis is very different to the work on the
hypothetical frame rule [66], so further work is required to prove this conjecture.

Higher-order separation logic and abstract predicates Birkedal and Torp-Smith [10] have
shown how proofs similar to those expressed in Chapter 4 can be expressed in higher-order sep-
aration logic [8]. However, they do not encode the rules in this thesis, but simply show similarly
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structured proofs. It would prove useful to encode the rules given in this thesis directly into
higher-order separation logic in order to show that existential predicates do indeed capture all
of the required ideas. Birkedal and Torp-Smith also remark that abstract predicate families can
be encoded in higher-order separation logic, but provide no details of this encoding. A detailed
exploration of possible encodings of abstract predicate families into higher order separation
logic should be conducted.

Higher-order functions and code pointers The semantics in this thesis has avoided the view
that objects use code pointers to represent dynamic dispatch on methods. Instead we have relied
on the class hierarchy and behavioural subtyping. It would be interesting to explore the use of
abstract predicate families to reason about code pointers or higher-order functions.

Concurrency O’Hearn [63] has shown how to reason about statically scoped concurrency
primitives in separation logic. His rules use the same method of information hiding as the
hypothetical frame rule: this style of reasoning cannot deal with Java’s concurrency primitives
as these are dynamically scoped. We are currently exploring integrating the information hiding
aspects of abstract predicates with O’Hearn’s concurrency rules to allow reasoning about Java’s
concurrency primitives.



Nomenclature

∗ The separating conjunction, page 47

−∗ The separating implication (magic wand), page 47

~= The iterated separating conjunction, page 72

≺ The subtype relation, page 22

≺1 The immediate subtype relation, page 22

≺θ The substitution relation on stacks, page 59

[] An empty stack, page 28

α An abstract predicate name, page 64

∆ A semantic predicate environment, page 69

∆f A semantic predicate family environment, page 103

δ A class table, page 22

δC A constructor environment, page 22

δF A field environment, page 22

δM A method environment, page 22

η A method or constructor name, page 49

Γ A specification environment, page 48

γ A typing environment, page 24

Λ An abstract predicate environment, page 64

Λf An abstract predicate family environment, page 92

µ A method type, page 21

π An MJ program, page 20

τ A return or statement type, page 20

θ A substitution, page 50

ζ A return statement or skip, page 56
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A The set of all abstract predicate names, page 69

BS A block scope, page 28

C,D A class name, page 20

cd A class definition, page 20

CF A closed frame, page 28

cnd A constructor definition, page 20

config A configuration, page 28

e An expression, page 20

e An expression, page 44

EF An exception frame, page 28

f A field name, page 20

F A frame, page 28

fd A field definition, page 20

FS A frame stack, page 28

H A heap, page 45

H A heap, page 28

H The set of all heaps, page 45

I A ghost stack, page 46

m A method name, page 20

M The abstract permissions partial commutative semi-group, page 85

m An element of the abstract permissions semi-group M, page 85

md A method definition, page 20

md A method definition, page 44

MS A method scope, page 28

mw The abstract write permission, page 86

o An object identifier, page 28

OF An open frame, page 28

p A countably infinite subset of P, page 89

p A non-empty subset of P, page 84

P,Q,R A separation logic formula, page 47
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P The set of all permissions, page 84

pe A promotable expression, page 20

ret The return variable for specifications, page 49

s A statement, page 20

s A statement, page 44

v A value, page 28

VS A variable stack, page 28

x A program variable, page 20

X, Y, . . . A ghost variable, page 46
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