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Pure bigraphs

Robin Milner

University of Cambridge, Computer Laboratory,
JJ Thomson Avenue, Cambridge CB3 OFD, UK

Abstract Bigraphsare graphs whose nodes may be nested, represent-
ing locality, independently of the edges connecting therheylmay be
equipped with reaction rules, formingoggraphical reactive systeltBrs)

in which bigraphs can reconfigure themselves. Brss aim ffy pnocess
calculi, and to model applications —such as pervasive coimgput where
locality and mobility are prominent. The paper is devoteththeory of
purebigraphs, which underlie various more refined forms. It bedpy de-
veloping a more abstract structureyale reactive systeifWwrs), of which

a Brs is an instance; in this context, labelled transitioed@fined in such

a way that the induced bisimilarity is a congruence.

This work is then specialised to Brss, whose graphical siracallows
many refinements of the dynamic theory. Elsewhere it is shibahbe-
havioural analysis for Petri nets;calculus and mobile ambients can all
be recovered in the uniform framework of bigraphs. The tgitet of the
paper emphasizes the parts of bigraphical theory that anencm to these
applications, especially the treatment of dynamics viealled transitions.
As a running example, the theory is applied to finite pure C@se
resulting transition system and bisimilarity are analysedetail.

The paper also discusses briefly the use of bigraphs to motielperva-
sive computing and biological systems.
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Part| : Mathematical framework

The introduction provides a rationale for bigraphs, and a synopsis of/tiode
paper. Section 2 introducescategoriesincluding the notion osupportwhich

will be used to identify occurrences of entities within bigraphs; it also defele-

tive pushout¢RPOs), which are important for the behavioural theory of bigraphs.
Section 3 introduces the abstract notion afide reactive systerfWrs); it is not
graphical, but gives prominence to spatial extensiorwidth. Section 4 defines
transition system#r Wrss, which may be used to define bisimilarities and other
behavioural relations. It is shown that, for transitions based on RRSsilarity

is a congruence. Varieties of transition system are defined and analysed

1 Introduction

Bigraphical reactive systems [36, 38, 37, 24, 25, 39, 30hagephical model of com-
putation in which botHocality and connectivityare prominent. Recognising the in-
creasingly topographical quality of global computing,yhake up the challenge to
base all distributed computation on topographical stmectA typical bigraph is shown
in Figure 1; it represents a highly simplified system of imfiation flow and computa-
tion in a built environment, which we shall soon discuss imrengdetail. Such a graph
is reconfigurable, and its nodes (the ovals and circles) mpresent a great variety of
computational objects: a physical location, an adminisgaegion, a human agent,
a mobile phone, a computer, a sensor, a data constructecatéculus input guard, a
mobile ambient, a cryptographic key, a message, a reptiatd so on.

Bigraphs are a development of action calculi [35], but senplThey use ideas
from many sources: the Chemical Abstract machine (Cham)eofyBand Boudol [3],
the w-calculus of Milner, Parrow and Walker [42], the interactioets of Lafont [27],
the mobile ambients of Cardelli and Gordon [9], the expliagions of Gardner and
Wischik [19] developed from the fusion calculus of Parrovd afictor [44], Nomadic
Pict by Wojciechowski and Sewell [54], and the uniform amio to a behavioural
theory for reactive systems of Leifer and Milner [29]. Theger distills the static and
dynamic theory ofpure bigraphs refinements of this model will derive their theory
from it, and will be treated in later publications.

The challenge from applications

The long-term aim of this work is to model computation on abgloscale, as repre-
sented by the Internet and the Worldwide Web, and more rigcleytpervasive com-
puting. The aim is not just to model systems already desigmedrunning; beyond
that, we seek a theory to guide the specification and progragiof these systems,
and to guide their future adaptation. The so-calladishing ubiquitous computexf
the future is within reach of today’s technology. ioderstandt is a goal less publicly
perceived, but nonetheless essential if we are to avoidysterss that are as stagnant
and inscrutable as today’s legacy software, and on an evgerlscale.



So we have to reverse the typical order of events in whichgdesnd implemen-
tation come first, modelling later. (For example, programgnianguages are hardly
ever based thoroughly on a theoretical model, yet they agadiin all our implemen-
tations.) Such ‘retro-modelling’ leads to an understagaifdesigned systems that is
brittle, and that deteriorates seriously as the systemlyevmder changing demand.
In the long run, system designs must be expressed from tisetowith the concepts
and notations of a theory rich enough to encompass all teadeékigners wish.

The arrival of ubiquitous mobile computing offers an oppaity for this, simply
because it is new enough for its languages and implementthniques not to be
entrenched. Moreover, concurrency theories already geoai conceptual frame in
which to study distributed mobile systems, and they offercitires for new languages.
Thus, through experimental applications, designers aady/sts may come to speak
the same tongue. As a specialised but significant exampll,Retri nets and the-
calculus are now adopted to assist design of systems for #magement of business
processes [52].

Global computing presents huge demands, and we cannottég@edve immedi-
ately at the right model. We have to strike a compromise betvime-tuning existing
models on the one hand, and making too large a leap on thelahdr A model must
grasp many aspects of real systems if it is to be seriously insexperimental design,
and thus provide the feedback necessary to improve the nitsd#l If we merely
adopt the classic scientific approach of tackling each asgegiobal computing sep-
arately, we may develop elegant separate theories yet firgkloes unable to unify
them. On the other hand to tackle all aspects is too hard. urfiemfortable dilemma
is not faced in natural science, since there the objectaudfygiypically remain stable
—in so far as they are independent of human designs.

Our strategy here is to tackle just two aspects of mobileesystsimultaneously:
mobile localityand mobile connectivity Already this combination presents a chal-
lenge: to what extent are locality and connectivity intgreledent? In plain words,
doeswhere you araffectwhom you can talk t The answer must lie in the level of
modelling. To a user of the Internet (seeing it abstractigre is total independence,
and we want to model it at a high (i.e. abstract) level, just appears to users. But to
the engineer these remote communications are not atonag;itkolve chains of in-
teractions between neighbouring entities, and we mustmt®adde a low-level model
which reflects this reality. These two levels must surely &k pf a single multi-level
model that explains how higher levels aealisedby lower levels.

Of the two levels, the lower is the less novel. Indeed, vonrii@on’s cellular
automata are the original paradigm for it; his agents wenanged on a fixed grid and
interaction could only occur between neighbours. But inhsaconcrete model we
hope torealisea higher level view in which a single agent is representeditigrdnt
cells at different moments, and may send messages to otstantiagents. So the
challenge we address here is to provide the means to viewtjoaad connectivity
as dependently —or independently— as you wish, and to coertéiase views. This
seems to require new mathematical structures, and bigedf#mapt to provide them.

As very simple illustration, consider a crude version eeatient built environment
modelled as a bigraph in Figure 1. The model is a bigraph, wimeans that there are
two structures on the nodes; they may be nested, and they Is@p& connected by



A - an agent B - a building
C-acomputer R-aroom

Figure 1: A bigraph for communication in a built environment

links. The linkage is independent of the nesting, so linkerotross node boundaries.
Nodes may be of many kinds, each represented byrdrol (A,B,...) associated
with each node. (The shape of nodes is suggestive but redupdr this particular
bigraph:

e The two regions (dotted squares), each with one buildB)gr{ay lie arbitrarily
far apart in a larger system, e.g. one in France and one irraliast

e The four agentsA), perhaps humans equipped with devices, are conducting a
conference call.

e The computers@) in each building are networked as part of its infrastruetur
—another embedded subsystem.

e Many reconfigurations are possible. An agent may abandocaihkerence call;
an agent may enter or leave a rooR);(on entry, the computer (equipped with
sensor) may connect with him/her; a computer network mayritre to the
conference call; a room may become inoperative becausespéfid so on.

Of course we have so far considered only discrete events;dniinuous events and
stochastic behaviour must also be modelled. These stagctar modelling such man-
made systems are not far from those (discussed later) thiatdieeady been used to
model behaviour of biological cells.

In defining bigraphs for such modelling, we wish to embracsiliar calculi of
mobile processes, which deal with interaction and mobititglifferent ways. We also
want a theory that can be specialised to each of these cadmditherefore unifies
them. This leads naturally to the second of our twin chaksng



The challenge from process calculi

Existing process calculi have made great progress with aomation [6, 2, 22, 33],
mobile connectivity [42, 16] and mobile locality [3, 9]. Tieeis some agreement
among them, and their behavioural theories are well deeelopt the same time the
space of possible calculi is large and not well understoadparticular, as shown by
Castellani's [10] comprehensive survey, widely varyingioms of locality have been
explored; this implies equal variety in their treatment afbifity.

The challenge from process calculi is to provide a uniforrnaweoural theory, so
that many process calculi can be expressed in the same framautvseriously af-
fecting their treatment of behaviour. We now outline howesgsh leading up to the
bigraphical model has addressed this challenge.

It is common to present théynamicsof processes by means mactions(also
known as rewriting rules) of the form——>r’, meaning that can change its state 16
in suitable contexts. In process calculi this treatmengpécilly refined intolabelled

transitions of the forma——»a’, where the label is drawn from some vocabulary
expressing the possible interactions between an agend its environment. These
transitions have the great advantage that they supporefiratebn of behavioural pre-
orders and equivalences, such as traces, failures andlaisiyn But the definition of
those transitions tends to be tailored for each calculus.

So can these labels lgeriveduniformly, given a set of reaction rules of the form
r—=>1’? A natural approach is to take the labels to be certain (@mwiental)con-

texts if L is such a context, the transitian=— o’ implies that a reaction can occur in
Loa leading to a new stat€. (As we shall see, bigraphical agents and contexts live
in a category, or more generally an s-category, where thgosition L o a represents
the insertion of agent in contextL.) Moreover, we would like to be sure that the be-
havioural relations —such as bisimilarity— that are deteediby the transitions are
well-behaved.

But we don’t wanall contexts as labels; as Sewell [51] points out, the behaaiour
equivalences that result from this choice are unsatisfiactdow to find a satisfactory
—and suitably minimal— set of labels, and to do it uniformlgmained open for
many years. As a first step, Sewell was able uniformly to @esatisfactory context-
labelled transitions for parametric term-rewriting syssewith parallel composition
and blocking, and showed bisimilarity to be a congruenceenitained a problem to do
it for reactive systems dealing with connectivity, suchlresst-calculus.

This was overcome by Leifer and Milner [29], who defined miaitabels in terms
of the categorical notion ofelative pushout{RPO), also ensuring that behavioural
equivalence is a congruence. These results were extende@fared in Leifer’s PhD
Dissertation [28], and applied to action graphs with ricmmoectivity [11]. Mean-
while bigraphs were developed from action graphs; they wesgired by the simplic-
ity that comes from treating locality and connectivity ipeéadently, by the mobile
ambients of Cardelli and Gordon, and by Gardner’s developfd8] of action graphs
with undirected edges. This theoretical development has laeigmented by a se-
guence of case studies applying the bigraph model to egistatculi, including the
m-calculus [24, 25], mobile ambients [23], Petri nets [39] &0d theA-calculus [41].
These give confidence that the model can incorporate egistaories.



Figure 2: A bigraphical reaction rule for CCS with summation

Each of the case studies involved some specialisation dbitfraph model. The
present paper is devotedpare bigraphswhich underlie these specialisations. It con-
centrates mainly upon the theory but illustrates it by aggion to finite pure CCS as a
running example. Sequel papers will specialise the modediious ways, for example
to binding bigraphswhich allow scope and binding for certain names, thus admitt
more refined applications. It will be seen that the basic thed pure bigraphs is
preserved by these specialisations, thus establishireglpgraphs as a core theory.

However, the theory cannot claim to be definitive; many venes are possible.
Therefore this work has been divided as much as possiblesagarate topics, making
it more amenable to variation. For exampddgraphsthemselves are defined in terms
of two independent structurgslace graphsandlink graphs and each of these can be
varied. Also,bigraphical reactive systen{Brss) are defined as merely one instance of
a general conceptyide reactive systen(§Vrss), whose abstract theory we develop in
Part I; many other instances are possible.

We now introduce our running example.

Example 1 (reaction in CCS) The calculus CCS [33] has a reaction rule
Z.P+M)|(z.Q+N)— P|Q,

wherez. P andx.() are guarded output and input respectively, wiileand N repre-
sent zero or more alternatives of the same nature. The quegents a communication
on channek, which may preempt other possible communicators on the saa@nel,
the result of the communication is to allow the continuagidhand (@ to continue in
parallel, while the alternative/ and N are discarded.

Figure 2 shows the corresponding reaction rule in bigrafihsses three controls:
send for output,get for input andalt for alternation. They are declared to passive
controls, i.e. no reaction can occur inside them. The reactile means that thedex
R occurring in a larger bigraph, with anything in its holessjgboxes), can be replaced
by thereactumR’, retaining some of the contents Bfas indicated by the ordinals in
its holes. Note several points:

e Thesend- andget- nodes are connected ihby a link named:. In the larger con-
text these may be linked to competitors for communicatiothamlink. Nothing
in R’ retains that link, but competitors in the larger context vétain it.



e The occupants of the holes —collectively called pagameterof the reaction—
may freely be linked to the larger context (and to each othtegy may even
contain uses of the link, which may later be activated.

e Bigraphs are rigorous entities. Besides their diagraney, thay be written and
manipulated algebraically. Here is the algebraic form efréaction rule, mildly
sugared to clarify which hole is which:

alt(sendeO | Dl) | alt(getmljg | Dg) —D> T | DO ’ |:|2 .

The juxtapositions, such a#(. ..) andsend,y, are categorical compositions;
the parallel combinator|” is a derived form of tensor product.

The reader familiar with CCS will see that its discipline carately reflected. We
shall return to this example from time to time in the follogisections, to illustrate
various points. In Section 11 we shall encode finite CCS imgoalphs, and illustrate
our uniformly derived strong bisimilarity by showing thateixactly captures the one
originally defined for CCS. ]

Synopsis

The paper’s three parts play distinct roles. Each Part Begith an abstract, but the
following brief overview will be helpful.

Part | is entirely devoted to a mathematical framework cstirgj of s-categories
and a way of providing then with dynamics; in this framewanmkany other models
beside bigraphs can be set up. The purpose is to developytherwill apply to
future enrichments and variations of the bigraph model.

Part Il is entirely concerned with the static structure graphs. The mere defini-
tion of bigraphs is not complex, but it admits a large taxoyi@nd many operations;
the emphasis in this Part is to identify elementary bigrapt® which others can be
built, as well as basic operations from which others can bweld It is also shown
how thestatictheory of Part | is instantiated in bigraphs.

Part Il establishes the dynamic theory of bigraphs, anavshno turn how thedy-
namictheory of Part | is instantiated. This leads to further taxoy, some refinements
of the theory, and in particular a notion sdérting all of these are then applied to re-
cover some of the original theory of CCS. Finally, the codelg section points to
related research and future directions.

Acknowledgement | am greatly indebted to Ole Haggh Jensen and Jamey Leifer,
whose ideas have been important in developing bigraphs.

2 S-categories and relative pushouts

In this section and the following one we develop a matherabhframework for the
static and dynamic properties of bigraphs. There are skevarnaties of bigraph, and
in this general setting we shall derive properties that apiply to all of them.
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Notation We accent the name of an s-category, a<dnto distinguish it from a cat-
egory. We usd, J, K, . .. for objects andf, g, h, . . . for arrows. We use juxtaposition
for composition, id’ for identity and ‘®’ and tensor product. We denote the domain
and codomairy/ of an arrowf: I — J by dom(f) andcod( f); the set of arrows from
I'to J, called ahomsetis denoted byC( — J).

Ids will denote the identity function on a st and()s the empty function fronf
to S. We shall use5 w T for union of setsS and7" known or assumed to be disjoint,
and f @ ¢ for union of functions whose domains are known or assumee wgjoint.
This use ofy on sets should not be confused with the disjoint syifa Which disjoins
setsbeforetaking their union. We assume a fixed representation of idisppums; for
example X +P+Y meang {0} x X)U({1} x P)U({2} xY),and}_ ., P, means
Upev ({v} x P,). We write f | S for the restriction of a functiorf to the domainS,
andR | S for the restricted relatiof N S2.

A natural numbern is often interpreted as a finite ordinal = {0,1,...,m — 1}.
We often use to range overn; whenm = 2 we usez for the complement — i of .
We usef for a finite sequencéz; | i € m}; whenm = 2 this is an ordered pair.

Definition 2.1 (precategory) A precategory C is defined exactly as a category, ex-
cept that the composition of arrows is not always defined. @msition with the iden-
tities is always defined, and f = f = fid. In the equatiork(gf) = (hg)f, the two
sides are either equal or both undefined. ]

We shall extend categorical concepts to precategorieoutitomment when they are
unambiguous. We now extend explicitly the concept of moalaidtegory:

Definition 2.2 (tensor product, monoidal precategory) A (strict, symmetric) monoidal
precategory has a partignsor productz both on objects and on arrows. It has a unit
objecte, called theorigin, such thal ® e = e® I = I forall I. GivenI ® J andJ ® I

it also has symmetrysomorphismy; ; : I ® J — J ® I. The tensor and symmetries
satisfy the following equations when both sides exist:

L fe(@eh)=(feg®handid®f=f 3. y.=id
2. (f1®91)(f0®90)=f1fo®g1g0 4. W/J,I'YI,J:idI(@J
5 k(f®g) =9y, (forf:H—-I,g:J—K). .

