
TechnicalReport
Number 608

Computer Laboratory

UCAM-CL-TR-608
ISSN1476-2986

Trust managementfor
widely distributed systems

Walt Yao

November 2004

15 JJThomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www .cl.cam.ac.uk/

c 2004 Walt Yao

This technical report is basedon a dissertation submitted
February 2003 by the author for the degreeof Doctor of
Philosophy to the University of Cambridge, JesusCollege.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www .cl.cam.ac.uk/TechReports/

ISSN1476-2986

Abstract

In recent years,we have witnessedthe evolutionary development of a new breed of dis-
tributed systems.Systemsof this typesharea number of characteristics- highly decentral-
ized, of Internet-gradescalability, and autonomouswithin their administrative domains.
Most importantly, they are expected to operate collaboratively acrossboth known and
unknown domains. Prime examplesinclude peer-to-peer applications and open web ser-
vices. Typically, authorization in distributed systemsis identit y-based,e.g.accesscontrol
lists. However, approachesbasedon prede�ned identities areunsuitable for the newbreed
of distributed systemsbecauseof the needto dealwith unknown users,i.e. strangers,and
the needto managea potentially large number of usersand/or resources.Furthermore,
e�ectiv e administration and management of authorization in such systemsrequires: (1)
natural mapping of organizationalpoliciesinto security policies;(2) managingcollabora-
tion of independently administereddomains/organizations;(3) decentralization of security
policiesand policy enforcement.

This thesisdescribesFidelis, a trust managementframework designedto addressthe
authorization needsfor the next-generation distributed systems. A trust management
system is a term coined to refer to a uni�ed framework for the speci�cation of security
policies, the representation of credentials, and the evaluation and enforcement of policy
compliances. Based on the concept of trust conveyance and a generic abstraction for
trusted information as trust statements, Fidelis provides a genericplatform for building
secure,trust-aware distributed applications. At the heart of the Fidelis framework is a
languagefor the speci�cation of security policies,the Fidelis Policy Language(FPL), and
the inferencemodel for evaluating policies expressedin FPL. With the policy language
and its inferencemodel, Fidelis is ableto model recommendation-style policiesand policies
with arbitrarily complexchains of trust propagation.

Web serviceshave rapidly beengaining signi�cance both in industry and research asa
ubiquitous, next-generationmiddleware platform. The secondhalf of the thesisdescribes
the design and implementation of the Fidelis framework for the standard web service
platform. The goal of this work is twofold: �rst, to demonstratethe practical feasibility
of Fidelis, and second,to investigatethe useof a policy-driven trust management frame-
work for Internet-scaleopen systems.An important requirement in such systemsis trust
negotiation that allows unfamiliar principals to establishmutual trust and interact with
con�dence. Addressingthis requirement, a trust negotiation framework built on top of
Fidelis is developed.

This thesis examinesthe application of Fidelis in three distinctive domains: imple-
menting generic role-basedaccesscontrol, trust management in the World Wide Web,
and an electronicmarketplacecomprisingunfamiliar and untrusted but collaborative or-
ganizations.

3

4

To my parents Kai-Lin and Mei-Lun

5

6

Ac knowledgemen ts

This work would have not been possiblewithout the continuous support, advice, and
encouragement from my supervisor, Jean Bacon. Throughout my PhD life, she has al-
ways beentireless in giving me invaluable comments and advice. Asidesfrom work, she
has also beenexceptionally understandingand sympathetic with other problems I have
encountered during this time, especially the period when I was recovering from an eye
operation. I expressmy greatestappreciationtoward her guidancethroughout the period
of my study.

I am alsograteful to Ken Moody, who hasprovided me with constant critical discus-
sions that were both constructive and inspiring. Without his advice, I would not have
tackled many of the problemsthat I encountered during my research.

Many thanks are also due to the fellow researchers in the OPERA research group
at the Computer Laboratory. They have all been fun to work with, to play with, and
to learn from. Working with them has given me numerousintellectual, interesting and
enjoyable discussions,both academicallyand leisurely. I shall pay extra appreciation to
thosewho proof-readmy thesisand correctedmany languageproblems{ David Ingram,
Brian Shand,Nathan Dimmock and especially David Eyers, for his extraordinarily high-
quality comments.

I would alsoliketo thank the UK EngineeringandPhysicalResearch Council (EPSRC)
for supporting this work, under the grant OASIS AccessControl: Implementation and
Evaluation.

I owe a special debt to my parents, Yao Kai-Lin and Fang Mei-Lun, not only for
�nancially supporting my ten-year study in the UK, from school through to doctoral
studies;but alsofor their endlesscare,understanding,support, and adviceon my personal
life.

7

8

List of Publications

� John Hine, Walt Yao, JeanBacon,and Ken Moody. An architecture for distributed
OASIS services. In Middleware 2000 (Palisades, NY, April 4{8) , volume 1795
of Lecture Notes in Computer Science, pages104{120,Heidelberg, Germany, April
2000. Springer-Verlag.

� JeanBacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao. Event
storageand federationusing ODMG. In Proc. 9th International Workshopon Per-
sistent Object Systems(POS9, Lil lehammer, Norway Sept. 6{8) , volume 2135of
Lecture Notes in Computer Science, pages265{281,Heidelberg, Germany, Septem-
ber 2000.

� Walt Yao, Ken Moody, and JeanBacon. A model of oasisrole-basedaccesscontrol
and its support for active security. In Sixth ACM Symposium on AccessControl
Modelsand Technologies(SACMAT 2001,Chantilly, VA, May 3{4) , pages171{181,
New York, NY, May 2001. ACM Press.

� Jean Bacon, Ken Moody, and Walt Yao. Accesscontrol and trust in the use of
widely distributed services. In Middleware 2001, volume 2218of Lecture Notes in
ComputerScience, pages300{315,Heidelberg,Germany, November 2001. Springer-
Verlag.

� Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-basedaccess
control and its support for active security. ACM Transactionson Information and
SystemSecurity, 5(4), pages492{540,November 2002.

9

10

Con ten ts

1 In tro duction 17
1.1 Distributed authorization and trust management 18
1.2 New challenges . 19
1.3 Research issues . 20
1.4 Thesiscontribution . 22
1.5 Security engineering . 22
1.6 Dissertation outline . 24

2 Related Work 25
2.1 Accesscontrol models. 25

2.1.1 Mandatory accesscontrol (MA C) 26
2.1.2 Clark and Wilson model . 28
2.1.3 ChineseWall policy . 29
2.1.4 Discretionary accesscontrol (DAC) 30
2.1.5 Role-basedaccesscontrol (RBAC) 31

2.2 Distributed accesscontrol . 34
2.2.1 Accesscontrol lists in distributed systems 34
2.2.2 Capability-basedaccesscontrol . 35
2.2.3 Credential-basedaccesscontrol . 36
2.2.4 Categoriesof credential-basedaccesscontrol 38

2.3 Identit y-oriented accesscontrol . 39
2.3.1 X.509 Public Key Infrastructure . 39
2.3.2 Pretty Good Privacy (PGP) . 41
2.3.3 Attribute certi�cates . 42

2.4 Key-oriented accesscontrol . 44
2.4.1 Simple Public Key Infrastructure (SPKI) 45
2.4.2 PolicyMaker and KeyNote . 47
2.4.3 Other trust management systems 49

2.5 Summary . 52

3 Fidelis Trust Managemen t Infrastructure 53
3.1 Overview of the Fidelis Trust Management Infrastructure 53
3.2 Trust model . 55

3.2.1 Trust as a security concept . 55
3.2.2 Trust as a sociologicalconcept . 57
3.2.3 The basisof trust . 59

3.3 Conveying trust . 60

11

3.3.1 Basic concept . 60
3.3.2 Validit y . 62
3.3.3 Discussion . 62

3.4 Identit y . 63
3.4.1 Discussion . 64

3.5 The Fidelis Policy Language . 65
3.5.1 Principals . 66
3.5.2 Actions . 67
3.5.3 Trust speci�cation . 67
3.5.4 Validit y conditions . 69
3.5.5 Trust relationships . 71
3.5.6 Action policies . 77
3.5.7 Conditional and assignment expression 79
3.5.8 Evaluation semantics . 80
3.5.9 Discussion . 82

3.6 Summary . 84

4 Fidelis and Web Services 87
4.1 Introduction . 87

4.1.1 Background . 88
4.1.2 Designissues . 89

4.2 Servicearchitecture . 90
4.2.1 Locating principals . 91
4.2.2 Conveyanceinterface . 92
4.2.3 The trust inferenceinterface . 93
4.2.4 The credential management interface 96
4.2.5 The policy interrogation interface 97
4.2.6 The trust agent interface . 99
4.2.7 Identifying requesters. 102

4.3 Fidelis Policy Interchange . 102
4.3.1 Overview . 103
4.3.2 The top-level container . 103
4.3.3 Schemade�nitions . 104
4.3.4 Principal declarations. 105
4.3.5 Policy speci�cation . 106
4.3.6 Linking with other policy documents 109

4.4 Credential representation . 109
4.4.1 Basic structure . 109
4.4.2 Truster and subject . 110
4.4.3 Validit y condition . 111
4.4.4 Signature . 112

4.5 Summary . 113

5 Inference and Trust Negotiation 115
5.1 Policy inference . 115

5.1.1 Inferencealgorithm . 116
5.1.2 Managing distrust repositories . 122

12

5.1.3 Tracking validit y . 123
5.1.4 Runtime analysis . 124

5.2 Trust negotiation . 126
5.2.1 Trust negotiation overview . 126
5.2.2 Trust negotiation protocol . 127
5.2.3 Meta policies . 129
5.2.4 Related work . 132

5.3 Summary . 133

6 Applications 135
6.1 Role-basedaccesscontrol . 135

6.1.1 OASIS role-basedaccesscontrol . 136
6.1.2 RBAC96 and the NIST uni�ed model 139
6.1.3 Discussion . 144

6.2 Casestudy: Trust management in the World Wide Web. 144
6.2.1 Architectural overview . 145
6.2.2 Requesthandling in Apache . 146
6.2.3 Integrating Fidelis . 147
6.2.4 Discussion . 152

6.3 Casestudy: an electronicmarketplace . 152
6.3.1 Background . 153
6.3.2 Environment . 153
6.3.3 Membership management . 154
6.3.4 Product cataloguemanagement . 155
6.3.5 Reputation management . 156
6.3.6 Transactionprocessing:purchases. 157
6.3.7 Discussion . 158

6.4 Summary . 159

7 Discussion 161
7.1 Policy framework . 161
7.2 Managing scalability . 163
7.3 Decentralized collaboration . 164
7.4 Privacy . 165
7.5 Decentralization approaches . 166
7.6 Summary . 167

8 Conclusions and Future Work 169
8.1 Summary of contributions . 169
8.2 Future work . 170
8.3 Conclusion. 171

13

14

List of Figures

1.1 Framework for security engineering . 23

2.1 An accesscontrol matrix . 31
2.2 A basicRBAC model . 32
2.3 An exampleof role hierarchy . 32
2.4 A certi�cation path . 40
2.5 Examplesof trust model . 41
2.6 PMI delegationmodel (simpli�ed from [6]) 43
2.7 SampleKeyNote assertion . 49

3.1 Fidelis overview . 54
3.2 Conveying trust . 61
3.3 Transitive trust and delegatingtrust . 77
3.4 Examplesof regular expressionpatterns 79

4.1 A sampleSOAP message(messagecontent from [7]) 88
4.2 Trust inference- action decision . 95
4.3 Automated credential collection . 97
4.4 Policy discovery . 99
4.5 Assistedrequestinitiation through a trust agent. 100
4.6 Trust negotiation betweenprincipals. 101
4.7 @methodURI identi�ers for online validit y schemes. 111

5.1 Passive replication scheme . 122
5.2 Validit y dependencytree . 124
5.3 A trust negotiation session. 126
5.4 State diagram for the negotiation protocol 128
5.5 Vocabulary for the meta-policy pro�le . 130

6.1 An examplerole hierarchy (adopted from [8]). 140
6.2 Role membershipsfor usersin the examples. 142
6.3 Proxy mechanism . 145
6.4 Requesthandling cycle in the Apache server (version1.x) 147
6.5 Architecture of modfidelis . 148
6.6 Commonly-usedCGI variables. 149
6.7 Incorporating product information . 155
6.8 Supporting purchasedecision. 157
6.9 Delegatedpurchase . 158

15

16

1 In tro duction

With the growing popularity of the Internet, open, large-scaledistributed applications
are becomingincreasinglyprevalent. While past research on authorization for distributed
systemshasaddressedmany issuesin traditional networking/distributed systems,today's
open and highly decentralized applications have raisedmany new questionsin the unex-
plored territories in the distributed systemssecurity research.

Numerous attempts have been made in the past to apply traditional, well-studied
authorization schemesto cope with the needsof distributed systems. Most of these
attempted to extend identit y- or capability-basedsystems,combining them with crypto-
graphic authentication protocols. However, such e�orts often only addressa partial set
of the outstanding issues. In recognition of the failings of the conventional approaches,
Blaze et al. [9] proposedthe trust managementapproach to decentralized authorization
management. The basisof their trust management approach centres around the notion of
delegation certi�c ates { capability-like credentials. Every delegationcerti�cate delegates
someauthorization from its issuer to its subject; chains of certi�cates issuedby di�er-
ent issuersmay be formed, thus enabling authorization to be granted in a decentralized
manner.

The keyconceptadvocatedby the trust management approach is the holistic treatment
of distributed authorization management, with a uni�ed framework for the management of
security policies,security credentials and trust relationships. While this represents a ma-
jor advancefor distributed systemssecurity, departing from traditional approaches,there
are still many issuesyet to be resolved. Unlike traditional networked services,today's
distributed servicesmust facethe new challengesposedby an open network. Firstly, the
scaleof the systemwith the sheernumber of potential usersand sizableresourcesmakes
obsoletethe possibility of centralized security management. Decentralized administration
is no longer just an option but indeed a necessity to addressscalability problems. Sec-
ondly, collaboration amongstrangersin an open systembecomesunavoidable: competing
organizationsmay be required to cooperate; businesseswith conicting goalsmay need
to collaborate; a person may need to shop at an online store at which she has never
beenbefore. Thirdly , there is typically a lack of a single authority that is unanimously
trusted and agreedupon by all parties. Each party in the network is assumedto have full
autonomy to specify, enforce,and monitor its own security policiesand mechanisms.

This thesispresents my research on the topic of distributed authorization management,
especially for the aforementioned newstylesof distributed applications. Basedon the trust
management approach, we are addressingissuespreviously unresolved by the current

17

CHAPTER 1. Introduction 1.1. Distributed authorization and trust management

state-of-the-art with a new trust management system,called Fidelis. Fidelis is designed
and implemented as part of this research, and featuresa fully decentralized and policy-
driven framework.

This chapter describesthe motivation and outlinesthe contribution of this work. It be-
gins by briey reviewingthe state-of-the-art in authorization management for distributed
systemsin Section1.1. Section1.2 examinesnew challengesposedby the new typesof
distributed applications we have mentioned. This is followed by a summary of pending
research issuesto date in Section 1.3. Section 1.4 outlines the contribution of this re-
search. Section1.5 describesa layeredapproach to security engineering.This layering is
reected in the structure of this thesis,which is described in Section1.6.

1.1 Distributed authorization and trust managemen t

Traditional approaches to distributed authorization are generally either identit y-based
or capability-based. This is to be expected, as they have had a natural evolution from
the security research in operating systems,later being extendedto cater for networked
and distributed applications. The identit y-based approach focuseson authentication.
The idea is that a requesterto a distributed serviceneedsto be securelyauthenticated
beforean accessdecisioncan be madeusing conventional schemes,such asaccesscontrol
lists. Identit y-basedauthorization stimulated much research on cryptographic protocols
[10, 11, 12] that allow communicating parties to identify each other and often alsoestablish
a sharedsecretfor securingcommunication sessions.

Capability-basedsystemssuch as described by Gong [13], Bull et al. [14] and Hay-
ton [15] take a di�eren t approach. Instead of relying on requesteridentit y, thesesystems
rely on capabilities contained in credentials to grant or deny access.Management of cre-
dentials is therefore the focus in the capability-basedapproach. A variety of techniques
have been developed for this: someemploy cryptography to prevent theft and forgery,
while others devise architectures to ensurecontrolled transfer of credentials. In com-
parison with the identit y-basedapproach, capability-style authorization is more suited
for distributed systems,as it encouragesdistributed security management and is hence
inherently more scalable.

Authorization management attempts to addressa whole spectrum of issues,ranging
from the high-level organizational policies, through the speci�cation of security policies,
to low-level security mechanisms.Both approachesdescribedabove typically only address
a subsetof theseissuesand, as a result, do not always satisfy preciseapplication needs.
Trust management is an alternative approach that aimsat delivering a uni�ed framework
for managing security policies, credentials and their trust relationships. Basedon con-
cepts pioneeredby capability systems,a trust management system attempts to answer
authorization questionsin the form of \ is a requestr compliant with the local policies P
given the set of credentials C?". A crucial element of trust management is the consid-
eration of security policies,which was merely supported at a lower level with traditional
approaches. A trust management systemcanbebrokendown into three basiccomponents
[9, 16]:

� A languagefor expressingsecurity policies. This includes the meansof describing
actions, identifying principals, and specifying trust relationships.

18

CHAPTER 1. Introduction 1.2. New challenges

� A languagefor specifying security credentials, which may be transferred between
entities in the systemto expressdelegationof authority.

� A compliance checker, which computeswhether a requestshould be granted given
the local policiesand a set of credentials. This is alsocommonlyknown asthe trust
managementengine.

One of the key featuresof existing trust management systemsis to decentralize policy
management basedon delegation of authority. For example, a resourceprovider may
delegatethe rights of accessingits resourceto someprincipal through a digital credential.
That principal may in turn delegatethis right to another principal, and this process
may proceedinde�nitely . The ultimate principal may present the set of credentials at
the resourceprovider, where its compliancechecker will then attempt to �nd a chain of
delegation from the set to make authorization decisions.

Delegationof authority is not unique to trust management. It also forms the basisof
key-oriented accesscontrol, whoserepresentativ e systemsinclude the Simple Distributed
Security Infrastructure (SDSI) [17] and the SimplePublic Key Infrastructure (SPKI) [18].
A core conceptof thesenew accesscontrol systemsis the �rst-class treatment of public
keys as principal identi�ers, and naturally relies on the use of public key cryptography
to provide principal authentication. While the focusof such systemsis not on the design
of a uni�ed security framework, they may be consideredas a form of trust management
system,becauseof their well-de�ned compliancecomputation [16].

Although the current, state-of-the-art, distributed authorization is a major improve-
ment over the traditional approaches, today's modern distributed applications generate
newrequirements that needto beaddressed.In the next section,wewill discussproperties
of thesenew applications and their relation to authorization management.

1.2 New challenges

The advancesin communications, networking and middleware research have brought dis-
tributed systemsto new prominence. With the global reach of the Internet, widely dis-
tributed applications are increasinglycommonplace.Someof their major characteristics
may be observed:

� Internet-scale

New applications are required to potentially scaleup to the scope of the Internet,
implying the needto managevast resourcesand numbersof distributed usersfrom
anywherein the world. The authorization framework, asa critical part of any trust
reliant application, evidently must be as scalableas the application itself.

� Cross-boundary

Becauseof the scale,newdistributed applicationsoften spanseveralnetwork, admin-
istrativ e or organizationalboundaries.For example,an enterprise resourceplanning
system(ERP) for a multi-national organization may needto integrate several ge-
ographically dispersedsites under one application. The authorization framework
must support cross-boundary management and administration.

19

CHAPTER 1. Introduction 1.3. Research issues

� Autonomous

Closely related to the previous points, it is generallydi�cult, costly, and/or cum-
bersometo imposea central authority when applications span several boundaries.
Each administrative domain should hencebe assumedto have full autonomy of
speci�cation, management and enforcement of its security policies. The authoriza-
tion framework must have support for inter-linked and inter-operating autonomous
domains.

� Open

Modern distributed applications tend to be highly open in nature. For example,
a peer-to-peer �le-sharing application allows virtually any Internet usersto inter-
act with each other; a web-basedonline store is open to everyone. This implies
that applications are often required to deal with previously unknown or unfamiliar
principals. The authorization framework must be designedto handle strangersin
compliancewith the application security policies.

� Complexauthorization policy

Traditional authorization mechanismstypically only considersimpleattributes such
as the usernameor clearancelevel. In today's applications, we often observe the
needto expresscomplex(and relatively high-level) policies. For example,a userof
a peer-to-peer�le sharingprogram may only wish to shareher �les with peoplewho
are either: her friends, have uploaded10MB of �les in exchange,or anyone if it is
between1am to 7am. The authorization framework should be su�cien tly exible
and expressive to support complexpolicies.

� Evolution

Becauseof the scale,changesto an application often cannot be madeatomically as
a \big-bang". As the application evolves, the security policies will needto evolve
accordingly. Ideally, the authorization framework should support incremental de-
ployment, and to a certain extent, must co-existwith legacysecurity mechanisms.

Having presented thesenew challengesfor authorization frameworks, we are in a po-
sition to highlight the research issuesraisedin addressingthem.

1.3 Research issues

The main research issuesraised by modern distributed applications which yet remain
unresolved by the current state-of-the-art of distributed authorization include:

� Policy framework

Traditional identit y-basedor capability-basedauthorization focus on the mecha-
nismsenforcingsecurity. While the modern trust management approach is more in-
clined to the policy support than the enforcement mechanism,current solutionslack
comprehensive frameworks for policy speci�cation. For example,PolicyMaker [9],
the most well-known trust management system,and its successorKeyNote [19, 20]
feature programmablecredentials, where policies are expressedas programs to be

20

CHAPTER 1. Introduction 1.3. Research issues

executedby a trust management engine. While this achieves unparalleled expres-
siveness,it makespolicy speci�cation, management and maintenancedi�cult tasks.
An ideal approach would bebasedon a policy framework backedby a clearly de�ned
model and processingsemantics.

� Managingscalability

As previously discussed,today's distributed applications often needto faceheight-
enedscalability requirements, meeting the demandof the Internet. While the trust
management approach, due to its capability-like nature, has somedegreeof sup-
port for decentralization built-in, many improvements still needto be madein order
to meet the rigorous scalability requirements. For example,current trust manage-
ment systemsassignprivilegesdirectly to identities with credentials. If the security
policiesevolve, old credentials needto be revoked while new onesare issued. This
task becomesprohibitiv ely expensive as the number of credentials becomesexceed-
ingly large. A possiblesolution is to integrate elements of role-basedaccesscontrol
(RBAC) into the trust management framework.

� Decentralized collaboration amongunfamiliar parties

The opennessof newdistributed applicationsconsequently resultsin communication
and collaboration with strangers.There hasbeena lack of attention in this areaby
the current trust management systems.Most current systems,while decentralized,
assumethe issuer and the acceptor of a credential share common vocabularies.
In a truly open environment, dynamic trust negotiation is often required for two
previously unknown parties to gradually gain trust and subsequently be engagedin
a collaboration or transaction.

� Privacy

Many of the current trust management systemsadopt the idea of �rst-class treat-
ment of public keys, i.e. public keys as principal identi�ers without compulsory
linkage to private data. While this o�ers a potential platform for implementing
pseudonymouscommunications, noneof the current trust management systemsare
designedwith protection of privacy in mind. Ideally, a trust management framework
should have provisions for anonymousor pseudonymouscommunication, while it is
an application issuewhether such featuresare utilized.

� New approachesto decentralization

Existing trust management systemsare basedstrongly on the conceptof delegation
of authority. While delegationof authority is important and indeedshould be sup-
ported, other typesof decentralization may exist. It remainsan active research topic
to examineother possibledecentralization techniques,in particular the structuring
of authority.

The research issuesdiscussedin this sectione�ectiv ely set out the goalsfor this work.
This thesis is intended to addressmost of the above mentioned issuesin an attempt to
devisea viable trust management systemfor Internet-scaledistributed applications.

21

CHAPTER 1. Introduction 1.4. Thesiscontribution

1.4 Thesis contribution

The main contribution of the thesis is the designand implementation of a novel, fully
policy-driven trust management framework { Fidelis. Fidelis is designedto addressmany
of the pending research issuesdescribed in the previoussection. The list of contributions
is described below, together with the chapters wherethe relevant work is found.

� Proposinga genericmodel capturing the essenceof a trust management system. The
model is called the trust conveyance model, and is described at an abstract level,
with the intention to serve as a general foundation for future trust management
systems,including, but not limited to, Fidelis. (Chapter 3)

� Designinga policy framework realizing the trust conveyancemodel and featuring
attribute-based trust authorization management. Attributes with their meta-data
areshown to be able to expressarbitrary statements and actions. A policy language
called the Fidelis Policy Language(FPL) is presented for the speci�cation of trust
statements, actions and their relationships. An important part of this work is the
speci�cation of the semantics for the FPL trust computation. (Chapter 3)

� Designing and implementing Fidelis for the web-serviceplatform. This involves
several aspects, ranging from the architecture, the interfaces,the protocol, and the
message/document format. The designand implementation are focusedon two key
principles: interoperability and practical applicability. The aim is to producea trust
management platform on which real applications may be built. (Chapter 4)

� Designingand implementing an algorithm for the computation of trust compliance,
strictly conforming to the evaluation semantics de�ned aspart of the policy frame-
work. The algorithm mainly serves as a proof-of-conceptfor the viabilit y of the
policy framework. (Chapter 5)

� Designingand implementing a trust negotiation framework. The trust negotiation
framework is equipped with a exible policy control of the negotiation process,by
applying Fidelis. This negotiation framework is designedspeci�cally for two pur-
poses:asa demonstrationof the applicability of Fidelis, and asa platform to enable
communication betweencompletestrangers{ a scenariocommonly-encountered in
today's distributed applications. (Chapter 5)

� Experimenting with and studying the use of Fidelis in a number of application
domains. This provides an insight into the e�ectiv enessof the trust management
approach under the demandingrequirements of today's applications. Through this
study, sometools and technologieshave beendeveloped which may be deployed in
a wider context. For example,a module has beenimplemented to allow Fidelis to
be integrated seamlesslywith the Apache web server. (Chapter 6)

1.5 Securit y engineering

As discussedin previous sections,security problems for future distributed applications
present complex research challenges.Theseproblemscannot be tackled in a single step
due to their complexity and inter-relationships. A good, well-known engineeringpractice

22

CHAPTER 1. Introduction 1.5. Security engineering

Mechanism

Architecture

Model

Policy

Figure 1.1: Framework for security engineering

is to divide a large problem into smaller pieces,solve each pieceseparately, and correlate
individual solutions to producea consistent solution. For security engineering,the same
technique applies. A layeredapproach to security engineeringhasbeenproposedin [21].
It separatessecurity issuesinto four layers, shown in Figure 1.1.

Policy states the high-level organizational goalsand requirements. It is driven by the
anticipated threats and goals,and considersthe principles of risk management. It
is usually conciselyand formally written in natural language.

Mo del decomposespolicies into abstract terms that can be analyzedand mapped into
implementable entities. This often takesthe form of formal, rigorousmathematical
descriptions,but sometimespreciseuseof natural languageis su�cien t.

Arc hitecture describeshigh-level security designsin terms of the major components of
a system and their inter-relationships. In an operating system, this includes the
memory protection module, the �le system, etc; whereasin a distributed system,
this would instead include servers,databases,middleware, etc.

Mec hanism is a setof meansto implement the security design.For a multi-level security
(MLS) system,thesemay be security labels and protected objects. For distributed
systems,thesemay include network protocols,credentials, or tickets.

The top two layers of the pyramid, namely policy and model, are concernedwith
formulating what the security requirements, relevant issuesand trade-o�s are, while the
bottom two layers focus on how theserequirements can be met. The inter-relationships
betweenthe layers may often be complex and thus inappropriate for a top-down design
processsuch asthe waterfall method (usedin software engineering).Instead, an iterativ e
re�nement approach is more suitable as, for example, the implications of the chosen
mechanismsmust be taken into account in the layers above, and the e�ects of a change
of an objective on other layers must be fully analyzedand incorporated.

Security is a qualitativ e and holistic property of the systemwhich must be considered
as a whole. It is therefore important to take into account all four layers to produce
a consistent security framework. The work described in this thesis follows the layered
approach. Each layer is addressedseparatelybut with cross-layer inter-relationsdiscussed.
This is reected in the structuring of this thesisitself, assummarizedin the next section.

23

CHAPTER 1. Introduction 1.6. Dissertation outline

1.6 Dissertation outline

This thesis is organisedas follows:

Chapter 2 reviewsmajor work in the areaof authorization management, with the focus
on distributed systems. It begins with an overview of the generalaccesscontrol
problem, followed by descriptions of various distributed authorization schemesin
two categories: identit y-oriented and key-oriented. The chapter endswith a com-
prehensive review of the state-of-the-art in trust management systems.

Chapter 3 introducesthe Fidelis trust management infrastructure. Prior to the descrip-
tion of Fidelis, the notion of trust in the literature is discussed.The intention here
is to form a solid basisfor Fidelis. Fidelis is described in two parts in this chapter:
the conceptualmodel and the policy framework. The model describes the funda-
mental model { the trust conveyance model. The policy framework concentrates on
the description of the Fidelis Policy Language.

Chapter 4 describesan implementaion of the Fidelis trust management framework for
the web service environment. This covers the architectural design applying the
recent web service technologies. It also describes two additional piecesof tech-
nology which are designedto facilitate interoperation between any pair of locally
autonomousprincipals in the global web-servicenetwork: the Fidelis Policy Inter-
changeand the Fidelis InteroperableCredential format.

Chapter 5 describesan algorithm that implements the trust compliancesemantics de-
�ned in Chapter 3. This algorithm is designedto demonstratethat implementations
of the semantics exist. It does not, however, exploit possibleoptimizations. The
secondpart of this chapter describesa trust negotiation model that is designedto
enablecompletestrangersto incrementally learn about each other and eventually
collaborate.

Chapter 6 provides in-depth descriptionsof several applicationsbuilt to employ Fidelis
as their authorization mechanism. Theseapplications aim to demonstratevarious
speci�c features of Fidelis in practice. Among them, a casestudy of electronic
commerceis included, which attempts to gain practical insight into this application
domain, and to evaluate this work.

Chapter 7 provides a critical evaluation of this work against the goalsset out in Sec-
tion 1.3. The evaluation is qualitativ e in the form of discussionand is largely based
on experiencegained while designingand implementing the test-caseapplications
described in Chapter 6.

Chapter 8 concludesthis thesis,with a summary of the main contributions and a brief
discussionof potential future research and extensions.

24

2 Related Work

The conceptof trust management is closelyrelated to that of accesscontrol. The trust
management approach is essentially distributed accesscontrol with extensionsrelating to
trust, e.g. the notion of trust expression,trust propagation and trust-directed security
policies. This chapter reviewsmajor work in the area of accesscontrol, with a focus on
distributed accesscontrol.

The useof the term accesscontrol in this thesis includesboth the notion of authenti-
cation and authorization. Authentication is concernedwith securelyidentifying subjects,
while authorization addressesthe granting of accessrights oncea subject has beenau-
thenticated.

This sectionstarts by reviewing accesscontrol models. The conceptof accesscontrol
models historically originates from the study of security policies, which can be briey
described as a set of requirements, properties and mechanisms to protect resourcesin
a system. Section 2.1 introducessomeinuen tial models, including mandatory access
control policies,the Clark and Wilson model, the ChineseWall policy, and the role-based
accesscontrol model.

It then describesthe conceptof accesscontrol in distributed systems.The reviewstarts
from early work on distributed capability systems,and continuesto the credential-based
approach. It then introducestwo categoriesof credential-based accesscontrol: identit y-
oriented and key-oriented. Section 2.3 describes the major work basedon the concept
of identit y-oriented credentials, notably the ITU/ISO X.509 Public Key Infrastructure.
Section2.4 describeswork basedon the new key-oriented approachesfor accesscontrol,
in particular a number of trust managementsystemsare described.

2.1 Access control mo dels

One branch of the early work on accesscontrol models camefrom the study of security
policies in the military sectorin the 70s,and anothercamefrom the research on operating
systemssecurity. In this section,we shall concentrate on the former, while the latter will
be described in the context of distributed systemsin Section2.2.

The primary concernof military systemsis con�dentialit y of data, whereprevention
of information leakage is the most important goal. In responseto this need, Bell and
LaPadula [22] introduceda security model basedon the military-st yle clearancescheme
that restricts o ws of classi�ed information. Their work lead to the development of
numerousmultilevel security (MLS) systems,and is arguably oneof the most inuen tial

25

CHAPTER 2. Related Work 2.1. Accesscontrol models

models in the history of computer security.
While con�dentialit y is by far the most crucial requirement in military systems,in-

tegrity of data is conceived to be equally or even more important in the commercial
sector. Signi�cant attempts to model integrity requirements include Biba [23] and Clark
and Wilson [24]. The latter, in particular, represents an inuen tial shift of focus from
military-oriented security policies to commercial ones in the 80s. It formalized well-
establishedbusinesspractices of double entry bookkeepingand separationof duty, and
proposedan abstract model and mechanismsto enforcesuch rules. Businessrelationships
often causeconicts of interest betweendi�eren t parties, for examplewhen a consultant
is providing servicesto competing businesses.To model conicts of interest intrinsic in
businessrelationships,Brewer and Nash[25] introducedthe ChineseWall security policy,
which prevents the breach of con�dentialit y by insider knowledge through consideration
of accesshistories.

The 90ssaw a growing interest in role-based accesscontrol (RBAC). First formalized
by Ferraiolo and Kuhn [26] in 1992,RBAC is primarily basedon the observations that
previousaccesscontrol models for the military and commercialsectorsoften do not nat-
urally reect higher-level organizationalpolicies. The basic idea is that a role reects an
organizational job function and the concept of roles is seenas a natural unit to model
policies,acting as a bridge betweensecurity mechanismsand policies.

In general,an accesscontrol model is a set of formalized, concisesecurity goalsand
properties, plus abstract mechanismsfor enforcingthem. This sectionreviewsthe above
mentioned modelsand policies in more detail.

2.1.1 Mandatory access control (MA C)

Multilev el security (MLS) policy andmechanismweredevelopedin the military asa means
to manageclassi�ed information. Each document is labelled with a degreeof sensitivity,
known as a classi�cation e.g. \unclassi�ed", \con�den tial", \secret" and \top-secret".
All military personnelare assigneda clearance level on the samelabelled scaleas the
classi�cation. This assignment may dependon a variety of factors, including ranks, units,
etc. The accesscontrol policy states that an o�cer must have a clearanceat least as
high as the classi�cation of the document he/she attempts to read. The safety of this
system comesfrom the strict one-way information o w, i.e. information may only o w
upwards in the sensitivity scalebut never downwards, unlessit is explicitly declassi�ed
by an authorized person. The term Mandatory AccessControl (MA C) is de�ned by the
United StatesDepartment of DefenseTrusted Computer SystemEvaluation Criteria, the
\Orange Book", as \a meansof restricting accessto objects based on the sensitivity
(as represented by a label) of the information contained in the objects and the formal
authorization (e.g., clearance)of subjects to accessinformation of such sensitivity".

The seminalattempt to formalize the multilevel security policy was due to Bell and
LaPadula, and their formalism is often referred to as the Bell-LaPadula or BLP model
[22]. The primitiv e elements in BLP aresubjects, objects, accessrights and security levels.
The set of accessrights contains mainly two operations,read and write access.A security
level is de�ned as a tuple consistingof a classi�cation and a set of categories. The set of
classi�cations contains namesorderedby a > relation, e.g. top-secret, secret, etc. The set
of categoriescontains namesdescribingcompartments, such asNATO and nuclear. Each

26

CHAPTER 2. Related Work 2.1. Accesscontrol models

object is associated with a security level, denoting its degreeof sensitivity. Each subject
is associated with a maximum security level and a current security level, which can be
changeddynamically if necessary.

A binary, partial-order relation dominatesis then de�ned betweena pair of security
levels,a and b in such way that,

8a;b2 levels;a dominatesb () classi�cation(a) � classi�cation(b) ^

categories(a) � categories(b)

For instance,(top-secret, f NATO, nuclearg) dominates(secret, f NATOg) becausetop-
secret is higher than secret and f NATO g is contained in f NATO, nuclearg. However,
(secret, f NATOg) does not relate to (con�dential, f nuclearg). Two properties are then
de�ned to expressthe security policy.

The simple security property, alsoknown as \no read up", statesthat no subject may
read objects at a higher level than his/her current level. Stated formally, a read accessto
an object is granted if and only if,

8s 2 subjects;o 2 objects : level(s) dominateslevel(o)

The *-property, often called \no write down", states that no subjects may write to
objects at a lower level than his/her current level. This is expressedformally that a write
accessto an object is granted if and only if,

8s 2 subjects;o 2 objects : level(o) dominateslevel(s)

The *-property was devisedto addressconcernsof information leakageby malicious
programs. For example, a Trojan horse that writes information to unclassi�ed objects
may be planted into a systemby an unprivileged user. A privileged user may unknow-
ingly executeit while reading classi�ed information, which causesthe information to be
written to an unclassi�ed object, e�ectiv ely declassi�ed. Lampson [27] introduced the
con�nement problem, which notes possiblechannels for information leakage, including
storage,legitimate channelsand covert channels. The *-property directly addressesthe
�rst type of channelsby explicitly disallowing write accessto objects with a lower security
level than the subject.

Although the Bell-LaPadula model was designedto protect con�dentialit y of data,
Biba [23] observed that a similar formulation could be applied to protect integrity. The
Biba model is e�ectiv ely the inverse of the BLP, i.e. high-integrity data should never
be contaminated by low-integrity data. The information is restricted to o w from high-
integrity to low-integrity. In particular, the model requiresdowngrading of a program if
it readslower level data to prevent possiblecontamination of data.

A �nal remark on the term mandatory access control. While the term historically
refersto BLP-style, multilevel security policies,the intention behind the term is that the
enforcement of the policy is independent of users' discretion or actions. Other access
control policiessuch as the Clark-Wilson model to be described in the next sectionalso
exhibit mandatory behaviours. However, in order to be consistent with the terminology
in the literature, this thesisusesthe term mandatory accesscontrol to refer to multilevel
security models.

27

CHAPTER 2. Related Work 2.1. Accesscontrol models

2.1.2 Clark and Wilson mo del

Historically, research in accesscontrol policieshas focusedon guarding against unautho-
rized disclosureof information. This trend was driven by the needsof military environ-
ments, wherecon�dentialit y is the top priorit y. However, as noted by Clark and Wilson
[24], in commercialsystems,oneof the primary objectivesis the prevention of fraud and
error. Fraud is typically achieved by unauthorized modi�cation of information, while er-
ror typically causesinconsistencyof information. Both theseconcernscan be addressed
by enforcingintegrity policies. It is thereforearguedthat integrity of information in such
systemsis more important than its con�dentialit y.

They presented a model, often referredto as the Clark-Wilson model, that formalizes
two basic principles for achieving information integrity: well-formed transactions and
separation of duty. These are derived from well-establishedmechanisms practised in
businessfor centuries. The concept of well-formed transactions is that manipulation of
data by a principal must be constrainedin such a way that its integrity is preserved. A
very commonand e�ectiv emechanismemployedin accounting is doubleentry bookkeeping.
The idea is to record every single transaction twice, oncein a book for credit and once
in a book for debit. A later balancecheck would reveal discrepanciesif any entry were
not recordedcorrectly. The intention of well-formedtransactionsis to ensurethe internal
consistencyand accuracyof the data.

The principle of separationof duty attempts to ensureexternal consistencywherethe
data in the systemreect the real-world entities they represent, e.g. when a payment is
recordedon the account as the ful�llmen t of a purchase,then there was indeed such a
purchase,not a fraud. The correspondenceto external entities is often abstract and hard
to verify directly. The idea of separation of duty is to indirectly verify the correspon-
denceto real-world entities by dividing a task amongseveral principals. Provided these
principals do not conspire,this mechanism should prevent both fraud and error.

The Clark-Wilson model partitions data into two sets: constrained data items (CDI),
whose integrity must be ensured,and unconstrained data items (UDI), which are not
under the control of the integrity policy, e.g. data input by a user from the keyboard.
Two classesof procedureson thesedata items are de�ned to enforcethe integrity policy:
an integrity veri�c ation procedure (IVP) veri�es the integrity of all data items in the
system,and a transformation procedure (TP) is a well-formed transaction that processes
and changesa set of data items from onevalid state to another.

The integrity policy canthen be expressedin formalizedrules,grouped into two types:
certi�c ation and enforcement. Certi�cation is an application-speci�c processthat moni-
tors the operations of a systemwith respect to a speci�c integrity policy. Enforcement
rules are application-independent security functions that are automatically executedby
the system. The rules in the Clark and Wilson model as formulated in [28] are:

Certi�cation

� C1 (IVP Certi�cation) For any CDI, there must exist someIVP on the system
that validates its integrity.

� C2 (V alidit y) All TPs must be certi�ed to maintain the validit y of CDIs they
processed.

28

CHAPTER 2. Related Work 2.1. Accesscontrol models

� C3 (Separation of Dut y) All possibleoperationson CDIs by potential usersmust
be certi�ed to implement the principles of separationof duties and least privilege.

� C4 (Journal Certi�cation) All TPs must be certi�ed to ensuresu�cien t logging
for their operations.

� C5 Special TPs that take UDIs must be certi�ed to result in valid CDIs.

Enforcemen t

� E1 (Enforcemen t of Validit y) Manipulation on a CDI must only be performed
through a TP.

� E2 (Enforcemen t of Separation of Dut y) Every user can only operate on a
speci�c set of CDIs through a set of authorized TPs.

� E3 (User Authen tication) Every userattempting to executea TP must be prop-
erly authenticated by the system.

� E4 (Initiation) Only the administrator can specify authorizations to TPs and
CDIs.

One of the main contributions of the Clark-Wilson model is that it o�ers a distinctive
view of, and a setof mechanismsfor, accesscontrol problemsin commercialenvironments.
Their work laid the groundwork for research in commercialsecurity, such as the Chinese
Wall policy described in the next section.

2.1.3 Chinese Wall policy

Brewer and Nash[25] introducedthe ChineseWall security policy to model the con�den-
tialit y constraints in the commercialsectorto avoid conict of interest. A classicexample
is a �nancial institution providing consultation servicesto business�rms. Supposethe �-
nancial institution hasclients from a variety of industries and there areseveral companies
in each type of industry. If a market analyst working in the institution consults for one
company, he/shecannot be permitted to consult for another company in the sameindus-
try, becausethe insider knowledge the analyst gains from one company may encourage
unfair dealing for or against the other company.

In the ChineseWall policy, protectedobjectsof a company aregroupedinto a company
dataset, and datasetsfrom competing companiesare grouped into a conict of interest
class. For an object o, y(o) givesthe nameof the company whereit belongsand x(o) gives
its conict of interest class. Central to the ChineseWall policy is the notion of access
history, or state. This is kept in a two-dimensionalmatrix of Booleanvalues,N , with a
column for each object and a row for each subject. An element Ns;o is true if and only if
subject s haspreviously accessedobject o.

Modelling after the Bell-LaPadula (BLP) model, the ChineseWall policy is formalized
basedon a simple security property and a *-property. The simple security property says
that accessto information by a subject is con�ned to one company of any given conict
of interest class. Speci�cally, accessto object o is granted to subject s if one of the two
following conditions is satis�ed:

29

CHAPTER 2. Related Work 2.1. Accesscontrol models

� s hasnever dealt with any company of the conict of interest classx(o) in the past,
i.e. for each object p such that Ns;p = true , x(p) 6= x(o).

� s hasdealt with the company y(o) previously, i.e. for each object p such that Ns;p =
true , y(p) = y(o).

However, the simple security property alone is not su�cien t to prevent information
leakage. Supposetwo subjects, Alice and Bob, are consulting for oil companiesShell and
BP respectively and both at the sametime areconsultingfor the HSBC bank. The simple
security property does not stop Alice from writing con�dential information about Shell
to HSBC for Bob to read, thus indirectly violating the ChineseWall policy.

The *-property addressesthis type of violation. It statesthat write accessof object o
by subject s is only allowed if the simplesecurity property is satis�ed, and there doesnot
exist any unsanitized object p previously read by s such that y(p) 6= y(o). Sanitization
is a transformation on an object that de-identi�es its sourceso that disclosureof the
sanitizedobject will not causeconict of interest. The *-property ensuresthe con�nement
of the o w of unsanitized information to its own company dataset and allows sanitized
information to o w freely within the system.

The ChineseWall policy recognizesthe importance of accesshistory in protecting
security and has made a seminal contribution to subsequent research on history-based
accesscontrol and dynamic separationof duty in general[29, 30, 31, 32].

2.1.4 Discretionary access control (D A C)

The basic idea behind discretionary accesscontrol is that the owner of an object should
be trusted to manageits security. More speci�cally, ownersare granted full accessrights
to objects under their control, and are allowed to decidewhether accessrights to their
objects should be passedto other subjects or groupsof subjects at their own discretion;
hencethe name.

In his seminalpaper in 1971,Lampson[33] formulatesthe �rst abstract model of access
control from the point of view of operating systems.An accessmatrix, sometimesknown
asan accesscontrol matrix, is a two-dimensionalmatrix with a row for each subject and a
column for each object. An element in the matrix speci�es the accessrights that a subject
has on an object. Figure 2.1 is an illustration of an accessmatrix. An accessmatrix is
a convenient abstraction for expressingdiscretionary accesscontrol polices,and indeed,
documents for security requirements of a systemoften include an accessmatrix. In a real
system, an accessmatrix would be too large and very sparse. Several mechanismsare
available to represent the information in an accessmatrix. Lampsonsuggestsstoring the
matrix by rowsascapability lists, or by columnsasaccesscontrol lists (ACL). A capability
is a tuple of (object, accessrights), and is stored for each subject; an ACL entry, on the
other hand, is a tuple of (subject, accessrights), and is stored for each object.

As a practical example,the UNIX �le systemimplements discretionaryaccesscontrol.
It addressesthe sizeproblem of accessmatrix by e�ectiv ely reducingthe subjects to three
(i.e. a 3-row matrix), and represents an accesscontrol list by protection bits. The three
subjects are: the object owner, group, or everyone in the system. The user who creates
an object is the default owner and only the root user (i.e. the administrator) can change
the ownership of an object. There are three accessmodes: read, write and execute,and

30

CHAPTER 2. Related Work 2.1. Accesscontrol models

Access control list

Capability list

S
ub

je
ct

s

Objects

r/w/x

r/w/x

r/-/x

r/w r/w

r/w/x

r

r/w r

s1

s2

sn

o1 o2 on

...

Figure 2.1: An accesscontrol matrix

the accessrights for each subject is represented asa 3-bit value, e.g."rwx" . Every object
is associated with a protection string such as "rwxr-xr-x" , which in this caseindicates
the owner hasread,write and executeaccesswhile the group and everyoneelsehave read
and executeaccess.The key of UNIX accesscontrol is that the owner of the object can
modify its protection string at his/her own discretion.

2.1.5 Role-based access control (RBA C)

In the 80's, discretionary accesscontrol was regarded as suitable for commercial and
governmental systems.However, in the beginningof the 90's, the security needsfor these
systemswere more closelyexaminedand it was observed that the protected information
wasgenerallynot ownedby usersbut rather by the organizationor agencyto which these
usersbelonged. Moreover, accessrequestsare typically made by a user in the capacity
of somerole and thus accesscontrol decisionsare often determined by the acting roles
which specify her duties and responsibilities [26, 8]. In the search for a more appropriate
accesscontrol schemefor civilian systems,role-basedaccesscontrol (RBAC) has gained
signi�cant research interest.

The root of RBAC can be traced back to the user grouping found in the UNIX and
other operating systemsand privilege grouping mechanismsfound in somedatabasesys-
tems [34, 35]. Over the years, many researchers have proposedmodels for RBAC [26,
36, 37, 8, 38, 39, 40, 41]. While the di�erences in thesemodels are quite signi�cant, the
coreconceptremainsfairly consistent betweenthem. In RBAC, the basiccomponents are
users, permissions, and roles. A userin RBAC typically refersto a human being,although
this de�nition could be extendedto include machines,computer processesor autonomous
agents. Permissionsare de�ned as an approval to executean operation on one or more
protected objects. An operation could be a simple accessmode, e.g. read/write/up date,
or an complexoperation such asa method invocation in an object-oriented system[37, 38].
Indeed, the notion of abstract permission exists in early work in operating systemssecu-
rit y [33], and RBAC borrows the ideato stressthe possibility of high-level operationssuch
as credit or debit for an account in RBAC [42, 8]. The de�nition of role varies slightly.
Someconsidera role to be a namedcollection of permissions[38], while othersconsidera
role to be a job function within the context of an organization [8, 41]. Although both are
technically correct, the former focuseson the mathematical de�nition of a role, whereas
the latter emphasizesthe useof RBAC in modelling organizational security policy.

31

CHAPTER 2. Related Work 2.1. Accesscontrol models

RolesUsers

User
assignment

(UA)
Permissions

Permission
assignment

(PA)

Figure 2.2: A basicRBAC model

Director

Engineer1
Production

Assurer1
Quality

Project Lead 1 Project Lead 1

Assurer1
QualityProduction

Engineer1

Figure 2.3: An exampleof role hierarchy

Central to RBAC is the notion of relations that connect the components described
in the previous paragraph. SupposeU, R and P denote the set of all users,roles and
permissionsin the systemrespectively. The user assignment(UA) relation is de�ned as
UA � U � R, which gives a many-to-many mapping from usersto roles. Similarly, the
permission assignment (PA) relation is a many-to-many mapping between permissions
and roles, and is de�ned as PA � P � R. A schematic illustration of a basic RBAC
model is given in Figure 2.2. The arrows represent many-to-many relationshipsbetween
components.

In RBAC, permissionsare granted to usersonly through roles. Supposea user in a
bank attempts to withdraw money from an account, shemust be assignedto somerole
that permits money withdrawal, e.g. cashier. It is possibleto assignmultiple roles to a
singleuserif the job position demandsthis. However, it is rare that a userwill needall the
assignedrolesat all times to perform her job functions. The well-known principle of least
privilege [24] recommendsthat only thosepermissionsrequiredfor a user'scontext should
be available to the user. To addressthis, many RBAC models [42, 8, 43] incorporate the
conceptof sessions.

A sessionis a one-to-many mapping from a user to roles. A userestablishesa session
and activates somesubsetof roles that she is assignedto in the context of this session.
The permissionsavailable to the user in a sessionare those assignedto all the active
roles in that session. A user may control multiple sessionssimultaneously, each acting
as a separateinstance of the user. The notion of sessionis analogousto the notion of
principal in traditional MAC and DAC, i.e. a sessionrepresents an active subject. Since
an administrator can restrict a sessionto only activate neededroles for its designated
task, the useof sessionin RBAC embodies the principle of least privilege.

Another feature commonly found in RBAC models is the concept of role hierarchy.
The idea behind role hierarchy is due to the observation that roles in an organization
can often form a seniority hierarchy, e.g.a Chief Executive O�cer (CEO) is more senior
than a Vice President (VP). A role hierarchy is closelyde�ned in accordancewith this

32

CHAPTER 2. Related Work 2.1. Accesscontrol models

observation, asa partially-ordered seniority relation { seeFigure 2.3for an exampleof role
hierarchy. However, several interpretations for role hierarchy have beenproposed. Some
researchers[37, 38] favour an permission-inheritanceview, whereby role r 1 inherits r 2 if r1

hasall permissionsassignedto r 2. Some[26, 43, 39] interpret a role hierarchy in terms of
usercontainment relations, whereby role r 1 contains r 2 if all usersassignedto r 1 are also
assignedto r 2. Yet others [44] proposeinterpretation basedon role activation, whereby
role r1 inherits r 2 if in all sessionswhere r1 is active, r 2 is also active. In [45], Mo�ett
examinesa variety of possibleinterpretations for role hierarchy. In general,role hierarchy
is a structuring tool to model an organization's lines of authority and responsibility.
Its main claimed advantage is to improve administrative e�ciency by factoring common
permissionsand reecting organizational structure.

AdvancedRBAC models often o�er direct support for expressingconict of interest
policies [24], such as the ChineseWall policy [25]. This is typically supported through
the speci�cation of mutually exclusive rolesin separation of duty (SoD) relations. Several
types of SoD relations have beenstudied [31, 32, 38, 46, 47]. Static separationof duty
relations enforceconstraints on the assignment of usersto roles, to prevent a user being
assignedto two or more conicting roles at the sametime, e.g. a person cannot both
be a billing clerk and a bookkeepingclerk. From a policy perspective, while the static
constraints of static separation of duty provide a powerful mechanism to prevent mis-
administration, it is usually over-restrictive in real-world practice to be useful or even
feasible[41], sinceit is commonfor a subject to be assignedto conicting rolesespecially
those in the role hierarchy.

