Technical Report A

Number 63

Computer Laboratory

Poly manual

David C.]. Matthews

February 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1985 David C.J. Matthews

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Chapter 1.

Introduction

Poly is a general purpose high-level programming language. It has 2 simple
type system which is also very powerful. Higher order procedures, polymorphic
operations, parameterised abstract types and modules are all supported by a single

mechanism.

Poly is strongly typed. All objects have a specification which the compiler
can use to check that operations applied to them are sensible. Type errors cannot
cause run time faults.

The language is safe. Any faults that occur at run time will result in exceptions
which can be caught and handled by the user. All variables must be initialised
before they are used so faults due to undefined variables cannot occur.

Poly allows higher order procedures to be declared and used. A higher order
procedure is one which takes a procedure as a parameter or refurns a procedure
as its result. Since Poly is statically scoped (the value bound to an identifier
is determined by the static block structure) the procedure that is returned may
refer to the arguments and local values belonging to the procedure that returned
it, even though that procedure is no longer active.

Poly allows polymorphic operations. For example, in many languages such
as Pascal or MODULA-2 programs to sort arrays of integers, arrays of strings or
arrays of real numbers are textually almost identical. They differ only in the actual
operation used to compare two elements of the array. In Poly one program can be
written which will sort arrays of any type provided elements can be compared.

Poly allows abstract types to be created and manipulated. A “hash table”
type can be defined that allows an arbitrary object to be stored along with a string
" which acts as a key. There would be a look-up function that will return the object
stored with a given key. These can be written so that only the functions to create
a table, enter a value against a key, and return the value with the key, are available
to the user of the hash table. This has the advantages that the writer of the hash
table function can change the way it is implemented provided it has the same

2

external properiies. The user can make use of the hash table knowing that he
will not be able to upset its internal structure by accidentally using a function
which was intended to be private.

Abstract types can be parameterised so that a set of types with similar
properties can be defined in a single definition. A specific type can then be made
from that. For example, a single hash table type could be declared from which -
hash tables to hold any particular type could be derived.

Types in Poly are similar to modules in other languages. For example, types
can be separately compiled. An abstract type which makes use of other types
can be written as though it were polymorphic - it will work if it is given any
type (module) which has the required operations. Its operation may be simply
to return a new type (module) as its result. This new type may be used directly
or as a parameter to other polymorphic abstract types. There is a mechanism ‘
for constructing large programs out of their modules and recompiling those which
have been modified since they were last compiled.

Chapter 2.

The Type System

The purpose of a type system is to avoid mistakes due to using a value in a
way that was not intended, while making meaningful operations easy to express.
For example, if we have two matrices with the same dimensions, it should be just
as easy to write the instruction to add them together as if they were integers.
However it should not be possible to add an integer to a matrix. A type system
could be designed in which all these rules were built into the type checker. This
has the problem that new types with new rules cannot be added in. A better way
is to have a few simple rules which allow new types to be added and checked but
which can be used to catch most of the faults which could be made. The Poly
type system is based on this idea.

All objects have a specification which is checked by the type-checker. The
specification corresponds to a type in other languages, but is more general to take
account of the greater power of the type system. For example, in a language like
Pascal, a parameter to a procedure may have type ¢nfeger. This gives enough
information for the compiler to check that the procedure is correctly used; it can
only be applied to an integer value, but it does not specify precisely which value.
It can be applied to 1, 2, 3 etc. but not to strings such as “hello” or “goodbye”.
The checking done by the compiler ensures that certain kinds of faults will not
happen when the program is run, but it cannot prevent all faults.

In Poly this approach is generalised to include procedures and types as well as
values. The specification of an object contains the information which the compiler
uses to check that it is correctly used without restricting it to precisely onz ob-
ject. Expressions and variables can be made to return any kind of object and the
specification of the result can be worked out by the compiler, provided of course
. that all the specifications in the expression match. Specifications have a standard
textual form which allows them to be written in a program or output by the com-
piler. The rules for matching each kind of specification and their textual forms

are described below.

2.1. Values

The simplest kind of object is the value which can be operated on but does
not do anything itself. Examples are the number 42 or the string “hello”. A value
is said to belong to a type or have a particular type, which in Poly is almost
always a named type. The specification is the name of that type. For example,
the specification of the number 42 is ¢nteger and that of "hello” is siring. Two
values only match if they belong to the same type.

Syntax

<value specification> = <identifier> | <value specification>$<identifier>

2.2. Procedures

Procedures are objects which perform a computation. They often take pa-
rameters which can be used by the procedure and always return a result. They
may also have side-effects or raise exceptions. Examples of procedures are “+”
which adds together two values and “print” which prints a value. “+” is an infix
operator which takes two values as parameters, and returns a single result.

3+4

“print” is a procedure which has the side-effect of printing the value.

print(3-+4); '

prints out the value 7. It incidently also produces a result, but it has type void
which has only one value, and is ignored.

Procedures can take procedures or types as parameters as well as simple values
and can also return them as results. Procedures match if their parameters and
results all match. The various forms of procedures will be described in the section
on the procedure constructor.

Syntax

<procedure specification> = pree <mode list> <implied parameters>
<actual parameters> <specification>

<mode list> u= <empty> | <mode> <mode list>
<mode> Infix <digit> | prefix | early | Inline
<implied parameters> [<parameter list>] | <empty>
(<parameter list>)

i

Il

I

<actual parameters>

<parameter list> n= <empty> | <parameter> |
<parameter>; <parameter list>
<parameter> = <identifier list>: <specification> |
<specification> .
<identifier list> n= <identifier> | <identifier list>, <identifier>
2.3. Types

Poly has a novel view of types in that they are treated as being objects as
well as having a role in checking the specification of values. Each type has a set of
objects associated with it and a type mark. The type mark is used purely by the
compiler in checking the specifications of objects and corresponds to the notion
of a type in other languages, while the set of objects makes a type in Poly very
similar to a module. All types have both a set of objects (which may however be
empty) and a type mark, but one or the other may be more important in different

circumstances.

2.3.1. Sets of Objects

As an example of the set of objects, the type snfeger has various operations such
as addition, subtraction, multiplication efc. which can operate on values of the
integer type. Any program which works on integers will ultimately be written in
terms of these basic operations. Similarly the type real will have these operations
along with others which convert between integer and real.

The specification of a type is the specification of the objects which make it up.
Every object in a type has a name, and all the names in one type are different,
although objects with the same name frequently exist in different types. So for
instance, many types have a print procedure which takes as its parameter a value

of the type, and prints if.

The name of an object in a type is intended to suggest the semantics of the
operation, but there is no guarantee that the 4 operations in all types are com-

6

mutative; in the type string it iz used for concatenation®.

Most of the objects in types are procedures, but 2 type can contain simple
values as well as other types. For instance there may be a first and a last value
which give the maximum and minimum values, There is a distinction between
objects which are part of the type and those which been created by operations of
it and are said to belong to the type or have that type. For example, there is no
3 in the type snieger but the number 3 has type snieger.