‘Strict’ means that (1) holds exactly, not merely up to isoptosm; ‘symmetric’ refers
to the symmetry isomorphisms satisfying (3)—(5).

In this work we need a special form of precategory. A paréicehse will be when
arrows are bigraphs; for the present, think of these as argligraphs. Within a given
graph we often need to distinguish different occurrencethefsame subgraph. In
graph theory, graphs with explicit node identities areezhtioncretegraphs. When
composing two concrete graphs we wish to ensure that thde-identities are disjoint;
this composition is a partial operation, but one whose défiass is determined by the
set of nodes from which the graph is formed. We find it usefalldstract this idea, and
define a version of precategory in which every arrow has aefset called itsupport
and these sets determine exactly when two arrows may be c@upo
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Definition 2.3 (s-category) An s-category C is a strict symmetric monoidal precat-
egory which has:

e for each arrowf, a finite set|f| called itssupport such thatid;| = (. For
f: I—Jandg: J— K the compositiory f is defined iff|g| N |f| = ( and
dom(g) = cod(f); then|gf| = |g|W|f]|. Similarly, for f: H— I andg: J — K
with H® J andI ® K defined, the tensor produgtz g is defined iff| f|N|g| = 0
anddom(f) = cod(g); then|f @ g| = | f| W |g].

e for any arrowf : I — J and any injective map whose domain includeg|, an
arrowp: f : I — J called asupport translatiorof f such that

1. p'id]:id] 4. |d|f|'f:f
2. p(gf) = (pr9)(p=f) 5 (propo)f=pi-(po-f)
3. p(fog) =p-f@pyg 6. pf=(pllf)f

7. pfl = p(f]) -

Each equation is required to hold only when both sides areelkkfi ]

Exercise Deduce condition (1) from conditions (6) and (4).

We now consider functors between s-categories.

Definition 2.4 (support equivalence, supported functor) Two arrowsf,g : I — J

in an s-categonA aresupport-equivalentritten f = g, if p= f = g for some support
translationp. By Definition 2.3 this is an equivalence relation. B is another s-
category, then &unctor 7: ‘A — "B is a function on objects and arrows that preserves
identities, composition, tensor product and support edeince. IfF is an inclusion
function thenA is asub-s-categorpf "B. ]

When we no longer need to keep track of support we may use aeqticdtegory(not
just s-category). To define such quotients, we need theNoipnotion:

Definition 2.5 (congruence) Let = be an equivalence defined on every homset of a
supported precategorZ. We say that= is preservedoy an operatok if f = f/ and

g =g imply fxg = [’ * ¢’ whenever the latter are defined. Theris congruence on

"C whenever it is preserved by composition and tensor product. ]

As an example of a simple congruence on bigraphs, we may dgfiaef’ to mean
that f andf’ are identical when allk(-nodes are discarded, for some particular control
K. The most important example of a congruence will be supgprivalence £). The
following definition shows that any congruence at least assmas support equivalence
will yield a well-defined quotient category:

Definition 2.6 (quotient categories) Let "C be a supported precategory, ancdebe
a congruence orC that includes support equivalence, ke.C =. Then thequotient

12



of 'C by = is a categonC = "C/=, whose objects are the objects & and whose
arrows are equivalence classes of arrowsdn ”

CL,J) = {lfl=] fe'CUJ)}.

In C, the identities, composition and tensor product are given b

idy, = [idy]=
[Q]E[f]z = [gf]z
fl=olg= = [fog=

By assigning empty support to every arrow we may also reGaad an s-category, and
we call[-]=: "C — C the=-quotient functorfor "C. "

Note that the quotient does not affect objects; thus anyotgm®duct onC may still
be partial on objects. BT is indeed a category; composition is always well-defined
becausg = g implies f = g, and so also is tensor product provided it is defined on the
domains and codomains. We often abbrevjdteto [-]; we call it thesupport quotient
functor. From the definition, clearly a coarser quotiéft exists whenevere= is a
congruence that includes support equivalence.

We now turn to the notion of relative pushout (RPO), which wé of crucial im-
portance in defining labelled transitions. The rest of teistion, except where stated,
pertains to any precategory.

Notation We shall often usgfor a pair fy, f1 of arrows; similarly for objects. For
eﬁxample,#if the two arrows share a domdihand have codomaing), I; we write
f:H—I.

Definition 2.7 (bound, consistent) If two arrowsf: H — I share domairH, the
pairg : I — K share codomaidk andgo fo = g1.f1, then we say thaf is aboundfor
f. If f has any bound, then it is said to bensistent ]

Definition 2.8 (relative pushout) Letg : I — K be abound fogf: H —1I. Abound
for f relative tog is a triple(h, k) of arrows such thak is a bound forf andhh; = g;
(: = 0,1). We may call the triple gelative boundvheng is understood.

A relative pushou{RPO) for frelative tog is a relative boun(dﬁ h) such that for
any other relative boun(ﬁ, k) there is a unique arroywfor which jh; = k; (i = 0,1)
andkj = h. ]

13



We shall often omit the word ‘relative’; for example we mayl ((ai_i, h) a bound (or
RPO) forfto g.

The more familiar notion, a pushout, is a bounébr fsuch thafor anyboundg
there exists ah which makes the left-hand diagram commute. Thus a pushaldast
bound, while an RPO provideswainimalbound relative to a given bourgd In bigraphs
we shall find that RPOs exist in cases where there is no pusteriConstructions 6.8
and the discussion preceding it.

Now suppose that we can create an R@Q‘z) for fto g, what happens if we try
to iterate the construction? More precisely, is there an IR?QEto h? The answer lies
in the following important concept:

Definition 2.9 (idem pushout) A pair h:l— J is anidem pushou{IPO) for the
palrf H — T ifthe triple (h,id ) is an RPO forf to h. ]

Then it turns out that the attempt to iterate the RPO construevill yield the same
bound (up to isomorphism); intuitively, the minimal bourat ff to any boundg is
reached in just one step. This is a consequence of the firgpawis of the following
proposition, which summarises the essential propertideRRDs and IPOs on which
our work relies. They are proved for categories in Leiferisdertation [28] (see also
Leifer and Milner [29]), and the proofs can be routinely agajfor precategories.

Proposition 2.10 (properties of RPOs)In any precategoryA:

1. Ifan RPO forftogexists, then it is unique up to isomorphism.

2. 1If (ﬁ, h)is an RPO forfto g thenr, is an IPO for f.

3. If his an IPO forf, and an RPO exists fofto hhg, hhy, then the triple(fz, h)
is such an RPO.

4. (IPO pasting) Suppose that the diagram below commutethat f;, go has an
RPO to the paithihg, fog1. Then
(a) if the two squares are IPOs, so is the big rectangle;
(b) if the big rectangle and the left square are IPOs, so isriblt square.

ho hl

%

f oT f 1T %sz

_— =

90 g1

5. (IPO sliding) If A is an s- category then IPOs are preserved by support trans-
lation; that is, if g is an IPO forf and p is any injective map whose domain
includes the supports g‘fandg, thenp-gis an IPO forp- f
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3 Wide reactive systems

We now introduce a kind of dynamical system, of which bigsaphil be an instance.
In previous work [29, 28] a notion of reactive system was afinIn our present
terms, this consisted of an s-category whose arrows aredoatintexts including
agentswhose domain is the origip, together with a set of agent-paifs, ') called
reaction rules and a sub-s-category of so-calladtive contexts. The reaction rela-
tion — between agents was taken to be the smallest suctbthat— Dr’ for every
active contextD and reaction rulér, r’).

For such systems, labelled transitions based upon IPOs theee derived uni-
formly [29]. Several behavioural pre-orders and equivedsnbased upon these tran-
sitions —including bisimilarity— were shown to be congruesgcsubject to two con-
ditions: first, that sufficient RPOs exist in the precategegcond, that decomposition
preserves activity — i.eDC active implies botiC' and D active.

In subsequent work, RPOs were found in interesting casete(l[28], Cattani et
al [11]). Each case met the condition that decompositiosgrres activity, if we limit
attention to contexts with a single hole. However, certanwed transition systems
are unsatisfactory under this limitation, as Sewell [514 painted out. Also we need
multi-hole bigraphical contexts, not only to represengpagtric reaction rules, but also
to admit multiple or ‘wide’ agents, whose several parts nmesyde in different regions
of a host context.

This gives rise to the possibility of contexts in which sontessmay be active, i.e.
may permit reaction to occur, but not others. The followiegjmitions allow this. They
lead towidereactive systems, which refine the above notion of reacyistem as little
as necessary for that purpose. We shall also see that, ifeotedige this new treatment
to narrow contexts (those with unit width), we recover the origination of reactive
system.

In what follows we shall us®rd, the s-category of finite ordinals and functions
between them.

Definition 3.1 (wide s-category) An s-categoryA is wideif equipped with a functor
width : A — Ord with width(e) = 0 such that, for each bijection on the ordinal
width(7), there is an isomorphismy : I — I in "A with width(m;) = 7.

The objectd, J, ... of ‘A are callednterfacesand its arrowsd, B, C, .. . are called
contexts The domain and codomain of a context will be callednterandouter faces
Arrows in a homsetA(e — I') —which we abbreviate toA(/)— are calledground
arrows; we let lower case lettetisb, . .. range over these, and abbreviatec — I to
a: 1. [

We shall later define bigraphs as a wide s-category, singettdpography is im-
portant. Even in the present general framework we can begipaak about locality:

Definition 3.2 (location) A location of an interfacel a subset\ C width(/). The
width function of a context : I — J is extended to locations dfby

width(C)(\) = {width(C)(i) | i € A} .

Theoffset byn of a location) is given byn + A = {n+i | i € A}. m
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Before we define reaction rules, we need to define what it measay that a
contextC': I — J is active at a locationn C width(I). In this general framework the
definition is not fixed, but we must ensure that it behavedyite particular, suppose
thatC' is active at\ andD: J — K is active atvidth(C')()); thenDC should be active
at\. As well as this, the identities should be fully active, and tensor product should
take the disjoint union of activities. We arrive at the foliag:

Definition 3.3 (activity) An activity for ‘A is a mapact : ‘A(I,.J) — 2%dth(D) for
each homset, respectiagand satisfying three properties:

1. act(id;) = width(I)
2. act(DC) = act(C) N width(C)~!(act(D))
3. act(C® D) =act(C) W (n+act(D)), wheren = width(dom(C)) .

We say thatD: I — J is active at) if A\ C act([), andactiveif act(/) = width(/). =

We are now ready to add dynamics to a wide s-category. Byhangdt with reaction
rules and activity, we shall define a reaction relation oveugd arrows.

Definition 3.4 (wide reactive system) A wide reactive system (Wr@(act, R) is a
wide s-categonA equipped with an activityct and a setR is a set ofground reaction
rulesof the form(r: I,r': I), aredexand areactum Both components must be closed
under support translation.

Thereaction relation—: over ground arrows is defined as followg—: ¢’ iff
there exist a ground reaction rule, ') and an active contexb with ¢ = Dr and
g = Dr’. m

We shall usually denote this Wrs by just.” Note that we definground (reaction)
rules; for a bigraphical reactive system, which is a spdaral of Wrs, we shall define
a notion ofparametricreaction rule, each generating a family of ground rules.

In passing, suppose that we are only concerned with reatticontextsD that
have interfaces of unit width = {0}, so thatwidth(D)(0) = 0. ThenD is activeiff
it is active at0. The activity conditions (1) and (2) then amount to req@jrihat the
active contexts form a sub-s-category closed under decsitigpn Thus, as promised,
we have a proper generalisation of the conditions underiwihie original congruence
theorems [28, 29] were proved.

A natural notion of morphisn¥: ‘A — "B between Wrss is one that preserves
width, ground reaction rules and activity. The precise di@dimis as follows:

Definition 3.5 (Wrs morphism, sub-Wrs) Let’A and B be Wrss. A functorF: ‘A — B
of wide s-categories ismorphisnof Wrss fromA to B if it preserves the components
of a Wrs as follows (distinguishing the components®by a prime):

width = width o F
(r,ryeR = (F(r),F('))eR
act(C) C act/(F(C)).

If Fis an inclusion functor then we call ‘asub-Wrsof 'B. =
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Proposition 3.6 (Wrs morphisms preserve reaction)If 7: ‘A — "B is a Wrs mor-
phism, andy—> ¢’ in ‘A, thenF(g) —> F(g’) in "B.

Clearly Wrss and their morphisms form a category. An impdréxample of a mor-
phism is the support quotient functor, extended to Wrss ésiel

Definition 3.7 (quotient Wrs) Let A be a Wrs. Then itsupport quotientrs is
based upon the support quotight= "A /=, with other ingredients as follows:

e the ground reaction rules atf|, [r’']), for each rulgr, ') in A;

e the active sites ofD] are exactly those ab. "

Proposition 3.8 (quotient reflects reaction) The support quotienf]: ‘A — A both
preserves and reflects reaction, ifg.—> [¢'] iIn A iff g—> ¢’ In "A.

The quotient morphism takesc@ncreteWrs, based on an s-category, to astract
Wrs based upon a category. In the next section we show how &nadtehavioural
congruence for an arbitrary concrete WAwith sufficient RPOs. The support quotient
A of ‘A may not possess RPOs, but nevertheless the quotient fualicies us to derive

a behavioural congruence féralso. This use of a concrete Wrs with RPOs to supply
a behavioural congruence for the corresponding abstractW&sdirst represented by
thefunctorial reactive systent Leifer’s thesis [28].

4 Transition systems

We now consider how to equip a Wrs with a labelled transitiosteay. This will
comprise a set of ground arrows callagents together with a set of transitions of a

form such asi—=—+ o/, whereq, @’ are agents anfl is a context withLa defined. Then
bisimilarity is defined in the usual way, and we are inter@stegeneral conditions
under which it will be a congruence.

Leifer and Milner [29] defined labelled transitions as folk a-a' ifthere is a
reaction rulgr, ") and an active contex? for which (L, D) is an idem pushout (IPO)
for (a,r) anda’ = Dr’. We shall adopt a slight refinement of this definition; we khal
equip a transition with information about locality. For ageata: I, a transition of
the forma -+ a’ tells us the extra context: I — J needed by to create a redex,
but does not specifwherethis completed redex occurs withitw, i.e. within which
region(s) the reaction takes place. Such regions are fahty a location\ of J,
the outer face of.. It turns out that, to achieve congruence of bisimilarity must
index each transition by such a location. This can be ilaistt by a simple exam-
ple, for which we need only the superficial understandingigfaphs supplied by the
Introduction.

Example 2 (non-congruence)This example shows that bisimilarity based upon un-
located transitions, which we denote 8y is not in general a congruence for bigraph-
ical systems. Take controls, L andM, with M passive. Links are irrelevant in this
example, so we take interfaces to be just finite ordinalstfveid
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Now writeK, L : 0 — 1 for atoms i.e. a single node with no content, akd: 1 — 1
for the passive context consisting of a sinlenode. Let there be a single reaction
rule (K, L); it allows the reactiodrK —> L in any active context.

Consider the two agenis, b : 0— 2 illustrated below, where. = K ® L and

b =L ® K. They can each do a transition that tugto L, i.e. we have: 92+ | @ L

andb92: | @ L . Because these two transitions do not record the differiaxcep at
which the reaction occurs, it turns out that' b.

568 [60] Bolbs

a~b C = M]lid, Ca 2 Cb

Now puttinga andb in the contextC' £ M |id;: 2— 1, we findCa # Cb. In Cb the

K-node can react, so there is a transi id; >: but C'a has no such transition since
its K-node cannot react. =

Transitions and bisimilarity

We are now ready to define transition systems. We allow fooadbclass of transitions,
within which we distinguish those based upon IPOs.

Definition 4.1 (transition) A transitionconsists of a quadruple, L, A\, a’), written

a-t—, o/, with @ anda’ ground, such thata = Dr anda’ = Dy’ for some ground
reaction rulg(r, 7’ : I) and activeD such that\ = width(D)(width(])).

We say that the reaction rule and the diagran= Dr underliethe transition. A
transition isminimalif the underlying diagram is an IPO. ]

Definition 4.2 (transition system) Given a WrsA, a(labelled) transition systerfior
‘Alisapairl = (Z,7), where

e 7 is aset ofinterfacesfor I € Z, the arrowsA(I) are callecagentsof L.
e 7T is a set of transitions -2 o/ such thaw, «’ are agents of.

We abbreviate ‘(labelled) transition system’ to Lts. An It$is asub-Ltsof £, written
M < L, ifits components are included respectively in thos& of ]
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Thefull (resp.standard transition system for a Wrs consists of all interfaces, tioge
with all (resp. all minimal) transitions. When the Wrs coneatiis understood we shall
denote these two transition systems respectivelybgndsT.

