Technical Report A

Number 62

Computer Laboratory

Constraint enforcement in a relational
database management system

Michael Robson

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© Michael Robson

This technical report is based on a dissertation submitted
March 1984 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St John’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

The dissertation describes the implementation of the data structuring
concepts of domains, intra-tuple constraints and referential constraints
in a relational database management system (DBMS) . The need for
constraints is discussed and it is shown how they can be used to capture
some of the semantics of the database”s application. The implementation
described was done within the framework of the particular DBMS CODD, the
main features of which are presented.

Each class of constraint is described and it is shown how each of
them is specified to the DBMS. The descriptions of the constraints are
stored in the database giving a centralised data model, which is used in
the enforcement of the constraints. This data model contains
descriptions not only of static structures but also of procedures to be
used to maintain constraints. A detailed account is given of how each
type of comstraint is maintained.

The main focus of the dissertation is on referential constraints
since inter-relational structure is an area in which relational systems
are particularly weak. Referential constraints impose a network
structure on the database and it is shown how referential constraints
can be maintained by interpreting this network, using the
data-pipelining facilities provided by CODD. It is also shown how
referential constraints can be wused to construct generalisation
hierarchies, themselves an important data modelling tool. Further, some
extensions to referential constraints, which allow them to capture more
semantics, are suggested. The usefulness of referential constraints is
illustrated by presenting a real database example (that of the
University Computing Service), on which some of the ideas described in
the dissertation have been tested.

- idii -

Preface

1 wish to thank the Science and Engineering Research Council and St.
John”“s College for their financial support and my employers, Shape Data
Ltd, for their understanding while I have completed the dissertation.
My thanks also go to Professor Needham and the members of the Computer
Laboratory for providing a pleasant and stimulating enviromment in which
to worke.

0f the many people who have helped and guided my research I would
1ike to thank particularly Ken Moody, Charles Jardine and Tim King. I
would also like to acknowledge the help and general encouragement
provided by Dr. Karen Sparck Jones, Branimir Boguraev and John Tait.
Finally I would like to thank all my friends who have made my time as a
research student enjoyable.

I hereby declare that this dissertation is not substantially the same
as any I have submitted for a degree or diploma or any other
qualification at any other university. I further state that no part of
my dissertation has already been or is being currently submitted for any
such degree, diploma, or any such qualification.

Except where otherwise stated in the text, this dissertation is the

result of my own work, and 1s not the outcome of work done in
collaboration.

CONTENTS

1 INTRODUCTION

1.1 The Relational Model
1.2 Other Data Models
.2.1 Abrial: Binary Relational Models
.2.2 The Semantic Hierarchy Model
.2.3 The Entity-Relationship Model
2.4 DAPLEX
.2.5 The Network Model (CODASYL)
2.6
2.7

.6 Semantic Networks
Programming Languages

et et et e e e

.3 The Work to be Done
.4 Summary

1
1

2 THE STRUCTURE OF CODD

2.1 A Brief History

2.2 Pipelines in CODD

2.3 Database Structure and Integrity

2.3.1 Database Integrity: The State Page, Commit and Rollback
2.3.2 Basic Storage Structures in CODD

2.3.3 Relations and Inversions

Resource Allocation: Pools

Catalogue Relations

The Phases of Execution of a Transaction

2.6.1 Construction of Executable Structure: The STAGE Graph
2.6.2 Query execution: SCHEDULER, EXECUTER and KILLER

2.7 A Pipeline Node Atlas

2.7.1 BUFR and BUFW: The Terminal Producer and Consumer
2.7.2 READR: Read a Relation

2.7.3 WRITR: Write a Relation

2.7.4 COPY: Produce Two Copies of a Stream

2.7.5

2.7.6

2.747

2.4
2.5
2.6

Flexible Buffers
COUNT: Count the Number of Tuples in a Stream
UPDATE: Modify a Relation

3 DOMAINS
3.1 Domains in the Relational Model
3.2 Implementation of Domains in CODD
3.2.1 Implementation of Domain Checkers
3.2.3 The Storage of Code in the Database
3.3 Manipulating Domain Elements

4 INTRA-TUPLE CONSTRAINTS

5 REFERENTIAL CONSTRAINTS: Theory
5.1 Introduction
5,2 Definitions
5.3 Checking Constraints
5.4 Examples of Referential Constraints
5.5 The Form of the Reference Graph
5.6 How is the Cascading of Updates and Deletions Organised?
5.7 Comparison with other work
5.7.1 Aggregation
5.7.2 Addis”s Extended Relational Analysis
5.7.3 Triggers and Assertions in SEQUEL
5.7.4 Codd”s Extended Relational Model
5.7.5 Functions in DAPLEX
5.7 .6 CODASYL
5.8 Extensions to the Idea of Referential Constraints
5.8.1 Replacement of DELETION NULLIFIES
5.8.2 References to non—key attributes
5.9 Generalisation
5.9.1 Generalisation and Referential Constraints
5.10 Summary

6 REFERENTIAL CONSTRAINTS: Implementation

6.1 Basic Strategy

6.2 Catalogue Representation of the Reference Graph

6.3 Recovery of Cascade Graph from the Catalogues

6.4 Checking the Constraints

6.5 Construction of the Coroutine Structures
6.5.1 An extension

6.6 Evaluation of Cascade Structures
6.6.1 Acyclic graphs
6.6.2 Cyclic graphs

6.7 The Definition of Comstraints
6.7.1 Definition of Constraints to the DBMS
6.7.2 Dynamic Definition of Referential Constraints

6.8 Implementation of the Extensions Suggested in Section 5.8
6.8.1 Replacing NULLIFIES by a computed value
6.8.2 References to non-key attributes

6.9 A Different Way of Maintaining Inversions

6.10 Conclusions

6.11 Algorithms for constructing cascade graphs

6.11.1 Recovery of Reference Graph Fragment for INSERT

6.11.2 Recovery of Reference Graph Fragment for ALTER

6.11.3 Recovery of Reference Graph Fragment for DELETE

.

7 AN EXAMPLE DATABASE: The University Computing Service

7.1 The World of the Database

7.2 The Accounting Structure

7.3 Users and Resources Associated with Users

7.4 Authorisations: The link between users and the accounting tree

- vi -

37
37
38
42
43
45
45
46
46
47
47
48
49
49
49
50
50
52
52
54

55
55
56
57
61
65
69
70
70
70
70
70
71
71
72
72
73
73
73
74
75
76

77
78
78
80
81

7.5 Examples of the Maintenance of Referential Comstraints
7.5.1 Insertion of a single tuple into Authorisations
7.5.2 Insertion of a new project and an authorisation to use it
7.5.3 Moving a project from one account to another
7.5.4 Deletion of a tuple from Authorisations
7.5.5 Deletion of a tuple from Users
7.5.6 Deletion of the root of the account—group tree
7.6 Experience with this Database
7.7 Summary
8 CONCLUSIONS
8.1 Review
8.2 Conclusions
8.3 Critique
8.2.1 The Maintenance of Referential Constraints
8.3.2 Bulk Update
8.3.3 User Interface
8.3.4 Use in a Real Application
8.5 Further Work

REFERENCES

- vii -

85
85
86
88
89
89
90
94
94

95
95
96
98
98
99
99
100
100

101

Chapter 1

INTRODUCTION

This dissertation deals with the enforcement of constraints in a
relational database management system.

Constraints are conditions which the contents of a database must
satisfy if the database 1is to remain a plausible model of its
application; they express important information about the application.
Constraints can be represented in two ways:

(a) Constraints can be built into the basic structures of the data
model which is being used (Inherent constraints). An example
of this type of constraint is the restrictions on simple data
values which are implied by domains in the Relational Model.

(b) Explicit constraints can be specified, either by grafting a
constraint specification language on to the basic data model or
by embedding the constraints in programs which manipulate the
database. Explicit constraints provide a flexible mechanism
for augmenting the ability of a data model to express
constraints. [Eswaran, Chamberlin 75], [Hammer, McLeod 761,
[Stonebraker 75] and [Weber, Stucky, Karszt 83] all give
proposals for explicit constraint schemes for the Relational
Model.

It should be noted that even models which can express a considerable
amount of semantic information in their basic structure allow themselves
a way to specify explicit constraints (e.g. DAPLEX [Shipman 81]).
[ISO 81] and [Tsichritzis, Lochovsky 82] provide detailed comparisons of
different data models and the structures which they provide; the latter
also serves as a comprehensive tutorial on the aims and techniques of
data modelling.

Constraints in a database serve LwO purposes.

(a) They define rules to the DBMS which can then be enforced,
preventing the insufficiently informed (or possibly malicious)
user or program from modifying the database in a way. which
would make the database inconsistent.

(b) They inform the user of the rules which the content of the
database must satisfy.

The latter purpose is better satisfied if the constraints are described
in the data model, rather than being hidden in the programs which
manipulate the database.

This dissertation investigates the implementation of three types of
constraint in a relational DBMS, namely:

o Constraints on atomic data values (domains)
o Constraints on atomic sentences (intra-tuple constraints)

o Functional constraints between members of (different) classes
(referential constraints)

Referential constraints are the class of constraint discussed at
greatest length in this dissertation; it will be shown that they form a
base from which other data modelling constructions can be built.

The work described in this dissertation has been carried out within
the framework provided by the Relational Model and with a particular
database management system (CODD) which has a novel wmechanism (data
pipelining) for query evaluation; this mechanism has been exploited in
the work described.

1.1 The Relational Model

The Relational Model of data has been the subject of considerable
interest over the last ten years; however, it is notably deficient in
the facilities which it provides for expressing and maintaining
constraints.

When the Relational Model was introduced by Codd [Codd 70] it seemed
very attractive, owing to its firm mathematical foundation and the high
level operators which it provides for the manipulation of data. There
was a great deal of debate at the time as to the relative merits of the
Relational Model and the network model (CODASYL) which was being
developed at much the same time. Really the debate was concerned with
the techniques typically used to interrogate the database, the
Relational Model, on the one hand, providing high level operators for
manipulating sets of data items and the CODASYL model, on the other
hand, providing mechanisms for navigating around a network of records.
Also the Network Model could not point to a firm mathematical foundation
in the way that the Relational Model could. The debate could hardly
have been about storage structures since (with the benefit of hindsight)
the file structures which are found in the relation storage system of
System/R_[Astrahan, et al 76] bear a close resemblance to those found in
CODASYL systems. In retrospect, therefore, it is the high level
operators which are the really attractive, important feature of the
Relational Model; they give a well defined framework in which to

discuss the problem of querying a database. However, it should be noted
that high level interfaces have also been developed for CODASYL
databases; for example the work by Gray on ASTRID [Gray 81] and the
work Dby Buneman on FQL [Buneman, Frankel, Nikhil 82] (the latter was
demonstrated on a CODASYL system although the work is more general).
Although the Relational Model provides high level operators for database
query, it provides only low level operations for database modification,
i.e. insert, delete and modify tuples of relations.

The Relational Model provides two structures for capturing semantic
information, namely domains and relations.

o Domains are the sets from which the atomic data values stored
in the database are obtained; the sets of valid salaries, part
numbers or dates are examples of domains. The values of a
domain are independent of the content of the database.

o Relations describe sets of entities or relationships in the
application; a relation may represent the fact that people
have ages or that some people are married. The elements of
relations (tuples) express facts about particular entities of
relationships. For example, tuples express facts like "Andy is
28 years old" and "Andy is married to Lyme'". In some cases
there are constraints between the values in tuples; for
example, people cannot be married to themselves.

However, the Relational Model does not provide any way of describing
the connections between relations. This is a serious defect of the
model: it has been remarked above that relations represent facts;
facts rarely exist in isolation; they are connected with other facts.
The information about the connections between the facts represented by
different relations should be known when a database schema is being
designed. At what point in the database design of a relational schema
is the information lost? Consider the design of a relational database
schema.

A tool which is used in the comstruction of relational database
schemas is the functional dependency. A functional dependency describes
a functional relationship between attributes within a relation; for
example if a person”s name determines his date of birth then the
person”s date of birth 1is functionally dependent on his name.,
Functional dependency will be denoted as:

Person.[Name] ==> Person.[Date of birth]

Functional dependencies are used for the identification of relation keys
and as an aid in converting a relational database schema into third
normal form; this latter process is called normalisation. The aim of
third normal form is to achieve the state of '"one fact, one place". If
the database schema has this property then it is free from a number of

data manipulation anomalies which can be identified by considering the
implications of inserting, deleting or modifying tuples of a relation.

The data manipulation anomalies which can arise are best illustrated
by use of an example. Consider the database researchers” old friend,
the suppliers and parts database; we start with the relation “FIRST”
with attributes:

FIRST : [Supplier, City-of-business, Part, Quantity-in-stock]

which represents the facts that suppliers are based in cities and have
particular quantities of particular parts in stock.

The data manipulation anomalies can now be illustrated as follows.

o Insertion - when a supplier starts to supply a new part then it
is possible that his city of business will be specified
incorrectly

o Deletion — if a supplier stops trading then if he was the only
current supplier of widgets the information that widgets are
parts is lost.

o Modification - to change the city of business of a supplier who
supplies a large number of parts is not simple, all tuples
which refer to the supplier have to be modified.

These anomalies arise because the relation “FIRST” contains the
functional dependencies:

FIRST.[Supplier] ==> FIRST.[City-of-business]
and
FIRST.[Supplier,Part] ==> FIRST.[Quantity-in-stock]

These functional dependencies can be used to normalise “FIRST” into the
two relations ~SUPPLIERS” and ~SUPPLIERS-PARTS” defined as:

SUPPLIERS : [Supplier, City—of-business]
SUPPLIERS-PARTS: [Supplier, Part, Quantity-in-stock]

If the current population of known parts is of interest, as 1s implied
by the discussion of manipulation anomalies, then there will also be the
relation “PARTS”, defined as:

PARTS : [Part]

buring this normalisation the information that suppliers in
- SUPPLIERS-PARTS” must also be present in ~SUPPLIERS” and that parts in
- QUPPLIERS-PARTS” must be known parts (i.e. in “PARTS”) has been lost.
When normalisation is complete the only functional dependencies which

remain in the relational schema are those which define the keys of
relations.

The above example illustrates a problem with normalisation; the
problem is that in the quest for freedom from some simple data
manipulation anomalies, new anomalies are introduced. The new anomalies
are the result of constraints between the content of different
relations. These constraints were captured by functional dependencies
which were discarded once the objective of '"one fact, one place" was
achieved. This is sad, since these functional dependencies capture a
great deal of information about the application.

often normalisation is presented as a mechanical process for
designing relational database schemas which takes as its input a large
collection of attributes and a set of functional dependencies and
produces as output a normalised relational schema. This view of schema
design is criticised heavily and correctly in [P.King 80], which points
out that in practice schema design proceeds by synthesis rather than by
decomposition. King also remarks that a database relation is not purely
a formal object (i.e. a set of tuples), it also has associated with it
a well defined natural language predicate which specifies the meaning of
the relation. Similar comments are also made in [Borkin 80a] and
[Smith, Smith 77b]. However, regardless of criticisms of normalisation
when it is regarded as a purely formal process, functional dependencies
are a useful tool for analysing a schema for data manipulation
anomalies.

It is interesting to note that in some early work on constraint
enforcement in the Relational Model (e.g. [Stonebraker 75]) the problem
illustrated above is described in terms of subset constraints, that is
for the suppliers and parts database, constraints like:

The suppliers in ~SUPPLIERS-PARTS” are a subset of those in “SUPPLIERS”

rather than the functional constraint which was expressed by the
original functional dependency. The functional form of the constraint
is captured nicely by the notion of Referential Integrity [Date 8la],
which plays an important part in Codd” s extended Relational Model, RM/T
[Codd 79]. [Date 8la] is a concrete proposal for extending the
Relational Model. Date”s proposal considers the inter—class links as
constraints which must be satisfied if the database is to remain
consistent and suggests a set of rules which govern how the constraints
interact with the insertion, deletion and alteration of tuples in
relations. The greater part of this dissertation (chapters 5 to 7) is
devoted to referential integrity and its maintenance in a relational
database management system. It is also worth noting that the functional
form of the constraint appears in a number of data models, for example
DAPLEX (see section 1.2.4).

In [Borkin 80a] it is remarked that the simplicity of the Relational
Model with respect to update operations is gained only at the expense of
failing to represent important information concerning the application.
The absence of inter-relational links from the Relational Model makes
update hard, since the information about the connections between classes
is important if the database is to be modified sensibly. The DBMS needs
to know about the inter-relational connections if it is to assist the
user in modifying the database and if it is to be able to fault him when
he tries to make some inappropriate modification. Note that it is not
sufficient merely to state that inter-relational links exist, it is also
necessary to know both how modifications to tuples in a relation are
constrained by inter-relational links and how tuples in other relations
may be affected when tuples in a relation are modified. Sometimes data
models express the fact that inter-class links exist, but not how the
links interact with update.

Update is hard; in general a great deal of knowledge about the
database is required if it is to be done correctly. The problems of
update are often neglected by people proposing data models; it is often
either ignored or dismissed by a few sentences towards the end of the
paper. When describing the Relational Model Codd gives only a brief
description of INSERT, DELETE and MODIFY, although in the description of
RM/T he provides much more discussion of update, its problems and the
rules which must be obeyed when performing modifications.

Knowledge of the connections between classes in the database is also
important when constructing natural language interfaces to databases.
The lack of such information can make the task of constructing the
database difficult [Boguraev, Sparck Jones 83], forcing the interface
either to be naive or to contain a description of the database in its
own terms, a description which hopefully corresponds to the actual
‘database.

1.2 Other Data Models

The Relational Model is not the only data model which has been
investigated during the last ten years. Several of these other data
models are discussed below to illustrate this point. Many of the other
data models emphasise the connections between the different classes of
objects within the database. These inter-class connections are
represented naturally by a network-like description and can be expressed
by referential constraints in the Relational Model.

Codd”s extended Relational Model, RM/T, is not discussed explicitly,
but the influence which other work had on RM/T is indicated in the text.

1.2.1 Abrial: Binary Relational Models

[Abrial 74) presents a data model based on the database being
described as a set of categories together with a set of binary relations
between the categories; Abrial”s model is classified in
[Tsichritzis, Lochovsky 82] as a binary data model. The two directions
of the relation are labelled and are termed access functions (although
they are not really functions since they can yield multiple values like
the multi-valued functions of DAPLEX). There is also a facility for
specifying the cardinality of the result that an access function can
yield; hence if necessary, access functions can be made to Dbe true
functions. New categories can be generated to collect together
information in other categories into aggregate objects (compare this
with aggregation as described in [Smith, Smith 77al). The data model
can be described conveniently as a labelled graph.

Abrial also describes a programming language which 1is wused to
manipulate and interrogate the database and data model.

Abrial admits to being heavily influenced by knowledge representation
formalisms (of which semantic networks were one of the earliest).

1.2.2 The Semantic Hierarchy Model

In 1977 Smith and Smith presented two proposals for extensions to the
Relational Model [Smith, Smith 77a&b]. The extensions, aggregation and
generalisation, form the basis of the Semantic Hierarchy Model which has
been investigated further more recently in [Ridjanovic, Brodie 82].
Both aggregation and generalisation express information about the
conmections between the different classes in the database. Aggregation
and generalisation are included in Codd”s RM/T.

Aggregation 1s a process whereby larger meaningful units are
synthesised from smaller ones. For example, a car may be considered to
be an aggregate consisting of an engine and a chassis; mnote that both
an engine and a chassis are objects which can exist independently of
being parts of cars.

Generalisation is a process which allows hierarchies of classes to be
constructed. For example, the classes secretaries, managers and
electricians can be generalised to the class employees, which inherits
the common properties of its sub-classes.

[Smith, Smith 76b] also presents the notion of a well-formed
relation, which is a relation which can be named by a simple noun, i.e.
represents a simple thing. A more useful definition may be that a
relation be described by a simple sentence; this area was investigated
by Borkin [Borkin 80a&b] in his Semantic Relation Model, which is Dbased
on the mnatural language processing notion of case grammars. This rule

is important since otherwise it is possible to construct relations which
are collections of totally unrelated attributes; such relations will
satisfy the conditions for being in third normal form (a purely formal
test), but will nevertheless be totally meaningless.

1.2.3 The Entity-Relationship Model

The Entity-Relationship Model [Chen 76] is a popular and accepted
tool for database design. The model is usually expressed as a labelled
graph (entity-relationship diagram), this being the definition of the
data model. The graph consists of a collection of entity sets linked
via relationship sets; for example, the suppliers and parts database
would be represented as:

Suppliers-
Parts

Suppliers Parts

In the above example, ~“Suppliers” and “Parts” are entity sets and
“Suppliers-Parts” 1is a relationship set. The labels "M~ and “N” on the
arcs denote the fact that the relationship between “Suppliers” and
“Parts” (“Suppliers-Parts”) is many to many (M to N).

Entity and relationship sets may also be linked to properties which
are the value sets on which the attributes of entity and relationship
sets are defined; properties are like domains in the Relational Model.
Both entity and relationship sets may have properties. Examples of
properties would be "Quantity-in-stock" associated with the relationship
set ~Suppliers-Parts” and '"City-of-business" associated with the entity
set “Suppliers”. Codd”s RM/T inherits the ideas of entity and
relationships (associations) from the Entity-Relationship Model.

For the purpose of describing the data model the data is thought of
as being stored in a collection of relations (entity relations and
relationship relations). [Chen 76] presents rules which govern the

checks which need to be performed when new entity or relationship tuples
are inserted, updated or deleted. These rules require the DBMS to have
access to the (graphical) definition of the data model.

