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Pure bigraphs

Robin Milner

University of Cambridge, Computer Laboratory,
JJ Thomson Avenue, Cambridge CB3 0FD, UK

Abstract Bigraphs are graphs whose nodes may be nested, represent-
ing locality, independently of the edges connecting them. They may be
equipped with reaction rules, forming abigraphical reactive system(Brs)
in which bigraphs can reconfigure themselves. Brss aim to unify process
calculi, and to model applications —such as pervasive computing— where
locality and mobility are prominent. The paper is devoted tothe theory of
purebigraphs, which underlie various more refined forms. It begins by de-
veloping a more abstract structure, awide reactive system(Wrs), of which
a Brs is an instance; in this context, labelled transitions are defined in such
a way that the induced bisimilarity is a congruence.

This work is then specialised to Brss, whose graphical structure allows
many refinements of the dynamic theory. Elsewhere it is shownthat be-
havioural analysis for Petri nets,π-calculus and mobile ambients can all
be recovered in the uniform framework of bigraphs. The latter part of the
paper emphasizes the parts of bigraphical theory that are common to these
applications, especially the treatment of dynamics via labelled transitions.
As a running example, the theory is applied to finite pure CCS,whose
resulting transition system and bisimilarity are analysedin detail.

The paper also discusses briefly the use of bigraphs to model both perva-
sive computing and biological systems.
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Part I : Mathematical framework
The introduction provides a rationale for bigraphs, and a synopsis of thewhole
paper. Section 2 introducess-categories, including the notion ofsupportwhich
will be used to identify occurrences of entities within bigraphs; it also defines rela-
tive pushouts(RPOs), which are important for the behavioural theory of bigraphs.
Section 3 introduces the abstract notion of awide reactive system(Wrs); it is not
graphical, but gives prominence to spatial extension, orwidth. Section 4 defines
transition systemsfor Wrss, which may be used to define bisimilarities and other
behavioural relations. It is shown that, for transitions based on RPOs, bisimilarity
is a congruence. Varieties of transition system are defined and analysed.

1 Introduction

Bigraphical reactive systems [36, 38, 37, 24, 25, 39, 30] area graphical model of com-
putation in which bothlocality andconnectivityare prominent. Recognising the in-
creasingly topographical quality of global computing, they take up the challenge to
base all distributed computation on topographical structure. A typical bigraph is shown
in Figure 1; it represents a highly simplified system of information flow and computa-
tion in a built environment, which we shall soon discuss in more detail. Such a graph
is reconfigurable, and its nodes (the ovals and circles) may represent a great variety of
computational objects: a physical location, an administrative region, a human agent,
a mobile phone, a computer, a sensor, a data constructor, aπ-calculus input guard, a
mobile ambient, a cryptographic key, a message, a replicator, and so on.

Bigraphs are a development of action calculi [35], but simpler. They use ideas
from many sources: the Chemical Abstract machine (Cham) of Berry and Boudol [3],
theπ-calculus of Milner, Parrow and Walker [42], the interaction nets of Lafont [27],
the mobile ambients of Cardelli and Gordon [9], the explicitfusions of Gardner and
Wischik [19] developed from the fusion calculus of Parrow and Victor [44], Nomadic
Pict by Wojciechowski and Sewell [54], and the uniform approach to a behavioural
theory for reactive systems of Leifer and Milner [29]. This paper distills the static and
dynamic theory ofpure bigraphs; refinements of this model will derive their theory
from it, and will be treated in later publications.

The challenge from applications

The long-term aim of this work is to model computation on a global scale, as repre-
sented by the Internet and the Worldwide Web, and more recently by pervasive com-
puting. The aim is not just to model systems already designedand running; beyond
that, we seek a theory to guide the specification and programming of these systems,
and to guide their future adaptation. The so-calledvanishing ubiquitous computerof
the future is within reach of today’s technology. Tounderstandit is a goal less publicly
perceived, but nonetheless essential if we are to avoid the systems that are as stagnant
and inscrutable as today’s legacy software, and on an even larger scale.
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So we have to reverse the typical order of events in which design and implemen-
tation come first, modelling later. (For example, programming languages are hardly
ever based thoroughly on a theoretical model, yet they are pivotal in all our implemen-
tations.) Such ‘retro-modelling’ leads to an understanding of designed systems that is
brittle, and that deteriorates seriously as the systems evolve under changing demand.
In the long run, system designs must be expressed from the outset with the concepts
and notations of a theory rich enough to encompass all that the designers wish.

The arrival of ubiquitous mobile computing offers an opportunity for this, simply
because it is new enough for its languages and implementation techniques not to be
entrenched. Moreover, concurrency theories already provide a conceptual frame in
which to study distributed mobile systems, and they offer structures for new languages.
Thus, through experimental applications, designers and analysts may come to speak
the same tongue. As a specialised but significant example, both Petri nets and theπ-
calculus are now adopted to assist design of systems for the management of business
processes [52].

Global computing presents huge demands, and we cannot expect to arrive immedi-
ately at the right model. We have to strike a compromise between fine-tuning existing
models on the one hand, and making too large a leap on the otherhand. A model must
grasp many aspects of real systems if it is to be seriously used in experimental design,
and thus provide the feedback necessary to improve the modelitself. If we merely
adopt the classic scientific approach of tackling each aspect of global computing sep-
arately, we may develop elegant separate theories yet find ourselves unable to unify
them. On the other hand to tackle all aspects is too hard. Thisuncomfortable dilemma
is not faced in natural science, since there the objects of study typically remain stable
—in so far as they are independent of human designs.

Our strategy here is to tackle just two aspects of mobile systems simultaneously:
mobile localityand mobile connectivity. Already this combination presents a chal-
lenge: to what extent are locality and connectivity interdependent? In plain words,
doeswhere you areaffectwhom you can talk to? The answer must lie in the level of
modelling. To a user of the Internet (seeing it abstractly) there is total independence,
and we want to model it at a high (i.e. abstract) level, just asit appears to users. But to
the engineer these remote communications are not atomic; they involve chains of in-
teractions between neighbouring entities, and we must alsoprovide a low-level model
which reflects this reality. These two levels must surely be part of a single multi-level
model that explains how higher levels arerealisedby lower levels.

Of the two levels, the lower is the less novel. Indeed, von Neumann’s cellular
automata are the original paradigm for it; his agents were arranged on a fixed grid and
interaction could only occur between neighbours. But in such a concrete model we
hope torealisea higher level view in which a single agent is represented by different
cells at different moments, and may send messages to other distant agents. So the
challenge we address here is to provide the means to view locality and connectivity
as dependently —or independently— as you wish, and to correlate these views. This
seems to require new mathematical structures, and bigraphsattempt to provide them.

As very simple illustration, consider a crude version of asentient built environment,
modelled as a bigraph in Figure 1. The model is a bigraph, which means that there are
two structures on the nodes; they may be nested, and they may also be connected by
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Figure 1: A bigraph for communication in a built environment

links. The linkage is independent of the nesting, so links often cross node boundaries.
Nodes may be of many kinds, each represented by acontrol (A,B,. . . ) associated
with each node. (The shape of nodes is suggestive but redundant.) For this particular
bigraph:

• The two regions (dotted squares), each with one building (B) may lie arbitrarily
far apart in a larger system, e.g. one in France and one in Australia.

• The four agents (A), perhaps humans equipped with devices, are conducting a
conference call.

• The computers (C) in each building are networked as part of its infrastructure
—another embedded subsystem.

• Many reconfigurations are possible. An agent may abandon theconference call;
an agent may enter or leave a room (R); on entry, the computer (equipped with
sensor) may connect with him/her; a computer network may contribute to the
conference call; a room may become inoperative because of fire; and so on.

Of course we have so far considered only discrete events; butcontinuous events and
stochastic behaviour must also be modelled. These structures for modelling such man-
made systems are not far from those (discussed later) that have already been used to
model behaviour of biological cells.

In defining bigraphs for such modelling, we wish to embrace familiar calculi of
mobile processes, which deal with interaction and mobilityin different ways. We also
want a theory that can be specialised to each of these calculi, and therefore unifies
them. This leads naturally to the second of our twin challenges.
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The challenge from process calculi

Existing process calculi have made great progress with communication [6, 2, 22, 33],
mobile connectivity [42, 16] and mobile locality [3, 9]. There is some agreement
among them, and their behavioural theories are well developed. At the same time the
space of possible calculi is large and not well understood. In particular, as shown by
Castellani’s [10] comprehensive survey, widely varying notions of locality have been
explored; this implies equal variety in their treatment of mobility.

The challenge from process calculi is to provide a uniform behavioural theory, so
that many process calculi can be expressed in the same frame without seriously af-
fecting their treatment of behaviour. We now outline how research leading up to the
bigraphical model has addressed this challenge.

It is common to present thedynamicsof processes by means ofreactions(also
known as rewriting rules) of the formr ⊲ r′, meaning thatr can change its state tor′

in suitable contexts. In process calculi this treatment is typically refined intolabelled

transitionsof the forma ℓ
⊲ a′, where the labelℓ is drawn from some vocabulary

expressing the possible interactions between an agenta and its environment. These
transitions have the great advantage that they support the definition of behavioural pre-
orders and equivalences, such as traces, failures and bisimilarity. But the definition of
those transitions tends to be tailored for each calculus.

So can these labels bederiveduniformly, given a set of reaction rules of the form
r ⊲ r′? A natural approach is to take the labels to be certain (environmental)con-

texts; if L is such a context, the transitiona L
⊲ a′ implies that a reaction can occur in

L ◦a leading to a new statea′. (As we shall see, bigraphical agents and contexts live
in a category, or more generally an s-category, where the compositionL ◦a represents
the insertion of agenta in contextL.) Moreover, we would like to be sure that the be-
havioural relations —such as bisimilarity— that are determined by the transitions are
well-behaved.

But we don’t wantall contexts as labels; as Sewell [51] points out, the behavioural
equivalences that result from this choice are unsatisfactory. How to find a satisfactory
—and suitably minimal— set of labels, and to do it uniformly, remained open for
many years. As a first step, Sewell was able uniformly to derive satisfactory context-
labelled transitions for parametric term-rewriting systems with parallel composition
and blocking, and showed bisimilarity to be a congruence. Itremained a problem to do
it for reactive systems dealing with connectivity, such as theπ-calculus.

This was overcome by Leifer and Milner [29], who defined minimal labels in terms
of the categorical notion ofrelative pushout(RPO), also ensuring that behavioural
equivalence is a congruence. These results were extended and refined in Leifer’s PhD
Dissertation [28], and applied to action graphs with rich connectivity [11]. Mean-
while bigraphs were developed from action graphs; they wereinspired by the simplic-
ity that comes from treating locality and connectivity independently, by the mobile
ambients of Cardelli and Gordon, and by Gardner’s development [18] of action graphs
with undirected edges. This theoretical development has been augmented by a se-
quence of case studies applying the bigraph model to existing calculi, including the
π-calculus [24, 25], mobile ambients [23], Petri nets [39, 30] and theλ-calculus [41].
These give confidence that the model can incorporate existing theories.
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Figure 2: A bigraphical reaction rule for CCS with summation

Each of the case studies involved some specialisation of thebigraph model. The
present paper is devoted topure bigraphs, which underlie these specialisations. It con-
centrates mainly upon the theory but illustrates it by application to finite pure CCS as a
running example. Sequel papers will specialise the model invarious ways, for example
to binding bigraphswhich allow scope and binding for certain names, thus admitting
more refined applications. It will be seen that the basic theory of pure bigraphs is
preserved by these specialisations, thus establishing pure bigraphs as a core theory.

However, the theory cannot claim to be definitive; many variations are possible.
Therefore this work has been divided as much as possible intoseparate topics, making
it more amenable to variation. For example,bigraphsthemselves are defined in terms
of two independent structures,place graphsandlink graphs, and each of these can be
varied. Also,bigraphical reactive systems(Brss) are defined as merely one instance of
a general concept,wide reactive systems(Wrss), whose abstract theory we develop in
Part I; many other instances are possible.

We now introduce our running example.

Example 1 (reaction in CCS) The calculus CCS [33] has a reaction rule

(x.P + M) | (x.Q + N) −→ P |Q ,

wherex.P andx.Q are guarded output and input respectively, whileM andN repre-
sent zero or more alternatives of the same nature. The rule represents a communication
on channelx, which may preempt other possible communicators on the samechannel;
the result of the communication is to allow the continuations P andQ to continue in
parallel, while the alternativesM andN are discarded.

Figure 2 shows the corresponding reaction rule in bigraphs.It uses three controls:
send for output,get for input andalt for alternation. They are declared to bepassive
controls, i.e. no reaction can occur inside them. The reaction rule means that theredex
R occurring in a larger bigraph, with anything in its holes (grey boxes), can be replaced
by thereactumR′, retaining some of the contents ofR as indicated by the ordinals in
its holes. Note several points:

• Thesend- andget- nodes are connected inR by a link namedx. In the larger con-
text these may be linked to competitors for communication onthat link. Nothing
in R′ retains that link, but competitors in the larger context will retain it.
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• The occupants of the holes —collectively called theparameterof the reaction—
may freely be linked to the larger context (and to each other); they may even
contain uses of the linkx, which may later be activated.

• Bigraphs are rigorous entities. Besides their diagrams, they may be written and
manipulated algebraically. Here is the algebraic form of the reaction rule, mildly
sugared to clarify which hole is which:

alt(sendx�0 |�1) | alt(getx�2 |�3) ⊲ x |�0 |�2 .

The juxtapositions, such asalt(. . .) andsendx�0, are categorical compositions;
the parallel combinator ‘| ’ is a derived form of tensor product.

The reader familiar with CCS will see that its discipline is accurately reflected. We
shall return to this example from time to time in the following sections, to illustrate
various points. In Section 11 we shall encode finite CCS into bigraphs, and illustrate
our uniformly derived strong bisimilarity by showing that it exactly captures the one
originally defined for CCS.

Synopsis

The paper’s three parts play distinct roles. Each Part begins with an abstract, but the
following brief overview will be helpful.

Part I is entirely devoted to a mathematical framework consisting of s-categories
and a way of providing then with dynamics; in this framework,many other models
beside bigraphs can be set up. The purpose is to develop theory that will apply to
future enrichments and variations of the bigraph model.

Part II is entirely concerned with the static structure of bigraphs. The mere defini-
tion of bigraphs is not complex, but it admits a large taxonomy and many operations;
the emphasis in this Part is to identify elementary bigraphsfrom which others can be
built, as well as basic operations from which others can be derived. It is also shown
how thestatictheory of Part I is instantiated in bigraphs.

Part III establishes the dynamic theory of bigraphs, and shows in turn how thedy-
namictheory of Part I is instantiated. This leads to further taxonomy, some refinements
of the theory, and in particular a notion ofsorting; all of these are then applied to re-
cover some of the original theory of CCS. Finally, the concluding section points to
related research and future directions.

Acknowledgement I am greatly indebted to Ole Høgh Jensen and Jamey Leifer,
whose ideas have been important in developing bigraphs.

2 S-categories and relative pushouts

In this section and the following one we develop a mathematical framework for the
static and dynamic properties of bigraphs. There are several varieties of bigraph, and
in this general setting we shall derive properties that willapply to all of them.
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Notation We accent the name of an s-category, as in ´C, to distinguish it from a cat-
egory. We useI, J,K, . . . for objects andf, g, h, . . . for arrows. We use juxtaposition
for composition, ‘id’ for identity and ‘⊗’ and tensor product. We denote the domainI
and codomainJ of an arrowf : I →J by dom(f) andcod(f); the set of arrows from
I to J , called ahomset, is denoted byĆ(I → J).

IdS will denote the identity function on a setS, and∅S the empty function from∅
to S. We shall useS ⊎ T for union of setsS andT known or assumed to be disjoint,
andf ⊎ g for union of functions whose domains are known or assumed to be disjoint.
This use of⊎ on sets should not be confused with the disjoint sum ‘+’, which disjoins
setsbeforetaking their union. We assume a fixed representation of disjoint sums; for
example,X +P +Y means({0}×X)∪ ({1}×P )∪ ({2}×Y ), and

∑
v∈V Pv means⋃

v∈V ({v} × Pv). We writef ↾ S for the restriction of a functionf to the domainS,
andR↾S for the restricted relationR ∩ S2.

A natural numberm is often interpreted as a finite ordinalm = {0, 1, . . . ,m− 1}.
We often usei to range overm; whenm = 2 we useı for the complement1 − i of i.
We use~x for a finite sequence{xi | i ∈ m}; whenm = 2 this is an ordered pair.

Definition 2.1 (precategory) A precategorý C is defined exactly as a category, ex-
cept that the composition of arrows is not always defined. Composition with the iden-
tities is always defined, andid f = f = f id. In the equationh(gf) = (hg)f , the two
sides are either equal or both undefined.

We shall extend categorical concepts to precategories without comment when they are
unambiguous. We now extend explicitly the concept of monoidal category:

Definition 2.2 (tensor product, monoidal precategory) A (strict, symmetric) monoidal
precategory has a partialtensor product⊗ both on objects and on arrows. It has a unit
objectǫ, called theorigin, such thatI ⊗ ǫ = ǫ⊗ I = I for all I. GivenI ⊗J andJ ⊗ I
it also has asymmetryisomorphismγI,J : I ⊗ J → J ⊗ I. The tensor and symmetries
satisfy the following equations when both sides exist:

1. f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h and idǫ ⊗ f = f 3. γI,ǫ = idI

2. (f1 ⊗ g1)(f0 ⊗ g0) = f1f0 ⊗ g1g0 4. γJ,IγI,J = idI⊗J

5. γI,K(f ⊗ g) = (g ⊗ f)γH,J (for f : H → I, g : J →K) .

‘Strict’ means that (1) holds exactly, not merely up to isomorphism; ‘symmetric’ refers
to the symmetry isomorphisms satisfying (3)–(5).