As types are regarded as sets it is reasonable to be able to take subseis or
select a particular object from a type. For example,

type (atype)

z, y. atype;

add: proc(atype; atype)atype:
sub: proc(atype: atype)atype
end

this is the specification of a type with four objects, called z, y, add and sub. z and
y are both values of this type, and add and sub are procedures which take a pair
of values, and return a value. The name atype in brackets after the word type is
the name used to represent the type itself inside the type specification. This fype
will match any of the following

type (¢) { Only the name has changed }

z, ¥ &

add: proc(t; t)¢;

sub: proc(¢; £)¢

end

type (atype) { The objects are in a different order }
sub, add: proc(t; t)i;

y: &,

T &

end

type (at) { A subset }

z. at;

add: proc(at; at)at

end
- type (atype) { Another subset }

add: proc(atype; atype)atype

end
type { Another subset - No need for an internal name }
end '

This last example is the empty type which matches any type. The text in curly
brackets is comment{ and ignored by the compiler.

17This would require a completely new level of semantic checking which is outside the scope of a
conventional compiler. The CLEAR system [Burstall and Goguen] attempts this kind of checking.

7

2.8.2. Type Marks and the Specifications of Values

The function of the type mark is in the checking of the specifications of
values. Each type has a distinct type mark which is used to identify values which
have that type. The specification of a value is simply the type mark of the type
to which it belongs. Checking the specifications of two values to see if they match
reduces to seeing if they are the same type mark, there is no question of comparing
the specifications of the types themselves.

The reason is that there may be many types with the same specification (short
and long precision integers may have the same set of operations, -+, — etc. but they
are different types). The compiler produces type marks in various circumstances
so as to guarantee that two different types will always have different type marks.
The converse of this is that there are many circumstances in which two types
which are in fact identical may have different type marks, and values associated
with them will be incompatible. An expression which returns a type always has a
type mark which differs from any other, in particular if an existing type is bound
to 2 new name then they will have different type marks. Values which have the
old type have a different type mark from the new one and so are incompatible,
despite the types being in fact identical.

2.3.3. Sets and Marks

There are circumstances when one or other of the two ways of viewing a type
becomes more important. Some types are used only as collections of objects and
there are no values associated with them. The type mark for those types is ir-
relevent. Equally there are occasions in which a type is used where the sef of
objects is irrelevent. Any type matches the empty type “type end ” which has no
objects in it. The type mark of the matching type is still there and is used by the

compiler.

This is important because of the matching rules for procedure parameters if
one or more is a type. A procedure which takes a type as a parameter may use
the formal parameter name in the specification of other parameters. For example
a procedure may have specification

aproc: proc(atype: type end; z: atype)atype
This procedure takes two parameters, a fype which may be any type, and a value
which has the same type as the actual parameter. Its result also has this type.
This kind of procedure is known as polymorphic. It can therefore be applied to
aproc(integer, 99)
in which case the result will have type snteger or
aproc(string, "hello”)
returning a string. This procedure might be the identity function which simply
returns its second parameter (the value) as its result. What is happening is that

8

the actual type erameter is matched to the formal parameter using the matching
rules for types (the formal parameter must be a subset of the actual parameter),
and then the type mark of the formal parameter is replaced with the type mark
of the actual parameter in the other parameters and the result. The other param-
eters therefore match if they have the type mark of the actual parameter. The
specification of the result is obtained by replacing the formal parameter’s type
mark by the actual parameter. It is also possible to obtain the type from the
type marks of values, and this is used to remove the need to explicitly pass type
parameters in many cases.

The reason for considering types both as sets and as marks is that it becomes
possible to write polymorphic operations which make use of objects in types. For
example a sorting procedure can be written which will work on any values provided
they belong to a type whose values can be compared for ordering. How this is done
will be described in detail in the section on procedures.

Syntax

type <internal name> <specification list> end
<empty> | (<identifier>)

<empty> | <object list>

<object> | <object>; <object list>
<identifier list> : <specification> ,
<identifier> | <identifier>, <identifier list>

I

<type specification>

<internal name>

Il

<specification list>
<object list>
<object>
<identifier list>

Chapter 3.

Expressions and Values

The basic element of a Poly program is the expression. An expression has
a value and a specification which ensures that the value is correctly used. Ex-
pressions consist of identifiers and constructors and operations on them, either
procedure applications or selections from types.

3.1, Identifiers

An identifier is a name which represents an object. The binding of a name to
a particular object is made by a declaration. An identifier may be any string of
alphanumeric characters starting with a letter, or a string of one or more “special”
characters. The underline character “.” is considered as an alphanumeric. Each

of the following are identifiers, separated by spaces.
a Message tnteger § + = >>>>>> L999%
An_estremely_long_identifier
The “special” characters are usually used for infix or prefix operators, but can be
used for anything. They are
T #%&=—+s:<>[\?T""]. @
Certain words are reserved and cannot be used as identifiers because they are
used for special purposes. These are

begin catch do early else end extends
func If Infix inline flet letrec prefix
proc valse vecord struct them type wunion
while : == :

Identifiers written in different cases are regarded as distinct, except that reserved
words may be written in either or mixed case. In this manual reserved words are
always shown in bold font while identifiers are given in italics.

Syntax

<identifier> = <letter> | <identifier><letter> | <identifier><digit>

10

Comments in Poly are written between curly brackets “{” and “}”. Any text
in the brackets is completely ignored and the whole comment is simply regarded
as a separator between words in the same way as a apace or a new line.

3.2, S@led‘,om

A selector selects an object from a type.
integer$+
selects the “4+” operation from the type snteger, while
string$+

gelects “+” from°®string.

| Syntax

<selector> = <identifier>$<identifier> | <selector>$<identifier>

3.3. Constructors

Constructors make values from other values. There are general constructors
for procedures and types as well as three constructors which make special kinds of
types: records, unions, and structures. There are also constructors for values
which allow literal constants to be entered in a program.

1 999 "hello” "A" Oxff
Literal constants are either numbers or strings of characters. Numbers are strings
of digits or letters starting with a digit, and strings are any sequence of characters
unclosed in quotation marks. By default numbers are converted to type integer
and strings to either char if they are enclosed in single quotes ('), or string if
they are in double quotes (").

3.4. Declarations

The result of any expression can be bound to an identifier by a declaration.
let result == 44322,
The identifier result can be used in place of the value that is bound to it.
result+6
will yield the value 16. As well as taking the value from the expression, the

identifier also inherits its specification. The specification of result is therefore
snteger. This works for any expression including those which yield procedures or

types.
let p == print;

11

declares p to be the same as print so
p(10);
will print ihe value 10.

An explicit specification may be given for an identifier.
let ¢: integer == 10
The result of the expression must have this specification for the compiler o allow

it. It is useful if a complex expression is being bound to an identifier to' check the
specification of the result when it is being bound rather than when it is used.

The identifier in an ordinary declaration is declared after the expression is

evaluated.

let § == ¢+1
is valid provided ¢ has been declared before. However when recursive procedures
or types are being declared a different kind of declaration is needed.

fetrec p ==
letrec introduces a recursive declaration, and the p used in the expression will be
the p that is being declared. Recursive declarations can only be used for procedures
or types and will be described in more detail below.

