Technical Report A

Number 608

2. UNIVERSITY OF
P CAMBRIDGE

Computer Laboratory

Trust management for
widely distributed systems

Walt Yao

November 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2004 Walt Yao

This technical report is based on a dissertation submitted
February 2003 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Jesus College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

In recent years, we have witnessed the evolutionary development of a new breed of dis-
tributed systems. Systems of this type share a number of characteristics - highly decentral-
ized, of Internet-grade scalability, and autonomous within their administrative domains.
Most importantly, they are expected to operate collaboratively across both known and
unknown domains. Prime examples include peer-to-peer applications and open web ser-
vices. Typically, authorization in distributed systems is identity-based, e.g. access control
lists. However, approaches based on predefined identities are unsuitable for the new breed
of distributed systems because of the need to deal with unknown users, i.e. strangers, and
the need to manage a potentially large number of users and/or resources. Furthermore,
effective administration and management of authorization in such systems requires: (1)
natural mapping of organizational policies into security policies; (2) managing collabora-
tion of independently administered domains/organizations; (3) decentralization of security
policies and policy enforcement.

This thesis describes Fidelis, a trust management framework designed to address the
authorization needs for the next-generation distributed systems. A trust management
system is a term coined to refer to a unified framework for the specification of security
policies, the representation of credentials, and the evaluation and enforcement of policy
compliances. Based on the concept of trust conveyance and a generic abstraction for
trusted information as trust statements, Fidelis provides a generic platform for building
secure, trust-aware distributed applications. At the heart of the Fidelis framework is a
language for the specification of security policies, the Fidelis Policy Language (FPL), and
the inference model for evaluating policies expressed in FPL. With the policy language
and its inference model, Fidelis is able to model recommendation-style policies and policies
with arbitrarily complex chains of trust propagation.

Web services have rapidly been gaining significance both in industry and research as a
ubiquitous, next-generation middleware platform. The second half of the thesis describes
the design and implementation of the Fidelis framework for the standard web service
platform. The goal of this work is twofold: first, to demonstrate the practical feasibility
of Fidelis, and second, to investigate the use of a policy-driven trust management frame-
work for Internet-scale open systems. An important requirement in such systems is trust
negotiation that allows unfamiliar principals to establish mutual trust and interact with
confidence. Addressing this requirement, a trust negotiation framework built on top of
Fidelis is developed.

This thesis examines the application of Fidelis in three distinctive domains: imple-
menting generic role-based access control, trust management in the World Wide Web,
and an electronic marketplace comprising unfamiliar and untrusted but collaborative or-
ganizations.

To my parents Kai-Lin and Mei-Lun

Acknowledgements

This work would have not been possible without the continuous support, advice, and
encouragement from my supervisor, Jean Bacon. Throughout my PhD life, she has al-
ways been tireless in giving me invaluable comments and advice. Asides from work, she
has also been exceptionally understanding and sympathetic with other problems I have
encountered during this time, especially the period when I was recovering from an eye
operation. I express my greatest appreciation toward her guidance throughout the period
of my study.

I am also grateful to Ken Moody, who has provided me with constant critical discus-
sions that were both constructive and inspiring. Without his advice, I would not have
tackled many of the problems that I encountered during my research.

Many thanks are also due to the fellow researchers in the OPERA research group
at the Computer Laboratory. They have all been fun to work with, to play with, and
to learn from. Working with them has given me numerous intellectual, interesting and
enjoyable discussions, both academically and leisurely. I shall pay extra appreciation to
those who proof-read my thesis and corrected many language problems — David Ingram,
Brian Shand, Nathan Dimmock and especially David Eyers, for his extraordinarily high-
quality comments.

I would also like to thank the UK Engineering and Physical Research Council (EPSRC)
for supporting this work, under the grant OASIS Access Control: Implementation and
Fvaluation.

I owe a special debt to my parents, Yao Kai-Lin and Fang Mei-Lun, not only for
financially supporting my ten-year study in the UK, from school through to doctoral
studies; but also for their endless care, understanding, support, and advice on my personal
life.

List of Publications

John Hine, Walt Yao, Jean Bacon, and Ken Moody. An architecture for distributed
OASIS services. In Middleware 2000 (Palisades, NY, April 4-8), volume 1795
of Lecture Notes in Computer Science, pages 104-120, Heidelberg, Germany, April
2000. Springer-Verlag.

Jean Bacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao. Event
storage and federation using ODMG. In Proc. 9th International Workshop on Per-
sistent Object Systems (POS9, Lillehammer, Norway Sept. 6-8), volume 2135 of
Lecture Notes in Computer Science, pages 265—281, Heidelberg, Germany, Septem-
ber 2000.

Walt Yao, Ken Moody, and Jean Bacon. A model of oasis role-based access control
and its support for active security. In Sixzth ACM Symposium on Access Control
Models and Technologies (SACMAT 2001, Chantilly, VA, May 53—4), pages 171-181,
New York, NY, May 2001. ACM Press.

Jean Bacon, Ken Moody, and Walt Yao. Access control and trust in the use of
widely distributed services. In Middleware 2001, volume 2218 of Lecture Notes in
Computer Science, pages 300-315, Heidelberg, Germany, November 2001. Springer-
Verlag.

Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-based access
control and its support for active security. ACM Transactions on Information and
System Security, 5(4), pages 492-540, November 2002.

10

Contents

1 Introduction

1.1
1.2
1.3
14
1.5
1.6

Distributed authorization and trust management
New challenges
Research issues
Thesis contribution
Security engineeringo
Dissertation outlineo Lo

2 Related Work

2.1

2.2

2.3

24

2.5

Access control modelso
2.1.1 Mandatory access control (MAC)
2.1.2 Clark and Wilson model
2.1.3 Chinese Wall policy
2.1.4 Discretionary access control (DAC)
2.1.5 Role-based access control (RBAC).
Distributed access control
2.2.1 Access control lists in distributed systems
2.2.2 Capability-based access control
2.2.3 Credential-based access control L.
2.2.4 Categories of credential-based access control
Identity-oriented access control
2.3.1 X.509 Public Key Infrastructure
2.3.2 Pretty Good Privacy (PGP)
2.3.3 Attribute certificateso
Key-oriented access controlo
2.4.1 Simple Public Key Infrastructure (SPKI)
2.4.2 PolicyMaker and KeyNote
2.4.3 Other trust management systems
SUMMATY oo o e

3 Fidelis Trust Management Infrastructure

3.1
3.2

3.3

Overview of the Fidelis Trust Management Infrastructure
Trust model
3.2.1 Trust as a security concept
3.2.2 Trust as a sociological concept
3.23 Thebasisof trust
Conveying trust Lo

17
18
19
20
22
22
24

25
25
26
28
29
30
31
34
34
35
36
38
39
39
41
42
44
45
47
49
92

3.3.1 Basicconcept 60

3.3.2 Validity 62
3.3.3 Discussiono 62
3.4 Identity 63
3.4.1 Discussiono 64
3.5 The Fidelis Policy Language 65
3.5.1 Principals 66
3.5.2 Actions 67
3.5.3 Trust specification Lo 67
3.5.4 Validity conditionso 69
3.5.5 Trust relationships Lo 71
3.5.6 Action policies 77
3.5.7 Conditional and assignment expression 79
3.5.8 Ewvaluation semantics Lo Lo 80
3.5.9 Discussion 82
3.6 SUMMATY 84
Fidelis and Web Services 87
4.1 Introduction 87
4.1.1 Backgroundo 88
4.1.2 Design issues 89
4.2 Service architecture oL 90
4.2.1 Locating principals 91
4.2.2 Conveyance interface 92
4.2.3 The trust inference interface 93
4.2.4 The credential management interface 96
4.2.5 The policy interrogation interface 97
4.2.6 The trust agent interface oo 99
4.2.7 Identifying requesters 102
4.3 Fidelis Policy Interchange 102
4.3.1 Overview 103
4.3.2 The top-level container 103
4.3.3 Schema definitionso 104
4.3.4 Principal declarations00 105
4.3.5 Policy specification oL 106
4.3.6 Linking with other policy documents 109
4.4 Credential representation L. 109
4.4.1 Basicstructureo Lo 109
4.4.2 Truster and subject 110
4.4.3 Validity condition L 111
4.4.4 Signature 112
4.5 SUMMAryo e 113
Inference and Trust Negotiation 115
5.1 Policy inference 115
5.1.1 Inference algorithm o0 116
5.1.2 Managing distrust repositorieso L 122

12

5.1.3 Tracking validity o

5.1.4 Runtime analysiso
5.2 Trust negotiationo
5.2.1 Trust negotiation overview
5.2.2 Trust negotiation protocol
5.2.3 Meta policies
5.2.4 Related work
5.3 SUmMMAry
Applications
6.1 Role-based access controlo oo
6.1.1 OASIS role-based access control
6.1.2 RBACY96 and the NIST unified model,
6.1.3 Discussiono
6.2 Case study: Trust management in the World Wide Web
6.2.1 Architectural overview
6.2.2 Request handling in Apache
6.2.3 Integrating Fidelis oo
6.2.4 Discussiono
6.3 Case study: an electronic marketplace
6.3.1 Background
6.3.2 Environment
6.3.3 Membership management L.
6.3.4 Product catalogue management
6.3.5 Reputation managemento
6.3.6 Transaction processing: purchases
6.3.7 Discussion Lo
6.4 Summary
Discussion
7.1 Policy framework
7.2 Managing scalability o oo
7.3 Decentralized collaboration
T4 Privacy
7.5 Decentralization approaches o0
7.6 SUMMATY o

Conclusions and Future Work

8.1 Summary of contributions Lo
8.2 Future work
8.3 Conclusion

135
135
136
139
144
144
145
146
147
152
152
153
153
154
155
156
157
158
159

161
161
163
164
165
166
167

13

14

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
2.3
5.4
3.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Framework for security engineering L. 23
An access control matrix Lo 31
A basic RBAC model 32
An example of role hierarchy oo 32
A certification path o 40
Examples of trust model oo 41
PMI delegation model (simplified from [6]) 43
Sample KeyNote assertion 49
Fidelis overviewo o4
Conveying trust 61
Transitive trust and delegating trust 7
Examples of regular expression patterns 79
A sample SOAP message (message content from [7]) 88
Trust inference - action decision 95
Automated credential collection 97
Policy discovery 99
Assisted request initiation through a trust agent. 100
Trust negotiation between principals. 101
@method URI identifiers for online validity schemes. 111
Passive replication scheme L. 122
Validity dependency tree Lo o 124
A trust negotiation session 126
State diagram for the negotiation protocol 128
Vocabulary for the meta-policy profile. 130
An example role hierarchy (adopted from [8]). 140
Role memberships for users in the examples. 142
Proxy mechanism L L 145
Request handling cycle in the Apache server (version 1.x) 147
Architecture of mod fidelis 148
Commonly-used CGI variables. 149
Incorporating product information.o 155
Supporting purchase decision. 157
Delegated purchase 158

16

]_ Introduction

With the growing popularity of the Internet, open, large-scale distributed applications
are becoming increasingly prevalent. While past research on authorization for distributed
systems has addressed many issues in traditional networking/distributed systems, today’s
open and highly decentralized applications have raised many new questions in the unex-
plored territories in the distributed systems security research.

Numerous attempts have been made in the past to apply traditional, well-studied
authorization schemes to cope with the needs of distributed systems. Most of these
attempted to extend identity- or capability-based systems, combining them with crypto-
graphic authentication protocols. However, such efforts often only address a partial set
of the outstanding issues. In recognition of the failings of the conventional approaches,
Blaze et al. [9] proposed the trust management approach to decentralized authorization
management. The basis of their trust management approach centres around the notion of
delegation certificates — capability-like credentials. Every delegation certificate delegates
some authorization from its issuer to its subject; chains of certificates issued by differ-
ent issuers may be formed, thus enabling authorization to be granted in a decentralized
manner.

The key concept advocated by the trust management approach is the holistic treatment
of distributed authorization management, with a unified framework for the management of
security policies, security credentials and trust relationships. While this represents a ma-
jor advance for distributed systems security, departing from traditional approaches, there
are still many issues yet to be resolved. Unlike traditional networked services, today’s
distributed services must face the new challenges posed by an open network. Firstly, the
scale of the system with the sheer number of potential users and sizable resources makes
obsolete the possibility of centralized security management. Decentralized administration
is no longer just an option but indeed a necessity to address scalability problems. Sec-
ondly, collaboration among strangers in an open system becomes unavoidable: competing
organizations may be required to cooperate; businesses with conflicting goals may need
to collaborate; a person may need to shop at an online store at which she has never
been before. Thirdly, there is typically a lack of a single authority that is unanimously
trusted and agreed upon by all parties. Each party in the network is assumed to have full
autonomy to specify, enforce, and monitor its own security policies and mechanisms.

This thesis presents my research on the topic of distributed authorization management,
especially for the aforementioned new styles of distributed applications. Based on the trust
management approach, we are addressing issues previously unresolved by the current

17

CHAPTER 1. Introduction 1.1. Distributed authorization and trust management

state-of-the-art with a new trust management system, called Fidelis. Fidelis is designed
and implemented as part of this research, and features a fully decentralized and policy-
driven framework.

This chapter describes the motivation and outlines the contribution of this work. It be-
gins by briefly reviewing the state-of-the-art in authorization management for distributed
systems in Section 1.1. Section 1.2 examines new challenges posed by the new types of
distributed applications we have mentioned. This is followed by a summary of pending
research issues to date in Section 1.3. Section 1.4 outlines the contribution of this re-
search. Section 1.5 describes a layered approach to security engineering. This layering is
reflected in the structure of this thesis, which is described in Section 1.6.

1.1 Distributed authorization and trust management

Traditional approaches to distributed authorization are generally either identity-based
or capability-based. This is to be expected, as they have had a natural evolution from
the security research in operating systems, later being extended to cater for networked
and distributed applications. The identity-based approach focuses on authentication.
The idea is that a requester to a distributed service needs to be securely authenticated
before an access decision can be made using conventional schemes, such as access control
lists. Identity-based authorization stimulated much research on cryptographic protocols
[10, 11, 12] that allow communicating parties to identify each other and often also establish
a shared secret for securing communication sessions.

Capability-based systems such as described by Gong [13], Bull et al. [14] and Hay-
ton [15] take a different approach. Instead of relying on requester identity, these systems
rely on capabilities contained in credentials to grant or deny access. Management of cre-
dentials is therefore the focus in the capability-based approach. A variety of techniques
have been developed for this: some employ cryptography to prevent theft and forgery,
while others devise architectures to ensure controlled transfer of credentials. In com-
parison with the identity-based approach, capability-style authorization is more suited
for distributed systems, as it encourages distributed security management and is hence
inherently more scalable.

Authorization management attempts to address a whole spectrum of issues, ranging
from the high-level organizational policies, through the specification of security policies,
to low-level security mechanisms. Both approaches described above typically only address
a subset of these issues and, as a result, do not always satisfy precise application needs.
Trust management is an alternative approach that aims at delivering a unified framework
for managing security policies, credentials and their trust relationships. Based on con-
cepts pioneered by capability systems, a trust management system attempts to answer
authorization questions in the form of “is a request r compliant with the local policies P
given the set of credentials C?”. A crucial element of trust management is the consid-
eration of security policies, which was merely supported at a lower level with traditional
approaches. A trust management system can be broken down into three basic components
9, 16]:

e A language for expressing security policies. This includes the means of describing
actions, identifying principals, and specifying trust relationships.

18

CHAPTER 1. Introduction 1.2. New challenges

e A language for specifying security credentials, which may be transferred between
entities in the system to express delegation of authority.

e A compliance checker, which computes whether a request should be granted given
the local policies and a set of credentials. This is also commonly known as the trust
management engine.

One of the key features of existing trust management systems is to decentralize policy
management based on delegation of authority. For example, a resource provider may
delegate the rights of accessing its resource to some principal through a digital credential.
That principal may in turn delegate this right to another principal, and this process
may proceed indefinitely. The ultimate principal may present the set of credentials at
the resource provider, where its compliance checker will then attempt to find a chain of
delegation from the set to make authorization decisions.

Delegation of authority is not unique to trust management. It also forms the basis of
key-oriented access control, whose representative systems include the Simple Distributed
Security Infrastructure (SDSI) [17] and the Simple Public Key Infrastructure (SPKI) [18].
A core concept of these new access control systems is the first-class treatment of public
keys as principal identifiers, and naturally relies on the use of public key cryptography
to provide principal authentication. While the focus of such systems is not on the design
of a unified security framework, they may be considered as a form of trust management
system, because of their well-defined compliance computation [16].

Although the current, state-of-the-art, distributed authorization is a major improve-
ment over the traditional approaches, today’s modern distributed applications generate
new requirements that need to be addressed. In the next section, we will discuss properties
of these new applications and their relation to authorization management.

1.2 New challenges

The advances in communications, networking and middleware research have brought dis-
tributed systems to new prominence. With the global reach of the Internet, widely dis-
tributed applications are increasingly commonplace. Some of their major characteristics
may be observed:

o Internet-scale

New applications are required to potentially scale up to the scope of the Internet,
implying the need to manage vast resources and numbers of distributed users from
anywhere in the world. The authorization framework, as a critical part of any trust
reliant application, evidently must be as scalable as the application itself.

e Cross-boundary

Because of the scale, new distributed applications often span several network, admin-
istrative or organizational boundaries. For example, an enterprise resource planning
system (ERP) for a multi-national organization may need to integrate several ge-
ographically dispersed sites under one application. The authorization framework
must support cross-boundary management and administration.

19

CHAPTER 1. Introduction 1.3. Research issues

o Autonomous

Closely related to the previous points, it is generally difficult, costly, and/or cum-
bersome to impose a central authority when applications span several boundaries.
Each administrative domain should hence be assumed to have full autonomy of
specification, management and enforcement of its security policies. The authoriza-
tion framework must have support for inter-linked and inter-operating autonomous
domains.

e Open

Modern distributed applications tend to be highly open in nature. For example,
a peer-to-peer file-sharing application allows virtually any Internet users to inter-
act with each other; a web-based online store is open to everyone. This implies
that applications are often required to deal with previously unknown or unfamiliar
principals. The authorization framework must be designed to handle strangers in
compliance with the application security policies.

o Complex authorization policy

Traditional authorization mechanisms typically only consider simple attributes such
as the username or clearance level. In today’s applications, we often observe the
need to express complex (and relatively high-level) policies. For example, a user of
a peer-to-peer file sharing program may only wish to share her files with people who
are either: her friends, have uploaded 10MB of files in exchange, or anyone if it is
between lam to 7am. The authorization framework should be sufficiently flexible
and expressive to support complex policies.

o [wolution

Because of the scale, changes to an application often cannot be made atomically as
a “big-bang”. As the application evolves, the security policies will need to evolve
accordingly. Ideally, the authorization framework should support incremental de-
ployment, and to a certain extent, must co-exist with legacy security mechanisms.

Having presented these new challenges for authorization frameworks, we are in a po-
sition to highlight the research issues raised in addressing them.

1.3 Research issues

The main research issues raised by modern distributed applications which yet remain
unresolved by the current state-of-the-art of distributed authorization include:

e Policy framework

Traditional identity-based or capability-based authorization focus on the mecha-
nisms enforcing security. While the modern trust management approach is more in-
clined to the policy support than the enforcement mechanism, current solutions lack
comprehensive frameworks for policy specification. For example, PolicyMaker [9],
the most well-known trust management system, and its successor KeyNote [19, 20]
feature programmable credentials, where policies are expressed as programs to be

20

CHAPTER 1. Introduction 1.3. Research issues

executed by a trust management engine. While this achieves unparalleled expres-
siveness, it makes policy specification, management and maintenance difficult tasks.
An ideal approach would be based on a policy framework backed by a clearly defined
model and processing semantics.

e Managing scalability

As previously discussed, today’s distributed applications often need to face height-
ened scalability requirements, meeting the demand of the Internet. While the trust
management approach, due to its capability-like nature, has some degree of sup-
port for decentralization built-in, many improvements still need to be made in order
to meet the rigorous scalability requirements. For example, current trust manage-
ment systems assign privileges directly to identities with credentials. If the security
policies evolve, old credentials need to be revoked while new ones are issued. This
task becomes prohibitively expensive as the number of credentials becomes exceed-
ingly large. A possible solution is to integrate elements of role-based access control
(RBAC) into the trust management framework.

e Decentralized collaboration among unfamiliar parties

The openness of new distributed applications consequently results in communication
and collaboration with strangers. There has been a lack of attention in this area by
the current trust management systems. Most current systems, while decentralized,
assume the issuer and the acceptor of a credential share common vocabularies.
In a truly open environment, dynamic trust negotiation is often required for two
previously unknown parties to gradually gain trust and subsequently be engaged in
a collaboration or transaction.

e Privacy

Many of the current trust management systems adopt the idea of first-class treat-
ment of public keys, i.e. public keys as principal identifiers without compulsory
linkage to private data. While this offers a potential platform for implementing
pseudonymous communications, none of the current trust management systems are
designed with protection of privacy in mind. Ideally, a trust management framework
should have provisions for anonymous or pseudonymous communication, while it is
an application issue whether such features are utilized.

e New approaches to decentralization

Existing trust management systems are based strongly on the concept of delegation
of authority. While delegation of authority is important and indeed should be sup-
ported, other types of decentralization may exist. It remains an active research topic
to examine other possible decentralization techniques, in particular the structuring
of authority.

The research issues discussed in this section effectively set out the goals for this work.
This thesis is intended to address most of the above mentioned issues in an attempt to
devise a viable trust management system for Internet-scale distributed applications.

21

CHAPTER 1. Introduction 1.4. Thesis contribution

1.4 Thesis contribution

The main contribution of the thesis is the design and implementation of a novel, fully
policy-driven trust management framework — Fidelis. Fidelis is designed to address many
of the pending research issues described in the previous section. The list of contributions
is described below, together with the chapters where the relevant work is found.

e Proposing a generic model capturing the essence of a trust management system. The
model is called the trust conveyance model, and is described at an abstract level,
with the intention to serve as a general foundation for future trust management
systems, including, but not limited to, Fidelis. (Chapter 3)

e Designing a policy framework realizing the trust conveyance model and featuring
attribute-based trust authorization management. Attributes with their meta-data
are shown to be able to express arbitrary statements and actions. A policy language
called the Fidelis Policy Language (FPL) is presented for the specification of trust
statements, actions and their relationships. An important part of this work is the
specification of the semantics for the FPL trust computation. (Chapter 3)

e Designing and implementing Fidelis for the web-service platform. This involves
several aspects, ranging from the architecture, the interfaces, the protocol, and the
message/document format. The design and implementation are focused on two key
principles: interoperability and practical applicability. The aim is to produce a trust
management platform on which real applications may be built. (Chapter 4)

e Designing and implementing an algorithm for the computation of trust compliance,
strictly conforming to the evaluation semantics defined as part of the policy frame-
work. The algorithm mainly serves as a proof-of-concept for the viability of the
policy framework. (Chapter 5)

e Designing and implementing a trust negotiation framework. The trust negotiation
framework is equipped with a flexible policy control of the negotiation process, by
applying Fidelis. This negotiation framework is designed specifically for two pur-
poses: as a demonstration of the applicability of Fidelis, and as a platform to enable
communication between complete strangers — a scenario commonly-encountered in
today’s distributed applications. (Chapter 5)

e Experimenting with and studying the use of Fidelis in a number of application
domains. This provides an insight into the effectiveness of the trust management
approach under the demanding requirements of today’s applications. Through this
study, some tools and technologies have been developed which may be deployed in
a wider context. For example, a module has been implemented to allow Fidelis to
be integrated seamlessly with the Apache web server. (Chapter 6)

1.5 Security engineering

As discussed in previous sections, security problems for future distributed applications
present complex research challenges. These problems cannot be tackled in a single step
due to their complexity and inter-relationships. A good, well-known engineering practice

22

CHAPTER 1. Introduction 1.5. Security engineering

Policy

Model

Architecture

Mechanism

Figure 1.1: Framework for security engineering

is to divide a large problem into smaller pieces, solve each piece separately, and correlate
individual solutions to produce a consistent solution. For security engineering, the same
technique applies. A layered approach to security engineering has been proposed in [21].
It separates security issues into four layers, shown in Figure 1.1.

Policy states the high-level organizational goals and requirements. It is driven by the
anticipated threats and goals, and considers the principles of risk management. It
is usually concisely and formally written in natural language.

Model decomposes policies into abstract terms that can be analyzed and mapped into
implementable entities. This often takes the form of formal, rigorous mathematical
descriptions, but sometimes precise use of natural language is sufficient.

Architecture describes high-level security designs in terms of the major components of
a system and their inter-relationships. In an operating system, this includes the
memory protection module, the file system, etc; whereas in a distributed system,
this would instead include servers, databases, middleware, etc.

Mechanism is a set of means to implement the security design. For a multi-level security
(MLS) system, these may be security labels and protected objects. For distributed
systems, these may include network protocols, credentials, or tickets.

The top two layers of the pyramid, namely policy and model, are concerned with
formulating what the security requirements, relevant issues and trade-offs are, while the
bottom two layers focus on how these requirements can be met. The inter-relationships
between the layers may often be complex and thus inappropriate for a top-down design
process such as the waterfall method (used in software engineering). Instead, an iterative
refinement approach is more suitable as, for example, the implications of the chosen
mechanisms must be taken into account in the layers above, and the effects of a change
of an objective on other layers must be fully analyzed and incorporated.

Security is a qualitative and holistic property of the system which must be considered
as a whole. It is therefore important to take into account all four layers to produce
a consistent security framework. The work described in this thesis follows the layered
approach. Each layer is addressed separately but with cross-layer inter-relations discussed.
This is reflected in the structuring of this thesis itself, as summarized in the next section.

23

CHAPTER 1. Introduction 1.6. Dissertation outline

1.6 Dissertation outline
This thesis is organised as follows:

Chapter 2 reviews major work in the area of authorization management, with the focus
on distributed systems. It begins with an overview of the general access control
problem, followed by descriptions of various distributed authorization schemes in
two categories: identity-oriented and key-oriented. The chapter ends with a com-
prehensive review of the state-of-the-art in trust management systems.

Chapter 3 introduces the Fidelis trust management infrastructure. Prior to the descrip-
tion of Fidelis, the notion of trust in the literature is discussed. The intention here
is to form a solid basis for Fidelis. Fidelis is described in two parts in this chapter:
the conceptual model and the policy framework. The model describes the funda-
mental model — the trust conveyance model. The policy framework concentrates on
the description of the Fidelis Policy Language.

Chapter 4 describes an implementaion of the Fidelis trust management framework for
the web service environment. This covers the architectural design applying the
recent web service technologies. It also describes two additional pieces of tech-
nology which are designed to facilitate interoperation between any pair of locally
autonomous principals in the global web-service network: the Fidelis Policy Inter-
change and the Fidelis Interoperable Credential format.

Chapter 5 describes an algorithm that implements the trust compliance semantics de-
fined in Chapter 3. This algorithm is designed to demonstrate that implementations
of the semantics exist. It does not, however, exploit possible optimizations. The
second part of this chapter describes a trust negotiation model that is designed to
enable complete strangers to incrementally learn about each other and eventually
collaborate.

Chapter 6 provides in-depth descriptions of several applications built to employ Fidelis
as their authorization mechanism. These applications aim to demonstrate various
specific features of Fidelis in practice. Among them, a case study of electronic
commerce is included, which attempts to gain practical insight into this application
domain, and to evaluate this work.

Chapter 7 provides a critical evaluation of this work against the goals set out in Sec-
tion 1.3. The evaluation is qualitative in the form of discussion and is largely based
on experience gained while designing and implementing the test-case applications
described in Chapter 6.

Chapter 8 concludes this thesis, with a summary of the main contributions and a brief
discussion of potential future research and extensions.

24

2 Related Work

The concept of trust management is closely related to that of access control. The trust
management approach is essentially distributed access control with extensions relating to
trust, e.g. the notion of trust expression, trust propagation and trust-directed security
policies. This chapter reviews major work in the area of access control, with a focus on
distributed access control.

The use of the term access control in this thesis includes both the notion of authenti-
cation and authorization. Authentication is concerned with securely identifying subjects,
while authorization addresses the granting of access rights once a subject has been au-
thenticated.

This section starts by reviewing access control models. The concept of access control
models historically originates from the study of security policies, which can be briefly
described as a set of requirements, properties and mechanisms to protect resources in
a system. Section 2.1 introduces some influential models, including mandatory access
control policies, the Clark and Wilson model, the Chinese Wall policy, and the role-based
access control model.

It then describes the concept of access control in distributed systems. The review starts
from early work on distributed capability systems, and continues to the credential-based
approach. It then introduces two categories of credential-based access control: identity-
oriented and key-oriented. Section 2.3 describes the major work based on the concept
of identity-oriented credentials, notably the ITU/ISO X.509 Public Key Infrastructure.
Section 2.4 describes work based on the new key-oriented approaches for access control,
in particular a number of trust management systems are described.

2.1 Access control models

One branch of the early work on access control models came from the study of security
policies in the military sector in the 70s, and another came from the research on operating
systems security. In this section, we shall concentrate on the former, while the latter will
be described in the context of distributed systems in Section 2.2.

The primary concern of military systems is confidentiality of data, where prevention
of information leakage is the most important goal. In response to this need, Bell and
LaPadula [22] introduced a security model based on the military-style clearance scheme
that restricts flows of classified information. Their work lead to the development of
numerous multilevel security (MLS) systems, and is arguably one of the most influential

25

CHAPTER 2. Related Work 2.1. Access control models

models in the history of computer security.

While confidentiality is by far the most crucial requirement in military systems, in-
tegrity of data is conceived to be equally or even more important in the commercial
sector. Significant attempts to model integrity requirements include Biba [23] and Clark
and Wilson [24]. The latter, in particular, represents an influential shift of focus from
military-oriented security policies to commercial ones in the 80s. It formalized well-
established business practices of double entry bookkeeping and separation of duty, and
proposed an abstract model and mechanisms to enforce such rules. Business relationships
often cause conflicts of interest between different parties, for example when a consultant
is providing services to competing businesses. To model conflicts of interest intrinsic in
business relationships, Brewer and Nash [25] introduced the Chinese Wall security policy,
which prevents the breach of confidentiality by insider knowledge through consideration
of access histories.

The 90s saw a growing interest in role-based access control (RBAC). First formalized
by Ferraiolo and Kuhn [26] in 1992, RBAC is primarily based on the observations that
previous access control models for the military and commercial sectors often do not nat-
urally reflect higher-level organizational policies. The basic idea is that a role reflects an
organizational job function and the concept of roles is seen as a natural unit to model
policies, acting as a bridge between security mechanisms and policies.

In general, an access control model is a set of formalized, concise security goals and
properties, plus abstract mechanisms for enforcing them. This section reviews the above
mentioned models and policies in more detail.

2.1.1 Mandatory access control (MAC)

Multilevel security (MLS) policy and mechanism were developed in the military as a means
to manage classified information. Each document is labelled with a degree of sensitivity,
known as a classification e.g. “unclassified”, “confidential”, “secret” and “top-secret”.
All military personnel are assigned a clearance level on the same labelled scale as the
classification. This assignment may depend on a variety of factors, including ranks, units,
etc. The access control policy states that an officer must have a clearance at least as
high as the classification of the document he/she attempts to read. The safety of this
system comes from the strict one-way information flow, i.e. information may only flow
upwards in the sensitivity scale but never downwards, unless it is explicitly declassified
by an authorized person. The term Mandatory Access Control (MAC) is defined by the
United States Department of Defense Trusted Computer System Evaluation Criteria, the
“Orange Book”, as “a means of restricting access to objects based on the sensitivity
(as represented by a label) of the information contained in the objects and the formal
authorization (e.g., clearance) of subjects to access information of such sensitivity”.

The seminal attempt to formalize the multilevel security policy was due to Bell and
LaPadula, and their formalism is often referred to as the Bell-LaPadula or BLP model
[22]. The primitive elements in BLP are subjects, objects, access rights and security levels.
The set of access rights contains mainly two operations, read and write access. A security
level is defined as a tuple consisting of a classification and a set of categories. The set of
classifications contains names ordered by a > relation, e.g. top-secret, secret, etc. The set
of categories contains names describing compartments, such as NATO and nuclear. Each

26

CHAPTER 2. Related Work 2.1. Access control models

object is associated with a security level, denoting its degree of sensitivity. Each subject
is associated with a maximum security level and a current security level, which can be
changed dynamically if necessary.

A binary, partial-order relation dominates is then defined between a pair of security
levels, a and b in such way that,

Va,b € levels,a dominates b <= classification(a) > classification(b) N

categories(a) 2 categories(b)

For instance, (top-secret, { NATO, nuclear}) dominates (secret, { NATO}) because top-
secret is higher than secret and {NATO} is contained in {NATO, nuclear}. However,
(secret, { NATO}) does not relate to (confidential, {nuclear}). Two properties are then
defined to express the security policy.

The simple security property, also known as “no read up”, states that no subject may
read objects at a higher level than his/her current level. Stated formally, a read access to
an object is granted if and only if,

Vs € subjects, o € objects : level(s) dominates level(o)

The *-property, often called “no write down”, states that no subjects may write to
objects at a lower level than his/her current level. This is expressed formally that a write
access to an object is granted if and only if,

Vs € subjects,o € objects : level(o) dominates level(s)

The *-property was devised to address concerns of information leakage by malicious
programs. For example, a Trojan horse that writes information to unclassified objects
may be planted into a system by an unprivileged user. A privileged user may unknow-
ingly execute it while reading classified information, which causes the information to be
written to an unclassified object, effectively declassified. Lampson [27] introduced the
confinement problem, which notes possible channels for information leakage, including
storage, legitimate channels and covert channels. The *-property directly addresses the
first type of channels by explicitly disallowing write access to objects with a lower security
level than the subject.

Although the Bell-LaPadula model was designed to protect confidentiality of data,
Biba [23] observed that a similar formulation could be applied to protect integrity. The
Biba model is effectively the inverse of the BLP, i.e. high-integrity data should never
be contaminated by low-integrity data. The information is restricted to flow from high-
integrity to low-integrity. In particular, the model requires downgrading of a program if
it reads lower level data to prevent possible contamination of data.

A final remark on the term mandatory access control. While the term historically
refers to BLP-style, multilevel security policies, the intention behind the term is that the
enforcement of the policy is independent of users’ discretion or actions. Other access
control policies such as the Clark-Wilson model to be described in the next section also
exhibit mandatory behaviours. However, in order to be consistent with the terminology
in the literature, this thesis uses the term mandatory access control to refer to multilevel
security models.

27

CHAPTER 2. Related Work 2.1. Access control models

2.1.2 Clark and Wilson model

Historically, research in access control policies has focused on guarding against unautho-
rized disclosure of information. This trend was driven by the needs of military environ-
ments, where confidentiality is the top priority. However, as noted by Clark and Wilson
[24], in commercial systems, one of the primary objectives is the prevention of fraud and
error. Fraud is typically achieved by unauthorized modification of information, while er-
ror typically causes inconsistency of information. Both these concerns can be addressed
by enforcing integrity policies. It is therefore argued that integrity of information in such
systems is more important than its confidentiality.

They presented a model, often referred to as the Clark-Wilson model, that formalizes
two basic principles for achieving information integrity: well-formed transactions and
separation of duty. These are derived from well-established mechanisms practised in
business for centuries. The concept of well-formed transactions is that manipulation of
data by a principal must be constrained in such a way that its integrity is preserved. A
very common and effective mechanism employed in accounting is double entry bookkeeping.
The idea is to record every single transaction twice, once in a book for credit and once
in a book for debit. A later balance check would reveal discrepancies if any entry were
not recorded correctly. The intention of well-formed transactions is to ensure the internal
consistency and accuracy of the data.

The principle of separation of duty attempts to ensure external consistency where the
data in the system reflect the real-world entities they represent, e.g. when a payment is
recorded on the account as the fulfillment of a purchase, then there was indeed such a
purchase, not a fraud. The correspondence to external entities is often abstract and hard
to verify directly. The idea of separation of duty is to indirectly verify the correspon-
dence to real-world entities by dividing a task among several principals. Provided these
principals do not conspire, this mechanism should prevent both fraud and error.

The Clark-Wilson model partitions data into two sets: constrained data items (CDI),
whose integrity must be ensured, and unconstrained data items (UDI), which are not
under the control of the integrity policy, e.g. data input by a user from the keyboard.
Two classes of procedures on these data items are defined to enforce the integrity policy:
an integrity verification procedure (IVP) verifies the integrity of all data items in the
system, and a transformation procedure (TP) is a well-formed transaction that processes
and changes a set of data items from one valid state to another.

The integrity policy can then be expressed in formalized rules, grouped into two types:
certification and enforcement. Certification is an application-specific process that moni-
tors the operations of a system with respect to a specific integrity policy. Enforcement
rules are application-independent security functions that are automatically executed by
the system. The rules in the Clark and Wilson model as formulated in [28] are:

Certification

e C1 (IVP Certification) For any CDI, there must exist some IVP on the system
that validates its integrity.

e C2 (Validity) All TPs must be certified to maintain the validity of CDIs they
processed.

28

CHAPTER 2. Related Work 2.1. Access control models

e C3 (Separation of Duty) All possible operations on CDIs by potential users must
be certified to implement the principles of separation of duties and least privilege.

e C4 (Journal Certification) All TPs must be certified to ensure sufficient logging
for their operations.

e C5 Special TPs that take UDIs must be certified to result in valid CDIs.

Enforcement

e E1 (Enforcement of Validity) Manipulation on a CDI must only be performed
through a TP.

e E2 (Enforcement of Separation of Duty) Every user can only operate on a
specific set of CDIs through a set of authorized TPs.

e E3 (User Authentication) Every user attempting to execute a TP must be prop-
erly authenticated by the system.

e E4 (Initiation) Only the administrator can specify authorizations to TPs and
CDlIs.

One of the main contributions of the Clark-Wilson model is that it offers a distinctive
view of, and a set of mechanisms for, access control problems in commercial environments.
Their work laid the groundwork for research in commercial security, such as the Chinese
Wall policy described in the next section.

2.1.3 Chinese Wall policy

Brewer and Nash [25] introduced the Chinese Wall security policy to model the confiden-
tiality constraints in the commercial sector to avoid conflict of interest. A classic example
is a financial institution providing consultation services to business firms. Suppose the fi-
nancial institution has clients from a variety of industries and there are several companies
in each type of industry. If a market analyst working in the institution consults for one
company, he/she cannot be permitted to consult for another company in the same indus-
try, because the insider knowledge the analyst gains from one company may encourage
unfair dealing for or against the other company.

In the Chinese Wall policy, protected objects of a company are grouped into a company
dataset, and datasets from competing companies are grouped into a conflict of interest
class. For an object o, y(0) gives the name of the company where it belongs and x (o) gives
its conflict of interest class. Central to the Chinese Wall policy is the notion of access
history, or state. This is kept in a two-dimensional matrix of Boolean values, N, with a
column for each object and a row for each subject. An element N, is true if and only if
subject s has previously accessed object o.

Modelling after the Bell-LaPadula (BLP) model, the Chinese Wall policy is formalized
based on a simple security property and a *-property. The simple security property says
that access to information by a subject is confined to one company of any given conflict
of interest class. Specifically, access to object o is granted to subject s if one of the two
following conditions is satisfied:

29

CHAPTER 2. Related Work 2.1. Access control models

e s has never dealt with any company of the conflict of interest class x(0) in the past,
i.e. for each object p such that N, = true, z(p) # z(o).

e s has dealt with the company y(0) previously, i.e. for each object p such that Ny, =
true, y(p) = y(0).

However, the simple security property alone is not sufficient to prevent information
leakage. Suppose two subjects, Alice and Bob, are consulting for oil companies Shell and
BP respectively and both at the same time are consulting for the HSBC bank. The simple
security property does not stop Alice from writing confidential information about Shell
to HSBC for Bob to read, thus indirectly violating the Chinese Wall policy.

The *-property addresses this type of violation. It states that write access of object o
by subject s is only allowed if the simple security property is satisfied, and there does not
exist any unsanitized object p previously read by s such that y(p) # y(0). Sanitization
is a transformation on an object that de-identifies its source so that disclosure of the
sanitized object will not cause conflict of interest. The *-property ensures the confinement
of the flow of unsanitized information to its own company dataset and allows sanitized
information to flow freely within the system.

The Chinese Wall policy recognizes the importance of access history in protecting
security and has made a seminal contribution to subsequent research on history-based
access control and dynamic separation of duty in general [29, 30, 31, 32].

2.1.4 Discretionary access control (DAC)

The basic idea behind discretionary access control is that the owner of an object should
be trusted to manage its security. More specifically, owners are granted full access rights
to objects under their control, and are allowed to decide whether access rights to their
objects should be passed to other subjects or groups of subjects at their own discretion;
hence the name.

In his seminal paper in 1971, Lampson [33] formulates the first abstract model of access
control from the point of view of operating systems. An access matriz, sometimes known
as an access control matriz, is a two-dimensional matrix with a row for each subject and a
column for each object. An element in the matrix specifies the access rights that a subject
has on an object. Figure 2.1 is an illustration of an access matrix. An access matrix is
a convenient abstraction for expressing discretionary access control polices, and indeed,
documents for security requirements of a system often include an access matrix. In a real
system, an access matrix would be too large and very sparse. Several mechanisms are
available to represent the information in an access matrix. Lampson suggests storing the
matrix by rows as capability lists, or by columns as access control lists (ACL). A capability
is a tuple of (object, access rights), and is stored for each subject; an ACL entry, on the
other hand, is a tuple of (subject, access rights), and is stored for each object.

As a practical example, the UNIX file system implements discretionary access control.
It addresses the size problem of access matrix by effectively reducing the subjects to three
(i.e. a 3-row matrix), and represents an access control list by protection bits. The three
subjects are: the object owner, group, or everyone in the system. The user who creates
an object is the default owner and only the root user (i.e. the administrator) can change
the ownership of an object. There are three access modes: read, write and execute, and

30

CHAPTER 2. Related Work 2.1. Access control models

Objects

<< - - - - Access control list
01 02 On,

$1 r/wix | r/w r/w

S9 /wix r <= - - - Capability list

r/w r

Subjects

s r/-/x r/wix
“n

Figure 2.1: An access control matrix

the access rights for each subject is represented as a 3-bit value, e.g. "rwx". Every object
is associated with a protection string such as "rwxr-xr-x", which in this case indicates
the owner has read, write and execute access while the group and everyone else have read
and execute access. The key of UNIX access control is that the owner of the object can
modify its protection string at his/her own discretion.

2.1.5 Role-based access control (RBAC)

In the 80’s, discretionary access control was regarded as suitable for commercial and
governmental systems. However, in the beginning of the 90’s, the security needs for these
systems were more closely examined and it was observed that the protected information
was generally not owned by users but rather by the organization or agency to which these
users belonged. Moreover, access requests are typically made by a user in the capacity
of some role and thus access control decisions are often determined by the acting roles
which specify her duties and responsibilities [26, 8]. In the search for a more appropriate
access control scheme for civilian systems, role-based access control (RBAC) has gained
significant research interest.

The root of RBAC can be traced back to the user grouping found in the UNIX and
other operating systems and privilege grouping mechanisms found in some database sys-
tems [34, 35]. Over the years, many researchers have proposed models for RBAC [26,
36, 37, 8, 38, 39, 40, 41]. While the differences in these models are quite significant, the
core concept remains fairly consistent between them. In RBAC, the basic components are
users, permissions, and roles. A user in RBAC typically refers to a human being, although
this definition could be extended to include machines, computer processes or autonomous
agents. Permissions are defined as an approval to execute an operation on one or more
protected objects. An operation could be a simple access mode, e.g. read/write/update,
or an complex operation such as a method invocation in an object-oriented system [37, 38].
Indeed, the notion of abstract permission exists in early work in operating systems secu-
rity [33], and RBAC borrows the idea to stress the possibility of high-level operations such
as credit or debit for an account in RBAC [42, 8]. The definition of role varies slightly.
Some consider a role to be a named collection of permissions [38], while others consider a
role to be a job function within the context of an organization [8, 41]. Although both are
technically correct, the former focuses on the mathematical definition of a role, whereas
the latter emphasizes the use of RBAC in modelling organizational security policy.

31

CHAPTER 2. Related Work 2.1. Access control models

User Permission
assignment assignment
(UA) (PA)
> <———>| Permissions

Figure 2.2: A basic RBAC model

Director

Project Lead 1 Project Lead 1

Production Quality Production Quality
Engineer 1 Assurer 1 Engineer 1 Assurer 1

Figure 2.3: An example of role hierarchy

Central to RBAC is the notion of relations that connect the components described
in the previous paragraph. Suppose U, R and P denote the set of all users, roles and
permissions in the system respectively. The user assignment (UA) relation is defined as
UA C U x R, which gives a many-to-many mapping from users to roles. Similarly, the
permission assignment (PA) relation is a many-to-many mapping between permissions
and roles, and is defined as PA C P x R. A schematic illustration of a basic RBAC
model is given in Figure 2.2. The arrows represent many-to-many relationships between
components.

In RBAC, permissions are granted to users only through roles. Suppose a user in a
bank attempts to withdraw money from an account, she must be assigned to some role
that permits money withdrawal, e.g. cashier. It is possible to assign multiple roles to a
single user if the job position demands this. However, it is rare that a user will need all the
assigned roles at all times to perform her job functions. The well-known principle of least
privilege [24] recommends that only those permissions required for a user’s context should
be available to the user. To address this, many RBAC models [42, 8, 43] incorporate the
concept of sessions.

A session is a one-to-many mapping from a user to roles. A user establishes a session
and activates some subset of roles that she is assigned to in the context of this session.
The permissions available to the user in a session are those assigned to all the active
roles in that session. A user may control multiple sessions simultaneously, each acting
as a separate instance of the user. The notion of session is analogous to the notion of
principal in traditional MAC and DAC, i.e. a session represents an active subject. Since
an administrator can restrict a session to only activate needed roles for its designated
task, the use of session in RBAC embodies the principle of least privilege.

Another feature commonly found in RBAC models is the concept of role hierarchy.
The idea behind role hierarchy is due to the observation that roles in an organization
can often form a seniority hierarchy, e.g. a Chief Executive Officer (CEQO) is more senior
than a Vice President (VP). A role hierarchy is closely defined in accordance with this

32

CHAPTER 2. Related Work 2.1. Access control models

observation, as a partially-ordered seniority relation — see Figure 2.3 for an example of role
hierarchy. However, several interpretations for role hierarchy have been proposed. Some
researchers [37, 38| favour an permission-inheritance view, whereby role ry inherits rq if r;
has all permissions assigned to ro. Some [26, 43, 39] interpret a role hierarchy in terms of
user containment relations, whereby role r; contains ro if all users assigned to r; are also
assigned to 7. Yet others [44] propose interpretation based on role activation, whereby
role r; inherits 7y if in all sessions where r1 is active, ry is also active. In [45], Moffett
examines a variety of possible interpretations for role hierarchy. In general, role hierarchy
is a structuring tool to model an organization’s lines of authority and responsibility.
Its main claimed advantage is to improve administrative efficiency by factoring common
permissions and reflecting organizational structure.

Advanced RBAC models often offer direct support for expressing conflict of interest
policies [24], such as the Chinese Wall policy [25]. This is typically supported through
the specification of mutually exclusive roles in separation of duty (SoD) relations. Several
types of SoD relations have been studied [31, 32, 38, 46, 47]. Static separation of duty
relations enforce constraints on the assignment of users to roles, to prevent a user being
assigned to two or more conflicting roles at the same time, e.g. a person cannot both
be a billing clerk and a bookkeeping clerk. From a policy perspective, while the static
constraints of static separation of duty provide a powerful mechanism to prevent mis-
administration, it is usually over-restrictive in real-world practice to be useful or even
feasible [41], since it is common for a subject to be assigned to conflicting roles especially
those in the role hierarchy.

A more relaxed type of SoD relations, known as dynamic separation of duty, allows
assignment of mutually exclusive roles to the same user but prevents them being activated
within the same session. This offers greater operational flexibility in an organization, for
example a user can now be assigned with both a billing clerk and an accounts receivable
clerk role provided these roles are acted on in independent sessions. Dynamic separation
of duty is particularly suitable when sessions are bound with clear and distinctive tasks.
Other more complex types of SoD relations include object-based SoD, operational SoD
and history-based SoD [31]. The practicality and consequences of these SoD relations
remains an open research question, however.

Another aspect of RBAC is its administration. The administration of a RBAC system
mainly consists of the specifications of the basic sets, U, R and P and the two relations, UA
and PA [38, 48, 39, 41]. In the simplest form, an administrator is allowed to directly create
or delete a user, role or permission, and assign or remove a user or permission from a role.
An administrator is hence given the maximum power to configure each RBAC component
in the system. This monolithic style of administration faces scalability problems for large
corporations. A more advanced administrative model, ARBAC97 [48], addresses this
problem by applying RBAC to itself. It introduces the concept of administrative roles,
and encourages partitioning the system into functionally-independent parts which can be
separately managed. For example, an organization could have an administrative role for
the financial department, responsible for managing the users and roles in the financial
department. Likewise, another administrative role could be introduced to take charge of
the human-resources department.