In this work we need a special form of precategory. A particular case will be when
arrows are bigraphs; for the present, think of these as ordinary graphs. Within a given
graph we often need to distinguish different occurrences ofthe same subgraph. In
graph theory, graphs with explicit node identities are called concretegraphs. When
composing two concrete graphs we wish to ensure that their node-identities are disjoint;
this composition is a partial operation, but one whose definedness is determined by the
set of nodes from which the graph is formed. We find it useful toabstract this idea, and
define a version of precategory in which every arrow has a finite set called itssupport,
and these sets determine exactly when two arrows may be composed.
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Definition 2.3 (s-category) An s-categorý C is a strict symmetric monoidal precat-
egory which has:

• for each arrowf , a finite set|f | called itssupport, such that|idI | = ∅. For
f : I → J andg : J →K the compositiongf is defined iff |g| ∩ |f | = ∅ and
dom(g) = cod(f); then|gf | = |g|⊎|f |. Similarly, forf : H → I andg : J →K
with H⊗J andI⊗K defined, the tensor productf⊗g is defined iff|f |∩|g| = ∅
anddom(f) = cod(g); then|f ⊗ g| = |f | ⊎ |g|.

• for any arrowf : I →J and any injective mapρ whose domain includes|f |, an
arrowρ�f : I →J called asupport translationof f such that

1. ρ� idI = idI 4. Id|f | �f = f
2. ρ�(gf) = (ρ�g)(ρ�f) 5. (ρ1 ◦ρ0)�f = ρ1 �(ρ0 �f)
3. ρ�(f ⊗ g) = ρ�f ⊗ ρ�g 6. ρ�f = (ρ↾ |f |)�f

7. |ρ�f | = ρ(|f |) .

Each equation is required to hold only when both sides are defined.

Exercise Deduce condition (1) from conditions (6) and (4).

We now consider functors between s-categories.

Definition 2.4 (support equivalence, supported functor) Two arrowsf, g : I →J
in an s-categoryÁ aresupport-equivalent, writtenf ≏ g, if ρ�f = g for some support
translationρ. By Definition 2.3 this is an equivalence relation. If ´B is another s-
category, then afunctorF : Á → ´B is a function on objects and arrows that preserves
identities, composition, tensor product and support equivalence. IfF is an inclusion
function thenÁ is asub-s-categoryof ´B.

When we no longer need to keep track of support we may use a quotientcategory(not
just s-category). To define such quotients, we need the following notion:

Definition 2.5 (congruence) Let ≡ be an equivalence defined on every homset of a
supported precategory ´C. We say that≡ is preservedby an operator∗ if f ≡ f ′ and
g ≡ g′ imply f ∗ g ≡ f ′ ∗ g′ whenever the latter are defined. Then≡ is congruence on
´C whenever it is preserved by composition and tensor product.

As an example of a simple congruence on bigraphs, we may definef ≡ f ′ to mean
thatf andf ′ are identical when allK-nodes are discarded, for some particular control
K. The most important example of a congruence will be support equivalence (≏). The
following definition shows that any congruence at least as coarse as support equivalence
will yield a well-defined quotient category:

Definition 2.6 (quotient categories) Let ´C be a supported precategory, and let≡ be
a congruence onĆ that includes support equivalence, i.e.≏ ⊆ ≡. Then thequotient

12



of ´C by ≡ is a categoryC def
= ´C/≡, whose objects are the objects of ´C and whose

arrows are equivalence classes of arrows in ´C:

C(I, J)
def
= { [f ]≡ | f ∈ ´C(I, J) } .

In C, the identities, composition and tensor product are given by

idm
def
= [idm]≡

[g]≡[f ]≡
def
= [gf ]≡

[f ]≡ ⊗ [g]≡
def
= [f ⊗ g]≡ .

By assigning empty support to every arrow we may also regardC as an s-category, and
we call[·]≡ : ´C→C the≡-quotient functorfor ´C.

Note that the quotient does not affect objects; thus any tensor product onC may still
be partial on objects. ButC is indeed a category; composition is always well-defined
becausef ≏ g impliesf ≡ g, and so also is tensor product provided it is defined on the
domains and codomains. We often abbreviate[·]≏ to [·]; we call it thesupport quotient
functor. From the definition, clearly a coarser quotient[·]≡ exists whenever≡ is a
congruence that includes support equivalence.

We now turn to the notion of relative pushout (RPO), which will be of crucial im-
portance in defining labelled transitions. The rest of this section, except where stated,
pertains to any precategory.

Notation We shall often use~f for a pairf0, f1 of arrows; similarly for objects. For
example, if the two arrows share a domainH and have codomainsI0, I1 we write
~f : H → ~I.

Definition 2.7 (bound, consistent) If two arrows ~f : H → ~I share domainH, the
pair~g : ~I →K share codomainK andg0f0 = g1f1, then we say that~g is aboundfor
~f . If ~f has any bound, then it is said to beconsistent.

Definition 2.8 (relative pushout) Let~g : ~I →K be a bound for~f : H → ~I. A bound
for ~f relative to~g is a triple(~h, h) of arrows such that~h is a bound for~f andhhi = gi

(i = 0, 1). We may call the triple arelative boundwhen~g is understood.
A relative pushout(RPO) for ~f relative to~g is a relative bound(~h, h) such that for

any other relative bound(~k, k) there is a unique arrowj for which jhi = ki (i = 0, 1)
andkj = h.

h0 h1

k1

g1 g1k

f0 f1

h1h0

hg0 g0

k0

h

j

f1f0
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We shall often omit the word ‘relative’; for example we may call (~h, h) a bound (or
RPO) for ~f to ~g.

The more familiar notion, a pushout, is a bound~h for ~f such thatfor anybound~g
there exists anh which makes the left-hand diagram commute. Thus a pushout isa least
bound, while an RPO provides aminimalbound relative to a given bound~g. In bigraphs
we shall find that RPOs exist in cases where there is no pushout; see Constructions 6.8
and the discussion preceding it.

Now suppose that we can create an RPO(~h, h) for ~f to ~g; what happens if we try
to iterate the construction? More precisely, is there an RPOfor ~f to~h? The answer lies
in the following important concept:

Definition 2.9 (idem pushout) A pair ~h : ~I → J is an idem pushout(IPO) for the
pair ~f : H → ~I if the triple (~h, idJ) is an RPO for~f to~h.

Then it turns out that the attempt to iterate the RPO construction will yield the same
bound (up to isomorphism); intuitively, the minimal bound for ~f to any bound~g is
reached in just one step. This is a consequence of the first twoparts of the following
proposition, which summarises the essential properties ofRPOs and IPOs on which
our work relies. They are proved for categories in Leifer’s Dissertation [28] (see also
Leifer and Milner [29]), and the proofs can be routinely adapted for precategories.

Proposition 2.10 (properties of RPOs)In any precategoryÁ:

1. If an RPO for~f to ~g exists, then it is unique up to isomorphism.

2. If (~h, h) is an RPO for~f to ~g, then~h is an IPO for ~f .

3. If ~h is an IPO for ~f , and an RPO exists for~f to hh0, hh1, then the triple(~h, h)
is such an RPO.

4. (IPO pasting) Suppose that the diagram below commutes, and thatf0, g0 has an
RPO to the pairh1h0, f2g1. Then

(a) if the two squares are IPOs, so is the big rectangle;

(b) if the big rectangle and the left square are IPOs, so is theright square.

h1h0

f0 f1 f2

g0 g1

5. (IPO sliding) If Á is an s-category then IPOs are preserved by support trans-
lation; that is, if ~g is an IPO for ~f and ρ is any injective map whose domain
includes the supports of~f and~g, thenρ�~g is an IPO forρ� ~f .
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3 Wide reactive systems

We now introduce a kind of dynamical system, of which bigraphs will be an instance.
In previous work [29, 28] a notion of reactive system was defined. In our present
terms, this consisted of an s-category whose arrows are called contexts, including
agentswhose domain is the originǫ, together with a set of agent-pairs(r, r′) called
reaction rules, and a sub-s-category of so-calledactivecontexts. The reaction rela-
tion ⊲ between agents was taken to be the smallest such thatDr ⊲ Dr′ for every
active contextD and reaction rule(r, r′).

For such systems, labelled transitions based upon IPOs havebeen derived uni-
formly [29]. Several behavioural pre-orders and equivalences based upon these tran-
sitions —including bisimilarity— were shown to be congruences, subject to two con-
ditions: first, that sufficient RPOs exist in the precategory; second, that decomposition
preserves activity — i.e.DC active implies bothC andD active.

In subsequent work, RPOs were found in interesting cases (Leifer [28], Cattani et
al [11]). Each case met the condition that decomposition preserves activity, if we limit
attention to contexts with a single hole. However, certain derived transition systems
are unsatisfactory under this limitation, as Sewell [51] has pointed out. Also we need
multi-hole bigraphical contexts, not only to represent parametric reaction rules, but also
to admit multiple or ‘wide’ agents, whose several parts may reside in different regions
of a host context.

This gives rise to the possibility of contexts in which some sites may be active, i.e.
may permit reaction to occur, but not others. The following definitions allow this. They
lead towidereactive systems, which refine the above notion of reactive system as little
as necessary for that purpose. We shall also see that, if we specialise this new treatment
to narrow contexts (those with unit width), we recover the original notion of reactive
system.

In what follows we shall useOrd , the s-category of finite ordinals and functions
between them.

Definition 3.1 (wide s-category) An s-categoryÁ is wideif equipped with a functor
width : Á →Ord with width(ǫ) = 0 such that, for each bijectionπ on the ordinal
width(I), there is an isomorphismπI : I → I in Á with width(πI) = π.

The objectsI, J, . . . of Á are calledinterfaces, and its arrowsA,B,C, . . . are called
contexts. The domain and codomain of a context will be called itsinnerandouter faces.
Arrows in a homsetÁ(ǫ→ I) —which we abbreviate to ´A(I)— are calledground
arrows; we let lower case lettersa, b, . . . range over these, and abbreviatea : ǫ→ I to
a : I.

We shall later define bigraphs as a wide s-category, since their topography is im-
portant. Even in the present general framework we can begin to speak about locality:

Definition 3.2 (location) A location of an interfaceI a subsetλ ⊆ width(I). The
width function of a contextC : I →J is extended to locations ofI by

width(C)(λ)
def
= {width(C)(i) | i ∈ λ} .

Theoffset byn of a locationλ is given byn ∔ λ
def
= {n + i | i ∈ λ}.
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Before we define reaction rules, we need to define what it meansto say that a
contextC : I →J is active at a locationλ ⊆ width(I). In this general framework the
definition is not fixed, but we must ensure that it behaves nicely. In particular, suppose
thatC is active atλ andD : J →K is active atwidth(C)(λ); thenDC should be active
atλ. As well as this, the identities should be fully active, and the tensor product should
take the disjoint union of activities. We arrive at the following:

Definition 3.3 (activity) An activity for Á is a mapact : Á(I, J)→ 2width(I) for
each homset, respecting≏ and satisfying three properties:

1. act(idI) = width(I)
2. act(DC) = act(C) ∩ width(C)−1(act(D))
3. act(C ⊗ D) = act(C) ⊎ (n ∔ act(D)) , wheren = width(dom(C)) .

We say thatD : I →J is active atλ if λ ⊆ act(I), andactiveif act(I) = width(I).

We are now ready to add dynamics to a wide s-category. By enriching it with reaction
rules and activity, we shall define a reaction relation over ground arrows.

Definition 3.4 (wide reactive system) A wide reactive system (Wrs)Á(act, ´R) is a
wide s-categoryÁ equipped with an activityact and a setŔ is a set ofground reaction
rulesof the form(r : I, r′ : I), aredexand areactum. Both components must be closed
under support translation.

The reaction relation ⊲ over ground arrows is defined as follows:g ⊲ g′ iff
there exist a ground reaction rule(r, r′) and an active contextD with g ≏ Dr and
g′ ≏ Dr′.

We shall usually denote this Wrs by just ´A. Note that we defineground (reaction)
rules; for a bigraphical reactive system, which is a specialkind of Wrs, we shall define
a notion ofparametricreaction rule, each generating a family of ground rules.

In passing, suppose that we are only concerned with reactionin contextsD that
have interfaces of unit width1 = {0}, so thatwidth(D)(0) = 0. ThenD is activeiff
it is active at0. The activity conditions (1) and (2) then amount to requiring that the
active contexts form a sub-s-category closed under decomposition. Thus, as promised,
we have a proper generalisation of the conditions under which the original congruence
theorems [28, 29] were proved.

A natural notion of morphismF : Á → ´B between Wrss is one that preserves
width, ground reaction rules and activity. The precise definition is as follows:

Definition 3.5 (Wrs morphism, sub-Wrs) Let Á and B́ be Wrss. A functorF : Á → ´B
of wide s-categories is amorphismof Wrss fromÁ to ´B if it preserves the components
of a Wrs as follows (distinguishing the components of ´B by a prime):

width = width′ ◦F
(r, r′) ∈ R ⇒ (F(r),F(r′)) ∈ R′

act(C) ⊆ act′(F(C)) .

If F is an inclusion functor then we call ´A asub-Wrsof ´B.
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Proposition 3.6 (Wrs morphisms preserve reaction)If F : Á → ´B is a Wrs mor-
phism, andg ⊲ g′ in Á, thenF(g) ⊲F(g′) in ´B.

Clearly Wrss and their morphisms form a category. An important example of a mor-
phism is the support quotient functor, extended to Wrss as follows:

Definition 3.7 (quotient Wrs) Let Á be a Wrs. Then itssupport quotientWrs is
based upon the support quotientA = Á/≏, with other ingredients as follows:

• the ground reaction rules are([r], [r′]), for each rule(r, r′) in Á;

• the active sites of[D] are exactly those ofD.

Proposition 3.8 (quotient reflects reaction)The support quotient[·] : Á →A both
preserves and reflects reaction, i.e.[g] ⊲ [g′] in A iff g ⊲ g′ in Á.

The quotient morphism takes aconcreteWrs, based on an s-category, to anabstract
Wrs based upon a category. In the next section we show how to obtain a behavioural
congruence for an arbitrary concrete Wrs ´A with sufficient RPOs. The support quotient
A of Á may not possess RPOs, but nevertheless the quotient functorallows us to derive
a behavioural congruence forA also. This use of a concrete Wrs with RPOs to supply
a behavioural congruence for the corresponding abstract Wrswas first represented by
thefunctorial reactive systemsof Leifer’s thesis [28].

4 Transition systems

We now consider how to equip a Wrs with a labelled transition system. This will
comprise a set of ground arrows calledagents, together with a set of transitions of a
form such asa L

⊲ a′, wherea, a′ are agents andL is a context withLa defined. Then
bisimilarity is defined in the usual way, and we are interested in general conditions
under which it will be a congruence.

Leifer and Milner [29] defined labelled transitions as follows: a L
⊲ a′ if there is a

reaction rule(r, r′) and an active contextD for which(L,D) is an idem pushout (IPO)
for (a, r) anda′ = Dr′. We shall adopt a slight refinement of this definition; we shall
equip a transition with information about locality. For an agenta : I, a transition of
the forma L

⊲ a′ tells us the extra contextL : I →J needed bya to create a redex,
but does not specifywherethis completed redex occurs withinLa, i.e. within which
region(s) the reaction takes place. Such regions are identified by a locationλ of J ,
the outer face ofL. It turns out that, to achieve congruence of bisimilarity, we must
index each transition by such a location. This can be illustrated by a simple exam-
ple, for which we need only the superficial understanding of bigraphs supplied by the
Introduction.

Example 2 (non-congruence)This example shows that bisimilarity based upon un-
located transitions, which we denote by

u
∼, is not in general a congruence for bigraph-

ical systems. Take controlsK, L andM, with M passive. Links are irrelevant in this
example, so we take interfaces to be just finite ordinals (widths).
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Now writeK, L : 0→ 1 for atoms, i.e. a single node with no content, andM : 1→ 1
for the passive context consisting of a singleM-node. Let there be a single reaction
rule (K, L); it allows the reactionK ⊲ L in any active context.

Consider the two agentsa, b : 0→ 2 illustrated below, wherea = K ⊗ L and

b = L ⊗ K. They can each do a transition that turnsK into L, i.e. we havea id2 ⊲ L ⊗ L

andb id2 ⊲ L ⊗ L . Because these two transitions do not record the different places at
which the reaction occurs, it turns out thata

u
∼ b.

K K K6
u
∼

M
LL Lu

∼

C
def
= M | id1a

u
∼ b Ca 6

u
∼ Cb

M

L
M
K

Now puttinga andb in the contextC
def
= M | id1 : 2→ 1, we findCa 6

u
∼ Cb. In Cb the

K-node can react, so there is a transitionCb id1 ⊲ ; but Ca has no such transition since
its K-node cannot react.

Transitions and bisimilarity

We are now ready to define transition systems. We allow for a broad class of transitions,
within which we distinguish those based upon IPOs.

Da
r

L

r′

≏ a′

Definition 4.1 (transition) A transitionconsists of a quadruple(a, L, λ, a′), written

a L
⊲λ a′, with a anda′ ground, such thatLa = Dr anda′ ≏ Dr′ for some ground

reaction rule(r, r′ : I) and activeD such thatλ = width(D)(width(I)).
We say that the reaction rule and the diagramLa = Dr underliethe transition. A

transition isminimal if the underlying diagram is an IPO.

Definition 4.2 (transition system) Given a WrsÁ, a(labelled) transition systemfor
Á is a pairL = (I, T ), where

• I is a set ofinterfaces; for I ∈ I, the arrowsÁ(I) are calledagentsof L.

• T is a set of transitionsa L
⊲ a′ such thata, a′ are agents ofL.

We abbreviate ‘(labelled) transition system’ to Lts. An LtsM is asub-Ltsof L, written
M ≺ L, if its components are included respectively in those ofL.
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Thefull (resp.standard) transition system for a Wrs consists of all interfaces, together
with all (resp. all minimal) transitions. When the Wrs concerned is understood we shall
denote these two transition systems respectively byFT andST.

Returning briefly to Example 2 we now see that the location component in transi-
tions allows us to distinguish between the two agentsa andb. In fact in ST their only
transitions area id

⊲{0} L ⊗ L andb id
⊲{1} L ⊗ L.

Definition 4.3 (respect) Let ≡ be a congruence in a Wrs equipped withL. Then≡
andL are said torespectone another if the following holds:
Let a L

⊲λ a′ be a transition inL. Let a ≡ b andL ≡ M , with Mb defined. Then
there exist an agentb′ and a transitionb M

⊲λ b′ in L such thata′ ≡ b′.