1.2.4 DAPLEX

DAPLEX ([Shipman 81]) is a language which describes the “Functional
Data Model”. A DAPLEX database consists of a collection of classes and
a collection of functions between classes. Functions in DAPLEX may be
either single-valued or set-valued, and are referred to in DAPLEX as
single-valued functions and multi-valued functions respectively. DAPLEX
distinguishes syntactically between multi-valued and single-valued
functions. For example, in the “Suppliers-Parts” database there would
be the classes ~Suppliers” and “Parts” together with a function
“Supplies—-Parts” which when applied to an instance of the class
“Suppliers” yields the set of parts which the supplier supplies;
“Supplies—Parts” is a multi-valued function,

DAPLEX does not contain a great deal which is new; many of the ideas
which it contains have been around for some considerable time. However,
DAPLEX is important since it brings together many ideas in a uniform
framework and presents a neat, uniform syntax for expressing the data
model .

DAPLEX functions specify the structural constraints of references
between classes. Therefore, DAPLEX is a network data model in the same
way as the Entity-Relationship Model and the Semantic Hierarchy Model
are mnetwork models., In many ways DAPLEX is similar to the model
proposed by Abrial, which is surprisingly not referenced in
[Shipman 81].

In addition to the conmstraints which it captures implicitly in the
schema definition, DAPLEX also provides a trigger mechanism for the
enforcement of constraints together with a mechanism for the
specification of explicit constraints.

[Shipman 81] provides little discussion of the interaction of the
facilities to update the database with the functions in the database;
indeed, details of the facilities provided for update are only found in
in the appendix! This leads one to wonder if it was added as an
afterthought.

One criticism which can be made of DAPLEX is that the paper stands
well back from the problems of implementation, although Shipman does
state that he sees DAPLEX partly as a design tool for database schemas
and not, necessarily, as something to be implemented in its own right.
Implementations have subsequently been produced (e.g.
[Atkinson, Kulkarni 83]).

1.2.5 The Network Model (CODASYL)

The CODASYL model is often mneglected or maligned by database
researchers, This is possibly because it cannot point to a firm
mathematical foundationm or a high level query interface in the way that
the Relational Model can, or possibly because it is firmly associated
with COBOL (which is not a language close to the hearts of most Computer
Scientists). Regardless of this CODASYL does form the basis of a
considerable number of implemented and heavily used DBMSs.

CODASYL, unlike the Relational Model and like the other data models
discussed 1in this section, provides explicit specification of the links
between the different classes in the database (RECORD types). The links
are specified by CODASYL set types which have owner and member record
types. For a given instance of a CODASYL set type there 1s only one
occurrence of a record of the owner record type. Note that although a
record can only be a member of one instance of a given set type, it can
be a member of instances of many different set types. The data model
also provides a wide range of tests which can be made when a new member
record is added to a set instance. Hence a CODASYL database consists of
a network of comnected records.

A detailed account of the data modelling facilities provided by
CODASYL and a comparison with other data models can be found in
[Tsichritzis, Lochovsky 82].

1.2.6 Semantic Networks

Database management is not the only area of Computer Science which
deals with the problems of describing information. Another area is that
of Artificial Intelligence, which has produced a number of formalisms
for describing knowledge.

A tool which is widely used by the Artificial Intelligence community
for representing knowledge is the Semantic Network. However, there is
not a standard Semantic Network, rather there is a class of
representational techniques which share features which can identify them
as semantic networks. The characteristic features of semantic networks
are that they are labelled graphs the nodes of which represent concepts
or objects and the arcs of which represent relationships between the
nodes. An arc between two nodes “A° and “B” often represents
information such as "A is a property of B", "A is a part of B", "A is a
generalisation of B'" and "A is an instance of B". The previous sections
have illustrated that data models represent similar information. The
history, development and current status of semantic networks is
discussed in [Brachman 79].

- 10 -

Semantic networks have in the past influenced database researchers;
for example, Rousopolous recognised the descriptive power of semantic
networks for database description and in [Rousopolous 77] he describes
the production of relational database descriptions from a semantic
network description of the database. Also, [Weber 76] uses a semantic
network formalism to analyse constraints.

It is interesting to note that few papers on data model reference
work on knowledge representation; however, recently there has been a
realisation that there should be a greater interchange of ideas between
researchers in the areas of Database, Artificial Intelligence and
Programming Languages. A move in this direction was a workshop held at
Pingree Park in 1980 ([Brodie, Zilles 801). The workshop brought
together workers from all three disciplines and although mno firm
conclusions were reached, there emerged a desire to continue talking.

1.2.7 Programming Languages

A recent, novel didea in databases is the idea of persistent
programming ([Atkinson 78]). Persistent programming attempts to
integrate the data and the programs which operate on the data within a
consistent framework. A language which embodies the idea of persistent
data is PS-Algol ([Atkinson, Chisholm, Cockshott 82)1), which has been
used successfully in a number of applications, including implementations
of DAPLEX [Atkinson, Kulkarni 83] and RM/T [Hepp 83].

This approach to incorporating database management facilities into a
programming language as a basic feature is different from the approach
of embedding the data manipulation facilities for a particular data
model into a programming language (e.g. SQL in PL/1 in System/R, DAPLEX
in ADA to give ADAPLEX, and the addition of the data type "relation" to
Pascal to give Pascal/R).

Although PS—-Algol is not a data model, its data structures emphasise
the connections between the data represented. PS-Algol also provides
referential integrity; this is the mnature of programming language
record structures — in general pointers to things which do not exist are
not allowed.

1.3 The Work to be Done

As has already been mentioned, this dissertation deals with the
enforcement of three types of constraint in a relational DBMS.

The concept of a domain is central to the Relational Model. The

first type of constraint dealt with is those implied by domains in the
Relational Model. Although in the basic definition of a relation a

ll

domain can be any set, it is conventional to restrict domains to be sets
of atomic, that is nondecomposable, values; this is the requirement for
first normal form, a requirement to which this work adheres. Given that
the database is in first normal form, domains define the atomic data
values which can be present in the database; the values in a domain are
fixed and are independent of the content of the database. The
definitions of domains impose constraints on the data values which can
be present in the database. The enforcement of domain constraints helps
to prevent erroneous data from being entered into the database. It must
be remembered that the definitions of domains are part of the database,
not part of the DBMS and that the definitions of domains should form
part of the data model. The earlier part of the dissertation describes
a technique for defining domains and for enforcing the constraints which
they imply.

The second type of comstraint which is dealt with is intra—-tuple
constraints. This class of constraint expresses constraints between the
values in a tuple. The constraint may depend either only on the content
of the tuple or on the relationship between the old value of the tuple
and the new value (e.g. salaries should increase).

The final type of constraint dealt with is referential constraints.
Section 1.1 discussed the problems posed by the lack of information
about inter—class connections in the Relational Model; section 1.2
illustrated that description of the connections between the classes of
data in a database is an important part of many data models. In the
terms of the Relational Model referential constraints provide a way of

expressing these inter-class comnections. The majority of this
dissertation is devoted to an investigation of referential constraints
and techniques for enforcing them in a relational DBMS. The

investigation shows how referential constraints can be used as building
blocks from which generalisation hierarchies can be constructed and
suggests how the notion of referential constraint can be extended.

The techniques which are used in this work to enforce referential
constraints, were influenced heavily by the development of the
relational DBMS CODD at Cambridge [King, Moody 83]. A basic feature of
CODD is the way in which it uses networks of coroutines to evaluate
database queries expressed as directed graphs of relational algebra
operations. Since the connections between relations described by
referential constraints can be expressed as a network, it seemed
reasonable to investigate whether this coroutine technology could be
applied to the maintenance of referential constraints.

Some of the work described has already been reported in [Robson 82a]
and [Robson 82b].

1.4 Summary

Chapter 2 describes CODD, the DBMS which was used to test the ideas
presented in the dissertation. This chapter introduces those aspects of
CODD which are important for the work described in the rest of the
dissertation. Although most of the detail in chapter 2 is not required
until chapter 6, the material is presented as a coherent whole, rather
than as sections scattered throughout the dissertation.

Chapter 3 deals with domains. It is shown how domains are defined to
the DBMS, how the definitions are stored in the centralised data model,
and how the definitions are used by CODD. Chapter 4 deals briefly with
intra-tuple constraints.

The two subsequent chapters are devoted to referential constraints.
Chapter 5 discusses the theory of referential constraints and suggests
some extensions to the basic notion of referential constraints, showing
how referential constraints can be wused to build generalisation
hierarchies. Chapter 6 is a detailed description of an implementation
of referential constraints which uses the data pipelining provided by
CODD.

Chapter 7 presents an example database based on the database used by
the University of Cambridge Computing Service. The example is used to
illustrate the part referential constraints play in the description of a
database. Examples are given of the coroutine structures which are
constructed for a number of operations on this database.

Finally, chapter 8 presents conclusions and suggestions for further
work .

Chapter 2

THE STRUCTURE OF CODD

2.1 A Brief History

copD (COroutine Driven Database) [King, Moody 831 is a DBMS
originally developed by T.J. King as part of his Ph.D. research
[T. King 79]. CODD is written entirely in BCPL
[Richards, Whitby-Strevens 79]. The design of CODD was influenced very
strongly by that of the Peterlee Relational Test Vehicle (PRTV)
[Todd 76] which was developed at the IBM UK Scientific Centre, Peterlee.
In the spirit of the PRTV, CODD evaluates relational algebra expressions
by use of data pipelining techniques, i.e. queries are viewed as
directed graphs the edges of which are pipes along which tuples pass
between processing nodes. In the PRIV the graphs which could be
evaluated were restricted to being trees, whereas in CODD they may be
general acyclic directed graphs. By imposing an internal order on the
tuples in relations and by ensuring that tuples pass along the pipes 1in
this order, introducing sorts if necessary, relational operations can be
implemented in an efficient manner. Usually the pipes contain either
only one tuple (the one being passed to the node which will consume it)
or the entire stream in the case where the tuples have to be sorted.
This technique allows complex queries to be evaluated. During his
research it was not uncommon for King to have queries involving several
tens of joins, which is a degree of complexity that most other
relational systems could not handle in an efficient manner.

Although as it was originally designed CODD had very powerful query
evaluation facilities, it had no provision for ad hoc update. The only
way of updating a relation was to copy the relation, adding mnew tuples
by set union or removing them by set difference. This may seem to be a
serious defect; however, the particular database on which King”s
research was based was effectively read-only, so the defect was not
significant.

The DBMS used as a testbed for the work described in this thesis is a
development of King”s system and is a result of a redesign of CODD by
Glauert, King and myself. The major aim of this redesign was to provide
a convenient tool for the work of Glauert and myself, since it had
become very difficult to modify CODD in any significant way. The major
design aims were:

14

(a) to provide a portable system with well defined interfaces
between the different parts of the system;

(b) to design a system which has a well defined model of the
computation which it is performing; this allows an executing
pipeline structure to be modified dynamically in a sensible
manner ;

(¢) to make provision for proper update facilities, motivated by my
desire to investigate the enforcement of constraints.

In order to achieve the aim (a) above the evaluation of a
transaction/query in CODD is divided into several phases between which
there are well defined interfaces, The phase structure allows the
system to be overlaid in an obvious way on small machines (or even on
large machines where it is wished to use as little space as possible for
code when the transaction is evaluating). This clear functional
division has been exploited to build a version of CODD which runs on
several machines on a Cambridge Ring, the functions of the DBMS being
distributed between the machines. This work was reported in
[Robson, King, Glauert 81]. Details of the various phases of execution
within CODD are given in section 2.6.

2.2 Pipelines in CODD

Pipelines are a basic feature of CODD. A query 1is viewed as a
directed graph. The nodes of the graph represent the relational
operations to be performed and the edges of the graph represent
pipelines passing data between nodes. The nodes are implemented as
coroutines [Moody, Richards 80] which contain the algorithms for the
particular operation to be performed. This structure operates as a
demand driven computation pulling tuples along the pipelines as required
and parallels can be drawn with lazy evaluation of functional
programming languages.

The reasons for using coroutines for evaluating the query graph are
given below.

(a) 1If queries are evaluated by recursive function calls on a
“tuple at a time” basis then it 1is necessary to have an
auxiliary datastructure in which to save the state of

operations between invocations. If coroutines are used then
this is unnecessary since the state is saved as part of the
coroutine representing an operation. Also the cost of

reinitialising stack frames once per tuple is eliminated.

- 15 =

(b) Coroutines allow a richer set of evaluation structures than
recursive function calls, since the graph to be evaluated is
not restricted to being a tree; this is exploited by the COPY
operation (see section 2.7.4 below).

(¢) Coroutines allow a flexible control structure, (see section
2.6.2 below).

The coroutines which form an executing query graph know the
identities of their producers and consumers. This knowledge allows a
coroutine to pass information to its consumers and producers by resuming
them. The coroutines communicate with one another by using a protocol
which allows them to give and get tuples and to signal exception
conditions such as “no more data required” (consumer satisfied) or “end
of data” (producer exhausted).

The communication protocol, which is the work of J.R.W. Glauert
[Glauert 81], also provides facilities for dynamically modifying the
executing pipeline structure. One of the simplest operations of this
type is to remove a set union node from the executing structure if one
of its two producers becomes exhausted. A more complicated example of
dynamic restructuring is attaching more coroutine structure to some
which is already executing. Typically this is done when some data
dependent test has been resolved. This can be used to implement a query
which calculates the transitive closure of a relation. In order to be
able to do this restructuring the DBMS maintains a model representing
the computation in progress. A description of this structure and how it
is used is given in section 2.6 below. The following sectioms also give
definitions of the function of the pipeline nodes which are important in
this thesis and describe how the evaluation of a transaction is managed.

It will be shown in chapter 6 that this technology, which was
originally developed for dealing with conditional expressions in
queries, and the rest of the pipeline technology is also useful when
referential constraints are being maintained.

2.3 Database Structure and Integrity

CODD demands very little from the filing system of the machine on
which it runs. It requires merely the ability to read and write blocks
of a direct access file. It is felt that the experience of Stonebraker
[Stonebraker 80] in using the UNIX filing system in the implementation
INGRES vindicates only making minimal demands on the type of file access
whieh the DBMS requires. Therefore, a CODD database is a direct access
file, managed by the DBMS, consisting of a fixed number of fixed size
pages.

2.3.1 Database Integrity: The State Page, Commit and Rollback

The scheme for database integrity, which gives the ability to commit
and abort transactions, is based on recording the state of the database
in the first page of the database (page-zero), and controlling the
allocation of database pages in a pair of bit maps, the location of
which are stored in page—zero. Page-zero also contains the address of
the root of the value set system described in section 2.3.2 and the
addresses of all of the catalogue relations. The state page is written
back as an atomic operation which either commits a new database state or
restores the database to the state at the beginning of the transaction.
It is only at the point that a transaction commits that informatiomn
about the old database state is lost. This mechanism provides
indivisible updates and ensures that inversions (see section 2.3.3) will
be maintained in step even over system crashes.

The two bit maps are termed OLD and NEW. At the start of a
transaction these are both the same, and record the allocation of pages
in the current, consistent database. OLD is mever modified during a
transaction since it defines the world which will be restored if the
transaction aborts. NEW contains the state of the world which will
exist if the transaction commits and pages which will be freed at the
end of the transaction are marked free in NEW when they are logically
freed., New pages are allocated by locating a page which is free in both
OLD and NEW. This scheme relies upon:

(a) having sufficient secondary storage to have up to two copies of
the database, although in practice it is usually possible to
get away with less free space than this; and

(b) the storage mechanism freeing pages explicitly when they are no
longer in use (in fact there 1is sufficient redundant
information available in the database to perform garbage
collection, but this should never be necessary).

In order to commit a tramsaction OLD is replaced by NEW, page—zero is
modified to reflect this and page-zero 1is then written back to the
database. Conversely, in order to abort (or rollback) a transaction NEW
is replaced by OLD and page-zero is not modified.

2.3.2 Basic Storage Structures in CODD
There are two storage regimes, one of which is used for storing fixed

length data and the other of which is used for storing variable length
data. The second complements the first as described below.

- 17 -

Fixed length data is stored in multi-level indexed sequential files.
Within the files the data is sorted according to an internal sorting
order. This yields an efficient storage organisation, data items being
located easily and efficiently by binary chop. The access methods for
these indexed sequential files provide all of the normal file operations
(INSERT, DELETE, ALTER, FIND, READ). This storage scheme represents an
associative store accessed by data value. It is cleaner than a scheme
using pointers, which introduce their own comsistency problems.

When it is being manipulated a file is represented by a cursor which
indicates the current position in a file in terms of the route through
the index tree which needs to be followed to reach the current position.
The route 1is recorded as a set of database page numbers and offsets on
those pages at each stage. When a file is modified great care is taken
to ensure that the index tree remains balanced, index levels being added
and removed as tuples are inserted and deleted. When a file 1is
initially loaded pages are not filled completely so that the first
insertion does not result in major index reorganisation.

This file structure is very low level in that it consists of a set of
fixed length records. The access methods do mnot place any
interpretation on the types of the fields in the records.

Variable length data is stored in a hashed storage system based on
the dynamic hashing scheme of Larson [Larson 78]. The hashing scheme
assigns a unique value to each object stored within it. This wunique
identifier has a fixed length and 1s called a value set identifier
(VID). Duplicates are not stored and therefore two objects which are
the same will be given the same VID. This gives a quick test for
equality for variable length objects, which is often all that it is
required to Kknow. This storage regime can be used to store arbitrary
sequences of bytes.

For both storage regimes the database page size determines the
maximum size of the objects which can be stored.

2.3.3 Relations and Inversions

Relations are stored as indexed sequential files, with tuples of
fixed size. Variable length data within a tuple is stored in the hashed
storage system and its VID 1is stored in the file representing the
relation. Typically the file representing a relation will be sorted on
its primary key fields, since this allows easy selection on key.
However, there are occasions when it is wished to access a relation
other than by its primary key. This occurs, for example, when
performing a join other than on the key or checking a referential
constraint (see chapter 6).

- 18 -

For the above reasons I added support for inversions to CODD.
Relations are represented by a primary version (sorted on the key of the
relation) plus a number of inversions. The inversions consist of a copy
of the primary version which is sorted on the attributes forming the key
of the inversion. The inversions contain all of the data fields of the
primary version. All alterations to the relation are automatically
performed for all of the files representing it. (The exception to this
is, of course, when a new inversion is created and initialised.) When an
inversion is defined it is automatically loaded with the relevant data
sorted in the correct order. The integrity mechanism described above
ensures that changes are reflected in all or none of the inversions of a
relation.

1f a relation has many data fields then this technique for storing
inversions is quite expensive on disc space. However, it would not be
much more difficult to maintain inversions of the form:

{inverted attributes, primary key of tuple)

This is a more conventional view of inversions.

When a relation is being manipulated during a database interaction it
is represented by a datastructure called a LOCK. LOCKs have the
following structure:

(a) the name of the relation;

(b) details of the attributes of the relation, 1i.e. column and
domain names;

(¢) the access mode (i.e. READ, WRITE, UPDATE) ;

(d) 1If the access mode is UPDATE the update operation, 1i.e.
INSERT, DELETE or ALTER, which is to be performed;

(e) constraint information (see chapters 4, 5 and 6);

(f) a list of the inversions for this relation.

2.4 Resource Allocation: Pools

One of the problems produced by the lack of types in BCPL is that it
is impossible to garbage collect the free storage heap. Therefore space
which is allocated must be explicitly freed when it is no longer of use.
For complex data-structures and scratch workspace this is somewhat
tedious. CODD alleviates this problem by allocating resources, which
include free storage, in pools. These are collections of resources
which can be freed as single units or merged with other pools in order

- 19 -

to aid resource handling. For scratch space each PHASE has a pool
associated with it which is freed at the end of the PHASE.

Free space is not the only resource which is allocated in a pool;
coroutines, cursors and loaded code segments are all associated with
pools. This makes it easier to tidy up allocated resources when it 1is
necessary to recover from an error and restore the internal state of the
DBMS to a known, tidy state. Although the use of BCPL to implement CODD
forced this strategy on me, it would seem to be generally useful.

2.5 Catalogue Relations

The data model (both conceptual/semantic and storage/ internal) for a
CODD database is held in a number of normalised catalogue relations.

This use of relations to store catalogue information has the
advantage that it requires no special storage structure for the
catalogues. However, I do not claim - as some authors have claimed -
that representing the catalogues as relations enables the meta-data to
be manipulated in the same way as the ordinary data. Although this 1is
true if the operations performed on the meta-data are the same as those
performed on the ordinary data, the meta-data is - 1in general — most
often used in ways in which the ordinary data is not. In particular
access to the meta-data usually has side effects which cause data
structures for the control of the database tramnsactions to be built or
modified. The programs which produce these side effects are necessarily
special purpose. Therefore, the convenience of not having to invent a
new secondary storage regime is the only advantage of representing the
meta—-data as relations.

The structure of the catalogues is determined by the usual “one fact
one place” principle of database design, and the description of the
physical storage of the data is separated from that of its logical
structure. The information required for a basic relational database is
stored in the relations “Rnames”, “Inversions” and “Domains” .

-Rnames” describes the logical structure of relations and contains:

(a) the name of the relation (this is the key of “Rnames”);
(b) the degree of the relation;
(¢) a list of pairs (column name, domain name) encoded onto a VID;

(d) the key of the relation;

(e) the cardinality of the relation.

- 20 -

“Inversions”, which describes the physical storage of relations has
the following structure:

(a) a relation name;

(b) a permutation of the columns of the relation (encoded onto a
VID);

(¢) the database page number of the root of the file representing
this inversion.

The relation name and the permutation form the key of “Inversions”. For
each relation in “Rnames” there is at least one tuple in “Inversions”.

“Domains” gives information about the domains which are present in
the database. A complete description of “Domains” will be given in
chapter 3.

“Rnames” contains neither references to itself mnor to the other
catalogue relations, the locations of which are stored in special
locations on page-zero of the database. This was a design decision and
not an accident. The reason is that it is important that the user does
not see the catalogue relations as ordinary data in his schema, since
they represent the DBMS”s world not the database”s world. However, the
user needs — and is provided with - facilities for querying the
catalogues to discover what his data model is.