One of the most compelling motivations for RBAC is its ease of administration [26,
36, 42, 8]. This is largely due to the additional indirection of roles between users and

33

CHAPTER 2. Related Work 2.2. Distributed access control

permissions. Permissions assigned to a role represent organizational security policies,
which are relatively constant once established. The administrative task of assigning users
to roles, for example when a person newly joins the organization or changes her job
position, is considerably easier and less error-prone than directly assigning permissions
to each individual. The administrative advantage is particularly important for a large
system or an organization with a high turnover of personnel.

Another advantage of RBAC is that it is “policy-neutral”. This means traditional
policies such as MAC and DAC can be expressed by using role hierarchies and constraints
in RBAC [49, 50, 51]. In this regard, RBAC is considered to be a generalized approach
to access control. On the other hand, RBAC has some inherent, non-discretionary ele-
ments [26, 39]. The roles that a user activates are typically not determined at the user’s
discretion but rather by her assigned tasks, in compliance with the organizational pro-
tection guidelines or security policies, which are usually refined from laws, regulations or
operating practices.

2.2 Distributed access control

The work on distributed access control originates from the need to provide authoriza-
tion on LAN-based distributed systems. Early work includes the Cambridge Distributed
Computing System (CDCS) [52, 53], Cambridge File Server (CFS) [54, 55], Hydra [56],
and Amoeba [57, 58]. These efforts pioneered the idea of capability-based authorization
for distributed systems, which is the predecessor of the modern credential-based autho-
rization. Another thread of the research effort concentrates on providing authentication
for distributed systems. The idea is that once a remote user is securely authenticated,
access control lists on the server can then be used to provide authorization. Notable work
includes the Needham and Schroeder protocol [10] and Kerberos [59, 60].

This section briefly reviews this prior work, and introduces the modern credential-
based approach to authorization for large-scale distributed systems.

2.2.1 Access control lists in distributed systems

Some early attempts have been made to reuse the well-known access control lists in
distributed systems. The idea is to first authenticate remote users, mapping into local user
identifiers, and then rely on the existing access control lists for authorization decisions.
With this approach, the security depends heavily on the strength of the authentication
scheme.

In their seminal paper, Needham and Schroeder [10] propose the use of cryptographic
protocols for achieving secure communications and suggest a key-establishment protocol,
based on symmetric key encryption. A key-establishment protocol allows a shared secret
to be established between two principals on different machines and may optionally be used
for mutual authentication. The shared secret may subsequently be used for encrypting
traffic on the communication channel. The original protocol by Needham and Schroeder
has some weaknesses and several suggestions have been described to fix them [61, 62, 63].
Nevertheless, its idea had enormous influence on research in network security, including
the well-known Kerberos authentication system.

34

CHAPTER 2. Related Work 2.2. Distributed access control

Kerberos is an authentication service, designed as part of MIT’s Project Athena
[59, 60], which aims at designing and building an open network computing environment,
comprising workstations and various types of servers. The goal of Kerberos is to remove
the need for each application to implement its own authentication scheme. Based on the
Needham and Schroeder protocol, it adopts a ticket-based approach, whereby a ticket is
a server-specific, encrypted token identifying a principal. A ticket is issued by either a
Kerberos or a special ticket-granting service (TGS). Prior to making a service request, a
client builds another encrypted credential known as an authenticator that identifies its
name, network address and a timestamp. It then initiates an authentication exchange
with the server, passing both the ticket and the authenticator. Once the server decrypts
both the ticket and authenticator, and validates their information, it gains confidence in
the identity of its communicating party, according to the issuer of the ticket. The original
Kerberos protocol is insecure against a variety of attacks [64]. The latest Kerberos, Ver-
sion 5 [12], developed under the scrutiny of the Internet Engineering Task Force, addresses
the known problems and has begun to be widely adopted, e.g. in Distributed Computing
Environment (DCE) [65].

2.2.2 Capability-based access control

For distributed systems, one of the inherent problems of access control lists is their scal-
ability limitations. Access control lists can be slow to check, especially if the number of
users or groups are large. Moreover, they do not have natural support for delegation — an
important mechanism for scaling large-scale distributed systems. With capabilities, on
the other hand, access decisions can be made quickly by examining the presented capa-
bility. Furthermore, it allows delegation of rights. These considerations make capabilities
a more suitable mechanism for distributed systems security.

Early work on distributed system security explores extensively the use of capabilities
in providing the authorization need. Notable pioneering work includes the Cambridge
Distributed Computing System (CDCS) [52, 53], Cambridge File Server (CFS) [54, 55],
Hydra [56], and Amoeba [57, 58]. Capabilities in centralized systems may be protected
by hardware (e.g. memory protection). However, in distributed systems where they must
be passed around, hardware protection is no longer an option.

One approach is to employ cryptographic techniques to protect capabilities from
forgery and tampering. When an object is created, the system associates it with a random
secret. The construction of a capability would then involve computing a cryptographic
hash of the object identifier, access rights, and the secret. The hash is then embedded in
the capability as the check digits. Mathematically,

hash = f(secret, protected fields)
capability = (protected fields, hash)

where f is the hashing function, secret is the secret associated with the object, and
protected fields can include any information, such as the object identifier and the access
rights. When a capability is used for access, the system checks if the capability is genuine
by recomputing the hash. If and only if the computed hash matches the hash contained in
the capability, the system then makes an access control decision based on the capability.

35

CHAPTER 2. Related Work 2.2. Distributed access control

While this approach provides some protection against forgery of capabilities, there
are still many issues left unaddressed. For example, it does not detect the use of stolen
capabilities, nor does it prevent uncontrolled propagation or duplication of capabilities.
Moreover, revocation is often coarsely-grained by resetting the secret of an object (thus
invalidating all capabilities for the object).

Although the capability-based approach did not provide a complete solution to dis-
tributed access control, it was however arguably one of the most important developments
leading to today’s access control technologies, with two important implications. Firstly, it
experiments with the idea of distributing access rights so that the access control decision
at each server can be made simply by validating the credentials presented by a client.
Secondly, it prompts the possibility of privilege delegation by allowing propagation of ca-
pabilities. This effectively decentralizes the task of security management to each client.
Both of these implications have impacts on the scalability of a distributed system.

2.2.3 Credential-based access control

With the recognition of the problems in applying capabilities to distributed systems (as
discussed in the end of the last section), it gradually became obvious that plain capabilities
were unable to satisfy the authorization needs in distributed systems. More information
is needed for authorization purposes. Credentials are essentially a more elaborate form of
data structure, given to and handled by individual principals.

An early form of credential-based access control is due to Li, with his identity-based
capability system, ICAP [13]. One important innovation in ICAP is that it merges ideas
from both ACLs and capabilities. In ICAP, a capability contains a cryptographic hash
computed over the user identifier of its holder, a secret kept by its issuer and the protection
information in the capability. This restricts the use of a capability to only its legitimate
holder and prevents forgery. It also means that the propagation of a capability must be
mediated by its issuer. One novelty in ICAP is its support for selective revocation. A
server maintains a data structure called a propagation tree, which records the path of
capability propagations. If the revocation of a capability is requested by a valid client
(i.e. in its propagation path), the server updates its internal secret, thus invalidating
capabilities issued with the old secret.

Bull et al. [14], incorporating ideas from [13], describe a credential-based system for
Open Distributed Processing (ODP). In ODP, federations of heterogeneous systems are
formed, with no central authority nor unified security infrastructure. Considering this
level of openness, it becomes obvious that each server is responsible for the management
of its own security policy and the enforcement thereof, with a high degree of autonomy.
In their design, a server issues access certificates (i.e. credentials) to authorize access to
its services. An access certificate is signed with the server’s secret key and a client hold-
ing an access certificate can freely delegate its access rights to other clients, by adding a
signature generated by its own secret key. This process can continue indefinitely and form
a chain of delegation. On a service request, the server validates the chain presented by a
client by recomputing the signatures. Once the validation succeeds, the server applies a
local security policy, based partially on the policy identifier contained in the access cer-
tificate. An important contribution of this system is the observation that the protocol for
authentication could be integrated with delegation, therefore allowing authentication and

36

CHAPTER 2. Related Work 2.2. Distributed access control

access control to be performed in a single step. Moreover, its concept of local autonomy
and server-oriented security management features an attractive scaling characteristics.

Another credential-based system is described by Neuman [66], in which the author
describes the concept of a restricted proxy, which is a credential that encodes access rights
and use conditions. Similar to previously described systems, it employs cryptographic
signing to prevent forgery and tampering. A novel idea in this system is that a proxy
includes a set of restrictions that must be satisfied on its use. This allows a principal to
delegate a subset of his or her access rights to another principal, achieving fine-grained
distribution of access rights. Some restrictions described by the author include a list of
issuers, a list of acceptors, group membership, single use, and restrictions on propagation.
It also supports the notion of chains of delegation, with the extra flexibility that each
intermediary can specify additional restrictions.

OASIS: Open Architecture for Secure, Interworking Services

OASIS (Open Architecture for Secure, Interworking Services) [15, 67] is a recent credential-
based access control system, developed at the University of Cambridge Computer Labo-
ratory. It is based on the idea of principal-specific capability (e.g. as in ICAP [13]) but is
integrated with role-based access control. While the protected fields (see Section 2.2.2) in
plain capabilities include primarily an object identifier and access rights, in OASIS, the
protected fields are a role name and some parameters for the role (roles are parametrized).

Credentials in OASIS are called certificates. There are three types of certificate, role
membership certificate (RMC), appointment certificate (AC), and revocation certificate
(RVC). A RMC is used to assert a principal’s membership of some role, and it can be
considered as a transient, session-based capability. An AC is a persistent certificate,
designed to implement appointment (which is a more general form of delegation), and a
RVC is a certificate to revoke an instance of appointment. In abstract terms, they can be
seen as:

protectedfields = (role name, parameters)
hash = f(secret, principal id, protected fields)
certificate = (protected fields, hash)

An OASIS certificate can only be used by the principal it is issued to. This is achieved
by including the principal identifier when computing the hash value. A principal therefore
must be authenticated when accessing a service; it is insufficient to simply present a
certificate.

A key design feature of OASIS is that it views the system as a collection of services.
A service may be an OASIS service or an OASIS-aware service. An OASIS service is
in charge of the issuing and revocation of certificates, whereas an OASIS-aware service
protects the access of its service by enforcing policies specified in terms of OASIS roles.
Services are independently managed and fully autonomous. A service may locally define
a set of roles and specify policies governing their use (e.g. the issuing of RMCs, the use of
RMCs for service access, etc). Interworking between services is facilitated by service-level
agreements (SLAs), which specifies the use of RMCs issued by other services. A SLA is
typically an agreement between a pair of services, although it is also possible to involve
more than two services in a SLA where appropriate.

37

CHAPTER 2. Related Work 2.2. Distributed access control

Another key design in OASIS is its policy-driven nature. The original OASIS includes
the Role Definition Language (RDL), which is later refined and formally specified in [3, 5].
Policies can be defined for:

e role activation (issuing of role membership certificates)
e validity for appointment certificates

e service use/method invocation

Policies are based on first-order logic, with the parameter binding semantics comparable
to term unification in Prolog. A more detailed description of the OASIS policy model will
be provided in Section 6.1.1 when its relation with the Fidelis counterpart is discussed.

2.2.4 Categories of credential-based access control

Most modern distributed access control systems apply the ideas of cryptographically pro-
tected credentials as a means of distributing security policies and as a proof of assigned or
delegated access rights. The increased adoption of public-key cryptography [68] can also
be observed in these systems. This is mainly due to the problem and complexity of key
management with symmetric-key cryptography. For distributed access control with this
approach, a principal and a service must share a secret key which is distributed online.
Moreover, it is desirable to constrain the use of a secret key to each service to limit the
damage caused by disclosure of the key. Public-key cryptography significantly simplifies
key management because it is sufficient for a communicating party to know only public
keys. A credential that binds a public key to some attributes of the holder of the corre-
sponding private key is called a public key certificate. This is the most common form of
credential found in modern distributed access control systems.

While the general idea of using credentials in provision of distributed access control
is widely accepted, the semantics and trust guarantee of credentials differ significantly.
Based on how credentials are used, distributed access control may be grouped into two
categories:

Identity-oriented approach One common use of access control credentials is to bind
the name of a subject with access rights. The idea is that once the name of a re-
quester is proved by a reliable authentication mechanism, access control credentials
with the matched name can then be used to make access decisions. This approach
separates access control into two distinct stages: authentication and authorization.
Authentication requires the binding of a public key to a name, while authorization
is handled with the access control credentials which bind a name and a set of au-
thorizations. The security of this approach therefore depends on the reliability of
both bindings.

Standards exist for the binding from a public key to a name. Pretty Good Privacy
(PGP) [69, 70] and X.509 Public Key Infrastructure (PKIX) [71, 72, 6, 73] are the
two most widely used today. The most prominent standard for binding public keys
with authorizations is the X.509 Privilege Management Infrastructure (PMI), with
its support for attribute certificates [74, 6, 75].

38

CHAPTER 2. Related Work 2.3. Identity-oriented access control

Key-oriented approach Another possible use of access control credentials is to directly
bind a public key with authorizations, thus avoiding the use of names completely.
With this approach, the public key in an access control credential effectively iden-
tifies a subject, and if possession of the corresponding private key can be proved, a
service accepting this credential can be sure of the identity of the subject and make
access decision simply by examining the access rights in the credential. Unlike
the identity-oriented approach, the key-oriented approach integrates the problem of
authentication and authorization into one step, but authentication still has to be
done.

There are currently two major access control systems based on the key-oriented
approach: Simple Public Key Infrastructure (SPKI) [76, 18] by Ellison et al. and
KeyNote [19] by Blaze et al.

The remainder of this chapter describes representative systems and technologies for
each category introduced above.

2.3 Identity-oriented access control

When Diffie and Hellman introduced public key cryptography as a solution for key man-
agement in 1976 [68], they described a “public directory” that lists a user’s name and his
or her public key. With this knowledge, one can perform common cryptographic opera-
tions such as encryption and signature verification with regard to only the person holding
the corresponding private key. While a vast improvement on key management (for secret
keys), public key cryptography does not solve the problem but instead shifts the focus to
the distribution of public keys. That is, the public directory must be trusted and widely
available on demand for this system to be useful and dependable. The public directory is
effectively a central point of authority.

Kohnfelder introduced the idea of certificate, or public key certificate in his bachelor’s
thesis [77]. The idea is to prevent the possible performance problem caused by a central
directory by distributing each entry in the directory as a digitally signed data record, i.e.
a data record containing a name and a public key. Since such a certificate is digitally
signed, it can be held and passed around by non-trusted parties without violating its
integrity. The problem of key management is therefore reduced to the knowledge of the
signing authority’s public key.

Public Key Infrastructure (PKI) is a general term to describe the mechanism and
architecture to certify the validity and trustworthiness of public-key bindings, traditionally
between a name and a public key. Identity-oriented access control extends the use of the
name as its premise for access control decisions. This section first examines two popular
identity-oriented PKIs and then describes their use in providing distributed access control.

2.3.1 X.509 Public Key Infrastructure

X.509 was originally published in 1988 [71] as part of the X.500 Directory recommenda-
tions by the Telecommunication Standardization Sector of the International Telecommu-
nication Union (ITU-T), formerly known as CCITT. X.500 was designed to be a global
and distributed directory service, whereby an organization can own and administer some

39

CHAPTER 2. Related Work 2.3. Identity-oriented access control

subject C=GB j
issuer C=GB
subject C=GB,

O=University of Cambridge signature

issuer C=GB

subject C=GB,
O=University of Cambridge
OU=Computer Laboratory

signature

issuer C=GB,
O=University of Cambridge

signature

Figure 2.4: A certification path

portions of the global name space. X.509 was intended to provide authentication and
access control for directory entries by binding public keys to X.500 path names (called
Distinguished Names). It underwent three major revisions, in 1993 [78], 1996 [72] and
2000 [6], reaching version 3. The version 3 format includes an extension mechanism, al-
lowing binding of arbitrary fields with a public key. The Internet Engineering Task Force
(IETF) envisions the need of an authentication framework for secure Internet transactions
but since the I'TU-T X.509 specification is deliberately over-general, interoperability be-
comes an issue. To address this, IETF produced an X.509 profile tailored for the Internet,
known as PKIX [73], and also a family of protocols for the operation and management of
PKIX [79, 80, 81, 82].

The major fields in an X.509 certificate include: a subject name and an issuer name
(both are X.500 distinguished names), the subject’s public key, a validity period, a version
number, a serial number, a digital signature, and a set of extensions. A Certification
Authority (CA) is a trusted authority that issues, renews and revokes certificates. In
X.509 PKI, every CA has a public key certificate to identify itself, and the certificate is
signed by a CA with a higher level of authority, and the certificate of that CA may in
turn be signed by another CA with an even higher level of authority. CAs are therefore
organized into a hierarchical “tree of certification”. The original intent of this model is
to reflect the design of the X.500 directory service, where there exists a single, global tree
of authority, whose root represents the authority of the highest power, e.g. the United
Nations. In recognizing the infeasibility of a global tree, IETF’s PKIX specifically permits
each organization to host its own certification tree to suit its need.

Validation of a public key certificate involves proving the existence of a certification
path. A certification path is an ordered sequence of certificates, which gives a path from
the root of a certification tree to the certificate to be validated. See Figure 2.4 for
an example of a certification path. The actual rules for processing a certification path
are complex, depending on the extensions used in a certificate. For example, a name
constraints extension could specify a list of permitted subtrees in a path. The basic idea
of path processing is simple, though: recursively validating each certificate in the path,
until a trusted CA, known as a trust anchor, or the root CA is found.

There are several trust models for the establishment of trust at a trust anchor or a
root CA. The IETF PKIX recommends two approaches. A CA may issue and sign a
certificate for itself, resulting in a self-signed root certificate. Another approach is known

40

CHAPTER 2. Related Work 2.3. Identity-oriented access control

O /—\
. ./\\ \
o
(a) self-signed hierarchy (b) cross-certified hierarchies

Figure 2.5: Examples of trust model

as cross certification, whereby two or more root CAs or trust anchors issue certificates for
each other. Thus, by explicitly trusting one root CA in a hierarchy, one would be able to
validate certificates signed by CAs from a different certification tree. Figure 2.5 illustrates
these two common models. A black circle represents a CA, and an arrow represents a
certification relationship. Other possible trust models, including bridged hierarchy, trust
lists, web-of-trust hierarchies, are described in [83, 84, 85].

Every certificate is issued with a validity period. It states the starting and ending
timestamps during which the CA warrants the validity of the information in the certifi-
cate. X.509 PKI includes a revocation mechanism for invalidating a certificate before it
expires. It models the “blacklist” booklet of bad checking account numbers at super-
market checkouts in the early days. A Certificate Revocation List (CRL) lists the serial
numbers of revoked certificates. It is created and signed by a CA, and a CA is responsible
for periodically publishing its CRL for interested parties.

As noted in the PKIX recommendation [73], one limitation of this style of revocation
is that the time granularity of revocation is limited to the issue frequency of CRL. IETF
recognizes that where security requirements are critical, online methods of revocation
notification will be desirable. Addressing this need, IETF publishes a protocol for checking
the certificate status online in 1999 [86]. While this method significantly reduces the delay
between the time of revocation and its effect to relying parties, it imposes an extra trust
relationship whereby the relying parties must trust the online validation service.

IETF additionally specifies a number of management protocols to support the op-
erations and interactions between a PKI user and management authorities. The main
functionalities supported by these management protocols include: registration of a user,
initialization of a client system, certification, generation, recovery and update of key-pairs,
and revocation request and notification.

2.3.2 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a software application designed by Zimmermann [69]
to allow secure exchanges of files and messages with guarantees of confidentiality, in-
tegrity, authentication and to some extent, non-repudiation. PGP is well-known due to
its widespread acceptance as a solution for secure e-mail messaging.

PGP is based on both public-key and symmetric-key cryptography. For confidentiality,

41

CHAPTER 2. Related Work 2.3. Identity-oriented access control

PGP randomly generates a session key and encrypts the message using a symmetric
encryption algorithm with that key. It then encrypts the session key with the recipient’s
public key and sends both the encrypted message and session key to the recipient as a
bundle. For authentication, PGP computes a hash of the message and digitally signs it
with the sender’s private key. The digital signature is then sent along with the message
bundle. It is thus possible to achieve both confidentiality and authentication in PGP by
combining both mechanisms.

A user is identified by a name that is, as a de-facto standard, usually qualified with
his or her e-mail address. The qualified name is assumed to be unique for the individual’s
purpose. PGP supports a web of trust model, where there is no central authority or
hierarchy of authorities for certifying public key bindings like in X.509. Instead, a name-
to-public-key binding is attested by trusted introducers, who vouch for the binding by
digitally signing it. A user may make any other user he/she trusts an introducer, e.g.
based on the past knowledge or personal experience. The underlying theory of this model
is that everyone builds up their social circle of trust since their birth, by a large part,
judging recommendations and trustworthiness from people they know. PGP believes that
by empowering each individual to attest public keys and to accept recommendations from
others, one could gradually build up a circle of trust as in the real world.

Each PGP user maintains multiple private and public key rings. A private key ring
stores the key pairs owned by the user, while a public key ring stores public key bindings
the user knows. Multiple public key rings can be maintained to partition their intended
use, e.g. businesses or friends. Each public key binding stored in a key ring is associated
with a level of trust, a validity score and a list of signatures by its introducers. There
are four levels of trust in PGP, namely “unknown”, “untrusted”, “marginally trusted” or
“fully trusted”. They are intended to reflect the trustworthiness of the public key owner
as an introducer according to the ring owner’s knowledge and can be changed by the ring
owner at any time. With the trustworthiness information of each introducer and a list of
signatures by introducers, PGP computes a validity score for each public key in a public
key ring. The validity score of a public key provides a hint to help judge if the key should
be trusted.

In PGP, a public key binding is permanent unless the owner of a key ring explicitly
removes it. Alternatively, it can be invalidated if a revocation certificate exists. A revoca-
tion certificate is a negative statement against a public key binding, which prevents PGP
from using the named public key. It can only be produced by the owner of the revoked
public key, and it is his or her responsibility to distribute the revocation certificate to
relevant parties.

2.3.3 Attribute certificates

The concept of Attribute Certificates (AC) was introduced by ANSI with the intention
to support access control in PKI and was later incorporated into version 3 [72] of ITU-
T/ISO X.509 recommendation. In 1999, ANSI published a revision to the original version
of attribute certificates, resulting in version 2 [74]. It forms the basis of the work on
Privilege Management Infrastructure (PMI) in the 2000 edition of X.509 [6], where nearly
half of the recommendation is devoted to the subject of PKI-based access control.

The concept of attribute certificates is developed to support authorization in a PKI

42

CHAPTER 2. Related Work 2.3. Identity-oriented access control

Source of authority
(SOA)

Assigns

privilege Trusts

Attribute
authority
(AA)

Delegates
privilege

Figure 2.6: PMI delegation model (simplified from [6])

Privilege verifier

Asserts
privilege

Privilege holder

environment. While it is possible to embed access rights in an X.509 certificate using the
extension mechanisms, an X.509 certificate is identity-oriented and its public key binding
often tends to be long-lived, therefore ill-suited for expressing authorization. For example,
if a person needs to be granted temporary access rights, it would involve revoking the old
certificate and issuing a new one. This is not only cumbersome but also conflicts with
the idea of identity certification, whereby a public key binding is intended to be stable.
Moreover, delegation of rights is often desirable in distributed access control, but again,
this notion does not fit well in identity-based certificates.

The idea behind attribute certificates is simple: binding an identity certificate with
signed, short-lived certificates that hold attributes. There is no constraint on what an
attribute can be. For access control, an attribute can be, for example, an access con-
trol identity, group/role membership, a security clearance, or other application-specific
constraint, e.g. time limit, value limit on a financial transaction, etc. An attribute cer-
tificate has a similar structure to an X.509 identity certificate, with the major absence
of a subject name. Instead, a holder field indicates the linkage to an identity certificate.
It can be given as either a general name, a reference to a CA plus a serial number, or a
cryptographic hash to be used as the basis for authentication.

The PMI model consists of four components, as shown in Figure 2.6: privilege veri-
fiers, the Source of Authority (SOA), Attribute Authorities (AA), and privilege holders.
An attribute certificate is issued and signed by an Attribute Authority. Similar to the
concept of certification paths, a set of attribute certificates can form a delegation path.
The root of a delegation path is called the Source of Authority, and is trusted with the
management of authorization for the whole system. It delegates a partial management
responsibility to an AA by issuing attribute certificates with special delegation extensions.
That AA could further delegate to other AAs or end users. An attribute certificate for
an end user effectively means delegation of access rights from the issuing AA to the user.
One requirement of delegation is that an AA participating in a delegation path could only
delegate access rights, or a subset of them, that have been issued to it, i.e. delegation is
monotonic. Delegation in X.509 PMI could be subject to various restrictions, using del-
egation constraints. For example, a pathLenConstraint extension specifies the maximum
allowed distance between an issuer and a privilege verifier.

An AA is typically a separate entity from a CA. While some CA may incorporate the
functionalities of an AA, it cannot be assumed that a CA will possess sufficient knowledge
to determine authorization for its users in general. In this model, a privilege verifier trusts

43

CHAPTER 2. Related Work 2.4. Key-oriented access control

the SOA to delegate its access rights to AAs or end-user privilege holders; it trusts the
SOA as the authority over the control of protected resources. This model separates the
administration of access control policies from their enforcement.

X.509 PMI optionally supports role-based access control (RBAC) through the use of
extension fields. An attribute certificate with the role specification extension is called
a role specification certificate, which associates a role name with a set of access rights
delegated by an AA. An AA may also issue role assignment certificates that associate
individuals with roles. A privilege verifier presented with a role assignment certificate
derives the access rights of a privilege holder by asserting the role specification certificate
of that role, which may be known beforehand, together presented by the privilege holder,
or discovered by some other mechanisms.

Revocation of attribute certificates is supported using the same Certificate Revocation
List (CRL) mechanism as in the X.509 PKI. In addition, PMI defines two extension fields
for use in an attribute certificate to assist revocation. A CRLDistributionPoints extension
instructs a privilege verifier to fetch the CRL from the specified location. An attribute
certificate could also contain a NoRevAvail extension, which informs a privilege verifier
that no revocation will be made on this certificate. This may be useful in some situations,
e.g. certificates with a very short validity period, thus revocation checking may be omitted
for efficiency.

Access control systems based on and/or extending the use of attribute certificates
include: Akenti [87, 88], Globus [89, 90] and PERMIS [91].

2.4 Key-oriented access control

Identity-oriented access control is centred around the concept of names, which are intended
to be associated with both access rights and the real principals. However, the very notion
of names becomes problematic in meeting the access control needs of large-scale, widely
distributed systems. First, the identity-oriented approach assumes that a name uniquely
identifies a principal. In a large distributed system, a global naming scheme imposes
several problems, e.g. scalability, flexibility. Moreover, a naming scheme usually has a
fixed (hierarchical) structure. It is impossible to devise a single structure that satisfies the
need for every application. Second, names do not contribute much in deciding access when
there is no prior experience or relationship between a service requester and a provider. In
the real world, one function of names is to link relevant trust information regarding an
entity together. Based on the knowledge of the trustworthiness of an entity, a service, e.g.
a bank, can then make an informed judgement as to whether to provide access or not.

Despite the relatively few use of names, the concept of globally unique identifiers is
nevertheless essential for access control; a computer system still needs some means to
reliably identify its requester. The basic idea of key-oriented access control is to use
public keys as principal identifiers. The assumption is that every principal generates their
own key pair and is responsible for safeguarding their private key. By requirement, a
public key generation process must produce globally unique keys, otherwise the public
key cryptosystem is considered flawed. Since a private key is kept secret, presenting a
public key to a service and proving the knowledge of its corresponding private key is
sufficient as a proof of the owner of the key pair. Public keys thus qualify as globally
unique identifiers for the purpose of access control.

44

CHAPTER 2. Related Work 2.4. Key-oriented access control

This key-centric view removes the dependency on names, which means no naming
authorities are required in the system. An important implication is that the trust re-
lationship is simplified because a service does not need to explicitly trust the assertion
of a name binding (i.e. authentication) by a naming authority. A service is responsible
for authenticating its own requesters and deciding their access rights. The key-oriented
approach effectively blurs the distinctions between the two phases of access control, au-
thentication and authorization. By allowing full control over their own resources, the
key-oriented approach offers more service autonomy than the identity-oriented one.

This section briefly surveys some of the recent key-oriented access control systems and
trust management systems, which extend the concept of key-oriented access control with
the management of trust relationship and security policies.

2.4.1 Simple Public Key Infrastructure (SPKI)

Simple Public Key Infrastructure (SPKI) is a work-in-progress standard by the IETF
SPKI Working Group, tasked with producing a certificate structure and operational pro-
tocols to support the needs of authorization management in Internet applications. This
work was originally motivated by the inflexibility and inadequacy of the global naming hi-
erarchy in X.509. Separately proposed, Simple Distributed Security Infrastructure (SDSI)
by Rivest and Lampson [17] was also designed to address the same global naming problem.
The two projects were later merged and published as the SPKI/SDSI 2.0 [76, 18, 92].

In SPKI, the view of the world is fully key-centric. Every principal, including a person,
a process, or a service, may freely generate a cryptographic key pair and is identified by
their public key. Every principal can sign and issue certificates using their own private key,
and a signed certificate can be verified by any principals with the public key of the signer.
There are three types of certificate in SPKI: authorization certificate, name certificate
and access control list (ACL). An authorization certificate is the most common type of
certificate, and sometimes is just called a “SPKI certificate” or simply “certificate”. It
transfers some specific access rights from one principal to another, i.e. it is a delegation
certificate. A name certificate binds a public key with a name. SPKI supports the SDSI
linked name model, described later. An access control list is a special type of certificate
that represents the security policy of a service. It is not intended to be distributed, but
rather held in secure storage private to a service.

Authorization certificates can form chains where access rights are delegated from one
public key to another. When a service, .S, grants access rights to a principal, C1, it issues
an authorization certificate that carries delegated rights from its ACL. C could issue and
sign an authorization certificate to further propagate this delegation to Cs, and so on.
When S is requested by C),, a certificate with the delegated access rights is presented to
the service, completing an authorization loop, illustrated below. A double arrow indicates
a delegation and a single arrow indicates a service request.

S=0,=0=..=C,— S

Validation of requests in SPKI is based on a technique known as tuple reduction. The
idea is to complete an authorization loop, given a chain of certificates. Authorization
certificates in SPKI are represented as a 5-tuple:

(1,S,D,A, V)

45

CHAPTER 2. Related Work 2.4. Key-oriented access control

where [is the issuer’s public key, S is the holder’s public key, D is a Boolean indicat-
ing whether further delegation is permitted, A is a set of access rights, and V is the
validity period. For S, one can specify a k-of-n threshold subject to indicate that k out
of n subjects must sign to validate the delegation. Access rights are defined using tags,
whose interpretation is left to an application. The tuple reduction reduces two tuples
(]1, Sl, Dl, A17 ‘/1) and (]2, SQ, DQ, AQ, va) into (Ih 52, Dg, Al N A27 ‘/1 N ‘/2)7 provided all

the following are satisfied,

1. Sl = _[2
2. The two intersections succeed,
3. D; = true.

The intersection for access rights derives the most restricted authorizations between the
two tuples. Although access rights are defined in an application-dependent manner, SPKI
attempts to define rules to allow automatic processing. The intersection between two
validity periods computes the overlapping period between two, or fails if the two periods
do not overlap.

A SPKI certificate has validity dates that give the lower and upper bound of its validity
period. It is also allowed to validate using online methods, including the X.509-style CRL,
timed CRL, online status query, timed revalidation and one-time revalidation. There are
other possibilities being considered, and it is still an open area of discussion at the time
of writing.

In SPKI, a concept of local names is supported to give a binding from a key to a
human-recognizable name. Local names are defined within the local namespace of a prin-
cipal, similar to names in a personal address book. Local names do not need to be globally
unique, but need to be unique local to the principal who defines them. A globally unique
version of a name could be obtained by linking a local name with its namespace, resulting
a linked name. This is similar to say “the person known as John Smith by the University
of Cambridge”. For example,

fred: (name sam)

defines a principal named sam known by fred. Another principal george could refer to
the same principal in terms of the knowledge of fred by

george: (name fred sam)

Name certificates are represented in SPKI as a 4-tuple:
(I,N,S,V)

where [is the issuer’s public key, N is a name given as a byte string, S is the holder’s
public key, and V' is a validity period. There are two classes of 4-tuples, those that define
a name for a public key and those that define a name as another name. Tuple reduction
rules for 4-tuples concatenate a chain of 4-tuples into a public key. Depending on the
classes of a name definition, on every step, a name is either resolved into a public key or a
reference to another name. To avoid naming loops, SPKI requires either chains of names
to be provided in order, or when an unordered pool of tuples is supplied, that only those
names with a binding to a public key will be processed.

46

CHAPTER 2. Related Work 2.4. Key-oriented access control

2.4.2 PolicyMaker and KeyNote

The concept of trust management was first introduced by Blaze et al. [9], who define it as
“a unified approach to specifying and interpreting security policies, credentials and rela-
tionships that allows direct authorization of security-critical actions” [16]. At the heart of
a trust management system is a set of general-purpose mechanisms for handling security
policies and credentials, and deciding policy compliance. They developed PolicyMaker as
a proof-of-concept trust management system and demonstrated its use in several applica-
tions, including medical applications [93], network protocols [94, 95], and Internet content
rating applications [96]. Building on the experience of PolicyMaker, they developed its
successor, KeyNote, and published it as an IETF Request for Comment (RFC) [19, 20].

The PolicyMaker system centres around a trust management engine, which is essen-
tially a query engine that evaluates a requested action against local security policies. The
trust management engine takes as input: an action string, the local policies, and creden-
tials presented by the requester. The response to a query could either be a simple yes/no
result, or additional restrictions that would make the requested action consistent with the
local policies. A query to the PolicyMaker engine has the following syntax:

keyr, keys, ..., key, REQUESTS ActionString

An action string is an application-defined description of an action requested by one
or more principals, identified by their public keys. Its semantics is only of concern to
the application and the trust management engine does not depend on it. Both policies
and credentials are referred to as assertions. An assertion is essentially a construct that
delegates authorizations to perform actions to a principal from its signer. An assertion
has the syntax:

Source ASSERTS AuthorityStruct WHERE Filter

Source is the source of the assertion, which can either be the keyword POLICY in
the case of policy assertions or a public key of the principal who confers the authority
implied by the assertion in the case of credentials. AuthorityStruct specifies a list of
principals to whom the assertion applies. Each principal could be specified as a single
public key, or as a threshold structure, i.e. k-out-of-n keys. Filter specifies the conditions
that an action string must satisfy for the assertion to be valid. Filters are in fact, by
design, interpreted programs. This allows maximum power and expressiveness. However,
the absolute power of filters poses security concerns. It is therefore required for the filter
programs to be executed in a “safe” sandbox or implemented in a safe language. The
PolicyMaker prototype is equipped with three filter languages: AWKWARD), which is a
safe version of AWK, Java and Safe-TCL.

While both credentials and policies share the same assertion syntax, they differ in
one significant respect: credentials are signed assertions, whereas policies are not signed.
Credentials are intended to exist outside the trust management engine and therefore must
be signed to protect their integrity. Policies, on the other hand, are purely for local use
and are unconditionally trusted by the trust management engine. Signing policies is hence
unnecessary. The set of policy assertions on a system forms a trust root. Analogous to
SOA in X.509 PMI, they are the ultimate source of authority for the trust decision about
a request.

47

CHAPTER 2. Related Work 2.4. Key-oriented access control

The processing of a query is called the proof of compliance. The compliance checking
algorithm in PolicyMaker is formally specified and analyzed in [97]. In essence, the
algorithm attempts to find a chain of delegation from some trust root to the public keys
requesting the action in which all filters along the chain are satisfied. Filters take as input
the current action string and an environment, which contains information relevant to the
evaluation context, e.g. date, time, etc. Filters also have access to assertions in the chain
being evaluated. An application designer is thus empowered with the ability to express
filters that enforce contextual constraints such as expiration times, or limit the degree of
delegation.

An assertion in a chain may modify the current action string through the use of
annotations. The annotation mechanism is designed for inter-assertion communications,
where the outcome of an evaluated filter in an assertion may influence the evaluation of
the filter in the next assertion in the chain. This enables an assertion to append additional
conditions to an action string, if the policy requires it.

As a motivating example for the PolicyMaker compliance checker, consider a policy
where an online entertainment company allows streaming contents to be delivered to its
customers. A customer is certified by the company’s customer service department, with
the public key customer_dept_key, based on criteria such as the payment of subscription
fee, type of subscribed services, etc. The policy may be expressed as follows:

POLICY
ASSERTS customer_dept_key
WHERE a filter that allows streaming video for a "customer" role

The customer service department issues and signs credentials to customers, stating the
owner of a public key is a valid customer. An example credential for a customer Alice
whose public key is alice_key is given here.

customer_dept_key
ASSERTS alice_key
WHERE a filter that returns true if role is "customer"

When Alice wishes to view an online streaming concert, she needs to present the credential
assertion to the streaming server, which composes the following query for the PolicyMaker
engine:

alice_key REQUESTS "streaming video" in the capacity of a '"customer"

This query results in an acceptance, because the PolicyMaker engine is able to find a chain
consisting of the trust root (i.e. the policy) and a credential assertion by the customer
service department satisfies the requested action.

KeyNote is based on the same concepts as PolicyMaker but with additional emphasis
on standardization and ease of integration into applications. This is largely built on the
experience of PolicyMaker, where the freedom of the filter languages presents obstacles
for interoperability. Furthermore, applications are required to perform cryptographic ver-
ifications against credential assertions, which complicates integration. Addressing these
issues, KeyNote provides a single, unified assertion language, which is designed to work

48

CHAPTER 2. Related Work 2.4. Key-oriented access control

KeyNote-Version: "2"
Authorizer: "DSA:4401ff92" # the Alice CA

Licensees: "DSA:abc991" || # jf’s DSA key
"RSA:cde773" || # jf’s RSA key
"BFIK:fd091a" # jf’s BFIK key
Conditions: ((app_domain == "RFC822-EMAIL") &&
(name == "J. Feigenbaum" || name == "") &&
(address == "jf@keynote.research.att.com"));

Signature: "DSA-SHA1:8912aa"

Figure 2.7: Sample KeyNote assertion

smoothly with its compliance checker. It also shifts more responsibilities from applications
to the trust management engine, e.g. signature verification.

Similar to PolicyMaker, the KeyNote trust engine takes a list of credentials, policies,
public keys identifying requesters and requested actions in a query. Actions are speci-
fied as a collection of name-value pairs, called an Action Environment. The values are
application-specific, and it is the responsibility of the calling application to construct and
gather all information needed to evaluate a trust decision. The KeyNote engine returns a
policy compliance value as a result of a query. The policy compliance value is configured
by applications, and is intended to provide the calling application with more information
on how to proceed with a request. In the simplest form, this is a Boolean result, e.g.
accept or reject.

KeyNote defines a human-readable format for its policies and credentials, based on
RFC822-style e-mail headers. A credential from the KeyNote RFC [20] is given in Fig-
ure 2.7 as an example. The Authorizer field is mandatory in all assertions. It identifies
the issuer of an assertion. For policy assertions, this must be the keyword POLICY.
The Licensees field identifies one or more principals authorized by the assertion. For
example, Figure 2.7 restricts the use of the assertion to any of the named public keys.
The Conditions field is essentially a highly-structured program that tests action environ-
ments. KeyNote provides string comparisons, numerical operations and comparisons, and
regular-expression comparisons.

The compliance checking model of KeyNote is a subset of PolicyMaker’s. It employs
a depth-first search that recursively attempts to satisfy at least one policy assertion. Sat-
isfaction of an assertion requires both the Conditions and Licensees fields to be satisfied.
It is claimed by its designers that the simpler compliance checking algorithm in KeyNote,
while more restrictive, is more efficient than the one in PolicyMaker.

A last note on both PolicyMaker and KeyNote. Both systems are assertion monotonic,
i.e. negative assertions against principals cannot be specified. This is regarded by their
designers as a higher-level feature that should be provided by applications if required.

2.4.3 Other trust management systems

REFEREE [98, 99], which stands for Rule-controlled Environment For Evaluation of Rules
and Everything Else, is a trust management system designed specifically for the World
Wide Web. Its primary goal is to help users decide what to trust on the web. It is

49

CHAPTER 2. Related Work 2.4. Key-oriented access control

based on similar ideas developed in PolicyMaker, including recommendation-based trust
and fully programmable credentials and policies. It nevertheless differs significantly from
PolicyMaker in several respects:

e The REFEREE trust management engine is able to fetch additional credentials to
assist policy evaluation during its execution. This is considered useful in the web
setting, where, for example, a user may wish to obtain a particular reviewer’s opinion
about a video clip before downloading it.

e [t supports non-monotonic assertions. Policies and credentials may be used to ex-
press denial of specific actions. This is consistent with the notion of parental control
over web content viewed by their children.

e It employs a fully policy-driven approach. Both its policy evaluation and credential
fetching mechanism are directed by policies. A REFEREE policy is essentially a
program that not only filters attributes but is also allowed to download and invoke
other REFEREE programs.

There are three primitive data types in REFEREE: tri-values, statement lists and
programs. A tri-value is either true for acceptance, false for denial, or unknown if there
is insufficient information to either accept or deny. A statement list is a set of assertions,
expressed in two-element s-expressions, similar to name-value pairs but also allows nesting.
For example, an assertion stating a web page is signed to have been virus-checked would
be:

("code-signing" ("virus-checked" TRUE))

Both policies and credentials are programs that take a statement list and return a
tri-value. The differences lie in the intention of a program. A policy infers the compliance
of a given statement list and the tri-value indicates the result. The optional statement
list may be returned as a justification of the decision. A credential, on the other hand,
introduces new assertions based on the input and the returned tri-value is merely an
indication of the state of execution, e.g. successful or failed.

A query to the REFEREE trust engine takes a policy name and additional arguments,
including credentials or statement lists. REFEREE then downloads the relevant policies
and executes them. A policy may recursively download and invoke other policies until
the execution terminates and a tri-value and an optional statement list are returned.

Programs in REFEREE are coded in Profile-0.92, which is a policy specification lan-
guage designed to work with the W3C PICS (Platform for Internet Content Selection)
[100] labels. It offers a label-loading subroutine, tri-value operators and pattern matching
operators on statement lists. Each rule is an s-expression, with the first element being
an operation, followed by arguments. As an example, a sample policy is given here that
asserts true if and only if a web page is rated by the Guardian system as suitable for
anyone (i.e. the minimum age is below 12).

(invoke "load-label" STATEMENT-LIST
URL "http://www.guardian.org/" (EMBEDDED))
(false-if-unknown

20

CHAPTER 2. Related Work 2.4. Key-oriented access control

(match
(("load-label" x)
(x ((version "PICS-1.1") x
(service "http://www.guardian.org/") *
(ratings (RESTRICT < minimum-age 12)))))
STATEMENT-LIST))

IBM Trust Establishment (TE) [101] is a trust management system that features
role-based access control. Similar to many other systems, it uses public keys as principal
identifiers. The central component is the Trust Policy Language (TPL), which is an XML-
based language that maps credentials (held by a principal) into roles. Roles are treated as
groups of principals that represent specific organizational units, and their memberships
depend on rules specified in TPL. A TPL rule defines the set of necessary credentials and
conditions on their fields for joining a role. As an example, a policy for an online chat
room that states a user can become a chat room member if recommended by two existing
members could be specified as below.

<POLICY>
<GROUP NAME="members">
<RULE>
<INCLUSION TYPE="Recommendation" FROM="members" REPEAT="2" />
</RULE>
</GROUP>
</POLICY>

IBM TE is designed to be independent from credential formats. A credential frame-
work that maps a variety of formats, including X.509, SPKI and KeyNote, into a generic
credential structure is described in [102]. The mapping process involves translating differ-
ent encodings into a common interface and then resolving semantic differences. Generic
credentials are statements signed by an issuer, identifying properties of a subject and its
public key. In addition to the public keys of the subject and issuer, a credential also
contains a type, addresses of credential repositories, and a profile identifier. A credential
type identifies a credential profile, which defines the syntax and semantics of the creden-
tial. Both the issuer and the subject could manage their own credential repository. The
issuer’s repository is intended for checking credential revocation and for listing “black-
listed”, negative credentials. The subject’s repository, on the other hand, is intended to
allow the trust management engine to locate and collect missing credentials automatically.

The RT framework [103] is a new trust management framework that integrates con-
cepts from role-based access control. It includes a family of languages for expressing
policies and credentials, RTy, RT;, RT», RTT and RTP. RT, is the base language that
supports conditional assignment of principals to roles. RT; extends RTj with parametrized
roles. RT; adds to RT} a notion called logical objects, which are grouping of objects, simi-
lar to the way a role groups principals. RT" and RTP” can be used on top of RTj, RT} or
RT,. RTT adds constructs for expressing threshold principals and separation of duties,
whereas RTP adds delegation of role activations.

A RT credential has two parts: the head and the body, where the head is a role name
and the body is a list of conditions for becoming a member of the role. It essentially
represents a single logic rule. As an example, a type of RT} credential has the syntax:

51

CHAPTER 2. Related Work 2.5. Summary

Ar(hyy...yhy) «— Bori(S1, -y Sm)

where A and B are principals, r and r; are role names, h; for 1 < i < n and s; for
1 < j < m are parameters. This credential means that provided a principal is a member
of the role Ry = r1(s1, ..., $m), defined by B, then it will also be granted the membership
of the role R = r(hy,..., h,), defined by A. In addition to this type of credential, there
exists three other types of credentials:

o Ar(hy,...,h,) < B: directly assigning principal B to the role R = r(hq, ..., hy).

o Ar(hy,....h,) «— Ari(ty,....,t;).r2(81, ..., Sm): this is the so-called attribute-based
delegation, where A assigns the role R = r(hyq, ..., hy,) to any principal who is granted
the role Ry = r3($1, ..., S;n) by a principal who is in the role Ry = ri(ty, ..., ;).

e AR+«— Bi.RiN..N By.Ry: A assigns the role R to any principal who is in the
role B;.R; (defined by B;), for 1 < i < k.

The main novelty of the RT framework is its tight integration with the notions from
role-based access control, including hierarchical roles, role-based separation of duty, and
role-based delegation. This is evident in their special treatment of credentials. With
the rule-based approach, credentials can essentially be considered as pre-written policies,
designed to facilitate RBAC for decentralized environments.

2.5 Summary

This chapter has presented an overview of the research in security policies and access
control models. It has also briefly reviewed the research on distributed access control,
starting from the early days of capability-based systems, to the modern credential-based
systems. Two kinds of approaches to credential-based access control have been described.
The identity-oriented approach uses credentials as assertions for the binding of a public
key with a name. The representative work in this area is the ITU/ISO X.509 Public
Key Infrastructure (PKI) and Privilege Management Infrastructure (PMI). The newer,
key-oriented approach associates a public key directly with access rights, thus avoiding
the use of names. Simple Public Key Infrastructure (SPKI) and PolicyMaker/KeyNote
are the representative work in this area. In particular, PolicyMaker/KeyNote, with an
integrated approach to the specification of security policies and trust relationships, are
known as trust management systems.

52

3 Fidelis Trust Management
Infrastructure

This chapter introduces Fidelis, a decentralized trust management framework. It begins
with an overview of the Fidelis trust management infrastructure, outlining the basic
concepts and key features. Section 3.2 presents a review of the concept of trust in the
literature, from both the computer science and sociology perspectives. It finishes with a
discussion on the common factors that influence one’s trust decisions. These factors serve
as a basis for Fidelis. Section 3.3 describes the trust conveyance model, which attempts
to model mechanisms that propagate trust information in daily life, and discusses the
rationale behind this approach. In Section 3.4, the key-centric approach of Fidelis is
described and its appropriateness for the conveyance model is discussed. Section 3.5
describes the Fidelis Policy Language (FPL) — a language for specifying trust-related
policies. This section ends with a discussion comparing the Fidelis Policy Language with
similar existing research.

3.1 Overview of the Fidelis Trust Management In-
frastructure

Fidelis is a framework for specifying, expressing, and managing trust information for
Internet-scale distributed applications. In Fidelis, a principal may be a person, an or-
ganization, a computer process, or any other entity in some authority. A principal is
identified by public keys, which it can generate at any time. The world is considered
as a flat space, in which every principal may potentially interact with any other. Local
structures, however, may exist to promote better manageability, e.g. an organization may
form a hierarchy reflecting its internal structure, but externally it may be identified as a
single organizational principal.

