Technical Report A

Number 60

Computer Laboratory

Memory and context mechanisms
for automatic text processing

Hiyan Alshawi

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© Hiyan Alshawi

This technical report is based on a dissertation submitted
December 1983 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Contents

1. Introduction

1.1

1.2

1.3

1.4

1.5

Memory and context mechanisms
in automatic language processing

Aims and methodology
The Capture system and what it does
General description of how Capture works

Organization of thesis

2. Memory Representation

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Memory and text processing
Memory representation in Capture
Entities and basic assertions
Semantics of memory assertions
Subtypes of assertions

Semantic network implementation
Language and domain entities
Task related entities

Comparison with other formalisms and discussion

3. Memory Processing

3.1

3.2

3.3

3.4

3.5

Marker processing
Retrieval operations
Marking operations
Search requests

Techniques for efficient retrieval

11
14

18

20
22
24
26
28
30
32
34

37

46
48
49
52

53

3.6 Other techniques for efficient retrieval 59
3.7 Comments on Capture memory processing 61

4. Interpretation

4.1 Interpretation operations in Capture 64
4.2 The analyser and its output 66
4.3 Sentence interpretation : 69
4.4 Predicate clause interpretation 70
4.5 Predicate and argument derivation 73
4.6 Be and Have clause interpretation 74
4,7 Noun phrase reference interpretation 77
4.8 Relationship interpretation 80
4.9 Disambiguation operations ' 85
4.10 Discussion of coverage 88

5, Context Mechanism

5.1 Use of context in text processing 92
5.2 Representation of context information 96
5.3 Context application 100
5.4 Management of context factors 110
5.5 Implications of the context mechanism 114
5.6 Comparison with other models for context and focus 117
5.7 Using the context mechanism in other frameworks 124

6. Database Capture Task

6.1 Language processing tasks 128

6.2 The database capture task 131

6.3

6.4

6.5

6.6

6.7

The target databases

Task specific operations

Interleaving interpretation and task operations
Handling other constructions

Applicability to similar tasks

7. Summary and Conclusions

7.1 Techniques developed in this project

7.2 Observations on the evaluation of the techniques in Capture

7.3 General conclusions about the memory and context mechanisms
7.4 Directions for further research

Appendices

A. Example texts and output

B. Examples of the influence of context factor types

C.

Effect of clustering on search efficiency

References

133

139

143

147

150

152

153

165

156

169

178

183

186

Chapter 1

Introduction

1.1 Memory and context mechanisms in automatic language processing

It is now generally accepted by researchers in artificial intelligence that
sophisticated automatic natural language processing requires a vast
knowledge base, and has to take the influence of context into account. This
implies that a natural language processing system needs a storage and
retrieval mechanism for holding the knowledge and making it available to
the interpretation processes, and a context mechanism that indicates which
elements of the base are currently relevant to interpretation. However,
there is little agreement on how to represent and organize knowledge in
memory, or what knowledge to represent, and on how and when to use it
during language processing. Similarly, there is no universal agreement on
what constitutes context, and on how contextual information should be
represented and applied. The lack of agreement on these issues raises
questions about the extent to which practical natural language processing
systems can be based on the particular techniques used in existing

experimental systems.

Much of the work in this area nevertheless continues to confirm that there
are many problems of language interpretation that cannot be handled
without the application of knowledge and context. These problems are not
limited to esoteric language phenomena, although there are plenty of these,
but the roles of memory and context in the interpretation of many common
phenomena have not been worked out satisfactorily. Cornmon phenomena
include reference resolution, word sense disambiguation, and the
interpretation of compound nominals. A number of artificial intelligence
research projects have concentrated on one or another of these phenomena
and have studied specific models for the use of memory and context in
dealing with them. Examples are Sidner's work [Sidner79] on the
interpretation of definite anaphora, and McDonald's work [McDonald82] on
the interpretation of noun compounds. Other projects have investigated
models for representing and using specific aspects of context information,
for example the work by Grosz [Grosz77] on the use of focus in mechanical
task dialogues and the work by DeJong [DeJong79] applying stereotyped
knowledge of real-world situations to text analysis.

The work reported in this thesis does not concentrate on the use of
knowledge in memory for the interpretation of a single type of construction,
or on the representation and application of one aspect of context. Instead,
techniques are developed that result in unified memory and context
mechanisms that can be used to handle many common constructions and to
take into account various different aspects of context. The techniques are
relatively simple to implement, yet powerful enough to deal with a wide range
of phenomena. Because of this, I believe these techniques form an
appropriate basis for the design of memory and context mechanisms for

(modest) natural language processing applications in the nearer future.

In order to realize practical systems it is not sufficient to design just any
mechanisms that allow the interpretation of language to be made with
respect to the knowledge in memory and to take context into account. The
mechanisms also have to be reasonably efficient even when a large
knowledge base is being utilised. The need for knowledge and context
representations that would allow efficient processing was one of the main
motivations for Minsky's proposal [Minsky75] for organising knowledge into
frames. It was also the motivation for the design by Fahlman [Fahlman79] of
a knowledge representation language for which certain operations could be
performed very efficiently on a specially designed parallel machine.
Efficiency considerations also had an important influence on the design of
the mechanisms described in this thesis.

Before discussing the methodology followed in this project and cutlining the
experimental text processing system, Capture, that was built, the main
apparatus and techniques for text interpretation developed in the project
are listed for reference. These are:

(1) a memory representation formalism that allows the encoding of
linguistic, discourse domain, and application specific knowledge, and also the
encoding of the relationships between these different types of knowledge.
The advantages of the representation formalism, as compared with similar
formalisms are that it is simple, and that it can be given a well defined

semantics.

(2) techniques for improving the efficiency of retrieval from memory. The
main device is an indexing scheme that can be based on semantic clustering.
This is used to increase the efficiency of memory search operations, and to
allow memory searches to be restricted by the current representation of

context information.

(3) a framework within which various common language interpretation
problems (such as the resolution of definite references) can be solved, and
the functional activities of an application task (such as database creation

from natural language texts) can be performed.

(4) the representation of different aspects of context, such as recency of
mention, memory-based association, specific subject area, and preceding
memory processing. The representation used also allows the effects of the
various context factors to be combined.

(5) the accumulation and management of context information in a way that
responds gradually to shifts of focus during text processing. The context
mechanism is related to memory in a way that allows straightforward
application of contextual information to language interpretation problems
such as reference resolution and word sense disambiguation.

Thus the concern of this work was to tackle the problems involved in
designing and implementing satisfactory mechanisms for the memory and
context functions of automatic text processing systems. These functions
have been shown to be vital to sophisticated text processing by much of the
natural language work in artificial intelligence.

The main contributions of the techniques developed, as listed above, are the
simplicity of the memory representation; the generality of the context
mechanism (for flexible management, combination and application, of
context factors); and the utility of the indexing scheme developed for
efficient memory searching and access to entities in focus.

1.2 Aims and methodology

The research reported here has a technological rather than scientific bias.
This is reflected in the long term aims of the research, in the aspects
emphasized in the work that was carried out, and in the approach adopted
for testing and evaluation.

The long term aim is the realization of practical automatic natural language
processing systems, rather than the formulation of a well-developed theory
of human language processing. It would therefore be inappropriate to
evaluate this work primarily from the point of view of linguistics, cognitive
science, or the philosophy of language. Of course a technological
applications-oriented approach cannot be fruitfully followed without a great
deal of attention being paid to the realities of language use. A system built
without taking these into account would almost certainly be unusable.
Moreover, a genuinely practical system has to be extensible, and this seems
to imply a well motivated or principled foundation for the system. A deeper
understanding of human language behaviour may also provide better

characterizations of linguistic phenomena, and bring to light constraints on
language use, that could indicate technologically feasible solutions to the
problems of building practical automatic language processing systems. But
linguistic and cognitive considerations are only inputs to the system design,
rather than its justification.

The context and memory mechanisms developed in this project do provide a
framework for the formulation of relatively precise abstract theories for the
role of memory and of different aspects of context in the interpretation of
various language constructs. The emphasis in the work carried out was in
developing the necessary computational techniques, those listed earlier, for
providing such a framework. The experimental system, Capture, implemented
using this framework, included a number of language interpretation
operations (such as definite reference resolution) that are performed with
respect to the contents of memory and the current context, and the
representation and handling of various types of factors contributing to
context specification (such as recency of mention). Much of the effort
involved in the project was spent on these memory operations and types of
context factor, and some novel solutions to the text processing problems
related to them were tested by the project. However, the particular
interpretation operations, and the particular context factors used and their
handling, were not viewed as constituting fully fledged theories about these
operations and factors; they were viewed rather as showing that the memory
and context mechanisms implemented provide an appropriate apparatus for
handling these phenomena and one that is compatible with a range of

possible theoretical accounts of them.

The application task of creating a structured database from a collection of
texts was chosen for testing the memory and context mechanisms because it
combines a fair challenge in text understanding with the production of
concrete output that can be independently evaluated. This task also has the
advantage for testing the mechanisms developed in the project of
realistically restricting the domain of discourse. The implemented system,
Capture, was not intended to be a production text processing system. The
database creation (or "capture’) application was designed to check on the
validity and utility of the underlying language processing mechanisms and
was not regarded as of primary interest in its own right. The adoption of an
application task is important because it sets a standard for judging the
success, or failure, of a system in interpreting a text. Although, for any
particular task, this standard tends to be idiosyncratic to the task, it still
permits better evaluation of the interpretation process than can be
achieved by inspecting the products of interpretation as new structures in a
formalism that is internal to the text processing system. Judging internal
representations is not an adequate way of evaluating a language
understanding system. The database capture task, in contrast, involves

10

producing objects which have to be acceptable to an external system, the
database management system. External evaluation was regarded as
particularly important, in the context of this research project, because of
the long term aim of realizing text processing systems for practical
applications.

Ideally, a text processing system should be tested with much care being
devoted to collecting appropriate language test data. Unfortunately, the
' example texts that were processed by the system had to be written
specifically to test the system; they could not be taken from a corpus of
texts written independently for some other purpose. The reasons for this
included the lack of availability of a suitable corpus of texts that could be
processed given the limitations on the coverage of language constructions
handled, and on the interpretation possibilities that are considered, by the
implemented system. When writing example texts, an attempt was made to
distinguish between producing texts for testing the system and ones that
were bound to work, but it is not possible to guarantee that the artificially
produced examples are not biased to the system. As will be illustrated in
detail by the thesis, the example texts that are handled by the system were
sufficiently rich to demonstrate the use of the memory and context
mechanisms in solving several pervasive language interpretation problems
and performing a non-trivial text processing task.

1.3 The Capture system and what it does

The "Capture' system implemented in this project is designed to perform the
task of creating a database, with a specified structure, from the relevant
factual content of a body of short English texts. Two example domains were
used for testing purposes, and the memory knowledge base used by the
current version of the system contains knowledge relevant to both domains.
For one of these domains the texts used were records about a hypothetical
museum's artifacts and their collectors; for the other the texts were
thought of as retailers’ records of data processing machines, suppliers and
manufacturers. The target databases (the "Artifacts Database” and the
"Machines Database'”) are composed of fixed format tables, of the standard
kind conforming to the so-called Relational Data Model. The relations and
columns of these target relational databases are specified in advance.

The database Capture task requires the implementation of solutions to
common language interpretation problems in order that explicit database
statements can be generated. For example, the processing, in context, of a
sentence like "It is an arrow” requires determining the referent of the
pronoun "it" and selecting the correct sense of "arrow” so that the following

11

output (a "database creation statement") might be produced.

(ARTIFACTS /RELATION (ARTF/NUMB P670) (ARTF/TYPE weapon1))

Below are two texts from the example domains which were processed by the
system, followed by the "database creation statements” that were produced
for them. These statements can be used for incrementing the target
relational databases, but their detailed format is not important for
understanding the memory and context mechanisms and here the relevant
point is that they correspond to explicit statements, or propositions, derived
from the texts.