‘Respect’ is mutual between an equivalence and an Lts, so that ‘L respects≡ ’ means
the same as ‘≡ respectsL’; we shall use them interchangeably.

Our definition of transition presupposes a set of reaction rules, i.e. anunlabelled
transition relation. Sometimes, for example in CCS, labelled transition systems have
been the primary means of providing process dynamics, and unlabelled transitions cor-
responded to transitions with a ‘null’ label (τ in CCS). But in this work we are commit-
ted to taking reaction rules as primary, because they can be described generally without
any presupposition about the interaction discipline of a calculus.

Whether transitions are derived from reactions or defined in some other way, we
may use them to define behavioural equivalences and pre-orders. Here we shall limit
attention to strong bisimilarity. (Throughout this paper we shall omit ‘strong’ since we
do not define or use weak bisimilarity.)

Definition 4.4 (wide bisimilarity) Let Á be a wide reactive system equipped with
an LtsL. A simulation (onL) is a binary relationS between agents with equal inter-
face such that ifaSb anda L

⊲λ a′ in L, then wheneverLb is defined there existsb′

such thatb L
⊲λ b′ in L anda′Sb′. A bisimulationis a symmetric simulation. Then

bisimilarity (onL), denoted by∼L, is the largest bisimulation (onL).

We shall often omit ‘onL’, and write∼ for ∼L, whenL is understood from the context.
This will usually be whenL is ST.

Note the slight departure from the usual definition of bisimulation of Park [43];
here we requireLb to be defined. This is merely a technical detail, provided that the
Lts respects support equivalence; for then, wheneverLa is defined there will always
existL′ ≏ L for which bothL′a andL′b are defined. Moreover if the Wrs is based on
a category, in particular a support quotient, then the side-condition holds automatically.
In this case the definition of bisimilarity reduces to the standard one.

If S is a binary relation and≡ an equivalence, then we defineS≡ to be the closure
of S under ≡ , i.e. the relational composition≡S≡ . It is well known [33] that if≡
is included in (strong) bisimilarity, then to establish bisimilarity it is enough exhibit
a bisimulation up to≡ ; that is, a symmetric relationS such that wheneveraSb then
each transition ofa is matched byb in S≡. We now deduce from Proposition 2.10(5)
that support equivalence can be used in this way:
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Proposition 4.5 (support translation of transitions) In a Wrs the full and standard
transition systems respect support equivalence. Hence in each case≏ is a bisimulation,
and a bisimulation up to≏ suffices to establish bisimilarity.

We now come to our congruence theorem for a Wrs; the proof is in [30].

Theorem 4.6 (congruence of wide bisimilarity) In a Wrs with RPOs, equipped with
the standard transition system, wide bisimilarity of agents is a congruence; that is, if
a0 ∼ a1 thenCa0 ∼ Ca1.

We shall henceforth often omit the adjective ‘wide’ when discussing bisimilarity.
Recall that we are taking (strong) bisimilarity as a representative of many pre-orders
and equivalences; Leifer [28] has proved congruence theorems for several others, and
we expect that those results can be transferred to the present setting.

Since there are many transition systems, there are also manyvariants of bisimilarity.
Some are congruences, some are not. For example, the above proof is easily adapted
to show the congruence of full bisimilarity, which is based uponall transitions, not just
those based on IPOs. But we have already commented on the unsatisfactory nature of
FT; not only does it involve a huge family of labels, but it also relates processes that we
would wish to distinguish.

More importantly, let us call a transitionmonoif its label is a mono (i.e. a monomor-
phism). Recall two basic categorical properties of monos: if f andg are mono then
gf (if it exists) is also mono; and in the other direction, ifgf is mono then so isf ,
but not necessarilyg. Now let ·ST denote the sub-Lts ofST that contains all its mono
transitions, and let

.
∼ denote the associated bisimilarity. Then:

Corollary 4.7 (congruence for mono bisimilarity) In a Wrs with RPOs, mono bisim-
ilarity is a congruence for mono contexts; that is, ifa0

.
∼ a1 and C is mono, then

Ca0
.
∼ Ca1.

Proof (outline) The proof follows the lines of Theorem 4.6 exactly. All that is needed
extra is to use the basic mono properties cited above, in order to show that every tran-
sition involved in the argument is indeed mono.

Quotient transition systems

Let us now turn to transition systems derived for a quotient Wrs.

Definition 4.8 (transitions for a quotient Wrs) Let Á be a Wrs equipped with an
Lts L = (I, T ), and letF : Á → ´B be a Wrs functor. We say thatF respectsL if the
congruence it induces on ´A respectsL.

The LtsF(L) inducedby F on B́ has interfacesF(I) for eachI ∈ I. Whenever

L has a transitiona L
⊲λ a′ thenF(L) has the transition

F(a)
F(L)

⊲λ F(a′) .
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This definition always makes sense, but it will not always make bisimilarity a congru-
ence in B́, even if it is so in Á. However the next theorem, proved in [30]. tells us
when this will be ensured. Recall that afull functor is surjective for each homset.

Theorem 4.9 (transitions induced by functors) Let Á be equipped with an LtsL.
LetF : Á → ´B be a full Wrs functor that is the identity on objects and respectsL, and
such thatF(a) = F(b) whenevera ≏ b. Then the following hold forF(L):

1. a ∼ b in Á iff F(a) ∼ F(b) in ´B.

2. If bisimilarity is a congruence in ´A then it is a congruence inB́.

These results prepare the way for setting up a bigraphical reactive system (Brs) as
a Wrs, and then deriving Ltss and behavioural congruences forit. We typically want
to do this for anabstractBrs, i.e. one based upon a category where support equiva-
lence has been factored out, rather that for aconcreteBrs based upon an s-category,
where arrows (bigraphs) have non-trivial support. For example, CCS and Petri nets are
naturally formulated as abstract Brss. But, as we shall see later, the RPOs needed to
derive satisfactory Ltss are typically not present in theseBrss. Now, as we shall see in
Section 9, a Brs is determined by a signatureK and a setR of reaction rules. So our
procedure will be as follows, using CCS as an example:

• Set up an abstract BrsA(K,R) for the calculus;

• Define a concrete Brs ´A(K,´R), of which A(K,R) is the quotient (andR the
quotient of Ŕ) by some equivalence≡;

• Derive an Lts forÁ(K,´R) with an associated behavioural congruence, and en-
sure that it respects≡;

• Use Definition 4.8 to transfer the Lts toA(K,R), and Theorem 4.9 to ensure a
behavioural congruence in the abstract Brs.

Adequate and definite transition systems

We now turn to a question that arises strongly in applications. Our standard Lts, con-
taining only the minimal transitions, is of course much smaller than the full Lts. But
it turns out that in particular cases we can reduce the standard Lts still further, without
affecting bisimilarity. We introduce here the basic concepts to make this idea precise,
since they do not depend at all on the notion of bigraph.

Definition 4.10 (relative bisimulation, adequacy) Let M ≺ L. A relative bisimu-
lation forM (onL) is a symmetric relationS such that

wheneveraSb, then for every transitiona L
⊲λ a′ in M, with Lb defined,

there existsb′ such thatb L
⊲λ b′ in L anda′Sb′.

Thenrelative bisimilarity forM onL, denoted by∼M

L
, is the largest relative bisimu-

lation forM onL. We callM adequate forL if ∼M

L
coincides with∼L on the agents

of M; if M has interfacesI, we write this as∼M

L
= ∼L ↾I.
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Note that, fora ∼M

L
b, we requireb only to match the transitions ofa that lie inM,

andb’s matching transition need not lie inM. This means that relative bisimilarity is
in general not transitive, so it is not in itself a behavioural equivalence.

Relative bisimilarity is useful whenM is adequate forL; it reduces the class of
transitions to be checked. For example, usually fewer labels are involved.

In the case thatL is ST we can give a simple example of adequacy. It depends upon
the fact thatST is closed under isomorphism, i.e. if a L

⊲λ a′ is a transition ofST then

so isιa κLι−1

⊲λ κa′ for any isosι andκ. Then when checking for bisimilarity with a
givena, intuitively it should suffice to consider noteverytransition ofa, but only one
in every iso class. Thus these representative transitions should constitute an adequate
Lts. In fact this is true more generally (for a proof see [29]):

Proposition 4.11 (representative transitions)LetL be an Lts closed under isomor-
phism, and letM ≺ L. Suppose that, for every transitiona L

⊲λ a′ in L, there is a
transitiona κL

⊲λ κa′ in M for some isoκ. ThenM is adequate forL.

A deeper example of adequacy arises when we considerparametricreaction rules; such
a rule has aparametricredexR, and generates a family of ground rules whose redexes
take the formr = Rd whered is a parameter. Most interesting reaction rules, e.g. in
theλ-calculus, take this form; indeed we shall adopt it in bigraphical reactive systems,
as already illustrated for CCS in Section 1 (Figure 2). Our intuition is that the im-
portant transitions are those where the agent contributes significantly to the underlying
parametric redex. We can make this precise in terms of support: we are interested in
transitions ofa whose underlying parametric redexR is such that|a| ∩ |R| 6= ∅. We
call such transitionsengaged. We may naturally expect that the engaged transitions
are adequate. In Section 9 we shall later prove this for a particular class of bigraphical
reactive systems, thesimpleones. In Section 11 we shall see in the case of CCS that
this greatly simplifies behavioural analysis.

We now look at a well-behaved kind of sub-Lts. For arbitraryM ≺ L and
any given pair(L, λ), it is possible thatM contains some but not all of the(L, λ)-
transitions inL. If this is not the case then the situation is somewhat simpler.

Definition 4.12 (definite sub-Lts) Let M ≺ L. Call M definite forL if, for any
transitiona L

⊲λ a′ of L, the pair(L, λ) alone determines whether it lies inM.

In this case we find that a relative bisimilarity is an absolute one:

Proposition 4.13 (definite sub-Lts) If M is definite forL then∼M = ∼M

L
.

An important consequence is that, if we know bisimilarity tobe a congruence onL,
then the same holds for anyM definite and adequate forL. In fact:

Corollary 4.14 (adequate congruence)LetM, with interfacesI, be definite and ad-
equate forL. Then

1. The bisimilarities onM andL coincide atI, i.e.∼M = ∼L↾I.

2. For all I, J ∈ I, any contextC : I → J that preserves∼L also preserves∼M.
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Part II : Bigraphical structure
Section 5 defines the notion of aconcrete pure bigraphformally, in terms of its
two constituents: aplace graphrepresenting locality and alink graph represent-
ing connectivity. Sections 6 and 7 define these two notions in turn, ensuringthat
they enjoy the necessary categorical properties, including RPOs. Section 8 then
combines these constituents, yielding a theory of pure bigraphs where locality and
connectivity are independent. It defines important properties and operations for
bigraphs; it also introduces a quotient functor from concrete toabstractbigraphs,
where support is forgotten and the notions of occurrence and RPO arelost.

5 Pure bigraphs: definition

In this section we define the notion ofpure bigraphformally, in terms of the con-
stituent notions ofplace graphand link graph, which are dealt with in the following
two sections.

Let us begin with illustrations. An example of a bigraph appeared in Figure 1; it
illustrated how nodes are nested, and how —independently of the nesting— they are
linked via their ports. Figure 3 shows another example, illustrating more of the struc-
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1 2

0
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Figure 3: Resolving a bigraph into a place graph and a link graph

ture of bigraphs. First, it shows how a bigraph may be resolved into its two constituents,
a place graphand alink graph. This is what we mean by the independence of placing
and linking; the place graph (a forest) is completely independent of the link graph (a
kind of hypergraph) as long as they shared the same node set, here{v0, . . . , v3}. (Con-
trols are not shown in this example.) If we forget everythingin the bigraph except the
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nesting of regions (dotted squares), nodes and sites (grey holes) then we get the place
graph; if on the other hand we forget this nesting but retain the linkage, we get the link
graph. From our definitions it will be clear that these two projections are full functors.

Using this example we can also describe composition. Our bigraph has width 2
(two regions), so it can inserted in a host graph having two sites. It also hasouter
namesy0, y1; this means that the host bigraph must have theseinner names, allowing
linkage to be formed by composition. Equally, our bigraph has three sites (grey holes)
and inner names{x0, x1, x2}; these provide for composition with a three-region client
that possesses these outer names. It should already become apparent that composition
of two bigraphs can be described thus: first resolve into constituents, then compose
these, and finally combine two larger constituents into a bigraph.

We are now ready for a formal definition.

Definition 5.1 (pure signature) A (pure) signatureK is a set whose elements are
calledcontrols. For each controlK it provides a finite ordinalar(K), anarity; it also
determines which controls areatomic, and which of the non-atomic controls areactive.
Controls which are not active (including the atomic controls) are calledpassive.

Note that a signature need not be finite, or even denumerable.Thus a bigraph, though
itself finite, may denote an element of a continuous state space.

As we saw in Example 1 in Section 1, a non-atomic node —one with anon-atomic
control— may contain other nodes. A node’s control determines its ports, and if the
control is active then reactions are permitted inside the node. A passive node —such as
a get-node in the CCS example— can be thought of as a script, or program, awaiting
activation; this must take the form of a reaction that destroys the node boundary.

In refinements of the theory a signature may carry further information, such as a
sign and/or asort for each port. The sign may be used, for example, to enforce the
restriction that each negative port is connected to exactlyone positive port, as in action
calculi [11, 35]. Sorting of ports has been used to model Petri nets as bigraphs [39, 30].
Another possible refinement is to assign a sort to each control K, determining the
possible controls for the children of anyK-node; we illustrate this in modelling CCS
in Section 11. In [25] we also defined an important refinement that allows names to
havescope, and controls tobind names. The theory ofpurebigraphs is prerequisite to
understanding all these refinements.

We presuppose a denumerable setX of names. We shall defineconcretebigraphs
top-down; here we define a bigraph as the combination of two constituents, and in the
following sections we define those constituents themselves.

Definition 5.2 (concrete pure bigraph) A (concrete) pure bigraphover the signa-
ture K takes the formG = (V,E, ctrl , GP, GL) : I →J whereI = 〈m,X〉 and
J = 〈n, Y 〉 are itsinner andouter faces, each combining awidth (a finite ordinal)
with a finite set of global names drawn fromX . Its first two componentsV andE
are finite sets ofnodesandedgesrespectively. The third componentctrl : V →K, a
control map, assigns a control to each node. The remaining two are:

GP = (V, ctrl , prnt) : m→n aplace graph
GL = (V,E, ctrl , link) : X →Y a link graph.
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Place graphs and link graphs are defined in Definitions 6.1 and7.1 respectively. We
call G thecombinationof its constituentsGP andGL, writing G = 〈GP, GL〉.

In concretebigraphs the nodes and edges have identity. The support of a concrete
bigraph consists of its nodes and edges; in terms of the definition, |G| = V + E. We
shall work with s-categories of bigraphs, because RPOs exist there.

In Section 8 we revisit bigraphs in order to develop their structure, often by com-
bining attributes of their constituent place graphs and link graphs. In that section we
shall also take the quotient by support equivalence to obtain abstractbigraphs. Un-
til then, unless otherwise stated we shall be concerned withconcrete bigraphs, place
graphs and link graphs so we shall omit ‘concrete’.

6 Place graphs

Definition 6.1 (place graph) A place graphA = (V, ctrl , prnt) : m→n has an
inner widthm and anouter widthn, both finite ordinals; a finite setV of nodes with
a control mapctrl : V →K; and aparent mapprnt : m ⊎ V →V ⊎ n. We write
w >A w′, or justw > w′, to meanw = prntk(w′) for somek > 0. The parent map
is acyclic, i.e. we insist that>A is a partial order. Anatom, i.e. a node with atomic
control, may not be a parent.

The widthsm andn index thesitesandrootsof A respectively. The sites and nodes
—i.e. the domain ofprnt— are calledplaces. A place graph ishard if every root, and
every node except an atom, has a child.

In this paper we shall mainly consider hard place graphs. We shall therefore omit the
adjective ‘hard’; but we retain a subscripth in the name of the s-category as a reminder.

Due to acyclicity, a place graph with outer widthn is an ordered sequence ofn
unordered trees. The sites and roots provide the means of composing two place graphs;
each root of the first is planted in the corresponding site of the second. Figure 4 shows
two simple examples of composition,B0A0 andB1A1. Formally:

Definition 6.2 (s-category of place graphs) The s-category ´PLGh has finite ordi-
nals as objects and (hard) place graphs as arrows. The support of a place graph is its
node set. The compositionA1A0 : m0 →m2 of two place graphs

Ai = (Vi, ctrl i, prnt i) : mi →mi+1 (i = 0, 1)

with disjoint supports isA1A0
def
= (V, ctrl , prnt), whereV = V0 ⊎ V1, ctrl = ctrl0 ⊎

ctrl1, andprnt = (IdV0
⊎ prnt1) ◦ (prnt0 ⊎ IdV1

). The identity place graph atm is
idm

def
= (∅, ∅K, Idm) : m→m.

Thetensor product⊗ in ´PLGh is defined as follows: On objects, we takem⊗n
def
=

m + n. For the productA0 ⊗A1 of two place graphs with disjoint support we take the
union of their node sets; for the parent map, ifA0 : m0 →n0, we first offset the sites
and roots ofA1 by m0 andn0 respectively, then take the union of the two parent maps.

For an injective mapρ on nodes, the support translationρ �A is defined by system-
atic replacement of each nodev by ρ(v), preserving all structure.
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It is easy to check that the equations for an s-category are satisfied.

Definition 6.3 (sibling, active, passive)Two places aresiblingsif they have the same
parent. A sites of A isactiveif ctrl(v) is active wheneverv > s; otherwises ispassive.
If s is active (resp. passive) inA, we also say thatA is active(resp.passive) at s.

When dealing with many place graphsA, B, . . . , instead of indexing their parent
maps asprntA, prntB etc. we shall find it more convenient to abuse notation and de-
note the parent map of a place graphA again byA. The context will prevent ambiguity;
for example inBA we are talking of place graphs, while inB(A(v)) we are talking of
their parent maps. Thus(BA)(v) means the parent map of the composite place graph
BA applied to the nodev.

Proposition 6.4 (isomorphisms in place graphs)An arrow ι : m→m in ´PLGh is
an isomorphism iff it has no nodes, and its parent map is a bijection.