Syntax |
<letsym> u=let | letrec
<declaration> = <letsym> <identifier> : <specification>

== <expression>
| <letsym> <identifier> == <expression> 1

3.6. Blocks

Commands can be grouped by enclosing them in the bracketting symbols begin
and end or (and).
2¢(3+4);
begin print(” Hello"); print(” again”) end
A block can consist of several expressions separated by semicolons or just one.
While begin and end or round brackets can be used in either case, it is usual to
use begin and end to group several expressions together, and round brackets to
group parts of an expression which are to be evaluated first. The value returned

by the block is the value of the last expression. All the other expressions must
return values with type void. Empty blocks are allowed and these return void.

Declarations may appear in the block as well as expressions. The identifier is
then available in any of the other expressions after its declaration.

12

begin let £ == 2; z + 3 end

This block returns the value 5. % is not available outside the block, but it is
available in inner blocks.
begin
let p == print;
begin
let ten == 10;

p(ten)
end

end

An identifier declared in a block “hides” an identifier with the same name in a
outer block,

Syntax

<block> . == begin <expression list><catch phrase> end |
(<expression list><catch phrase>) |
() | begin end

<expression> | <expression list>; <expression> |
<declaration> | <expression list>; <declaration>

<expression list>

3.5.1. Conditionals

An expressiog can return different results according to the value of a test.
if 3 > 4 then 1 else 2;

The result of the conditional is the expression following then if the condition is
true and the expression after else if the expression is false. In this case the result
will be 2, since the condition is clearly false. The expression to be tested must have
type boolean which contains the two values frue and false. The two expressions
returned by the then- and else-parts must be the same. The else-part may be
omitted if the then-part returns a vosd resulf.

i =z > 3 then print("yes")

Conditionals may refurn procedures or types but the then- and else-parts must
both return values with compatible specifications.

I ... then snteger$pred else snteger§succ

The expression returns a procedure which takes an integer parameter and returns
an integer result.

Syntax

<conditional> := f <expression> then <expression> else <expression> |
if <expression> them <expression>

13

3.5.2. Repetition

An expression can be repeated while some condition holds.
while z > 0 do z := pred(z)
decrements £ until it is zero, by repeating the second expression until the first

returns false. The expression after the while must have type boolean and the
expression after do must have type void. The result of a “while-loop” has type

void.

The “while-expression” is sometimes convenient, but it is usually both clearer
and more efficient to use a recursive procedure.

Syntax

<while loop> = while <expression> do <expression>

14

Chapter 4.

Procedures

A procedure is an encapsulated piece of program which may take some param-
eters and returns a result.

4.1. The Procedure Constructor

A procedure is made by the procedure constructor, called a lambda expres-
sion in some languages, which is a block preceeded by a procedure header. The
procedure header gives the names and specifications of the parameters as they will
be used in the block and the specification of the result.

proc(s: integer)integer

begin

i +.1

end
This is a procedure which takes a parameter called ¢ in the block, which is a value
of type integer and it returns a result which is a value of type integer. The block
returns a result which is one more than the parameter. This block is evaluated
when the procedure is called and so it is equivalent to the successor function for
integer.

The procedure constructor is an expression which returns a procedure as its
result. It can be used directly in an expression, but usually it is bound to an
identifier. ®

fet imaz ==

proc(¢, j: snteger)integer
begin
i ¢ > 7 then ¢ else j
end

The identifier is then used in an expression
smaz(1, imax(2, 3))

15

4.2. Recursive Procedures

Recursive procedures are declared using letrec.
letrec fact ==
proc(i: snteger)integer
begin
i § = 1 then 1 else fact(s—1) ¢ ¢
end
This has made the usual recursive definition of the factorial function. Recursive
procedures are the preferred way of making loops and repeating expressions in
Poly.

4.3. Operators

Procedures can be declared so that they can be used as infix or prefix operators.
This is purely a syntactic convenience but it does help to make programs easier
to read.

let sq == proc prefix (s: snleger)integer (¢ & ¢)
This has declared sq as a prefix operator.
sq sq 4

is equivalent to

sq(sq(4))

Prefix operators behave exactly like ordinary procedures except that the expression
they are applied to does not have to be in parentheses.

Infix operators have a precedence which determines how tightly they bind.
For example, the expression
152434

would return 20 if it were evaluated strictly from left to right, but yields 14 if
it is evaluated using the normal algebraic rules. In this case the multiplication
operator # is said to have a higher precedence than the addition operator +. In
Poly the precedence of an infix operator is given as a number between 0 and 9,
the higher the number the greater the precedence.
let rem ==
proc Infix 7 (s, j: integer)snteger
begin
§ — 3§ div g %5
end
This declares rem to return the remainder after dividing ¢ by j.

73 rem 4
16

In this case rem has been given a precedence of 7, which is the same as the
multiplication and division operators. The precedence of the other operators is
given in the description of the standard definitions.

4.4. Polymorphic Procedures

The §maz procedure declared above takes integer values and returns the larger
of the two, which is of course also an integer. A similar procedure can be written
to return the greater of two strings (in alphabetical order).

fet smaz ==

proc(s, j: string)string
begin
I ¢ > j then ¢ else j
end

smaz is exactly the same as imaz except for the change in the names of the types.
A similar procedure could be written for any type, provided of course that values
of the type can be compared with a > operator. In Poly 2 single procedure can
be written to handle all these cases, such a procedure is called polymorphic.

let pmaz ==

proc(a_type: type(t) > : proc(t;t)boolean end; 5, j: a_type)a_type
begin
if ¢ > 7 then ¢ else j
end

It works by requiring an extra parameter, a_fype, which is the type of the values
(recall that types can be passed as parameters to procedures). The important .
thing about this type is that it must have a > operator which compares two
values of the type and returns a boolean value. The type specification

type(t) > : proc(t; t)boolean end
expresses this constraint. The other two parameters and the result must be of this

type. pmaz can therefore be applied to any type which satisfies the constraint,
and a pair of values of the type.

pmaz(integer, 1, 2)
returns an integer result, while

pmaz(string, "abc”, "abd”)
will return a string. However

pmaz(integer, 1, " abc”)
pmaz(string, 3, 4)

will be rejected. by the compiler because the specifications do not match.
max(boolean, true, false)

will also fail, because boolean does not possess a > operator.

17

4.5. Implied Parameters

It is not very convenient to have to write an extra parameter when calling
polymorphic procedures, especially since it is just the type of the other parameters.
Poly allows a polymorphic procedure to be written so that the type parameters
need not be given explicitly but are passed implicitly.

let maz ==
proc[a_type: type (t) > : proc(t;t)boolean end](s, j: e_type)e_type
begin
ifi > 4§ then ¢ else §
end
The type parameter in this case is enclosed in square brackets to indicate that
there will not be a corresponding actual parameter.

maz(3.4)
looks at the actual parameters, finds that they are integers and so passes the type
gnteger implictly.

maz("abc”, "bed”)

passes the type string.
maz(3, "abc")

is incorrect because the parameters must have the same type.