Fidelis is based on the trust conveyance model, whereby a principal may freely pass
beliefs or assertions to others. These are modelled as trust statements. An instance
of a trust statement (called a trust instance) has an explicit truster and subject. It is
represented as a public key credential, signed by the truster. It has a validity condition,
which is defined by the truster to enable invalidation of outdated trust beliefs.

A principal may specify policies relating to trust statements. A principal may describe
its policies by any convenient means, and this usually depends on the complexity and scope
of policies. Nevertheless, a language is designed to be a reference for policy specification,
called the Fidelis Policy Language. In the Fidelis Policy Language, trust statements are

93

CHAPTER 3. Fidelis Trus8.Mdnageviemtohtthastimdetisrd rust Management Infrastructure

Issuing trust instance

Figure 3.1: Fidelis overview

represented as predicates with typed parameters. The parameters are intended to expose
details about a trust statement instance, which refines the granularity of policies. It
includes the notion of action to model requests. An action is an abstraction that may
correspond to a method invocation, a service request, or other behaviour that may be
subject to trust decisions.

The language allows two types of policy: trust policies and action policies. A trust
policy defines a trust relationship, while an action policy relates action and trust. A trust
policy is defined in terms of prerequisite trust instances, and may include conditions on
the parameters of these trust instances. It may also define a “blacklist” of trust instances,
which must not exist for a trust relationship to be formed. An action policy has a similar
structure but is specified for actions.

Using this language, a principal may query a policy engine for: (1) whether a new trust
relationship can be formed, (2) whether new trust instances meet specific requirements,
(3) whether an action complies with the local policies, or (4) what actions comply with the
policies. The policy engine, depending on the types of queries, returns either a Boolean
result or new trust or action instances, and may additionally include an execution trace,
which gives justifications for the decision. A principal may further interpret the returned
trust or action instance in the application context to act upon the trust decision.

Figure 3.1 gives an overview for the Fidelis trust management framework. Every
principal defines its own policies, and may create new trust instances and exchange trust
instances it knows. The organization in the figure functions like other principals and is
also identified by a public key. There may be many principals within the organization.
They are also like ordinary principals and can convey trust, but not on behalf of the
organization to which they belong.

54

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

3.2 Trust model

The concept of trust occurs in many branches of computer science. However, because of
its abstract and elusive nature, there is a tendency in the literature to tailor the meaning
of trust to its specific use in a particular application domain. For example, as in the
terminology of classic security of Trusted Computing Base (TCB), trust means compliance
with the security policies under the assumption of correct functioning of hardware; in
authentication protocols, trust may refer to the safe and secure handling of secret keys by
a key distribution centre. In e-commerce, trust may relate to the fulfillment of payment
and/or delivery of goods.

Trust is a very general topic that may be applied to virtually any context. The lack of
a consensus definition of trust reflects its complexity and generality. This section describes
the notion of trust on which Fidelis is built. It does not attempt to define a unified trust
model but instead proposes a framework in which different trust models might coexist.
Towards this goal, it is essential to understand different meanings of the term “trust”. In
fact, various interpretations exist not only in computer science but in other classic sciences
where trust has been widely studied, including politics, psychology and sociology. It is
therefore important to consider these disciplines also in order to capture the essence of
trust. We will however first discuss trust in computer science, specifically in security
research.

3.2.1 Trust as a security concept

Trust is one of the most important foundations of information security. The basis of
security relies on the correct operations of hardware and software, the correctness of
cryptographic algorithms, the correctness of cryptographic protocols, etc. Even without
being explicitly stated, trust is placed on every link in the chain of security for a system
to be considered trusted. If any of the components in a link were broken, the security of
the system would be defeated. In this regard, the concept of computer security is tightly
related to dependable computing, wherein the notion of trust has an element of reliance in
both areas. The United States Department of Defense Trusted Computer System Evalu-
ation Criteria (TCSEC) [104] is the earliest trust assurance policy, designed for military
systems. The idea is to evaluate a computer system against a set of formally specified
criteria to determine its level of trust. Trust in this sense is equivalent to dependabil-
ity. It is a positive belief that the system will operate with a certain level of confidence,
reliability and dependability [105, 106].

Trust can also be observed in cryptographic protocols although somewhat implicitly.
For example, the basic idea of authentication protocols is to derive a specific type of trust
as a conclusion: the belief that the communicating entity is indeed the claimed principal.
Depending on the details, the execution of a protocol often needs to make a number of
trust assumptions on either end of the communication, e.g. the belief that the server will
generate a session key of a sufficient strength, the belief that the server will not leak out
confidential information, etc. The observation here is that trust is relative to specific tasks
[107, 108]. Trusting a server for authentication does not imply that the server should be
trusted for secure storage of confidential data. The purpose associated with trust must
be explicitly stated. Based on this idea, Yahalom et al. define trust as a belief that a

95

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

principal has the potential to complete the specified tasks competently and honestly [107].

Explicit applications of trust in security can be found in formal logic [109, 110, 11].
Burrows et al. developed a logic (referred to as the BAN logic) for the verification of
authentication protocols [109]. It introduces connectives for expressing beliefs (=) and
jurisdiction (). Its jurisdiction rule states that if P believes that @ has jurisdiction over
fact X and @) believes X, then P believes X. This is written as a sequent,

PE@=X),PEQEX
PEX

If A explicitly trusts a certification authority .S for providing B’s public key, this relation-
ship can be expressed as a jurisdiction,

AE (S =+ B)

where 2 B means B has public key K. If §)E@ B, then by the jurisdiction rule,

we can conclude that A)E[vis; B. The jurisdiction rule defines a trust relationship on the
basis of belief and truth. This approach, while specific to its domain, is an appropriate
definition for trust because there is an absolute notion of truth in cryptographic protocols,
e.g. the fact that a principal owns a key can be verified by encryption/decryption of a
secret. Trust in BAN is the belief that a given principal has authority over the truth of
a fact.

Another form of trust can be seen in the logic for distributed authentication by Lamp-
son et al. [11], which includes a construct for describing delegation of rights. They
defined a speaks for relation (=), where A = B means that if A says any statement,
we can believe that B says the same statement. This type of trust encompasses the no-
tion of honesty. If principal A is trusted to speak for B, then it is believed that A will
honestly say a statement that B also says. It is noted in [111] that as well as honesty,
the concept of responsibility should also be considered in delegation. Responsibility is a
means of managing risks so that, for example, the possible damage and liability of an
action by a delegated principal can be accounted for. This crucial observation suggests
that trust has an intimate connection with risks. Indeed, this shares the view with social
and psychological aspects of trust, which will be discussed later.

The trust relationship expressed by the speaks for relation exhibits a strong, context-
less belief. When A = B is trusted, then every statement made by A is believed to be also
made by B. [11] includes the concept of roles to allow a principal to limit its authority. A
role may be defined as the name of a program, e.g. NFS server, or its class, e.g. untrusted
file server. Principal A acting in role R is written as A as R. A weaker trust relationship
of speaks for can be expressed as A = (B as R). This means if A says some statement,
it is believed that B as role R says the same statement. While this approach is somewhat
cumbersome to limit the scope of trust, it recognizes the importance of making trust more
specific, which corresponds to the concept of trust purposes discussed earlier.

Another significant modelling of trust can be seen in public key management, where the
term trust model is used to describe the structure of certification authorities, recognizing
that the monolithic, single-tree approach of the original X.500 is unlikely to be realized.
The literature [84, 85, 112] has suggested a number of structures, e.g. strict hierarchy,
cross-certified hierarchy, bridged hierarchy, etc. The concept of “trust” in these work is

56

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

narrow, referring specifically to the authority to certify keys. The use of the term “trust
model” here could in fact be more precisely described as certification topologies [113].

As reviewed in this section, trust in security assumes complete certainty. If a computer
system is certified to be trusted at a certain evaluation level, it implies it should always
function within the guarantees of that level provided correct operating procedures are
followed. In logic, if a principal is trusted, it means it will always demonstrate certain
expected properties, e.g. to have jurisdiction on asserting public keys for some principals.
Trust in security research is taken as a binary concept. It makes little sense to say a
certification authority guarantees a public key 80% of the time, or an evaluation criteria
to guarantee 65% of the operational time of a system. Jgsang [114, 108] describes this
type of trust in his model as a belief by rational entities, which are defined as entities that
will resist malicious attacks. This is opposed to passionate entities, which are entities
with free will and possess human-like behaviour. Classic sciences such as psychology
and sociology provide a wealth of study on trust in human societies, and thus help us
understand passionate entities in computer environments.

3.2.2 Trust as a sociological concept

In contrast with those somewhat simplistic views of trust adopted in security research,
trust has been studied in a much wider context in other disciplines. Generally speaking,
the word “trust” is often used by people in a very broad sense to mean a number of
things. Its interpretation by the trusting party varies significantly, depending on past
experiences [114, 115, 116], associated risks [116, 117, 118], recommendations from other
parties [114, 119, 120], reputation of the trusted parties [121, 122, 123], or even cultural
background [124, 122]. It is not always clear to every person how trust or distrust is derived
in every case, and indeed, sometimes this process occurs subconsciously. For example,
some people base their trust decisions strongly on first instinct, or psychologically place
more trust on people of their own race. However, there is a fairly uniform recognition
among researchers that trust is a subjective measure [125, 123, 126, 85]. Given the same
external conditions, people may often have a different degree of trust over the same matter.
This is illustrated by Gambetta’s definition of trust [125]:

13

trust (or symmetrically, distrust) is a particular level of the subjective
probability with which an agent assesses that another agent or group of agents
will perform a particular action, both before he can monitor such action ...
and in a context in which it affects his own action.”

A key aspect of Gambetta’s definition is that trust is a probability of positive belief.
It gives an indication of the expected outcome for future events [115]. From a political-
science perspective, Fukuyama describes one of the most important functions of trust
as being to facilitate honest and cooperative behaviour [124]. It is often easier for two
mutually trusting parties to engage in an exchange than two mutually distrusting parties.
For example, in a business setting, if a seller does not trust a buyer for honest and prompt
payment, a transaction will simply not happen. Luhmann [127] described this particular
function of trust as a complexity reduction tool for societies, especially in the face of
uncertainty and incomplete knowledge. Part of this social complexity comes from the
presence of risk, which is a notion associated with uncertainty. He argued that trust is

o7

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

an essential means for handling risks and its existence enables us to face our daily life.
Otherwise the risk of leaving the house and being hit by a car may be too great for one
to even bother getting out of bed. Jgsang [114] shared a similar view and suggested that
malicious behaviour is the primary reason for needing trust. In his model, a passionate
entity may either be benevolent or malicious at its free will. In dealing with an unfamiliar
passionate entity, trust serves as a prediction for the expected behaviour of the entity.

A recent study by Misztal [128] presented a comprehensive account of trust from a
social perspective. Her main thesis is that trust is the key to maintain three types of social
order: stability, cohesion and collaboration. She identified a form of trust that enforces
each type of social order as an abstract concept, and also discussed practices that realize
each form of trust. Trust that reinforces stability of a society is called habitus. This form of
trust is associated with three common practices, namely, habit, reputation and memory.
Habits include routine behaviour towards other people, taken-for-granted background
assumptions in daily life, and rules of etiquette or rituals. All these types of habit repeat
and relate past actions to the present, and therefore increase the predictability of social
order. Reputation, also referred to as social capital, is a mechanism to assist a person
in determining the trustworthiness of another. It helps reduce the social complexity by
categorizing people into trustworthy and untrustworthy. Memory is similar to habit in
that it allows past experiences to relate to the present. However, it involves the process
of recollection, organization and recall of the past, and because it is simply a belief, it can
easily be destroyed by new experiences. All these three practices improve social stability
by enhancing its predictability, reliability and legibility.

Trust that promotes a cohesive society is in the form of passion. The basis of this form
of trust lies in familiarity, bonds of friendship and common faith and values. There are
three common sources of this trust: family, friends and society. Trust developed within
a family is referred to as basic trust. It is upon this basis that a family provides a shelter
against potential dangers in one’s life — a fact learned by a person since being an infant.
Friendship offers a different kind of trust, based on reciprocity and equality. It is developed
through intimate self-disclosure and a feeling of shared solidarity, which are only found
in close friendship, i.e. “real” friends. Trust provided by a society is based on networks of
civic engagements and shared identity. It originates as the feeling of belonging together,
commonly observed through religion, ethnicity or nationhood. In modern societies, the
sense of belonging together ceases to be sufficient to establish societal trust, in addition
active communication of autonomous members becomes a key to foster societal trust.

Policy is the third form of trust that improves collaborative order in societies. It serves
as a means for members of a society to cope with the freedom of others. Misztal considered
three issues relating to trust as policy: solidarity, toleration and legitimacy. Solidarity is
based on the reliance on rational consensus in maintaining common interest in a society.
It encourages people to participate, obey and cooperate. It sometimes can be achieved
by rewards and sanctions, but the prime motivation is self-interest. However, differences
among people exist in societies. To overcome the differences and enhance a cooperative
order, toleration is an important ingredient in a society. It is the key to democracy, which
respects diversity and resolves conflicts of interest through active communication. Toler-
ance therefore plays a vital role in achieving collaboration and cooperation in a society.
Legitimacy is directly related to political trust, which can be loosely described as the
“faith” people have in their government. This faith is obtained through the participation

o8

CHAPTER 3. Fidelis Trust Management Infrastructure 3.2. Trust model

in political decision processes and continued monitoring of government performance. It
creates a trustworthy, collaborative spirit between a state and its citizens.

Misztal’s study reflects the complexity and broad reach of trust, even only in a social
perspective. Disciplines like psychology, politics and economics have also been studying
the phenomenon of trust to understand inter-personal, inter-organizational, and inter-
national behaviour. Of course, not all these issues will be of direct relevance to modelling
trust in computer science, but examining other disciplines does give us a more complete
background to our applications of trust.

3.2.3 The basis of trust

Trust is an inherently dynamic measure. It can clearly be seen from both the security and
sociological discussions above that there is no such thing as “permanent trust”. Server
A previously trusting server B as its public key authority may decide to cease the trust
if B consistently vouches for bad public key bindings; a customer may start to distrust
an online shop if the goods received do not meet their expected quality standards. The
level of trust may increase or decrease depending on new knowledge and experiences
learned from exercising the trust. A fundamental issue that must be addressed is how
to “bootstrap” trust when there is no previous knowledge or track record available. In
this circumstance, the only rational approach is to rely on external sources to provide
information about the previously unknown party. Those external sources of trust may not
only assist the establishment of initial trust, but may also affect the continued assessment
of trust relationships. The common sources for initial trust are discussed below.

Recommendation, or “word-of-mouth” In real life, recommendation is perhaps
the most commonly employed mechanism to assist decision-making in daily situations.
It helps one infer trust decisions in an unfamiliar context by providing evaluations from
others. Recommendation is typically obtained through friends and family, and sometimes
through the media, institutions, or government. The trustworthiness of a recommendation
depends heavily on its source, the source’s authority in the context, and the source’s
responsibility and liability regarding the recommendation. Note that recommendation
can also be negative. Recommendation is suitable for initiating a trust relationship.
Nevertheless, it may be both unreliable and subjective [119, 128].

Reputation Reputation is another popular mechanism that people employ to deal with
unfamiliar parties. Similar to recommendation, it does not require any prior experience
with the party for reputation to be used to infer trustworthiness. It is thus suitable for
establishing initial trust. Unlike recommendation, reputation is a collective opinion from
the public regarding the untrusted party. Because of this nature, reputation is generally
more reliable than personal recommendations. It is however subject to stereotyping and
collusion, and can be deliberately manipulated to project a false image [128, 129, 121].

Experience Trust is intimately related with past experience. The basic assumption is
that past experience provide a good indication of the outcome of future interactions. Past
experience may be contributed from abstract, vague memory, or concrete, written records
such as a transaction history or credit rating. The key issue is that it must provide a

29

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

sensible relation from the past to the present. Experiences update one’s degree of trust
in another principal. Depending on the knowledge learned from previous interactions
with the principal, the degree of trust may either increase or decrease. Experiences
can also be provided by some trusted party, and such information may be as useful as
recommendations. Note that reputation can sometimes be regarded as a form of collective
experience if a principal builds its reputation primarily by interacting with others.

Miscellaneous There are numerous other mechanisms that affect a trust relationship
and the trustworthiness of a principal. For example, cultural stereotypes may pose an
inherent limit on one’s trustworthiness [122]. In business, branding is an effective process
for generating trust. It reflects the integrity and performance of a company through a
concise representation, a logo, which easily reinforces people’s memory about the company
[115]. The behaviour of a principal or practices of a business may also have significant
influences on people’s trust. For example, if a company clarifies its responsibilities and
provides a clear dispute resolution scheme, trust with its customers may be formed more
easily [115, 130].

3.3 Conveying trust

It can be concluded from the previous discussion that trust is a complex concept. Fidelis
does not attempt to define a unified trust model to satisfy all applications. On the
contrary, it is believed that the diversity of applications needing trust makes it impossible
to agree on a single unified view. A security application may require strong absolute
trust, while “fuzzy” trust may be preferred in e-commerce applications which may be
backed by dispute resolution and compensation plans so that business between complete
strangers can be carried out. Based on this premise, Fidelis advocates a different approach,
centering on the notion of trust conveyance.

3.3.1 Basic concept

Trust in Fidelis is defined as a set of assertions that a principal held with regard to
another principal. An assertion may either be positive or negative, and in the latter case,
we specifically call it distrust. Note that distrust is different from the absence of trust,
which merely indicates lack of knowledge. Depending on the interpretation, an assertion
may be treated as a principal’s belief about other principals, or a weaker interpretation
may simply treat an assertion as one’s statement about others. An assertion is often
associated with a specific context, where a context is defined as the situational conditions
under which an assertion is expected to be interpreted with its intended meaning. From
the perspective of the framework, there is no specific format for assertions. But as will
be described later in Section 3.5, one approach is to represent them using first-order
predicates, in the form of named attributes.

Fidelis trust is embodied in trust statements. A trust statement is a signed credential
with a truster and a subject. The truster is the issuer of the trust statement; the subject is
the principal the trust statement concerns. A trust statement represents a trust relation-
ship between the truster and the subject, and is signed by the truster. The signature is
a crucial component in a trust statement, which serves two purposes. First, it proves the

60

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

Trust statement

e - - N
Regarding: Alice < Subject
This hereby certifies that the)
public key of the statement subject[< Assertion
is 0xa35d9e9b...
Signed by: Bob < Truster
\ J
4. ..
David Cindy
(Target) (Source)

Figure 3.2: Conveying trust

authenticity of a trust statement; second, and more importantly, it indicates the explicit
source of a trust statement. A signature, both digital or non-digital, creates a binding
relationship between the signer and the signed entity. The basic intent of a signature is
to prove the consent of the signer with respect to the signed entity. Since a signature
is assumed to be unforgeable which only its owner can produce, a signed trust state-
ment identifies its truster. Signatures additionally have the property of non-repudiation
[131]. Recall that from the discussion of recommendation in Section 3.2.3, claiming re-
sponsibility and liability increases the trustworthiness of a recommendation. Likewise,
the trustworthiness increases if the signature of a trust statement offers a non-repudiation
guarantee.

Trust is said to be conveyed if one principal passes a trust statement to another.
Such an instance is called a conveyance instance. A conveyance source (or source) is
defined as the principal who transfers a trust statement in a conveyance instance, and a
conveyance target (or target) is defined as the principal who receives the trust statement
in a conveyance instance. A source may or may not be the truster of the conveyed trust
statement, although it is often the case that the truster acts as the source for its own
trust statements. Similarly, the target need not be the subject of the trust statement it
is receiving. Figure 3.2 illustrates an instance of conveyance, in the context of public key
certification. A public key certificate can be considered as a trust statement: the truster,
in this case Bob, certifies the key of the subject, Alice. Another principal, Cindy, may
somehow learn this assertion and decide to propagate it as a conveyance source, to David,
the target. The world of principals forms a conveyance network, where principals transfer,
exchange, and receive trust statements from one another.

The trust conveyance approach builds on three basic principles:

o Trust is subjective. Every principal has the discretionary power to make its own
trust decisions, which may be based on the trust statements it believes.

o Trust is specific. Every trust statement has a specific context that defines its scope
of use. It is however up to the conveyance target of a trust statement to interpret
its context.

o Trust is dynamic. Trust statements should be subject to some validity conditions

61

CHAPTER 3. Fidelis Trust Management Infrastructure 3.3. Conveying trust

so that ones representing outdated knowledge will be invalidated.

Besides these three principles, Fidelis imposes no further assumptions on the concept
of trust. In particular, it does not force a single-minded view of trust. Instead, every
principal has complete freedom to choose its trust model, which may have a definition
of trust level and/or methods for computing trust. In this regard, trust statements serve
as an interface to communicate with other principals. This departs sharply from other
approaches which attempt to define domain-specific trust models. A brief discussion will
be given later comparing the trust conveyance approach and other approaches.

3.3.2 Validity

As discussed previously, trust is a dynamic concept, evolving with experiences and up-
dated knowledge from peers. A trust statement is a concrete representation of the con-
textual trust, and therefore must be subject to the evolution of the trust it represents. To
address this, a validity condition is included for every trust statement. The idea is that
this mechanism reserves the rights for a truster to invalidate its trust statements where
necessary, and a truster may decide to issue new trust statements upon invalidation.

There are a number of techniques for expressing validity conditions. X.509 [6] specifies
a coarsely grained validity period for its certificates, with the assumption of synchronized
clocks at the global scale. It uses a revocation list mechanism to invalidate a certificate
prior to the end of its validity period. Micali [132] describes techniques for improving the
computation and communication cost of revocation based on Merkle trees. Other work on
applying tree structures to improve revocation include [133, 134, 135, 136]. OASIS [15, 67]
uses efficient asynchronous messaging to maintain real-time validity of its certificates. This
is complemented by the infrastructure support for network failure detection.

The conveyance model does not prescribe a particular validity mechanism. Different
validity mechanisms deliver different degrees of guarantee, and it is an application issue
to determine the validity strength of its trust statements. The model however requires
a validity method to follow a determinism principle. The principle is that the validity
of a trust statement cannot be negated once it is guaranteed. A consequence is that the
processing behaviour will be deterministic, with no “sudden surprises”. These semantics
are desirable especially in a widely distributed system where network failure and partition
are inevitable.

As an example, a possible validity mechanism that exhibits deterministic behaviour
would be a simple validity period without revocation lists. The absence of revocation lists
ensures that a trust statement only invalidates at the end of its period, thus the validity
guarantee cannot be broken by any means. This is an example of an offline mechanism,
where the validity of a trust statement is maintained independently of the availability of
the network. A family of online mechanisms is supported in the Fidelis Policy Language,
and will be discussed in Section 3.5.4.

3.3.3 Discussion

There have been several attempts to model trust in the past. Abdul et al. [119, 120, 123]
proposed trust models for general distributed systems, for virtual communities and for
information retrieval needs. Their models compute trust values based on the degree of

62

CHAPTER 3. Fidelis Trust Management Infrastructure 3.4. Identity

trust of recommenders. Some of their models include protocols for updating experiences
and recalculating trust values. Jgsang [108, 137, 138] attempts to capture trust using
subjective logic, that computes an opinion value along three axes, belief, disbelief and
uncertainty. He describes a scheme for combining opinion values and a protocol for
initiating a trust relationship and evaluating trust values. Manchala [139, 116] presents a
trust model for e-commerce, which computes trust values to include parameters such as
transaction cost, transaction history, customer loyalty, etc. His model incorporates the
concept of risk analysis and is based on a fuzzy logic for inferring trustworthiness. Similar
to others, he also described a protocol for maintaining trust values. Marsh [140], in his
PhD thesis, describes a comprehensive modelling of trust with a focus on the sociological
properties. In his model, he attempts to capture many facets of trust under one formalism,
such as risk, confidence, expectancy, cooperation, etc. The underlying idea is similar to
that of others’ derivation of trust values.

There exist many other similar attempts for different application areas [141, 142]. Tt is
unlikely that a unified model will ever exist to satisfy individual needs. Instead of propos-
ing yet another trust model, the trust conveyance model attempts to provide a framework
in which these trust models may interoperate and cooperate. One of the primary reasons
for defining trust models is to create a basis for participants to infer trust-related deci-
sions. In large distributed systems, there are three difficulties with this approach. First,
as discussed previously, the notion of trust differs significantly depending on the nature of
applications. Second, such models typically require some monitoring mechanism to ensure
every participant’s compliance. Distributed monitoring is however subject to operational
availability of the infrastructure and general scalability problems. Third, autonomous
participants may have different trust assessment schemes, which include subjective opin-
ions and errors. It is unclear how a trust model can be enforced in the light of principal
autonomy.

The conveyance model focuses on the secure propagation of trust statements between
principals. As in human society, this mechanism is often taken for granted, e.g. from
friends, the media, background, instinct, etc. The conveyance model formalizes such a
mechanism for distributed environments. This allows every principal to define its trust
model, and to interoperate with others through common agreement on the models. Thus,
the trust conveyance model effectively complements rather than replaces those trust mod-
els to enable their applications in distributed environments.

3.4 Identity

Fidelis adopts a key-centric approach which identifies principals by public keys. A princi-
pal may represent a person, an organization, or a computer process, etc. The key-centric
treatment does not distinguish the actual entity represented by the principal, but instead
insists that a principal must control (i.e. speak for) a public key pair. Every principal may
freely generate a public key pair at any time. The generated public key can then be used
as an identifier for the principal. Global uniqueness is guaranteed by the fundamental
requirement of the chosen public key cryptosystem, which ensures no collision of keys
is possible, given a sufficiently large entropy, e.g. 1024 bits. A prerequisite assumption
for this key-centric approach is that every principal should exercise good safeguarding
practice for its private keys, which is a typical assumption for public key cryptography.

63

CHAPTER 3. Fidelis Trust Management Infrastructure 3.4. Identity

There are measures to encourage and enforce this prerequisite requirement. These will
nevertheless not be discussed here.

A principal may control multiple keys simultaneously. It is a common practice to limit
the damage of a possible compromise of a key by constraining its use. Suppose a principal
has a key pair for e-mail communication and another for workstation login. If the former
key pair is compromised, it would only affect its e-mail usage but cause no damage to
workstation access. The same physical principal is therefore allowed to be identified by
multiple public keys. Each public key is treated as a separate instance of the principal.

This key-centric approach provides a possibility for anonymity. Provided a principal
generates a fresh public key on every anonymous access and, by requirement, there is no
mathematical relationship between any two keys, the principal can effectively “hide” its
identity using a new public key. It is important to note that this mechanism alone is
not sufficient to prevent analysis based on linked access patterns and attacks based on
collusion. Public keys as principal identifiers merely provide a ready source of pseudonyms.
For a more detailed discussion on these privacy issues, please refer to Section 7.4.

3.4.1 Discussion

The trust conveyance model places two requirements on naming support. First, a con-
veyance target must be able to validate the authenticity of a trust statement based on the
identity of the truster. Second, every principal must be uniquely identified in the system.
Failure of this introduces ambiguity and prevents communication between arbitrary pairs
of principals.

A possible approach to satisfy these requirements is to deploy a global naming system
and couple it with a public key infrastructure. The original plan of the X.500 directory
service is a prime example of this approach. The idea is to associate every principal
with a hierarchical name. Association between a public key and a name is then certified
by some Certification Authority (CA). There are several problems with this approach as
discussed in the literature [18, 143]. Hierarchical namespaces are introduced to address
the scalability problems associated with flat namespaces. However, this in itself requires
a standard hierarchy so that names can be meaningful to every principal. This is often
difficult, if not infeasible, since every community will have a preferred naming structure,
for intuition and convenience reasons. The partitioning of namespaces must be permanent
to ensure the validity of a name. Evolution of a namespace will invalidate all of its
dependent namespaces in the hierarchy. Furthermore, hierarchical namespaces require
naming authorities at each level to ensure unique allocation of names. This centralized
management, even scoped locally, may eventually become a problem in large-scale systems
with potentially thousands of users.

A more significant problem is global key management. Because of the hierarchical
nature, trusting a key binding implies trusting all the intermediary authorities along the
chain to the root authority. Breach of security at an authority will therefore have a
propagating effect to all its descendants. The root of the hierarchy becomes an attractive
point for attack, since breaking the root will enable an adversary to control the entire
structure. This problem is largely due to the implicit assumption in X.509 where a
naming hierarchy is assumed to reflect the trust hierarchy for key certification. This
aggregates trust towards the root of the hierarchy, i.e. the higher up in the hierarchy,

64

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

the stronger trust assumption is required. This rigid assumption precludes the dynamic
nature of today’s distributed applications, where trust relationships tend to be complex
and constantly changing. More importantly, it forces applications to adopt a single trust
structure.

The key-centric approach pioneered by modern key-oriented access control schemes
presents an elegant solution. Public keys are mathematically designed to be globally
unique by nature. The probability of two keys clashing is negligible. Additionally, public
keys do not need to be kept secret. These two properties meet the basic requirements
of identifiers. However, the real value of the key-centric approach is the avoidance of
names. An important observation is that names are mostly for the convenience of humans
[18, 144, 143]. People are used to identifying others by names — a practice learned from
the early days of one’s life. While natural for humans, names are of little value for
computer systems. In an open system, the strongest guarantee is the knowledge that
the remote communicating party controls a particular private key. Proving the name
is a secondary action which requires a secure binding from the key to the name. The
key-centric approach does not deal with names and hence eliminates the need for name
management. A desirable consequence is the independence from central trusted third
parties to certify the authenticity of keys. If a principal can be identified, its key will be
known. This fits naturally with the trust conveyance model, where a public key in a trust
statement can both identify its truster and verify its integrity.

Although the key-centric approach solves the global naming problem, on the other
hand, it introduces another problem due to its source of principal identifiers. Since by
assumption, every principal may generate a fresh key pair and use the public key as its
identifier, the public key is inherently anonymous. For example, if a principal is blacklisted
for financial fraud, he/she may simply generate a new key pair, essentially creating a new
identity, to avoid being caught.

In Fidelis, this problem is considered a policy issue. It is up to each individual service
to decide whether anonymous public keys are accepted. If a service requires persistent
names, it may demand a principal to present trust instances issued by some trusted
authority, e.g. the Government registrar providing a name-certification service, linking
public key identifiers to names. To bind a name to a public key in an authoritative
manner, the authority should typically follow rigourous procedures, identifying both the
ownership of the key and the name, and possibly some additional attributes that are
asserted.

3.5 The Fidelis Policy Language

The Fidelis Policy Language is a language designed to facilitate the trust conveyance
model. It is intended for use by principals in a conveyance network to specify their policies
regarding trust statements. There are two kinds of policy in Fidelis: a trust policy defines
the relationships between trust statements; an action policy relates an action with trust
statements. This section describes the syntax of the language and provides an informal
semantics. Note that the use of this language is not compulsory; a principal may hard-
code policies, or use other languages according to their resources and need. The language
serves as a general reference for common applications to adopt the trust framework.

65

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

3.5.1 Principals

There are three types of principal. A plain principal is specified as its public key. A
principal group is specified as a set of public keys. A threshold principal is specified as
a set of public keys, with a threshold value of the minimum number of representative
principals in the set. The syntax for specifying a principal is:

public key (3.1)

{ (principal set) }

principal =
|
| integer-of { (principal set) }
|
|

self
any-key

The literal representation for a public key is a hexadecimal string. This assumes some
encoding scheme is employed to produce a hexadecimal value for either the public key
in full length, or a hash of the key. The actual encoding scheme (e.g. Base64) and/or
hash algorithm (e.g. MD5) used to produce the string representation of a public key are
considered as implementation details. It is left to the choice of the implementor.

Group principals are conjunctions of principals. The intuition is to treat the principals
in a group as a single, logical principal. This enables representation of concepts such as
joint statements. A trust statement signed by a group principal is semantically identical to
the same trust statement individually signed by all members of the group and aggregated
together.

A threshold principal is a special type of group principal. While a plain group principal
represents the entire set of group members, a threshold principal represents a subset of
a group, with a minimum number of principals in the set. The minimum number is the
threshold value, specified as an integer. The threshold construct enables the specification
of threshold schemes. A common commercial threshold scheme would be that a company
cheque typically requires two or more signatures for it to be valid. An example threshold
principal is:

2-of {0x023296de..., 0xca91f513..., 0xf6994a9%b..., }

The principal set for group or threshold principals may be specified literally, as shown
above, or refer to a variable which will be bound during evaluation. This is useful for
large groups or dynamic groups backed by databases. Its syntax is,

principal set = public key, ... (3.2)
| wariable

The language provides the self keyword for representing the public key of the policy
owner. In theory, there is no difference between a policy owner and the rest of the world —
a literal representation can be used to identify the policy owner. It is however sometimes
useful to late-bind the policy owner at deployment rather than at specification time. This
allows some degree of centralized policy management, whereby an authority may define
a standard trust policy and distribute it to participating principals for enforcement.

An any-key keyword is provided as a wildcard for public keys. It is intended for
policies that need not consider specific trusters or subjects. For example, a policy may
state any person certified by the local authentication server may log onto a workstation.

66

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

3.5.2 Actions

An action encapsulates computation that may be subject to policies. As a motivating
example, consider an access control scenario, where an access control monitor in an oper-
ating system needs to determine if a requester is allowed to read a file. An intuitive action
representation would be read_file, whose context includes a file name and a requester.
Actions may also be high-level and abstract. For example, an online shop may represent
the execution of a transaction which consists of a number of low-level read and write
operations as a single action do_transaction.

The notion of actions is typically defined differently across applications. As briefly
shown in the previous paragraph, an action may directly correspond to a method invo-
cation, or it may be a general trust query. To satisfy these diverse needs, the Fidelis
language generalizes actions as parameterized predicates. The syntax is:

action spec = (action name) ((parameter spec), ...) (3.3)
parameter spec = (type) (name) (3.4)
action instance = (action name) ((parameter instance), ... (3.5)

)
parameter instance = value (3.6)

An action specification (3.3) consists of a name and an optional list of formal parame-
ters. The name is given as a string, and a formal parameter consists of a type specifier and
a name (3.4). The name of a formal parameter is scoped within the action specification
and must be unique within the scope. There is no built-in type system in the language. It
is deemed to be an implementation and deployment issue. There are numerous choices in
programming languages (e.g. Java, C, C++), database management systems (e.g. SQL,
OQL/ODL [145]), and distributed middleware (e.g. CORBA, DCOM [146]). The type
system used in a policy must be identified when it is processed. For descriptive conve-
nience in this chapter, a simple type system consisting of only primitive types, including
int, float, and string, will be used. Public keys will have a special primitive type
pubkey.

An action instance (3.5) is an instance of an action specification. It is defined by a
name and a list of parameter instances. The name refers to an action specification, and
the parameter instances must match the specification. A parameter instance is given as
a literal value in the value space of the parameter type.

3.5.3 Trust specification

Recall from Section 3.3 that a trust statement carries assertions about a subject held by
a truster. The Fidelis language employs a similar abstraction for expressing assertions
as for actions. Assertions are represented in the form of parameterized predicates. The
syntax for trust specification is thus similar to action specification (3.3):

statement spec = (statement name) ((parameter spec), ...) (3.7)
statement name = string (3.8)
trust spec = (statement spec) (3.9)

67

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

A trust specification (3.9) is defined as a statement specification (3.7), which is in turn
defined by a locally scoped name and a list of formal parameters. As with actions, the
parameter list is optional. Some assertions are simple and narrowly scoped, and can be
expressed without parameters. An example would be paid () in an online purchase session.
A customer who has paid for a purchase may be certified by the accounts department
of the selling company, and its delivery department, based on this assertion, may then
arrange for purchase dispatch. Such trusts are Boolean, i.e. only “believed” or “not
believed”.

A more reusable trust specification involves parameters. An example in identity-based
access control would be:

user (string user_id)

which represents the belief that a subject is recognized as the user user_id by a truster.
This assertion could be, for example, signed by an authentication server and passed to
the point of access as an access token.

It is important at this point to distinguish trust statement instances from trust spec-
ifications, which were collectively referred to as trust statements previously. A trust
specification is not bound to a specific truster and subject. Only beliefs are specified. A
principal instantiates a trust specification in the capacity of a truster, regarding its belief
concerning another principal. A concrete trust statement is referred to as a trust statement
instance or simply trust instance. In the Fidelis policy language, the syntax component
for referencing trust instances is given a name trust use. Trust uses are designed for
matching trust instances in a policy, and have the following syntax:

trust use = (statement use) : (truster) — (subject) (3.10)

statement use = (statement name) ((placeholder), ...) (3.11)
| any-statement | as variable |

placeholder = wvariable (3.12)

A trust use (3.10) is defined as a statement use, associated with a truster and a
subject. A statement use (3.11) references a trust specification by a name and has a
list of parameter placeholders. A parameter placeholder (3.12) is a variable whose value
is provided by the actual parameter in a trust instance at evaluation. Parameters are
for matching and extracting values across trust instances in a trust policy. This will
be described further in Section 3.5.5. The truster and subject of a trust use have the
following syntax:

truster = (principal specifier) (3.13)

subject = (principal specifier) (3.14)

principal specifier = (principal) [as variable] (3.15)
| wvariable

They are defined as principal specifiers, where a principal specifier may either be given as
a principal syntax item (3.1) or a variable. For example, a trust use

user (user_id) : 0xb3d981235 -> any-key

68

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

would match a user trust instance signed by principal 0xb3d981235 for any principal.
Note that the keyword any-key matches any principal, see Section 3.5.1.

A truster and subject could also be given as placeholder variables. This enables the
matching of principals across trust instances and allows additional conditions on these
principals. See Section 3.5.5 for examples. A principal specifier may also be associated
with a variable, in which case the value for the variable will be bound to the actual
matching principal at evaluation, for example, the actual set of principals that forms a
satisfied threshold principal.

A trust use that matches any trust instance may be specified using the keyword any-
statement. This construct is fairly infrequently used in practice as over-generalization
generally reduces its applicability. A possible use is to specify blind delegation, i.e. relaying
whatever a truster asserts. Section 3.5.5 includes an example of any-statement to
construct blind delegation policies. It is also possible to refer to the particular trust
statement instance matched by an any-statement using the placeholder mechanism.
For example,

any-statement as t: 0xb3d981235 -> any-key

allows variable t to refer to the actual trust instance signed by 0xb3d981235 for any
subject.

3.5.4 Validity conditions

Every trust statement instance has a validity condition as discussed in Section 3.3.2.
Recall that the fundamental requirement for a validity condition is to exhibit deterministic
behaviour, i.e. there cannot be exception clauses causing a guaranteed validity of a trust
statement to negate. The language supports one offline and three online validity methods.
The syntax for validity conditions is:

= (offline validity) (3.16)
| (online validity)
| always

validity

Besides offline and online validity methods, a keyword always is provided to express
permanent, absolute belief, e.g. family relationships. It is however rarely used as absolute,
constant trust is rare.

The offline method specifies a validity period. Its syntax is shown below:

offtine validity ::= from (time spec) to (time spec) (3.17)

The semantics for a validity period is that a trust instance is guaranteed to be valid for the
specified duration. This means there exists no mechanisms to invalidate the trust instance
during this period. The trust instance is considered to be invalid once the validity period
is over. This semantics is similar to that in SPKI [18], and is dramatically different from
X.509 [6], where the validity period only serves as a “hint” for the validity of a certificate
since it may still be revoked by a certificate revocation list (CRL). The time specification
denotes a time instant, specified as a constrained ISO 8601 format [147]:

69

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

CCYY-MM-DD hh:mm:ss

where CC, YY, MM, DD represent the century, year, month, and day, and hh, mm, ss
represent the hour, minute, and second respectively. A right-truncated format could be
used if the time components are of interest, e.g. 2002-04-15.

The three supported online validity methods are: timed credential revocation list,
timed renewal and status check. Their syntax is:

online validity ::= CRL [async | at (address), ... (3.18)
| renewal [async | at (address), ...
|

status at (address), ...

The format for address is implementation-dependent. Possible choices include, IP, DNS
name, and URL, etc. Fidelis allows online validity information to be either fetched from
designated locations or delivered asynchronously to the verifiers. In the latter case, a
verifier needs to register for notification at the specified addresses and exposes an interface
for receiving asynchronous messages.

A timed credential revocation list (t-CRL) contains a list of references to revoked
trust instances, with an expiry period. A reference may be in the form of a cryptographic
hash of a trust instance, or may be a reference number linked to a trust instance. The
expiry period represents the temporal lower- and upper-bound for which a t-CRL can be
used. When a trust instance whose validity is determined by t-CRLs is processed, it is
required that a valid t-CRL covering the present time must be available, and the expiry
period of a new t-CRL must not overlap with the current t-CRL. The former requirement
prevents processing of a trust instance if its t-CRL is unavailable. The latter requirement
prevents a sudden “change of mind” by the truster. Therefore, if a trust instance (or its
reference) is not contained in the current t-CRL, it is guaranteed to be valid at least until
the end of the expiry time of the t-CRL. A t-CRL can be facilitated through asynchronous
messaging, in which case, the delivery of a new t-CRL can take place any time before the
current t-CRL expires.

A timed renewal is similar to the offline method, but with an automatic expiry exten-
sion at the end of the validity period. Two conditions similar to the t-CRL processing
exist for timed renewal processing to ensure determinism. First, a valid renewal must be
present when processing a renewal-based trust instance. Second, the extended and the
current period must not overlap, but they need not adjoin. This leaves no possibility to
negate previous validity conditions but, since validity periods are not required to join,
it does permit an “uncovered” period, i.e. time when a trust instance is “temporarily
unavailable”. Like t-CRL, timed renewal can also be implemented using asynchronous
messaging. The delivery of a status notification can occur any time before the current
renewal period expires.

The third online method is a status check. This represents a status query at some
designated address. The query consists of the reference to a trust instance (e.g. a serial
number) and the result is a Boolean status value and a timestamp. The returned status is
expected to have the lifetime of a single policy computation. Another status check needs
to be performed if the same trust instance is processed again. If a query is not possible,
e.g. due to network failures, the trust instance will not be processable. This semantics
enforces a deterministic behaviour within a single computation, i.e. if the status of a trust

70

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

instance is determined at one point during a policy computation, it will remain so until
the computation finishes. It is important to note that asynchronous messaging is not
applicable for a status check because prevention of message delivery would be a sufficient
attack, unless some heartbeat mechanism is employed.

The language does not attempt to offer a complete list of validity options, rather, these
methods exist to promote interoperability. An implementation may however support other
specialized validity methods where these standard methods are not appropriate.

3.5.5 Trust relationships

The most important aspect of the language is the specification construct for trust policies.
Generally speaking, a trust policy defines a principal’s belief about another principal,
i.e. a trust relationship. The trust policy construct offers building blocks for capturing
common factors of trust, including recommendation, reputation and to a certain extent,
experiences, as previously discussed in Section 3.2.3.

A trust policy may serve two purposes. First, it defines conditions for trust estab-
lishment. For example, Alice may specify conditions that must be met before she trusts
Bob to sell books. Bob may approach Alice to obtain her trust by presenting “proofs”. If
Alice’s conditions are satisfied, she establishes a trust relationship with Bob by creating
and signing a trust instance. Second, it assists trust decision-making. Continuing the
previous example, suppose Cindy wishes to determine Bob’s trustworthiness for selling
books. She may approach Alice with some beliefs she holds about Bob. Alice may then
reply to Cindy if she thinks Bob is trustworthy according to her own policies.

Before the syntax for trust policies can be described, we shall first define trust tem-
plates. A trust template serves as a template for creating new trust instances, specifying
values to be bound to parameters upon instantiation. It has the following syntax:

trust template = (statement name) ((parameter), ...) :
(truster) — (subject) (3.19)
parameter = (parameter instance) (3.20)
| wariable

A trust template is essentially a partially instantiated trust instance. It has a name, a
list of parameters, and a pair of truster and subject. FEach parameter (3.20) is defined
as either a parameter instance (3.6) or a variable. Recall that a parameter instance is a
concrete value of the type of the parameter. Truster and subject are as defined in (3.13)
and (3.14) respectively.

The basic structure of a trust policy consists of a set of trust uses (3.10) matching the
set of prerequisite trust instances for the new trust instance. The policy may optionally
include another set of trust uses for matching trust instances whose existence prevents
the creation of the new trust instance. Conditions and rules may be specified to constrain
parameters in trust instances and to set values for variables. Additionally, it is possible to
associate specific actions and/or validity conditions with new trust instances. The syntax
of a trust policy is:

71

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

trust policy == [(trust use), ... | [without (trust use), ... | (3.21)
asserts (trust template)
[where (conditions) | [set (assignments) |

[grants (action template) , ... | [valid
(validity) |

where validity is defined in (3.16), conditions and assignments are described later in
Section 3.5.7. As an example, a simple trust policy may be specified as,

Ti(a, b): self -> Z, T2(b, c): Y -> Z asserts T3(c): self -> Z

where trust names are T1, T2, etc; principals are given in uppercase letters instead of
literal public keys for readability; variables are in lowercase letters. This policy states
that the policy owner (namely, self) believes T3 regarding principal Z, provided she
believes T1 about Z, and Y believes T2 about Z at the same time. The language features
a variable matching rule, whereby the value of all occurrences of the same variable must
match. Therefore to obtain a T3 instance according to the above policy, valid instances of
T1 and T2 with matching parameter instances must be presented. For example, assuming
the policy owner is X, it would be sufficient to present

T1(1234, "pay"): X -> Z
T2("pay", "alice"): Y -> Z

and the new trust instance will be:
T3("alice"): X —> Z

Presenting the following trust instances will however fail because of mismatched param-
eters:

T1(1234, "pay"): X -> Z
T2("buy", "alice"): Y -> Z

Trust is a non-monotonic concept [101, 137, 116], e.g. an entity can be believed to
be malicious. Recall from Section 3.3.1 that the framework has the notion of distrust.
The without clause is the mechanism in the language to support this notion. It allows
negative comments/recommendations to be considered. Effectively, it means that the
trust instances matched by the trust uses in the without clause must not exist for the
trust policy to be evaluated with a positive result, i.e. certain negative trust instances must
not exist. A typical use is to implement a “blacklist” mechanism to prevent distrusted
principals causing further damage to others. A real-life example is the Better Business
Bureau, which in addition to listing good businesses also often lists bad businesses as a
warning for consumers.

The variable matching rule provides a coarse-grained constraining instrument for pa-
rameters in trust instances. Fine-grained constraints can be specified through the condi-
tional expression in a where clause. A conditional expression operates on: (1) parameter
variables in trust and distruct uses, and (2) environmental variables. An environmental
variable is a typed name-value pair, whose value is supplied externally at evaluation. An

72

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

environment consists of a list of environmental variables. The syntax for conditional ex-
pressions is specific and may be local to every policy specification. The only requirement
is that a conditional expression must be side-effect free. Expressions used in this thesis
include operators for: arithmetic, comparison, logical connectives, regular expressions,
groups and principals. In particular, it allows embedded SQL statements, enclosed in a
pair of double-square brackets ([[11). Variables may be used directly in an embedded
SQL statement, provided they are preceded by a $ character. Section 3.5.7 describes the
syntax in more detail. Some example expressions are:

Comparison operator: a == 1234
Regular expression: b =~ "/etc/.*"
Logical operator: a == 1234 && b =~ "/etc/.*"

Principal operator: ¢ in {0xca04156f, 0x15bad430d, 0x528bal0bf}
Embedded SQL: [[SELECT * FROM users WHERE user_id = ‘wtmy2’]]

A policy evaluation may result in a new trust instance. A parameter in the result trust
instance can be given directly in its trust template. If the value of a parameter depends
on the context of policy evaluation it can be set either through the variable matching
mechanism or explicitly in an assignment expression. An example is:

T4(cust): self > Y
asserts T5(4000, limit): self -> Y
set limit = [[SELECT limit FROM credit_limits WHERE cust_id = ‘$cust’]]

The first parameter of a T5 instance is set with a predefined value, ‘4000’, while the
second parameter is set from the result of an embedded SQL query. Like conditional
expressions, the syntax for assignment expressions is also application-specific. Use of
proprietary languages does not impede the interoperability since the evaluation is entirely
internal to the principal.

The interface between the policy language and the conditional /assignment expressions
is through variable bindings. The evaluation of a conditional expression, which is side-
effect free, is guaranteed to yield a deterministic output. Since an assignment expression
may create or modify variable bindings, it is required to be evaluated after the conditional
expression. This ensures a well-defined behaviour for the evaluation of both conditional
and assignment expressions.

By default, the processing semantics ensures the validity condition for a new trust
instance is the weakest validity condition among those prerequisite trust instances. The
rationale is that if a prerequisite trust instance becomes invalid, the dependent trust
instances should also become invalid. The rules for deriving the weakest validity condition
are described in Section 3.5.8. As a motivation, suppose the instances of T1 and T2 in
the previous example have validity conditions:

Trust statement instance Validity condition
T1(1234, "pay"): X -> Z from 01/04/02 to 01/04/03
T2("pay", "alice"): Y -> Z from 10/05/02 to 20/05/02

The new T3 instance (namely, T3("alice"): X -> Z) will then have a validity from
10/05/02 to 20/05/02. The validity condition can also be explicitly specified as part of

73

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

a trust policy, using the valid keyword. In this case, the specified validity condition will
override the default semantics. Effectively it implies the validity of a new trust instance
is independent of the validity of the prerequisite trust instances. This is useful to express
belief about historical events, e.g. order ID 2504 has been processed.