Epimorphisms (epis) will play a central role, both for placegraphs and for link
graphs. Monomorphisms (monos) will also be used. In connection with monos, it will
be useful to adopt the following terminology: a place graph is inner-injectiveif no two
sites are siblings (i.e. the parent map restricted to sites is injective).

Proposition 6.5 (epis and monos in place graphs)In ´PLGh, every place graph is
epi; a place graph is mono iff it is inner-injective.

This is analogous to the category of sets with functions, where the epis and monos
are the surjective and injective functions respectively. Indeed, in hard place graphs the
parent map is always surjective on roots; and to say that no two sites are siblings is just
to say that the parent map is injective from sites.

A related fact is that not only RPOs but pushouts exist in ´PLGh, but only for pairs
~A : h→ ~m that possess a bound. Before giving the construction of pushouts, we give
three conditions on~A that will turn out to be necessary and sufficient for a bound, and
furthermore for a pushout. Roughly speaking, the conditions ensure thatA0 andA1

treat their shared sites and nodes compatibly; then a bound~B can exist, sinceB0 can
extendA0 to include ‘the part ofA1 not shared withA0’. Such a bound will also be a
pushout if, roughly, it adds no more than necessary for this.

Notation When considering a pair~A : h→ ~m of place graphs with common sites
h, we shall adopt a convention for naming their nodes. We denote the node set ofAi

(i = 0, 1) by Vi, and denoteV0 ∩ V1 by V2. Recall thatı means1 − i for i ∈ 2. We
shall usevi, v

′
i, . . . to range overVi (i = 0, 1, 2), andri, r

′
i to range over the rootsmi

(i = 0, 1). We shall also usew2, w
′
2, . . . to range overh ⊎ V2; this is useful because

shared sites behave just like shared nodes in our construction of pushouts.

Definition 6.6 (consistency conditions for place graphs)We define threeconsistency
conditions on a pair~A : h→ ~m of place graphs.

CP0 ctrl0(v2) = ctrl1(v2)
CP1 If Ai(w) ∈ V2 thenw ∈ h ⊎ V2 andAı(w) = Ai(w)
CP2 If Ai(w2) ∈ Vi−V2 thenAı(w2) ∈ mı, and if alsoAı(w) = Aı(w2)

thenw ∈ h ⊎ V2 andAi(w) = Ai(w2) .
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Figure 4: A consistent pair~A of place graphs, with bound~B

Let us expressCP1 andCP2 in words; they are both to do with children of nodes. If
i = 0, CP1 says that if the parent of a placew in A0 is a node shared withA1, thenw
is also shared and has the same parent inA1. CP2 says, on the other hand, that if the
parent of a shared placew2 in A0 is anunsharednode, then its parent inA1 must be a
root, and any sibling ofw2 in A1 must also be its sibling inA0.

Necessity of these conditions is easy, and we omit the proof:

Proposition 6.7 (consistency in place graphs)If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 3 (consistent place graphs)Consider the pair~A in Figure 4, each with two
roots and no sites; nodes with subscript 2 are shared. (Controls are not shown). It is
worth checking that the consistency conditions hold, and that indeed~B is a bound.

What happens if an extra nodeu is added toA1 as a sibling ofv2? If u is unshared
thenCP2 is violated, so no bound can exist. Ifu is shared, then to preserve the consis-
tency conditions —in particularCP2— u must also become a sibling ofv2 in A0; then
~B remains a bound.

Now, assuming the consistency conditions of Definition 6.6,we shall prove that
there exists a pushout for~A. (Thus, since any pushout is a bound, we shall also have
shown that the consistency conditions are sufficient for a bound to exist.)

Construction 6.8 (pushouts in place graphs)Assume the consistency conditions for
the pair of place graphs~A : h→ ~m. We define a pushout~C : ~m→n for ~A as follows.

nodes: Take the nodes ofCi to beVı−V2.
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interface: Definem′
i ⊆ mi, the roots to be mapped to the codomainn, by

m′
i

def
= {r ∈ mi | ∀v ∈ h ⊎ V2. Ai(v) = r ⇒ Aı(v) ∈ mı} .

Next, on the disjoint summ′
0 + m′

1, define≃ to be the smallest equivalence such that
(0, r0) ≃ (1, r1) wheneverA0(w) = r0 andA1(w) = r1 for somew ∈ h ⊎ V2. Then
define the codomain up to isomorphism by

n
def
= (m′

0 + m′
1)/≃ .

For eachr ∈ m′
i we denote the≃-equivalence class of(i, r) by î, r.

parents: Define the parent mapC0 : m0 →n as follows (C1 is similar):

For r ∈ m0 :

C0(r)
def
=

{
0̂, r if r ∈ m′

0

A1(v) if r /∈ m′
0, for v ∈ h ⊎ V2 with A0(v) = r

Forv ∈ V1−V2 :

C0(v)
def
=

{
1̂, r if A1(v) = r ∈ m1

A1(v) if A1(v) /∈ m1 .

It is straightforward to check that eachCi is hard. We also have to show that the
definition is sound. Thus in the second clause forC0(r) we must ensure thatv ∈ h⊎V2

exists such thatA0(v) = r, and that each suchv yields the same valueA1(v) in V1−V2;
in the first clause forC0(v) we must ensure thatr ∈ m′

1. The consistency conditions
do ensure this, and also thatC0A0 = C1A1.

We now validate our construction:

Theorem 6.9 (valid pushout construction) If the pair ~A : h→ ~m is consistent then
the pair ~C : ~m→n defined by Construction 6.8 is a pushout for~A.

Proof (outline) Let ~B be any bound for~A. We define a mediating arrowD such that
DCi = Bi (i = 0, 1) as follows. The nodes ofD are those in~B not in V0 ∪ V1, and
for any such nodev defineD(v)

def
= Bi(v) (i = 0, 1). It remains to defineD(s) for

s ∈ n. We haves = î, r for r ∈ m′
i, for i = 0 or i = 1 or both. In either case,

setD(s)
def
= Bi(r). It can be checked from the definition of≃ that this definition is

independent of the pair(i, r) chosen.
It is routine to check thatDCi = Bi (i = 0, 1). Moreover,D is unique with this

property since eachCi is epi. This completes the proof.

The reader may like to check that the bound in Figure 4 is also apushout.

7 Link graphs

Link graphs capture the connectivity of bigraphs, ignoringtheir nesting. There is a
close formal analogy, but there are also differences, between the theories of place
graphs and link graphs.

As with place graphs, we assume a signatureK assigning to eachcontrolK an arity
ar(K). We also assume an infinite setX of names.
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Definition 7.1 (link graph) A link graphA = (V,E, ctrl , link) : X →Y has finite
setsX of inner names, Y of (outer) names, V of nodesandE of edges. It also has a
functionctrl : V →K called thecontrol map, and a functionlink : X ⊎ P →E ⊎ Y

called thelink map, whereP
def
=

∑
v∈V ar(ctrl(v)) is the set ofportsof A.

We shall call the inner namesX and portsP thepointsof A, and the edgesE and
outer namesY its links. ThesupportA is the setV ⊎ E of its nodes and edges.

The outer and inner names are for interfacing, and will be important in defining com-
position. When we talk of a ‘name’ without adjective, we mean an outer name.

Definition 7.2 (idle, open, closed, peer, lean)A link is idle if it has no preimage un-
der thelink map. Outer names areopenlinks, edges areclosedlinks. A point (i.e. an
inner name or port) isopenif its link is open, otherwiseclosed. Two distinct points are
peersif they are in the same link. A link graph islean if it has no idle edges.

Idle namesplay an important role; for example we may want to consider two bigraphs
as members of the same homset, even if one of them uses a namex and the other does
not. On the other hand idleedgesserves no useful purpose, but may be created by
composition. Sometimes we shall need to ensure that the property of leanness (no idle
edges) is preserved by certain constructions.

Definition 7.3 (s-category of link graphs) The s-category ´LIG has name sets as ob-
jects and link graphs as arrows. The compositionA1A0 : X0 →X2 of two link graphs

Ai = (Vi, Ei, ctrl i, link i) : Xi →Xi+1(i = 0, 1)

is defined when their supports are disjoint; thenA1 ◦A0
def
= (V,E, ctrl , link) where

V = V0 ⊎ V1, ctrl = ctrl0 ⊎ ctrl1, E = E0 ⊎E1 andlink = (IdE0
⊎ link1) ◦ (link0 ⊎

IdP1
). The identity link graph atX is idX

def
= (∅, ∅, ∅K, IdX) : X →X.

The tensor product⊗ in ´L IG is defined as follows: On objects,X ⊗ Y is simply
the union of sets required to be disjoint. For two link graphsAi : Xi →Yi (i = 0, 1)
we takeA0 ⊗ A1 : X0 ⊗ X1 →Y0 ⊗ Y1 to be defined when the interface products are
defined and whenA0 andA1 have disjoint node sets and edge sets; then to form their
product we take the union of their link maps.

We can describe the composite link maplink of A1A0 as follows, considering all
possible argumentsp ∈ X0 ⊎ P0 ⊎ P1:

link(p) =





link0(p) if p ∈ X0 ⊎ P0 andlink0(p) ∈ E0

link1(x) if p ∈ X0 ⊎ P0 andlink0(p) = x ∈ X1

link1(p) if p ∈ P1 .

By analogy with place graphs, we often denote the link map ofA simply byA.
We have chosen to identify names in an interface alphabetically, not positionally.

This difference is mathematically unimportant. Alphabetical names are convenient for
link graphs just as they are convenient in theλ-calculus, and they also lead naturally to
forms of parallel product that are familiar from process calculi.
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Proposition 7.4 (isomorphisms in link graphs) An arrow ι : X →Y in ´L IG is an
isomorphism iff it has no nodes or edges and its link map is a bijection fromX to Y .

There is an important variant of tensor product that merges outer names, i.e. does not
require them to be disjoint. This has fewer algebraic properties than the tensor (cate-
gorically, it is not a bifunctor), but will be important in modelling process calculi:

Definition 7.5 (parallel product) Theparallel product ‖ in ´L IG is defined as fol-
lows: On objects,X ‖Y

def
= X ∪ Y . On link graphsAi : Xi →Yi (i = 0, 1) we define

A0 ‖A1 : X0 ⊗ X1 →Y0 ‖Y1 wheneverX0 andX1 are disjoint, by taking the union
of link maps.

Now, analogous to place graphs, let us call a link graphinner-injectiveif no two
inner names are peers. Then we can characterise epis and monos as follows:

Proposition 7.6 (epis and monos in link graphs)A link graph is epi iff no name is
idle; it is mono iff it is inner-injective.

Notation When considering a pair~A : W → ~X of link graphs with common domain
W , we shall adopt a convention for naming their nodes, ports and edges. We denote
the node set ofAi (i = 0, 1) by Vi, and denoteV0∩V1 by V2. We shall usevi, v

′
i, . . . to

range overVi (i = 0, 1, 2). Similarly we usepi ∈ Pi andei ∈ Ei for ports and edges
(i = 0, 1, 2). However, we shall sometimes usepi also for points, i.e.pi ∈ W ⊎Pi; the
context will resolve any ambiguity.

As the reader will have noticed, there is a striking formal analogy between link graphs
and place graphs. But the analogy is not complete. For a parent map isprnt : h ⊎
V →V ⊎ m where both the domain and codomain include the nodesV , while a link
map islink : W ⊎ P →E ⊎ X where the setsP andE are disjoint; so unlike a parent
map, a link map cannot be iterated, i.e. a link graph has no notion of nesting.

If we did not insist on working withhard place graphs, where there are no empty
regions, then place graphs would possess RPOs but not, in general, pushouts; in that
case the RPO theories for place graphs and link graphs are almost identical. The anal-
ogous ‘hardening’ of link graphs would be to require that no outer names are idle; in
that case link graphs also have pushouts (when consistent).Bu here again the analogy
fails; for in our intended applications it appears impossible to do without idle edges.

Thus we now embark upon an RPO theory for link graphs. Let us begin with some
intuition. Suppose~D is a bound for~A, and we wish to construct the RPO( ~B,B). To
form ~B, we shall first truncate~D by removing outer names, and all points and edges
not present in~A. Then for the outer face of~B, we create a new link (a name) for
each point whose link was lost by the truncation, equating these new names only when
required so thatB0 ◦A0 = B1 ◦A1. Formally:

Construction 7.7 (RPOs in link graphs) An RPO( ~B : ~X → X̂,B : X̂ →Z), for a
pair ~A : W → ~X of link graphs relative to a bound~D : ~X →Z, will be built in three
stages. Since RPOs are preserved by isomorphism, we assumeX0,X1 disjoint. We
use the notational conventions introduced above.
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nodes and edges: If Vi are the nodes ofAi (i = 0, 1) then the nodes ofDi are
Vı −V2 ⊎ V3 for someV3. Define the nodes ofBi andB to beVı −V2 (i = 0, 1)
andV3 respectively. EdgesEi are treated exactly analogously, and portsPi inherit the
analogous treatment from nodes.

interface: Construct the shared codomain̂X of ~B as follows. First, define the names
in eachXi that must be mapped intôX:

X ′
i

def
= {x ∈ Xi | Di(x) ∈ E3 ⊎ Z} .

Next, on the disjoint sumX ′
0 + X ′

1, define∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) wheneverA0(p) = x0 andA1(p) = x1 for some pointp ∈ W ⊎ P2.
Then define the codomain up to isomorphism:

X̂
def
= (X ′

0 + X ′
1)/

∼= .

For eachx ∈ X ′
i we denote the∼=-equivalence class of(i, x) by î, x.

links: DefineB0 to simulateD0 as far as possible (B1 is similar):

Forx ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′

0

D0(x) if x /∈ X ′
0

Forp ∈ P1−P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally defineB, to simulate bothD0 andD1:

For x̂ ∈ X̂ : B(x̂)
def
= Di(x) wherex ∈ Xi andî, x = x̂

Forp ∈ P3 : B(p)
def
= Di(p) .

This definition can be proved sound, i.e. the right-hand sides in the clauses defining the
link mapsBi andB are well-defined links. Then the following is proved in [30]:

Theorem 7.8 (RPOs in link graphs) In ´L IG, whenever a pair~A of link graphs has
a bound~D, Construction 7.7 yields an RPO( ~B,B) for ~B to ~D.

We now proceed to characterise all the IPOs for a given pair~A : W → ~X of link
graphs. We ask: how does our RPO( ~B,B) vary, when we keep~A fixed but vary the
given bound~D? As for place graphs, if~A are both epi, then~B remains fixed and only
B varies, so that in this case there is a pushout. In ´PLGh we confine ourselves to epis
(since every hard place graph is epi), but for link graphs we need to treat the general
case. The first step is to establish consistency conditions.

Definition 7.9 (consistency conditions for link graphs) We define threeconsistency
conditions on a pair~A : W → ~X of place graphs. We usep to range over arbitrary
points,pi, p

′
i, . . . to range overPi, andp2, p

′
2, . . . to range overW ⊎ P2, the shared

points.

CL0 ctrl0(v2) = ctrl1(v2)
CL1 If Ai(p) ∈ E2 thenp ∈ W ⊎ P2 andAı(p) = Ai(p) .
CL2 If Ai(p2) ∈ Ei−E2 thenAı(p2) ∈ Xı, and if alsoAı(p) = Aı(p2)

thenp ∈ W ⊎ P2 andAi(p) = Ai(p2) .
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Figure 5: A consistent pair~A of link graphs, with bound~B

Again, let us expressCL1 andCL2 in words. Ifi = 0, CL1 says that if the link of
any pointp in A0 is closed and shared withA1, thenp is also shared and has the same
link in A1. CL2 says, on the other hand, that if the link of a shared pointp2 in A0 is
closed andunshared, then its link inA1 must be open, and further that any peer ofp2

in A1 must also be its peer inA0.

Proposition 7.10 (consistency in link graphs)If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 4 (consistent link graphs)Consider the pair~A : ∅→ ~X of link graphs in
Figure 5, whereX0 = {x0, y0, z0} andX1 = {x1, y1}. Nodes with subscript 2 are
shared. (Controls are not shown). The pair is consistent, with bound~B as shown. It is
worth checking the consistency conditions.

Now, assuming the consistency conditions of Definition 7.9,for any given ~A we
shall construct a non-empty family of IPOs. If~A are both epi, then there is exactly one
IPO up to isomorphism, and it is a pushout; the construction is close to that for place
graphs. Otherwise the same construction yields an IPO, but further IPOs can be gained
by elidingone or more of the idle names ofAi into Ci (i = 0, 1), i.e. the idle name can
be incorporated into any of the edges ofCi. The choice of elisions —each yielding a
different IPO— is represented below by the two functionsηi (i = 0, 1).

Construction 7.11 (IPOs in link graphs) Assume the consistency conditions for the
pair ~A : W → ~X. We define a family of IPOs~C : ~X →Y for ~A as follows.

nodes and edges:Take the nodes and edges ofCi to beVı−V2 andEı−E2.
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interface: For i = 0, 1 choose any subsetLi of the namesXi such that all members
of Li are idle. SetKi = Xi−Li. DefineK ′

i ⊆ Ki, the names to be mapped to the
codomainY , by

K ′
i

def
= {xi ∈ Ki | ∀p ∈ P2. Ai(p) = xi ⇒ Aı(p) ∈ Xı} .

Next, on the disjoint sumK ′
0 + K ′

1, define≃ to be the smallest equivalence such that
(0, x0) ≃ (1, x1) wheneverA0(p) = x0 andA1(p) = x1 for somep ∈ W ⊎ P2. Then
define the codomain up to isomorphism:

Y
def
= (K ′

0 + K ′
1)/≃ .

For eachx ∈ K ′
i we denote the≃-equivalence class of(i, x) by î, x.

links: Choose two arbitrary functionsηi : Li →Eı−E2 (i = 0, 1). Then define the
link mapsCi : Xi →Y as follows (we giveC0; C1 is similar):

Forx ∈ X0 :

C0(x)
def
=





0̂, x if x ∈ K ′
0

A1(p) if x ∈ K0−K ′
0, for p ∈ W ⊎ P2 with A0(p) = x

η0(x) if x ∈ L0

Forp ∈ P1−P2 :

C0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .

The soundness of the above definition, and the fact that~C is a bound, can both be
routinely established.

Fortunately we shall not have to handle elisions in detail inthis paper. It turns out
that they are avoided in situations where we need to analyse an IPO. This can be either
because theAi in question has no idle names, or because theCi in question has no
edges (i.e. it is open).

The following characterisation theorem is proved in [30]:

Theorem 7.12 (characterising IPOs for link graphs) A pair ~C : ~X →Y is an IPO
for ~A : W → ~X iff it is generated (up to isomorphism) by Construction 7.11.

8 Pure bigraphs: development

We now develop the theory of pure bigraphs. Proofs of propositions in this section can
mostly be found in [25]. Several notions introduced here will be used in Part III for the
dynamic theory.

First we combine the s-categories ´PLGh and ´LIG:

Definition 8.1 (s-category of pure concrete bigraphs)The s-category ´BIGh(K) of
pure concrete bigraphs over a signatureK has interfacesI = 〈m,X〉 as objects, with
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origin ǫ = 〈0, ∅〉, and bigraphsG : I → J as arrows. IfF : J →K is another bi-
graph with|F | ∩ |G| = ∅, then their composition is defined directly in terms of the
compositions of the constituents as follows:

FG
def
= 〈FPGP, F LGL〉 : I →K .

The identities are〈idm, idX〉 : I → I, whereI = 〈m,X〉 . The tensor product of two
interfaces is defined by〈m,X〉⊗〈n, Y 〉

def
= 〈m+n,X⊎Y 〉 whenX andY are disjoint.

The tensor product of two bigraphsGi : Ii →Ji (i = 0, 1) with disjoint supports is
defined as follows, when its interfaces are defined:

G0 ⊗ G1
def
= 〈GP

0 ⊗ GP
1 , GL

0 ⊗ GL
1〉 : I0 ⊗ I1 → J0 ⊗ J1 .

We shall omit the adjective ‘pure’ from now on. We shall also omit ‘concrete’ for
the present; but in Definition 8.10 we shall introduceabstractbigraphs via a forgetful
functor. We shall continue to omit the signatureK except when it is important.

We now combine some familiar place graph and link graph structures:

Proposition 8.2 (isos, epis and monos in bigraphs)A bigraph in B́IGh is iso (resp.
epi, mono) iff its constituent place graph and link graph areboth iso (resp. epi, mono).

We shall call a bigraphinner-injectiveif both its place graph and its link graph are so.
Thus a concrete bigraph is mono iff it is inner-injective. (The two properties differ for
abstract bigraphs.)

We now observe that bigraphs are an instance of a structure from Section 3:

Proposition 8.3 (bigraphs are wide) ´BIGh(K) is a wide s-category. The interface
I = 〈n,X〉 haswidth(I) = n, and forG : 〈m,X〉→〈n, Y 〉 the width mapwidth(G)
sends each sitei ∈ m to the unique rootj ∈ n such thati <G j.

It follows that when we later equip bigraphs with reaction rules we shall have a Wrs,
and then we can apply the main congruence theorem, Theorem 4.6, provided that we
have enough RPOs. So now we draw together our RPO results for place graphs and
link graphs. We deduce from Theorem 6.9 and 7.8 the following:

Corollary 8.4 (RPOs for bigraphs) In ´BIGh an RPO for~A to ~D is provided by

( 〈BP
0 , BL

0〉, 〈B
P
1 , BL

1〉, 〈B
P, BL〉 )

where( ~BP, BP) is an RPO for ~AP and( ~BL, BL) is an RPO for~AL to ~DL.

Similarly we deduce from Theorems 6.9 and 7.12 that:

Corollary 8.5 (IPOs for bigraphs) A pair ~B is an IPO for ~A in ´BIGh iff ~BP is a
place graph pushout for~AP and ~BL is a link graph IPO for ~AL.

Example 5 (Bigraph IPOs) To illustrate IPOs in ´BIGh, we can combine Example 3
for place graphs and Example 4 for link graphs, since they have the same node sets. In
both cases the bounds~B are IPOs, and indeed pushouts because the graphs~A are epi
in this case. The combination is shown in Figure 6.
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Figure 6: A consistent pair~A of bigraphs, with IPO~B
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We now give a few special cases of IPOs. First, some pushouts (hence also IPOs)
that are easy to verify for any precategory:

Proposition 8.6 (containment pushout)If A is epi then the pair(A,FA) has the
pair (F, id) as a pushout. In particular, by takingA = id andF = id respectively:

1. Any pair(id, F ) has(F, id) as a pushout.

2. If A is epi then(A,A) has(id, id) as a pushout.

Next, tensor product preserves IPOs with disjoint support:

Proposition 8.7 (tensor IPO) Let ~C be an IPO for~A and ~D be an IPO for~B, where
| ~A, ~C| ∩ | ~B, ~D| = ∅. Then(C0 ⊗ D0, C1 ⊗ D1) is an IPO for(A0 ⊗ B0, A1 ⊗ B1),
provided that all the interface products are defined.

It follows, with the help of Proposition 8.6, that:

Corollary 8.8 (tensor IPOs with identities) Let A : I ′ → I and B : J ′ → J have
disjoint support, and let the names ofI ′, I be disjoint from those ofJ ′, J . Then the
pair (A ⊗ idJ ′ , idI′ ⊗ B) has an IPO(idI ⊗ B,A ⊗ idJ). See diagram(a).

In particular if I ′ = J ′ = ǫ thenA = a andB = b are groundbigraphs, and the
IPO is as in diagram(b).

J

I

idI ⊗ b

a ⊗ idJ

I⊗J

b

a

idI ⊗ B
I⊗J

I
′⊗J

I⊗J
′

(a) (b)

A ⊗ idJ ′ A ⊗ idJ

idI′ ⊗ B

We now prepare to define abstract bigraphs. In these, as promised, we forget the
identity of nodes and edges, but we want to do a little more. Even without identity, idle
edges may still lurk in a bigraph; we want to forget these too.Call a bigraphlean if
its link graph is lean, i.e. has no idle edges. In Section 9 we shall need to transform
IPOs by the addition or subtraction of idle edges. Let us write AE for the result of
adding a setE of fresh idle edges toA. The following is easy to prove from the IPO
construction for link graphs:

Proposition 8.9 (IPOs, idle edges and leanness)For any pairs ~A and ~B in ´BIGh:

1. If ~B is an IPO for ~A, andA1 is lean, thenB0 is lean.

2. For any fresh setE of edges,~B is an IPO for ~A iff (B0, B
E
1 ) is an IPO for

(AE
0 , A1).

Definition 8.10 (Abstract pure bigraphs and their category) Two concrete bigraphs
A andB arelean-support equivalent, writtenA ≎ B, if after discarding any idle edges
they are support equivalent. The category BIGh(K) of abstract pure bigraphshas the
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same objects as ´BIGh(K), and its arrows are lean-support equivalence classes of con-
crete bigraphs. Lean-support equivalence is clearly a congruence (Definition 2.5). The
associated quotient functor, assured by Definition 2.6, is

[[·]] : ´BIGh(K)→BIGh(K) .

Of course, there are also abstract versions of place graphs and link graphs. But we have
little use for them, for we cannot combine an abstract place graph with an abstract link
graph to form an abstract bigraph! (The combination only makes sense when nodes
have identity.)

The reader might expect that we could henceforth develop ourtheory in abstract
bigraphs, having constructed them. But this is impossible,since they lack RPOs —and
even epis— in general. Counterexamples justifying both these assertions can be found
in [25]. In contrast, the RPOs in concrete bigraphs will allow us in Section 9 to derive
a behavioural congruence for ´BIGh; then we shall see how to transfer it, under certain
assumptions, to BIGh.

We shall now introduce some notation and concepts used in following sections.

Notation We often abbreviate an interface〈0,X〉 to X, and{x} to x; similarly we
abbreviate〈m, ∅〉 to m. Thus the interfaces∅ and0 are identical with the originǫ, and
indeed the identityidǫ may be written variously asǫ, ∅ or 0.

Definition 8.11 (wiring, closure, substitution) A bigraph with interfaces of zero width,
and hence having no nodes, is called awiring; we letω, ζ range over wirings. They are
generated by composition and tensor product from two basic forms:/x : x→ ǫ, called
closure; and open wiringsσ, τ which we callsubstitutions. We denote the empty sub-
stitution fromǫ to x by x : ǫ→x.

ForX = {x1, . . . , xn} we write/X for the multiple closure/x1 ⊗ · · · ⊗ /xn, and
X for the empty substitutionx1⊗· · ·⊗xn. For vectors~x and~y of equal length, with the
xi distinct, we write~y/~x or (y0/x0, y1/x1, . . .) for the surjective substitutionxi 7→ yi.
Every substitutionσ can be expressed uniquely asσ = τ ⊗ X, with τ surjective. We
let α range overrenamings, the bijective substitutions.

Definition 8.12 (prime, discrete) An interface isprime if it has width 1. We shall
often write a prime interfaceI = 〈1,X〉 as〈X〉; note in particular that1 = 〈∅〉. A
primebigraphP : m→〈X〉 has no inner names and a prime outer face. An important
prime ismerge : m→ 1, wherem > 0; it has no nodes, and simply mapsm sites to a
single root. A bigraphG : m→〈n,X〉 with no inner names is converted bymerge into
a prime(merge ⊗ idX)G.

A bigraph isdiscreteif it has no edges, and its link map is bijective. Thus it is open,
no two points are peers, and no name is idle.

Primes have no inner names; this ensures prime factorisation in Proposition 8.15.

Definition 8.13 (ion, atom, molecule) For any non-atomic controlK with arity k
and sequence~x of k distinct names we define the discreteion Kv,~x : 1→〈~x〉 to have a
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singleK-nodev, whose ports are severally linked to~x. We omit the subscriptv when
it can be understood.

For a discrete primeP with namesY , the composite(K~x ⊗ idY )P is a discrete
molecule. If K is atomic it has no ion, but we define the discreteatomK~x : ǫ→〈~x〉;
it resembles an ion but possesses no site. An arbitrary (non-discrete) ion, molecule or
atom is gained by composingω ⊗ id1 with a discrete one.

Atoms, ions and molecules are all prime. Atoms are ground, but ions are not, and
molecules need not be.

Notation We often omit ‘. . . ⊗ idI ’ in compositions, when there is no ambiguity;
examples from above aremerge G for (merge ⊗ idX)G andK~xP for (K~x ⊗ idY )P .

Given a wiringω : Y →Z we may restrict its link map to any subsetX ⊆ Y ,
yielding therestrictedwiring ω ↾ X : X →Z. Then, if the outer face ofG is 〈m,X〉
we may write simplyωG for (ω ↾X ⊗ idm)G.

We now look at variants of the tensor product, to reflect the notion of ‘parallel composi-
tion’ p ‖ q or p | q in process calculi, which allow the processesp andq to share names.
We first extend the parallel product ‘‖ ’ of link graphs (Definition 7.5) as follows:

Definition 8.14 (parallel and prime product) Theparallel productis defined on in-
terfaces by〈m,X〉 ‖ 〈n, Y 〉

def
= 〈m+n,X∪Y 〉, and on bigraphsGi : Ii →Ji (i = 0, 1)

with disjoint support by

G0 ‖G1
def
= 〈GP

0 ⊗ GP
1 , GL

0 ‖GL
1〉 : I0 ⊗ I1 → J0 ‖J1

when the interfaces exist. Theprime productis defined on interfaces by〈m,X〉 | 〈n, Y 〉
def
=

〈1,X ∪ Y 〉, and on bigraphs (under the same conditions) by

G0 |G1
def
= merge(G0 ‖G1) : I0 ⊗ I1 →J0 |J1 .

Both products are associative, andǫ is the unit for ‖ . They are well-formed since
the factorsG0 andG1 are required to have disjoint inner names. The parallel product
keeps their regions separate, while the prime product merges them. The notation|
comes from CCS and theπ-calculus; the correspondence is accurate. Note that to join
a wiring to a prime we may write eitherω |P or ω ‖P ; they coincide in this case.

Let us now considerdiscretebigraphs. In a precise sense they complement wiring:

Proposition 8.15 (discrete normal form) Every bigraphG can be expressed uniquely
(up to iso) asG = ωD, whereω is a wiring andD is discrete. Furthermore every dis-
creteD : 〈m,X〉→〈n, Y 〉 may be factored uniquely, up to isomorphism on the domain
of each factorDi, as

D = α ⊗ ((D0 ⊗ · · · ⊗ Dn−1)π)

with α a renaming, eachDi prime and discrete, andπ a permutation.
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Note that a renaming is discrete but not prime (since it has zero width); this explainsα
in the prime factorisation. Its uniqueness depends on the fact that primes have no inner
names. In the special case thatD is ground, the factorisation is justD = d0 ⊗ · · · ⊗
dn−1, a product of prime discrete ground bigraphs.

Thediscrete normal form (DNF)applies equally to abstract bigraphs, and plays an
important part in the complete axiomatisation of pure bigraphs [40]. Discreteness is
well behaved in other ways. Clearly both composition and tensor product preserve it.
IPOs also treat it well. In fact, we have:

Proposition 8.16 (properties of discreteness)The discrete pure bigraphs form a sub-
s-category of B́IGh. Moreover

1. If (D′, G′) is an IPO for(G,D) andD is discrete, thenD′ is discrete.

2. If D′G = ωD with D andD′ discrete, then(D′, ω) is an IPO for(G,D).

We have to make one more preparation for Section 9 on dynamics. When we define
the notion of parametric reaction rule, we must allow a parametric redex to replicate
some factors of its parameter and discard other factors. Forexample, the redexR
for CCS shown in Figure 2 discards two of the four factors. We represent this by an
operationη[·] on parameters calledinstantiation. The following definition ensures that
names are shared among all copies of a parameter factor.

Definition 8.17 (instantiation) Let η : n→m be a map of ordinals. For anyX this
defines a map

η : Gr〈m,X〉→Gr〈n,X〉

as follows. Decomposeg : 〈m,X〉 into g = ωd, whered : 〈m,Y 〉 = d0 ⊗ · · · ⊗ dm−1,
with eachdi prime and discrete. Then define

η [g]
def
= ω(Y ‖ d′0 ‖ · · · ‖ d′n−1) ,

whered′j ≏ dη(j) for j ∈ n. This map is well-defined (up to support translation), by
Proposition 8.15.

Support translation is used to ensure that the several copies of parameter factor have
disjoint supports.Y is included in the instantiation, since the names ofd′0 ‖ · · · ‖ d′n−1

may be fewer thanY whenη is not surjective. Indeed, this is how idle links may arise
from reactions.

Proposition 8.18 (wiring an instance)Wiring commutes with instantiation; that is,

ζ(η[a]) ≏ η[ζa] .

Proof Let a : 〈m,X〉, with η : m′ →m. Take the DNFa = ωd, whereω : Y →X.
Thenη[a] = ωd′, whered′ = Y ‖ d′0 ‖ · · · ‖ d′m′−1 with eachd′i ≏ dη(i). So

η[ζa] = η[ζ(ωd)] = η[(ζω)d]
≏ (ζω)d′ = ζ(ωd′) ≏ ζ(η[a]) .

We can now deduce how to apply instantiation to a product of primes:
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Proposition 8.19 (instantiating a product) Let ai : 〈Yi〉 be prime and ground (i ∈
m), and letY =

⋃
i Yi. Letη :: n→m be an map of ordinals. Then

η[a0 ‖ · · · ‖ am−1] = Y ‖ b0 ‖ · · · ‖ bn−1

wherebj ≏ aη(j) for j ∈ n.

Thus, although instantiation breaks up a ground bigraph in general, it does not break
up a prime; in fact, applied to a product of primes, it simply reassembles copies of the
prime factors.

More generally, if we instantiate a compositeGa wherea is prime, thena will
not be broken up but the resulting instance may contain several copies ofa. This fact,
which will be important for Section 9, means thatη[Ga] can be transformed intoη[Gb]
by replacing a finite number of occurrences ofa by b. Formally:

Proposition 8.20 (instantiating with prime component) LetG : 〈X〉→〈m,Y 〉 be ar-
bitrary with prime inner face, andη :: n→m be a map of ordinals. Then for some
k ≥ 0, if we choose disjoint renamingsαi : X →Xi (i ∈ k), there exists a context
C : 〈k,

⋃
i Xi〉→〈n, Y 〉 such that

η[Ga] ≏ C(a0 ⊗ · · · ⊗ ak−1)

wheneverGa is defined, whereai ≏ αia.
Moreover for any paira, b : 〈X〉 we have(η[Ga], η[Gb]) ∈ (S≏)∗, where

S = {(Ha,Hb) | H any context} .

We are now ready to proceed to the dynamics of pure bigraphs.
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Part III : Dynamics for bigraphs
Section 9 introduces the notion of abigraphical reactive system(Brs), which is
an instance of the notion of Wrs from Part I. The dynamics of a Brs is provided
by parametric reaction rules. Transition systems are set up, as defined in Part
I; they are shown to yield congruential bisimilarity in both concrete and abstract
Brss. A special class ofsimpleBrss is defined; on the basis of work on Part I, it
is shown that the standard transition system for a simple Brs can be significantly
simplified. Section 10 introducessortedBrss, in which (as in sorted algebras)
the structure of bigraphs can be constrained in various ways to suit applications.
It is shown that manysortingsrespect the dynamic theory. Finally, Section 11
illustrates every aspect of bigraphical theory in terms of a finite fragment of CCS,
recovering exactly its original strong bisimilarity.

The concluding section discusses related and future work.

9 Reactions and transitions

We are now ready to apply our general notion of a wide reactivesystem (Wrs) to bi-
graphs. We begin this section by defining abigraphical reactive system(Brs); we then
discuss its standard transitions and show their induced bisimilarity is a congruence.
Thereafter we specialise the results to the well-behaved subclass ofsimpleBrss, where
we can find a smaller transition system adequate for the standard one.

Bigraphical reactive systems

To define the notion of Brs, it remains to define reaction rulesover bigraphs. We shall
give a Brs a little more structure than a Wrs, since —as hinted inSection 3 and already
illustrated for CCS in Figure 2 in the Introduction— we wish to identify theparametric
reaction rules that will generate the ground rules of a Brs. First, let us defineactivity
for bigraphs.