Example text from the artifacts domain:

Jones who was a trader collected P350 from Daui. He collected P370
from Woodlark. P350 is a necklace. P370 is an armlet. P391 is a
necklace that comes from Woodlark. The condition of these

ornaments is good.

Armstrong and Haddon were British. They were academics. Haddon
collected P597 and P598 from Daui. The artifacts are necklaces. The

condition of these Daui necklaces is poor.

P392 and P393 are armlets that were collected by Smith. This
collector was a trader. The artifacts are fair.

Although this example text uses only simple English constructions, it
demonstrates the resolution of plural definite references by the system. For
instance, the interpretation of the noun phrase "the artifacts” in the last
sentence ultimately results in the production of the last two lines of the

output given below.

Database creation statements for the artifacts text:

((COLLECTORS/RELATION ((COLL/OCCP trader1) (COLL/NAME Jones)))

(ORIGIN/RELATION

((ORIG /ARTN P350) (ORIG/COLL Jones) (ORIG/PLAC Daui)))
(ORIGIN/RELATION

((ORIG/ARTN P370) (ORIG/COLL Jones) (ORIG/PLAC Woodlark)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P350)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P370)))
(ORIGIN/RELATION ((ORIG/ARTN P391) (ORIG/PLAC Woodlark)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P391)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P391)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P350)))
(ARTIFACTS /RELATION ((ARTF/COND good1) (ARTF/NUMB P370)))

12

(COLLECTORS/RELATION

((COLL/NATN British1) (COLL/NAME Haddon1)))
(COLLECTORS/RELATION

((COLL/NATN British1) (COLL/NAME Armstrong1)))
(COLLECTORS/RELATION

((COLL/OCCP academic1) (COLL/NAME Haddon1)))
(COLLECTORS/RELATION

((COLL/OCCP academic1) (COLL/NAME Armstrong1)))
(ORIGIN/RELATION

((ORIG /PLAC Daui) (ORIG/ARTN P598) (ORIG/COLL Haddon1)))
(ORIGIN/RELATION

((ORIG/PLAC Daui) (ORIG/ARTN P597) (ORIG/COLL Haddon1)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P598)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P597)))
(ARTIFACTS/RELATION ((ARTF/COND poor2) (ARTF/NUMB P598)))
(ARTIFACTS /RELATION ((ARTF/COND poor2) (ARTF/NUMB P597)))
(ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P393)))
(ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P392)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P393)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P392)))
(COLLECTORS/RELATION ((COLL/OCCP trader1) (COLL/NAME Smith1)))
(ARTIFACTS/RELATION ((ARTF/COND fair1) (ARTF/NUMB P393)))
(ARTIFACTS/RELATION ((ARTF/COND fair1) (ARTF/NUMB P392))))

Example text from the machines domain:

Plexir manufactures P9999 which is a computer. It is supplied by
Smith. P1010 is a terminal that is supplied by Clark. This one is made
by Mikota. These machines are red.

P9000 is a green printer. It is made by Plexir. P4444 is a blue
computer. The cost of the machine is 7850. The peripheral is supplied
by the P9999 supplier. The terminal manufacturer makes the blue
machine. The cost of Mikota’s peripheral is 235.

Again, although the language used in this example is fairly simple, it
illustrates cases of word sense disambiguation performed by the system,

" "

such as choosing the correct senses for "green”, "make”, and "terminal”. It

also illustrates some cases of definite reference resolution.

Database creation statements for the machines text:

((MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P9999)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P9999)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P1010)))
(MACHINES /RELATION ((MC/TYPE terminall) (MC/MCNUM P1010)))
(MANUFACTURES /RELATION ((M/MNAME Mikota1) (M/MCNUM P1010)))
(MACHINES/RELATION ((MC/COLOR red1) (MC/MCNUM P9999)))
(MACHINES/RELATION ((MC/COLOR red1) (MC/MCNUM P1010)))
(MACHINES/RELATION ((MC/MCNUM P9000) (MC/COLOR green1)))

13

(MACHINES/RELATION ((MC/TYPE printer2) (MC/MCNUM P9000)))
(MANUFACTURES/RELATION ((M/MNAME Plexir1) (M/MCNUM P9000)))
(MACHINES /RELATION ((MC/MCNUM P4444) (MC/COLOR blue1)))
(MACHINES/RELATION ((MC/TYPE computer) (MC/MCNUM P4444)))
(MACHINES/RELATION ((MC/MCNUM P4444) (MC/COST !7850)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9000)))
(MANUFACTURES/RELATION ((M/MNAME Mikotal) (M/MCNUM P4444)))
(MACHINES /RELATION ((MC/MCNUM P1010) (MC/COST 1235))))

Thus, apart from demonstrating that the system can carry out the database
capture task, these example texts also illustrate some of the capabilities of
the system for language interpretation in context. The correctness of this
interpretation can (usually) be determined by examining the output
produced by the system. Although the language constructions used in these
examples are of a very simple nature, the correct interpretation of these
constructions frequently depends on the context in which they occur in the

input texts.

1.4 General description of how Capture works

The Capture system has four major components:
1) a sentence analyser

2) a memory component

3) an interpretation component

4) a task-specific (database capture) component.

The sentence analyser, or parser, is one developed independently by
Boguraev [Boguraev79]. The analyser passes information to the
interpretation component; it is effectively a front-end to the core of the
Capture system which is made up of the interpretation, memory, and task-
specific components. Each of these components communicates, in both
directions, with the other two. The system has no context component as
such, because, as will become apparent later, the representation and
application of context is handled by the memory component, while a feature
of the context mechanism is that any component can take part in the
management of context information.

The analyser processes each sentence in the input text independently,
producing a list of alternative analyses (i.e. parses) for the sentence. It uses
an ATN grammar formalism and applies semantic wellformedness checks on
the structures that it builds, mainly by applying semantic category

14

restrictions derived from Wilksian semantic formulae. The output analyses
are dependency trees that use an extended set of case-labels to link verbs to
their arguments and to exhibit the structure of noun phrases. By applying
semantic checks, the analyser performs some word sense and structural
disambiguation, but ambiguities that cannot be resolved using the
essentially linguistic information that the analyser has at its disposal, and
those that represent genuine alternative readings at the level of a single
sentence, are presented as alternative structures in the analyser output,
and must be resolved by the interpretation component.

The interpretation component uses the memory and context mechanisms to
interpret the analyser output with respect to the contents of memory and
the current representation of context information, i.e. with respect to
information that might include specifying that a particular artifact is an
arrow, and that this artifact is foregrounded in the current context. This
component is implemented as "interpretation operations”, the main ones
being verb clause interpretation, state clause interpretation, predicate and
argument derivation, be-clause interpretation, have-clause interpretation,
noun phrase reference resolution, structural disambiguation, word sense
disambiguation, and relationship interpretation for compound nouns,
possessives, and function words. Collectively these operations perform the
function of incorporating new structures in memory that encode the

propositional content of the input text.

Interpretation operations are procedures that, typically, are given
fragments of analyser structures, and use the memory and context
mechanisms to perform a particular type of disambiguation, reference
resolution, or memory structure creation. These operations can also have
the important effect of adding new context information to the current
representation of context. They also can invoke other interpretation
operations, and in this way embody the gross flow of control in the system.
For example, the evaluation of a clause interpretation operation may cause
the evaluation of operations for noun phrase reference interpretation and
for interpreting embedded clauses.

The task-specific component, or database capture component, is
implemented by another set of procedures, the task-specific operations.
These perform functions such as locating predicates in the database
descriptions in memory, classifying entities with respect to the target
database, and locating database names. Like the interpretation operations,
the task-specific operations can also create new memory structures and
generate context information. The task-specific component uses results of
these operations to produce the database creation statements. These should
then be used by a database management system to increment the target
database, although, in fact, in this research the output of the system was

15

not fed into a database management system because this last step was not
considered to be sufficiently interesting, nor does it appear to involve any
difficulties given certain assumptions (discussed later) about the database
management system.

The main task-specific operations, which invoke subsidiary ones, are
evaluated at fixed points during the interpretation process. Interpretation
and task processing is therefore interleaved, but this happens in a rather
fixed manner. The typical flow of control for a single sentence is thus
roughly as follows. The sentence is analysed by the parser, and alternative
analyses are passed to the interpretation operations. These operations call
on the memory component to perform retrieval from the knowledge base and
create new structures, and they alter the context information represented.
They also invoke the task-specific component which uses the results of task-
specific operations that it invokes to produce database creation statements
corresponding to the sentence.

In order to perform their functions, both the interpretation and task-
specific operations make extensive use of the memory knowledge base. This
knowledge is both about types and individuals. The knowledge base contains
language-related entities such as noun and verb senses and case-labels;
(world) entities in the domain of discourse, such as individuals and domain
specific predicates; and task-related entities such as those taking part in
the description of a particular relation in the target database. Just as
important, the relationships between all these objects are also encoded in

memory.

The memory component uses a simple, but powerful, representational
formalism that has a well-defined semantics. This formalism was derived
from, but is simpler than, previous 'semantic network” formalisms, in
particular NETL [Fahlman79] and KL-ONE [Brachman78], themselves based
on the representation of concepts with frame-like structures and the
inheritance of properties between concepts.

Capture memory contains entities which can be thought of as concepts, and
loosely speaking, stand for word senses, predicates, individual objects and
actions, etc. The representational formalism uses two basic types of
assertions. These are specialization assertions and correspondence

assertions. They have the form

(Specialization: A of B) and
(Corresponds: C1 to D1 as C2 to D2)

where A,B,C1,D1,C2 and D2 are memory entities. Roughly, the specialization
assertion states that A can be described as a B and the correspondence
assertion states that the relationship between C1 and D1 can be described

16

by the relationship between C2 and D2. There are subtypes of these two basic
assertion types, but, except for the representation of context information,
the knowledge base is specified only by memory entities and specialization

and correspondence assertions. (*)

Retrieval from memory is based on marker processing of the type used by
Fahlman [Fahlman79]. This can be thought of as a way of performing certain
set operations, on the entities in memory, which are effectively limited
deductions that retrieve information represented implicitly in memory. The
sets involved depend on memory assertions and are represented by marking
memory entities, i.e. using markers to assign marks to entities. The results
of memory operations are recovered by searching for entities satisfying
marking conditions and "threshold” conditions, the latter being determined

by the current context information.

Software techniques were implemented in Capture for enhancing the
efficiency of these searches and for reducing the effort involved in marking.
For the purpose of searching, the marking and context information is
indexed automatically during processing. Further, the indexing scheme
makes effective use of "semantic” criteria for clustering the entities in

memory.

The context mechanism depending on these components of the Capture
system is as follows. A basic notion of this mechanism is the context factor: a

context factor indicates that a certain set of memory entities should, for
some reason or other, be foregrounded (i.e. given some precedence over
other entities) in the current context. At any given time during processing,
context consists of a number of context factors each being of a certain
factor type. The types of factors include those derived from information
about previous memory processing, associations in memory, recency of
mention, and text subject area. A context factor, i.e. an instance of a factor
type, is represented by a marked set of memory entities, the scope of the
factor, and a significance weight, which is a numerical value indicating the

current importance of the context factor.

Context factors are created by the interpretation and task specific
operations that are evaluated during the processing of a text. In principle,
any other components could create context factors and manage them by
altering their significance weights. What is important is that context
information is not thought of as being derived from one source, e.g. subject
area, but from many different sources, linguistic and non-linguistic at once.

(*) In the terms that are used to describe the semantic network formalisms
mentioned above, entities correspond to "nodes’ and assertions correspond
to "organizational relationships” that translate into "“links".

17

When context is applied, the information conveyed by the various factors is
combined by deriving context activation values for the relevant memory

entities. The context activation of a memory entity is simply the sum of the
significance weights of the context factors within the scope of which the
entity lies. There are two basic ways of applying context; these are choice
applications and threshold applications. In choice applications, context
activation is used to choose between memory entities (e.g. candidate results
for reference resolution) or between sets of memory entities (e.g. word sense
combinations). In threshold applications memory searches are restricted to
entities with context activations that are higher than some specified
threshold. This is used, for example, to limit the memory searches that
implement reference resolution operations. The indexing scheme mentioned
earlier allows efficient access to entities satisfying a threshold condition
derived by combining context factors even though individual context factors
can be managed independently. Overall, the context mechanism offers a
convenient way of gradually accumulating, and altering the weights of,
context factors of different types, while allowing their effects to be
combined efficiently for disambiguation and limiting memory search.