The rest of this section presents some examples to demonstrate trust policy specifica-
tion. One example motivates and describes the use of the grants keyword, which has not
been covered so far.

Example: Bootstraping trust Bootstraping trust is also known as an axiom or basic
belief. It’s a fundamental belief held by a principal and is intended as a ground rule from
which one’s trust decisions are inferred. It often expresses a fact or an “instinctive” belief,
i.e. a belief needing no questions, e.g. “Joe Bloggs is Jon Bloggs’ father”. In the policy
language, bootstrapping trust is expressed as a trust policy with no prerequisite trust
uses. Consequently, it must have an explicit validity clause.

Consider an authentication service. Principals identify themselves as public keys. A
bootstrapping trust statement may be testifying whether a principal is recognized as a
local user, which may be specified as:

user (string user_id)

The service may then define an explicit mapping from a principal public key to a local
user identifier, stored in a relational database. Assume that the database stores every
account under a tuple (username, key), where username is a local user identifier and key
is the public key of the user. The policy may then be specified:

asserts user(user_id): self -> p
set user_id = [[SELECT username FROM user_db WHERE key = ‘$p’ 1]
validity status at fidelis.cl.cam.ac.uk

When a principal invokes the service, the service first constructs an environment con-
taining a binding for p — the requester’s public key. It then consults this trust policy which
performs a local database query to determine the corresponding user name. This process-
ing results in a new trust instance proving the service’s knowledge about the requester.
This can then be used by other services for access control purposes. Note that the policy
is written with an assumption that there is a unique user ID/public key binding. The
assignment language is therefore expected to handle multiple results from the SQL query,
e.g. fails if there is more than one result. This is however an implementation issue.

Example: Recommendation Consider a real-world example. The Hong Kong Jockey
Club has a membership rule whereby a candidate member must be endorsed by two voting
members. A voting member has the right to propose and second for membership and there
are currently around 200 voting members in the club.

One approach assumes that the jockey club specifies trust statements for regular and
voting members, i.e. the subject is a reqular member or voting member, and another trust
statement represents endorsements. The membership rule can then be expressed as a
trust policy:

74

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

voting_member(): self -> pl, endorsement(): pl -> p,
voting_member(): self -> p2, endorsement(): p2 -> p
asserts member(): self -> p

where pl != p2

In plain English, the above policy states that if principal p is endorsed by a voting member
pl and also by p2, and p1 and p2 are different, then p is accepted as a regular member.
There may exist some other trust policies that define how a regular member may become
a voting member, but this is outside the scope of this example.

Another approach makes use of threshold principals. It specifies trust statements for
members and endorsements. In addition, it assumes the member information is stored in
a relational table, members, with these fields:

Field Type Description
id pubkey Principal identifier
vote Boolean Has the voting right?

The membership rule can then be specified as follows,

endorsement () : 2-of {voters} -> p
asserts member(): self -> p
where voters < [[SELECT id FROM members WHERE vote=TRUE]]

This trust policy states that if principal p is endorsed by two members who have voting
rights, p is then accepted as a regular member. The operator <, described in Section 3.5.7,
determines whether the actual trusters of an endorsement () instance satisfy the threshold
condition, given the group defined by the SQL query.

Comparing these two approaches, while the former captures the real policy, it is cum-
bersome and less straightforward. It also has a scalability problem; if the required number
of voting members is higher, it will become less maintainable and more error-prone. The
latter approach faithfully models the real policy, and has attractive maintainability char-
acteristics. It nevertheless requires external database support.

Example: Authorization trust An authorization certificate in key-oriented access
control can be considered as a special kind of trust instance, where a certificate holder is
trusted with certain authorizations. In this regard, an authorization can be thought of
as a refined form of trust [117]. The Fidelis language supports this type of trust policy
through the use of the grants keyword, which allows a direct binding of action instances
with a trust instance.

Consider a banking service. Suppose the service issues trust instances to every cus-
tomer, asserting the ownership of their accounts. This is specified as owner (ac), where
ac gives an account number. It also issues special trust instances, capabilities() em-
bodying the authorization, perhaps carried in a smart card. Assuming an account owner
is allowed to query balance, withdraw and deposit money, a trust policy may be:

owner (account_no): bank -> p
asserts capabilities(): bank -> p
grants balance(account_no): p, withdraw(account_no): p, deposit(account_no): p,

75

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

A customer possessing an instance of capabilities() can present it to access points
of banking services, e.g. cash machines. At each access point, it would only need to
determine if the requested action is contained in a capabilities() instance.

Some advantages of this key-oriented style of access control have been described in
Section 2.4. Briefly, first, it simplifies the access control monitors — essentially an access
control monitor only needs to verify the integrity of a trust instance and examine if the
trust instance contains the authorization. This simplicity implies potential deployment
in lightweight environments, such as on mobile devices. It also speeds up access control
decisions since there is no complex policy to query. Furthermore, it features an appeal-
ing scalability characteristic as access control policies effectively are distributed to every
principal in the form of trust instances. However, as will be discussed in Section 3.5.6,
quite often it is not always appropriate to use such access control schemes.

Example: Delegation of trust Delegation in security often refers to the delegation of
rights, which enables authorization propagation from a principal to another. In Fidelis,
a different form of delegation can be expressed, known as the delegation of trust. This
refers to the mechanism that a principal asserts beliefs it learns from others, passing them
on as its own beliefs.

Consider an example modelling the PGP web-of-trust, whereby Bob wishes to intro-
duce any public key introduced by his trusted friend, Alice. Suppose trust specification
PGP_key (name) represents a PGP key-name introduction, which says a truster believes
the PGP identifier of a subject. The PGP web-of-trust policy can then be modelled as:

PGP_key(name): Alice -> p asserts PGP_key(name): self -> p

Here we use a notational shorthand to make public keys more readable. We assume
“Alice” expands to her real public key. Delegation of trust is purely internal to a prin-
cipal. A subject may not know or even care if a trust instance is delegated, e.g. suppose
Cindy learns a PGP_key () instance from Bob, but she may not necessarily know how Bob
derives this assertion. Delegation of trust is unlike delegation of rights in that it is weaker.
It does not require or force a principal to perform some action, nor does it guarantee any
responsibility, where these are typical for delegated authorization [111, 148]. Delegation
of trust is merely a mechanism for deriving new beliefs.

There exists a special type of trust delegation, called blind delegation. Blind delegation
is where a principal asserts all trust instances by other principals. A possible use is for a
principal acting as a trust proxy, e.g. a representative principal in an organization. This
can be specified as,

any-statement: pl -> p2
asserts any-statement: self -> p2
where pl == 0x14bad9b925 || pl == 0x5918b0la ||

where the list of proxied principals is constrained by variable p1.

There are several reasons it might be desirable to set up a trust proxy. First, it
provides a single identity for external parties, as the example above shows. Second, it
presents a central point of management, so that only certain principals can represent the
organization, e.g. those who are trusted by the proxy. Third, it provides a single principal
for audit purposes. However blind delegation is usually over-general, which limits its
applicability.

76

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

PGP key('Cindy") :Bob->Cindy

PGPJ{ey('Cindy") :Bob->Cindy >
legal_advisor () :Bob—->Cindy g
v
legal advisor() :Alice->Cindy Original trust —»
Alice Bob Cindy Derived trust >

Figure 3.3: Transitive trust and delegating trust

Example: Transitivity Trust is usually not transitive [126, 114]. That is, if A trusts
B, and B trusts C, it does not automatically imply A should also trust C. However, trust
can indeed be transitive if its context is sufficiently specific and restricted. For example,
if Alice trusts Bob as her legal consultant, she may also trust other legal experts that Bob
refers to. This may be because Alice is unfamiliar with legal matters and hence solely
relies on Bob’s advice. This could be encoded as follows,

legal_advisor(): self -> Bob, legal_advisor(): Bob -> p
asserts legal_advisor(): self -> p

Transitive trust is complementary to delegating trust. Delegation of trust allows oth-
ers’ beliefs to become a principal’s own belief, and is determined by the subject. Transitive
trust, on the other hand, allows a truster to establish trust relationships with principals
its subject trusts and is controlled by the truster. Figure 3.3 contrasts transitive and
delegating trust. Solid lines represent original trust relationships, and dotted lines repre-
sent derived trust relationships. The top two lines represent delegating trust, where Bob
derives his assertion regarding Cindy’s PGP key based on Alice’s assertion. The bottom
two lines represent transitivity, where Alice relies on Bob as her advisor and learns to
trust Cindy as a referral advisor, based on Bob’s recommendation.

3.5.6 Action policies

In the previous section, the grants clause allows explicit action instances to be given to
a trust instance. Another approach is through action policies. An action policy relates
action instances with trust instances, subject to conditions. The most obvious use is to
express trust-based authorization, where action instances correspond naturally to access
requests. Another use is to express trust decisions, where action instances represent
queries that one may wish to ask. Yet another use may be to define obligation, i.e. actions
that must be taken when certain trust is met. It is up to a principal to decide what its
action policies are for.

As with trust policies, we shall first describe action templates, which are partially
instantiated actions for the purpose of constructing new actions in action policies. Their
syntax is provided below:

action template = (action name) ((parameter), ...) : (3.22)
(requester)
requester = (principal specifier) (3.23)

77

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

An action template includes a name, a list of parameters as defined in (3.20), and a
requester, which is a principal specifier (3.15). Effectively, an action template represents
an action initiated by the matching requester, with the matching parameters.

With action templates defined, it is now possible to describe the syntax for action
policies:

action policy == [(trust use), ... | [without (trust use) , ... | (3.24)
[where (conditions) | | set (assignments) |
grants (action template) , ...

The syntax for action policies is a subset of the syntax for trust policies. The main
difference is that action policies mandate a grants clause, and do not have asserts and
valid clauses. The evaluation and parameter handling semantics for action policies are
consistent with trust policies.

Consider a follow-up to the example on bootstrapping trust in the previous section on
Page 74. Assuming a distributed file service cooperates with the authentication service,
and protects its files using an access control list (ACL) represented as a database table,
ACL,

Field Type Description

object string Name of an object

user string Authenticated user identifier

mode string Access mode (e.g. ‘read’, ‘write’, ‘modify’)

It may abstract access control queries into an action template, specified as,
access (string obj, string mode)

where obj gives the object requested, and mode gives the requested access mode. The
access control policy, assuming AS is the key for the authentication service, can then be
specified as,

user (user_id): AS->p
where [[SELECT
FROM ACL
WHERE object=‘$obj’ and user=‘$user_id’ and
mode=‘$mode’ NOT NULL]]
grants access(obj, mode): p

When a principal requests access to a file, it is first authenticated with the authentication
service, which creates a user () trust instance. The principal may then present this user ()
instance to the file service, which constructs an access () action instance representing the
request and then evaluates the policy for a decision.

Comparing this with the construct for authorization trust in the previous section,
action policies present a separation between action and trust. There are several reasons
for this separation. When a trust statement is specified, its exact uses may not be known
in advance. Indeed, as a trust statement represents a belief, it is often up to the particular
principal who receives it to decide how it should be interpreted and used. Second, if a

78

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

Expression | Matching

foo A single string “foo”

fool|bar A choice between “foo” and “bar”
(foo)* bar | Zero or more “foo” followed by “bar”
(foo)? bar | One or none “foo” followed by “bar”
(foo)+ bar | One or more “foo” followed by “bar”

Figure 3.4: Examples of regular expression patterns

principal makes access control decision based on trust, it is sensible for the principal to
define its own access control policies, since the principal is taking the associated risk of
breached access. This is especially true in distributed environments. A similar concept
can be found in Herzberg et al. [101], but with a focus on access control.

3.5.7 Conditional and assignment expression

Expressions exist in two places in the Fidelis Policy Language, as conditions in a where
clause, or as assignments in a set clause. The choice of an expression language depends
highly on the application nature and complexity of the trust policies a principal wishes
to express. It is deliberately left as a choice for each individual in Fidelis. The syntax
described here gives a reference language used throughout this thesis. It is, however, not
intended to serve all needs. For some principals, a simpler language will suffice, while for
others, more advanced operators might be required.

The expression language includes seven types of operator: comparison, (Boolean) logic,
numeric, string, assignment, principal and group operators. They are summarized in the
following table:

Type Operators
Comparison == I= > >= < <=
Logical && ||

Numeric + =% /%"
String + subst "=
Assignment =

Principal == [] in <
Group {3 1]

Most of these operators are straightforward, those which are not are explained below.
The string operator + is for concatenating two strings into one. The string operator
~= performs regular-expression pattern matching. The left-hand side refers to a string
variable and the right-hand side specifies a regular expression. The evaluation returns a
Boolean result. The syntax for regular expressions is a simplified form of those present
in the Perl language. Some examples highlighting the syntax are provided in Figure 3.4.
The string operator subst performs a substring test. For example, the expression

"foo" subst "foo bar"

79

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

evaluates to true.

The principal operator == performs an equality test on a pair of public keys. This
compares the actual keys, its algorithm and other associated key information. The unary
operator [] takes a threshold principal and returns its threshold value. The operators
in and < are group operators, which take a principal expression and a group expression.
The in operator determines a principal’s membership of a group. The < operator is
specifically designed for threshold principals. It determines whether a variable for a
threshold principal on the left-hand side is satisfied, provided the threshold group is
defined on the right-hand side. For example,

p < 3-of { 0x521ba915, 0x1b0a06f4, 0xe89abbc0l, 0x510a0f7e4 }

tests whether p constitutes at least 3 principals in the group on the right-hand side. Note
that the threshold group is specified in the syntax of (3.1).

The group operator { } allows literal specification of groups, by listing the members
separated by commas. The operator [[1] encloses an embedded SQL query statement.
Parameter communication with an embedded SQL statement is provided through an
escape character $. For example, $a in

[[SELECT username FROM user_db WHERE id=‘$a’ 1]

will be replaced with the value of variable a at evaluation. An SQL-driven group ex-
pression allows the group for a group or threshold principal to be defined dynamically
by database queries. This is particularly useful if the size of a group is large, or if the
definition of a group is independent of policy specification, i.e. addition or removal of
group members need not rewrite the policy.

3.5.8 Evaluation semantics

We assume a principal has access to a trust policy engine, simply referred to as policy
engine. A policy engine maintains a trust base, T, which consists of a set of trust and
action policies, and processes queries over those policies contained in the trust base. In
abstract terms, a query consists of a set of trust instances and a query template, which is
either a trust template or an action template. A query with a trust template attempts
to determine whether a trust relationship can be established, given a set of known trust
instances. Similarly, a query with an action template determines whether an action can
be or is to be performed, given a set of known trust instances. For the description of
semantics, we shall assume the trust instances in a query have been cryptographically
verified for their integrity.

A policy engine takes a query as input and returns a trust or action instance and
optionally a trace of execution. The resulting trust or action instance is an instance that
matches the query template. This means for an action template, that an action instance
must match its name and all parameters whose values have been given in the template.
For a trust template, additionally, the truster and subject principals must also match. The
execution of a query consists of a sequence of evaluations of policies in T'. Each evaluation
works in the context of a single policy, and takes as input a set of trust instances, a query
template and an environment, and a trust or action instance is returned as output.

80

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

Conceptually, we can represent the execution of a query as a digraph, D = (V| E),
where vertices are sets of trust instances and edges are trust or action policies. The goal
of a query execution is to find a path in D,

el e €n—1
UV — Vg — ... — Up,

such that ¢,,_; € v, is a trust or action instance that matches the query template, where v,
is the set of trust instances given as part of the query. An edge represents an evaluation of
a policy. Semantically, this means, for an edge e; = v; — v;11, assuming v;11 = v; U {¢;},
to find a minimal subset v} C v; such that the evaluation of the policy p., that takes input
v, and some environment would output ¢;. Additionally,

1. for each trust use in p,,, there exists exactly one corresponding trust instance in v;.
Correspondence means the trust instance must be an instance of the trust use, and
its parameters must agree with their binding, as defined below.

2. every variable must be bound to a value. For a trust use, a parameter or principal
variable must be bound to a value provided by the corresponding parameter or
principal in its trust instance. For a trust or action template, a parameter variable
is bound to a value provided either by a previous binding, the query template or
a name-value pair from the environment. Where multiple bindings are possible for
the same variable, all bindings must agree to the same value.

3. for each trust use in the without clause of p,,, there must not exist a corresponding
trust instance in v; and in any other mandatory repository.

4. all parameter bindings must satisfy the conditional expression, i.e. must evaluate to
true, if available.

5. if the optional assignment expression exists in p., it must be evaluated after all vari-
ables are bound. Since evaluation of assignment expressions may create or modify
variable bindings, this requirement guarantees it will not cause unexpected side-
effects.

6. all trust instances in v; must be valid according to their validity conditions.

The resulting trust or action instance is computed by instantiating the query template,
filling variables with their appropriate bindings. For a trust instance, the validity condition
will be as explicitly specified, if it exists. Otherwise, it will be determined following these
rules:

o If there exists a trust instance in v, whose validity condition is by online status
check, the new validity condition will be set to the online status check. This gives
the same effect as a clause of status validity.

e If there exist trust instances in v} using any of the time bounded methods (namely
validity period, timed CRL or timed renewal), the new validity condition will be
computed by recursively combining pairs of validity conditions until left with one.
The combining algorithm for time bounds b; and by results in b, where b = by if
bi.end < by.begin, or b = by if by.end < by.begin, or

81

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

b.begin = max(b;.begin, by.begin)
b.end = min(bj.end, by.end)

The type will default to the offline validity, unless otherwise stated by the policy.

e If all trust instances in v} are permanently valid, the new validity will be permanent.
This has the same effect as explicitly specifying always for the validity.

Let e; = v; — v;11 and suppose v, satisfies e;, then a pair (e;, v}) is called a realization
of the trust policy. The chain of realizations ((e1,v]), (€2, v}), ..., (€n—1,v.,_1)) is called the
execution trace for a query. The execution trace provides detailed information how the
policy engine derives an answer, and may be useful later as a proof of the correctness of
this answer.

3.5.9 Discussion

This section compares Fidelis with PolicyMaker [9], KeyNote [20], REFEREE [98], TrustEstab-
lishment [101], SPKI [18] and OASIS [15, 3, 5]. We now focus our discussion on the
representation of credentials, expressive power, and validity for credentials. As a general
note, the focus of these systems differs: SPKI and OASIS are designed to facilitate dis-
tributed access control; PolicyMaker and KeyNote generalize distributed access control
into the management of trusted actions; TrustEstablishment, on the other hand, with
its Trust Policy Language (TPL), has a specific focus on mapping principals identified
by certificates into roles, which can then be used in conjunction with existing role-based
access control mechanisms. Fidelis facilitates general trust-related queries, which may or
may not be related to actions. Due to these inherent differences, some aspects are not
comparable among these systems.

On representation of credentials. Fidelis represents trust statements as first-order
predicates which can carry typed parameters. The predicate representation allows arbi-
trary belief to be expressed although its interpretation is subject to the local knowledge
of a principal. This may be determined by prior agreement, by standards or by auto-
matic discovery or negotiation. From the specification point of view, the parameters of
a trust instance serve as an interface for use in policy specification. This increases the
expressiveness of a policy by exposing relevant details of a trust statement that may be of
interest to policy writers. The predicate representation in Fidelis originates from OASIS,
where predicates are used to represent roles, appointments and authorizations.

SPKI uses public key certificates to represent beliefs. Conceptually, a SPKI certificate
is a collection of named attributes. Provided a principal may define arbitrary attributes,
this representation is equally expressive as the predicate form in Fidelis. However, SPKI
certificates are primarily for expressing authorization and its delegation, and sometimes
for name-key binding. Using them for general beliefs is considered a “non-standard” use.

PolicyMaker, KeyNote and REFEREE represent credentials and policies (which are
collectively referred to as assertions in their terminology) as programs. The idea is that
the expressive power of assertions therefore matches the expressive power of the chosen
programming language. REFEREE goes a step further, allowing the use of arbitrary

82

CHAPTER 3. Fidelis Trust Management Infrastructure3.5. The Fidelis Policy Language

languages, and it has a mechanism to automatically download appropriate language in-
terpreters if needed. The approach of programmable credentials, while achieving a high
degree of expressiveness, suffers complexity, maintainability and efficiency problems. Fur-
thermore, this makes it more difficult to guarantee the correctness of a policy, which
implies proving the correctness of its program. In KeyNote, credentials and policies are
written in a constrained expression language. This, as its designers noted [19], is a trade-
off between expressiveness and efficiency.

On expressive power. A policy in Fidelis is either a trust policy or an action policy.
Trust policies are intended for general trust queries, while action policies are for action-
based queries, e.g. access control. A policy specification may demand a prerequisite set
of trust instances minus a set of trust instances that must not exist. In addition, Fidelis
allows fine-tuning of policies based on parameters in trust instances, their trusters and
subjects, and an extension mechanism for supporting application-specific semantics. Fur-
thermore, its inclusion of group and threshold principals supports real-life policies related
to multiple parties. These combined features achieve a high degree of expressive power,
supporting prerequisite-based, recommendation /reputation, and delegation-based policy
types. Note specially that the support for general prerequisite-based policies considerably
increases its expressiveness, given that most sources of trust, as discussed in Section 3.2.3,
can be captured through this mechanism. For example, requiring a recommendation from
certain friends can be naturally expressed as a prerequisite condition. Also important
is its ability to express negative, non-monotonic policies. This is convenient and indeed
sometimes essential: if one can specify policies covering all possible aspects of a matter,
then it may assume the absence of certain trust instances implies distrust. However, it is
often difficult if not impossible to capture all such aspects even for a simple system, and
thus explicit distrust as an instrument to express negative assertions becomes an essential
tool for guaranteeing consistency of policies.

The main type of policy that PolicyMaker, KeyNote and SPKI attempt to capture
is delegation of authority. These systems share a similar basis for processing credentials,
which aims at finding a delegation path from presented credentials to some trusted local
policies. However, the details which affect their respective expressiveness differ. In Policy-
Maker and KeyNote, credentials and policies act as filters on query strings, which return
a compliance value (e.g. accept or reject). This mechanism allows complex, application-
defined query strings to be evaluated. In SPKI, credentials are conceptually represented
as tuples and are processed by an tuple reduction algorithm. SPKI tuple reduction is
specifically for reducing chains of delegation to derive authorization decisions, and thus
is not sufficiently expressive for general policies. Note that these systems may express
recommendation policies, by treating recommendation orthogonally to delegation. This
however has an undesirable consequence since delegation often relates to responsibility and
power, while recommendation often does not. Furthermore, PolicyMaker and KeyNote
only support monotonic policies for simplicity reasons. SPKI allows an extensive choice
of validity methods, including revocation. This is discussed next. Another point to note
is that these systems handle purely action-related queries — an influence from their origin
of access control.

OASIS is for distributed role-based access control, with an extensive support for policy-
driven role activation. Role activation may be subject to prerequisite roles, appointments

83

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

and environmental predicates. An appointment can be considered as a special kind of trust
statement, whose intention is to allow role activation. These components allow complex
real-world policies relating to roles to be specified. Many ideas in Fidelis originate from
the research on OASIS, especially prerequisite conditions and parameter handling. While
OASIS has extensive policy support, it is not designed for general trust policies, for
example, policies with recommendation or reputation are awkward for OASIS.

TrustEstablishment is similar to OASIS in that policies are used to direct role assign-
ments. It supports recommendation-based policies, which map a collection of recommen-
dation certificates into a role. It has filter mechanisms based on simple conditions and
certificate types. It also has a mechanism for negative credentials to be verified. However,
it lacks support for general prerequisite, and application-defined conditions. Moreover,
its support for non-monotonic policies does not allow for fine-grained specification, given
that it is simply based on a revocation list approach. While conditions on fields can be
specified, it does not allow inter-certificate correlation as provided by Fidelis. This poses
some limitations on its expressiveness.

On validity. Neither PolicyMaker nor KeyNote have any provision for invalidating cre-
dentials. The primary reason is due to their monotonicity, which assumes that absence
of a credential or policy has a negative implication. TrustEstablishment depends on the
X.509 validity semantics, which uses a validity period that may be overridden by a revo-
cation list. OASIS opts for a validity scheme backed by asynchronous messaging for rapid
revocation of credentials. This is due to its demand for a high degree of security. SPKI
in its current proposal [18] has an extensive choice of validity schemes, both offline and
online. Its online methods include timed CRL, revalidation, and one-time revalidation.
The idea of timed CRL and timed renewal in Fidelis originates from SPKI. Nevertheless
timed renewal differs slightly from timed revalidation. Timed renewal is effectively iden-
tical to automatic issuance of a new trust instance at the end of a validity period, while
timed revalidation only refers to an existing credential. There are two more differences.
First, Fidelis supports an online status check for situations where absolute assurance is a
must; second, it has a provision for asynchronous messaging to maintain online validity —
an influence from OASIS research.

3.6 Summary

Fidelis is a trust management infrastructure, based on the concept of trust conveyance,
which models the mechanism by which a piece of trusted information propagates from one
principal to another. In Fidelis’ terminology, the trusted piece of information is referred
to as a trust statement, which is typically an assertion held by a principal regarding
some other principal. The principal making a trust statement is the truster, and the
principal to which a trust statement is related is the subject. The principal who sends a
trust statement is a conveyance source or just a source, and the principal who receives
a trust statement is a conveyance target or just a target. It is important to note that
neither a source nor a target are required to trust the relevant trust statement; they are
just participants in a trust conveyance. It is the trust policies that determine if a trust
statement is trustworthy.

84

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

While not a strict requirement for participating in a conveyance network, it is advan-
tageous to have a common language for the specification of trust statements and their
relationships. A language has been developed and presented for this purpose: the Fidelis
Policy Language (FPL). This language refers to the structure of a trust statement as a
trust statement specification or trust specification, and a concrete instance of it as a trust
statement instance, or trust instance for short. A trust statement is modelled as a pred-
icate with typed parameters. A trust instance also has an explicit truster and subject,
which may be either a simple principal, a group principal or a threshold principal. The
language defines a syntax and semantics for specifying two types of policies: trust policies
and action policies. A trust policy defines a trust relationship that may be subject to: (1)
prerequisite trust instances, (2) absence of certain negative trust instances (i.e. distrust),
(3) conditions on parameters in trust instances or principals. An action policy relates
action and trust. It embodies action-related trust queries, e.g. authorization. In Fidelis, a
trust instance has a validity condition, which may be expressed either as a validity period,
or using one of the online means, including timed CRLs, timed renewals and status checks.

In the next chapter, a web service architecture for Fidelis is described.

85

CHAPTER 3. Fidelis Trust Management Infrastructure 3.6. Summary

86

4 Fidelis and Web Services

Over the past decade, interest in distributed computing has led to the development of
several middleware platforms. Among the most influential are the Distributed Component
Object Model (DCOM), the Common Object Request Broker Architecture (CORBA),
and more recently, Java Remote Method Invocations (RMI) and Jini. These platforms
provide a Remote Procedure Call (RPC) mechanism, and usually a set of platform services
to support distributed processing, such as naming, trading, transaction, security, etc.
However, none of them has succeeded in establishing itself as the universal standard.

The emergence of web services represents a step towards a unifying middleware plat-
form. This chapter describes the design and implementation of Fidelis on the web service
platform. Section 4.1 provides an overview of web services and discusses the design issues
of implementing Fidelis as web services, with a focus on interoperability and communi-
cation with unfamiliar parties. Section 4.2 describes its architecture which consists of
a collection of nodes implementing interfaces. This section describes the interfaces that
facilitate trust management. Section 4.3 and 4.4 address the issues of data representa-
tion. Section 4.3 describes an interchange format for policies that is designed to enable
interoperability between heterogeneous principals. Section 4.4 describes an XML-based
(Extensible Markup Language) [149] format for representing credentials, called the Fidelis
Interoperable Credential (FIC) format. FIC serves as a common representation for the
exchange of Fidelis trust instances in open web services.

4.1 Introduction

In this section, we first provide a brief overview of the web service platform and its con-
stituent technologies. At the time of writing, web service technologies are yet to be fully
standardized, and many are still under extensive research and development. The three
pieces of technology introduced here, namely Simple Object Access Protocol (SOAP),
Web Service Description Language (WSDL) and Universal Description, Discovery and
Integration (UDDI) are the de-facto standards in the industry with some widespread use,
and are promising to be accepted as formal standards.

After this introduction, a discussion on various design issues for implementing Fidelis
based on web services will be presented. The focus of the discussion will be on the impact
of the open and global nature of the web-service architecture.

87

CHAPTER 4. Fidelis and Web Services 4.1. Introduction

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>
<t:Transaction
xmlns:t="some-URI"
xsi:type="xsd:int" mustUnderstand="1">
5
</t:Transaction>
</SOAP-ENV:Header>

Header

Message payload

Body

</SOAP-ENV:Envelope>

Figure 4.1: A sample SOAP message (message content from [7])

4.1.1 Background

Web services are built on top of web technologies. The central notion is the ubiquitous use
of XML (Extensible Markup Language) [149], e.g. for message representation, definition
of remote interfaces, and description of interaction. The platform consists of three main
components: the Simple Object Access Protocol (SOAP), the Web Service Description
Language (WSDL), and the Universal Description, Discovery and Integration Service
(UDDI). Nevertheless there are additional services being actively worked on, e.g. for
business process modelling (ebXML [150, 151]); for security support (WS-Security [152],
XKMS (XML Key Management Specification) [153], SAML (Security Assertion Markup
Language) [154, 155]), etc.

SOAP [7, 156, 157] is the fundamental messaging technology for web services. It
is an XML-based protocol, defining a standard representation for XML messages, the
processing semantics and the encoding of typed data. The standard specifies a mechanism
for utilizing the protocol to facilitate RPC-style invocation over HT'TP, and a one-way
message passing mechanism over SMTP. A SOAP message consists of two parts: a body
block and an optional header block. Both header and body blocks may contain one or
more elements (called information items in XML terminology). The body block serves as
the container for the message, while the header block is intended for extensions. A SOAP
message may be processed in a pipeline of SOAP nodes. Each node may be designated
to handle certain extensions. An extension in the header may be declared as mandatory,
in which case it must be processed along the pipeline. The body may contain any XML
document, in particular, a representation for a remote invocation. The standard also
specifies a special body payload for exception conditions, referred to as faults. Figure 4.1
gives a sample message, with its parts highlighted. Its header contains a mandatory
extension Transaction, and its body shows the response of an invocation to method
GetLastTradePrice.

SOAP deals with the low-level packaging of messages. WSDL [158] addresses the next
layer up — namely description of remote services. The description covers two areas: the
specification of services and deployment information. The service specification consists of
a collection of operations. Every operation specifies its input and output messages. An

88

CHAPTER 4. Fidelis and Web Services 4.1. Introduction

operation may be one-way, request-response, solicit-response or notification, depending on
the existence of input and output messages. A message may include a collection of typed
parameters. Types may be specified in XML /Schema [159, 160] or other schema languages.
The deployment information for a service is specified as a collection of ports, where each
port offers a set of operations. A concrete binding for a service specifies the URL address
for those ports. A feature in WSDL is that components are separated into abstract
definitions and concrete bindings, which allows reuse of components. For example, an
abstract message definition may be bound into two different data representations, one as
a SOAP message and the other as an HTML form submission.

UDDI [161, 162] complements WSDL, providing a registration and discovery frame-
work for web services, i.e. a trader service. Conceptually, it offers three types of in-
formation: white pages, containing the contact details about a business; yellow pages,
also containing the contact details but organised via a classification taxonomy; and green
pages, containing the technical information for accessing the services. The white and yel-
low pages information is represented in a businessEntity structure. It is associated with
one or more businessService structures, which describe the services or business processes
offered, with some optional, human-readable description. The green pages information
is described in a bindingTemplate, which is associated with every businessService. It
contains two vital pieces of information, an access point and a binding key to a tModel.
A tModel serves as an abstract standard, defining the service behaviour and the wire
protocol (possibly in WSDL).

4.1.2 Design issues

One of the fundamental characteristics of the web service environment is its global and
open nature. Any application design for web services must therefore consider the circum-
stances where previously unknown principals attempt to interact. Existing technologies
such as the UDDI offer solutions at the service level, i.e. searching, locating and invoca-
tion of services. Issues specific to trust management must also be addressed. Prior to the
discussion on these issues, recall that principal autonomy is one of the prime principles
behind the design of Fidelis, as described in Chapter 3. This means, broadly, that a
principal has the discretionary power to:

e define its policies. This includes both the definition of trust statements, actions and
their inter-relationships.

e decide the means to define and describe its policies. The use of the Fidelis Policy
Language is one possibility, while other possibilities include using a proprietary
language, or some graphical policy editor.

e choose appropriate data representations for its trust instances. Choices may be sub-
ject to internal interoperability, backward compatibility, or technologies available.

With the notion of principal autonomy in mind, some major design issues can be described:

1. Interoperability. When two principals (either previously known or unknown to
each other) attempt to interact, these issues must be considered:

89

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

1.1 Credential representation. Credentials in the system are trust instances.
The design should allow a variety of representations for trust instances, e.g.
X.509 or SPKI certificates, XML credentials, etc. A common representation
must be agreed upon by both sides or, under some circumstance, it may be
sufficient for the recipient to understand the sender’s credentials.

1.2 Common ontology. As trust statements are intended to express arbitrary
beliefs, it is essential to establish a common vocabulary (ontology) that specifies
the structure and semantics for trust statements.

1.3 Policy representation. If principals need to exchange policies (see item 2
and 3), a common representation for policy exchange must be agreed upon.

1.4 Policy semantics. As policies may be specified by different means (e.g. policy
languages or tools), different semantics exist. Establishing a common policy
framework is hence a prerequisite to enable policy-level interoperation.

2. Policy discovery. Assuming a principal discovers other unknown principals through
some dynamic discovery scheme such as UDDI, it will further need to find out the
policies supported by these principals in order to gain trust (i.e. obtain trust in-
stances) or request services.

3. Policy negotiation. More advanced principals may support policy negotiation,
which gradually works towards an agreement with unknown parties, by incremen-
tally disclosing and exchanging policy and credential information.

4. Credential disclosure. Provided the policy is known, it is often desirable for a
principal to disclose the least set of credentials, just sufficient to satisfy its request.
This prevents information leakage through over-disclosure.

5. Lightweight principals. The design should have provision for lightweight, mobile
principals. There are two sub-issues:

5.1 Credential management. Mobile devices tend to be small, limited in re-
sources and more exposed to security hazards. One option is to delegate the
tasks of credential management to other principals where appropriate, thus
reducing the use of resources on the device, and at the same time preventing
credential or key theft.

5.2 Support for disconnection. A disconnected principal should not cause dis-
ruption of the conveyance network in which it has participated. In particular,
the disconnection of a truster should not prevent the use of trust instances it
has issued. Symmetrically, a disconnection should cause a minimal impact on
the usual operations of the disconnected principal.

The issues discussed here drive the design decisions throughout the development of the
work presented in this chapter. Where appropriate, references to these issues will be made
in the rest of the chapter.

4.2 Service architecture

The system consists of a collection of SOAP nodes, as defined in [156]. A SOAP node
is a processing entity for SOAP messages, and may generate messages for other SOAP

90

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

nodes. Each node may provide services as methods. These methods are mapped directly
into Fidelis actions, where the method name maps to the action name, and arguments
of a method invocation map to parameters of an action instance. A node may also
implement a number of interfaces to support trust management services, in addition
to its own methods. These interfaces are defined in WSDL, and include conveyance,
trust inference, credential management, policy interrogation, and trust agent. These are
collectively referred to as the Fidelis interfaces.

4.2.1 Locating principals

A SOAP node may represent one or more principals. By this, we mean that a node may
implement interfaces on behalf of principals, primarily for two purposes:

e credential management, which includes conveying trust, managing and safeguarding
trust instances;

e trust inference, e.g. interpreting and answering queries against the principal’s poli-
cies.

A node maintains a list of principal identifiers that it represents. There is no strict map-
ping requirement between principals and nodes. A node may represent a single principal,
or may be shared among multiple principals — likely in an organization. It is also possible
for the same principal to be represented by multiple nodes, e.g. a user on the move may
simultaneously be represented by both her mobile device and her office computer.

A problem that needs to be addressed is the location of principals: given a principal
identifier, find the list of nodes that act on its behalf. Before the discussion of possible
solutions, it is worth noting that this lookup is required if principals only know each other
by identifiers. An example is where a principal intends to convey trust instances to a
friend, in which case the node where the friend is represented needs to be discovered.
Communication between strangers often starts by contacting a node, either previously
known, or located dynamically by UDDI.

We refer to an instance of node-principal binding as a presence. A presence can be
discovered through a number of means. The architecture does not prescribe a standard
approach but instead leverages existing web service technologies. A presence may be
directly bound to a principal identifier, e.g. the truster field of a trust instance may
include an attribute that gives the URLs of representative nodes. However, this solution
is only possible if the presence is static. Therefore it is more suitable for principals
with a well-known, persistent presence, e.g. a University, a government agency, etc. For
individuals whose presence frequently changes, ad-hoc, out-of-band solutions such as e-
mail communication may suffice. A more plausible approach, however, is to employ
directory services. A principal identifier may hence be associated with a list of URLs
of directory services, where the current presence of the principal may be looked up. A
URL format for referencing LDAP entries is described in [163] and may be used for this
purpose.

Another, more web-service centric approach is to register principal identifiers with
UDDI registries, as an entry in the identifierBag of a businessEntity structure. The
principal representing a business together with the binding location can then be searched
using standard UDDI methods. One could also host a white pages, directory service for

91

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

a local domain (e.g. a department, a branch, etc), mapping principals to nodes and vice
versa.

4.2.2 Conveyance interface

The conveyance interface defines the mechanisms for trust conveyance, supporting point-
wise transfer of trust instances. It defines two styles of interfaces: push and pull. For
the push interface, the conveyance source initiates the transfer, while for the pull inter-
face, the conveyance target requests certain trust instances. A node may offer either or
both styles. The push-style interface is suitable for a principal to actively distribute trust
knowledge as it is gained, whereas the pull-style interface is suitable for a principal to
passively share trust knowledge.

The pull interface defines a getTrustInstance method that takes a source identifier,
a target identifier and a trust template'. A trust template can be thought of as a trust
instance with unfilled parameters and/or truster and subject. We say a trust template is
complete if all parameters and both the truster and subject are provided. It is different
from a trust instance because it is not signed. A trust template follows the standard
representation described in Section 4.4. When invoked, the node first determines whether
it represents the source principal. If so, it returns the trust instances matching the trust
template. The target identifier is not directly used, but gives supplementary information
that may be useful for audit or security purposes, e.g. a source may refuse interaction
with, or restrict interaction to, certain principals.

For the push interface, a source sends trust instances asynchronously. The target
principal first registers for conveyance, expressing its interest in certain trust instances.
A registration request consists of a source identifier, a target identifier, a trust template,
reply addresses of the target principal and a registration policy. Once a registration is
received, the node determines if the requested conveyance is allowed and raises an excep-
tion if not. Otherwise, it adds the registration into a registration table, which contains
entries of registration, indexed by the source principal and the name of trust instances.
When the node learns about a new trust instance owned by principals it represents, it
checks through the table and initiates the conveyance process according to the policy of
each registration if matches are found. A node learns about new trust instances from a
number of sources: directly from those principals it represents, conveyance from other
principals, or as results of trust inference, see Section 4.2.3.

The registration policy is a collection of name-value pairs, expressed in an XML for-
mat. It fine-tunes how a registration is handled. A node should respect the registration
policies it understands, and may discard those it does not. A registration policy may
be tagged as mandatory, similar to SOAP header entries, in which case, registration will
fail if the node fails to understand or comply with the policy. This processing semantics
allows application-specific, extended policies to be supported. The standard policies are
summarized:

e Urgency A target principal may express how soon a new trust instance should be
sent. Possible choices are: immediate, bounded time, bounded volume and unspeci-
fied. If immediate is specified and the policy accepted, the node should attempt, by

Note that trust template here is not the trust template syntax term in Chapter 3 although it serves
a similar purpose.

92

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

best-effort, to send new trust instances as soon as it knows about them. Bounded
time specifies a maximum period of time a node can hold a trust instance with-
out attempting to send it. This period excludes delay caused by network failures.
Bounded volume allows the target principal to specify the maximum volume of trust
instances to receive over a fixed period, e.g. maximum 100 per hour. This is use-
ful to reduce the resource overhead by constraining the receiving rate of new trust
instances. Unspecified, which is the default, allows a node to choose the most con-
venient time to commence trust conveyance. This policy allows a target principal
and a source node to trade off between trust urgency and resource load. It serves
mostly as a hint rather than a strict demand.

e Persistence By default, a registration entry is removed once a conveyance is suc-
cessfully completed. If a trust instance invalidates frequently, a repeated registration
may be requested. It is qualified with either the number of repetitions or an expiry
time. This determines when a registration entry can be removed.

e Reliability If there is a network fault when a conveyance is taking place, the process
will fail without further retry. This behaviour is acceptable if the node also supports
a pull interface or has other means to deliver trust instances. A registration may
demand reliability, in which case a failed attempt will be queued and retried at a
later time, until it succeeds or a threshold number of times has been tried.

Note that the processing of certain registration policies may require the source principal
to maintain states about the interested target principals. For example, the semantics of
the bounded volume policy requires the source to remember the number of trust instances
sent to a target principal, and that state needs to be reset periodically. The mechanism
to support asynchronous trust conveyance (i.e. the push interface) is therefore stateful.
However, this is different from the mechanism for processing trust instances, which is
stateless. This will be further clarified in the next section.

4.2.3 The trust inference interface

The trust inference interface encapsulates the evaluation of both trust policies and action
policies. It has a single method, infer. For space and readability reasons, its definition is
given here in Java syntax. However, note that the actual interface definition is in WSDL.

InfResult infer (CredentialSet trust_instances,
QueryTemplate template,
Environment environment,
int flag)

The argument trust_instances is a set of trust instances (or their references), template
is either a trust or action template, environment is a set of name-value bindings, and
flag specifies additional settings, e.g. whether the inference trace should be generated.
The return value contains either a (possibly empty) set of new trust instances or a Boolean
value, and optionally an inference trace. The evaluation of this method depends solely
on the given arguments, which are either provided by the requester (trust_instances,
template and flag) or collected from the context (environment). There is no state

93

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

maintained between invocations. The provided mechanism for inferring trust decisions is
therefore stateless.

The concrete representation of a trust template is described in Section 4.4. In abstract
terms, it can be written as:

name (param, ...) : truster — subject

where name gives the name of a trust statement or a wildcard, param may either be a
value or a variable, truster and subject may either be a principal identifier, a variable or
a wildcard. When name is a wildcard, param will become irrelevant. An action template
can be written similarly as:

name (param, ...) : requester

where name must refer to the name of an action (no wildcard allowed), param may either
be a value or a variable, and requester may be a principal identifier, a variable or a
wildcard. Depending on the information in a template, infer answers six types of query:

e Trust establishment — given name, truster and subject, determine if the named
trust statement could be instantiated. If successful, return parameter values of the
result trust instance.

e Horizontal coverage — given name and truster, determine the complete set of
principals who may obtain trust statement name from the specified truster, and the
parameter values for the result trust instances.

e Vertical coverage — given either truster or truster, or both, compute the complete
set of trust instances between them. This determines the maximum trust that a
truster can assert (or a subject can obtain) at the time the inference is executed.

e Complete coverage — given a blank trust template (i.e. name, truster and subject
are all wildcards), compute the complete set of trust instances the policies may give.

e Action decision — given name and param, determine whether it can be satisfied.
This is the typical type of query for determining access control decisions, and is also
called authorization.

e Action coverage — given name, determine the complete set of action instances
the given set of trust instances satistfy.

When invoked, the node consults its policies and attempts to infers the required type
of answer. Some policies may include methods to obtain additional environmental infor-
mation, in which case, these methods are performed to complete the environment. Only
if all required environment bindings are available, can a policy be evaluated. An algo-
rithm implementing the evaluation semantics of policies in the Fidelis Policy Language
is described in Section 5.1. New trust instances returned as a result are unsigned, and
should be signed by appropriate nodes if they are to be used externally. When multiple
trust instances are returned (e.g. for coverage queries), they will be packed into a SOAP
array.

The feasibility of coverage queries depends greatly on the nature of the policies be-
cause policy evaluation may depend on environment bindings that are not provided in a

94

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

Trust policies store

Trust . Policy

R t Access decision inference interrogation i
_eauest | »| Application H 4 O
Service yes/no,
J inference trace

Figure 4.2: Trust inference - action decision

query. For this reason, action coverage queries are often meaningless since the potential
set of environments for these queries is often large. Moreover, if a policy has some exter-
nal dependency (e.g. database queries), the result will only be valid at the instant when
the query is processed since external conditions may change. The result is therefore only
reliable as a hint. Furthermore, coverage queries are usually very expensive, involving
inference over a large number of policies. However, if policies are free of extra environ-
ments and /or external dependencies, coverage queries enable simultaneous establishment
of multiple trust relationships, and in the extreme case, obtaining maximum trust from a
principal. A node should weigh the trade-offs and prudently offer coverage queries where
they fit.

A trust instance passed to infer may either be an actual instance or a reference to
locate it. A mechanism for automated credential collection is described in the next section.
The method argument flag may indicate if the caller wishes to obtain the inference
trace. However, the processing node may refuse or limit how much of the trace should
be provided. It may pose a security risk if the complete trace is fed back since it enables
probing of internal policies. Nevertheless, the inference trace is valuable for auditing
purposes, especially if an inference node is only used internally.

A node supporting the trust inference interface is associated with a set of trust policies.
These could either be directly provided to the node (e.g. loaded from a file) at deployment,
or be retrieved from a policy interrogation node, see Section 4.2.5. This is suitable for
environments where policies are to be shared among several nodes, and central policy
management is desirable. Modification and update to policies therefore only take place
at a single location, which helps improve policy consistency.

Figure 4.2 illustrates the interaction and relationship between a principal (i.e. the
application service) and supporting components. Each “mushroom box” (square box with
attached circles) represents a component, which may be an integrated software module
or a separate SOAP node. Each mushroom (a circle with a line) represents an interface
supported by the component. The application service receives an invocation request, upon
which it consults its action policies for an access decision. It initiates a query by passing
the trust instances received with the request to the inference component, where policy
computation is performed. The result is then provided back to the service. The inference
component is associated with a policy management component, which serves policies to
the inference component upon request.

95

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

4.2.4 The credential management interface

Typically a principal would manage its own trust instances. Under some circumstances,
it is desirable to delegate these tasks to another trusted node that offers the credential
management interface. Some examples demonstrating this need include:

e a mobile user frequently works on different computers, e.g. at home, at the office,
at clients’ offices, or on the road. By keeping her credentials at a central credential
management facility, it allows the use of a single identity across all these locations,
yet maintaining consistency for other principals.

e for principals on mobile devices (e.g. mobile phones, personal digital assistants
(PDASs), etc), because of constrained resources, greater exposure to security attacks
and possible disconnections, it may be preferred to offload the credential manage-
ment tasks to other trusted nodes.

e Increased redundancy. A principal may create multiple presences to improve avail-
ability. This is especially important for global networks like the Internet where
faults are always occurring in some parts of the network.

Conceptually, a credential management node maintains a collection of credential bags,
where each bag contains credentials owned by a principal. The credential management
interface offers two categories of methods: privileged and public. Privileged methods can
only be invoked by the owners, while public methods are available to anyone. A request
to a privileged method needs to be signed by the requester. The node, upon receiving
the request, needs to determine its integrity and freshness, and whether the requester is
permitted for the requested method.

There are four privileged methods: addCredential, removeCredential, getMatchedCre-
dentials, getAllCredentials. These methods are defined as follows (also in the Java syntax):

CredentialRef addCredential (Credential trust_instance)
void removeCredential (CredentialRef ref)
CredentialSet getMatchedCredentials (QueryTemplate template)
CredentialSet getAllCredentials ()

All these methods identify the credential bag to operate on using the requester’s identity,
and as invocation of these methods must be signed by the requester, the requester identity
is always known. It is hence unnecessary to explicitly add an argument to these methods
to identify the requester.

The addCredential method adds a credential to the bag belonging to the requester
and returns a reference key. The removeCredential method is used to remove the cre-
dential referenced by the key given as an argument from the requester’s bag. Both get-
MatchedCredentials and getAllCredentials return multiple credentials of the requester.
The getAllCredentials method returns all credentials belonging to the requester. The
getMatchedCredentials method takes a trust template as argument, and returns all cre-
dentials matched by the template. This allows selective retrieval of credentials, e.g. issued
by a particular truster, designated to a particular subject, or a specific trust instance with
a matching name and parameters. These two methods are privileged in order to prevent
“credential harvest”, i.e. arbitrary retrieval by a random principal.