A more relaxed type of SoD relations, known as dynamic separation of duty, allows
assignment of mutually exclusive rolesto the sameuserbut prevents them beingactivated
within the samesession.This o�ers greater operational exibilit y in an organization, for
examplea usercan now be assignedwith both a billing clerk and an accounts receivable
clerk role provided theserolesare acted on in independent sessions.Dynamic separation
of duty is particularly suitable when sessionsare bound with clear and distinctive tasks.
Other more complex types of SoD relations include object-basedSoD, operational SoD
and history-basedSoD [31]. The practicality and consequencesof these SoD relations
remainsan open research question,however.

Another aspect of RBAC is its administration. The administration of a RBAC system
mainly consistsof the speci�cations of the basicsets,U, R and P and the two relations,UA
and PA [38, 48,39, 41]. In the simplestform, an administrator is allowedto directly create
or deletea user,role or permission,and assignor remove a useror permissionfrom a role.
An administrator is hencegiven the maximum power to con�gure each RBAC component
in the system. This monolithic style of administration facesscalability problemsfor large
corporations. A more advanced administrative model, ARBAC97 [48], addressesthis
problem by applying RBAC to itself. It introducesthe concept of administrative roles,
and encouragespartitioning the systeminto functionally-independent parts which can be
separatelymanaged.For example,an organization could have an administrative role for
the �nancial department, responsible for managing the usersand roles in the �nancial
department. Likewise,another administrative role could be introducedto take chargeof
the human-resourcesdepartment.

One of the most compelling motivations for RBAC is its easeof administration [26,
36, 42, 8]. This is largely due to the additional indirection of roles between usersand

33

CHAPTER 2. Related Work 2.2. Distributed accesscontrol

permissions. Permissionsassignedto a role represent organizational security policies,
which are relatively constant onceestablished.The administrative task of assigningusers
to roles, for example when a person newly joins the organization or changesher job
position, is considerablyeasierand lesserror-prone than directly assigningpermissions
to each individual. The administrative advantage is particularly important for a large
systemor an organization with a high turnover of personnel.

Another advantage of RBAC is that it is \p olicy-neutral". This meanstraditional
policiessuch asMAC and DAC canbe expressedby usingrole hierarchiesand constraints
in RBAC [49, 50, 51]. In this regard, RBAC is consideredto be a generalizedapproach
to accesscontrol. On the other hand, RBAC has someinherent, non-discretionary ele-
ments [26, 39]. The roles that a useractivatesare typically not determinedat the user's
discretion but rather by her assignedtasks, in compliancewith the organizational pro-
tection guidelinesor security policies,which are usually re�ned from laws, regulationsor
operating practices.

2.2 Distributed access control

The work on distributed accesscontrol originates from the need to provide authoriza-
tion on LAN-baseddistributed systems.Early work includesthe Cambridge Distributed
Computing System(CDCS) [52, 53], Cambridge File Server (CFS) [54, 55], Hydra [56],
and Amoeba [57, 58]. Thesee�orts pioneeredthe idea of capability-basedauthorization
for distributed systems,which is the predecessorof the modern credential-based autho-
rization. Another thread of the research e�ort concentrates on providing authentication
for distributed systems. The idea is that oncea remote user is securelyauthenticated,
accesscontrol lists on the server can then be usedto provide authorization. Notable work
includesthe Needhamand Schroederprotocol [10] and Kerberos[59, 60].

This section briey reviews this prior work, and introducesthe modern credential-
basedapproach to authorization for large-scaledistributed systems.

2.2.1 Access control lists in distributed systems

Some early attempts have been made to reuse the well-known accesscontrol lists in
distributed systems.The ideais to �rst authenticate remoteusers,mappinginto local user
identi�ers, and then rely on the existing accesscontrol lists for authorization decisions.
With this approach, the security dependsheavily on the strength of the authentication
scheme.

In their seminalpaper, Needhamand Schroeder[10] proposethe useof cryptographic
protocols for achieving securecommunications and suggesta key-establishment protocol,
basedon symmetric key encryption. A key-establishment protocol allows a sharedsecret
to beestablishedbetweentwo principals on di�eren t machinesand may optionally beused
for mutual authentication. The sharedsecretmay subsequently be used for encrypting
tra�c on the communication channel. The original protocol by Needhamand Schroeder
hassomeweaknessesand several suggestionshave beendescribed to �x them [61, 62, 63].
Nevertheless,its idea had enormousinuence on research in network security, including
the well-known Kerberosauthentication system.

34

CHAPTER 2. Related Work 2.2. Distributed accesscontrol

Kerberos is an authentication service, designedas part of MIT's Project Athena
[59, 60], which aims at designingand building an open network computing environment,
comprisingworkstations and various typesof servers. The goal of Kerberosis to remove
the needfor each application to implement its own authentication scheme. Basedon the
Needhamand Schroederprotocol, it adopts a ticket-basedapproach, whereby a ticket is
a server-speci�c, encrypted token identifying a principal. A ticket is issuedby either a
Kerberosor a special ticket-granting service(TGS). Prior to making a servicerequest,a
client builds another encrypted credential known as an authenticator that identi�es its
name, network addressand a timestamp. It then initiates an authentication exchange
with the server, passingboth the ticket and the authenticator. Oncethe server decrypts
both the ticket and authenticator, and validates their information, it gainscon�dence in
the identit y of its communicating party, accordingto the issuerof the ticket. The original
Kerberosprotocol is insecureagainst a variety of attacks [64]. The latest Kerberos,Ver-
sion5 [12], developedunder the scrutiny of the Internet EngineeringTaskForce,addresses
the known problemsand hasbegunto be widely adopted,e.g. in Distributed Computing
Environment (DCE) [65].

2.2.2 Capabilit y-based access control

For distributed systems,oneof the inherent problemsof accesscontrol lists is their scal-
abilit y limitations. Accesscontrol lists can be slow to check, especially if the number of
usersor groupsare large. Moreover, they do not have natural support for delegation{ an
important mechanism for scaling large-scaledistributed systems. With capabilities, on
the other hand, accessdecisionscan be made quickly by examining the presented capa-
bilit y. Furthermore, it allows delegationof rights. Theseconsiderationsmake capabilities
a more suitable mechanism for distributed systemssecurity.

Early work on distributed systemsecurity exploresextensively the useof capabilities
in providing the authorization need. Notable pioneering work includes the Cambridge
Distributed Computing System(CDCS) [52, 53], Cambridge File Server (CFS) [54, 55],
Hydra [56], and Amoeba [57, 58]. Capabilities in centralized systemsmay be protected
by hardware (e.g. memory protection). However, in distributed systemswherethey must
be passedaround, hardware protection is no longer an option.

One approach is to employ cryptographic techniques to protect capabilities from
forgeryand tampering. When an object is created,the systemassociatesit with a random
secret. The construction of a capability would then involve computing a cryptographic
hashof the object identi�er, accessrights, and the secret. The hashis then embeddedin
the capability as the check digits. Mathematically,

hash = f (secret; protected �elds)

capability = (protected �elds; hash)

where f is the hashing function, secret is the secret associated with the object, and
protected �elds can include any information, such as the object identi�er and the access
rights. When a capability is usedfor access,the systemchecks if the capability is genuine
by recomputingthe hash. If and only if the computedhashmatchesthe hashcontained in
the capability, the systemthen makesan accesscontrol decisionbasedon the capability.

35

CHAPTER 2. Related Work 2.2. Distributed accesscontrol

While this approach provides someprotection against forgery of capabilities, there
are still many issuesleft unaddressed.For example, it doesnot detect the useof stolen
capabilities, nor does it prevent uncontrolled propagation or duplication of capabilities.
Moreover, revocation is often coarsely-grainedby resetting the secretof an object (thus
invalidating all capabilities for the object).

Although the capability-basedapproach did not provide a completesolution to dis-
tributed accesscontrol, it washowever arguably oneof the most important developments
leadingto today's accesscontrol technologies,with two important implications. Firstly, it
experiments with the idea of distributing accessrights so that the accesscontrol decision
at each server can be made simply by validating the credentials presented by a client.
Secondly, it prompts the possibility of privilegedelegation by allowing propagation of ca-
pabilities. This e�ectiv ely decentralizes the task of security management to each client.
Both of theseimplications have impacts on the scalability of a distributed system.

2.2.3 Creden tial-based access control

With the recognition of the problemsin applying capabilities to distributed systems(as
discussedin the endof the last section),it gradually becameobviousthat plain capabilities
were unable to satisfy the authorization needsin distributed systems.More information
is neededfor authorization purposes.Credentials are essentially a moreelaborate form of
data structure, given to and handledby individual principals.

An early form of credential-based accesscontrol is due to Li, with his identit y-based
capability system,ICAP [13]. One important innovation in ICAP is that it mergesideas
from both ACLs and capabilities. In ICAP, a capability contains a cryptographic hash
computedover the useridenti�er of its holder,a secretkept by its issuerand the protection
information in the capability. This restricts the useof a capability to only its legitimate
holder and prevents forgery. It also meansthat the propagation of a capability must be
mediated by its issuer. One novelty in ICAP is its support for selective revocation. A
server maintains a data structure called a propagation tree, which records the path of
capability propagations. If the revocation of a capability is requestedby a valid client
(i.e. in its propagation path), the server updates its internal secret, thus invalidating
capabilities issuedwith the old secret.

Bull et al. [14], incorporating ideasfrom [13], describe a credential-based systemfor
Open Distributed Processing(ODP). In ODP, federationsof heterogeneoussystemsare
formed, with no central authority nor uni�ed security infrastructure. Considering this
level of openness,it becomesobvious that each server is responsiblefor the management
of its own security policy and the enforcement thereof, with a high degreeof autonomy.
In their design,a server issuesaccesscerti�cates (i.e. credentials) to authorize accessto
its services.An accesscerti�cate is signedwith the server's secretkey and a client hold-
ing an accesscerti�cate can freely delegateits accessrights to other clients, by adding a
signaturegeneratedby its own secretkey. This processcancontinue inde�nitely and form
a chain of delegation. On a servicerequest,the server validates the chain presented by a
client by recomputing the signatures. Once the validation succeeds,the server appliesa
local security policy, basedpartially on the policy identi�er contained in the accesscer-
ti�cate. An important contribution of this systemis the observation that the protocol for
authentication could be integrated with delegation,thereforeallowing authentication and

36

CHAPTER 2. Related Work 2.2. Distributed accesscontrol

accesscontrol to be performedin a singlestep. Moreover, its conceptof local autonomy
and server-oriented security management featuresan attractiv e scalingcharacteristics.

Another credential-based system is described by Neuman [66], in which the author
describesthe conceptof a restricted proxy, which is a credential that encodesaccessrights
and use conditions. Similar to previously described systems,it employs cryptographic
signing to prevent forgery and tampering. A novel idea in this system is that a proxy
includesa set of restrictions that must be satis�ed on its use. This allows a principal to
delegatea subsetof his or her accessrights to another principal, achieving �ne-grained
distribution of accessrights. Somerestrictions described by the author include a list of
issuers,a list of acceptors,group membership,singleuse,and restrictions on propagation.
It also supports the notion of chains of delegation, with the extra exibilit y that each
intermediary can specify additional restrictions.

OASIS: Op en Arc hitecture for Secure, In terw orking Services

OASIS(OpenArchitecture for Secure,Interworking Services)[15,67]is a recent credential-
basedaccesscontrol system,developed at the University of Cambridge Computer Labo-
ratory. It is basedon the idea of principal-speci�c capability (e.g. as in ICAP [13]) but is
integrated with role-basedaccesscontrol. While the protected �elds (seeSection2.2.2) in
plain capabilities include primarily an object identi�er and accessrights, in OASIS, the
protected�elds area role nameand someparametersfor the role (rolesareparametrized).

Credentials in OASIS are called certi�c ates. There are three typesof certi�cate, role
membership certi�c ate (RMC), appointment certi�c ate (AC), and revocation certi�c ate
(RVC). A RMC is used to asserta principal's membership of somerole, and it can be
consideredas a transient, session-basedcapability. An AC is a persistent certi�cate,
designedto implement appointment (which is a more generalform of delegation),and a
RVC is a certi�cate to revoke an instanceof appointment. In abstract terms, they can be
seenas:

protectedf ields = (role name; parameters)

hash = f (secret; principal id; protected �elds)

certif icate = (protected �elds; hash)

An OASIS certi�cate canonly be usedby the principal it is issuedto. This is achieved
by including the principal identi�er whencomputing the hashvalue. A principal therefore
must be authenticated when accessinga service; it is insu�cien t to simply present a
certi�cate.

A key designfeature of OASIS is that it views the systemas a collection of services.
A servicemay be an OASIS service or an OASIS-aware service. An OASIS service is
in charge of the issuing and revocation of certi�cates, whereasan OASIS-aware service
protects the accessof its serviceby enforcingpolicies speci�ed in terms of OASIS roles.
Servicesare independently managedand fully autonomous.A servicemay locally de�ne
a set of rolesand specify policiesgoverning their use(e.g. the issuingof RMCs, the useof
RMCs for serviceaccess,etc). Interworking betweenservicesis facilitated by service-level
agreements (SLAs), which speci�es the useof RMCs issuedby other services.A SLA is
typically an agreement betweena pair of services,although it is also possibleto involve
more than two servicesin a SLA whereappropriate.

37

CHAPTER 2. Related Work 2.2. Distributed accesscontrol

Another key designin OASIS is its policy-driven nature. The original OASIS includes
the RoleDe�nition Language(RDL), which is later re�ned and formally speci�ed in [3, 5].
Policiescan be de�ned for:

� role activation (issuing of role membership certi�cates)

� validit y for appointment certi�cates

� serviceuse/method invocation

Policiesare basedon �rst-order logic, with the parameterbinding semantics comparable
to term uni�cation in Prolog. A moredetailed descriptionof the OASIS policy model will
be provided in Section6.1.1when its relation with the Fidelis counterpart is discussed.

2.2.4 Categories of creden tial-based access control

Most modern distributed accesscontrol systemsapply the ideasof cryptographically pro-
tected credentials asa meansof distributing security policiesand asa proof of assignedor
delegatedaccessrights. The increasedadoption of public-key cryptography [68] can also
be observed in thesesystems. This is mainly due to the problem and complexity of key
management with symmetric-key cryptography. For distributed accesscontrol with this
approach, a principal and a servicemust sharea secretkey which is distributed online.
Moreover, it is desirableto constrain the useof a secretkey to each serviceto limit the
damagecausedby disclosureof the key. Public-key cryptography signi�cantly simpli�es
key management becauseit is su�cien t for a communicating party to know only public
keys. A credential that binds a public key to someattributes of the holder of the corre-
sponding private key is called a public key certi�c ate. This is the most commonform of
credential found in modern distributed accesscontrol systems.

While the generalidea of using credentials in provision of distributed accesscontrol
is widely accepted,the semantics and trust guarantee of credentials di�er signi�cantly.
Basedon how credentials are used,distributed accesscontrol may be grouped into two
categories:

Iden tit y-orien ted approac h One commonuseof accesscontrol credentials is to bind
the name of a subject with accessrights. The idea is that oncethe name of a re-
questeris proved by a reliable authentication mechanism,accesscontrol credentials
with the matched namecan then be usedto make accessdecisions.This approach
separatesaccesscontrol into two distinct stages:authentication and authorization.
Authentication requiresthe binding of a public key to a name,while authorization
is handled with the accesscontrol credentials which bind a name and a set of au-
thorizations. The security of this approach therefore dependson the reliabilit y of
both bindings.

Standardsexist for the binding from a public key to a name. Pretty Good Privacy
(PGP) [69, 70] and X.509 Public Key Infrastructure (PKIX) [71, 72, 6, 73] are the
two most widely usedtoday. The most prominent standard for binding public keys
with authorizations is the X.509 Privilege Management Infrastructure (PMI), with
its support for attribute certi�cates [74, 6, 75].

38

CHAPTER 2. Related Work 2.3. Identit y-oriented accesscontrol

Key-orien ted approac h Another possibleuseof accesscontrol credentials is to directly
bind a public key with authorizations, thus avoiding the useof namescompletely.
With this approach, the public key in an accesscontrol credential e�ectiv ely iden-
ti�es a subject, and if possessionof the corresponding private key can be proved, a
serviceacceptingthis credential can be sureof the identit y of the subject and make
accessdecision simply by examining the accessrights in the credential. Unlike
the identit y-oriented approach, the key-oriented approach integratesthe problem of
authentication and authorization into one step, but authentication still has to be
done.

There are currently two major accesscontrol systemsbasedon the key-oriented
approach: Simple Public Key Infrastructure (SPKI) [76, 18] by Ellison et al. and
KeyNote [19] by Blaze et al.

The remainder of this chapter describes representativ e systemsand technologiesfor
each category introducedabove.

2.3 Iden tit y-orien ted access control

When Di�e and Hellman introducedpublic key cryptography asa solution for key man-
agement in 1976[68], they described a \public directory" that lists a user'snameand his
or her public key. With this knowledge,one can perform commoncryptographic opera-
tions such asencryption and signatureveri�cation with regardto only the personholding
the corresponding private key. While a vast improvement on key management (for secret
keys),public key cryptography doesnot solve the problem but insteadshifts the focusto
the distribution of public keys. That is, the public directory must be trusted and widely
available on demandfor this systemto be usefuland dependable.The public directory is
e�ectiv ely a central point of authority.

Kohnfelder introducedthe idea of certi�cate, or public key certi�cate in his bachelor's
thesis [77]. The idea is to prevent the possibleperformanceproblem causedby a central
directory by distributing each entry in the directory asa digitally signeddata record, i.e.
a data record containing a name and a public key. Sincesuch a certi�cate is digitally
signed, it can be held and passedaround by non-trusted parties without violating its
integrity. The problem of key management is therefore reducedto the knowledgeof the
signing authority's public key.

Public Key Infrastructure (PKI) is a general term to describe the mechanism and
architecture to certify the validit y and trustworthinessof public-keybindings, traditionally
betweena nameand a public key. Identit y-oriented accesscontrol extendsthe useof the
nameas its premisefor accesscontrol decisions.This section�rst examinestwo popular
identit y-oriented PKIs and then describestheir usein providing distributed accesscontrol.

2.3.1 X.509 Public Key Infrastructure

X.509 was originally published in 1988[71] as part of the X.500 Directory recommenda-
tions by the Telecommunication Standardization Sectorof the International Telecommu-
nication Union (ITU-T), formerly known as CCITT. X.500 was designedto be a global
and distributed directory service,whereby an organizationcan own and administer some

39

CHAPTER 2. Related Work 2.3. Identit y-oriented accesscontrol

C=GB,
O=University of Cambridge

issuer

C=GB,
O=University of Cambridge
OU=Computer Laboratory

subject

signature

...

C=GBsubject

C=GBissuer

signature

...
C=GB,
O=University of Cambridge

subject

C=GBissuer

signature

...

Figure 2.4: A certi�cation path

portions of the global name space. X.509 was intended to provide authentication and
accesscontrol for directory entries by binding public keys to X.500 path names(called
Distinguished Names). It underwent three major revisions, in 1993 [78], 1996 [72] and
2000[6], reaching version3. The version3 format includesan extensionmechanism, al-
lowing binding of arbitrary �elds with a public key. The Internet EngineeringTaskForce
(IETF) envisionsthe needof an authentication framework for secureInternet transactions
but sincethe ITU-T X.509 speci�cation is deliberately over-general,interoperability be-
comesan issue.To addressthis, IETF producedan X.509pro�le tailored for the Internet,
known asPKIX [73], and alsoa family of protocols for the operation and management of
PKIX [79, 80, 81, 82].

The major �elds in an X.509 certi�cate include: a subject nameand an issuername
(both areX.500distinguishednames),the subject's public key, a validit y period, a version
number, a serial number, a digital signature, and a set of extensions. A Certi�c ation
Authority (CA) is a trusted authority that issues,renewsand revokes certi�cates. In
X.509 PKI, every CA has a public key certi�cate to identify itself, and the certi�cate is
signedby a CA with a higher level of authority, and the certi�cate of that CA may in
turn be signedby another CA with an even higher level of authority. CAs are therefore
organizedinto a hierarchical \tree of certi�cation". The original intent of this model is
to reect the designof the X.500 directory service,wherethere existsa single,global tree
of authority, whoseroot represents the authority of the highest power, e.g. the United
Nations. In recognizingthe infeasibility of a global tree, IETF's PKIX speci�cally permits
each organization to host its own certi�cation tree to suit its need.

Validation of a public key certi�cate involves proving the existenceof a certi�c ation
path. A certi�cation path is an orderedsequenceof certi�cates, which givesa path from
the root of a certi�cation tree to the certi�cate to be validated. SeeFigure 2.4 for
an exampleof a certi�cation path. The actual rules for processinga certi�cation path
are complex, depending on the extensionsused in a certi�cate. For example, a name
constraints extensioncould specify a list of permitted subtreesin a path. The basic idea
of path processingis simple, though: recursively validating each certi�cate in the path,
until a trusted CA, known as a trust anchor, or the root CA is found.

There are several trust models for the establishment of trust at a trust anchor or a
root CA. The IETF PKIX recommendstwo approaches. A CA may issueand sign a
certi�cate for itself, resulting in a self-signed root certi�cate. Another approach is known

40

CHAPTER 2. Related Work 2.3. Identit y-oriented accesscontrol

(a) self-signedhierarchy (b) cross-certi�ed hierarchies

Figure 2.5: Examplesof trust model

ascrosscerti�c ation, whereby two or more root CAs or trust anchors issuecerti�cates for
each other. Thus, by explicitly trusting oneroot CA in a hierarchy, onewould be able to
validate certi�cates signedby CAs from a di�eren t certi�cation tree. Figure 2.5 illustrates
these two common models. A black circle represents a CA, and an arrow represents a
certi�cation relationship. Other possibletrust models, including bridged hierarchy, trust
lists, web-of-trust hierarchies,are described in [83, 84, 85].

Every certi�cate is issuedwith a validit y period. It states the starting and ending
timestamps during which the CA warrants the validit y of the information in the certi�-
cate. X.509 PKI includesa revocation mechanism for invalidating a certi�cate before it
expires. It models the \blacklist" booklet of bad checking account numbers at super-
market checkouts in the early days. A Certi�c ate Revocation List (CRL) lists the serial
numbersof revoked certi�cates. It is createdand signedby a CA, and a CA is responsible
for periodically publishing its CRL for interestedparties.

As noted in the PKIX recommendation[73], one limitation of this style of revocation
is that the time granularit y of revocation is limited to the issuefrequencyof CRL. IETF
recognizesthat where security requirements are critical, online methods of revocation
noti�cation will bedesirable.Addressingthis need,IETF publishesa protocol for checking
the certi�cate status online in 1999[86]. While this method signi�cantly reducesthe delay
betweenthe time of revocation and its e�ect to relying parties, it imposesan extra trust
relationship whereby the relying parties must trust the online validation service.

IETF additionally speci�es a number of management protocols to support the op-
erations and interactions between a PKI user and management authorities. The main
functionalities supported by thesemanagement protocols include: registration of a user,
initialization of a client system,certi�cation, generation,recovery and update of key-pairs,
and revocation requestand noti�cation.

2.3.2 Prett y Go od Priv acy (PGP)

Pretty Good Privacy (PGP) is a software application designedby Zimmermann [69]
to allow secureexchangesof �les and messageswith guarantees of con�dentialit y, in-
tegrity, authentication and to someextent, non-repudiation. PGP is well-known due to
its widespreadacceptanceas a solution for securee-mail messaging.

PGP is basedon both public-keyand symmetric-keycryptography. For con�dentialit y,

41

CHAPTER 2. Related Work 2.3. Identit y-oriented accesscontrol

PGP randomly generatesa sessionkey and encrypts the messageusing a symmetric
encryption algorithm with that key. It then encrypts the sessionkey with the recipient's
public key and sendsboth the encrypted messageand sessionkey to the recipient as a
bundle. For authentication, PGP computesa hash of the messageand digitally signsit
with the sender'sprivate key. The digital signature is then sent along with the message
bundle. It is thus possibleto achieve both con�dentialit y and authentication in PGP by
combining both mechanisms.

A user is identi�ed by a name that is, as a de-facto standard, usually quali�ed with
his or her e-mail address.The quali�ed nameis assumedto be unique for the individual's
purpose. PGP supports a web of trust model, where there is no central authority or
hierarchy of authorities for certifying public key bindings like in X.509. Instead, a name-
to-public-key binding is attested by trusted intr oducers, who vouch for the binding by
digitally signing it. A user may make any other user he/she trusts an introducer, e.g.
basedon the past knowledgeor personalexperience.The underlying theory of this model
is that everyone builds up their social circle of trust since their birth, by a large part,
judging recommendationsand trustworthinessfrom peoplethey know. PGP believesthat
by empowering each individual to attest public keysand to acceptrecommendationsfrom
others, onecould gradually build up a circle of trust as in the real world.

Each PGP user maintains multiple private and public key rings. A private key ring
storesthe key pairs owned by the user,while a public key ring storespublic key bindings
the user knows. Multiple public key rings can be maintained to partition their intended
use,e.g.businessesor friends. Each public key binding stored in a key ring is associated
with a level of trust, a validit y scoreand a list of signaturesby its introducers. There
are four levelsof trust in PGP, namely \unknown", \un trusted", \marginally trusted" or
\fully trusted". They are intended to reect the trustworthinessof the public key owner
asan introduceraccordingto the ring owner's knowledgeand can be changedby the ring
owner at any time. With the trustworthinessinformation of each introducer and a list of
signaturesby introducers,PGP computesa validit y scorefor each public key in a public
key ring. The validit y scoreof a public key providesa hint to help judge if the key should
be trusted.

In PGP, a public key binding is permanent unlessthe owner of a key ring explicitly
removesit. Alternativ ely, it can be invalidated if a revocation certi�c ate exists. A revoca-
tion certi�cate is a negative statement againsta public key binding, which prevents PGP
from using the namedpublic key. It can only be produced by the owner of the revoked
public key, and it is his or her responsibility to distribute the revocation certi�cate to
relevant parties.

2.3.3 A ttribute certi�cates

The concept of Attribute Certi�c ates (AC) was introduced by ANSI with the intention
to support accesscontrol in PKI and was later incorporated into version 3 [72] of ITU-
T/ISO X.509 recommendation.In 1999,ANSI publisheda revision to the original version
of attribute certi�cates, resulting in version 2 [74]. It forms the basis of the work on
PrivilegeManagementInfr astructure (PMI) in the 2000edition of X.509 [6], wherenearly
half of the recommendationis devoted to the subject of PKI-based accesscontrol.

The conceptof attribute certi�cates is developed to support authorization in a PKI

42

CHAPTER 2. Related Work 2.3. Identit y-oriented accesscontrol

Delegates
privilege

Asserts
privilege

Assigns
privilege Trusts

Sourceof authority
(SOA)

Privilege veri�er
Attribute
authority

(AA)

Privilege holder

Figure 2.6: PMI delegationmodel (simpli�ed from [6])

environment. While it is possibleto embed accessrights in an X.509 certi�cate using the
extensionmechanisms,an X.509 certi�cate is identit y-oriented and its public key binding
often tendsto be long-lived, thereforeill-suited for expressingauthorization. For example,
if a personneedsto be granted temporary accessrights, it would involve revoking the old
certi�cate and issuing a new one. This is not only cumbersomebut also conicts with
the idea of identit y certi�cation, whereby a public key binding is intended to be stable.
Moreover, delegationof rights is often desirablein distributed accesscontrol, but again,
this notion doesnot �t well in identit y-basedcerti�cates.

The idea behind attribute certi�cates is simple: binding an identit y certi�cate with
signed, short-lived certi�cates that hold attributes. There is no constraint on what an
attribute can be. For accesscontrol, an attribute can be, for example, an accesscon-
trol identit y, group/role membership, a security clearance,or other application-speci�c
constraint, e.g. time limit, value limit on a �nancial transaction, etc. An attribute cer-
ti�cate has a similar structure to an X.509 identit y certi�cate, with the major absence
of a subject name. Instead, a holder �eld indicates the linkageto an identit y certi�cate.
It can be given as either a generalname,a referenceto a CA plus a serial number, or a
cryptographic hashto be usedas the basisfor authentication.

The PMI model consistsof four components, as shown in Figure 2.6: privilege veri-
�ers, the Sourceof Authorit y (SOA), Attribute Authorities (AA), and privilege holders.
An attribute certi�cate is issuedand signedby an Attribute Authority. Similar to the
concept of certi�cation paths, a set of attribute certi�cates can form a delegation path.
The root of a delegationpath is called the Source of Authority, and is trusted with the
management of authorization for the whole system. It delegatesa partial management
responsibility to an AA by issuingattribute certi�cates with specialdelegationextensions.
That AA could further delegateto other AAs or end users. An attribute certi�cate for
an end usere�ectiv ely meansdelegationof accessrights from the issuingAA to the user.
Onerequirement of delegationis that an AA participating in a delegationpath could only
delegateaccessrights, or a subsetof them, that have beenissuedto it, i.e. delegationis
monotonic. Delegation in X.509 PMI could be subject to various restrictions, using del-
egation constraints. For example,a pathLenConstraint extensionspeci�es the maximum
allowed distancebetweenan issuerand a privilege veri�er.

An AA is typically a separateentit y from a CA. While someCA may incorporate the
functionalities of an AA, it cannot be assumedthat a CA will possesssu�cien t knowledge
to determineauthorization for its usersin general. In this model, a privilege veri�er trusts

43

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

the SOA to delegateits accessrights to AAs or end-userprivilege holders; it trusts the
SOA as the authority over the control of protected resources.This model separatesthe
administration of accesscontrol policiesfrom their enforcement.

X.509 PMI optionally supports role-basedaccesscontrol (RBAC) through the useof
extension �elds. An attribute certi�cate with the role speci�cation extension is called
a role speci�c ation certi�cate, which associates a role name with a set of accessrights
delegatedby an AA. An AA may also issuerole assignmentcerti�cates that associate
individuals with roles. A privilege veri�er presented with a role assignment certi�cate
derivesthe accessrights of a privilege holder by assertingthe role speci�cation certi�cate
of that role, which may be known beforehand,together presented by the privilege holder,
or discoveredby someother mechanisms.

Revocation of attribute certi�cates is supported usingthe sameCerti�cate Revocation
List (CRL) mechanismasin the X.509 PKI. In addition, PMI de�nes two extension�elds
for usein an attribute certi�cate to assistrevocation. A CRLDistributionP oints extension
instructs a privilege veri�er to fetch the CRL from the speci�ed location. An attribute
certi�cate could also contain a NoRevAvail extension,which informs a privilege veri�er
that no revocation will be madeon this certi�cate. This may be usefulin somesituations,
e.g.certi�cates with a very short validit y period, thus revocation checking may beomitted
for e�ciency .

Accesscontrol systemsbasedon and/or extending the use of attribute certi�cates
include: Akenti [87, 88], Globus [89, 90] and PERMIS [91].

2.4 Key-orien ted access control

Identit y-oriented accesscontrol is centred aroundthe conceptof names, which areintended
to be associated with both accessrights and the real principals. However, the very notion
of namesbecomesproblematic in meeting the accesscontrol needsof large-scale,widely
distributed systems.First, the identit y-oriented approach assumesthat a nameuniquely
identi�es a principal. In a large distributed system, a global naming scheme imposes
several problems, e.g. scalability, exibilit y. Moreover, a naming scheme usually has a
�xed (hierarchical) structure. It is impossibleto devisea singlestructure that satis�es the
needfor every application. Second,namesdo not contribute much in decidingaccesswhen
there is no prior experienceor relationship betweena servicerequesterand a provider. In
the real world, one function of namesis to link relevant trust information regarding an
entit y together. Basedon the knowledgeof the trustworthinessof an entit y, a service,e.g.
a bank, can then make an informed judgement as to whether to provide accessor not.

Despite the relatively few useof names,the concept of globally unique identi�ers is
neverthelessessential for accesscontrol; a computer system still needssomemeansto
reliably identify its requester. The basic idea of key-oriented accesscontrol is to use
public keysasprincipal identi�ers. The assumptionis that every principal generatestheir
own key pair and is responsible for safeguardingtheir private key. By requirement, a
public key generation processmust produce globally unique keys, otherwise the public
key cryptosystem is considereda wed. Sincea private key is kept secret, presenting a
public key to a serviceand proving the knowledge of its corresponding private key is
su�cien t as a proof of the owner of the key pair. Public keys thus qualify as globally
unique identi�ers for the purposeof accesscontrol.

44

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

This key-centric view removes the dependencyon names,which meansno naming
authorities are required in the system. An important implication is that the trust re-
lationship is simpli�ed becausea servicedoes not need to explicitly trust the assertion
of a name binding (i.e. authentication) by a naming authority. A serviceis responsible
for authenticating its own requestersand deciding their accessrights. The key-oriented
approach e�ectiv ely blurs the distinctions betweenthe two phasesof accesscontrol, au-
thentication and authorization. By allowing full control over their own resources,the
key-oriented approach o�ers more serviceautonomy than the identit y-oriented one.

This sectionbriey surveyssomeof the recent key-oriented accesscontrol systemsand
trust managementsystems, which extend the conceptof key-oriented accesscontrol with
the management of trust relationship and security policies.

2.4.1 Simple Public Key Infrastructure (SPKI)

Simple Public Key Infrastructure (SPKI) is a work-in-progressstandard by the IETF
SPKI Working Group, tasked with producing a certi�cate structure and operational pro-
tocols to support the needsof authorization management in Internet applications. This
work wasoriginally motivated by the inexibilit y and inadequacyof the global naming hi-
erarchy in X.509. Separatelyproposed,SimpleDistributed Security Infrastructure (SDSI)
by Rivestand Lampson[17] wasalsodesignedto addressthe sameglobalnamingproblem.
The two projects were later mergedand publishedas the SPKI/SDSI 2.0 [76, 18, 92].

In SPKI, the view of the world is fully key-centric. Every principal, including a person,
a process,or a service,may freely generatea cryptographic key pair and is identi�ed by
their public key. Every principal cansignand issuecerti�cates usingtheir own private key,
and a signedcerti�cate canbe veri�ed by any principals with the public key of the signer.
There are three types of certi�cate in SPKI: authorization certi�c ate, name certi�c ate
and accesscontrol list (ACL). An authorization certi�cate is the most common type of
certi�cate, and sometimesis just called a \SPKI certi�cate" or simply \certi�cate". It
transfers somespeci�c accessrights from one principal to another, i.e. it is a delegation
certi�cate. A namecerti�cate binds a public key with a name. SPKI supports the SDSI
linked namemodel, described later. An accesscontrol list is a special type of certi�cate
that represents the security policy of a service. It is not intended to be distributed, but
rather held in securestorageprivate to a service.

Authorization certi�cates can form chains whereaccessrights are delegatedfrom one
public key to another. When a service,S, grants accessrights to a principal, C1, it issues
an authorization certi�cate that carriesdelegatedrights from its ACL. C1 could issueand
sign an authorization certi�cate to further propagate this delegation to C2, and so on.
When S is requestedby Cn , a certi�cate with the delegatedaccessrights is presented to
the service,completingan authorization loop, illustrated below. A doublearrow indicates
a delegationand a singlearrow indicatesa servicerequest.

S) C1) C2) :::) Cn ! S

Validation of requestsin SPKI is basedon a technique known as tuple reduction. The
idea is to complete an authorization loop, given a chain of certi�cates. Authorization
certi�cates in SPKI are represented as a 5-tuple:

(I ; S; D; A; V)

45

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

where I is the issuer'spublic key, S is the holder's public key, D is a Boolean indicat-
ing whether further delegation is permitted, A is a set of accessrights, and V is the
validit y period. For S, one can specify a k-of-n thresholdsubject to indicate that k out
of n subjects must sign to validate the delegation. Accessrights are de�ned using tags,
whoseinterpretation is left to an application. The tuple reduction reducestwo tuples
(I 1; S1; D1; A1; V1) and (I 2; S2; D2; A2; V2) into (I 1; S2; D2; A1 \ A2; V1 \ V2), provided all
the following are satis�ed,

1. S1 = I 2

2. The two intersectionssucceed,

3. D1 = true .

The intersection for accessrights derivesthe most restricted authorizations betweenthe
two tuples. Although accessrights arede�ned in an application-dependent manner,SPKI
attempts to de�ne rules to allow automatic processing. The intersection between two
validit y periods computesthe overlapping period betweentwo, or fails if the two periods
do not overlap.

A SPKI certi�cate hasvalidit y datesthat give the lower and upper boundof its validit y
period. It is alsoallowedto validate usingonline methods, including the X.509-style CRL,
timed CRL, online status query, timed revalidation and one-timerevalidation. There are
other possibilities being considered,and it is still an open areaof discussionat the time
of writing.

In SPKI, a concept of local namesis supported to give a binding from a key to a
human-recognizablename. Local namesare de�ned within the local namespaceof a prin-
cipal, similar to namesin a personaladdressbook. Local namesdo not needto beglobally
unique, but needto be unique local to the principal who de�nes them. A globally unique
versionof a namecould be obtainedby linking a local namewith its namespace,resulting
a linked name. This is similar to say \the personknown asJohn Smith by the University
of Cambridge". For example,

fred: (name sam)

de�nes a principal namedsamknown by fred . Another principal george could refer to
the sameprincipal in terms of the knowledgeof fred by

george: (name fred sam)

Namecerti�cates are represented in SPKI as a 4-tuple:

(I ; N; S; V)

where I is the issuer'spublic key, N is a name given as a byte string, S is the holder's
public key, and V is a validit y period. There are two classesof 4-tuples, thosethat de�ne
a namefor a public key and thosethat de�ne a nameas another name. Tuple reduction
rules for 4-tuples concatenatea chain of 4-tuples into a public key. Depending on the
classesof a namede�nition, on every step,a nameis either resolved into a public key or a
referenceto another name. To avoid naming loops,SPKI requireseither chains of names
to be provided in order, or when an unorderedpool of tuples is supplied, that only those
nameswith a binding to a public key will be processed.

46

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

2.4.2 PolicyMak er and KeyNote

The conceptof trust managementwas�rst introducedby Blazeet al. [9], who de�ne it as
\a uni�ed approach to specifying and interpreting security policies,credentials and rela-
tionships that allows direct authorization of security-critical actions" [16]. At the heart of
a trust management systemis a set of general-purposemechanismsfor handling security
policiesand credentials, and decidingpolicy compliance.They developed PolicyMaker as
a proof-of-concepttrust management systemand demonstratedits usein several applica-
tions, including medicalapplications[93], network protocols[94, 95], and Internet content
rating applications [96]. Building on the experienceof PolicyMaker, they developed its
successor,KeyNote, and published it as an IETF Requestfor Comment (RFC) [19, 20].

The PolicyMaker systemcentres around a trust managementengine, which is essen-
tially a query enginethat evaluatesa requestedaction against local security policies. The
trust management enginetakesas input: an action string, the local policies,and creden-
tials presented by the requester.The responseto a query could either be a simpleyes/no
result, or additional restrictions that would make the requestedaction consistent with the
local policies. A query to the PolicyMaker enginehas the following syntax:

key1; key2; :::; keyn REQUESTS ActionString

An action string is an application-de�ned description of an action requestedby one
or more principals, identi�ed by their public keys. Its semantics is only of concern to
the application and the trust management enginedoes not depend on it. Both policies
and credentials are referred to as assertions. An assertionis essentially a construct that
delegatesauthorizations to perform actions to a principal from its signer. An assertion
has the syntax:

Source ASSER TS AuthorityStruct WHERE Filter

Source is the sourceof the assertion,which can either be the keyword POLICY in
the caseof policy assertionsor a public key of the principal who confersthe authority
implied by the assertion in the caseof credentials. AuthorityStruct speci�es a list of
principals to whom the assertionapplies. Each principal could be speci�ed as a single
public key, or asa threshold structure, i.e. k-out-of-n keys. Filter speci�es the conditions
that an action string must satisfy for the assertion to be valid. Filters are in fact, by
design,interpreted programs. This allows maximum power and expressiveness.However,
the absolutepower of �lters posessecurity concerns.It is thereforerequired for the �lter
programs to be executedin a \safe" sandbox or implemented in a safe language. The
PolicyMaker prototype is equipped with three �lter languages:AWKWARD, which is a
safeversionof AWK, Java and Safe-TCL.

While both credentials and policies share the sameassertionsyntax, they di�er in
onesigni�cant respect: credentials are signedassertions,whereaspoliciesare not signed.
Credentials are intendedto exist outsidethe trust management engineand thereforemust
be signedto protect their integrity. Policies,on the other hand, are purely for local use
and areunconditionally trusted by the trust management engine.Signingpoliciesis hence
unnecessary. The set of policy assertionson a systemforms a trust root. Analogousto
SOA in X.509 PMI, they are the ultimate sourceof authority for the trust decisionabout
a request.

47

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

The processingof a query is called the proof of compliance. The compliancechecking
algorithm in PolicyMaker is formally speci�ed and analyzed in [97]. In essence,the
algorithm attempts to �nd a chain of delegationfrom sometrust root to the public keys
requestingthe action in which all �lters alongthe chain aresatis�ed. Filters take asinput
the current action string and an environment, which contains information relevant to the
evaluation context, e.g.date, time, etc. Filters alsohave accessto assertionsin the chain
being evaluated. An application designeris thus empowered with the abilit y to express
�lters that enforcecontextual constraints such as expiration times, or limit the degreeof
delegation.

An assertion in a chain may modify the current action string through the use of
annotations. The annotation mechanism is designedfor inter-assertioncommunications,
where the outcomeof an evaluated �lter in an assertionmay inuence the evaluation of
the �lter in the next assertionin the chain. This enablesan assertionto appendadditional
conditions to an action string, if the policy requiresit.

As a motivating examplefor the PolicyMaker compliancechecker, considera policy
wherean online entertainment company allows streaming contents to be delivered to its
customers. A customer is certi�ed by the company's customerservicedepartment, with
the public key customer_dept_key, basedon criteria such asthe payment of subscription
fee,type of subscribed services,etc. The policy may be expressedas follows:

POLICY
ASSERTScustomer_dept_key
WHEREa filter that allows streaming video for a "customer" role

The customer servicedepartment issuesand signscredentials to customers,stating the
owner of a public key is a valid customer. An examplecredential for a customer Alice
whosepublic key is alice_key is given here.

customer_dept_key
ASSERTSalice_key
WHEREa filter that returns true if role is "customer"

When Alice wishesto view an onlinestreamingconcert,sheneedsto present the credential
assertionto the streamingserver, which composesthe following query for the PolicyMaker
engine:

alice_key REQUESTS"streaming video" in the capacity of a "customer"

This query resultsin an acceptance,becausethe PolicyMaker engineis ableto �nd a chain
consisting of the trust root (i.e. the policy) and a credential assertionby the customer
servicedepartment satis�es the requestedaction.

KeyNote is basedon the sameconceptsasPolicyMaker but with additional emphasis
on standardization and easeof integration into applications. This is largely built on the
experienceof PolicyMaker, where the freedomof the �lter languagespresents obstacles
for interoperability. Furthermore, applicationsare requiredto perform cryptographic ver-
i�cations against credential assertions,which complicatesintegration. Addressingthese
issues,KeyNote provides a single, uni�ed assertionlanguage,which is designedto work

48

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

KeyNote-Version: "2"
Authorizer: "DSA:4401ff92" # the Alice CA
Licensees: "DSA:abc991" || # jf's DSAkey

"RSA:cde773" || # jf's RSAkey
"BFIK:fd091a" # jf's BFIK key

Conditions: ((app_domain == "RFC822-EMAIL")&&
(name == "J. Feigenbaum" || name== "") &&
(address == "jf@keynote.research.att.com"));

Signature: "DSA-SHA1:8912aa"

Figure 2.7: SampleKeyNote assertion

smoothly with its compliancechecker. It alsoshifts moreresponsibilities from applications
to the trust management engine,e.g.signatureveri�cation.

Similar to PolicyMaker, the KeyNote trust enginetakesa list of credentials, policies,
public keys identifying requestersand requestedactions in a query. Actions are speci-
�ed as a collection of name-value pairs, called an Action Environment. The valuesare
application-speci�c, and it is the responsibility of the calling application to construct and
gather all information neededto evaluate a trust decision.The KeyNote enginereturns a
policy compliance value as a result of a query. The policy compliancevalue is con�gured
by applications, and is intended to provide the calling application with more information
on how to proceedwith a request. In the simplest form, this is a Boolean result, e.g.
acceptor reject.

KeyNote de�nes a human-readableformat for its policies and credentials, basedon
RFC822-style e-mail headers. A credential from the KeyNote RFC [20] is given in Fig-
ure 2.7 as an example. The Authorizer �eld is mandatory in all assertions. It identi�es
the issuer of an assertion. For policy assertions,this must be the keyword POLICY .
The Licensees�eld identi�es one or more principals authorized by the assertion. For
example,Figure 2.7 restricts the use of the assertionto any of the named public keys.
The Conditions �eld is essentially a highly-structured program that tests action environ-
ments. KeyNote providesstring comparisons,numericaloperationsand comparisons,and
regular-expressioncomparisons.

The compliancechecking model of KeyNote is a subsetof PolicyMaker's. It employs
a depth-�rst search that recursively attempts to satisfy at least onepolicy assertion.Sat-
isfaction of an assertionrequiresboth the Conditions and Licensees�elds to be satis�ed.
It is claimedby its designersthat the simpler compliancechecking algorithm in KeyNote,
while more restrictive, is more e�cien t than the one in PolicyMaker.

A last note on both PolicyMaker and KeyNote. Both systemsareassertionmonotonic,
i.e. negative assertionsagainst principals cannot be speci�ed. This is regardedby their
designersas a higher-level feature that should be provided by applications if required.

2.4.3 Other trust managemen t systems

REFEREE [98, 99], which standsfor Rule-controlled Environment For Evaluation of Rules
and Everything Else, is a trust management systemdesignedspeci�cally for the World
Wide Web. Its primary goal is to help usersdecide what to trust on the web. It is

49

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

basedon similar ideasdeveloped in PolicyMaker, including recommendation-basedtrust
and fully programmablecredentials and policies. It neverthelessdi�ers signi�cantly from
PolicyMaker in several respects:

� The REFEREE trust management engineis able to fetch additional credentials to
assistpolicy evaluation during its execution. This is considereduseful in the web
setting, where,for example,a usermay wish to obtain a particular reviewer'sopinion
about a video clip beforedownloading it.

� It supports non-monotonicassertions.Policiesand credentials may be usedto ex-
pressdenial of speci�c actions. This is consistent with the notion of parental control
over web content viewed by their children.

� It employs a fully policy-driven approach. Both its policy evaluation and credential
fetching mechanism are directed by policies. A REFEREE policy is essentially a
program that not only �lters attributes but is alsoallowed to download and invoke
other REFEREE programs.

There are three primitiv e data types in REFEREE: tri-v alues, statement lists and
programs. A tri-v alue is either true for acceptance,false for denial, or unknown if there
is insu�cien t information to either acceptor deny. A statement list is a set of assertions,
expressedin two-element s-expressions,similar to name-valuepairsbut alsoallowsnesting.
For example,an assertionstating a web pageis signedto have beenvirus-checked would
be:

("code-signing" ("virus-checked" TRUE))

Both policies and credentials are programs that take a statement list and return a
tri-v alue. The di�erences lie in the intention of a program. A policy infers the compliance
of a given statement list and the tri-v alue indicates the result. The optional statement
list may be returned as a justi�cation of the decision. A credential, on the other hand,
introducesnew assertionsbasedon the input and the returned tri-v alue is merely an
indication of the state of execution,e.g.successfulor failed.

A query to the REFEREE trust enginetakesa policy nameand additional arguments,
including credentials or statement lists. REFEREE then downloadsthe relevant policies
and executesthem. A policy may recursively download and invoke other policies until
the executionterminates and a tri-v alue and an optional statement list are returned.

Programsin REFEREE are coded in Pro�le-0.92, which is a policy speci�cation lan-
guagedesignedto work with the W3C PICS (Platform for Internet Content Selection)
[100] labels. It o�ers a label-loadingsubroutine, tri-v alueoperatorsand pattern matching
operators on statement lists. Each rule is an s-expression,with the �rst element being
an operation, followed by arguments. As an example,a samplepolicy is given here that
assertstrue if and only if a web page is rated by the Guardian system as suitable for
anyone(i.e. the minimum ageis below 12).

(invoke "load-label" STATEMENT-LIST
URL"http://www.guardian.org/" (EMBEDDED))

(false-if-unknown

50

CHAPTER 2. Related Work 2.4. Key-oriented accesscontrol

(match
(("load-label" *)
(* ((version "PICS-1.1") *

(service "http://www.guardian.org/") *
(ratings (RESTRICT< minimum-age12)))))

STATEMENT-LIST))

IBM Trust Establishment (TE) [101] is a trust management system that features
role-basedaccesscontrol. Similar to many other systems,it usespublic keysas principal
identi�ers. The central component is the Trust Policy Language(TPL), which is an XML-
basedlanguagethat mapscredentials (held by a principal) into roles. Rolesare treated as
groups of principals that represent speci�c organizational units, and their memberships
depend on rules speci�ed in TPL. A TPL rule de�nes the set of necessarycredentials and
conditions on their �elds for joining a role. As an example,a policy for an online chat
room that statesa usercan becomea chat room member if recommendedby two existing
memberscould be speci�ed as below.

<POLICY>
<GROUPNAME="members">

<RULE>
<INCLUSIONTYPE="Recommendation"FROM="members"REPEAT="2"/>

</RULE>
</GROUP>

</POLICY>

IBM TE is designedto be independent from credential formats. A credential frame-
work that mapsa variety of formats, including X.509, SPKI and KeyNote, into a generic
credential structure is described in [102]. The mappingprocessinvolvestranslating di�er-
ent encodings into a commoninterface and then resolvingsemantic di�erences. Generic
credentials are statements signedby an issuer,identifying properties of a subject and its
public key. In addition to the public keys of the subject and issuer, a credential also
contains a type, addressesof credential repositories,and a pro�le identi�er. A credential
type identi�es a credential pro�le, which de�nes the syntax and semantics of the creden-
tial. Both the issuerand the subject could managetheir own credential repository. The
issuer'srepository is intended for checking credential revocation and for listing \black-
listed", negative credentials. The subject's repository, on the other hand, is intended to
allow the trust management engineto locateand collectmissingcredentials automatically.

The RT framework [103] is a new trust management framework that integratescon-
cepts from role-basedaccesscontrol. It includes a family of languagesfor expressing
policies and credentials, RT0, RT1, RT2, RTT and RTD . RT0 is the baselanguagethat
supports conditional assignment of principals to roles. RT1 extendsRT0 with parametrized
roles. RT2 addsto RT1 a notion called logical objects, which aregroupingof objects, simi-
lar to the way a role groupsprincipals. RTT and RTD can be usedon top of RT0, RT1 or
RT2. RTT adds constructs for expressingthreshold principals and separationof duties,
whereasRTD addsdelegationof role activations.

A RT credential hastwo parts: the headand the body, wherethe headis a role name
and the body is a list of conditions for becominga member of the role. It essentially
represents a single logic rule. As an example,a type of RT1 credential has the syntax:

51

CHAPTER 2. Related Work 2.5. Summary

A:r (h1; :::; hn) � B :r1(s1; :::; sm)

where A and B are principals, r and r 1 are role names,hi for 1 � i � n and sj for
1 � j � m are parameters.This credential meansthat provided a principal is a member
of the role R1 = r1(s1; :::; sm), de�ned by B, then it will alsobe granted the membership
of the role R = r (h1; :::; hn), de�ned by A. In addition to this type of credential, there
exists three other typesof credentials:

� A:r (h1; :::; hn) � B : directly assigningprincipal B to the role R = r (h1; :::; hn).

� A:r (h1; :::; hn) � A:r 1(t1; :::; t l):r2(s1; :::; sm): this is the so-calledattribute-based
delegation, whereA assignsthe role R = r (h1; :::; hn) to any principal who is granted
the role R2 = r2(s1; :::; sm) by a principal who is in the role R1 = r1(t1; :::; t l).

� A:R � B1:R1 \ ::: \ Bk :Rk : A assignsthe role R to any principal who is in the
role B i :Ri (de�ned by B i), for 1 � i � k.

The main novelty of the RT framework is its tight integration with the notions from
role-basedaccesscontrol, including hierarchical roles, role-basedseparationof duty, and
role-baseddelegation. This is evident in their special treatment of credentials. With
the rule-basedapproach, credentials can essentially be consideredaspre-written policies,
designedto facilitate RBAC for decentralized environments.

2.5 Summary

This chapter has presented an overview of the research in security policies and access
control models. It has also briey reviewed the research on distributed accesscontrol,
starting from the early days of capability-basedsystems,to the modern credential-based
systems.Two kinds of approachesto credential-basedaccesscontrol have beendescribed.
The identit y-oriented approach usescredentials as assertionsfor the binding of a public
key with a name. The representativ e work in this area is the ITU/ISO X.509 Public
Key Infrastructure (PKI) and Privilege Management Infrastructure (PMI). The newer,
key-oriented approach associates a public key directly with accessrights, thus avoiding
the useof names. Simple Public Key Infrastructure (SPKI) and PolicyMaker/KeyNote
are the representativ e work in this area. In particular, PolicyMaker/KeyNote, with an
integrated approach to the speci�cation of security policies and trust relationships, are
known as trust managementsystems.