1.5 Organization of thesis

Chapter 2 describes and discusses the memory representation formalism.
Chapter 3 is on memory retrieval processing and search, and explains the
indexing scheme mentioned above. Chapter 4 describes the interpretation
operations implemented in the Capture system. The context mechanism is
explained in Chapter 5, which describes the types of context factors
implemented for the Capture system and the problems to which context is
applied in the system. Chapter 6 describes the database Capture task and
the task-specific component of the Capture system. Finally, Chapter 7 makes
some concluding remarks about the project and suggestions for future

research.

Previous research relevant to the topic addressed in a chapter will be
discussed in that chapter, so that there is no single chapter devoted entirely
to the work of other Al researchers. In Chapter 2 it will be argued that the
memory representation formalism is simpler than those developed by
Brachman [Brachman78] and Fahlman [Fahlman79], but still retains their
most important features. The relevance of Fahlman's parallel network
hardware design is discussed in Chapter 3 on memory processing. When
describing language interpretation operations in Chapter 4, some of the
work by others on the problems handled by these operations is noted. In
Chapter 5 it is argued that the context mechanism can be thought of as an

extension of, and improvement on, Grosz's [Grosz77] focus mechanism. The

18

application-specific processing is regarded in Chapter 6 as being more
similar to knowledge based approaches (such as Consul [Mark81]) to text
processing applications, than to surface based approaches (such as
[Sager81]) to database creation from natural language texts.

The various chapters also include their own illustrative examples and some
discussion of limitations and possible extensions. Appendix A contains the
output produced for a number of example texts by the current version of
the system. The order of the chapters reflects an attempt to minimise
forward references. However, some of these were unavoidable, the most
notable being the references to context application in the chapter on
interpretation operations.

19

Chapter 2

Memory Representation

This chapter describes the memory representation formalism and gives
examples of how information relevant to the text processing performed by
the system is represented in terms of this formalism. A simple formal
semantics for the representation system is presented. Capture memory is
also compared with similar Al knowledge representation systems.

2.1 Memory and text processing

The term "memory"” is used, in Al, by many authors researching into natural
languege processing (e.g. [Schank82a], [Small80}, [Lebowitz83], [Rieger75])
to refer to the component of the system that stores knowledge about the
domain of discourse that is used during the understanding process. This
memory knowledge base is usually modified and in particular incremented
during processing so that memory also stores the "résults", whatever form
these may take, of understanding the language input to the system. The
above characterization of memory applies equally well to the knowledge
storing component of so called knowledge based language processing
systems (such as [Walker78], [Bobrow80], [Norton83], [Mark81]). In the work
described in this thesis, no distinction between these uses of “memory"” and
"knowledge base component” will be made. In particular, the use of the term
"memory” does not imply any claims about modelling human use of
knowledge as it does for some authors including Schank [Schank82a].

Capture memory will be returned to in the next section of this chapter, but
before that some general remarks are made about the use of knowledge in Al
language processing systems. The knowledge used by these systems has been
characterized as belonging to various types including linguistic knowledge,
world knowledge (alias domain knowledge) and knowledge related to a text
processing application task. It is probably not possible to maintain strong
distinctions between these different categories. For example, although
linguistic knowledge of a syntactic nature is often stored separately as the
grammar, linguistic knowledge of a more semantic nature (e.g. relating to
word senses) is frequently not distinguished in the knowledge base from
knowledge that is specific to the domain of discourse (e.g. knowledge about
domain specific predicates).

20

Domain and semantic knowledge has been applied in different ways by the
various experimental systems that make use of it. For example, the
knowledge has been used to solve understanding problems when they are
encountered, i.e. in a demand driven way (e.g. [Wilks75b] [Sidner79]). It has
also been used to continuously generate new facts (forward inference) that
aid the processing of the rest of the text (e.g. [Rieger75], [Cater81]), i.e. in a
supply driven way.

There are various types of processing problem that the domain and semantic
knowledge has been applied to. These include the following.

a) Common language interpretation problems such as reference resolution,
word sense disambiguation, structural disambiguation, and the derivation of
implicit relationships from certain language expressions.

b) Dealing with extended uses of language such as metaphor [Hobbs81] and
ellipsis [Grosz77]. (This is in some sense an extension of (a).)

c¢) Deciding how to incorporate new entities and relationships derived from
sentences into representations of a text [Wilks73], or how to fit them into
representations of typical situations known to the system (e.g. [DeJong79],
[Tait82]).

A text processing system that performs a linguistic application task such as
summarizing may only require linguistic and domain knowledge. However, a
system that processes text in order to perform a non-linguistic application-
task also needs to access knowledge about this task. Such a text processing
system will not necessarily carry out the task itself, but only generate
commands, queries, or whatever, in an appropriate format so that the task
itself can be carried out by some other system such as a graphics system, a
robot, or a database management system. Examples of task-specific
knowledge are knowledge of a graphic display driver [Zdybel81], knowledge
about manipulating toy blocks [Winograd72], and knowledge about a
relational database (the system described here).

How knowledge is represented and what exactly is represented depends, in
part, on the requirements of all of the different processes that make use of
this knowledge for performing the text processing. This means, of course,
that in order to build a system that achieves a certain level of performance,
it is not necessarily the case that the memory representation formalism
should be completely general in the sense that any fragment of knowledge is
representable, or that it should support completely general inference
processes so that any information derivable from the stored knowledge can
be inferred by the system. Moreover, limiting the power of the memory
system can enhance the clarity of the representation and the efficiency of

21

access to the knowledge represented. These last considerations were taken
into account when designing the memory component of the Capture system.

2.2 Memory representation in Capture

In the Capture system the knowledge stored in memory is knowledge about
the domain world, linguistic knowledge of a semantic nature, and knowledge
related to the database creation text processing task, although no strong
distinction between these types is maintained. Thus task knowledge is
regarded in this system simply as specialized domain knowledge that is used
by a task-specific component of the system, and semantic knowledge is
regarded as very generic domain knowledge. Representing these different
types of knowledge in memory is aimed at allowing the relationships between
them to be expressed explicitly in memory.

However, the most important processing operations using memory are the
language interpretation ones. Therefore the attitude taken to memory
representation is that it should, in the first instance, be geared towards the
implementation of these interpretation operations. These operations are in
themselves domain and task independent but exploit the domain and task
information in memory. They make use of the knowledge stored in memory in
order to solve text processing problems that were placed in category (a) in
the last section, i.e. common interpretation problems. (*) Another
requirement, taken to be of secondary importance, is that domain and task
specific knowledge should be representable to allow performing the
operations that are necessary for the database capture task, or some other
similar task, to be performed.

A further constraint on the memory system is that it should perform the
required retrieval operations, and especially those necessary for the
language interpretation operations, reasonably efficiently, taking into
account the current context. The methods employed to achieve this will be
described in the chapter on memory processing and the chapter on context.

The knowledge stored in memory is essentially concerned with generic
objects, predicates, and relationships, as well as specific instances of all of
these. The way the implemented system is set up at the moment means that
specific knowledge derived from a text processed by the system is discarded
after the processing of that text is complete; but there is no reason why this
knowledge could not be retained. The structures created in memory during

(*) Perhaps the representation scheme is in principle inadequate for
problems of type (b), metaphor especially, but this is unclear.

22

the interpretation of a text reflect its "propositional content” and do not
constitute a kind of "text representation” in the sense of text linguistics,
although some of the information related to the structure of the text is
retained and used by the context mechanism.

It is important to emphasize that the memory representation in Capture is
thought of as a minimal knowledge representation for solving common text
interpretation problems and performing simple tasks such as the database
capture task. Thus the effort in design was not spent on trying to handle
difficult representation problems, but rather on achieving a convenient and
simple representation that nevertheless allowed the system to achieve
interesting language processing behaviour. Because of this, a number of
initial "features” of the representation system that were not being used for
this purpose were removed as the overall system developed and the
requirements on the memory system became clearer. The resulting
formalism satisfies the broad requirements that some workers in natural
language (in particular Small [Small80], and Sidner [Sidner79]) have
considered necessary for supporting certain aspects of language
interpretation, including, for example, a classification hierarchy for
concepts. Because of this, and because of the experience gained in using the
representation for the processing performed by the Capture system, it does
not seem to be the case that the reduced nature of the representation
formalism has made it too limited for fairly sophisticated text processing
(but some limitations are reviewed in Section 2.9).

The representation formalism used in the Capture system was influenced, in
particular, by Fahlman's NETL system [Fahlman79]. NETL had the advantage
of being relatively well specified, and was conceived with a detailed
processing scheme based on a "hardware network” design in mind. This is
consistent with the view (discussed later) that what distinguishes "“semantic
network” formalisms from other knowledge representation formalisms are
processing considerations. Brachman's Structured Inheritance Network
formalism [Brachman78] also influenced initial versions of the
representation formalism. The relationship between the representation
formalism used in Capture and other formalisms like these will be discussed
at the end of this chapter. Roughly speaking, and ignoring processing issues,
memory representation in Capture uses a very simple formalism which can
be thought of as a tangled hierarchy of small overlapping frames [Minsky75].

23

2.3 Entities and basic assertions

The memory contains entities, or concepts, which include generic and
individual objects, predicates and relationships. However, the entities are
not categorized as belonging to one of these types, but instead, the type of
an entity, and the way that it takes part in memory processing, is taken to
be dependent on how it is related to other entities in memory, and in
particular on the organizational relationships that are being used to access
it.

There are two kinds of basic assertions that give rise to these organizational

relationships, specializations and correspondences. Specialization assertions

have the form

(Specialization:A of B)

where A and B are memory entities. For example one specialization assertion
is

(Specialization: computer of machine),

'computer’ can now be viewed as a "specialization” of 'machine’, and also
'machine’ as a "generalization” of ‘computer’; i.e. things that can be
described as computers can also be described as machines. (*) Assertions of
this type form the specialization, or "is-a", hierarchy of entities in memory.
(Subtypes of the specialization assertion are used in order to distinguish
whether generics or individuals are being related, as described later.) The
hierarchy is "tangled” in that an entity can be the specialization of more
than one generic entity. Thus we could have

(Specialization: woman of human), and
(Specialization: woman of female).

There is a most generic entity 'thing’ that has no generalizations. (**)

A correspondence assertion has the form

(Corresponds: C1 to D1 as C2 to D2),

where C1,D1,C2 and D2 are entities in memory. Cl is viewed as a 'role”,

(*) Single quotes always denote memory entities. This is a convention that
applies throughout this thesis. Double quotes indicate terms used in some
special sense in this report or by others, and also text fragments;
underlining is used for emphasis and when terms are being defined.

(**) I will use the term "generic” loosely for entities to contrast them with
entities "lower” in the specialization hierarchy or correspondence hierarchy
(see below) and also to indicate type-token distinctions.

24

"argument”’ or "slot” of "owner” D1; and as a "role specialization” of C2,
where C2 is viewed as a (generic) argument of D2. The pairs C1 D1, and C2 D2,
are role-owner pairs. Examples of correspondence assertions are

(Corresponds: data/processing to computer as
machine/activity to machine)

(Corresponds: supplies/agent to supply as
agent to verb/statement).

The memory's correspondence assertions form a hierarchy of ordered role-
owner pairs, the most generic of which is (role, thing). This hierarchy
complements the specialization hierarchy; while the specialization hierarchy
forms a classification of the kinds of entities in memory, the correspondence
hierarchy forms a classification of the relationships between them. A
correspondence assertion states that there is a relationship between one
(role-owner) pair of entities that is a refinement of a relationship that exists
between another pair of entities in memory. The correspondence assertion
allows the definition of arguments for concepts, i.e. what are called "roles”
or "slots" in several representation languages. The correspondence assertion
can thus be thought of as a role specialization assertion.