Implied parameters are a very powerful facility. All the operators such as +
and > are polymorphic procedures which take the type of their explicit parameters ./
as an implied parameter. Their only action is to select and apply the appropriate
procedure from the type!. For example, the definition of + in the standard header
is

let + { addition } ==
proc early Inline infix 6
[snttype : type (t) + : proc (£)¢ end]
(z. y : inttype) inttype
begin
z inttype$+ y
end

The words early and inline are directives to the compiler. early tells the
compiler that this procedure should be evaluated as soon as possible. This usually
means that the compiler will attempt to execute it when it is compiled if its
parameters are constants’. inline tells the compiler to insert the code for this
procedure at the point of call rather than generate a procedure call. Both early

IThis does not mean that adding two integers together requires two procedure calls, These opera-
tions are implemented as inline procedures and the compiler optimises it down to a single “add”

instruction.
2Since procedures can have side-effects the compiler must not attempt to evaluate all procedures
at compile-time. Consider, for example, a procedure which returns the current date and time.

18

and inline are hints to the compiler rather than instructions, and the compiler
may choose fo ignore either or both.

Syntax

<procedure constructor> ;= <procedure specification><block>

19

Chapter b.

Exceptions

Normally expressions in a block are executed one after another until the end of
the block is reached. There are occasions, however, when an unusual case occurs
and an escape is needed.

let p==gq div r
For example, a program containing a divide operation could possibly fail if r were
zero. Explicitly checking for zero before making the division would be tedious and
unnecessary in most cases, so what happens is that an exception is generated.
Exceptions are error conditions together with a string which identifies the cause of
the failure. Dividing by zero, for example, results in an exception with the string
divideervor. An exception can also be generated by using ralse.

raise an_error

generates an exception with the name an_error.

Exceptions generated in a block may be caught by a handler. A handler
is given control when any exception in the block happens and either returns a
result or raises another exception. The handler is a procedure whose parameter is
a string, the exception name, and result must be compatible with the result the
block would return if the exception had not happened.
begin
§ div §
catch proc (name: string)integer
begin
print (" Exception-");
print(name);
9999
end
end
This block returns the result of dividing ¢ by j unless an exception occurs. In that
case it prints out Ezception- followed by the name of the exception, and returns

the (large) value 9999.
The handling procedure can be any which has the correct specification, but

20

frequently it is written as a procedure constructor after the word catch . Any
exceptions raised by the handler are, of course, not caught by it, but appear in the
next block out. In addition, if the block contains declarations they are not available
to the handler. This is because an exception could occur while the declarations
were being made so the identifier would have no value.
begin
let val == ¢ div 5;
let otherval == §41;
catch proc (name: string)...
begin { Cannot use val or otherval here }
end
end

If an exception is not caught in a block it automatically propagates to the
containing block. This in turn can handle it, or allow it to propagate to the next
block out. An exception raised in a procedure but not caught in it causes the
procedure to return and the exception appears at the point where the procedure
was called. The calling block will catch the exception if it has a handler or it will
propagate back further.

Syntax

<raise expression> := gaise <identifier>
<catch phrase> catch <expression>

°

21

Chapter 6.

Specialised Type Constructors

There are three specialised constructors which make different kinds of ypes.
They are normally used to provide the “concrete” type which implements an ab-
stract type. The development of abstract types will be described in the next
chapter.

6.1. Records

A record type allows objects composed of a group of values to be put together
and taken apart.
let int_pair == record (first, second: snteger)
makes a type with the operations for making pairs of integers. The names first
and second are known as fleld names and the specification, in this case snteger is
the field specification. The result of this declaration is a type §nf_pasr has three
operations in it, constr, first and second.

Every record has a constr procedure which takes objects with the field spec-
ifications and makes them into a record value. The constr in snf_pair takes two
integer values and packages them up as a value of the fnf_pasr type.

let pair_val == ini_pair$constr(i, 2);

The field names first and second are procedures called selectors that take
apart values of the tnt_pair type and return the first and second values respectively.

snt_pair$ first (pair_val)

will return 1 and
int_pasr$second(pasir_val)

will return 2.

Records can be made with elements of any specification and any number of

elements.
let prec == record (val: integer; pr: proc (integer)integer);

22

makes a record to hold a value and a procedure. A value of this type can be made
by

let prec_val == prec$consir(1, integer$succ)
and the selecting functions val and pr now return an integer value and a procedure
respectively.

prec$pr(prec_val)(99) + precSval(prec_val)
Note, however that each invocation of the record constructor, as with the other
constructors, yields a type with a new unique type mark. This means that two
record types with identical field names and specifications are regarded as different

types.

A more convenient syntax for selection is available which allows
pasr_val. first pair_val.second

to be used with exactly the same meaning as

int_patr$first(pair_val) snt_pair$second(pair_val)
This syntax is not restricted to record selection but can be used with any procedure
that is an object in a type and takes one argument of that type. The meaning of
X.Yis

X typeS Y (X)
where X_type is the type to which X belongs. So for example,

99. succ. print

is equivalent to
integer$print (integer$succ(99))

Syntax

<record constructor> = vecord (<field list>)

<field list> <field> | <field>; <field list>

<field> <identifier list> : <specification>
<identifier list> = <identifier> | <identifier>, <identifier list>

6.2. Unions

The record constructor makes types whose values are groups of objects. An-
other constructor, the union constructor, makes types whose values may have any
of a set of specifications.

fet snf_or_str == unlon (int: snteger; str: string)

This has created a type whose values can be either integers or strings. The names
before the colons (int and sir) are called tags and a tag and its specification (after
the colon) is called a variant.

An integer or string may be converted into this type by injection operations.

23

let sni_form == int_or_str$sng_int(09)

let sir_form == int_or_str8inj_str(" hello”)
The names of the injection operations are made by prepending the word énj_ to
the tags.

The original string and integer values can be obtained by projecting the union

value. '

sni_or_str$ proj.sint (int_form)

int_or_str§proj_str(str_form)
The names of these operations are made in a similar way to the injection operations
and return a value with the appropriate specification. Of course it is possible to
apply the wrong projection.

snt_or_str8proj_str(int_form)
Since $ni_form contains an integer it cannot be made to return a string, and so
this operation will cause an exception with the name projecterror.

To avoid getting exceptions, the union value can be tested to see if it is 2
particular variant.
If int_or_str§is_str(int_form) then ...
will not execute the expression after them because the test will return false. How-

ever
int_or_str$ss_int(int_form)

will return true. The alternative syntax for fields of records can be used when
projecting or testing unions.

tnt_form.proj_tnt

str_form.proj_siy

int_form.is_int

As with records the variants may be procedures or types as well as values and
it is possible to have two variants with the same specification.
let a_unfon == unlon (one. another: integer; p: proc (integer)integer)

The two variants one and another are different, so
a_union$proj_one(a_union$inj_another(99))

will result in an exception.

Syntax

<union constructor> = unlon (<field list>)

6.3. Structures

The third built-in type constructor makes structure types. Structures are
very similar to records in that their values are composed of groups of objects.

24

Th= difference is that there is an additional value nsl in the type and there are
operations to compare structure values. Structures are mosily used in recursive
declarations fo create lists and frees.

In fact most structures can be represented using record and union constructors
but they are useful enough to be provided separately.
letrec iné_list == stvuct (hd: dnteger; il: int_list)
This has created a type which can construct lists of integers. It has five operations
together with the the nil value.

constr can be used to make snt_list values.
let a_list == ¢nt_list$constr (1, snt_list§constr(2, int_list$nil))
The nsl value is used to end the list. Without it there would be no way to construct
a structure since a value of the type is needed before a node can be made.