Apart from the ones described above, there are other catalogue
relations which are used to represent other kinds of semantic
information; for example, the relations "RGX” and “RGY” (described in
chapter 6) are used to represent the reference graph required for the
maintenance of referential constraints.

2.6 The Phases of Execution of a Transaction
The phases of evaluation of a typical tramnsaction are given below.

(a) Perform the syntax analysis of the operations to be performed,
producing a list of syntax trees with unbound relation and
column names. For interactions which update the database the
order of the list of syntax trees is significant and specifies
the order in which the updates will applied to the database.
The 1list of syntax trees forms part of the record which
describes the transaction.

(b) The list of syntax trees produced in (a) is scanned to produce
a 1list of the relations which will be accessed in this
transaction. These relation names are looked wup in the
catalogues and a LOCK is constructed for each relation. A list

- 21 -

of the LOCKs created is kept as part of the record which
describes this transaction. The information from the
catalogues is used to bind relation names to the files in the
database which represent the relations.

(¢) The syntax trees are translated into the graph which is the
template for the coroutine graph which will evaluate the
expression (see section 2.6.1 below). However, it may not be
possible to convert all of the syntax trees, since some of the
expressions may contain data dependent tests which must be
resolved before the conversion is done. Therefore, any such
syntax trees are retained until sufficient information is
available to enable them to be converted.

(d) Executable coroutine graphs are constructed from the template
produced in (c). These are then initialised and executed, the
template being retained as a model for the computation in
progress. This step 1is repeated until there is no further
structure to execute.

(e) 1If, at (c) there were some syntax trees which could not be
converted, then go to (c) again and construct more executable
graphs, since the data dependent tests should now have been
resolved.

(f) If the content of database has been modified by the
transaction, the catalogues are updated to reflect the changes.
The list of LOCKs constructed at (b) is used to determine which
relations have been modified and should therefore have their
catalogue entries updated.

2.6.1 Construction of Executable Structure: The STAGE Graph

The execution model is an acyclic directed graph. The nodes of this
graph are referred to as STAGEs and the graph is called the STAGE graph.
A STAGE contains the information necessary to connect it to its
neighbours. Each STAGE has a unique identifier which dis used to
identify it when the pipeline structure is being modified. These
identifiers give the mapping between the executing pipeline structure
and its STAGE model. Tests for the safety of the execution graph (see
section 2.7.5) are performed on the STAGE graph.

While the STAGE graph is being constructed the links between stages
are represented by arc-descriptors which contain both the semantic
(domain description) and the physical descriptions (offsets within
records) of the tuples which will flow along that arc when it is
realised as a pipeline. The STAGE graph is constructed “from the bottom
upwards”; the initial sources of the information in the arc-descriptors

- 22 -

are the relations which are being read in the operation. The semantic
information is pulled up the network and is modified as each node in the
syntax tree is processed.

When syntax trees are converted into STAGE graphs, the wvalidity of
each operation in the syntax tree is checked, using the information
contained in the arc—descriptors. These checks include checks on the
degree of the inputs to a node, checks that the inputs to a node are
“union compatible”, checks that column names referred to at a node are
present in the dinputs and checks that the constants supplied in
selection expressions are of the correct type.

The coroutines which control the execution of a transaction (see
below) always ensure that the stage model is an accurate model of the
executing coroutine structure.

2.6.2 Query execution: SCHEDULER, EXECUTER and KILLER

SCHEDULER, EXECUTER and KILLER are coroutines which coordinate the
execution of transactions. They provide the flexible control structure
required for transactions which contain data dependent tests and hence
require pipeline structure to be built dynamically. The functions
provided by the three coordinating coroutines are:

SCHEDULER

This converts syntax trees into stage structures where this is
possible. Otherwise the syntax trees are retained until it is possible
either to build stage structures from them or to discard them.

Whenever SCHEDULER is invoked it tries to find syntax trees about
which it has sufficient information to convert them into STAGE graphs.
These stage graphs can then be passed to EXECUTER. If, after SCHEDULER
has converted all of the syntax trees that it can at present, there are
any remaining syntax trees to be processed then SCHEDULER will receive
control when the currently executing coroutine graph completes
execution; otherwise the EXECUTER receives control.

EXECUTER

This checks stage graphs for safety. If the graph is unsafe then it
is made safe by the insertion of flexible buffers. After ensuring that
the graph is safe (see section 2.7.5) EXECUTER builds and initialises
the coroutine graph. EXECUTER is also called whenever a pipeline
reorganisation might cause the graph to become unsafe.

..23.

KILLER

KILLER performs trivial pipeline reorganisations which do not affect
the safety of the graph. If it decides that the operation which it has
been requested to perform might make the graph unsafe it calls EXECUTER.
The most common use of KILLER is to dismantle pipeline structure as it
dies after it has completed execution.

2.7 A Pipeline Node Atlas

This section describes the pipeline nodes which will be referred to
later in this dissertation.

2.7.1 BUFR and BUFW: The Terminal Producer and Consumer

Nodes in a query graph which have either no producers or no consumers
attached to them are called terminal nodes. In order to provide a
uniform treatment of these terminal nodes two special node types, the
terminal producer (BUFR) and the terminal consumer (BUFW), are provided.
Nodes of these types are attached to nodes which would otherwise be
terminal, so that BUFW and BUFR are the only nodes which are terminal.

Given that pipeline structure may be created dynamically, BUFW mnodes
may be present for one of two reasons:

(a) as true terminal consumers which are never going to have any
further structure attached to them;

(b) as “savers”, to which further structure will be attached later
when some data dependent test has been resolved.

In case (b) there is always a WRITR node (see below) beneath the BUFW.
The WRITR node saves the tuples which would otherwise have been passed
directly to its consumer. If the structure attached as producer to the
BUFW node completes execution before the test is resolved then the
pipeline structure is dismantled and a record is kept of where the
tuples written by the WRITR node have been placed, so that they can be
read by a new READR node (see below) when the test has been resolved.

Another use of BUFW and BUFR is described in section 2.7.5 below.

- 94 -

2.7.2 READR: Read a Relation

This node reads a database file. It takes as part of its argument a
LOCK representing a relation and reads from a specified inversion of the
relation. The tuples read are determined by index requests supplied by
the node”s consumer; the tuple returned is the next tuple greater than
or equal to the requested tuple. If the null tuple is supplied as index
then the relation is read sequentially. The argument to READR also
specifies whether the file read is to be kept or deleted after it has
been read. If it is to be deleted then it is read destructively.

2.7.3 WRITR: Write a Relation

This node writes the tuples supplied by its producer to the end of a
file. 1f the tuples are supplied in a sorted order then the file will
be sorted, otherwise it will not be. When the node”s producer signals
~end of data” the file which has been written is either closed and the
address of its root saved or it is deleted. The above choice 1is made
depending on the argument supplied to the WRITR. If the file is saved
then the address of its root is recorded in a LOCK which is provided as
part of the argument to the WRITR.

2.7.4 COPY: Produce Two Copies of a Stream
This node produces two copies of its input stream, passing a copy of

each tuple that it receives to each of its consumers. It is this node
which allows multiply connected query graphs to be evaluated by CODD.

2.7.5 Flexible Buffers

Given COPY it is possible for query graphs to fork and then join
again. Consider the graph fragment:

OP

7N

COPY

COPY has to pass every tuple it receives to both its left-hand and

- 25 -

right-hand consumers. If the logic of OP is such that it requests many
tuples from its left-hand producer before it requests any from its
right-hand producer then the tuples passed by COPY to its right-hand
consumer need to be stored somewhere until they are required. In the
above form the graph 1s termed unsafe. It 1is made safe and the
necessary storage is provided by the introduction of flexible buffers.

A flexible buffer provides storage for in principle an unlimited
number of tuples. The stored tuples may be written to disc if there is
insufficient room in store. In order to make an unsafe graph safe a
flexible buffer is introduced along each of the arcs leading from a COPY
node, if these will join again later. The dintroduction of flexible
buffers is done before the coroutine graph is built.

A flexible buffer is a combination of a number of nodes, rather than
a single node. The combination used is:

-=> WRITR --> BUFW —--> BUFR --> READR -—>

The WRITR and READR nodes share a cursor on a database file; the WRITR
writes the file and the READR reads it destructively. The BUFW and BUFR
nodes provide the control necessary to decide what to do when either the
consumer does mnot want the data yet or the producer has not produced
some data when it is requested.

A flexible buffer may also be inserted into a query graph in order to
produce a break in the graph. This may be necessary if, for example,
there is insufficient space available for all of the coroutines required
to perform an operation. 1In this case only the

-=> WRITR -—-> BUFW
is built initially. The
BUFR --> READR -->

is added later when the first part of the structure has completed
execution, thereby freeing the resources which it was using. This use
of flexible buffers corresponds to writing the intermediate results of a
computation to an anonymous database file, which 1is later read
destructively in order to complete the computation.

2.7.6 COUNT: Count the Number of Tuples in a Stream

Apart from simply counting the number of tuples passing through it
and reporting that number when the stream is exhausted, a quota of
tuples may be set in the argument for COUNT which when it 1is satisfied
will cause the SCHEDULER to be invoked. This may cause more structure
to be built before control returns to the COUNT which provoked the
action.

_26...

2.7.7 UPDATE: Modify a Relation

UPDATE differs from other pipeline nodes in that it has the side
effect of modifying the database”s contents. It is also different from
most other pipeline nodes in that it can take an arbitrary number of
inputs, the number of which is not fixed until the particular UPDATE

node is invoked.

UPDATE takes as its input one or more streams of tuples. The output
of UPDATE depends on the operation being performed by the UPDATE and is
a stream of tuples. This stream consists of:

(a) if the operatioh is DELETE, the keys of the deleted tuples;
(b) if the operation is INSERT, the keys of the inserted tuples;

(¢) if the operation is ALTER, tuples consisting of the old and the
new key values for each altered tuple.

- 27 -

Chapter 3

DOMAINS

3,1 Domains in the Relational Model

Although the idea of a domain 1is central to much of the theory
surrounding the relational model, it is an idea which has often been
overlooked by those who have built relational systems. The domains
assigned to the different columns of a relation are of great importance
in determining how that relation may be manipulated together with
others. In particular the domains of a relation determine to which
others it may be meaningfully joined. It dis not sufficient to
distinguish between, say, integers and strings, since integers
representing age and height have completely different meanings, they
only “look the same”. Such different meanings need to be distinguished.

Domains are in some ways like types in contemporary programming
languages. In the same way that it is possible to define new types in
some programming languages, it has been argued by McLeod [McLeod 761,
among others, that database management systems should allow the abstract
definition of domains. In order to specify a domain to a DBMS it is
necessary to provide the following:

(a) a description of the elements of the domain;

(b) a specification of how the elements of the domain may be
manipulated and compared; in particular, whether the domain is
ordered;

(¢) procedures to convert the external representation of the
elements to their intermal representation and vice versa.

(a) and (b) above are the abstract specification of the domain,
whereas (c) 1is much more concerned with the implementation (of course,
the information specified in (a) and (b) will probably heavily influence
the way in which a particular domain is represented intermally). It
should, moreover, be possible to define a new domain as a restriction of
a previously defined domain. The restriction is performed by specifying
a predicate (filter) which is applied to a candidate value after it has
been recognised as an element of the old domain.

28

3.2 Implementation of Domains in CODD

One way of defining domains in CODD is by writing a program which
accepts valid external representations of the domain elements and
converts them into a suitable internal representation. In addition to a
program for recognising the domain elements, a routine doing the reverse
conversion must be supplied. This routine is typically wused when
printing values. Domains defined in this way are called base domains.
Base domains are assigned an internal type. The operations which the
DBMS will allow on objects in a particular domain will depend on the
operations available on the internal type used to represent the domain.
Therefore, consideration of the properties of a base domain will
influence the choice of the internal type for the domain.

There are four internal types, two of which are ordered and two of
which are wunordered. The ordered types are integers and fixed length
character strings. The unordered types are arbitrary sequences of bytes
and boolean values. The names of the valid types and the operations
which are available on them are currently bound into the code of the
DBMS. This is mnot really satisfactory and if the system were to be
redesigned then there would be a catalogue relation to store the
information about types.

The code for recognising and printing elements of a domain 1is known
to the database via the name of the domain. Given this name the DBMS
can find and load the required code. The runtime system of BCPL
provides facilities for these routines to be accessed and used. The
binding between domain and type is achieved by the command:

CREATE DOMAIN domain name TYPE intermal type

e.g‘
CREATE DOMAIN numbers TYPE integer

Ideally programs such as “numbers” should be part of the database
(see section 3.2.1) rather than the DBMS since the domains of a database
can be application-specific rather than general to all problems. Some
such programs will be required so commonly that they should be included
as part of the database when it is created; the domains “numbers” and
“strings” are examples of such domains.

The base domains provide the basis on which to build hierarchies of
derived domains, each with a base domain as its root. These are domains
defined in terms of previously defined domains by the command:

CREATE DOMAIN Domain name ON Old domain name FROM predicate

the “0l1d domain name” may be either a base domain or a previously
defined derived domain. The “FROM predicate” part of the definition may
be omitted or be a general condition which will restrict which values of
the old domain are permissible in the new domain.

- 29 -

Examples:
(a) CREATE DOMAIN project—numbers ON numbers FROM {1..10000]

This defines the domain “project—numbers” to be those integers
in the range 1 to 10000.

(b) CREATE DOMAIN age ON numbers
CREATE DOMAIN distance ON numbers

These two domains have the same set of values but are regarded
as having different meanings.

(¢) CREATE DOMAIN departments ON strings FROM "Physics" | "English"

This defines the domain “departments” to contain only the
strings "Physics" and "English'.

The domain predicates are “compiled” into a format known as indirect
threaded code. This is an interpretable code format based on that used
in the implementation of macro—SPITBOL [Dewar, McCann 77]. The threaded
code for an expression is essentially a post-fixed polish representation
of the expression, with one extension described below. The interpreter
for the code uses a stack for intermediate results and literal data is
included in line. The interpreter itself is a branch table indexed by
the function codes in the string to be interpreted, and its performance
is good in that it evaluates even quite complex predicates quickly. The
predicates themselves are stored in the database in the hashed storage
system, from which they are unpacked when they are mneeded. The same
technique is used for the comstruction of predicates for the relational
operation of selection.

I mentioned above that there is one extension to the predicates”
being simple post-fixed polish representations of boolean expressions.
This extension is best described by considering as an example the domain
“departments” defined above. Suppose that the list of names of
departments had contained several hundred entries instead of just three.
It would be quite inefficient to implement a predicate that performed
the test on whether a string was a valid department name as follows:

TEST department .name = departmentl THEN success
ELSE TEST department.name = department? THEN success

ELSE failure

It is much better to enumerate the set of valid department names in a
file and have an instruction in the threaded code of “look up value in
set”. Such lists are stored in CODD as sorted lists of values in an
indexed sequential file. If the items are not of fixed length then a

- 30 -

set of value set identifiers is stored.

It should be noted that although “enumeration” lists may look 1like
single column relations they are not treated as such, since unlike the
contents of a relation they represent a fixed part of the data model.,
That is, their purpose and significance is different from that of tuples
in relations. In particular, the user is not free to add or delete
values at will from domains, although the database administrator may
have need to do so. In [Hammer, McLeod 80] Hammer and McLeod make this
same point. They distinguish between the current population of values
and the set of allowable values of a domain. Enumeration lists are an
example of a set of allowable values whereas the projection of a
relation on a particular column give the current population of the
values in a domain. These differences in “meaning” should not, however,
stop the use of similar implementation techniques.

The information about domains is stored, like that for relatioms, in
a catalogue relation which forms part of the stored data model. This
relation, called DOMAINS, is defined as:

(a) the name of the domain - this is the key of the relation;

(b) the name of the underlying domain for this domain, with the
convention that for base domains
“Domain name = Underlying domain name”;

(¢) the internal type for this domain;

(d) the predicate which differentiates this domain from its
underlying domain.

Currently, the predicates which can be specified are vrestricted to
combinations of selections of single values and ranges of values from
the underlying domain. However, the definition language and the
interpreter could be extended to allow more general predicates; for
example, a predicate to test that data values satisfy a redundancy
check.

In CODD the information about domains is used to check that:

(a) operations requiring matching domains have valid arguments;

(b) constant values, which are supplied as selection criteria, are
from the same domain as the attributes to which they are being
compared;

(c) the values of the columns of a tuple are from the correct

domain when the tuple is being updated or inserted.

Some of the operations included under (a) are join, set wunion and the
definition of referential constraints.

.._31._

To summarise: the system described above provides facilities for
defining the structure of domain elements and the relationships between
different domains; it also provides checks on data values before they
are entered into the database, thus ensuring a certain degree of
database consistency. For these reasons - together with the ability to
check the validity of operations such as join - I consider the system to
be both useful and interesting.

3,2.1 Implementation of Domain Checkers

The procedures for recognising elements of base domains are arbitrary
BCPL programs which take a character representation of a domain element
and return TRUE or FALSE according to whether or mnot the value is
acceptable. Associated with each checker there are programs for
converting the value into the internal representation for the domain and
for converting such values back into character form.

As I stated in section 3.2, these programs are logically part of the
database rather than the DBMS, since the domains are application
specific, and there are an unknown number of domains as far as the DBMS
is concerned. The problem arises of how to make these programs
accessible to the DBMS when it needs to use them. Clearly the domain
checkers are going to be represented by separately compiled modules.
Therefore, use must be made of the features available from the
implementation language for linkage between separately compiled modules.
In BCPL this linkage is performed via the global vector. BCPL. systems
provide facilities for dynamically loading code modules into the free
storage area. When a module is loaded any global vector entries which
are defined (as routines) in the module are reset. Facilities are also
provided to reset and unset the globals associated with a loaded module,
given a handle on the module.

Given the facilities outlined above, a simple way to implement the
domain checkers would be to associate a set of global vector slots with
each domain checker. However, since it is unknown how many base domains
will be defined for a particular database, it is not possible simply to
reserve a fixed number of global vector slots. A solution to this
problem is to associate a single set of global vector slots with all of
the domain checkers. After any of the domain checkers 1is loaded the
contents of these global slots are immediately copied to a different
place (typically to a record on the heap). This record is then used as
the route via which all accesses to the routines comprising the domain
checkers are made. The DBMS maintains a record of the domain checkers
which are currently loaded. If a currently loaded checker is requested
then, rather than loading a new copy of the code, the shared global
vector slots are reinitialised and their contents copied in the usual
way.

32

The DBMS thus has a uniform way in which it can wuse the domain
checkers. To check a value for acceptability it uses the function
ACCEPT.DOM which takes as one of its arguments the checker record, which
it uses to access the correct code to check the value which it has been
asked to accept. Similarly there are functions CONVERT.DOM and
UNPACK.DOM which perform the transformations to and from the internal
representation of the domain elements. The final function provided
(DESCRIBE.DOM) gives a textual description of the structure of valid
elements of the domain. For a derived domain the description 1is
qualified by any restrictions which were placed on the domain when it
was defined.

For recognising elements of derived domains the filter, which
represents the predicate to be applied to the values in the base domain,
is evaluated against the value to be checked after it has been converted
into internal format. When a filter is defined (i.e. when a derived
domain is defined) any constant values contained within the filter must
be checked to see if they are elements of the underlying domain. If
they are not then the filter is mnot a valid filter and the domain
definition is rejected.

3.2.2 The Storage of Code in the Database

gince the domain checkers are part of a particular database rather
than the DBMS their code should be stored in the database rather than
somewhere else. 1In CODD a scheme to do this has been implemented. The
scheme works by storing the compiled code, together with any relocation
information, as a sequence of fixed length objects in the normal indexed
sequential relational storage structure. The code can be easily loaded
into this structure by just writing the file sequentially in the same
way as a relation is loaded from a set of sorted tuples. The code is
compiled separately before being loaded although in an ideal world the
compiler ought to be part of the DBMS. The code stored in the database
is then loaded as required by a component of the DBMS, the interface to
which is similar to that for ordinary code loading. The indexed storage
mechanism is used mainly to avoid having to invent a new storage regime
within the database simply to be able to store code. Apart from this,
using indexed sequential files has no advantage over any other storage
structure, and indeed the information contained in the index of high and
low values on pages is not of any practical use.

Being able to store code in the database provides an alternative
method for storing domain predicates. This is to compile them into
machine code rather than into the interpretable code which is currently
used., Although I consider this approach to be worthy of investigation,
I have not had time to do so.

- 33 -

I am indebted to Ken Moody for implementing the loading system used
by CODD on the IBM machine at Cambridge. Clearly the code loading parts
of CODD are machine dependent and would have to be modified when the
system is transferred to another machine. However, from the experience
of implementing it for an IBM/370 this is not a very difficult task.

3.3 Manipulating Domain Elements

It was stated in section 3.2 that the operations available on
elements of a domain are those provided by the DBMS on objects of the
internal type of that domain. Access to these operations 1is via the
(interpreted) query language which knows what operations can be applied
to each type. One thing which it is desirable to do 1is to restrict
which operations on the internal type are available for a particular
domain. For example: both the domain “years” and the domain “numbers”
may be represented by the internal type “integer”; while it makes sense
to multiply two elements of “numbers” it does not make sense to multiply
two elements of “years”. In order to remedy this problem, the
operations which can performed on domain elements must form part of the
domain definition. CODD does not provide this facility, although a
simple system in which a list of valid operations is stored as part of
the domain definition could be implemented relatively easily.

However, the real problem is the small number of internal types
provided by the DBMS together with the difficulty of defining new types
and the operations on them, and the difficulty of providing a suitable
secondary storage representation for them. The first two problems are
mainly a result of the lack of types in BCPL, although it is possible to
provide a tagged typing system. The third problem would be solved by a
language which incorporated the idea of persistent data, e.g. PS-Algol
[Atkinson, Chisholm, Cockshott 82].