Normally, in these other systems, role specialization is taken to be an
assertion between an owner, a generic role and a specialized role; and the
equivalent to the first correspondence assertion can be paraphrased as
"data/processing fills the machine/activity role for computer” (because
generic fillers can be thought of as slots in Capture memory). However, this
approach often leads to what is, in my view, an artificial distinction and
asymmetry between "concepts” and "roles” (this point is discussed further
in Section 2.9). In contrast, any memory entity can take part as either "role”
or "owner” in many correspondence assertions, but this does not lead to
confusion because the fourth argument of the assertion, The '"generic-

owner' is present.

This description of the specialization and correspondence assertions, since
it is given mainly in terms of examples, is not intended to be a full
characterization of the meaning of these assertion types. These types of
assertions, when viewed as part of the text processing system, can be said to
take their "meaning” from the operations that are used to process them, for
example from the way that specialization assertions take part in the
resolution of referents for definite noun phrases such as ""the machine”, and
the way that correspondence assertions take part in the interpretation of
compound nouns such as "computer processing”. The description, in this
report, of how memory is used thus constitutes an informal operational
semantics for the memory formalism. The coherence of such an operational
semantics for the memory system depends, in the end, on how well the text
processing system works. Another way of providing a semantics for memory

25

assertions is discussed in the following section.

2.4 Semantics of memory assertions

As just indicated, structures in memory can be thought of as being given
their meaning by the operations that make use of them in the text
processing system. This sort of semantics can be specified by describing the
operation of the system at some level. An alternative approach is possible.
Thus another sort of semantics relates symbols to referents in the world (or
possible worlds) that they describe, in principle in a rigorous and formally
satisfactory way. Some advantages of having such a semantics for
representation systems are discussed by Patrick Hayes [Hayes77a]. There
has also been some recent interest in providing denotational semantics for
frame-like representations (see [Reimer83] for example). Hayes argues that
the contribution of logic, as a representation system, is its model-theoretic
semantic theory. In this type of semantics for logic conjoining predicate
logic assertions restricts the set of possible interpretations for the symbols
occurring in them. In an analogous way, we would like the addition of new
memory assertions to restrict the interpretation of memory entities. (v

- This section will attempt to indicate how such a semantics could be devised
for the symbols and structures used in the Capture memory representation
formalism. This could then be used to validate deductions, with respect to an
interpretation imposed by the semantics, or characterize other inferences
as approximate, in that they are not necessarily valid given such an

interpretation.

An interpretation is taken here to be a pair of functions (called "ref" and
"rel”) that model the relationship between memory entities and entities in a
particular world described by memory. The semantics of memory assertions
can then be given as constraints on these functions, i.e. as constraints on
possible valid interpretations. The function ref maps a memory entity to the
set of objects in the world that the memory entity refers to, i.e. the set of of
world entities that the memory entity may describe. The function rel maps a
role-owner pair of memory entities to the set of pairs of objects in the world,
i.e. to a relation, that the pair in memory can describe.

(*) "Interpretation” is used, in this section, in a different sense from its use
in the rest of this report.

26

The basic constraints are as follows (C stands for subset).

1. For any specialization assertion
(Specialization: A of B)
it must be true that ref(A) C ref(B).

2. For any correspondence assertion
(Corresponds: C1 to D1 as C2 to D2)
it must be true that
rel(C1,D1) C rel(C2,D2)
and additionally that
rel(C2,D2) C ref(D2) X ref(C2), and
rel(C1,D1) C ref(D1) X ref(C1).

There are subtypes of the specialization and correspondence assertions, and
these have further conditions associated with them that will be indicated in
Section 2.5. One such condition that can be shown to be relevant to the
inheritance of properties is that rel should yield a function when applied to

certain role-owner pairs.

On the basis of these conditions it is possible to make a number of
deductions that are consistent with a valid interpretation and that can be
assumed to hold by the memory processing operations. I am here taking a
deduction to be the derivation of a new memory assertion from a set of
previous memory assertions in such a way that the conditions imposed by
the new assertion are consistent with valid interpretations of the original
assertions. These deductions include the transitivity of specializatioh and
the inheritance of properties, as used by similar knowledge base systems.

For example if we have the assertions

(Specialization: computer of machine), and
(Specialization: machine of inanimate)

then the validity of the interpretation will not change if

(Specialization: computer of inanimate)

were added to memory. The transitivity of correspondence assertions can
also be justified, because it preserves condition (2) above. Thus from the

following memory assertions

(Corresponds: manufacture/object to manufacture as
makel /object to makel)

(Corresponds: makel/object to makel as
object to verb/statement)

_7

we can deduce that

(Corresponds: manufacture/object to manufacture as
object to verb/statement).

The implemented Capture system does not perform deductions in the
manner described above, but instead performs inferential memory
operations whose results are sets of memory entities. (This processing model
is detailed in Chapter 3). Such an operation can be thought of as being based
on "valid” inferences if the results of evaluating the operation do not vary
when any deduced assertions (in the sense explained above) are included in
memory. If an operation is not of this type, then it might be violating the
conditions on valid interpretations imposed by the semantics of assertions
and hence can be thought of as being based on “approximate” inferences.

These '"approximate"” inferences are used when performing memory
operations on role-owner pairs for which rel may not yield a function; or on
states of memory in which the conditions for a valid correspondence have
been over-ridden in order to handle exceptions. However the formal
semantic apparatus is still useful because we can, in principle, use it to
define a clean distinction between valid and approximate inferences, and as
a tool for determining whether individual inferences are valid or only

approximate.

Since the Capture system as a whole makes use of inferences that are
approximate as just defined, as well as a preference-like mechanism for the
application of context, it cannot be regarded as a rigorous system formally
supported by the semantics for memory assertions just given above. But this
is not considered to be a deficiency for reasons similar to those noted by
Wilks [Wilks77]; i.e. that it is not necessary to require that all the
representations and processes involved in a natural language understanding
system are rigorously formalized in some consistent fashion.

2.5 Subtypes of assertions

The specialization and correspondence assertions can carry further
information about the relationships between their arguments. This takes the
form of a list of flags given as an additional argument to the assertions. A
number of these flags and the additional semantic conditions associated
with them are given below. In general, the subtypes provide a refinement of
the basic structure imposed on memory by the two main assertion types.

28

If a specialization assertion is marked by the flag "instance”, then the
specialized entity can refer to only one world entity in an interpretation. (*)
Thus the assertion '

(Specialization: A of B (instance))
imposes the additional condition

[ref(A)] = 1.

The flag "member” is stronger than "instance” and is used to explicitly
specify all the individual entities described by the generic entity of the
specialization. The additional conditions for a set of specialization assertions
of the form

(Specialization: 15'\1 of IIS (member))

' |

(Specialization: An of }|3 (member))

are as follows (i,j € {1, ..., n})

Iref(Ai)| =

1

U ref(Ai) = ref(B)
ref(Ai) # ref(Aj) if i%].
The flag "distinct” can be attached to specialization assertions to indicate
exclusive subcategorization of the entity being specialized. The additional
condition for a set of specialization assertions of the form

(Specialization: Al of B (distinct))

L

(Specialization: An of B (distinct))

being as follows (i,j € {1, ..., n})

ref(Ai) Nref(Aj) = @ if i%].

The approach taken to co-reference of memory entities in the system is very
simple. The semantics of the specialization assertion allows co-reference to
be represented as mutual specialization, and the following assertions state
that the memory entities A and B co-refer (so that ref(A) equals ref(B)).

(Specialization: A of B)
(Specialization: B of A)

A co-reference mechanism is needed to "conflate” two entities which are
discovered to co-refer after they have been created separately. It can also
be used for asserting multiple distinct subcategorizations, and for modelling
multiple role relationships between the sets of objects that two entities refer
to.

(*) The notion of being an individual is taken, for the purpose of this work,
to be a comment on how memory, and the language being processed, view

~and describe a (real or imaginary) world rather than some more
fundamental comment about what exists in that world.

29

The import of the flags that can be associated with correspondence
assertions can most easily explained in terms of "rel".
(Corresponds: C1 to D1 as C2 to D2 (uni))
means that
rel(C1,D1): ref(D1) -> ref(C1)
is a function (total and single valued).
(Corresponds: C1 to D1 as C2 to D2 (rev))
means that
rel(C1,D1): ref(D1) -> ref(C1)
is a bijection (one-one and onto).

Example of these assertions are

(Corresponds: mother to mothers/child as
parent to child (uni))

(Corresponds: supplier/number to supplier/dbentity as
dbentity/number to dbentity (rev))

Thus the first assertion says that children have unique mothers, and the
second one says that there is a one-to-one mapping between supplier
numbers and supplier entities (in some database world).

All the subtyping flags described in the present section are included in the
implemented system. However, the import of the "distinct” flag and the
difference between the "rev”’ and "uni” flags are not always taken into
account by the memory operations used for the current application. Thus
the "distinct” flag is ignored by some operations, and others treat "rev”
simply as "uni”. Similarly, many of the implemented operations do not take
specialization cycles into account. These limitations of the implementation
do not cause the system to fail completely (e.g. to loop indefinitely), but do
mean that some possible inferences are missed by the system.

The flags attached to assertions are usually omitted in the examples given in
the thesis since they are usually not relevant to the points under discussion.
Overall, the subtyping of assertions as presented in this section increases
the expressive power of the representation while the simplicity of memory
structuring in terms of entities, specializations, and correspondences is
maintained.

2.6 Semantic network implementation

As is the case for several other knowledge representation systems used in
natural language understanding, the computer representation of structures
built in memory may be described as a "semantic network”. A comparison

30

between some of these representation formalisms and Capture memory is
given in Section 2.9. This section simply considers the characterization of
Capture memory as a "semantic network”. This term is now typically
associated with representations that make use of specialization hierarchies,
roles, and a number of other representational tools. However, surveys of
semantic networks (e.g. [Brachman79b] and [Ritchie83]) do not indicate any
representation devices that are common to all systems that have been
characterized as semantic networks. This suggests that the “network”
characterization of these systems does not have a substantive content with
regard to knowledge representation notwithstanding that many of these
systems make use of similar representation devices.

A possible alternative characterization is simply the purely formal one,
namely that all semantic network systems use a graphical notation to
display what is being represented. This is a weak characterization since all
graphs can be expressed in non-graphical notations, and it has been often
pointed out that there is nothing inherently semantic or knowledge
representational about graphs.

Nonetheless, the implementation of the memory in this system is still
thought of as a semantic network for two somewhat different reasons.
Firstly, the representational system described above is derived to a large
extent from representational schemes that have been termed semantic
networks. These all make use of taxonomies and property inheritance, this
being one of the more common characteristics of semantic network
formalisms [Ritchie83]. Since these features are substantive, this reason for
my use of "semantic network” is a substantive claim about the status of
Capture memory as a means of knowledge representation.

Secondly, a characterization of semantic networks that has to do with
processing rather than with static description is appropriate for this system.
Thus it is widely held (see e.g. [Schubert79]) that the graphical aspect of
semantic networks is a way of stating which parts of the representation are
to be implemented as pointers so that certain processing operations can be
performed on the knowledge base in a way that makes these operations
computationally tractable.

Network processing, and efficiency considerations, will be described in the
following chapter. However, since a graphical notation for memory is not
being used in this report, a description of the network implementing the
formalism is now given, in order to give some idea of low level
representation. Entities are represented by '"nodes”, specialization
assertions by link records connecting two nodes, and correspondence
assertions by link records connecting four nodes. The flags indicating
subtypes of assertions are represented by indicators that are attached to

31

the link records encoding the assertions. All pointers implementing the links
are two way pointers. A node includes the name of the entity that it
represents, and pointers to the link records for the assertions that it takes
part in. As with other network implementations, this implementation has
some useful access properties. For example we can access, without
searching, all the entities immediately below a particular entity in the
specialization hierarchy, or all the generic roles for all the correspondences
in which the entity is the role argument. These access properties are used to
perform the marking operations with which memory processing is

implemented.