The selector procedures, hd and ¢l are used to select the parts of the structure
in the same way as for a record.

int_listShd(a_list) int listShd(int_list$tl(a_list))

If a selector is applied to nil an exception nslreference is raised, since there is no
value that can be returned.

There are two operations = and <> which compare two structure values. =
only returns frue if they the structures are identical, that is they were made with
the same call of consty or they are both nsl.

let b_list == snt_list$constr(2, snt_listSnil)

has made a list with the same hd and # values as the tail of a_list but
b_list = a_list.#l

will return false.

Syntax

<structure constructor> = struct (<field list>)

25

Chapter 7.

Type Constructor

As well as the using the constructors described above it is possible to make a
type by extending an existing one. This usually involves adding new procedures

or replacing existing ones.

let new_int ==
type (int) extends snieger;
let sqr == proc (8: snt)snt (§¢)
end

This declares new_int to be a type which is an extension of the existing type
snteger. The name in brackets, tnt, is used inside the constructor to represent the
type being made. For instance the parameter and result of sgr both have type
¢snt. The result of this constructor is a type which has all the operations which
¢nteger had, but in addition it has a sgr procedure which refurns the square of its
parameter. This new type is different from snteger so it cannot be used directly on
values with the integer type. The conversion operation up must be used to make
an snteger value into a new_snt one.
new_int$sqr(new-int$up(99))
There is a similar operation down which will convert values in the opposite direc-

tion
10 + new_snt$down(new_int$sgr(new_intSup(11)))

These two operations are added to the new type when an old type is being extended
to allow conversion of values from the old to the new types.' They can be redefined
if necessary or, as we shall see, “hidden” so that conversion of values is not possible.

The above example shows how a new type can be made which is slightly
different from an existing one.

7.1. A New Type

The same approach is used to construct a completely new type. We have
already seen that a record can be used to make a pair of integers and this pair can

26

be extended to make a double precision integer type. Suppose that the maximum
range of numbers which could be held in a single integer was from —9999 to 9999.
Then a double-precision number could be defined by representing it as a record
with two fields, a high and low order part, and the actual number would have
value (high)#10000 + (low). This can be implemented as follows.

let dp ==

type (d) extends record (hi, lo: integer):

let succ ==

proc (z:d)d
begin
if z.lo = 9999
then d$constr{succ(z.hi), 0)
else if z.hi <0 & z.lo =0
then d$constr(succ(z.hs), "9999)
else d$constr(z.hi, succ(z.lo))
end;

let pred ==

proc (z:d)d
begin
if z.lo = 79999
then d$constr(pred(z.hs). 0)
else if z.hs > 0 & z.lo =0
then d$constr(pred(z.hi), 9999}
else dSconsir(z.hi, pred(z.lo))
end;

let zero == d$constr(0,0):

let ¢szero ==

proc (z:d) boolean
(z.hi =0 & z.lo = 0)
end;

This is sufficient to provide the basis of all the arithmetic operations, since +,
—, % etc. can all be defined in terms of suce, pred, zero and sszero. Of course they
can be included in the type if required.

7.2. Information Hiding

As it stands this type includes the operations hs, lo and constr which were
inherited from the record type as well as the new operations. These old operations
are a nuisance, they are not part of the double-precision type as such and they
provide a security risk since it would be possible for someone to produce a value
which appeared to be a double-precision number but, for example, had a positive
high order part and a negative low order part. Unwanted operations can be masked
out by giving an explicit specification which contains only those operations which

27

are actually required.
fet dble:
type (d)
suce, pred: proe (d)d;
zero: d;
iszero: proc (d)boolean
end
== dp;
This has created a new type dble which takes objects from dp but only takes
those which are explicitly given in the type specification. It is impossible to create
a value of the dble type or take it apart except with the given operations. An
alternative would have been to have given the explicit specification in the original
declaration. : ’
let dp:
type (d)
succ, pred: proc (d)d;
zero: d;
iszero: proc (d)boolean
end

type (d) extends ... { The body of dp as before. }
end

7.3, Conversions

This double-precision type suffers from the problem that the only constant
value is zero. All other values have to be made by using succ or pred. It would
be convenient if other constants could be made. One way would be to define a
procedure inside the type constructor which would convert an iﬁteger value into a

dble one.
let make_double ==
proc (int: snteger)d
begin
d$constr(0, int)
end;

This assumes that no ¢nteger value is greater than 10000. If larger ¢nieger values
are possible then the body of the procedure would be
d$constr(int div 10000, snt mod 10000)

gnteger values can now be made into dble ones.
' dble$make_double(42)

The maximum value is limited by the maximum possible integer, so very large
double-precision numbers still cannot be made. It would be nice to be able to
have large literal constants such as 12345678 in a program. A solution fo this is

28

to convert literals directly from their string representations i.e. from the string
“12345678”. This is done by defining a conversion procedure with the name con- y
vertn inside the type.

let convertn ==
proc (rep: string)d
begin
letrec gefch == ‘
{ Returns the result of converting the first § characters. }
proc (s: integer)d
beglin
fe=0
then zero
else
begin
let this_ch == rep sub d; { Obtains the ith. character }
I this_ch < 0" | this_ch > '0" { Must be a digit }
then ralse conversionerror
else
{ Convert the first i—1 characters }
{ then multiply by 10 and add in this digit }
getch(s—1)* d$make_value(10) 4
d$make_value(ord(this_ch) — ord('0’))
end
end;
getch(string$length(rep))
end

This procedure reads the string and converts it into the numeric value. If any
of the characters is not a digit then it raises the exception conversionerror. We
assume that + and % operations have been defined for the type.

With this operation it is possible to write expressions like

dble$12345678 + dble§99999

The compiler automatically generates a call to dble$converin when it recognises
these constants. It is usual to declare conversion routines as early so that the com-
piler will do the conversion, ratler than leaving the conversion until the program
is run. If a number is not preceeded by a type name then the conversion used is
the value of convertn which is in scope. The standard header contains the binding

fek convertn == integer$converin
so that numerical constants are converted to integer by default.
There are two other conversion operations, convertc for strings in single quotes,

and converts for strings in double quotes. These default to char§convesrtc and
string8 converts respectively.

29

7.4. Generic Types

Types in Poly can be treated as ordinary values. We have already seen how the
ability to pass types as parameters to a procedure allows polymorphic operations, |
we shall now see how being able to return a type can be useful. !

A type which could be used to hold lists of énteger values was described above.