Public methods include getCredential and getCredentials, defined below:

96

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

Credential Credential

'Trust infereg:EClManagement[lManagement‘

Trust inference requested

Collecting trust instances

Time

Collecting trust instances

Figure 4.3: Automated credential collection

Credential getCredential (CredentialRef ref)
CredeentialSet getCredentials (CredentialRefSet ref_set)

The getCredential method takes a single reference key and returns the credential, and
the getCredentials method works similarly but for a set of credentials. The security of
these methods lies in the quality of the reference keys. While the format for keys is
implementation-specific, the keys should not be predictable, e.g. sequential, to prevent
credential retrieval based on key guessing. The recommended approach for producing
the keys is to use cryptographic hash algorithms on the credentials, e.g. MD5 or SHA-1,
which will provide appealing uniqueness and unpredictability properties.

The credential management interface is designed to facilitate automated credential
collection. Recall from the previous section that trust instances passed to an inference
interface may either be concrete instances or references. A reference consists of a pair of
URL and key, where the URL addresses a credential management node and the key is the
local reference at the node to locate the trust instance. A compliant trust inference node
automatically fetches trust instances using getCredential and/or getCredentials prior to
performing the inference.

Figure 4.3 illustrates the credential collection mechanism. The principal initiates a
trust inference request, which causes the responder node to initiate further requests on
other nodes to retrieve referenced trust instances. While the figure shows a sequential
interaction, multiple credential collections may proceed simultaneously. If the fetching
of credentials fails, the inference may either terminate with an exception, or continue
without the missing credentials. This is determined by policy.

4.2.5 The policy interrogation interface

The policy interrogation interface specifies methods for querying and retrieving policies.
It is designed to facilitate communication between strangers and enable centralized man-
agement of policies. If a principal locates a stranger with whom it wishes to communicate
(e.g. to carry out a business transaction, to obtain services, etc), one prerequisite is to

97

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

find out and agree on the policies defined by the stranger party. There are two approaches
to achieve this:

e A node may publish its ontology and policies. This could either be distributed at
some well-known location (e.g. listed by service directories, at a public, searchable
URL) or retrieved directly from the node, provided it supports a retrieval inter-
face. The policy document should be described as a Fidelis Policy Interchange
(FPI) document, which has an XML-structured format. The details are described
in Section 4.3.

e Alternatively, a node may support programming interfaces for interrogating and
discovering its policies by supporting the interface described in this section. This
approach provides an opportunity for automating the process of communication
establishment between strangers. This will be explained later in the section.

Comparing the two approaches, the former is suitable where some authority hierarchy
exists, e.g. the top-level authority may publish a standard set of policies for subsidiaries
to implement. The latter, on the other hand, is much more dynamic. It allows strangers
to gain understanding and form trust relationships at runtime. This therefore requires
more runtime and deployment support. It also enables centralized policy management.
Centralized policy management is particularly suitable in two situations:

e For an organization, policies often tend to be large and complex. Centralized man-
agement helps reduce administrative burdens and errors because policies can be
specified and analyzed at a single location, in a consistent manner.

e For mobile computing, where resources are scarce and constrained, managing poli-
cies on a separate, perhaps non-mobile, node helps reduce storage and bandwidth
usage.

The principle behind centralized policy management is to separate the management tasks
of policies from their enforcement. The management tasks we focus on are the storage
and retrieval of policies and metadata.

The policy specification framework supported by the interrogation interface is based on
the Fidelis Policy Language. Recall that policies include trust policies or action policies.
We use the term metadata to refer to the specification of trust statements and actions. The
method getTrustSpec and getActionSpec both take a name, and retrieve the specification
of the named trust statement and action respectively. The specification is given as a
fragment of a Fidelis Policy Interchange document. For example, suppose T1 is declared
as

T1 (string a, float b)

in the Fidelis Policy Language. The equivalent declaration in FPI would be:

<Statement name="T1">
<Parameter name="a" type="xsd:string" />
<Parameter name="b" type="xsd:float" />
</Statement>

98

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

Policy

imerrog%o—n[:l

[l get policies for read ("/etc/passwd", ...)

P

asserts admin(user_id): self->p
_grants read("/etc/passwd", ...)

<

get policies for admin (user_id) A

user (user_id) : self->p

asserts admin(user_id): self->p
where user_id == "pb" ||
user_id == "maj"

Figure 4.4: Policy discovery

This fragment creates a trust statement type which may be referenced by the policy
specification returned by method getTrustPolicies and getActionPolicies. The method
getTrustPolicies and getActionPolicies respectively take a trust template and an action
template as argument, and return a set of policies matching the template. The rule
for determining the relevance of a policy with regard to a template is based on static
matching. For trust policies, the template is matched against the trust template in the
asserts clause; for action policies, the action template in the grants clause is matched.
Assuming a node defines these action policies,

. grants read (path, ...) 1

. grants read ("/etc", ...) (4.2)

. grants read ("/etc/passwd", ...) (4.3
Suppose a requester requests action policies for read("/etc", ...), both policy 4.1 and

4.2 will be returned. Policy 4.2 matches directly with the template, while 4.1 is defined
over an arbitrary parameter, which /etc satisfies. Policy 4.3, on the other hand, does not
match the template, and is thus irrelevant. The representation for policies returned by
these methods is a fragment of FPI. Please see Section 4.3.5 for details and examples.

One design goal for the interrogation interface is to support incremental discovery
of policies. A requester may repeatedly interrogate a node, refining the policies to the
desirable granularity. Figure 4.4 illustrates this process. In this figure, the principal first
obtains the policy for the read("/etc/passwd", ...) action, which requires a trust
instance proving to be an administrator. It subsequently queries to find out how to
become an administrator. This process of incremental discovery can also be automated.
This is supported through the trust agent interface, described in the next section.

4.2.6 The trust agent interface

As previously mentioned, when strangers make contact, there are several issues to be
resolved, e.g. unknown policies and credential ontology, limited mutual trust, etc. Even
when policies are known, it is still in the interest of a requester to disclose the least

99

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

High-level ! Trust agent Service
request) e >
> ; Request (SJ—j

Policy
interrogation

Meta—policies

Figure 4.5: Assisted request initiation through a trust agent.

trust instances for a request, especially if they contain sensitive information. The trust
agent interface is designed to encapsulate a principal, providing an active interface on
behalf of the principal. It automates the process of policy interrogation and negotiation,
and computes the disclosure set of credentials for requests. It supports the use of meta-
policies to control and constrain the automation. For example, a principal may specify
that certain trust instances should never be used for action policies. Meta-policies are just
like other policies and may also be expressed in the Fidelis Policy Language. However,
unlike other types of policy which are about trust relationships or actions, meta-policies
are about policies.

A trust agent may provide assistance on several aspects. It may act as a front-end
for a principal, providing a high-level interface for services. In this configuration, the
principal delegates the task of selecting trust instances to the trust agent, and it issues
a high-level request for service without attaching trust instances to the trust agent. The
trust agent then examines the action policies, selects trust instances and finally issues
the actual request with those trust instances to the service node. Figure 4.5 illustrates
this. In this configuration, the trust agent needs to have the private key of the principal
so that it can produce requests that appear to originate from the principal. Note that
the sharing of the private key implies the trust agent must be under complete control
and trust of the principal. A possible implementation model is as an operating system
process running as a privileged user. The trust agent also needs to have access to the
credential collection of the principal. This could be achieved either by associating it with
a credential management node, or implementing a custom credential management facility
directly. In the former case, since the trust agent possesses the principal’s key, it would
be able to invoke privileged methods, thus having full access to the credential collection.

The trust agent must know the action policies for the request in advance. In the figure,
the policies are published at some location that both the principal and the service can
access. This is practical for cases such as reference policies published by a standardization
organization. A service node may also provide its policies directly upon request, or it may
support the policy interrogation interface, in which case, a trust agent can incrementally
discover policies as described in the previous section. A trust agent may also consult its
cached policies from the past. However, as policies may evolve, it must implement some
strategy to keep its cache up-to-date. A lazy strategy would be using the cache as a hint
and obtaining updates when the policies fail to satisfy requests. Caching policies is only
feasible for static policies, i.e. those that do not depend on environments to evaluate. For

100

CHAPTER 4. Fidelis and Web Services 4.2. Service architecture

High-level Trust agent Trust agent ervice
request e W
> : Servica”
: invocation

Request

Meta—policies Meta—policies

Figure 4.6: Trust negotiation between principals.

live policies, they must be queried dynamically, tailored to each request.

One aspect of meta-policies is to allow principals to dictate the rules for choosing
credentials for requests. A FPL profile for meta-policies is described in Section 5.2.3. Here
we provide a brief description to motivate the approach. The profile is designed to express
four types of conditions: designated principal disclosure, context-specific disclosure, trust-
directed disclosure, and mutual exclusion. A principal may extend this profile or use other
proprietary policies to express its meta-policies if needed. An example meta-policy is given
here,

negotiator(): self -> 0xb258d29f
grants disclose(T2(a, b): self->p)

It states that trust instances matching T2(a, b): self->p may be used when negotiating
with principal 0xb258d29f. The meta-policy profile employs a denial-by-default policy,
i.e. if a trust instance is not explicitly allowed to be disclosed, disclosure will be prohibited.

Trust agents can also automate negotiated requests. A negotiated request is an ap-
proach to mechanize the policy negotiation process. The idea of negotiated request is that
a pair of trust agents carries out a negotiation conversation, gradually exchanging trust
instances. When sufficient trust is gained on both sides, the request will be performed.

Figure 4.6 illustrates the process of negotiated requests. In this example, the requester
has no direct access to the service policies, e.g. the policies might be confidential or highly
dynamic therefore not worth publishing. The trust agent on the service node acts as an
interceptor for the service. It interprets the meta-policies to determine whether certain
policies are applicable for a request. Initially, the trust agent on the requester node issues
a request with an empty bag of trust instances. The service trust agent responds with
an “insufficient trust” exception, and may offer some service policies. The requester trust
agent, upon receiving the exception, analyzes the offered policies with respect to its own
meta-policies, and supplies more trust instances to fulfill the requirement. It may also
respond with an “alternative policy” request with some credentials if it does not wish
to comply with the returned service policies. Please refer to Section 5.2 for an in-depth
description of trust negotiation.

Note that meta-policies in a negotiated request session play two different roles. On
the requester side, meta-policies are used to specify what credentials may be disclosed
and their conditions. On the responder side, in addition, meta-policies specify conditions
for disclosing policies.

101

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

4.2.7 Identifying requesters

A basic requirement in any authorization system is that the requester of an invocation
must be identified before authorization decisions can be made. There is no exception with
Fidelis. Recall that in Fidelis, all principals are identified by public keys. This serves as a
ready mechanism for establishing the requester identity. The basic idea is that a requester
should sign its invocation request with its public key. A node should then first verify the
signature in a request and ensure its freshness to prevent replays, and proceed if and only
if these constraints are satisfied. For the work in this thesis, a solution based on SSL/TLS
is designed and implemented.

SSL/TLS [164] is the de-facto standard for providing security for today’s web ap-
plications. Based on X.509 certificates, the SSL/TLS protocol provides confidentiality,
authentication, integrity and non-repudiation to any transport layer protocol, includ-
ing HT'TP — the backbone transport protocol of the WWW. For Fidelis utilisation of
SSL/TLS, a principal must first produce an X.509 certificate containing its public key.
Since the only relevant information in the certificate is the public key, the implementa-
tion forces the SSL/TLS stack to ignore other components in the certificate, such as the
subject name, issuer name, validity period, etc. The certificate must be self-signed as a
certificate chain will have a special meaning, discussed later. The SSL/TLS protocol is
configured to provide at least authentication and integrity guarantees. This requires both
sides of the communication to carry out a challenge-response handshake to ensure posses-
sion of the corresponding private keys. Therefore, once a SSL/TLS session is successfully
established, the requester identity is also determined as a result.

Our design implements non-standard semantics in order to express requests made by
a group or threshold principal. An invocation request initiated by a group principal is
conceptually one that is signed by all the principals in the group (or for a threshold
principal, a threshold number of principals in the group). However, SSL/TLS allows at
most one certificate on each side of the communication to be used for establishing a ses-
sion. To overcome this limitation, it is necessary to interpret the semantics of certificate
chains differently within Fidelis web services. Certificate chains are interpreted as the
explicit consent of all signing principals to act for an invocation. Note that this interpre-
tation is drastically different from the standard X.509 semantics, where a certificate chain
represents a chain of certification.

Ideally, a pure XML-based solution should be developed, and some custom protocol
should be designed to facilitate the use of multiple public keys in an invocation request.
WS-Security [152] provides a foundation building block for adding security information,
e.g. digital signatures, to SOAP messages. A recently proposed standard, the Security
Assertion Markup Language (SAML) [154, 155], provides protocols which may be used
to implement the semantics required by Fidelis. These developments are nevertheless left
as future work.

4.3 Fidelis Policy Interchange
Fidelis Policy Interchange (FPI) is an XML document format designed for describing

ontologies and policies in the trust framework. It facilitates interoperability between
nodes, where internal, local policy representations may be used. The goal is to establish an

102

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

interchange representation from and to which internal representations may be translated.
This section describes the features of FPI.

4.3.1 Overview

FPI is based on the policy framework of the Fidelis Policy Language presented in Sec-
tion 3.5, supporting both trust policies and action policies. It augments the basic lan-
guage framework with XML Schema for describing types and trust ontologies, and XML
Signature, for standard encoding of principal identifiers. It also integrates support for
namespace management, where definitions of trust statements and actions may be quali-
fied in declarative namespaces. In the current version, FPI documents are scoped under
the namespace identifier:

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001

The basic structure of a FPI document consists of five parts (‘*” denotes zero or more
occurrences of the component),

<Interchange>
<Import/>*
<Types/>*
<Schema/>*
<Principals/>*
<Policies/>x

</Interchange>

Generally, each of these components may appear more than once in any order. References
need not be declared before they are used so long as they are declared somewhere in the
document. The <Schema> sections define the vocabulary used in the policies. These
include declarations for trust statements and actions. They may refer to standard XML
Schema types, or custom types defined in the <Types> sections. The <Policies> sections
contain definitions of policies defined in terms of the entities declared in <Schema> sections
plus other entities imported from other FPI documents through <Import> components.
The <Principals> sections collect frequently referenced principals and assign shorthand
identifiers for them to be used in other parts of the document.

4.3.2 The top-level container

All FPI documents have a single root element <Interchange>. It includes a mandatory
attribute @targetNamespace?, which has type xsd:anyURI. This attribute introduces
a namespace under which all the entities (including all trust statements, actions and
policies) defined in this document will be scoped. An example is,

<Interchange xmlns="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001"
xmlns:nsl="urn://opera.cl.cam.ac.uk/demo/test1"

2As with the typical usage in XML standards, names prefixed with an “at” sign (@) denote attributes.

103

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

targetNamespace="urn://opera.cl.cam.ac.uk/demo/test1">

</Interchange>

The namespace identifier serves the purpose of version number, i.e. it is expected to be
stable with the entity definitions and should change only if the accompanying definitions
change. The attribute xmlns defines the default namespace of the elements in the docu-
ment. The xmlns:ns1 attribute binds the given namespace with a prefir, ns1. These are
the standard mechanisms employed in XML Namespace [165].

4.3.3 Schema definitions

Schema definition sections contain definitions of trust statements and actions. A <Schema>
element may have one or more <Statement> and/or <Action> elements, which define the
entity structure. An example <Statement> definition is,

<Statement name="user">
<Parameter name="UserID" type="xsd:string" />
<Comment>
The subject is a recognized system user, with the user name {UserID}.
</Comment>
</Statement>

The corresponding definition in FPL is,
user (string UserID)

There may be zero or more occurrences of <Parameter> elements. A <Parameter> has
a mandatory @name attribute, which gives the formal name of the parameter. Its type
is given in a @type attribute, which may refer to a standard XML Schema type, types
defined in <Types> sections, or from imported documents. The @type attribute may be
omitted, in which case, the type definition must be given directly in its children using
XML Schema <complexType> or <simpleType> fragments, e.g.

<Parameter name="UserID">
<complexType>

</complexType>
</Parameter>

<Comment> elements contain free-form text, intended to provide human-readable descrip-
tions. They document the purpose of the entity and may also describe legal implications or
guarantees. Actions are defined identically, except the element <Action> is used instead
of <Statement>.

104

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

4.3.4 Principal declarations

Recall that principals are identified as public keys. As public keys are essentially long
strings of numbers, they convey little meaning to humans, and additionally they can be
inconvenient to work with. The primary intention of the <Principals> sections is to
improve the readability of principal identifiers by assigning them with human-readable
identifiers.

The informal syntax for the <Principals> element is given below (‘+’ means one or
more occurrences and ‘7’ means zero or one occurrence),

<Principals>
(<Principal principalID="id" valueType="URI">
<!-- content model depending on @valueType -->
</Principal>)*

(<Group principalID="id" valueType="URI">
(<Principal principalRef="ref"? valueType="URI"?7>
<!-- content model depending on @valueType or ../@valueType -->
</Principal>)+
</Group>) *
(<Threshold principalID="id" valueType="URI" threshold="integer">
<!-- same as Group -—>

</Threshold>) *
</Principals>

A <Principals> element contains a number of <Principal>, <Group> and <Threshold>
elements. A <Principal> element specifies a name in the @principalID attribute and
contains a public key. A public key is given in the format indicated by the mandatory
attribute @valueType. Currently the only supported format uses the XML Signature
standard [166], with the identifier,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xmldsig

Under this value type, the content of <Principal> contains an XML Signature <ds:KeyInfo>
element.® The <ds:KeyInfo> element is a container for a wide variety of key information,
ranging from plain DSA, RSA public keys, Base64-encoded PGP, SPKI certificates, to
an XML representation of X.509 certificates. The design of FPI leverages and integrates
with this work to provide a standards-compliant approach to specify public keys.

An example of a principal declaration section, which binds the identifier ‘Alice’ to a
key, is provided below,

<Principals>
<Principal principalID="Alice"
valueType="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xmldsig">
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">

3Note that in this section, the prefix ds references the XML Signature namespace, http://www.w3.
org/2000/09/xmldsig#

105

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

<ds:RSAKeyValue>
<ds:Modulus>xA7SEU+e0yQH5MICpzCCArm. . .</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyInfo>
</Principal>
</Principals>

<Group> and <Threshold> elements assign a name to a group or a threshold principal
respectively. They share an identical structure, which contains a list of <Principal>
elements. This <Principal> element is similar but different from the <Principal>
element directly inside the <Principals> element. It includes an optional attribute
@principalRef, which refers to a named principal. It is however not permitted to define
a name inside the enclosing scope, therefore the use of @principallD is prohibited. A
<Threshold> element has a mandatory attribute @threshold, which gives the threshold
value.

4.3.5 Policy specification

Policy specification is given in <Policies> elements. Each <Policies> element contains
one or more <TrustPolicy> and <ActionPolicy> elements. These two elements cor-
respond to trust policy and action policy specifications in the Fidelis Policy Language
respectively. Consider an example, with the following trust statements defined,

user (string UserID)
admin (string UserID)

where the holder of a user() trust instance is a recognized system user, with the local
user identifier as the parameter UserID, and similarly for admin (). Suppose the user ‘pb’
and ‘maj’ are the local system administrators. A trust policy can be written as,

user(a): self -> b
where a == ‘pb’ || a == ‘maj’
asserts admin(a): self -> b

The policy states that if a user is asserted to be either ‘pb’ or ‘maj’, a new trust instance
admin() may then be issued for them. The equivalent trust policy in the interchange
representation is as follows (assuming trust statements user and admin have already

been defined),

<Policies>
<TrustPolicy>
<TrustUse name="nsl:user">
<Parameter name="UserID" variableID="a" />
<Truster self="true"/>
<Subject variableID="b" />
</TrustUse>

106

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

<Where xsi:type="xsd:string"
langType="urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xpath2">

$a = ‘pb’ or $a = ‘maj’

</Where>

<Asserts name="nsl:admin">
<Parameter name="UserID" variableRef="a" />
<Truster self="true" />
<Subject variableRef="b" />

</Asserts>

</TrustPolicy>
</Policies>

A <TrustUse> corresponds to a trust use syntax component described in Section 3.10. It
requires an attribute @name of type QName (an XML Schema type for namespace quali-
fied names), which refers to the definition of a trust statement in the namespace. In this
example, the namespace prefix ns1 expands to a full namespace identifier. A <TrustUse>
may contain one or more <Parameter> elements, a <Truster> and a <Subject> ele-
ment. The purpose of <Parameter> elements is to bind a parameter to a variable
placeholder. A <Parameter> element contains two mandatory attributes @name and
@variableID. The @name attribute identifies a parameter of the trust statement as de-
clared, and @variableID assigns an identifier for a variable placeholder, which must be
unique within the scope of the policy. It may be omitted if a parameter is not used
in a policy, which has a similar effect of creating a unique but unreferenced parameter
placeholder.

Both <Truster> and <Subject> share the same syntax. Only <Truster> will be
referred to for brevity of exposition, but unless otherwise stated, the same description
applies to <Subject>. The syntax is (where ‘|” means a choice),

<Truster principalRef="id"? variableID="id"? self="bool"7?>
(<Principal .../> |
<Group .../> |
<Threshold .../>)7?

</Truster>

The attribute @variableID assigns a placeholder for the truster (and symmetrically, for
the subject), and @self is a Boolean value, which is set true to refer to “this principal
which has specified the policy”. Note that the interpretation of @self is relative, therefore
should be replaced with absolute principals when exporting policies to avoid ambiguity.
The optional attribute @principalRef refers to a principal defined in the principal decla-
ration sections. Principals may also be directly given in the content of <Truster> through
elements <Principal>, <Group>, or <Threshold>. The syntax and semantics for these
elements are identical to those in Section 4.3.4, except the use of attribute @principalID
is not allowed.

Negative trust uses are given in <WithoutTrustUse> elements. They are similar to
<TrustUse>, but in addition, may contain multiple <URL> elements, where each gives a
repository where negative trust instances should be checked. The processing semantics

107

CHAPTER 4. Fidelis and Web Services 4.3. Fidelis Policy Interchange

requires checking with any of the listed repositories during policy evaluation. Please refer
to Section 5.1.2 regarding distrust repositories.

The <Asserts> element corresponds to the asserts clause described in Section 3.5.5.
It has a mandatory attribute @name which refers to the name of a trust statement. It has
as children one or more <Parameter> elements, a <Truster> and a <Subject> element.
There must exist one <Parameter> element for each parameter declared for the trust
statement. It may either reference a parameter placeholder or specify a concrete value as
its content. It has the syntax,

<Parameter name="string" variableRef="id"? environment="bool">
<!-- optional content for a concrete, typed value -->
</Parameter>

where @variableRef references a placeholder bound previously through @variableID,
and @environment indicates whether the value is supplied from the environment pro-
vided at policy evaluation time. This informs the policy processor that it is not an error

if @variableRef references a non-existent variable. The <Truster> and <Subject> ele-
ments are similar to their counterparts in <TrustUse>, with the exception that @variableRef
replaces @variablelID.

A trust policy may also have zero or more <Grants> elements, which map to the
grants clauses in Section 3.5.5. The syntax is a subset of <Asserts>, without <Truster>
and <Subject> elements and where the @name attribute refers to an action.

The conditional and assignment clauses (where and set) are represented by <Where>
and <Set> elements. These elements are designed to be extensible, i.e. the format of
their contents depends on the extensibility identifier specified in the attribute @langType.
The format currently supported is the predicate language in the XPath 2.0 standard [167].
XPath is an expression language for specifying paths in an XML document. In particular,
it contains an XML Schema-aware predicate language for comparison, arithmetic, logical
composition, and function calls. This format has the identifier,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xpath2

An application may define an alternative format and declare it for another format iden-
tifier. Note that conditional and assignment clauses may often involve local computation
(e.g. local database queries) and may reveal confidential security information. For these
reasons, they can be explicitly hidden as follows,

<Where local="true" />

This informs the recipient of an FPI document that the policy is subject to local condi-

tional (and/or assignment) computation in addition to the <TrustUse>s and <WithoutTrustUse>s.
Note that there is intentionally no representation for the validity clause. Recall that the

main purpose of FPI is to enable interoperable policy distribution, while the determination

of validity conditions for new trust instances is a deployment issue and should be at the

discretion of the truster (i.e. where the policy is deployed). It is therefore meaningless

to map the valid clause in the internal Fidelis Policy Language to the external policy

representation of FPI.

108

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

The syntax for the specification of action policies is a subset of the trust policies.
The <ActionPolicy> element is identical to <TrustPolicy> except for the absence of
<Asserts> elements.

4.3.6 Linking with other policy documents

FPI is designed to enable distributed authoring of policies. Specifically it has a linking
mechanism that helps the reuse of trust vocabularies across documents. This is especially
useful when policies are authored in a top-down fashion, where a top-level authority
may define a basic set of trust statements and actions, while leaving the specification
of policies that use these definitions to subsidiaries. The linkage is achieved through
<Import> elements. An example is given below:

<Import namespace="urn://opera.cl.cam.ac.uk/demo/test2"
location="http://opera.cl.cam.ac.uk/demo/test2.fpi" />

The @namespace attribute indicates the namespace identifier defined in the FPI docu-
ment which can be found at the URL given in @location. This element instructs the
FPI processor to import the trust vocabulary defined in the referenced document (i.e.
entities defined in the <Schema> and optionally the <Types> elements) into the current
document. The imported namespace can be given a namespace prefix using the stan-
dard XML Namespace [165] mechanism. Qualified names, e.g. the @name attribute in
<TrustUse> elements, can then be constructed using the namespace prefix to reference
imported entities.

4.4 Credential representation

A Fidelis credential is essentially an extended public key certificate with a collection of
typed attributes. There is a wide range of possible representations for Fidelis credentials,
including SPKI certificates (which may include attributes as tagged values), X.509 version
3 certificates (which include application definable extensions), or indeed any version of
X.509 certificates provided they are coupled with attribute certificates.

The web service implementation of Fidelis does not mandate any particular represen-
tation within a node. For example, a node may choose to use X.509 certificates to enable
secure communication through SSL/TLS [164]. Instead, an XML-based representation is
designed to enable interoperation between heterogeneous nodes. The format is known as
the Fidelis Interoperable Credential (FIC) format.

4.4.1 Basic structure

Recall from Chapter 3 that a trust instance consists of an instantiated trust state-
ment, a truster and a subject, a validity condition and a signature. In the FIC rep-
resentation, a trust instance is an XML document fragment, whose top element identi-
fies a namespace-scoped trust statement. It contains three mandatory child elements:
<Truster>, <Subject>, and <Valid>, plus an element for each parameter. It also con-
tains at least one <ds:Signature> element, where the <ds:Signature> element refers to
the container element of XML Signature [166].

109

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

Consider the following schema (adopted from Page 104),

<Statement name="user">
<Parameter name="UserID" type="xsd:string" />
</Statement>

assuming its namespace (i.e. the value of @targetNamespace in its containing <Interchange>
element) is,

urn://opera.cl.cam.ac.uk/demo/testl
An example trust instance would be (with some parts abbreviated):

<nsl:user xmlns:nsl="urn://opera.cl.cam.ac.uk/demo/testl">
<UserID>wtmy2</UserID>
<Truster>...</Truster>
<Subject>...</Subject>
<Valid type="status" ...>...</Valid>
<Signature xmlns="http://www.w3.o0rg/2000/09/xmldsig#">...</Signature>
</nsl:user>

The top-level element (<nsl:user>) is in the same namespace as that where the decla-
ration of user belongs. Its parameter is given in the <UserID> element whose value is
of the type for the corresponding parameter as declared (namely, xsd:string). Other
elements provide information implied by their names, and are discussed in the rest of this
section.

4.4.2 Truster and subject

The <Truster> and <Subject> elements contain principal identifiers for the truster and
subject respectively. Both elements share the same syntax, given informally below:

<Truster>
<Principal valueType="URI">
<!-- @valueType elements -—>
</Principal>+
</Truster>

A <Principal> element must be associated with a @valueType attribute, whose value
determines its content. There is currently one value type identifier, consistent with the
description in Section 4.3.4,

urn://opera.cl.cam.ac.uk/fidelis/FPI/04112001#xmldsig

With this value type, the content of the <Principal> element contains a <ds:KeyInfo>
element from XML Signature [166]. The set of <Principal> elements essentially provide
a principal set. For trusters, this gives the set of principals who have signed the trust
instance; for subjects, this indicates the set of principals for whom this trust instance is

110

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

Method URI identifier

Timed CRL urn://opera.cl.cam.ac.uk/fidelis/04112001/tCRL
Asynchronous urn://opera.cl.cam.ac.uk/fidelis/04112001/tCRL-async
timed CRL

Timed renewal urn://opera.cl.cam.ac.uk/fidelis/04112001/tRenewal
Asynchronous urn://opera.cl.cam.ac.uk/fidelis/04112001/

timed renewal tRenewal-async

Status check urn://opera.cl.cam.ac.uk/fidelis/04112001/status
Asynchronous urn://opera.cl.cam.ac.uk/fidelis/04112001/

status delivery status-async

Figure 4.7: @method URI identifiers for online validity schemes.

relevant. This may be used to satisfy group or threshold principals in policies, or may be
used by a single principal in the set of subjects, depending how a request is made (and
signed).

Note especially that there is no representation for threshold principals. The concept
of threshold principals is for policy specification. The truster and subject set of a trust
instance enable the enforcement of threshold-based policies. For example, suppose a
policy states that at least three of the five management board members must approve a
management decision. To satisfy this policy, it is sufficient to present a trust instance
representing a management decision signed by a set of three management members.

4.4.3 Validity condition

The validity condition of a trust instance is given in the <Valid> element. It supports
both online and offline methods as described in Section 3.5.4. The type of validity method
is specified through the mandatory @type attribute, which can be any of offline, CRL,
renewal or status. For the offline method, the content of the <Valid> element is a pair
of child elements, <Start> and <End>, whose values have the type xsd:dateTime from
the XML Schema. For the online methods, the <Valid> element has a @method attribute
and contains multiple <URL> elements. The <URL> elements specify locations from which
the validity information may be obtained. The @method attribute indicates the interface
method supported at those locations. An example online validity condition is provided
below:

<Valid type="status"
method="urn://opera.cl.cam.ac.uk/fidelis/04112001/status">
<URL>http://opera.cl.cam.ac.uk/fidelis/status/</URL>
</Valid>

Six @Gmethod identifiers have been defined, shown in Figure 4.7. For a timed credential
revocation list, an identifier is given to indicate the specified location that publishes an
XML-based tCRL document, with hashed trust instances. Another identifier is given for
the asynchronous version for obtaining this tCRL document. Two similar identifiers are
allocated for timed renewal. For status query, identifiers are given for a SOAP-based

111

CHAPTER 4. Fidelis and Web Services 4.4. Credential representation

synchronous query method and an asynchronous status delivery method. The example
above indicates that the location, given in the <URL> element, supports the SOAP-based
synchronous status query.

4.4.4 Signature

Signing of trust instances takes advantage of the XML Signature specification [166]. Trust
instances use enveloped signatures in the terminology of XML Signature, which means
a signature is enclosed within the signed document. XML Signature supports two algo-
rithms for canonicalizing documents, with comments and without comments. Canonical-
ization is the process of stripping unneeded characters (e.g. whitespaces) from an XML
document (or its fragment) resulting in a canonical representation. The signature in a
trust instance is required to canonicalize without comments.

XML Signature supports a variety of transformation algorithms. A transformation
is the process of deriving a set of elements from the canonicalized XML document for
signing and verification purposes. The signature in a trust instance is required to use the
enveloped signature transform (with the URI http://www.w3.0rg/2000/09/xmldsig#
enveloped-signature), which essentially ignores the signature blocks when computing
the set of elements for signing.

An example signature block for a trust instance is presented below (with long identifiers
truncated):

<Signature xmlns="http://www.w3.o0rg/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/..." />
<SignatureMethod Algorithm="http://www.w3.org/..." />
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#..." />
</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<DigestValue>k6kamhjvitfOg...</DigestValue>
</Reference>
</SignedInfo>
<KeyInfo><RetrievalMethod URI="#trusterl"/></KeyInfo>
<SignatureValue>MCOdbCFv3gkVrtt=...</ds:SignatureValue>
</Signature>

The signature may include a <KeyInfo> element that refers to the verification key, es-
pecially when there are multiple trusters. The <KeyInfo> element should contain the
<RetrievalMethod> element with the attribute @URI which references the identifier for
a truster using the XML referencing mechanism. In the above example, the signature
points to the public key with the identifier trusterl.

112

CHAPTER 4. Fidelis and Web Services 4.5. Summary

4.5 Summary

The emergence of web services represents the next step towards an open, global, and
ubiquitous distributed computing platform. This chapter has presented a comprehensive
design that implements Fidelis in the web service environment.

The web service environment consists of a collection of inter-communicating nodes,
where each implements a number of interfaces. Five interfaces, collectively known as the
Fidelis interfaces which facilitate trust management have been described. The conveyance
interface allows trust instances to be exchanged between principals. The trust inference
interface is the core of the architecture, which encapsulates the evaluation of policies
and answers queries made against these policies. The credential management interface
allows the management of trust instances, including collection, storage and retrieval. It is
designed specifically to offload these tasks from small mobile devices, where resources are
limited. The policy interrogation interface is designed to facilitate communication between
strangers, so that unknown policies can be discovered through a query-based process. The
trust agent interface, on the other hand, is designed to automate communication between
strangers.

In our design, two types of information need to be exchanged in an interoperable
manner: policies and trust instances. For consistency with web service technologies, XML
representations have been designed for both types of data. Fidelis Policy Interchange
(FPI) is essentially an XML version of the Fidelis Policy Language. It however extends
FPL in several respects: namespace support, a type system (using XML/Schema), and
a standards-based specification for principal identifiers. Trust instances are represented
in the Fidelis Interoperable Credential (FIC) format, which leverages the XML Signature
standard to provide integrity guarantees.

In the next chapter, we will focus on an algorithm that implements the semantics of
the Fidelis policy inference process, and also describe an experimental framework enabling
trust negotiation among strangers.

113

CHAPTER 4. Fidelis and Web Services 4.5. Summary

114

Inference and Trust
Negotiation

At the heart of the Fidelis framework is the policy inference algorithm. The formal
foundation underpinning the Fidelis policy language is first-order logic, which implies
that the evaluation algorithms of Fidelis policies equate approximately to inferences in
Prolog. However, some differences exist preventing standard Prolog inference algorithms
(notably, the unification algorithms) to be directly applied to the Fidelis policy evaluation.
These differences will be briefly described in this chapter. Section 3.5.8 presented the
inference semantics from a conceptual point of view, stating the abstract goals and rules
for processing a query. The first half of this chapter, Section 5.1, describes a concrete
algorithm implementing the semantics described there.

One focus of the design of Fidelis and indeed the web services implementation described
in the previous chapter is to cater for the open nature of the web where strangers may
encounter each other and wish to communicate. Section 5.2 presents a trust negotiation
framework whereby previously unknown parties may incrementally learn about each other,
by dynamically discovering policies and selectively disclosing sensitive trust instances.

5.1 Policy inference

As previously mentioned, while the Fidelis Policy Language is based on first-order logic
and its evaluation semantics are similar to the Prolog inferencing, there are two main
differences between them significant enough to prevent the use of the standard Prolog
unification algorithms for policy evaluation. First, negative trust in Fidelis policies needs
special treatment that may require operational support. In the standard Prolog, because
of the complexity implications, a restricted version of negation called negation-by-failure
is typically employed. Such semantics are incompatible with Fidelis policies, as absence
of trust in Fidelis merely means insufficient knowledge, as discussed in Section 3.5.3.
Second, Fidelis polices may contain parameters whose values are bound explicitly in
set clauses, instead of using parameter matching rules. These parameters are similar to
free variables in Prolog, and Prolog typically binds variables using unification, disallowing
explicit “manual intervention” of variable bindings during the inference process. Evalua-
tion of Fidelis policies requires more flexible handling of the way variables are bound.
To allow us to concentrate on the core algorithm, we have addressed the operational
issues in separate subsections. In particular, the management of distrust repositories and
the construction of validity conditions are not covered by our algorithm description. It is
sufficient at the algorithm level to assume that a distrust repository is a database of trust

115

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

instances of negative assertions.

5.1.1 Inference algorithm

On the interface level, an inference algorithm takes a set of trust instances, an environment
and a query template (which embodies the query) as input, and outputs a Boolean result,
and additionally, depending on the type of queries, one or more completed trust templates
(on trust establishment, vertical, horizontal and complete coverage queries), or action
templates (on action decision or action coverage). Recall that a completed template is a
template with all placeholders bound to instance values.

The inference semantics described in Section 3.5.8 can be divided into two phases.

e Phase 1: Policies that help in deriving the result need to be selected from the set
of available policies.

e Phase 2: A subset of the input trust instances must be determined to satisfy those
policies.

This semantics can be implemented using an algorithm that recursively resolves the con-
ditions for a policy, until all conditions have been met or some condition has failed. This
algorithm simultaneously addresses both phases in its recursion and may be implemented
using an evaluation stack. For the sake of simplicity and clarity, the construction and
tracking of validity conditions are discussed separately in Section 5.1.3.

We refer to the entity performing the actual inference as an inference engine. Suppose
an inference context consists of an evaluation stack and an environment. Elements of the
evaluation stack are called evaluation contexts. For each evaluation context, we write [
state — info |7, where state may be one of LOOKUP, UNIFY, EVAL, NEG, SUCCESS
and FAIL, and info gives state-specific information. The algorithm works by popping
the top element from the evaluation stack and executing its operation. New evaluation
contexts may be pushed back to the stack and the stack may be spawned if necessary,
in which case, the process will be performed on both the original stack and the spawned
one. The algorithm terminates on an evaluation stack when there is no more evaluation
context left, or when the context of the state FAIL is reached.

We will first need to define the meaning of matching for a trust template to a trust
instance, or to a trust policy.

Definition Suppose tt = t(p1, ..., Pn) © Piruster — Dsubject 5 @ trust template, where t is
a name, p; for 1 < j < n, Dyuster ANd Psupject e either variable placeholders or values.
We say tt matches:

o a trust instance ti = i(valy, ..., val,) : Valyysier — Valsupject, where i is a name, val;
for 1 < j <n, valyyster and valgupject are values, if and only if:

— t s equal to 1, and

— for any 1 < k < n or k = truster or k = subject and py is a value, then valy
18 equal to py.

116

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

e a trust policy tp if and only if tt matches tty where tty is the trust template in the
asserts clause of tp.

Similarly, we define matching for an action template with action instances or action
policies.

Definition Suppose an action template at = a(pa, ..., pn), where p; for 1 < j < n are
either variable placeholders or values. We say at matches:

e an action instance ai = i(valy, ...,val,) where val; for 1 < j <n are values, if and
only if:

— a 18 equal to i, and
— waly, 1s equal to pi for any 1 < k < n such that py is a value.

e an action policy ap if and only if at matches some at;, where at; is one of the action
templates in the grants clause of ap.

Let the set of all policies be T', the input set of trust instances be I, the current infer-
ence context be IC'. We denote the evaluation stack of /C' as IC.S and its environment as
IC.E. An environment consists of a set of variable bindings, denoted as var = value. The
operation and context-specific information on evaluation contexts are described below:

[LOOKUP — gm | where gm is query template, i.e. either a trust or an action template.
If gm is a trust template matched by some ¢ € I, then for each ¢, spawn the current
inference context. Let the new inference context be IC’. Push [UNIFY — i < gm
| onto IC".S. For clarity of explanation, we avoid spawning on the first matching
instance in this algorithm but instead work directly on the original IC.

Otherwise, if gm is a trust template without a matching i € I, select a subset, T, of
T such that it contains all matching trust policies, or if ¢gm is an action template, all
matching action policies. For each trust or action policy pl in T”, spawn the current
inference context (except for the first one, as above). Let the new inference context
be IC’. Suppose pl is a trust policy,

pl = ({t1,....t;},{dy, ..., dn }, cond, assign, t,{ay, ..., a,})

or if pl is an action policy,

pl = ({t1,....t1},{dy, ..., dn},{a1, ..., an})

where t; and d; represent trust uses in the prerequisite and the without clauses
respectively, cond and assign represent the expression in the where and set clauses,
t is the trust template in the assert clause, and a; is each action template in the
grants clause. First, relabel each variable occurrence in pl so that conflicts with
bindings in /C’.E do not arise. Then merge the per-policy environment E),, i.e.

IC'E=IC'"EUE,

On IC'".S, perform these in sequence,

117

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

e Push [SUCCESS - t,{aq,...,a,}] if pl is a trust policy, or
e Push [SUCCESS - {aq,...,a,}] if pl is an action policy.
e Push [EVAL — assign | if assign exits;

Push [NEG - d; | for all d; where 1 < j < m;

[
[
[
Push [EVAL — cond | if cond exits;
[
e Push [LOOKUP - ¢; | for all ¢t; where 1 < j </,

[UNIFY — ti < tt | where i is a trust instance and t¢ is a trust template. Let ti =
i(UGll,...,UGln) : Ualtruster - valsubject and it = t(plvapn) * Ptruster = DPsubject;
where 7 and ¢ are names, val; is a value, and p; is either a value or a variable
placeholder, vali usier and valsypjeer are principal values, and piyster and pgupject May

either be principal values or variable placeholders. Unification succeeds if and only
if,

e For any 1 < j < mn, if p; is a variable, it is either bound to val; in IC.E or
unbound,

e For any 1 < j < n, if p; is a value, it is equal to val;,

o If pirusier 18 a principal value, valy.ser must be equal to piruster; Symmetrically
for Dsubject and Ualsubjectv

o If piruster is a variable placeholder and piryusier is bound in IC.E, it must be
bound to valyysier; symmetrically for poupject and valgypject, and

e Validation of #i must succeed.

If any of the above fails, push | FAIL | to IC.S. For any variable p, unbound in
IC.E, where 1 < k <n, add py = val, to IC.E. Note that due to the design of the
algorithm, action templates will never exist in a UNIFY evaluation context.

[EVAL — expr | If exzpr is a conditional expression, evaluate expr using bindings in
IC.E and push [FAIL | to IC.S if the evaluation yields false, or do nothing on
true.

If expr is an assignment expression, update bindings in /C.E.

[NEG — tm | where tm is a trust template. Let tm = t(vary,...,var,) : DPuuster —
Psubject Where t is a name, var; is a variable placeholder, piyster and psypjec May
either be a variable placeholder or a principal value. Construct a trust template

/
tm' = t(valy, ..., val,) : valyyster — Valsupject

where for all 1 < j < n, there exists var; = val; in IC.E, and if pjyyser is a variable,
there exists Pyuster = Valypyster iN IC E, or if pyrysier 18 a principal value, valyyster
is equal to pyyster, and vice versa for pgypject and valgypjece. Then query for tm' in
any of the associated distrust repositories and push | FAIL | if and only if the query
result is positive.

[SUCCESS — tm, {aty, ...,at,} | where tm is a trust template and at; for 1 < j < n is
an action template. Note that ¢tm will not exist for a SUCCESS context generated
from action policies.

118

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

If IC.S is empty, this means the final answer is reached. A new trust instance could
then be constructed based on tm and a;. If IC.S is not empty, this indicates an
intermediate result is reached. The inference engine may choose to construct a new
trust instance or do other processing.

[FAIL | Abort the inference, causing an exception to be thrown and the inference context
1C to be destroyed.

At the end of an inference run, because of the spawning operation, there may exist
multiple inference contexts. Each inference context may provide a result, therefore there
may be multiple results. These results constitute the answer for coverage type of queries.

Example

In this example, we use capital letters A, B, C' and D to represent principals, and ¢; for
1 <7 <5 are trust statements. Lowercase letters are used as variables. For a description
of the syntax, please refer to Section 3.5.5. Suppose A defines two trust policies:

ti(a) : self — p asserts t5(b) : self — p set b:=a+ 20 (P1)
to(a) : self — p,t3(b) : self — p without t4(a,b) : self — p (P2)
asserts t5(b) : self — p where a > b

Suppose a horizontal coverage query for ¢5 is requested with the following trust template,
ts(a) : A—b
and with a set of trust instances:
I'={t;(10): A — B, t;(20) : A — C, t3(20) : A — B, t3(40) : A — D}

A trace of the inference run is explained here. Inference contexts are enclosed in boxes,
and bold typeface is used to highlight newly created evaluation contexts.

To begin the query evaluation, a new inference context, ICY, is constructed to boot-
strap. The evaluation stack is initialized with a LOOKUP context. The environment is
initialized with the special variable self bound to the A plus other unbound variables in
the query template, namely a and b.

1. [1Co.S = [LOOKUP —t5(a): A — b]
I1Cy.E = {self = A,a=?b="}

Because there exists no ¢ € I that matches t5(a) : A — b, the set of matching trust
policies is selected, { P2}. Because there is only one policy in the set, the original
inference context is used instead of spawning. Occurrences of variable a and b in P2
are first relabelled to avoid conflicts with the environment. P2 effectively becomes,

to(a’) : self — p,t3(V) : self — p without t4(a’, V") : self — p
asserts t5(0') : self —» p where a’ > V/

119

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

Note that self is not relabelled since it is a special global variable.

On IC,.S, evaluation contexts representing P2 are pushed in. The bindings in the
environment [Cy.FE are updated to reflect the introduction of new variables, e.g. a
in t5(a) is bound to b'.

2. |1Cy.S = [LOOKUP — ty(d) : self — p|; | LOOKUP — t3() : self —p ;|
NEG —t4(a',V) : self — p]; [EVAL-d > V' |; [SUCCESS —t5(V') : self — p,
{}]

ICo.F = {self = Ao =V =2,b= p=7,a' =7}

Similar to the above step, because no i € I matches t5, a matching set of trust
policies is selected, in this case {P1}. After relabelling, the policy becomes

t1(a”) : self — p' asserts to(b") : self — p’ sets b :=a" + 20

Again, there is no need to spawn new inference context as the set has only one
policy. Evaluation contexts representing P1 are therefore pushed onto ICy.S and
environment /Cy.FE updated.

3. [1Cy.S = [LOOKUP — ty(a”) : self — p']; [EVAL — 0" :=ad"+20 |5 |
SUCCESS — t5(b") : self — p' |; [LOOKUP — t3(b') : self — p]; [NEG —
ty(a\ b)) self —p|; [EVAL —a' >V |; | SUCCESS — t5(V') : self — p, {}]
ICy.E ={self =A,a=b0="b=p=p =7d =0"=7d" =7}

The processing of the LOOKUP evaluation context causes a copy of the inference
context to be created since there are two possible matches for ¢, in I, t1(10) : A — B
and t1(20) : A — C. Let the new inference context be IC}.

4. 1Cy.S = [UNIFY - #,(10) : A — B < ty(d") : self — p' |; [EVAL —
b’ :=a" 420 |; [SUCCESS — to(0") : self — p']; [LOOKUP —t5() : self — p|;
[NEG — t4(a’, V') : self — p]; [EVAL —a’ >V]; | SUCCESS — t5(V) : self — p,
{}]

ICy.E ={self =A,a=b0="b=p=p =7,d =0"=7d" =7}

Processing the UNIFY evaluation context updates the environment ICy.E. Specif-
ically, a” is bound to 10 and p’ is bound to B. For clarity, IC; is provided below.
However for the rest of the discussion, we will only show ICj, while the steps for
1C follow similarly.

IC,.S = [UNIFY - t(20) : A — C & ty1(d") : self — p' |; | EVAL —
b’ :=a"+20]; [SUCCESS — to(b") : self — p']; | LOOKUP —t3(b') : self — p];
[NEG — t4(a’, V') : self — p|; [EVAL —a’ >0 |; [SUCCESS — t5() : self — p,
{}]

ICi.E={self =A,a=0="b=p=p =2d =V =7,d" =7}

5. [1Cy.S = [EVAL - V" :=a" + 20 |; [SUCCESS — to(b") : self — p' |; [LOOKUP
—t3(b) : self — p|; [NEG —ty(a,V) : self — p]; [EVAL —d’ > ¥ |; [SUCCESS
—t5(V) : self —p, {}]

ICy.E ={self =A,a=0="b=p=p =B,d =V =?d" =10}

120

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

10.

Note that the bindings for ¢” and p’ is updated as a result of processing the UNIFY
context in the last step. The new top evaluation context is an assignment expression,
which causes b” to be bound to 30.

ICy.S = [SUCCESS — to(b") : self — p' |; [LOOKUP — t3(b') : self — p]; |
NEG — t4(a’,) : self — p|; [EVAL —a' >V |; | SUCCESS — t5(V) : self — p,

{}]
ICy.E ={self =A,a=b="b=p=p =B,d =1 =30,d" =10}

Here we arrive at an intermediate result, #3(30) : A — B. Depending on the
inference engine, it may create a trust instance accordingly, or simply record this
fact for auditing purposes and continue the evaluation.

ICy.S = [LOOKUP — t3(V) : self — p |; [NEG — t4(a’, V) : self — p|; [EVAL
—a' > b]; [SUCCESS — t5() : self — p, {}]

ICy.E = {self =A,a=b="b=p=p =B,d =1 =30,d" =10}

Processing the LOOKUP context spawns one inference context, ICy, since both
t3(20) : A — B and t3(40) : A — D in I match t5(V') : self — p.