2.7 Language and domain entities

The memory is exploited to process the output of the analyser (semantic
parser) of the system. Hence we need to have entities for language related
semantic objects that appear in the structures that the analyser produces.
These include noun senses, verb senses and case relations. We also need
entities to represent objects and predicates specific to the domain of
discourse, and instances of these that occur in a domain. The relationship
between language related entities and domain related entities is basically
that of the generic to the more specific along the specialization and
correspondence hierarchies. Memory structures for the data processing
machines suppliers and manufactures domain will be used as examples.
Examples of language related entities are given first.

There are no entities representing words, but only entities representing
word senses; these originate in the lexicon used by the parser. For example
there are two entities with names 'printerl’ and 'printer2’ for the two senses
of the noun "printer” that occur in the lexicon; and we have

(Specialization: printer! of human)
(Specialization: printer?2 of peripheral).

(*)

There are also entities for verb senses, for example both 'manufacture’ and
'makel’ are found in the lexicon and the memory contains the assertion

(Specialization: manufacture of makel).

Entities for words as opposed to word senses could be created by assertions

(*) For irrelevant historical reasons, some word sense names in the lexicon
do not have sense numbers.

32

such as

(Corresponds: PRINTER to printer2 as
lex/item to word/sense)

(Corresponds: MANUFACTURE to manufacture as
lex/item to word/sense).

These would be necessary for a task such as translation or paraphrase.

There are also entities for case relations like 'agent’, ‘object’, and ‘recipient’,
etc. These correspond to (and have the same names as) the labels that mark
cases in the dependency structures output as "meaning representations” by
the parser; and there are assertions like

(Corresponds: agent to verb/statement as
tag/role to tagged/statement)

(Corresponds: recipient to verb/statement as
tag/role to tagged/statement).

These cases may be specialized to particular verb senses

(Corresponds: makel/agent to makel as
agent to verb/statement),

and the specialized cases can, of course, be specialized further as in

(Corresponds: manufacture/agent to manufacture as
makel/agent to makel).

Domain related entities include individual objects and facts, and types of
objects and predicates that are relevant to a domain of discourse. For
individual objects and facts we have memory assertions like

(Specialization: P7000 of disc-drivel (instance))
(Specialization: Plexirl of Paris/manufacturer (instance))
(Specialization: E1 of manufacture (instance))
(Corresponds: P7000 to E1 as

manufacture/obj to manufacture)
(Corresponds: Plexiri to E1 as

manufacture/agent to manufacture)

State predicates derived from properties such as weight and colour are
represented by entities such as 'weight/of' and 'colour/of’, for example

(Specialization: weight/of of measure/of)

(Corresponds: weight/of /possessor to weight/of as
measure/of /possessor to measure/of)

(Corresponds: weight/of /weight to weight/of as
measure/of /number to measure/of).

33

Domain based constraints on the arguments of predicate entities can be
expressed by specialization assertions such as

(Specialization: manufacture/agent of manufacturer)
(Specialization: weight/of /possessor of phys/obj),

or by correspondence assertions, for example

(Corresponds: manufacture/obj to manufacture/agent as
manufacturer/goods to manufacturer).

An example of a domain specific entity is 'computer/manufacturer’, for
which we would have the assertions

(Specialization: computer/manufacturer of manufacturer)
(Corresponds: computer to computer/manufacturer as
manufacturer/goods to manufacturer).

Correspondence assertions can be used to express relationships which also
encode domain knowledge, for example

(Corresponds: component to machine as part to whole), and
(Corresponds: data/storage to disc-drivel as
data/handling to peripheral).

2.8 Task related entities

In order to express the relationships between the domain entities and
database administrative entities like the names of tables and columns in a
particular target database, the database objects and predicates that are
implied by record types in the database must be made explicit. These objects
and predicates are in fact taken to be specializations of domain objects and
predicates. The memory knowledge base used by the current version of
Capture systems contains the necessary task-related knowledge for both the
Machines Database and the Artifacts Database.

The target databases used are relational databases (see e.g. [Date81]) i.e.
consist of relations (tables) in which the columns range over values of a
certain type and each row indicates that certain statements (the underlying
statements for the relation) hold between the values in that row. The
domain-database mappings for target databases are defined by creating
generic entities for the description of a typical relation in a relational
database and then specializing this description to descriptions of the
relations in the target database. The description of the generic relation for a
relational database is represented in memory by the entity 'db/relp’. This

34

has associated with it a number of generic database objects ('relp/dbentity’)
and statements ('relp/statement') and we have

(Specialization: db/relp of db/schema)
(Corresponds: relp/dbentity to db/relp as
schema/role to db/schema)
(Corresponds: relp/statement to db/relp as
schema/role to db/schema)
(Specialization: relp/statement of statement).

Note that the structures associated with 'db/relp’ specify what constitutes
the description, in memory, of a relation in a relational database, rather
than the description of some particular relation. 'db/relp’ also includes
entities for the name of the relation being described, and for generic entries
('relp/entry’) in the rows of the relation:

(Corresponds: relp/relation to db/relp as
schema/role to db/schema)

(Specialization: relp/relation of relation), and

(Corresponds: relp/entry to db/relp as
schema/role to db/schema)

(Specialization: relp/entry of db/entry)

(Corresponds: relp/entry/value to relp/entry as
entry/value to db/entry)

(Corresponds: relp/entry/column to relp/entry as
entry/column to db/entry).

There are also other objects associated with the descriptions of relations,

and these will be described in the chapter on task specific operations.

An example of specializing 'db/relp’ to the description ('manufactures/relp’)
of the '"MANUFACTURES' relation in the Machines Database includes entities
for the relation and column names:

(Specialization: manufactures/relp of db/relp)

(Specialization: MANUFACTURES/RELATION of relation)

(Corresponds: MANUFACTURES/RELATION to manufactures/relp as
relp/relation to db/relp)

(Specialization: M/MNAME of column)

(Specialization: M/MCNUM of column)

(Specialization: M/CITY of column),

and entities describing a generic entry in a row in this relation, and how this
relates, for example, to the name of a database entity (‘dbentity’):

(Corresponds: manufac/name/entry to manufactures/relp as
relp/entry to db/relp)

(Corresponds: manufac/name/value to manufac/name/entry as
relp/entry/value to relp/entry)

(Corresponds: M/MNAME to manufac/name/entry as
relp/entry/column to relp/entry)

35

(Corresponds: manufac/name/value to manufacturer/dbentity as
dbentity/name to named/dbentity).

There is simply one underlying predicate for this relation. It is represented
by the entity 'relp/manufactures’

(Corresponds: relp/manufactures to manufactures/relp as
relp/statement to db/relp)
(Specialization: relp/manufactures of manufacture).

This is related to the database entities taking part in the db/relp. Thus we

have, for example,

(Corresponds: manufacturer/dbentity to relp/manufactures as
manufacture/agent to manufacture).

Not all "underlying predicates” follow this simple pattern; they can also be
classifications of objects, e.g. for indicating machine types in the Machines
Database, or they can be specializations of state derived predicates.

The examples given in the last two sections should indicate how the
relationships between linguistic entities such as word senses, and database
entities such as column names, are expressed in memory. The way the task
related memory entities and assertions are used will be discussed later,
when the database capture task is described in detail.

36

2.9 Comparison with other formalisms and discussion

This section will first briefly outline the relationship between the design of
Capture memory and a number of issues that Al work on knowledge
representation (and in particular semantic networks) has been concerned
with. Although these issues have been considered central by many
researchers, they only cover a small part of the field of knowledge
representation. The later part of the section will compare Capture memory
in more detail with two similar representation systems (NETL and KL-ONE),
that influenced its design.

Correspondence assertions are used to build structures in memory that
resemble frames [Minsky75]. Thus the "slots” S1, S2,... for a frame I can be
defined by correspondence assertions of the form

(Corresponds: S1 to F as ...)
(Corresponds: S2 to F as ...) etc.

Restricting the “fillers” of slots can be done by specialization assertions

such as

(Specialization: S1 of E1).

The slot S1 itself may be thought of as a frame that inherits slots from E1,
and similarly F may be a specialization of another frame E2 and inherit its
slots. Frame F may also be a specialization of another frame E3, in addition
to E2, allowing some notion of "multiple description” (see e.g. KRL
[Bobrow77]).

The representation formalism used in Capture thus has much in common
with knowledge representation languages such as KRL that are based on the
organization of knowledge into frames, and structures built in Capture
memory, such as the database descriptions given above, are often frame-
like. KRL was intended to be as complete a knowledge representation system
as possible, and included, among other things, capabilities for procedural
attachment. However, in the design of Capture, it was considered that
although procedures might be valid memory entities, the code for
implementing them and invoking them should be handled outside the
memory component.

Much of the research on semantic network formalisms has been concerned
with combining semantic networks with predicate logic based formalisms.
Examples of this are [Schubert79], [Shapiro79] and [Hendrix78]. One
motivation for this kind of work has been the goal of maximising the
expressive power of network based formalisms. However, maximising
expressive power was not a design goal of Capture memory, and there was no

37

attempt at allowing predicate logic expressions to be represented in this
formalism. A different motivation for combining semantic networks with logic
is exemplified by the work by Deliyani and Kowalski [Deliyani79] in which
semantic networks are thought of as providing an indexing scheme and a
potentially useful strategy for guiding the search for a proof. This is
consistent with the attitude taken (Section 2.6) in the design of Capture
memory that the importance of semantic networks is largely a processing
rather than representational issue.

Combining semantic networks with logic has been considered by others to be
a non-issue. Thus it has been pointed out that it is possible to translate the
syntax of predicate logic into a semantic network notation and vice-versa
[Bundy79]. However, this does not show that these are equivalent systems
since it does not compare semantic theories for these systems or the
operations (inferences) that are performed. (See [Ritchie83] for a discussion
of this point). In fact, some of the operations performed on logic-based
semantic networks are similar to deductive inference operations applicable
to predicate logic (see [Brachman79b], [Ritchie83]). However, something
analogous to the specialization hierarchy is often used by such systems as a
convenient means for the classification of objects and storing their
properties in a non-redundant fashion.

Hendrix's partitioned networks [Hendrix78] are a good example of this.
Incidentally, the arcs used for the purpose of classification in this system
are similar to the specialization assertions used in Capture memory. In
particular, the distinction between the use of “e” and "de" (element and
distinct element) is reflected, in the Capture system, by the "instance” and
"member" flags that can be attached to specialization assertions.

Hendrix's system brings up another issue, that of clumping together the
nodes and links of a network into larger structures. Thus Hendrix relies
heavily on the use of a technique called "partitioning”. This allows portions
of the network to be placed in "spaces”. Many of the uses of partitioning
during processing are handled in the Capture system by the use of marked
sets of entities. In order to simulate some of the static representational uses
of partitioning correspondence assertions could be used as follows.

(Specialization: S1 of space (instance))
(Corresponds: E1 to S1 as

space/node to space)
(Corresponds: E2 to S1 as

space/node to space) etc.

S1 could then act as the "supernode” for the space, i.e. the node that can be
used, in the representation, to refer to the portion of network that forms
the space. This would not deal with cases in which the inclusion of arcs in

38

spaces is significant. The latter would require an extension to the
representation formalism in which assertions could be annotated by the
name of a "handle-node” that could be used to refer to them (see
[Fahlman79] for handle-nodes).

This extension may not, however, be necessary anyway. Thus Martin,
[Martin80], asserts that the use of role-based structures gives a more
natural modelling of the phenomena which partitioning was designed to
model; and these are of course handled by correspondence assertions in
Capture memory. The phenomena include, in particular, the representation
of certain types of quantification. Thus the suggestions made by Martin (in
[Martin80]) on how to formally represent various readings of quantified
English expressions point the way to how certain difficult cases, not dealt
with hitherto, could be represented in Capture memory. These include the
representations of sentence readings exhibiting the referential/attributive
distinction, and the collective/distributive distinction. Martin also claims
that an advantage of his proposed representation is that it allows for the
representation of partial interpretations (which can be refined later) when
the quantification structure is unclear. This work by Martin discusses issues
that are in fact not dealt with by the language interpretation mechanisms in
Capture. Martin’s work does suggest, however, that the use of structures
based on correspondence assertions is appropriate for handling some
difficult problems in the formal representation of English expressions.