Definition 9.1 (active bigraph) A bigraphD is active atthe sitei if every node>D i
has an active control.D is activeif it is active at every site.

This defines the activity map for ´BIGh(K) for any signatureK, and it is a routine
matter to check that the conditions of Definition 3.3 hold.

For parametric reaction rules, we want a ground redex to haveroughly the form
r = Rd, whereR is a parametric redex andd a parameter. But, since we are not
dealing with name-binding, we wish the outer names of the parameterd to be also
outer names ofr; that is,R should not close them. We therefore choose parametric
redexes to have the formR : m→ J , and for any parameterd : 〈m,X〉 we shall form a
ground redexr = (idX ⊗R)d. Further, we shall use instantiations (Definition 8.17) to
determine how a parameter should be instantiated. We arriveat the following:

Definition 9.2 (reaction rules for bigraphs) A parametric reaction rulehas aredex
R andreactumR′, both lean. It takes the form

(R : m→ J, R′ : m′ →J, η )
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whereη : m′ →m is a map of ordinals. Then for every discreted : 〈m,X〉 the para-
metric rule generates every ground reaction rule(r, r′), wherer ≏ (idX ⊗ R) d and
r′ ≏ (idX ⊗ R′) η[d].

Consider Example 1 in Section 1, displayed in Figure 2. In that case we have

R : 4→〈x〉 = alt(sendx | id) | alt(getx | id) , R′ : 2→〈x〉 = x | id | id

and the instantiation is dictated by the ordinal mapη : 0 7→ 0, 1 7→ 2.
The reader may wonder why we choose parameters to be discrete. In fact the gen-

erated reaction relation would be unchanged if we allowed arbitrary ground bigraphs
as parameters, since the instantiation of any ground bigraph is defined in terms of the
factors of its underlying discrete bigraph. But discrete parameters simplify analysis
considerably, especially for transitions and bisimilarity.

We are now ready to define our central concept:

Definition 9.3 (bigraphical reactive system) A (concrete) bigraphical reactive sys-
tem (Brs)overK consists of ´BIGh(K) equipped with a setŔ of reaction rules closed
under support equivalence (≏). We denote it by ´BIGh(K, ´R).

We have accentedŔ, as well as ´BIGh, to indicate that our redexes and reacta are con-
crete. Now, since we have determined both the ground reaction rules and the activity
of a Brs, we can assert that

Proposition 9.4 (a Brs is a Wrs) Every bigraphical reactive system induces a Wrs.

We now turn to wide transition systems and bisimilarity. Allof Section 4 on these
topics can be applied to Brss, including the various transition systems: the full oneFT,
the standard oneST, and the standard mono one·ST. Most importantly, from Theo-
rem 4.6 and Corollary 4.7 we deduce a behavioural congruence:

Corollary 9.5 (congruence of wide bisimilarity) In any concrete Brs with the stan-
dard transition systemST, wide bisimilarity∼ is a congruence; also mono bisimilarity
.
∼ is a congruence for mono contexts.

Recall that a bigraph in ´BIGh is mono iff it is inner-injective; thus we understand
which labels will be discarded in passing fromST to ·ST. In particular, substitutions
~y/~x will be discarded unless they are injective.

Later we shall examine a particular class of Brss; it yields an adequacy theorem
that significantly reduces the transition systemsST and ·ST. But first let us transfer
our behavioural congruence to the abstract Brs BIGh(K,R), where BIGh(K) andR are
obtained by the quotient functor[[·]] of Definition 8.10.

This functor, the quotient by lean-support equivalence (≎), is a little coarser than
the quotient by support equivalence (≏). To transfer the congruence result we must
first prove that≎ respectsST:

Proposition 9.6 (transitions respect equivalence)In a concrete Brs withST:

42



1. Every transition labelL is lean.

2. Transitions respect lean-support equivalence (≎) in the sense of Definition 4.2.
That is, whenevera L

⊲λ a′, if a ≎ b and L ≎ M with Mb defined, then
b M

⊲λ b′ for someb′ such thata′ ≎ b′.

Proof For the first part, use Proposition 8.9(1) and the fact that every discrete agent
is lean. For the second part, use Proposition 8.9(2); the fact that each redex is lean
ensures that it cannot share an idle edge with the agenta.

We are now ready to transfer the congruence results of Corollary 9.5 from concrete
to abstract Brss. The following is immediate by invoking Theorem 4.9:

Corollary 9.7 (behavioural congruence in abstract Brss)Let Á be a concrete Brs,
andA its lean-support quotient. Let∼ denote both the bisimilarity forST in Á and the
corresponding bisimilarity induced inA; similarly for

.
∼ and ·ST. Then

1. a ∼ b iff [[a]] ∼ [[b]], anda
.
∼ b iff [[a]]

.
∼ [[b]].

2. Bisimilarity∼ is a congruence inA, and mono bisimilarity
.
∼ is a congruence in

A for inner-injective contexts.

Note that the notion of ‘inner-injective’ is well-defined for abstract as well as concrete
bigraphs. However, an inner-injectiveabstractbigraph need not be mono (in contrast
with concrete bigraphs); that is why we need a separate term.But for convenience we
shall still use the term ‘mono bisimilarity’ for the image of

.
∼ under[[·]].

Simple Brss

We now proceed to look at a the class ofsimple primeBrss, whose redexes have certain
structural properties. Working in ´BIGh we are then able to show that engaged transi-
tions on prime agents are adequate for the standard transition systemST. This yields
a tractable transition system, which we can then transfer toabstract Brss over BIGh,
yielding a bisimilarity that is a congruence.

Recall from Section 7 that a link isopenif it is a name, otherwiseclosed.

Definition 9.8 (simple Brss) In ´BIGh or BIGh, call a bigraphopenif every link is
open. Call itguardingif it has no inner names, and no site has a root as parent. Call it
simple1 if it is inner-injective, open and guarding.

A Brs is simple(resp.prime) if all its redexes are simple (resp. prime).

We give without proof three easy properties of openness:

Proposition 9.9 (openness properties)

1This definition of ‘simple’ pertains only to pure bigraphs; a refined definition for binding bigraphs
appears in [25]. Also, here we do not require a simple bigraph to be prime. We sometimes need primeness
as well as simpleness, but it seems natural to separate the two notions.
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1. A compositionFG is open iff bothF andG are open.

2. Every open bigraph is lean (i.e. has no idle edges).

3. If ~B is an IPO for ~A andA1 is open, thenB0 is open.

We are now ready to define a sub-TS of the standard transition system.

Definition 9.10 (engaged transitions) In ´BIGh a standard transition ofa is said to
beengagedif it can be based on a reaction with redexR such that|a|∩|R| 6= ∅. Denote
by PE the transition system of prime interfaces and engaged transitions. Denote by·PE

the sub-Lts in which the transitions are mono.

We wish to prove thatPE is adequate forST (Definition 4.10), i.e. that∼PE

ST
= ∼ST

restricted to prime interfaces; then for primea andb, to establisha ∼ST b we need only
provea ∼PE

ST
b. For this we need only match eachengagedtransition ofa (resp.b) by an

arbitrary transition ofb (resp.a). This is less work than matchingall transitions. Note
that therelativebisimilarity ∼PE

ST
should not be confused with theabsolutebisimilarity

∼PE. (They will be proved equal under certain conditions.)
To prove thata ∼PE

ST
b impliesa ∼ST b for primea andb, we have to show howb

can match thenon-engagedtransitions ofa, and the antecedent only tells us how to
match theengagedones. However, it turns out that a non-engaged transition ofa can
be suitably matched byanyb (whether or nota ∼PE

ST
b). This is not surprising, because

a contributes nothing to such a transition, so replacing it byb should not prevent the
transition occurring.

All the foregoing remarks apply equally to·PE and
.
∼PE

ST
, its bisimilarity relative to

·ST.
The following theorem justifies our intuition, at least for prime simple Brss. The

proof is in the appendix.

Theorem 9.11 (adequacy of engaged transitions)In a simple prime concrete Brs with
ST, the prime engaged transitions are adequate; that is, engaged bisimilarity∼PE

ST
coin-

cides with bisimilarity∼ST on prime agents.
Similarly ·PE is adequate for·ST, i.e. the engaged bisimilarity

.
∼PE

ST
coincides with

.
∼ST on prime agents.

In passing, we observe that simpleness and adequacy makes iteasy to verify two desir-
able properties of idle names (though they also hold more generally):

Proposition 9.12 (idle names and bisimilarity) In a simple prime concrete Brs with
ST,

1. a ∼ b iff x ⊗ a ∼ x ⊗ b.

2. a ∼ b does not imply thata andb have the same idle names.
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Proof (1) For the forward implication, use congruence. For the converse we verify
thatS = {(a, b) | x⊗ a ∼ x⊗ b} is a bisimulation. LetaSb, and consider a transition

a L
⊲λ a′. We easily deduce thatx ⊗ a idx⊗L

⊲λ x ⊗ a′, hencex ⊗ b idx⊗L
⊲λ b′′

wherex ⊗ a′ ∼ b′′. Assuming simpleness it can be shown that this transition ofx ⊗ b
cannot involve an elision ofx. It is then easy to verify thatb′′ takes the formx⊗ b′ (up
to isomorphism), whereb L

⊲λ b′. But thena′Sb′ and we are done.

(2) Consider finite CCS with the rule of Example 1 in Section 1.Suppose it has at
atomic controlnil representing the null process. The agent/x sendxsendynil attempts
to send on the channelx, which is closed, and then to send ony. It has a single outer
namey that is not idle. On the other hand the agenty ⊗ nil has an idle namey. But
neither agent has an engaged transition, so they are bisimilar.

We now wish to transferPE to abstract Brss, via the quotient functor

[[·]] : ´BIGh →BIGh .

To do this, we would like to know thatPE is definitefor ST (see Definition 4.12), for
then by Proposition 4.13 we can equate the relative bisimilarity ∼PE

ST
with the absolute

one∼PE. For this, we need to know that, from the pair(L, λ) alone, we can determine

whether or not a transitiona L
⊲λ a′ is engaged.

It turns out that this holds in a wide range of Brss, includingthe natural encoding
of π-calculus and ambient calculus. This is because they all satisfy a simple structural
condition, namely that no rule subsumes another in the following sense:

Definition 9.13 (subsume) Define ctrl(G), the control of a bigraphG, to be the
multiset of controls of its nodes. Say that a rule with redexS subsumesanother rule
with redexR if ctrl(R) ( ctrl(S).

Note that this property applies equally to concrete and abstract Brss; indeed a concrete
Brs has a subsumption iff its image under the quotient functor [[·]] has a subsumption.
Now with the help of Corollary 4.14, we deduce

Corollary 9.14 (engaged congruence)In a simple prime concrete Brs with no sub-
sumption:

1. The engaged transition systemPE is definite forST.

2. Engaged bisimilarity∼PE coincides with∼ST on prime agents.

3. For any contextC with prime interfaces,a ∼PE b impliesCa ∼PE Cb .

Analogous properties hold for·PE, ·ST,
.
∼PE and

.
∼ST, with C inner-injective.

We now proceed to transfer engaged transitions and bisimilarity from concrete to
abstract bigraphs. Note that the term ‘engaged’ is defined only for concrete bigraphs;
but for convenience we shall call an abstract transitionengagedif it is the image under
[[·]] of an engaged transition; and we shall also call refer to the induced bisimilarity of
abstract bigraphs asengaged bisimilarity.
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Now recall from Proposition 9.9 that every simple bigraph islean. We therefore
derive the analogue of Corollary 9.7, withPEand·PE in place ofST and·ST, under extra
assumptions:

Corollary 9.15 (engaged congruence in an abstract Brs)Let Á be a simple prime
concrete Brs with no subsumption, and letA be its lean-support quotient. Let∼PE

denote bisimilarity both forPE in Á and for the induced transition system[[PE]] in A,
and similarly for

.
∼PE. Then

1. a ∼PE b iff [[a]] ∼PE [[b]], anda
.
∼PE b iff [[a]]

.
∼PE [[b]].

2. In A, ∼PE is a congruence and
.
∼PE is a congruence for inner-injective contexts.

Proof Note that the quotient functor satisfies the conditions of Theorem 4.9. In
particular, by Proposition 9.6 it respectsPEand·PE, being sub-Ltss ofST and of·ST. So
the theorem yields (1) immediately. It also yields (2) with the help of Corollary 9.14.

Thus we have ensured congruence of engaged bisimilarity in any abstract Brs BIGh(K)
satisfying reasonable assumptions.

10 Place sorting

In this short section we extend our Brs results toplace-sortedBrss, in which a sorting
discipline constrains the parent map, thus limiting the admissible bigraphs. We begin
with a brief motivation for sorting.

In significant applications we are quite likely to employ a rich signature, and to
need some constraint on the way in which bigraphs may be built. For example, given
a controlK, we may want to constrain the children of aK-node to have only certain
controls; or we may want to constrain the linkage allowed forsome or all of the ports
of a K-node. The latter kind of discipline we may calllink-sorting; an instance of
it was used in [30] for representing Petri nets. The former —the constraint on the
parent map— we shall callplace-sorting. Of course, we may combine link-sorting
with place-sorting.

Without a more definite notion of what constitutes a sorting discipline, we cannot
expect our bigraph theory to remain unaffected by sorting. For example, the discipline
could prevent the existence of a tensor product, or of RPOs; or it may admit RPOs but
affect their construction. Associated with any sorting discipline there will be a forgetful
functor to unsorted bigraphs; the effect of the discipline of our theory will often be
determined by properties of this functor. We began to investigate this question in [38],
and Jensen will continue the investigation in his forthcoming PhD Dissertation [23].
In this paper we shall confine ourselves to defining place-sorting and give sufficient
conditions (analogous to those given in [25] for link-sorting) to ensure that it does not
damage our theory; then, in Section 11, we shall use an instance of place sorting to
encode finite CCS in bigraphs.

In the followingΘ will denote a non-empty set ofsorts, andθ will range overΘ.
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Definition 10.1 (place-sorted bigraphs) An interface with widthm isΘ-(place-)sorted
if it is enriched by ascribing a sort to each placei ∈ m. If I is place-sorted we denote
its underlying unsorted interface byU(I).

We denote by ´BIGh(K,Θ) the s-category in which the objects are place-sorted
interfaces, and each arrowG : I → J is a bigraphG : U(I)→U(J). The identities,
and composition and tensor product are as in ´BIGh(K), but with sorted interfaces.

Note that the width of an interface has been enriched from an ordinalm to a sequence
in Θm; for example, a prime interface takes the form〈θ,X〉. Adding sorts to inter-
faces has, of course, done nothing to constrain the internalstructure of bigraphs in
´BIGh(K,Θ), but has provided a means for adding such constraint, as we now define:

Definition 10.2 (place-sorting) A place-sortingis a triple

Σ = (K,Θ,Φ)

whereΦ is a condition onΘ-sorted bigraphs overK. The conditionΦ must be satisfied
by the identities and preserved by composition and tensor product.

A bigraph in ´BIGh(K, Θ) is Σ-(place-)sortedif it satisfiesΦ. TheΣ-sorted bi-
graphs form a sub-s-category of ´BIGh(K,Θ) denoted by ´BIGh(Σ). Further, if Ŕ is a
set ofΣ-sorted reaction rules then ´BIGh(Σ, ´R) is aΣ-sortedBrs.

We shall useU(´R) for the underlying unsorted reactions. .
Even with only a single sort (i.e. effectively no sorting) there are interesting exam-

ples, sinceΦ may impose constraints that have nothing to do with sorts; asa simple
example, it may decree that each root or node has at most one child. (The reader may
like to confirm that this sorting satisfies the required conditions.) As another example,
it can represent atomicity of controls and nodes, by decreeing that nodes with certain
controls haveno children. Other examples, including the homomorphic sortings de-
fined at the end of this section, are naturally expressed by first assigning a sortθ ∈ Θ
to every control, and then imposing constraints upon a bigraph in terms of the sorts
thereby associated with nodes.

However, arbitrary sorting constraints may destroy our theory; for example, they
may prevent the existence of RPOs. What conditions must we place on a place-sorting
Σ = (K,Θ,Φ) to ensure that our theory is preserved? This question is bestanswered
in terms of the obvious forgetful functor which discards sorts:

U : ´BIGh(Σ)→ ´BIGh(K) .

We shall callU asortingfunctor. Such functors have certain properties:

Proposition 10.3 (place-sorting is faithful) On interfaces a sorting functor is sur-
jective (but not in general injective). On each homset it is also faithful, i.e. injective
(though not in general surjective) .

We need more structure than this if we wish to apply our transition theory to a well-
sorted Brs. Consider two properties that a functor of s-categories may have:
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Definition 10.4 (creating RPOs, reflecting pushouts) Let F be any functor on an
s-categoryÁ. ThenF creates RPOsif, whenever~D bounds~A in Á, then any RPO for
F( ~A) relative toF( ~D) has a uniqueF-preimage that is an RPO for~A relative to~D.

F reflects pushoutsif, whenever ~D bounds ~A in Á andF( ~D) is a pushout for
F( ~A), then ~D is a pushout for~A.

Corollary 10.5 (creation ensures RPOs)If F : Á → ´B creates RPOs andB́ has
RPOs, thenÁ has RPOs.

We shall often confuseΣ with its functor; for example we say ‘Σ creates . . . ’ etc.
As with link-sorting [25], it turns out that if a place-sorting satisfies the two condi-

tions of Definition 10.4 then we get sufficient structure for our transition theory:

Theorem 10.6 (useful place-sortings)In ´BIGh(Σ, ´R):

1. If Σ creates RPOs then∼ST is a congruence, and
.
∼ST is a congruence for mono

contexts.

2. If in additionΣ reflects pushouts andŔ is prime simple, thenPE is adequate for
ST and ·PE is adequate for·ST.

Note thatsimplenessof a well-sorted link graph is just as for a pure one. (Indeed sorting
functors both preserve and reflect simpleness.) We omit the proof of the theorem; it
follows closely the lines of Theorems 4.6 (proved in [30]) and 9.11 (proved in the
Appendix). For the latter, the reflection of pushouts enables Proposition A.1 in the
Appendix to be proved for a well-sorted Brs.