- 34 -

Chapter 4

INTRA-TUPLE CONSTRAINTS

This brief chapter discusses the maintenance of intra-tuple
constraints. These are constraints between the values of the attributes
of single tuples. These constraints can be divided into two classes.

(a) The first type of intra-tuple constraint is that which makes a
statement about the static structure of tuples. For example,
in an airline database the number of seats sold on a flight
must not exceed one and a half times the number of seats
available on the flight. Constraints like these must be tested
whenever a new tuple is added to the relation or whenever a

" tuple in the relation is modified.

(b) The second type of intra-tuple constraint, which I will call
dynamic, is tested only when a tuple is modified. This type of
constraint is a condition which must hold between the new and
old values of the tuple. An example of this may be found in a
company database where salaries are not allowed to decrease.

Both types of constraint form part of the abstract specification of
the relation and hence should be represented in the centralised data
model. This is achieved by adding two new fields to the catalogue which
describes relations. These new fields will contain descriptions of the
static and dynamic intra-tuple constraints which apply to each relation.
When the relations catalogue is accessed at the beginning of a
transaction these descriptions are recovered and will form part of the
argument to the UPDATE node which will modify the relation.

The conditions which can be specified in case (a) are exactly the
same as those which can be specified in tests in the relational
operation of selection. Indeed, the same syntax as 1is used for
selection predicates may be wused for static intra-tuple constraints.
Dynamic intra-tuple constraints are different in that they require
access to both the old and new values of the tuple. Therefore, the
syntax needed to specify them will be slightly different. However, the
predicates representing both types of constraint can be evaluated in the
same way.

This is to use the same mechanism as is used for the evaluation of

selection expressions and domain filters. The predicates are converted
into a post-fixed polish representation, using information about the

...35...

physical structure of tuples to convert column names into offsets and
sizes within a tuple. This “compiled” predicate forms part of the
argument to update and is interpreted against the actual tuples being
inserted and modified in order to decide whether the wupdate should be
committed or aborted. In the relations catalogue the compiled
predicates are stored, packed into value set identifiers, in the same
way as domain filters are stored in the DOMAINS catalogue.

The reasons for using this interpretative approach to check these
constraints are that:

(a) the interpreter was an existing, efficient component of CODD
and was suitable for the job;

(b) while compiling the predicate the type checking necessary to
decide if the predicate is valid can be done easily;

(¢) the interpretable code is known to be safe, in that it cannot =
as an arbitrary program could - have any undesirable side
effects;

(d) the compiled predicate can be stored in the database easily.

- 36 =

Chapter 5

REFERENTIAL CONSTRAINTIS: Theory

5.1 Introduction

In describing the real world two important abstractions are "X is an
attribute of Y' and "X is a (specialisation of) Y". Use of these
abstractions imposes two network structures on what is being modelled.
1f we have adopted the “one fact one place” rule when designing a
relational schema then these networks express inter-relational
structure. It was noted in chapter 1 that one of the main defects of
the relational model is its inability to express, and hence for its
implementations to maintain, inter—relational structure. In this
chapter it is shown how inter-relational references can be specified to
the DBMS and represented in the database as part of a centralised data
model. Chapter 6 shows how inter-relational references are maintained
in a particular DBMS (CODD).

The two abstractions described above were first suggested, in the
context of databases, by Smith and Smith [Smith, Smith 77b]. Since that
time they have formed a part of every new data model that has been
proposed (e.g. DAPLEX [Shipman 81], SHM+ [Ridjanovic, Brodie 82], SDM
[Hammer , McLeod 81] and RM/T [Codd 79]). Although in their papers Smith
and Smith describe how the two abstractions can be mapped onto the
relational model, they do not give any indication of how such a system
could be implemented.

Referential constraints have been identified by Date as being an
important type of comstraint, in that such constraints occur frequently
in practice. They give the ability to specify inter-relational links
and to ensure that that these links are maintained. Although Date
stresses that referential constraints are only a special case of the
general constraint problem, it will be shown in this chapter that these
constraints can be used as building blocks to specify more complex
inter~relational structures. This chapter also describes the
relationship between referential constraints and other proposals for
doing similar things, giving the advantages and disadvantages of each
scheme.

Below I describe Date”s basic notion of referential integrity and

suggest some extensions. The purpose of the extensions is to increase
the usefulness of referential constraints in a natural way by enabling

- 37 -

them to capture more semantic information. Finally I show how sets of
referential constraints can be wused ¢to construct generalisation
hierarchies.

5.2 Definitions

In order to show how the idea of referential integrity has been
refined, I start with the definition of referential integrity as
proposed by Codd as part of his extended relational model, RM/T. Codd”s
definition of a referential integrity is:

Suppose an attribute A of a multi-attribute primary key of a
relation R is defined on a primary domain D. Then, at all
times, for each value V of A in R, there must exist a base
relation (say S) with a simple primary key (say B) such that
V occurs as a value of B in S.

In the above definition a primary domain is a domain on which some
relation has a single attribute primary key defined. It could be noted
in passing that primary domains are very much like the surrogates of
Todd [Hall, Owlett, Todd 76]; however, unlike surrogates they are seen
by the user and not hidden from him.

Below, “R” will be termed the referencing relation and ~S8° the
referenced relation. Note that the definition does not insist that
there is only a single referenced relation for a constraint, since
different tuples of the referencing relation may reference different
relations. Date [Date 8la] has modified Codd”s definition for the
theoretical and practical reasons set out below.

(a) The definition relies on the notion of primary domain and does
not allow references to relations with multi-attribute primary
keys. Although it is always possible to invent a single
attribute primary key for a relation, this restriction does not
really seem to be reasonable.

(b) The definition asserts merely that a referenced relation must
exist but does not define which relation it is. 1In particular,
if the referencing attributes are the key of the referencing
relation then the constraint is trivially satisfied. However,
we may wish to insist that there 1is a distinct referenced
relation.

(c) The definition requires that the referencing attribute is a
component of the primary key of the referencing relation. This
seems rather too restrictive for a large number of
applications, especially when the constraint is being used to
define an ~attribute of” relationship between the entities
represented by tuples in different relations (see the

- 38 -

“Is managed by~ example in section 5.4).

(d) The definition gives no indication as to what action should be
taken when tuples in referenced relations are deleted and
altered.

For the above reasons, Date produced a modified definition for
referential constraints; I have adopted this definition as the basis
for the work described in this chapter.

Date”s definition of a referential constraint is:

There is a referential constraint between two relations Rl
and R2 (which are not necessarily distinct) 1f:

(a) some subset of the attributes of Rl (the referencing
attributes) form the key of R2;

(b) for every tuple in Rl where the referencing attributes
are not NULL, there exists a tuple in R2 whose key is
specified by the referencing attributes.

The relation “R1- is called the referencing relation, and the
relation °R2- the referenced relation. The referencing and referenced
attributes must, of course, have matching domains. The attributes
specified in referential constraints are “natural” attributes over which
to perform joins in the database. Indeed the joins suggested by the
referential constraints in the database are those which do not suffer
from the connection trap ([Date 81b] p9), i.e. they yield information
about what 1is currently true in the world of the database rather than
what might be true.

When a relation references several others as part of the same
constraint a quantifier may be specified. This quantifier indicates
whether referenced tuples must exist in ALL OF, SOME OF or
EXACTLY ONE OF the referenced relations for the constraint to be
satisfied, The default quantifier is EXACTLY ONE OF.

A further part of the specification of a constraint is a statement of
what changes must be performed on tuples in the referencing relation
should referenced tuples be wupdated or deleted. This part of the
constraint definition is in response to objection (d) above to Codd”s
original scheme. The alternatives allowed (with their names in
brackets) are:

(a) that the update be disallowed if any references to the target
tuple exist (RESTRICTED)

(b) that the referencing tuple be modified to maintain the link or
that it be deleted as well (CASCADES)

(¢) that the referencing tuple have its referencing attributes set

- 39 -

to NULL (NULLIFIES).

The default for both update and deletion is RESTRICTED. The same update
and deletion rules apply to all of the referenced relations for a
particular constraint.

UPDATE CASCADES seems to be a purely practical concession, in that
the key of an object should not change in an ideal world. However, in
practice it is sometimes necessary to change the value of the key of a
relation and UPDATE CASCADES at least ensures that all references to it
are changed as well. For this reason, if any referential constraint for
which a relation is the referenced relation has UPDATE CASCADES
specified, then all references to the relation should have UPDATE
CASCADES specified (otherwise the meaning of updating the relation would
be very strange). In all other cases UPDATE RESTRICTED should be
specified.

The cascade operation of (b) may produce further cascades. This
occurs if the referencing attributes intersect the primary key of the
referencing relation, and the referencing relation 1is the referenced
relation in some other constraint. It will be shown below how, if we
regard relations as representing entities, careful specification of the
update and deletion rules for constraints can associate particular
semantic interpretations for the entity classes represented by
relations.

For the rest of this dissertation the syntax which is described in
figure 5.1 will be used for the definition of referential constraints
and relations.

All the referential constraints specified for a particular database
form a reference graph. This reference graph forms part of the schema
of the database and, in keeping with Codd”s proposals in RM/T for having
the schema data represented in the same way as the “real” data, Date
suggests that the reference graph could be stored in two (normalised)
relations. These relations are defined as:

RGX: [Constraint name | Referencing relation name,
Referencing attributes, Quantifier,
Update rule, Deletion Rule]

RGY: [Constraint name, Referenced relation name l
Referenced attributes]

The reference graph is recovered by performing the natural join on
constraint name between these two relations,. Note that there is a
referential constraint between these two relations, namely:

Ref-graph-con:

RGY.[Constraint name] ->> RGX.[Constraint name]
DELETION cascades

- 40 -

Referential Constraints

constraint-name) : <referencing-part> ->> {referenced-part>
<{deletion-rule> <update-rule>

where:

{referencing-part) ::= <ref>

{referenced-part> ::= <ref)

{referenced—-part> = {quantifier> (<ref>, ... <ref>)

<ref> ::1= <relation-name> . <attribute-set>
{deletion-rule> ::= DELETION <rule>

{update-rule> ::= UPDATE <rule>

{quantifier> is one of ALL OF, SOME OF, EXACTLY ONE OF
{rule> is one of RESTRICTED, CASCADES or NULLIFIES

Cattribute—-set)> denotes an ordered list of column names enclosed in
square parentheses, e.g. [coll] or [coll,col2]. The attribute sets
in the referencing and referenced parts of the constraint definition
must agree elementwise on domain.

<update-rule>, <deletion-rule> and {quantifier> are optional.

Relations

{relation name)> : [attribute, ...| attribute, ..., attribute]

The attributes to the left of the ’|’ are the key of the relation
being defined.

Figure 5.1: Definition of Referential Constraints and Relations

In Date”s proposal all referential constraints are named . This is
largely a result of the above representation of the reference graph
(which I have adopted). It should however be noted that this naming 1is
not strictly necessary since a system could generate (internal) names
for the constraints so that the graph could be stored in “RGX” and
“RGY” . Further, in some cases the naming of constraints is not even
desirable, since it results in a name explosion and a difficulty in
choosing names or a need to invent unnecessary names; See the examples
in section 5.4.

Referential constraints are tested at the end of transactions, rather
than at the time when tuples are inserted. This is because, if the
reference graph contains any cycles, it may be necessary to insert
several tuples independently in order that the final database state will
satisfy the constraints. Therefore, it must be possible for the
database to pass through inconsistent states within a transaction. For
example, consider the database given below:

- 4] -

Rl: [A B]
R2: [X | Y]

Cl: R1.[B] ->> R2.[X]
C2: R2.[Y] ->> R1.[A]

Now, suppose that the tuple (1,2) is to be inserted into Rl but the
tuple with key in R2 does not at present exist. If the required tuple
in R2 would be (2,1) then it is not possible to imsert this tuple into
R2 unless then tuple the (1,2) has been inserted into R1, which is what
we were trying to do at first!

Therefore, at some point the database will have to pass through an
inconsistent state. This means that the constraints cannot be tested at
the time at which the wupdate 1is performed. Hence, referential
constraints are checked at the end of transactions after all changes
have been made to the database.

At the end of a transaction if any referential constraint is not
gsatisfied then the transaction is aborted and a message is produced to
tell the user which constraints were violated by which tuples.

5.3 Checking Constraints
There are three situations which call for constraints to be checked.

(a) Whenever a tuple is inserted into or altered in a relation
which is the referencing relation for a referential constraint.

(b) Whenever tuples are deleted from or altered in a relation which
is the referenced relation for a constraint which has the
deletion or update rule RESTRICTED. The reason for this test
is that otherwise it would be possible for the constraint to be
violated because the referred to tuple no longer exists.

(c) VWhenever a tuple is inserted into or modified in a relation
which is the referenced relation for a constraint which has the
quantifier EXACTLY ONE OF and for which there is more than one
referenced relation. If this check 1s not made then the
constraint could be violated by having a referred to tuple in
more than one of the referenced relations

In all three cases the checking of the constraint must be deferred until
the end of the transaction, otherwise the the information which was used
to make the decision of whether or not the constraint was satisfied may
be altered later in the transaction.

- 42 -

5.4 Examples of Referential Constraints

The examples given below give some idea of the usefulness of
referential constraints in specifying database structure. They
illustrate the use of referential constraints to express several
different types of semantic information in a natural way.

Referential constraints may be used to specify that the tuples in one
relation must be a subset of the tuples in another (subset constraints).

Employees: [Emp—-id eee]
Managers: [Emp-id | Department, ...]
Cl : Managers.[Emp-id] ->> Employees.[Emp-id]

This specifies that the class of managers is a subset of the class of
employees. Such constraints have referencing attributes which are the

key of the referencing relation.

Referential constraints may also express the fact that tuples of a
relation represent associations between tuples of other relations.

Students: [Name | eos]

Projects: [Project

Assignments: [Student, Project | Start—date |

Assignl : Assigmments.[Student] ->> Student.[Name]
DELETION CASCADES

Assign2 : Assignments.[Project] ->> Projects.[Project]
DELETION CASCADES

ceos]

This example specifies that an assignment is an association between a
student and a project. The specific deletion rules which are specified
ensure that if either the student or the project are vremoved from the
database then all referencing assignments are deleted as well. Note,
however, that the names given to the constraints are contrived. This is
an instance of the problem, described above, of insisting that all
referential constraints must be named.

Referential constraints may be used to express the fact that an
entity represented by a tuple in one relation is an attribute of an
entity represented by a tuple in another relation.

Employees: [Emp-id | Manager]
Managers : [Emp-id ees]
Is-Managed—-By: Employees.[Manager] —->> Managers.[Emp-id]

In this example, tuples in “Managers” are regarded as attributes of
tuples in “Employees”. This relationship is 1like a functional
dependency between two relations, and indeed it might represent a
functional dependency which was lost during a normalisation process.

43

1f for some reason the entity class which the constraint needs to
reference is partitioned then there will be several referenced
relations. Consider for example a library which divides its catalogue
into fiction and non—-fiction.

Loans: [Bookid | Borrower |
Fiction : [Bookid | eve]
Non~fiction : [Bookid eeo |

Is—borrowed :
Loans.[Bookid] ->> (Fiction.[Bookid],
Non—fiction.[Bookid])

There is of course rather more to the above example since 1n the full
schema something would be said about the relationship between fiction
books and non-fiction books (i.e. that the two sub-classes are
disjoint).

As was stated above the existence of cyclic reference graphs means
that constraints cannot be checked until the end of the transaction.
The following example illustrates how such structures might occur.

Books : [Bookid | .o]
Non-fiction : [Bookid l eeo]
Fiction : [Bookid | eos |

Is-Bookl : Books.[Bookid] =>> EXACTLY ONE OF (
Fiction.[Bookid],
Non—-fiction.[Bookid])

Is-Book?2 : Fiction.[Bookid] —>> Books.[Bookid]

Is-Book3 : Non—-fiction.[Bookid] —>> Books.[Bookid]

Here a new book cannot be added to the database unless it 1s added to
the superclass “Books” and one of the subclasses “Fiction” and
“Non-fiction” at the same time, if the constraints are mnot to be
violated at some point during the tramsaction. The example illustrates
the use of referential constraints to specify an IS-A hierarchy. More
will be said about this type of structure in section 5.9.

Another example of a cyclic graph is found when information which 1is
represented naturally by an N-ary relation is decomposed into several
binary relations, and all of the properties of the entity must be
present. For example, consider the relation X : [K | A, Bl. "X can
be decomposed into the two binary relations:

X1 : [K| A]
X2 : [K B]

together with the two constraints

Cl : Xl.[K] ->> X2.[K] DELETION CASCADES
C2 : X2.[K] ->> X1.[K] DELETION CASCADES

- 4f -

5.5 The Form of the Reference Graph

The reference graph which describes the referential constraints in a
database can be a general directed graph. However, there is a problem
if the shape of the reference graph is not restricted. The potential
problem arises with reference graphs which fork and then join again.
The problem is that if two streams of cascaded modifications are to be
applied to the same relation because the cascade graph had previously
forked, the result of these updates might depend upon the order in which
they are applied. Such a dependency on ordering would be a bad thing.
Note that the conflict only occurs if the referencing attributes for the
constraints producing the cascaded streams overlap.

This problem 1is noted in the paper on triggers in SEQUEL
[Eswaran 76], where the view taken is that the user must be very careful
that the situation does not arise.

Having stated that this problem may occur formally, 1 have been
unable to construct any convincing examples to illustrate it. This
suggests that the problem may not arise in practice. Possibly, and this
is merely a conjecture, the existence in a schema of the structures
leading to this problem is an indication of some basic fault in the
schema, 1i.e. the set of semantically meaningful reference graphs is a
subset of the formally possible reference graphs.

Given that the problem relates to graphs which fork and then join
again, it 1is reasonable to ask if such graphs ever occur in practice.
The answer to this question 1is yes; consider the following simple
example.

Friendship : [Personl, Person2 |]

People : [Name | eee]

Fl1 : Friendship.[Personl] ->> People.[Name]
UPDATE CASCADES

F2 : PFriendship.[Person2] ->> People.[Name]
UPDATE CASCADES

In this example the problem does mnot ocecur since the referencing
attributes for the two constraints do not overlap.

5.6 How is the Cascading of Updates and Deletions Organised?

Date suggests that before any cascaded operations (and he includes in
these the testing of RESTRICTED links) are performed, a check is made to
determine whether or not the operations would succeed. This approach
seems to confuse the two distinect problems of semantic database
integrity and the ability to back out from a transaction which fails.
Also the scheme suggested by Date would fail on the following example:

- 45 -

x: [al bl
Con : x.[b] ->> x.[a] DELETION CASCADES

What happens when the tuple (1,1) is deleted?

1f we check that the change is valid before doing the deletion then an
infinite loop 1is produced, which continually checks to see if it is
valid to delete the tuple (1,1). This could be avoided if we check 1if
the tuple has al ready been cascaded before entering it into
consideration for the next level of cascades. However, this would
involve the implementation in quite a lot of housekeeping.

A better (and correct) approach is simply to perform the operations
required by the reference graph. If any of these fail in a way which
requires the transaction to be aborted then the database integrity
system should be allowed to perform the abortion. This is the approach
which has been taken in the implementation of referential constraints
described in chapter 6.

5.7 Comparison with other work
5.7.1 Aggregation

Smith and Smith [Smith, Smith 77a] define aggregation as an
abstraction which allows a relationship between named objects to be
thought of as a higher level named object. This is the "X is a subpart
of Y" construction. Their main reason for investigating this form of
abstraction is a desire to add further semantic structure to the
relational model by introducing some inter-relational structure. As an
example of aggregation, the relationship between a student and a project
may be abstracted as the aggregate object “assignment”. This is
precisely the type of structure which referential constraints allow us
to express (see the examples above). Therefore, the enforcement of
referential constraints is necessary in a relational system which
supports aggregation.

In describing aggregation Smith and Smith also propose a set of rules
for governing the insertion, deletion and modification of tuples in
relations which represent aggregates. The rules which they suggest are
not as extensive as those in the proposal above. In particular, they do
not have the important concept of cascaded operations. Instead the
referencing tuples must be explicitly deleted or modified as required.
This makes transactions for modifying a relation more complex.
Referential constraints, as defined above, therefore seem to be more
expressive than aggregation, in that more semantic structure can be
specified. However, the technique of constructing aggregates is
important for building the set of relations on which referential
constraints are imposed.

- 46 -

5.7.2 Addis”s Extended Relational Analysis

In [Addis 82] Addis describes what he calls “extended relational
analysis” (in his terminology “relational analysis” is the process by
which a relational schema is decomposed into a set of relations in third
normal form). The main extension which he proposes is the construction
of an dimplication mnetwork which records those (inter-relational)
functional dependencies which would otherwise be lost during the
normalisation process. The links specified by the implication graph are
those which would be specified by referential constraints.

Addis makes the statement that joins which do not correspond to the
links in the implication network represent information about what is
possible rather than what is a fact in the world being modelled. He
uses this to illustrate the connection trap which is documented
elsewhere (e.g. [Date 81b] p9). This observation supports the
statement that referential constraints defining the meaningful joins in

the database.

When considering what should be done to tuples in a referencing
relation when tuples which they reference are deleted, Addis considers
cascading to be the normal case. However, he admits that cascading is
sometimes inappropriate and hence, although he does not consider the
problem in detail, admits the need for RESTRICTED referential
constraints in some circumstances. He does not provide a discussion of
the effects of modification.

Addis also does not allow cycles in his implication graph. In his
paper Date explicitly includes these in his proposal, and an example of
the need for such structures has been given above. The advantage of not
allowing such structures is that it is then possible to define an
ordering on the application of updates which keeps the implication graph
satisfied and allows the constraints to be checked at the time that
tuples are inserted rather than at the end of the tramsaction. However,
Addis”s proposal goes further than Date”s in some directions, one of
which, cardinality constraints, is discussed in section 5.8.2 below.