The approaches to knowledge representation mentioned so far share some
properties with Capture memory. The two formalisms discussed below had a
much more significant, direct influence on the design of the memory
representation used by the Capture system. These are Fahlman’'s NETL
system [Fahlman79], and Brachman's Structured Inheritance Networks
formalism on which the KL-ONE system is based [Brachman78].
Representational issues arising in the context of these approaches will be
discussed with respect to the design of Capture memory in the rest of this
section. For convenience the knowledge representation formalism used in
the Capture system will be referred to as Memory in the rest of this section.

The NETL design was intended to be as complete a knowledge representation
language as possible that was compatible with a marker processing scheme
(discussed in Chapter 3). The design of KL-ONE was more concerned with
producing a 'clean" but general semantic network representation for
knowledge representation. Nevertheless, NETL and KL-ONE are in fact very
similar as knowledge representation systems. Some of the differences in the
details of these representations will become apparent in the comparison
with Memory. NETL and KL-ONE are semantic network representations in
which there are a limited number of node types and link types. Both
representations are structured around a classification hierarchy for nodes

39

representing concepts. The concept nodes in these hierarchies have
associated with them descriptions that are built out of "role” nodes of
various types and link types associated with these role descriptions. Concept
nodes inherit the role-based descriptions of other concepts that are above
them in the classification hierarchy.

Both NETL and KL-ONE are more complex representational formalisms than
Memory. A simpler representational formalism was adequate for the
purposes of the Capture system for two reasons. Firstly, as already noted,
Memory was never intended to be a complete knowledge representation
formalism, whatever that might be, whereas the designers of NETL and KL-
ONE take completeness as one of their design aims. A number of issues that
were not immediately relevant to the Capture system's test application were
ignored. Secondly, as will be shown below, loosening NETL's and KL-ONE's
built in ideas about what constitutes a "concept’” allows some of the explicit
primitives of these systems to be encoded, as needed, using Memory

assertions.

The simpler ontology of Memory comes mainly from abandoning the strict
classification of entities into concepts and roles. Fahlman's concluding
remarks about the NETL representation include the following ([Fahlman79]
p.231) "There is too much difference between the base-node of a description
and a role; role reversal should be a smoother process than it currently is.”
In Memory, depending on which correspondence assertions are being
considered, it is possible to view an entity as a concept with its own roles or
as a role in descriptions associated with other entities. This leads to a
natural way of having "multiple views" of entities because of the lack of a
single structure imposed by the representation formalism itself.

In fact the Memory knowledge base used in the experimental system still
makes use of correspondence assertions to construct a predominantly
"concepts and roles” view of the knowledge represented. There are two
reasons for this. Firstly, the knowledge base was originally constructed when
there was a distinction between concepts and roles in the system and this
way of thinking of the entities persisted after the translation into the later
version of the representation formalism. Secondly, the concept/role
distinction probably gives a pragmatically useful way of representing some
fragments of knowledge, although it is not considered to be one that should
be made into an absolute that forces artificial distinctions, but rather a

derived notion dependent on view.

As mentioned earlier, a number of issues that were dealt with in NETL or KL-
ONE were ignored completely. Three of the more important issues in this
category (negation, inheritance-cancellation, and defined/natural terms)
are discussed below.

40

The Capture system does not deal with negation at the memory
representation level or at the level of language interpretation operations.
Clearly, this is an important direction in which to extend the representation
system. The easiest way to achieve this for Memory is probably to adapt
Fahlman’s **NOT flags which can be attached to certain nodes and links; but
this was not tried.

There is no explicit provision in Memory for cancellation of inherited
properties. In NETL *CANCEL links can be used to cancel inherited properties
in order to allow for exceptions, for instance in the case of a three legged
elephant. But many of the operations using memory will work if properties
are simply explicitly over-ridden at a lower level of the specialization
hierarchy. This is an imprecise solution to the problem, but it is not
considered to be a major drawback compared to the use of cancellation links
because these themselves are not problem free. The inheritance algorithm
that takes cancellation links into account that was reported in [Fahlman81]
was later shown to be inadequate. In KL-ONE (at least in some descriptions of
the language) the taxonomy is taken as definitional (see below) and non-
definitional information, like exceptions and cancellations, are considered to
be best handled outside the representation formalism.

The defined class/natural class distinction was one that was dropped from
Memory representation. This was partly because the distinction was not
being used by the operations implemented for Capture. But another reason
is that Capture does not include mechanisms for maintaining the
consistency of the knowledge represented in Memory, which would involve
checking that entities of a certain type satisfied definitional properties; this
being the main consequence for processing of the distinction between
natural types and defined types in NETL. KL-ONE generic concepts are
interpreted as defined terms and this is considered to be important for the
classification of new objects and their incorporation into the knowledge
base. (*) Thus the natural/defined term distinction is closely related to the
issues of consistency and the "digestion” of new information. Although these
issues are important considerations for knowledge base systems, they were
regarded as being beyond the scope of the Capture project.

The way in which a number of important NETL and KL-ONE link types are
handled in Memory is now described. It is not possible to say, formally, that a
particular fragment of these representations is equivalent to a set of

(*) In some versions of KL-ONE, however, natural kind concepts are
distinguished from defined concepts and then the classification algorithm
must be told which natural kind concepts can be used to describe a concept
being classified, because this information cannot be deduced - see
[Schmolze83].

41

Memory assertions. This is because of the lack of a uniform semantics to
compare them with, or of any systematic indication of how the knowledge
conveyed by certain English sentences in known contexts would be
represented in the various formalisms. Comparisons have therefore to be
based on suggesting how the analogues of certain types of expressions in the
other formalisms would be represented in a Memory knowledge base.

In NETL every *TYPE node T (representing a typical concept) has associated
with it an individual node that represents the set, S, of entities that can be
described by T. Properties of this set, such as its cardinality being equal to
4, can be associated with the individual node. This can be represented
directly in Memory as follows.

(Specialization: S of set (instance))
(Corresponds: Sto T as
set to set/member (uni))
(Corresponds: four to S as
cardinality to set)

The semantics of these assertions permits the interpretation that the
cardinality of ref(T) is 4, as required.

KL-ONE uses '"Paralndividual Concepts" (parametrized versions of concepts)
in the descriptions of other concepts, for example a Paralndividual of the
SUPPORT concept is used in the description of the ARCH concept. In Memory
there is no type distinction between an entity and the other entities (related
to it using Memory assertions) that help to describe it. Thus although the
SUPPORT statement in the arch description in KL-ONE is represented by a
special node type (Paraindividual), linked to SUPPORT by a PARA link, it
would just be an entity specialization, 'arch/support’ say, of the entity
'support’ in Memory as follows.

(Specialization: arch/support of support)

(Corresponds: arch/lintel to arch/support as
supportee to support)

(Corresponds: arch/upright to arch/support as
supporter to support)

Similarly the counterpart of NETL *IST (individual statement) nodes are
(instance) specializations of entities that are specializations of the entity
'statement’. An example of an individual statement is the entity 'E20' below,
representing the statement "Rockefeller owns Standard Oil".

42

(Specialization: owns/statement of statement)
(Specialization: E20 of owns/statement (instance))
(Corresponds: Rockefeller to E20 as
owns/owner to owns/statement)
(Corresponds: Standard/0il to E20 as
owns/property to owns/statement)

In NETL, these individual statements can be given a time-area scope. In
Memory this scoping is representable by a correspondence assertion as

follows.

(Corresponds: 1890’s to E20 as
statement/time/scope to statement)

The 'statement/time/scope’ associated with statements scoped in this way
can now be used by operations that consider the truth of statements at

various times. (*)

In NETL there is a flag **PART which ""Marks the PART *TYPE-role and all of
its *TMAPS. (this is) Used to make PART-OF hierarchy operations more
efficient.” ([Fahlman79] p.269). In Memory this flag is equivalent to a
recorded marker propagation that starts at the entity 'part’ (recorded
propagations are described in Section 3.5).

There is a distinction in NETL between two types of role ownership which are
represented by *EXFOR and *EXIN links. Fahlman says that this distinction is
reflected in English by the use of the prepositions "of” and "in". However, it
is not clear whether this distinction has any real value since NETL

processing does not exploit it.

The KL-ONE language distinguishes between four different types of inter-role
relationship. The assertions given below illustrate how these can be
represented in Memory, or rather one of the ways Memory assertions can be
used to do this.

(Corresponds: building/block to block/object as
physical/part to physical/object)
(Specialization: building /block of block)

(Specialization: arch of block/object)
(Corresponds: arch/block to arch as
building /block to block/object)

(*) The extensions proposed in this section (e.g. the use of time scoping, and
the representation of cardinality) were not implemented, but are included
for the sake of comparison. However, except for cases where the contrary is
stated, and for the sections in later chapters devoted to comparisons and
possible extensions, all the mechanisms described in the thesis were
implemented in the final version of the Capture system.

43

(Corresponds: lintel to arch as
arch/block to arch (uni))

(Corresponds: arch/upright to arch as
arch/block to arch)

(Specialization: arch/1 of arch (instance))
(Corresponds: lintel/1 to arch/1 as
lintel to arch)
(Corresponds: arch/1/upright to arch/1 as
arch/upright to arch)
(Specialization: arch/1/upright/1 of arch/1/upright (instance))

The four different types of KL-ONE inter-role relationship are illustrated by
this example as follows.

a) The KL-ONE inter-role relationship "restriction”, represented by a
"modifies” link is exemplified by the relationship between the entities
'building /block’ and 'physical/part’.

b) Differentiation, represented by a "differentiates” link in KL-ONE is
exemplified by the relationship between 'lintel’ and 'arch/block’, and also
between 'arch/upright’' and 'arch/block’.

¢) An example of "particularization” is the relationship between the entities
‘arch/upright', 'arch/1/upright’ and 'arch/1'. Here 'arch/1' is an individual
arch and 'arch/1/upright’ refers to its upright-blocks.

d) The relationship between 'lintel/1’ and ’'lintel' is '"satisfaction”, since
'lintel’ refers to the individual lintel for 'arch/1’. (It is unique because rel
(arch, lintel) is a function.) The relationship between 'arch/1/upright/1’' and
‘arch/1/upright’ would also be represented by a "sat” (satisfies) link in KL-
ONE.

The relationship between Memory and the KL-ONE and NETL formalisms can
be summarized as follows. All three formalisms make heavy use of a
classification hierarchy for concepts, that is also the basis of property
inheritance between concepts. Correspondence assertions are used in
Memory to provide a flexible way of modelling the relationships represented
by roles in the other two formalisms. There are a number of issues, such as
those related to consistency, that were considered to be out of the scope of
the Capture system. However, the most important representational features
of NETL and KL-ONE that depend on the various node and link types in these
systems can be handled using the simpler Memory formalism.

No more will be said about the Capture memory representation formalism
itself, as opposed to how it is processed and used in the Capture system. As

44

noted by Wilks [Wilks77] (in the context of using semantic primitives for
representation), it is not necessary to assume that the deeper problems
raised by a representation system have been solved before it can be used
profitably for natural language processing. The memory representation
formalism can be loosely thought of as providing data structures for
classifying concepts (via the specialization hierarchy) and classifying the
kinds of associations between them (via the correspondence hierarchy).

45

Chapter 3

Memory Processing

This chapter is concerned with the way information is retrieved from
memory and the indexing scheme that is exploited for performing memory
searches. The model for memory retrieval is an adaptation of Fahlman's
marker propagation model. The indexing scheme is a new technique
developed in this project for increasing the efficiency of searches that the
retrieval process requires and, perhaps more importantly, for allowing
efficient access to the most salient memory entities as determined by all the
context information represented at a given time.