Returning briefly to Example 2 we now see that the locationpament in transi-
tions allows us to distinguish between the two agenésdb. In fact in ST their only

transitions are. -5, L ® L andb-4», L@ L.

Definition 4.3 (respect) Let = be a congruence in a Wrs equipped withThen=
and L are said taespectone another if the following holds:

Let a—Z+, o’ be a transition inC. Leta = bandL = M, with Mb defined. Then
there exist an agent and a transition L, ' in £ such that’ = V. -

‘Respect’ is mutual between an equivalence and an Lts, sofh@spects= ' means
the same as= respects’; we shall use them interchangeably.

Our definition of transition presupposes a set of reactidesru.e. anunlabelled
transition relation. Sometimes, for example in CCS, lauktransition systems have
been the primary means of providing process dynamics, alatheled transitions cor-
responded to transitions with a ‘null’ label (h CCS). But in this work we are commit-
ted to taking reaction rules as primary, because they capd®ibed generally without
any presupposition about the interaction discipline oflaudas.

Whether transitions are derived from reactions or definecbmesother way, we
may use them to define behavioural equivalences and presordere we shall limit
attention to strong bisimilarity. (Throughout this paper ghall omit ‘strong’ since we
do not define or use weak bisimilarity.)

Definition 4.4 (wide bisimilarity) Let A be a wide reactive system equipped with
an LtsL. A simulation (on£) is a binary relatiorS between agents with equal inter-
face such that itkSh anda -2+, o’ in £, then wheneveLb is defined there existe

such thath—=-, v’ in £ anda’SH'. A bisimulationis a symmetric simulation. Then
bisimilarity (on£), denoted by~ ., is the largest bisimulation (of}). ]

We shall often omit ‘onC’, and write~ for ~ ., whenZ is understood from the context.
This will usually be wherC is ST.

Note the slight departure from the usual definition of bidetion of Park [43];
here we requird.b to be defined. This is merely a technical detail, provided the
Lts respects support equivalence; for then, whenéveis defined there will always
exist’ = L for whichboth L’a and L’b are defined. Moreover if the Wrs is based on
a category, in particular a support quotient, then the saiedition holds automatically.
In this case the definition of bisimilarity reduces to thensi@d one.

If S is a binary relation anek an equivalence, then we defi§€ to be the closure
of S under =, i.e. the relational compositioeeS=. It is well known [33] that if=
is included in (strong) bisimilarity, then to establishibigarity it is enough exhibit
a bisimulation up to=; that is, a symmetric relatio§ such that wheneverSb then
each transition ofi is matched by in S=. We now deduce from Proposition 2.10(5)
that support equivalence can be used in this way:
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Proposition 4.5 (support translation of transitions) In a Wrs the full and standard
transition systems respect support equivalence. Henacimease~ is a bisimulation,
and a bisimulation up te- suffices to establish bisimilarity.

We now come to our congruence theorem for a Wrs; the proof i30h [

Theorem 4.6 (congruence of wide bisimilarity) In a Wrs with RPOs, equipped with
the standard transition system, wide bisimilarity of ageista congruence; that is, if
ap ~ ai thenCaO ~ Ca.

We shall henceforth often omit the adjective ‘wide’ whencdissing bisimilarity.
Recall that we are taking (strong) bisimilarity as a repnéstave of many pre-orders
and equivalences; Leifer [28] has proved congruence theofer several others, and
we expect that those results can be transferred to the prestéing.

Since there are many transition systems, there are alsovaaayts of bisimilarity.
Some are congruences, some are not. For example, the alumfegeasily adapted
to show the congruence of full bisimilarity, which is basgubnall transitions, not just
those based on IPOs. But we have already commented on thigstaxgary nature of
FT; not only does it involve a huge family of labels, but it alstates processes that we
would wish to distinguish.

More importantly, let us call a transitiononoif its label is a mono (i.e. a monomor-
phism). Recall two basic categorical properties of monbg: andg are mono then
gf (if it exists) is also mono; and in the other directiongif is mono then so i,
but not necessarily. Now let 'sT denote the sub-Lts adT that contains all its mono
transitions, and let denote the associated bisimilarity. Then:

Corollary 4.7 (congruence for mono bisimilarity) InaWrs with RPOs, mono bisim-
ilarity is a congruence for mono contexts; that isaif ~ a; and C' is mono, then
CCLO ~ Cal.

Proof (outline) The proof follows the lines of Theorem 4.6 exacAl that is needed
extra is to use the basic mono properties cited above, irr todshow that every tran-
sition involved in the argument is indeed mono. ]

Quotient transition systems

Let us now turn to transition systems derived for a quotiens.Wr

Definition 4.8 (transitions for a quotient Wrs) Let A be a Wrs equipped with an
Lts L = (Z,7), and letF: ‘A — "B be a Wrs functor. We say tha respectsC if the
congruence it induces oA respectsC.

The LtsF (L) inducedby F on ‘B has interfaces (1) for eachl € Z. Whenever

£ has a transition - o’ thenF(£) has the transition

F(L)

Fla) >y F(a') . C
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This definition always makes sense, but it will not always enbisimilarity a congru-
ence in B, even if it is so inA. However the next theorem, proved in [30]. tells us
when this will be ensured. Recall thafwdl functor is surjective for each homset.

Theorem 4.9 (transitions induced by functors) Let A be equipped with an Lt§.
LetF: 'A — "B be a full Wrs functor that is the identity on objects and retp€, and
such thatF(a) = F(b) whenevern = b. Then the following hold fofF (£):

1. a~0bin"Aiff F(a) ~ F(b)in B.
2. If bisimilarity is a congruence iA"then it is a congruence irB.

These results prepare the way for setting up a bigraphieative system (Brs) as
a Wrs, and then deriving Ltss and behavioural congruences. fave typically want
to do this for anabstractBrs, i.e. one based upon a category where support equiva-
lence has been factored out, rather that faoacreteBrs based upon an s-category,
where arrows (bigraphs) have non-trivial support. For glantCCS and Petri nets are
naturally formulated as abstract Brss. But, as we shall aee, the RPOs needed to
derive satisfactory Ltss are typically not present in th&ss. Now, as we shall see in
Section 9, a Brs is determined by a signatiirand a sefR of reaction rules. So our
procedure will be as follows, using CCS as an example:

e Set up an abstract BA(K,R) for the calculus;

e Define a concrete Br&\(KC,”R), of which A(KC,R) is the quotient (andR the
quotient of 'R) by some equivalencs;

e Derive an Lts forA(K,”R) with an associated behavioural congruence, and en-
sure that it respects;

e Use Definition 4.8 to transfer the Lts 8&(/C,R), and Theorem 4.9 to ensure a
behavioural congruence in the abstract Brs.

Adequate and definite transition systems

We now turn to a question that arises strongly in applicatiddur standard Lts, con-
taining only the minimal transitions, is of course much derahan the full Lts. But
it turns out that in particular cases we can reduce the stdndsa still further, without
affecting bisimilarity. We introduce here the basic cortsdp make this idea precise,
since they do not depend at all on the notion of bigraph.

Definition 4.10 (relative bisimulation, adequacy) Let M < L. A relative bisimu-
lation for M (on £) is a symmetric relatio& such that

wheneverSh, then for every transition -, a’ in M, with Lb defined,
there exist®’ such thab -, v’ in £ anda’SV'.

Thenrelative bisimilarity for M on £, denoted by~%", is the largest relative bisimu-
lation for M on L. We callM adequate forC if ~%* coincides with~ . on the agents
of M; if M has interfaceg, we write this asv?' = ~, [ 7. n
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Note that, fora ~2* b, we requireb only to match the transitions efthat lie in. M,
andb’'s matching transition need not lie iM. This means that relative bisimilarity is
in general not transitive, so it is not in itself a behavid@guivalence.

Relative bisimilarity is useful whem is adequate foZ; it reduces the class of
transitions to be checked. For example, usually fewer taéed involved.

In the case thaf is STwe can give a simple example of adequacy. It depends upon

the fact thatsT is closed under isomorphisme. if a -2+, @’ is a transition 06T then

SO ista >y ka' for any isos andx. Then when checking for bisimilarity with a
givena, intuitively it should suffice to consider newerytransition ofa, but only one
in every iso class. Thus these representative transitiomsld constitute an adequate
Lts. In fact this is true more generally (for a proof see [29])

e

Proposition 4.11 (representative transitions)Let £ be an Lts closed under isomor-
phism, and letM < £. Suppose that, for every transition=— o’ in £, there is a
transitiona =L, ka’ in M for some isos. ThenM is adequate for.

A deeper example of adequacy arises when we congateametricreaction rules; such
arule has garametricredexR, and generates a family of ground rules whose redexes
take the formr = Rd whered is a parameter. Most interesting reaction rules, e.g. in
the \-calculus, take this form; indeed we shall adopt it in bidyiapl reactive systems,
as already illustrated for CCS in Section 1 (Figure 2). Oumition is that the im-
portant transitions are those where the agent contribigagisantly to the underlying
parametric redex. We can make this precise in terms of stipperare interested in
transitions ofa whose underlying parametric red@kis such thata| N |R| # (. We
call such transitionengaged We may naturally expect that the engaged transitions
are adequate. In Section 9 we shall later prove this for acpdat class of bigraphical
reactive systems, thr@mpleones. In Section 11 we shall see in the case of CCS that
this greatly simplifies behavioural analysis.

We now look at a well-behaved kind of sub-Lts. For arbitravy < £ and
any given pair(L, \), it is possible thatM contains some but not all of the., A)-
transitions inZ. If this is not the case then the situation is somewhat simple

Definition 4.12 (definite sub-Lts) Let M < L. Call M definite forL if, for any
transitiona—=—> o’ of £, the pair(L, \) alone determines whether it lies.iv.

In this case we find that a relative bisimilarity is an abselone:
Proposition 4.13 (definite sub-Lts) If M is definite forl then~ ,, = ~"

An important consequence is that, if we know bisimilarityl#® a congruence of,
then the same holds for anyt definite and adequate fdr. In fact:

Corollary 4.14 (adequate congruence)Let M, with interface<Z, be definite and ad-
equate forL. Then

1. The bisimilarities onM and £ coincide atZ, i.e.~,, = ~ .| Z.

2. Forall I,J € Z, any contexC': I — J that preserves-, also preserves-,,.
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Part Il : Bigraphical structure

Section 5 defines the notion ofcancrete pure bigraptiormally, in terms of its
two constituents: @lace graphrepresenting locality and lank graphrepresent-
ing connectivity. Sections 6 and 7 define these two notions in turn, ensinang
they enjoy the necessary categorical properties, including RPOs. 1$&ctien
combines these constituents, yielding a theory of pure bigraphs wheteéyl@and
connectivity are independent. It defines important properties anchipes for
bigraphs; it also introduces a quotient functor from concretbractbigraphs,
where support is forgotten and the notions of occurrence and RPiGsare

5 Pure bigraphs: definition

In this section we define the notion plire bigraphformally, in terms of the con-
stituent notions oplace graphandlink graph which are dealt with in the following
two sections.

Let us begin with illustrations. An example of a bigraph aqmeel in Figure 1; it
illustrated how nodes are nested, and how —independentlyeohésting— they are
linked via their ports. Figure 3 shows another examplesitating more of the struc-

O

Figure 3: Resolving a bigraph into a place graph and a linglgra

ture of bigraphs. First, it shows how a bigraph may be reshivi® its two constituents,
aplace graphand alink graph This is what we mean by the independence of placing
and linking; the place graph (a forest) is completely incej@ant of the link graph (a
kind of hypergraph) as long as they shared the same nodeese{.b, . . ., v3}. (Con-
trols are not shown in this example.) If we forget everythimghe bigraph except the
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nesting of regions (dotted squares), nodes and sites (gteg)ithen we get the place
graph; if on the other hand we forget this nesting but retagninkage, we get the link
graph. From our definitions it will be clear that these twojgctions are full functors.

Using this example we can also describe composition. Ouaplghas width 2
(two regions), so it can inserted in a host graph having twessilt also hasuter
namesyy, y1; this means that the host bigraph must have tlaser namesallowing
linkage to be formed by composition. Equally, our bigraph traee sites (grey holes)
and inner nameséz, x1, 2 }; these provide for composition with a three-region client
that possesses these outer names. It should already bepparerat that composition
of two bigraphs can be described thus: first resolve into titoesits, then compose
these, and finally combine two larger constituents into aapl.

We are now ready for a formal definition.

Definition 5.1 (pure signature) A (pure) signaturekC is a set whose elements are
calledcontrols For each controk it provides a finite ordinakr(K'), anarity; it also
determines which controls asgomic and which of the non-atomic controls aetive
Controls which are not active (including the atomic corgyalre callegpassive ]

Note that a signature need not be finite, or even denumerabies a bigraph, though
itself finite, may denote an element of a continuous stateespa

As we saw in Example 1 in Section 1, a non-atomic node —one withnaatomic
control— may contain other nodes. A node’s control deteewiits ports, and if the
control is active then reactions are permitted inside thteené passive node —such as
aget-node in the CCS example— can be thought of as a script, orgmggawaiting
activation; this must take the form of a reaction that dgsttbe node boundary.

In refinements of the theory a signature may carry furthesrmftion, such as a
sign and/or asort for each port. The sign may be used, for example, to enforee th
restriction that each negative port is connected to exacitypositive port, as in action
calculi[11, 35]. Sorting of ports has been used to model Rets as bigraphs [39, 30].
Another possible refinement is to assign a sort to each dohfradetermining the
possible controls for the children of ay-node; we illustrate this in modelling CCS
in Section 11. In [25] we also defined an important refinembat &llows names to
havescope and controls tdind names. The theory gfure bigraphs is prerequisite to
understanding all these refinements.

We presuppose a denumerable Zedf names We shall defineeoncretebigraphs
top-down; here we define a bigraph as the combination of twstdoents, and in the
following sections we define those constituents themselves

Definition 5.2 (concrete pure bigraph) A (concrete) pure bigraplover the signa-
ture K takes the formG = (V, E, ctrl,G*,G") : I — J wherel = (m, X) and
J = (n,Y) are itsinner andouter faces each combining awidth (a finite ordinal)
with a finite set of global names drawn froAl. Its first two component¥ and £

are finite sets ohodesandedgesrespectively. The third componentrl: V — I, a

control map assigns a control to each node. The remaining two are:

G = (V,ctrl, prnt): m —n aplace graph
G' = (V,E, ctrl, link): X —Y alink graph.
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Place graphs and link graphs are defined in Definitions 6.17ahdespectively. We
call G the combinationof its constituentsz” andGt, writing G = (GP, GY). n

In concretebigraphs the nodes and edges have identity. The support oh@ete
bigraph consists of its nodes and edges; in terms of the tlefiniG| = V + E. We
shall work with s-categories of bigraphs, because RPO$ tivare.

In Section 8 we revisit bigraphs in order to develop theuctre, often by com-
bining attributes of their constituent place graphs ankl §raphs. In that section we
shall also take the quotient by support equivalence to olatbstractbigraphs. Un-
til then, unless otherwise stated we shall be concerned amiticrete bigraphs, place
graphs and link graphs so we shall omit ‘concrete’.

6 Place graphs

Definition 6.1 (place graph) A place graphA = (V, ctrl, prnt) : m —n has an
inner widthm and anouter widthn, both finite ordinals; a finite sét of nodes with

a control mapctrl : V — KC; and aparent mapprnt : myV —V W n. We write

w >4 w', Or justw > w’, to meamw = prat*(w') for somek > 0. The parent map
is acyclic i.e. we insist that>4 is a partial order. Aratom i.e. a node with atomic
control, may not be a parent.

The widthsm andn index thesitesandrootsof A respectively. The sites and nodes

—i.e. the domain oprnt— are calledplaces A place graph ihard if every root, and
every node except an atom, has a child. ]

In this paper we shall mainly consider hard place graphs. Waé therefore omit the
adjective ‘hard’; but we retain a subscripin the name of the s-category as a reminder.
Due to acyclicity, a place graph with outer widthis an ordered sequence of
unordered trees. The sites and roots provide the means @iasing two place graphs;
each root of the first is planted in the corresponding sitbefsecond. Figure 4 shows

two simple examples of compositioy Ay and B; A;. Formally:

Definition 6.2 (s-category of place graphs) The s-category "Bz}, has finite ordi-
nals as objects and (hard) place graphs as arrows. The s@b@oplace graph is its
node set. The compositiof, A, : my — ms of two place graphs

A; = (Vi ctrl;, prat;) : m; — myyq (1 =0,1)

with disjoint supports is4; Ag < (V, ctrl, prnt), whereV = Vo W Vi, ctrl = ctrlp &
ctrly, andprnt = (ldy, W prnt,)o (prnt, W ldy, ). The identity place graph at is
idy, = (0, 0xc, 1dy,) = m— m.