We shall not explore the variety of sortings that satisfy ourtwo conditions. But in
Section 11 we shall use a natural kind of sortingΣ = (K,Θ,Φ), in which a sort inΘ
is ascribed byΦ to each control inK; thus each node of a bigraph acquires the sort of
its control. ThenΦ admits only those bigraphs in which all sites or nodes lying in the
same region have the same sort; moreover, if the region is outermost then this must be
the sort ascribed to the corresponding root. More precisely:

Definition 10.7 (homomorphic sorting) In a homomorphicsortingΣ = (K,Θ,Φ)
the conditionΦ assigns a sortθ to each control inK. It also defines a parent map
prnt : Θ→Θ over sorts. Then a bigraph is admissible iff, for each site ornodew,

− if prnt(w) is a node then the sort assigned to its control isprnt(θ) ;
− if prnt(w) is a root then its sort isθ.

We can then deduce from the RPO construction for place graphsthat

Proposition 10.8 (homomorphic sorting is well behaved)Every homomorphic sort-
ing creates RPOs and reflects pushouts.
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11 CCS revisited

We are now ready to see how our results apply to pure CCS [33], for which we gave
a reaction rule in Example 1 of Section 1. This provides a niceapplication of the
adequacy theorem and of place sorting, introduced in preceding sections.

We limit ourselves to finite pure CCS with the following syntax. We shall letP,Q
range overprocessesandM,N oversums(or alternations); each summand of a sum
is a process guarded by an actionλ of the formx or x.

P ::= 0

∣∣ νxP
∣∣ P |P

∣∣ M
M ::= λ.P

∣∣ M+M
λ ::= x

∣∣ x .

Restrictionν is the only scoping operator, and the free names of a process are just those
not bound byν. This is essentially the syntax of CCS as given in Definition 4.1 of [34],
if 0 is taken to be the empty sum and process identifiers are omitted.

This syntax is two-sorted; we shall therefore translate it into an sorted s-category of
abstract bigraphs BIGh(Σccs), whereΣccs = (K,Θ,Φ) is a homomorphic place sorting
(Definition 10.7). We shall have two sorts,Θ = {p,m}, wherep is for processes and
m is for sums. The sortingΣccs assigns both a sort and an arity to each control:

nil : (p, 0) alt : (p, 0) send : (m, 1) get : (m, 1)

indicating thatnil andalt construct elementary processes, whilesend andget construct
elementary sums. It also declaresnil to be atomic and the other controls to be passive.
Now recall that each interface will be sorted, assigning a sort to each place in its width.
Finally, the sorting conditionΦ imposes the parent map{p 7→ m,m 7→ p}.

We shall map CCS processes and sums into ground homsets with prime inter-
faces of the form〈p,X〉 and〈m,X〉. Thus we define two translation mapsPX(·) and
MX(·), each indexed by a finite name-setX, from finite pure CCS into BIGccs; they
are defined wheneverX includes all free names of the argument(·), so each process or
sum has an image in many prime ground homsets.

Definition 11.1 (translation of finite CCS) The translationsPX(·) for processes and
MX(·) for sums are defined by mutual recursion:

PX(0) = X | nil MX(x.P ) = sendx PX(P ) (x ∈ X)
PX(νxP ) = /yPy⊎X({y/x}P ) MX(x.P ) = getx PX(P ) (x ∈ X)
PX(P |Q) = PX(P ) | PX(Q) MX(M+N) = MX(M) |MX(N) .

PX(M) = altMX(M) .

Note that, in translatingνxP , x is first alpha-converted to somey 6∈ X. We shall write

P
alpha
≡ Q to mean thatP is alpha-convertible toQ. A substitution{y/x} on CCS terms

is metasyntactic, and not to be confused with the bigraphy/x of zero width.
Note that restriction and parallel composition are modelled directly by closure and

prime product, and need no extra controls. It is perhaps surprising that summation ‘+’
of CCS is also represented using prime product. But prime product in bigraphs is a
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purely structural or static operation, with no commitment to any dynamic interpreta-
tion. The distinction between parallel composition and summation in our bigraphical
encoding of CCS is achieved by the form of its reaction rule, as we shall see.

Our translations are not injective on prime ground homsets.In fact they induce
upon CCS an equivalence≡ that is close to the structural congruence defined in Def-
inition 4.7 of [34]; the differences will be discussed shortly. But, due to sorting, the
translations aresurjective; this can be proved by induction on the number of nodes in a
prime ground bigraph. We now make these points more precisely:

Definition 11.2 (structural congruence) Definestructural congruenceover CCS terms
to be the smallest equivalence≡ preserved by all term constructions, and such that

1. P
alpha
≡ Q impliesP ≡ Q, and M

alpha
≡ N impliesM ≡ N ;

2. ‘ | ’ and ‘+’ are associative and commutative under≡ ;
3. νxνyP ≡ νyνxP ;
4. νxP ≡ P and νx (P |Q) ≡ P | νxQ for anyx not free inP ;
5. νx λ.P ≡ λ.νxP and νx (M+λ.P ) ≡ M + λ.νxP

for anyx not free inM or λ.

Note that clauses 4 and 5, taken in reverse, allow a restrictionνx to be pulled outwards
from any parallel component and any summand respectively. This gives rise to the
following, analogous to the standard forms of Definition 4.8in [34]:

Proposition 11.3 (CCS normal form) Every CCS process is structurally congruent
to a normal formνx1 · · · νxℓ P (ℓ ≥ 0), whereP is anopen process formcontaining
each namexi free. Open process forms are defined recursively as follows:

• anopen process formis a process termP1 | · · · |Pm (m > 0), where eachPj is
either0 or an open sum form;

• an open sum formis a summation termM1+· · ·+Mn (n > 0), where eachMk

takes the formλ.P for some open process formP .

These forms, with restrictions outermost, are important inproving the following theo-
rem. It states essentially that each of our translation functions from CCS to bigraphs is
a bijection from structural congruence classes to a prime ground homset:

Theorem 11.4 (bijective translation)

1. The translationsPX(·) andMX(·) are surjective on prime ground homsets.

2. P ≡ Q iff PX(P ) = PX(Q), and M ≡ N iff MX(M) = MX(N).

Proof (outline) For (1) we prove, by induction on the number of nodes in each prime
ground bigraph, that it has at least one pre-image for the appropriate translation func-
tion.
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For the forward implication of (2) it is useful first to prove,by induction on the
structure of process terms, that

P
alpha
≡ Q implies PX(P ) = PX(Q)

and M
alpha
≡ N implies MX(M) = MX(N) ;

then the main property can be proved by a similar induction.
For the reverse implication of (2) first observe that, by the forward implication,

it will be enough to prove the result whenP andQ are normal forms. For this, by
considering the restrictions inP andQ, the task may be reduced to proving the property
for open process forms. Finally, the property for open process forms and open sum
forms can be proved by mutual induction on their structure. In this proof the crucial
step is to show, in bigraphs, that ifai (i ∈ m) andbj (j ∈ n) are ground molecules
such that

a1 | · · · | am = b1 | · · · | bn ,

thenm = n, andai = bπ(i) for some permutationπ onm.

Having thus found an accurate representation for CCS terms up to structural con-
gruence, we should point out two discrepancies between the latter and the standard
version of structural congruence.

First, we do not haveP |0 ≡ P ; this is because we cannot encode0 by the empty
prime bigraph1, since1 is absent in hard bigraphs. This may seem to be a disadvantage
of the latter. On the other hand hard bigraphs are easier to work with, and also truer
to our intuitions in this case. For, in soft place graphs, ourstandard behavioural theory
would make1 bisimilar to no other process! This is in conflict with the intuition that0
in CCS should be bisimilar to every deadlocked process, suchasνx x.0. Our encoding
of 0 as an atomic controlnil in hard bigraphs does reflect this intuition. Moreover, as
we shall see, we obtainp | nil ∼ p as a bisimilarity in bigraphs.

The second discrepancy is clause 5 of Definition 11.2, which allows restriction to
be pushed through an action prefix. In finite CCS this is a validlaw. But in CCS
with recursion (or replication), we cannot encode a restriction νx as name-closure in
bigraphs, since this would not meet the requirement that every instance of a replicated
process containingνx should have its own ‘private copy’ ofx. Jensen [23] will present
a proper encoding of restriction in such a case.

Now let us consider dynamics for BIGccs. In our finite CCS we have the single
reaction rule

(x.P + M) | (x.Q + N) −→ P |Q ,

which may be applied in any unguarded context. On the other hand in BIGccs we
have the reaction rule from Example 1, shown again here in Figure 7 with algebraic
expressions for the redexR and reactumR′. It is easy to demonstrate that there is
an exact match between the reaction relations generated in CCS and in BIGccs, in the
following sense:

Proposition 11.5 (matching reaction)P −→ P ′ iff PX(P ) ⊲PX(P ′) ,

51



x

x

alt alt
R R′

0

1

2

3

20

getsend

x | id | idalt(sendx | id) | alt(getx | id)

Figure 7: The reaction rule for BIGccs

This exact match with CCS reaction has been achieved by working in abstract bi-
graphs. We now want to match with the original behavioural theory of CCS, which
took the form of bisimilarity based upon a labelled transition system whose labels are
not contexts. For the purpose of this comparison we have to digress into concrete bi-
graphs, since that is where we find the RPOs on which our contextual Ltss are based.
So our starting point is the concrete sorted Brs

´BIGccs
def
= ´BIGh(Σccs, ´Rccs) ;

its reaction rules(R,R′, η) ∈ ´Rccs consist of all pre-images (withR andR′ lean) of
the single abstract rule of BIGccs shown in Figure 7.

Our first step is to check that the prime engaged transitions in ´BIGccs yield con-
gruential bisimilarities:

Corollary 11.6 (concrete bigraphical bisimilarities for CCS) The bisimilarity∼PE in
´BIGccs is a congruence, and

.
∼PE is a congruence for mono contexts.

Proof 2 First note from Proposition 10.8 that the sortingΣccs creates RPOs and re-
flects pushouts. Then deduce from Theorem 10.6 that both∼ST and

.
∼ST are congruences

(for suitable contexts) and, since ´Rccs is prime and simple, thatPE (resp.·PE) is ad-
equate forST (resp.·ST). Next, check thatPE is definite forST (similarly for ·PE and
·ST), i.e. the membership of a prime transition ofST in PE is determined solely by its
label. To see this, note that every parametric redexR has four nodes, so a transition is
engaged iff its label has fewer than four nodes.

Finally, deduce from Corollary 4.14 that both∼PE and
.
∼PE are congruences (for

suitable contexts) in ´BIGccs.

Now recall that we are using the termsPE and·PE both for concrete Ltss and for their
abstract images under the quotient by[[·]]. So, by analogy with Corollary 9.15, we are
finally able to deduce two congruential bisimilarities in our bigraphical representation
of CCS:

2Apart from the need to consider sorting, we could appeal directly to Corollary 9.14 for this result.
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Corollary 11.7 (abstract bigraphical congruences for CCS)In BIGccs:

1. Two processes are bisimilar (∼PE,
.
∼PE) iff their concrete pre-images are bisimilar.

2. ∼PE is a congruence, and
.
∼PE is a congruence for inner-injective contexts.

We devote the rest of this section to analysing these bisimilarity congruences in
BIGccs. This will depend upon a structural analysis of the transitions inPEand·PE, and
for this purpose we refer back to their pre-images in ´BIGccs, where we rely strongly
on the fact that they are engaged.

Every prime transitionp L
⊲ p′ arises, then, from a ground rule(r, r′) with redex

r = alt(sendxd · ·) | alt(getxe · ·)

where ‘· ·’ stands for zero or more further factors in a discrete prime product, and(p, r)
has and IPO(L,D) for some activeD, Also p shares at least one of the nodes of the
underlying parametric redexR: the twoalt-nodes, thesend-node and theget-node.
What are the possibilities? Sincep has sortp, if it shares thesend-node then it must
also share its parentalt-node; similarly for theget-node. So there are two main sharing
alternatives:

• p shares both nodes in one factor ofR but none in the other;

• p shares all four nodes ofR.

The former divides clearly into two symmetric cases. The latter also divides into two
cases; either thesend- andget-ports are joined by a closed linkx, or they belong to
possibly different open links.

p : I L : I →J p′ : J condition

1 /Z(alt(sendxa · ·) | b) idI | alt(getxc · ·) /Z(a | b) | c x /∈ Z

2 /Z(alt(getxa · ·) | b) idI | alt(sendxc · ·) /Z(a | b) | c x /∈ Z

3
/Z(alt(sendxa0 · ·)

| alt(getxa1 · ·) | b)
idI /Z(a0 | a1 | b) none

4
/Z(alt(sendxa0 · ·)

| alt(getya1 · ·) | b)
y/x

/Z y/x

(a0 | a1 | b)
x 6= y;
x, y /∈ Z

Figure 8: The four forms for an engaged transitionp L
⊲ p′

In Figure 8 we tabulate these four cases. It shows the structure of p, L andp′ in
each case, also taking account of the fact that —for a reactionto occur— anyalt-node
shared withR must occur actively inp. In the table,a, b, c, . . . stand for any processes,
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and ‘··’ for zero or more factors in a prime product; in the labels of cases 1 and 2 this
product must be discrete. Note that, according to our convention, y/x here denotes a
substitution〈p,X〉→〈p, Y 〉, whereY = (X−x) ∪ y; its link map sendsx to y and is
otherwise the identity.

Before discussing this system let us establish a promised property:

Proposition 11.8 (unit for prime product) p ∼ p | nil .

Proof We shall prove the following relation to be a bisimulation:

S
def
= {(p, p | nil) | p an agent} .

First, supposep L
⊲ p′ by the ground rule(r, r′); then the underlying IPO is as diagram

(a) with p′ = Dr′. Since none of the possible labelsL (see Figure 8) guards its site,
the IPO status is retained by adding anil factor to bothp andD, yielding an IPO as in
(b), and thusp | nil

L
⊲ (D | nil)r′ = p′ | nil, maintaining the relationS.

(b)(a)

D | nilp | nilD

L

r
p

L

r

In the other direction, supposep | nil
L

⊲ q′ by the ground rule(r, r′); then in the
underlying IPO, by commutation, thenil node cannot be shared byr, and indeed the
IPO must be as in diagram (b), withq′ = (D | nil)r′ = Dr′ | nil. But the IPO status is
retained by the omission of this sharednil-node, yielding an IPO as in diagram (a), so
that we havep L

⊲ Dr′, again maintaining the relationS.
This completes the proof.

We are now ready to compare our derived transition system with the original CCS
transitions, as presented in Part I of [34], which we shall call here theraw transitions;
they used the non-contextual labels

α ::= x
∣∣ x

∣∣ τ

where the first two represent sending and receiving a message, andτ represents a com-
munication within the agent. Rather than reverting to CCS syntax, we set up the tran-
sitionsp

α
−→ p′ of this raw system directly in BIGccs; this will ease our comparison.

The structure of the agents and label of each transition is characterised in Figure 9.
It can be seen that the raw transitions with these labels correspond closely to the first

three forms shown in Figure 8; the notable difference is that, in the first two forms, the
contextual label is composed with the agent, and the result of the transition is therefore
larger than for the raw transitions.

However, there is no raw transition for the fourth (substitution) form of Figure 8;
this is closely connected with the fact that the original CCSbisimilarity, which we
shall denote here by∼ccs, is not preserved by substitution. But the labels of the first
three forms are mono, and the labelx/y of the fourth is not, since the namesx, y are
distinct and both occur in the agent’s interface. This strongly suggests —as we shall
now verify— that mono bisimilarity coincides with CCS bisimilarity.
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p α p′ condition

1 /Z(alt(sendxa · ·) | b) x /Z(a | b) x /∈ Z

2 /Z(alt(getxa · ·) | b) x /Z(a | b) x /∈ Z

3
/Z(alt(sendxa0 · ·)

| alt(getxa1 · ·) | b)
τ /Z(a0 | a1 | b) none

Figure 9: The three forms for a raw transitionp
α

−→ p′

Theorem 11.9 (recovering CCS)Mono bisimilarity recovers CCS, i.e.
.
∼ = ∼ccs.

Proof (⊇) To show
.
∼ ⊇ ∼ccs it will suffice to prove that

S
def
= {(Cp,Cq) | C mono, p ∼ccs q}

is a bisimulation for
.
∼; the result follows by takingC = id. Assumep ∼ccs q, and

let Cp M
⊲ u′ with C andM both mono and underlying ground rule(r, r′). We seek a

matching transition forCq.

(a)
(b)

L

s

L

M

r
q ED

C ′

p

FC

For some activeF we have(M,F ) an IPO for(Cp, r) andu′ = Fr′. Taking the
RPO for(p, r) relative to(MC,F ), as in diagram (a), and using basic mono properties,

we obtain an IPO for a mono transitionp L
⊲ p′

def
= Dr′, so thatu′ = C ′p′.

We now argue by cases for the mono labelL. For case 1 of Figure 8, whereL
contains aget-node, from the form ofp and case 1 of Figure 9 we readily get the raw

transitionp
x

−→ p′′ wherep′ = p′′ | c. But p ∼ccs q by assumption, soq
x

−→ q′′ with
p′′ ∼ccs q′′. We also note thatu′ = (C ′ | c)p′′.

From case 1 of Figure 8 again we deduce a similar form forq (with different values
for Z, a, b). Hence, again applying case 1 of Figure 8, we deduceq L

⊲ q′
def
= q′′ | c,

with some underlying ground rule(s, s′). This has an IPO shown in diagram (b); by

replacing it for the lower square in diagram (a) we thus obtain Cq M
⊲ v′ def

= (C ′ | c)q′′,
and we are done sincep′′ ∼ccs q′′.

The argument for case 2 of Figure 8 is exactly similar, and case 3 is analogous; case
4 cannot arise sinceL is mono. This completes the proof that

.
∼ ⊇ ∼ccs.

(⊆) For the reverse inclusion it suffices to prove that
.
∼ is a bisimulation for∼ccs.