ICy.S = | UNIFY - t3(20) : A — B < t3(0) : self — p]; [NEG — t4(d/, V') :
self — pl; [EVAL —d' > V' |; [SUCCESS — t5(V) : self — p, {}]
ICy.E={self =A,a=b="b=p=p =B,d =10 =30,d" =10}

Processing the UNIFY context requires unifying the values for ' and p, whose
corresponding values are 20 and B respectively. Since b’ is unbound in ICy.E, the
unification succeeds. p is bound to B in ICy.E, which agrees with its corresponding
value, therefore also succeeds. After processing this evaluation context, ICy.E is
updated with & = 20.

1C5.S = | UNIFY - t3(40) : A — D & t3(V) : self — p |; [NEG — t4(a’, V) :
self — pl; [EVAL —d' > ¥]; [SUCCESS — t5() : self — p, {}]
ICy.E ={self =A,a=b="b=p=p = B,d =" =30,d" =10}

The processing is identical to that above; however, as p is bound to B in ICs.F
while the corresponding value for p is D, the unification fails. This causes a | FAIL
| context to be pushed to IC5.S, which subsequently leads to the abortion of the
evaluation and destruction of ICs.

ICy.S = [NEG — ty4(a’,V) : self — p|; [EVAL — d > ¥ |; [SUCCESS —

ts (V') : self — p, {}]
ICy.E={self =A,a=b=20,b=p=p =B,d =V =30,a" =10}

To process the NEG context, the inference engine first constructs a trust template
by replacing variables with their bound values from the environment, resulting in
t4(30,20) : A — B. It then queries any one of the given distrust repositories. If
a positive result is returned, it pushes [FAIL | onto the evaluation stack. For this
discussion, we assume a negative result is returned.

ICy.S = [EVAL —d' >V]; [SUCCESS — t5(V) : self — p, {}]
ICy.E = {self =A,a=0=20,b=p=p =B,d =b"=30,a" =10}

Processing the EVAL context involves evaluating the expression a’ > b’ with regard
to the environment ICy.E, which returns true.

121

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

Figure 5.1: Passive replication scheme

11. | ICy.S = [SUCCESS — t5(b') : self — p, {}]
ICy.E={self =A,a=0=20,b=p=p = B,d =V =30,a" =10}

This reaches the final result for the query, which gives a trust template (with all
parameters, truster and subject filled in), ¢5(20) : A — B. The inference engine may
then create a trust instance by signing the template and return to the requester.

The runtime analysis of this algorithm will be discussed later in Section 5.1.4. We
shall first discuss some operational issues with implementing this algorithm.

5.1.2 Managing distrust repositories

A policy may be associated with a list of distrust repositories. The algorithm described
in the previous section works on the assumption that the set of distrust repositories must
maintain a consistent view of distrust information. This is because it assumes it to be
sufficient to check with any of the associated distrust repositories when processing a NEG
evaluation context. While this requirement can be relaxed by changing the behaviour
for the NEG evaluation context, this design cleanly separates operational issues from
algorithmic ones, thus simplifying the inference algorithm.

The problem of maintaining consistency among distrust repositories is a standard
problem of implementing replicated services. For distrust repositories, because of the
security implication, it is crucial to enforce strong consistency among repositories. Strong
consistency means that the publication of a trust instance to a repository will only be
available if all repositories acknowledge its existence. The replication problem for distrust
repositories is however simpler than, for example, replicated file services because the only
update operation is append, which does not cause conflicts between replicas.

One approach for strong consistency is to use quorum assembly with an atomic commit
protocol such as the two-phase commit protocol. Such a protocol ensures all replicas in the
quorum reach the same decision for an operation, either commit or abort. The decision
is then propagated to other replicas. Nevertheless, because of the sensitivity of distrust
information, it may be undesirable to abort the publication of trust instances.

Another approach is to apply the passive replication scheme, as illustrated in Fig-
ure 5.1. One of the distrust repositories is elected to act as the primary replica. A prin-
cipal publishes a trust instance through the primary repository, which in turn forwards
the update to backup repositories. This scheme keeps strong consistency by ensuring the

122

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

update operation (i.e. the publication of trust instances) can only be done through the
primary replica, while all replicas (both primary and backup) may handle query requests.
In order to deal with network partitioning, the reachability between every backup repos-
itory and the primary repository must be monitored. If the primary repository is not
reachable either because of machine crash or network partitioning, a backup repository
should stop or downgrade its service, e.g. returning an “unknown” status when a queried
trust instance is not in its repository instead of returning a definite “no entry” response.
Under such circumstances, a new primary repository may be elected using some election
protocol to resume normal services.

5.1.3 Tracking validity

The algorithm described in Section 5.1.1 deliberately separates the construction of validity
conditions from the inference process. Recall that the validity condition for a new trust
instance may either be explicitly specified in the valid clause of a trust policy, or implicitly
derived from its prerequsite trust instances. It is therefore necessary to address both
implicit and explicit construction of validity conditions in the algorithm.

To add support for explicit validity conditions, the SUCCESS evaluation context needs
to be augmented to include the validity condition as specified in the valid clause. Recall
that a SUCCESS context is pushed into the evaluation stack when a trust policy is
decomposed. Processing a SUCCESS context should then use the contained validity
information to create the validity condition for the new trust instance.

For implicit validity conditions, there must be a mechanism for computing the weakest
validity condition among prerequisite trust instances as described in Section 3.5.8. Toward
this goal, the inference context IC' is augmented with a validity condition, denoted IC.V.
1C.V serves as temporary storage for the weakest validity condition discovered so far. For
descriptive convenience, we assume it may be one of always, period, or status. IC.V
is initialized to always when IC' is created. During the inference process, on a | UNIFY
— ti < tt | context, after a successful unification between ti and t¢, the validity condition
of t2 must be merged with IC.V | according to the rules defined in Section 3.5.8. The new
validity condition is stored back at IC.V. When the inference steps are completed, the
1C.V will contain the weakest validity condition.

A separate issue regardless of whether the new validity condition is derived implicitly
or explicitly is the dependency between online validity conditions. Suppose the following
trust policy is defined:

t1(...) : self — p,ta(...) = self — p asserts t3(...) : self —p

Also suppose that appropriate trust instances for t; and t,, whose validity conditions are
both online status checks (i.e. status), are given to obtain an instance of ¢3. The validity
condition for t3 will be status by the validity computation rules. However, the online
validity of the t3 instance should be subject to the validity of ¢; and 5 instances. If either
the £, or t5 instance invalidates, so should the 3 instance.

One approach to track this dependency is to use a wvalidity dependency tree. Each
node of the tree contains sufficient information to query the validity of a trust instance,
e.g. a location and a hashed value of the trust instance. A parent-child link represents
a validity dependency, i.e. the validity of the parent depends on the validity of all its

123

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

t1(...) : self — p, ta(...) : self — p asserts t3(...) : self —p
v
Hash: M1e092eka4...
URL: http://opera.cl.cam.ac.uk/fidelis/...

=)

Hash: B2tgaAb91ah.... Hash: Hao12Is08sDauA®...
URL: http://opera.cl.cam.ac.uk/fidelis/... URL: http://opera.cl.cam.ac.uk/fidelis/...

Figure 5.2: Validity dependency tree

children nodes. Figure 5.2 illustrates a validity dependency tree. Solid lines represent
links between nodes, while dashed lines represent the correspondence between parts in a
trust policy and nodes. A node contains two pieces of information: a hash value for a
trust instance and a URL location where the validity status can be obtained.

The construction of a validity dependency tree can be integrated with the inference
algorithm. We first augment the inference context IC' with a tree construction stack
IC.VS. The elements of the stack are the nodes waiting to be added to a tree. Initially,
IC.VS is empty. On encountering a [UNIFY — ti < tt | context with the validity
condition of ti being status, suppose the unification between ti and tt succeeds, a node
representing ti’s validity condition is created and pushed into IC.VS. On a [SUCCESS —
tm, {aty, ...,at,} | context, the inference engine shall create a new validity condition with
all the nodes in I1C. VS popped out and made as its children. The new validity condition is
then pushed into IC.VS. This process continues until the inference algorithm terminates.
On a success, IC.VS will be left with one element, which is to be the root node of a
dependency tree. The children nodes will already be properly constructed.

When the status query of a trust instance is requested, its dependency tree should be
consulted, traversing each node and collecting status information. When the traversal is
completed, the status of the root node can then be determined.

5.1.4 Runtime analysis

Before the runtime of the algorithm can be analyzed, it is essential to discuss the ter-
mination property of the algorithm. The termination of the algorithm is subject to the
input policies. The input policies must be cycle-free, otherwise the algorithm may be
non-terminating on certain queries. A cyclic policy is one whose result trust instance is
either directly or indirectly one of its own prerequisite trust instances. A straightforward,
although somewhat artificial, example would be:

t1(a) : self — p asserts t;(a) : self — p

where t; is the name of a trust statement, and a and p are variable placeholders. A more
complicated and realistic example would be:

t1(a) : self — p asserts ty(a) : self — p (P3)
to(a) : self — p, t3(a) : self — p asserts ti(a) : self — p (P4)

124

CHAPTER 5. Inference and Trust Negotiation 5.1. Policy inference

where tq, t5, and t3 are names for trust statements, and a and p are variable placeholders.
These two policies form a cycle since in order to assert a t, instance, a t; instance is
needed. However, to obtain that ¢; instance, the same ¢, instance would be needed. This
hence creates a cycle, and the queries to obtain either ¢; or ¢y instances will lead the
algorithm into an endless recursion.

The algorithm described in this chapter is in fact a recursive version of a depth-first
search over the set of input policies. Let the input set of policies be P and the input set
of trust instances be I. Let N be the total number of terms of P, where a term includes
a trust use, distrust use or trust template in a trust policy (please refer to syntax 3.21 on
Page 72 for details). Finally, let M be the maximum number of parameters in any trust
instance.

The runtime of the algorithm depends mainly on the processing of | LOOKUP |
contexts. We shall therefore first consider the maximum possible number of [LOOKUP |
contexts in any query run. A query starts with one [LOOKUP | context. The processing
of a [LOOKUP | context might generate either a [UNIFY | context or more [LOOKUP
] contexts. Suppose on the processing of the i'® [LOOKUP] context, the number of
new [LOOKUP | contexts is ;. The total number of [LOOKUP | contexts is hence
>" x;. However, recall that a new [LOOKUP] context is generated for each trust use in
a policy. Since the maximum number of terms is NV, and P is acyclic, the total number
of [LOOKUP | contexts for any query is thus:

> n = O(V) 6.1

We shall now analyze the cost for processing each | LOOKUP | context. When pro-
cessing a [LOOKUP | context, the algorithm first searches for a trust instance matching
the query template of the context in I. Provided trust instances in I are indexed by hash
values of their digests, the search may be done in constant time, O(1). If a match is not
found, the algorithm attempts to search for matching policies in P. Similarly, policies
in P may be indexed by the names of trust templates or action templates for trust and
action policies respectively. The search would therefore be done in O(1) time. The total
time for this case is:

O(1) + 0(1) = O(1) (5.2)

If a matching trust instance is found in I, a [UNIFY | context is created. Processing
a [UNIFY | context involves comparing all parameter values in a trust instance and a
trust template. This operation is linear, and as the maximum number of parameters is
M, it would cost O(M) time. The total runtime for this case is therefore (where O(1) is
the time to search a match in I):

O(1) + O(M) = O(M) (5.3)

Comparing with Equation 5.2, we know that the worst runtime for processing any |
LOOKUP] context is O(M). Combining with Equation 5.1, we shall conclude that the
runtime for processing any query would cost:

O(N) x O(M) = O(MN) (5.4)

125

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

TAA TAB
L Service request |

M,y

Insufficient trust

Policy offer
My ||

Alternative policy request
M; - »
M, ||« Policy offer
Get trust instances

Ms >

Trust instances
My ||e
M, Service request .
o |l Service response

Figure 5.3: A trust negotiation session

5.2 Trust negotiation

As discussed previously in Section 4.2.6, trust negotiation is an approach to facilitate
communication between unfamiliar principals. The aim is to enable two strangers to
gradually gain trust in each other, and subsequently, provide services, vouch for the
stranger, etc. This section first describes a trust negotiation framework, followed by a
description on meta-policies, which drive the behaviours of trust negotiation sessions.
There are two aims of this negotiation framework: first, as an experiment validating
Fidelis; second, as an experimental framework for future research on negotiation protocols.

5.2.1 Trust negotiation overview

Trust negotiation is embodied as negotiated requests, where a request may be a service
request or a trust establishment request. It is carried out between a pair of principals
or trust agents acting on behalf of some principals. We write TA 4 for the trust agent
representing principal A and TAp for B. Suppose A attempts to establish a trust rela-
tionship with a stranger B, i.e. obtaining a trust instance from B regarding A, it makes
this request to TA 4, which in turn communicates with TAp and successively exchanges
trust instances until the trust request satisfies the requirements set by B. The session of
exchanging trust instances is called a trust negotiation session. A trust negotiation session
is governed by a negotiation protocol, which defines the messages and their flow. The
behaviour of trust agents TA, and TAp may be defined through a set of meta-policies.
A meta-policy defines the conditions when a trust instance or policy can be disclosed. It
is discussed fully in Section 5.2.3.

A sample protocol session is illustrated in Figure 5.3. TA4 initiates a request for
gaining a trust instance in message M;. TAp examines the relevant trust policy of B and
decides that more trust instances are needed to satisfy the request. It thus replies with
an insufficient trust exception and offers some policies to TA4 (My). TA4 may decide
to choose other policies than those offered. In this case, it sends an alternative policy
request (M3) back to TAp. In order to gain more trust from TAg, it may attach some

126

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

trust instances along with the request. With more knowledge about A, TApg replies with
another, perhaps less stringent set of policies in My. If a policy offered by TAg requires
TA 4 to reveal some sensitive trust instance, TA 4 may wish to first ensure TAp has the
rights to see it. This could be achieved by explicitly asking for some trust instance of B,
as represented by M5 and Mg. This conversation continues until TA 4 and TAp establish
a mutually agreed policy or abort. In the prior case, TA 4 then finally re-sends the request
with reference to the negotiated policy (M,,_1). TAp then passes this request on to B,
which generates a response (M,,).
The detail of the protocol is described in the next section.

5.2.2 Trust negotiation protocol

The protocol is based on a sequence of request/response messages. There are nine types
of message:

e general request (GR),

e general request result (GRR),

e insufficient trust exception (ITX),
e policy offer (PO),

e alternative policy request (ALT),
e credential request (CR),

e credential disclosure (CD),

e general abort request (GA).

e general abort acknowledge (GAA).

A general request message represents either a trust establishment request or an action
request. It consists of the real request, an optional policy (or its reference), and an optional
set of trust instances. The trust instance set provides assertions about the requester for
satisfying the trust requirement of the request. The policy sent along with a GR message
is offered and signed by the responder. This policy may be a general policy that applies
to the same type of request, but is more likely to be a tailor-made policy for the specific
request concerned. A general request result is a computation result of the request. For
example, on a trust establishment request, the result may be a new trust instance or a
refusal; a read action on a file may return the content of the file.

An insufficient trust exception indicates that the presented set of trust instances does
not meet the trust requirement for a request. It may be accompanied by a policy offer
message, which contains a set of signed policies granting the requested operation. An
alternative policy request is sent when the requester wishes to find out other policies
that may be offered by a responder, e.g. if it does not wish to comply with any of the
offered policies. The message may contain a set of trust instances, which provides more
information about the requester, in the hope of it thus convincing the responder to allow
it to obtain less strict policies.

A credential request message is similar to the getTrustinstance method in the con-
veyance interface described in Section 4.2.2. It consists of a trust template, and effectively

127

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

START l

v

v
ALT RCVD CR SENT) |

CR RCVD

v
ALT SENT |

Figure 5.4: State diagram for the negotiation protocol. The solid lines indicate the path
for the requester TA, while the dashed lines indicate the path for the responder TA.

does a simple lookup for a trust instance. Unlike getTrustinstance, it is associated with a
negotiation session and the result may be influenced by beliefs learned within the session.
A credential disclosure message contains a set of trust instances that satisfy the trust
template of a CR message.

A general abort message is for forcibly terminating a negotiation session. Session
states are normally deleted at the end of the session, either due to a normal termination
or abort. Typically garbage collection should also be invoked at a fixed interval to prevent
stale session states left by crashed or uncooperative negotiating entities.

The protocol action is described as a finite state machine. The states correspond to
the sending and receiving of each message, e.g. GR SENT, ALT RCVD, CR SENT, etc.
There are two special states, START and DONE as the initial and the completion states
respectively. Figure 5.4 shows the finite state machine, without showing the states for
general abort messages to simplify the figure. A general abort may be initiated by either
side, at any RCVD state, i.e. some message has been received. The lines connecting states
represent occurrences of some event, solid lines for events on the requester TA, dashed
lines for the responder TA. For the protocol action, we shall describe only the requester
side, i.e. the solid lines. The one for the responder side mirrors the requester side.

A requester initiates a negotiation session by sending a general request message with
an empty policy and a possibly empty set of trust instances since the requester does not
know the requirements for authorizing the request. In the GR SENT state, it may receive
the result for the request, which causes the session to end successfully in the DONE state.
It may receive a CR message, which means the responder attempts to directly obtain trust
information to grant the request. If the requester has the requested trust instance, the
requester may decide if it wishes to disclose it. If disclosed, the responder should return
the result for the request; if not disclosed, it moves back to the GR SENT state so that
other options may be attempted. In GR SENT, the requester may receive an insufficient
trust exception, taking into the I'TX RCVD state. In this state, the requester may retry
the request with more trust instances, thus back into the GR SENT state. The responder

128

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

may send a policy offer message along the exception, resulting in the PO RCVD state.

In the PO RCVD state, the requester examines the offered policies, chooses appropri-
ate trust instances and retries the request (PO RCVD—GR SENT). If the offered policies
require a disclosure of some sensitive trust instances, the requester may wish to first check
the responder’s trust information. It may hence send a CR message (PO RCVD—CR
SENT). It may decide to renegotiate for another set of policies, by providing more infor-
mation about itself. It sends an ALT message and the responder may return a new set of
policies or nothing (i.e. an empty policy set). In the CR SENT state, the requester either
receives a trust instance matching its query or nothing. In the former case, it discloses
the sensitive trust instances concerned and retries the request (CR SENT—GR SENT).
In the latter case, the requester needs to re-examine the offered policies, and returns to
the PO RCVD state.

As previously mentioned, a general abort may take place after any message is received.
Specifically, on the requester side, it may wish to abort a session at state I'TX RCVD, PO
RCVD, and CR RCVD, and it should be prepared for a GA message at state GR SENT,
ALT SENT and CR SENT.

5.2.3 Meta policies

During a trust negotiation session, trust agents on both sides need to determine which
trust instances and/or policies can and should be disclosed. These are particularly im-
portant if they contain sensitive information, i.e. their disclosure may hamper security
or cause privacy invasion. An impractical approach is to have human involvement in a
negotiation session so that human principals on either side will review and decide what
information is to be given, according to some guideline or rules.

In an attempt to automate this decision process, a FPL profile for meta-policies is
described. Meta policies serve two purposes:

e defining disclosure criteria for trust instances used in a general request message, an
alternative policy request or in response to a credential request message.

e defining criteria governing the conditions when policies might be offered.

They are based on a denial-by-default rule, i.e. if a trust instance or policy is not explicitly
allowed to disclose in a context (i.e. to a principal, to an action request, etc), it is con-
sidered as confidential. The vocabulary for this profile is designed to support four types
of disclosure policies: designated principal disclosure, context-specific disclosure, trust-
directed disclosure, and mutual exclusion. The vocabulary is summarized in Figure 5.5.
Trust instances are used to represent facts known within a session. Hence their trusters
are always self, i.e. the trust agent itself. These may be constructed from the context, e.g.
if a trust agent is representing another principal requesting a check_balance operation,
this is represented as:

requested(check_balance(41245516)): self->self

They may also be facts learned from the negotiation process, e.g. if the negotiating party
sends a bank_branch trust instance, this would be represented as:

129

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

Entity Description

disclose(item) An action representing the disclosure of item.

negotiator() : self — p Stating principal p is acted on behalf by the
negotiating agent.

agent() : self — p Stating the identity of the negotiating trust
agent as p.

disclosed(item) : self — self Stating that a protected item item has been
disclosed at some point in this negotiation
session.

presented(item) : self — self | Stating that item has been presented by the
negotiating party at some point during the
current session.

requested(action) : self — self | Stating that action is requested in the cur-
rent negotiation session.

Figure 5.5: Vocabulary for the meta-policy profile

presented(bank_branch("20-17-19"): pl -> p2): self->self

In Figure 5.5, items are referred to as protected items, which include both confidential
trust instances and policies. For trust instances, they are given as trust templates, as
shown above. For policies, they are given as policy identifiers. A policy identifier is
assigned to every protected policy, and may be grouped to form a policy group, which
is also identified by a policy identifier. The action in Figure 5.5 represents an action
template with some or all parameters filled in.

We shall present some examples, demonstrating the use of the vocabulary for the
four types of disclosure policies. In the following examples, T1, T2, ... are used for trust
statements, and A1, A2, ... are for actions. We shall ignore their parameters where they are
irrelevant to the meta-policies. We will continue the prior convention of using lowercase
letters for variables and readable names for principal identifiers.

Designated principal. Protected items can be made available to only some designated
principals. Indeed, this is a common constraint in real life, e.g. a trust instance containing
personal banking details, e.g. account number, branch number, etc. may be restricted for
use at the bank itself. An example meta-policy would be:

negotiator(): self->p
where p = Alice
grants disclose(T1(...))

This specifies that trust instance T1 matching the template in the grant clause may be
disclosed only when negotiating with Alice.

Context-specific disclosure. In addition to constraining to specific principals, it is
often desirable to express constraints at the granularity of specific requests. For example,
one may allow the task of purchasing goods at a well-known online store to use only trust

130

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

instances for credit rating and address proof. The trust statement requested allows this
type of policy to be specified, as follows,

requested(A1(...)): self->self
grants disclose(T2(...))

This states that the matching T2 trust instances may only be disclosed if the request is
the specific A1 enclosed in the requested trust use. Note that a where clause may be
included to constrain parameters in both A1 and T2.

Trust-directed disclosure. The basis of trust negotiation is to exchange and gradually
disclose trust instances based on those presented by the negotiating parties, with the aim
to reach a sufficient level of trust on both sides for the requested operation. The trust
statement presented is designed precisely to allow specification of this type of disclosure
policies.

As an example, suppose a commercial service offers two classes of services: basic and
premium. The access to these services is governed by the category of the customer. If a
customer subscribes to the premium service, he or she will be identified by a premium_user
trust instance. Suppose the service only intends to disclose the access policies for premium
customers if it is negotiating with a premium customer, a meta-policy could be specified,

presented(premium_user(...): pl->p2): self->self
grants disclose("premium-policies")

The string premium-policies identifies the set of policies for premium customers. This
meta-policy allows the identified policies to be disclosed in a policy offer message, provided
the negotiating party proves that it possesses a premium_user trust instance.

Mutual exclusion. Mutual exclusion policies specify two or more trust instances should
not be disclosed within the same session. This is potentially useful if these trust instances,
when linked, would allow unnecessary or even sensitive information to be inferred. For
example, suppose a principal only wishes to be identified as an employee of a company
but does not wish to disclose her salary if she has disclosed the company she works for.
Mutual exclusion may be specified by combining disclosed trust statements and the
without clause. For example,

without disclosed(T3(...): pl->p2): self->self
grants disclose(T4(...))

states if an instance of T3 has been disclosed, then disclosure of T4 instances is prohibited.
Note that the disclosed statement is instantiated for a trust instance and made known
to the trust agent whenever the trust instance is sent to the negotiating party.

The above examples demonstrate relatively simple uses of the meta-policy vocabulary.
Complex policies may be expressed by combining these trust statements. The key design
of the meta-policy profile is the use of presented and disclosed trust statements, which
effectively represent historic events within a negotiation session. Their inclusion adds a
temporal dimension so that policies governing the interaction of protocol sessions can be
specified.

131

CHAPTER 5. Inference and Trust Negotiation 5.2. Trust negotiation

5.2.4 Related work

Automated trust negotiation (ATN) has only recently attracted interest from the research
community although the idea of mechanizing negotiation to reach common understanding
is not new. Indeed, the de-facto Internet security protocol, SSL/TLS [164], is a prime
example of credential-based negotiation. The SSL protocol however has an assumption,
driven by its protocol design, which requires the server to disclose its credentials before
learning anything about the client. The client may then be required to submit its own
credentials in exchange. However, SSL does not provide a mechanism for the client to
interrogate the server. (Note that such a mechanism does exist for the other direction,
i.e. the server interrogating the client). SSL can be considered as an early attempt at a
specific type of negotiation — identity authentication.

Winsborough et al. [168] describes a comprehensive trust negotiation framework with
a similar goal set out in this section. They model a negotiation session as a sequence of
credential disclosures, and each disclosure is guarded by a credential access policy (CAP).
A CAP may be satisfied by the requester disclosing a set of other credentials, similar to the
trust-directed disclosure described in the previous section. Their framework includes two
negotiation strategies. In the eager strategy, as soon as a CAP is satisfied, the credential
will be disclosed. In the parsimonious strategy, credentials with satisfied CAPs are only
disclosed if they are needed to satisfy other CAPs. However, their negotiation strategies
essentially hard-code the protocol behaviour whereas the Fidelis negotiation framework
advocates a fully policy-driven approach — each principal may define its own meta-policies
that control the protocol behaviour, which gives an increased flexibility.

In most prior work on ATN, the only entities that are assumed to contain sensitive
information are the credentials. Seamons et al. [169] identifies that policies may also be
sensitive in practice and proposes an extended trust negotiation framework which allows
policies to also be subject to protection. They employ a similar mechanism to protect
policies, and also support two strategies for controlling the disclosure of policies. The
Fidelis negotiation framework is designed to provide a uniform treatment of both trust
instances and policies — the policy-driven mechanism does not distinguish the types of
protected entity. With the policy-driven protection of policies, the Fidelis negotiation
framework is therefore more flexible than the hard-coded strategies in Seamons’ ATN
framework.

A recent work by Winsborough et al. [170] examines and partly addresses the infer-
ential disclosure of credentials. Their observation is that most prior work on ATN is
under the assumption that all parties are sane and honest, and will follow the negotiation
strategy as specified. However, Winsborough noted that by observing the responses to
certain types of request, a party may attempt to link and derive sensitive credentials held
by the other party. For example, let A, B, X, and Y be trust statements. Suppose Alice
has defined a trust relationship:

AC...): self -> p asserts B(...): self > p

Now suppose an instance of B contains sensitive information, and its disclosure policy
requires an instance of X to be first presented by the negotiating party. Further, suppose
the disclosure policy of an instance of A requires presenting an instance of Y. Finally,
suppose Bob who does not possess instances of X but does have an instance of Y may

132

CHAPTER 5. Inference and Trust Negotiation 5.3. Summary

infer, with a high probability, that Alice does own an instance of B by finding out that
she has A.

They propose a partial solution to the problem. The idea is that the response for
querying A and B should be uniform, thus disabling the negotiating party to infer whether
Alice has either A or B. They extended the notion of credential access policy (CAP)
to acknowledgement policy (AP). Essentially an acknowledgement policy is an access
policy for policies. For example, an AP may be associated with the trust relationship
above, demanding the presentation of a valid X before disclosing A, B and the policy
itself. While the Fidelis negotiation framework is not specifically designed to address the
inference problem discussed here, its policy-driven disclosure protection of policies may
achieve a similar effect for acknowledgement policies, i.e. by explicitly specifying the trust
instances that must be known before a policy itself may be disclosed. Furthermore, the
Fidelis negotiation framework allows the specification of relationships between policies,
i.e. allowing the disclosure of policy A provided policy B is not disclosed. To the best
knowledge of the author, Winsborough’s acknowledgement policy does not have provision
for this type of linkage of policies.

5.3 Summary

At the centre of Fidelis is its policy inference algorithm. In the last chapter, an informal
semantics was provided. This chapter has described an algorithm that implements these
semantics. Additionally, the design and implementation issues for managing distrust
information and tracking validity conditions have been discussed.

This chapter has also presented a trust negotiation framework that trust agents may
implement to enable strangers to gradually gain trust in each other and subsequently per-
form trust-based requests. A trust negotiation protocol has been described. In addition,
an FPL profile for specifying meta-policies that control the behaviour of automated negoti-
ation sessions has been described. The primary innovation of this negotiation framework,
in contrast with most other prior work, is its fully policy-driven approach. The most
appealing feature of this approach is its increased flexibility and extensibility. The frame-
work has been positioned as an experimental platform for future research on automated
trust negotiation.

In the next chapter, we shall examine Fidelis operating in a number of real-world
application scenarios.

133

CHAPTER 5. Inference and Trust Negotiation 5.3. Summary

134

Applications

In previous chapters, we have described fragments of several applications to illustrate
the use of the policy language and motivate our design for web services. The focus of
this chapter is to describe a number of case studies, providing detailed studies of the use
of Fidelis in real-world applications. It begins with a study on implementing role-based
access control (RBAC) using Fidelis in Section 6.1. Two prominent models of RBAC are
examined, the OASIS RBAC [3, 5] model and the RBAC96 (and derivative) model [§],
and Fidelis is shown to successfully model policies in both models. Section 6.2 describes
Fidelis for the World Wide Web. In particular, it describes the integration of Fidelis with
the popular Apache web server [171] and provides a number of examples demonstrating its
use. In the last case study, we describe an electronic marketplace, consisting of multiple,
independent parties. The primary goal is to illustrate the use of Fidelis in a decentralized,
cooperating environment.

6.1 Role-based access control

As the research of role-based access control matures, we are beginning to observe a growing
adoption of RBAC in operating systems, database management systems, and general
applications. As described in Chapter 2 (Section 2.1.5), with the concept of roles, RBAC
has clear advantages over the traditional DAC or MAC in its scalability, flexibility and
manageability. For a system with a large number of users, RBAC simplifies security
administration — the assignment of users to their appropriate roles, and privileges to
these roles. As the number of roles will typically be significantly less than the number of
users, this increases both scalability and manageability of the system. RBAC is also more
flexible in the sense that both MAC and DAC may be simulated by properly configuring
RBAC policies.

Fidelis may be used to model RBAC policies. The underlying idea is to consider roles
as a property of a principal, and expressing the membership of a role with trust instances.
In this section, we shall discuss the use of Fidelis to express two distinct RBAC models:

the OASIS RBAC model [3, 5] and the RBAC96 derivatives [8, 40, 41].

135

CHAPTER 6. Applications 6.1. Role-based access control

6.1.1 OASIS role-based access control

The OASIS RBAC model builds on the basic concepts of RBAC, separating three types
of base entities: users!, roles and privileges. In addition, it introduces the notion of
appointments and environment predicates. Chapter 2 includes a brief review of OASIS.
Here we summarize the key features of its RBAC model.

e Parametrized roles and privileges. Roles may contain parameters to include at-
tributes specific to a particular role member, e.g. the local user identifier. Parame-
ters in a privilege enable the specification of fine-grained authorization policies, e.g.
a parameter for read might give the pathname to the requested file.

e Session-based roles. Every user works within some session, within which roles may
be activated. Only privileges of active roles may be exercised within a session.
Deactivation of roles is based on an automatic, chained revocation, which may be
triggered by the termination of a session.

e Policy-based. The rules for role activation are specified in activation rules. Activa-
tion may be subject to three types of conditions: prerequisite roles, appointments
and evaluations of environment predicates. Privileges are assigned to roles through
authorization rules.

e Appointments as persistent credentials. In addition to session-based roles, appoint-
ments (which are similar to parametrized roles) are included for applications which
require an extended lifetime beyond sessions for maintaining information about prin-
cipals.

Rules in OASIS are written in the syntax of first-order logic. Consider an example
from [5]. An activation rule

A_employed(username?), E_is_doctor(username, dept?) R_doctor(username, dept)

where A_employed is an appointment, F_is_doctor is an environment predicate and R_doctor
is a role. In this thesis, we follow a naming convention for these OASIS entities, where the
prefix A E_, R_, and P_ indicates an appointment, an environment predicate, a role or
a privilege respectively. Parameters affixed with a question mark (7) are out-parameters,
whereas parameters without a trailing question mark are in-parameters.

Upon evaluation, if an out-parameter exists in a role or appointment, it binds to
the value of the corresponding parameter. If it exists in an environment predicate, the
evaluation of the predicate must set its value upon completion. For an in-parameter, it
obtains the binding from a previously bound out-parameter with the matching parameter
symbol. For example, in the above rule, username is first bound to the corresponding
parameter in an A_employed appointment instance. The value is then given as an input to
the evaluation of E_is_doctor. The semantics of an activation rule is that every antecedent
(i.e. conditions on the left hand side of the - symbol) must be satisfied for the consequent
to be activated. Satisfaction is subject to correct bindings of parameters.

An authorization rule is in a similar form. For example,

!The term user is used interchangeably with principal in the OASIS model and in most RBAC models.
In OASIS, a user refers to a user session [5].

136

CHAPTER 6. Applications 6.1. Role-based access control

R_treating_doctor(username?, pat-nhs_id?) - P_read_health_record(pat_nhs_id)

where R_treating_doctor is a role and P_read_health_record is a privilege. The evaluation
semantics are identical to activation rules. The meaning of this rule is therefore: the
requester must prove he/she is a treating doctor of a patient within the current session
for the request of reading the patient’s health record to be granted.

Mapping into Fidelis policies. Fidelis is derived from the work on OASIS, with a
degree of semantic similarity in their policy languages. Hence a near-perfect mapping
from OASIS policies into the Fidelis counterparts is possible.

Semantically, OASIS users equate to Fidelis principals. Nevertheless users in OASIS
are implicit. It is always assumed that at policy evaluation, the only user concerned will
be the requester. As will be seen later, the explicit treatment of principals in Fidelis
permits greater control and flexibility.

Appointments are mapped into trust statements. OASIS appointments are intended
to express task assignment and qualification. For example, suppose Alice is employed
at Hospital A with the employee identifier “aek322”. She may be given an appointment
instance by the human resource department of the hospital to testify her status as an
employee:

A_employed (“aek322”)

The corresponding trust instance would be:
A_employed("aek322") : HospitalA -> Alice

This trust instance means that the truster (i.e. the human resource department at Hospital
A) believes that the subject (namely, Alice) is a legitimate employee of the hospital, with
the employee identifier “aek322”. Note that the trust statement approach explicitly states
the issuer and the subject of an appointment instance, which may be used to aid policy
specification.

Fidelis actions correspond directly to OASIS privileges. Recall that at specification,
actions have explicit requesters, whereas in OASIS authorization rules, the requesters are
implicit. An example will be provided later to illustrate this difference.

In the OASIS model, roles are always bound to sessions. There is no concept of
“Inactive roles” as in other RBAC models (see Section 6.1.2). Membership of a role may
be expressed as a Fidelis trust statement, shown in the template form below:

as_(role name) (s, ...)

where the eclipses correspond to the parameters of the role, and s represents a session
identifier. An instance of this trust statement means that the subject is currently active
in the role within session s. There are two approaches to provide the value for s within
a trust or action policy: it may either be provided as a part of an input environment
at evaluation time, or alternatively, it may be explicitly set through a set clause. In
OASIS, names of roles and appointments exist in different namespaces, whereas as both

137

CHAPTER 6. Applications 6.1. Role-based access control

are mapped into Fidelis trust statements, care therefore must be exercised to avoid conflict
of names.

Environments in OASIS are designed for two purposes: (1) specifying constraints on
parameters, and (2) assigning values to parameters. In Fidelis, these are achieved through
where and set clauses. An OASIS environment predicate is therefore decomposed and
mapped into expressions in where and set clauses.

Validity conditions for trust instances that represent appointment are often in the
form of expiry periods, as appointments are intended to express long-lived facts. For facts
independent of time limits, e.g. a degree one has earned, permanent validity conditions
may be used. However, for roles, because of the session-based nature, online status would
be appropriate as validity conditions for as_(role name) instances. Such status would
reflect the status of a session, i.e. set to true when a session is initiated, and false when
a session terminates.

We will now consider several examples adopted and modified from [5] and demon-
strate the specification of OASIS-style RBAC policies in Fidelis, using the mapping rules
described previously. These examples share a common background of an electronic health-
care system.

Example 6.1 Suppose every employee in Hospital A is issued with an appointment in-
stance A_employee, which has one parameter — the local username. A doctor may then
use her appointment instance to activate the role R_doctor. Suppose the activation rule
is:

A_employed(username?), E_is_doctor(username, dept?) = R_doctor(username, dept)

where FE_is_doctor is an environment predicate that takes a username and returns true
if username is a doctor and sets the doctor’s department in dept. The same rule coded
as a Fidelis trust policy would be:

A_employed(username) : self -> p (P1)
asserts as_doctor(s, username, dept) : self -> p
where “do a database query to determine whether username is a doctor.”
set dept = “username’s department from a database query”
s “new session identifier”

Note that self in the policy above binds to Hospital A’s public key identifier when the
policy is deployed. Besides the syntactical differences, in the OASIS rule, the user is hidden
from the specification, while in the Fidelis counterpart, there is an explicit treatment of
both the policy owner (in this case, Hospital A) and the principal concerned. In this
case, one is required to show an A_employed trust instance issued by the specific principal
represented by self, and after evaluation, a new trust instance of as_doctor is explicitly
bound to the same principal as the subject of the presented employed trust instance. A
new session identifier will be generated and assigned to the variable s upon successful
evaluation. This contrasts to the implicit session management in the OASIS counterpart.

Example 6.2 Suppose a doctor on duty in a clinic will be active in role R_doctor_on_duty.
An on-duty doctor may be assigned to provide treatment to outpatients. This assignment
takes place after an outpatient arrives and registers at the clinic. The registrar staff will

138

CHAPTER 6. Applications 6.1. Role-based access control

then issue an appointment instance A_patient_assigned to the appropriate doctor. With
this appointment instance, an on-duty doctor may then activate the R_treating_doctor
role for the specific patient. In OASIS activation rules, this could be expressed as:

R_doctor_on_duty(username?, dept?), A_patient_assigned (pat-nhs_id?)
R_treating_doctor(username, pat_nhs_id)

where pat_nhs_id is the patient’s unique NHS identifier, username and dept are respec-
tively the doctor’s local user identifier and his/her serving department. The equivalent
policy in Fidelis would be:

as_doctor_on_duty(s, username, dept) : self -> p (P2)
A_patient_assigned(pat_nhs_id) : self -> p
asserts as_treating_doctor(s, username, pat_nhs_id) : self -> p

Note that the subjects for both as_doctor_on_duty and patient_assigned instances in the
Fidelis formulation are explicitly required to match because of the variable matching
semantics. The explicit treatment of principals also increases the flexibility. For example,
as a principal may be a group principal, a patient_assigned instance may be issued to a
group of doctors, allowing activation by any of the doctors in the group.

Example 6.3 The ultimate goal of RBAC is to enable authorization decisions. Following
from the examples above, suppose one authorization rule for accessing a patient’s health
record is that the requester is one of the patient’s treating doctors, i.e. is in an appropriate
R_treating_doctor role. In OASIS authorization rules, this can be expressed as:

R_treating_doctor(username?, pat_-nhs_id?) & P_read_health_record(pat_nhs_id)

where P_read_health_record is a parametrized privilege that takes an NHS identifier, pat_nhs_id.
This rule states that in order to be granted with read access of a patient’s record, a re-
quester must be active in a R_treating_doctor role with the patient’s NHS identifier as a
parameter. The same rule can be coded as a Fidelis action policy:

as_treating_doctor(s, username, pat_nhs_id) : self -> p (P3)
grants P_read_health_record(s, pat_nhs_id) : p

In this formulation, the requester for action P_read_health_record must match with the
subject of the presented as_treating_doctor instance, namely, the doctor who is currently
active in the role. Note that however, P_read_health_record takes an additional parameter,
the session identifier, s, whose value is obtained through the session identifier contained
in the as_treating_doctor instance.

6.1.2 RBACY96 and the NIST unified model

RBACO96 [8] is a family of four models, RBACy, RBAC;, RBAC;, and RBAC;3. RBAC, is
the base model, defining users (U), roles (R) and privileges (P) and association between
users and roles (user assignment, UA), and roles and privileges (privilege assignment, PA).
It also defines the notion of sessions (S), where sessions contain active roles. RBAC;

139

CHAPTER 6. Applications 6.1. Role-based access control

DIR

PLI/\PLZ
/\ /\ Legend
PE1 El PE2 QE2 DIR | Director
\/ PL Project leader
PE Production engineer
ENG ENG2 QE Quality engineer
ENG | Engineer
ED Engineering department
ED E Employee

E

Figure 6.1: An example role hierarchy (adopted from [8]).

builds on RBAC, and adds the notion of role hierarchy. This will be discussed in more
detail later. RBAC, adds to RBAC, with constraints. The most important constraint is
the separation of duty constraints, also discussed later. RBACj3 is a combined model of
RBAC; and RBAC,. A recent attempt to unify the diversity of RBAC models resulted
in the NIST wunified RBAC framework [40, 41]. The framework describes three levels
of RBAC models: core RBAC, hierarchical RBAC and constrained RBAC. These are
essentially RBACy, RBAC; and RBACs;, with an extension for review functions. For
example, user-role review returns the set of roles a user is assigned to, including those
inherited; role-user review does the opposite, and role-privilege review returns the set of
privileges a role is directly granted or inherited. The review functions are intended to
help administrators inspect the configuration of RBAC policies.

Role hierarchy is a partial order on roles, based on the “seniority” relation. Figure 6.1
shows an example of a role hierarchy, adopted from [8]. In this figure, senior roles are
shown above junior roles. There exists several interpretations for role hierarchies. The
most common ones are privilege inheritance [8, 38, 41| and activation hierarchy [44]. In
the privilege inheritance interpretation, a role inherits privileges assigned to all its junior
roles, including transitive ones. For example, in Figure 6.1, role PL1 will have privileges
granted to PE1, QE1, ENG1, ED, and E. In the activation interpretation, a user assigned
to a role may activate any of its junior roles in a session, including transitive ones. So that
if a user is assigned to PL1, she may activate PE1, QE1, ENGI1, ED, or E in a session.
Effectively, the user is implicitly assigned with those roles.

As reviewed in Chapter 2, separation of duty is a mechanism for decomposing a task
into sub-tasks, and assigning them to different users for execution in order to increase
security and protect integrity. For RBAC, several types of separation of duty constraints
have been discussed in the literature [46, 31, 32]. The more commonly agreed concepts
are: static separation of duty (SSD) and dynamic separation of duty (DSD). Before
discussing these types of constraint, it is worth noting that the notion of sessions is
designed specifically to enable the support for separation of duty constraints and promote
the principle of least privilege. By activating a subset of all assigned roles, a user can
obtain “just enough” privileges for the current task and avoid violating separation of duty
constraints.

Static separation of duty defines a mutually exclusive set of roles that must not be

140

CHAPTER 6. Applications 6.1. Role-based access control

assigned to the same user. This places constraints on the assignment of users to roles
(i.e. the UA relation). Dynamic separation of duty works on a weaker basis, allowing
mutually exclusive roles to be assigned to the same user, but preventing them from being
simultaneously active in the same session. While SSD is simple, it is a stronger constraint
than DSD and may thus be inflexible for practical use.

Expressing RBAC96-style models. Fidelis policies can be written to express the
semantics of the RBAC96 and derivative models. A RBAC96 user equates to a Fidelis
principal. Therefore U, the set of all users, becomes the set of all principals in the system.
Privileges in RBAC96 are simple atoms, which can be modelled as parameter-less actions
in Fidelis. P, the set of all privileges, therefore maps into the set of all actions. Roles
in RBACO96 can be expressed as trust statements, so that a trust instance represents the
subject’s membership of a role. However, as RBAC96 distinguishes between active roles
and assigned but inactive roles, a role needs to be represented by two trust statements:

as_(role name) (s)
and
assigned (role name)

where (role name) is the name of a role and s is a session identifier. An instance of
the as_(role name) statement means that the subject is active as a member of the role
(role name), while an instance of the assigned (role name) statement indicates that the
subject is assigned with the role (role name) and may activate it for use in some session.
A trust policy captures the role activation mechanism:

assigned_(role name) : self -> p asserts as_(role name) (s) : self -> p

The binding value for s may be provided from an input environment at evaluation, or
from a set clause. This is similar to the treatment in the previous section.

Assignment of users to roles and privileges to roles are defined as relations in RBAC96.
User assignment is defined as UA C U x R and privilege assignment is PA C P x R. In
Fidelis, information in UA is mapped into trust policies, and members of PA are mapped
into action policies. For example, suppose a partial user assignment relation for the role
hierarchy in Figure 6.1 is as given in Figure 6.2. The same information may be expressed
as trust policies:

asserts assigned_E : self -> 1-of { Bob, Cathy, Dave, Eve } (P4)
asserts assigned_ENG1 : self -> 1-of { Bob, Cathy, Dave } (P5)
asserts assigned_PE1 : self -> 1-of { Bob, Dave } (P6)
asserts assigned_QEl1 : self -> 1-of { Cathy } (P7)
asserts assigned_PL1 : self -> 1-of { Dave } (P8)
asserts assigned_DIR : self -> 1-of { Eve } (P9)

Note that these policies produce trust instances with subjects as threshold principals.
The semantics of threshold principals allows any threshold number (in this case, 1) of
the members in the specified group to use the trust instance. An alternative approach

141

CHAPTER 6. Applications 6.1. Role-based access control

User Assigned roles

Bob { E, ENGI1, PE1 }
Cathy { E, ENGI, QE1 }
Dave { E, ENGI, PEIL, PL1 }
Eve { E, DIR }

Figure 6.2: Role memberships for users in the examples.

would be setting subjects in additional set clauses, possibly through database queries with
greater flexibility at the cost of verbosity. Privilege assignment (PA) may be expressed
in a similar fashion, albeit using action policies instead.

Role hierarchies are defined as a partial order on R, RH C R x R, written as >, e.g.
if 11 > 7y, then ry is directly senior to ry. A role hierarchy may be expressed as a set of
action policies or trust policies depending on which interpretation to use.

Privilege inheritance. With this interpretation, a role inherits privileges that all of its
junior roles are assigned with, and junior roles include those transitively defined. Suppose
role r is assigned with a privilege pv € P. In Fidelis, this is:

as_r : self -> p grants pv : p
Then for each role r; € R such that r; > r, add an action policy:

as_r; : self -> p grants pv : p
As an example, suppose role QE1 in Figure 6.1 is assigned with a privilege P1. Under

privilege inheritance, this assignment causes the following action policies to be introduced
in an atomic step:

as_QE1 : self -> p grants P1 : p (P10)
as_PL1 : self -> p grants P1 : p (P11)
as_DIR : self -> p grants P1 : p (P12)

Activation hierarchy. This interpretation of a role hierarchy enables a user to activate
roles she is assigned with, plus additional roles junior to those assigned. For a role r, its
activation would be specified as:

assigned_r : self -> p asserts as_r : self -> p
Activation of junior roles may be expressed as, for each r; € R such that r > r;,

assigned_r : self -> p asserts as_r; : self -> p

Based on this formulation, the sub-hierarchy rooted from QE1 of the hierarchy in Fig-
ure 6.1 may be expressed as the following trust policies:

142

CHAPTER 6. Applications 6.1. Role-based access control

assigned_QE1 : self -> p asserts as_QEl : self -> p (P13)
assigned_QE1 : self -> p asserts as_ENG1 : self -> p (P14)
assigned_QE1 : self -> p asserts as_ED1 : self -> p (P15)

Note that the Fidelis formulation for role hierarchies does not replace the seniority
relation (namely RH). Instead, it serves as a complement to the information in RH and
provides a semantics for the relation. In RBAC96 and derivatives, the interpretations are
provided through textual definitions.

The basis of expressing separation of duty constraints is through the distrust mech-
anism (i.e. the without clause). Separation of duty constraints are specified in the
RBAC96 family of models as sets of mutually exclusive roles. We shall consider static
separation of duty (SSD) and dynamic separation of duty (DSD) separately.

Static separation of duty. SSD enforces mutual exclusion of user assignment to roles.
That is if roles r; and ry are mutually exclusive, they cannot be both assigned to the same
user at any time. An approach to express this constraint as employed in RBAC96 is as a
set SSD C 2F, where each member of SSD specifies a set of mutually exclusive roles.