Thetensor product? in “PLGy, is defined as follows: On objects, we takes n <
m + n. For the productd, ® A; of two place graphs with disjoint support we take the
union of their node sets; for the parent mapAif: mqo — ng, we first offset the sites
and roots ofd, by mq andng respectively, then take the union of the two parent maps.

For an injective map on nodes, the support translatipnA is defined by system-
atic replacement of each nodéy p(v), preserving all structure. ]
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It is easy to check that the equations for an s-category &isfied.

Definition 6.3 (sibling, active, passive) Two places arsiblingsif they have the same
parent. A sites of A isactiveif ctrl(v) is active whenever > s; otherwises is passive
If sis active (resp. passive) iA, we also say thatl is active(resp.passivgats. =

When dealing with many place grapHs B, ..., instead of indexing their parent
maps ayrnt 4, prot g etc. we shall find it more convenient to abuse notation and de-
note the parent map of a place graplgain byA. The context will prevent ambiguity;
for example inB A we are talking of place graphs, while B A(v)) we are talking of
their parent maps. ThuBA)(v) means the parent map of the composite place graph
B A applied to the node.

Proposition 6.4 (isomorphisms in place graphs)An arrow . : m — m in "PLG}, IS
an isomorphism iff it has no nodes, and its parent map is atge.

Epimorphisms (epis) will play a central role, both for plag@phs and for link
graphs. Monomorphisms (monos) will also be used. In conmeetith monos, it will
be useful to adopt the following terminology: a place gragihmer-injectiveif no two
sites are siblings (i.e. the parent map restricted to stegactive).

Proposition 6.5 (epis and monos in place graphshh "PLG,,, every place graph is
epi; a place graph is mono iff it is inner-injective.

This is analogous to the category of sets with functions, re/tiiee epis and monos
are the surjective and injective functions respectivaigeled, in hard place graphs the
parent map is always surjective on roots; and to say that asit@s are siblings is just
to say that the parent map is injective from sites.

A related fact is that not only RPOs but pushouts exist inG\R but only for pairs
A: h—m that possess a bound. Before giving the construction ofquushwe give
three conditions on that will turn out to be necessary and sufficient for a bound, a
furthermore for a pushout. Roughly speaking, the conditiensure thatl, and A,
treat their shared sites and nodes compatibly; then a bBucah exist, sincé3, can
extendA, to include ‘the part ofd; not shared withd,’. Such a bound will also be a
pushout if, roughly, it adds no more than necessary for this.

Notation When considering a paif : h — m of place graphs with common sites
h, we shall adopt a convention for naming their nodes. We dgeti@ node set ofl;
(: = 0,1) by V;, and denotdy N V; by V5. Recall that meansl — i for i € 2. We
shall usev;, v., ... to range oveW; (i = 0,1, 2), andr;, r; to range over the roots:;
(¢ = 0,1). We shall also use., w), ... to range oveh W V5; this is useful because
shared sites behave just like shared nodes in our constnuzttipushouts. ]

Definition 6.6 (consistency conditions for place graphs)We define threeonsistency
conditions on a pairif : h — m of place graphs.
CPO ctrlg(ve) = ctrly(ve)
cPl If A;(w) € Vo thenw € hw Vo andAz(w) = A;(w)
cP2 If A;(wq) € V;—V, thenA;(w2) € my, and if alsoA;(w) = Az(ws)
thenw € hw V5 andA;(w) = A;(ws) . n
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Figure 4: A consistent pa'uI of place graphs, with boung

Let us expres€pPl andcpP2 in words; they are both to do with children of nodes. If
i = 0, cP1 says that if the parent of a plagein A is a node shared witd,, thenw
is also shared and has the same parent,;incP2 says, on the other hand, that if the
parent of a shared plaee, in Ay is anunsharednhode, then its parent id; must be a
root, and any sibling ofv, in A; must also be its sibling id,.

Necessity of these conditions is easy, and we omit the proof:

Proposition 6.7 (consistency in place graphsj)f the pair A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple exampl

Example 3 (consistent place graphs)Xonsider the paiJﬁf in Figure 4, each with two
roots and no sites; nodes with subscript 2 are shared. (@srre not shown). It is
worth checking that the consistency conditions hold, aatlittdeeds is a bound.

What happens if an extra noddas added tod; as a sibling of,? If u is unshared
thencp2 is violated, so no bound can exist.lis shared, then to preserve the consis-
tency conditions —in particulatP2— u must also become a sibling of in Ag; then
B remains a bound. n

Now, assuming the consistency conditions of Definition &6,shall prove that
there exists a pushout fot. (Thus, since any pushout is a bound, we shall also have
shown that the consistency conditions are sufficient forimbdo exist.)

Construction 6.8 (pushouts in place graphs) Assume the consistency conditions for
the pair of place graphA h — m. We define a pushou[f m — n for A as follows.

nodes: Take the nodes af’; to belV;— V5.
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interface: Definem! C m;, the roots to be mapped to the codomairby

) def

m;

{rem;|YvehwVy A;(v) =1 = Az(v) € mz} .
Next, on the disjoint sunm, + m/, define~ to be the smallest equivalence such that

(0,70) ~ (1,r1) wheneverdy(w) = ro and A (w) = r; for somew € hw V5. Then
define the codomain up to isomorphism by

n ® (miy +mf) /=~ .
For each € m/ we denote the--equivalence class df, ) by i, r.
parents: Define the parent mag : my — n as follows (4 is similar):

Forr € mg :

Co(r) & 0,7 if r € my
O A (w) ifr ¢ ml), forv e hw Vy with Ag(v) =
Forve Vi—Vs5:

def 1,r if Aj(v) =rem

Co(v) { Ay(v) if Ay(v) & my .
It is straightforward to check that eacty is hard. We also have to show that the
definition is sound. Thus in the second clausedpfr) we must ensure thate hw V5
exists such thatly(v) = r, and that each suchyields the same valug; (v) in V;—V5;
in the first clause foC’y(v) we must ensure that € m/. The consistency conditions
do ensure this, and also th@§ Aqg = C1 A;.

We now validate our construction:

Theorem 6.9 (valid pushout construction) If the pairff : h—m is consistent then
the pairC' : m — n defined by Construction 6.8 is a pushout for

Proof (outline) LetB be any bound ford. We define a mediating arro® such that
DC; = B; (i = 0,1) as follows. The nodes ab are those inB not in Vo U Vi, and
for any such node defineD(v) = B;(v) (i = 0,1). It remains to defineD(s) for
s € n. We haves = i,r for r € m;, fori = 0 ori = 1 or both. In either case,
setD(s) = B;(r). It can be checked from the definition of that this definition is
independent of the pait, ) chosen.

It is routine to check thaD(C; = B; (i = 0,1). Moreover,D is unique with this
property since eacty; is epi. This completes the proof. ]

The reader may like to check that the bound in Figure 4 is afsashout.

7 Link graphs

Link graphs capture the connectivity of bigraphs, ignorihgir nesting. There is a
close formal analogy, but there are also differences, lEwhe theories of place
graphs and link graphs.

As with place graphs, we assume a signattigssigning to eactontrol K an arity
ar(K). We also assume an infinite s&tof names
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Definition 7.1 (link graph) A link graph A = (V, E, ctrl, link) : X — Y has finite
setsX of inner namegY of (outer) namesV of nodesand E of edges It also has a
function ctrl : V — K called thecontrol map and a functioniink : X W P—FEF WY
called thelink map whereP = > ey ar(ctri(v)) is the set oportsof A.

We shall call the inner names and portsP the pointsof A, and the edge& and

outer name¥’ its links. ThesupportA is the set” W F of its nodes and edges. =

The outer and inner names are for interfacing, and will beoirtgmt in defining com-
position. When we talk of a ‘name’ without adjective, we mearoater name.

Definition 7.2 (idle, open, closed, peer, lean)A link is idle if it has no preimage un-
der thelink map. Outer names aopenlinks, edges arelosedlinks. A point (i.e. an
inner name or port) ispenif its link is open, otherwiselosed Two distinct points are
peersif they are in the same link. A link graph Isanif it has no idle edges. ]

Idle namesplay an important role; for example we may want to consider lvgraphs

as members of the same homset, even if one of them uses amnanaethe other does
not. On the other hand idledgesserves no useful purpose, but may be created by
composition. Sometimes we shall need to ensure that theegyopf leanness (no idle
edges) is preserved by certain constructions.

Definition 7.3 (s-category of link graphs) The s-category "l has name sets as ob-
jects and link graphs as arrows. The compositigrii, : X, — X5 of two link graphs

Ai = (‘/z, EZ', Ct’l"li, kal) . Xz —>X¢+1(7; = 0, 1)

is defined when their supports are disjoint; théno 4, = (V, E, ctrl, link) where
V =Vow Vi, ctrl = ctrlg W ctrly, E = Eg W Ey andlink = (Idg, W linkq) o (linko W
Idp, ). The identity link graph ai isidx = (0,0, 0, 1dx) : X — X.

Thetensor productz in “"LIG is defined as follows: On objectX] ® Y is simply
the union of sets required to be disjoint. For two link graphs X; —Y; (: = 0,1)
we takeAdy ® A; : Xy ® X1 — Yy ® Y; to be defined when the interface products are
defined and whenly, and A; have disjoint node sets and edge sets; then to form their

product we take the union of their link maps. ]

We can describe the composite link mapk of A; Ay as follows, considering all
possible argumengs € Xy W Py W P;:

lmk:o(p) ifpe Xow Py andlinko(p) e Ey
link(p) = ¢ linky(z) if pe XoWw Pyandlinko(p) =z € X1
linki(p) ifpeP.

By analogy with place graphs, we often denote the link mag efimply by A.

We have chosen to identify names in an interface alphaltigticat positionally.
This difference is mathematically unimportant. Alphabatinames are convenient for
link graphs just as they are convenient in #zealculus, and they also lead naturally to
forms of parallel product that are familiar from proces<uoél
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Proposition 7.4 (isomorphisms in link graphs) An arrow: : X —Y in "LIG is an
isomorphism iff it has no nodes or edges and its link map igection fromX to Y.

There is an important variant of tensor product that merggsranames, i.e. does not
require them to be disjoint. This has fewer algebraic prigpethan the tensor (cate-
gorically, it is not a bifunctor), but will be important in rdelling process calculi:

Definition 7.5 (parallel product) Theparallel product || in "LiG is defined as fol-
def

lows: On objectsX || Y = X UY. Onlink graphs4; : X; —Y; (i = 0, 1) we define
Ao || A1+ Xo ® X7 — Y, || Y: wheneverX, and X are disjoint, by taking the union
of link maps. n

Now, analogous to place graphs, let us call a link graguter-injectiveif no two
inner names are peers. Then we can characterise epis and a®falows:

Proposition 7.6 (epis and monos in link graphs)A link graph is epi iff no name is
idle; it is mono iff it is inner-injective.

Notation When considering a paiﬁ : W — X of link graphs with common domain
W, we shall adopt a convention for naming their nodes, portsestges. We denote
the node set ofl; (i = 0, 1) by V;, and denoté;, N V; by V,. We shall use;, v, ... to
range ovelV; (i = 0,1, 2). Similarly we usep; € P, ande; € E; for ports and edges
(: = 0,1, 2). However, we shall sometimes uysgalso for points, i.ep; € W W P;; the
context will resolve any ambiguity. ]

As the reader will have noticed, there is a striking formallagy between link graphs
and place graphs. But the analogy is not complete. For a parap isprnt: h &
V — V & m where both the domain and codomain include the nddewhile a link
map islink: W v P — E W X where the set® and E are disjoint; so unlike a parent
map, a link map cannot be iterated, i.e. a link graph has nomof nesting

If we did not insist on working witthard place graphs, where there are no empty
regions, then place graphs would possess RPOs but not, @radepushouts; in that
case the RPO theories for place graphs and link graphs acstidentical. The anal-
ogous ‘hardening’ of link graphs would be to require that mteo names are idle; in
that case link graphs also have pushouts (when consisiunt)ere again the analogy
fails; for in our intended applications it appears impolestb do without idle edges.

Thus we now embark upon an RPO theory for link graphs. Let ggbeith some
intuition. Suppose is a bound for4, and we wish to construct the RR@, B). To
form B, we shall first truncaté by removing outer names, and all points and edges
not present inA. Then for the outer face aB, we create a new link (a name) for
each point whose link was lost by the truncation, equatiegeémew names only when
required so thaBy o Ag = B1 o A;. Formally:

Construction 7.7 (RPOs in link graphs) An RPO(B: X — X, B: X — Z), for a
pair A: W — X of link graphs relative to a bounB: X — Z, will be built in three
stages. Since RPOs are preserved by isomorphism, we assgmég disjoint. We
use the notational conventions introduced above.
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nodes and edges:If V; are the nodes of\; ( = 0,1) then the nodes oD, are
Vz— Vo W V3 for someVs. Define the nodes oB3; and B to beV;— 15 (i = 0,1)
andV; respectively. Edgeg); are treated exactly analogously, and pdttsnherit the
analogous treatment from nodes.

interface: Construct the shared coglomafﬁhof B as follows. First, define the names
in eachX; that must be mapped int&:

X! E{reX,|Diz)e FswZ}.

Next, on the disjoint sunX, + X7, define> to be the smallest equivalence for which
(0,x0) = (1,21) Wheneverd,(p) = xo and A, (p) = z; for some poinp € W W Ps.
Then define the codomain up to isomorphism:

X (X, + X))/~
For eachr € X/ we denote théz-equivalence class @i, =) by iz
links: Define By to simulateD, as far as possible; is similar):

' g O/,E if v € X,
Forz € Xj: Bo(z) = { Do(z) ifz ¢ X
o [ Lz ifAQp=2cX
Forpe Pi—Py: By(p) & { ’ it A,
pEn—I o(p) Do(p) if Ai(p) ¢ X1 .

Finally defineB, to simulate bothD, and D; :

Fori € X : B(2) < D;(z) wherez € X; andi, z = &
def

Forp € Ps : B(p) :D2<])> . [ |

This definition can be proved sound, i.e. the right-handssid¢he clauses defining the
link mapsB; and B are well-defined links. Then the following is proved in [30]:

Theorem 7.8 (RPOs in link graphs) In 'LIG_: whenever apairéf of link graphs has
a boundD, Construction 7.7 yields an RP@, B) for B to D.

We now proceed to characterise all the IPOs for a given JﬁaiW — X of link
graphs. We ask: how does our RR’é, B) vary, when we keeﬂ fixed but vary the
given boundD? As for place graphs, ifl are both epi, thet? remains fixed and only
B varies, so that in this case there is a pushout. IrG}Rve confine ourselves to epis
(since every hard place graph is epi), but for link graphs eednto treat the general
case. The first step is to establish consistency conditions.

Definition 7.9 (consistency conditions for link graphs) We define threeonsistency
conditions on a paid : W — X of place graphs. We ugeto range over arbitrary
points, p;, pi, ... to range overP;, andps, pj, ... to range ovelV W P, the shared
points.

CLO ctrilp(ve) = ctrly(va)

cLl If A;(p) € Exthenp € W W Py and Az (p) = A (p) -

cL2 If A;(p2) € E;—E> thenAz(p2) € Xz, and if alsoAz(p) = Az(p2)
thenp eWuw P, andAi(p) = Ai(pg) . [ |
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Figure 5: A consistent paif of link graphs, with bound3

Again, let us expressL1 andcL?2 in words. Ifi = 0, cL1 says that if the link of
any pointp in Ay is closed and shared with,, thenp is also shared and has the same
link in A;. cL2 says, on the other hand, that if the link of a shared painh Ay is
closed andunsharedthen its link inA; must be open, and further that any peepof
in A; must also be its peer iAg.

Proposition 7.10 (consistency in link graphs)If the pair A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple exampl

Example 4 (consistent link graphs) Consider the paivéfz P — X of link graphs in
Figure 5, whereXy = {xg, 0,20} and X; = {x1,y:}. Nodes with subscript 2 are
shared. (Controls are not shown). The pair is consistetit, wdundB as shown. It is
worth checking the consistency conditions. ]

Now, assuming the consistency conditions of Definition 708,any given/f we
shall construct a non-empty family of IPOs.Afare both epi, then there is exactly one
IPO up to isomorphism, and it is a pushout; the construcsariase to that for place
graphs. Otherwise the same construction yields an IPOuiiindr IPOs can be gained
by elidingone or more of the idle names 4f into C; (: = 0, 1), i.e. the idle name can
be incorporated into any of the edges(gf The choice of elisions —each yielding a
different IPO— is represented below by the two functigng = 0, 1).

Construction 7.11 (IPOs in link graphs) Assume the consistency conditions for the
pair A : W — X. We define a family of IPO§': X — Y for A as follows.

nodes and edgesTake the nodes and edges(@fto bel;—V; and E;— Es.
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interface: Fori = 0,1 choose any subsét; of the namesX; such that all members
of L, are idle. Set; = X, —L,;. DefineK] C K, the names to be mapped to the
codomainy’, by

Kz{d:ef{l’i EKZ' |Vp€P2Al(p) =x; :>A7<p> EX;}.