Assumep
.
∼ q andp

α
−→ p′; we seek a matching transitionq

α
−→ q′ such thatp′

.
∼ q′.
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If α = x then the structure ofp andp′ is dictated by case 1 of Figure 9. Now,
choosingL = alt(getxnil), we find from case 1 of Figure 8 thatp L

⊲ p′ | nil. Since

p
.
∼ q we haveq L

⊲ q′′ with p′ | nil
.
∼ q′′. By case 1 of both Figures 8 and 9 there

existsq′ such thatq′′ = q′ | nil andq
x

−→ q′. Appealing to Proposition 11.8, we then
find p′

.
∼ q′ as required.

The argument forα = x is exactly similar. The argument forα = τ is even simpler,
using case 3 of both Figures 8 and 9. This completes the proof that

.
∼ ⊆ ∼ccs, and the

proof of the theorem.

Having obtained a good match in original CCS for our derived mono bisimilarity
.
∼, we naturally look for a similar match for full derived bisimilarity ∼. Since this is
preserved by all contexts, even substitutions, a natural candidate isopen bisimilarity,
as defined by Sangiorgi and Walker [49]. This congruence is a good deal simpler for
CCS than it is for theπ-calculus3. Defined in BIGccs over the raw transition system, it
consists of the smallest relation∼o

ccs such that, for all substitutionsσ,

if p ∼o
ccs q andσp

α
−→ p′, thenσq

α
−→ q′ andp′ ∼o

ccs q′ for someq′.

Since∼ and∼o
ccs are both coinductively defined, it is relatively easy to compare them.

In fact∼ is strictly finer than∼o
ccs. The proof of inclusion follows the lines of our proof

that
.
∼ ⊆ ∼ccs. A counter-example to equality is provided by the pair

P = νz((x + z) | (y + z)) Q = νz((x.y + y.x + z) | z)

where for convenience we use CCS notation, abbreviatingλ.0 toλ. This pair illustrates
an interesting point. When translated into BIGccs, P is has a transition labelledx/y;
this can be seen as an ‘observation’ byP that its environment has connected thex-link
with they-link. On the other hand,Q has no such transition; soP 6∼ Q. But in the raw
transition system such ‘observations’ are absent, and indeedP ∼o

ccs Q.
This concludes our brief study of bigraphs applied to CCS, which has revealed

considerable agreement with its original theory.

12 Related and future work

We first turn to related work by other researchers, apart fromthose already mentioned
in the Introduction. The discussion then moves towards plans and ideas for future
research.

The longest tradition in graph reconfiguration —often calledgraph-rewriting— is
based upon thedouble pushout(DPO) construction originated by Ehrig [14]. Our use
of (relative) pushouts to derive transitions is quite distinct from the DPO construc-
tion, whose purpose is to explain the anatomy of graph-rewriting rules (not labelled
transitions) working in a category of graph embeddings withgraphs as objects and em-
beddings as arrows. This contrasts with our contextual s-categories, where objects are
interfaces and arrows are bigraphs. But there are links between these formulations,

3This is because CCS agents never export restricted names (‘scope extrusion’).
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both via cospans [17] and via a categorical isomorphism between graph embeddings
and a coslice over s-categories [11]. Ehrig [15] has recently investigated these links
further, after discussion with the author, and we believe that useful cross-fertilisation is
possible. In the paper just cited, Gadducci, Heckel and Llabrés Segura [17] represent
graph-rewriting by 2-categories, whose 2-cells correspond to our reactions. Several
other formulations of graph-rewriting employ hypergraphs, for example Hirsch and
Montanari [21]; their hypergraphs are not nested, but rewriting rules may replace a
hyperedge by an arbitrary graph. Dreweset al [13] deal with hierarchical graphs, but
their links do not join graphs at different levels.

Another use of 2-categories is by Sassone and Sobocinski [50]. They generalise
RPOs togroupoidRPOs, in a 2-category whose 2-cells (i.e. arrows between arrows)
are isomorphisms. They advocate treating dynamic entities(e.g. bigraphs) as arrows
in such a 2-category. The 2-cells keep track of the identity of nodes, which is essen-
tial for RPOs to exist, and have the potential to serve as witnesses for rich structural
congruences. An advantage in that approach over s-categories is that composition is
total; a disadvantage is the more complicated notion or 2-RPO. Another advantage of
2-categories is that they lie closer to ‘standard’ categorytheory. However, the demands
of our application are rather unlike those in other categorical applications; for exam-
ple, it is essential —as our case studies have shown— to have a tractable analysis of
the transitions based upon RPOs. Our s-categories are well-behaved, and lend them-
selves to this task. Thus for our work so far the motivation for passing to 2-categories is
weak. For the future, the 2-categorical approach clearly deserves further development;
the two approaches may then become complementary, not competitors.

Concerning labelled transitions and bisimilarity, in recent work Merro and Hen-
nessy [31] and Merro and Zappa Nardelli [32] have developed interesting labelled tran-
sition systems for the ambient calculus [9]; their labels are contextual. These appear to
be the most detailed studies so far of behavioural equivalences for that calculus. As we
now see, agreement with the bigraphical approach is becoming established.

In his forthcoming PhD Dissertation [23], Jensen develops bigraphical theory in a
number of directions of intrinsic interest, which also support more refined case stud-
ies on behavioural analysis. First, he extends the work on weak bisimilarity begun by
Leifer [28]. Second, he puts binding bigraphs (where names have scope) on a firmer
footing than in [25], which gave their initial formulation.Third, he develops the theory
of sorting, which was first used in [30] to encode Petri nets, and which was here illus-
trated in Sections 10 and 11. With these techniques, still deriving transition systems
uniformly for Brss, he deals with the fullπ-calculus, and establishes a close match with
the above-mentioned systems for ambients.

There is a large body of literature on rewriting systems and on theλ-calculus, com-
prehensively reported by Klopet al [53] and by Barendregt [1]. So far, the work on
bigraphs has related chiefly to process calculi and their Ltss. It will be important to
establish links with the tradition of rewriting systems. For example, the notion of con-
fluence (of a rewriting system or some part of it) is likely to have very broad application
in real-world pervasive and distributed systems, as discussed briefly below. To this end,
scoped names in bigraphs are under further exploration [41]; it is found that multiple
locality of names enables parametric reduction systems, such as theλ-calculus, to be
represented succinctly. By this means, we hope that techniques for confluence —and
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other aspects of rewriting systems— can be lifted to bigraphs, where this broad range
of applications can find expression.

One such application is to biological processes, already being explored by (for
example) Cardelli [7], building on an original model by Shapiro et al [47, 46] that
used theπ-calculus for this purpose. Cardelli has shown that more direct modelling
is possible using the spatial quality of ambient-like reaction rules. But such experi-
ments expose the need to adapt or extend spatially-aware models, like ambients and
bigraphs, to accommodate real-world phenomena that lie beyond their present scope.
One of these is a stochastic treatment of non-determinism, as developed in particular by
Priami [45] for theπ-calculus and used in the paper by Shapiroet al. Another impor-
tant extension is to add the continuum, to allow continuous reactions. This is already
done for theπ-calculus by Rounds and Song [48] in theΦ-calculus, which combines
the mobility of theπ-calculus with differential equations for the behaviour ofreal (i.e.
continuous) variables. There is no barrier to this extension in bigraphs, since nothing in
our formulation prevents a control signature from being denumerably infinite or even a
continuum; for example, a family of controls indexed by the real numbers to represent
distance. Of course there are technical hurdles to overcome—not least in the handling
of infinitesimals.

Process theory also has strong tradition of non-standard logics such as temporal
logic or the modalµ-calculus; these allow incremental analysis of processes,because
simple properties (as opposed to full specifications) of a system can be expressed and
verified one by one. For bigraphs, the obvious challenge is tofind a logic that isspatial
as well as temporal. Indeed, work by Caires and Cardelli on spatial logics for mobile
ambients [8] has already been under way for a few years, and provides a promising
starting point for a logic for bigraphs. A first step is taken in this direction by Conforti
et al [12], where it can be seen that the independence of placing and linking leads to
simplicity in the logical consructions.

An initiative is being undertaken at the IT University in Copehagen, to design a
bigraphical programming language) [26, 4, 5, 20]. It is led by Birkedal, Elsman and
Hildebrandt. Two principal ideas are guide the project: first, that programming and
specification should arise out of sufficiently developed theory; second, that a practi-
cal language for experimental use in designing communicating systems is an essential
vehicle for engineers to exert influence on further theoretical development.

Conclusion The bigraphical model aims not only to generalise existing process the-
ories but also to reach a level at which experiments can be mounted in describing and
analysing real-world pervasive and distributed systems, both man-made and natural.
Such experiments will certainly find shortcomings, thus offerring challenges to de-
velop the model. By responding to these challenges, but retaining the continuity with
existing calculi, we can aspire to a unity in process modelling that will truly justify
preliminary efforts undertaken in computer science for more than three decades.
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APPENDIX

A The adequacy theorem

This appendix is devoted to proving Theorem 9.11, assertingthe adequacy of engaged
transitions for prime agents in a simple prime concrete Brs.

We begin by considering the IPO underlying a standard transition a L
⊲ a′ with

redexR. The IPO can be decomposed into an IPO pair, as shown in the diagram. We
find that, for simpleR, the diagram consists of pushouts. From now on we shall call a
transitionsimpleif its underlying redex is simple.

LredLpar

d idW ⊗R

a DDpar

Proposition A.1 (transition pushouts) In a concrete Brs, the IPO pair underlying a
simple standard transition consists of pushouts.

Proof Let the IPO pair underlying a transitiona L
⊲λ a′ be as shown in the diagram.

In the left square there can be no elisions fromd since, being discrete, it has no idle
names; and there can be no elisions froma into Lpar, because the latter is open (since
d is open). Thus the IPO is unique up to iso, hence a pushout. Theargument for the
right square is similar, using the simpleness ofR.

We continue with two lemmas about non-engaged transitions.

Lemma A.2 In a concrete Brs, suppose a simple standard transition is not engaged.
Let its underlying IPO pair be as in the diagram. ThenDpar = D′ ⊗ idm for someD′,
up to isomorphism, wherem is the inner face ofR.

Proof Since|Dpar| ⊆ |a| we also have|Dpar| ∩ |R| = ∅. Let K be the outer face
of Dpar. We have to prove, for each sitei ∈ m, that i has no siblings inDpar and
Dpar(i) = k is a root inK.

SinceR is guarding,R(i) = v for some nodev, hence(LredDpar)(i) = v. But v
is not inDpar by assumption, soDpar(i) = k andLred(k) = v for some rootk. Now
supposei has a sibling, i.e.Dpar(w) = k for some site or nodew 6= i. Then we have
(LredDpar)(w) = v, whence alsoR(w) = v. If w is a site this contradictsR inner-
injective; if it is a node then it contradicts|Dpar|∩ |R| = ∅. Hence no suchw can exist.
This completes the proof.

Lemma A.3 In a concrete Brs leta be prime. Leta L
⊲λ a′ be a non-engaged simple

standard transition based upon(R,R′, η), with underlying IPO pair as in the diagram.
Let |a| ∩ |d| 6= ∅. Then|a| ⊆ |d|, andLred, D anda′ take the following form up to iso:

Lred = idW ′ ⊗ R , D = ω ⊗ idJ and a′ = (idW ′ ⊗ R′) η[Lpara] .

63



Proof From Lemma A.2 we find thatDpar takes the formDpar = D′⊗ idm up to iso,
whereD′ has domainW (with zero width) andm is the inner width ofR.

We now claim thatD′ has no nodes. For there exists a nodeu ∈ |a| ∩ |d|; if there
exists anyv ∈ |D′| then alsov ∈ |a|, hence (becausea is prime) we would haveu, v in
the same region ofLpara but different regions ofDpard, contradictingLpara = Dpard.
Thus|a| ⊆ |d|, andDpar = ω ⊗ idI , with ω : W →W ′ a wiring.

By Proposition A.1 the right-hand square in the diagram is a pushout, and hence a
tensor IPO by Corollary 8.8. This yields the first two equations. For the third:

a′ = D(idW ⊗ R′) η[d]
= (idW ′ ⊗ R′)(ω ⊗ idI′) η[d]

(∗) = (idW ′ ⊗ R′) η[(ω ⊗ idI)d]
= (idW ′ ⊗ R′) η[Lpara]

where at(∗) we commute an instantiation with a wiring, by Proposition 8.18.

We can now prove the adequacy theorem.

Theorem 9.11 (adequacy of engaged transitions)In a simple prime concrete Brs
with ST, the prime engaged transitionsPE are adequate; that is, engaged bisimilarity
∼PE

ST
coincides with bisimilarity∼ST on prime agents. Similarly·PE is adequate for·ST,

i.e. the engaged bisimilarity
.
∼PE

ST
coincides with

.
∼ST on prime agents.

Proof We first treat the case of∼PE

ST
and∼ST, writing them as∼PE and∼ respectively.

It is immediate that∼ ⊆ ∼PE restricted to primes. For the converse we must prove
thata0 ∼PE a1 impliesa0 ∼ a1. An attempt to show that∼PE is a standard bisimulation,
i.e. a bisimulation forST, does not succeed directly. Instead, we shall show that

S = {(Ca0, Ca1) | a0 ∼PE a1}

is a standard bisimulation up to support equivalence and transitive closure. This will
suffice, for by takingC = id we deduce that∼PE ⊆ ∼.

Suppose thata0 ∼PE a1. Let Ca0
M

⊲µ b′0 be a standard transition, withMCa1

defined. We must findb′1 such thatCa1
M

⊲µ b′1 and(b′0, b
′
1) ∈ (S≏)∗.

There exists a ground reaction rule(r0, r
′
0) and an IPO —the large square in dia-

gram (a) below— underlying the given transition ofCa0. MoreoverE0 is active, and
if width(cod(r0)) = m thenwidth(E0)(m) = µ andb′0 ≏ E0r

′
0. By taking an RPO

for (a0, r0) relative to(MC,E0) we get two IPOs as shown in the diagram.

Now D0 is active, so the lower IPO underlies a transitiona0
L

⊲λ a′
0

def
= D0r

′
0,

whereλ = width(D0)(m0). Also E is active atλ, andb′0 ≏ Ea′
0. SinceMCa1 is

defined we deduce thatLa1 is defined, and we proceed to show in three separate cases
the existence of a transitiona1

L
⊲λ a′

1, with underlying IPO as shown in diagram (b).
(We cannot always infer such a transition for whicha′

0 ∼PE a′
1, even though we have

a0 ∼PE a1, since the transition ofa0 may not be engaged.) Substituting this IPO for the
lower square in (a) then yields a transition

Ca1
M

⊲µ b′1
def
= Ea′

1 .
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In each case we shall verify that(b′0, b
′
1) ∈ (S≏)∗, completing the proof of the theorem.

(b)

(a)

D1

L

r0

E

D0a0 a1

M

L

r1

E0C

Case 1The transition ofa0 is engaged. Then sincer0 is prime, by considering the
IPO (L,D0) and the outer face ofD0 we find thata′

0 is prime, so the transition lies

in PE. So, sincea0 ∼PE a1, there exists a transitiona1
L

⊲λ a′
1 with a′

0 ∼PE a′
1. This

readily yields the required transition ofCa1.

Case 2 |a0| ∩ |r0| = ∅. Then the lower IPO of (a), being a pushout by Proposi-
tion A.1, is tensorial; so up to isomorphism we have

L = idH ⊗ r0 and D0 = a0 ⊗ id .

Thena′
0 = E′a0, whereE′ = id ⊗ r′0. TakingC ′ def

= EE′, we haveb′0 ≏ C ′a0.
Form the IPO (b) by takingr1 = r0 andD1 = a1 ⊗ id; this underlies a transition

a1
L

⊲λ a′
1

def
= E′a1. Substitute it for the lower square in (a), yielding a transition

Ca1
M

⊲µ b′1
def
= Ea′

1. Thenb′1 = C ′a1, so(b′0, b
′
1) ∈ S≏ as required.

Case 3 The transition ofa0 is not engaged, but|a0| ∩ |r0| 6= ∅. Then there is a
reaction rule(R,R′, η) with |a0| ∩ |R| = ∅, and a parameterd0 such that

r0 = (idW0
⊗ R)d0 and r′0 = (idW0

⊗ R′) η[d0] .

AssumeR : m→ J . Sincea0 is prime, from Lemma A.3 we find that, up to isomor-
phism, the IPO pair underlying the transition ofa0 takes the form of diagram (c) below,
and moreover thata′

0 = (idW ′ ⊗ R′) η[Lpara0] .

(c) (d)

d0 d1 idW1
⊗RidW0

⊗R

Lpar Lpar

a0 a1

Lred = idW ′⊗R Lred = idW ′⊗R

ω1⊗idJω0⊗idJ ω1⊗idm

We shall now find a similar transition fora1. We first considerLpara1. Sinced0 is
discrete we know by Proposition 8.16(1) thatLpar is discrete; by Proposition 8.15 we
can find a wiringω1 : W1 →W ′ and discreted1 : W1 ⊗ m such thatLpara1 = (ω1 ⊗
idm)d1. By Proposition 8.16(2) this represents a pushout. By adjoining a tensorial
pushout, we have an IPO pair as shown in diagram (d). Therefore by manipulations as
in Lemma A.3 we have

a1
L

⊲λ a′
1

def
= (ω1 ⊗ idJ)(idW1

⊗ R′) η[d1]

= (idW ′ ⊗ R′) η[Lpara1] .
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As in the previous case, this yields a transitionCa1
M

⊲µ b′1
def
= Ea′

1. Now comparing
the similar forms ofa′

0 anda′
1, and sincea0 ∼PE a1 (both prime), we appeal to Propo-

sition 8.20 to find a sequencec0, . . . ck such thatb′0 = c0, ck = b′1 and(ci−1, ci) ∈ S≏

for 0 < i ≤ k, and thus(b′0, b
′
1) ∈ (S≏)∗ as required.

This completes the proof thatPE is adequate forST, i.e. that∼PE coincides with∼
on prime agents. The corresponding proof for mono transitions, that·PE is adequate
for ·ST, follows exactly the same lines; in this case we limit the contextsC to be mono
and —as in Corollary 4.7 to the congruence theorem— we use the basic properties of
monos to ensure that the only transition labels arising in the proof are mono.

As we have seen in case 1 of the proof, when a simple transitiona L
⊲λ a′ is engaged,

anda is prime, then so isa′. Thus, in proving the bisimilarity of prime agents, we can
indeed confine attention to bisimulations containing only prime agents.
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