To express SSD constraints in Fidelis, without clauses need to be added to every trust
policy that represents user assignment for mutually exclusive roles. More specifically, for
every rs € SSD and r € rs, the user assignment policy for » would have the form:

without assigned_r; : self -> p, ..., assigned_r, : self -> p
asserts assigned_r : self -> p

where r; € (rs—{r}) for 1 <i <n, and |rs— {r}| = n. As an example, suppose role PE1
and QE1 in Figure 6.1 are mutually exclusive in SSD. The assignment policies P6 and
P7 would thus become:

without assigned_QE1 : self -> p (P6”)
asserts assigned_PEl : self -> 1-of { Bob, Dave } as p
without assigned_PE1 : self -> p (P7)

asserts assigned_QEl1 : self -> 1-of { Cathy } as p

The first policy ensures PE1 can be assigned to Bob or Dave if and only if they have not
already been assigned with QE1. The second policy ensures that QE1 can only be assigned
to Cathy if and only if she has not already been assigned with PE1. The combination of
these two policies hence correctly implements SSD between PE1 and QEL.

Dynamic separation of duty. DSD enforces mutual exclusion on role activation. It
is also captured as a set in RBAC96, namely, DSD C 2% whereby each member is a set of
mutually exclusive roles. If two roles r; and ry are in the same set, they may be assigned
to the same user but must not be activated simultaneously in the same session.

DSD constraints may be specified in Fidelis as without clauses in trust policies for
role activation. For every rs € DSD and r € rs, the activation policy for r would be:

assigned_r : self -> p
without as_r;(s) : self -> p, ..., as_r,(s) : self ->p
asserts as_r(s) : self -> p

143

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

where r; € (rs—{r}) for 1 <i <mn, and |rs— {r}| = n. Note that the variable for session
identifiers (i.e. s) must match across trust statements for active roles to ensure a faithful
modelling of the DSD semantics. Suppose PE1 and QE1 in the previous example are
mutually exclusive in DSD (instead of SSD), the trust policies for activation of PE1 and
QE1 will be:

assigned_PE1 : self -> p without as_QE1(s) : self -> p
asserts as_PE1(s) : self -> p
assigned_QE1 : self -> p without as_PE1(s) : self -> p
asserts as_QE1(s) : self -> p

Constrained by the without clause in the first policy, a principal assigned to PE1 may
only activate it if and only if he/she is not already active in QE1 in the same session. The
second policy works symmetrically and completes the mutual exclusion.

6.1.3 Discussion

As shown in this section, Fidelis may express a variety of role-based access policies.
For OASIS policies, there exists a near-perfect mapping to Fidelis policies. The major
difference in the policy specification between OASIS and Fidelis is that principals are
implicit in the former whereas they are treated explicitly in the latter. In OASIS, it is
assumed that when a policy is evaluated, there is only one principal in the context, i.e.
the role owner and/or the requester. In Fidelis, a policy may be evaluated in a context
where there exist multiple principals, as trusters and/or subjects.

Explicit treatment of principals in Fidelis provides additional power and flexibility. It
allows the specification of, for example, threshold-based access control, which is difficult
in OASIS. Moreover, it enables the specification of access policies for proxied requests, i.e.
requests passed through a chain of intermediary entities. In this case, a request appears
to the destination service as if initiated by the last-hop intermediary. Fidelis policies can
be easily written to distinguish principals, whereas in OASIS, this is awkward at best.

Fidelis can also express the policies of RBAC96 and its derivatives. It allows precise
modelling of role assignment, role activation, role hierarchy and separation of duty con-
straints. In general, the policy-based approach of Fidelis is more verbose than RBAC96’s
set-based specification, especially when used to express hierarchies. However, the policy-
driven approach defines a clear semantics. For example, for role hierarchies, it clearly
defines the intended interpretation, as privilege inheritance or activation hierarchy.

Because of the verbosity of the Fidelis approach for RBAC96 policies, it is conceived
that a policy tool may be constructed so that role policies may be defined and manipulated
graphically. Appropriate policies may then be generated automatically from the graphical
specification. This may both ease policy management and reduce human error.

6.2 Case study: Trust management in the World
Wide Web

Since its inception in the early 90s, the World Wide Web (WWW) has rapidly established
itself as the “killer application” of the Internet. However, authorization management for

144

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

GET / HTTP/1.1 M-GET / HTTP/1.1

Host: www.cl.cam.ac.uk Host: www.cam.ac.uk
Client Proxy |Man: cl.cam.ac.uk/ext/fidelis Server
HTTP/1.1 200 OK HTTP/1.1 200 OK

Ext:

Figure 6.3: Proxy mechanism supporting Fidelis trust management.

the WWW has traditionally been ad-hoc with lack of any uniform framework. The goal
of this case study is to apply Fidelis trust management to the WWW, devising a platform
on which new styles of collaborative applications may be built. The prominent types of
application include:

e Collaborative content management systems. A web site may determine the access
of its content (e.g. parental control, pay-for-content), or customize its content for
the intended audience based on the trust instances issued by third parties.

e Single sign-on systems. Users often need to maintain independent identities for each
site they use, e.g. different online shops, web space providers, pay-for-content sites,
etc. Single sign-on systems aim to provide a portable identity across multiple sites.
Existing solutions are usually based on some centralized database, whereas the trust
management approach offers an attractive privacy-respecting alternative.

The main consideration for the design is that it should introduce minimal or no changes
to the existing WWW architecture, and it should build on standards where possible.
Moreover, where changes to the architecture cannot be avoided, they should only be
made at the server end, not the client end. This is due to the fact that the WWW is a
well-established and mature technology. Introducing architectural changes would severely
limit the practical applicability and acceptance of the solution, or at the very least the
speed of its adoption.

6.2.1 Architectural overview

The aim of this case study is to integrate Fidelis into the existing WWW architecture in
a seamless fashion, thereby enabling trust instances to be used to assist the process of
content authorization, generation and delivery from a web server. Towards this aim, it
is essential to associate trust instances with HTTP requests (which underly the WWW).
This implies the web client (usually a web browser) needs to include a set of trust instances
of the user for requests it sends, and the web server needs to interpret and perform appro-
priate actions based on the submitted trust instances. Where necessary, trust negotiation
may need to be initiated alongside the HT'TP interactions.

In order to minimize the impact on the web client, our design makes use of the stan-
dard HTTP proxy mechanism. As described in the HTTP RFC [172], a proxy is an
intermediary program that acts simultaneously as a server and a client and is intended to
make requests on behalf of some clients. A proxy may transform requests from a client,

145

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

in which case, it is called a non-transparent proxy. The proxy designed for Fidelis trust
management is a non-transparent proxy, called the Fidelis smart proxy.

The overall architecture is shown in Figure 6.3. A client issues a standard HTTP
request, which is serviced by a smart proxy which transforms the client request into an
extended request, associated with a set of trust instances in the FIC (Fidelis Interoperable
Credential) format. The server then needs to interpret the request and its associated
trust instances, and perform relevant actions such as making an authorization decision,
customizing contents, etc. The extended request makes use of the HT'TP Extension
Framework [173], which allows custom extensions to be created for the HT'TP protocol.
For a response, the smart proxy simply relays the information returned by the server to
the client.

This architecture does not require any change to the web client, and hence satisfies our
basic design requirement. The smart proxy essentially acts as a trust agent as described
in Section 4.2.6, and may initiate trust negotiation with the server. Note that the smart
proxy is transparent to servers. The extended request produced by a smart proxy must
appear as if it is initiated by the client itself. The requester hence must bind the requester
identity, using the mechanism described in Section 4.2.7.

The server, however, needs to be extended to include Fidelis functionality. There are
two main functions that a Fidelis-aware web server must handle. First, it must understand
the HTTP extension that the Fidelis smart proxy uses, and second, it must be able to
expose its mechanism for handling HT'TP requests as Fidelis actions so that action policies
may be written to control its behaviour. For this case study, it was decided to integrate
Fidelis into the popular open-source Apache web server [171]. The next two sections
describe the extension work for Apache version 1.3.

6.2.2 Request handling in Apache

The Apache web server features a modular framework, whereby modules may be dynami-
cally loaded to enrich the server. Typical tasks performed by modules include transform-
ing HTTP requests, invoking external CGI (Common Gateway Interface) programs that
generate dynamic content, redirecting requests, and implementing custom authorization
schemes. A module consists of a number of hooks (or handlers) that are invoked by
Apache at appropriate times for two main purposes: to parse the configuration file and
to modify the behaviour of request handling. We shall discuss the latter in more detail.

Apache breaks request handling into several stages as illustrated in Figure 6.4. When a
request is received, it first translates the URI (Uniform Resource Identifier) in the request
into a local filename where possible. It then parses the HT'TP headers into a hash table
and in addition, performs some processing against these headers.

The next three stages are related to determining whether access to a page should be
granted. These three stages are named: access control, authentication and authorization.
The terminology is somewhat confusing. Essentially the access control stage refers to
mandatory access control, i.e. based on attributes that always exist on a mandatory ba-
sis, not provided at the user’s discretion. Primary examples include the user’s IP address
and the time of access. The authentication stage implements the HTTP authentica-
tion framework, described in RFC 2617 [174]. The framework specifies a mechanism for
challenge-response authentication to be performed between a client and a server. The au-

146

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

_..-_URl translation
Headers parsing
Logging T
Y T
“ [Authentication

™ Authorization

[MIME type checking]

Figure 6.4: Request handling cycle in the Apache server (version 1.x)

thorization stage comes after the authentication. It is designed for making authorization
decisions against the identity information obtained from the authentication stage.

After these security-related stages, the MIME type [175] for the requested resource is
determined. The MIME type may need to be sent back in the response message to provide
presentation hints for the client, e.g. an HTML page or an image. The fizups stage is
reserved for future extensions that do not fit into the request handling cycle. After this
stage, the actual response message is then generated and sent back to the client.

Apache then logs the processing of the request. This always happens after the response
is sent, and may be optionally invoked at any other stages where logging is required.
Finally, Apache cleans up all transient resources (e.g. allocated memory, open file handles,
etc) and returns to the waiting state for another request.

For each stage, Apache goes through a chain of modules and sequentially invokes their
handlers if they exist. If a module does not define a handler for a stage, it is simply
ignored. Note that while the access control, authentication and authorization stages are
intended for distinct purposes, there are few practical differences in the way they are
treated by Apache.

6.2.3 Integrating Fidelis

An Apache module, mod_fidelis, has been implemented to provide Fidelis trust man-
agement for the Apache web server. At the heart of the module is a Fidelis policy engine
which performs policy inference. The policy engine is invoked at various stages of Apache’s
request handling cycle to determine how a request should be processed. mod fidelis also
provides a parser for custom configuration directives, utilizing Apache’s standard config-
uration parsing mechanism. The overall architecture is illustrated in Figure 6.5.

There are two types of configuration files in Apache: global and per-directory. The
global configuration file is read and parsed when Apache starts up, while a per-directory
one is parsed when a directory is accessed. A configuration file consists of a set of di-

147

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

(mod._fidelis)
Request
| handiing Fidelis
o hooks ™™™ pohcy
engine
-» Configuration [~
parser T p—
N)

Figure 6.5: Architecture of mod fidelis

rectives, which can be of per-server or per-directory scope. mod_fidelis defines custom
directives for:

e the URL to a FPI (Fidelis Policy Interchange) document;
e the public key pair of the policy owner (i.e. the self principal); and

e default environment bindings.

mod_fidelis initializes the policy engine by loading the global policy document on a
per-server basis. Subtrees of the document tree served by Apache may be made subject
to different policies using per-directory configuration files. Policy files specified in a per-
directory configuration file may replace or add onto the global, per-server ones, depending
on need. The same applies to environment bindings.

mod _fidelis exposes the internals of Apache through Fidelis actions. It defines two
types of actions: actions that represent hooks in a module and actions that correspond to
HTTP methods. All these actions are defined to be simple actions, i.e. without parame-
ters. The actions defined by mod_fidelis are summarized in the following table:

Hook actions | translate, header-parsing, type-check, logging
HTTP actions | GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE, CONNECT

When a request is being processed, mod_fidelis successively queries the policy engine.
For example, at the URI translation stage, the module queries for the translate action;
on the headers parsing stage, the headers-parsing action is queried; the MIME type
checking stage follows a similar procedure. The exception is the security-related stages,
in which case, the action representing the actual HTTP method will be queried for an
authorization decision. For example, for a typical page request, the GET action will be
queried, while for a form submission, the POST action will be queried instead.

Typical Fidelis applications would define parameters for actions and trust statements
to carry more specific information. In mod fidelis, a different approach is used. Environ-
ment variables are used to provide additional information regarding every request. When
a request is received, these variables will be bound to values extracted from the request.
The environment variables include the standard set of variables exposed to CGI programs
by the server, e.g. REMOTE_HOST gives the host name of the web client, PATH_INFO gives

148

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

Environment variable Description

CONTENT_TYPE The MIME type of the query data (e.g. text/html)

HTTP_USER_AGENT The web client the user is using (e.g. Mozilla/5.0 Ga-
leon/1.2.1)

PATH_INFO Extra virtual path information given by the client.

From a URL, this is the path after the domain name.
PATH_TRANSLATED The translated version of PATH_INFO, mapped into a
physical pathname.

REQUEST_METHOD The HTTP method used to make the request (e.g.
GET, POST, etc.).

REMOTE_HOST The domain name of the computer running the web
client.

REMOTE_ADDR As above, but in IP address.

SERVER_PROTOCOL The protocol in use (e.g. HTTP/1.1)

SERVER_NAME The host name of the computer on which the server is
running.

Figure 6.6: Commonly-used CGI variables.

the requested resource path, and HTTP_USER_AGENT identifies the web client. Figure 6.6
shows a set of commonly-used CGI variables as a reference. There are also some ad-
ditional, non-CGI variables defined in the environment, such as REQUEST_TIME. Policies
may modify the bindings to these variables, which would influence the way Apache han-
dles a request. For example, a policy may redirect a request by modifying the value of
PATH_INFO during policy evaluation. The reason for this unconventional approach to pa-
rameter handling is that the additional information is identical across all actions — derived
directly from HTTP requests. Employing a uniform access mechanism is more convenient
and less error-prone.

There is no default set of trust statements for mod_fidelis. It is up to the administra-
tor to define trust statements that suit the application requirements using the standard
mechanism provided by Fidelis. For the rest of this section, we shall examine the use of
mod_fidelis in some particular application scenarios.

Example 6.4 Fidelis can replace the existing access control and authorization mecha-
nism in Apache through a unified framework. Recall that the term “access control” in
Apache refers to non-discretionary access control, and is often related to host name or IP-
based authorization. An example of host-based authorization policy specified in Fidelis
would be:

grants GET: p, POST: p
where PATH_INFO == "/" && REMOTE_USER = "elite.jesus.cam.ac.uk"

The above action policy gives access to the resource root (“/”) using the HTTP GET or
POST methods to clients on the host at elite. jesus.cam.ac.uk. Subnet addresses may
be specified in a similar fashion as Apache. For example,

149

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

grants GET: p, POST: p
where PATH_INFO == "/internal" && REMOTE_USER = "128.232."

allows GET and POST requests on /internal, issued by any host within the subnet of
128.232. When a request is being processed, at the authorization stage of the processing
cycle, mod fidelis queries its policy engine for a decision. It first constructs an envi-
ronment, binding environmental variables to their initial values. It then issues a query
of the requested HTTP method. For example, if a web client requests a dynamic page
at /internal/member_data.php using the POST method, a query for the POST action
will be issued. Therefore, according to the action policy, if the requester resides within
the 128.232. subset, the action will be authorized.

Suppose within an organizational intranet, the details of the company’s account are
published at /internal/accounts, and are strictly available only to accounts staff. Sup-
pose every employee at the accounts department will be issued with a trust instance
as_accounts asserting his or her role in the company. An action policy may therefore be
written as follows:

as_accounts: self -> p
grants GET: p, POST: p
where PATH_INFQO == "/internal/accounts"

This states that for a GET or POST method on /internal/accounts, its requester must
be the subject of a valid as_accounts instance.

Example 6.5 One of the much-needed features for the WWW is the ability to filter
content according to certain criteria, e.g. age, premium level, etc. This can be observed
in the proliferation of parental control systems, such as CyberSitter™, SafeSurf™, and
KidShield™. Most of such systems behave as a personal firewall, filtering the contents
of web pages according to some criteria and heuristics as they are being received, e.g.
scanning for certain keywords, comparing the address against a ‘blacklist’, or applying
image recognition heuristics.

A more comprehensive filtering framework includes a rating service, which issues rating
labels for sites (or pages). When a page is being requested, the filtering software first
retrieves its label and makes a decision based on the information on the label. A label
typically contains descriptive keywords indicating the nature of the content. Fidelis may
be used to implement such a framework.

As an experiment, a mod fidelis-enabled Apache server is configured as a HTTP
proxy, acting as a filter for its clients. In this configuration, all client requests are for-
warded through the proxy, which filters the response from the web server according to the
policy specification. Suppose an imaginary company, CyberRating Inc., provides rating
services for web sites and issues rating labels in the form of trust instances. It defines a
trust statement, rating. An example rating instance is shown here:

rating("http://some-site.com/news.html", 0x3a81ba8, 3, 0, 0):
CRI -> some-site.com

where http://some-site.com/news.html gives the URL to the page, 0x3a81ba8 gives
the cryptographic digest of the content, and the following three numbers give the level of

150

CHAPTER 6. Applications 6.2. Case study: Trust management in the World Wide Web

violence, nudity and strong language on the scale of 0 to 5 (strongest). As a shorthand,
the symbol ‘CRI’ is used to represent the public key identifier for CyberRating Inc.

Action policies can then be set up on the proxy server to filter web pages. By default,
GET or POST requests on a resource without an accompanying rating instance will be
blocked. Moreover, conditions on parameters in rating instances may be specified to suit
the desired level. For example, an action policy on the proxy might be:

CRI.rating (path, hash, violence, nudity, language): CRI -> q
grants GET: p, POST: p
where PATH_INFO == path && violence <= 2 && nudity <=1

which states that in order for a page to be retrieved, it must be rated by CRI, with the
level of violence and nudity less than 2 and 1 respectively. Note that we use a dot notation
to indicate that rating is defined by CyberRating, rather than locally. The subject of
rating is the site that hosts the page, and is normally different from the client principal.
Two different variable placeholders are therefore used for the subject and the requester.

When the client makes a GET request, the request is sent to the proxy, which forwards
the request to the ultimate web server. The web server then responds with the requested
page. At this point, the proxy performs two operations. First, it attempts to retrieve
the corresponding rating instance from CyberRating. If a valid rating instance is not
available, it aborts the process. Otherwise, it queries the policy engine for an access
decision with the collected rating instance.

Example 6.6 It is rapidly becoming a norm that a web user often needs to maintain
multiple username/password pairs. While decentralization, autonomy and independent
management are the key concept for the WWW, under this circumstance, it becomes a
liability for users because of the inconvenience and operational overhead. Single sign-on
(SSO) systems are introduced to address this problem. The idea is that a user only needs
to authenticate once, and will then be able to access many sites without needing to re-
authenticate at each site. Many commercial solutions exist, with the leading ones includ-
ing Microsoft Passport™][176], Entrust GetAccess™/[177], and RSA ClearTrust™/178].
Fidelis is naturally suited to implementing single sign-on because of its inherently
decentralized nature. The mechanism centres around a time-bound trust instance that
is issued to a user once he/she is authenticated at a site. The trust instance proves the
holder as a valid user. The user may then present the trust instance to participating
sites for access. As a demonstration suppose an imaginary company, SSO Technology
Inc. (hereafter referred to as “SSOTech”) offers a single sign-on authentication service.
We set up a web server for SSOTech with mod _fidelis support, where a login page for
user authentication is served. Suppose SSOTech defines a trust statement authenticated
that carries two parameters, a unique identifier and a premium level (assuming SSOTech
offers three levels of premium access, 0 to 2). An example trust instance looks like:

authenticated("DX4019169", 2): SSO -> Alice

Sites using SSOTech’s service will simply need to identify instances of authenticated
trust statements. Suppose a fake online entertainment site, entertainmentoday.com, uses
the service. It allows all authenticated users to access the member area and all privileged
users (with the premium level of 1 or above) to access the privileged area. The action
policies could be written as:

151

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

SSO.authenticated(id, level): SSO -> p
grants GET: p, POST: p
where PATH_INFO == "/member"

SSO.authenticated(id, level): SSO -> p
grants GET: p, POST: p
where PATH_INFO == "/member/privileged" && level >= 1

A user visiting the site would first need to obtain an authenticated trust instance
from SSOTech, either directly by authenticating at SSOTech’s login page, or through
entertainmentoday.com’s web gateway to SSOTech’s server. The trust instance may then
be presented to gain access to entertainmentoday.com and other participating sites.

The implication of single sign-on is that the authentication process is delegated to a
third party. In this example, SSOTech has the authority to decide its means of authenti-
cation, e.g. passwords, or digital certificates, and participating sites are expected to trust
the strength and security of its authentication scheme. If a higher level of assurance is
desired, a participating site may request additional trust instances to gain access using
standard Fidelis mechanisms.

6.2.4 Discussion

The two major advantages of integrating Fidelis with the WWW are increased flexibility
and enabling decentralized management for web-based applications. With Fidelis, com-
plex access policies may be specified. In previous examples, mandatory, role-based and
trust-based access control policies have been implemented. The flexibility is mostly due to
the strong policy support of Fidelis, combined with appropriate interfaces to the Apache
server. Decentralized management is a direct result of applying Fidelis, where the sup-
port for autonomous and interworking services is the fundamental notion. This is seen in
the single sign-on example, where the management of authentication and authorization
is clearly and securely separated.

On the other hand, while the architectural design satisfies the transparency require-
ment, the smart proxy introduces an additional layer. Ideally, Fidelis should be integrated
with web browsers, with the advantages of increased performance, better security, and
avoidance of an additional architectural component in the request/reply chain.

6.3 Case study: an electronic marketplace

A phenomenon facilitated by the World Wide Web is an ability for strangers to conduct
business transactions online, resulting in the rapid boom of electronic commerce over the
past few years. The aim of this case study is to provide a simulated study for the use
of trust management, and specifically Fidelis, in an electronic commerce setting. While
this case study is not based on a real online business, attempts have been made to closely
model the actual operations and interactions between businesses and consumers to provide
a realistic study.

152

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

6.3.1 Background

We focus our study on electronic marketplaces. The concept of an electronic marketplace
is similar to traditional, physical markets where sellers and buyers aggregate, meet and
carry out business. The basic idea is simple: with the large and fast growing consumer and
supplier base, it is increasingly difficult for consumers to search and match their needs
and for suppliers to be known and found by their potential customers. An electronic
marketplace is intended to provide a central venue where suppliers gather to project a
single, virtual shop offering combined ranges of products. Electronic marketplaces are
rapidly gaining popularity, with prime leaders such as Yahoo! and Amazon. For example,
Amazon started out as an online bookseller. However, over the years, it has gradually
evolved into an electronic marketplace through partnership, offering items ranging from
books to CDs/DVDs, consumer electronics, and houseware.

6.3.2 Environment

In this case study, we consider an imaginary electronic marketplace company called virtua-
marketplace.com?, a number of participating stores, consumers and an independent third-
party, Better Business Bureau. The primary functions of these entities are summarized
below:

virtua-marketplace.com

e Portal contents. Product advertisements from member stores are regularly collected,
centrally stored and processed. Portal pages are generated to show a catalogue of
available products.

e Browsing/searching facility. Buyers may browse or use the searching facility to
locate products. For each product, a complete description is provided, together
with some brief information about the sellers (stores).

e Smart shopping. A buyer may express his/her interest, preferences, or needs and let
virtua-marketplace.com shop for the appropriate products/suppliers. For example,
a consumer may express the willingness to spend at most £150 for a DVD player
made by either SONY, Pioneer, or Phillips, with at least 2 years of warranty. This
facility is available for premium members or for a service fee on a per-use basis.

e Transaction agent. For a commission, virtua-marketplace.com can deal with trans-
actions on behalf of member stores or consumers. This is useful where either party
wishes to engage in a pseudonymous transaction where real identity cannot be traced
under normal circumstance. Note that virtua-marketplace.com is assumed to be
legally obliged to protect this identity information.

Stores

e Managing the collection of goods/products. A store may maintain a database of
products, where each product has an entry consisting of a description, a specifica-
tion, a stock count and some additional notes (e.g. on promotion or sale).

2The domain names used in this case study are non-existent at the time of writing.

153

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

e Advertising. When new products are introduced, a store may choose to notify
virtua-marketplace.com for the new arrival. This mechanism works in complement
with virtua-marketplace.com’s periodic polling method.

e Management of product information. A store may send active notification to virtua-
marketplace.com when product information changes, e.g. changes of price, stock
level, or additional notes.

e Processing purchases. A store may have the facility to process purchases directly
with customers. This typically involves the payment process, stock check, scheduling
for delivery, and establishing after-sale policies.

Better Business Bureau

e Rating service. It provides a credit rating for online stores. The rating of a store
may be affected by the monitored performance of the store, by transaction history,
or by comments from past customers.

Consumers

e Browsing/searching the product catalogue. The browsing and searching facility on
virtua-marketplace.com is open to any web user, not just registered members.

e Purchasing goods. From a consumer’s point of view, purchasing mainly involves
filling in an online order form which includes payment details.

e Reporting. A consumer may comment on his/her experiences with an online store
and submit this information to virtua-marketplace.com. The opinion will then be re-
viewed and verified, and may be used internally or forwarded to the Better Business
Bureau.

e Recommendation. Consumers may recommend online stores or goods to one another.

The case study builds on top of the web service architecture described in Chapter 4
and the WWW integration of Fidelis described in the previous section. The main interface
of virtua-marketplace.com is a portal built in standard HTML and PHP4 [179]. PHP4
is an open-source, server-side scripting language, allowing, for example, contents to be
dynamically generated from databases. Interactions between the entities described above
are implemented mainly using web service interfaces.

6.3.3 Membership management

virtua-marketplace.com employs a subscription scheme for both stores and consumers.
A store must subscribe to be able to advertise and submit new products to virtua-
marketplace.com’s product database. Subscribed stores also have the benefits of directed
marketing, where virtua-marketplace.com analyzes its consumer base and periodically
recommends stores of interest to customers. Subscription for consumers is intended to
maximize their ease of use. A subscribed consumer may be given a special offer from time
to time, and use advanced services including smart shopping.

virtua-marketplace.com applies role-based modelling for these two kinds of subscribers.
Two trust statements are designed to represent the membership of a business user and a
consumer, as_business and as_consumer respectively. as_business has one parameter,
the URL of the online store. An example instance is:

154

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

product information collection

[virtua—marketplace.com }

advertisement

Figure 6.7: Incorporating product information

VM.as_business("www.buysportstuff.com"): vm.com -> Oxba2d54f...

Such trust instance expresses two meanings. First, the subject (in this case, Oxba2d54f . . .)
is a business subscriber of virtua-marketplace.com. Second, the subject is the online store
at the named URL, (www.buysportstuff.com). Note that the dot notation is used to
indicate that as_business is defined within the scope of virtua-marketplace.com (VM),
and the symbol vm.com represents the public key identifier for virtua-marketplace.com,
and will be used consistently throughout this case study.

as_consumer is similar to as_business but slightly simpler as it contains no pa-
rameter. An instance of as_consumer conveys the simple message that the subject is a
subscribed consumer of virtua-marketplace.com.

6.3.4 Product catalogue management

virtua-marketplace.com maintains the product catalogue in a database. The database con-
tains information about products available at its member stores. For each product, there
exists in the catalogue an entry consisting of the description, the price, the stock level, and
a textual field for additional notes. Each store may optionally maintain a local database
for a similar purpose. As shown in Figure 6.7, the database at virtua-marketplace.com is
populated by two mechanisms : catalogue collection and advertisement.

Catalogue collection is a pull mechanism. When a store first registers with virtua-
marketplace.com, its full catalogue is retrieved and incorporated. Subsequently, virtua-
marketplace.com periodically collects product information at the frequency specified by
each member store.

Advertisement is an active push mechanism. A store may send product range updates
to virtua-marketplace.com when new products arrive. virtua-marketplace.com employs
Fidelis action policies to protect the active interface. The advertisement interface at
virtua-marketplace.com is abstracted as an action, advertise, and the advertisement
policy states that advertisement is accepted if and only if it is originated from a business
user (i.e. an online store). Expressed in Fidelis,

as_business(url): self -> p grants advertise(product_details): p
When new product information is incorporated, either from the catalogue collection

or through advertising, virtua-marketplace.com allocates a product identifier and issues
a product_store instance to the store that offers the product. The product identifier

155

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

is used internally to help produce the catalogue portal at virtua-marketplace.com. The
product_store instance is for identifying the owner of the product entry in the catalogue
database. One use of this trust statement is for product information update. Product
information on the catalogue at virtua-marketplace.com is only allowed to be modified
by the owner of the product entry. This is requested when, e.g. there is a price change or
stock level change. The action policy is:

as_business(url): self -> p, product_store(product_id): self -> p
grants update_product(new_details): p

This policy not only requires a product_store instance, but also a matching as_business
instance to authorize update on a product entry. This may seem redundant but gives
tighter security as it places an explicit requirement that the subject of the presented
product_store instance must be a subscribed business user.

6.3.5 Reputation management

An important element ensuring the functioning of the electronic marketplace is a mech-
anism that enables unfamiliar parties to build trust and interact. While big players will
benefit from brand recognition, small sellers must rely on other means to gain trust from
potential customers. Reciprocally, while risking violating privacy, under some special cir-
cumstances, a seller may also wish to find out the credibility of a potential customer, e.g.
to prevent fraud by repeating cheaters.

virtua-marketplace.com employs a simple reputation system where a rating for sub-
scribers may be queried. The reputation system consists of two main sub-systems: an
opinion collector and a rating aggregator. The purpose of the opinion collector is to
gather feedback about interactions between subscribers (either store-consumer, consumer-
consumer or store-store). It offers both passive and active mechanisms. The passive
approach is a reporting mechanism, where transaction experiences may be given in free-
form text, and some evidence (such as transaction record, payment evidence, etc) may be
attached to support the case.

The active approach is based on a monitoring mechanism, and is designed for situations
where virtua-marketplace.com is acting as an transaction agent on behalf of a store or
a consumer. When virtua-marketplace.com is empowered with the task of executing a
transaction, it is able to monitor whether the other party duly fulfills its duties. More
details are described in the next section.

The rating aggregator is in charge of computing a rating value from collected opinions.
For simplicity, the computation uses a simple average function, resulting a discrete value
on the scale of 1 to 5. In this case study, submitted opinions are not verified, but in
practice, it is important to guard against false reports.

The opinion collector may also take the rating from the Better Business Bureau as
an input. The Better Business Bureau defines a trust statement, rating, whose instance
gives the rating information of the subject. The rating trust statement has a single
parameter, the rating value. The rating value is on the same scale of 1 to 5 as used in
virtua-marketplace.com. This is intentional, as it simplifies the design of the case study.
The Better Business Bureau also defines another trust statement, business, which is

156

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

Better
Business
Bureau

|rating(4) : BBB—Store

Consumer

as_business("www.buysportstuff.com")
-4 VM.com—Store

Figure 6.8: Supporting purchase decision.

intended to identify a public key as a business. The business trust statement includes a
single parameter, the URL of the online business.

In the next section, examples illustrating the use of these trust statements will be
provided.

6.3.6 Transaction processing: purchases

We shall consider the most common type of transactions in our setting — the purchase of
goods. In many situations, a purchase is a direct transaction between the store and the
consumer. Once a consumer finds the appropriate product and decides to proceed with a
purchase, he/she places an order by filling in a form at the store’s site.

Suppose the store is new to the consumer and, as a result, the consumer wishes to gain
access to the credibility of the store before proceeding with the purchase. One approach
is to make use of the rating information provided by the Better Business Bureau. The
consumer may express a policy whereby a purchase may be initiated only if it is with a
store which is a member store of virtua-marketplace.com and is accredited by the Better
Business Bureau with a rating of 4 or above. The policy can be expressed as follows:

VM.as_business(url) : self -> p,

BBB.business(url) : BBB -> q, BBB.rating(r) : BBB -> q
grants purchase(product_id) : self

where r >= 4

Under this policy, for a purchase decision to be made, the store must provide the
consumer with a valid instance of VM. as_business, which asserts that it is a member store
of virtua-marketplace.com. Additionally, the consumer obtains the BBB.rating instance
regarding the store from the Better Business Bureau and the rating value must be 4 or
greater. Note that since it is possible that the same online store is known differently (i.e.
different public keys) at virtua-marketplace.com and Better Business Bureau, matching
is based on the URL of the store, instead of the subject public keys. Figure 6.8 illustrates
the purchase scenario.

virtua-marketplace.com provides a service whereby it carries out purchase transactions
on behalf of consumers. The design of the service has two advantages. First, it brings in-
creased convenience to subscribed consumers, as the payment option (e.g. the credit card
information) needs only supplied once. Second, it provides an opportunity to monitor

157

CHAPTER 6. Applications 6.3. Case study: an electronic marketplace

delegated_purchase(31415):
Consumer—vm. com

delegated_purchase(31415):
Consumer—vm.com

R R E L EEE T R virtua—marketplace.com } R R

Figure 6.9: Delegated purchase

the progress of the transaction, so that the credibility of both the buyer and the seller
can be assessed. In addition to the two reasons, it also offers a possibility to implement
pseudonymous transactions, which break the linkage from a transaction to other informa-
tion about the consumer (e.g. buying patterns, personal interest, or credit information).
Note that facilitating pseudonymous transactions is not the aim of this example but is
mentioned here to highlight the potential of intermediaries.
For this service, virtua-marketplace.com specifies a trust statement, delegated_purchase.

A consumer who wishes to make a purchase through virtua-marketplace.com would need
to create an instance of delegated_purchase and pass it to virtua-marketplace.com.
The trust instance contains details about the purchase, and for simplicity, it is imple-
mented in this case study to carry a single parameter, the product identifier. Once
virtua-marketplace.com receives the request, it begins the purchase procedure with the
store. As part of the procedure, the store requires the delegated_purchase instance to
be forwarded as a proof of authority. This is enforced by specifying the following action
policy:

VM.delegated_purchase(product_id) : p -> vm.com,
grants purchase(product_id) : vm.com

The transaction continues if and only if the purchase action (locally defined within the
scope of the store) is granted. This action policy only deals with delegation transactions
with virtua-marketplace.com as the intermediary. There typically exists action policies
handling other types of transactions, e.g. direct transaction with consumers. Note that
in this policy, the variable placeholder p gives the public key identifier for the consumer
who initiated the purchase. This approach therefore is not sufficient for hiding identities.
Delegated purchase is illustrated in Figure 6.9.

6.3.7 Discussion

Unlike applications in previous sections, this case study demonstrated decentralized man-
agement, which is crucial for the highly distributed nature of the web. Each entity in
the environment, virtua-marketplace.com, member stores, Better Business Bureau and
consumers, may define their own trust statements and policies using them. Furthermore,
policies defined by a party often depend on trust instances issued by other parties. For
example, a consumer may rely on the information given by the Better Business Bureau to
make purchase decisions. This mechanism facilitates the linkage between independently
administered sites. Fidelis thus shows its potential in supporting large, decentralized
applications.

158

CHAPTER 6. Applications 6.4. Summary

Several aspects in the case study are intentionally simplified to allow us to focus
on trust management problems. These include: catalogue database design, reputation
computation, and transaction procedure. In real life, these issues must be given more
comprehensive treatment. For example, reputation computation as implemented is based
on an average function, whereas in practice, the function may need to take into account
the transaction value, quantified risks and legal obligation, etc. Moreover, the transaction
procedure needs to include some online payment scheme such as PayPal™[180].

6.4 Summary

In this chapter, we have examined three applications of Fidelis in detail so as to evaluate
its effectiveness and practicality.

Role-based access control has been highlighted as a promising mechanism for new
applications, addressing many inherent limitations of traditional access control schemes.
Fidelis has been shown to provide RBAC functionality through the use of action policies
and trust statements. This indicates that Fidelis may be employed as a general mechanism
for access control.

We have also examined trust management in the context of the WWW. As an enabling
technology, an Apache module with an integrated Fidelis engine has been implemented:
mod_fidelis. This brings native trust management support to the Apache web server
and allows us to carry out experiments with Fidelis. Several small experiments have
consequently been constructed to implement different styles of authorization schemes.

This chapter closes with a case study of an electronic marketplace, whereby multiple
parties participate and interact. This case study combines the use of Fidelis in both the
web services and the WWW context. It has shown as a proof-of-concept that Fidelis
supports decentralized management and therefore has the potential to be deployed for
large-scale, distributed Internet applications.

In the next chapter, we provide a detailed analysis of Fidelis, evaluated against the
research goals set out in Chapter 1 of the thesis.

159

CHAPTER 6. Applications 6.4. Summary

160

Discussion

Discussion on the approach presented in this thesis has been given previously where
appropriate. It is nevertheless important to evaluate Fidelis as a whole, analyzing it
against the research issues described in Section 1.3, which are summarized below:

e Policy framework

e Managing scalability

Decentralized collaboration among unfamiliar parties

Privacy

New approaches to decentralization

In this chapter, the aspects of Fidelis addressing each of the above research issues will
be discussed in depth. Issues that are not addressed fully in this thesis will be highlighted,
along with some discussion on possible future research directions.

7.1 Policy framework

A major design difference of Fidelis from other existing trust management systems is its
strong emphasis on policy support. It features a comprehensive policy framework, backed
by a clearly defined policy language — the Fidelis Policy Language. The policy language
is abstractly specified, with the intention to allow various instantiations of the language
to suit different application needs. More precisely, it intentionally does not include a type
system, nor special sub-languages for assignment and conditional expressions.

One such instantiation is demonstrated in Section 4.3, in the form of the Fidelis Policy
Interchange. Fidelis Policy Interchange is an instantiation specifically designed to facili-
tate policy exchange between web services. It is built upon XML [149] technologies, and
adds the type system in the standard XML/Schema [159, 160] to the policy framework.
It also introduces an extensible framework that allows assignment and/or conditional ex-
pressions to be specified in any agreed language. By default, it supports the XPath 2
[167] expression language.

A full analysis of the policy framework was given in Section 3.5.9, Chapter 3. Based
on the analysis given there, and additional observations gained from constructing appli-
cations, the policy framework will be discussed in the following areas: expressive power,
ease of use, ease of implementation, and runtime efficiency.

161

CHAPTER 7. Discussion 7.1. Policy framework

The Fidelis Policy Language (FPL) is designed to express two kinds of policies: trust
policies and action policies. Aside from the syntactic sugar, in essence the language is
based on first-order logic. There are two other features in FPL that increase its expres-
sive power, namely the constructs of group and threshold principal, and the addition of
negative statements (without clauses). These features are incorporated with the spe-
cific intention of capturing commonly-found real-world policies. Also important in our
design is the flexibility of choice for sub-languages used in assignment /conditional expres-
sions. The choice of expression language inevitably affects the expressive power of the
instantiated language. It was therefore decided to leave the decision to the individual
applications. In summary, while a more rigorous analysis would be desirable, based on
the experiences learned through the examples provided throughout the thesis, FPL may
be considered to be sufficiently expressive for many uses.

On the ease of use of the Fidelis Policy Language, the language is designed to feature a
clear syntax, with minimal use of symbolic operators to increase readability. In theory, it
should be relatively easy for people with some computing background to understand and
write policies. However, the language is not intended for non-expert use. As previously
mentioned, the language needs to be instantiated when used in practice. One particular
“Instantiation” may be in the form of a GUI (Graphical User Interface) tool that employs
the model that underlies the language as a foundation and presents user-friendly interfaces
for the specification of policies. While the policy language is not ideal for non-experts,
with its clear syntax and well-defined constructs, it is still arguably easier than writing
“policy programs” in real programming languages.

On the issue of ease of implementation, the most crucial part of the policy framework
is the trust management engine, where trust computation is performed. It is therefore
sensible to restrict ourselves to considering the degree of difficulty in implementing the
inference algorithm, without considering “boilerplate” code for parsing, decoding creden-
tials, performing cryptographic operations, etc. In the demonstration implementation,
the inference algorithm described in Section 5.1 is implemented in under 800 lines of C
code. The C language is chosen mainly because of the convenience of integrating with
existing software such as the Apache web server. The algorithm is implemented as a state
machine with stacks. The core stack machine is implemented in slightly over 500 lines
of code. The implementation took under two man-days to complete and test, with addi-
tional minor bug fixes. Based on this implementation experience, it may be safely stated
that the policy framework is straight forward to implement. It should be noted however,
that the algorithm in Section 5.1 is not the only algorithm that can realize the policy
semantics. More efficient or optimized algorithms may require greater implementation
efforts.

As previously discussed in Section 5.1.4, the algorithm has a worst-case runtime of
O(MN). where M is the maximum number of parameters for any trust instance, and N is
the number of terms in all policies. While this is polynomially efficient, the value N would
typically be large. It is envisaged that with appropriate scheduling and optimization, the
worst-case runtime may be lowered. However note that the non-monotonic nature of the
language has an impact on the runtime efficiency. It remains a research issue to study
trade-offs between the runtime efficiency and expressive power, given the inclusion of
negative trust statements.

162

CHAPTER 7. Discussion 7.2. Managing scalability

7.2 Managing scalability

As discussed in Chapter 1, today’s distributed applications are more demanding in terms
of their scalability requirements as Internet-scale connectivity is now standard. The design
of Fidelis is intended to meet these stringent scalability requirements. Well-respected
principles in distributed systems are carefully examined and incorporated in its design,
resulting in a fully decentralized architecture. Important features and design principles of
Fidelis that increase scalability are to be examined in this section. While decentralization
is a key to infrastructure scalability, management scalability still needs to be addressed,
especially when the user/resource set is becoming large — likely for many new distributed
applications. We shall therefore also discuss provisions and potential techniques in Fidelis
addressing management scalability.

Similar to other capability-style authorization management systems, the key notion
of scalability is decentralized enforcement of policies. Authorization in typical capability
systems depends primarily on capabilities presented by requesters. The key advantage
is that the point of enforcement need not have any knowledge of the requesters, thus
allowing its administration to be separated from the policy authority.

Fidelis is designed to specifically allow decentralized enforcement. There are two
aspects that contribute towards this aim. First, the authorization model respects full local
autonomy. Every principal (including services, hosts, and sites) is fully autonomous, with
the discretionary power to design its policies. A principal is expected to only consult its
own policies in making authorization decisions. Second, the validity semantics attempts
to break dependency between the issuer and the acceptor of a trust instance under most
circumstances. As described in Section 3.3.2, the fundamental concept behind the validity
semantics is the determinism principle, whereby once the validity of a trust instance
is guaranteed, it cannot be reverted. A guarantee usually is given as absolute time-
bounds, with the only exception being the online status check, in which case, dependency
between the issuer and the acceptor does exist. This is a trade-off between the degree of
decentralization and timeliness requirement, and can only be judged at the application
level.

Local autonomy has a greater implication than decentralized enforcement. As a gen-
eral principle in distributed systems, localization is often regarded as an approach to
increase manageability. This is particularly the case in Fidelis, where each principal has
the freedom to design its own policies, define and specify its local trust statements and,
furthermore, implement and enforce its policies. Every principal is conceptually respon-
sible for issuing trust instances of its local trust statements. This level of autonomy is
especially important in today’s widely distributed systems because of the difficulties of
having global authorities.

In most current trust management systems, creating and issuing credentials is often
manual processes, usually requiring human intervention. As the user base grows, these
manual tasks become a limiting factor. A solution is to integrate role-based access control
into the trust management framework, thus users are treated as roles, and credentials are
issued to users according to their roles. However, through the development of Fidelis, it
became clear that the support for roles does not need to be an integral part of the frame-
work for both simplicity and flexibility reasons, since the functionality may be supported
through specialized policies, as demonstrated in Section 6.1. If required by applications,

163

CHAPTER 7. Discussion 7.3. Decentralized collaboration

meta-policies could easily be written to control the behaviours of the issuance of trust
instances, thus addressing management scalability problems.

7.3 Decentralized collaboration

In Section 1.3, the focus of the description on decentralized collaboration is on collabo-
ration among strangers. In this section, however, we shall examine support in Fidelis for
collaboration both among mutually known parties and among strangers.

In a collaborative environment, complex authorization problems arise. In traditional
approaches, participants of a collaboration often need to know in advance about each other
in order to attach appropriate authorization policies. Such approaches fall short of ideal
in a decentralized environment, where strangers may participate in collaboration and/or
the number of participants may be too large for the individual specification of authoriza-
tion policies to be practical. One approach that simplifies decentralized authorization in
collaborative environments is attribute-based authorization [103].

The basic concept behind attribute-based authorization is that certified attributes are
trusted as the basis for making authorization decisions. In its basic form, a principal only
needs to recognize attributes that it certifies. In Fidelis, this corresponds to the concept of
recognizing locally-defined trust statements in trust/action policies. The use of attributes
by itself does not solve authorization problems in collaborative environments. However,
it provides a foundation for decentralization.

Attribute-based authorization may be extended to allow a principal to make use of
attributes certified by others. In Fidelis, this equates to the notion of recognizing trust
instances issued by third parties in policies, effectively establishing an explicit trust rela-
tionship between the local principal and the trust instance issuers. The key advantage is
that it allows chaining of principals: principal A may recognize a trust instance issued by
principal B. B issues the trust instance because it recognizes a trust instance issued by C,
and so on. With principal chaining, collaborative authorization is significantly simplified,
provided appropriate “third-party” principals are introduced. Some further discussion
will be given later in Section 7.5.

With this extension, third-party principals were identified by their identities. It is
possible to allow further decentralization by recognizing third-party principals by their
attributes. For example, a cinema may sell discount tickets to people who possess student
cards, which are issued by some educational entity, and the cinema recognizes education
entities if they are certified by the Education Authority. Fidelis also supports this type
of policy through its policy framework. For example, the cinema may express their policy
as follows:

student_card(): x -> y, university(): EA -> x grants ...

in which case, the placeholder x is an unknown principal, but it is required to be certified
as a university by the Education Authority (EA). This allows strangers to be identified and
trust to be built on certificated attributes. With the powerful policy framework, Fidelis
is capable of providing a comprehensive attribute-based scheme, enabling collaborative
authorization.

A special case in collaborative environments is when two untrusted strangers attempt
to form a collaboration. Due to mutual mistrust, it is often undesirable for either side

164

CHAPTER 7. Discussion 7.4. Privacy

to disclose sensitive knowledge in order to gain the trust of the other. However, in
contradiction, policies may sometimes require a requester to disclose trust instances that
contain sensitive information. Addressing this type of collaboration, a trust negotiation
framework is designed for Fidelis. The framework includes a protocol that allows a pair
of strangers to incrementally disclose trust instances based on the knowledge presented
by the other party.

While the negotiation framework mainly presents a proof-of-concept design and much
work remains to be done, it has demonstrated a crucial novelty in its approach to trust
negotiation: the negotiation protocol is fully policy-driven, with the use of Fidelis to
control the protocol behaviours. Comparing with other notable work in this area [168,
170, 181, 169], the policy-driven protocol is significantly more flexible: an application
may have its own tailor-made negotiation protocols by simply standardizing on the set
of meta-policies that control the protocol behaviour; protocol behaviours may be fine-
tuned by encoding personal preferences in meta-policies; and new negotiation protocols
may easily be tried in this framework. The downside is the lack of formal rigour, as the
protocol tends to be over-flexible.

7.4 Privacy

As identified in Section 1.3, in practice privacy issues will play an important role in
the public adoption of a trust management system. Generally speaking, there are two
areas of concern that a trust management system should tackle. Firstly, credentials (in
the case of Fidelis, trust instances) may contain sensitive information which should not
be made publicly available. A principal using trust instances should only learn “just
enough” information from them for its tasks. Secondly, the system should prevent linking
of credential usage. Such linkage often reveals vital information regarding one’s behaviour,
living pattern, purchase preferences, etc. The system should enforce unlinkability where
possible.

While the design of Fidelis does not directly address privacy issues per se, it never-
theless has an important provision for possible future work. Underlying the framework
is its key-oriented nature, whereby every principal may generate its public key pair at
any time. Public keys are used as principal identifiers, without linking to any property
of the principal. A possible approach to provide unlinkability is therefore to require a
principal to generate a fresh key pair on every use. Although such a scheme is effective, it
unfortunately may not be practical in real applications, since a fresh public key provides
no value for gaining trust.

Fidelis does not provide a solution for selective disclosure of parameters in trust in-
stances. At present, data encoded in the Fidelis Interoperable Credential (FIC) format
are in cleartext. However, recall that the conceptual framework of Fidelis does not im-
pose restriction on how trust instances should be encoded. Other formats which support
selective encryption may be used instead of FIC. Alternatively, FIC may be extended
to integrate XML Encryption [182], which allows sections of any XML document to be
encrypted under different keys. Furthermore, protocols may need to be developed to
support decryption of parameters of trust instances.

165

CHAPTER 7. Discussion 7.5. Decentralization approaches

7.5 Decentralization approaches

Similar to most other decentralized authorization systems, Fidelis supports the concept of
delegation of authority. However, in most other systems, including PolicyMaker/KeyNote
9, 20], SDSI/SPKI [17, 18], and TrustEstablishment [101], the authority in their context
refers to the authority to access. Fidelis supports the authority to grant access in the
form of action policies. Additionally, Fidelis supports a different type of authority — the
authority to assert attributes, and this is provided through trust policies. In this section,
we will discuss some approaches to the structuring of authority based on the facilities in
Fidelis and their relative pros and cons.