52

3 Fidelis Trust Managemen t
Infrastructure

This chapter introducesFidelis, a decentralized trust management framework. It begins
with an overview of the Fidelis trust management infrastructure, outlining the basic
conceptsand key features. Section 3.2 presents a review of the concept of trust in the
literature, from both the computer scienceand sociology perspectives. It �nishes with a
discussionon the commonfactors that inuence one'strust decisions.Thesefactors serve
as a basisfor Fidelis. Section3.3 describes the trust conveyance model, which attempts
to model mechanisms that propagate trust information in daily life, and discussesthe
rationale behind this approach. In Section 3.4, the key-centric approach of Fidelis is
described and its appropriatenessfor the conveyance model is discussed. Section 3.5
describes the Fidelis Policy Language(FPL) { a languagefor specifying trust-related
policies. This sectionendswith a discussioncomparingthe Fidelis Policy Languagewith
similar existing research.

3.1 Overview of the Fidelis Trust Managemen t In-
frastructure

Fidelis is a framework for specifying, expressing,and managing trust information for
Internet-scaledistributed applications. In Fidelis, a principal may be a person, an or-
ganization, a computer process,or any other entit y in someauthority. A principal is
identi�ed by public keys, which it can generateat any time. The world is considered
as a at space,in which every principal may potentially interact with any other. Local
structures, however, may exist to promote better manageability, e.g.an organizationmay
form a hierarchy reecting its internal structure, but externally it may be identi�ed as a
singleorganizationalprincipal.

Fidelis is basedon the trust conveyance model, whereby a principal may freely pass
beliefs or assertionsto others. These are modelled as trust statements. An instance
of a trust statement (called a trust instance) has an explicit truster and subject. It is
represented as a public key credential, signedby the truster. It has a validit y condition,
which is de�ned by the truster to enableinvalidation of outdated trust beliefs.

A principal may specify policies relating to trust statements. A principal may describe
its policiesby any convenient means,and this usuallydependson the complexity andscope
of policies. Nevertheless,a languageis designedto be a referencefor policy speci�cation,
called the Fidelis Policy Language. In the Fidelis Policy Language,trust statements are

53

CHAPTER 3. Fidelis Trust Management Infrastructure3.1. Overview of the Fidelis Trust Management Infrastructure

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Policy Statement

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

1.1 The quick fox..
1.1 The quick fox..

1.1 The quick fox..

Issuing trust instance

Passing trust instance

Issuing trust instance

Figure 3.1: Fidelis overview

represented aspredicateswith typed parameters.The parametersare intended to expose
details about a trust statement instance, which re�nes the granularit y of policies. It
includes the notion of action to model requests. An action is an abstraction that may
correspond to a method invocation, a servicerequest, or other behaviour that may be
subject to trust decisions.

The languageallows two types of policy: trust policies and action policies. A trust
policy de�nes a trust relationship, while an action policy relatesaction and trust. A trust
policy is de�ned in terms of prerequisite trust instances,and may include conditions on
the parametersof thesetrust instances.It may alsode�ne a \blacklist" of trust instances,
which must not exist for a trust relationship to be formed. An action policy hasa similar
structure but is speci�ed for actions.

Usingthis language,a principal may querya policy enginefor: (1) whethera newtrust
relationship can be formed, (2) whether new trust instancesmeet speci�c requirements,
(3) whetheran action complieswith the local policies,or (4) what actionscomply with the
policies. The policy engine,depending on the typesof queries,returns either a Boolean
result or new trust or action instances,and may additionally include an executiontrace,
which givesjusti�cations for the decision.A principal may further interpret the returned
trust or action instancein the application context to act upon the trust decision.

Figure 3.1 gives an overview for the Fidelis trust management framework. Every
principal de�nes its own policies,and may createnew trust instancesand exchangetrust
instancesit knows. The organization in the �gure functions like other principals and is
also identi�ed by a public key. There may be many principals within the organization.
They are also like ordinary principals and can convey trust, but not on behalf of the
organization to which they belong.

54

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

3.2 Trust mo del

The conceptof trust occurs in many branchesof computer science.However, becauseof
its abstract and elusive nature, there is a tendencyin the literature to tailor the meaning
of trust to its speci�c use in a particular application domain. For example, as in the
terminology of classicsecurity of Trusted ComputingBase(TCB) , trust meanscompliance
with the security policies under the assumption of correct functioning of hardware; in
authentication protocols,trust may refer to the safeand securehandling of secretkeysby
a key distribution centre. In e-commerce,trust may relate to the ful�llmen t of payment
and/or delivery of goods.

Trust is a very generaltopic that may be applied to virtually any context. The lack of
a consensusde�nition of trust reects its complexity and generality. This sectiondescribes
the notion of trust on which Fidelis is built. It doesnot attempt to de�ne a uni�ed trust
model but instead proposesa framework in which di�eren t trust models might coexist.
Towards this goal, it is essential to understanddi�eren t meaningsof the term \trust". In
fact, variousinterpretations exist not only in computersciencebut in other classicsciences
where trust has beenwidely studied, including politics, psychology and sociology. It is
therefore important to considerthesedisciplinesalso in order to capture the essenceof
trust. We will however �rst discusstrust in computer science,speci�cally in security
research.

3.2.1 Trust as a securit y concept

Trust is one of the most important foundations of information security. The basis of
security relies on the correct operations of hardware and software, the correctnessof
cryptographic algorithms, the correctnessof cryptographic protocols, etc. Even without
being explicitly stated, trust is placedon every link in the chain of security for a system
to be consideredtrusted. If any of the components in a link were broken, the security of
the systemwould be defeated.In this regard, the conceptof computer security is tightly
related to dependablecomputing, whereinthe notion of trust hasan element of reliance in
both areas.The United StatesDepartment of DefenseTrusted Computer SystemEvalu-
ation Criteria (TCSEC) [104] is the earliest trust assurance policy, designedfor military
systems. The idea is to evaluate a computer system against a set of formally speci�ed
criteria to determine its level of trust. Trust in this senseis equivalent to dependabil-
it y. It is a positive belief that the systemwill operate with a certain level of con�dence,
reliabilit y and dependability [105, 106].

Trust can also be observed in cryptographic protocols although somewhatimplicitly .
For example,the basicideaof authentication protocolsis to derive a speci�c type of trust
asa conclusion:the belief that the communicating entit y is indeedthe claimedprincipal.
Depending on the details, the execution of a protocol often needsto make a number of
trust assumptionson either end of the communication, e.g. the belief that the server will
generatea sessionkey of a su�cien t strength, the belief that the server will not leak out
con�dential information, etc. The observation hereis that trust is relative to speci�c tasks
[107, 108]. Trusting a server for authentication doesnot imply that the server should be
trusted for securestorageof con�dential data. The purpose associated with trust must
be explicitly stated. Basedon this idea, Yahalom et al. de�ne trust as a belief that a

55

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

principal hasthe potential to completethe speci�ed taskscompetently and honestly[107].
Explicit applications of trust in security can be found in formal logic [109, 110, 11].

Burrows et al. developed a logic (referred to as the BAN logic) for the veri�cation of
authentication protocols [109]. It introducesconnectives for expressingbeliefs (j�) and
jurisdiction (Z)). Its jurisdiction rule statesthat if P believesthat Q hasjurisdiction over
fact X and Q believesX , then P believesX . This is written as a sequent,

P j� (Q Z) X); P j� Q j� X
P j� X

If A explicitly trusts a certi�cation authority S for providing B 's public key, this relation-
ship can be expressedas a jurisdiction,

A j� (S Z) K B7! B)

where K B7! B meansB has public key K B . If S j� K B7! B , then by the jurisdiction rule,
we can concludethat A j� K B7! B . The jurisdiction rule de�nes a trust relationship on the
basisof belief and truth. This approach, while speci�c to its domain, is an appropriate
de�nition for trust becausethere is an absolutenotion of truth in cryptographic protocols,
e.g. the fact that a principal owns a key can be veri�ed by encryption/decryption of a
secret. Trust in BAN is the belief that a given principal has authority over the truth of
a fact.

Another form of trust canbe seenin the logic for distributed authentication by Lamp-
son et al. [11], which includes a construct for describing delegation of rights. They
de�ned a speaks for relation ()), where A) B meansthat if A says any statement,
we can believe that B says the samestatement. This type of trust encompassesthe no-
tion of honesty. If principal A is trusted to speak for B , then it is believed that A will
honestly say a statement that B also says. It is noted in [111] that as well as honesty,
the conceptof responsibility should also be consideredin delegation. Responsibility is a
meansof managing risks so that, for example, the possibledamageand liabilit y of an
action by a delegatedprincipal can be accounted for. This crucial observation suggests
that trust hasan intimate connectionwith risks. Indeed,this sharesthe view with social
and psychologicalaspectsof trust, which will be discussedlater.

The trust relationship expressedby the speaks for relation exhibits a strong, context-
lessbelief. When A) B is trusted, then everystatement madeby A is believedto bealso
madeby B. [11] includesthe conceptof roles to allow a principal to limit its authority. A
role may be de�ned asthe nameof a program, e.g.NFS server, or its class,e.g.untrusted
�le server. Principal A acting in role R is written asA as R. A weaker trust relationship
of speaks for can be expressedas A) (B as R). This meansif A says somestatement,
it is believed that B asrole R says the samestatement. While this approach is somewhat
cumbersometo limit the scope of trust, it recognizesthe importanceof making trust more
speci�c, which corresponds to the conceptof trust purposesdiscussedearlier.

Another signi�cant modelling of trust canbeseenin public keymanagement, wherethe
term trust model is usedto describe the structure of certi�cation authorities, recognizing
that the monolithic, single-treeapproach of the original X.500 is unlikely to be realized.
The literature [84, 85, 112] has suggesteda number of structures, e.g. strict hierarchy,
cross-certi�ed hierarchy, bridged hierarchy, etc. The conceptof \trust" in thesework is

56

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

narrow, referring speci�cally to the authority to certify keys. The useof the term \trust
model" herecould in fact be more preciselydescribed as certi�c ation topologies [113].

As reviewed in this section,trust in security assumescompletecertainty. If a computer
systemis certi�ed to be trusted at a certain evaluation level, it implies it should always
function within the guarantees of that level provided correct operating proceduresare
followed. In logic, if a principal is trusted, it meansit will always demonstratecertain
expectedproperties, e.g. to have jurisdiction on assertingpublic keysfor someprincipals.
Trust in security research is taken as a binary concept. It makes little senseto say a
certi�cation authority guaranteesa public key 80%of the time, or an evaluation criteria
to guarantee 65% of the operational time of a system. J�sang [114, 108] describes this
type of trust in his model asa belief by rational entities, which arede�ned asentities that
will resist malicious attacks. This is opposedto passionateentities, which are entities
with free will and possesshuman-like behaviour. Classic sciencessuch as psychology
and sociology provide a wealth of study on trust in human societies, and thus help us
understandpassionateentities in computer environments.

3.2.2 Trust as a sociological concept

In contrast with those somewhatsimplistic views of trust adopted in security research,
trust has beenstudied in a much wider context in other disciplines. Generally speaking,
the word \trust" is often used by people in a very broad senseto mean a number of
things. Its interpretation by the trusting party varies signi�cantly, depending on past
experiences[114, 115, 116], associated risks [116, 117, 118], recommendationsfrom other
parties [114, 119, 120], reputation of the trusted parties [121, 122, 123], or even cultural
background[124, 122]. It is not alwaysclearto every personhow trust or distrust is derived
in every case,and indeed, sometimesthis processoccurs subconsciously. For example,
somepeoplebasetheir trust decisionsstrongly on �rst instinct, or psychologically place
more trust on peopleof their own race. However, there is a fairly uniform recognition
amongresearchers that trust is a subjective measure[125, 123, 126, 85]. Given the same
externalconditions,peoplemay often havea di�eren t degreeof trust over the samematter.
This is illustrated by Gambetta's de�nition of trust [125]:

\... trust (or symmetrically, distrust) is a particular level of the subjective
probability with which an agent assessesthat anotheragent or group of agents
will perform a particular action, both before he can monitor such action ...
and in a context in which it a�ects his own action."

A key aspect of Gambetta's de�nition is that trust is a probability of positive belief.
It givesan indication of the expected outcomefor future events [115]. From a political-
scienceperspective, Fukuyama describes one of the most important functions of trust
as being to facilitate honest and cooperative behaviour [124]. It is often easierfor two
mutually trusting parties to engagein an exchangethan two mutually distrusting parties.
For example,in a businesssetting, if a sellerdoesnot trust a buyer for honestand prompt
payment, a transaction will simply not happen. Luhmann [127] described this particular
function of trust as a complexity reduction tool for societies, especially in the face of
uncertainty and incomplete knowledge. Part of this social complexity comesfrom the
presenceof risk, which is a notion associated with uncertainty. He argued that trust is

57

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

an essential meansfor handling risks and its existenceenablesus to face our daily life.
Otherwise the risk of leaving the houseand being hit by a car may be too great for one
to even bother getting out of bed. J�sang [114] shareda similar view and suggestedthat
malicious behaviour is the primary reasonfor needingtrust. In his model, a passionate
entity may either be benevolent or maliciousat its freewill. In dealingwith an unfamiliar
passionateentit y, trust servesas a prediction for the expectedbehaviour of the entit y.

A recent study by Misztal [128] presented a comprehensive account of trust from a
social perspective. Her main thesisis that trust is the key to maintain three typesof social
order: stabilit y, cohesionand collaboration. Sheidenti�ed a form of trust that enforces
each type of social order asan abstract concept,and alsodiscussedpracticesthat realize
each form of trust. Trust that reinforcesstabilit y of a society is calledhabitus. This form of
trust is associated with three commonpractices,namely, habit, reputation and memory.
Habits include routine behaviour towards other people, taken-for-granted background
assumptionsin daily life, and rules of etiquette or rituals. All thesetypesof habit repeat
and relate past actions to the present, and therefore increasethe predictabilit y of social
order. Reputation, also referred to as social capital, is a mechanism to assist a person
in determining the trustworthiness of another. It helps reducethe social complexity by
categorizingpeople into trustworthy and untrustworthy. Memory is similar to habit in
that it allows past experiencesto relate to the present. However, it involves the process
of recollection,organizationand recall of the past, and becauseit is simply a belief, it can
easilybe destroyed by new experiences.All thesethree practicesimprove social stabilit y
by enhancingits predictabilit y, reliabilit y and legibilit y.

Trust that promotesa cohesive society is in the form of passion. The basisof this form
of trust lies in familiarit y, bonds of friendship and commonfaith and values. There are
three commonsourcesof this trust: family, friends and society. Trust developed within
a family is referredto asbasic trust. It is upon this basisthat a family providesa shelter
against potential dangersin one's life { a fact learnedby a personsincebeing an infant.
Friendshipo�ers a di�eren t kind of trust, basedon reciprocity andequality. It is developed
through intimate self-disclosureand a feeling of sharedsolidarity, which are only found
in closefriendship, i.e. \real" friends. Trust provided by a society is basedon networks of
civic engagements and sharedidentit y. It originatesas the feelingof belongingtogether,
commonly observed through religion, ethnicity or nationhood. In modern societies, the
senseof belongingtogether ceasesto be su�cien t to establishsocietal trust, in addition
active communication of autonomousmembersbecomesa key to foster societal trust.

Policy is the third form of trust that improvescollaborativeorder in societies. It serves
asa meansfor membersof a society to copewith the freedomof others. Misztal considered
three issuesrelating to trust as policy: solidarity, toleration and legitimacy. Solidarity is
basedon the relianceon rational consensusin maintaining commoninterest in a society.
It encouragespeopleto participate, obey and cooperate. It sometimescan be achieved
by rewards and sanctions,but the prime motivation is self-interest. However, di�erences
amongpeopleexist in societies. To overcomethe di�erences and enhancea cooperative
order, toleration is an important ingredient in a society. It is the key to democracy, which
respectsdiversity and resolvesconicts of interest through active communication. Toler-
ancethereforeplays a vital role in achieving collaboration and cooperation in a society.
Legitimacy is directly related to political trust, which can be loosely described as the
\faith" peoplehave in their government. This faith is obtained through the participation

58

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

in political decisionprocessesand continued monitoring of government performance. It
createsa trustworthy, collaborative spirit betweena state and its citizens.

Misztal's study reects the complexity and broad reach of trust, even only in a social
perspective. Disciplines like psychology, politics and economicshave also beenstudying
the phenomenonof trust to understand inter-personal, inter-organizational, and inter-
national behaviour. Of course,not all theseissueswill be of direct relevanceto modelling
trust in computer science,but examining other disciplinesdoesgive us a more complete
background to our applications of trust.

3.2.3 The basis of trust

Trust is an inherently dynamic measure.It canclearly be seenfrom both the security and
sociological discussionsabove that there is no such thing as \p ermanent trust". Server
A previously trusting server B as its public key authority may decideto ceasethe trust
if B consistently vouches for bad public key bindings; a customermay start to distrust
an online shop if the goods received do not meet their expected quality standards. The
level of trust may increaseor decreasedepending on new knowledge and experiences
learned from exercisingthe trust. A fundamental issuethat must be addressedis how
to \b ootstrap" trust when there is no previous knowledgeor track record available. In
this circumstance,the only rational approach is to rely on external sourcesto provide
information about the previouslyunknown party. Thoseexternal sourcesof trust may not
only assistthe establishment of initial trust, but may alsoa�ect the continuedassessment
of trust relationships. The commonsourcesfor initial trust are discussedbelow.

Recommendation, or \w ord-of-mouth" In real life, recommendationis perhaps
the most commonly employed mechanism to assist decision-makingin daily situations.
It helps one infer trust decisionsin an unfamiliar context by providing evaluations from
others. Recommendationis typically obtained through friendsand family, and sometimes
through the media,institutions, or government. The trustworthinessof a recommendation
depends heavily on its source, the source'sauthority in the context, and the source's
responsibility and liabilit y regarding the recommendation. Note that recommendation
can also be negative. Recommendationis suitable for initiating a trust relationship.
Nevertheless,it may be both unreliable and subjective [119, 128].

Reputation Reputation is anotherpopular mechanismthat peopleemploy to dealwith
unfamiliar parties. Similar to recommendation,it doesnot require any prior experience
with the party for reputation to be usedto infer trustworthiness. It is thus suitable for
establishinginitial trust. Unlike recommendation,reputation is a collective opinion from
the public regarding the untrusted party. Becauseof this nature, reputation is generally
more reliable than personalrecommendations.It is however subject to stereotyping and
collusion,and can be deliberately manipulated to project a falseimage[128, 129, 121].

Exp erience Trust is intimately related with past experience.The basicassumptionis
that past experienceprovide a good indication of the outcomeof future interactions. Past
experiencemay be contributed from abstract, vaguememory, or concrete,written records
such as a transaction history or credit rating. The key issueis that it must provide a

59

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

sensiblerelation from the past to the present. Experiencesupdate one'sdegreeof trust
in another principal. Depending on the knowledge learned from previous interactions
with the principal, the degreeof trust may either increaseor decrease. Experiences
can also be provided by sometrusted party, and such information may be as useful as
recommendations.Note that reputation cansometimesbe regardedasa form of collective
experienceif a principal builds its reputation primarily by interacting with others.

Miscellaneous There are numerousother mechanismsthat a�ect a trust relationship
and the trustworthiness of a principal. For example, cultural stereotypes may posean
inherent limit on one'strustworthiness[122]. In business,branding is an e�ectiv e process
for generating trust. It reects the integrity and performanceof a company through a
conciserepresentation, a logo,which easilyreinforcespeople'smemoryabout the company
[115]. The behaviour of a principal or practices of a businessmay also have signi�cant
inuences on people'strust. For example, if a company clari�es its responsibilities and
providesa clear dispute resolution scheme,trust with its customersmay be formed more
easily [115, 130].

3.3 Conveying trust

It can be concludedfrom the previousdiscussionthat trust is a complexconcept. Fidelis
does not attempt to de�ne a uni�ed trust model to satisfy all applications. On the
contrary, it is believed that the diversity of applicationsneedingtrust makesit impossible
to agreeon a single uni�ed view. A security application may require strong absolute
trust, while \fuzzy" trust may be preferred in e-commerceapplications which may be
backed by dispute resolution and compensationplans so that businessbetweencomplete
strangerscanbecarriedout. Basedon this premise,Fidelis advocatesa di�eren t approach,
centering on the notion of trust conveyance.

3.3.1 Basic concept

Trust in Fidelis is de�ned as a set of assertionsthat a principal held with regard to
another principal. An assertionmay either be positive or negative, and in the latter case,
we speci�cally call it distrust. Note that distrust is di�eren t from the absenceof trust,
which merely indicates lack of knowledge. Depending on the interpretation, an assertion
may be treated as a principal's belief about other principals, or a weaker interpretation
may simply treat an assertion as one's statement about others. An assertion is often
associated with a speci�c context, wherea context is de�ned asthe situational conditions
under which an assertionis expected to be interpreted with its intended meaning. From
the perspective of the framework, there is no speci�c format for assertions. But as will
be described later in Section 3.5, one approach is to represent them using �rst-order
predicates,in the form of named attributes.

Fidelis trust is embodied in trust statements. A trust statement is a signedcredential
with a truster and a subject. The truster is the issuerof the trust statement; the subject is
the principal the trust statement concerns.A trust statement represents a trust relation-
ship betweenthe truster and the subject, and is signedby the truster. The signature is
a crucial component in a trust statement, which servestwo purposes.First, it provesthe

60

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

Regarding: Alice

Signed by: Bob

Assertion

Subject

Truster

Trust statement

David Cindy

(Target) (Source)

This hereby certifies that the
public key of the statement subject
is 0xa35d9e9b...

Figure 3.2: Conveying trust

authenticit y of a trust statement; second,and more importantly, it indicates the explicit
sourceof a trust statement. A signature, both digital or non-digital, createsa binding
relationship betweenthe signerand the signedentit y. The basic intent of a signature is
to prove the consent of the signer with respect to the signedentit y. Sincea signature
is assumedto be unforgeablewhich only its owner can produce, a signed trust state-
ment identi�es its truster. Signaturesadditionally have the property of non-repudiation
[131]. Recall that from the discussionof recommendationin Section 3.2.3, claiming re-
sponsibility and liabilit y increasesthe trustworthiness of a recommendation. Likewise,
the trustworthinessincreasesif the signatureof a trust statement o�ers a non-repudiation
guarantee.

Trust is said to be conveyed if one principal passesa trust statement to another.
Such an instance is called a conveyance instance. A conveyance source (or source) is
de�ned as the principal who transfersa trust statement in a conveyanceinstance,and a
conveyance target (or target) is de�ned as the principal who receivesthe trust statement
in a conveyanceinstance. A sourcemay or may not be the truster of the conveyed trust
statement, although it is often the casethat the truster acts as the sourcefor its own
trust statements. Similarly, the target neednot be the subject of the trust statement it
is receiving. Figure 3.2 illustrates an instanceof conveyance,in the context of public key
certi�cation. A public key certi�cate can be consideredasa trust statement: the truster,
in this caseBob, certi�es the key of the subject, Alice. Another principal, Cindy, may
somehow learn this assertionand decideto propagateit asa conveyancesource,to David,
the target. The world of principals formsa conveyance network, whereprincipals transfer,
exchange,and receive trust statements from oneanother.

The trust conveyanceapproach builds on three basicprinciples:

� Trust is subjective. Every principal has the discretionary power to make its own
trust decisions,which may be basedon the trust statements it believes.

� Trust is speci�c. Every trust statement hasa speci�c context that de�nes its scope
of use. It is however up to the conveyancetarget of a trust statement to interpret
its context.

� Trust is dynamic. Trust statements should be subject to somevalidit y conditions

61

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

so that onesrepresenting outdated knowledgewill be invalidated.

Besidesthesethree principles, Fidelis imposesno further assumptionson the concept
of trust. In particular, it does not force a single-mindedview of trust. Instead, every
principal has complete freedomto chooseits trust model, which may have a de�nition
of trust level and/or methods for computing trust. In this regard, trust statements serve
as an interface to communicate with other principals. This departs sharply from other
approacheswhich attempt to de�ne domain-speci�c trust models. A brief discussionwill
be given later comparingthe trust conveyanceapproach and other approaches.

3.3.2 Validit y

As discussedpreviously, trust is a dynamic concept, evolving with experiencesand up-
dated knowledgefrom peers. A trust statement is a concreterepresentation of the con-
textual trust, and thereforemust be subject to the evolution of the trust it represents. To
addressthis, a validity condition is included for every trust statement. The idea is that
this mechanism reserves the rights for a truster to invalidate its trust statements where
necessary, and a truster may decideto issuenew trust statements upon invalidation.

There area number of techniquesfor expressingvalidit y conditions. X.509 [6] speci�es
a coarselygrainedvalidit y period for its certi�cates, with the assumptionof synchronized
clocks at the global scale. It usesa revocation list mechanism to invalidate a certi�cate
prior to the end of its validit y period. Micali [132] describestechniquesfor improving the
computation and communication costof revocation basedon Merkle trees. Other work on
applying tree structuresto improve revocation include [133, 134, 135, 136]. OASIS [15, 67]
usese�cien t asynchronousmessagingto maintain real-timevalidit y of its certi�cates. This
is complemented by the infrastructure support for network failure detection.

The conveyancemodel doesnot prescribe a particular validit y mechanism. Di�eren t
validit y mechanismsdeliver di�eren t degreesof guarantee, and it is an application issue
to determine the validit y strength of its trust statements. The model however requires
a validit y method to follow a determinism principle. The principle is that the validit y
of a trust statement cannot be negatedonceit is guaranteed. A consequenceis that the
processingbehaviour will be deterministic, with no \sudden surprises". Thesesemantics
aredesirableespecially in a widely distributed systemwherenetwork failure and partition
are inevitable.

As an example,a possiblevalidit y mechanism that exhibits deterministic behaviour
would be a simplevalidit y period without revocation lists. The absenceof revocation lists
ensuresthat a trust statement only invalidates at the end of its period, thus the validit y
guarantee cannot be broken by any means.This is an exampleof an o�ine mechanism,
wherethe validit y of a trust statement is maintained independently of the availabilit y of
the network. A family of online mechanismsis supported in the Fidelis Policy Language,
and will be discussedin Section3.5.4.

3.3.3 Discussion

There have beenseveral attempts to model trust in the past. Abdul et al. [119, 120, 123]
proposedtrust models for generaldistributed systems,for virtual communities and for
information retrieval needs. Their models compute trust valuesbasedon the degreeof

62

CHAPTER 3. Fidelis Trust Management Infrastructure 3.4. Identit y

trust of recommenders.Someof their models include protocols for updating experiences
and recalculating trust values. J�sang [108, 137, 138] attempts to capture trust using
subjective logic, that computesan opinion value along three axes, belief, disbelief and
uncertainty. He describes a scheme for combining opinion values and a protocol for
initiating a trust relationship and evaluating trust values. Manchala [139, 116] presents a
trust model for e-commerce,which computestrust valuesto include parameterssuch as
transaction cost, transaction history, customer loyalty, etc. His model incorporates the
conceptof risk analysisand is basedon a fuzzy logic for inferring trustworthiness. Similar
to others, he also described a protocol for maintaining trust values. Marsh [140], in his
PhD thesis,describesa comprehensive modelling of trust with a focuson the sociological
properties. In his model, heattempts to capturemany facetsof trust underoneformalism,
such as risk, con�dence, expectancy, cooperation, etc. The underlying idea is similar to
that of others' derivation of trust values.

There exist many other similar attempts for di�eren t application areas[141, 142]. It is
unlikely that a uni�ed model will ever exist to satisfy individual needs.Insteadof propos-
ing yet another trust model, the trust conveyancemodel attempts to provide a framework
in which thesetrust modelsmay interoperate and cooperate. One of the primary reasons
for de�ning trust models is to create a basis for participants to infer trust-related deci-
sions. In large distributed systems,there are three di�culties with this approach. First,
asdiscussedpreviously, the notion of trust di�ers signi�cantly dependingon the nature of
applications. Second,such modelstypically requiresomemonitoring mechanismto ensure
every participant's compliance.Distributed monitoring is however subject to operational
availabilit y of the infrastructure and general scalability problems. Third, autonomous
participants may have di�eren t trust assessment schemes,which include subjective opin-
ions and errors. It is unclear how a trust model can be enforcedin the light of principal
autonomy.

The conveyancemodel focuseson the securepropagationof trust statements between
principals. As in human society, this mechanism is often taken for granted, e.g. from
friends, the media, background, instinct, etc. The conveyancemodel formalizessuch a
mechanism for distributed environments. This allows every principal to de�ne its trust
model, and to interoperatewith others through commonagreement on the models. Thus,
the trust conveyancemodel e�ectiv ely complements rather than replacesthosetrust mod-
els to enabletheir applications in distributed environments.

3.4 Iden tit y

Fidelis adoptsa key-centric approach which identi�es principals by public keys. A princi-
pal may represent a person,an organization,or a computer process,etc. The key-centric
treatment doesnot distinguish the actual entit y represented by the principal, but instead
insists that a principal must control (i.e. speakfor) a public key pair. Every principal may
freely generatea public key pair at any time. The generatedpublic key can then be used
as an identi�er for the principal. Global uniquenessis guaranteed by the fundamental
requirement of the chosenpublic key cryptosystem, which ensuresno collision of keys
is possible,given a su�cien tly large entropy, e.g. 1024bits. A prerequisite assumption
for this key-centric approach is that every principal should exercisegood safeguarding
practice for its private keys, which is a typical assumptionfor public key cryptography.

63

CHAPTER 3. Fidelis Trust Management Infrastructure 3.4. Identit y

There are measuresto encourageand enforcethis prerequisite requirement. Thesewill
neverthelessnot be discussedhere.

A principal may control multiple keyssimultaneously. It is a commonpractice to limit
the damageof a possiblecompromiseof a key by constrainingits use. Supposea principal
hasa key pair for e-mail communication and another for workstation login. If the former
key pair is compromised,it would only a�ect its e-mail usagebut causeno damageto
workstation access.The samephysical principal is therefore allowed to be identi�ed by
multiple public keys. Each public key is treated as a separateinstanceof the principal.

This key-centric approach provides a possibility for anonymity. Provided a principal
generatesa fresh public key on every anonymousaccessand, by requirement, there is no
mathematical relationship betweenany two keys, the principal can e�ectiv ely \hide" its
identit y using a new public key. It is important to note that this mechanism alone is
not su�cien t to prevent analysisbasedon linked accesspatterns and attacks basedon
collusion. Public keysasprincipal identi�ers merelyprovide a readysourceof pseudonyms.
For a more detailed discussionon theseprivacy issues,pleaserefer to Section7.4.

3.4.1 Discussion

The trust conveyancemodel placestwo requirements on naming support. First, a con-
veyancetarget must be able to validate the authenticit y of a trust statement basedon the
identit y of the truster. Second,every principal must be uniquely identi�ed in the system.
Failure of this introducesambiguity and prevents communication betweenarbitrary pairs
of principals.

A possibleapproach to satisfy theserequirements is to deploy a global naming system
and couple it with a public key infrastructure. The original plan of the X.500 directory
service is a prime example of this approach. The idea is to associate every principal
with a hierarchical name. Association betweena public key and a nameis then certi�ed
by someCerti�cation Authorit y (CA). There are several problemswith this approach as
discussedin the literature [18, 143]. Hierarchical namespacesare introduced to address
the scalability problemsassociated with at namespaces.However, this in itself requires
a standard hierarchy so that namescan be meaningful to every principal. This is often
di�cult, if not infeasible,sinceevery community will have a preferrednaming structure,
for intuition and conveniencereasons.The partitioning of namespacesmust bepermanent
to ensure the validit y of a name. Evolution of a namespacewill invalidate all of its
dependent namespacesin the hierarchy. Furthermore, hierarchical namespacesrequire
naming authorities at each level to ensureunique allocation of names. This centralized
management, evenscopedlocally, may eventually becomea problemin large-scalesystems
with potentially thousandsof users.

A more signi�cant problem is global key management. Becauseof the hierarchical
nature, trusting a key binding implies trusting all the intermediary authorities along the
chain to the root authority. Breach of security at an authority will therefore have a
propagatinge�ect to all its descendants. The root of the hierarchy becomesan attractiv e
point for attack, since breaking the root will enablean adversary to control the entire
structure. This problem is largely due to the implicit assumption in X.509 where a
naming hierarchy is assumedto reect the trust hierarchy for key certi�cation. This
aggregatestrust towards the root of the hierarchy, i.e. the higher up in the hierarchy,

64

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

the stronger trust assumptionis required. This rigid assumptionprecludesthe dynamic
nature of today's distributed applications, where trust relationships tend to be complex
and constantly changing. More importantly, it forcesapplications to adopt a singletrust
structure.

The key-centric approach pioneeredby modern key-oriented accesscontrol schemes
presents an elegant solution. Public keys are mathematically designedto be globally
unique by nature. The probability of two keysclashingis negligible. Additionally , public
keys do not need to be kept secret. These two properties meet the basic requirements
of identi�ers. However, the real value of the key-centric approach is the avoidance of
names.An important observation is that namesaremostly for the convenienceof humans
[18, 144, 143]. Peopleare usedto identifying others by names{ a practice learnedfrom
the early days of one's life. While natural for humans, names are of little value for
computer systems. In an open system, the strongest guarantee is the knowledge that
the remote communicating party controls a particular private key. Proving the name
is a secondaryaction which requires a securebinding from the key to the name. The
key-centric approach doesnot deal with namesand henceeliminates the needfor name
management. A desirableconsequenceis the independencefrom central trusted third
parties to certify the authenticit y of keys. If a principal can be identi�ed, its key will be
known. This �ts naturally with the trust conveyancemodel, wherea public key in a trust
statement can both identify its truster and verify its integrity.

Although the key-centric approach solves the global naming problem, on the other
hand, it introducesanother problem due to its sourceof principal identi�ers. Sinceby
assumption,every principal may generatea fresh key pair and usethe public key as its
identi�er, the public key is inherently anonymous. For example,if a principal is blacklisted
for �nancial fraud, he/shemay simply generatea new key pair, essentially creating a new
identit y, to avoid being caught.

In Fidelis, this problem is considereda policy issue. It is up to each individual service
to decidewhether anonymous public keys are accepted. If a servicerequirespersistent
names, it may demand a principal to present trust instances issued by some trusted
authority, e.g. the Government registrar providing a name-certi�cation service, linking
public key identi�ers to names. To bind a name to a public key in an authoritativ e
manner, the authority should typically follow rigourous procedures,identifying both the
ownership of the key and the name, and possibly someadditional attributes that are
asserted.

3.5 The Fidelis Policy Language

The Fidelis Policy Languageis a languagedesignedto facilitate the trust conveyance
model. It is intendedfor useby principals in a conveyancenetwork to specify their policies
regardingtrust statements. There are two kinds of policy in Fidelis: a trust policy de�nes
the relationshipsbetweentrust statements; an action policy relatesan action with trust
statements. This sectiondescribes the syntax of the languageand provides an informal
semantics. Note that the useof this languageis not compulsory;a principal may hard-
code policies,or useother languagesaccordingto their resourcesand need. The language
servesas a generalreferencefor commonapplications to adopt the trust framework.

65

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

3.5.1 Principals

There are three types of principal. A plain principal is speci�ed as its public key. A
principal group is speci�ed as a set of public keys. A thresholdprincipal is speci�ed as
a set of public keys, with a threshold value of the minimum number of representativ e
principals in the set. The syntax for specifying a principal is:

principal ::= public key (3.1)
j f hprincipal seti g
j integer-of f hprincipal seti g
j self
j any-k ey

The literal representation for a public key is a hexadecimalstring. This assumessome
encoding scheme is employed to produce a hexadecimalvalue for either the public key
in full length, or a hash of the key. The actual encoding scheme(e.g. Base64)and/or
hashalgorithm (e.g. MD5) usedto produce the string representation of a public key are
consideredas implementation details. It is left to the choiceof the implementor.

Group principals areconjunctionsof principals. The intuition is to treat the principals
in a group as a single, logical principal. This enablesrepresentation of conceptssuch as
joint statements. A trust statement signedby a groupprincipal is semantically identical to
the sametrust statement individually signedby all membersof the group and aggregated
together.

A thresholdprincipal is a specialtypeof groupprincipal. While a plain groupprincipal
represents the entire set of group members, a threshold principal represents a subsetof
a group, with a minimum number of principals in the set. The minimum number is the
threshold value, speci�ed asan integer. The threshold construct enablesthe speci�cation
of threshold schemes.A commoncommercialthreshold schemewould be that a company
chequetypically requirestwo or more signaturesfor it to be valid. An examplethreshold
principal is:

2-of {0x023296de..., 0xca91f513..., 0xf6994a9b..., }

The principal set for group or threshold principals may be speci�ed literally, asshown
above, or refer to a variable which will be bound during evaluation. This is useful for
large groupsor dynamic groupsbacked by databases.Its syntax is,

principal set ::= public key, ... (3.2)
j variable

The languageprovides the self keyword for representing the public key of the policy
owner. In theory, there is no di�erence betweena policy owner and the rest of the world {
a literal representation can be usedto identify the policy owner. It is however sometimes
usefulto late-bind the policy owner at deployment rather than at speci�cation time. This
allows somedegreeof centralized policy management, whereby an authority may de�ne
a standard trust policy and distribute it to participating principals for enforcement.

An any-k ey keyword is provided as a wildcard for public keys. It is intended for
policies that neednot considerspeci�c trusters or subjects. For example,a policy may
state any person certi�e d by the local authentication server may log onto a workstation.

66

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

3.5.2 Actions

An action encapsulatescomputation that may be subject to policies. As a motivating
example,consideran accesscontrol scenario,wherean accesscontrol monitor in an oper-
ating systemneedsto determineif a requesteris allowed to reada �le. An intuitiv e action
representation would be read_file , whosecontext includesa �le nameand a requester.
Actions may alsobe high-level and abstract. For example,an online shopmay represent
the execution of a transaction which consistsof a number of low-level read and write
operations as a singleaction do_transaction .

The notion of actions is typically de�ned di�eren tly acrossapplications. As briey
shown in the previous paragraph, an action may directly correspond to a method invo-
cation, or it may be a general trust query. To satisfy these diverseneeds,the Fidelis
languagegeneralizesactions as parameterizedpredicates.The syntax is:

action spec ::= haction namei (hparameter speci , ...) (3.3)
parameter spec ::= htypei hnamei (3.4)

action instance ::= haction namei (hparameterinstancei , ...
)

(3.5)

parameter instance ::= value (3.6)

An action speci�c ation (3.3) consistsof a nameand an optional list of formal parame-
ters. The nameis givenasa string, and a formal parameterconsistsof a typespeci�er and
a name(3.4). The nameof a formal parameter is scoped within the action speci�cation
and must be uniquewithin the scope. There is no built-in type systemin the language.It
is deemedto be an implementation and deployment issue.There are numerouschoicesin
programming languages(e.g. Java, C, C++), databasemanagement systems(e.g. SQL,
OQL/ODL [145]), and distributed middleware (e.g. CORBA, DCOM [146]). The type
systemused in a policy must be identi�ed when it is processed.For descriptive conve-
niencein this chapter, a simple type systemconsistingof only primitiv e types,including
int , float , and string , will be used. Public keys will have a special primitiv e type
pubkey.

An action instance (3.5) is an instanceof an action speci�cation. It is de�ned by a
nameand a list of parameter instances. The namerefers to an action speci�cation, and
the parameter instancesmust match the speci�cation. A parameter instanceis given as
a literal value in the value spaceof the parameter type.

3.5.3 Trust speci�cation

Recall from Section3.3 that a trust statement carriesassertionsabout a subject held by
a truster. The Fidelis languageemploys a similar abstraction for expressingassertions
as for actions. Assertionsare represented in the form of parameterizedpredicates. The
syntax for trust speci�cation is thus similar to action speci�cation (3.3):

statementspec ::= hstatementnamei (hparameter speci , ...) (3.7)
statementname ::= string (3.8)

trust spec ::= hstatementspeci (3.9)

67

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

A trust speci�c ation (3.9) is de�ned asa statementspeci�c ation (3.7), which is in turn
de�ned by a locally scoped name and a list of formal parameters. As with actions, the
parameter list is optional. Someassertionsare simple and narrowly scoped, and can be
expressedwithout parameters.An examplewould bepaid() in an onlinepurchasesession.
A customer who has paid for a purchasemay be certi�ed by the accounts department
of the selling company, and its delivery department, basedon this assertion,may then
arrange for purchase dispatch. Such trusts are Boolean, i.e. only \b elieved" or \not
believed".

A morereusabletrust speci�cation involvesparameters.An examplein identit y-based
accesscontrol would be:

user (string user_id)

which represents the belief that a subject is recognizedas the useruser_id by a truster.
This assertioncould be, for example,signedby an authentication server and passedto
the point of accessas an accesstoken.

It is important at this point to distinguish trust statementinstances from trust spec-
i�c ations, which were collectively referred to as trust statements previously. A trust
speci�cation is not bound to a speci�c truster and subject. Only beliefsare speci�ed. A
principal instantiates a trust speci�cation in the capacity of a truster, regardingits belief
concerninganotherprincipal. A concretetrust statement is referredto asa trust statement
instance or simply trust instance. In the Fidelis policy language,the syntax component
for referencingtrust instancesis given a name trust use. Trust usesare designedfor
matching trust instancesin a policy, and have the following syntax:

trust use ::= hstatementusei : htruster i ! hsubject i (3.10)
statementuse ::= hstatementnamei (hplaceholderi , ...) (3.11)

j any-statemen t [as variable]
placeholder ::= variable (3.12)

A trust use (3.10) is de�ned as a statement use, associated with a truster and a
subject. A statement use (3.11) referencesa trust speci�cation by a name and has a
list of parameterplaceholders.A parameterplaceholder(3.12) is a variable whosevalue
is provided by the actual parameter in a trust instance at evaluation. Parametersare
for matching and extracting values acrosstrust instancesin a trust policy. This will
be described further in Section 3.5.5. The truster and subject of a trust use have the
following syntax:

truster ::= hprincipal speci�er i (3.13)
subject ::= hprincipal speci�er i (3.14)

principal speci�er ::= hprincipali [as variable] (3.15)
j variable

They are de�ned asprincipal speci�ers , wherea principal speci�er may either be given as
a principal syntax item (3.1) or a variable. For example,a trust use

user(user_id) : 0xb3d981235-> any-key

68

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

would match a user trust instance signedby principal 0xb3d981235for any principal.
Note that the keyword any-k ey matchesany principal, seeSection3.5.1.

A truster and subject could also be given as placeholdervariables. This enablesthe
matching of principals acrosstrust instancesand allows additional conditions on these
principals. SeeSection 3.5.5 for examples. A principal speci�er may also be associated
with a variable, in which casethe value for the variable will be bound to the actual
matching principal at evaluation, for example, the actual set of principals that forms a
satis�ed threshold principal.

A trust usethat matchesany trust instancemay be speci�ed using the keyword any-
statemen t . This construct is fairly infrequently usedin practice as over-generalization
generallyreducesits applicability. A possibleuseis to specify blind delegation, i.e. relaying
whatever a truster asserts. Section 3.5.5 includes an example of any-statemen t to
construct blind delegation policies. It is also possible to refer to the particular trust
statement instance matched by an any-statemen t using the placeholdermechanism.
For example,

any-statement as t: 0xb3d981235-> any-key

allows variable t to refer to the actual trust instance signed by 0xb3d981235for any
subject.

3.5.4 Validit y conditions

Every trust statement instance has a validit y condition as discussedin Section 3.3.2.
Recallthat the fundamental requirement for a validit y condition is to exhibit deterministic
behaviour, i.e. there cannot be exceptionclausescausinga guaranteed validit y of a trust
statement to negate.The languagesupports oneo�ine and three online validit y methods.
The syntax for validit y conditions is:

validity ::= ho�ine validity i (3.16)
j honline validity i
j always

Besideso�ine and online validit y methods, a keyword always is provided to express
permanent, absolutebelief, e.g.family relationships. It is however rarely usedasabsolute,
constant trust is rare.

The o�ine method speci�es a validity period. Its syntax is shown below:

o�ine validity ::= from htime speci to htime speci (3.17)

The semantics for a validit y period is that a trust instanceis guaranteed to bevalid for the
speci�ed duration. This meansthere existsno mechanismsto invalidate the trust instance
during this period. The trust instanceis consideredto be invalid oncethe validit y period
is over. This semantics is similar to that in SPKI [18], and is dramatically di�eren t from
X.509 [6], wherethe validit y period only servesasa \hin t" for the validit y of a certi�cate
sinceit may still be revoked by a certi�cate revocation list (CRL). The time speci�c ation
denotesa time instant, speci�ed as a constrainedISO 8601format [147]:

69

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

CCYY-MM-DD hh:mm:ss

where CC, YY, MM, DD represent the century, year, month, and day, and hh, mm, ss
represent the hour, minute, and secondrespectively. A right-truncated format could be
usedif the time components are of interest, e.g.2002-04-15.

The three supported online validit y methods are: timed credential revocation list,
timed renewal and status check. Their syntax is:

online validity ::= CRL [async] at haddressi , ... (3.18)
j renew al [async] at haddressi , ...
j status at haddressi , ...

The format for address is implementation-dependent. Possiblechoicesinclude, IP, DNS
name,and URL, etc. Fidelis allows online validit y information to be either fetched from
designatedlocations or delivered asynchronously to the veri�ers. In the latter case,a
veri�er needsto registerfor noti�cation at the speci�ed addressesand exposesan interface
for receivingasynchronousmessages.

A timed credential revocation list (t-CRL) contains a list of referencesto revoked
trust instances,with an expiry period. A referencemay be in the form of a cryptographic
hash of a trust instance, or may be a referencenumber linked to a trust instance. The
expiry period represents the temporal lower- and upper-bound for which a t-CRL can be
used. When a trust instancewhosevalidit y is determined by t-CRLs is processed,it is
required that a valid t-CRL covering the present time must be available, and the expiry
period of a newt-CRL must not overlap with the current t-CRL. The former requirement
prevents processingof a trust instanceif its t-CRL is unavailable. The latter requirement
prevents a sudden\changeof mind" by the truster. Therefore, if a trust instance(or its
reference)is not contained in the current t-CRL, it is guaranteed to be valid at leastuntil
the endof the expiry time of the t-CRL. A t-CRL canbe facilitated through asynchronous
messaging,in which case,the delivery of a new t-CRL can take placeany time beforethe
current t-CRL expires.

A timed renewal is similar to the o�ine method, but with an automatic expiry exten-
sion at the end of the validit y period. Two conditions similar to the t-CRL processing
exist for timed renewal processingto ensuredeterminism. First, a valid renewal must be
present when processinga renewal-basedtrust instance. Second,the extendedand the
current period must not overlap, but they neednot adjoin. This leavesno possibility to
negateprevious validit y conditions but, since validit y periods are not required to join,
it does permit an \uncovered" period, i.e. time when a trust instance is \temp orarily
unavailable". Like t-CRL, timed renewal can also be implemented using asynchronous
messaging.The delivery of a status noti�cation can occur any time before the current
renewal period expires.

The third online method is a status check. This represents a status query at some
designatedaddress.The query consistsof the referenceto a trust instance(e.g. a serial
number) and the result is a Booleanstatus valueand a timestamp. The returned status is
expectedto have the lifetime of a singlepolicy computation. Another status check needs
to be performedif the sametrust instanceis processedagain. If a query is not possible,
e.g. due to network failures, the trust instance will not be processable.This semantics
enforcesa deterministic behaviour within a singlecomputation, i.e. if the status of a trust

70

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

instance is determinedat one point during a policy computation, it will remain so until
the computation �nishes. It is important to note that asynchronous messagingis not
applicablefor a status check becauseprevention of messagedelivery would be a su�cien t
attack, unlesssomeheartbeat mechanism is employed.

The languagedoesnot attempt to o�er a completelist of validit y options, rather, these
methodsexist to promoteinteroperability. An implementation may however support other
specializedvalidit y methods wherethesestandard methods are not appropriate.

3.5.5 Trust relationships

The most important aspect of the languageis the speci�cation construct for trust policies.
Generally speaking, a trust policy de�nes a principal's belief about another principal,
i.e. a trust relationship. The trust policy construct o�ers building blocks for capturing
commonfactors of trust, including recommendation,reputation and to a certain extent,
experiences,as previously discussedin Section3.2.3.

A trust policy may serve two purposes. First, it de�nes conditions for trust estab-
lishment. For example,Alice may specify conditions that must be met beforeshetrusts
Bob to sell books. Bob may approach Alice to obtain her trust by presenting \pro ofs". If
Alice's conditions are satis�ed, sheestablishesa trust relationship with Bob by creating
and signing a trust instance. Second,it assiststrust decision-making. Continuing the
previous example, supposeCindy wishesto determine Bob's trustworthiness for selling
books. Shemay approach Alice with somebeliefssheholds about Bob. Alice may then
reply to Cindy if shethinks Bob is trustworthy accordingto her own policies.

Before the syntax for trust policies can be described, we shall �rst de�ne trust tem-
plates. A trust template servesas a template for creating new trust instances,specifying
valuesto be bound to parametersupon instantiation. It has the following syntax:

trust template ::= hstatementnamei (hparameteri , ...) :
htruster i ! hsubject i (3.19)

parameter ::= hparameter instancei (3.20)
j variable

A trust template is essentially a partially instantiated trust instance. It has a name, a
list of parameters, and a pair of truster and subject. Each parameter (3.20) is de�ned
as either a parameter instance(3.6) or a variable. Recall that a parameter instanceis a
concretevalue of the type of the parameter. Truster and subject are as de�ned in (3.13)
and (3.14) respectively.

The basicstructure of a trust policy consistsof a set of trust uses(3.10) matching the
set of prerequisitetrust instancesfor the new trust instance. The policy may optionally
include another set of trust usesfor matching trust instanceswhoseexistenceprevents
the creation of the newtrust instance. Conditions and rulesmay be speci�ed to constrain
parametersin trust instancesand to set valuesfor variables. Additionally , it is possibleto
associate speci�c actionsand/or validit y conditionswith new trust instances.The syntax
of a trust policy is:

71

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

trust policy ::= [htrust usei , ...] [without htrust usei , ...] (3.21)
asserts htrust templatei
[where hconditionsi] [set hassignmentsi]
[gran ts haction templatei , ...] [valid
hvalidity i]

where validity is de�ned in (3.16), conditions and assignmentsare described later in
Section3.5.7. As an example,a simple trust policy may be speci�ed as,

T1(a, b): self -> Z, T2(b, c): Y -> Z asserts T3(c): self -> Z

where trust namesare T1, T2, etc; principals are given in uppercaseletters instead of
literal public keys for readability; variables are in lowercaseletters. This policy states
that the policy owner (namely, self) believes T3 regarding principal Z, provided she
believesT1 about Z, and Y believesT2 about Z at the sametime. The languagefeatures
a variable matching rule, whereby the value of all occurrencesof the samevariable must
match. Thereforeto obtain a T3 instanceaccordingto the above policy, valid instancesof
T1 and T2 with matching parameterinstancesmust be presented. For example,assuming
the policy owner is X, it would be su�cien t to present

T1(1234, "pay"): X -> Z
T2("pay", "alice"): Y -> Z

and the new trust instancewill be:

T3("alice"): X -> Z

Presenting the following trust instanceswill however fail becauseof mismatched param-
eters:

T1(1234, "pay"): X -> Z
T2("buy", "alice"): Y -> Z

Trust is a non-monotonic concept [101, 137, 116], e.g. an entit y can be believed to
be malicious. Recall from Section 3.3.1 that the framework has the notion of distrust.
The without clauseis the mechanism in the languageto support this notion. It allows
negative comments/recommendations to be considered. E�ectiv ely, it meansthat the
trust instancesmatched by the trust usesin the without clausemust not exist for the
trust policy to beevaluatedwith a positiveresult, i.e. certain negativetrust instancesmust
not exist. A typical use is to implement a \blacklist" mechanism to prevent distrusted
principals causingfurther damageto others. A real-life example is the Better Business
Bureau, which in addition to listing good businessesalso often lists bad businessesas a
warning for consumers.

The variable matching rule provides a coarse-grainedconstraining instrument for pa-
rametersin trust instances.Fine-grainedconstraints can be speci�ed through the condi-
tional expressionin a where clause.A conditional expressionoperateson: (1) parameter
variables in trust and distruct uses,and (2) environmental variables. An environmental
variable is a typed name-value pair, whosevalue is suppliedexternally at evaluation. An

72

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

environment consistsof a list of environmental variables. The syntax for conditional ex-
pressionsis speci�c and may be local to every policy speci�cation. The only requirement
is that a conditional expressionmust be side-e�ect free. Expressionsusedin this thesis
include operators for: arithmetic, comparison, logical connectives, regular expressions,
groupsand principals. In particular, it allows embeddedSQL statements, enclosedin a
pair of double-squarebrackets ([[]]). Variablesmay be useddirectly in an embedded
SQL statement, provided they are precededby a $ character. Section3.5.7describesthe
syntax in more detail. Someexampleexpressionsare:

Comparison operator: a == 1234
Regular expression: b =~ "/etc/.*"
Logical operator: a == 1234 && b =~ "/etc/.*"
Principal operator: c in {0xca04156f, 0x15ba430d, 0x528ba0bf}
Embedded SQL: [[SELECT* FROMusers WHEREuser_id = `wtmy2']]

A policy evaluation may result in a newtrust instance. A parameterin the result trust
instancecan be given directly in its trust template. If the value of a parameterdepends
on the context of policy evaluation it can be set either through the variable matching
mechanism or explicitly in an assignmentexpression. An exampleis:

T4(cust): self -> Y
asserts T5(4000, limit): self -> Y
set limit = [[SELECT limit FROMcredit_limits WHEREcust_id = `$cust']]

The �rst parameter of a T5 instance is set with a prede�ned value, `4000', while the
secondparameter is set from the result of an embedded SQL query. Like conditional
expressions,the syntax for assignment expressionsis also application-speci�c. Use of
proprietary languagesdoesnot impedethe interoperability sincethe evaluation is entirely
internal to the principal.