Next, on the disjoint sunk’|, + K, define~ to be the smallest equivalence such that
(0,9) ~ (1,21) wheneverd,(p) = xo and A, (p) = x; for somep € W & P,. Then
define the codomain up to isomorphism:

Y & (K + K~ .

For eachr € K| we denote the--equivalence class df, =) by i,

links: Choose two arbitrary functiong : L, — E7— FE5 (i = 0,1). Then define the
link mapsC; : X; — Y as follows (we give’y; C is similar):

Forx € X :

0,z ifzec K}
Co(z) = Ai(p) ifze Kg—K}, forp e W Py with Ag(p) = =
no(x) ifz e Ly
Forpe PL—Ps :
e [T,z ifAp=2ecX
C def { ) ) 1 1
o(p) Ai(p) if Ai(p) & X .

The soundness of the above definition, and the factha a bound, can both be
routinely established.

Fortunately we shall not have to handle elisions in detaihis paper. It turns out
that they are avoided in situations where we need to anafyf#é@. This can be either
because thel; in question has no idle names, or becausehé question has no
edges (i.e. itis open).

The following characterisation theorem is proved in [30]:

Theorem 7.12 (characterising IPOs for link graphs) A pair C:X—YisanlIPO
for A: W — X iffitis generated (up to isomorphism) by Construction 7.11

8 Pure bigraphs: development

We now develop the theory of pure bigraphs. Proofs of prdipos in this section can
mostly be found in [25]. Several notions introduced herébeélused in Part 1l for the
dynamic theory.

First we combine the s-categories. @, and "LIG:

Definition 8.1 (s-category of pure concrete bigraphs) The s-category "Bs,,(K) of
pure concrete bigraphs over a signatiiréas interfaceg = (m, X) as objects, with
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origin e = (0,0), and bigraphs7: I — J as arrows. IfF' : J— K is another bi-
graph with|F'| N |G| = 0, then their composition is defined directly in terms of the
compositions of the constituents as follows:

FG = (FPGP F'GYY: I - K .

The identities ardid,,,,idx) : I — I, wherel = (m, X) . The tensor product of two
interfaces is defined byn, X)® (n,Y) £ (m+n, XwY) whenX andY” are disjoint.
The tensor product of two bigraplds; : I, — J; (i = 0, 1) with disjoint supports is
defined as follows, when its interfaces are defined:

Go®GLE(GEh oGl G5@GYY: In@ I —»Jy® J; . n

We shall omit the adjective ‘pure’ from now on. We shall alsoib‘concrete’ for
the present; but in Definition 8.10 we shall introdudestractbigraphs via a forgetful
functor. We shall continue to omit the signatuteexcept when it is important.

We now combine some familiar place graph and link graph siras:

Proposition 8.2 (isos, epis and monos in bigraphsA bigraph in BIG,, is iso (resp.
epi, mono) iff its constituent place graph and link graph bhath iso (resp. epi, mono).

We shall call a bigrapmner-injectiveif both its place graph and its link graph are so.
Thus a concrete bigraph is mono iff it is inner-injectivehéltwo properties differ for
abstract bigraphs.)

We now observe that bigraphs are an instance of a structure$ection 3:

Proposition 8.3 (bigraphs are wide) ‘BiG,(K) is a wide s-category. The interface
I = (n, X) haswidth(I) = n, and forG : (m, X) —(n,Y’) the width mapvidth(G)
sends each sitee m to the unique roo§ € n such that <¢ j.

It follows that when we later equip bigraphs with reactiotesuwe shall have a Wrs,
and then we can apply the main congruence theorem, Theo&rprédvided that we
have enough RPOs. So now we draw together our RPO resultsafoe graphs and
link graphs. We deduce from Theorem 6.9 and 7.8 the following

Corollary 8.4 (RPOs for bigraphs) In ‘B, an RPO forA to D is provided by
({Bg,Bs), (B, Br), (B, B))

where(BP, BP) is an RPO forAP and (BL, BL) is an RPO forAt to DL.

Similarly we deduce from Theorems 6.9 and 7.12 that:

Corollary 8.5 (IPOs for blgraphs) A pair B is an IPO for 4 in "BiGy, iff BPis a
place graph pushout fadP and BL is a link graph IPO forAL,

Example 5 (Bigraph IPOs) To illustrate IPOs in "BGy,, we can combine Example 3
for place graphs and Example 4 for link graphs, since theg tfa& same node sets. In
both cases the bounds are IPOs, and indeed pushouts because the gtﬁp!ms epi
in this case. The combination is shown in Figure 6. ]
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Figure 6: A consistent paid of bigraphs, with IPQB
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We now give a few special cases of IPOs. First, some pushbets¢ also IPOs)
that are easy to verify for any precategory:

Proposition 8.6 (containment pushout)If A is epi then the paif A, FA) has the
pair (F,id) as a pushout. In particular, by taking = id and I’ = id respectively:

1. Any pair(id, F') has(F,id) as a pushout.
2. If Alis epithen(A, A) has(id, id) as a pushout.
Next, tensor product preserves IPOs with disjoint support:

Proposition 8.7 (tensor IPO) LetC be an IPO for4 and D be an IPO forB, where
|A, C| N |B, D| = (. Then(CO ® Dy, C1 ® Dl) is an IPO for(AO ® By, A1 ® Bl),
provided that all the interface products are defined.

It follows, with the help of Proposition 8.6, that:

Corollary 8.8 (tensor IPOs with identities) Let A : I’ =T and B : J' —.J have
disjoint support, and let the names Bf I be disjoint from those of’, J. Then the
pair (A ®idy/,id; ® B) has an IPO(id; ® B, A ® id ). See diagranfa).

In particular if I’ = J’ = ethenA = a and B = b are groundbigraphs, and the
IPO is as in diagram(b).

(@) id; ® B (b) id; ® b
I ———= IxJ I——=1I®J
A®idj//]\ TA@idJ GT Ta@idJ
idiy ® B b
——=IRJ —_—=7

We now prepare to define abstract bigraphs. In these, as gedmive forget the
identity of nodes and edges, but we want to do a little morenBwvithout identity, idle
edges may still lurk in a bigraph; we want to forget these tGall a bigraphean if
its link graph is lean, i.e. has no idle edges. In Section 9 hadl :ieed to transform
IPOs by the addition or subtraction of idle edges. Let usenif’ for the result of
adding a sefr of fresh idle edges tal. The following is easy to prove from the IPO
construction for link graphs:

Proposition 8.9 (IPOs, idle edges and leannes$jor any pairsféf and B in "BIGy:
1. If Bis an IPO forA, and A; is lean, thenBy is lean.

2. For any fresh sefZ of edges,B is an IPO for A iff (B, BE) is an IPO for
(AlogvAl)

Definition 8.10 (Abstract pure bigraphs and their category) Two concrete bigraphs

A andB arelean-support equivalenwritten A < B, if after discarding any idle edges
they are support equivalent. The categongBX) of abstract pure bigraphé&as the
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same objects as 1B (K), and its arrows are lean-support equivalence classesef co
crete bigraphs. Lean-support equivalence is clearly arc@mge (Definition 2.5). The
associated quotient functor, assured by Definition 2.6, is

[-]: ‘BiGh(K) — BIGL(K) . n

Of course, there are also abstract versions of place grayoHg graphs. But we have
little use for them, for we cannot combine an abstract plaaeplgwith an abstract link
graph to form an abstract bigraph! (The combination only @sadense when nodes
have identity.)

The reader might expect that we could henceforth develoghmary in abstract
bigraphs, having constructed them. But this is imposs#iee they lack RPOs —and
even epis— in general. Counterexamples justifying botedlassertions can be found
in [25]. In contrast, the RPOs in concrete bigraphs will\allgs in Section 9 to derive
a behavioural congruence for (®&,; then we shall see how to transfer it, under certain
assumptions, to B&y,.

We shall now introduce some notation and concepts usedlowiiolg sections.

Notation We often abbreviate an interfa¢e, X') to X, and{x} to x; similarly we
abbreviatem, ) to m. Thus the interface and0 are identical with the origim, and
indeed the identityd, may be written variously as ) or 0. »

Definition 8.11 (wiring, closure, substitution) A bigraph with interfaces of zero width,
and hence having no nodes, is calladiang; we letw, ¢ range over wirings. They are
generated by composition and tensor product from two basing: /z: = — ¢, called
closure and open wirings, = which we callsubstitutions We denote the empty sub-
stitution frometox by x: ¢ — .

ForX = {z,...,z,} we write /X for the multiple closur¢z; ® - -- ® /x,, and
X for the empty substitutiom; ®- - -®x,,. For vectorse andy of equal length, with the
x; distinct, we writeV/z or (Yo /x, Y1 /21, . ..) for the surjective substitution; — ;.
Every substitutiorr can be expressed uniquelyas= 7 ® X, with 7 surjective. We
let o range overenamingsthe bijective substitutions. ]

Definition 8.12 (prime, discrete) An interface isprimeif it has width 1. We shall
often write a prime interfacé = (1, X) as(X); note in particular that = (0). A
primebigraphP: m —(X) has no inner names and a prime outer face. An important
prime ismerge: m — 1, wherem > 0; it has no nodes, and simply mapssites to a
single root. A bigrapltz: m —(n, X) with no inner names is converted byerge into
a prime(merge ® idx )G.

A bigraph isdiscreteif it has no edges, and its link map is bijective. Thus it ismpe
no two points are peers, and no name is idle. ]

Primes have no inner names; this ensures prime factonisati®roposition 8.15.

Definition 8.13 (ion, atom, molecule) For any non-atomic contrak” with arity &
and sequence of £ distinct names we define the discréda K, ;: 1 —(Z) to have a
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single K-nodewv, whose ports are severally linked o We omit the subscript when
it can be understood.

For a discrete primé> with namesY’, the composité Kz ® idy )P is a discrete
molecule If K is atomic it has no ion, but we define the discratem K z: € —(Z);
it resembles an ion but possesses no site. An arbitrary dismmete) ion, molecule or
atom is gained by composing® id; with a discrete one. ]

Atoms, ions and molecules are all prime. Atoms are grountjdns are not, and
molecules need not be.

Notation We often omit ! .. ® id;’ in compositions, when there is no ambiguity;
examples from above areerge G for (merge ® idx )G and Kz P for (Kz ® idy ) P.
Given a wiringw: Y — Z we may restrict its link map to any subs&t C Y,
yielding therestrictedwiring w [ X: X — Z. Then, if the outer face afr is (m, X)
we may write simplywG for (w [ X ® id,,)G. m

We now look at variants of the tensor product, to reflect thenmf ‘parallel composi-
tion’ p|| ¢ or p|q in process calculi, which allow the procesgeandq to share names.
We first extend the parallel product * of link graphs (Definition 7.5) as follows:

Definition 8.14 (parallel and prime product) Theparallel productis defined on in-
def

terfaces bym, X) || (n,Y) = (m+n, X UY'), and on bigraph&,: I, — J; (i = 0,1)
with disjoint support by

Go”Gl d:ef<Gg®GT,GI6 HGIi> I0®11—>JOHJ1

when the interfaces exist. Tpeime producis defined on interfaces kyn, X) | (n,Y) =
(1, X UY), and on bigraphs (under the same conditions) by

G0|G1 E merge(GOHGl): I()®Il—>J0|J1 . [ |

Both products are associative, ands the unit for ||. They are well-formed since
the factorsGy andG; are required to have disjoint inner names. The parallelyesbd
keeps their regions separate, while the prime product redfgEm. The notation
comes from CCS and the-calculus; the correspondence is accurate. Note thatro joi
a wiring to a prime we may write either| P or w || P; they coincide in this case.

Let us now considediscretebigraphs. In a precise sense they complement wiring:

Proposition 8.15 (discrete normal form) Every bigraphG can be expressed uniquely
(up to iso) as= = wD, wherew is a wiring andD is discrete. Furthermore every dis-
creteD: (m, X) —(n,Y) may be factored uniquely, up to isomorphism on the domain
of each factorD;, as

D=a®(Dy® - ® D,_1)m)

with « a renaming, eaclD; prime and discrete, ang a permutation.
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Note that a renaming is discrete but not prime (since it heswélth); this explaingy

in the prime factorisation. Its uniqueness depends on ttiiéHat primes have no inner
names. In the special case thatis ground, the factorisation is juf? = dy ® --- ®
d,_1, a product of prime discrete ground bigraphs.

Thediscrete normal form (DNFapplies equally to abstract bigraphs, and plays an
important part in the complete axiomatisation of pure kpgsa[40]. Discreteness is
well behaved in other ways. Clearly both composition anddeproduct preserve it.
IPOs also treat it well. In fact, we have:

Proposition 8.16 (properties of discretenessYhe discrete pure bigraphs form a sub-
s-category of BIG,. Moreover

1. If (D’,G")isan IPO for(G, D) and D is discrete, therD’ is discrete.
2. If D'G = wD with D and D’ discrete, ther{D’, w) is an IPO for(G, D).

We have to make one more preparation for Section 9 on dynakMhen we define
the notion of parametric reaction rule, we must allow a pa&taic redex to replicate
some factors of its parameter and discard other factors. ekample, the redeR
for CCS shown in Figure 2 discards two of the four factors. Bferesent this by an
operatior[-] on parameters calledstantiation The following definition ensures that
names are shared among all copies of a parameter factor.

Definition 8.17 (instantiation) Letr: n — m be a map of ordinals. For any this
defines a map
7: Gr(m, X) — Gr(n, X)

as follows. Decomposg: (m, X) into g = wd, whered: (m,Y) =dy® - Q@ dp,_1,
with eachd; prime and discrete. Then define

o] E w¥ | doll - || dhoy)
whered; = d, ;) for j € n. This map is well-defined (up to support translation), by
Proposition 8.15. ]

Support translation is used to ensure that the several £gpiparameter factor have
disjoint supportsY is included in the instantiation, since the namesigf - - - || d,_;

may be fewer thad™ whenn is not surjective. Indeed, this is how idle links may arise
from reactions.

Proposition 8.18 (wiring an instance) Wiring commutes with instantiation; that is,

¢(mla]) =7lCa] .
Proof Leta: (m,X), withn : m’ — m. Take the DNFu = wd, wherew: Y — X.
Thennla] = wd', whered' =Y || dy || --- || d;,,_; with eachd] = d, ;). So
ni¢al = 7M¢(wd)] = 7[(Cw)d]
= (Cu)d' = ((wd) = ¢(7la]) . L

We can now deduce how to apply instantiation to a productiofgs:
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Proposition 8.19 (instantiating a product) Let a;: (Y;) be prime and groundi(e
m), and letY =, Y;. Letn :: n —m be an map of ordinals. Then

Maoll -~ fam-a] =Y ool -~ [[bn-1
whereb; = a,,;) for j € n.

Thus, although instantiation breaks up a ground bigrapreireral, it does not break
up a prime; in fact, applied to a product of primes, it simmgssembles copies of the
prime factors.

More generally, if we instantiate a compos wherea is prime, thena will
not be broken up but the resulting instance may contain akgepies ofa. This fact,
which will be important for Section 9, means thgéa| can be transformed int@Gb]
by replacing a finite number of occurrences:dfy b. Formally:

Proposition 8.20 (instantiating with prime component) LetG: (X) —(m,Y) be ar-
bitrary with prime inner face, and :: n — m be a map of ordinals. Then for some

k > 0, if we choose disjoint renamings;: X — X; (i € k), there exists a context
C: (k,J; Xi) —(n,Y) such that

ﬁ[Ga] =~ C(ao K- ® ak_l)

whenevelGa is defined, where; = «;a.
Moreover for any paiw, b: (X) we haveT|Gal,7[Gb]) € (87)*, where

S ={(Ha, Hb) | H any context .

We are now ready to proceed to the dynamics of pure bigraphs.
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Part Il : Dynamics for bigraphs

Section 9 introduces the notion oftegraphical reactive systertBrs), which is
an instance of the notion of Wrs from Part |. The dynamics of a Brs igiged

by parametric reaction rules Transition systems are set up, as defined in Part
I; they are shown to yield congruential bisimilarity in both concrete and atistr
Brss. A special class afimpleBrss is defined; on the basis of work on Part I, it
is shown that the standard transition system for a simple Brs can be sigtiyfica
simplified. Section 10 introducesorted Brss, in which (as in sorted algebras)
the structure of bigraphs can be constrained in various ways to suit afimhis.

It is shown that manyortingsrespect the dynamic theory. Finally, Section 11
illustrates every aspect of bigraphical theory in terms of a finite fragofeGCS,
recovering exactly its original strong bisimilarity.

The concluding section discusses related and future work.

9 Reactions and transitions

We are now ready to apply our general notion of a wide reactypgtem (Wrs) to bi-
graphs. We begin this section by definingigraphical reactive systeifrs); we then
discuss its standard transitions and show their inducddhitasity is a congruence.
Thereafter we specialise the results to the well-behaviedass olsimpleBrss, where
we can find a smaller transition system adequate for the astdrahe.