It was defined as
letrec tnt_list == struct (hd: snieger; tl: dnt_list)

A type for lists of strings would be almost identical.
letrec str_list == struct (hd: string; tI: str_list)

Indeed lists of any type could be defined in the same way. The specification of the
type in each case is basically the same.

type (list)

hd: proc (list)snteger:

tl: proc (list)list;

constr: proc (integer; list)list;

nsl: lsst;

<>, = : proc (list; list) boolean

end
We can define a list type for an arbitrary element type using a procedure.

fet list == :
proc (element_type: type end)
type (list)
hd: proc (list) element_type:
tl. proc (list)list;
constr: proc (element_type; list)list;
nel: list;
<>, = : proc (list; list)boolean
end
begin
letrec list_type == struct (hd: element_type; ¢l: list_type):
list_type
end

This procedure can be applied to any type, since any type matches the empty type
“type end”.
let ¢nt_list == list(integer);
let str_list == list(string);
let dble_list == list(dble);
The result is always a list with the same operations, but different specifications.
let a_list == int_list$constr(999, int_list$nil);
let b_list == str_list$constr("hello”, str_list$nsl);

The list types are different types, so only operations of the correct fype are possible.

30

snt_list§hd(a_list):
str_listShd(b_list)

are valid, but
snt_listShd(b_list):
snt_list8tl(b_list):
let c_list == int_listSconsir(999, b_list)

are not.

Syntax

<type constructor> := type <internal name> <declarations>
<extension> <declarations> end

<internal name> 2= (<identifier>) | <empiy>

<declarations> = <dec list> | <empty>
<dec list> = <declaration> | <dec lisi>; <declaration>
<extension> = extend <expression> | <empty>

31

Chapter 8.

Standard Definitions

Poly is extremely flexible because much of the system is built on top of the
language rather than built into it. It can be changed as required by redefining
or adding new definitions. The standard definitions contain types and procedures
which are likely to be of use to many programmers. For efficiency reasons some are
written in assembly code or are handled specially by the code generator, but they
all have specifications like ordinary definitions and can be redefined if required.

8.1. Primitive Types
8.1.1. void

yoid is used as a form of place-holder when a type is expected. For example,
procedures which have side effects but no result are considered as returning & value
of type void. It has only one value empty, and its specification is simply

vosid :
type (vosd)
empty : void
end

8.1.2. boolean

Boolean is the type used in tests. It has two values ¢rue and false. The
complete specification is

boolean :
type (boolean)
true, false : boolean;
& : proc Infix 4(boolean; boolean)boolean;
| : proc Infix 3(boolean: boolean)boolean:
~ : proc prefix (boolean)boolean;
<>, = : proc Infix 5(boolean; boolean)boolean;
repr . proc (boolean)string:

32

print : proc (boolean)
end

The &, | and ~ operations correspond to the normal boolean operations AND
(the result is ¢rue only if both the arguments are érue), OR (the result is true if
either arguments are frue) and NOT (the result is ¢rue if the argument is false
and vice-versa). <> and = compare the two arguments and can be regarded as
exclusive-OR and exclusive-NOR respectively. repr returns the string “true” if the
argument is Zrue and "false” if it is false. print prints the siring representation on
the terminal.

8.1.3. integer

The type integer is the basic type used for numbers, Its specification is
snteger :
type (snteger)
first, last, zero : integer; :
+, — : proc Infix 6(integer; snteger)integer;
&, div, mod : proc Infix 7{integer; integer)integer;
pred, succ, abs, neg . proc (integer)integer;
~ : proc.prefix (infeger)sinteger;
<, <=, <>, =, >, >=: proc Infix 5(integer: snteger)boolean;
convertn : proc (string)integer;
repr : proc (tnteger)string:
print . proe (integer);
from_word : proc (word)integer:
to_word : proc (integer)word
end

first and last are the minimum and maximum values that an anteger can have.
last is frequently one less than the negative of first.

+ and — are the usual infix addition and subtraction operations. They raise
the exception rangeersor if the result is outside the valid range.

is the infix multiplication operator which also raises rangeerror is the result
is out of range.

div is the division operator and mod returns the remainder. They both gener-
ate divideerror if they are asked to divide by zero, and d¢v may generate rangeeryor
when first is divided by minus one.

pred and succ respectively subtract and add one to a number, raising rangeervor
if the result is out of range.

L]

neg and abs return the negative and the absolute value, raising rangeerror if
their argument is first.

33

~ is the prefix equivalent of neg.
<, <=, <>, =, > and >= are the usual infix comparison operations.

convertn is the operation which converts literal constants into integers. It - -
recognises strings of digits as decimal (base 10) values unless the first character is
a ‘0’ in which case it treats it as an octal value or hexadecimal if it starts with ‘0x’.
conversionerror is raised if the string does not fit one of these forms or rangeerror
if it is too large.

repr performs the reverse of convertn by generating a string from a number.
It is always generated as a decimal number.

print prints the string representation on the terminal.

from_word and to_word convert between integers and the basic type word.
8.1.4. long_integer

long_integer is very similar to snfeger but it allows larger numbers to be han-
dled. Its specification is
long_snieger :

type (long_tnteger)

first, last, zevo : long_integer;

+, — : proc Infix 6(long_integer; long_integer)long_integer;

#, div, mod: proc Infix 7(long_snteger; long_snteger)long_snieger;

pred, suce, abs, neg: proc (long_integer)long._integer:

~ : proc prefix (long_integer)long_snieger;

<, <=, <>, =, >, >= proc Infix 5(long_integer: long_integer)boolean;

convertn : proc (string)long_integer;

repr : proc (long_integer)string;

print : proc (long_snteger):

from_word : proc (word)long_snieger;

to_word : proc (long_snteger)word;

from_integer : proc (snteger)long_snteger:

to_integer : proc (long-integer)integer;

end
The specification is the same as that of integer with the addition of from_integer
and fo_snteger which convert between integer and long_snteger. to_snieger gener-
ates a rangeerror exception if the value is too large to fit into an integer.

8.1.5. char

The type char is the type of character values. It has specification

char :
type (char)

34

first, last : chey;

<, <=, <>, =, >, >= 1 proe Infix 5(cher; char)boolean:
convertc : proc (string)char;

pred, succ : proc (char)char;

repr : proc (char)string:

print : proc (char);

from_word : proe (word)char;

to_word : proc (cher)word

end

Characters are regarded as being ordered according to the underlying character
code. The ordering will usually follow alphabetic order. firsé and lasi are the
smallest and largest characters and pred and suce give the previous and succeeding
characters according to the ordering. pred and succ raise the rangeerror excep-
tion if a value would be produced outside the range. The comparison operations
compare values according to the ordering.

8.1.6. string

Character strings have type string.

string .
type {string)
mk : proc prefix (char)string;
<. <=, <>, =, >, >=: proc Infix 5(string: string)boolean:
converts : proc (string)string:
length : proc (string)integer;
print : proc (string):
repr : proc (string)string;
+ : proc Infix 6(string; string)string:
sub : proc Infix 8(string; snteger)char;
subfiring : proc (string; snteger; snteger)string
end

mk converts a character into a single length string, while sub selects a character
at a particular position. The character positions are numbered from 1 to the
length of the string, returned by length. Selecting a character outside this range
results in a subscripterror exception. Subcripting a zero length string will therefore
always result in an exception. substring extracts a string from another. It takes
as parameters a string, an integer which gives the starting position in the string,
and a second integer which gives the number of characters to select.

string$substring(” hello”, 3,2);

results in the string "lII". If the first parameter is outside the string or there are
not enough characters in the string then subscripterror is raised. Two sfrings can
be concatenated by +.