The interfacebetweenthe policy languageand the conditional/assignment expressions
is through variable bindings. The evaluation of a conditional expression,which is side-
e�ect free, is guaranteed to yield a deterministic output. Sincean assignment expression
may createor modify variablebindings, it is requiredto beevaluatedafter the conditional
expression.This ensuresa well-de�ned behaviour for the evaluation of both conditional
and assignment expressions.

By default, the processingsemantics ensuresthe validit y condition for a new trust
instance is the weakestvalidity condition among those prerequisite trust instances. The
rationale is that if a prerequisite trust instance becomesinvalid, the dependent trust
instancesshouldalsobecomeinvalid. The rulesfor deriving the weakestvalidit y condition
are described in Section3.5.8. As a motivation, supposethe instancesof T1 and T2 in
the previousexamplehave validit y conditions:

Trust statement instance Validit y condition
T1(1234, "pay"): X -> Z from 01/04/02 to 01/04/03
T2("pay", "alice"): Y -> Z from 10/05/02 to 20/05/02

The new T3 instance (namely, T3("alice"): X -> Z) will then have a validit y from
10/05/02 to 20/05/02. The validit y condition can also be explicitly speci�ed as part of

73

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

a trust policy, using the valid keyword. In this case,the speci�ed validit y condition will
override the default semantics. E�ectiv ely it implies the validit y of a new trust instance
is independent of the validit y of the prerequisitetrust instances.This is useful to express
belief about historical events, e.g.order ID 2504hasbeen processed.

The rest of this sectionpresents someexamplesto demonstratetrust policy speci�ca-
tion. Oneexamplemotivatesand describesthe useof the gran ts keyword, which hasnot
beencoveredso far.

Example: Bo otstraping trust Bootstraping trust is alsoknown asan axiom or basic
belief. It's a fundamental belief held by a principal and is intendedasa ground rule from
which one'strust decisionsare inferred. It often expressesa fact or an \instinctiv e" belief,
i.e. a belief needingno questions,e.g.\Joe Bloggsis Jon Bloggs' father". In the policy
language,bootstrapping trust is expressedas a trust policy with no prerequisite trust
uses.Consequently, it must have an explicit validit y clause.

Consideran authentication service. Principals identify themselvesas public keys. A
bootstrapping trust statement may be testifying whether a principal is recognizedas a
local user,which may be speci�ed as:

user(string user_id)

The servicemay then de�ne an explicit mapping from a principal public key to a local
user identi�er, stored in a relational database. Assumethat the databasestores every
account under a tuple (username, key), whereusernameis a local useridenti�er and key
is the public key of the user. The policy may then be speci�ed:

asserts user(user_id): self -> p
set user_id = [[SELECTusername FROMuser_db WHEREkey = `$p']]
validity status at fidelis.cl.cam.ac.uk

When a principal invokesthe service,the service�rst constructsan environment con-
taining a binding for p { the requester'spublic key. It then consultsthis trust policy which
performsa local databasequery to determinethe corresponding username. This process-
ing results in a new trust instanceproving the service'sknowledgeabout the requester.
This can then be usedby other servicesfor accesscontrol purposes.Note that the policy
is written with an assumption that there is a unique user ID/public key binding. The
assignment languageis thereforeexpectedto handlemultiple results from the SQL query,
e.g. fails if there is more than oneresult. This is however an implementation issue.

Example: Recommendation Considera real-world example.The HongKong Jockey
Club hasa membershiprule whereby a candidatemember must beendorsedby two voting
members. A voting member hasthe right to proposeand secondfor membershipand there
are currently around 200voting members in the club.

One approach assumesthat the jockey club speci�es trust statements for regular and
voting members, i.e. the subject is a regular member or voting member, and another trust
statement represents endorsements. The membership rule can then be expressedas a
trust policy:

74

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

voting_member(): self -> p1, endorsement(): p1 -> p,
voting_member(): self -> p2, endorsement(): p2 -> p
asserts member(): self -> p
where p1 != p2

In plain English, the abovepolicy statesthat if principal p is endorsedby a voting member
p1 and also by p2, and p1 and p2 are di�eren t, then p is acceptedas a regular member.
There may exist someother trust policiesthat de�ne how a regular member may become
a voting member, but this is outside the scope of this example.

Another approach makesuseof threshold principals. It speci�es trust statements for
membersand endorsements. In addition, it assumesthe member information is stored in
a relational table, members, with these�elds:

Field Type Description
id pubkey Principal identi�er
vote Boolean Has the voting right?

The membership rule can then be speci�ed as follows,

endorsement(): 2-of {voters} -> p
asserts member(): self -> p
where voters < [[SELECTid FROMmembersWHEREvote=TRUE]]

This trust policy states that if principal p is endorsedby two members who have voting
rights, p is then acceptedasa regularmember. The operator <, described in Section3.5.7,
determineswhetherthe actual trusters of an endorsement() instancesatisfy the threshold
condition, given the group de�ned by the SQL query.

Comparing thesetwo approaches,while the former capturesthe real policy, it is cum-
bersomeand lessstraightforward. It alsohasa scalability problem; if the requirednumber
of voting members is higher, it will becomelessmaintainable and more error-prone. The
latter approach faithfully models the real policy, and hasattractiv e maintainabilit y char-
acteristics. It neverthelessrequiresexternal databasesupport.

Example: Authorization trust An authorization certi�cate in key-oriented access
control can be consideredas a special kind of trust instance,wherea certi�cate holder is
trusted with certain authorizations. In this regard, an authorization can be thought of
as a re�ned form of trust [117]. The Fidelis languagesupports this type of trust policy
through the useof the gran ts keyword, which allows a direct binding of action instances
with a trust instance.

Considera banking service. Supposethe serviceissuestrust instancesto every cus-
tomer, assertingthe ownership of their accounts. This is speci�ed as owner(ac) , where
ac givesan account number. It also issuesspecial trust instances,capabilities() em-
bodying the authorization, perhapscarried in a smart card. Assumingan account owner
is allowed to query balance,withdraw and deposit money, a trust policy may be:

owner(account_no): bank -> p
asserts capabilities(): bank -> p
grants balance(account_no): p, withdraw(account_no): p, deposit(account_no): p,

...

75

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

A customerpossessingan instanceof capabilities() can present it to accesspoints
of banking services,e.g. cash machines. At each accesspoint, it would only need to
determine if the requestedaction is contained in a capabilities() instance.

Someadvantages of this key-oriented style of accesscontrol have been described in
Section2.4. Briey , �rst, it simpli�es the accesscontrol monitors { essentially an access
control monitor only needsto verify the integrity of a trust instanceand examineif the
trust instance contains the authorization. This simplicity implies potential deployment
in lightweight environments, such as on mobile devices. It also speedsup accesscontrol
decisionssincethere is no complex policy to query. Furthermore, it featuresan appeal-
ing scalability characteristic as accesscontrol policiese�ectiv ely are distributed to every
principal in the form of trust instances. However, as will be discussedin Section 3.5.6,
quite often it is not always appropriate to usesuch accesscontrol schemes.

Example: Delegation of trust Delegationin security often refersto the delegationof
rights, which enablesauthorization propagation from a principal to another. In Fidelis,
a di�eren t form of delegationcan be expressed,known as the delegation of trust. This
refersto the mechanismthat a principal assertsbeliefsit learnsfrom others,passingthem
on as its own beliefs.

Consideran examplemodelling the PGP web-of-trust, whereby Bob wishesto intro-
duce any public key introduced by his trusted friend, Alice. Supposetrust speci�cation
PGP_key(name)represents a PGP key-nameintroduction, which says a truster believes
the PGP identi�er of a subject. The PGP web-of-trust policy can then be modelled as:

PGP_key(name):Alice -> p asserts PGP_key(name):self -> p

Here we use a notational shorthand to make public keys more readable. We assume
\ Alice " expandsto her real public key. Delegationof trust is purely internal to a prin-
cipal. A subject may not know or even care if a trust instanceis delegated,e.g. suppose
Cindy learnsa PGP_key()instancefrom Bob, but shemay not necessarilyknow how Bob
derivesthis assertion.Delegationof trust is unlike delegationof rights in that it is weaker.
It doesnot require or forcea principal to perform someaction, nor doesit guarantee any
responsibility, where theseare typical for delegatedauthorization [111, 148]. Delegation
of trust is merely a mechanism for deriving new beliefs.

Thereexistsa special typeof trust delegation,calledblind delegation. Blind delegation
is wherea principal assertsall trust instancesby other principals. A possibleuseis for a
principal acting as a trust proxy, e.g. a representativ e principal in an organization. This
can be speci�ed as,

any-statement: p1 -> p2
asserts any-statement: self -> p2
where p1 == 0x14ba9b925|| p1 == 0x5918b01a || ...

wherethe list of proxied principals is constrainedby variable p1.
There are several reasonsit might be desirable to set up a trust proxy. First, it

provides a single identit y for external parties, as the exampleabove shows. Second,it
presents a central point of management, so that only certain principals can represent the
organization,e.g.thosewho are trusted by the proxy. Third, it providesa singleprincipal
for audit purposes. However blind delegation is usually over-general,which limits its
applicability.

76

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

Alice Bob Cindy Derived trust

Original trust

PGPkey("Cindy"):Bob->Cindy

legal advisor():Bob->Cindy

legal advisor():Alice->Cindy

PGPkey("Cindy"):Bob->Cindy

Figure 3.3: Transitive trust and delegatingtrust

Example: Transitivit y Trust is usually not transitiv e [126, 114]. That is, if A trusts
B, and B trusts C, it doesnot automatically imply A shouldalsotrust C. However, trust
can indeedbe transitiv e if its context is su�cien tly speci�c and restricted. For example,
if Alice trusts Bob asher legalconsultant, shemay alsotrust other legalexperts that Bob
refers to. This may be becauseAlice is unfamiliar with legal matters and hencesolely
relieson Bob's advice. This could be encoded as follows,

legal_advisor(): self -> Bob, legal_advisor(): Bob -> p
asserts legal_advisor(): self -> p

Transitive trust is complementary to delegatingtrust. Delegationof trust allows oth-
ers'beliefsto becomea principal's own belief,and is determinedby the subject. Transitive
trust, on the other hand, allows a truster to establishtrust relationshipswith principals
its subject trusts and is controlled by the truster. Figure 3.3 contrasts transitiv e and
delegatingtrust. Solid lines represent original trust relationships,and dotted lines repre-
sent derived trust relationships. The top two lines represent delegatingtrust, whereBob
deriveshis assertionregardingCindy's PGP key basedon Alice's assertion. The bottom
two lines represent transitivit y, where Alice relies on Bob as her advisor and learns to
trust Cindy as a referral advisor, basedon Bob's recommendation.

3.5.6 Action policies

In the previoussection, the gran ts clauseallows explicit action instancesto be given to
a trust instance. Another approach is through action policies. An action policy relates
action instanceswith trust instances,subject to conditions. The most obvious useis to
expresstrust-basedauthorization, whereaction instancescorrespond naturally to access
requests. Another use is to expresstrust decisions,where action instancesrepresent
queriesthat onemay wish to ask. Yet another usemay be to de�ne obligation, i.e. actions
that must be taken when certain trust is met. It is up to a principal to decidewhat its
action policiesare for.

As with trust policies, we shall �rst describe action templates, which are partially
instantiated actions for the purposeof constructing new actions in action policies. Their
syntax is provided below:

action template ::= haction namei (hparameteri , ...) :
hrequesteri

(3.22)

requester ::= hprincipal speci�er i (3.23)

77

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

An action template includes a name, a list of parametersas de�ned in (3.20), and a
requester, which is a principal speci�er (3.15). E�ectiv ely, an action template represents
an action initiated by the matching requester,with the matching parameters.

With action templates de�ned, it is now possibleto describe the syntax for action
policies:

action policy ::= [htrust usei , ...] [without htrust usei , ...] (3.24)
[where hconditionsi] [set hassignmentsi]
gran ts haction templatei , ...

The syntax for action policies is a subset of the syntax for trust policies. The main
di�erence is that action policiesmandate a gran ts clause,and do not have asserts and
valid clauses.The evaluation and parameter handling semantics for action policies are
consistent with trust policies.

Considera follow-up to the exampleon bootstrapping trust in the previoussectionon
Page74. Assuminga distributed �le servicecooperateswith the authentication service,
and protects its �les using an accesscontrol list (ACL) represented as a databasetable,
ACL,

Field Type Description
object string Nameof an object
user string Authenticated user identi�er
mode string Accessmode (e.g. `read', `write', `modify')

It may abstract accesscontrol queriesinto an action template, speci�ed as,

access (string obj, string mode)

where obj gives the object requested,and modegives the requestedaccessmode. The
accesscontrol policy, assumingASis the key for the authentication service,can then be
speci�ed as,

user (user_id): AS->p
where [[SELECT*

FROMACL
WHEREobject=`$obj' and user=`$user_id' and

mode=`$mode'NOTNULL]]
grants access(obj, mode): p

When a principal requestsaccessto a �le, it is �rst authenticated with the authentication
service,which createsa user() trust instance. The principal may then present this user()
instanceto the �le service,which constructsan access() action instancerepresenting the
requestand then evaluatesthe policy for a decision.

Comparing this with the construct for authorization trust in the previous section,
action policiespresent a separationbetweenaction and trust. There are several reasons
for this separation. When a trust statement is speci�ed, its exact usesmay not be known
in advance. Indeed,asa trust statement represents a belief, it is often up to the particular
principal who receives it to decidehow it should be interpreted and used. Second,if a

78

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

Expression Matching
foo A singlestring \fo o"
foo|bar A choicebetween\fo o" and \bar"
(foo)* bar Zero or more \fo o" followed by \bar"
(foo)? bar One or none\fo o" followed by \bar"
(foo)+ bar One or more \fo o" followed by \bar"

Figure 3.4: Examplesof regular expressionpatterns

principal makesaccesscontrol decisionbasedon trust, it is sensiblefor the principal to
de�ne its own accesscontrol policies, sincethe principal is taking the associated risk of
breached access.This is especially true in distributed environments. A similar concept
can be found in Herzberg et al. [101], but with a focuson accesscontrol.

3.5.7 Conditional and assignmen t expression

Expressionsexist in two placesin the Fidelis Policy Language,as conditions in a where
clause,or as assignments in a set clause. The choiceof an expressionlanguagedepends
highly on the application nature and complexity of the trust policies a principal wishes
to express. It is deliberately left as a choice for each individual in Fidelis. The syntax
described heregivesa referencelanguageusedthroughout this thesis. It is, however, not
intended to serve all needs.For someprincipals, a simpler languagewill su�ce, while for
others, more advancedoperators might be required.

The expressionlanguageincludesseventypesof operator: comparison,(Boolean)logic,
numeric, string, assignment, principal and group operators. They are summarizedin the
following table:

Type Operators
Comparison == != > >= < <=
Logical && ||
Numeric + - * / %^
String + subst ~=
Assignment =
Principal == [] in <
Group {} [[]]

Most of theseoperatorsare straightforward, thosewhich are not are explainedbelow.
The string operator + is for concatenating two strings into one. The string operator
~= performs regular-expressionpattern matching. The left-hand side refers to a string
variable and the right-hand side speci�es a regular expression.The evaluation returns a
Boolean result. The syntax for regular expressionsis a simpli�ed form of those present
in the Perl language.Someexampleshighlighting the syntax are provided in Figure 3.4.
The string operator subst performsa substring test. For example,the expression

"foo" subst "foo bar"

79

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

evaluatesto true .
The principal operator == performs an equality test on a pair of public keys. This

comparesthe actual keys,its algorithm and other associated key information. The unary
operator [] takes a threshold principal and returns its threshold value. The operators
in and < are group operators, which take a principal expressionand a group expression.
The in operator determines a principal's membership of a group. The < operator is
speci�cally designedfor threshold principals. It determines whether a variable for a
threshold principal on the left-hand side is satis�ed, provided the threshold group is
de�ned on the right-hand side. For example,

p < 3-of { 0x521ba915, 0x1b0a06f4, 0xe89a5bc01, 0x510a0f7e4 }

tests whether p constitutes at least3 principals in the group on the right-hand side. Note
that the threshold group is speci�ed in the syntax of (3.1).

The group operator { } allows literal speci�cation of groups,by listing the members
separatedby commas.The operator [[]] enclosesan embeddedSQL query statement.
Parameter communication with an embedded SQL statement is provided through an
escape character $. For example,$a in

[[SELECTusername FROMuser_db WHEREid=`$a']]

will be replacedwith the value of variable a at evaluation. An SQL-driven group ex-
pressionallows the group for a group or threshold principal to be de�ned dynamically
by databasequeries. This is particularly useful if the size of a group is large, or if the
de�nition of a group is independent of policy speci�cation, i.e. addition or removal of
group membersneednot rewrite the policy.

3.5.8 Evaluation semantics

We assumea principal has accessto a trust policy engine,simply referred to as policy
engine. A policy enginemaintains a trust base, T, which consistsof a set of trust and
action policies, and processesqueriesover those policies contained in the trust base. In
abstract terms, a query consistsof a set of trust instancesand a query template, which is
either a trust template or an action template. A query with a trust template attempts
to determinewhether a trust relationship can be established,given a set of known trust
instances. Similarly, a query with an action template determineswhether an action can
be or is to be performed, given a set of known trust instances. For the description of
semantics, we shall assumethe trust instancesin a query have been cryptographically
veri�ed for their integrity.

A policy engine takes a query as input and returns a trust or action instance and
optionally a trace of execution. The resulting trust or action instanceis an instancethat
matchesthe query template. This meansfor an action template, that an action instance
must match its name and all parameterswhosevalueshave beengiven in the template.
For a trust template, additionally, the truster and subject principals must alsomatch. The
executionof a query consistsof a sequenceof evaluationsof policiesin T. Each evaluation
works in the context of a singlepolicy, and takesasinput a set of trust instances,a query
template and an environment, and a trust or action instanceis returned as output.

80

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

Conceptually, we can represent the execution of a query as a digraph, D = (V; E),
whereverticesare setsof trust instancesand edgesare trust or action policies. The goal
of a query executionis to �nd a path in D,

v1
e1� ! v2

e2� ! :::
en � 1� ! vn

such that tn� 1 2 vn is a trust or action instancethat matchesthe query template, wherev1

is the setof trust instancesgivenaspart of the query. An edgerepresents an evaluation of
a policy. Semantically, this means,for an edgeei = vi ! vi +1 , assumingvi +1 = vi [f t i g,
to �nd a minimal subsetv0

i � vi such that the evaluation of the policy pei that takesinput
v0

i and someenvironment would output t i . Additionally ,

1. for each trust usein pei , there existsexactly onecorresponding trust instancein v0
i .

Correspondencemeansthe trust instancemust be an instanceof the trust use,and
its parametersmust agreewith their binding, as de�ned below.

2. every variable must be bound to a value. For a trust use,a parameteror principal
variable must be bound to a value provided by the corresponding parameter or
principal in its trust instance. For a trust or action template, a parametervariable
is bound to a value provided either by a previous binding, the query template or
a name-value pair from the environment. Where multiple bindings are possiblefor
the samevariable, all bindings must agreeto the samevalue.

3. for each trust usein the without clauseof pei , there must not exist a corresponding
trust instancein vi and in any other mandatory repository.

4. all parameterbindings must satisfy the conditional expression,i.e. must evaluate to
true , if available.

5. if the optional assignment expressionexistsin pei it must be evaluated after all vari-
ablesare bound. Sinceevaluation of assignment expressionsmay createor modify
variable bindings, this requirement guarantees it will not causeunexpected side-
e�ects.

6. all trust instancesin v0
i must be valid accordingto their validit y conditions.

The resulting trust or action instance is computed by instantiating the query template,
�lling variableswith their appropriatebindings. For a trust instance,the validit y condition
will be asexplicitly speci�ed, if it exists. Otherwise, it will be determinedfollowing these
rules:

� If there exists a trust instance in v0
i whosevalidit y condition is by online status

check, the new validit y condition will be set to the online status check. This gives
the samee�ect as a clauseof status validit y.

� If there exist trust instancesin v0
i using any of the time boundedmethods (namely

validit y period, timed CRL or timed renewal), the new validit y condition will be
computed by recursively combining pairs of validit y conditions until left with one.
The combining algorithm for time bounds b1 and b2 results in b, where b = b1 if
b1:end < b2:begin , or b= b2 if b2:end < b1:begin , or

81

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

b:begin = max(b1:begin; b2:begin)
b:end = min(b1:end;b2:end)

The type will default to the o�ine validit y, unlessotherwisestated by the policy.

� If all trust instancesin v0
i arepermanently valid, the newvalidit y will be permanent.

This has the samee�ect as explicitly specifying always for the validit y.

Let ei = vi ! vi +1 and supposev0
i satis�es ei , then a pair (ei ; v0

i) is called a realization
of the trust policy. The chain of realizations((e1; v0

1); (e2; v0
2); :::; (en� 1; v0

n� 1)) is called the
execution trace for a query. The execution trace provides detailed information how the
policy enginederivesan answer, and may be useful later as a proof of the correctnessof
this answer.

3.5.9 Discussion

This sectioncomparesFidelis with PolicyMaker [9], KeyNote [20], REFEREE [98], TrustEstab-
lishment [101], SPKI [18] and OASIS [15, 3, 5]. We now focus our discussionon the
representationof credentials, expressivepower, and validity for credentials. As a general
note, the focus of thesesystemsdi�ers: SPKI and OASIS are designedto facilitate dis-
tributed accesscontrol; PolicyMaker and KeyNote generalizedistributed accesscontrol
into the management of trusted actions; TrustEstablishment, on the other hand, with
its Trust Policy Language(TPL), has a speci�c focus on mapping principals identi�ed
by certi�cates into roles,which can then be usedin conjunction with existing role-based
accesscontrol mechanisms. Fidelis facilitates generaltrust-related queries,which may or
may not be related to actions. Due to these inherent di�erences, someaspects are not
comparableamongthesesystems.

On represen tation of creden tials. Fidelis represents trust statements as �rst-order
predicateswhich can carry typed parameters. The predicate representation allows arbi-
trary belief to be expressedalthough its interpretation is subject to the local knowledge
of a principal. This may be determined by prior agreement, by standards or by auto-
matic discovery or negotiation. From the speci�cation point of view, the parametersof
a trust instance serve as an interface for use in policy speci�cation. This increasesthe
expressivenessof a policy by exposingrelevant details of a trust statement that may be of
interest to policy writers. The predicaterepresentation in Fidelis originatesfrom OASIS,
wherepredicatesare usedto represent roles,appointments and authorizations.

SPKI usespublic key certi�cates to represent beliefs. Conceptually, a SPKI certi�cate
is a collection of namedattributes. Provided a principal may de�ne arbitrary attributes,
this representation is equally expressive as the predicate form in Fidelis. However, SPKI
certi�cates are primarily for expressingauthorization and its delegation,and sometimes
for name-key binding. Using them for generalbeliefsis considereda \non-standard" use.

PolicyMaker, KeyNote and REFEREE represent credentials and policies (which are
collectively referred to as assertionsin their terminology) as programs. The idea is that
the expressive power of assertionstherefore matches the expressive power of the chosen
programming language. REFEREE goes a step further, allowing the use of arbitrary

82

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

languages,and it has a mechanism to automatically download appropriate languagein-
terpreters if needed.The approach of programmablecredentials, while achieving a high
degreeof expressiveness,su�ers complexity, maintainabilit y and e�ciency problems. Fur-
thermore, this makes it more di�cult to guarantee the correctnessof a policy, which
implies proving the correctnessof its program. In KeyNote, credentials and policies are
written in a constrainedexpressionlanguage.This, as its designersnoted [19], is a trade-
o� betweenexpressivenessand e�ciency .

On expressiv e power. A policy in Fidelis is either a trust policy or an action policy.
Trust policiesare intended for generaltrust queries,while action policiesare for action-
basedqueries,e.g. accesscontrol. A policy speci�cation may demanda prerequisiteset
of trust instancesminus a set of trust instancesthat must not exist. In addition, Fidelis
allows �ne-tuning of policies basedon parametersin trust instances,their trusters and
subjects, and an extensionmechanismfor supporting application-speci�c semantics. Fur-
thermore, its inclusion of group and threshold principals supports real-life policiesrelated
to multiple parties. Thesecombined featuresachieve a high degreeof expressive power,
supporting prerequisite-based,recommendation/reputation, and delegation-basedpolicy
types. Note specially that the support for generalprerequisite-basedpoliciesconsiderably
increasesits expressiveness,given that most sourcesof trust, asdiscussedin Section3.2.3,
canbe captured through this mechanism. For example,requiring a recommendationfrom
certain friends can be naturally expressedas a prerequisite condition. Also important
is its abilit y to expressnegative, non-monotonicpolicies. This is convenient and indeed
sometimesessential: if one can specify policiescovering all possibleaspects of a matter,
then it may assumethe absenceof certain trust instancesimplies distrust. However, it is
often di�cult if not impossibleto capture all such aspectseven for a simple system,and
thus explicit distrust asan instrument to expressnegative assertionsbecomesan essential
tool for guaranteeing consistencyof policies.

The main type of policy that PolicyMaker, KeyNote and SPKI attempt to capture
is delegation of authority. Thesesystemssharea similar basisfor processingcredentials,
which aims at �nding a delegation path from presented credentials to sometrusted local
policies. However, the details which a�ect their respectiveexpressivenessdi�er. In Policy-
Maker and KeyNote, credentials and policiesact as �lters on query strings, which return
a compliancevalue (e.g. acceptor reject). This mechanism allows complex,application-
de�ned query strings to be evaluated. In SPKI, credentials are conceptually represented
as tuples and are processedby an tuple reduction algorithm. SPKI tuple reduction is
speci�cally for reducing chains of delegationto derive authorization decisions,and thus
is not su�cien tly expressive for generalpolicies. Note that these systemsmay express
recommendationpolicies, by treating recommendationorthogonally to delegation. This
however hasan undesirableconsequencesincedelegationoften relatesto responsibility and
power, while recommendationoften does not. Furthermore, PolicyMaker and KeyNote
only support monotonic policies for simplicity reasons.SPKI allows an extensive choice
of validit y methods, including revocation. This is discussednext. Another point to note
is that thesesystemshandlepurely action-relatedqueries{ an inuence from their origin
of accesscontrol.

OASIS is for distributed role-basedaccesscontrol, with an extensivesupport for policy-
driven role activation. Role activation may be subject to prerequisiteroles,appointments

83

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

and environmentalpredicates. An appointment canbeconsideredasa specialkind of trust
statement, whoseintention is to allow role activation. Thesecomponents allow complex
real-world policies relating to roles to be speci�ed. Many ideasin Fidelis originate from
the research on OASIS, especially prerequisiteconditions and parameterhandling. While
OASIS has extensive policy support, it is not designedfor general trust policies, for
example,policieswith recommendationor reputation are awkward for OASIS.

TrustEstablishment is similar to OASIS in that policiesare usedto direct role assign-
ments. It supports recommendation-basedpolicies,which map a collection of recommen-
dation certi�cates into a role. It has �lter mechanismsbasedon simple conditions and
certi�cate types. It alsohasa mechanismfor negative credentials to be veri�ed. However,
it lacks support for generalprerequisite, and application-de�ned conditions. Moreover,
its support for non-monotonicpoliciesdoesnot allow for �ne-grained speci�cation, given
that it is simply basedon a revocation list approach. While conditions on �elds can be
speci�ed, it doesnot allow inter-certi�cate correlation asprovided by Fidelis. This poses
somelimitations on its expressiveness.

On validit y. Neither PolicyMaker nor KeyNote have any provision for invalidating cre-
dentials. The primary reasonis due to their monotonicity, which assumesthat absence
of a credential or policy has a negative implication. TrustEstablishment dependson the
X.509 validit y semantics, which usesa validit y period that may be overridden by a revo-
cation list. OASIS opts for a validit y schemebacked by asynchronousmessagingfor rapid
revocation of credentials. This is due to its demandfor a high degreeof security. SPKI
in its current proposal [18] has an extensive choice of validit y schemes,both o�ine and
online. Its online methods include timed CRL, revalidation, and one-time revalidation.
The idea of timed CRL and timed renewal in Fidelis originates from SPKI. Nevertheless
timed renewal di�ers slightly from timed revalidation. Timed renewal is e�ectiv ely iden-
tical to automatic issuanceof a new trust instanceat the end of a validit y period, while
timed revalidation only refers to an existing credential. There are two more di�erences.
First, Fidelis supports an online status check for situations whereabsoluteassuranceis a
must; second,it hasa provision for asynchronousmessagingto maintain online validit y {
an inuence from OASIS research.

3.6 Summary

Fidelis is a trust management infrastructure, basedon the conceptof trust conveyance,
which modelsthe mechanismby which a pieceof trusted information propagatesfrom one
principal to another. In Fidelis' terminology, the trusted pieceof information is referred
to as a trust statement, which is typically an assertion held by a principal regarding
someother principal. The principal making a trust statement is the truster, and the
principal to which a trust statement is related is the subject. The principal who sendsa
trust statement is a conveyance source or just a source, and the principal who receives
a trust statement is a conveyance target or just a target. It is important to note that
neither a sourcenor a target are required to trust the relevant trust statement; they are
just participants in a trust conveyance. It is the trust policies that determine if a trust
statement is trustworthy.

84

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

While not a strict requirement for participating in a conveyancenetwork, it is advan-
tageousto have a common languagefor the speci�cation of trust statements and their
relationships. A languagehasbeendeveloped and presented for this purpose: the Fidelis
Policy Language(FPL). This languagerefers to the structure of a trust statement as a
trust statementspeci�c ation or trust speci�c ation, and a concreteinstanceof it asa trust
statementinstance, or trust instance for short. A trust statement is modelled as a pred-
icate with typed parameters. A trust instance also has an explicit truster and subject,
which may be either a simple principal, a group principal or a threshold principal. The
languagede�nes a syntax and semantics for specifying two typesof policies: trust policies
and action policies. A trust policy de�nes a trust relationship that may be subject to: (1)
prerequisitetrust instances,(2) absenceof certain negative trust instances(i.e. distrust),
(3) conditions on parametersin trust instancesor principals. An action policy relates
action and trust. It embodiesaction-relatedtrust queries,e.g.authorization. In Fidelis, a
trust instancehasa validit y condition, which may be expressedeither asa validit y period,
or usingoneof the online means,including timed CRLs, timed renewalsand statuschecks.

In the next chapter, a web servicearchitecture for Fidelis is described.

85

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

86

4 Fidelis and Web Services

Over the past decade,interest in distributed computing has led to the development of
several middlewareplatforms. Among the most inuen tial arethe Distributed Component
Object Model (DCOM), the Common Object RequestBroker Architecture (CORBA),
and more recently, Java Remote Method Invocations (RMI) and Jini. Theseplatforms
provide a RemoteProcedureCall (RPC) mechanism,and usually a setof platform services
to support distributed processing,such as naming, trading, transaction, security, etc.
However, noneof them hassucceededin establishingitself as the universalstandard.

The emergenceof web servicesrepresents a step towards a unifying middleware plat-
form. This chapter describesthe designand implementation of Fidelis on the web service
platform. Section4.1 providesan overview of web servicesand discussesthe designissues
of implementing Fidelis as web services,with a focus on interoperability and communi-
cation with unfamiliar parties. Section 4.2 describes its architecture which consistsof
a collection of nodes implementing interfaces. This sectiondescribes the interfacesthat
facilitate trust management. Section 4.3 and 4.4 addressthe issuesof data representa-
tion. Section4.3 describesan interchangeformat for policies that is designedto enable
interoperability betweenheterogeneousprincipals. Section 4.4 describes an XML-based
(ExtensibleMarkup Language)[149] format for representing credentials, calledthe Fidelis
Interoperable Credential (FIC) format. FIC serves as a common representation for the
exchangeof Fidelis trust instancesin open web services.

4.1 In tro duction

In this section,we �rst provide a brief overview of the web serviceplatform and its con-
stituent technologies.At the time of writing, web servicetechnologiesare yet to be fully
standardized,and many are still under extensive research and development. The three
piecesof technology introduced here, namely Simple Object AccessProtocol (SOAP),
Web ServiceDescription Language(WSDL) and Universal Description, Discovery and
Integration (UDDI) are the de-factostandardsin the industry with somewidespreaduse,
and are promising to be acceptedas formal standards.

After this introduction, a discussionon various designissuesfor implementing Fidelis
basedon web serviceswill be presented. The focusof the discussionwill be on the impact
of the open and global nature of the web-servicearchitecture.

87

CHAPTER 4. Fidelis and Web Services 4.1. Introduction

H
ea

de
r

B
od

yM
es

sa
ge

 p
ay

lo
ad

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="some-URI"
 xsi:type="xsd:int" mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 4.1: A sampleSOAP message(messagecontent from [7])

4.1.1 Background

Webservicesarebuilt on top of webtechnologies.The central notion is the ubiquitous use
of XML (Extensible Markup Language)[149], e.g. for messagerepresentation, de�nition
of remote interfaces,and description of interaction. The platform consistsof three main
components: the Simple Object AccessProtocol (SOAP), the Web ServiceDescription
Language(WSDL), and the Universal Description, Discovery and Integration Service
(UDDI). Neverthelessthere are additional servicesbeing actively worked on, e.g. for
businessprocessmodelling (ebXML [150, 151]); for security support (WS-Security [152],
XKMS (XML Key Management Speci�cation) [153], SAML (Security Assertion Markup
Language)[154, 155]), etc.

SOAP [7, 156, 157] is the fundamental messagingtechnology for web services. It
is an XML-based protocol, de�ning a standard representation for XML messages,the
processingsemantics and the encoding of typeddata. The standardspeci�es a mechanism
for utilizing the protocol to facilitate RPC-style invocation over HTTP, and a one-way
messagepassingmechanism over SMTP. A SOAP messageconsistsof two parts: a body
block and an optional headerblock. Both headerand body blocks may contain one or
moreelements (called information items in XML terminology). The body block servesas
the container for the message,while the headerblock is intendedfor extensions.A SOAP
messagemay be processedin a pipeline of SOAP nodes. Each node may be designated
to handle certain extensions.An extensionin the headermay be declaredas mandatory,
in which caseit must be processedalong the pipeline. The body may contain any XML
document, in particular, a representation for a remote invocation. The standard also
speci�es a special body payload for exceptionconditions, referredto as faults. Figure 4.1
gives a sample message,with its parts highlighted. Its header contains a mandatory
extension Transaction , and its body shows the responseof an invocation to method
GetLastTradePrice .

SOAP dealswith the low-level packagingof messages.WSDL [158] addressesthe next
layer up { namely description of remote services.The description covers two areas: the
speci�cation of servicesand deployment information. The servicespeci�cation consistsof
a collection of operations. Every operation speci�es its input and output messages. An

88

CHAPTER 4. Fidelis and Web Services 4.1. Introduction

operation may beone-way, request-response,solicit-responseor noti�cation, dependingon
the existenceof input and output messages.A messagemay include a collection of typed
parameters. Typesmay bespeci�ed in XML/Sc hema[159, 160] or other schemalanguages.
The deployment information for a serviceis speci�ed as a collection of ports, whereeach
port o�ers a set of operations. A concretebinding for a servicespeci�es the URL address
for those ports. A feature in WSDL is that components are separatedinto abstract
de�nitions and concretebindings, which allows reuseof components. For example, an
abstract messagede�nition may be bound into two di�eren t data representations, oneas
a SOAP messageand the other as an HTML form submission.

UDDI [161, 162] complements WSDL, providing a registration and discovery frame-
work for web services,i.e. a trader service. Conceptually, it o�ers three types of in-
formation: white pages,containing the contact details about a business;yellow pages,
alsocontaining the contact details but organisedvia a classi�cation taxonomy; and green
pages,containing the technical information for accessingthe services.The white and yel-
low pagesinformation is represented in a businessEntitystructure. It is associated with
oneor more businessService structures, which describe the servicesor businessprocesses
o�ered, with someoptional, human-readabledescription. The greenpagesinformation
is described in a bindingTemplate, which is associated with every businessService.It
contains two vital piecesof information, an accesspoint and a binding key to a tModel.
A tModel serves as an abstract standard, de�ning the servicebehaviour and the wire
protocol (possibly in WSDL).

4.1.2 Design issues

One of the fundamental characteristics of the web serviceenvironment is its global and
open nature. Any application designfor web servicesmust thereforeconsiderthe circum-
stanceswhere previously unknown principals attempt to interact. Existing technologies
such as the UDDI o�er solutions at the servicelevel, i.e. searching, locating and invoca-
tion of services.Issuesspeci�c to trust management must alsobe addressed.Prior to the
discussionon theseissues,recall that principal autonomy is one of the prime principles
behind the design of Fidelis, as described in Chapter 3. This means,broadly, that a
principal has the discretionary power to:

� de�ne its policies. This includesboth the de�nition of trust statements, actionsand
their inter-relationships.

� decidethe meansto de�ne and describe its policies. The useof the Fidelis Policy
Languageis one possibility, while other possibilities include using a proprietary
language,or somegraphical policy editor.

� chooseappropriate data representations for its trust instances.Choicesmay be sub-
ject to internal interoperability, backward compatibilit y, or technologiesavailable.

With the notion of principal autonomy in mind, somemajor designissuescanbedescribed:

1. In terop erabilit y. When two principals (either previously known or unknown to
each other) attempt to interact, theseissuesmust be considered:

89

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

1.1 Creden tial represen tation. Credentials in the system are trust instances.
The designshould allow a variety of representations for trust instances,e.g.
X.509 or SPKI certi�cates, XML credentials, etc. A common representation
must be agreedupon by both sidesor, under somecircumstance,it may be
su�cien t for the recipient to understandthe sender'scredentials.

1.2 Common ontology . As trust statements are intended to expressarbitrary
beliefs,it is essential to establisha commonvocabulary(ontology) that speci�es
the structure and semantics for trust statements.

1.3 Policy represen tation. If principals need to exchangepolicies (seeitem 2
and 3), a commonrepresentation for policy exchangemust be agreedupon.

1.4 Policy semantics. As policiesmay bespeci�ed by di�eren t means(e.g.policy
languagesor tools), di�eren t semantics exist. Establishing a common policy
framework is hencea prerequisiteto enablepolicy-level interoperation.

2. Policy discovery. Assuminga principal discoversother unknown principals through
somedynamic discovery schemesuch as UDDI, it will further needto �nd out the
policies supported by these principals in order to gain trust (i.e. obtain trust in-
stances)or requestservices.

3. Policy negotiation. More advancedprincipals may support policy negotiation,
which gradually works towards an agreement with unknown parties, by incremen-
tally disclosingand exchangingpolicy and credential information.

4. Creden tial disclosure. Provided the policy is known, it is often desirablefor a
principal to disclosethe least set of credentials, just su�cien t to satisfy its request.
This prevents information leakagethrough over-disclosure.

5. Ligh tweight principals. The designshouldhave provision for lightweight, mobile
principals. There are two sub-issues:

5.1 Creden tial managemen t. Mobile devicestend to be small, limited in re-
sourcesand more exposedto security hazards. One option is to delegatethe
tasks of credential management to other principals where appropriate, thus
reducing the useof resourceson the device,and at the sametime preventing
credential or key theft.

5.2 Supp ort for disconnection. A disconnectedprincipal should not causedis-
ruption of the conveyancenetwork in which it hasparticipated. In particular,
the disconnectionof a truster should not prevent the useof trust instancesit
has issued.Symmetrically, a disconnectionshould causea minimal impact on
the usual operations of the disconnectedprincipal.

The issuesdiscussedhere drive the designdecisionsthroughout the development of the
work presented in this chapter. Whereappropriate, referencesto theseissueswill bemade
in the rest of the chapter.

4.2 Service architecture

The system consistsof a collection of SOAP nodes, as de�ned in [156]. A SOAP node
is a processingentit y for SOAP messages,and may generatemessagesfor other SOAP

90

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

nodes. Each node may provide servicesasmethods. Thesemethods are mapped directly
into Fidelis actions, where the method name maps to the action name, and arguments
of a method invocation map to parameters of an action instance. A node may also
implement a number of interfaces to support trust management services, in addition
to its own methods. These interfaces are de�ned in WSDL, and include conveyance,
trust inference, credential management, policy interrogation, and trust agent. Theseare
collectively referredto as the Fidelis interfaces.

4.2.1 Lo cating principals

A SOAP node may represent oneor more principals. By this, we meanthat a node may
implement interfaceson behalf of principals, primarily for two purposes:

� credential management, which includesconveying trust, managingand safeguarding
trust instances;

� trust inference, e.g. interpreting and answering queriesagainst the principal's poli-
cies.

A node maintains a list of principal identi�ers that it represents. There is no strict map-
ping requirement betweenprincipals and nodes. A node may represent a singleprincipal,
or may be sharedamongmultiple principals { likely in an organization. It is alsopossible
for the sameprincipal to be represented by multiple nodes,e.g. a user on the move may
simultaneouslybe represented by both her mobile deviceand her o�ce computer.

A problem that needsto be addressedis the location of principals: given a principal
identi�er, �nd the list of nodes that act on its behalf. Before the discussionof possible
solutions,it is worth noting that this lookup is requiredif principals only know each other
by identi�ers. An example is where a principal intends to convey trust instancesto a
friend, in which casethe node where the friend is represented needsto be discovered.
Communication between strangersoften starts by contacting a node, either previously
known, or located dynamically by UDDI.

We refer to an instance of node-principal binding as a presence. A presencecan be
discovered through a number of means. The architecture doesnot prescribe a standard
approach but instead leveragesexisting web service technologies. A presencemay be
directly bound to a principal identi�er, e.g. the truster �eld of a trust instance may
include an attribute that givesthe URLs of representativ e nodes. However, this solution
is only possible if the presenceis static. Therefore it is more suitable for principals
with a well-known, persistent presence,e.g. a University, a government agency, etc. For
individuals whosepresencefrequently changes,ad-hoc, out-of-band solutions such as e-
mail communication may su�ce. A more plausible approach, however, is to employ
directory services. A principal identi�er may hencebe associated with a list of URLs
of directory services,where the current presenceof the principal may be looked up. A
URL format for referencingLDAP entries is described in [163] and may be usedfor this
purpose.

Another, more web-servicecentric approach is to register principal identi�ers with
UDDI registries, as an entry in the identi�erBag of a businessEntit y structure. The
principal representing a businesstogether with the binding location can then be searched
using standard UDDI methods. One could also host a white pages,directory servicefor

91

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

a local domain (e.g. a department, a branch, etc), mapping principals to nodesand vice
versa.

4.2.2 Conveyance in terface

The conveyanceinterfacede�nes the mechanismsfor trust conveyance,supporting point-
wise transfer of trust instances. It de�nes two styles of interfaces: push and pull. For
the push interface, the conveyancesourceinitiates the transfer, while for the pull inter-
face, the conveyancetarget requestscertain trust instances. A node may o�er either or
both styles. The push-style interfaceis suitable for a principal to actively distribute trust
knowledgeas it is gained, whereasthe pull-style interface is suitable for a principal to
passively sharetrust knowledge.

The pull interface de�nes a getTrustInstance method that takes a sourceidenti�er,
a target identi�er and a trust template1. A trust template can be thought of as a trust
instancewith un�lled parametersand/or truster and subject. We say a trust template is
complete if all parametersand both the truster and subject are provided. It is di�eren t
from a trust instance becauseit is not signed. A trust template follows the standard
representation described in Section4.4. When invoked, the node �rst determineswhether
it represents the sourceprincipal. If so, it returns the trust instancesmatching the trust
template. The target identi�er is not directly used,but givessupplementary information
that may be useful for audit or security purposes,e.g. a sourcemay refuseinteraction
with, or restrict interaction to, certain principals.

For the push interface, a sourcesendstrust instancesasynchronously. The target
principal �rst registers for conveyance,expressingits interest in certain trust instances.
A registration requestconsistsof a sourceidenti�er, a target identi�er, a trust template,
reply addressesof the target principal and a registration policy. Once a registration is
received, the node determinesif the requestedconveyanceis allowed and raisesan excep-
tion if not. Otherwise, it adds the registration into a registration table, which contains
entries of registration, indexed by the sourceprincipal and the name of trust instances.
When the node learns about a new trust instance owned by principals it represents, it
checks through the table and initiates the conveyanceprocessaccordingto the policy of
each registration if matchesare found. A node learns about new trust instancesfrom a
number of sources: directly from those principals it represents, conveyance from other
principals, or as results of trust inference,seeSection4.2.3.

The registration policy is a collection of name-value pairs, expressedin an XML for-
mat. It �ne-tunes how a registration is handled. A node should respect the registration
policies it understands,and may discard those it does not. A registration policy may
be taggedas mandatory, similar to SOAP headerentries, in which case,registration will
fail if the node fails to understandor comply with the policy. This processingsemantics
allows application-speci�c, extendedpolicies to be supported. The standard policiesare
summarized:

� Urgency A target principal may expresshow soon a new trust instanceshould be
sent. Possiblechoicesare: immediate, bounded time, bounded volume and unspeci-
�e d. If immediate is speci�ed and the policy accepted,the node shouldattempt, by

1Note that trust template here is not the trust template syntax term in Chapter 3 although it serves
a similar purpose.

92

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

best-e�ort, to sendnew trust instancesas soon as it knows about them. Bounded
time speci�es a maximum period of time a node can hold a trust instance with-
out attempting to sendit. This period excludesdelay causedby network failures.
Bounded volumeallows the target principal to specify the maximum volumeof trust
instancesto receive over a �xed period, e.g. maximum 100 per hour. This is use-
ful to reducethe resourceoverheadby constraining the receivingrate of new trust
instances.Unspeci�e d, which is the default, allows a node to choosethe most con-
venient time to commencetrust conveyance. This policy allows a target principal
and a sourcenode to trade o� betweentrust urgency and resourceload. It serves
mostly as a hint rather than a strict demand.

� Persistence By default, a registration entry is removed oncea conveyanceis suc-
cessfullycompleted. If a trust instanceinvalidatesfrequently, a repeatedregistration
may be requested.It is quali�ed with either the number of repetitions or an expiry
time. This determineswhen a registration entry can be removed.

� Reliabilit y If there is a network fault whena conveyanceis taking place,the process
will fail without further retry. This behaviour is acceptableif the nodealsosupports
a pull interface or has other meansto deliver trust instances. A registration may
demandreliabilit y, in which casea failed attempt will be queuedand retried at a
later time, until it succeedsor a threshold number of times hasbeentried.

Note that the processingof certain registration policiesmay require the sourceprincipal
to maintain states about the interestedtarget principals. For example,the semantics of
the bounded volumepolicy requiresthe sourceto remember the number of trust instances
sent to a target principal, and that state needsto be reset periodically. The mechanism
to support asynchronous trust conveyance(i.e. the push interface) is therefore stateful.
However, this is di�eren t from the mechanism for processingtrust instances,which is
stateless.This will be further clari�ed in the next section.

4.2.3 The trust inference in terface

The trust inferenceinterfaceencapsulatesthe evaluation of both trust policiesand action
policies. It hasa singlemethod, infer. For spaceand readability reasons,its de�nition is
given herein Java syntax. However, note that the actual interfacede�nition is in WSDL.

InfResult infer (CredentialSet trust_instances,
QueryTemplate template,
Environment environment,
int flag)

The argument trust_instances is a setof trust instances(or their references),template
is either a trust or action template, environment is a set of name-value bindings, and
flag speci�es additional settings, e.g. whether the inferencetrace should be generated.
The return valuecontains either a (possiblyempty) setof newtrust instancesor a Boolean
value, and optionally an inferencetrace. The evaluation of this method dependssolely
on the given arguments, which are either provided by the requester(trust_instances ,
template and flag) or collected from the context (environment). There is no state

93

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

maintained betweeninvocations. The provided mechanism for inferring trust decisionsis
thereforestateless.

The concreterepresentation of a trust template is described in Section4.4. In abstract
terms, it can be written as:

name(param; :::) : tr uster ! subject

where name gives the name of a trust statement or a wildcard, param may either be a
value or a variable, truster and subject may either be a principal identi�er, a variable or
a wildcard. When name is a wildcard, param will becomeirrelevant. An action template
can be written similarly as:

name(param; :::) : r equester

wherename must refer to the nameof an action (no wildcard allowed), param may either
be a value or a variable, and requester may be a principal identi�er, a variable or a
wildcard. Depending on the information in a template, infer answerssix typesof query:

� Trust establishmen t { given name, truster and subject, determineif the named
trust statement could be instantiated. If successful,return parametervaluesof the
result trust instance.

� Horizon tal coverage { given name and truster , determine the completeset of
principals who may obtain trust statement name from the speci�ed truster, and the
parametervaluesfor the result trust instances.

� Vertical coverage { giveneither truster or truster , or both, computethe complete
set of trust instancesbetween them. This determinesthe maximum trust that a
truster can assert(or a subject can obtain) at the time the inferenceis executed.

� Complete coverage { givena blank trust template (i.e. name, truster and subject
areall wildcards), computethe completesetof trust instancesthe policiesmay give.

� Action decision { given name and param, determinewhether it can be satis�ed.
This is the typical type of query for determining accesscontrol decisions,and is also
called authorization.

� Action coverage { given name, determine the completeset of action instances
the given set of trust instancessatisfy.

When invoked, the node consultsits policiesand attempts to infers the required type
of answer. Somepoliciesmay include methods to obtain additional environmental infor-
mation, in which case,thesemethods are performedto completethe environment. Only
if all required environment bindings are available, can a policy be evaluated. An algo-
rithm implementing the evaluation semantics of policies in the Fidelis Policy Language
is described in Section 5.1. New trust instancesreturned as a result are unsigned,and
should be signedby appropriate nodesif they are to be usedexternally. When multiple
trust instancesare returned (e.g. for coveragequeries),they will be packed into a SOAP
array.

The feasibility of coveragequeriesdependsgreatly on the nature of the policies be-
causepolicy evaluation may depend on environment bindings that are not provided in a

94

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

Environment

Policy
interrogation

Trust
inferenceAccess decision

yes/no,
inference trace

Trust policies store

Request Application
Service

Figure 4.2: Trust inference- action decision

query. For this reason,action coveragequeriesare often meaninglesssincethe potential
set of environments for thesequeriesis often large. Moreover, if a policy hassomeexter-
nal dependency(e.g. databasequeries),the result will only be valid at the instant when
the query is processedsinceexternal conditions may change. The result is thereforeonly
reliable as a hint. Furthermore, coveragequeriesare usually very expensive, involving
inferenceover a large number of policies. However, if policies are free of extra environ-
ments and/or external dependencies,coveragequeriesenablesimultaneousestablishment
of multiple trust relationships,and in the extremecase,obtaining maximum trust from a
principal. A node should weigh the trade-o�s and prudently o�er coveragequerieswhere
they �t.

A trust instance passedto infer may either be an actual instance or a referenceto
locateit. A mechanismfor automatedcredential collectionis describedin the next section.
The method argument flag may indicate if the caller wishes to obtain the inference
trace. However, the processingnode may refuseor limit how much of the trace should
be provided. It may posea security risk if the completetrace is fed back sinceit enables
probing of internal policies. Nevertheless,the inference trace is valuable for auditing
purposes,especially if an inferencenode is only usedinternally.

A nodesupporting the trust inferenceinterfaceis associatedwith a setof trust policies.
Thesecouldeither bedirectly provided to the node(e.g. loadedfrom a �le) at deployment,
or be retrieved from a policy interrogation node, seeSection 4.2.5. This is suitable for
environments where policies are to be shared among several nodes, and central policy
management is desirable. Modi�cation and update to policies therefore only take place
at a single location, which helps improve policy consistency.

Figure 4.2 illustrates the interaction and relationship between a principal (i.e. the
application service)and supporting components. Each \m ushroom box" (squarebox with
attached circles) represents a component, which may be an integrated software module
or a separateSOAP node. Each mushroom (a circle with a line) represents an interface
supported by the component. The application servicereceivesan invocation request,upon
which it consultsits action policiesfor an accessdecision. It initiates a query by passing
the trust instancesreceived with the request to the inferencecomponent, where policy
computation is performed. The result is then provided back to the service.The inference
component is associated with a policy management component, which servespolicies to
the inferencecomponent upon request.