Bigraphical reactive systems

To define the notion of Brs, it remains to define reaction roles bigraphs. We shall
give a Brs a little more structure than a Wrs, since —as hint&eretion 3 and already
illustrated for CCS in Figure 2 in the Introduction— we wishdentify theparametric
reaction rules that will generate the ground rules of a BisstHet us definectivity
for bigraphs.

Definition 9.1 (active bigraph) A bigraphD is active atthe sitei if every node>p i
has an active controlD is activeif it is active at every site. ]

This defines the activity map for 1B, (K) for any signaturelC, and it is a routine
matter to check that the conditions of Definition 3.3 hold.

For parametric reaction rules, we want a ground redex to hawghly the form
r = Rd, whereR is a parametric redex anéla parameter. But, since we are not
dealing with name-binding, we wish the outer names of tharpaterd to be also
outer names of; that is, R should not close them. We therefore choose parametric
redexes to have the for: m — J, and for any parametef: (m, X) we shall form a
ground redex = (idx ® R)d. Further, we shall use instantiations (Definition 8.17) to
determine how a parameter should be instantiated. We atite following:

Definition 9.2 (reaction rules for bigraphs) A parametric reaction ruldas aredex
R andreactumR’, both lean. It takes the form

(Rim—J, R :m'—J n)
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wheren: m’ — m is a map of ordinals. Then for every discrete (m, X) the para-
metric rule generates every ground reaction fule’), wherer = (idx ® R)d and
r’ = (idx @ R')7[d]. n

Consider Example 1 in Section 1, displayed in Figure 2. Ih¢hae we have
R: 4—(z) = alt(send, |id) | alt(get, |id), R':2—(x)==z]id]|id

and the instantiation is dictated by the ordinal mag — 0,1 — 2.

The reader may wonder why we choose parameters to be disbrééet the gen-
erated reaction relation would be unchanged if we allowéitrary ground bigraphs
as parameters, since the instantiation of any ground bigsagefined in terms of the
factors of its underlying discrete bigraph. But discreteapzeters simplify analysis
considerably, especially for transitions and bisimilarit

We are now ready to define our central concept:

Definition 9.3 (bigraphical reactive system) A (concrete) bigraphical reactive sys-
tem (Brs)over K consists of "BG,(K) equipped with a setR of reaction rules closed
under support equivalence). We denote it by "Bz, (K, "R). m

We have accented?, as well as “BG;,, to indicate that our redexes and reacta are con-
crete. Now, since we have determined both the ground reanaties and the activity
of a Brs, we can assert that

Proposition 9.4 (a Brs is a Wrs) Every bigraphical reactive system induces a Wrs.

We now turn to wide transition systems and bisimilarity. éfllSection 4 on these
topics can be applied to Brss, including the various traorsgystems: the full oneT,
the standard oneT, and the standard mono orsg. Most importantly, from Theo-
rem 4.6 and Corollary 4.7 we deduce a behavioural congruence

Corollary 9.5 (congruence of wide bisimilarity) In any concrete Brs with the stan-
dard transition systersT, wide bisimilarity~ is a congruence; also mono bisimilarity
~ is a congruence for mono contexts.

Recall that a bigraph in "B, is mono iff it is inner-injective; thus we understand
which labels will be discarded in passing fragm to 'ST. In particular, substitutions
¥z will be discarded unless they are injective.

Later we shall examine a particular class of Brss; it yieldsadequacy theorem
that significantly reduces the transition systestsand sT. But first let us transfer
our behavioural congruence to the abstract Bis,BC,R), where BG,(K) andR are
obtained by the quotient functr] of Definition 8.10.

This functor, the quotient by lean-support equivalencg (s a little coarser than
the quotient by support equivalence)( To transfer the congruence result we must
first prove that: respectsT:

Proposition 9.6 (transitions respect equivalence)n a concrete Brs witlsT:
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1. Every transition labeL is lean.

2. Transitions respect lean-support equivalencg i the sense of Definition 4.2.
That is, Wheneveaim a', ifa = band L = M with Mb defined, then
b2, b for someb’ such thata’ < b'.

Proof For the first part, use Proposition 8.9(1) and the fact thatyediscrete agent
is lean. For the second part, use Proposition 8.9(2); thetli@t each redex is lean
ensures that it cannot share an idle edge with the agent ]

We are now ready to transfer the congruence results of Goyd.5 from concrete
to abstract Brss. The following is immediate by invoking ®resm 4.9:

Corollary 9.7 (behavioural congruence in abstract Brss)Let A be a concrete Brs,
andA its lean-support quotient. Let denote both the bisimilarity fagTin ‘A and the
corresponding bisimilarity induced iA; similarly for ~ and'sT. Then

1. a ~ biff [a] ~ [b], anda ~ biff [a] ~ [0].

2. Bisimilarity ~ is a congruence i\, and mono bisimilarity~ is a congruence in
A for inner-injective contexts.

Note that the notion of ‘inner-injective’ is well-definedrfabstract as well as concrete
bigraphs. However, an inner-injectiabdstractbigraph need not be mono (in contrast
with concrete bigraphs); that is why we need a separate t®uinfor convenience we
shall still use the term ‘mono bisimilarity’ for the image #funder([-].

Simple Brss

We now proceed to look at a the classofiple primeBrss, whose redexes have certain
structural properties. Working in 1B, we are then able to show that engaged transi-
tions on prime agents are adequate for the standard tansystemsT. This yields
a tractable transition system, which we can then transfabgtract Brss over i8,,,
yielding a bisimilarity that is a congruence.

Recall from Section 7 that a link penif it is a name, otherwiselosed

Definition 9.8 (simple Brss) In "BiG,, or BiGy, call a bigraphopenif every link is
open. Call itguardingif it has no inner names, and no site has a root as parent.tCall i
simplé if it is inner-injective, open and guarding.

A Brs is simple(resp.prime) if all its redexes are simple (resp. prime). ]

We give without proof three easy properties of openness:

Proposition 9.9 (openness properties)

1This definition of ‘simple’ pertains only to pure bigraphs; efined definition for binding bigraphs
appears in [25]. Also, here we do not require a simple bigragetprime. We sometimes need primeness
as well as simpleness, but it seems natural to separate theotisos
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1. A compositionF'G is open iff both# and G are open.
2. Every open bigraph is lean (i.e. has no idle edges).

3. If Bis an IPO forA and 4, is open, therB, is open.

We are now ready to define a sub-TS of the standard transitgiars.

Definition 9.10 (engaged transitions) In “BiGy, a standard transition of is said to
beengagedf it can be based on a reaction with red@such thata|N|R| # (. Denote
by PE the transition system of prime interfaces and engageditiams Denote byPE
the sub-Lts in which the transitions are mono. ]

We wish to prove thapPE is adequate fosT (Definition 4.10), i.e. thatv?® = ~,
restricted to prime interfaces; then for primandb, to establistu ~, b we need only
provea ~f= b. For this we need only match eaehgagedransition ofa (resp.b) by an
arbitrary transition ob (resp.a). This is less work than matchiral transitions. Note
that therelative bisimilarity ~% should not be confused with tlasolutebisimilarity
~... (They will be proved equal under certain conditions.)

To prove thatz ~2 b impliesa ~, b for prime a andb, we have to show how
can match thaon-engagedransitions ofa, and the antecedent only tells us how to
match theengagedones. However, it turns out that a non-engaged transitianaain
be suitably matched bgnyb (whether or nots ~2¢ b). This is not surprising, because
a contributes nothing to such a transition, so replacing it lshould not prevent the
transition occurring.

All the foregoing remarks apply equally tee and ~
'ST.

The following theorem justifies our intuition, at least fairpe simple Brss. The
proof is in the appendix.

PE
sT!

its bisimilarity relative to

Theorem 9.11 (adequacy of engaged transitiondn a simple prime concrete Brs with
ST, the prime engaged transitions are adequate; that is, eeddgsimilarity~* coin-
cides with bisimilarity~,, on prime agents.

Similarly PE is adequate forsT, i.e. the engaged bisimilarity-.- coincides with
~¢ 0N prime agents.

In passing, we observe that simpleness and adequacy maesy ito verify two desir-
able properties of idle names (though they also hold morerngdii):

Proposition 9.12 (idle names and bisimilarity) In a simple prime concrete Brs with
ST,

l.a~biffr®a~xR0b.

2. a ~ b does not imply that andb have the same idle names.
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Proof (1) For the forward implication, use congruence. For theveose we verify
thatS = {(a,b) | x ® a ~  ® b} is a bisimulation. Let:Sb, and consider a transition
a-L, a’. We easily deduce that ® a %2~ +, 2 ® o/, hencer @ b—9=2L . p/
wherex ® o’ ~ b”. Assuming simpleness it can be shown that this transition®fb
cannot involve an elision af. Itis then easy to verify thdt’ takes the formx ® b’ (up

to isomorphism), where——, ¥'. But thena’St’ and we are done.

(2) Consider finite CCS with the rule of Example 1 in SectionSuppose it has at
atomic controhil representing the null process. The agensend,send,nil attempts
to send on the channel which is closed, and then to send g@nlit has a single outer
namey that is not idle. On the other hand the agemb nil has an idle nameg. But
neither agent has an engaged transition, so they are kasimil ]

We now wish to transfePE to abstract Brss, via the quotient functor
[[]] : 'Bigy, — BIGy, .

To do this, we would like to know thatk is definitefor ST (see Definition 4.12), for
then by Proposition 4.13 we can equate the relative bisiityila-2* with the absolute
one~,.. For this, we need to know that, from the pélr, \) alone, we can determine
whether or not a transitiom—=— a’ is engaged.

It turns out that this holds in a wide range of Brss, includiing natural encoding
of w-calculus and ambient calculus. This is because they adifgat simple structural
condition, namely that no rule subsumes another in theviatig sense:

Definition 9.13 (subsume) Define ctrl(G), the control of a bigraphG, to be the
multiset of controls of its nodes. Say that a rule with redegsubsumesnother rule
with redexR if ctrl(R) C ctrl(S). "

Note that this property applies equally to concrete andrabisBrss; indeed a concrete
Brs has a subsumption iff its image under the quotient funcphas a subsumption.
Now with the help of Corollary 4.14, we deduce

Corollary 9.14 (engaged congruence)n a simple prime concrete Brs with no sub-
sumption:

1. The engaged transition systemis definite forsT.
2. Engaged bisimilarity~,. coincides with~,, on prime agents.
3. For any context” with prime interfacesg ~,. b impliesCa ~,. Cb .

Analogous properties hold farE, ST, ~,. and ~,, with C' inner-injective.

We now proceed to transfer engaged transitions and bisitgifaom concrete to
abstract bigraphs. Note that the term ‘engaged’ is definédfonconcrete bigraphs;
but for convenience we shall call an abstract transiéingagedf it is the image under
[-] of an engaged transition; and we shall also call refer toriladed bisimilarity of
abstract bigraphs angaged bisimilarity
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Now recall from Proposition 9.9 that every simple bigraphesn. We therefore
derive the analogue of Corollary 9.7, witte and PEin place ofsTand'sT, under extra
assumptions:

Corollary 9.15 (engaged congruence in an abstract Brs).et A be a simple prime
concrete Brs with no subsumption, and ketbe its lean-support quotient. Let,.
denote bisimilarity both foPein "A and for the induced transition systejre] in A,
and similarly for~,.. Then

1. a ~ biff [a] ~u [b], anda ~.. biff [a] ~.. [b].
2. InA, ~,.is a congruence and . is a congruence for inner-injective contexts.

Proof  Note that the quotient functor satisfies the conditions oédrem 4.9. In
particular, by Proposition 9.6 it respe@sandPE, being sub-Ltss o§ T and of ST. So
the theorem yields (1) immediately. It also yields (2) witle telp of Corollary 9.1

Thus we have ensured congruence of engaged bisimilaritpiabstract Brs Bz, (K)
satisfying reasonable assumptions.

10 Place sorting

In this short section we extend our Brs resultpkace-sortedBrss, in which a sorting
discipline constrains the parent map, thus limiting the iadible bigraphs. We begin
with a brief motivation for sorting.

In significant applications we are quite likely to employ ehrisignature, and to
need some constraint on the way in which bigraphs may be lftolt example, given
a control K, we may want to constrain the children of&node to have only certain
controls; or we may want to constrain the linkage allowedsfmme or all of the ports
of a K-node. The latter kind of discipline we may célk-sorting an instance of
it was used in [30] for representing Petri nets. The former e-¢bnstraint on the
parent map— we shall cafilace-sorting Of course, we may combine link-sorting
with place-sorting.

Without a more definite notion of what constitutes a sortirggigline, we cannot
expect our bigraph theory to remain unaffected by sortig.example, the discipline
could prevent the existence of a tensor product, or of RPQsnmay admit RPOs but
affect their construction. Associated with any sortinggine there will be a forgetful
functor to unsorted bigraphs; the effect of the disciplimewor theory will often be
determined by properties of this functor. We began to ingagt this question in [38],
and Jensen will continue the investigation in his forthaognmiPhD Dissertation [23].
In this paper we shall confine ourselves to defining placargpand give sufficient
conditions (analogous to those given in [25] for link-siogli to ensure that it does not
damage our theory; then, in Section 11, we shall use an icstahplace sorting to
encode finite CCS in bigraphs.

In the following © will denote a non-empty set gbrts andé will range overo.
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Definition 10.1 (place-sorted bigraphs) An interface with widthn is ©-(place-)sorted
if it is enriched by ascribing a sort to each place m. If I is place-sorted we denote
its underlying unsorted interface b¥(I).

We denote by "Bs,(K,0) the s-category in which the objects are place-sorted
interfaces, and each arro@: I — J is a bigraphG: U(I) —U(J). The identities,
and composition and tensor product are as irGHBK), but with sorted interfaces. m

Note that the width of an interface has been enriched fronrdimal m to a sequence
in ©™; for example, a prime interface takes the foféh X). Adding sorts to inter-
faces has, of course, done nothing to constrain the intestnatcture of bigraphs in
"BIGL(K,0), but has provided a means for adding such constraint, aowelafine:

Definition 10.2 (place-sorting) A place-sortings a triple
¥ =(K,0,)

where® is a condition or®-sorted bigraphs ove€. The condition® must be satisfied
by the identities and preserved by composition and tensayat.

A bigraph in "BGy(K, ©) is X-(place-)sortedf it satisfies®. The X-sorted bi-
graphs form a sub-s-category of i@ (/C,0) denoted by "BG(X). Further, if R is a
set ofX-sorted reaction rules then (&, (2, “R) is aX-sortedBrs. ]

We shall usé/("R) for the underlying unsorted reactions. .

Even with only a single sort (i.e. effectively no sortinggth are interesting exam-
ples, sinceP may impose constraints that have nothing to do with sorts sisple
example, it may decree that each root or node has at most dde @he reader may
like to confirm that this sorting satisfies the required ctiods.) As another example,
it can represent atomicity of controls and nodes, by deegettiat nodes with certain
controls haveno children. Other examples, including the homomorphic ageide-
fined at the end of this section, are naturally expressed $tyafssigning a soft € ©
to every control, and then imposing constraints upon a plyia terms of the sorts
thereby associated with nodes.

However, arbitrary sorting constraints may destroy ouotigefor example, they
may prevent the existence of RPOs. What conditions must vee jola a place-sorting
¥ = (K, 0, ®) to ensure that our theory is preserved? This question isdpsstered
in terms of the obvious forgetful functor which discardstsor

U : BIG(X) — BIGh(K) .
We shall call/ asortingfunctor. Such functors have certain properties:

Proposition 10.3 (place-sorting is faithful) On interfaces a sorting functor is sur-
jective (but not in general injective). On each homset itlsdaithful, i.e. injective
(though not in general surjective) .

We need more structure than this if we wish to apply our tteorstheory to a well-
sorted Brs. Consider two properties that a functor of sgmates may have:
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Definition 10.4 (creating RPOs, reflecting pushouts) Let 7 be any functor on an
s-categoryA. ThenF creates RPOH, wheneverD bounds4 in ‘A, then any RPO for
F(A) relative toF (D) has a uniqueF-preimage that is an RPO fet relative toD.

F reflects pushouts, wheneverD boundsA in ‘A and F(D) is a pushout for
F(A), thenD is a pushout ford. "

Corollary 10.5 (creation ensures RPOs)If F : ‘A — B creates RPOs and8” has
RPOs, therA has RPOs.

We shall often confus® with its functor; for example we say creates ...’ etc.
As with link-sorting [25], it turns out that if a place-sorg satisfies the two condi-
tions of Definition 10.4 then we get sufficient structure far transition theory:

Theorem 10.6 (useful place-sortings)n "BiG,(2, “R):

1. If ¥ creates RPOs then., is a congruence, and, is a congruence for mono
contexts.

2. Ifin addition: reflects pushouts an is prime simple, thereis adequate for
sTand PEis adequate forsT.

Note thatsimplenessf a well-sorted link graph is just as for a pure one. (Indeetsy
functors both preserve and reflect simpleness.) We omit tbef pf the theorem; it
follows closely the lines of Theorems 4.6 (proved in [30]de&h11 (proved in the
Appendix). For the latter, the reflection of pushouts emafleoposition A.1 in the
Appendix to be proved for a well-sorted Brs.