3.1 Marker processing

Much of the knowledge represented in memory is implicit, in the sense that
it is not present explicitly as stand-alone statements. This is largely a
consequence of the hierarchical organization of memory in which
information is inherited from generic to more specific entities in memory.
The process of extracting this information requires a limited sort of
deduction, and will be referred to as "deductive retrieval” or '"'memory

retrieval’.

The implementation of memory retrieval is based on marker processing, i.e.
on performing set operations on the nodes of a network in which a set is
represented by marking its elements using a marker. This choice of
processing model was strongly influenced by Fahlman'’s work [Fahlman79].
Thus the memory processing model used in Capture is an adaptation of
Fahlman's processing model to Capture memory which is applied to text
processing. Fahlman's model resembles, at first sight, the early semantic
network processing model used by Quillian [Quillian68], but is in fact much
more strictly controlled. Fahlman proposes the use of specialized hardware
for implementing marker propagation processing on a semantic network in
order to solve the problem of efficient deductive retrieval from very large
knowledge bases. ((Fahlman80] sketches a possible design for this hardware,
and [Hillis81] discusses a different design that is capable of supporting
Fahlman's processing model.) This efficiency problem is considered (by
Fahlman and others) to be central to building realistic natural language
understanding systems that make use of extensive knowledge of the type
represented in memory in the present system.

46

Furthermore the implementation of memory processing by the marker
propagation hardware means that only certain types of inference
operations, and in particular certain deductive retrieval operations, can
take advantage of the parallel processing that the hardware is capable of.
That is, the parallel processing performed by this hardware is specialized, i.e.
does not aim at general concurrency, but only at performing certain
particular types of retrieval operation very efficiently on a large knowledge
base. Fahlman suggests, however, that simulating human-like intelligence
requires only these restricted types of operation to be performed on
memory. It is not clear how far this argument can be taken; however the
implementation of Capture represents a test of the idea with regard to
performing a certain text processing application. Thus the implementation
for the system was partly motivated by the desire to build a system for text
processing which operated under the restrictions that are the consequence
of choosing a marker processing model that could be implemented by

parallel hardware.

The simplicity of the marker processing that allows it to be performed on the
specialized hardware also allowed the development, within a software
implementation, of a scheme for increasing the efficiency of marker
processing simulation on a serial machine. This software scheme can be
based on semantic clustering, as described in detail later. This makes the
processing of the knowledge base represented in memory tolerably efficient.
This efficiency is useful for the development of systems making use of this
processing model, and perhaps sufficient for systems concerned with limited

discourse domains.

The fact that marker processing is used for performing the necessary
memory retrieval operations is not in fact important for the operation of
much of the text processing system. This is because memory retrieval
processing is to a large extent (except e.g. for the convenience of using
traces of this processing as a kind of context factor) used by language
processes in a way that is independent from the actual implementation of
the retrieval operations. The Capture design would thus allow for the
exploitation of specialized parallel hardware if this turns out to be
worthwhile, and if such hardware becomes available. At the same time much
of the rest of the system can be evaluated without regard to how memory

retrieval operations are performed.

The following three sections will describe memory retrieval operations and
the marking operations and searches that are used to implement them. The
sections after this describe the scheme used for indexing marked sets and

its use for making memory searches more efficient.

47

3.2 Retrieval operations

Retrieval operations are performed, in much the same way as proposed by
Fahlman [Fahlman79], using a marker processing model. Marker processing
is really just a way of performing certain set operations on the entities in
memory. The entities in each set are marked using a symbol (a "marker’),
occurrences of which ('marks"”) are attached to the nodes that stand for the
entities. Marker processing is performed by sequences of marking operations
and searches. Marking operations specify the sets that are being operated
on and these are described in Section 3.3. Searches (Section 3.4) extract the
results, and intermediate results, of retrieval operations; they locate entities
that satisfy marking conditions. ("Threshold conditions”, related to the
context mechanism can also be used, but these are not part of Fahlman's
model and will be discussed in later sections.) Fahlman describes many
examples of this type of processing in detail, and since the flavour of marker
processing performed on memory is much the same as that of Fahlman's

work only a simple example of a retrieval operation will be given.

An example of performing a simple operation involving an "intersection
search” is retrieving any memory entities that are specializations of the
entity 'makel’ and that are also role-specializations of 'relp/statement’. (i.e.
retrieving predicates that can be described by the "manufacture” sense of
"make” and that are also underlying predicates for some database relation.
The results would include 'relp/manufacture’, see Section 2.8.) A marker,
"M1" is used to mark all entities below 'makel’ in the specialization
hierarchy. A second marker "M2" is used to mark role specializations of
'relp/statement’ in the correspondence hierarchy. The results of the
operation can then be extracted by performing a search for entities marked
by both "M1" and "M2".

In practice, retrieval operations can become fairly complicated, since they
often involve further marking and search operations for checking, for
example, that the results include only most-specialized entities, or that
properties have been inherited in a valid way (see [Fahlman79]). The
interpretation and task-specific components of Capture mainly make use of
standard retrieval operations (of which there are around twenty) instead of
requesting marking and search operations directly. Examples of these
retrieval operations are given below.

A) Find the common ancestors in the specialization hierarchy of entities E1
and E2.

B) Find a most specialized entity C that fills the role R for entity O. That is, C
is the inherited version of R with respect to O.

48

C) Find an entity O that is the owner of R when R is viewed as a role
specialization of the generic role G.

D) Find the most specialized role-owner pairs in correspondence assertions
that express the relationship between two entities E1 and E2.

All the standard memory retrieval operations are implemented in terms of
the marking operations and searches for sets of entities satisfying marking
conditions. The range of retrieval operations that were implemented was
determined by the requirements of the interpretation cyomponent and the
task specific (i.e. database capture) component for the system’s test
application. There was no attempt to implement a "complete'" set of retrieval
operations and only ones that were required were implemented; it would not
be difficult to provide others as needed.

As mentioned earlier, the marker processing used by Capture is an
adaptation of Fahlman's model to suit Capture memory, and is thus closer in
style to Fahlman’s model than the algorithms described by Woods
[Woods78a], which make use of marker pairs. Further, the very low level
algorithms that are used would be different if retrieval was performed on a
"connection machine” of the type proposed by Hillis [Hillis81], because this
would involve the use of "virtual links"”, rather than hardware links, between
the processing elements that would correspond to memory entities. However,
it might be possible to hide these differences in the "microcode’” of the
connection machine. The adaptation of Fahlman's model to Capture memory
is determined by the types of marking operation that are allowed. These are
described in the next section.

3.3 Marking operations

It was mentioned in the last section that each of the sets of entities that
take part in retrieval operations is marked using a marker. The operations
that perform this marking are now described. The range of marking
operations thus determines the kinds of sets that can take part in retrieval
operations. Marking operations depend on the network of "links” (between
"nodes” standing for memory entities) that are derived from memory
assertions. Thus one type of marking operation, a "marker propagation”,
takes an initial set of nodes and traverses the network from these nodes
following links of some specified type, and marking, using a specific marker,
all the nodes on the paths that are followed. (In fact the term "marker
propagation” will also be used to loosely refer to marking operations in

general.)

49

The network is derived from memory specialization assertions and
correspondence assertions as follows. Specialization assertions of the form

(Specialization: A of B)

can be thought of as a pair of links; a "specialization link” from B to A, and
its inverse, a "generalization link" from A to B. Correspondence assertions of

the form

(Corresponds: R1 to O1 as R2 to 02)

can be thought of as a collection of links, including a "role-link" from 01 to
R1, an "owner-link” from R1 to O1, a "role-specialization” link from R2 to R1,

etc.

The internal low level encoding of these assertions indeed takes the form of
records with two way pointers between the nodes that stand for the entities
taking part in assertions and the records encoding the assertions. The
assertion records correspond to "link elements” in the framework of
Fahlman's formalism. However, such details will be ignored when examples of
marking operations are described since this will be done in terms of the
argument positions of memory assertions.

Marking operations can be classified into five major types as follows.

a) Propagation marking that begins at a single entity and marks all the
entities that can be reached from this entity via a specified link type. (“link
type” is used here to indicate a pair of argument positions of memory

assertions, as explained above).
Examples of this type of marking operation are

(al) Mark all the entities above the entity E in the specialization
hierarchy.

(a2) Mark all the entities that are roles, or roles of roles etc. of entity E,
where R is a role of entity E if there is a correspondence assertion of the
form (Corresponds: Rto E as - to -).

(a3) Mark all entities that can be reached by role-specialization links from
entity E, where R is an immediate role specialization of E if there is a
memory assertion of the form (Corresponds: R to - as E to -).

b) Propagation marking, parallel to (a), but starting from the set of entities
that are marked with a specified combination of markers, instead of just a
single entity.

50

c) Marking across one step of links, examples being

(c1) Mark all entities E1 that occur in correspondence assertions of the
form (Corresponds: E1 to E2 as - to -) where E2 can be specified as a
particular entity, or as the set of entities marked with a particular

marker combination.
(c2) as for (c1) but according to the pattern (Specialization: E1 of E2).

(c3) as for (cl) but according to the pattern (Specialization: El of E2

(instance)).

d) Marking across one step of links, where further arguments of the memory
assertions involved can be specified to be marked with a particular

combination of markers, for example

(d1) Mark all entities E1 that occur in correspondence assertions of the
form (Corresponds: E1 to E2 as E3 to -) where E2 is a specific entity and
E3 is specified as the entities marked by a combination of markers.

(d2) as for (d1) but according to the pattern (Corresponds: E2 to El as -
to E3). '

e) Marking the set of entities (using a new marker) according to their
existing markers.

(e1) Mark all entities that are marked with a particular marker
combination (i.e. the entities that are marked with at least all the

markers in a specified marker set).

(e2) Mark all entities that are marked with all the markers in one
specified marker set, but not marked by any of the markers in another
such set. (el) is a special case of this marking operation.

(e3) Mark all entities that satisfy a threshold condition.

For most of these marking operations a new marker is generated and used to
mark all the entities specified by the operation. The exceptions to this will be
referred to as "recorded propagations”, and these will be discussed later
when the techniques for increasing the efficiency of marker processing are
described.

51

3.4 Search requests

As indicated already, memory processing depends on searching for entities
that are marked with specified combinations of markers. Searches are also
performed that are restricted by "threshold” conditions. A threshold
condition asserts that the entities being searched for should have
mactivations” that exceed a specified value. The activation of an entity is the
sum of weights that are associated with the markers that were used to mark
the entity. The weights are concerned with the representation of context
information (Section 5.2), the activation of an entity being a measure of its
salience in the current context. The importance of threshold searches for
implementing a flexible context mechanism will become clearer in Chapter 5.

A facility was implemented whereby search requests prepackaged in a
certain format can be conveniently evaluated by the system. Such a format
specifies a marker combination and includes an expectation of the number
of results of the search, and a number of flags that specify how the system
should try to satisfy this number expectation.

One of the mode flags indicates that an activation threshold should
parametrize an initial search, but that this threshold should be lowered and
the search repeated if the initial search should fail to locate any entities.
Another flag specifies whether or not the search should be constrained by a
marker that indicates that the entities should be instances (i.e. take part in
memory assertions with "instance” or "member” flags). A third flag specifies
that the context mechanism should be used to select between candidate
results of the search so that the search satisfies the number expectation. A
fourth flag specifies that if no entities are located that have all the markers
in a combination, then the search should be repeated, more than once if
necessary, until the set of entities is located that have the most markers in
the combination, i.e. K-1 of the markers in the combination where K is the
smallest integer such that no entities have K markers in the combination.

These variants of the simple intersection and threshold searches are used,
in particular, during reference resolution, which is a frequent requirement.
The following section on efficient retrieval will explain how searches
specified by search requests (whether or not they are packaged in the
format described above) are implemented efficiently by exploiting a scheme
for indexing marked sets.

52

3.5 Techniques for efficient retrieval

This section discusses the techniques that have been employed for reducing
the amount of low level processing, on a serial machine, required for
implementing the memory retrieval operations that are performed by the
system. Most of these techniques are independent of the details of the
representational formalism (and the actual operations that are performed),
in that they could apply to any system that makes use of the style of marker
processing that has been described.