Hierarchy. Hierarchical structures are common in human societies, for example com-
pany structure, government structure, etc. In a hierarchy, there is usually clear
separation (of responsibilities and authority) between levels, and typically, an en-
tity mainly manages its direct subsidiaries but not further descendants. It is fairly
straightforward to implement hierarchies in Fidelis, by restricting policies to recog-
nize only trust statements defined by superior principals in a hierarchy.

With proper design and strict implementation, hierarchies can be an effective means
of organizing a large number of principals. They simplify the enforcement of stan-
dards. For example, educational institutes under the Educational Authority may
be directed to follow some standard for issuing student identity cards. Hierarchies
are often relatively manageable, due to their centralized nature. However, due to
their rigid structuring, hierarchies tend to be inflexible, especially when changes to
the structure are to be made. Furthermore, the hierarchical approach is generally
not feasible for large-scale systems, where global standards on hierarchy structures
are difficult to agree.

Peer-to-peer (P2P). On the other extreme to hierarchies, another style is to impose no
constraints on the structure at all. As principals in Fidelis are all treated equally,
and may freely interconnect, any pair of principals may establish a local service-
level agreement (SLA) that details the trust statements and actions agreed by both
parties, and may additionally include associated policies. A principal should then
follow the directives set out in the SLA and implement the semantics of the trust
statements, actions and policies.

Peer-to-peer structuring is suitable for applications where loose relationships exist
among principals, and is ideal when trust relationships are dynamic and constantly
changing. It is also useful for applications where local agreement is sufficient for
authorization needs, without requiring complex hierarchies. Notable applications
include file sharing programs, messaging applications, and trading platforms.

There are two major advantages of this approach: flexibility and scalability. The
notion of SLAs is naturally pairwise!. Changes to a SLA therefore only involve
the two parties that agreed on that SLA. For this reason, P2P structuring is more
flexible, and easier to modify. P2P structuring is self-managed in the sense that
every principal maintains its own SLAs. This fully decentralizes the management

! Although pairwise SLA is not strictly required, the set of participants agreeing on a SLA is usually
small.

166

CHAPTER 7. Discussion 7.6. Summary

tasks, and hence achieves greater scalability. However, self-management may also
be considered as a drawback, as it adds management burdens to every principal.
Moreover, the lack of structure in the P2P approach may be undesirable for some
applications as it gives little authority of control.

Hybrid. The two structuring approaches discussed so far both have their merits and
weaknesses. Based on the examples and case studies in this thesis, it is observed
that a combined approach often gives a satisfactory balance. For example, within
an organization, in order to simplify management tasks, a local hierarchy may be
imposed, e.g. headquarters, divisions, regional offices, departments, etc. However,
the organization may enter SLAs when collaborating with other business entities,
representing the organization as a whole.

This combined approach approximates the real-world more closely than the previous
two approaches, and maintains a reasonable level of control, structuring flexibility
and scalability. Nevertheless, these advantages greatly depend on the design of
the structure. Improper design may lead to combined disadvantages of the two
approaches, rather than advantages.

In Fidelis, the decentralization approaches discussed above may be explicitly expressed
within its policy framework, whereas in other decentralized authorization systems, struc-
turing is typically done in an ad-hoc manner, without support from formal policies. The
Fidelis policy-driven approach simplifies the verification and implementation of the struc-
turing design, as the structure is encoded in the form of Fidelis policies. From this
perspective, Fidelis may be considered a more comprehensive platform for decentralized
applications.

7.6 Summary

This chapter provides a critical discussion of Fidelis as a means of its evaluation. The
discussion is organized to reflect the research issues described in Section 1.3, and examine
each issue in depth. The next chapter concludes this thesis by providing a summary of
the contributions and some directions for future research.

167

CHAPTER 7. Discussion 7.6. Summary

168

Conclusions and Future Work

Future distributed applications will be of vast scale, widely open, and will often need
to deal with complex collaborative interactions. A key necessity for the development
of these applications will be a powerful, scalable, flexible and extensible authorization
management framework. This thesis reviewed the state-of-the-art in this area, examined
and identified research issues that are yet to be addressed. It is the conclusion of this
work that a suitable authorization management framework for the emerging distributed
applications must possess as a minimum:

e A highly decentralized architecture

e A comprehensive policy framework

To satisfy the above criteria, a novel trust management framework, Fidelis, has been de-
signed and implemented as part of the work presented in this thesis, addressing many of
the identified research issues. Its evaluation has been provided through the implemen-
tation of several examples, applications and case studies, and has been shown to be a
promising authorization framework for future applications.

This chapter concludes this thesis. Section 8.1 highlights the main contributions of
this work. Section 8.2 suggests some future directions that may be undertaken to further
enhance Fidelis. Section 8.3 provides a closing remark on this thesis.

8.1 Summary of contributions

The main contribution of this thesis is the proposal of a policy-driven, decentralized
trust management framework — Fidelis. As a recapitulation of Section 1.4, through the
conceptualization, design and implementation of Fidelis, the following contributions have
been made:

e Proposing the trust conveyance model as a generic model, serving as a simple foun-
dation for future trust management systems.

e Designing a powerful policy framework, realizing the trust conveyance model and
allowing complex security policies to be expressed under a unified framework.

e Designing and implementing Fidelis, thus providing an infrastructure on which fu-
ture web service applications can be built.

169

CHAPTER 8. Conclusions and Future Work 8.2. Future work

e Designing and implementing an algorithm for computing trust compliance. The
algorithm is designed to demonstrate the feasibility of Fidelis and its policy frame-
work.

e Proposing a policy-driven trust negotiation framework, which enables collaborative
strangers to gradually disclose sensitive trust instances and learn about each other.

e Evaluating Fidelis in several application contexts. While the focus of these studies
has been on Fidelis itself, the experiences learned may indeed be useful to other
systems.

8.2 Future work

This section suggests some selected future work. We shall be discussing four main ar-
eas: trust metrics, privacy support, trust compliance algorithms, and trust negotiation
frameworks.

Recently, in contrast with the trust management approach, a distinct but complemen-
tary approach based on the so-called trust metrics (or “trust models” in some terminology)
to deal with uncertainty has gradually become an interest in the research community. As
briefly discussed in Section 3.3.3, the basic idea is to derive a trust value for a principal,
based on several factors, such as past record, quantified reputation, quantified risk, etc.
The value can then be used as a basis to predict the future behaviour of the principal,
within some acceptable error. An extension of Fidelis would be to integrate these trust
metrics, providing solutions where a fuzzy notion of trust is preferred or required. A pos-
sible integration approach would be to specify standards for trust statements that carry
parameters for holding trust values. Principals complying with the standard should then
compute and interpret the trust value following the specified trust metrics. Policies may
be written to selectively grant or deny access based on trust values in trust instances.

As already discussed in Section 7.4, privacy issues have not been directly addressed
in Fidelis. There are two major areas wherein Fidelis should be extended to provide
enhanced privacy support. Firstly, in order to protect sensitive parameters (i.e. attributes)
in trust instances, trust instances should be encrypted and cryptographic protocols such
as SSL/TLS [164] should be employed to ensure sensitive trust instances are only exposed
to the intended parties. However, encrypting the entire trust instance is often overkill.
Ideally, selective encryption on certain parameters is desirable. Secondly, usage of trust
instances, when linked, may provide an insight about one’s behaviour. De-identification
is the typical approach to prevent unlawful linkage of data. While in Fidelis, principal
identifiers are simply public keys, providing no identification in themselves, however, when
used in trust instances, a linkage is formed and may therefore allow identification. There
is some interesting research in this space, notably Brands’ Digital Credentials [183].

The third area of future work is on the trust compliance algorithm of Fidelis. Chap-
ter 5 described an algorithm that implements the policy evaluation semantics defined in
Section 3.5.8. However, the algorithm is intended as a proof-of-concept, and as a result,
correctness is of a higher priority than efficiency. Some possible work on this includes:
designing an efficient algorithm that is formally proved to faithfully implement the defined
semantics, techniques for compiling policies and applying optimizations on the compiled
policies, possibly by precomputing possible evaluation paths, and designing distributed

170

CHAPTER 8. Conclusions and Future Work 8.3. Conclusion

algorithms to perform the policy computation.

The last area that may be explored further is the trust negotiation framework. The
negotiation framework described in Section 5.2 represents the first attempt at applying
Fidelis to deal with situations where strangers are involved. While the correctness of the
negotiation protocol has been demonstrated by implementation, formal proof is required
to study properties of the protocol, including termination and the states of both principals
after protocol runs. As it currently stands, it serves mainly as a research framework for
designing and experimenting with new protocols.

8.3 Conclusion

This thesis has presented Fidelis, a fully policy-driven trust management framework, de-
signed for widely-distributed Internet applications. The crucial novelty lies in its extensive
policy support, which enables complex real-world trust-related policies to be expressed
and enforced. Although much future research remains to be done, as studied and demon-
strated in this thesis, we believe that the policy-driven approach adopted by Fidelis is the
way forward in future research on trust management frameworks.

171

172

I
m Glossary
i

Action

An abstraction for a well-defined computation that may be subject to policy control. A
common example of actions is a permission in an access control system, e.g. read access.
An action may also encapsulate an access request, e.g. query_balance (account).

Action policy

A rule specifying the conditions under which a requested action may be granted. In the
Fidelis policy language, the conditions may include the presence and/or absence of certain
trust instances and/or contextual constraints.

Assertion
(In the context of a trust statement) a belief, a claim, or a fact regarding a principal (i.e.
the subject), stated or declared by another (i.e. the truster).

Context
(In the Fidelis policy framework) The situational conditions under which the interpreta-
tion of an assertion is consistent with its intended meaning given by its truster.

Conveyance source

In an instance of trust conveyance, the principal who provides the trust statement for
transfer. Effectively, the conveyance source provides its knowledge for other principals
(i.e. the conveyance targets).

Conveyance target

In an instance of trust conveyance, the principal who receives the trust statement from the
conveyance source. The conveyance target collects new knowledge from the conveyance
source.

Distrust

The opposite notion to trust. Distrust refers to a set of negative assertions that a principal
holds with regard to another principal. Note that this definition is distinctively different
from the absence of trust.

Principal
A principal in Fidelis is an entity which has control over a public key pair, i.e. the prin-
cipal speaks for the key.

173

Target
The shorthand for conveyance target.

Trust

A set of positive assertions that a principal holds with regard to another principal. It
typically represents one’s knowledge, beliefs or claims about another principal in some
context. Such information is abstract, and is expected to be embodied through trust
statements.

Trust conveyance

The process of transferring a trust statement from one principal to another. This transfer
models the mechanism of knowledge-passing in daily life, whereby a principal spreads its
knowledge to others. This term is chosen to reflect the fact that a trust statement contains
the trust information asserted by the truster, thus passing a trust statement effectively
conveys trust information.

Trust instance
The short name for trust statement instance.

Trust policy

A rule specifying the conditions under which a new trust statement may be issued. A
trust policy formalizes one’s process of trust establishment with others. In the Fidelis
policy language, the conditions may include the presence and/or absence of certain trust
instances and/or contextual constraints.

Trust specification
The short name for trust statement specification.

Trust statement

A digitally signed credential that acts as the basic building block in the Fidelis policy
framework. A trust statement includes the truster who issued the trust statement, the
subject who the trust statement is in respect of, a set of assertions and a validity condi-
tion. The information contained in a trust statement represents the truster’s trust (see
the definition above) in the subject (under the interpretation of the intended context).

Trust statement instance

Equivalent to trust statement. This term is introduced for use in situations where the
clear distinction between the specification and instances of trust statements is essential.
It is used extensively in the description of the Fidelis policy language.

Trust statement specification

One component of the trust statement is a set of assertions. A trust statement specifica-
tion defines the structures and meanings which the assertions follow. For example, in the
Fidelis policy language (where an assertion is given as an attribute), a trust statement
specification specifies the data type and provides an interpretation for the list of attributes.

174

Truster

Relative to a trust statement, the issuer of the trust statement. The term emphasises the
fact that the trust statement contains assertions made by the issuer, and assertions in
Fidelis are treated as trust information.

Source
The shorthand for conveyance source.

Subject
Relative to a trust statement, the principal to which the trust statement relates.

175

176

Bibliography

1]

J. Hine, W. Yao, J. Bacon, and K. Moody, “An architecture for distributed OASIS
services,” in Middleware 2000 (Palisades, NY, April 4-8), no. 1795 in Lecture Notes
in Computer Science, (Heidelberg, Germany), pp. 104—120, Springer-Verlag, April
2000.

J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao, “Event storage and
federation using ODMG,” in Proc. 9th International Workshop on Persistent Object
Systems (POS9, Lillehammer, Norway Sept. 6-8), no. 2135 in Lecture Notes in
Computer Science, (Heidelberg, Germany), pp. 265-281, Sept. 2000.

W. Yao, K. Moody, and J. Bacon, “A model of OASIS role-based access control
and its support for active security,” in Sizth ACM Symposium on Access Control
Models and Technologies (SACMAT 2001, Chantilly, VA, May 3-4), (New York,
NY), pp. 171-181, ACM Press, May 2001.

J. Bacon, K. Moody, and W. Yao, “Access control and trust in the use of widely
distributed services,” in Middleware 2001, no. 2218 in Lecture Notes in Computer
Science, (Heidelberg, Germany), pp. 300-315, Springer-Verlag, 2001.

J. Bacon, K. Moody, and W. Yao, “A model of OASIS role-based access control
and its support for active security,” ACM Transactions on Information and System
Security, vol. 5, pp. 492-540, Nov. 2002.

ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T Recommendation X.509: The Directory
— Public-Key and Attribute Certificate Frameworks, 2000.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer, Simple Object Access Protocol (SOAP) 1.1. World Wide
Web Consortium, May 2000. http://www.w3.org/TR/SOAP/.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access
control models,” IEEE Computer, vol. 29, pp. 38-47, Feb. 1996.

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy, (Oakland,
CA), pp. 164-173, IEEE Computer Society, Technical Committee on Security and
Privacy, IEEE Computer Society Press, May 1996.

177

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large
networks of computers,” Communications of the ACM, vol. 21, no. 12, pp. 993-999,
1978.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in distributed
systems: Theory and practice,” ACM Transactions on Computer Systems, vol. 10,
pp- 265-310, Nov. 1992.

J. Kohl and C. Neuman, “RFC 1510: The Kerberos Network Authentication Service
(V5),” RFC 1510, The Internet Engineering Task Force, Sept. 1993.

L. Gong, “A secure identity-based capability system,” in Proceedings of the IEEE
Symposium on Security and Privacy, (Los Angeles, CA), pp. 55-63, IEEE, IEEE
Computer Society Press, May 1989.

J. A. Bull, L. Gong, and K. R. Sollins, “Towards security in an open systems fed-
eration,” in Furopean Symposium on Research in Computer Security (ESORICS),
pp- 3-20, 1992.

R. Hayton, OASIS: An Open Architecture for Secure Interworking Services. PhD
thesis, Univeristy of Cambridge Computer Laboratory, June 1996. Technical Report
No. 399.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The role of trust
management in distributed systems security,” in Proceedings of Fourth Interna-
tional Workshop on Mobile Object Systems: Secure Internet Mobile Computations
(MOS 98, Brussels, Belgium), no. 1603 in Lecture Notes in Computer Science,
(Heidelberg, Germany), pp. 185-210, Springer-Verlag, July 1999.

R. L. Rivest and B. Lampson, “SDSI-A simple distributed security infrastructure.”
See http://theory.lcs.mit.edu/~rivest/sdsil0.ps, Aug. 1996.

C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“SPKI certificate theory,” RFC 2693, Internet Engineering Task Force, Sept. 1999.
See http://www.ietf.org/rfc/rfc2693.txt.

M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust management
for public-key infrastructures,” in Security Protocols — 6th International Workshop
(B. Christianson, B. Crispo, W. S. Harbison, and M. Roe, eds.), no. 1550 in Lecture
Notes in Computer Science, (Cambridge, United Kingdom), pp. 59-66, Springer-
Verlag, Berlin Germany, Apr. 1999.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The KeyNote trust
management system,” Internet Request for Comment RFC 2704, Internet Engineer-
ing Task Force, Sept. 1999. Version 2.

R. Sandhu, “Engineering authority and trust in cyberspace: The OM-AM and
RBAC way,” in Proc. 5th ACM Workshop on Role-Based Access Control (RBAC-
00), (New York, NY), pp. 111-119, ACM Press, July 26-27 2000.

178

22]

23]

[24]

33]

[34]

[35]

D. Bell and L. LaPadula, “Secure computer systems: Mathematical foundations,”
Tech. Rep. MTR-2547, Vol. I — III, MITRE Corporation, Bedford, MA, Nov. 1973.

K. Biba, “Integrity consideration for secure computer systems,” Tech. Rep. MTR-
3153, MITRE Corporation, Bedford, MA, Apr. 1975.

D. D. Clark and D. R. Wilson, “A comparison of commercial and military computer
security policies,” in Proceedings of the 1987 IEEE Symposium on Security and
Privacy (SSP '87), (Los Angeles, CA), pp. 184-195, IEEE Computer Society Press,
Apr. 1987.

D. F. C. Brewer and M. J. Nash, “The Chinese Wall security policy,” in Proc. IEEE
Symposium on Security and Privacy, pp. 206-214, 19809.

D. Ferraiolo and R. Kuhn, “Role-based access controls,” in Proc. 15th NIST-NCSC
National Computer Security Conference, pp. 554-563, 1992.

2

B. W. Lampson, “A note on the confinement problem,” Communications of the

ACM, vol. 16, pp. 613-615, Oct. 1973.

E. Amoroso, Fundamentals of Computer Security Technology. Prentice Hall, Apr.
1994. ISBN 0-13108-929-3.

R. Sandhu, “Transaction control expressions for separation of duties,” in /jth
Aerospace Computer Security Conference, pp. 282-286, Dec. 1988.

R. S. Sandhu, “Separation of duties in computerized information systems,” in IFIP
Workshop on Database Security, pp. 179-190, 1990.

R. T. Simon and M. E. Zurko, “Separation of duty in role-based environments,” in
Proc. 10th IEEE Computer Security Foundations Workshop (Rockport, MA, June
10-12), (Los Alamitos, CA), pp. 183-194, IEEE Computer Society Press, June 1997.

V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, “On the formal definition of separation-
of-duty policies and their composition,” in 1998 IEEE Symposium on Security and
Privacy (SSP "98), (Washington - Brussels - Tokyo), pp. 172-185, IEEE Press, May
1998.

B. Lampson, “Protection,” in Proceedings of the 5th Annual Princeton Conference
on Information Sciences and Systems, (Princeton University), pp. 437-443, 1971.

R. W. Baldwin, “Naming and grouping privileges to simplify security management
in large database,” in Proceedings of the IEEE Symposium on Security and Privacy
(Oakland, CA), (Los Alamitos, CA), pp. 116132, IEEE Computer Society Press,
May 1990.

S. A. Demurjian, M.-Y. Hu, T. C. Ting, and D. Kleinman, “Towards an authoriza-
tion mechanism for user-role based security in an object-oriented design model,”
in Proceedings of the 12th Annual International Phoenixz Conference on Comput-
ers and Communications (Tempe, AR) (J. Weeldreyer, ed.), (Los Alamitos, CA),
pp- 195202, IEEE Computer Society Press, Mar. 1993.

179

[36]

[37]

[40]

[41]

[42]

[43]

[45]

[46]

M. Nyanchama and S. Osborn, “Role-based security: Pros, cons & some research
directions,” ACM SIGSAC Review, vol. 2, pp. 11-17, June 1993. ACM Press.

M. Nyanchama and S. Osborn, “Access rights administration in role-based security
systems,” in Proc. 8th IFIP WG 11.8 Working Conference on Database Security
(Database Security VIII: Status and Prospects) (Bad Salzdetfurth, Germany, Aug.
23-26 (J. Biskup, M. Morgernstern, and C. Landwehr, eds.), vol. A-60 of IFIP
Transactions, (Amsterdam, The Netherlands), North-Holland (Elsevier), 1995.

M. Nyanchama and S. Osborn, “The role graph model and conflict of interest,” ACM

Transactions on Information and System Security, vol. 2, pp. 3-33, Feb. 1999. ACM
Press, New York, NY.

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access control model
and reference implementation within a corporate intranet,” ACM Transactions on
Information and System Security, vol. 2, pp. 34—64, Feb. 1999.

R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model for role-based access
control: Towards a unified standard,” in Proc. 5th ACM Workshop on Role-Based
Access Control (RBAC-00), (N.Y.), pp. 47-64, ACM Press, July 26-27 2000.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Pro-
posed NIST standard for role-based access control,” ACM Transactions on Infor-
mation and System Security, vol. 4, pp. 224-274, Aug. 2001.

D. Ferraiolo, J. Cugini, and R. Kuhn, “Role based access control (RBAC): Features
and motivations,” in Annual Computer Security Applications Conference, IEEE
Computer Society Press, 1995.

D. F. Ferraiolo and J. Barkley, “Specifying and managing role-based access control
within a corporate intranet,” in Proceedings of the 2nd ACM Workshop on Role-
Based Access Control (RBAC 97, Fairfax, VA, Nov. 6-7), (New York, NY), pp. 77—
82, ACM Press, Nov. 6-7 1997.

R. Sandhu, “Role activation hierarchies,” in Proc. 8rd ACM Workshop on Role-
Based Access Control (Fairfax, VA, October 22-23), (New York, NY), pp. 33-40,
ACM Press, Oct. 1998.

J. D. Moffett, “Control principles and access right inheritance through role hierar-
chies,” in Proc. 8rd ACM Workshop on Role-Based Access Control (Fairfaz, VA,
October 22-23), (New York, NY), pp. 63-69, ACM Press, Oct. 1998.

D. R. Kuhn, “Mutual exclusion of roles as a means of implementing separation of
duty in role-based access control systems,” in Proceedings of the 2nd ACM Workshop
on Role-Based Access Control (RBAC °97, Fairfax, VA, Nov. 6-7), (New York, NY),
pp. 23-30, ACM Press, Nov. 6-7 1997.

L. Giuri and P. Iglio, “A formal model for role-based access control with con-
straints,” in Proc. 9th IEEE Computer Security Foundations Workshop, (Los Alami-
tos, CA), pp. 136-145, IEEE Computer Society Press, 1996.

180

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[59]

[60]

[61]

R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model for role-based
administration of roles,” ACM Transactions on Information and System Security,
vol. 2, pp. 105-135, Feb. 1999.

S. Osborn, “Mandatory access control and role-based access control revisited,” in
Proceedings of the 2nd ACM Workshop on Role-Based Access Control (RBAC-97),
(New York, NY), pp. 31-40, ACM Press, Nov. 6-7 1997.

R. Sandhu and Q. Munawer, “How to do DAC using roles,” in Proceedings of the
3rd ACM Workshop on Role-Based Access Control (RBAC-98), (New York, NY),
pp. 47-54, ACM Press, Oct. 22-23 1998.

S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access control to
enforce mandatory and discretionary access control policies,” ACM Transactions on
Information and System Security, vol. 3, pp. 85-106, May 2000.

R. M. Needham and A. H. Herbert, The Cambridge Distributed Computing System.
Addison Wesley, Jan. 1982. ISBN 0-20114-092-6.

J. Bacon, I. Leslie, and R. Needham, “Distributed computing with a processor
bank,” Tech. Rep. 168, University of Cambridge Computer Laboratory, Apr. 1989.

A. D. Birrell and R. M. Needham, “A universal file server,” IEEE Transactions on
Software Engineering, vol. SE-6, pp. 450-453, Sept. 1980.

J. Dion, “The Cambridge file server,” ACM Operating Systems Review, vol. 14,
no. 4, pp. 26-35, 1980.

W. A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin, C. Pierson,
and F. J. Pollack, “HYDRA: The kernel of a multiprocessor operating system,”
Communications of the ACM, vol. 17, pp. 337-345, June 1974.

A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender,
J. Jansen, and G. van Rossum, “Experience with the amoeba distributed operating
system,” Communications of the ACM, vol. 33, pp. 46—63, Dec. 1990.

S. J. Mullender, C. van Rossum, A. S. Tanenbaum, R. van Renesse, and H. van
Stavern, “Amoeba: a distributed operating system for the 1990s.,” IEEE Computer,
vol. 23, pp. 44-53, May 1990.

S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberos authentication
and authorization system,” Project Athena Technical Plan, Section E.2.1, MIT
Laboratory for Computer Science, Cambridge, MA, Dec. 1987.

J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication service
for open network systems,” in USENIX Conference Proceedings (Dallas, TX, USA)
(USENIX Association, ed.), (Berkeley, CA, USA), pp. 191-202, USENIX Associa-
tion, Mar. 1988.

D. E. Denning and M. S. Sacco, “Timestamps in key distribution protocols,” Com-
munications of the ACM, vol. 24, pp. 533-536, Aug. 1981.

181

[62]

[63]

[64]

R. M. Needham and M. D. Schroeder, “Authentication revisited,” ACM Operating
Systems Review, vol. 21, p. 7, Jan. 1987.

D. Otway and O. Rees, “Efficient and timely mutual authentication,” ACM Oper-
ating Systems Review, vol. 21, pp. 810, Jan. 1987.

S. M. Bellovin and M. Merritt, “Limitations of the Kerberos authentication system,”
Computer Communication Review, vol. 20, no. 5, pp. 119-132, 1990. ACM Press,
New York, NY.

The Open Group, F201: DCFE 1.2.2 Introduction to OSF DCE, Nov. 1997. ISBN
1-85912-182-9.

C. B. Neuman, “Proxy-based authorization and accounting for distributed systems,”
in 15th International Conference on Distributed Computing Systems, pp. 283291,
May 1993.

R. Hayton, J. Bacon, and K. Moody, “OASIS: Access control in an open, distributed
environment,” in Proceedings of IEEE Symposium on Security and Privacy (Oak-
land, CA, May 3-6), (Los Alamitos, CA), IEEE Computer Society Press, 1998.

W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. IT-22, pp. 644-654, Nov. 1976.

P. R. Zimmermann, The Official PGP User’s Guide. Cambridge, MA, USA: MIT
Press, 1995.

S. Garfinkel, PGP: Pretty Good Privacy. Sebastopol, CA: O’Reilly & Associates,
Inc., 1995. ISBN 1-56592-098-8.

CCITT (Consultative Committee on International Telegraphy and Telephony),
CCITT Recommendation X.509: The Directory — Authentication Framework, 1988.

ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T Recommendation X.509: The Directory
— Authentication Framework, 1997.

R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 public key infrastructure
certificate and CRL profile,” RFC 2459, Internet Engineering Task Force, Jan. 1999.
See http://www.ietf.org/rfc/rfc2459.txt.

ANSI (American National Standards Institute), Washington, DC, ANSI X9.45:
Enhanced Management Controls Using Digital Signatures and Attribute Certificates,
1999.

S. Farrell and R. Housley, “An Internet attribute certificate profile for
authorization,” Internet Draft draft-ietf-pkix-ac509prof-09, Internet Engineer-
ing Task Force, June 2001. See http://www.ietf.org/internet-drafts/
draft-ietf-pkix-ac509prof-09.txt.

182

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

C. M. Ellison, “SPKI requirements,” RFC 2692, Internet Engineering Task Force
Draft IETF, Sept. 1999. See http://wuw.ietf.org/rfc/rfc2692.txt.

L. M. Kohnfelder, “Towards a practical public-key cryptosystem,” B.Sc thesis, MIT
Departement of Electrical Engineering, May 1978.

ITU-T (Telecommunication Standardization Sector, International Telecommunica-
tion Union), Geneva, Switzerland, ITU-T Recommendation X.509: The Directory
— Authentication Framework, 1993. (also ISO/IEC 9594-8, 1995).

M. Myers, C. Adams, D. Solo, and D. Kemp, “Internet X.509 certificate request
message format,” RFC 2511, Internet Engineering Task Force, Mar. 1999. See
http://www.ietf.org/rfc/rfc2511.txt.

M. Myers, X. Liu, J. Schaad, and J. Weinstein, “Certificate management mes-
sages over CMS,” RFC 2797, Internet Engineering Task Force, Apr. 2000. See
http://www.ietf.org/rfc/rfc2797.txt.

S. Boeyen, T. Howes, and P. Richard, “Internet X.509 public key infrastructure:
Operational protocols - LDAPv2,” RFC 2559, Internet Engineering Task Force,
Apr. 1999. See http://www.ietf.org/rfc/rfc2559.txt.

R. Housley and P. Hoffman, “Internet X.509 public key infrastructure: Operational
protocols - FTP and HTTP,” RFC 2585, Internet Engineering Task Force, May
1999. See http://www.ietf.org/rfc/rfc2585.txt.

. Lehti and P. Nikander, “Certifying trust,” in Proc. 1st International Public Key
Cryptography Conference, no. 1431 in Lecture Notes in Computer Science, pp. 83—
98, 1998.

J. Linn, “Trust models and management in public-key infrastructures,” technical
report, RSA Data Security, Inc., Redwood City, CA, USA, Nov. 2000.

A. Jgsang, I. G. Pedersen, and D. Povey, “PKI seeks a trusting relationship,” in
Proceedings of Fifth Australasian Conference on Information Security and Privacy
(ACISP 2000, Brisbane, Australia) (E. Dawson, A. Clark, and C. Boyd, eds.),
no. 1841 in Lecture Notes in Computer Science, (Berlin, Germany), Springer-Verlag,
July 2000.

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509 Internet pub-
lic key infrastructure: Online certificate status protocol - OCSP,” RFC 2560, Inter-
net Engineering Task Force, June 1999. See http://www.ietf.org/rfc/rfc2560.
txt.

W. Johnston, S. Mudumbai, and M. Thompson, “Authorization and attribute cer-
tificates for widely distributed access control,” in Proceedings of the 7th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 98, Stanford, CA), (Los Alamitos, CA), IEEE Computer
Society Press, June 1998.

183

[33]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

98]

[99]

M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari,
“Certificate-based access control for widely distributed resources,” in Proceedings of
the 8th USENIX Security Symposium (SECURITY-99), (Berkely, CA), pp. 215-228,
Usenix Association, Aug. 23-26 1999.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture for
computational grids,” in Proc. 5th ACM Conference on Computer and Communi-
cations Security (CCS-5, San Francisco, CA), (New York, NY), pp. 83-92, ACM
Press, Nov. 1998.

R. Butler, V. Welch, D. Engert, 1. Foster, S. Tuecke, J. Volmer, and C. Kesselman,
“A national-scale authentication infrastructure,” IEEE Computer, vol. 33, pp. 60—
66, Dec. 2000.

D. Chadwick and A. Otenko, “RBAC policies in XML for X.509 based privilege
management,” in Proceedings of the 17th International Conference on Information

Security, (Cairo, Egypt), May 2002.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “Sim-
ple public key certificate,” Internet Draft draft-ietf-spki-cert-structure-06, Internet
Engineering Task Force, Jan. 1999. See http://world.std.com/~cme/spki.txt.

M. Blaze, J. Feigenbaum, and J. Lacy, “Managing trust in medical information
systems,” Tech. Rep. 96.14.1, AT&T, 1996.

M. Blaze, J. Ioannidis, and A. Keromytis, “Trust management for IPsec,” in
Proceedings of the Network and Distributed System Security Symposium: 2001
(NDSS’01, San Diego, CA), (Reston, Virginia), Internet Society, Feb. 2001.

M. Blaze, J. Ioannidis, and A. D. Keromytis, “Trust management for IPsec,” ACM
Transactions on Information and System Security, vol. 5, no. 3, pp. 95-118, 2002.

M. Blaze, J. Feigenbaum, P. Resnick, and M. Strauss, “Managing trust in
an information-labeling system,” Furopean Transactions on Telecommunications,
vol. 8, no. 5, pp. 491-501, 1997.

M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance checking in the policy
maker trust management system,” in Proceedings of the Financial Cryptography
1998 (FC’98, Anguilla, British West Indies), no. 1465 in Lecture Notes in Com-
puter Science, (Berlin, Germany), pp. 254274, Springer-Verlag, Feb. 1998.

Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss, “REFEREE:
Trust management for web applications,” in Proc. 6h International World-Wide
Web Conference (WWW6, Santa Clara, CA), Apr. 1997.

Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss, “REFEREE:
Trust management for web applications,” The World Wide Web Journal, vol. 2,
no. 3, pp. 127-139, 1997. Available at http://www.w3j.com/.

184

[100]

101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

111]

[112]

[113]

T. Krauskopf, J. Miller, P. Resnick, and W. Treese, “PICS label distribution label
syntax and communication protocols, version 1.1,” Recommendation REC-PICS-
labels-961031, World Wide Web Consortium, Oct. 1996. Available at http://www.
w3.org/TR/REC-PICS-labels.

Herzberg, Mass, Mihaeli, Naor, and Ravid, “Access control meets public key infras-
tructure, or: Assigning roles to strangers,” in RSP: 21th IEEE Computer Society
Symposium on Research in Security and Privacy, 2000.

A. Herzberg and Y. Mass, “Relying party credentials framework,” in Proc. RSA
Conference 2001, vol. 2020 of Lecture Notes in Computer Science, (Heidelberg,
Germany), pp. 328-343, Springer-Verlag, Apr. 2001.

N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust-
management framework,” in IEEE Symposium on Security and Privacy, (Los An-
geles, CA), pp. 114-130, IEEE Computer Society Press, May 2002.

U.S. Department of Defense, DoD 5200.28-STD: Department of Defense (DoD)
Trusted Computer System Evaluation Criteria (TCSEC), 1985.

b}

B. J. Fogg and H. Tseng, “The elements of computer credibility,” in Proceedings of
the Conference on Human Factors in Computing Systems (CHI-99), (New York),
pp. 8087, ACM Press, May 15-20 1999.

S. Tseng and B. J. Fogg, “Credibility and computing technology,” Communications
of the ACM, vol. 42, pp. 39-44, May 1999.

R. Yahalom, B. Klein, and T. Beth, “Trust relationships in secure systems-A dis-
tributed authentication perspective,” in Proceedings of the 1993 IEEE Computer
Society Symposium on Security and Privacy (SSP ’93), (Washington - Brussels -
Tokyo), pp. 150164, IEEE, May 1993.

A. Josang, “Prospectives for modelling trust in information security,” in Proc. 2nd
Information Security and Privacy Conference — ACISP 97, pp. 2-13, 1997.

M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM Trans-
actions on Computer Systems, vol. 8, pp. 18-36, Feb. 1990.

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A calculus for access control in

distributed systems,” ACM Transactions on Programming Languages and Systems,
vol. 15, pp. 706-734, Sept. 1993.

I

B. Crispo, “Delegation of responsibilities,” in Proc. 6th International Security Pro-
tocols Workshop (Cambridge, UK, April 15-17), no. 1550 in Lecture Notes in Com-
puter Science, (Heidelberg, Germany), pp. 118-130, Springer-Verlag, 1998.

A. Nash, B. Duane, D. Brink, and C. Joseph, PKI: Implementing and Managing
E-Security. McGraw-Hill Professional Publishing, Mar. 2001. ISBN 0-0721-3123-3.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Key management involving
multiple domains, ch. 13.6, pp. 570-577. CRC Press, 1997.

185

114]

[115]

[116]

[117)

18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]
128

[129]

A. Jgsang, “The right type of trust for distributed systems,” in Proceedings of ACM
Workshop on New Security Paradigms, ACM SIGSAC, ACM Press, Sept. 1996.

B. Shneiderman, “Designing trust into online experiences,” Communications of the
ACM, vol. 43, pp. 57-59, Dec. 2000.

D. W. Manchala, “E-commerce trust metrics and models,” IEEFE Internet Comput-
ing, vol. 4, no. 2, pp. 36-44, 2000.

T. Grandison and M. Sloman, “A survey of trust in Internet applications,” IEEFE
Communications Surveys € Tutorials, vol. 3, no. 4, 2000.

S. Einwiller, “Analyzing the potential of the key dimensions of reputation to cre-

ate trust in electronic commerce,” in Proc. 8th Research Symposium on Emerging
FElectronic Markets (RSEEM’01, Maastricht, The Netherlands), Sept. 2001.

A. Abdul-Rahman and S. Hailes, “Using recommendations for managing trust in
distributed systems,” in Proc. IEEE Malaysia International Conference on Com-
munication 97 (MICC’97), (Kuala Lumpur, Malaysia), Nov. 1997.

A. Abdul-Rahman and S. Hailes, “A distributed trust model,” in Proceedings of the
ACM Workshop on New Security Paradigms, (Cumbria, United Kingdom), pp. 48—
60, ACM SIGSAC, ACM Press, Sept. 1997.

P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara, “Reputation systems,”
Communications of the ACM, vol. 43, pp. 45-48, Dec. 2000.

2

J. S. Olson and G. M. Olson, “i2i trust in e-commerce,
ACM, vol. 43, pp. 41-44, Dec. 2000.

Communications of the

A. Abdul-Rahman and S. Hailes, “Supporting trust in virtual communities,” in
Proc. 33th Hawaii International Conference on System Sciences, IEEE Press, Jan-
uary 2000.

F. Fukuyama, Trust : The Social Virtues and the Creation of Prosperity. New York,
NY: Free Press, June 1996. ISBN 0684825252.

D. Gambetta, “Can we trust trust?,” in Trust: Making and Breaking Cooperative
Relations (D. Gambetta, ed.), ch. 13, pp. 213-237, New York, NY: Basil Blackwell,
1988.

B. Christianson and W. S. Harbison, “Why isn’t trust transitive?,” in Proc. jth
International Security Protocols Conference, pp. 171-176, 1996.

N. Luhmann, Trust and Power. New York, NY: Wiley, 1979.

B. A. Misztal, Trust in Modern Societies : The Search for the Bases of Social Order.
Cambridge, MA: Polity Press, 1996. ISBN 0745612482.

D. Fahrenholtz and A. Bartelt, “Towards a sociological view of trust in com-

puter science,” in Proc. 8th Research Symposium on Emerging Electronic Markets
(RSEEM’01, Maastricht, The Netherlands), Sept. 2001.

186

[130]

131]

[132]

[133]

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

D. Schoder and P.-L. Yin, “Building firm trust online,” Communications of the
ACM, vol. 43, pp. 73-79, Dec. 2000.

B. Schneier, “A primer on authentication and digital signatures,” Computer Security
Journal, vol. 10, no. 2, pp. 3840, 1994.

S. Micali, “Enhanced certificate revocation system.” Technical memo
MIT/LCS/TM-542, 1995. Available at ftp://ftp-pubs.lcs.mit.edu/pub/
lcs-pubs/tm.outbox/MIT-LCS-TM-542.ps.gz.

M. Naor and K. Nissim, “Certificate revocation and certificate update,” in Proceed-
ings of the 7th USENIX Security Symposium (SECURITY-98), (Berkeley), pp. 217—
228, Usenix Association, Jan. 2629 1998.

W. Aiello, S. Lodha, and R. Ostrovsky, “Fast digital identity revocation (extended
abstract),” in 18th Annual International Cryptology Conference (CRYPTO’98,
Santa Barbara, CA), no. 1462 in Lecture Notes in Computer Science, (Heidelberg,
Germany), pp. 137-152, Springer-Verlag, Aug. 1998.

[. Gassko, P. Gemmell, and P. D. MacKenzie, “Efficient and fresh cerification,” in
Proc. 3rd International Workshop on Practice and Theory in Public Key Cryptog-
raphy (PKC 2000, Melbourne, Australia), no. 1751 in Lecture Notes in Computer
Science, (Heidelberg, Germany), pp. 342-353, Springer-Verlag, Jan. 2000.

R. Wright, P. D. Lincoln, and J. K. Millen, “Efficient fault-tolerant certificate re-
vocation,” in Proceedings of the 7th ACM Conference on Computer and Commu-
nications Security (CCS-00), (New York, NY), pp. 19-24, ACM Press, Nov. 1-4
2000.

A. Jgsang, “A subjective metric of authentication,” in Proc. 5th European Sym-
posium on Research in Computer Security (ESORICS’98, Louvain-la-Neuve, Bel-
gium), no. 1485 in Lecture Notes in Computer Science, (Heidelberg, Germany),
Springer-Verlag, 1998.

A. Jgsang and S. J. Knapskog, “A metric for trusted systems,” in Proc. 21st NIST-
NCSC' National Information Systems Security Conference, pp. 16-29, 1998.

D. W. Manchala, “Trust metrics, models and protocols for electronic commerce
transactions,” in Proc. 18th International Conference on Distributed Computing
Systems (ICDCS’98), (Amsterdam, The Netherlands), pp. 312-321, IEEE, May
1998.

S. P. Marsh, Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling, Apr. 1994.

T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open networks,” in
Proceedings of the European Symposium on Research in Computer Security (ES-
ORICS ’94, Brighton, UK), no. 875 in Lecture Notes in Computer Science, (Hei-
delberg, Germany), pp. 3—18, Springer-Verlag, Nov. 1994.

187

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

U. Maurer, “Modelling a public-key infrastructure,” in Proceedings of the FEuro-
pean Symposium on Research in Computer Security (ESORICS '96, Rome, Italy),
no. 1146 in Lecture Notes in Computer Science, (Heidelberg, Germany), pp. 325-
350, Springer-Verlag, Sept. 1996.

)

C. M. Ellison, “Naming and certificates,” in Proceedings of the tenth conference on
Computers, freedom and privacy: challenging the assumptions, (Toronto, Canada),
pp. 213217, April 2000.

T. Aura, “Distributed access-rights managements with delegations certificates,” in
Proceedings of Fourth International Workshop on Mobile Object Systems: Secure
Internet Mobile Computations (MOS 98, Brussels, Belgium), no. 1603 in Lecture
Notes in Computer Science, (Heidelberg, Germany), pp. 211-235, Springer-Verlag,
July 1999.

R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda, and F. Velez, eds., The Object Data Standard: ODMG
3.0. Morgan Kaufmann, Jan. 2000. ISBN 1-55860-647-5.

W. Rubin and M. Brain, Understanding DCOM. Englewood Cliffs, NJ: Prentice-
Hall, 1999. Includes CD-ROM.

ISO (International Organization for Standardization), Geneva, Switzerland, ISO
8601-2000: Representations of dates and times, 2000-12-21, 2000.

B. Harbison, “Delegating trust (transcript of discussion),” in Proc. 6th International
Security Protocols Workshop (Cambridge, UK, April 15-17), no. 1550 in Lecture
Notes in Computer Science, (Heidelberg, Germany), pp. 108-117, Springer-Verlag,
1998.

World Wide Web Consortium, FEztensible Markup Language (XML) 1.0, 2nd ed.,
Oct. 2000. http://wuw.w3.org/TR/2000/REC-xm1-20001006.

Organization for the Advancement of Structured Information Standards (OASIS),
ebXML Technical Architecture Specification, v 1.0.4 ed., Feb. 2001. http://wuw.
ebxml .org/specs/ebTA.pdf.

Organization for the Advancement of Structured Information Standards (OASIS),
ebXML Business Process Specification Schema, v 1.01 ed., May 2001. http://www.
ebxml.org/specs/ebBPSS. pdf.

B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, and P. H.-B. et. al, Web Ser-
vices Security (WS-Security) Version 1.0, Apr. 2002. http://www-106.ibm.com/
developerworks/library/ws-secure/.

W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, and
J. Lapp, XML Key Management Specification (XKMS) (W3C Note). World Wide
Web Consortium, Mar. 2001. http://www.w3.org/TR/xkms/.

188

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

165

[166]

[167]

Organization for the Advancement of Structured Information Standards (OA-
SIS), Assertions and Protocol for the OASIS Security Assertion Markup Language
(SAML), May 2002. http://www.oasis-open.org/committees/security/docs/
cs—-sstc-core-01.pdf.

Organization for the Advancement of Structured Information Standards (OA-
SIS), Bindings and Profiles for the OASIS Security Assertion Markup Language
(SAML), May 2002. http://www.oasis-open.org/committees/security/docs/
cs-sstc-bindings-01.pdf.

M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen, SOAP Version 1.2 Part 1:
Messaging Framework (W8C Working Draft 17 December 2001). World Wide Web
Consortium, Dec. 2001. http://www.w3.org/TR/soapl2-partl/.

M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen, SOAP Version 1.2 Part 2:
Adjuncts (W3C Working Draft 17 December 2001). World Wide Web Consortium,
Dec. 2001. http://www.w3.org/TR/soapl2-part2/.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web Services De-
scription Language (WSDL) 1.1 (W3C Note 15 March 2001). World Wide Web
Consortium, Mar. 2001. http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

World Wide Web Consortium, XML Schema Part 1: Structures (W3C Recommen-
dation 2 May 2001, May 2001. http://www.w3.org/TR/xmlschema-1/.

World Wide Web Consortium, XML Schema Part 2: Datatypes (W3C' Recommen-
dation 2 May 2001, May 2001. http://www.w3.org/TR/xmlschema-2/.

UDDl.org, UDDI Version 2.0: API Specification (UDDI Open Draft Specifica-
tion 8 June 2001, June 2001. http://www.uddi.org/pubs/ProgrammersAPI-V2.
00-0pen-20010608.pdf.

UDDIl.org, UDDI Version 2.0: Data Structure Reference (UDDI Open Draft Specifi-
cation 8 June 2001, June 2001. http://www.uddi.org/pubs/DataStructure-V2.
00-0Open-20010608. pdf.

T. Howes and M. Smith, “An LDAP URL format,” Internet Request for Comment
RFC 1959, Internet Engineering Task Force, June 1996.

T. Dierks and C. Allen, “The TLS protocol version 1.0,” RFC 2246, Internet Engi-
neering Task Force, Jan. 1999. Proposed Standard.

World Wide Web Consortium, Namespaces in XML, Jan. 1999. http://www.w3.
org/TR/1999/REC-xml-names-19990114/.

World Wide Web Consortium, XML-Signature Syntax and Process-
ing (W3C Recommendation), Feb. 2002. http://www.w3.org/TR/2002/
REC-xmldsig-core-20020212/.

World Wide Web Consortium, XML Path Language (XPath) 2.0 (W3C Working
Draft), Apr. 2002. http://www.w3.org/TR/xpath20/.

189

168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]
[177]
[178]

[179]
[180]
[181]

[182]

W. Winsborough, K. Seamons, and V. Jones, “Automated trust negotiation,” Tech.
Rep. TR-~2000-05, Department of Computer Science, North Carolina State Univer-
sity, Apr. 24 2000. Mon, 24 Apr 2000 17:07:47 GMT.

K. E. Seamons, M. Winslett, and T. Yu, “Limiting the disclosure of access con-
trol policies during automated trust negotiation,” in Proceedings of the Symposium
on Network and Distributed Systems Security (NDSS 2001, San Diego, CA), (San
Diego, California), Internet Society, Feb. 2001.

W. H. Winsborough and N. Li, “Towards practical trust negotiation,” in Proc. 3rd
Workshop on Policies for Distributed Systems and Networks (Policy 2002), pp. 92—
103, June 2002.

Apache Software Foundation, http://httpd.apache.org/, Apache HTTP Server
Project, 1999.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext transfer protocol - HTTP/1.1,” RFC 2616, The Internet Society,
June 1999. See http://www.ietf.org/rfc/rfc2616.txt.

H. Nielsen, P. Leach, and S. Lawrence, “An HTTP extension
framework,” RFC 2774, The Internet Society, Feb. 2000. See
http://www.ietf.org/rfc/rfc2774.txt.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Lu-
otonen, and L. Stewart, “HTTP authentication: Basic and digest ac-
cess authentication,” RFC 2617, The Internet Society, June 1999. See
http://www.ietf.org/rfc/rfc2617.txt.

N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part
two: Media types,” rfc, Internet Engineering Task Force Draft IETF, Nov. 1996.
See http://www.ietf.org/rfc/rfc2046.txt.

Microsoft Corp., http://www.passport.com/, Microsoft .NET Passport, 2002.
Entrust Inc., http://www.entrust.com/getaccess, Entrust GetAccess, 2002.

RSA Security Inc., http://www.rsasecurity.com/products/ClearTrust/index.
html, RSA ClearTrust, 2002.

PHP/: Hypertext Preprocessor. http://www.php.net/, 2001.
PayPal Internet Payment System. www.paypal.com.

T. Yu, M. Winslett, and K. E. Seamons, “Interoperable strategies in automated
trust negotiation,” in Proceedings of the 8th ACM Conference on Computer and
Communications Security (Philadelphia, PA, USA) (P. Samarati, ed.), (New York,
NY), pp. 146-155, ACM Press, Nov. 2001.

World Wide Web Consortium, XML Encryption Syntax and Processing W3C Can-
didate Recommendation, Mar. 2002. http://www.w3.org/TR/xmlenc-core/.

190

[183] S. A. Brands, Rethinking Public Key Infrastructures and Digital Certificates; Build-
ing in Privacy. Cambridge, MA: MIT Press, Aug. 2000. ISBN 0-262-02491-8.

191