We shall not explore the variety of sortings that satisfy ww conditions. But in
Section 11 we shall use a natural kind of sortihg= (XC, ©, @), in which a sort in®
is ascribed byd to each control iriC; thus each node of a bigraph acquires the sort of
its control. Then® admits only those bigraphs in which all sites or nodes lymthe
same region have the same sort; moreover, if the region émost then this must be
the sort ascribed to the corresponding root. More precisely

Definition 10.7 (homomorphic sorting) In a homomorphicsorting® = (K, 0, @)
the condition® assigns a sor to each control inC. It also defines a parent map
prnt: © — © over sorts. Then a bigraph is admissible iff, for each siteantew,

— if prnt(w) is a node then the sort assigned to its contr@kist () ;
— if prnt(w) is aroot then its sort ig. n

We can then deduce from the RPO construction for place grdyalhs

Proposition 10.8 (homomorphic sorting is well behaved)Every homomorphic sort-
ing creates RPOs and reflects pushouts.
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11 CCS revisited

We are now ready to see how our results apply to pure CCS [B88Jvhich we gave
a reaction rule in Example 1 of Section 1. This provides a migplication of the
adequacy theorem and of place sorting, introduced in phegesctions.

We limit ourselves to finite pure CCS with the following syxit&Ve shall letP,
range ovemprocessesnd M, N oversums(or alternationg; each summand of a sum
Is a process guarded by an actibof the formz or z.

P = 0|vzP |P|P|M
M = AP | M+M
A n= f}:p

Restrictionv is the only scoping operator, and the free names of a procegssathose
not bound by . This is essentially the syntax of CCS as given in Definitidnef [34],
if 0 is taken to be the empty sum and process identifiers are aimitte

This syntax is two-sorted; we shall therefore translatetd an sorted s-category of
abstract bigraphs B, (Xcs), whereX..s = (K, ©, ®) is a homomorphic place sorting
(Definition 10.7). We shall have two sor®, = {p, m}, wherep is for processes and
m is for sums. The sorting..s assigns both a sort and an arity to each control:

nil: (p,0) alt: (p,0) send: (m,1) get: (m,1)

indicating thaiil andalt construct elementary processes, whded andget construct
elementary sums. It also declareékto be atomic and the other controls to be passive.
Now recall that each interface will be sorted, assigningrateeeach place in its width.
Finally, the sorting conditio® imposes the parent mgp — m, m — p}.

We shall map CCS processes and sums into ground homsets nvite mter-
faces of the formp, X) and(m, X'). Thus we define two translation maps (-) and
Mx (+), each indexed by a finite name-s€t from finite pure CCS into Bs.; they
are defined wheneve¥ includes all free names of the argumént so each process or
sum has an image in many prime ground homsets.

Definition 11.1 (translation of finite CCS) The translation®x (-) for processes and
M x (-) for sums are defined by mutual recursion:

Px(0) = X|nil Mx(z.P) = send,Px(P) (ze€X)
Px(vaP) = fJyPyox({¥/2}P)| Mx(@.P) = get,Px(P) (z€X)
Px(P|Q) = Px(P)|Px(Q) | Mx(M+N) = Mx(M)|Mx(N).

Px(M) = a|t./\/lx(M). [ |

Note that, in translatingz P, x is first alpha-converted to someZ X. We shall write
alpha

P = @ to mean thaf” is alpha-convertible t@). A substitution{¥/z} on CCS terms
IS metasyntactic, and not to be confused with the bigegphof zero width.

Note that restriction and parallel composition are modkedlgectly by closure and
prime product, and need no extra controls. It is perhapgisurg that summation+’
of CCS is also represented using prime product. But priméduywrbin bigraphs is a
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purely structural or static operation, with no commitmemtaihy dynamic interpreta-
tion. The distinction between parallel composition and swation in our bigraphical
encoding of CCS is achieved by the form of its reaction ruteye shall see.

Our translations are not injective on prime ground homsétsfact they induce
upon CCS an equivalence that is close to the structural congruence defined in Def-
inition 4.7 of [34]; the differences will be discussed shoriBut, due to sorting, the
translations arsurjective this can be proved by induction on the number of nodes in a
prime ground bigraph. We now make these points more prgcisel

Definition 11.2 (structural congruence) Definestructural congruencever CCS terms
to be the smallest equivaleneepreserved by all term constructions, and such that

PE QimpliesP = Q, and M =" N impliesM = N;
‘|"and '+ are associative and commutative under,
vavyP = vyvx P,
veP =P and vz (P|Q) = P|vz@ foranyz not free inP;
v A\.P = A vzP and v (M+A\.P) =M + AvaP
for anyz not free inM or A. ]

agrpONE

Note that clauses 4 and 5, taken in reverse, allow a restmieti to be pulled outwards
from any parallel component and any summand respectivelys gives rise to the
following, analogous to the standard forms of Definition ih.§34]:

Proposition 11.3 (CCS normal form) Every CCS process is structurally congruent
to anormal formyzy - - - vz, P (¢ > 0), whereP is anopen process formontaining
each name; free. Open process forms are defined recursively as follows:

e anopen process forns a process ternd; | - - - | P, (m > 0), where eactP; is
either0 or an open sum form;

e anopen sum forms a summation term/; +- - -+ M,, (n > 0), where each\/y
takes the form\. P for some open process fori

These forms, with restrictions outermost, are importamtroving the following theo-
rem. It states essentially that each of our translationtfans from CCS to bigraphs is
a bijection from structural congruence classes to a priroargt homset:

Theorem 11.4 (bijective translation)
1. The translation®x () and M x (-) are surjective on prime ground homsets.
2. P=Qiff Px(P)=Px(Q), and M = N iff Mx (M) = Mx(N).

Proof (outline) For (1) we prove, by induction on the number of rooteeach prime
ground bigraph, that it has at least one pre-image for theoppiate translation func-
tion.
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For the forward implication of (2) it is useful first to provBy induction on the
structure of process terms, that
PEQ implies Px(P)="Px(Q)
and M E' N implies Mx (M) = Mx(N):

then the main property can be proved by a similar induction.

For the reverse implication of (2) first observe that, by thevard implication,
it will be enough to prove the result wheh and ) are normal forms. For this, by
considering the restrictions iR and@, the task may be reduced to proving the property
for open process forms. Finally, the property for open pssderms and open sum
forms can be proved by mutual induction on their structurethls proof the crucial
step is to show, in bigraphs, thatdf (i € m) andb; (j € n) are ground molecules
such that

ar| - |am=by| - |bn,

thenm = n, anda; = b,(;) for some permutation onm. m

Having thus found an accurate representation for CCS tepmne structural con-
gruence, we should point out two discrepancies betweenatier land the standard
version of structural congruence.

First, we do not havé’ | 0 = P; this is because we cannot encdilby the empty
prime bigraphl, sincel is absent in hard bigraphs. This may seem to be a disadvantage
of the latter. On the other hand hard bigraphs are easier tk with, and also truer
to our intuitions in this case. For, in soft place graphs,sitandard behavioural theory
would makel bisimilar to no other process! This is in conflict with theuition thatO
in CCS should be bisimilar to every deadlocked process, asel z.0. Our encoding
of 0 as an atomic contralil in hard bigraphs does reflect this intuition. Moreover, as
we shall see, we obtajm| nil ~ p as abisimilarity in bigraphs.

The second discrepancy is clause 5 of Definition 11.2, whilchva restriction to
be pushed through an action prefix. In finite CCS this is a viakd But in CCS
with recursion (or replication), we cannot encode a rebimcx as name-closure in
bigraphs, since this would not meet the requirement that/eéastance of a replicated
process containingz should have its own ‘private copy’ af. Jensen [23] will present
a proper encoding of restriction in such a case.

Now let us consider dynamics fori®..s. In our finite CCS we have the single
reaction rule

P+ M)|(x2Q+N) — P|Q,

which may be applied in any unguarded context. On the othed & BIG..s we
have the reaction rule from Example 1, shown again here iar€ig with algebraic
expressions for the redei® and reactumR’. It is easy to demonstrate that there is
an exact match between the reaction relations generate@&add in BG., in the
following sense:

Proposition 11.5 (matching reaction) P — P’ iff Px(P)—>Px(P’),
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alt(send, | id) | alt(get, |id) x|id|id

Figure 7: The reaction rule foriB .

This exact match with CCS reaction has been achieved by agikiabstract bi-
graphs. We now want to match with the original behaviourabtly of CCS, which
took the form of bisimilarity based upon a labelled tramsitsystem whose labels are
not contexts. For the purpose of this comparison we havegi@sl into concrete bi-
graphs, since that is where we find the RPOs on which our ctuatektss are based.
So our starting point is the concrete sorted Brs

def

,Ble‘ccs = ,BlGh(Ecc57,Rccs) )

its reaction ruleg R, R',n) € "R consist of all pre-images (witR and R’ lean) of
the single abstract rule ofiB..s shown in Figure 7.

Our first step is to check that the prime engaged transition8iGc . yield con-
gruential bisimilarities:

Corollary 11.6 (concrete bigraphical bisimilarities for CCS) The bisimilarity~,. in
"BIG.cs IS @ congruence, ané,. is a congruence for mono contexts.

Proof 2 First note from Proposition 10.8 that the sortiig. creates RPOs and re-
flects pushouts. Then deduce from Theorem 10.6 that-bgthnd~., are congruences
(for suitable contexts) and, sinc& .. is prime and simple, thatke (resp.PE) is ad-
equate forsT (resp.'sT). Next, check thapEe is definite forsT (similarly for PE and
'ST), i.e. the membership of a prime transitionsaf in PE is determined solely by its
label. To see this, note that every parametric reldyas four nodes, so a transition is
engaged iff its label has fewer than four nodes.

Finally, deduce from Corollary 4.14 that both,. and ~,. are congruences (for
suitable contexts) in "Bc. n

Now recall that we are using the terrag and PE both for concrete Ltss and for their
abstract images under the quotient[by. So, by analogy with Corollary 9.15, we are
finally able to deduce two congruential bisimilarities irr digraphical representation
of CCS:

2Apart from the need to consider sorting, we could appeattiréo Corollary 9.14 for this result.
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Corollary 11.7 (abstract bigraphical congruences for CCS)In BIG:
1. Two processes are bisimilaxr(,, ~,.) iff their concrete pre-images are bisimilar.

2. ~,. IS acongruence, and,. is a congruence for inner-injective contexts.

We devote the rest of this section to analysing these biarityilcongruences in
B1G.. This will depend upon a structural analysis of the traosgiinPE and PE, and
for this purpose we refer back to their pre-images inG&;,, where we rely strongly
on the fact that they are engaged.

Every prime transitiop - p’ arises, then, from a ground rule, ) with redex
r = alt(send,d - -) | alt(get, e --)

where * -’ stands for zero or more further factors in a discrete primeglpct, andp, )

has and IPQ L, D) for some activeD, Also p shares at least one of the nodes of the
underlying parametric redeR: the twoalt-nodes, thesend-node and theet-node.
What are the possibilities? Singehas sorfp, if it shares thesend-node then it must
also share its pareatt-node; similarly for theget-node. So there are two main sharing
alternatives:

e p shares both nodes in one factor®but none in the other;
e p shares all four nodes dt.

The former divides clearly into two symmetric cases. Theetadlso divides into two
cases; either theend- andget-ports are joined by a closed link or they belong to
possibly different open links.

p: 1 L:1—J p':J condition
1| /Z(alt(send,a --)|b) idy | alt(get,c - ) /Z(al]b)]|c x ¢ Z
2| /Z(alt(getya --)|b) | idr|alt(send,c - -) /Z(a|b)|c x ¢ Z
Z|(al dyag - - .
3 / leiifgz:mafo' -))|b) idy /Z(ag | a1 |b) none
4 /Z(alt(sendag - -) y/e /Z Y]z x #y;

(a0|a1|b) %?J?zZ

| alt(get,a; ) ]b)

Figure 8: The four forms for an engaged transitiof— p’

In Figure 8 we tabulate these four cases. It shows the staucfip, L andp’ in
each case, also taking account of the fact that —for a reatdioncur— anyalt-node
shared with? must occur actively ip. In the tablea, b, ¢, . . . stand for any processes,
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and “-’ for zero or more factors in a prime product; in the labels a$&s 1 and 2 this
product must be discrete. Note that, according to our cdivery/x here denotes a
substitution(p, X) —(p, Y), whereY = (X —x) U y; its link map sends to y and is
otherwise the identity.

Before discussing this system let us establish a promisguepty:

Proposition 11.8 (unit for prime product) p ~ p|nil .

Proof We shall prove the following relation to be a bisimulation:

S = {(p, p|nil) | pan agent .

First, suppose—» p’ by the ground rulér, r’); then the underlying IPO is as diagram
(@) withp” = Dr’. Since none of the possible labdls(see Figure 8) guards its site,
the IPO status is retained by addingibfactor to bothp and D, yielding an IPO as in

(b), and thug | nil £ (D | nil)#’ = p’ | nil, maintaining the relatios.

(@) L__ by _L _
D T TD p|ni|/]\ TD|niI

In the other direction, suppogd nil £ ¢/ by the ground rulér, r'); then in the
underlying IPO, by commutation, theél node cannot be shared byand indeed the
IPO must be as in diagram (b), with = (D | nil)r" = Dr’ | nil. But the IPO status is
retained by the omission of this shangttnode, yielding an IPO as in diagram (a), so

that we haver—— Dr’, again maintaining the relatiaf.
This completes the proof. [

We are now ready to compare our derived transition systemtvé original CCS
transitions, as presented in Part | of [34], which we shdllleare theraw transitions;
they used the non-contextual labels

o = E|a:’7’

where the first two represent sending and receiving a mesaade represents a com-
munication within the agent. Rather than reverting to CO8asy; we set up the tran-
sitionsp —— p’ of this raw system directly in Bs; this will ease our comparison.
The structure of the agents and label of each transitionasacterised in Figure 9.

It can be seen that the raw transitions with these labelgspand closely to the first
three forms shown in Figure 8; the notable difference is thate first two forms, the
contextual label is composed with the agent, and the rektiiedransition is therefore
larger than for the raw transitions.

However, there is no raw transition for the fourth (substi) form of Figure 8;
this is closely connected with the fact that the original C@8milarity, which we
shall denote here by, is not preserved by substitution. But the labels of the first
three forms are mono, and the la¢l, of the fourth is not, since the namesy are
distinct and both occur in the agent’s interface. This glpsuggests —as we shall
now verify— that mono bisimilarity coincides with CCS biglarity.
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D o P’ condition

1| /Z(alt(senda --)|b) | T | /Z(a|b) rd¢ 7

2| /Z(alt(get,a --)|b) x /Z(a|b) VA

/Z(alt(sendag - -)
|alt(get,ai --)|b)

T | /Z(ap|ay|b) none

Figure 9: The three forms for a raw transitipr— p’

Theorem 11.9 (recovering CCS)Mono bisimilarity recovers CCS, i.6: = ~ .

Proof (2) To show~ D ~ it will suffice to prove that

S “ {(C’p, Cq) | C mona p ~ccs (]}

is a bisimulation for~; the result follows by taking’' = id. Assumep ~.s ¢, and

let Cp 2L+ with € and M both mono and underlying ground rule ). We seek a
matching transition fo€’q.

M

(a)
C C' \F (b)
L L
_— _—
Tﬁ Sﬁ

For some activé” we have(M, F') an IPO for(Cp,r) andu’ = Fr’. Taking the
RPO for(p, r) relative to(M C, F'), as in diagram (a), and using basic mono properties,

we obtain an IPO for a mono transitipr’—p’ £ D/, so that’ = C"p’.

We now argue by cases for the mono lalhel For case 1 of Figure 8, wheie
contains get-node, from the form op and case 1 of Figure 9 we readily get the raw
transitionp —— p” wherep’ = p’’ | c. Butp ~c ¢ by assumption, s@ —— ¢” with
P’ ~cs ¢”. We also note that’ = (C” | ¢)p”.

From case 1 of Figure 8 again we deduce a similar forng fevith different values
for Z,a,b). Hence, again applying case 1 of Figure 8, we dedudes ¢ £ ¢” | c,

with some underlying ground rulg, s’). This has an IPO shown in diagram (b); by

replacing it for the lower square in diagram (a) we thus obtaj 2= £ (C’ | ¢)q”,

and we are done singg ~.. q”.
The argument for case 2 of Figure 8 is exactly similar, and &as analogous; case
4 cannot arise sincé is mono. This completes the proof thatD ~ .