35

8.2, Variables and Vectors

So far the language described has been purely applicative, that is 'procedures
can be applied to values, but there is no way to change the value associated with
an object. Variables and vectors can be created and used in Poly but they are not
built into the type system.

8.2.1. new

Variables are created by the procedure new which has the following specifica-

tion.
new : proc [base : type end | (base)

type
assign : proc (base);
content : proc ()base
end
new is a procedure which takes a value of any type and returns a type with two
operations assign and content as ijts result. For example,
let v == new(99);
declares v as a type with specification
v: type
assign : proc (snteger);
content : proc ()integer
end
The type is here being used as a way of packaging together a pair of procedures,
there is no such thing as a value of this type. A

The parameter type of assign and the result of confent were found from the
type of the original argument (99 has type snfeger). The current value associated
with the variable is found using the content procedure.

v$content()
will return 99, the initial value associated with it. The value can be changed using
assign.

v8assign(v$content()+1);

sets the value to 100.

Variables can be passed as parameters and returned as results from procedures
like any other value. However, note that
let vo == v;
makes vv the same value as ¥ which means that it refers to the same variable, and
hence changes to vv will affect the value returned from v and vice versa.

It is not necessary to write “$content()” after every variable name in order to |
extract its value, the compiler will attempt to call the content object of a type if it

36

ig given one when it expecis an ordinary value. There is alzo an infix assignment
operator defined in the standard header which allows use of the normal syntax for
assignment.

v = v+1
is therefore equivalent to

v$assign(v§content()--1)

8.2.2. vector

vector is a procedure which creates an array of variables.
vector: proc [base : type end | (size: integer; snstial_value: base)
type
sub: proc (dnteger)
type
assign : proc (base):
content : proc ()base
end;
firss, last: dnteger
end
It takes as parameters the size of the array (i.e. the number of variables) and a
value which is the initial value for each.
let v == vector(10, "init")
A particular variable is selected by applying the sub procedure to a number be-
tween 1 and the size (the index). The result will be a variable which can be
assigned a value, or its value can be read.
v8sub(4)
v§sub(5) = "new string”
Attempting to apply sub to a value outside the range causes a subscripteryor
exception.

first and last are two integer values that are set to the minimum and maximum
index values (1 and the size respectively). If the size parameter given to vector is
less than 1 it will raise a rangeerror exception.

8.3, Iterators.

Many programs involve the processing of lists or sets of values processing each
one or searching for one which satisfies some condition. The standard header
contains definitions to make these easier. All of these work using a standard
interface, a type, called an iterator which represents an abstract sequence of
values. An iterator has the following specification.

type (sterator)
37

continue : proc (sterator)booleen;
snit : proc ()sterator;

nezt : proc (sterator)sterator;
value : proc (sterator)base_type
end

Values of the iterator type are elements of a sequence such that each has a value of
gome base type associated with it and a way of getting to the next element. They
can be regarded as elements of a list, but equally they can be a range of integer
values. snit generates the first element of the sequence, and continué tests it fo
see if is a valid enéry (the sequence may be empty or exhausted). If it is valid then
value may be used to extract the associated value and nezt used to return the next
element in the sequence. To see how this works we will examine two procedures

which use iterators.

. 8.3.1. for

The for procedure is designed to apply a given procedure to every member of
a sequence. Its specification is
for : proc [base : type end]
(sterator :
type (sterator)
continue : proc (sterator)boolean;
init : proc ()sterator;
next : proc (sterator)iterator;
value : proc (sterator)base
end;
body: proc (base))
It takes an iterator and applies the procedure body to each element in turn. The
body of for in Poly is
begin
letrec successor ==
{ Loop until the condition is false }
proc Inline {counter: dterator)
begin
if counter.contsnue
then
begin
body (counter.value);
successor(counter.next)
end
end { successor };
successor(sterator$inst()) { The initial value of the iterator. }
end { for }:
The successor loops generating elements of the sequence and applying body to each
value until the sequence is exhausted.

38

8.3.2. first

The other procedure which operates on iterators is first which searches a se-
quence until 2 condition is found. It has specification
first : proc [base, result: type end |
(sterator :
type (sterator)
continue : proc (sterator)boolean:
¢nit : proc ()sterator;
nezt : proc (sterator)sterator;
value : proe (iterator)base
end;
test: proc (base)boolean:
success: proc (base)result;
faslure: proe ()result
) result

As well as the iterator, first takes three other explicit parameters, all procedures.
The first is the test which is applied to each value. If it succeeds (returns érue) then
the success procedure is called with the value as its parameter. If the sequence
is exhausted before the test has succeeded the faslure procedure is invoked. The
result of first is the result of either success or faslure.

39

Chapter 9.

Compiler and Environment

This part of the system is still under development and is not guaranteed to
remain stable. Parts of it are also heavily UNIX dependent.

The current environment support provides facilities for compiling text files and
remaking a system from its composite modules, compiling those which have been
modified. There is a simple history mechanism for re-executing commands.

The system is used interactively with Poly expressions and declarations being
typed in by the user and the reponses printed by the computer, Poly is used as
a command language as well as a programming language, so all commands are
simply Poly procedure calls and have their specifications checked by the compiler.
Commands must either return values of fype void, in which case they are simply
executed, or they must return values of a type which has a print operation so
that the result can be printed. Variables and procedures with no parameters are
allowed provided their results are void or can be printed.

9.1. environ

environ is the type which is the nearest equivalent to a file directory in Poly.
It has specification

environ .

type (environ)

enter : proc (environ; string; declaration);

lookup : proc (environ; string)declaration;

delete : proc {environ: string):

print : proc (environ);

¢n : proc (
type
enter : proc (string; declaration);
lookup : proc (string)declaration;
delete : proc (string);

40

over : type (iter)
continue : proc (iter)boolean;
snit : proc ()iter;
nexzt : proc (ster)ster;
value : proc (iter)decleration
end

end

) environ;

out : proc (environ)

type

enter : proc (string; decleration);

lookup : proe (string)declaration;

delete : proc (string):

over : type (ster)
continue : proe (ster)boolean;
init : proc ()iter;
nezt : proc (ster)iter:
value : proc (iter)declaration
end

end

end

declaration is a type which the compiler uses to represent objects that it has
created.

A value of the environ type is a set of procedures which map strings onto
declaration values. The compiler uses the value of curreni_env as the environment
in which to compile something. It uses the lookup procedure to find the value and
specification of identifiers and calls enter to store the result of making declarations.
A particular value of the environ type is made by using the sr procedure to package
up a type with the appropriate operations. The inverse operation ouf can be used
to extract the type.

There is a procedure mkenv which can be used to create environ values. It has
specification
mkenv : proc (environ)environ

It returns an environment which can be seen as an extension of the environment
which was given as the parameter. New declarations result in entries in this new.
environment and they can be found by using the identifier. However, looking up an
identifier which has not been declared in this environment results in a search in the
environment originally passed as the parameter. This can be regarded in the same
way as nested declarations in Poly where an identifier is first looked up in the cur-
rent block and if it is not found there the enclosing blocks are searched. Typically
mkeny is'called with either the current environment or the global environment as
parameter.
fet new_env == mkenv(current_env);

41

cusrent_eny = newenv.;
let new_env == mkenv(globel_env);

The global environment contains declarations such as integer which it is expected
that nearly all programs will require.