5.7.3 Triggers and Assertions in SEQUEL

SQL (formerly SEQUEL), which is the query language for System/R
[Chamberlin, et al 76] contains the idea of triggers [Eswaran 76], which
are arbitrary SQL programs to be executed when a particular trigger
condition is raised.

Trigger conditions can be quite general. They may be specified to be
raised either before or after an update operation is applied to (some
subset of the columns of) a tuple in a relation. Trigger conditions may
also be ralsed after some particular database state occurs, e.g. when
the number of employees in a department reaches a certain threshold.

- 47 -

The program associated with a trigger is called the trigger
procedure. This program is executed immediately that the trigger
condition is raised and the action of the trigger procedure may cause
other triggers to be invoked.

Triggers could be used to model the cascade graph needed to maintain
referential constraints under deletion and alteration. However, since
the trigger procedure is executed immediately that the trigger condition
is raised, the basic checking of referential constraints cannot be done
using triggers — since the basic checking must be done at the end of the
transaction.

However, SQL provides a second mechanism for constraint specification
the tests for which can be delayed until the end of the transaction.
This mechanism is the use of assertions. Assertions can be used to
specify that the correct set theoretic relationship holds between
projections of the referencing and referenced relations, hence giving
the effect of referential constraints. However, this way of expressing
referential constraints does not make the network structure produced by
references clear. Therefore I regard this technique as being inferior
to the way of expressing referential constraints which was described
above.

In some ways triggers are a much more powerful concept than
referential constraints, since the actions that may be specified when a
trigger condition 1s raised may be arbitrarily complex. However,
referential constraints give a clearer overall view of the semantics
which are being enforced, and since referential constraints are
restricted in the actions which they can perform when tuples are
modified or deleted, they are much more amenable to efficient
implementation. Indeed, triggers were dropped from later versions of
SQL because they could not be implemented efficiently.

5.7.4 Codd”s Extended Relational Model

Referential integrity 1is an dintegral part of Codd”s RM/T;
comparisons with this scheme have already been made in section 5.l.

In RM/T, Codd uses relations to represent his data model. It is
interesting to mnote that although there are a number of referential
constraints between the relations which form the data model, these
constraints cannot be expressed in terms of Codd”s own referential
integrity proposal, since they require explicit identification of the
referencing and referenced relations.

- 48 -

5.7.5 Functions in DAPLEX

Referential constraints represent functions from the tuples of one
relation to the tuples of another relation. This is exactly what is
provided by the single-valued, non-optional functions of DAPLEX.
Therefore, referential constraints are important if DAPLEX is to be
implemented on top of relational systems, since we need to ensure that
non-optional functions will return values for new entities of the class
to which the function applies.

The syntax used in DAPLEX for implicitly defining referential
constraints is Dbetter than that proposed by Date, especially since it
does not require the naming of the constraints. However, DAPLEX does
not have a direct analogue of the update and deletion rules but, like
SqQL, it has the concept of a general trigger. The comments made about
the SQL triggers apply equally to these DAPLEX triggers.

5.7.6 CODASYL

It has been suggested above that referential constraints allow a
network structure to be imposed on a set of relationms. Therefore, it is
natural to ask how the facilities provided by referential constraints
compare with those provided in CODASYL systems. The answer is that
CODASYL provides most of the facilities of referential constraints, by
means of a mixture of membership class, explicit checks and different
set types. With these tools simple referential constraints, except
those with the combinations (CASCADES, NULLIFIES), (NULLIFIES,
NULLIFIES) and (RESTRICTED, NULLIFIES) of deletion and update rules, can
be dealt with (see [Date 8la]). However, a more serious drawback is
that CODASYL does not provide a way to handle constraints where several
relations are (potentially) referenced. This is due to the fact that
CODASYL does not allow sets having "alternative owners'", which is what
this type of constraint would require.

CODASYL also provides a trigger mechanism which predates that
described in [Eswaran 76].

5.8 Extensions to the Idea of Referential Constraints

As was stated in the introduction, referential constraints are a
special case of constraints. However, there are a number of quite
simple ways in which the definition of referential constraints can be
extended, allowing more semantic information to be specified. Both
extensions described below are, I believe, useful and make the database
a little more flexible.

49

5.8.1 Replacement of DELETION NULLIFIES

The effect of DELETION NULLIFIES is often not what is required by the

semantics of an application. Consider the following example: within a
college students have a tutor assigned to them. If a tutor leaves then
all of his students are assigned, at least temporarily, to a special
tutor, the senior tutor, the identity of whom is a property of the
particular college.
Here what is required is not NULLIFIES but the retrieval of a suitable
value from the database by means of evaluating a suitable query. It
must be ensured, however, that the query which produces the "default"
value yields a single tuple.

Indeed the rule for obtaining the default value is a function which
will determine an element of the referenced relation. Note also that
there will be a referential constraint between the referenced relation
and the relation from which this value is obtained. 1In the example
above the relation giving the senior tutors for colleges will also
reference the tutors relation (as does the students relation).

This type of construction is similar to the concept of
class-determined properties which is present in Hammer and McLeod”s SDM.
It is also very like the idea of association suggested by Brodie
[Brodie 81]. In the example the name of a senior tutor for a college
would be associated with the set of tutors for that college.

In [Date 82] Date suggests that NULL values should not be allowed in
databases, but that default values should be specified instead.
However, Date”s definition of default is simpler than that described
above.

5.8.2 References to non-key attributes

The definition of referential constraints restricts references to be
to the key attributes of a relation. However, references to non-key
attributes can also occur. Consider the example database fragment:

lecturers: [Name l coo |
Courses : [Course | Lecturer, seee |

Exists—-Lecturer: Courses.[Lecturer] ->> Lecturers.[Name]

In addition to the referential constraint “Exists—Lecturer” there 1is
also the constraint that every lecturer must teach at least one course.
This constraint may be regarded as a reference from “Lecturers” to the
“Lecturer” attribute of “Courses”; i.e. the function described by the
referential constraint is ONTO the set of lecturers.

- 50 -

The need for the extra constraint is a consequence of the fact that
referential constraints provide a way of expressing M(>=0) to 1 links.
However, what is often required is M(>0) to 1 1links, such as 1in the
example above. It therefore seems reasonable to allow the definition of
a referential constraint to specify that the link is M(>0) to 1 if this
is what is required. Note, however, that DELETION RESTRICTED and UPDATE
RESTRICTED become meaningless for such a constraint, since there must
always be a referencing tuple. The general point is, of course, that I
may wish to place constraints on the number of references to a
particular tuple in the referenced relation.

This extension is a special case of the cardinality constraints of
Addis [Addis 82]. Addis allows, for a relation which references several
others, arbitrary predicates to be specified on the cardinality of the
links between tuples in the referenced relations and those in the
referencing relation. One of his examples is that the number of
students in a fencing class must be even and in the range [6,30].

Another example of where cardinality constraints would be wuseful is
in Computer Aided Design (CAD). Consider a geometrical model of a solid
object. This is represented by a number of faces which intersect at
edges, and there is the constraint that every edge has exactly two faces
associated with it. The inability of relational systems to capture such
constraints 1is one reason that it is difficult to use relational DBMSs
in CAD applications.

These predicates can clearly be violated at intermediate points in
the execution of a transaction. For example, in the example of the
fencing class new students have to be inserted in twos; this may be
achieved by two separate insertions at different times during the
transaction, and until the second tuple is inserted then the cardinality
constraint is violated. Therefore, cardinality constraints, like
referential constraints, must be checked at the end of the transaction.

Given that Addis has cardinality constraints, he effectively has
cyclic implication graphs since the cardinality constraints produce
backward implicationms. It is difficult, therefore, to see why Addis
explicitly states 1in his paper that implication graphs may not contain
cycles.

It is interesting to nmote that these backward references are like
inverse many-valued functions in DAPLEX.

Cardinality constraints may also require a more sophisticated failure
action than referential comstraints, e.g. in the fencing class a single
student wishing to join the course should be placed in a “waiting list”
relation which is consulted when other students wish to enrol in the
course., Clearly this behaviour can be modelled by triggers as in SQL.

- 51 -~

As a consequence of cardinality constraints, Addis is led to
introduce forward deletions. I do not believe that these can be done
automatically (in general) since a choice needs to be made as to which
tuple to delete. One solution to this (which is the solution adopted by
Addis) is to perform modifications to the database conversationally.
This is sdimilar to the approach used by Sharman in Update-by-Dialogue
[Sharman 77].

5.9 Generalisation

Generalisation is the name given by Smith and Smith [Smith,
Smith 77b] to the IS—A hierarchy in knowledge representation. It is an
important data modelling tool given that it reflects a type of structure
which is often found in the real world. Often it is more convenient to
regard the abstraction as being specialisation, for example both
lecturers and students are clearly specialisations of people. Here the
specialisation is with respect to the role that they play in a
particular application, namely an educational institution. This may be
regarded as a specialisation according to the value of a particular
attribute “person-type”, which in effect partitions the class of people
according to whether they are lecturers or students. Note that a
particular person cannot 1in this scheme be both a lecturer and a
student, which in some cases may be regarded as being quite sad.

Types may be specialised independently in more than one way and each
subtype can itself be specialised. Therefore, an acyclic directed graph
of types can be constructed.

5.9.1 Generalisation and Referential Constraints
Consider the example:

Students : [Name ees |
Lecturers: [Name oo |
People : [Name | date of birth, address, ...]

Student-Is-Person: Students.[Name] ->> People.[Name]
DELETION CASCADES
Lecturer—Is-Person: Lecturers.[Name] ->> People.[Name]
DELETION CASCADES
Gen: People.[Name] —=>> EXACTLY ONE OF (
Students. [Name]
Lecturers.[Name])
DELETION CASCADES

The constraints define part of a generalisation graph, in which
“Students” and “Lecturers” are specialisations of “People”. Although in

.52

the example “Students” and “Lecturers” are disjoint sub-classes of
“People” this need not be the case (e.g. replace EXACTLY ONE OF in
“Gen” by SOME OF). Note that in the Smiths” scheme the subtypes are
always disjoint. This is because, in their scheme, the link between the
supertype relation and the subtype relations is via the wvalue of the
attribute over which the generalisation was performed in the supertype
relation. Note also that for sets of referential constraints which
specify generalisations the update and deletion rule is always CASCADES.

The method of describing generalisation hierarchies used above is
unsatisfactory, apart from being very long winded, for the reasons given
below.

(a) it does not make clear that a particular set of referential
constraints represent a generalisation;

(b) it is mnot really desirable to name each link in a
generalisation hierarchy. Therefore, such a shorthand syntax
such as:

Is~Person: People.[Name] <->> EXACTLY ONE OF
(Students.[Name],
Lecturers.[Name])

is also unsatisfactory. However, the naming of the constraints
is, as was stated in section 5.2, largely a result of the
constraint descriptions being stored in the database as a pair
of relations.

(c) There is also the problem that such a representation does not
specify the property with respect to which the specialisation
has been made. This is an important part of the definition of
a specialisation. However, it does not require much additional
machinery to solve this problem. One possible solution is to
label each edge between the sub- and super-types with the value
of the attribute on which the specialisation has been made and
to label the constraint node(s) which control the
specialisation with the name of this attribute.

However, the fact that the structure implied by generalisation
hierarchies can be represented and maintained by sets of referential
constraints suggests that it is possible to maintain both by a common
underlying mechanism. Such a common mechanism should not require that
generalisations and referential constraints be represented in the same
way in the data model. Indeed, since generalisations and referential
constraints are semantically different they should be represented
differently in the data model. Further as point (c¢) above has
demonstrated the specification of generalisation hierarchies requires
slightly more information than the set of referential constraints
themselves provide. Given that referential constraints can be
maintained, it is possible to maintain generalisation hierarchies

.._53_

provided that a suitable reference graph can be constructed from the
catalogue relations which represent the generalisations.

A suitable set of catalogue relations is:

Supertype : [Name, Specialisation Attribute |
Partition/Cover]

Subtype : [Name, Supertype, Specialisation Attribute |
Specialisation Attribute Value]

where there is a tuple in “Supertype” for every type which 1s the
supertype of a generalisation. The attribute “Partition/Cover~”
specifies whether or not the populations of the subtypes of this type
are disjoint, i.e. whether the referential constraint would have the
quantifier EXACTLY ONE OF or SOME OF.

From the tuples of these two relations the required reference graph
can be constructed since:

(a) the update and deletion rules are always CASCADES

(b) the referencing and referenced attributes, since they are
always the keys of the relations representing the subtypes and
supertypes, can be recovered from the catalogue representing
the relations.

5.10 Summary

A proposal for the specification of the important class of structural
constraints, namely referential constraints, has been presented. It has
been shown how these constraints can be used to specify some of the
network structure of the data held in a relational database, thus
enabling some of the inter-relational semantics to be captured.

Date suggested that referential constraints are an important special
case of the constraints which might be enforced. It has been shown that
they provide a building block from which other database structures, in
particular generalisation hierarchies, can be constructed.

54

Chapter 6

REFERENTIAL CONSTRAINTS: Implementation

This chapter describes the implementation of referential constraints
in CODD. It shows how the pipeline technology of CODD is used to
express the structures necessary to maintain these constraints.

The first part of the chapter describes the implementation of the
scheme used to maintain the constraints, giving details of the storage
and recovery of the reference graph and of the pipeline structures built
to maintain the constraints. The second part describes various
optimisations which might be made.

6.1 Basic Strategy
The implementation of referential comstraints has two parts:

(a) the checking of the constraints when tuples are inserted into
(or altered in) a relation; and

(b) the propagation of cascaded deletions and alterations.
The testing for UPDATE and DELETION RESTRICTED is included in (a).
In order to check constraints it is necessary to:

(a) determine the constraints which need to be tested when any
relation is modified;

(b) keep a record of the tuples for which the constraints have to
be checked.

The constraints which need to be checked and the cascades which have to
be performed are determined from the reference graph.

For every relation which is explicitly updated there is a fragment of
the reference graph which determines cascaded deletions and alterations.
This part of the reference graph is termed the cascade graph. The
method used to deal with the propagation of cascaded deletions and
alterations is based on the simple observation that the cascade graph
can be regarded as a pipeline structure in the same way as a query graph
can be regarded as a pipeline structure. The basic idea is to build a

- 55 -

processing node for each relation in the cascade graph. These
processing nodes are then connected by pipelines so that the final
coroutine structure models the cascade graph. The process just
described is easy to do for cascade graphs which are simple trees;
however, more care is needed when the cascade graph i1s more complex.

For constraints which have to be checked, the program which modifies
tuples in relations can make a record of tuples which are inserted or
altered. This record can then be read at the end of the tramsaction by
the constraint checker to check that the constraints are satisfied.

The following sections deal in detail with the maintenance of
referential constraints in CODD. They show how the reference graph is
stored and fragments of it recovered, how the coroutine structure to
maintain the constraints is built and evaluated and how the constraints
are checked.

6.2 Catalogue Representation of the Reference Graph

In order to maintain referential constraints some representation of
them is required. 1In a CODD database the constraints are stored in two
relations, the reference graph relations, as proposed by Date. These
relations, which were described in section 5.2, are:

RGX: [Constraint name | Referencing relation name,
Referencing attributes, Quantifier,
Update rule, Deletion rule]

RGY: [Constraint name, Referenced relation name

Referenced Attributes]

The constraint name 1is wused as the join link between the two
catalogue relations in order to construct the cascade graph. This is a
lossless join since there is in fact the referential constraint:

Ref-graph—con:
RGY.[Constraint name] ->> RGX.[Comstraint name |

between RGX and RGY.

Within the catalogues RGX and RGY have the structure:

- 56 -

RGX:

Constraint name (Value set id.) - KEY
Referencing relation name (Value set id.)
Referencing attributes (Value set id.)
Quantifier (Integer)

Update Rule (Integer)

Deletion Rule (Integer)

RGY:

Constraint name (value set id.) - KEY
Referenced relation name (Value set id.)
Referenced attributes (Value set id.)

The attributes “Referencing relation name” and “Referenced relation
name” are lists of column names held as value set identifiers.

When constructing the cascade graph, which is an in-store data
structure, from the catalogues, it is necessary to access RGX by both
~Constraint name” and “Referencing relation name”, and to access RGY by
both ~Constraint name” and “Referenced relation name”. Therefore, for
efficiency of access there are two inversions of each of RGX and RGY.
These are sorted with the following columns as the first two fields and
have the names shown:

For RGX: (Constraint name, Referencing relation name) - RGXC

(Referencing relation name, Constraint name) - RGXR
For RGY: (Constraint name, Referenced relation name) - RGYC
(Referenced relation name, Constraint name) - RGYR

These inversions permit easy access to the catalogues by both
“Constraint name” and ~“Referencing/Referenced relation name”. Both of
these are important when recovering the cascade graph for a particular
operation on a relation.

It should be noted that this is not the only possible way of storing
the reference graph; it is merely a convenient way to do it. The
alternative would be to have some special purpose scheme for storing
graphs, but this was rejected because the work involved in building such
a subsystem would have been considerable.

6.3 Recovery of Cascade Graph from the Catalogues

For each relation which appears in an INSERT, DELETE or ALTER command
it 1is necessary recover the part of the reference graph in order to
maintain any referential constraints applying to the relation. It is
also clear that, if possible, this fragment should be pruned in such a

57

way that it contains only that information needed . to maintain the
constraints applying to this relation. The most striking example of the
need for pruning is if the relation being modified is not itself
referenced but references other relations which in turn reference other
relations which in turn reference other relations ...; clearly in this
case it is not desirable to recover the whole hierarchy, the first level
alone is sufficient.

The information in RGX and RGY is wused to build an in-store
representation of the reference graph applying to a relation. The data
structure which is built is a directed graph with two types of mnode.
Oone of the types of node represents relations and the other represents
constraints. The constraint nodes contain information about quantifiers
and update and deletion rules. Relation nodes only point to constraint
nodes and vice versa.

The structure of a relation node is:

(a) relation description as obtained from the RNAMES catalogue;
this includes information on which inversions are available.

(b) number of references from this relation
(¢) number of references to this relation

(d) for each constraint node for which this relation is the
referencing relation:

(1) pointer to the relevant constraint node

(2) referencing attributes

(e) for each constraint for which this relation is the referenced
relation a pointer to the relevant constraint node.

- 58 -

The structure of a constraint node is:
(a) the name of the constraint
(b) pointer to the referencing relation node
(¢) number of referenced relation nodes
(d) TFor each referenced relation node:
(1) pointer to the referenced relation node

(2) correspondence between the referencing attributes and the
key of the referenced relation

(e) update rule
(f) deletion rule

(g) quantifier.

The cascade graph is used in two ways; firstly it is wused as a
template for the coroutine structure which will be used to control the
cascading of alterations and deletions. Secondly it is wused by the
constraint checker to determine the relations, attributes and
quantifiers involved for constraints which have to be tested.

The construction of the graph representing the cascades which are to
be performed is terminated either by UPDATE/DELETION RESTRICTED or when
the referencing relation is not itself referenced. However, not all the
cascades may in fact occur since the altered or deleted tuples may not
be referenced, and hence not produce tuples for the cascade.

The cascade graph for a relation is different depending on whether
the operation being performed on the relation is INSERT or DELETE or
ALTER; the basic algorithms used to construct the cascade graph in each
case are given in section 6.11. Note that while the cascade graph is
being constructed, the constraint nodes are marked according to whether:

(a) they need to be tested when tuples in the referencing relation
are modified (TO-BE-TESTED);

(b) they will be maintained by cascding but need to be tested the
first time this constraint node is processed

(CASCADE~AND-TEST) ;

(¢) they will be dealt with as part of the cascade structure
(BY-CASCADE) .

59

Note that (c) includes constraints which are included in the graph
because there is a RESTRICTED link between the referenced and
referencing relations. Case (b) occurs when a relation, which 1is a
referenced relation of a constraint which has quantifier EXACTLY ONE OF
and update rule CASCADES, is ALTERed. Note is taken on the marking of
constraint nodes when constructing the coroutine structure which will
execute the operation.

When constructing the cascade graph it is important to recognise
cycles in the graph. There are two reasons for this.

(a) If there are cycles which are not noticed then the algorithms
which recover the graph fragment will loop forever.

(b) The knowledge of where the cycles occur is dimportant when
evaluating cyclic cascade structures.

For these reasons a list of the places at which cuts must be made in the
graph in order to avoid cycles is constructed, at the same time as the
fragment is being constructed. This list is termed the CUTLIST.

The rules for the construction of the CUTLIST are only of interest
when tuples are being ALTERed or DELETEd, since INSERT does not produce
cascades. Cycles are detected by associating with each relation node
along a cascade ‘path the list of its predecessors. Places where cuts
need to be made are then easily detected. Before adding a relation node
to the graph a check is made to see whether the relation is in the
predecessor list for the current relation. If it is then a cycle 1is
being constructed. The following actions are then taken:

(a) add the new constraint node, connecting it to the existing
referencing and referenced relation nodes as normal;

(b) do not add the referencing relation node to the 1list of
relations to be processed, even if this would otherwise have
been required;

(¢) add to the CUTLIST an entry for the two relation nodes and the
constraint node.

In the case of ALTER slightly more care has to be taken since the
constraint node connecting the two relations in a cycle may already be
present as a constraint which had to be tested. A further point is that
constraints of this type require a third type of mark for constraint
nodes; this mark indicates that for the first invocation of the cycle
they are to be tested, but for subsequent invocations they will be
maintained automatically.

- 60 -

There is a special case for both DELETE and ALTER which it is
important to get correct. This is when a relation references itself.

Care must also be taken with graphs which fork and then join again.
These can be recognised when the referencing relation node is already
present in the graph fragment but when the edge to be added will not
produce a cycle (remember that the cascade graph is a directed graph).
In this case the constraint node 1is also connected to the existing
referencing relation node, and we must check that the substructure
associated with this node has not already been added before proceeding
to add it.