(©) For the reverse inclusion it suffices to prove tRais a bisimulation for~ .
Assumep ~ ¢ andp —— p'; we seek a matching transitign— ¢’ such thap’ ~ ¢'.
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If « = 7 then the structure gb andp’ is dictated by case 1 of Figure 9. Now,
choosingL = alt(get,nil), we find from case 1 of Figure 8 thatZ—>p’ | nil. Since
p ~ ¢ we haveg—Z—+ ¢” with p’ |nil ~ ¢”. By case 1 of both Figures 8 and 9 there

existsq’ such thaty” = ¢ |nil andg — ¢'. Appealing to Proposition 11.8, we then
findp’ ~ ¢’ as required.

The argument fotv = x is exactly similar. The argument far= 7 is even simpler,
using case 3 of both Figures 8 and 9. This completes the pnadoft C ~, and the
proof of the theorem. m

Having obtained a good match in original CCS for our derivezhmbisimilarity
~, we naturally look for a similar match for full derived bigiarity ~. Since this is
preserved by all contexts, even substitutions, a naturadidate isopen bisimilarity
as defined by Sangiorgi and Walker [49]. This congruence isaal gleal simpler for
CCS than it is for ther-calculus. Defined in BG..s over the raw transition system, it
consists of the smallest relatievf_, such that, for all substitutions,

if p ~° qgandop - p/, thenoq = ¢’ andp’ ~°_, ¢’ for someq’.

Since~ and~2_ are both coinductively defined, it is relatively easy to cangpthem.

In fact~ is strictly finer tham-2... The proof of inclusion follows the lines of our proof

ccs*

that~ C ~s. A counter-example to equality is provided by the pair
P=vz(Z+%2)|(y+2)) Q=vz(@Ty+yT+72)|2)

where for convenience we use CCS notation, abbreviatiddo \. This pair illustrates
an interesting point. When translated intoGB., P is has a transition labelled/y;
this can be seen as an ‘observation’Byhat its environment has connected thénk
with they-link. On the other handy has no such transition; 98 - (). But in the raw
transition system such ‘observations’ are absent, ancethéte~2 ., Q.

This concludes our brief study of bigraphs applied to CCSiclwvinas revealed
considerable agreement with its original theory.

12 Related and future work

We first turn to related work by other researchers, apart fiftuzose already mentioned
in the Introduction. The discussion then moves towardsspkamd ideas for future
research.

The longest tradition in graph reconfiguration —often catieaph-rewriting— is
based upon thdouble pushou(DPO) construction originated by Ehrig [14]. Our use
of (relative) pushouts to derive transitions is quite distifrom the DPO construc-
tion, whose purpose is to explain the anatomy of graph-tewgrrules (not labelled
transitions) working in a category of graph embeddings gitiphs as objects and em-
beddings as arrows. This contrasts with our contextuategoaies, where objects are
interfaces and arrows are bigraphs. But there are linksdesivihese formulations,

3This is because CCS agents never export restricted namepg sxtrusion’).
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both via cospans [17] and via a categorical isomorphism éetwgraph embeddings
and a coslice over s-categories [11]. Ehrig [15] has regentlestigated these links
further, after discussion with the author, and we beliee¢ tiseful cross-fertilisation is

possible. In the paper just cited, Gadducci, Heckel andre&$egura [17] represent
graph-rewriting by 2-categories, whose 2-cells corredptmnour reactions. Several
other formulations of graph-rewriting employ hypergrapfts example Hirsch and

Montanari [21]; their hypergraphs are not nested, but tavgirules may replace a
hyperedge by an arbitrary graph. Drewetsal [13] deal with hierarchical graphs, but
their links do not join graphs at different levels.

Another use of 2-categories is by Sassone and Sobocinski [Bey generalise
RPOs togroupoid RPOs, in a 2-category whose 2-cells (i.e. arrows betweenwvajr
are isomorphisms. They advocate treating dynamic en{ggs bigraphs) as arrows
in such a 2-category. The 2-cells keep track of the idenfityaales, which is essen-
tial for RPOs to exist, and have the potential to serve asesgies for rich structural
congruences. An advantage in that approach over s-catsgsrthat composition is
total; a disadvantage is the more complicated notion or @R¥hother advantage of
2-categories is that they lie closer to ‘standard’ categioepry. However, the demands
of our application are rather unlike those in other categbrapplications; for exam-
ple, it is essential —as our case studies have shown— to haeetatile analysis of
the transitions based upon RPOs. Our s-categories areébeledived, and lend them-
selves to this task. Thus for our work so far the motivatiarpi@ssing to 2-categories is
weak. For the future, the 2-categorical approach cleadgnes further development;
the two approaches may then become complementary, not ¢tibonpe

Concerning labelled transitions and bisimilarity, in necevork Merro and Hen-
nessy [31] and Merro and Zappa Nardelli [32] have developeesting labelled tran-
sition systems for the ambient calculus [9]; their labets@ntextual. These appear to
be the most detailed studies so far of behavioural equigakefor that calculus. As we
now see, agreement with the bigraphical approach is begpestablished.

In his forthcoming PhD Dissertation [23], Jensen develdgsaphical theory in a
number of directions of intrinsic interest, which also sofipnore refined case stud-
ies on behavioural analysis. First, he extends the work akveeimilarity begun by
Leifer [28]. Second, he puts binding bigraphs (where nanaee Iscope) on a firmer
footing than in [25], which gave their initial formulatiofthird, he develops the theory
of sorting, which was first used in [30] to encode Petri natsl &hich was here illus-
trated in Sections 10 and 11. With these techniques, stilvidg transition systems
uniformly for Brss, he deals with the futl-calculus, and establishes a close match with
the above-mentioned systems for ambients.

There is a large body of literature on rewriting systems amthe \-calculus, com-
prehensively reported by Klogt al [53] and by Barendregt [1]. So far, the work on
bigraphs has related chiefly to process calculi and thes. Liswill be important to
establish links with the tradition of rewriting systems.r égample, the notion of con-
fluence (of a rewriting system or some part of it) is likely vk very broad application
in real-world pervasive and distributed systems, as dgsmlibriefly below. To this end,
scoped names in bigraphs are under further exploration {@is]found that multiple
locality of names enables parametric reduction systenty as the\-calculus, to be
represented succinctly. By this means, we hope that teghgitpr confluence —and
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other aspects of rewriting systems— can be lifted to bigsaplnere this broad range
of applications can find expression.

One such application is to biological processes, alreadygbexplored by (for
example) Cardelli [7], building on an original model by Shapet al [47, 46] that
used ther-calculus for this purpose. Cardelli has shown that moreatlimodelling
is possible using the spatial quality of ambient-like reactules. But such experi-
ments expose the need to adapt or extend spatially-awarelsydite ambients and
bigraphs, to accommodate real-world phenomena that lierzkeyheir present scope.
One of these is a stochastic treatment of non-determinisohgeeloped in particular by
Priami [45] for therr-calculus and used in the paper by Shagit@al. Another impor-
tant extension is to add the continuum, to allow continu@astions. This is already
done for ther-calculus by Rounds and Song [48] in tikecalculus, which combines
the mobility of ther-calculus with differential equations for the behaviouredl (i.e.
continuous) variables. There is no barrier to this extensidigraphs, since nothing in
our formulation prevents a control signature from beingueerably infinite or even a
continuum; for example, a family of controls indexed by tealmumbers to represent
distance. Of course there are technical hurdles to overeemat least in the handling
of infinitesimals.

Process theory also has strong tradition of non-standajiddsuch as temporal
logic or the modaj:-calculus; these allow incremental analysis of procedsasause
simple properties (as opposed to full specifications) ofsiesy can be expressed and
verified one by one. For bigraphs, the obvious challengefiatioa logic that isspatial
as well as temporal. Indeed, work by Caires and Cardelli atigdogics for mobile
ambients [8] has already been under way for a few years, anddas a promising
starting point for a logic for bigraphs. A first step is takarthis direction by Conforti
et al[12], where it can be seen that the independence of placiddimking leads to
simplicity in the logical consructions.

An initiative is being undertaken at the IT University in @b@agen, to design a
bigraphical programming language) [26, 4, 5, 20]. It is lgdBirkedal, Elsman and
Hildebrandt. Two principal ideas are guide the project:t fitlsat programming and
specification should arise out of sufficiently developedthigsecond, that a practi-
cal language for experimental use in designing commumigagystems is an essential
vehicle for engineers to exert influence on further theoa¢tievelopment.

Conclusion The bigraphical model aims not only to generalise existiragess the-
ories but also to reach a level at which experiments can beatadun describing and
analysing real-world pervasive and distributed systero#f) man-made and natural.
Such experiments will certainly find shortcomings, thusofhg challenges to de-
velop the model. By responding to these challenges, bunmetathe continuity with
existing calculi, we can aspire to a unity in process modglthat will truly justify
preliminary efforts undertaken in computer science forartban three decades.
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APPENDIX

A The adequacy theorem

This appendix is devoted to proving Theorem 9.11, assetti@eg@dequacy of engaged
transitions for prime agents in a simple prime concrete Brs.

We begin by considering the IPO underlying a standard ttiansi——> o’ with
redexR. The IPO can be decomposed into an IPO pair, as shown in theadia We
find that, for simpleR, the diagram consists of pushouts. From now on we shall call a
transitionsimpleif its underlying redex is simple.

] par Lred

a Dpar D
d idw @R

Proposition A.1 (transition pushouts) In a concrete Brs, the IPO pair underlying a
simple standard transition consists of pushouts.

Proof Let the IPO pair underlying a transitian-—, «’ be as shown in the diagram.
In the left square there can be no elisions frérsince, being discrete, it has no idle
names; and there can be no elisions fremto LP?", because the latter is open (since
d is open). Thus the IPO is unique up to iso, hence a pushoutaithaenent for the
right square is similar, using the simplenesdof m

We continue with two lemmas about non-engaged transitions.

Lemma A.2 In a concrete Brs, suppose a simple standard transition tsengaged.
Let its underlying IPO pair be as in the diagram. ThBA*" = D’ ® id,,, for someD’,
up to isomorphism, wherne is the inner face ofz.

Proof Since|DP¥| C |a| we also havéDP*| N |R| = ). Let K be the outer face
of DP¥". We have to prove, for each sitec m, that: has no siblings inDP*" and
Dr (i) = kisarootink.

SinceR is guarding,R(i) = v for some nodey, hence(L™ DP¥r)(i) = v. Butwv
is not in DP?" by assumption, s®P* (i) = k and L"™¢(k) = v for some rootk. Now
suppose has a sibling, i.eDP*"(w) = k for some site or node # i. Then we have
(L DPar)(w) = v, whence alsd?(w) = v. If w is a site this contradict® inner-
injective; if it is a node then it contradict®?*'| N | R| = (. Hence no such can exist.
This completes the proof. ]

Lemma A.3 In a concrete Brs let be prime. Let:—+, a’ be a non-engaged simple
standard transition based updi, R’, ), with underlying IPO pair as in the diagram.
Let|a| N |d| # (. Then|a| C |d|, andL™¢, D anda’ take the following form up to iso:

L' =idy @R, D=w®id; and o = (idy ® R)H[L"a].
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Proof From Lemma A.2 we find thabr*" takes the formDP* = D’ ®id,,, up to iso,
whereD’ has domairi¥ (with zero width) andn is the inner width ofR.

We now claim thatD’ has no nodes. For there exists a nade |a| N |d|; if there
exists any € |D’| then alsa € |a|, hence (becauseis prime) we would have, v in
the same region akP?"q but different regions of)P?"d, contradictingl.”P®"a = DP?"d.
Thus|a| C |d|, andDP*" = w ® id;, withw : W — W' a wiring.

By Proposition A.1 the right-hand square in the diagram isshput, and hence a
tensor IPO by Corollary 8.8. This yields the first two equasioFor the third:

o/ = D(idw ® R)7ld]
= (idy ®@ R')(w ®id;/)7[d]
(*) = (idw ® R)nl(w®idr)d]

= (idw' @ R')7[LP"a]

where at(x) we commute an instantiation with a wiring, by Propositioh8. ]

We can now prove the adequacy theorem.

Theorem 9.11 (adequacy of engaged transitions)In a simple prime concrete Brs
with ST, the prime engaged transitiomE are adequate; that is, engaged bisimilarity
~fe coincides with bisimilarity~,, on prime agents. SimilarlyE is adequate forsT,
i.e. the engaged bisimilarity® coincides with<,, on prime agents.

Proof We first treat the case o and~,, writing them as~" and~ respectively.

It is immediate that- C ~** restricted to primes. For the converse we must prove
thatag ~ a1 impliesay ~ a;. An attempt to show that™ is a standard bisimulation,
i.e. a bisimulation fosT, does not succeed directly. Instead, we shall show that

S = {(CCEQ,CCM) | a ~FE al}

is a standard bisimulation up to support equivalence amitree closure. This will
suffice, for by taking”' = id we deduce that-™ C ~.

Suppose thaty ~* a;. Let Cag ﬁm b(, be a standard transition, with/ C'a,
defined. We must finét, such thaCa, 2+, v, and (b)), b;) € (S=)*.

There exists a ground reaction rube, ;) and an IPO —the large square in dia-
gram (a) below— underlying the given transition@#,. MoreoverE is active, and
if width(cod(rg)) = m thenwidth(FEy)(m) = p andby = Eyr{. By taking an RPO
for (ag, ro) relative to(MC, Ey) we get two IPOs as shown in the diagram.

Now D, is active, so the lower IPO underlies a transitign-2—s ay, = Doy,
whereA = width(Dg)(mg). Also E is active at\, andb; = Eaj. SinceMCa, is
defined we deduce théla, is defined, and we proceed to show in three separate cases
the existence of a transition -, a’y, with underlying IPO as shown in diagram (b).
(We cannot always infer such a transition for whigh~" a/, even though we have
ag ~°F a1, since the transition af, may not be engaged.) Substituting this IPO for the
lower square in (a) then yields a transition

M def
Cay—>, b} = Ed .
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In each case we shall verify th@k,, b} ) € (S=)*, completing the proof of the theorem.

(a) L
C £ \Eo (b)
L L
_— _—
ag Dy al/]\ T D,
o 1
_— _—
Case 1 The transition ot is engaged. Then sineg is prime, by considering the

IPO (L, Dy) and the outer face ab, we find thatay, is prime, so the transition lies
in PE. So, sincezy ~* ay, there exists a transitiom, —=—» a, with ), ~ a/. This
readily yields the required transition Ofa; .

Case 2 |ag| N |ro| = 0. Then the lower IPO of (a), being a pushout by Proposi-
tion A.1, is tensorial; so up to isomorphism we have

L=idyg ®nmro andD0:a0®id.

Thena, = E'ag, whereE’ = id @ r),. TakingC’ = EE’, we haveb), = C"ay.

Form the IPO (b) by taking; = ro andD; = a; ® id; this underlies a transition
ar o ay, £ E’'ay. Substitute it for the lower square in (a), yielding a tréiosi
Ca, 2, b, £ Ed). Thend, = C'ay, so (b}, ;) € S as required.

Case 3 The transition ofug is not engaged, byty| N |ro| # 0. Then there is a
reaction rulg R, R, n) with |ag| N |R| = (), and a parametel, such that

ro = (idw, ® R)do and r{ = (idw, ® R')7[do] .

AssumeR: m — J. Sinceay is prime, from Lemma A.3 we find that, up to isomor-
phism, the IPO pair underlying the transitionagftakes the form of diagram (c) below,
and moreover that), = (idy ® R") j[LP*ay)] .

c d
( ) I par Lred — idW/®R ( ) par Lred — idW/®R
ag wo®id ai w1 ®id,, w1 ®id
do idWO®R dy idVV1 RR

We shall now find a similar transition far;. We first consider.”® a,. Sinced, is
discrete we know by Proposition 8.16(1) tHa¥" is discrete; by Proposition 8.15 we
can find a wiringw; : W7 — W' and discretel; : W7 ® m such thatLP*a; = (v ®
idy, )d1. By Proposition 8.16(2) this represents a pushout. By aijgia tensorial
pushout, we have an IPO pair as shown in diagram (d). Ther&fpmanipulations as
in Lemma A.3 we have

def

aLoyad, E (w ®@idy)(idw, ® R)7ld4]
= (idw ® R) QL7 aq] .
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As in the previous case, this yields a transit©a; ﬁDH b} e Ea’j. Now comparing

the similar forms ot anda’, and sincey, ~™ a, (both prime), we appeal to Propo-
sition 8.20 to find a sequenes, . . . ¢, such thaby = ¢, ¢, = b} and(c¢;—1,¢;) € S©
for 0 < i < k, and thugb;, b)) € (S)* as required.

This completes the proof that is adequate fosT, i.e. that~** coincides with~
on prime agents. The corresponding proof for mono tramstithatPE is adequate
for 'sT, follows exactly the same lines; in this case we limit theteatsC' to be mono
and —as in Corollary 4.7 to the congruence theorem— we usedsie properties of
monos to ensure that the only transition labels arisingemptfoof are mono. ]

As we have seen in case 1 of the proof, when a simple transitiéa, o’ is engaged,

anda is prime, then so ig’. Thus, in proving the bisimilarity of prime agents, we can
indeed confine attention to bisimulations containing omlyne agents.
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