95

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

4.2.4 The creden tial managemen t in terface

Typically a principal would manageits own trust instances.Under somecircumstances,
it is desirableto delegatethese tasks to another trusted node that o�ers the credential
managementinterface. Someexamplesdemonstrating this needinclude:

� a mobile user frequently works on di�eren t computers,e.g. at home, at the o�ce,
at clients' o�ces, or on the road. By keepingher credentials at a central credential
management facility, it allows the useof a single identit y acrossall theselocations,
yet maintaining consistencyfor other principals.

� for principals on mobile devices (e.g. mobile phones, personal digital assistants
(PDAs), etc), becauseof constrainedresources,greaterexposureto security attacks
and possibledisconnections,it may be preferred to o�oad the credential manage-
ment tasks to other trusted nodes.

� Increasedredundancy. A principal may createmultiple presencesto improve avail-
abilit y. This is especially important for global networks like the Internet where
faults are always occurring in someparts of the network.

Conceptually, a credential management nodemaintains a collectionof credential bags,
where each bag contains credentials owned by a principal. The credential management
interfaceo�ers two categoriesof methods: privileged and public. Privileged methods can
only be invoked by the owners,while public methods are available to anyone. A request
to a privileged method needsto be signedby the requester. The node, upon receiving
the request,needsto determine its integrity and freshness,and whether the requesteris
permitted for the requestedmethod.

There are four privileged methods: addCredential, removeCredential, getMatchedCre-
dentials, getAllCredentials. Thesemethodsarede�ned asfollows(alsoin the Java syntax):

CredentialRef addCredential (Credential trust_instance)
void removeCredential (CredentialRef ref)
CredentialSet getMatchedCredentials (QueryTemplate template)
CredentialSet getAllCredentials ()

All thesemethods identify the credential bag to operateon using the requester'sidentit y,
and asinvocation of thesemethodsmust besignedby the requester,the requesteridentit y
is always known. It is henceunnecessaryto explicitly add an argument to thesemethods
to identify the requester.

The addCredential method adds a credential to the bag belonging to the requester
and returns a referencekey. The removeCredential method is used to remove the cre-
dential referencedby the key given as an argument from the requester'sbag. Both get-
MatchedCredentials and getAllCredentials return multiple credentials of the requester.
The getAllCredentials method returns all credentials belonging to the requester. The
getMatchedCredentials method takes a trust template as argument, and returns all cre-
dentials matchedby the template. This allows selective retrieval of credentials, e.g.issued
by a particular truster, designatedto a particular subject, or a speci�c trust instancewith
a matching nameand parameters.Thesetwo methods are privileged in order to prevent
\credential harvest", i.e. arbitrary retrieval by a random principal.

Public methods include getCredential and getCredentials, de�ned below:

96

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

Trust inference

Trust inference requested

Collecting trust instances

Collecting trust instances

....

Time

Credential
Management

Credential
Management

Figure 4.3: Automated credential collection

Credential getCredential (CredentialRef ref)
CredeentialSet getCredentials (CredentialRefSet ref_set)

The getCredential method takes a single referencekey and returns the credential, and
the getCredentials method works similarly but for a set of credentials. The security of
these methods lies in the quality of the referencekeys. While the format for keys is
implementation-speci�c, the keys should not be predictable, e.g. sequential, to prevent
credential retrieval basedon key guessing. The recommendedapproach for producing
the keys is to usecryptographic hashalgorithms on the credentials, e.g.MD5 or SHA-1,
which will provide appealing uniquenessand unpredictability properties.

The credential management interface is designedto facilitate automated credential
collection. Recall from the previous section that trust instancespassedto an inference
interfacemay either be concreteinstancesor references.A referenceconsistsof a pair of
URL and key, wherethe URL addressesa credential management node and the key is the
local referenceat the node to locate the trust instance. A compliant trust inferencenode
automatically fetches trust instancesusing getCredential and/or getCredentials prior to
performing the inference.

Figure 4.3 illustrates the credential collection mechanism. The principal initiates a
trust inferencerequest,which causesthe responder node to initiate further requestson
other nodes to retrieve referencedtrust instances. While the �gure shows a sequential
interaction, multiple credential collections may proceedsimultaneously. If the fetching
of credentials fails, the inferencemay either terminate with an exception, or continue
without the missingcredentials. This is determinedby policy.

4.2.5 The policy in terrogation in terface

The policy interrogation interface speci�es methods for querying and retrieving policies.
It is designedto facilitate communication betweenstrangersand enablecentralized man-
agement of policies. If a principal locatesa strangerwith whom it wishesto communicate
(e.g. to carry out a businesstransaction, to obtain services,etc), one prerequisite is to

97

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

�nd out and agreeon the policiesde�ned by the strangerparty. There are two approaches
to achieve this:

� A node may publish its ontology and policies. This could either be distributed at
somewell-known location (e.g. listed by servicedirectories, at a public, searchable
URL) or retrieved directly from the node, provided it supports a retrieval inter-
face. The policy document should be described as a Fidelis Policy Interchange
(FPI) document, which has an XML-structured format. The details are described
in Section4.3.

� Alternativ ely, a node may support programming interfaces for interrogating and
discovering its policies by supporting the interface described in this section. This
approach provides an opportunit y for automating the processof communication
establishment betweenstrangers.This will be explainedlater in the section.

Comparing the two approaches, the former is suitable where someauthority hierarchy
exists, e.g. the top-level authority may publish a standard set of policies for subsidiaries
to implement. The latter, on the other hand, is much more dynamic. It allows strangers
to gain understanding and form trust relationships at runtime. This therefore requires
more runtime and deployment support. It also enablescentralized policy management.
Centralized policy management is particularly suitable in two situations:

� For an organization,policiesoften tend to be large and complex. Centralized man-
agement helps reduce administrative burdens and errors becausepolicies can be
speci�ed and analyzedat a single location, in a consistent manner.

� For mobile computing, whereresourcesare scarceand constrained,managingpoli-
cieson a separate,perhapsnon-mobile, node helps reducestorageand bandwidth
usage.

The principle behind centralized policy management is to separatethe management tasks
of policies from their enforcement. The management tasks we focus on are the storage
and retrieval of policiesand metadata.

The policy speci�cation framework supported by the interrogation interfaceis basedon
the Fidelis Policy Language.Recall that policies include trust policiesor action policies.
Weusethe term metadatato referto the speci�cation of trust statements andactions. The
method getTrustSpec and getActionSpec both take a name,and retrieve the speci�cation
of the named trust statement and action respectively. The speci�cation is given as a
fragment of a Fidelis Policy Interchangedocument. For example,supposeT1 is declared
as

T1 (string a, float b)

in the Fidelis Policy Language.The equivalent declaration in FPI would be:

<Statement name="T1">
<Parameter name="a" type="xsd:string" />
<Parameter name="b" type="xsd:float" />

</Statement>

98

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

 get policies forread("/etc/passwd", ...)

get policies foradmin(user_id)

Policy
interrogation

asserts admin(user_id): self->p
grants read("/etc/passwd", ...)

user(user_id): self->p
asserts admin(user_id): self->p
where user_id == "pb" ||
 user_id == "maj"

Figure 4.4: Policy discovery

This fragment createsa trust statement type which may be referencedby the policy
speci�cation returned by method getTrustPolicies and getActionPolicies. The method
getTrustPolicies and getActionPolicies respectively take a trust template and an action
template as argument, and return a set of policies matching the template. The rule
for determining the relevance of a policy with regard to a template is basedon static
matching. For trust policies, the template is matched against the trust template in the
asserts clause;for action policies, the action template in the gran ts clauseis matched.
Assuminga node de�nes theseaction policies,

... grants read (path, ...) (4.1)

... grants read ("/etc", ...) (4.2)

... grants read ("/etc/passwd", ...) (4.3)

Supposea requesterrequestsaction policiesfor read("/etc", ...) , both policy 4.1 and
4.2 will be returned. Policy 4.2 matchesdirectly with the template, while 4.1 is de�ned
over an arbitrary parameter,which /etc satis�es. Policy 4.3, on the other hand, doesnot
match the template, and is thus irrelevant. The representation for policies returned by
thesemethods is a fragment of FPI. PleaseseeSection4.3.5 for details and examples.

One design goal for the interrogation interface is to support incremental discovery
of policies. A requestermay repeatedly interrogate a node, re�ning the policies to the
desirablegranularit y. Figure 4.4 illustrates this process.In this �gure, the principal �rst
obtains the policy for the read("/etc/passwd", ...) action, which requires a trust
instance proving to be an administrator. It subsequently queries to �nd out how to
becomean administrator. This processof incremental discovery can also be automated.
This is supported through the trust agent interface, described in the next section.

4.2.6 The trust agent in terface

As previously mentioned, when strangers make contact, there are several issuesto be
resolved, e.g. unknown policies and credential ontology, limited mutual trust, etc. Even
when policies are known, it is still in the interest of a requester to disclosethe least

99

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

ServiceTrust agent

Policies

Request

High-level
request

Meta-policies

Policy
interrogation

Figure 4.5: Assistedrequestinitiation through a trust agent.

trust instancesfor a request,especially if they contain sensitive information. The trust
agent interface is designedto encapsulatea principal, providing an active interface on
behalf of the principal. It automatesthe processof policy interrogation and negotiation,
and computesthe disclosureset of credentials for requests. It supports the useof meta-
policies to control and constrain the automation. For example,a principal may specify
that certain trust instancesshouldnever beusedfor action policies. Meta-policiesare just
like other policies and may also be expressedin the Fidelis Policy Language. However,
unlike other typesof policy which are about trust relationshipsor actions, meta-policies
are about policies.

A trust agent may provide assistanceon several aspects. It may act as a front-end
for a principal, providing a high-level interface for services. In this con�guration, the
principal delegatesthe task of selectingtrust instancesto the trust agent, and it issues
a high-level requestfor servicewithout attaching trust instancesto the trust agent. The
trust agent then examinesthe action policies, selectstrust instancesand �nally issues
the actual requestwith those trust instancesto the servicenode. Figure 4.5 illustrates
this. In this con�guration, the trust agent needsto have the private key of the principal
so that it can produce requeststhat appear to originate from the principal. Note that
the sharing of the private key implies the trust agent must be under complete control
and trust of the principal. A possibleimplementation model is as an operating system
processrunning as a privileged user. The trust agent also needsto have accessto the
credential collection of the principal. This could be achieved either by associating it with
a credential management node, or implementing a customcredential management facility
directly. In the former case,sincethe trust agent possessesthe principal's key, it would
be able to invoke privileged methods, thus having full accessto the credential collection.

The trust agent must know the action policiesfor the requestin advance. In the �gure,
the policies are published at somelocation that both the principal and the servicecan
access.This is practical for casessuch asreferencepoliciespublishedby a standardization
organization. A servicenodemay alsoprovide its policiesdirectly upon request,or it may
support the policy interrogation interface, in which case,a trust agent can incrementally
discover policiesas described in the previoussection. A trust agent may also consult its
cached policies from the past. However, as policiesmay evolve, it must implement some
strategy to keepits cache up-to-date. A lazy strategy would be using the cache asa hint
and obtaining updateswhen the policies fail to satisfy requests.Caching policies is only
feasiblefor static policies,i.e. thosethat do not depend on environments to evaluate. For

100

CHAPTER 4. Fidelis and Web Services 4.2. Servicearchitecture

Request

High-level
request

Meta-policies

Service

Meta-policies

Trust agentTrust agent

Policies

Service
invocation

Figure 4.6: Trust negotiation betweenprincipals.

live policies, they must be querieddynamically, tailored to each request.
One aspect of meta-policies is to allow principals to dictate the rules for choosing

credentials for requests.A FPL pro�le for meta-policiesis described in Section5.2.3. Here
we provide a brief descriptionto motivate the approach. The pro�le is designedto express
four typesof conditions: designatedprincipal disclosure,context-speci�c disclosure,trust-
directeddisclosure,and mutual exclusion.A principal may extendthis pro�le or useother
proprietary policiesto expressits meta-policiesif needed.An examplemeta-policy is given
here,

negotiator(): self -> 0xb258d29f
grants disclose(T2(a, b): self->p)

It statesthat trust instancesmatching T2(a, b): self->p may beusedwhennegotiating
with principal 0xb258d29f. The meta-policy pro�le employs a denial-by-defaultpolicy,
i.e. if a trust instanceis not explicitly allowedto bedisclosed,disclosurewill beprohibited.

Trust agents can also automate negotiated requests. A negotiated request is an ap-
proach to mechanizethe policy negotiation process.The ideaof negotiatedrequestis that
a pair of trust agents carriesout a negotiation conversation, gradually exchanging trust
instances.When su�cien t trust is gainedon both sides,the requestwill be performed.

Figure 4.6 illustrates the processof negotiatedrequests.In this example,the requester
hasno direct accessto the servicepolicies,e.g.the policiesmight be con�dential or highly
dynamic thereforenot worth publishing. The trust agent on the servicenode acts as an
interceptor for the service. It interprets the meta-policies to determine whether certain
policiesare applicablefor a request. Initially , the trust agent on the requesternode issues
a requestwith an empty bag of trust instances. The servicetrust agent responds with
an \insu�cien t trust" exception,and may o�er someservicepolicies. The requestertrust
agent, upon receivingthe exception,analyzesthe o�ered policieswith respect to its own
meta-policies, and suppliesmore trust instancesto ful�ll the requirement. It may also
respond with an \alternativ e policy" request with somecredentials if it does not wish
to comply with the returned servicepolicies. Pleaserefer to Section5.2 for an in-depth
description of trust negotiation.

Note that meta-policies in a negotiated requestsessionplay two di�eren t roles. On
the requesterside, meta-policies are used to specify what credentials may be disclosed
and their conditions. On the responder side, in addition, meta-policiesspecify conditions
for disclosingpolicies.

101

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

4.2.7 Iden tifying requesters

A basic requirement in any authorization system is that the requesterof an invocation
must be identi�ed beforeauthorization decisionscanbe made. There is no exceptionwith
Fidelis. Recall that in Fidelis, all principals are identi�ed by public keys. This servesasa
readymechanismfor establishingthe requesteridentit y. The basicideais that a requester
should sign its invocation requestwith its public key. A node should then �rst verify the
signaturein a requestand ensureits freshnessto prevent replays, and proceedif and only
if theseconstraints aresatis�ed. For the work in this thesis,a solution basedon SSL/TLS
is designedand implemented.

SSL/TLS [164] is the de-facto standard for providing security for today's web ap-
plications. Basedon X.509 certi�cates, the SSL/TLS protocol provides con�dentialit y,
authentication, integrity and non-repudiation to any transport layer protocol, includ-
ing HTTP { the backbone transport protocol of the WWW. For Fidelis utilisation of
SSL/TLS, a principal must �rst produce an X.509 certi�cate containing its public key.
Sincethe only relevant information in the certi�cate is the public key, the implementa-
tion forcesthe SSL/TLS stack to ignore other components in the certi�cate, such as the
subject name, issuername, validit y period, etc. The certi�cate must be self-signedas a
certi�cate chain will have a special meaning,discussedlater. The SSL/TLS protocol is
con�gured to provide at leastauthentication and integrity guarantees. This requiresboth
sidesof the communication to carry out a challenge-responsehandshake to ensureposses-
sion of the corresponding private keys. Therefore,oncea SSL/TLS sessionis successfully
established,the requesteridentit y is alsodeterminedas a result.

Our designimplements non-standardsemantics in order to expressrequestsmadeby
a group or threshold principal. An invocation request initiated by a group principal is
conceptually one that is signed by all the principals in the group (or for a threshold
principal, a threshold number of principals in the group). However, SSL/TLS allows at
most onecerti�cate on each sideof the communication to be usedfor establishinga ses-
sion. To overcomethis limitation, it is necessaryto interpret the semantics of certi�c ate
chains di�eren tly within Fidelis web services. Certi�cate chains are interpreted as the
explicit consent of all signing principals to act for an invocation. Note that this interpre-
tation is drastically di�eren t from the standard X.509semantics, wherea certi�cate chain
represents a chain of certi�cation.

Ideally, a pure XML-based solution should be developed, and somecustom protocol
should be designedto facilitate the useof multiple public keys in an invocation request.
WS-Security [152] provides a foundation building block for adding security information,
e.g. digital signatures, to SOAP messages.A recently proposedstandard, the Security
Assertion Markup Language(SAML) [154, 155], provides protocols which may be used
to implement the semantics requiredby Fidelis. Thesedevelopments are neverthelessleft
as future work.

4.3 Fidelis Policy In terc hange

Fidelis Policy Interchange (FPI) is an XML document format designedfor describing
ontologies and policies in the trust framework. It facilitates interoperability between
nodes,whereinternal, local policy representations may beused.The goalis to establishan

102

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

interchangerepresentation from and to which internal representations may be translated.
This sectiondescribesthe featuresof FPI.

4.3.1 Overview

FPI is basedon the policy framework of the Fidelis Policy Languagepresented in Sec-
tion 3.5, supporting both trust policies and action policies. It augments the basic lan-
guageframework with XML Schemafor describingtypesand trust ontologies,and XML
Signature, for standard encoding of principal identi�ers. It also integrates support for
namespacemanagement, wherede�nitions of trust statements and actions may be quali-
�ed in declarative namespaces.In the current version,FPI documents are scoped under
the namespaceidenti�er:

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001

The basic structure of a FPI document consistsof �v e parts (`*' denoteszero or more
occurrencesof the component),

<Interchange>
<Import/>*
<Types/>*
<Schema/>*
<Principals/>*
<Policies/>*

</Interchange>

Generally, each of thesecomponents may appearmorethan oncein any order. References
neednot be declaredbeforethey are usedso long as they are declaredsomewherein the
document. The <Schema>sectionsde�ne the vocabulary used in the policies. These
include declarationsfor trust statements and actions. They may refer to standard XML
Schematypes,or customtypesde�ned in the <Types>sections.The <Policies> sections
contain de�nitions of policiesde�ned in terms of the entities declaredin <Schema>sections
plus other entities imported from other FPI documents through <Import> components.
The <Principals> sectionscollect frequently referencedprincipals and assignshorthand
identi�ers for them to be usedin other parts of the document.

4.3.2 The top-lev el container

All FPI documents have a single root element <Interchange> . It includesa mandatory
attribute @targetNamespace2, which has type xsd:anyURI. This attribute introduces
a namespaceunder which all the entities (including all trust statements, actions and
policies) de�ned in this document will be scoped. An exampleis,

<Interchange xmlns="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001"
xmlns:ns1="urn://opera.cl.cam.ac.uk/demo/test1"

2As with the typical usagein XML standards,namespre�xed with an \at" sign (@) denoteattributes.

103

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

targetNamespace="urn://opera.cl.cam.ac.uk/demo/test1">
...
</Interchange>

The namespaceidenti�er serves the purposeof version number, i.e. it is expected to be
stable with the entit y de�nitions and should changeonly if the accompanying de�nitions
change. The attribute xmlns de�nes the default namespaceof the elements in the docu-
ment. The xmlns:ns1 attribute binds the given namespacewith a pre�x , ns1. Theseare
the standard mechanismsemployed in XML Namespace[165].

4.3.3 Schema de�nitions

Schemade�nition sectionscontain de�nitions of trust statements andactions. A <Schema>
element may have oneor more<Statement> and/or <Action> elements, which de�ne the
entit y structure. An example<Statement> de�nition is,

<Statement name="user">
<Parameter name="UserID" type="xsd:string" />
<Comment>
The subject is a recognized system user, with the user name{UserID}.
</Comment>

</Statement>

The corresponding de�nition in FPL is,

user (string UserID)

There may be zero or more occurrencesof <Parameter> elements. A <Parameter> has
a mandatory @nameattribute, which gives the formal name of the parameter. Its type
is given in a @typeattribute, which may refer to a standard XML Schema type, types
de�ned in <Types>sections,or from imported documents. The @typeattribute may be
omitted, in which case,the type de�nition must be given directly in its children using
XML Schema<complexType>or <simpleType> fragments, e.g.

<Parameter name="UserID">
<complexType>
...
</complexType>

</Parameter>

<Comment>elements contain free-formtext, intended to provide human-readabledescrip-
tions. They document the purposeof the entit y andmay alsodescribe legalimplications or
guarantees. Actions are de�ned identically, except the element <Action> is usedinstead
of <Statement>.

104

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

4.3.4 Principal declarations

Recall that principals are identi�ed as public keys. As public keys are essentially long
strings of numbers, they convey little meaningto humans,and additionally they can be
inconvenient to work with. The primary intention of the <Principals> sectionsis to
improve the readability of principal identi�ers by assigningthem with human-readable
identi�ers.

The informal syntax for the <Principals> element is given below (`+' meansoneor
more occurrencesand `?' meanszeroor oneoccurrence),

<Principals>
(<Principal principalID="id" valueType="URI">

<!-- content model depending on @valueType-->
</Principal>)*

(<Group principalID="id" valueType="URI">
(<Principal principalRef="ref"? valueType="URI"?>

<!-- content model depending on @valueTypeor ../@valueType -->
</Principal>)+

</Group>)*
(<Threshold principalID="id" valueType="URI" threshold="integer">

<!-- sameas Group -->
...

</Threshold>)*
</Principals>

A <Principals> element contains a number of <Principal> , <Group>and <Threshold>
elements. A <Principal> element speci�es a name in the @principalID attribute and
contains a public key. A public key is given in the format indicated by the mandatory
attribute @valueType. Currently the only supported format usesthe XML Signature
standard [166], with the identi�er,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xmldsig

Under this valuetype, the content of <Principal> contains anXML Signature<ds:KeyInfo>
element.3 The <ds:KeyInfo> element is a container for a wide variety of key information,
ranging from plain DSA, RSA public keys, Base64-encoded PGP, SPKI certi�cates, to
an XML representation of X.509 certi�cates. The designof FPI leveragesand integrates
with this work to provide a standards-compliant approach to specify public keys.

An exampleof a principal declaration section, which binds the identi�er `Alice' to a
key, is provided below,

<Principals>
<Principal principalID="Alice"

valueType="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xm ld si g">
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

3Note that in this section, the pre�x ds referencesthe XML Signature namespace,http://www.w3.
org/2000/09/xmldsig#

105

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

<ds:RSAKeyValue>
<ds:Modulus>xA7SEU+e0yQH5MICpzCCArm...</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyInfo>

</Principal>
</Principals>

<Group>and <Threshold> elements assigna name to a group or a threshold principal
respectively. They share an identical structure, which contains a list of <Principal>
elements. This <Principal> element is similar but di�eren t from the <Principal>
element directly inside the <Principals> element. It includes an optional attribute
@principalRef , which refersto a namedprincipal. It is however not permitted to de�ne
a name inside the enclosingscope, therefore the use of @principalID is prohibited. A
<Threshold> element hasa mandatory attribute @threshold, which givesthe threshold
value.

4.3.5 Policy speci�cation

Policy speci�cation is given in <Policies> elements. Each <Policies> element contains
one or more <TrustPolicy> and <ActionPolicy> elements. These two elements cor-
respond to trust policy and action policy speci�cations in the Fidelis Policy Language
respectively. Consideran example,with the following trust statements de�ned,

user (string UserID)
admin (string UserID)

where the holder of a user() trust instance is a recognizedsystemuser, with the local
useridenti�er as the parameterUserID, and similarly for admin() . Supposethe user`pb'
and `maj' are the local systemadministrators. A trust policy can be written as,

user(a): self -> b
where a == `pb' || a == `maj'
asserts admin(a): self -> b

The policy statesthat if a user is assertedto be either `pb' or `maj', a new trust instance
admin() may then be issuedfor them. The equivalent trust policy in the interchange
representation is as follows (assuming trust statements user and admin have already
beende�ned),

<Policies>
<TrustPolicy>

<TrustUse name="ns1:user">
<Parameter name="UserID" variableID="a" />
<Truster self="true"/>
<Subject variableID="b" />

</TrustUse>

106

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

<Wherexsi:type="xsd:string"
langType="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xpat h2">

$a = `pb' or $a = `maj'
</Where>
<Asserts name="ns1:admin">

<Parameter name="UserID" variableRef="a" />
<Truster self="true" />
<Subject variableRef="b" />

</Asserts>
</TrustPolicy>

</Policies>

A <TrustUse> correspondsto a trust usesyntax component described in Section3.10. It
requiresan attribute @nameof type QName(an XML Schematype for namespacequali-
�ed names),which refersto the de�nition of a trust statement in the namespace.In this
example,the namespacepre�x ns1 expandsto a full namespaceidenti�er. A <TrustUse>
may contain one or more <Parameter> elements, a <Truster> and a <Subject> ele-
ment. The purpose of <Parameter> elements is to bind a parameter to a variable
placeholder. A <Parameter> element contains two mandatory attributes @nameand
@variableID . The @nameattribute identi�es a parameter of the trust statement as de-
clared, and @variableID assignsan identi�er for a variable placeholder,which must be
unique within the scope of the policy. It may be omitted if a parameter is not used
in a policy, which has a similar e�ect of creating a unique but unreferencedparameter
placeholder.

Both <Truster> and <Subject> share the same syntax. Only <Truster> will be
referred to for brevity of exposition, but unlessotherwise stated, the samedescription
appliesto <Subject> . The syntax is (where j̀' meansa choice),

<Truster principalRef="id"? variableID="id"? self="bool"?>
(<Principal .../> |
<Group .../> |
<Threshold .../>)?

</Truster>

The attribute @variableID assignsa placeholderfor the truster (and symmetrically, for
the subject), and @self is a Boolean value, which is set true to refer to \this principal
which hasspeci�ed the policy". Note that the interpretation of @self is relative, therefore
should be replacedwith absoluteprincipals when exporting policies to avoid ambiguity.
The optional attribute @principalRef refersto a principal de�ned in the principal decla-
ration sections.Principals may alsobedirectly given in the content of <Truster> through
elements <Principal> , <Group>, or <Threshold>. The syntax and semantics for these
elements are identical to thosein Section4.3.4,exceptthe useof attribute @principalID
is not allowed.

Negative trust usesare given in <WithoutTrustUse> elements. They are similar to
<TrustUse>, but in addition, may contain multiple <URL>elements, where each gives a
repository where negative trust instancesshould be checked. The processingsemantics

107

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

requireschecking with any of the listed repositoriesduring policy evaluation. Pleaserefer
to Section5.1.2regardingdistrust repositories.

The <Asserts> element correspondsto the asserts clausedescribed in Section3.5.5.
It hasa mandatory attribute @namewhich refersto the nameof a trust statement. It has
as children one or more <Parameter> elements, a <Truster> and a <Subject> element.
There must exist one <Parameter> element for each parameter declared for the trust
statement. It may either referencea parameterplaceholderor specify a concretevalue as
its content. It has the syntax,

<Parameter name="string" variableRef="id"? environment="bool">
<!-- optional content for a concrete, typed value -->

</Parameter>

where @variableRef referencesa placeholderbound previously through @variableID ,
and @environmentindicates whether the value is supplied from the environment pro-
vided at policy evaluation time. This informs the policy processorthat it is not an error
if @variableRef referencesa non-existent variable. The <Truster> and <Subject> ele-
ments aresimilar to their counterparts in <TrustUse>, with the exceptionthat @variableRef
replaces@variableID .

A trust policy may also have zero or more <Grants> elements, which map to the
gran ts clausesin Section3.5.5. The syntax is a subsetof <Asserts> , without <Truster>
and <Subject> elements and wherethe @nameattribute refersto an action.

The conditional and assignment clauses(where and set) are represented by <Where>
and <Set> elements. These elements are designedto be extensible, i.e. the format of
their contents dependson the extensibility identi�er speci�ed in the attribute @langType.
The format currently supported is the predicatelanguagein the XPath 2.0standard [167].
XPath is an expressionlanguagefor specifying paths in an XML document. In particular,
it contains an XML Schema-aware predicate languagefor comparison,arithmetic, logical
composition, and function calls. This format has the identi�er,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xpath2

An application may de�ne an alternative format and declareit for another format iden-
ti�er. Note that conditional and assignment clausesmay often involve local computation
(e.g. local databasequeries)and may reveal con�dential security information. For these
reasons,they can be explicitly hidden as follows,

<Wherelocal="true" />

This informs the recipient of an FPI document that the policy is subject to local condi-
tional (and/or assignment) computation in addition to the <TrustUse>sand<WithoutTrustUse>s.

Note that there is intentionally no representation for the validit y clause.Recallthat the
main purposeof FPI is to enableinteroperablepolicy distribution, while the determination
of validit y conditions for new trust instancesis a deployment issueand should be at the
discretion of the truster (i.e. where the policy is deployed). It is therefore meaningless
to map the valid clausein the internal Fidelis Policy Languageto the external policy
representation of FPI.

108

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

The syntax for the speci�cation of action policies is a subset of the trust policies.
The <ActionPolicy> element is identical to <TrustPolicy> except for the absenceof
<Asserts> elements.

4.3.6 Linking with other policy documen ts

FPI is designedto enabledistributed authoring of policies. Speci�cally it has a linking
mechanismthat helpsthe reuseof trust vocabulariesacrossdocuments. This is especially
useful when policies are authored in a top-down fashion, where a top-level authority
may de�ne a basic set of trust statements and actions, while leaving the speci�cation
of policies that use these de�nitions to subsidiaries. The linkage is achieved through
<Import> elements. An exampleis given below:

<Import namespace="urn://opera.cl.cam.ac.uk/demo/test2"
location="http://opera.cl.cam.ac.uk/demo/test2.fpi" />

The @namespaceattribute indicates the namespaceidenti�er de�ned in the FPI docu-
ment which can be found at the URL given in @location . This element instructs the
FPI processorto import the trust vocabulary de�ned in the referenceddocument (i.e.
entities de�ned in the <Schema>and optionally the <Types>elements) into the current
document. The imported namespacecan be given a namespacepre�x using the stan-
dard XML Namespace[165] mechanism. Quali�ed names,e.g. the @nameattribute in
<TrustUse> elements, can then be constructed using the namespacepre�x to reference
imported entities.

4.4 Creden tial represen tation

A Fidelis credential is essentially an extendedpublic key certi�cate with a collection of
typed attributes. There is a wide rangeof possiblerepresentations for Fidelis credentials,
including SPKI certi�cates (which may includeattributes astaggedvalues),X.509version
3 certi�cates (which include application de�nable extensions),or indeed any version of
X.509 certi�cates provided they are coupledwith attribute certi�cates.

The web serviceimplementation of Fidelis doesnot mandateany particular represen-
tation within a node. For example,a node may chooseto useX.509 certi�cates to enable
securecommunication through SSL/TLS [164]. Instead, an XML-based representation is
designedto enableinteroperation betweenheterogeneousnodes. The format is known as
the Fidelis InteroperableCredential (FIC) format.

4.4.1 Basic structure

Recall from Chapter 3 that a trust instance consists of an instantiated trust state-
ment, a truster and a subject, a validit y condition and a signature. In the FIC rep-
resentation, a trust instance is an XML document fragment, whosetop element identi-
�es a namespace-scoped trust statement. It contains three mandatory child elements:
<Truster> , <Subject> , and <Valid> , plus an element for each parameter. It also con-
tains at least one<ds:Signature> element, wherethe <ds:Signature> element refersto
the container element of XML Signature [166].

109

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

Considerthe following schema(adopted from Page104),

<Statement name="user">
<Parameter name="UserID" type="xsd:string" />

</Statement>

assumingits namespace(i.e. the valueof @targetNamespacein its containing <Interchange>
element) is,

urn://opera.cl.cam.ac.uk/demo/test1

An exampletrust instancewould be (with someparts abbreviated):

<ns1:user xmlns:ns1="urn://opera.cl.cam.ac.uk/demo/test1">
<UserID>wtmy2</UserID>
<Truster>...</Truster>
<Subject>...</Subject>
<Valid type="status" ...>...</Valid>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

</ns1:user>

The top-level element (<ns1:user>) is in the samenamespaceas that where the decla-
ration of user belongs. Its parameter is given in the <UserID> element whosevalue is
of the type for the corresponding parameter as declared(namely, xsd:string). Other
elements provide information implied by their names,and are discussedin the rest of this
section.

4.4.2 Truster and sub ject

The <Truster> and <Subject> elements contain principal identi�ers for the truster and
subject respectively. Both elements sharethe samesyntax, given informally below:

<Truster>
<Principal valueType="URI">

<!-- @valueTypeelements -->
</Principal>+

</Truster>

A <Principal> element must be associated with a @valueTypeattribute, whosevalue
determinesits content. There is currently one value type identi�er, consistent with the
description in Section4.3.4,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xmldsig

With this value type, the content of the <Principal> element contains a <ds:KeyInfo>
element from XML Signature[166]. The set of <Principal> elements essentially provide
a principal set. For trusters, this gives the set of principals who have signed the trust
instance; for subjects, this indicates the set of principals for whom this trust instanceis

110

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

Method URI identi�er

Timed CRL urn://opera.cl.cam.ac.uk/fidelis/04112001/tCRL
Asynchronous
timed CRL

urn://opera.cl.cam.ac.uk/fidelis/04112001/tCRL- async

Timed renewal urn://opera.cl.cam.ac.uk/fidelis/04112001/tRenewal
Asynchronous
timed renewal

urn://opera.cl.cam.ac.uk/fidelis/04112001/
tRenewal- async

Status check urn://opera.cl.cam.ac.uk/fidelis/04112001/status
Asynchronous
status delivery

urn://opera.cl.cam.ac.uk/fidelis/04112001/
status- async

Figure 4.7: @methodURI identi�ers for online validit y schemes.

relevant. This may be usedto satisfy group or threshold principals in policies,or may be
usedby a single principal in the set of subjects, depending how a request is made (and
signed).

Note especially that there is no representation for threshold principals. The concept
of threshold principals is for policy speci�cation. The truster and subject set of a trust
instance enable the enforcement of threshold-basedpolicies. For example, suppose a
policy states that at least three of the �v e management board members must approve a
management decision. To satisfy this policy, it is su�cien t to present a trust instance
representing a management decisionsignedby a set of three management members.

4.4.3 Validit y condition

The validit y condition of a trust instance is given in the <Valid> element. It supports
both online and o�ine methodsasdescribed in Section3.5.4. The typeof validit y method
is speci�ed through the mandatory @typeattribute, which can be any of offline , CRL,
renewal or status . For the o�ine method, the content of the <Valid> element is a pair
of child elements, <Start> and <End>, whosevalueshave the type xsd:dateTime from
the XML Schema. For the online methods, the <Valid> element hasa @methodattribute
and contains multiple <URL>elements. The <URL>elements specify locations from which
the validit y information may be obtained. The @methodattribute indicates the interface
method supported at those locations. An exampleonline validit y condition is provided
below:

<Valid type="status"
method="urn://opera.cl.cam.ac.uk/fidelis/04112001/status">

<URL>http://opera.cl.cam.ac.uk/fidelis/status/</URL>
</Valid>

Six @methodidenti�ers have beende�ned, shown in Figure 4.7. For a timed credential
revocation list, an identi�er is given to indicate the speci�ed location that publishesan
XML-based tCRL document, with hashedtrust instances.Another identi�er is given for
the asynchronousversion for obtaining this tCRL document. Two similar identi�ers are
allocated for timed renewal. For status query, identi�ers are given for a SOAP-based

111

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

synchronous query method and an asynchronous status delivery method. The example
above indicates that the location, given in the <URL>element, supports the SOAP-based
synchronousstatus query.

4.4.4 Signature

Signingof trust instancestakesadvantageof the XML Signaturespeci�cation [166]. Trust
instancesuse enveloped signaturesin the terminology of XML Signature, which means
a signature is enclosedwithin the signeddocument. XML Signature supports two algo-
rithms for canonicalizingdocuments, with comments and without comments. Canonical-
ization is the processof stripping unneededcharacters (e.g. whitespaces)from an XML
document (or its fragment) resulting in a canonical representation. The signature in a
trust instanceis required to canonicalizewithout comments.

XML Signature supports a variety of transformation algorithms. A transformation
is the processof deriving a set of elements from the canonicalizedXML document for
signingand veri�cation purposes.The signature in a trust instanceis required to usethe
enveloped signature transform (with the URI http://www.w3.org/2000/09/xmldsig#
enveloped- signature), which essentially ignoresthe signature blocks when computing
the set of elements for signing.

An examplesignatureblock for a trust instanceis presented below (with long identi�ers
truncated):

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/..." />
<SignatureMethod Algorithm="http://www.w3.org/..." />
<Reference URI="">

<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#..." />

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>k6kamhjv1tf0g...</DigestValue>

</Reference>
</SignedInfo>
<KeyInfo><RetrievalMethod URI="#truster1"/></KeyInfo>
<SignatureValue>MC0dbCFv3gkVrtt=...</ds:SignatureValue>

</Signature>

The signature may include a <KeyInfo> element that refers to the veri�cation key, es-
pecially when there are multiple trusters. The <KeyInfo> element should contain the
<RetrievalMethod> element with the attribute @URIwhich referencesthe identi�er for
a truster using the XML referencingmechanism. In the above example, the signature
points to the public key with the identi�er truster1 .

112

CHAPTER 4. Fidelis and Web Services 4.5. Summary

4.5 Summary

The emergenceof web servicesrepresents the next step towards an open, global, and
ubiquitous distributed computing platform. This chapter haspresented a comprehensive
designthat implements Fidelis in the web serviceenvironment.

The web serviceenvironment consistsof a collection of inter-communicating nodes,
whereeach implements a number of interfaces. Five interfaces,collectively known as the
Fidelis interfaceswhich facilitate trust management have beendescribed. The conveyance
interface allows trust instancesto be exchangedbetweenprincipals. The trust inference
interface is the core of the architecture, which encapsulatesthe evaluation of policies
and answers queriesmade against thesepolicies. The credential managementinterface
allows the management of trust instances,including collection, storageand retrieval. It is
designedspeci�cally to o�oad thesetasks from small mobile devices,whereresourcesare
limited. The policy interrogation interface is designedto facilitate communication between
strangers,sothat unknown policiescanbediscoveredthrough a query-basedprocess.The
trust agentinterface, on the other hand, is designedto automate communication between
strangers.

In our design, two types of information need to be exchanged in an interoperable
manner: policiesand trust instances.For consistencywith webservicetechnologies,XML
representations have been designedfor both types of data. Fidelis Policy Interchange
(FPI) is essentially an XML version of the Fidelis Policy Language. It however extends
FPL in several respects: namespacesupport, a type system(using XML/Sc hema), and
a standards-basedspeci�cation for principal identi�ers. Trust instancesare represented
in the Fidelis InteroperableCredential (FIC) format, which leveragesthe XML Signature
standard to provide integrity guarantees.

In the next chapter, we will focus on an algorithm that implements the semantics of
the Fidelis policy inferenceprocess,and alsodescribean experimental framework enabling
trust negotiation amongstrangers.

113

CHAPTER 4. Fidelis and Web Services 4.5. Summary

114

5 Inference and Trust
Negotiation

At the heart of the Fidelis framework is the policy inference algorithm. The formal
foundation underpinning the Fidelis policy languageis �rst-order logic, which implies
that the evaluation algorithms of Fidelis policies equateapproximately to inferencesin
Prolog. However, somedi�erences exist preventing standard Prolog inferencealgorithms
(notably, the uni�cation algorithms) to bedirectly appliedto the Fidelis policy evaluation.
These di�erences will be briey described in this chapter. Section 3.5.8 presented the
inferencesemantics from a conceptualpoint of view, stating the abstract goalsand rules
for processinga query. The �rst half of this chapter, Section 5.1, describes a concrete
algorithm implementing the semantics described there.

Onefocusof the designof Fidelis and indeedthe webservicesimplementation described
in the previous chapter is to cater for the open nature of the web where strangersmay
encounter each other and wish to communicate. Section5.2 presents a trust negotiation
framework whereby previouslyunknown partiesmay incrementally learnabout each other,
by dynamically discovering policiesand selectively disclosingsensitive trust instances.

5.1 Policy inference

As previously mentioned, while the Fidelis Policy Languageis basedon �rst-order logic
and its evaluation semantics are similar to the Prolog inferencing, there are two main
di�erences between them signi�cant enough to prevent the use of the standard Prolog
uni�cation algorithms for policy evaluation. First, negative trust in Fidelis policiesneeds
special treatment that may require operational support. In the standard Prolog, because
of the complexity implications, a restricted versionof negation called negation-by-failure
is typically employed. Such semantics are incompatible with Fidelis policies,as absence
of trust in Fidelis merely meansinsu�cien t knowledge,as discussedin Section3.5.3.

Second,Fidelis policesmay contain parameterswhosevaluesare bound explicitly in
set clauses,instead of using parameter matching rules. Theseparametersare similar to
freevariablesin Prolog, and Prolog typically binds variablesusinguni�cation, disallowing
explicit \manual intervention" of variable bindings during the inferenceprocess.Evalua-
tion of Fidelis policiesrequiresmore exible handling of the way variablesare bound.

To allow us to concentrate on the core algorithm, we have addressedthe operational
issuesin separatesubsections.In particular, the management of distrust repositoriesand
the construction of validit y conditions are not coveredby our algorithm description. It is
su�cien t at the algorithm level to assumethat a distrust repository is a databaseof trust

115

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

instancesof negative assertions.

5.1.1 Inference algorithm

On the interfacelevel, an inferencealgorithm takesa setof trust instances,an environment
and a query template (which embodiesthe query) asinput, and outputs a Booleanresult,
and additionally, dependingon the typeof queries,oneor morecompletedtrust templates
(on trust establishment, vertical, horizontal and complete coveragequeries), or action
templates (on action decisionor action coverage). Recall that a completedtemplate is a
template with all placeholdersbound to instancevalues.

The inferencesemantics described in Section3.5.8can be divided into two phases.

� Phase1: Policies that help in deriving the result needto be selectedfrom the set
of available policies.

� Phase2: A subsetof the input trust instancesmust be determinedto satisfy those
policies.

This semantics can be implemented using an algorithm that recursively resolvesthe con-
ditions for a policy, until all conditions have beenmet or somecondition has failed. This
algorithm simultaneouslyaddressesboth phasesin its recursionand may be implemented
using an evaluation stack. For the sake of simplicity and clarity, the construction and
tracking of validit y conditions are discussedseparatelyin Section5.1.3.

We refer to the entit y performing the actual inferenceasan inference engine. Suppose
an inference context consistsof an evaluationstack and an environment. Elements of the
evaluation stack are called evaluation contexts. For each evaluation context, we write \[
state { info]", where state may be one of LOOKUP, UNIFY, EVAL, NEG, SUCCESS
and FAIL, and info gives state-speci�c information. The algorithm works by popping
the top element from the evaluation stack and executing its operation. New evaluation
contexts may be pushedback to the stack and the stack may be spawned if necessary,
in which case,the processwill be performedon both the original stack and the spawned
one. The algorithm terminates on an evaluation stack when there is no more evaluation
context left, or when the context of the state FAIL is reached.

We will �rst needto de�ne the meaningof matching for a trust template to a trust
instance,or to a trust policy.

De�nition Supposett = t(p1; :::; pn) : ptr uster ! psubj ect is a trust template, where t is
a name, pj for 1 � j � n, ptr uster and psubj ect are either variable placeholdersor values.
We say tt matches:

� a trust instance ti = i (val1; :::; valn) : valtr uster ! valsubj ect, where i is a name, valj
for 1 � j � n, valtr uster and valsubj ect are values,if and only if:

{ t is equal to i , and

{ for any 1 � k � n or k = truster or k = subject and pk is a value, then valk
is equal to pk .

116

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

� a trust policy tp if and only if tt matchestt 0 where tt 0 is the trust template in the
asserts clauseof tp.

Similarly, we de�ne matching for an action template with action instancesor action
policies.

De�nition Supposean action template at = a(p1; :::; pn), where pj for 1 � j � n are
either variable placeholdersor values. We say at matches:

� an action instance ai = i (val1; :::; valn) where valj for 1 � j � n are values,if and
only if:

{ a is equal to i , and
{ valk is equal to pk for any 1 � k � n suchthat pk is a value.

� an action policy ap if and only if at matchessomeat l , where atl is oneof the action
templatesin the grants clauseof ap.

Let the set of all policiesbe T, the input set of trust instancesbe I , the current infer-
encecontext be I C. We denotethe evaluation stack of I C asI C:S and its environment as
I C:E. An environment consistsof a setof variable bindings, denotedasvar = value. The
operation and context-speci�c information on evaluation contexts are described below:

[LOOKUP { qm] whereqm is query template, i.e. either a trust or an action template.
If qm is a trust template matched by somei 2 I , then for each i , spawn the current
inferencecontext. Let the new inferencecontext be I C0. Push [UNIFY { i , qm
] onto I C0:S. For clarity of explanation, we avoid spawning on the �rst matching
instancein this algorithm but instead work directly on the original I C.

Otherwise,if qm is a trust template without a matching i 2 I , selecta subset,T 0, of
T such that it contains all matching trust policies,or if qm is an action template, all
matching action policies. For each trust or action policy pl in T 0, spawn the current
inferencecontext (except for the �rst one,asabove). Let the new inferencecontext
be I C0. Supposepl is a trust policy,

pl = (f t1; :::; t lg; f d1; :::; dmg; cond; assign; t; f a1; :::; ang)

or if pl is an action policy,

pl = (f t1; :::; t lg; f d1; :::; dmg; f a1; :::; ang)

where t j and dj represent trust usesin the prerequisite and the without clauses
respectively, cond and assignrepresent the expressionin the where and set clauses,
t is the trust template in the assert clause,and aj is each action template in the
gran ts clause. First, relabel each variable occurrencein pl so that conicts with
bindings in I C0:E do not arise. Then mergethe per-policy environment Ep, i.e.

I C0:E = I C0:E [Ep

On I C0:S, perform thesein sequence,

117

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

� Push [SUCCESS{ t; f a1; :::; ang] if pl is a trust policy, or
� Push [SUCCESS{ f a1; :::; ang] if pl is an action policy.
� Push [EVAL { assign] if assignexits;
� Push [EVAL { cond] if cond exits;
� Push [NEG { dj] for all dj where1 � j � m;
� Push [LOOKUP { t j] for all t j where1 � j � l ;

[UNIFY { ti , tt] where ti is a trust instance and tt is a trust template. Let ti =
i (val1; :::; valn) : valtr uster ! valsubj ect and tt = t(p1; :::; pn) : ptr uster ! psubj ect,
where i and t are names, valj is a value, and pj is either a value or a variable
placeholder,valtr uster and valsubj ect are principal values,and ptr uster and psubj ect may
either be principal valuesor variable placeholders.Uni�cation succeedsif and only
if,

� For any 1 � j � n, if pj is a variable, it is either bound to valj in I C:E or
unbound,

� For any 1 � j � n, if pj is a value, it is equal to valj ,
� If ptr uster is a principal value, valtr uster must be equal to ptr uster ; symmetrically

for psubj ect and valsubj ect,
� If ptr uster is a variable placeholderand ptr uster is bound in I C:E, it must be

bound to valtr uster ; symmetrically for psubj ect and valsubj ect, and
� Validation of ti must succeed.

If any of the above fails, push [FAIL] to I C:S. For any variable pk unbound in
I C:E, where1 � k � n, add pk = valk to I C:E. Note that due to the designof the
algorithm, action templateswill never exist in a UNIFY evaluation context.

[EVAL { expr] If expr is a conditional expression,evaluate expr using bindings in
I C:E and push [FAIL] to I C:S if the evaluation yields false, or do nothing on
true .

If expr is an assignment expression,update bindings in I C:E.

[NEG { tm] where tm is a trust template. Let tm = t(var1; :::; varn) : ptr uster !
psubj ect where t is a name, var j is a variable placeholder,ptr uster and psubj ect may
either be a variable placeholderor a principal value. Construct a trust template

tm0 = t(val1; :::; valn) : valtr uster ! valsubj ect

wherefor all 1 � j � n, there existsvar j = valj in I C:E, and if ptr uster is a variable,
there exists ptr uster = valtr uster in I C:E, or if ptr uster is a principal value, valtr uster

is equal to ptr uster , and vice versafor psubj ect and valsubj ect. Then query for tm0 in
any of the associated distrust repositoriesand push [FAIL] if and only if the query
result is positive.

[SUCCESS { tm; f at1; :::; atng] wheretm is a trust template and at j for 1 � j � n is
an action template. Note that tm will not exist for a SUCCESScontext generated
from action policies.

118

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

If I C:S is empty, this meansthe �nal answer is reached. A newtrust instancecould
then be constructed basedon tm and aj . If I C:S is not empty, this indicates an
intermediate result is reached. The inferenceenginemay chooseto construct a new
trust instanceor do other processing.

[FAIL] Abort the inference,causingan exceptionto bethrown and the inferencecontext
I C to be destroyed.

At the end of an inferencerun, becauseof the spawning operation, there may exist
multiple inferencecontexts. Each inferencecontext may provide a result, thereforethere
may be multiple results. Theseresults constitute the answer for coveragetype of queries.

Example

In this example,we usecapital letters A, B , C and D to represent principals, and t i for
1 � i � 5 are trust statements. Lowercaseletters are usedasvariables. For a description
of the syntax, pleaserefer to Section3.5.5. SupposeA de�nes two trust policies:

t1(a) : self ! p asserts t2(b) : self ! p set b := a + 20 (P1)
t2(a) : self ! p;t3(b) : self ! p without t4(a;b) : self ! p (P2)
asserts t5(b) : self ! p where a > b

Supposea horizontal coveragequery for t5 is requestedwith the following trust template,

t5(a) : A ! b

and with a set of trust instances:

I = f t1(10) : A ! B ; t1(20) : A ! C; t3(20) : A ! B ; t3(40) : A ! Dg

A trace of the inferencerun is explainedhere. Inferencecontexts are enclosedin boxes,
and bold typefaceis usedto highlight newly createdevaluation contexts.

To begin the query evaluation, a new inferencecontext, I C0, is constructed to boot-
strap. The evaluation stack is initialized with a LOOKUP context. The environment is
initialized with the special variable self bound to the A plus other unbound variablesin
the query template, namely a and b.

1. I C0:S = [LOOKUP { t5(a) : A ! b]
I C0:E = f self = A; a =?; b=?g

Becausethere exists no i 2 I that matchest5(a) : A ! b, the set of matching trust
policies is selected,f P2g. Becausethere is only one policy in the set, the original
inferencecontext is usedinsteadof spawning. Occurrencesof variable a and b in P2
are �rst relabelled to avoid conicts with the environment. P2 e�ectiv ely becomes,

t2(a0) : self ! p;t3(b0) : self ! p without t4(a0; b0) : self ! p
asserts t5(b0) : self ! p where a0 > b0

119

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

Note that self is not relabelled sinceit is a special global variable.

On I C0:S, evaluation contexts representing P2 are pushedin. The bindings in the
environment I C0:E are updated to reect the introduction of new variables,e.g. a
in t5(a) is bound to b0.

2. I C0:S = [LOOKUP { t2(a0) : self ! p]; [LOOKUP { t3(b0) : self ! p]; [
NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS { t5(b0) : self ! p,
fg]
I C0:E = f self = A; a = b0 =?; b= p =?; a0 =?g

Similar to the above step, becauseno i 2 I matches t2, a matching set of trust
policies is selected,in this casef P1g. After relabelling, the policy becomes

t1(a00) : self ! p0 asserts t2(b00) : self ! p0 sets b00:= a00+ 20

Again, there is no need to spawn new inferencecontext as the set has only one
policy. Evaluation contexts representing P1 are therefore pushedonto I C0:S and
environment I C0:E updated.

3. I C0:S = [LOOKUP { t1(a00) : self ! p0]; [EVAL { b00 := a00+ 20]; [
SUCCESS { t2(b00) : self ! p0]; [LOOKUP { t3(b0) : self ! p]; [NEG {
t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 =?; a0 = b00=?; a00=?g

The processingof the LOOKUP evaluation context causesa copy of the inference
context to becreatedsincethere aretwo possiblematchesfor t1 in I , t1(10) : A ! B
and t1(20) : A ! C. Let the new inferencecontext be I C1.

4. I C0:S = [UNIFY { t1(10) : A ! B , t1(a00) : self ! p0]; [EVAL {
b00:= a00+ 20]; [SUCCESS{ t2(b00) : self ! p0]; [LOOKUP { t3(b0) : self ! p];
[NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p,
fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 =?; a0 = b00=?; a00=?g

Processingthe UNIFY evaluation context updatesthe environment I C0:E. Specif-
ically, a00is bound to 10 and p0 is bound to B. For clarity, I C1 is provided below.
However for the rest of the discussion,we will only show I C0, while the steps for
I C1 follow similarly.

I C1:S = [UNIFY { t1(20) : A ! C , t1(a00) : self ! p0]; [EVAL {
b00:= a00+ 20]; [SUCCESS{ t2(b00) : self ! p0]; [LOOKUP { t3(b0) : self ! p];
[NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p,
fg]
I C1:E = f self = A; a = b0 =?; b= p = p0 =?; a0 = b00=?; a00=?g

5. I C0:S = [EVAL { b00:= a00+ 20]; [SUCCESS{ t2(b00) : self ! p0]; [LOOKUP
{ t3(b0) : self ! p]; [NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS
{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 = B; a0 = b00=?; a00= 10g

120

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

Note that the bindings for a00and p0 is updated asa result of processingthe UNIFY
context in the last step. The newtop evaluation context is an assignment expression,
which causesb00to be bound to 30.