Although the construction of the cascade graph for ALTER, INSERT and
DELETE have been treated separately, in the implementation advantage is
taken of their common features in order to provide a single function
which will recover the cascade graph for a relation.

The structure which is returned to represent the cascade graph
therefore has two components:

(a) the graph itself, which consists of a collection of linked
relation and constraint nodes;

(b) a list of cuts (usually empty) which indicates where the cycles
in the cascade graph are.

This graph is used as a template for the coroutine structure which will
perform any cascading and testing of RESTRICTED links together with the
checking of constraints. How the CUTLIST dis wused to control the
evaluation of cyclic cascade structures is described in section 6.6.

The relations for which cascade graphs have to be constructed are
determined by analysis of the syntax trees describing the transaction
being processed. A list of locks for relations which are accessed by
the complete transaction is also constructed. This list is used to
control the updating of the RNAMES catalogue at the end of the
transaction and to discover the database addresses of the inversions of
relations. As cascade graphs are created new locks may be added to the
lock list and the access which is required to relations described by
existing locks may change from READ to READWRITE, if the relation was to
be read anyway is now to be modified.

6.4 Checking the Constraints

Section 5.3 described the situations in which constraints need to be
checked. The three cases are:

._.61_

(a) Whenever a tuple is inserted into or altered in a relation
which is the referencing relation for a referential constraint.

(b) Whenever tuples are deleted from or altered in a relation which
is the referenced relation for a constraint which has the
deletion or update rule RESTRICTED.

(¢) Whenever a tuple is inserted into or modified in a relation
which is the referenced relation for a constraint which has the
quantifier EXACTLY ONE OF and for which there is more than one
referenced relation.

In each case information required to check the constraint is obtained
from the cascade graph. This information, together with the modified
tuple, is used to check the constraint. The tests which need to be made
are:

(1) For (a). The value referencing attributes of the tuple
inserted or the new values of the tuple modified must be used
to try and find a tuple with matching key in the referenced
relation(s) and the quantifier specified in the constraint node
must be applied.

(2) TFor (b). The key of the deleted tuple or old key of the
altered tuple must be used to try and find a tuple with that
key in the referencing relation.

(3) For (e¢). If a referencing tuple exists for the inserted tuple
or new value of the altered tuple then the constraint must be
tested., It is not possible merely to check that the new value
is already referenced since the referencing tuple may have been
inserted in this transaction.

Constraints of type (1) are easy to test since they only require access
to relations by primary key and this is quick. However, in order to
check the constraints described in (2) and (3) it is necessary to have a
secondary index structure. It would be prohibitively expensive to
search the referencing relation every time that a link from referenced
relation to referencing relation needs to be followed. The secondary
index structures required are provided by inversions. The inversions
allow tuples with given referencing attribute values to be located
quickly. The information in the constraint node is wused to determine
which dinversion should be used to access the referencing relation. The
identity of this inversion can then be passed to the program which
checks the constraints.

The definition of a referential constraint causes the automatic

creation of an inversion sorted on the referencing attributes of the
constraint, if such an inversion does not already exist.

62

Although inversions confer the advantage of quick access to relations
by the referencing attributes of constraints, inversions incur
overheads.

(a) The space taken in the database is increased. Currently the
space taken 1is increased by the amount of space occupied by a
single copy of the data in the relation for every constraint
for which a relation is the referencing relation. However,
there is no additional copy made if the referencing attributes
are the key of the relation or if the referencing attributes
are the same as those of another constraint.

For relations of large degree which have few fields which
participate in referential constraints the current form of
inversions 1is wasteful on disc storage. For such cases
inversions of the form:

{referencing attributes, primary key value>

would be more efficient in the use of disc space. The existing
scheme is wused because it could be implemented easily in the
experimental system.

(b) The time taken to modify a relation is increased. For a
relation the dincrease is 1linear in the number of inversions
maintained for the relation.

The constraint checker takes as input a list of tuples and a list of
constraints to be tested against the tuples. The constraints are
identified by a constraint node together with a tag which indicates the
type of constraint to be checked. This list of tuples to be checked is
produced by the UPDATE node which modified the relation.

Although in theory the constraints cannot be checked until the end of
the transaction, in practice it is often possible to check constraints
earlier. To understand this consider how a transaction is processed.

A transaction 1is an ordered sequence of operations which are
committed or aborted as a unit. In CODD a tranmsaction 1s presented as a
sequence of operations which the DBMS is told to evaluate; for example:

insert ... into RelationA
delete ... from RelationB
insert ... into RelationC
Dolt

For each operation in the transaction it is possible to determine which
relations the operation can modify. This can be done by analysing the
cascade graph for the operations. This dinformation can be wused to
determine whether relations needed in an earlier operation for checking

- 63 ~

constraints could be modified by subsequent operations in the
transaction. If a relation which needs to be read to test a constraint
could not possibly be modified by the current operation or by a later
operation, then the constraint can be tested immediately, rather than
waiting to the end of the transaction. The simplest example in which
this optimisation 1is wuseful 1is where the transaction consists of
inserting tuples into a single relation.

Therefore, UPDATE may be considered to have two alternative internal
structures, one of which is used when constraints can be tested
immediately and the other of which is wused when checking has to be
deferred.

For constraints which can be checked immediately the structure is:

N\
BUFW
UPDATE-&—CHECK:
CHECK~-CONSTRAINT
MijiFY

For constraints for which checking must be deferred the structure is:

N

BUFW

UPDATE-&-DEFER:
WRITR

MODIFY

When the checking of the constraint has to be deferred a record is kept
of which constraints have to be checked against the tuples written by
the WRITR. The file containing these tuples is deleted after the
constraints have been checked.

- 64 -

If constraints are violated then error messages of the form:
o TInsertion of [...] into RelA failed since it would violate Conl

o Deletion of [...] from RelA failed since it is still referenced
by [+..] in RelB and Con2 specifies DELETION RESTRICTED

o Insertion of [...] into RelA failed this would cause [...] in
RelB to reference more than one tuple which is forbidden by
Con3

can be produced. Note that there is sufficient information in a
constraint node and its associated relation nodes to spell out the
constraint in full rather than just giving its name.

The precise action which is taken when a constraint is violated
depends on whether or mnot the checking had been deferred. For a
constraint which is checked immediately then the transaction is aborted
immediately since it is going to fail anyway. However, if constraints
are being checked at the end of a tramsaction the transaction is mnot
aborted as soon as an error is found. Instead all of the constraints
are checked and errors reported before the transaction is finally
aborted. This action is taken since at this stage not to check all of
the tuples would waste some of the work already done and the cost of
checking a tuple against a constraint is small.

6.5 Construction of the Coroutine Structures

The cascade graph for a relation which is to be updated is wused as
the template from which to build the STAGE structure for the operation.
The STAGE structure is a template for the coroutine graph which will
execute the operation.

Before the way in which the STAGE structure is built 1is described,
the types of processing which are required by nodes in the cascade graph
will be considered. There are two types of node in the cascade graph;
those that require modifications to be performed and those which require
constraints to be checked. Nodes causing relations to be modified may
require one of the following five operations to be performed.

(a) Insert — Each input tuple is inserted into the relation being
modified by the UPDATE. The tuples must not exist already in
the relation otherwise an error is raised.

(b) Delete — Each input tuple is deleted from the relation being
modified. The tuples must exist in the relation otherwise an
error is raised. This operation is used for the first stage of
a deletion cascade.

- 65 -

(¢) Delete-Set - Each input tuple gives a value of the referencing
attributes for a constraint. Every tuple in the relation being
modified with referencing attributes which match the input
value are deleted. This operation is used for the later stages
of a deletion cascade.

(d) Alter - Each input tuple gives the old and new values of the
tuple to be modified. The old value must exist in the
relation. This operation is used for the first stage of an
update cascade.

(e) Alter-Set — Each input tuple gives an old and new value of the
referencing attributes for a constraint. Every tuple in the
relation being modified with referencing attributes which match
the old value are modified. This operation is used for the
later stages of an update cascade.

One of these operations is specified to every UPDATE which is built.

Whether a constraint is tested immediately or not is determined by
looking at the relations modified by this operation and subsequent
operations in the transaction. If the test can be performed immediately
then UPDATE is initialised in its UPDATE—-&-CHECK form. Otherwise the
UPDATE is initialised in its UPDATE-&-DEFER form and a record kept for
the constraint checker of where the tuples to be tested have been
written and what the constraints to be tested are.

When an UPDATE-&-DEFER node is initialised a record is creatéd which
contains:

(a) the identifier of a file containing the list of tuples which
which will have to be tested; this is written by the WRITR
component of UPDATE—-&-DEFER;

(b) a list of the constraints which are to be tested against the
tuples in the file.

This record is shared between the UPDATE-&-DEFER and the constraint
checker which is invoked at the end of the transaction.

The translation of the cascade graph into a STAGE structure proceeds
by way of an ink-blot algorithm, starting from the relation which is to
be modified.

The processing begins as follows.

(a) An UPDATE node is built for the relation which is to be
modified initially. The operation requested for the UPDATE
node is ~Insert”, “Delete” or “Alter” one tuple per input
tuple, as appropriate. The argument to the UPDATE node
contains a list of those comstraint nodes which are attached to

- 66 -

this relation node, and which were marked TO-BE~-TESTED when the
cascade graph was built or which reference this relation and
have the wupdate/deletion rule RESTRICTED if the tuples are to
be altered or deleted. The UPDATE node is informed whether it
can test the constraints immediately or whether it needs to
defer testing until the end of the transaction. This process
gives the structure:

Producing structure --> UPDATE(Operation)

The bracketed term after the UPDATE is the operation which the
UPDATE is to perform on its input.

(b) If the relation node 1is mnot referenced or if it is only
referenced by a RESTRICTED link then the STAGE structure is
terminated by adding a BUFW node to the output of the UPDATE
node. This gives the structure:

Producing structure --> UPDATE(Operation) ——> BUFW

1f (b) has been performed, the STAGE structure needed to perform the
update is now complete. Otherwise, a set of links consisting of:

o Referencing relation node

o Comnstraint node

o Referenced relation node

o Producing stage

o Output number of producing stage
is constructed, one for each reference to the current relation. The
“Producing stage” is either the UPDATE node constructed for the current
relation or a COPY node. It may be a COPY node since, 1f a mnode
requires several outputs then an appropriate number of interconnected
COPY nodes are added to its output, in order to generate the required
number of outputs. The outputs of this tree of COPY nodes are then used
as producers for the consumers of the original UPDATE node.

The list of links is then processed as follows.
(a) 1If the link is a cut then attach the structure:

-—> WRITR —-—> BUFW

to the producing stage. This pair of nodes is, 1in fact, one
half of a flexible buffer, see section 2.7.5. A record is

- 67 -

kept, for use by the SCHEDULER, of the cut and the LOCK
associated with the WRITR node. The LOCK both identifies where
the cascaded tuples have been written and contains a count of
the number of tuples writtem. This LOCK will be passed to the

BUFR ——> READR

pipeline structure which will be constructed to consume the
tuples written by the WRITR. The reading structure will not be
constructed if no tuples have been written by the WRITR, since
there is no point in building executable structure which will
do no work. The cut is recorded to identify the relation node
from which new structure is to be built if any tuples are
cascaded.,

(b) 1If the update or deletion rule (as appropriate) associated with
the constraint node in the link is RESTRICTED, then the UPDATE
node is passed the information needed either to test the
constraint immediately or to defer the checking, as
appropriate.

(¢) 1If the update or deletion rule is CASCADES then the structure:
-—> UPDATE(Alter-Set, or Delete-Set) ——>

is built. Any. constraint nodes which are referenced from the
relation being modified and which are marked “TO-BE-TESTED” are
passed as part of the argument to the UPDATE node. Links are
produced for any references to this relation and are appended
to the list of links.

Steps (a) to (c) are repeated until the list of links is empty. CODD
does not support NULL values and therefore NULLIFIES is not supported.
However, it would be processed similarly to CASCADES.

If the cascade graph forks and joins again then sometimes a STAGE
will have already been built to deal with a relation node when another
of its producers is being processed. Therefore, when a relation node
has been processed a record is kept of the STAGE associated with it.
Before a node is added for a relation, a check is made to see if.a STAGE
already exists for that relation. If it does then the STAGE
representing the node is modified so that it has an extra input. At
this time a check is made that the operations requested for each input
are the same. If they are not then the result of evaluating the graph
may depend on the order in which the inputs to this STAGE are processed
(see section 5.5); therefore, an error message 1is produced if this
structure is encountered.

- 68 -

When structure is being built above a cut the list of links consists
initially of the single link containing:

o Referencing relation node of cut
o Constraint node of cut
o Referenced relation of cut

o READR node of the BUFR --> READR pipeline wused to read the
previously cascaded tuples

o 0 - the only output of the READR

The algorithm expressed in (a) to (c) is then used, starting with this
liste.

Cascaded operations use the inversions which are present for checking
constraints. The inversions allow the tuples with given referencing
attribute values to be located quickly. The information in the
constraint node is used to calculate which inversion UPDATE node should
use to check its input tuples. The identity of this inversion 1is part
of the argument passed to the UPDATE node.

Examples of the coroutine graphs built for a variety of operations on
an example database are presented in section 7.5.

6.5.1 An extension

The scheme described above does not make use of the ability to build
pipelines dynamically. However, it is much easier to implement than the
more sophisticated scheme in which the structure built below a cut is:

-—> COUNT -=> WRITR —--> BUFW

As soon as a tuple passes through this COUNT the SCHEDULER will be
invoked. The SCHEDULER will construct the mnext level of cascade
structure above the BUFW giving

~—==> COUNT —-=> WRITR --> BUFW --> BUFR --> READR -

When the single tuple written by the WRITR has been consumed by the
READR then the set of nodes illustrated above can be removed from the
executing structure. This scheme, which has not been implemented, has
the side effect that several UPDATE nodes may be operating on the same
relation at the same time. Therefore, it is important that they share
the same cursors on the relation and that the relation is not closed
until the last of the UPDATE nodes has completed, otherwise some of the
modifications would be lost.

- 69 -~

6.6 Evaluation of Cascade Structures

Exactly how the coroutine structure which organises the cascading
executes depends on whether the cascade graph is acyclic or cyclic.

6.6.1 Acyclic graphs

This case includes simple trees and graphs which fork and then join
again. However, if the graph forks and joins the graph “optimiser” in
CODD will insert flexible buffers along the forked arcs so that the
synchronisation problems discussed in section 2.7.5 are avoided.

To execute these cascade structures the coroutines are built
according to the template provided by the STAGE structure described in
gsection 6.5. The coroutine graph is then simply initialised and runs to
completion, performing all of the cascading required.

6.6.2 Cyclic graphs

In this case only the coroutines corresponding to the first cycle of
the cascade can be built initially. When this structure has completed
control is returned to the SCHEDULER which checks to see if any cascaded
tuples have been produced from the cycle. This is done by looking at
the cardinality in the locks associated with the WRITR nodes which are
constructed for a set of cuts. If the number of tuples is zero for
every cut then the computation terminates successfully. Otherwise,
coroutine structure is built for the next cycle of every cut with a
non-zero count. This results in a new set of cuts being produced, which
will be tested when all of the new structure has been executed.

6.7 The Definition of Comnstraints
6.7.1 Definition of Comstraints to the DBMS

The syntax used to specify referential constraints to CODD 1is that
used for the examples in this thesis. When a constraint is defined it
is checked for comsistency with the stored data model. This requires
that the relations specified exist, that the referencing and referenced
attributes match in domain (the domain information being held in the
catalogues), and that the referenced attributes are the key of the
referenced relation.

70

6.7.2 Dynamic Definition of Referential Constraints

It has been tacitly assumed above that the data model is a static
object. This will, in general, not be true since it must be possible to
create new constraints and delete old ones as the data model and the
database evolve.

Deletion of old constraints causes mno problems. However, the
creation of a new constraint requires that the current database state be
tested to check that it satisfies the new constraint. The definition of
a new constraint must, therefore, automatically generate such a check,
and produce output indicating in what ways, if any, the current state
violates the constraint. For example, given the database:

Projects : [Project eoo |
Students : [Student oo)
Assignments : [Student, Project | ..o]

Assignl : Assignments.[Project] ->> Projects.[Project]
DELETION CASCADES
Assign2 : Assignments.[Student] ->> Students.[Student]
DELETION CASCADES

the definition of the constraint “Assignl” would cause an inversion of
“Assignments” sorted on “Project” to be created. This involves sorting
the file being inverted and writing the resulting file sequentially.
This process is achieved by setting up a suitable pipeline structure and
using the standard CODD sort function to perform the sort. The inverted
file is then wused as input to the constraint checker which checks the
constraints in the usual way. The constraint checker is told not to
delete the file after checking the constraints; this is different from
the normal process of constraint checking.

This way of defining a new constraint and creating any inversions
required 1is safe because the creation of the inversions and the

modifications to the catalogues to define the new constraint and the
inversions are all committed in the same checkpoint.

6.8 Implementation of the Extensions Suggested in Section 5.8

The following sections describe how the extensions described in
section 5.8 could be implemented.

- 71 -

6.8.1 Replacing NULLIFIES by a computed value

This requires some way of storing in the database the rule for
deriving the computed value. In CODD this rule may be in the form of a
relational algebra expression. Such expressions can be represented by
prefixed polish strings. These can then be stored in the value set, and
their unique identifiers stored in RGX instead of the simple update or
deletion rule. A query can be constructed from the prefixed polish
string. When the value which this query yields is required, it can be
evaluated in the same way as any other query. The value which is
produced can then be assigned to the relevant attributes of the tuple
being updated.

If the rule to obtain the value is simple, e.g. a selection of a
tuple from another relation, then rather than evaluate the relational
expression (which would require a coroutine graph to be built and
executed), it would be possible just to perform a simple lookup.

6.8.2 References to non-key attributes

The solution to this problem can be illustrated by considering the
constraint “Exists-Lecturer” in the database:

Courses: [Name | Lecturer, «.. |
Lecturers: [Name | Department, Date appointed, ...]

Exists-Lecturer : Courses.[Lecturer] ->> Lecturers.[Name]

Suppose that there is also the constraint that each lecturer must give
at least one course.

The test which is required in order to maintain this constraint is
that if a tuple is deleted from “Courses”, then we must check at the end
of the transaction that the lecturer for that course still teaches some
course. The check is performed at the end of the transaction for the
same reason that referential constraints are checked at the end of a
transaction, that is that the final course for a lecturer may be deleted
and a new one created in the same transaction. The constraint checker
can be easily modified to deal with this type of constraint, since the
inversion required to perform the existence test already exists to
facilitate the cascading of tuples and the testing of RESTRICTED links.

In order to represent this constraint in the data model the
catalogues which define the reference graph will have to be extended so
that RGY contains a field which states whether all the tuples in the
referenced relation need to be referenced or not.

72..

It is easy to see how to extend this scheme so that it can maintain
arbitrary constraints on the cardinality of a simple link. General
cardinality constraints as proposed by Addis [Addis 82] would, however,
increase the complexity of constraint checking significantly.

6.9 A Different Way of Maintaining Inversions

The streams between UPDATE nodes are currently unsorted. For small
numbers of tuples in the streams this does not matter, especially since
the same UPDATE node maintains all of the inversions of a relation. 1f
the number of tuples involved is large, however, it is probably worth
sorting the streams so that the modifications to each inversion are
ordered. However, in order to exploit the sorted streams it is
necessary to maintain each inversion of a relation by a separate UPDATE
node. This can be regarded as an extension of the cascade mechanism
which has been described above. 1In this scheme only the UPDATE node
which was maintaining the inversion keyed on the referencing attributes
would be connected to the rest of the cascade structure.

The maintenance of inversions by separate UPDATE nodes would also be
a great advantage for initial data load, since then each inversion can
be loaded by simply writing it sequentially, hence reducing disc
transfers. Here there is a tradeoff between the cost of sorting the
input and then writing the file sequentially as opposed to performing
random insertions into the file. For large files the latter method will
result in increased disc traffic if the whole file cannot be held in
store.

6.10 Conclusions

An interesting feature of this implementation is the way in which the
coroutine graphs are used to interpret the data model. The users of the
PRTV discovered that pipelining is a good strategy for evaluating
queries against a database. The scheme described in this chapter for
maintaining referential constraints extends the use of data pipelining
techniques into the area of updating the database.

6.11 Algorithms for constructing cascade graphs

This section describes the algorithms used to recover cascade graphs.
Detailed understanding of these algorithms is not necessary to follow
the dissertation, but they are presented here for the sake of
completeness.

The algorithms are presented as routines in pidgin BCPL. 1l

introduces a comment and the comments at the head of the first routine
define the environment in which the programs operate.

- 73 -

6.11.1 Recovery of Reference Graph Fragment for INSERT

add-relation(Relation)
— Adds a relation node for “Relation” to the cascade
graph (if such a node does not already exist)

add-constraint(Constraint, How-maintained)
— Adds a constraint node for “Comstraint” to the cascade graph.
“How-maintained” indicates whether the constraint
is to be tested (TO-BE-TESTED), or whether it will be
maintained by cascading (BY-CASCADE), or whether
it will be maintained partly by cascading but also
needs to be tested (CASCADE-AND-TEST).
add-referencing-1link(Relation, Constraint)
— Adds a link from a referencing relation to a constraint
add-referenced-1ink(Constraint, Relation)
- Adds a link from a constraint to a referenced relation

The following routines obtain information from the catalogues:

referencing-constraints(Relation)

- Returns the set of constraints which reference
“Relation” (i.e. constraints for which “Relation”
is the referenced relation)

referenced-constraints(Relation)

— Returns the set of constraints which are referenced by
“Relation” (i.e. constraints for which “Relation” is the
referencing relation)

referencing-relation(Constraint)

— Returns the referencing relation for “Comstraint”

referenced-relations(Comstraint)

- Returns the set of referenced relations for “Constraint”

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

=

T process—insert(relation) BE
(add-relation(relation)
FOR EACH Con IN referenced-constraints(relation) DO
$(add-constraint(Con, TO-BE-TESTED)
add-referencing~1link(relation, Con)
FOR EACH Rel IN referenced-relations(Con)
$(add relation(Rel)
add-referenced-1link(Con, Rel)
$)
$)

< \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Deal with the case where constraints need to be checked -
see section 5.3.