The computation involved when entering or looking up an identifier may be
considerably more than just operating on a table. The make procedure, for exam-
ple, uses an environment in which looking up an identifier may involve recursive
calls to the compiler to compile the object.

9.2, 7

? prints the specification of an object which has previously been declared. It
has specification
? : proc prefix (string)
For example, the statement
? 1] ?" :
prints
? : proc prefix (string)

It is useful to be able to check the specification of an object before using it.

0.3. #

runs a text file through the compiler and executes the result. It has speci-

fication
: proc prefix (string)

At present the string parameter it takes is an ordinary UNIX file name, without
any processing of wild-cards.

9.4, sh

sh runs a line of text through the UNIX shell. It can be used to execute any
command, including starting up interactive programs. It has specification

sh : proc prefix (string)
For example,
sh "emacs fred”;

will start up and run the “emacs” editor on a file called “fred”. The Poly system
will wait until the process is finished before continuing.

42

9.6. make

The make command in Poly is similar in function to the “make” command
under UNIX. It constructs a Poly object by recompiling only those parts of it
which have changed since it was last made.

It is generally good programming practice to break a large program down into
geveral parts, usually called modules, and develop each independently. A module
usually provides several related functions and so can be represented in Poly as a
“type”. Such types may or may not have values belonging to them. For example,
a module to construct stacks could be the type “stack” and all stacks would be of
that type, but 2 module for a set of trigonometrical functions would be simply o
set of related procedures.

A module may be complete in itself or require other modules to make it work.
The latter case is represented in Poly by a procedure which takes some types as
parameters and returns a type as the result. So, for example, a module for a parser
may use modules for the symbols and for the parse tree.

An important point about these modules is that each can be compiled inde-
pendently and then the program can be made by applying the modules which
are procedures to their parameters, The process of applying a module to other
modules is known as binding. Like any other procedure application in Poly it is
subject to the normal rules for specification matching.

When a module is changed, for example to correct a bug, it must be recompiled
and rebound. The purpose of the make procedure is to ensure that everything
which must be recompiled has been and to rebind all the necessary modules.
Note that a change to the specification of the module may require changes to
other modules that use it, otherwise a specification fault may be generated by
the compiler. A change of specification may not always require all the using
modules to be recompiled. For example, a module which is a type may have
several operations used by different using modules. Changing the specification of
one of these operations will require changes only to those modules which actually
use that operation.

The make procedure assumes that the source text of the modules is held in
some UNIX text files in a set of related directories. As an example suppose we have
a set of modules which are combined in the following fashion to make a program.

fet ¢ == b(c. d}:
let e == f(g, A):
let ¢ == j(a, e, h):
let 2 == k(s, e):

z is the result of binding the modules together and is the final program. The
source text is arranged in a series of directories with the root directory called s.

43

g contains k, i and e and h.
#/k is the source text for k.
8/i is a directory containing § and a.
g/i/j is the source text for j.
8/i/a is a directory containing source files b, ¢ and d.
g/e is a directory containing source texts f and g.
g/h is the source text for h.

In addition each directory has a file called poly_bind which are the instructions
for binding together the modules to make the result.

g/poly_bind contains “let z == k(¢, e);”

i/poly_bind contains “let § == j(a, e,)"

e/poly_bind contains “let e == f(g, h):"

a/poly_bind contains “let a == b(c, d):"

Supposing h has been modified and we wish to remake z. The command
make "2";
looks for a file “2” and examines its access permission. It discovers that it is
a directory and so tries to compile the file “z/poly_bind”. This contains the
command
let z == k(5. e);
For each identifier in the command it looks up a file with that name in the current
directory and only if that fails does it treat it as an ordinary identifier. k is a
text file so it compares the time that it was last modified (kept by the operating
system) with the time on which an identifier called k& was last declared (kept by the
Poly system). It sees that the file has not been modified since k was declared so it
uses that declaration. If it had found that the file was newer it would recompile k
(by a recursive call to the compiler) before returning the newly compiled version.
It does not perform any other consistency checks relying on the type checking to
ensure that k really is a procedure which can correctly be applied to § and e.

It next encounters ¢ which it discovers is a directory and so it executes the file
%/i/poly. bind. j is treated in the same way as k, but a is again a directory. It
recurses again to process a and checks b, ¢ and d. Finding that all these are text
files and are up to date and that a is newer than each of them, it concludes that
a is up to date and uses its current value without rebinding.

e, being a directory, is processed in the same way as a. f and ¢ are both found
to be up to date, but h is not found in the directory. The directories are regarded
as nested blocks so that if a file is not found in the current directory the make
program looks in the immediately enclosing one (i.e. the parent directory). It fails
to find h in i and so tries 8. There it finds the source text for A and discovers that
it has been modified and must be recompiled. It recompiles it, returning the newly
compiled k as its result. e must now be rebound so the declaration is executed
and the new value returned as the result.

44

oam

The next identifier in the declaration of ¢ is A itself. The program remembers
that A has been checked and uses the new value, rather than repeating the check
on when the files were modified. It does this whether it has recompiled the file
or just checked that it does not need recompiling. It executes the declaration of ¢
because ¢ and k have been remade and returns this as its result.

In the declaration of z the next idcntifier is ¢, Again it uses the fact that e has
been checked to save processing the declaration of e again. Finally it can rebind
z and the construction is complete. If make is rerun immediately after this it will
simply check everything and not rebind any of the files.

Note that each file must be “in scope” when it is required. Because h is used
by both i and e it must be in the path to both of them i.e. in the s directory.

9.6. Persistent Storage

The Poly system runs under a persistent storage system, that is any declara-
tions of identifiers or values in variables can be retained from one session to the
next on permanent storage. The database is held on a file and objects are read in
from it as required. Once read in they are retained in store until the end of the
session when those which are to be retained are written out again. The criterion
for writing something out to the database is whether it is reachable from the root
procedure which is the one used when Poly is started up. In the normal Poly
system this essentially means that any declarations made in the global environ-
ment will be retained. When the user exits normally from Poly all the reachable
objects are written back and the database is updated. The database can also be
written back by executing the procedure system$commst which writes back the
database and exits froin Poly. It is currently not possible to write the database
and continue. ‘

9.7. history

The normal Poly system reads commands from the input stream, usually the
terminal, and compiles and executes them. It also remembers the last few com-
mands typed so that they can be re-executed if necessary. The commands in the
table can be printed by the history procedure.

history:

There are three procedures which execute commands from the history table.
Each command prints the command before executing it, and also enters the com-
mand it will execute in the history table. The previous command can be executed
by the 1! procedure.

45

K
Another command can be executed using the I— procedure. It has specification
iI— : proc prefix (infeger)
The integer parameter is the number of the command counting back from the
currenf one, 80
- 1;
is equivalent to
K
The third command ! has specification
| : proc prefix (string)
The string is the first few characters of the command to be executed, so to reexe-
cute the last declaration,
1 "let”;
can be used. The command found is the first one whose characters match, working
from the last command back.

46

	tr-title-63
	tr63.pdf