6. I C0:S = [SUCCESS{ t2(b00) : self ! p0]; [LOOKUP { t3(b0) : self ! p]; [
NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p,
fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 = B; a0 = b00= 30; a00= 10g

Here we arrive at an intermediate result, t2(30) : A ! B . Depending on the
inferenceengine, it may create a trust instance accordingly, or simply record this
fact for auditing purposesand continue the evaluation.

7. I C0:S = [LOOKUP { t3(b0) : self ! p]; [NEG { t4(a0; b0) : self ! p]; [EVAL
{ a0 > b0]; [SUCCESS{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 = B; a0 = b00= 30; a00= 10g

Processingthe LOOKUP context spawns one inferencecontext, I C2, since both
t3(20) : A ! B and t3(40) : A ! D in I match t3(b0) : self ! p.

8. I C0:S = [UNIFY { t3(20) : A ! B , t3(b0) : self ! p]; [NEG { t4(a0; b0) :
self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 =?; b= p = p0 = B; a0 = b00= 30; a00= 10g

Processingthe UNIFY context requires unifying the values for b0 and p, whose
corresponding valuesare 20 and B respectively. Sinceb0 is unbound in I C0:E, the
uni�cation succeeds.p is bound to B in I C0:E, which agreeswith its corresponding
value, therefore also succeeds.After processingthis evaluation context, I C0:E is
updated with b0 = 20.

I C2:S = [UNIFY { t3(40) : A ! D , t3(b0) : self ! p]; [NEG { t4(a0; b0) :
self ! p]; [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p, fg]
I C2:E = f self = A; a = b0 =?; b= p = p0 = B; a0 = b00= 30; a00= 10g

The processingis identical to that above; however, as p is bound to B in I C2:E
while the corresponding value for p is D, the uni�cation fails. This causesa [FAIL
] context to be pushedto I C2:S, which subsequently leads to the abortion of the
evaluation and destruction of I C2.

9. I C0:S = [NEG { t4(a0; b0) : self ! p]; [EVAL { a0 > b0]; [SUCCESS{
t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 = 20; b = p = p0 = B; a0 = b00= 30; a00= 10g

To processthe NEG context, the inferenceengine�rst constructs a trust template
by replacing variables with their bound values from the environment, resulting in
t4(30; 20) : A ! B . It then queriesany one of the given distrust repositories. If
a positive result is returned, it pushes[FAIL] onto the evaluation stack. For this
discussion,we assumea negative result is returned.

10. I C0:S = [EVAL { a0 > b0]; [SUCCESS{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 = 20; b = p = p0 = B; a0 = b00= 30; a00= 10g

Processingthe EVAL context involvesevaluating the expressiona0 > b0 with regard
to the environment I C0:E, which returns true .

121

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

Primary
repository

Backup
repository Backup

repository

Backup
repository

distrust instance

Figure 5.1: Passive replication scheme

11. I C0:S = [SUCCESS{ t5(b0) : self ! p, fg]
I C0:E = f self = A; a = b0 = 20; b = p = p0 = B; a0 = b00= 30; a00= 10g

This reaches the �nal result for the query, which gives a trust template (with all
parameters,truster and subject �lled in), t5(20) : A ! B . The inferenceenginemay
then createa trust instanceby signing the template and return to the requester.

The runtime analysis of this algorithm will be discussedlater in Section 5.1.4. We
shall �rst discusssomeoperational issueswith implementing this algorithm.

5.1.2 Managing distrust rep ositories

A policy may be associated with a list of distrust repositories. The algorithm described
in the previoussectionworks on the assumptionthat the set of distrust repositoriesmust
maintain a consistent view of distrust information. This is becauseit assumesit to be
su�cien t to check with any of the associated distrust repositorieswhenprocessinga NEG
evaluation context. While this requirement can be relaxed by changing the behaviour
for the NEG evaluation context, this design cleanly separatesoperational issuesfrom
algorithmic ones,thus simplifying the inferencealgorithm.

The problem of maintaining consistencyamong distrust repositories is a standard
problem of implementing replicated services. For distrust repositories, becauseof the
security implication, it is crucial to enforcestrongconsistencyamongrepositories. Strong
consistencymeansthat the publication of a trust instance to a repository will only be
available if all repositoriesacknowledgeits existence.The replication problemfor distrust
repositoriesis however simpler than, for example,replicated �le servicesbecausethe only
update operation is append, which doesnot causeconicts betweenreplicas.

Oneapproach for strongconsistencyis to usequorum assembly with an atomic commit
protocol such asthe two-phasecommit protocol. Such a protocol ensuresall replicasin the
quorum reach the samedecisionfor an operation, either commit or abort. The decision
is then propagatedto other replicas. Nevertheless,becauseof the sensitivity of distrust
information, it may be undesirableto abort the publication of trust instances.

Another approach is to apply the passivereplication scheme, as illustrated in Fig-
ure 5.1. One of the distrust repositories is electedto act as the primary replica. A prin-
cipal publishesa trust instance through the primary repository, which in turn forwards
the update to backup repositories. This schemekeepsstrong consistencyby ensuringthe

122

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

update operation (i.e. the publication of trust instances)can only be done through the
primary replica, while all replicas(both primary and backup) may handlequery requests.
In order to deal with network partitioning, the reachabilit y betweenevery backup repos-
itory and the primary repository must be monitored. If the primary repository is not
reachable either becauseof machine crash or network partitioning, a backup repository
shouldstop or downgradeits service,e.g.returning an \unknown" status when a queried
trust instanceis not in its repository instead of returning a de�nite \no entry" response.
Under such circumstances,a new primary repository may be electedusing someelection
protocol to resumenormal services.

5.1.3 Tracking validit y

The algorithm describedin Section5.1.1deliberately separatesthe constructionof validit y
conditions from the inferenceprocess.Recall that the validit y condition for a new trust
instancemay either beexplicitly speci�ed in the valid clauseof a trust policy, or implicitly
derived from its prerequsite trust instances. It is therefore necessaryto addressboth
implicit and explicit construction of validit y conditions in the algorithm.

To add support for explicit validit y conditions, the SUCCESSevaluation context needs
to be augmented to include the validit y condition asspeci�ed in the valid clause.Recall
that a SUCCESScontext is pushed into the evaluation stack when a trust policy is
decomposed. Processinga SUCCESScontext should then use the contained validit y
information to createthe validit y condition for the new trust instance.

For implicit validit y conditions, there must be a mechanismfor computing the weakest
validit y condition amongprerequisitetrust instancesasdescribedin Section3.5.8. Toward
this goal, the inferencecontext I C is augmented with a validit y condition, denotedI C:V.
I C:V servesastemporary storagefor the weakest validit y condition discoveredsofar. For
descriptive convenience,we assumeit may be one of always, perio d, or status . I C:V
is initialized to always when I C is created. During the inferenceprocess,on a [UNIFY
{ ti , tt] context, after a successfuluni�cation betweenti and tt , the validit y condition
of ti must be mergedwith I C:V, accordingto the rules de�ned in Section3.5.8. The new
validit y condition is stored back at I C:V. When the inferencestepsare completed, the
I C:V will contain the weakest validit y condition.

A separateissueregardlessof whether the new validit y condition is derived implicitly
or explicitly is the dependencybetweenonline validit y conditions. Supposethe following
trust policy is de�ned:

t1(:::) : self ! p;t2(:::) : self ! p asserts t3(:::) : self ! p

Also supposethat appropriate trust instancesfor t1 and t2, whosevalidit y conditions are
both online status checks (i.e. status), are given to obtain an instanceof t3. The validit y
condition for t3 will be status by the validit y computation rules. However, the online
validit y of the t3 instanceshouldbe subject to the validit y of t1 and t2 instances.If either
the t1 or t2 instanceinvalidates, so should the t3 instance.

One approach to track this dependencyis to use a validity dependencytree. Each
node of the tree contains su�cien t information to query the validit y of a trust instance,
e.g. a location and a hashedvalue of the trust instance. A parent-child link represents
a validit y dependency, i.e. the validit y of the parent depends on the validit y of all its

123

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

Hash: M1e092eka4...
URL: http://opera.cl.cam.ac.uk/fidelis/...

Hash: B2tgaAb91ah....
URL: http://opera.cl.cam.ac.uk/fidelis/...

Hash: Hao12ls08sDauA6...
URL: http://opera.cl.cam.ac.uk/fidelis/...

t1(:::) : self ! p; t2(:::) : self ! p asserts t3(:::) : self ! p

Figure 5.2: Validit y dependencytree

children nodes. Figure 5.2 illustrates a validit y dependencytree. Solid lines represent
links betweennodes,while dashedlines represent the correspondencebetweenparts in a
trust policy and nodes. A node contains two piecesof information: a hash value for a
trust instanceand a URL location wherethe validit y status can be obtained.

The construction of a validit y dependencytree can be integrated with the inference
algorithm. We �rst augment the inferencecontext I C with a tree construction stack
IC :VS. The elements of the stack are the nodeswaiting to be addedto a tree. Initially ,
IC :VS is empty. On encountering a [UNIFY { ti , tt] context with the validit y
condition of ti being status , supposethe uni�cation betweenti and tt succeeds,a node
representing ti 's validit y condition is createdand pushedinto IC :VS. On a [SUCCESS{
tm; f at1; :::; atng] context, the inferenceengineshall createa new validit y condition with
all the nodesin IC :VS poppedout and madeasits children. The newvalidit y condition is
then pushedinto IC :VS. This processcontinuesuntil the inferencealgorithm terminates.
On a success,IC :VS will be left with one element, which is to be the root node of a
dependencytree. The children nodeswill already be properly constructed.

When the status query of a trust instanceis requested,its dependencytree should be
consulted,traversingeach node and collecting status information. When the traversal is
completed,the status of the root node can then be determined.

5.1.4 Run time analysis

Before the runtime of the algorithm can be analyzed, it is essential to discussthe ter-
mination property of the algorithm. The termination of the algorithm is subject to the
input policies. The input policies must be cycle-free, otherwise the algorithm may be
non-terminating on certain queries. A cyclic policy is one whoseresult trust instance is
either directly or indirectly oneof its own prerequisitetrust instances.A straightforward,
although somewhatarti�cial, examplewould be:

t1(a) : self ! p asserts t1(a) : self ! p

wheret1 is the nameof a trust statement, and a and p are variable placeholders.A more
complicatedand realistic examplewould be:

t1(a) : self ! p asserts t2(a) : self ! p (P3)
t2(a) : self ! p; t3(a) : self ! p asserts t1(a) : self ! p (P4)

124

CHAPTER 5. Inferenceand Trust Negotiation 5.1. Policy inference

wheret1, t2, and t3 are namesfor trust statements, and a and p are variable placeholders.
These two policies form a cycle since in order to assert a t2 instance, a t1 instance is
needed.However, to obtain that t1 instance,the samet2 instancewould be needed.This
hencecreatesa cycle, and the queries to obtain either t1 or t2 instanceswill lead the
algorithm into an endlessrecursion.

The algorithm described in this chapter is in fact a recursive versionof a depth-�rst
search over the set of input policies. Let the input set of policiesbe P and the input set
of trust instancesbe I . Let N be the total number of terms of P, wherea term includes
a trust use, distrust use or trust template in a trust policy (pleaserefer to syntax 3.21on
Page72 for details). Finally, let M be the maximum number of parametersin any trust
instance.

The runtime of the algorithm depends mainly on the processingof [LOOKUP]
contexts. We shall therefore�rst considerthe maximum possiblenumber of [LOOKUP]
contexts in any query run. A query starts with one[LOOKUP] context. The processing
of a [LOOKUP] context might generateeither a [UNIFY] context or more [LOOKUP
] contexts. Supposeon the processingof the i th [LOOKUP] context, the number of
new [LOOKUP] contexts is x i . The total number of [LOOKUP] contexts is hence
P i x i . However, recall that a new [LOOKUP] context is generatedfor each trust use in
a policy. Sincethe maximum number of terms is N , and P is acyclic, the total number
of [LOOKUP] contexts for any query is thus:

iX
x i = O(N) (5.1)

We shall now analyzethe cost for processingeach [LOOKUP] context. When pro-
cessinga [LOOKUP] context, the algorithm �rst searchesfor a trust instancematching
the query template of the context in I . Provided trust instancesin I are indexedby hash
valuesof their digests,the search may be done in constant time, O(1). If a match is not
found, the algorithm attempts to search for matching policies in P. Similarly, policies
in P may be indexed by the namesof trust templates or action templates for trust and
action policiesrespectively. The search would thereforebe done in O(1) time. The total
time for this caseis:

O(1) + O(1) = O(1) (5.2)

If a matching trust instanceis found in I , a [UNIFY] context is created. Processing
a [UNIFY] context involves comparing all parameter values in a trust instance and a
trust template. This operation is linear, and as the maximum number of parametersis
M , it would cost O(M) time. The total runtime for this caseis therefore(where O(1) is
the time to search a match in I):

O(1) + O(M) = O(M) (5.3)

Comparing with Equation 5.2, we know that the worst runtime for processingany [
LOOKUP] context is O(M). Combining with Equation 5.1, we shall concludethat the
runtime for processingany query would cost:

O(N) � O(M) = O(MN) (5.4)

125

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

Service request

Insufficient trust
Policy offer

Alternative policy request

Policy offer

Get trust instances

Service response

....

Trust instances

Service request

TABTAA

M 1

M 2

M 3

M 4

M 5

M 6

M n � 1

M n

Figure 5.3: A trust negotiation session

5.2 Trust negotiation

As discussedpreviously in Section 4.2.6, trust negotiation is an approach to facilitate
communication between unfamiliar principals. The aim is to enable two strangers to
gradually gain trust in each other, and subsequently, provide services,vouch for the
stranger, etc. This section �rst describes a trust negotiation framework, followed by a
description on meta-policies, which drive the behaviours of trust negotiation sessions.
There are two aims of this negotiation framework: �rst, as an experiment validating
Fidelis; second,asan experimental framework for future research on negotiationprotocols.

5.2.1 Trust negotiation overview

Trust negotiation is embodied as negotiated requests, where a requestmay be a service
request or a trust establishment request. It is carried out between a pair of principals
or trust agents acting on behalf of someprincipals. We write TAA for the trust agent
representing principal A and TAB for B . SupposeA attempts to establisha trust rela-
tionship with a stranger B , i.e. obtaining a trust instancefrom B regarding A, it makes
this request to TAA , which in turn communicateswith TAB and successively exchanges
trust instancesuntil the trust requestsatis�es the requirements set by B. The sessionof
exchangingtrust instancesis calleda trust negotiation session. A trust negotiationsession
is governed by a negotiation protocol, which de�nes the messagesand their o w. The
behaviour of trust agents TAA and TAB may be de�ned through a set of meta-policies.
A meta-policy de�nes the conditions when a trust instanceor policy can be disclosed.It
is discussedfully in Section5.2.3.

A sample protocol sessionis illustrated in Figure 5.3. TAA initiates a request for
gaining a trust instancein messageM 1. TAB examinesthe relevant trust policy of B and
decidesthat more trust instancesare neededto satisfy the request. It thus replies with
an insu�cient trust exception and o�ers somepolicies to TAA (M 2). TAA may decide
to chooseother policies than those o�ered. In this case,it sendsan alternative policy
request (M 3) back to TAB . In order to gain more trust from TAB , it may attach some

126

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

trust instancesalong with the request. With more knowledgeabout A, TAB replieswith
another, perhapslessstringent set of policies in M 4. If a policy o�ered by TAB requires
TAA to reveal somesensitive trust instance,TAA may wish to �rst ensureTAB has the
rights to seeit. This could be achieved by explicitly asking for sometrust instanceof B ,
as represented by M 5 and M 6. This conversationcontinuesuntil TAA and TAB establish
a mutually agreedpolicy or abort. In the prior case,TAA then �nally re-sendsthe request
with referenceto the negotiated policy (M n� 1). TAB then passesthis requeston to B,
which generatesa response(M n).

The detail of the protocol is described in the next section.

5.2.2 Trust negotiation proto col

The protocol is basedon a sequenceof request/responsemessages.There are nine types
of message:

� generalrequest(GR),

� generalrequestresult (GRR),

� insu�cien t trust exception(ITX),

� policy o�er (PO),

� alternative policy request(ALT),

� credential request(CR),

� credential disclosure(CD),

� generalabort request(GA).

� generalabort acknowledge(GAA).

A generalrequestmessagerepresents either a trust establishment requestor an action
request. It consistsof the real request,an optional policy (or its reference),andan optional
set of trust instances. The trust instanceset provides assertionsabout the requesterfor
satisfying the trust requirement of the request. The policy sent alongwith a GR message
is o�ered and signedby the responder. This policy may be a generalpolicy that applies
to the sametype of request,but is more likely to be a tailor-made policy for the speci�c
requestconcerned.A generalrequest result is a computation result of the request. For
example,on a trust establishment request, the result may be a new trust instanceor a
refusal;a read action on a �le may return the content of the �le.

An insu�cien t trust exceptionindicates that the presented set of trust instancesdoes
not meet the trust requirement for a request. It may be accompaniedby a policy o�er
message,which contains a set of signed policies granting the requestedoperation. An
alternative policy request is sent when the requesterwishes to �nd out other policies
that may be o�ered by a responder, e.g. if it does not wish to comply with any of the
o�ered policies. The messagemay contain a set of trust instances,which provides more
information about the requester,in the hope of it thus convincing the responder to allow
it to obtain lessstrict policies.

A credential request messageis similar to the getTrustInstance method in the con-
veyanceinterfacedescribed in Section4.2.2. It consistsof a trust template, and e�ectiv ely

127

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

START

GR SENT

CR SENT

DONE

ALT SENT

GR RCVDITX SENT ITX RCVD

PO RCVD

CR RCVD

CR RCVD

CR SENTALT RCVD

PO SENT

Figure 5.4: State diagram for the negotiation protocol. The solid lines indicate the path
for the requesterTA, while the dashedlines indicate the path for the responder TA.

doesa simple lookup for a trust instance. Unlike getTrustInstance, it is associated with a
negotiation sessionand the result may be inuenced by beliefslearnedwithin the session.
A credential disclosuremessagecontains a set of trust instancesthat satisfy the trust
template of a CR message.

A general abort messageis for forcibly terminating a negotiation session. Session
statesare normally deletedat the end of the session,either due to a normal termination
or abort. Typically garbagecollectionshouldalsobe invokedat a �xed interval to prevent
stale sessionstates left by crashedor uncooperative negotiating entities.

The protocol action is described as a �nite state machine. The states correspond to
the sendingand receivingof each message,e.g.GR SENT, ALT RCVD, CR SENT, etc.
There are two special states,START and DONE as the initial and the completion states
respectively. Figure 5.4 shows the �nite state machine, without showing the states for
generalabort messagesto simplify the �gure. A generalabort may be initiated by either
side,at any RCVD state, i.e. somemessagehasbeenreceived. The linesconnectingstates
represent occurrencesof someevent, solid lines for events on the requesterTA, dashed
lines for the responder TA. For the protocol action, we shall describe only the requester
side, i.e. the solid lines. The one for the responder sidemirrors the requesterside.

A requesterinitiates a negotiation sessionby sendinga generalrequestmessagewith
an empty policy and a possiblyempty set of trust instancessincethe requesterdoesnot
know the requirements for authorizing the request. In the GR SENT state, it may receive
the result for the request,which causesthe sessionto endsuccessfullyin the DONE state.
It may receivea CR message,which meansthe responderattempts to directly obtain trust
information to grant the request. If the requesterhas the requestedtrust instance, the
requestermay decideif it wishesto discloseit. If disclosed,the responder should return
the result for the request; if not disclosed,it movesback to the GR SENT state so that
other options may be attempted. In GR SENT, the requestermay receive an insu�cien t
trust exception, taking into the ITX RCVD state. In this state, the requestermay retry
the requestwith more trust instances,thus back into the GR SENT state. The responder

128

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

may senda policy o�er messagealong the exception,resulting in the PO RCVD state.
In the PO RCVD state, the requesterexaminesthe o�ered policies,choosesappropri-

ate trust instancesand retries the request(PO RCVD! GR SENT). If the o�ered policies
requirea disclosureof somesensitive trust instances,the requestermay wish to �rst check
the responder's trust information. It may hencesend a CR message(PO RCVD! CR
SENT). It may decideto renegotiatefor another set of policies,by providing more infor-
mation about itself. It sendsan ALT messageand the respondermay return a new set of
policiesor nothing (i.e. an empty policy set). In the CR SENT state, the requestereither
receives a trust instancematching its query or nothing. In the former case,it discloses
the sensitive trust instancesconcernedand retries the request(CR SENT! GR SENT).
In the latter case,the requesterneedsto re-examinethe o�ered policies, and returns to
the PO RCVD state.

As previouslymentioned, a generalabort may takeplaceafter any messageis received.
Speci�cally, on the requesterside,it may wish to abort a sessionat state ITX RCVD, PO
RCVD, and CR RCVD, and it shouldbe preparedfor a GA messageat state GR SENT,
ALT SENT and CR SENT.

5.2.3 Meta policies

During a trust negotiation session,trust agents on both sidesneedto determine which
trust instancesand/or policies can and should be disclosed. Theseare particularly im-
portant if they contain sensitive information, i.e. their disclosuremay hamper security
or causeprivacy invasion. An impractical approach is to have human involvement in a
negotiation sessionso that human principals on either side will review and decidewhat
information is to be given, accordingto someguidelineor rules.

In an attempt to automate this decisionprocess,a FPL pro�le for meta-policies is
described. Meta policiesserve two purposes:

� de�ning disclosurecriteria for trust instancesusedin a generalrequestmessage,an
alternative policy requestor in responseto a credential requestmessage.

� de�ning criteria governing the conditions when policiesmight be o�ered.

They arebasedon a denial-by-default rule, i.e. if a trust instanceor policy is not explicitly
allowed to disclosein a context (i.e. to a principal, to an action request,etc), it is con-
sideredas con�dential. The vocabulary for this pro�le is designedto support four types
of disclosurepolicies: designated principal disclosure, context-speci�c disclosure, trust-
directed disclosure, and mutual exclusion. The vocabulary is summarizedin Figure 5.5.
Trust instancesare usedto represent facts known within a session.Hencetheir trusters
arealways self, i.e. the trust agent itself. Thesemay be constructedfrom the context, e.g.
if a trust agent is representing another principal requestinga check_balance operation,
this is represented as:

requested(check_balance(41245516)): self->self

They may alsobe facts learnedfrom the negotiation process,e.g. if the negotiating party
sendsa bank_branch trust instance,this would be represented as:

129

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

Entit y Description
disclose(item) An action representing the disclosureof item.
negotiator() : self ! p Stating principal p is acted on behalf by the

negotiating agent.
agent() : self ! p Stating the identit y of the negotiating trust

agent as p.
disclosed(item) : self ! self Stating that a protected item item has been

disclosedat some point in this negotiation
session.

presented(item) : self ! self Stating that item has beenpresented by the
negotiating party at somepoint during the
current session.

requested(action) : self ! self Stating that action is requestedin the cur-
rent negotiation session.

Figure 5.5: Vocabulary for the meta-policy pro�le

presented(bank_branch("20-17-19"): p1 -> p2): self->self

In Figure 5.5, items are referred to as protected items, which include both con�dential
trust instancesand policies. For trust instances,they are given as trust templates, as
shown above. For policies, they are given as policy identi�ers . A policy identi�er is
assignedto every protected policy, and may be grouped to form a policy group, which
is also identi�ed by a policy identi�er. The action in Figure 5.5 represents an action
template with someor all parameters�lled in.

We shall present some examples,demonstrating the use of the vocabulary for the
four typesof disclosurepolicies. In the following examples,T1, T2, ... are usedfor trust
statements, and A1, A2, ... arefor actions. Weshall ignoretheir parameterswherethey are
irrelevant to the meta-policies. We will continue the prior convention of using lowercase
letters for variablesand readablenamesfor principal identi�ers.

Designated principal. Protected items canbe madeavailable to only somedesignated
principals. Indeed,this is a commonconstraint in real life, e.g.a trust instancecontaining
personalbanking details, e.g.account number, branch number, etc. may be restricted for
useat the bank itself. An examplemeta-policy would be:

negotiator(): self->p
where p = Alice
grants disclose(T1(...))

This speci�es that trust instanceT1 matching the template in the gran t clausemay be
disclosedonly when negotiating with Alice.

Con text-sp eci�c disclosure. In addition to constraining to speci�c principals, it is
often desirableto expressconstraints at the granularit y of speci�c requests.For example,
onemay allow the task of purchasinggoods at a well-known online store to useonly trust

130

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

instancesfor credit rating and addressproof. The trust statement requested allows this
type of policy to be speci�ed, as follows,

requested(A1(...)): self->self
grants disclose(T2(...))

This states that the matching T2 trust instancesmay only be disclosedif the request is
the speci�c A1 enclosedin the requested trust use. Note that a where clausemay be
included to constrain parametersin both A1and T2.

Trust-directed disclosure. The basisof trust negotiation is to exchangeand gradually
disclosetrust instancesbasedon thosepresented by the negotiating parties, with the aim
to reach a su�cien t level of trust on both sidesfor the requestedoperation. The trust
statement presented is designedpreciselyto allow speci�cation of this type of disclosure
policies.

As an example,supposea commercialserviceo�ers two classesof services:basicand
premium. The accessto theseservicesis governedby the categoryof the customer. If a
customersubscribesto the premium service,heor shewill beidenti�ed by a premium_user
trust instance. Supposethe serviceonly intendsto disclosethe accesspoliciesfor premium
customersif it is negotiating with a premium customer,a meta-policy could be speci�ed,

presented(premium_user(...): p1->p2): self->self
grants disclose("premium-policies")

The string premium-policies identi�es the set of policies for premium customers.This
meta-policy allowsthe identi�ed policiesto bedisclosedin a policy o�er message,provided
the negotiating party provesthat it possessesa premium_usertrust instance.

Mutual exclusion. Mutual exclusionpoliciesspecify two or moretrust instancesshould
not bedisclosedwithin the samesession.This is potentially usefulif thesetrust instances,
when linked, would allow unnecessaryor even sensitive information to be inferred. For
example,supposea principal only wishesto be identi�ed as an employeeof a company
but doesnot wish to discloseher salary if shehas disclosedthe company sheworks for.
Mutual exclusion may be speci�ed by combining disclosed trust statements and the
without clause.For example,

without disclosed(T3(...): p1->p2): self->self
grants disclose(T4(...))

statesif an instanceof T3hasbeendisclosed,then disclosureof T4 instancesis prohibited.
Note that the disclosed statement is instantiated for a trust instanceand madeknown
to the trust agent whenever the trust instanceis sent to the negotiating party.

The above examplesdemonstraterelatively simpleusesof the meta-policy vocabulary.
Complex policiesmay be expressedby combining thesetrust statements. The key design
of the meta-policy pro�le is the useof presented and disclosed trust statements, which
e�ectiv ely represent historic events within a negotiation session.Their inclusion adds a
temporal dimensionso that policiesgoverning the interaction of protocol sessionscan be
speci�ed.

131

CHAPTER 5. Inferenceand Trust Negotiation 5.2. Trust negotiation

5.2.4 Related work

Automated trust negotiation (ATN) hasonly recently attracted interest from the research
community although the ideaof mechanizingnegotiation to reach commonunderstanding
is not new. Indeed, the de-facto Internet security protocol, SSL/TLS [164], is a prime
exampleof credential-based negotiation. The SSL protocol however has an assumption,
driven by its protocol design,which requiresthe server to discloseits credentials before
learning anything about the client. The client may then be required to submit its own
credentials in exchange. However, SSL does not provide a mechanism for the client to
interrogate the server. (Note that such a mechanism does exist for the other direction,
i.e. the server interrogating the client). SSL can be consideredas an early attempt at a
speci�c type of negotiation { identit y authentication.

Winsboroughet al. [168] describesa comprehensive trust negotiation framework with
a similar goal set out in this section. They model a negotiation sessionas a sequenceof
credential disclosures, and each disclosureis guardedby a credential accesspolicy (CAP).
A CAP may besatis�ed by the requesterdisclosinga setof other credentials, similar to the
trust-directed disclosure described in the previoussection. Their framework includestwo
negotiation strategies. In the eager strategy, assoon asa CAP is satis�ed, the credential
will be disclosed.In the parsimonious strategy, credentials with satis�ed CAPs are only
disclosedif they are neededto satisfy other CAPs. However, their negotiation strategies
essentially hard-code the protocol behaviour whereasthe Fidelis negotiation framework
advocatesa fully policy-drivenapproach { each principal may de�ne its own meta-policies
that control the protocol behaviour, which givesan increasedexibilit y.

In most prior work on ATN, the only entities that are assumedto contain sensitive
information are the credentials. Seamonset al. [169] identi�es that policiesmay also be
sensitive in practice and proposesan extendedtrust negotiation framework which allows
policies to also be subject to protection. They employ a similar mechanism to protect
policies, and also support two strategies for controlling the disclosureof policies. The
Fidelis negotiation framework is designedto provide a uniform treatment of both trust
instancesand policies { the policy-driven mechanism does not distinguish the types of
protected entit y. With the policy-driven protection of policies, the Fidelis negotiation
framework is therefore more exible than the hard-coded strategies in Seamons'ATN
framework.

A recent work by Winsborough et al. [170] examinesand partly addressesthe infer-
ential disclosureof credentials. Their observation is that most prior work on ATN is
under the assumptionthat all parties are saneand honest,and will follow the negotiation
strategy as speci�ed. However, Winsborough noted that by observingthe responsesto
certain typesof request,a party may attempt to link and derive sensitive credentials held
by the other party. For example, let A, B, X, and Y be trust statements. SupposeAlice
hasde�ned a trust relationship:

A(...): self -> p asserts B(...): self -> p

Now supposean instance of B contains sensitive information, and its disclosurepolicy
requiresan instanceof X to be �rst presented by the negotiating party. Further, suppose
the disclosurepolicy of an instance of A requires presenting an instance of Y. Finally,
supposeBob who does not possessinstancesof X but does have an instance of Y may

132

CHAPTER 5. Inferenceand Trust Negotiation 5.3. Summary

infer, with a high probability, that Alice does own an instanceof B by �nding out that
shehasA.

They proposea partial solution to the problem. The idea is that the responsefor
querying Aand Bshouldbe uniform, thus disabling the negotiating party to infer whether
Alice has either A or B. They extended the notion of credential accesspolicy (CAP)
to acknowledgementpolicy (AP). Essentially an acknowledgement policy is an access
policy for policies. For example, an AP may be associated with the trust relationship
above, demanding the presentation of a valid X before disclosing A, B and the policy
itself. While the Fidelis negotiation framework is not speci�cally designedto addressthe
inferenceproblem discussedhere, its policy-driven disclosureprotection of policies may
achieve a similar e�ect for acknowledgement policies,i.e. by explicitly specifying the trust
instancesthat must be known beforea policy itself may be disclosed.Furthermore, the
Fidelis negotiation framework allows the speci�cation of relationships between policies,
i.e. allowing the disclosureof policy A provided policy B is not disclosed. To the best
knowledgeof the author, Winsborough'sacknowledgement policy doesnot have provision
for this type of linkageof policies.

5.3 Summary

At the centre of Fidelis is its policy inferencealgorithm. In the last chapter, an informal
semantics was provided. This chapter hasdescribed an algorithm that implements these
semantics. Additionally , the design and implementation issuesfor managing distrust
information and tracking validit y conditions have beendiscussed.

This chapter has also presented a trust negotiation framework that trust agents may
implement to enablestrangersto gradually gain trust in each other and subsequently per-
form trust-basedrequests.A trust negotiation protocol has beendescribed. In addition,
an FPL pro�le for specifyingmeta-policiesthat control the behaviour of automatednegoti-
ation sessionshasbeendescribed. The primary innovation of this negotiation framework,
in contrast with most other prior work, is its fully policy-driven approach. The most
appealing featureof this approach is its increasedexibilit y and extensibility. The frame-
work has beenpositioned as an experimental platform for future research on automated
trust negotiation.

In the next chapter, we shall examine Fidelis operating in a number of real-world
application scenarios.

133

CHAPTER 5. Inferenceand Trust Negotiation 5.3. Summary

134

6 Applications

In previous chapters, we have described fragments of several applications to illustrate
the use of the policy languageand motivate our design for web services. The focus of
this chapter is to describe a number of casestudies,providing detailed studiesof the use
of Fidelis in real-world applications. It beginswith a study on implementing role-based
accesscontrol (RBAC) using Fidelis in Section6.1. Two prominent modelsof RBAC are
examined, the OASIS RBAC [3, 5] model and the RBAC96 (and derivative) model [8],
and Fidelis is shown to successfullymodel policies in both models. Section6.2 describes
Fidelis for the World Wide Web. In particular, it describesthe integration of Fidelis with
the popular Apachewebserver [171] and providesa number of examplesdemonstratingits
use. In the last casestudy, we describe an electronicmarketplace,consistingof multiple,
independent parties. The primary goal is to illustrate the useof Fidelis in a decentralized,
cooperating environment.

6.1 Role-based access control

As the research of role-basedaccesscontrol matures,wearebeginningto observea growing
adoption of RBAC in operating systems,databasemanagement systems,and general
applications. As described in Chapter 2 (Section2.1.5),with the conceptof roles, RBAC
has clear advantagesover the traditional DAC or MAC in its scalability, exibilit y and
manageability. For a system with a large number of users, RBAC simpli�es security
administration { the assignment of users to their appropriate roles, and privileges to
theseroles. As the number of roleswill typically be signi�cantly lessthan the number of
users,this increasesboth scalability and manageability of the system. RBAC is alsomore
exible in the sensethat both MAC and DAC may be simulated by properly con�guring
RBAC policies.

Fidelis may be usedto model RBAC policies. The underlying idea is to considerroles
asa property of a principal, and expressingthe membershipof a role with trust instances.
In this section,we shall discussthe useof Fidelis to expresstwo distinct RBAC models:
the OASIS RBAC model [3, 5] and the RBAC96 derivatives[8, 40, 41].

135

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

6.1.1 OASIS role-based access control

The OASIS RBAC model builds on the basicconceptsof RBAC, separatingthree types
of base entities: users1, roles and privileges. In addition, it introduces the notion of
appointments and environment predicates. Chapter 2 includes a brief review of OASIS.
Here we summarizethe key featuresof its RBAC model.

� Parametrized roles and privileges. Roles may contain parameters to include at-
tributes speci�c to a particular role member, e.g. the local user identi�er. Parame-
ters in a privilege enablethe speci�cation of �ne-grained authorization policies,e.g.
a parameter for read might give the pathnameto the requested�le.

� Session-basedroles. Every userworks within somesession,within which rolesmay
be activated. Only privileges of active roles may be exercisedwithin a session.
Deactivation of roles is basedon an automatic, chained revocation, which may be
triggered by the termination of a session.

� Policy-based.The rules for role activation are speci�ed in activation rules. Activa-
tion may be subject to three typesof conditions: prerequisite roles, appointments
and evaluations of environment predicates.Privilegesare assignedto rolesthrough
authorization rules.

� Appointments aspersistent credentials. In addition to session-basedroles,appoint-
ments (which are similar to parametrizedroles) are included for applications which
requirean extendedlifetime beyond sessionsfor maintaining information about prin-
cipals.

Rules in OASIS are written in the syntax of �rst-order logic. Consider an example
from [5]. An activation rule

A employed(username?); E is doctor(username,dept?) ` R doctor(username,dept)

whereA employed is anappointment, E is doctor is anenvironment predicateandR doctor
is a role. In this thesis,we follow a naming convention for theseOASIS entities, wherethe
pre�x A , E , R , and P indicates an appointment, an environment predicate, a role or
a privilege respectively. Parametersa�xed with a questionmark (?) are out-parameters,
whereasparameterswithout a trailing questionmark are in-parameters.

Upon evaluation, if an out-parameter exists in a role or appointment, it binds to
the value of the corresponding parameter. If it exists in an environment predicate, the
evaluation of the predicate must set its value upon completion. For an in-parameter, it
obtains the binding from a previouslybound out-parameterwith the matching parameter
symbol. For example, in the above rule, usernameis �rst bound to the corresponding
parameterin an A employed appointment instance. The valueis then givenasan input to
the evaluation of E is doctor. The semantics of an activation rule is that every antecedent
(i.e. conditionson the left hand sideof the ` symbol) must be satis�ed for the consequent
to be activated. Satisfaction is subject to correct bindings of parameters.

An authorization rule is in a similar form. For example,

1The term user is usedinterchangeablywith principal in the OASIS model and in most RBAC models.
In OASIS, a user refers to a user session[5].

136

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

R treating doctor(username?,pat nhs id?) ` P read health record(pat nhs id)

whereR treating doctor is a role and P read health record is a privilege. The evaluation
semantics are identical to activation rules. The meaning of this rule is therefore: the
requestermust prove he/she is a treating doctor of a patient within the current session
for the requestof reading the patient's health record to be granted.

Mapping in to Fidelis policies. Fidelis is derived from the work on OASIS, with a
degreeof semantic similarit y in their policy languages. Hencea near-perfect mapping
from OASIS policies into the Fidelis counterparts is possible.

Semantically, OASIS usersequateto Fidelis principals. Neverthelessusersin OASIS
are implicit. It is always assumedthat at policy evaluation, the only userconcernedwill
be the requester. As will be seenlater, the explicit treatment of principals in Fidelis
permits greater control and exibilit y.

Appointments are mapped into trust statements. OASIS appointments are intended
to expresstask assignmentand quali�cation. For example, supposeAlice is employed
at Hospital A with the employeeidenti�er \aek322". Shemay be given an appointment
instance by the human resourcedepartment of the hospital to testify her status as an
employee:

A employed (\aek322")

The corresponding trust instancewould be:

A_employed("aek322") : HospitalA -> Alice

This trust instancemeansthat the truster (i.e. the humanresourcedepartment at Hospital
A) believesthat the subject (namely, Alice) is a legitimate employeeof the hospital, with
the employeeidenti�er \aek322". Note that the trust statement approach explicitly states
the issuerand the subject of an appointment instance,which may be usedto aid policy
speci�cation.

Fidelis actions correspond directly to OASIS privileges. Recall that at speci�cation,
actionshave explicit requesters,whereasin OASIS authorization rules, the requestersare
implicit. An examplewill be provided later to illustrate this di�erence.

In the OASIS model, roles are always bound to sessions. There is no concept of
\inactiv e roles" as in other RBAC models (seeSection6.1.2). Membership of a role may
be expressedas a Fidelis trust statement, shown in the template form below:

as hrole namei (s, ...)

where the eclipsescorrespond to the parametersof the role, and s represents a session
identi�er. An instanceof this trust statement meansthat the subject is currently active
in the role within sessions. There are two approachesto provide the value for s within
a trust or action policy: it may either be provided as a part of an input environment
at evaluation time, or alternatively, it may be explicitly set through a set clause. In
OASIS, namesof roles and appointments exist in di�eren t namespaces,whereasas both

137

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

aremappedinto Fidelis trust statements, carethereforemust beexercisedto avoid conict
of names.

Environments in OASIS are designedfor two purposes:(1) specifying constraints on
parameters,and (2) assigningvaluesto parameters.In Fidelis, theseareachieved through
where and set clauses.An OASIS environment predicate is therefore decomposedand
mapped into expressionsin where and set clauses.

Validit y conditions for trust instancesthat represent appointment are often in the
form of expiry periods, asappointments are intendedto expresslong-lived facts. For facts
independent of time limits, e.g.a degreeonehasearned,permanen t validit y conditions
may be used. However, for roles,becauseof the session-basednature, online status would
be appropriate as validit y conditions for as hrole namei instances. Such status would
reect the status of a session,i.e. set to true when a sessionis initiated, and false when
a sessionterminates.

We will now considerseveral examplesadopted and modi�ed from [5] and demon-
strate the speci�cation of OASIS-style RBAC policiesin Fidelis, using the mapping rules
describedpreviously. Theseexamplessharea commonbackgroundof an electronichealth-
caresystem.

Example 6.1 Supposeevery employeein Hospital A is issuedwith an appointment in-
stanceA employee, which has one parameter { the local username. A doctor may then
useher appointment instanceto activate the role R doctor. Supposethe activation rule
is:

A employed(username?); E is doctor(username,dept?) ` R doctor(username,dept)

where E is doctor is an environment predicate that takesa usernameand returns true
if usernameis a doctor and sets the doctor's department in dept. The samerule coded
as a Fidelis trust policy would be:

A_employed(username) : self -> p (P1)
asserts as_doctor(s, username, dept) : self -> p
where \ do a databasequery to determinewhether usernameis a doctor."
set dept = \ username's department from a databasequery"

s = \new sessionidenti�er"

Note that self in the policy above binds to Hospital A's public key identi�er when the
policy is deployed. Besidesthe syntactical di�erences,in the OASISrule, the useris hidden
from the speci�cation, while in the Fidelis counterpart, there is an explicit treatment of
both the policy owner (in this case,Hospital A) and the principal concerned. In this
case,oneis requiredto show an A employed trust instanceissuedby the speci�c principal
represented by self, and after evaluation, a new trust instanceof as doctor is explicitly
bound to the sameprincipal as the subject of the presented employed trust instance. A
new sessionidenti�er will be generatedand assignedto the variable s upon successful
evaluation. This contrasts to the implicit sessionmanagement in the OASIS counterpart.

Example 6.2 Supposea doctor on duty in a clinic will beactive in role R doctor on duty.
An on-duty doctor may be assignedto provide treatment to outpatients. This assignment
takesplaceafter an outpatient arrivesand registersat the clinic. The registrar sta� will

138

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

then issuean appointment instanceA patient assigned to the appropriate doctor. With
this appointment instance, an on-duty doctor may then activate the R treating doctor
role for the speci�c patient. In OASIS activation rules, this could be expressedas:

R doctor on duty(username?,dept?); A patient assigned (pat nhs id?) `
R treating doctor(username,pat nhs id)

where pat nhs id is the patient's unique NHS identi�er, usernameand dept are respec-
tiv ely the doctor's local user identi�er and his/her serving department. The equivalent
policy in Fidelis would be:

as_doctor_on_duty(s, username, dept) : self -> p (P2)
A_patient_assigned(pat_nhs_id) : self -> p
asserts as_treating_doctor(s, username, pat_nhs_id) : self -> p

Note that the subjects for both as doctor on duty and patient assigned instancesin the
Fidelis formulation are explicitly required to match becauseof the variable matching
semantics. The explicit treatment of principals alsoincreasesthe exibilit y. For example,
as a principal may be a group principal, a patient assigned instancemay be issuedto a
group of doctors, allowing activation by any of the doctors in the group.

Example 6.3 The ultimate goalof RBAC is to enableauthorization decisions.Following
from the examplesabove, supposeoneauthorization rule for accessinga patient's health
recordis that the requesteris oneof the patient's treating doctors, i.e. is in an appropriate
R treating doctor role. In OASIS authorization rules, this can be expressedas:

R treating doctor(username?,pat nhs id?) ` P read health record(pat nhs id)

whereP read health record is a parametrizedprivilegethat takesanNHSidenti�er, pat nhs id.
This rule states that in order to be granted with read accessof a patient's record, a re-
questermust be active in a R treating doctor role with the patient's NHS identi�er as a
parameter. The samerule can be coded as a Fidelis action policy:

as_treating_doctor(s, username, pat_nhs_id) : self -> p (P3)
grants P_read_health_record(s, pat_nhs_id) : p

In this formulation, the requesterfor action P read health record must match with the
subject of the presented as treating doctor instance,namely, the doctor who is currently
active in the role. Note that however, P read health record takesan additional parameter,
the sessionidenti�er, s, whosevalue is obtained through the sessionidenti�er contained
in the as treating doctor instance.

6.1.2 RBA C96 and the NIST uni�ed mo del

RBAC96 [8] is a family of four models,RBAC0, RBAC1, RBAC2, and RBAC3. RBAC0 is
the basemodel, de�ning users(U), roles (R) and privileges(P) and association between
usersand roles(userassignment, UA), and rolesand privileges(privilege assignment, PA).
It also de�nes the notion of sessions(S), where sessionscontain active roles. RBAC1

139

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

DIR

PL1

PE1 QE1

ENG1

ED

E

PL2

PE2 QE2

ENG2

Legend
DIR Director
PL Project leader
PE Production engineer
QE Qualit y engineer
ENG Engineer
ED Engineering department
E Employee

Figure 6.1: An examplerole hierarchy (adopted from [8]).

builds on RBAC0 and adds the notion of role hierarchy. This will be discussedin more
detail later. RBAC2 adds to RBAC0 with constraints. The most important constraint is
the separation of duty constraints, also discussedlater. RBAC3 is a combined model of
RBAC1 and RBAC2. A recent attempt to unify the diversity of RBAC models resulted
in the NIST uni�e d RBAC framework [40, 41]. The framework describes three levels
of RBAC models: core RBAC, hierarchical RBAC and constrained RBAC. These are
essentially RBAC0, RBAC1 and RBAC3, with an extension for review functions. For
example, user-rolereview returns the set of roles a user is assignedto, including those
inherited; role-userreview doesthe opposite, and role-privilege review returns the set of
privileges a role is directly granted or inherited. The review functions are intended to
help administrators inspect the con�guration of RBAC policies.

Role hierarchy is a partial order on roles,basedon the \seniority" relation. Figure 6.1
shows an exampleof a role hierarchy, adopted from [8]. In this �gure, senior roles are
shown above junior roles. There exists several interpretations for role hierarchies. The
most commononesare privilege inheritance [8, 38, 41] and activation hierarchy [44]. In
the privilege inheritance interpretation, a role inherits privilegesassignedto all its junior
roles, including transitiv e ones. For example,in Figure 6.1, role PL1 will have privileges
granted to PE1, QE1, ENG1, ED, and E. In the activation interpretation, a userassigned
to a role may activate any of its junior rolesin a session,including transitiv e ones.Sothat
if a user is assignedto PL1, shemay activate PE1, QE1, ENG1, ED, or E in a session.
E�ectiv ely, the user is implicitly assignedwith thoseroles.

As reviewed in Chapter 2, separationof duty is a mechanism for decomposinga task
into sub-tasks,and assigningthem to di�eren t usersfor execution in order to increase
security and protect integrity. For RBAC, several typesof separationof duty constraints
have beendiscussedin the literature [46, 31, 32]. The more commonly agreedconcepts
are: static separation of duty (SSD) and dynamic separation of duty (DSD). Before
discussingthese types of constraint, it is worth noting that the notion of sessionsis
designedspeci�cally to enablethe support for separationof duty constraints and promote
the principle of least privilege. By activating a subsetof all assignedroles, a user can
obtain \just enough"privilegesfor the current task and avoid violating separationof duty
constraints.

Static separationof duty de�nes a mutually exclusive set of roles that must not be

140

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

assigned to the sameuser. This placesconstraints on the assignment of usersto roles
(i.e. the UA relation). Dynamic separation of duty works on a weaker basis, allowing
mutually exclusive rolesto be assignedto the sameuser,but preventing them from being
simultaneouslyactive in the samesession.While SSDis simple, it is a strongerconstraint
than DSD and may thus be inexible for practical use.

Expressing RBA C96-st yle mo dels. Fidelis policies can be written to expressthe
semantics of the RBAC96 and derivative models. A RBAC96 user equatesto a Fidelis
principal. ThereforeU, the setof all users,becomesthe setof all principals in the system.
Privilegesin RBAC96 are simpleatoms,which can be modelledasparameter-lessactions
in Fidelis. P, the set of all privileges, therefore maps into the set of all actions. Roles
in RBAC96 can be expressedas trust statements, so that a trust instancerepresents the
subject's membership of a role. However, as RBAC96 distinguishesbetweenactive roles
and assignedbut inactive roles,a role needsto be represented by two trust statements:

as hrole namei (s)

and

assigned hrole namei

where hrole namei is the name of a role and s is a sessionidenti�er. An instance of
the as hrole namei statement meansthat the subject is active as a member of the role
hrole namei , while an instanceof the assigned hrole namei statement indicates that the
subject is assignedwith the role hrole namei and may activate it for usein somesession.
A trust policy capturesthe role activation mechanism:

assigned_hrole namei : self -> p asserts as_hrole namei (s) : self -> p

The binding value for s may be provided from an input environment at evaluation, or
from a set clause.This is similar to the treatment in the previoussection.

Assignment of usersto rolesand privilegesto rolesarede�ned asrelations in RBAC96.
User assignment is de�ned as UA � U � R and privilege assignment is PA � P � R. In
Fidelis, information in UA is mapped into trust policies,and membersof PA are mapped
into action policies. For example,supposea partial userassignment relation for the role
hierarchy in Figure 6.1 is asgiven in Figure 6.2. The sameinformation may be expressed
as trust policies:

asserts assigned_E : self -> 1-of { Bob, Cathy, Dave, Eve } (P4)
asserts assigned_ENG1: self -> 1-of { Bob, Cathy, Dave } (P5)
asserts assigned_PE1 : self -> 1-of { Bob, Dave } (P6)
asserts assigned_QE1: self -> 1-of { Cathy } (P7)
asserts assigned_PL1 : self -> 1-of { Dave } (P8)
asserts assigned_DIR : self -> 1-of { Eve } (P9)

Note that these policies produce trust instanceswith subjects as threshold principals.
The semantics of threshold principals allows any threshold number (in this case,1) of
the members in the speci�ed group to use the trust instance. An alternative approach

141

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

User Assignedroles
Bob f E, ENG1, PE1 g
Cathy f E, ENG1, QE1 g
Dave f E, ENG1, PE1, PL1 g
Eve f E, DIR g

Figure 6.2: Role membershipsfor usersin the examples.

would besetting subjects in additional set clauses,possiblythrough databasequerieswith
greater exibilit y at the cost of verbosity. Privilege assignment (PA) may be expressed
in a similar fashion,albeit using action policies instead.

Role hierarchies are de�ned as a partial order on R, RH � R � R, written as � , e.g.
if r1 � r2, then r1 is directly senior to r 2. A role hierarchy may be expressedas a set of
action policiesor trust policiesdepending on which interpretation to use.

Privilege inheritance. With this interpretation, a role inherits privilegesthat all of its
junior rolesareassignedwith, and junior rolesinclude thosetransitiv ely de�ned. Suppose
role r is assignedwith a privilege pv 2 P. In Fidelis, this is:

as_r : self -> p grants pv : p

Then for each role r i 2 R such that r i � r , add an action policy:

as_r i : self -> p grants pv : p

As an example,supposerole QE1 in Figure 6.1 is assignedwith a privilege P1. Under
privilege inheritance, this assignment causesthe following action policiesto be introduced
in an atomic step:

as_QE1: self -> p grants P1 : p (P10)
as_PL1 : self -> p grants P1 : p (P11)
as_DIR : self -> p grants P1 : p (P12)

Activ ation hierarc hy. This interpretation of a role hierarchy enablesa userto activate
rolessheis assignedwith, plus additional roles junior to thoseassigned.For a role r , its
activation would be speci�ed as:

assigned_r : self -> p asserts as_r : self -> p

Activation of junior rolesmay be expressedas, for each r i 2 R such that r � r i ,

assigned_r : self -> p asserts as_r i : self -> p

Basedon this formulation, the sub-hierarchy rooted from QE1 of the hierarchy in Fig-
ure 6.1 may be expressedas the following trust policies:

142

CHAPTER 6. Applications 6.1. Role-basedaccesscontrol

assigned_QE1: self -> p asserts as_QE1: self -> p (P13)
assigned_QE1: self -> p asserts as_ENG1: self -> p (P14)
assigned_QE1: self -> p asserts as_ED1: self -> p (P15)

Note that the Fidelis formulation for role hierarchies does not replace the seniority
relation (namely RH). Instead, it servesas a complement to the information in RH and
providesa semantics for the relation. In RBAC96 and derivatives,the interpretations are
provided through textual de�nitions.

The basisof expressingseparationof duty constraints is through the distrust mech-
anism (i.e. the without clause). Separation of duty constraints are speci�ed in the
RBAC96 family of models as sets of mutually exclusive roles. We shall considerstatic
separationof duty (SSD) and dynamic separationof duty (DSD) separately.

Static separation of dut y. SSDenforcesmutual exclusionof userassignment to roles.
That is if rolesr 1 and r2 aremutually exclusive, they cannot be both assignedto the same
userat any time. An approach to expressthis constraint asemployed in RBAC96 is asa
set SSD� 2R , whereeach member of SSDspeci�es a set of mutually exclusive roles.

To expressSSDconstraints in Fidelis, without clausesneedto beaddedto every trust
policy that represents userassignment for mutually exclusive roles. More speci�cally, for
every rs 2 SSDand r 2 rs, the userassignment policy for r would have the form:

without assigned_r 1 : self -> p, ..., assigned_r n : self -> p
asserts assigned_r : self -> p

wherer i 2 (rs � f r g) for 1 � i � n, and jrs � f r gj = n. As an example,supposerole PE1
and QE1 in Figure 6.1 are mutually exclusive in SSD. The assignment policies P6 and
P7 would thus become:

without assigned_QE1: self -> p (P6')
asserts assigned_PE1 : self -> 1-of { Bob, Dave } as p
without assigned_PE1 : self -> p (P7')
asserts assigned_QE1: self -> 1-of { Cathy } as p

The �rst policy ensuresPE1 can be assignedto Bob or Dave if and only if they have not
alreadybeenassignedwith QE1. The secondpolicy ensuresthat QE1 canonly beassigned
to Cathy if and only if shehasnot already beenassignedwith PE1. The combination of
thesetwo policieshencecorrectly implements SSDbetweenPE1 and QE1.