TN
e

FOR EACH Con IN referencing-constraints(relation)
$(IF (quantifier(Con) = EXACTLY ONE OF) &
(number—of-referenced-relations(Con) > 1) THEN
$(LET referencing-rel = referencing-relation(Con)
add-constraint(Comn, BY-CASCADE)
add-relation(referencing-rel)
add-referencing-link(referencing-rel, Con)
add-referenced-1ink(Con, relation)
$)
$)
$)

- 74 -

6.11.2 Recovery of Reference Graph Fragment for ALTER

LET process—alter(relation) BE
$(LET to-be-processed = NULL

$)

add~relation(relation)
FOR EACH Con IN referenced-constraints(relation) DO
$(add-constraint(Con, TO-BE-TESTED)

add-referencing-1link(relation, Con)

FOR EACH Rel IN referenced-relations(Con)

$(add relation(Rel)

add-referenced-1link(Con, Rel)
$)

$)
APPEND-TO(to-be-processed, relation)

UNTIL to-be-processed = NULL DO
$(LET Rel = HEAD-OF(to-be-processed)
FOR EACH Con IN referencing-constraints(Rel)
$(LET referencing-rel = referencing-relation(Con)
add-constraint(Con, BY-CASCADE)
add-relation(referencing-rel)
add-referencing-1link(referencing-rel, Con)
add-referenced-1link(Con, Rel)

UNLESS update-rule(Con) = RESTRICTED) THEN
$(IF intersect(referencing-attributes(Con)y
key(referencing-rel)) THEN
APPEND-TO(to-be—processed, referencing-rel)
FOR EACH C IN
referenced-constraints(referencing-rel)
TEST C = Con THEN
$(IF (quantifier(C) = EXACTLY ONE OF) &
(number-of-referenced-relations(C) > 1)
THEN
$(change-marker(C, CASCADE—-AND-TEST)
FOR EACH R IN referenced-relations(Con)
$(add-relation(R)
add-referenced-link(Con, R)
$)
$)
$)
ELSE IF intersect(referencing-attributes(Con),
referencing—-attributes(C)) THEN
$(add-constraint(C, TO-BE-TESTED)
add-referencing-link(referencing-rel, C)
FOR EACH R IN referenced-relations(C)
$(add-relation(R)
add-referenced-1link{ C, R)
$)
$)
$)
$)
$)

.75

6.11.3 Recovery of Reference Graph Fragment for DELETE

LET process—delete(relation) BE
$(LET to-be-processed = NULL
add-relation(relation)
APPEND-TO(to-be-processed, relation)
UNTIL to-be-processed = NULL DO
$(LET Rel = HEAD-OF(to-be—processed)
FOR EACH Con IN referencing-constraints(rel)
$(LET referencing-rel = referencing-relation(Con)
add-constraint(Con, BY-CASCADE)
add-relation(referencing-rel)
add-referencing-link(referencing-rel, Con)
add-referenced-link(Con, Rel)
UNLESS deletion-rule(Con) = RESTRICTED THEN
IF intersect(referencing-attributes(Con),
key(referencing-rel)) THEN
APPEND-TO(to—be-processed, referencing-rel)
$)
$)
$)

- 76 -

Chapter 7

AN EXAMPLE DATABASE: The University Computing Service

In database research it is always nice to have a real database on
which to test one”s system. The example to hand was the administrative
database of the University of Cambridge Computing Service. This is mnot
a large database since it contains only a few megabytes of dataj;
however, neither is it a toy database either in terms of size or of
structure. There 1is sufficient variety of structure present for the
data model to provide a reasonable test of the system described in this
dissertation.

There are two reasons for having this example.

(a) The first reason 1is to demonstrate the part played by
referential constraints in the description of a database.

(b) The second reason is to show that the system works on a serious
database. However, it was not intended nor was there time
available to perform a detailed performance evaluation or a
comparison with the existing DBMS used by the Computing
Service.

The first part of the chapter describes the structure of the
database, gives details of the sizes of the various relations and gives
the schema produced for the database. It will be seen that referential
constraints are the major modelling tool, with domains and intra-tuple
constraints playing a more minor role. It would be nice to be able to
gtate that there is nothing in the database that it was not possible to
model. Unfortunately this is not the case; the failings of the model
are pointed out and suggestions made as to how these might be remedied.
However, even allowing for these deficiencies a better model has been
produced than was possible with the current database system used by the
Computing Service. This model would in no way be possible with a
relational system which did not support referential constraints.

The second part of the chapter gives some examples, taken from this
database, of how referential constraints are maintained.

- 77 -

7.1 The World of the Database

The database deals with the allocation and accounting of computing
resources within the University. Authorisation to use the computer is
controlled by authorisations between users and projects. Projects are,
for accounting purposes, grouped into accounts which usually correspond
to entities like university departments. Accounts in turn are collected
into account groups which are organised into a tree which models the
administrative hierarchy of the University. The root of the tree of
account groups is the Computing Service (a fact which some may regard as
an anomaly).

As well as accounting information, the database also contains
information about users and the resources allocated to them
independently of the projects which they are authorised to use. Such
resources include magnetic tapes and disc filespace allocations. This
part of the database is 1inked to the accounting structure via the
authorisations of users of projects.

The above description indicates that there 1is quite a lot of
structural information in the database schema. This means that the data
model will contain a large number of referential constraints. The
following sections describe the data model in detail. Note that since
my primary interest is in the structure of the database many of the data
fields which do mnot imply links to other relations have been omitted
from the description. These data fields were also omitted from the
database on which tests were carried out. The size of data in this
database was about 1.5 megabytes.

7.2 The Accounting Structure

The base for this part of the database is the tree of account groups.
This is modelled by the relation:

Account_groups : [Name I Father |
together with the referential comstraint:
Account_group_tree :
Account_groups.[Father] ->> Account groups.[Name]
DELETION CASCADES UPDATE CASCADES
The convention is that for the root of the tree, since CODD does not
support NULL values, “Name” = “Father” . Note that the referential

constraint forces the deletion of all the sons of an account group when
that account group is deleted.

- 78 —

Unfortunately there are two faults with the model as suggested.

(a) It is possible to create orphaned account group trees (i.e.
trees not attached to the main accounting tree) by inserting
tuples into “Account groups”.

(b) It 1is possible to create detached looped structures by
inserting more than one tuple into “Account groups” in the same
transaction, e.g. by inserting the tuples ("Loopl","Loop2")
and ("Loop2","Loopl™).

There are two ways of solving problem (a). Firstly the constraint
that

(Accoun;_groups.[Name] NE Account_groups.[Father]) OR
(Account_groups.[Name] = "cgerv')

could be introduced. This would prevent the creation of more than one
root node but has the disadvantage of binding the name of the root of
the tree into the data model so that it is impossible to change it
without causing some comstraint to be violated. The second mechanism is
to introduce a special relation

Root of account tree : [Name]
together with the modified referential constraint

Account group tree :
Accodﬁp_groﬁbs.[Father] ->> (
Account.groups.[Name],
Root of account tree.[Name])
DELETION CASCADES UPDATE CASCADES

which is restricted to having a cardinality of one by having an
intra-tuple constraint which binds the name of the root into the schema
(this is an unfortunate side effect). If CODD supported cardinality
constraints on references then the number of references to the root
tuple could be limited to ome.

The binding of the name of the root into the schema is not as serious
in the second solution as in the first solution. This is because in the
second scheme the root tuple may be regarded merely as a hook off which
the world hangs with the effective root of the accounting system being
the “Account groups” tuple which refers to it.

Problem (b) is more difficult to cure. A possible solution is to
restrict to one the number of tuples which may be inserted into
“Account groups” in any one transaction. However, this cannot be
enforced by CODD.

79

Associated with each account group are one or more accounts. These
are defined by the relation

Accounts : [Name | Group]
together with the constraint
Account in group :
Accounts.[Group] —>> Account groups.[Name]

DELETION CASCADES UPDATE CASCADES

Again the semantics of deletion are that if an account group is deleted
then all of the accounts associated with that group are also deleted.

The last part of the accounting structure 1is “Projects”. These
represent accountable resources which users use. Projects are grouped
into accounts and are defined by the relation

Projects : [Project no l Account, Number of shares]
together with the now familiar constraint
Project in account :

Projects.[Account] =>> Accounts.[Name]
DELETION CASCADES UPDATE CASCADES

7.3 Users and Resources Associated with Users

Users of the Computing Service are typically people and are defined
by the relation

Users : [User id ‘ Name]
Among the resources owned by users are magnetic tapes which are

defined by

Tapes : [Name | Owner]
and these are linked to their owners by

Owner of magnetic tape :

Tapes.[Owner] ->> Users.[User_ id]
DELETION RESTRICTED

Note that the referential constraint ensures that a wuser cannot be

deleted until all of his tapes have been either deleted or transferred
to another user.

- 80 -

Tapes represent the first example of generalisation in the database
since they are divided into two groups; those stored in racks and those
stored in some external place. This situation is described by the
following relations and constraints.

Tapes_in racks : [Tape | Rack]
Tapes not_in racks: [Tape | Location |

Is tapel : Tapes.[Name] ->> (Tapes in racks.[Tape],
- Taﬁgs Ebt_;n_packs.[Tape])
DELETION CASCADES UPDATE CASCADES
Is tapel : Tapeq_iq_racks.[Tape] ->> Tapes.[Name]
- DELETION CASCADES UPDATE CASCADES
Is tape3 : Tapes not in.racks.[Tape] ->> Tapes.[Name]
- ~ DELETION CASCADES UPDATE CASCADES

The racks which are available for the storage of tapes are represented
by the relation:

Racks : [Name]
which is linked to ’Tapes_in_;acks’ by

Exists rack : Tapes_in;packs.[Rack] ->> Racks.[Name]
DELETION RESTRICTED UPDATE CASCADES

Between “Tapes in racks” and “Racks” there is also the constraint that
there can only “be one tape in any rack. This relationship can be
modelled by a cardinality constraint. An alternative way of enforcing
this constraint would be for both “Tape” and “Rack” to be considered to
be keys for “Tapes_in racks”. However, the fact that the rack attribute
behaves 1like a key is in some ways an accident, in that the constraint
could just as easily have been that “a rack can contain up to ten
tapes”. Therefore, the cardinality constraint is the better way to
model the constraint.

7.4 Authorisations: The link between users and the accounting tree

So far I have discussed two separate facets of the database. These
are linked via the authorisation of users to make use of projects. A
single user may be authorised to use several projects and each project
may have several authorised users. Therefore the relationship between
users and projects is many-to-many. The relationship has the semantics
of an association in that if either the wuser or the project
participating in an authorisation is deleted, then the authorisation
itself must be deleted. This part of the database is represented by the
relation

- 81 -

Authorisations : [User, Project l]
and the two referential constraints

Authl : Authorisations.[User] ->> Users.[User id]
DELETION CASCADES UPDATE CASCADES -

Auth? : Authorisations.[Project] —>> Projects.[Project noj
DELETION CASCADES UPDATE CASCADES -

This concludes the description of the database. The above sections
show that the modelling exercise was reasonably successful. Further,
the effort involved in specifying the data model and creating a test
database was small (it took about a day) . This shows that the
techniques which have been described provide a powerful data definition
language. The example illustrates the considerable amount of structure
which can be captured by the types of constraints, particularly
referential constraints, treated in this dissertation.

For the sake of clarity the complete schema together with the
cardinalities of the relations in the example database is given in
figure 7.1. A graphical description of the schema is given in figure
7.2.

- 82 -

Relations and Intra-tuple constraints (Cardinalities in Brackets)

Root_of account tree : [Name]

Account_groups : [Name | Father]
(Account groups.[Name] NE Account groups.[Father]) OR
(Account -~ groups.[Name] = "eserv')

Accounts : [Name I Group]

Projects : [Project no l Account, Number of shares]

Authorisations : [User, Project l] -

Users : [User id | Name]

Tapes : [Namé—l Owner]

Tapes in racks : [Tape | Rack]

Tapes | not in_racks: [Tape l Location]

Racks : [Name]

Referential Constraints

Account group tree :
Account groups.[Father] ->> (
Account .groups.[Name],
Root_pf_gccount_ﬁree.[Name])

DELETION CASCADES UPDATE CASCADES

Account in group : Accounts.[Group] —>> Account _groups. [Name]

- DELETION CASCADES UPDATE CASCADES

Project in account : Projects.[Account] ->> Accounts.[Name]
DELETION CASCADES UPDATE CASCADES

Authl : Authorisations.[User] ->> Users.[User : id]
DELETION CASCADES UPDATE CASCADES

Auth? : Authorisations.[Project] ->> Projects.[Project no]
DELETION CASCADES UPDATE CASCADES

Owner of magnetic tape : Tapes. [Owner] ->> Users.[User id]
DELETION RESTRICTED

Is tapel : Tapes.[Name] ->> (Tapes_in racks.[Tape],

- Tapes_ not in racks.[Tape])

DELETION CASCADES UPDATE CASCADES

Is tape2 : Tapes_in racks. [Tape] ->> Tapes.[Name]
DELETION CASCADES UPDATE CASCADES

Is tape3 : Tapes not in. racks.[Tape] ->> Tapes.[Name]
"DELETION CASCADES UPDATE CASCADES

Exists rack : Tapes_}n;;acks.[Rack] ->> Racks.[Name]
DELETION RESTRICTED UPDATE CASCADES

Figure 7.1: The Complete Database Schema

83

(1)
(107)

(503)
(4455)
(5807)
(5228)
(11216)
(7579)
(3637)
(8932)

Authorisations:[User, Project |]

Tapes: [Name | Owner]

Owner of magnetic_ tape

Authl Auth2

Is tape3

Projects: [Project no | Account,
zcevmﬁIOhlmUmnmmu

Users: [User id | Name]

Project in account

Tapes not in racks: [Tape | Location]
Accounts: [Name | Group]

Tapes in racks: [Tape | Rack]
Account_in group

Exists rack
Account groups: [Name | Father]

Racks: [Name]

Account_group tree

figure 7.2: A Graphical Representation of the Database Schema

84

7.5 Examples of the Maintenance of Referential Constraints

Chapter 6 described the techniques used to maintain referential
constraints in CODD. This section takes some example modifications to
the Computing Service Database and shows the structures which CODD
builds to maintain referential constraints. The examples which will be
presented are:

(a) insertion of a single tuple into “Authorisations”;

(b) insertion of new project and an authorisation for an existing
user to use that project;

(¢) updating the account with which a project is associated;
(d) deletion of a tuple from “Authorisations”;
(e) deletion of a tuple from “Users” ;
(£f) deletion of the root of the account—-group tree.
The examples are each illustrated by figures showing the dependency

graph fragment recovered for each and the coroutine structure which is
built to perform the operation.

7.5.1 Insertion of a single tuple into Authorisations

Consider the insertion of an authorisation for the user "MR16" to use
the project 25000.

The dependency graph recovered for this operation is:
Authorisations: [User, Project | |
Authl:
Quantifier: Exactly-one
Auth2: Quantifier: Exactly-one

Users: [User_id ‘ Name |

Projects: [Project no | Account,
Number of shares]

This shows that constraints “Authl” and ’Auch’ need to be checked.

....85....

The coroutine graph which is built to perform the requested operation
is:
BUFW
A\

UPDATE-&-CHECK: Operation: Insert
AN Relation: Authorisations
Constraints: Authl, Auth2

READ;%ITERAL: Literal [MR16, 25000]

BUFR

7.5.2 Insertion of a mew project and an authorisation to use it

Consider the transaction which involves creating a new project with
project number 99000, with 20 shares and in the account "es-research'.

This transaction involves two separate operations

o Insertion of a tuple into Projects

o Insertion of a tuple into Authorisatiomns
Two dependency graphs are recovered in this example; one for the
modification to “Projects” and one for the modification to
~Authorisations”. The dependency graph for “Authorisations” is the same
in the previous example. The dependency graph for “Projects” is:

Projects: [Project number | Number of shares, Account |

Project in account:
Quantifier: Exactly-one

Accounts: [Name | Group]

CODD performs the operations in the order they are specified to it.
The system is not clever enough to reorder the operations. The point at
which the constraint “Auth2” is checked depends on whether the insertion
into “Projects” occurs first or not.

- 86 -

If the new project is inserted first then when the authorisation is
created the constraint ~“Auth2” can be checked immediately. In this case
a coroutine graph similar to that in section 7.5.1 executed to insert
the tuple into “Projects” followed the graph described in section 7.5.1
to insert the tuple into “Authorisations”.

1f the authorisation is created first then the checking of the
constraint “Auth2” is deferred until the end of the transaction, using
the graph

BUFW

(%) UPDATE-&-DEFER: Operation: Insert
\ Relation: Authorisations
Constraints: Authl, Auth2

READ-LITERAL: Literal [MR16, 99000]

BUFR

to insert the tuple into “Authorisations” and the graph
BUFW

A

UPDATE-&-CHECK: Operation: Insert
Relation: Projects
Constraint: Project in account

READ-LITERAL: Literal [99000, "cs-research', 20]

BUFR
to insert the tuple into “Projects”.

The tuples writtem by the UPDATE-&DEFER (*) are checked under
~Auth2” after the insertion into “Projects” has taken place.

87

7.5.3 Moving a project from one account to another

Consider moving the project 99000 with 20 shares from "cs-research"
to "external".

The dependency graph fragment recovered for this example is:
Authorisations: [User, Project l]

Auth2:
Update CASCADES

Projects: [Project mno | Account, Number of shares]

Project in account
Quantifier EXACTLY ONE OF
Accounts: [Name | Group |
The coroutine structure which is built is:
BUFW

UPDATE: Operation: Alter—Set
7\ Relation: Authorisations

UPDATE~&—-CHECK: Operation: Alter
N Relation: Projects
Constraint: Project in account

READ-LITERAL: Literal [(99000, 20, "cs-research"),
N (99000, 20, "external)]

BUFR
Note that when UPDATE is performing an alteration then it does mnot

produce a cascaded tuple when the key of the tuple has not been modified
because for a CASCADEd constraint link it would be pointless.

- 88 -

7.5.4 Deletion of a tuple from Authorisations

Consider the deletion of the authorisation of the user MRI6 to wuse
the project 99000.

Authorisations is not the referenced relation for any constraints and
deletion does not cause any constraints to be checked. This operation
is therefore very simple; the dependency graph consists solely of:

Authorisations: [Project, User |]

and the coroutine program is:

BUFW
AN

UPDATE: Operation: Delete
AN Relation: Authorisations

READ;I\JITERAL: [MR16, 99000]

BUFR

7.5.5 Deletion of a tuple from Users

Consider the deletion of the wuser(s) called "M.Robson" from the
database. The dependency graph recovered is:

Tapes: [Name | Owner |

Authorisations: [User, Project]

Ownep_pf_magnetic_ﬁape
Deletion RESTRICTED

Authl
Deletion CASCADES

Users: [User id | Name]

Note that the semantics of this graph are that it a user who is still
the owner of some tapes. The CASCADES 1link in “Authl” causes any
authorisations for the user to be deleted.

- 89 -~

The coroutine graph built for this operation is:

BUFW

UPDATE: Operation: Delete-Set
Relation: Authorisations

UPDATE-&—~CHECK: Operation: Delete
A\ Relation: Users
Constraint: Deletion RESTRICTED
for Owner of magnetic_tape

SELECT: Name = "M.Robson"

READR: Relation: Users

BUFR

This example illustrates the use of a coroutine normally used in queries
(SELECT) in an UPDATE transaction.

7.5.6 Deletion of the root of the account-group tree
The root of the accounting tree is the tuple ["cserv", "ecserv"] in

’Accounp_groups’. This example considers the effect of deleting this
tuple.

- 90 -

The dependency graph fragment recovered for this operation is:

Account group tree: Deletion CASCADES

Account groups: [Name Father |

Account in group: Deletion CASCADES

Accounts: [Name | Group]
Project in account: Deletion CASCADES
Projects: [Project no | Account, Number of shares]

Auth?2: Deletion CASCADES

Authorisations: [User, Project |]

Since this graph contains a cycle the CUTLIST will not be empty;

will contain an entry for the cycle produced by ’Accounp_group_tree’.

91

it

For the first iteration of the operation the coroutine graph which is
built is.

BUFW
AN
UPDATE -~ Operation: Delete-Set
1 Relation: Authorisations
BUFW UPDATE - Operation: Delete-Set
N Relation: Projects
Write the WRITR (*) UPDATE - Operation: Delete-Set
input for Relation: Accounts
the next
cascade

CQPY

UPDATE - Operation: Delete
Relation: Account groups

READ—LETERAL: Literal: ("cserv'", "cserv')

BUFR

When this structure completes execution the list of cuts is examined to
determine the number of tuples written by the WRITR (*). If (%) has
written any tuples then the information associated with the cut is used
to build the structure shown below in which the READR reads the tuple
written by (%).

- 92 -

UPDATE - Operation: Delete-Set
A Relation: Authorisations

BUFW UPDATE -~ Operation: Delete-Set
Relation: Projects

Write the WRITR (*) UPDATE - Operation: Delete-Set
input for Relation: Accounts
the next
cascade

COPY

UPDATE - Operation: Delete-Set
Relation: Account groups

READR: Read from file written by WRITR (*) on
the previous iteration.