Dynamic separation of dut y. DSD enforcesmutual exclusionon role activation. It
is alsocapturedasa set in RBAC96,namely, DSD � 2R , whereby each member is a set of
mutually exclusive roles. If two rolesr 1 and r2 are in the sameset, they may be assigned
to the sameuserbut must not be activated simultaneously in the samesession.

DSD constraints may be speci�ed in Fidelis as without clausesin trust policies for
role activation. For every rs 2 DSD and r 2 rs, the activation policy for r would be:

assigned_r : self -> p
without as_r 1(s) : self -> p, ..., as_r n(s) : self -> p
asserts as_r(s) : self -> p

143

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

wherer i 2 (rs � f r g) for 1 � i � n, and jrs � f r gj = n. Note that the variable for session
identi�ers (i.e. s) must match acrosstrust statements for active roles to ensurea faithful
modelling of the DSD semantics. SupposePE1 and QE1 in the previous example are
mutually exclusive in DSD (instead of SSD), the trust policies for activation of PE1 and
QE1 will be:

assigned_PE1 : self -> p without as_QE1(s) : self -> p
asserts as_PE1(s) : self -> p
assigned_QE1: self -> p without as_PE1(s) : self -> p
asserts as_QE1(s) : self -> p

Constrained by the without clausein the �rst policy, a principal assignedto PE1 may
only activate it if and only if he/sheis not alreadyactive in QE1 in the samesession.The
secondpolicy works symmetrically and completesthe mutual exclusion.

6.1.3 Discussion

As shown in this section, Fidelis may expressa variety of role-basedaccesspolicies.
For OASIS policies, there exists a near-perfect mapping to Fidelis policies. The major
di�erence in the policy speci�cation between OASIS and Fidelis is that principals are
implicit in the former whereasthey are treated explicitly in the latter. In OASIS, it is
assumedthat when a policy is evaluated, there is only one principal in the context, i.e.
the role owner and/or the requester. In Fidelis, a policy may be evaluated in a context
wherethere exist multiple principals, as trusters and/or subjects.

Explicit treatment of principals in Fidelis providesadditional power and exibilit y. It
allows the speci�cation of, for example,threshold-basedaccesscontrol, which is di�cult
in OASIS. Moreover, it enablesthe speci�cation of accesspoliciesfor proxied requests, i.e.
requestspassedthrough a chain of intermediary entities. In this case,a requestappears
to the destination serviceas if initiated by the last-hop intermediary. Fidelis policiescan
be easily written to distinguish principals, whereasin OASIS, this is awkward at best.

Fidelis can also expressthe policiesof RBAC96 and its derivatives. It allows precise
modelling of role assignment, role activation, role hierarchy and separationof duty con-
straints. In general,the policy-basedapproach of Fidelis is more verbosethan RBAC96's
set-basedspeci�cation, especially when usedto expresshierarchies. However, the policy-
driven approach de�nes a clear semantics. For example, for role hierarchies, it clearly
de�nes the intended interpretation, as privilege inheritance or activation hierarchy.

Becauseof the verbosity of the Fidelis approach for RBAC96 policies, it is conceived
that a policy tool may beconstructedsothat role policiesmay bede�ned and manipulated
graphically. Appropriate policiesmay then be generatedautomatically from the graphical
speci�cation. This may both easepolicy management and reducehuman error.

6.2 Case study: Trust managemen t in the World
Wide Web

Sinceits inception in the early 90s,the World Wide Web(WWW) hasrapidly established
itself as the \killer application" of the Internet. However, authorization management for

144

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

GET / HTTP/1.1
Host: www.cl.cam.ac.uk
...Client Proxy Server

M-GET / HTTP/1.1
Host: www.cam.ac.uk
Man: cl.cam.ac.uk/ext/fidelis
...

HTTP/1.1 200 OK
Ext:

...

HTTP/1.1 200 OK

...

Figure 6.3: Proxy mechanism supporting Fidelis trust management.

the WWW has traditionally beenad-hoc with lack of any uniform framework. The goal
of this casestudy is to apply Fidelis trust management to the WWW, devisinga platform
on which new styles of collaborative applications may be built. The prominent typesof
application include:

� Collaborative content management systems. A web site may determine the access
of its content (e.g. parental control, pay-for-content), or customizeits content for
the intended audiencebasedon the trust instancesissuedby third parties.

� Singlesign-onsystems.Usersoften needto maintain independent identities for each
site they use,e.g.di�eren t online shops,web spaceproviders, pay-for-content sites,
etc. Singlesign-onsystemsaim to provide a portable identit y acrossmultiple sites.
Existing solutionsareusually basedon somecentralized database,whereasthe trust
management approach o�ers an attractiv e privacy-respecting alternative.

The main considerationfor the designis that it shouldintroduceminimal or no changes
to the existing WWW architecture, and it should build on standards where possible.
Moreover, where changesto the architecture cannot be avoided, they should only be
made at the server end, not the client end. This is due to the fact that the WWW is a
well-establishedand mature technology. Introducing architectural changeswould severely
limit the practical applicability and acceptanceof the solution, or at the very least the
speedof its adoption.

6.2.1 Arc hitectural overview

The aim of this casestudy is to integrate Fidelis into the existing WWW architecture in
a seamlessfashion, thereby enabling trust instancesto be used to assist the processof
content authorization, generationand delivery from a web server. Towards this aim, it
is essential to associate trust instanceswith HTTP requests(which underly the WWW).
This implies the webclient (usually a webbrowser)needsto includea setof trust instances
of the userfor requestsit sends,and the web server needsto interpret and perform appro-
priate actionsbasedon the submitted trust instances.Wherenecessary, trust negotiation
may needto be initiated alongsidethe HTTP interactions.

In order to minimize the impact on the web client, our designmakesuseof the stan-
dard HTTP proxy mechanism. As described in the HTTP RFC [172], a proxy is an
intermediary program that acts simultaneouslyasa server and a client and is intendedto
make requestson behalf of someclients. A proxy may transform requestsfrom a client,

145

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

in which case,it is called a non-transparent proxy. The proxy designedfor Fidelis trust
management is a non-transparent proxy, called the Fidelis smart proxy.

The overall architecture is shown in Figure 6.3. A client issuesa standard HTTP
request,which is servicedby a smart proxy which transforms the client request into an
extendedrequest,associated with a setof trust instancesin the FIC (Fidelis Interoperable
Credential) format. The server then needsto interpret the request and its associated
trust instances,and perform relevant actions such as making an authorization decision,
customizing contents, etc. The extended request makes use of the HTTP Extension
Framework [173], which allows custom extensionsto be created for the HTTP protocol.
For a response,the smart proxy simply relays the information returned by the server to
the client.

This architecture doesnot requireany changeto the webclient, and hencesatis�es our
basicdesignrequirement. The smart proxy essentially acts as a trust agent as described
in Section4.2.6,and may initiate trust negotiation with the server. Note that the smart
proxy is transparent to servers. The extendedrequestproducedby a smart proxy must
appearasif it is initiated by the client itself. The requesterhencemust bind the requester
identit y, using the mechanism described in Section4.2.7.

The server, however, needsto be extendedto include Fidelis functionality. There are
two main functions that a Fidelis-awarewebserver must handle. First, it must understand
the HTTP extensionthat the Fidelis smart proxy uses,and second,it must be able to
exposeits mechanismfor handling HTTP requestsasFidelis actionssothat action policies
may be written to control its behaviour. For this casestudy, it was decidedto integrate
Fidelis into the popular open-sourceApache web server [171]. The next two sections
describe the extensionwork for Apache version1.3.

6.2.2 Request handling in Apac he

The Apache web server featuresa modular framework, whereby modulesmay be dynami-
cally loadedto enrich the server. Typical tasksperformedby modulesinclude transform-
ing HTTP requests,invoking external CGI (Common Gateway Interface) programsthat
generatedynamic content, redirecting requests,and implementing custom authorization
schemes. A module consistsof a number of hooks (or handlers) that are invoked by
Apache at appropriate times for two main purposes:to parsethe con�guration �le and
to modify the behaviour of requesthandling. We shall discussthe latter in more detail.

Apachebreaksrequesthandling into several stagesasillustrated in Figure 6.4. When a
requestis received, it �rst translatesthe URI (Uniform ResourceIdenti�er) in the request
into a local �lename wherepossible. It then parsesthe HTTP headersinto a hash table
and in addition, performssomeprocessingagainst theseheaders.

The next three stagesare related to determining whether accessto a pageshould be
granted. Thesethree stagesare named: accesscontrol, authentication and authorization.
The terminology is somewhatconfusing. Essentially the access control stage refers to
mandatory accesscontrol, i.e. basedon attributes that always exist on a mandatory ba-
sis,not provided at the user'sdiscretion. Primary examplesinclude the user'sIP address
and the time of access. The authentication stage implements the HTTP authentica-
tion framework, described in RFC 2617[174]. The framework speci�es a mechanism for
challenge-responseauthentication to be performedbetweena client and a server. The au-

146

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

Headers parsing

Access control

Authentication

Authorization

MIME type checking

Response

Logging

URI translation

Fixups

Cleanup

Request

Figure 6.4: Requesthandling cycle in the Apache server (version1.x)

thorization stagecomesafter the authentication. It is designedfor making authorization
decisionsagainst the identit y information obtained from the authentication stage.

After thesesecurity-related stages,the MIME type [175] for the requestedresourceis
determined. The MIME typemay needto besent back in the responsemessageto provide
presentation hints for the client, e.g. an HTML pageor an image. The �xups stage is
reserved for future extensionsthat do not �t into the requesthandling cycle. After this
stage,the actual responsemessageis then generatedand sent back to the client.

Apachethen logsthe processingof the request. This always happensafter the response
is sent, and may be optionally invoked at any other stageswhere logging is required.
Finally, Apachecleansup all transient resources(e.g.allocatedmemory, open �le handles,
etc) and returns to the waiting state for another request.

For each stage,Apache goesthrough a chain of modulesand sequentially invokestheir
handlers if they exist. If a module does not de�ne a handler for a stage, it is simply
ignored. Note that while the accesscontrol, authentication and authorization stagesare
intended for distinct purposes,there are few practical di�erences in the way they are
treated by Apache.

6.2.3 In tegrating Fidelis

An Apache module, modfidelis , has been implemented to provide Fidelis trust man-
agement for the Apache web server. At the heart of the module is a Fidelis policy engine
which performspolicy inference.The policy engineis invokedat variousstagesof Apache's
requesthandling cycleto determinehow a requestshouldbe processed.modfidelis also
provides a parser for custom con�guration directives,utilizing Apache's standard con�g-
uration parsing mechanism. The overall architecture is illustrated in Figure 6.5.

There are two types of con�guration �les in Apache: global and per-directory. The
global con�guration �le is read and parsedwhen Apache starts up, while a per-directory
one is parsedwhen a directory is accessed.A con�guration �le consistsof a set of di-

147

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

Configuration
parser

Fidelis
policy
engine

PoliciesApache

mod_fidelis

Request
handling

hooks

Figure 6.5: Architecture of modfidelis

rectives, which can be of per-server or per-directory scope. modfidelis de�nes custom
directivesfor:

� the URL to a FPI (Fidelis Policy Interchange)document;

� the public key pair of the policy owner (i.e. the self principal); and

� default environment bindings.

modfidelis initializes the policy engineby loading the global policy document on a
per-server basis. Subtreesof the document tree served by Apache may be madesubject
to di�eren t policiesusing per-directory con�guration �les. Policy �les speci�ed in a per-
directory con�guration �le may replaceor add onto the global, per-server ones,depending
on need. The sameappliesto environment bindings.

modfidelis exposesthe internals of Apache through Fidelis actions. It de�nes two
typesof actions: actionsthat represent hooks in a module and actionsthat correspond to
HTTP methods. All theseactions are de�ned to be simple actions, i.e. without parame-
ters. The actions de�ned by modfidelis are summarizedin the following table:

Hook actions translate , header-parsing , type-check , logging
HTTP actions GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE, CONNECT

When a request is being processed,modfidelis successively queriesthe policy engine.
For example,at the URI translation stage,the module queriesfor the translate action;
on the headersparsing stage, the headers-parsing action is queried; the MIME type
checking stagefollows a similar procedure. The exception is the security-related stages,
in which case,the action representing the actual HTTP method will be queried for an
authorization decision. For example, for a typical page request, the GETaction will be
queried,while for a form submission,the POSTaction will be queried instead.

Typical Fidelis applications would de�ne parametersfor actionsand trust statements
to carry morespeci�c information. In modfidelis , a di�eren t approach is used. Environ-
ment variablesare usedto provide additional information regardingevery request. When
a requestis received, thesevariableswill be bound to valuesextracted from the request.
The environment variablesinclude the standardset of variablesexposedto CGI programs
by the server, e.g. REMOTE_HOSTgives the host name of the web client, PATH_INFOgives

148

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

Environment variable Description
CONTENT_TYPE The MIME type of the query data (e.g. text/h tml)
HTTP_USER_AGENT The web client the user is using (e.g. Mozilla/5.0 Ga-

leon/1.2.1)
PATH_INFO Extra virtual path information given by the client.

From a URL, this is the path after the domain name.
PATH_TRANSLATED The translated version of PATH_INFO, mapped into a

physical pathname.
REQUEST_METHOD The HTTP method used to make the request (e.g.

GET, POST, etc.).
REMOTE_HOST The domain name of the computer running the web

client.
REMOTE_ADDR As above, but in IP address.
SERVER_PROTOCOLThe protocol in use(e.g. HTTP/1.1)
SERVER_NAME The host nameof the computer on which the server is

running.

Figure 6.6: Commonly-usedCGI variables.

the requestedresourcepath, and HTTP_USER_AGENTidenti�es the web client. Figure 6.6
shows a set of commonly-usedCGI variables as a reference. There are also somead-
ditional, non-CGI variablesde�ned in the environment, such as REQUEST_TIME. Policies
may modify the bindings to thesevariables,which would inuence the way Apache han-
dles a request. For example,a policy may redirect a requestby modifying the value of
PATH_INFOduring policy evaluation. The reasonfor this unconventional approach to pa-
rameterhandling is that the additional information is identical acrossall actions{ derived
directly from HTTP requests.Employing a uniform accessmechanismis moreconvenient
and lesserror-prone.

There is no default setof trust statements for modfidelis . It is up to the administra-
tor to de�ne trust statements that suit the application requirements using the standard
mechanism provided by Fidelis. For the rest of this section,we shall examinethe useof
modfidelis in someparticular application scenarios.

Example 6.4 Fidelis can replacethe existing accesscontrol and authorization mecha-
nism in Apache through a uni�ed framework. Recall that the term \accesscontrol" in
Apache refersto non-discretionaryaccesscontrol, and is often related to host nameor IP-
basedauthorization. An exampleof host-basedauthorization policy speci�ed in Fidelis
would be:

grants GET: p, POST:p
where PATH_INFO== "/" && REMOTE_USER= "elite.jesus.cam.ac.uk"

The above action policy givesaccessto the resourceroot (\ / ") using the HTTP GET or
POST methods to clients on the host at elite.jesus.cam.ac.uk . Subnetaddressesmay
be speci�ed in a similar fashionas Apache. For example,

149

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

grants GET: p, POST:p
where PATH_INFO== "/internal" && REMOTE_USER= "128.232."

allows GET and POST requestson /internal , issuedby any host within the subnet of
128.232.When a requestis being processed,at the authorization stageof the processing
cycle, modfidelis queriesits policy engine for a decision. It �rst constructs an envi-
ronment, binding environmental variables to their initial values. It then issuesa query
of the requestedHTTP method. For example, if a web client requestsa dynamic page
at /internal/member_data.php using the POST method, a query for the POST action
will be issued. Therefore, according to the action policy, if the requesterresideswithin
the 128.232.subset,the action will be authorized.

Supposewithin an organizational intranet, the details of the company's account are
publishedat /internal/accounts , and are strictly available only to accounts sta�. Sup-
pose every employee at the accounts department will be issued with a trust instance
as accounts assertinghis or her role in the company. An action policy may thereforebe
written as follows:

as_accounts: self -> p
grants GET: p, POST:p
where PATH_INFO== "/internal/accounts"

This statesthat for a GET or POST method on /internal/accounts , its requestermust
be the subject of a valid as accounts instance.

Example 6.5 One of the much-neededfeatures for the WWW is the abilit y to �lter
content accordingto certain criteria, e.g. age,premium level, etc. This can be observed
in the proliferation of parental control systems,such as CyberSitterTM , SafeSurfTM , and
KidShieldTM . Most of such systemsbehave as a personal�rew all, �ltering the contents
of web pagesaccording to somecriteria and heuristics as they are being received, e.g.
scanningfor certain keywords, comparing the addressagainst a `blacklist', or applying
imagerecognition heuristics.

A morecomprehensive �ltering framework includesa rating service, which issuesrating
labels for sites (or pages). When a page is being requested,the �ltering software �rst
retrieves its label and makes a decisionbasedon the information on the label. A label
typically contains descriptive keywords indicating the nature of the content. Fidelis may
be usedto implement such a framework.

As an experiment, a modfidelis -enabledApache server is con�gured as a HTTP
proxy, acting as a �lter for its clients. In this con�guration, all client requestsare for-
wardedthrough the proxy, which �lters the responsefrom the web server accordingto the
policy speci�cation. Supposean imaginary company, CyberRating Inc., provides rating
servicesfor web sites and issuesrating labels in the form of trust instances. It de�nes a
trust statement, rating . An examplerating instanceis shown here:

rating("http://some-site.com/news.html", 0x3a81ba8, 3, 0, 0):
CRI -> some-site.com

where http://some-site.com/news.html gives the URL to the page,0x3a81ba8gives
the cryptographic digest of the content, and the following three numbersgive the level of

150

CHAPTER 6. Applications 6.2. Casestudy: Trust management in the World Wide Web

violence,nudity and strong languageon the scaleof 0 to 5 (strongest). As a shorthand,
the symbol `CRI' is usedto represent the public key identi�er for CyberRating Inc.

Action policiescan then be set up on the proxy server to �lter web pages.By default,
GET or POST requestson a resourcewithout an accompanying rating instancewill be
blocked. Moreover, conditionson parametersin rating instancesmay be speci�ed to suit
the desiredlevel. For example,an action policy on the proxy might be:

CRI.rating (path, hash, violence, nudity, language): CRI -> q
grants GET: p, POST:p
where PATH_INFO== path && violence <= 2 && nudity <= 1

which states that in order for a pageto be retrieved, it must be rated by CRI, with the
level of violenceand nudity lessthan 2 and 1 respectively. Note that weusea dot notation
to indicate that rating is de�ned by CyberRating, rather than locally. The subject of
rating is the site that hoststhe page,and is normally di�eren t from the client principal.
Two di�eren t variable placeholdersare thereforeusedfor the subject and the requester.

When the client makesa GET request,the requestis sent to the proxy, which forwards
the requestto the ultimate web server. The web server then respondswith the requested
page. At this point, the proxy performs two operations. First, it attempts to retrieve
the corresponding rating instancefrom CyberRating. If a valid rating instance is not
available, it aborts the process. Otherwise, it queries the policy engine for an access
decisionwith the collectedrating instance.

Example 6.6 It is rapidly becominga norm that a web user often needsto maintain
multiple username/password pairs. While decentralization, autonomy and independent
management are the key concept for the WWW, under this circumstance,it becomesa
liabilit y for usersbecauseof the inconvenienceand operational overhead. Singlesign-on
(SSO) systemsare introducedto addressthis problem. The idea is that a useronly needs
to authenticate once,and will then be able to accessmany sites without needingto re-
authenticate at each site. Many commercialsolutionsexist, with the leadingonesinclud-
ing Microsoft PassportTM [176], Entrust GetAccessTM [177], and RSA ClearTrustTM [178].

Fidelis is naturally suited to implementing single sign-on becauseof its inherently
decentralized nature. The mechanism centres around a time-bound trust instance that
is issuedto a user oncehe/she is authenticated at a site. The trust instanceproves the
holder as a valid user. The user may then present the trust instance to participating
sites for access. As a demonstration supposean imaginary company, SSO Technology
Inc. (hereafter referred to as \SSOTech") o�ers a single sign-on authentication service.
We set up a web server for SSOTech with modfidelis support, wherea login pagefor
userauthentication is served. SupposeSSOTech de�nes a trust statement authenticated
that carriestwo parameters,a unique identi�er and a premium level (assumingSSOTech
o�ers three levels of premium access,0 to 2). An exampletrust instancelooks like:

authenticated("DX4019169", 2): SSO-> Alice

SitesusingSSOTech's servicewill simply needto identify instancesof authenticated
trust statements. Supposea fake online entertainment site, entertainmentoday.com, uses
the service. It allows all authenticated usersto accessthe member areaand all privileged
users(with the premium level of 1 or above) to accessthe privileged area. The action
policiescould be written as:

151

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

SSO.authenticated(id, level): SSO-> p
grants GET: p, POST:p
where PATH_INFO== "/member"

SSO.authenticated(id, level): SSO-> p
grants GET: p, POST:p
where PATH_INFO== "/member/privileged" && level >= 1

A user visiting the site would �rst needto obtain an authenticated trust instance
from SSOTech, either directly by authenticating at SSOTech's login page, or through
entertainmentoday.com'sweb gateway to SSOTech's server. The trust instancemay then
be presented to gain accessto entertainmentoday.com and other participating sites.

The implication of single sign-on is that the authentication processis delegatedto a
third party. In this example,SSOTech has the authority to decideits meansof authenti-
cation, e.g.passwords, or digital certi�cates, and participating sitesare expectedto trust
the strength and security of its authentication scheme. If a higher level of assuranceis
desired,a participating site may requestadditional trust instancesto gain accessusing
standard Fidelis mechanisms.

6.2.4 Discussion

The two major advantagesof integrating Fidelis with the WWW are increasedexibilit y
and enabling decentralized management for web-basedapplications. With Fidelis, com-
plex accesspolicies may be speci�ed. In previous examples,mandatory, role-basedand
trust-basedaccesscontrol policieshavebeenimplemented. The exibilit y is mostly dueto
the strong policy support of Fidelis, combined with appropriate interfacesto the Apache
server. Decentralized management is a direct result of applying Fidelis, where the sup-
port for autonomousand interworking servicesis the fundamental notion. This is seenin
the single sign-on example,where the management of authentication and authorization
is clearly and securelyseparated.

On the other hand, while the architectural designsatis�es the transparencyrequire-
ment, the smart proxy introducesan additional layer. Ideally, Fidelis shouldbe integrated
with web browsers,with the advantages of increasedperformance,better security, and
avoidanceof an additional architectural component in the request/reply chain.

6.3 Case study: an electronic mark etplace

A phenomenonfacilitated by the World Wide Web is an abilit y for strangersto conduct
businesstransactionsonline, resulting in the rapid boom of electronic commerce over the
past few years. The aim of this casestudy is to provide a simulated study for the use
of trust management, and speci�cally Fidelis, in an electronic commercesetting. While
this casestudy is not basedon a real online business,attempts have beenmadeto closely
model the actual operationsand interactionsbetweenbusinessesand consumersto provide
a realistic study.

152

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

6.3.1 Background

We focusour study on electronic marketplaces. The conceptof an electronicmarketplace
is similar to traditional, physical markets where sellersand buyers aggregate,meet and
carry out business.The basicideais simple: with the largeand fast growing consumerand
supplier base,it is increasingly di�cult for consumersto search and match their needs
and for suppliers to be known and found by their potential customers. An electronic
marketplace is intended to provide a central venue where suppliers gather to project a
single, virtual shop o�ering combined rangesof products. Electronic marketplacesare
rapidly gaining popularity, with prime leaderssuch asYahoo! and Amazon. For example,
Amazon started out as an online bookseller. However, over the years, it has gradually
evolved into an electronic marketplace through partnership, o�ering items ranging from
books to CDs/DVDs, consumerelectronics,and houseware.

6.3.2 Environmen t

In this casestudy, weconsideran imaginary electronicmarketplacecompany calledvirtua-
marketplace.com2, a number of participating stores,consumersand an independent third-
party, Better BusinessBureau. The primary functions of theseentities are summarized
below:

virtua-marketplace.com

� Portal contents. Product advertisements from member storesareregularly collected,
centrally stored and processed.Portal pagesare generatedto show a catalogueof
available products.

� Browsing/searching facility . Buyers may browse or use the searching facility to
locate products. For each product, a complete description is provided, together
with somebrief information about the sellers(stores).

� Smart shopping. A buyer may expresshis/her interest, preferences,or needsand let
virtua-marketplace.comshop for the appropriate products/suppliers. For example,
a consumermay expressthe willingnessto spend at most $150 for a DVD player
madeby either SONY, Pioneer,or Phillips, with at least 2 yearsof warranty. This
facility is available for premium membersor for a servicefeeon a per-usebasis.

� Transaction agent. For a commission,virtua-marketplace.comcan deal with trans-
actions on behalf of member storesor consumers.This is usefulwhereeither party
wishesto engagein a pseudonymoustransactionwherereal identit y cannotbetraced
under normal circumstance. Note that virtua-marketplace.comis assumedto be
legally obliged to protect this identit y information.

Stores

� Managing the collection of goods/products. A store may maintain a databaseof
products, whereeach product has an entry consistingof a description, a speci�ca-
tion, a stock count and someadditional notes(e.g. on promotion or sale).

2The domain namesusedin this casestudy are non-existent at the time of writing.

153

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

� Advertising. When new products are introduced, a store may choose to notify
virtua-marketplace.comfor the new arrival. This mechanism works in complement
with virtua-marketplace.com'speriodic polling method.

� Managementof product information. A storemay sendactive noti�cation to virtua-
marketplace.comwhen product information changes,e.g. changesof price, stock
level, or additional notes.

� Processingpurchases. A store may have the facility to processpurchasesdirectly
with customers.This typically involvesthe payment process,stock check, scheduling
for delivery, and establishingafter-salepolicies.

Better BusinessBureau

� Rating service. It provides a credit rating for online stores. The rating of a store
may be a�ected by the monitored performanceof the store, by transaction history,
or by comments from past customers.

Consumers

� Browsing/searching the product catalogue. The browsing and searching facility on
virtua-marketplace.comis open to any web user,not just registeredmembers.

� Purchasing goods. From a consumer'spoint of view, purchasing mainly involves
�lling in an online order form which includespayment details.

� Reporting. A consumermay comment on his/her experienceswith an online store
and submit this information to virtua-marketplace.com.The opinion will then bere-
viewed and veri�ed, and may be usedinternally or forwardedto the Better Business
Bureau.

� Recommendation. Consumersmay recommendonlinestoresor goodsto oneanother.

The casestudy builds on top of the web servicearchitecture described in Chapter 4
and the WWW integration of Fidelis describedin the previoussection. The main interface
of virtua-marketplace.comis a portal built in standard HTML and PHP4 [179]. PHP4
is an open-source,server-sidescripting language,allowing, for example, contents to be
dynamically generatedfrom databases.Interactions betweenthe entities described above
are implemented mainly using web serviceinterfaces.

6.3.3 Mem bership managemen t

virtua-marketplace.comemploys a subscription scheme for both stores and consumers.
A store must subscribe to be able to advertise and submit new products to virtua-
marketplace.com'sproduct database.Subscribed storesalsohave the bene�ts of directed
marketing, where virtua-marketplace.comanalyzesits consumerbase and periodically
recommendsstoresof interest to customers. Subscription for consumersis intended to
maximizetheir easeof use. A subscribed consumermay be given a specialo�er from time
to time, and useadvancedservicesincluding smart shopping.

virtua-marketplace.comappliesrole-basedmodelling for thesetwo kinds of subscribers.
Two trust statements are designedto represent the membership of a businessuserand a
consumer,as_business and as_consumerrespectively. as_business hasoneparameter,
the URL of the online store. An exampleinstanceis:

154

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

virtua-marketplace.comStore

product information collection

advertisement

Figure 6.7: Incorporating product information

VM.as_business("www.buysportstuff.com"): vm.com-> 0xba2d54f...

Such trust instanceexpressestwo meanings.First, the subject (in this case,0xba2d54f...)
is a businesssubscriber of virtua-marketplace.com.Second,the subject is the online store
at the named URL, (www.buysportstuff.com). Note that the dot notation is used to
indicate that as_business is de�ned within the scope of virtua-marketplace.com(VM),
and the symbol vm.comrepresents the public key identi�er for virtua-marketplace.com,
and will be usedconsistently throughout this casestudy.

as_consumer is similar to as_business but slightly simpler as it contains no pa-
rameter. An instanceof as_consumerconveys the simple messagethat the subject is a
subscribed consumerof virtua-marketplace.com.

6.3.4 Pro duct catalogue managemen t

virtua-marketplace.commaintains the product cataloguein a database.The databasecon-
tains information about products available at its member stores. For each product, there
existsin the cataloguean entry consistingof the description, the price, the stock level, and
a textual �eld for additional notes. Each store may optionally maintain a local database
for a similar purpose.As shown in Figure 6.7, the databaseat virtua-marketplace.comis
populated by two mechanisms: cataloguecollection and advertisement.

Catalogue collection is a pull mechanism. When a store �rst registerswith virtua-
marketplace.com,its full catalogueis retrieved and incorporated. Subsequently, virtua-
marketplace.comperiodically collects product information at the frequencyspeci�ed by
each member store.

Advertisement is an active pushmechanism. A storemay sendproduct rangeupdates
to virtua-marketplace.comwhen new products arrive. virtua-marketplace.comemploys
Fidelis action policies to protect the active interface. The advertisement interface at
virtua-marketplace.comis abstracted as an action, advertise , and the advertisement
policy statesthat advertisement is acceptedif and only if it is originated from a business
user (i.e. an online store). Expressedin Fidelis,

as_business(url): self -> p grants advertise(product_details): p

When new product information is incorporated, either from the cataloguecollection
or through advertising, virtua-marketplace.comallocatesa product identi�er and issues
a product_store instance to the store that o�ers the product. The product identi�er

155

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

is used internally to help produce the catalogueportal at virtua-marketplace.com. The
product_store instanceis for identifying the owner of the product entry in the catalogue
database. One use of this trust statement is for product information update. Product
information on the catalogueat virtua-marketplace.comis only allowed to be modi�ed
by the owner of the product entry. This is requestedwhen, e.g. there is a price changeor
stock level change. The action policy is:

as_business(url): self -> p, product_store(product_id): self -> p
grants update_product(new_details): p

This policy not only requiresa product_store instance,but alsoa matching as_business
instance to authorize update on a product entry. This may seemredundant but gives
tighter security as it placesan explicit requirement that the subject of the presented
product_store instancemust be a subscribed businessuser.

6.3.5 Reputation managemen t

An important element ensuringthe functioning of the electronic marketplace is a mech-
anism that enablesunfamiliar parties to build trust and interact. While big players will
bene�t from brand recognition, small sellersmust rely on other meansto gain trust from
potential customers.Reciprocally, while risking violating privacy, under somespecial cir-
cumstances,a sellermay alsowish to �nd out the credibility of a potential customer,e.g.
to prevent fraud by repeating cheaters.

virtua-marketplace.comemploys a simple reputation systemwhere a rating for sub-
scribers may be queried. The reputation system consistsof two main sub-systems:an
opinion collector and a rating aggregator. The purpose of the opinion collector is to
gather feedback about interactionsbetweensubscribers(either store-consumer,consumer-
consumeror store-store). It o�ers both passive and active mechanisms. The passive
approach is a reporting mechanism, where transaction experiencesmay be given in free-
form text, and someevidence(such astransaction record,payment evidence,etc) may be
attached to support the case.

The activeapproach is basedon a monitoring mechanism,and is designedfor situations
where virtua-marketplace.comis acting as an transaction agent on behalf of a store or
a consumer. When virtua-marketplace.comis empowered with the task of executing a
transaction, it is able to monitor whether the other party duly ful�lls its duties. More
details are described in the next section.

The rating aggregatoris in chargeof computing a rating valuefrom collectedopinions.
For simplicity, the computation usesa simple averagefunction, resulting a discretevalue
on the scaleof 1 to 5. In this casestudy, submitted opinions are not veri�ed, but in
practice, it is important to guard against falsereports.

The opinion collector may also take the rating from the Better BusinessBureau as
an input. The Better BusinessBureau de�nes a trust statement, rating , whoseinstance
gives the rating information of the subject. The rating trust statement has a single
parameter, the rating value. The rating value is on the samescaleof 1 to 5 as used in
virtua-marketplace.com.This is intentional, as it simpli�es the designof the casestudy.
The Better BusinessBureau also de�nes another trust statement, business , which is

156

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

Better
Business
Bureau

Store

Consumer

as business("www.buysportstuff.com") :
VM.com! Store

rating(4) : BBB! Store

Figure 6.8: Supporting purchasedecision.

intended to identify a public key asa business.The business trust statement includesa
singleparameter, the URL of the online business.

In the next section, examplesillustrating the use of these trust statements will be
provided.

6.3.6 Transaction pro cessing: purc hases

We shall considerthe most commontype of transactionsin our setting { the purchaseof
goods. In many situations, a purchaseis a direct transaction betweenthe store and the
consumer.Oncea consumer�nds the appropriate product and decidesto proceedwith a
purchase,he/she placesan order by �lling in a form at the store's site.

Supposethe store is newto the consumerand, asa result, the consumerwishesto gain
accessto the credibility of the store beforeproceedingwith the purchase. One approach
is to make use of the rating information provided by the Better BusinessBureau. The
consumermay expressa policy whereby a purchasemay be initiated only if it is with a
store which is a member store of virtua-marketplace.comand is accreditedby the Better
BusinessBureau with a rating of 4 or above. The policy can be expressedas follows:

VM.as_business(url) : self -> p,
BBB.business(url) : BBB-> q, BBB.rating(r) : BBB-> q
grants purchase(product_id) : self
where r >= 4

Under this policy, for a purchasedecision to be made, the store must provide the
consumerwith a valid instanceof VM.as_business, which assertsthat it is a member store
of virtua-marketplace.com.Additionally , the consumerobtains the BBB.rating instance
regarding the store from the Better BusinessBureau and the rating value must be 4 or
greater. Note that sinceit is possiblethat the sameonline store is known di�eren tly (i.e.
di�eren t public keys) at virtua-marketplace.comand Better BusinessBureau, matching
is basedon the URL of the store, insteadof the subject public keys. Figure 6.8 illustrates
the purchasescenario.

virtua-marketplace.comprovidesa servicewhereby it carriesout purchasetransactions
on behalf of consumers.The designof the servicehastwo advantages. First, it brings in-
creasedconvenienceto subscribed consumers,as the payment option (e.g. the credit card
information) needsonly supplied once. Second,it provides an opportunit y to monitor

157

CHAPTER 6. Applications 6.3. Casestudy: an electronicmarketplace

Store Consumervirtua-marketplace.com

delegated purchase(31415) :
Consumer! vm.com

delegated purchase(31415) :
Consumer! vm.com

Figure 6.9: Delegatedpurchase

the progressof the transaction, so that the credibility of both the buyer and the seller
can be assessed.In addition to the two reasons,it also o�ers a possibility to implement
pseudonymoustransactions, which break the linkagefrom a transaction to other informa-
tion about the consumer(e.g. buying patterns, personalinterest, or credit information).
Note that facilitating pseudonymous transactions is not the aim of this examplebut is
mentioned here to highlight the potential of intermediaries.

For this service,virtua-marketplace.comspeci�es a trust statement, delegated_purchase .
A consumerwho wishesto make a purchasethrough virtua-marketplace.comwould need
to create an instance of delegated_purchase and pass it to virtua-marketplace.com.
The trust instance contains details about the purchase,and for simplicity, it is imple-
mented in this casestudy to carry a single parameter, the product identi�er. Once
virtua-marketplace.comreceives the request, it begins the purchaseprocedurewith the
store. As part of the procedure,the store requiresthe delegated_purchase instanceto
be forwarded as a proof of authority. This is enforcedby specifying the following action
policy:

VM.delegated_purchase(product_id) : p -> vm.com,
grants purchase(product_id) : vm.com

The transaction continuesif and only if the purchase action (locally de�ned within the
scope of the store) is granted. This action policy only dealswith delegationtransactions
with virtua-marketplace.comas the intermediary. There typically exists action policies
handling other types of transactions, e.g. direct transaction with consumers.Note that
in this policy, the variable placeholderp givesthe public key identi�er for the consumer
who initiated the purchase.This approach thereforeis not su�cien t for hiding identities.
Delegatedpurchaseis illustrated in Figure 6.9.

6.3.7 Discussion

Unlike applications in previoussections,this casestudy demonstrateddecentralized man-
agement, which is crucial for the highly distributed nature of the web. Each entit y in
the environment, virtua-marketplace.com,member stores, Better BusinessBureau and
consumers,may de�ne their own trust statements and policiesusing them. Furthermore,
policies de�ned by a party often depend on trust instancesissuedby other parties. For
example,a consumermay rely on the information given by the Better BusinessBureau to
make purchasedecisions.This mechanism facilitates the linkagebetweenindependently
administered sites. Fidelis thus shows its potential in supporting large, decentralized
applications.

158

CHAPTER 6. Applications 6.4. Summary

Several aspects in the casestudy are intentionally simpli�ed to allow us to focus
on trust management problems. These include: cataloguedatabasedesign, reputation
computation, and transaction procedure. In real life, these issuesmust be given more
comprehensive treatment. For example,reputation computation as implemented is based
on an averagefunction, whereasin practice, the function may needto take into account
the transaction value,quanti�ed risks and legalobligation, etc. Moreover, the transaction
procedureneedsto include someonline payment schemesuch as PayPalTM [180].

6.4 Summary

In this chapter, we have examinedthree applications of Fidelis in detail soas to evaluate
its e�ectiv enessand practicality.

Role-basedaccesscontrol has been highlighted as a promising mechanism for new
applications, addressingmany inherent limitations of traditional accesscontrol schemes.
Fidelis hasbeenshown to provide RBAC functionality through the useof action policies
and trust statements. This indicatesthat Fidelis may beemployedasa generalmechanism
for accesscontrol.

Wehavealsoexaminedtrust management in the context of the WWW. As an enabling
technology, an Apache module with an integrated Fidelis enginehas beenimplemented:
modfidelis . This brings native trust management support to the Apache web server
and allows us to carry out experiments with Fidelis. Several small experiments have
consequently beenconstructedto implement di�eren t styles of authorization schemes.

This chapter closeswith a casestudy of an electronicmarketplace,whereby multiple
parties participate and interact. This casestudy combines the useof Fidelis in both the
web servicesand the WWW context. It has shown as a proof-of-conceptthat Fidelis
supports decentralized management and therefore has the potential to be deployed for
large-scale,distributed Internet applications.

In the next chapter, we provide a detailed analysisof Fidelis, evaluated against the
research goalsset out in Chapter 1 of the thesis.

159

CHAPTER 6. Applications 6.4. Summary

160

7 Discussion

Discussionon the approach presented in this thesis has been given previously where
appropriate. It is neverthelessimportant to evaluate Fidelis as a whole, analyzing it
against the research issuesdescribed in Section1.3, which are summarizedbelow:

� Policy framework

� Managing scalability

� Decentralized collaboration amongunfamiliar parties

� Privacy

� New approachesto decentralization

In this chapter, the aspectsof Fidelis addressingeach of the above research issueswill
bediscussedin depth. Issuesthat arenot addressedfully in this thesiswill behighlighted,
along with somediscussionon possiblefuture research directions.

7.1 Policy framew ork

A major designdi�erence of Fidelis from other existing trust management systemsis its
strong emphasison policy support. It featuresa comprehensive policy framework, backed
by a clearly de�ned policy language{ the Fidelis Policy Language. The policy language
is abstractly speci�ed, with the intention to allow various instantiations of the language
to suit di�eren t application needs.More precisely, it intentionally doesnot include a type
system,nor special sub-languagesfor assignment and conditional expressions.

Onesuch instantiation is demonstratedin Section4.3, in the form of the Fidelis Policy
Interchange. Fidelis Policy Interchangeis an instantiation speci�cally designedto facili-
tate policy exchangebetweenweb services.It is built upon XML [149] technologies,and
adds the type systemin the standard XML/Sc hema [159, 160] to the policy framework.
It also introducesan extensibleframework that allows assignment and/or conditional ex-
pressionsto be speci�ed in any agreedlanguage. By default, it supports the XPath 2
[167] expressionlanguage.

A full analysisof the policy framework was given in Section3.5.9,Chapter 3. Based
on the analysisgiven there, and additional observations gained from constructing appli-
cations, the policy framework will be discussedin the following areas: expressive power,
easeof use,easeof implementation, and runtime e�ciency .

161

CHAPTER 7. Discussion 7.1. Policy framework

The Fidelis Policy Language(FPL) is designedto expresstwo kinds of policies: trust
policies and action policies. Aside from the syntactic sugar, in essencethe languageis
basedon �rst-order logic. There are two other featuresin FPL that increaseits expres-
sive power, namely the constructs of group and threshold principal, and the addition of
negative statements (without clauses). These features are incorporated with the spe-
ci�c intention of capturing commonly-found real-world policies. Also important in our
designis the exibilit y of choicefor sub-languagesusedin assignment/conditional expres-
sions. The choice of expressionlanguageinevitably a�ects the expressive power of the
instantiated language. It was therefore decided to leave the decision to the individual
applications. In summary, while a more rigorous analysiswould be desirable,basedon
the experienceslearnedthrough the examplesprovided throughout the thesis,FPL may
be consideredto be su�cien tly expressive for many uses.

On the easeof useof the Fidelis Policy Language,the languageis designedto featurea
clear syntax, with minimal useof symbolic operators to increasereadability. In theory, it
should be relatively easyfor peoplewith somecomputing background to understandand
write policies. However, the languageis not intended for non-expert use. As previously
mentioned, the languageneedsto be instantiated when usedin practice. One particular
\instan tiation" may be in the form of a GUI (Graphical UserInterface) tool that employs
the model that underliesthe languageasa foundation and presents user-friendlyinterfaces
for the speci�cation of policies. While the policy languageis not ideal for non-experts,
with its clear syntax and well-de�ned constructs, it is still arguably easierthan writing
\p olicy programs" in real programming languages.

On the issueof easeof implementation, the most crucial part of the policy framework
is the trust management engine,where trust computation is performed. It is therefore
sensibleto restrict ourselves to consideringthe degreeof di�cult y in implementing the
inferencealgorithm, without considering\b oilerplate" code for parsing,decoding creden-
tials, performing cryptographic operations, etc. In the demonstration implementation,
the inferencealgorithm described in Section5.1 is implemented in under 800 lines of C
code. The C languageis chosenmainly becauseof the convenienceof integrating with
existing softwaresuch asthe Apache web server. The algorithm is implemented asa state
machine with stacks. The core stack machine is implemented in slightly over 500 lines
of code. The implementation took under two man-days to completeand test, with addi-
tional minor bug �xes. Basedon this implementation experience,it may be safelystated
that the policy framework is straight forward to implement. It should be noted however,
that the algorithm in Section 5.1 is not the only algorithm that can realize the policy
semantics. More e�cien t or optimized algorithms may require greater implementation
e�orts.

As previously discussedin Section 5.1.4, the algorithm has a worst-caseruntime of
O(MN). whereM is the maximum number of parametersfor any trust instance,and N is
the number of terms in all policies. While this is polynomially e�cien t, the valueN would
typically be large. It is envisagedthat with appropriate scheduling and optimization, the
worst-caseruntime may be lowered. However note that the non-monotonicnature of the
languagehas an impact on the runtime e�ciency . It remains a research issueto study
trade-o�s between the runtime e�ciency and expressive power, given the inclusion of
negative trust statements.

162

CHAPTER 7. Discussion 7.2. Managing scalability

7.2 Managing scalabilit y

As discussedin Chapter 1, today's distributed applicationsare more demandingin terms
of their scalability requirements asInternet-scaleconnectivity is now standard. The design
of Fidelis is intended to meet these stringent scalability requirements. Well-respected
principles in distributed systemsare carefully examinedand incorporated in its design,
resulting in a fully decentralized architecture. Important featuresand designprinciples of
Fidelis that increasescalability are to be examinedin this section. While decentralization
is a key to infrastructure scalability, management scalability still needsto be addressed,
especially when the user/resourceset is becominglarge { likely for many new distributed
applications. We shall thereforealsodiscussprovisionsand potential techniquesin Fidelis
addressingmanagement scalability.

Similar to other capability-style authorization management systems,the key notion
of scalability is decentralized enforcement of policies. Authorization in typical capability
systemsdepends primarily on capabilities presented by requesters. The key advantage
is that the point of enforcement need not have any knowledge of the requesters,thus
allowing its administration to be separatedfrom the policy authority.

Fidelis is designedto speci�cally allow decentralized enforcement. There are two
aspectsthat contribute towardsthis aim. First, the authorization model respectsfull local
autonomy. Every principal (including services,hosts,and sites) is fully autonomous,with
the discretionary power to designits policies. A principal is expected to only consult its
own policies in making authorization decisions.Second,the validit y semantics attempts
to break dependencybetweenthe issuerand the acceptorof a trust instanceunder most
circumstances.As described in Section3.3.2,the fundamental conceptbehind the validit y
semantics is the determinism principle, whereby once the validit y of a trust instance
is guaranteed, it cannot be reverted. A guarantee usually is given as absolute time-
bounds,with the only exceptionbeing the online status check, in which case,dependency
betweenthe issuerand the acceptordoesexist. This is a trade-o� betweenthe degreeof
decentralization and timeliness requirement, and can only be judged at the application
level.

Local autonomy has a greater implication than decentralized enforcement. As a gen-
eral principle in distributed systems, localization is often regarded as an approach to
increasemanageability. This is particularly the casein Fidelis, whereeach principal has
the freedomto designits own policies,de�ne and specify its local trust statements and,
furthermore, implement and enforceits policies. Every principal is conceptually respon-
sible for issuing trust instancesof its local trust statements. This level of autonomy is
especially important in today's widely distributed systemsbecauseof the di�culties of
having global authorities.

In most current trust management systems,creating and issuing credentials is often
manual processes,usually requiring human intervention. As the user basegrows, these
manual tasksbecomea limiting factor. A solution is to integrate role-basedaccesscontrol
into the trust management framework, thus usersare treated asroles,and credentials are
issuedto usersaccordingto their roles. However, through the development of Fidelis, it
becameclear that the support for rolesdoesnot needto be an integral part of the frame-
work for both simplicity and exibilit y reasons,sincethe functionality may be supported
through specializedpolicies,as demonstratedin Section6.1. If required by applications,

163

CHAPTER 7. Discussion 7.3. Decentralized collaboration

meta-policies could easily be written to control the behaviours of the issuanceof trust
instances,thus addressingmanagement scalability problems.

7.3 Decentralized collab oration

In Section1.3, the focus of the description on decentralized collaboration is on collabo-
ration amongstrangers. In this section,however, we shall examinesupport in Fidelis for
collaboration both amongmutually known parties and amongstrangers.

In a collaborative environment, complexauthorization problemsarise. In traditional
approaches,participants of a collaboration often needto know in advanceabout each other
in order to attach appropriate authorization policies. Such approachesfall short of ideal
in a decentralized environment, wherestrangersmay participate in collaboration and/or
the number of participants may be too large for the individual speci�cation of authoriza-
tion policies to be practical. One approach that simpli�es decentralized authorization in
collaborative environments is attribute-based authorization [103].

The basicconceptbehind attribute-based authorization is that certi�ed attributes are
trusted asthe basisfor making authorization decisions.In its basicform, a principal only
needsto recognizeattributes that it certi�es. In Fidelis, this correspondsto the conceptof
recognizinglocally-de�ned trust statements in trust/action policies. The useof attributes
by itself doesnot solve authorization problemsin collaborative environments. However,
it provides a foundation for decentralization.

Attribute-based authorization may be extendedto allow a principal to make use of
attributes certi�ed by others. In Fidelis, this equatesto the notion of recognizingtrust
instancesissuedby third parties in policies,e�ectiv ely establishingan explicit trust rela-
tionship betweenthe local principal and the trust instanceissuers.The key advantage is
that it allows chaining of principals: principal A may recognizea trust instanceissuedby
principal B. B issuesthe trust instancebecauseit recognizesa trust instanceissuedby C,
and soon. With principal chaining, collaborative authorization is signi�cantly simpli�ed,
provided appropriate \third-part y" principals are introduced. Somefurther discussion
will be given later in Section7.5.

With this extension, third-part y principals were identi�ed by their identities. It is
possibleto allow further decentralization by recognizingthird-part y principals by their
attributes. For example,a cinemamay sell discount tickets to peoplewho possessstudent
cards,which are issuedby someeducationalentit y, and the cinemarecognizeseducation
entities if they are certi�ed by the Education Authorit y. Fidelis also supports this type
of policy through its policy framework. For example,the cinemamay expresstheir policy
as follows:

student_card(): x -> y, university(): EA -> x grants ...

in which case,the placeholderx is an unknown principal, but it is required to be certi�ed
asa university by the Education Authorit y (EA). This allowsstrangersto beidenti�ed and
trust to be built on certi�cated attributes. With the powerful policy framework, Fidelis
is capableof providing a comprehensive attribute-based scheme, enabling collaborative
authorization.

A special casein collaborative environments is when two untrusted strangersattempt
to form a collaboration. Due to mutual mistrust, it is often undesirablefor either side

164

CHAPTER 7. Discussion 7.4. Privacy

to disclosesensitive knowledge in order to gain the trust of the other. However, in
contradiction, policiesmay sometimesrequire a requesterto disclosetrust instancesthat
contain sensitive information. Addressingthis type of collaboration, a trust negotiation
framework is designedfor Fidelis. The framework includesa protocol that allows a pair
of strangersto incrementally disclosetrust instancesbasedon the knowledgepresented
by the other party.

While the negotiation framework mainly presents a proof-of-conceptdesignand much
work remains to be done, it has demonstrateda crucial novelty in its approach to trust
negotiation: the negotiation protocol is fully policy-driven, with the use of Fidelis to
control the protocol behaviours. Comparing with other notable work in this area [168,
170, 181, 169], the policy-driven protocol is signi�cantly more exible: an application
may have its own tailor-made negotiation protocols by simply standardizing on the set
of meta-policies that control the protocol behaviour; protocol behaviours may be �ne-
tuned by encoding personalpreferencesin meta-policies; and new negotiation protocols
may easily be tried in this framework. The downside is the lack of formal rigour, as the
protocol tends to be over-exible.

7.4 Priv acy

As identi�ed in Section 1.3, in practice privacy issueswill play an important role in
the public adoption of a trust management system. Generally speaking, there are two
areasof concernthat a trust management systemshould tackle. Firstly, credentials (in
the caseof Fidelis, trust instances)may contain sensitive information which should not
be made publicly available. A principal using trust instancesshould only learn \just
enough" information from them for its tasks. Secondly, the systemshouldprevent linking
of credential usage.Such linkageoften revealsvital information regardingone'sbehaviour,
living pattern, purchasepreferences,etc. The systemshould enforceunlinkability where
possible.

While the designof Fidelis does not directly addressprivacy issuesper se, it never-
thelesshas an important provision for possiblefuture work. Underlying the framework
is its key-oriented nature, whereby every principal may generateits public key pair at
any time. Public keys are usedas principal identi�ers, without linking to any property
of the principal. A possibleapproach to provide unlinkabilit y is therefore to require a
principal to generatea freshkey pair on every use. Although such a schemeis e�ectiv e, it
unfortunately may not be practical in real applications, sincea fresh public key provides
no value for gaining trust.

Fidelis does not provide a solution for selective disclosureof parametersin trust in-
stances. At present, data encoded in the Fidelis Interoperable Credential (FIC) format
are in cleartext. However, recall that the conceptual framework of Fidelis does not im-
poserestriction on how trust instancesshould be encoded. Other formats which support
selective encryption may be used instead of FIC. Alternativ ely, FIC may be extended
to integrate XML Encryption [182], which allows sectionsof any XML document to be
encrypted under di�eren t keys. Furthermore, protocols may need to be developed to
support decryption of parametersof trust instances.

165

CHAPTER 7. Discussion 7.5. Decentralization approaches

7.5 Decentralization approac hes

Similar to most other decentralized authorization systems,Fidelis supports the conceptof
delegation of authority. However, in most other systems,including PolicyMaker/KeyNote
[9, 20], SDSI/SPKI [17, 18], and TrustEstablishment [101], the authority in their context
refers to the authority to access.Fidelis supports the authority to grant accessin the
form of action policies. Additionally , Fidelis supports a di�eren t type of authority { the
authority to assertattributes, and this is provided through trust policies. In this section,
we will discusssomeapproachesto the structuring of authority basedon the facilities in
Fidelis and their relative pros and cons.

Hierarc hy. Hierarchical structures are common in human societies, for example com-
pany structure, government structure, etc. In a hierarchy, there is usually clear
separation(of responsibilities and authority) between levels, and typically, an en-
tit y mainly managesits direct subsidiariesbut not further descendants. It is fairly
straightforward to implement hierarchies in Fidelis, by restricting policiesto recog-
nize only trust statements de�ned by superior principals in a hierarchy.

With proper designand strict implementation, hierarchiescanbe an e�ectiv e means
of organizinga large number of principals. They simplify the enforcement of stan-
dards. For example,educational institutes under the Educational Authorit y may
be directed to follow somestandard for issuingstudent identit y cards. Hierarchies
are often relatively manageable,due to their centralized nature. However, due to
their rigid structuring, hierarchies tend to be inexible, especially when changesto
the structure are to be made. Furthermore, the hierarchical approach is generally
not feasiblefor large-scalesystems,whereglobal standardson hierarchy structures
are di�cult to agree.

Peer-to-p eer (P2P). On the other extremeto hierarchies,anotherstyle is to imposeno
constraints on the structure at all. As principals in Fidelis are all treated equally,
and may freely interconnect, any pair of principals may establish a local service-
level agreement (SLA) that details the trust statements and actionsagreedby both
parties, and may additionally include associated policies. A principal should then
follow the directivesset out in the SLA and implement the semantics of the trust
statements, actions and policies.

Peer-to-peer structuring is suitable for applications where looserelationships exist
amongprincipals, and is ideal when trust relationshipsare dynamic and constantly
changing. It is also useful for applications where local agreement is su�cien t for
authorization needs,without requiring complex hierarchies. Notable applications
include �le sharing programs,messagingapplications, and trading platforms.

There are two major advantagesof this approach: exibilit y and scalability. The
notion of SLAs is naturally pairwise1. Changesto a SLA therefore only involve
the two parties that agreedon that SLA. For this reason,P2P structuring is more
exible, and easierto modify. P2P structuring is self-managedin the sensethat
every principal maintains its own SLAs. This fully decentralizes the management

1Although pairwise SLA is not strictly required, the set of participants agreeingon a SLA is usually
small.

166

CHAPTER 7. Discussion 7.6. Summary

tasks, and henceachieves greater scalability. However, self-management may also
be consideredas a drawback, as it adds management burdens to every principal.
Moreover, the lack of structure in the P2P approach may be undesirablefor some
applications as it giveslittle authority of control.

Hybrid. The two structuring approaches discussedso far both have their merits and
weaknesses.Basedon the examplesand casestudies in this thesis, it is observed
that a combined approach often givesa satisfactory balance. For example,within
an organization, in order to simplify management tasks, a local hierarchy may be
imposed,e.g. headquarters,divisions, regional o�ces, departments, etc. However,
the organization may enter SLAs when collaborating with other businessentities,
representing the organization as a whole.

This combinedapproach approximatesthe real-world morecloselythan the previous
two approaches,and maintains a reasonablelevel of control, structuring exibilit y
and scalability. Nevertheless,these advantages greatly depend on the design of
the structure. Improper design may lead to combined disadvantages of the two
approaches,rather than advantages.

In Fidelis, the decentralization approachesdiscussedabovemay beexplicitly expressed
within its policy framework, whereasin other decentralized authorization systems,struc-
turing is typically donein an ad-hoc manner,without support from formal policies. The
Fidelis policy-driven approach simpli�es the veri�cation and implementation of the struc-
turing design, as the structure is encoded in the form of Fidelis policies. From this
perspective, Fidelis may be considereda more comprehensive platform for decentralized
applications.

7.6 Summary

This chapter provides a critical discussionof Fidelis as a meansof its evaluation. The
discussionis organizedto reect the research issuesdescribed in Section1.3, and examine
each issuein depth. The next chapter concludesthis thesis by providing a summary of
the contributions and somedirections for future research.

167

CHAPTER 7. Discussion 7.6. Summary

168

8 Conclusions and Future Work

Future distributed applications will be of vast scale,widely open, and will often need
to deal with complex collaborative interactions. A key necessity for the development
of these applications will be a powerful, scalable, exible and extensible authorization
management framework. This thesis reviewed the state-of-the-art in this area,examined
and identi�ed research issuesthat are yet to be addressed. It is the conclusionof this
work that a suitable authorization management framework for the emergingdistributed
applications must possessas a minimum:

� A highly decentralized architecture

� A comprehensive policy framework

To satisfy the above criteria, a novel trust management framework, Fidelis, hasbeende-
signedand implemented as part of the work presented in this thesis,addressingmany of
the identi�ed research issues. Its evaluation has been provided through the implemen-
tation of several examples,applications and casestudies, and has been shown to be a
promising authorization framework for future applications.

This chapter concludesthis thesis. Section 8.1 highlights the main contributions of
this work. Section8.2 suggestssomefuture directions that may be undertaken to further
enhanceFidelis. Section8.3 provides a closingremark on this thesis.

8.1 Summary of contributions

The main contribution of this thesis is the proposal of a policy-driven, decentralized
trust management framework { Fidelis. As a recapitulation of Section1.4, through the
conceptualization,designand implementation of Fidelis, the following contributions have
beenmade:

� Proposingthe trust conveyance model asa genericmodel, servingasa simple foun-
dation for future trust management systems.

� Designinga powerful policy framework, realizing the trust conveyancemodel and
allowing complexsecurity policiesto be expressedunder a uni�ed framework.

� Designingand implementing Fidelis, thus providing an infrastructure on which fu-
ture web serviceapplications can be built.

169

CHAPTER 8. Conclusionsand Future Work 8.2. Future work

� Designing and implementing an algorithm for computing trust compliance. The
algorithm is designedto demonstratethe feasibility of Fidelis and its policy frame-
work.

� Proposinga policy-driven trust negotiation framework, which enablescollaborative
strangersto gradually disclosesensitive trust instancesand learn about each other.

� Evaluating Fidelis in several application contexts. While the focus of thesestudies
has been on Fidelis itself, the experienceslearned may indeed be useful to other
systems.

8.2 Future work

This section suggestssomeselectedfuture work. We shall be discussingfour main ar-
eas: trust metrics, privacy support, trust compliancealgorithms, and trust negotiation
frameworks.

Recently, in contrast with the trust management approach, a distinct but complemen-
tary approach basedon the so-calledtrust metrics (or \trust models" in someterminology)
to deal with uncertainty hasgradually becomean interest in the research community. As
briey discussedin Section3.3.3, the basic idea is to derive a trust value for a principal,
basedon several factors, such as past record, quanti�ed reputation, quanti�ed risk, etc.
The value can then be usedas a basis to predict the future behaviour of the principal,
within someacceptableerror. An extensionof Fidelis would be to integrate thesetrust
metrics, providing solutionswherea fuzzy notion of trust is preferredor required. A pos-
sible integration approach would be to specify standardsfor trust statements that carry
parametersfor holding trust values. Principals complying with the standard should then
compute and interpret the trust value following the speci�ed trust metrics. Policiesmay
be written to selectively grant or deny accessbasedon trust valuesin trust instances.

As already discussedin Section 7.4, privacy issueshave not beendirectly addressed
in Fidelis. There are two major areaswherein Fidelis should be extended to provide
enhancedprivacysupport. Firstly, in order to protect sensitiveparameters(i.e. attributes)
in trust instances,trust instancesshould be encrypted and cryptographic protocols such
asSSL/TLS [164] shouldbe employed to ensuresensitive trust instancesareonly exposed
to the intended parties. However, encrypting the entire trust instance is often overkill.
Ideally, selective encryption on certain parametersis desirable. Secondly, usageof trust
instances,when linked, may provide an insight about one'sbehaviour. De-identi�cation
is the typical approach to prevent unlawful linkageof data. While in Fidelis, principal
identi�ers aresimply public keys,providing no identi�cation in themselves,however, when
usedin trust instances,a linkageis formed and may thereforeallow identi�cation. There
is someinteresting research in this space,notably Brands' Digital Credentials [183].

The third areaof future work is on the trust compliancealgorithm of Fidelis. Chap-
ter 5 described an algorithm that implements the policy evaluation semantics de�ned in
Section3.5.8. However, the algorithm is intended as a proof-of-concept,and as a result,
correctnessis of a higher priorit y than e�ciency . Somepossiblework on this includes:
designingan e�cien t algorithm that is formally provedto faithfully implement the de�ned
semantics, techniquesfor compiling policiesand applying optimizations on the compiled
policies, possibly by precomputing possibleevaluation paths, and designingdistributed

170

CHAPTER 8. Conclusionsand Future Work 8.3. Conclusion

algorithms to perform the policy computation.
The last area that may be explored further is the trust negotiation framework. The

negotiation framework described in Section 5.2 represents the �rst attempt at applying
Fidelis to deal with situations wherestrangersare involved. While the correctnessof the
negotiation protocol hasbeendemonstratedby implementation, formal proof is required
to study propertiesof the protocol, including termination and the statesof both principals
after protocol runs. As it currently stands, it servesmainly as a research framework for
designingand experimenting with new protocols.

8.3 Conclusion

This thesishaspresented Fidelis, a fully policy-driven trust management framework, de-
signedfor widely-distributed Internet applications. The crucial novelty lies in its extensive
policy support, which enablescomplex real-world trust-related policies to be expressed
and enforced.Although much future research remainsto be done,asstudied and demon-
strated in this thesis,we believe that the policy-driven approach adoptedby Fidelis is the
way forward in future research on trust management frameworks.

171

172

Glossary

Action
An abstraction for a well-de�ned computation that may be subject to policy control. A
commonexampleof actions is a permissionin an accesscontrol system,e.g. read access.
An action may alsoencapsulatean accessrequest,e.g.query_balance (account) .

Action policy
A rule specifying the conditions under which a requestedaction may be granted. In the
Fidelis policy language,the conditionsmay include the presenceand/or absenceof certain
trust instancesand/or contextual constraints.

Assertion
(In the context of a trust statement) a belief, a claim, or a fact regardinga principal (i.e.
the subject), stated or declaredby another (i.e. the truster).

Con text
(In the Fidelis policy framework) The situational conditions under which the interpreta-
tion of an assertionis consistent with its intended meaninggiven by its truster.

Conveyance source
In an instance of trust conveyance, the principal who provides the trust statement for
transfer. E�ectiv ely, the conveyance sourceprovides its knowledgefor other principals
(i.e. the conveyancetargets).

Conveyance target
In an instanceof trust conveyance,the principal who receivesthe trust statement from the
conveyancesource. The conveyancetarget collects new knowledgefrom the conveyance
source.

Distrust
The oppositenotion to trust. Distrust refersto a setof negativeassertionsthat a principal
holds with regard to another principal. Note that this de�nition is distinctively di�eren t
from the absenceof trust.

Principal
A principal in Fidelis is an entit y which has control over a public key pair, i.e. the prin-
cipal speaks for the key.

173

Target
The shorthand for conveyance target.

Trust
A set of positive assertionsthat a principal holds with regard to another principal. It
typically represents one's knowledge,beliefs or claims about another principal in some
context. Such information is abstract, and is expected to be embodied through trust
statements.

Trust conveyance
The processof transferring a trust statement from oneprincipal to another. This transfer
models the mechanism of knowledge-passing in daily life, whereby a principal spreadsits
knowledgeto others. This term is chosento reect the fact that a trust statement contains
the trust information assertedby the truster, thus passinga trust statement e�ectiv ely
conveystrust information.

Trust instance
The short namefor trust statementinstance.

Trust policy
A rule specifying the conditions under which a new trust statement may be issued. A
trust policy formalizesone's processof trust establishment with others. In the Fidelis
policy language,the conditions may include the presenceand/or absenceof certain trust
instancesand/or contextual constraints.

Trust speci�cation
The short namefor trust statementspeci�c ation.

Trust statemen t
A digitally signedcredential that acts as the basic building block in the Fidelis policy
framework. A trust statement includes the truster who issuedthe trust statement, the
subject who the trust statement is in respect of, a set of assertionsand a validit y condi-
tion. The information contained in a trust statement represents the truster's trust (see
the de�nition above) in the subject (under the interpretation of the intended context).

Trust statemen t instance
Equivalent to trust statement. This term is introduced for use in situations where the
clear distinction betweenthe speci�c ation and instances of trust statements is essential.
It is usedextensively in the description of the Fidelis policy language.

Trust statemen t speci�cation
One component of the trust statement is a set of assertions.A trust statement speci�ca-
tion de�nes the structures and meaningswhich the assertionsfollow. For example,in the
Fidelis policy language(where an assertionis given as an attribute), a trust statement
speci�cation speci�es the data typeandprovidesan interpretation for the list of attributes.

174

Truster
Relative to a trust statement, the issuerof the trust statement. The term emphasisesthe
fact that the trust statement contains assertionsmade by the issuer, and assertionsin
Fidelis are treated as trust information.

Source
The shorthand for conveyance source.

Sub ject
Relative to a trust statement, the principal to which the trust statement relates.

175

176

Bibliograph y

[1] J. Hine, W. Yao, J. Bacon,and K. Moody, \An architecture for distributed OASIS
services,"in Middleware 2000(Palisades,NY, April 4{8) , no. 1795in LectureNotes
in Computer Science,(Heidelberg, Germany), pp. 104{120,Springer-Verlag, April
2000.

[2] J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao, \Ev ent storage and
federationusingODMG," in Proc. 9th International Workshopon PersistentObject
Systems(POS9, Lil lehammer, Norway Sept. 6{8) , no. 2135 in Lecture Notes in
Computer Science,(Heidelberg, Germany), pp. 265{281,Sept. 2000.

[3] W. Yao, K. Moody, and J. Bacon, \A model of OASIS role-basedaccesscontrol
and its support for active security," in Sixth ACM Symposium on AccessControl
Models and Technologies (SACMAT 2001, Chantilly, VA, May 3{4) , (New York,
NY), pp. 171{181,ACM Press,May 2001.

[4] J. Bacon, K. Moody, and W. Yao, \Access control and trust in the useof widely
distributed services,"in Middleware 2001, no. 2218in Lecture Notes in Computer
Science,(Heidelberg, Germany), pp. 300{315,Springer-Verlag, 2001.

[5] J. Bacon, K. Moody, and W. Yao, \A model of OASIS role-basedaccesscontrol
and its support for active security," ACM Transactionson Information and System
Security, vol. 5, pp. 492{540,Nov. 2002.

[6] ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T RecommendationX.509: The Directory
{ Public-Key and Attribute Certi�c ate Frameworks, 2000.

[7] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,H. F. Nielsen,
S. Thatte, and D. Winer, Simple Object AccessProtocol (SOAP) 1.1. World Wide
Web Consortium, May 2000. http://www.w3.org/TR/SOAP/ .

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,and C. E. Youman, \Role-basedaccess
control models," IEEE Computer, vol. 29, pp. 38{47, Feb. 1996.

[9] M. Blaze, J. Feigenbaum, and J. Lacy, \Decentralized trust management," in Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy, (Oakland,
CA), pp. 164{173, IEEE Computer Society, Technical Committee on Security and
Privacy, IEEE Computer Society Press,May 1996.

177

[10] R. M. Needhamand M. D. Schroeder,\Using encryption for authentication in large
networks of computers," Communications of the ACM, vol. 21, no. 12, pp. 993{999,
1978.

[11] B. Lampson,M. Abadi, M. Burrows,and E. Wobber, \Authen tication in distributed
systems:Theory and practice," ACM Transactionson Computer Systems, vol. 10,
pp. 265{310,Nov. 1992.

[12] J. Kohl and C. Neuman,\RF C 1510:The KerberosNetwork Authentication Service
(V5)," RFC 1510,The Internet EngineeringTask Force,Sept. 1993.

[13] L. Gong, \A secureidentit y-basedcapability system," in Proceedings of the IEEE
Symposium on Security and Privacy, (Los Angeles,CA), pp. 55{63, IEEE, IEEE
Computer Society Press,May 1989.

[14] J. A. Bull, L. Gong, and K. R. Sollins, \T owards security in an open systemsfed-
eration," in European Symposium on Research in Computer Security (ESORICS),
pp. 3{20, 1992.

[15] R. Hayton, OASIS: An Open Architecture for Secure Interworking Services. PhD
thesis,Univeristy of Cambridge Computer Laboratory, June1996.Technical Report
No. 399.

[16] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \The role of trust
management in distributed systemssecurity," in Proceedings of Fourth Interna-
tional Workshopon Mobile Object Systems:Secure Internet Mobile Computations
(MOS '98, Brussels, Belgium), no. 1603 in Lecture Notes in Computer Science,
(Heidelberg, Germany), pp. 185{210,Springer-Verlag, July 1999.

[17] R. L. Rivest and B. Lampson,\SDSI{A simpledistributed security infrastructure."
Seehttp://theory.lcs.mit.edu/ � rivest/sdsi10.ps , Aug. 1996.

[18] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
\SPKI certi�cate theory," RFC 2693,Internet EngineeringTask Force,Sept. 1999.
Seehttp://www.ietf.org/rfc/rfc2693.txt .

[19] M. Blaze, J. Feigenbaum, and A. D. Keromytis, \KeyNote: Trust management
for public-key infrastructures," in Security Protocols { 6th International Workshop
(B. Christianson,B. Crispo, W. S. Harbison,and M. Roe, eds.),no. 1550in Lecture
Notes in Computer Science,(Cambridge, United Kingdom), pp. 59{66, Springer-
Verlag, Berlin Germany, Apr. 1999.

[20] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \The KeyNote trust
management system," Internet Requestfor Comment RFC 2704,Internet Engineer-
ing Task Force,Sept. 1999. Version2.

[21] R. Sandhu, \Engineering authority and trust in cyberspace: The OM-AM and
RBAC way," in Proc. 5th ACM Workshopon Role-Based AccessControl (RBAC-
00), (New York, NY), pp. 111{119,ACM Press,July 26{27 2000.

178

[22] D. Bell and L. LaPadula, \Secure computer systems:Mathematical foundations,"
Tech. Rep. MTR-2547, Vol. I { I I I, MITRE Corporation, Bedford, MA, Nov. 1973.

[23] K. Biba, \In tegrity considerationfor securecomputer systems,"Tech. Rep. MTR-
3153,MITRE Corporation, Bedford, MA, Apr. 1975.

[24] D. D. Clark and D. R. Wilson, \A comparisonof commercialand military computer
security policies," in Proceedings of the 1987 IEEE Symposium on Security and
Privacy (SSP '87), (Los Angeles,CA), pp. 184{195,IEEE Computer Society Press,
Apr. 1987.

[25] D. F. C. Brewer and M. J. Nash,\The ChineseWall security policy," in Proc. IEEE
Symposium on Security and Privacy, pp. 206{214,1989.

[26] D. Ferraiolo and R. Kuhn, \Role-basedaccesscontrols," in Proc. 15th NIST-NCSC
National Computer Security Conference, pp. 554{563,1992.

[27] B. W. Lampson, \A note on the con�nement problem," Communications of the
ACM, vol. 16, pp. 613{615,Oct. 1973.

[28] E. Amoroso, Fundamentalsof Computer Security Technology. Prentice Hall, Apr.
1994. ISBN 0-13108-929-3.

[29] R. Sandhu, \T ransaction control expressionsfor separation of duties," in 4th
Aerospace Computer Security Conference, pp. 282{286,Dec. 1988.

[30] R. S. Sandhu, \Separation of duties in computerizedinformation systems,"in IFIP
Workshopon DatabaseSecurity, pp. 179{190,1990.

[31] R. T. Simon and M. E. Zurko, \Separation of duty in role-basedenvironments," in
Proc. 10th IEEE Computer Security Foundations Workshop(Rockport, MA, June
10{12), (Los Alamitos, CA), pp. 183{194,IEEE ComputerSociety Press,June1997.

[32] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, \On the formal de�nition of separation-
of-duty policiesand their composition," in 1998IEEE Symposium on Security and
Privacy (SSP '98), (Washington- Brussels- Tokyo), pp. 172{185,IEEE Press,May
1998.

[33] B. Lampson, \Protection," in Proceedings of the 5th Annual Princeton Conference
on Information Sciences and Systems, (Princeton University), pp. 437{443,1971.

[34] R. W. Baldwin, \Naming and grouping privilegesto simplify security management
in large database,"in Proceedingsof the IEEE Symposium on Security and Privacy
(Oakland, CA), (Los Alamitos, CA), pp. 116{132, IEEE Computer Society Press,
May 1990.

[35] S. A. Demurjian, M.-Y. Hu, T. C. Ting, and D. Kleinman, \T owards an authoriza-
tion mechanism for user-rolebasedsecurity in an object-oriented design model,"
in Proceedings of the 12th Annual International Phoenix Conference on Comput-
ers and Communications (Tempe, AR) (J. Weeldreyer, ed.), (Los Alamitos, CA),
pp. 195{202,IEEE Computer Society Press,Mar. 1993.

179

[36] M. Nyanchama and S. Osborn, \Role-basedsecurity: Pros, cons& someresearch
directions," ACM SIGSAC Review, vol. 2, pp. 11{17, June 1993. ACM Press.

[37] M. Nyanchama and S. Osborn, \Accessrights administration in role-basedsecurity
systems," in Proc. 8th IFIP WG 11.3 Working Conference on Database Security
(DatabaseSecurity VIII: Status and Prospects) (Bad Salzdetfurth,Germany, Aug.
23{26 (J. Biskup, M. Morgernstern, and C. Landwehr, eds.), vol. A-60 of IFIP
Transactions, (Amsterdam, The Netherlands),North-Holland (Elsevier), 1995.

[38] M. NyanchamaandS.Osborn, \The rolegraphmodel andconict of interest," ACM
Transactionson Information and SystemSecurity, vol. 2, pp. 3{33, Feb.1999.ACM
Press,New York, NY.

[39] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, \A role-basedaccesscontrol model
and referenceimplementation within a corporate intranet," ACM Transactionson
Information and SystemSecurity, vol. 2, pp. 34{64, Feb. 1999.

[40] R. Sandhu, D. Ferraiolo, and R. Kuhn, \The NIST model for role-basedaccess
control: Towards a uni�ed standard," in Proc. 5th ACM Workshopon Role-Based
AccessControl (RBAC-00), (N.Y.), pp. 47{64, ACM Press,July 26{27 2000.

[41] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, \Pro-
posedNIST standard for role-basedaccesscontrol," ACM Transactionson Infor-
mation and SystemSecurity, vol. 4, pp. 224{274,Aug. 2001.

[42] D. Ferraiolo, J. Cugini, and R. Kuhn, \Role basedaccesscontrol (RBAC): Features
and motivations," in Annual Computer Security Applications Conference, IEEE
Computer Society Press,1995.

[43] D. F. Ferraiolo and J. Barkley, \Specifying and managingrole-basedaccesscontrol
within a corporate intranet," in Proceedings of the 2nd ACM Workshop on Role-
Based AccessControl (RBAC '97, Fairfax, VA, Nov. 6{7) , (New York, NY), pp. 77{
82, ACM Press,Nov. 6{7 1997.

[44] R. Sandhu, \Role activation hierarchies," in Proc. 3rd ACM Workshop on Role-
Based AccessControl (Fairfax, VA, October 22-23), (New York, NY), pp. 33{40,
ACM Press,Oct. 1998.

[45] J. D. Mo�ett, \Control principles and accessright inheritance through role hierar-
chies," in Proc. 3rd ACM Workshop on Role-Based AccessControl (Fairfax, VA,
October 22-23), (New York, NY), pp. 63{69, ACM Press,Oct. 1998.

[46] D. R. Kuhn, \Mutual exclusionof roles as a meansof implementing separationof
duty in role-basedaccesscontrol systems,"in Proceedingsof the 2nd ACM Workshop
on Role-Based AccessControl (RBAC '97, Fairfax, VA, Nov. 6{7) , (New York, NY),
pp. 23{30, ACM Press,Nov. 6{7 1997.

[47] L. Giuri and P. Iglio, \A formal model for role-basedaccesscontrol with con-
straints," in Proc. 9th IEEE ComputerSecurity FoundationsWorkshop, (Los Alami-
tos, CA), pp. 136{145,IEEE Computer Society Press,1996.

180

[48] R. Sandhu, V. Bhamidipati, and Q. Munawer, \The ARBAC97model for role-based
administration of roles," ACM Transactionson Information and SystemSecurity,
vol. 2, pp. 105{135,Feb. 1999.

[49] S. Osborn, \Mandatory accesscontrol and role-basedaccesscontrol revisited," in
Proceedings of the 2nd ACM Workshopon Role-Based AccessControl (RBAC-97),
(New York, NY), pp. 31{40, ACM Press,Nov. 6{7 1997.

[50] R. Sandhu and Q. Munawer, \How to do DAC using roles," in Proceedings of the
3rd ACM Workshopon Role-Based AccessControl (RBAC-98), (New York, NY),
pp. 47{54, ACM Press,Oct. 22{23 1998.

[51] S. Osborn, R. Sandhu, and Q. Munawer, \Con�guring role-basedaccesscontrol to
enforcemandatory and discretionaryaccesscontrol policies," ACM Transactionson
Information and SystemSecurity, vol. 3, pp. 85{106, May 2000.

[52] R. M. Needhamand A. H. Herbert, The CambridgeDistributed ComputingSystem.
Addison Wesley, Jan. 1982. ISBN 0-20114-092-6.

[53] J. Bacon, I. Leslie, and R. Needham, \Distributed computing with a processor
bank," Tech. Rep. 168,University of Cambridge Computer Laboratory, Apr. 1989.

[54] A. D. Birrell and R. M. Needham,\A universal �le server," IEEE Transactionson
Software Engineering, vol. SE-6,pp. 450{453,Sept. 1980.

[55] J. Dion, \The Cambridge �le server," ACM Operating SystemsReview, vol. 14,
no. 4, pp. 26{35, 1980.

[56] W. A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin, C. Pierson,
and F. J. Pollack, \HYDRA: The kernel of a multipro cessoroperating system,"
Communications of the ACM, vol. 17, pp. 337{345,June 1974.

[57] A. S. Tanenbaum, R. van Renesse,H. van Staveren, G. J. Sharp, S. J. Mullender,
J. Jansen,and G. van Rossum,\Exp eriencewith the amoebadistributed operating
system," Communications of the ACM, vol. 33, pp. 46{63, Dec. 1990.

[58] S. J. Mullender, C. van Rossum,A. S. Tanenbaum, R. van Renesse,and H. van
Stavern, \Amo eba: a distributed operating systemfor the 1990s.,"IEEE Computer,
vol. 23, pp. 44{53, May 1990.

[59] S.P. Miller, B. C. Neuman,J. I. Schiller, and J. H. Saltzer,\Kerb erosauthentication
and authorization system," Project Athena Technical Plan, Section E.2.1, MIT
Laboratory for Computer Science,Cambridge, MA, Dec. 1987.

[60] J. G. Steiner, C. Neuman,and J. I. Schiller, \Kerb eros: An authentication service
for open network systems,"in USENIX Conference Proceedings(Dal las, TX, USA)
(USENIX Association, ed.), (Berkeley, CA, USA), pp. 191{202,USENIX Associa-
tion, Mar. 1988.

[61] D. E. Denning and M. S. Sacco,\Timestamps in key distribution protocols," Com-
munications of the ACM, vol. 24, pp. 533{536,Aug. 1981.

181

[62] R. M. Needhamand M. D. Schroeder, \Authen tication revisited," ACM Operating
SystemsReview, vol. 21, p. 7, Jan. 1987.

[63] D. Otway and O. Rees,\E�cien t and timely mutual authentication," ACM Oper-
ating SystemsReview, vol. 21, pp. 8{10, Jan. 1987.

[64] S.M. Bellovin and M. Merritt, \Limitations of the Kerberosauthentication system,"
Computer Communication Review, vol. 20, no. 5, pp. 119{132,1990. ACM Press,
New York, NY.

[65] The Open Group, F201: DCE 1.2.2 Intr oduction to OSF DCE, Nov. 1997. ISBN
1-85912-182-9.

[66] C. B. Neuman,\Pro xy-basedauthorization andaccounting for distributed systems,"
in 13th International Conference on Distributed Computing Systems, pp. 283{291,
May 1993.

[67] R. Hayton, J. Bacon,and K. Moody, \O ASIS:Accesscontrol in an open,distributed
environment," in Proceedings of IEEE Symposium on Security and Privacy (Oak-
land, CA, May 3{6) , (Los Alamitos, CA), IEEE Computer Society Press,1998.

[68] W. Di�e and M. Hellman, \New directions in cryptography," IEEE Transactions
on Information Theory, vol. IT-22, pp. 644{654,Nov. 1976.

[69] P. R. Zimmermann, The O�cial PGP User's Guide. Cambridge, MA, USA: MIT
Press,1995.

[70] S. Gar�nk el, PGP: Pretty Good Privacy. Sebastopol, CA: O'Reilly & Associates,
Inc., 1995. ISBN 1-56592-098-8.

[71] CCITT (Consultative Committee on International Telegraphy and Telephony),
CCITT RecommendationX.509: The Directory { Authentication Framework, 1988.

[72] ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T RecommendationX.509: The Directory
{ Authentication Framework, 1997.

[73] R. Housley, W. Ford, W. Polk, andD. Solo,\In ternet X.509public key infrastructure
certi�cate and CRL pro�le," RFC 2459,Internet EngineeringTaskForce,Jan. 1999.
Seehttp://www.ietf.org/rfc/rfc2459.txt .

[74] ANSI (American National Standards Institute), Washington, DC, ANSI X9.45:
Enhanced ManagementControls Using Digital Signaturesand Attribute Certi�c ates,
1999.

[75] S. Farrell and R. Housley, \An Internet attribute certi�cate pro�le for
authorization," Internet Draft draft-ietf-pkix-ac509prof-09, Internet Engineer-
ing Task Force, June 2001. See http://www.ietf.org/internet- drafts/
draft- ietf- pkix- ac509prof- 09.txt .

182

[76] C. M. Ellison, \SPKI requirements," RFC 2692, Internet EngineeringTask Force
Draft IETF, Sept. 1999. Seehttp://www.ietf.org/rfc/rfc2692.txt .

[77] L. M. Kohnfelder, \T owardsa practical public-key cryptosystem," B.Scthesis,MIT
Departement of Electrical Engineering,May 1978.

[78] ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T RecommendationX.509: The Directory
{ Authentication Framework, 1993. (also ISO/IEC 9594-8,1995).

[79] M. Myers, C. Adams, D. Solo, and D. Kemp, \In ternet X.509 certi�cate request
messageformat," RFC 2511, Internet Engineering Task Force, Mar. 1999. See
http://www.ietf.org/rfc/rfc2511.txt .

[80] M. Myers, X. Liu, J. Schaad, and J. Weinstein, \Certi�cate management mes-
sagesover CMS," RFC 2797, Internet Engineering Task Force, Apr. 2000. See
http://www.ietf.org/rfc/rfc2797.txt .

[81] S. Boeyen, T. Howes, and P. Richard, \In ternet X.509 public key infrastructure:
Operational protocols - LDAPv2," RFC 2559, Internet Engineering Task Force,
Apr. 1999. Seehttp://www.ietf.org/rfc/rfc2559.txt .

[82] R. Housleyand P. Ho�man, \In ternet X.509 public key infrastructure: Operational
protocols - FTP and HTTP," RFC 2585, Internet Engineering Task Force, May
1999. Seehttp://www.ietf.org/rfc/rfc2585.txt .

[83] I. Lehti and P. Nikander, \Certifying trust," in Proc. 1st International Public Key
Cryptography Conference, no. 1431in Lecture Notes in Computer Science,pp. 83{
98, 1998.

[84] J. Linn, \T rust models and management in public-key infrastructures," technical
report, RSA Data Security, Inc., Redwood City, CA, USA, Nov. 2000.

[85] A. J�sang, I. G. Pedersen,and D. Povey, \PKI seeksa trusting relationship," in
Proceedings of Fifth Australasian Conference on Information Security and Privacy
(ACISP 2000, Brisbane, Australia) (E. Dawson, A. Clark, and C. Boyd, eds.),
no. 1841in LectureNotesin Computer Science,(Berlin, Germany), Springer-Verlag,
July 2000.

[86] M. Myers,R. Ankney, A. Malpani, S.Galperin, and C. Adams,\X.509 Internet pub-
lic key infrastructure: Online certi�cate status protocol - OCSP," RFC 2560,Inter-
net EngineeringTask Force,June 1999.Seehttp://www.ietf.org/rfc/rfc2560.
txt .

[87] W. Johnston, S. Mudumbai, and M. Thompson, \Authorization and attribute cer-
ti�cates for widely distributed accesscontrol," in Proceedings of the 7th IEEE In-
ternational Workshopson Enabling Technologies: Infr astructure for Collaborative
Enterprises (WETICE '98, Stanford, CA), (Los Alamitos, CA), IEEE Computer
Society Press,June 1998.

183

[88] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari,
\Certi�cate-based accesscontrol for widely distributed resources,"in Proceedingsof
the 8th USENIX Security Symposium(SECURITY-99) , (Berkely, CA), pp. 215{228,
Usenix Association, Aug. 23{26 1999.

[89] I. Foster, C. Kesselman,G. Tsudik, and S. Tuecke, \A security architecture for
computational grids," in Proc. 5th ACM Conference on Computer and Communi-
cations Security (CCS-5, San Francisco, CA), (New York, NY), pp. 83{92, ACM
Press,Nov. 1998.

[90] R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, and C. Kesselman,
\A national-scaleauthentication infrastructure," IEEE Computer, vol. 33, pp. 60{
66, Dec. 2000.

[91] D. Chadwick and A. Otenko, \RBA C policies in XML for X.509 basedprivilege
management," in Proceedings of the 17th International Conference on Information
Security, (Cairo, Egypt), May 2002.

[92] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, \Sim-
ple public key certi�cate," Internet Draft draft-ietf-spki-cert-structure-06, Internet
EngineeringTask Force,Jan. 1999. Seehttp://world.std.com/ � cme/spki.txt .

[93] M. Blaze, J. Feigenbaum, and J. Lacy, \Managing trust in medical information
systems,"Tech. Rep. 96.14.1,AT&T, 1996.

[94] M. Blaze, J. Ioannidis, and A. Keromytis, \T rust management for IPsec," in
Proceedings of the Network and Distributed System Security Symposium: 2001
(NDSS'01, San Diego, CA), (Reston, Virginia), Internet Society, Feb. 2001.

[95] M. Blaze,J. Ioannidis, and A. D. Keromytis, \T rust management for IPsec," ACM
Transactionson Information and SystemSecurity, vol. 5, no. 3, pp. 95{118, 2002.

[96] M. Blaze, J. Feigenbaum, P. Resnick, and M. Strauss, \Managing trust in
an information-labeling system," European Transactions on Telecommunications,
vol. 8, no. 5, pp. 491{501,1997.

[97] M. Blaze, J. Feigenbaum, and M. Strauss, \Compliance checking in the policy
maker trust management system," in Proceedings of the Financial Cryptography
1998 (FC'98, Anguilla, British West Indies), no. 1465 in Lecture Notes in Com-
puter Science,(Berlin, Germany), pp. 254{274,Springer-Verlag, Feb. 1998.

[98] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss,\REFEREE:
Trust management for web applications," in Proc. 6h International World-Wide
Web Conference (WWW6, Santa Clara, CA), Apr. 1997.

[99] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss,\REFEREE:
Trust management for web applications," The World Wide Web Journal, vol. 2,
no. 3, pp. 127{139,1997. Available at http://www.w3j.com/ .

184

[100] T. Krauskopf, J. Miller, P. Resnick, and W. Treese,\PICS label distribution label
syntax and communication protocols, version 1.1," RecommendationREC-PICS-
labels-961031,World Wide Web Consortium, Oct. 1996.Available at http://www.
w3.org/TR/REC-PICS-labels .

[101] Herzberg, Mass,Mihaeli, Naor, and Ravid, \Accesscontrol meetspublic key infras-
tructure, or: Assigning roles to strangers," in RSP: 21th IEEE Computer Society
Symposium on Research in Security and Privacy, 2000.

[102] A. Herzberg and Y. Mass, \Relying party credentials framework," in Proc. RSA
Conference 2001, vol. 2020 of Lecture Notes in Computer Science, (Heidelberg,
Germany), pp. 328{343,Springer-Verlag, Apr. 2001.

[103] N. Li, J. C. Mitchell, and W. H. Winsborough, \Design of a role-basedtrust-
management framework," in IEEE Symposium on Security and Privacy, (Los An-
geles,CA), pp. 114{130,IEEE Computer Society Press,May 2002.

[104] U.S. Department of Defense,DoD 5200.28-STD: Department of Defense(DoD)
Trusted Computer SystemEvaluation Criteria (TCSEC), 1985.

[105] B. J. Foggand H. Tseng,\The elements of computer credibility," in Proceedings of
the Conference on Human Factors in Computing Systems(CHI-99) , (New York),
pp. 80{87, ACM Press,May 15{20 1999.

[106] S. Tsengand B. J. Fogg,\Credibilit y and computing technology," Communications
of the ACM, vol. 42, pp. 39{44, May 1999.

[107] R. Yahalom, B. Klein, and T. Beth, \T rust relationships in securesystems-Adis-
tributed authentication perspective," in Proceedings of the 1993 IEEE Computer
Society Symposium on Security and Privacy (SSP '93), (Washington - Brussels-
Tokyo), pp. 150{164,IEEE, May 1993.

[108] A. J�sang, \Prospectivesfor modelling trust in information security," in Proc. 2nd
Information Security and Privacy Conference { ACISP '97, pp. 2{13, 1997.

[109] M. Burrows, M. Abadi, and R. Needham,\A logic of authentication," ACM Trans-
actions on Computer Systems, vol. 8, pp. 18{36, Feb. 1990.

[110] M. Abadi, M. Burrows,B. Lampson,andG. Plotkin, \A calculusfor accesscontrol in
distributed systems,"ACM Transactionson Programming Languagesand Systems,
vol. 15, pp. 706{734,Sept. 1993.

[111] B. Crispo, \Delegation of responsibilities," in Proc. 6th International Security Pro-
tocols Workshop(Cambridge,UK, April 15{17), no. 1550in Lecture Notesin Com-
puter Science,(Heidelberg, Germany), pp. 118{130,Springer-Verlag, 1998.

[112] A. Nash, B. Duane, D. Brink, and C. Joseph,PKI: Implementing and Managing
E-Security. McGraw-Hill ProfessionalPublishing, Mar. 2001. ISBN 0-0721-3123-3.

[113] A. J. Menezes,P. C. van Oorschot, and S. A. Vanstone,Key managementinvolving
multiple domains, ch. 13.6,pp. 570{577. CRC Press,1997.

185

[114] A. J�sang, \The right type of trust for distributed systems,"in Proceedingsof ACM
Workshopon New Security Paradigms, ACM SIGSAC, ACM Press,Sept. 1996.

[115] B. Shneiderman,\Designing trust into online experiences,"Communications of the
ACM, vol. 43, pp. 57{59, Dec. 2000.

[116] D. W. Manchala, \E-commercetrust metrics and models," IEEE Internet Comput-
ing, vol. 4, no. 2, pp. 36{44, 2000.

[117] T. Grandison and M. Sloman, \A survey of trust in Internet applications," IEEE
Communications Surveys& Tutorials, vol. 3, no. 4, 2000.

[118] S. Einwiller, \Analyzing the potential of the key dimensionsof reputation to cre-
ate trust in electronic commerce,"in Proc. 8th Research Symposium on Emerging
Electronic Markets (RSEEM'01, Maastricht, The Netherlands), Sept. 2001.

[119] A. Abdul-Rahman and S. Hailes, \Using recommendationsfor managing trust in
distributed systems," in Proc. IEEE Malaysia International Conference on Com-
munication '97 (MICC'97) , (Kuala Lumpur, Malaysia), Nov. 1997.

[120] A. Abdul-Rahmanand S. Hailes,\A distributed trust model," in Proceedingsof the
ACM Workshopon New Security Paradigms, (Cumbria, United Kingdom), pp. 48{
60, ACM SIGSAC, ACM Press,Sept. 1997.

[121] P. Resnick, R. Zeckhauser,E. Friedman, and K. Kuwabara, \Reputation systems,"
Communications of the ACM, vol. 43, pp. 45{48, Dec. 2000.

[122] J. S. Olson and G. M. Olson, \i2i trust in e-commerce,"Communications of the
ACM, vol. 43, pp. 41{44, Dec. 2000.

[123] A. Abdul-Rahman and S. Hailes, \Supporting trust in virtual communities," in
Proc. 33th Hawaii International Conference on SystemSciences, IEEE Press,Jan-
uary 2000.

[124] F. Fukuyama,Trust : The Social Virtues and the Creation of Prosperity. NewYork,
NY: FreePress,June 1996. ISBN 0684825252.

[125] D. Gambetta, \Can we trust trust?," in Trust: Making and Breaking Cooperative
Relations (D. Gambetta, ed.), ch. 13, pp. 213{237,New York, NY: Basil Blackwell,
1988.

[126] B. Christianson and W. S. Harbison, \Wh y isn't trust transitiv e?," in Proc. 4th
International Security Protocols Conference, pp. 171{176,1996.

[127] N. Luhmann, Trust and Power. New York, NY: Wiley, 1979.

[128] B. A. Misztal, Trust in Modern Societies : The Search for the Basesof Social Order.
Cambridge, MA: Polity Press,1996. ISBN 0745612482.

[129] D. Fahrenholtz and A. Bartelt, \T owards a sociological view of trust in com-
puter science,"in Proc. 8th Research Symposium on Emerging Electronic Markets
(RSEEM'01, Maastricht, The Netherlands), Sept. 2001.

186

[130] D. Schoder and P.-L. Yin, \Building �rm trust online," Communications of the
ACM, vol. 43, pp. 73{79, Dec. 2000.

[131] B. Schneier,\A primer on authentication anddigital signatures,"ComputerSecurity
Journal, vol. 10, no. 2, pp. 38{40, 1994.

[132] S. Micali, \Enhanced certi�cate revocation system." Technical memo
MIT/LCS/TM-542, 1995. Available at ftp://ftp- pubs.lcs.mit.edu/pub/
lcs- pubs/tm.outbox/MIT- LCS-TM-542.ps.gz .

[133] M. Naor and K. Nissim, \Certi�cate revocation and certi�cate update," in Proceed-
ings of the 7th USENIX Security Symposium(SECURITY-98) , (Berkeley),pp. 217{
228,Usenix Association, Jan. 26{29 1998.

[134] W. Aiello, S. Lodha, and R. Ostrovsky, \F ast digital identit y revocation (extended
abstract)," in 18th Annual International Cryptology Conference (CRYPTO'98,
Santa Barbara, CA), no. 1462in Lecture Notes in Computer Science,(Heidelberg,
Germany), pp. 137{152,Springer-Verlag, Aug. 1998.

[135] I. Gassko, P. Gemmell, and P. D. MacKenzie, \E�cien t and fresh ceri�cation," in
Proc. 3rd International Workshopon Practice and Theory in Public Key Cryptog-
raphy (PKC 2000, Melbourne, Australia), no. 1751in Lecture Notes in Computer
Science,(Heidelberg, Germany), pp. 342{353,Springer-Verlag, Jan. 2000.

[136] R. Wright, P. D. Lincoln, and J. K. Millen, \E�cien t fault-tolerant certi�cate re-
vocation," in Proceedings of the 7th ACM Conference on Computer and Commu-
nications Security (CCS-00), (New York, NY), pp. 19{24, ACM Press,Nov. 1{4
2000.

[137] A. J�sang, \A subjective metric of authentication," in Proc. 5th European Sym-
posium on Research in Computer Security (ESORICS'98, Louvain-la-Neuve,Bel-
gium), no. 1485 in Lecture Notes in Computer Science,(Heidelberg, Germany),
Springer-Verlag, 1998.

[138] A. J�sang and S. J. Knapskog, \A metric for trusted systems,"in Proc. 21st NIST-
NCSC National Information SystemsSecurity Conference, pp. 16{29, 1998.

[139] D. W. Manchala, \T rust metrics, models and protocols for electronic commerce
transactions," in Proc. 18th International Conference on Distributed Computing
Systems(ICDCS'98), (Amsterdam, The Netherlands), pp. 312{321, IEEE, May
1998.

[140] S.P. Marsh, Formalising Trust asa ComputationalConcept. PhD thesis,University
of Stirling, Apr. 1994.

[141] T. Beth, M. Borcherding, and B. Klein, \V aluation of trust in open networks," in
Proceedings of the European Symposium on Research in Computer Security (ES-
ORICS '94, Brighton, UK) , no. 875 in Lecture Notes in Computer Science,(Hei-
delberg, Germany), pp. 3{18, Springer-Verlag, Nov. 1994.

187

[142] U. Maurer, \Mo delling a public-key infrastructure," in Proceedings of the Euro-
pean Symposium on Research in Computer Security (ESORICS '96, Rome, Italy) ,
no. 1146in Lecture Notes in Computer Science,(Heidelberg, Germany), pp. 325{
350,Springer-Verlag, Sept. 1996.

[143] C. M. Ellison, \Naming and certi�cates," in Proceedings of the tenth conference on
Computers,freedom and privacy: challenging the assumptions, (Toronto, Canada),
pp. 213{217,April 2000.

[144] T. Aura, \Distributed access-rights managements with delegationscerti�cates," in
Proceedings of Fourth International Workshop on Mobile Object Systems: Secure
Internet Mobile Computations (MOS '98, Brussels,Belgium), no. 1603in Lecture
Notes in Computer Science,(Heidelberg, Germany), pp. 211{235,Springer-Verlag,
July 1999.

[145] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda,and F. Velez,eds.,The Object Data Standard: ODMG
3.0. Morgan Kaufmann, Jan. 2000. ISBN 1-55860-647-5.

[146] W. Rubin and M. Brain, UnderstandingDCOM. Englewood Cli�s, NJ: Prentice-
Hall, 1999. IncludesCD-ROM.

[147] ISO (International Organization for Standardization), Geneva, Switzerland, ISO
8601-2000:Representationsof datesand times, 2000-12-21, 2000.

[148] B. Harbison,\Delegating trust (transcript of discussion),"in Proc. 6th International
Security Protocols Workshop (Cambridge, UK, April 15{17), no. 1550 in Lecture
Notes in Computer Science,(Heidelberg, Germany), pp. 108{117,Springer-Verlag,
1998.

[149] World Wide Web Consortium, ExtensibleMarkup Language(XML) 1.0, 2nd ed.,
Oct. 2000. http://www.w3.org/TR/2000/REC- xml- 20001006.

[150] Organization for the Advancement of Structured Information Standards(OASIS),
ebXML Technical Architecture Speci�c ation, v 1.0.4 ed., Feb. 2001. http://www.
ebxml.org/specs/ebTA.pdf .

[151] Organization for the Advancement of Structured Information Standards(OASIS),
ebXML BusinessProcessSpeci�c ation Schema, v 1.01ed., May 2001.http://www.
ebxml.org/specs/ebBPSS.pdf .

[152] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, and P. H.-B. et. al, Web Ser-
vices Security (WS-Security) Version 1.0, Apr. 2002. http://www- 106.ibm.com/
developerworks/library/ws- secure/ .

[153] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, and
J. Lapp, XML Key ManagementSpeci�c ation (XKMS) (W3C Note). World Wide
Web Consortium, Mar. 2001. http://www.w3.org/TR/xkms/ .

188

[154] Organization for the Advancement of Structured Information Standards (OA-
SIS), Assertions and Protocol for the OASIS Security Assertion Markup Language
(SAML) , May 2002. http://www.oasis- open.org/committees/security/docs/
cs- sstc- core- 01.pdf .

[155] Organization for the Advancement of Structured Information Standards (OA-
SIS), Bindings and Pro�les for the OASIS Security Assertion Markup Language
(SAML) , May 2002. http://www.oasis- open.org/committees/security/docs/
cs- sstc- bindings- 01.pdf .

[156] M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen,SOAP Version 1.2 Part 1:
MessagingFramework(W3C Working Draft 17 December 2001). World Wide Web
Consortium, Dec. 2001. http://www.w3.org/TR/soap12- part1/ .

[157] M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen,SOAP Version 1.2 Part 2:
Adjuncts (W3C Working Draft 17 December 2001). World Wide Web Consortium,
Dec. 2001. http://www.w3.org/TR/soap12- part2/ .

[158] E. Christensen,F. Curbera, G. Meredith, and S. Weerawarana, Web Services De-
scription Language(WSDL) 1.1 (W3C Note 15 March 2001). World Wide Web
Consortium, Mar. 2001. http://www.w3.org/TR/2001/NOTE- wsdl- 20010315.

[159] World Wide Web Consortium, XML SchemaPart 1: Structures (W3C Recommen-
dation 2 May 2001, May 2001. http://www.w3.org/TR/xmlschema- 1/ .

[160] World Wide Web Consortium, XML SchemaPart 2: Datatypes (W3C Recommen-
dation 2 May 2001, May 2001. http://www.w3.org/TR/xmlschema- 2/ .

[161] UDDI.org, UDDI Version 2.0: API Speci�c ation (UDDI Open Draft Speci�c a-
tion 8 June 2001, June 2001. http://www.uddi.org/pubs/ProgrammersAPI- V2.
00-Open-20010608.pdf.

[162] UDDI.org, UDDI Version 2.0: Data Structure Reference (UDDI Open Draft Speci�-
cation 8 June 2001, June 2001. http://www.uddi.org/pubs/DataStructure- V2.
00-Open-20010608.pdf.

[163] T. Howesand M. Smith, \An LDAP URL format," Internet Requestfor Comment
RFC 1959,Internet EngineeringTask Force,June 1996.

[164] T. Dierks and C. Allen, \The TLS protocol version1.0," RFC 2246,Internet Engi-
neeringTask Force,Jan. 1999. ProposedStandard.

[165] World Wide Web Consortium, Namespaces in XML , Jan. 1999. http://www.w3.
org/TR/1999/REC-xml- names-19990114/.

[166] World Wide Web Consortium, XML-Signature Syntax and Process-
ing (W3C Recommendation), Feb. 2002. http://www.w3.org/TR/2002/
REC-xmldsig- core- 20020212/.

[167] World Wide Web Consortium, XML Path Language(XPath) 2.0 (W3C Working
Draft), Apr. 2002. http://www.w3.org/TR/xpath20/ .

189

[168] W. Winsborough,K. Seamons,and V. Jones,\Automated trust negotiation," Tech.
Rep. TR-2000-05,Department of Computer Science,North Carolina State Univer-
sity, Apr. 24 2000. Mon, 24 Apr 200017:07:47GMT.

[169] K. E. Seamons,M. Winslett, and T. Yu, \Limiting the disclosureof accesscon-
trol policiesduring automated trust negotiation," in Proceedings of the Symposium
on Network and Distributed SystemsSecurity (NDSS 2001, San Diego, CA), (San
Diego, California), Internet Society, Feb. 2001.

[170] W. H. Winsborough and N. Li, \T owards practical trust negotiation," in Proc. 3rd
Workshopon Policies for Distributed Systemsand Networks(Policy 2002), pp. 92{
103,June 2002.

[171] Apache Software Foundation, http://httpd.apache.org/ , ApacheHTTP Server
Project, 1999.

[172] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, \Hyp ertext transfer protocol { HTTP/1.1," RFC 2616,The Internet Society,
June 1999. Seehttp://www.ietf.org/rfc/rfc2616.txt .

[173] H. Nielsen, P. Leach, and S. Lawrence, \An HTTP extension
framework," RFC 2774, The Internet Society, Feb. 2000. See
http://www.ietf.org/rfc/rfc2774.txt .

[174] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Lu-
otonen, and L. Stewart, \HTTP authentication: Basic and digest ac-
cess authentication," RFC 2617, The Internet Society, June 1999. See
http://www.ietf.org/rfc/rfc2617.txt .

[175] N. Freed and N. Borenstein, \Multipurp oseinternet mail extensions(MIME) part
two: Media types," rfc, Internet EngineeringTask Force Draft IETF, Nov. 1996.
Seehttp://www.ietf.org/rfc/rfc2046.txt .

[176] Microsoft Corp., http://www.passport.com/ , Microsoft .NET Passport, 2002.

[177] Entrust Inc., http://www.entrust.com/getaccess , Entrust GetAccess, 2002.

[178] RSA Security Inc., http://www.rsasecurity.com/products/ClearTrust/index.
html , RSA ClearTrust, 2002.

[179] PHP4: Hypertext Preprocessor. http://www.php.net/ , 2001.

[180] PayPal Internet Payment System. www.paypal.com.

[181] T. Yu, M. Winslett, and K. E. Seamons,\In teroperable strategies in automated
trust negotiation," in Proceedings of the 8th ACM Conference on Computer and
Communications Security (Philadelphia, PA, USA) (P. Samarati, ed.), (New York,
NY), pp. 146{155,ACM Press,Nov. 2001.

[182] World Wide Web Consortium, XML Encryption Syntaxand ProcessingW3C Can-
didate Recommendation, Mar. 2002. http://www.w3.org/TR/xmlenc- core/ .

190

[183] S. A. Brands, Rethinking Public Key Infr astructuresand Digital Certi�c ates;Build-
ing in Privacy. Cambridge, MA: MIT Press,Aug. 2000. ISBN 0-262-02491-8.

191