BUFR

This structure executes, completes and is rebuilt until no tuples are
written by WRITR (*). For the example database the loop containing
Account groups is traversed seven times.

This transaction should (and does) result in the deletion of all of
the account groups, accounts, projects and authorisations. For this
operation the times taken, both in terms of CPU time and disc channel
time, are approximately two orders of magnitude less than those taken by
the Computing Service”s existing DBMS to perform a similar operation
(naturally the Computing Service would not wish to perform the operation
which has been described; indeed it would be sensible to specify
DELETION RESTRICTED for “Account group tree” and “Account in group” in
order to avoid a disaster). - - -

Deleting the root of the accounting tree is a complex operation which
involves several levels of cascade.

- 93 -

7.6 Experience with this Database

The main reason for looking at the Computing Service Database was to
discover whether a sensible data model could be produced rather than to
do detailed performance tests. However, from the small number of tests
which were performed the observation given below can be made.

(a) The cost of operations which make small modifications to the
database 1is relatively high, e.g. insertion, deletion and
alteration of single tuples which do not cause many CASCADES
operations. This is largely because the cost of accessing the
catalogues and building the graph and coroutine structures
necessary to execute the transaction greatly outweighs the cost
of doing the actual modification. It dis mnoticeable that
inserting several tuples dinto the same relation at the same
time is not much more expensive than inserting a single tuple.

(b) Complex deletions or alterations which involve many cascaded
tuples and many levels of cascade execute quickly. The most
striking example of this operation is the transaction which
deletes the root of the accounting tree.

(c) Experience with the initial loading of the database suggests
that the optimisation involving the sorting of updates would in
fact be of considerable value. This conclusion was reached by
simulating the effect of wusing this strategy by loading the
database before defining the referential constraints and then
defining the constraints. Done in this way the loading of the
data, together with the checking of the constraints, is cheap
compared with defining the schema completely and then loading
the database. This is because the inversions are in the first
case loaded in sorted order whereas in the second case they are
not.

7.7 Summary

Using the tools described in the earlier chapters of the
dissertation, much of the structure of a real database has been modelled
successfully. Further, although CODD is not used by the Computing
Service, CODD was more successful in modelling the database than a
number of the available DBMSs which they have considered using. For the
particular database considered the cost of modifying the database was
certainly not prohibitively expensive, which is satisfying. Therefore,
it seems that the techniques which have been suggested are useful for
dealing with real database problems.

- 94 -

Chapter 8

CONCLUSIONS

8.1 Review

In the introduction it was shown that the connections between the
classes of objects in a database are important and that the description
of these connections is an integral part of a number of data models.
The absence of a way of describing inter-class connections in the
Relational Model was argued to be a serious defect.

A detailed investigation of a proposal for incorporating
inter-relational connections into the Relational Model, namely
referential constraints, has been presented. This proposal has been
compared both with other proposals and with the facilities provided in
other data models. An implementation of referential constraints for the
relational DBMS CODD has been described. The implementation makes
considerable use of data pipelines implemented using coroutines, a novel
feature of CODD.

Two further types of constraint, domain and intra-tuple constraints,
have been considered in the dissertation. Whereas referential
constraints deal with structures which may span more than one relation,
domain and intra-tuple constraints deal with structure within single
relations and provide provide useful checks when data is entered into
the database. The techniques for maintaining domain and intra=-tuple
constraints are similar but the two types of constraint provide
different semantics and for this reason they were treated separately.

The descriptions of all of the constraints are stored in the
database. Such a centralised database model is important since it is
far too easy for information about the semantics of the database to
become embedded in a set of application programs; when this happens the
semantic information which the programs contain becomes hidden from the
user.

- 95 =

8.2 Conclusions

The previous section reviewed the work which has been done; this
section presents the major conclusions.

(a)

(b)

Referential constraints are an important addition to the
Relational Model.

The University Computing Service example illustrates how
great a part they play in the description of a database; it
would not be possible to model much of the structure of this
database using just the basic Relational Model. It is
necessary that both the user and the system are aware of the
connections between relations. The user needs the knowledge in
order to update the database sensibly. The system needs the
knowledge both to ensure that the user makes only permissible
modifications and to provide information to other programs
which require knowledge of inter-relational connections; for
example, a program providing a natural language interface or
one which explains the database structure to the wuser.
Referential constraints provide a description of the
inter-relational connections which 1is accessible to both the
user and the DBMS.

The evaluation of wupdate transactions by use of coroutine
graphs is a useful technique.

This is not only because the pipelining which the technique
provides can produce gains in performance but also because the
technique allows complex database operations to be composed
from a small number of simple processing elements, the
coroutines which implement the individual operations.

The information about inter-relational connections is
represented in the data model as a network. A nice feature of
the use of coroutines to maintain referential constraints is
the way in which the coroutine graph reflects directly the
network structure represented in the data model.

The way in which coroutines are used in CODD gives:

o a uniform mechanism and computational model for both query
and update;

o a uniform mechanism for dealing with both simple and
complex operations on the data.

One of the aims of this work was to demonstrate that pipelined
evaluation could be useful when performing database
modifications; it is satisfying that this existing technology
could indeed be adapted to a task other than that for which it

- 96 -

()

(d)

(e)

was designed initially. [T. King 79] demonstrated that data
pipelining is a good technique for evaluating complex database
queries; the work in this dissertation demonstrates that
pipelining is also useful when modifying the database.

The data model is not just a static description of how the
database should be; it also contains rules to ensure that the
contents of the database satisfy the description.

o The implementation of domains and intra-tuple constraints
stores procedural information in the database.

o The implementation of referential constraints uses the data
model to generate programs, executable coroutine graphs, to
maintain the constraints.

The data model is also used to generate automatically coroutine
graphs which check that new constraints are satisfied by the
current contents of the database before they are added to the
data model.

In some ways the path which has been followed in this work
is the opposite of that pursued by the advocates of persistent
data in programming languages [Atkinson 78]. They add
persistent data objects to a programming language whereas this
work is a step in the direction of adding algorithms to the
data.

The ability to enforce the constraints which have been
investigated forms the base on which DBMSs which use other data
models as their means of describing the database can be
constructed.

The facilities which have been provided supply the
structures, particularly inter—-class connections, required by
other data models. It has been shown that the ability to
maintain referential constraints can be wused as a building
block to construct other network structures in the database.
Only experimentation will prove the truth or falsehood of this
conclusion.

Although the implementation of domains which has been described
is an adequate means of maintaining the constraints implied by
domains, the implementation suffers from the defect that it
does mnot provide definitions of the operations which are
allowed on domains. Hence it may prove difficult to integrate
with the query language. This issue would have to be
investigated if a uniform user interface were being produced.

- 97 -

Another problem with the techniques used to implement
domains is that it is too powerful. The domain checkers can be
very flexible; however, since they are arbitrary BCPL
programs, the DBMS has no control over their action; it has to
trust them. In retrospect a better approach would be to have
produced a small number of primitive checkers and a language,
known to the DBMS, in which more complex checkers could be
implemented using the primitive facilities.

8.3 Critique

Although the implementation which has been produced has a number of
strong features, which have been described above, there are a number of
areas in which it could be improved. The following sections outline
these areas and suggest how the problems could be approached.

8.3.1 The Maintenance of Referential Constraints

When cascaded operations which involve large numbers of tuples are
performed, pipelining can produce considerable gains; the example of
deleting the root of the accounting tree in the University Computing
Service example illustrated this. On the other hand insertion or
deletion of single tuples with few dependent tuples involves
considerable fixed overheads, which include the catalogue accesses and
the optimisation of the executable coroutine graph. The same problem
arises for queries, where the fixed overheads make simple queries
relatively expensive and where the data pipelining allows complex
queries to be evaluated at a reasonable cost. In a system where
insertions of single tuples are done frequently the fixed overhead would
be unacceptably great. It is, however, possible to construct a system
where the coroutine graph for an operation is retained when the
operation completes and where it is reset to a state ready to receive
further input. In such a system a frequently used operation would be
activated simply by providing it with some input. Initialisation of
frequently invoked operations could then become part of the
initialisation of CODD.

The problem of checking referential constraints was simplified by
ensuring that all of the inversions which were required for comstraint
checking were always present. This is expensive on disc space.
Therefore, a topic for further work would be to investigate the
problems, costs and advantages that would arise if some of the
inversions were not present. Some topics of interest are:

..98_..

o Which inversions are worth maintaining?

o 1Is it possible to implement an adaptive scheme in which access
paths available are tuned automatically to the usage of the
database?

o Connected with the problem of deciding which inversions to
maintain is the problem of how the inversions should be
maintained. Currently CODD wuses a single UPDATE node to
maintain all of the inversions of a relation. A possible
optimisation is to:provide one UPDATE node per inversion.

8.3.2 Bulk Update

Bulk update of the database is a long sequence of small transactions
which are carried out together for reasons of efficiency. From the
point of view of success or failure of the transaction bulk modification
should, therefore, be treated as many small transactions. At present
CODD treats a bulk update as a single transaction which is committed or
rolled back as a whole. This would be unacceptable in a commercial
systeme.

8.3.3 User Interface

A criticism of the current system is that it does not have a uniform
user interface; the existing interface is an ad hoc collection of ways
of describing particular parts of the data model together with a query
language which has evolved rather than been designed. A more uniform
user interface must be constructed if CODD is to be developed further or
used in real applications. One possibility would be to provide a DAPLEX
interface to the DBMS. This would involve investigation of the mapping
between DAPLEX schemas and relational schemas; this should not prove
too difficult.

Hand in hand with the need to provide a uniform user interface goes
the need to provide better facilities for querying the data model. It
should be possible to ask questions like "what might be affected if I
alter tuples in relation Y?" and "what constraints apply to relation
Y?", instead of merely being able to ask what the constraints are. It
has been asserted that the schema ought to be a documentation aid;
therefore, it should be possible to query the schema in a flexible way.

- 99 -

8.3.4 Use in a Real Application

A great deal of effort (both on the part of the author and of a
number of other people) has gone into the development of CODD. However,
apart from King”s original project on historical records, it has not
been used for a real application. It would be interesting to test the
facilities which CODD now provides in a real application. It would then
be possible to determine how well, or badly, it performs in serious use.
Sadly this poses the question of who will be willing to use it until it
is proven?

8.4 Further Work

The previous section made some very specific suggestion on ways in
which the work which has been done can be extended. This section
suggests some broader areas of investigation.

(a) The coroutines in the graphs evaluated by CODD are not
autonomous processing elements since the flow of control during
the execution of a graph is single threaded. However, there is
no reason why the nodes in a pipeline graph should not be
autonomous processes and consequently be executed on different
machines., In recent years there has been interest in the
development of parallel architectures in general and data-flow
machines in particular; the processing facilities embodied in
CODD could form the basis of the implementation of a hardware
pipelined machine.

(b) In all of its development CODD has not addressed the problems
provided by the presence of NULL values in a database. How
best to deal with NULL values remains an open question and one
whieh 1is a suitable topic for further work. For example, can
the ideas suggested by [Gray 83] be incorporated into a real
DBMS?

(¢) It was remarked above that knowledge of the connections between
facts in a database is necessary for the comstruction of a
natural language interface to a database. In what directions
would the facilities provided by CODD have to be extended in
order to provide such support? One facility which would need
to be provided is better access to the data model; in
particular it is desirable to have a procedural interface to
the data model which the natural language processing system
could call. Further, it would be necessary for the DBMS and
the natural language processing system to be able to
communicate in similar terms; this is likely to involve the
DBMS maintaining information about the meaning as well as the
structure of the data in the database, i.e. a more “semantic”
data model; the Semantic Relation and Network Models described
in [Borkin 80b] may provide a suitable starting point.

- 100 -

REFERENCES

[Abrial 74]
Abrial J.R.
Data Semantics
In: Database Management, ed., Klimbie and Koffeman, ppi-59,
North-Holland (1974)

[Addis 82]
Addis T.R.
A Relation-Based Language Interpreter for a Content Addressable
File Store
ACM-TODS Vol. 7 No. 2 ppl25-163 (June 1982)

[Astrahan, et al 76]
Astrahan M., et al
SYSTEM/R: A Relational Approach to Database Management
ACM-TODS: Vol. 1 No. 2 pp97-137 (June 1976)

[Atkinson 78]
Atkinson M.P.
Programming Languages and Databases
Proc. VLDB 1978, Berlin, West Germany

[Atkinson, Chisholm, Cockshott 82]
Atkinson M.P., Chisholm K.J. and Cockshott W.P.
PS-Algol: An Algol with a Persistent Heap
ACM SIGPLAN Notices: Vol. 17 No. 7 pp24-31 (July 1982)

[Atkinson, Kulkarni 83]
Atkinson M.P. and Kulkarni K.G.
Experimenting with the Functional Data Model
Persistent Programming Research Report No. 5, University of
Edinburgh, Department of Computer Science (September 1983)

[Boguraev, Sparck Jones 83]
Boguraev B.K. and Sparck Jones K.
Final Report on SERC Grant GR/B27159:
Natural Language Query Processor for Database Access (November
1983)

[Borkin 80a]
Borkin S.A.
The Semantic Relation Model: Foundation for a User Interface
Proc. International Conference on Databases, ed. Deen and
Hammersley, pp47—64, Heyden (1980)

- 101 -

[Borkin 80b]
Borkin S.A.
Data Models: A Semantic Approach to Database Systems
MIT Press (1980)

[Brachman 79]
Brachman R.J.
On the Epistemological Status of Semantic Networks
In: Associative Networks: Representation and Use of Knowledge by
Computers, Findler N.V. (ed), Academic Press (1979)

[Buneman, Frankel, Nikhil 82]
Buneman P., Frankel R.E. and Nikhil R.
An Tmplementation Technique for Database Query Languages
ACM-TODS Vol. 7 No. 2 ppl64—-186 (June 1982)

[Brodie 81]
Brodie M.L.
Association: A Database Abstraction for Semantic Modelling
Proc. 2nd. International Entity-Relationship Conference, 1981

[Brodie, Zilles 80]
Brodie M.L. and Zilles S.N. (eds.)
Proc. of the Workshop on Data Abstraction, Databases and
Conceptual Modelling, Pingree Park, Colorado 1930
ACM SIGMOD Record Vol. 11 No. 2

[Chamberlin, et al 76]
Chamberlin D.D., et al
SEQUEL2: A Unified Approach to Data Definition, Manipulation and
Control
IBM Journal of Research and Development Vol. 20 No. 6
pp560-575 (November 1976)

[Chen 76]
Chen P.
The Entity-Relationship Model: Toward a Unified View of Data
ACM-TODS Vol. 1 No. 1 pp9-36 (March 1976)

[Codd 70]
Codd
A Relational Model of Data for Large Shared Data Banks
Comm. ACM Vol. 13 No.6 pp377-387 (June 1970)

[Codd 79]
Codd E.F.
Extending the Relational Model to Capture More Meaning
ACM-TODS Vol. & No. &4 pp397-434 (December 1979)

- 102 -

[Date 8la]
Date C.J.
Referential Integrity
Proc. VLDB 81, Cannes, France pp2-12 (1981)

[Date 81b]
Date C.J.
An Introduction to Database Systems (3rd Edition)
Addison Wesley (1981)

[Date 82]
Date C.J.
Null Values in Database Management
Proc. Second British National Conference on Databases, Bristol,
England (1982), ed. Deen and Hammersley, ppl47-166 (to be
published by John Wiley)

[Dewar, McCann 77]
Dewar R.B.K. and McCann A.P.
MACRO SPITBOL: A SNOBOL-4 Compiler
SOFTWARE: Practice and Experience Vol. 7/ pp95-113 (1977)

[Eswaran 76]
Eswaran K.P.
Aspects of a Trigger Subsystem in an Integrated Database System
Proc. 2nd. International Conference on Software Engineering

pp243-250 (1976)

[Eswaran, Chamberlin 75]
Eswaran K.P. and Chamberlin D.D
Functional Specifications of a Subsystem for Database Integrity

Proc. VLDB 1975 pp48-68

[Glauert 81]
Glauert J.R.W.
The Protocol for Pipeline Communication in CODD
University of Cambridge Computer Laboratory, Database Research

Group Note (January 1981)

[Gray 83]
Gray M.A.
Views and Imprecise Information in Databases
Technical Report No. 38 (Ph.D. Dissertation), Univerity of
Cambridge, Computer Laboratory (1983)

[Gray 81]
Gray P.D.M.
Use of Automatic Programming and Simulation to Facilitate
Operations on a CODASYL Database :
Tn: Database — Infotech State of the Art Report, Series 9
No. 8, pp345-369 ed. Atkinson M.P. (Permagon-Infotech 1981)

- 103 -

[Hall, Owlett, Todd 76]
Hall P., Owlett J. and Todd S.J.P.
Relations and Entities
In: Modelling in Database Management Systems, ed. Nijssen,
pp201-220 North-Holland (1976)

[Hammer, McLeod 76]
Hammer M. and Mcleod D.J.
A Framework for Database Semantic Integrity
Proc. 2nd. International Conference on Software Engineering,
pp498-504

[Hammer , McLeod 80]
Hammer M. and McLeod D.J.
On Database System Architecture
In: Data Design - Invited Papers - Infotech State of the Art
Report, Series 8 No. 4, ed. Atkinson M.P., ppl77-201
(Infotech 1980)

[Hammer, McLeod 81]
Hammer M. and McLeod D.J.
Database Description with SDM: A Semantic Database Model
ACM-TODS Vol. 6 No. 3 pp351-386 (September 1981)

[Hepp 83]
Hepp P.E.
A DBS Architecture Supporting Coexisting User Interfaces:
Description and Examples
Persistent Programming Research Report No. 6, University of
Edinburgh, Department of Computer Science (August 1983)

[IS0 81]
IS0 TCY97/SC5/WG3 Preliminary Report
Concepts and Terminology for the Conceptual Schema
ed. van Griethuysen J.J., et al (1981)

[P. King 80]
King P.J.H.
A Critical Review of Aspects of Database Theory
Distributed Databases, ed. Draffan and Poole, pp33-56, Cambridge
University Press (1980)

[T. King 79]
King T.J.
A Relational Database System for Historical Records
Ph.D. Thesis University of Cambridge (1979)

[King , Moody 83]
King T.J. and Moody J.K.M.
The Design and Implementation of CODD.
SOFTWARE: Practice and Experience Vol. 13 pp66-78 (1983)

- 104 -

[Larson 78]
Larson P.A.
Dynamic Hashing
BIT Vol. 18 ppl84-201 (1978)

[McLeod 76]
McLeod D.J.
High Level Domain Definition
ACM: SIGPLAN Notices Vol. 11 Special Issue, Proc. Conference on
Data: Abstraction, Definition and Structure pp47-57 (1976)

[Moody, Richards 80]
Moody J.K.M. and Richards M.
A Coroutine Mechanism for BCPL
SOFTWARE: Practice and Experience Vol. 11 pp765-771 (1980)

[Richards, Whitby-Strevens 79]
Richards M. and Whitby-Strevens C.
BCPL: The Language and its Compiler
Cambridge University Press (1979)

[Ridjanovic, Brodie 82]
Ridjanovic D. and Brodie M.L.
Semantic Data Model Driven Design, Specification and Verification
of Interactive Database Transactions
Department of Computer Science, University of Maryland (April 1982)

[Robson 82a]
Robson M.
The Implementation of Domains and Referential Constraints in CODD
Proc. Second British National Conference on Databases, Bristol,
England (1982), ed. Deen and Hammersley, pp203-217 (to be
published by John Wiley)

[Robson 82b]
Robson M.
Constraints in CODD
Technical Report No. 22, University of Cambridge, Computer
Laboratory (1982)

[Robson, King, Glauert 81]
Robson M., King T.J. and Glauert J.R.W.
A Relatiomnal Database for Minicomputers
In: Databases: Proc. First British National Conference on
Databases, ed. Deen and Hammersley, Pentech Press (1981)

[Roussopoulos 77]
Roussopoulos N.D.
A Semantic Network Model of Databases
Ph.D. Thesis University of Toronto, Department of Computer
Science, Technical Report No. 104 (1977)

- 105 -

[Sharman 77]
Sharman G.C.H.
Update-by-Dialogue: An Interactive Approach to Database
Modification
IBM UK Laboratories Technical Report TR.12.164 (June 1977)

[shipman 81]
Shipman D.W.
The Functional Data Model and the Data Language DAPLEX
ACM-TODS Vol. 6 No. 1 ppl40-173 (March 1981)

[Smith, Smith 77a]
Smith J.M. and Smith D.C.P.
Database Abstractions: Aggregation
Comm. ACM Vol. 20 mo. 6 pp405-413 (June 1977)

[Smith, Smith 77b]
Smith J.M. and Smith D.C.P.
Database Abstractions: Aggregation and Generalisation
ACM-TODS Vol. 2 No. 2 ppl05-133 (June 1977)

[Stonebraker 75]
Stonebraker M.
Implementation of Integrity Constraints by Query Modification
Proc. ACM SIGMOD Conference 1975, pp65-78

[Stonebraker 80]
Stonebraker M.
Retrospection on a Database System
ACM-TODS: Vol. 5 No. 2 pp225-240 (June 1980)

[Todd 76]
Todd S.J.P.
The Peterlee Relational Test Vehicle: A system overview
IBM Systems Journal Vol. 15 No. 4, pp285-308 (1976)

[Tsichritzis, Lochovsky 82]
Tsichritzis D.C. and Lochovsky F.H.
Data Models
Prentice-Hall (1982)

[Weber 76]
Weber H.
A Semantic Model of Integrity Constraints on a Relational Database
In: Modelling in Database Management Systems, ed. Nijssen,
pp269-292, North-Holland (1976)

[Weber, Stucky, Karszt 83]
Weber W., Stucky W. and Karszt J.
Integrity Checking in Database Systems
Information Systems Vol. 8 No. 2 pp 125-136 (1983)

- 106 -