In fact the techniques enhance the efficiency of the following.

1) Intersection searches. Searching for sets of entities specified by marking

conditions.

2) Threshold searches. Searching for sets of entities whose activation is

higher than a specified threshold.
3) The effort involved in performing marker propagations.

The use of the techniques is purely motivated by efficiency because they do
not affect the outcome of retrieval operations, and hence the outcome of
interpretation operations that use the retrieval operations. However, the
techniques, and the extensions to them described in Section 3.6, are not
merely low level implementation details because they address efficiency
questions that are important for the realization of text processing systems
exploiting "large"” knowledge bases.

The indexing scheme

Enhancing the efficiency of memory searches (i.e. (1) and (2) above) depends
on indexing marked sets. For the purpose of this indexing a tree (the cluster
tree) is constructed; the nodes representing entities in memory are the
leaves of this tree. The tree is constructed before any memory processing is
performed, as follows. The nodes are partitioned into clusters of a chosen
fixed size:; the criteria for determining the order in which the nodes are put
into clusters will be discussed later. The nodes in each cluster are then
linked to a newly created cluster-node with special clustering links. The
cluster-nodes are then themselves clustered, and this clustering is repeated
until there is only one cluster node to be clustered, this being the root, or
"cluster-apex”, of the indexing tree formed by the clusters.

Marked sets are indexed during memory processing by marking nodes in the
cluster tree. When any network node is marked, by a particular marker, all
the cluster nodes above it are also marked by the same marker. (There are

53

exceptions to this procedure that will be explained shortly.)

Searching for all network nodes with a given combination of markers (i.e. the
set of nodes each of which is marked with all the markers in some specified
set of markers) can be done by starting at the cluster-apex and following the
combination down through those cluster nodes having it to the final selected
network nodes. Similarly, searching for the nodes with activations that are
higher than a specified threshold is performed by starting at the cluster-
apex and only passing through cluster-nodes whose activations exceed the
specified threshold. It should be noted that the markers attached to a
cluster node and its corresponding activation do not imply any semantic
information since the cluster-nodes are only relevant to the indexing

scheme.

The two types of search can be combined so that the cluster tree can be
used to find the nodes with a given combination of markers that satisfy a
threshold condition. Again, this search starts at the cluster-apex and only
passes through cluster-nodes after it has been checked that their markers
and activations satisfy the specified conditions.

Thus in order to reach the target nodes of the searches that have been
described we will only examine the network nodes in clusters for which the
cluster-node satisfies the condition determining the target set. For the
intersection search (i.e. searching with respect to a marker combination),
these nodes are the network nodes in clusters that have a node marked with
each of the markers in the combination. This means, in particular, that the
number of network nodes examined will be bounded above by the cluster size
times the number of nodes in the smallest marked set. On the other hand if
the target set happens to be a union of the sets of nodes in clusters then
only the nodes in the intersection will be examined. A more detailed analysis

of the simple intersection case will be given below.

As stated so far the scheme does not allow the inclusion in the search
specification of conditions excluding nodes that are marked by any of the
markers in a specified combination, or threshold searches when negative
weights have been assigned to some markers. The necessary extension for
dealing with this is now described.

The markers used to mark cluster nodes in the scheme described so far can
be called "or-markers” in that they are used to mark a cluster node if any of
the nodes below it are marked with the marker being indexed (or with the
indexing marker - these were not distinguished in the above description). We
can instead use an "and-marker” to mark a cluster node if all the nodes
below it are marked with a particular marker (or the and-marker itself). If a

marker is known to take part only in searches which specify that results

54

should not be marked with it, we can index this marker with and-markers
instead of or-markers. Then when a search involves this marker, cluster
nodes that are marked with its indexing and-markers are not passed
through during the search because it is known that they will not lead to any

target network nodes.

And-markers can also be used, for the purpose of threshold searches, to
index a marked set of network nodes that has been assigned a negative
weight. This does not affect the threshold search algorithm that evaluates
the sum of the weights at a cluster node before passing through it. In the
final version of the system, however, negative weights were not used. For a
system in which exclusions and negative weights are sufficiently important,
it may be worthwhile (although this was not considered to be the case for
the present system) to always index marked sets by both or-markers and

and-markers.

Efficiency analysis of the intersection search

For the purpose of efficiency comparisons on memory processing, primitive
operations can be defined as the operations of marking a node, testing the
marks on a node against a marker combination, and calculating the
activation of a node. If we assume that the time taken to perform one of
these operations on a node (in the network or tree) is a small constant, then
we can evaluate the efficiency of the searches by determining the number of
nodes that are examined during a search.

The simple intersection case (i.e. looking for all the network nodes that are
marked by all the markers in a specified combination) will be analysed only.
This case can be considered a special case of the threshold search since it is
equivalent to finding nodes with weights that are greater than k-1 where k is
the number of the markers in the combination, all of which have been
assigned a weight equal to one, other markers having been assigned a weight
equal to zero.

For the worst case of the intersection search, the number of nodes (in both
network and tree) that are examined is of the same order as the number of
nodes with the marker that marks the smallest set of network nodes in the
intersection (the clustering factor being assumed to be a constant, c, for
this analysis). Let m be the cardinality of this set. The number of nodes
marked by this marker is less than the sum of the nodes in paths from the
apex to each of the m nodes in the network. The length of these paths is
O(log N) for a network with N nodes, and so the number of nodes marked by
the marker and hence the number of nodes examined is O(m log N).

55

We can refine this upper bound for the worst case by observing that some of
the nodes in the paths mentioned above must be shared near the top of the
tree. Sharing need not occur below a level in the tree where there are more
than m tree nodes, i.e. after a depth of O(log m) from the apex. Thus the
number of nodes marked will be bounded by the number of nodes above this
level plus the (distinct) paths from this level to the network nodes. This gives
O(m) + O(m(log N - log m)), that is O(m (log (N/m))).
*)

For the (good) case where we can assume that all tree nodes with the
combination do lead to network nodes in the intersection, let the number of
nodes in the intersection be i, the order of nodes examined will be the same
as the order of nodes with the combination, giving O(i log (N/i)) by the
above analysis. For the (best) case, in which the number of nodes marked
with the combination will be the number of nodes in a full c-branching tree
with i leaves plus a path from the apex to this tree, we get

0(i) + O(log N - log i), that is O(i + log (N/i)).

(**)

As noted by Fahlman, the standard algorithm for finding the intersection of
sets represented as lists takes at least O(m), where m is the cardinality of
the smallest set in the intersection. This algorithm steps through the items
on the shortest list checking for items in the intersection; this list being
identified by maintaining counters for the number of items on each list.
Thus, from the above analysis, this algorithm performs better than the
cluster-based algorithm in the worst case, but the cluster-based algorithm
can do better if the sets correlate well with the clustering. In addition, there
is no obvious extension of the standard algorithm that can deal with the
threshold search, which is important for the current application. As
mentioned earlier, the threshold search is a generalization of the
intersection search, and so has at least the same computational complexity
as the intersection search.

For the searches that have been described the gain from using the
clustering comes from excluding areas of the network that need not be
searched. The size of this gain depends very much on how clustering
correlates with marked sets, hence the interest in clustering criteria which
will be described shortly.

(*) Following the above analysis more closely, it can be seen that the
constants are not unreasonable, a concrete bound being
2m + cm(log (N/m) + 1), where log a is the largest integer less than or
equal to the log of a to base c.

(**) again the constants are reasonable, a concrete bound being
2i + c(log (N/i) + 1)

56

Recorded propagations

The implementation of marker processing in the system is complicated
further by the use of "recorded propagations” which are also motivated by
efficiency considerations. Recorded propagations are aimed at reducing the
effort required for marking, as distinct from the effort required for
searching that has been addressed so far. In particular we would like to
reduce the effort involved in repeating propagations that mark large areas
of the network. A record is therefore kept of marker propagations that start
from a single node and are expected to mark a large number of nodes. All
the recorded propagations are marking operations of type (a) in the
classification given in Section 3.3.

The record of the propagation is kept at the node at which the propagation
starts. When a subsequent request is made for performing the same
propagation the marker symbol noted in the record is returned, without
generating a new marker symbol or marking any nodes.

Recording propagations in this way requires that these propagations are
"maintained” when new assertions are added to memory. This is done by
extending the propagations across links created for new assertions and
marking nodes as appropriate. For example assume that a propagation is
recorded that marks all specializations of entity A, and this propagation has
marked entity B with a marker M. A new memory assertion (Specialization: C
of B) will cause the propagation to be extended from B to C, and C will be
marked with M. Extending propagations in this way during memory
processing ensures that their markers can still be validly used in later
processing. The fact that propagations can be recorded, and the way that
the representation of context depends on marked sets, means that the
presence of a mark on a node can affect several memory operations, not just

ane,

Clustering for the indexing scheme

Returning to the scheme for indexing marked sets that is used for searching,
the clustering criteria that have been tried with this are now described. Four
such methods were tested which will be referred to as the "creation”,
"specialization”, "association”, and "random” methods respectively. Each of
these methods determines how nodes are clustered to form the indexing
tree. More precisely, a clustering method determines the order in which
network nodes are selected for placing them into cluster nodes when the
indexing tree is being built by the procedure described earlier in this
section. The methods also determine how to incorporate new memory
entities into this tree when these are created as a result of text processing.

57

It should be emphasised that these different methods do not affect the final
results of memory retrieval and search. This is because the search
procedures use the indexing tree only to avoid searching areas of the
network that are guaranteed not to include any result nodes (even though
these areas may be different for different clustering methods). Hence we
need not worry here about the formal properties of such a clustering, only
the efficiency to be gained from it. The gain in efficiency derived from the
indexing scheme is, as remarked above, improved if marked sets are well
correlated with (as opposed to sparsely distributed among) the clusters. The
intention, except for the "random"” method, is to have "semantic” criteria for
clustering that improve the correlation between marked sets and clusters.

In the "creation” method the order in which the entities are chosen for
inclusion into clusters is the same as the order in which the entities are
created. The majority of the entities in memory are assumed to be created
as a result of processing input files written by the person who constructs
the knowledge base. The order of memory assertions in these files would
then presumably tend to clump semantically "close” information together
reflecting the constructor's model of the knowledge being represented.

Both the "specialization” (or "classification”) and the "association” methods
depend on specialization and correspondence assertions. The clustering
order for the methods is the same as the order in which nodes are located by
two different types of exhaustive traversal of the network formed by the
links representing memory assertions. In the specialization method the
traversal is a depth-first search of the network using specialization links
and also role-specialization links (i.e. those that link the specialized-role and
generic-role arguments of correspondence assertions). For the association
method the traversal is a depth-first search that mainly uses the owner-role
links from correspondence assertions, though it also uses specialization
links because the chains of owner-role links do not span the whole network.
Thus for the specialization method entities that are similar (as determined
by the classification imposed by the specialization hierarchy) tend to be in
the same clusters; whereas for the association method entities that are
closely associated (via the owner-role relationships imposed by

correspondence assertions) tend to be in the same clusters.

In addition to the three clustering methods just described random clustering
was implemented, for the purpose of comparison. This method uses a
pseudo-random number generator to insure that there is no systematic
semantic relationship between entities that are placed in the same clusters.
Informal timing tests confirmed the expected result that random clustering
was the least efficient. The specialization method appears to be the most
efficient followed by the association and creation methods respectively.
Because of this the system was normally run using the specialization

58

clustering option.

Appendix C presents graphs showing the number of network and tree nodes
visited, for different clustering methods and cluster sizes, during the
searches performed for processing the two example texts given in Chapter 1.
These results should give an idea of how the clustering methods affect
searching in the Capture implementation but should not be regarded as
experimental results in any strong sense. The relatively small number of
entities in memory (about 450) means that the results of these test runs
cannot support any strong conclusions. Note, however, that an appropriate
semantic clustering should become more advantageous than random
clustering as the number of entities in memory increases. But it should be
added that it is not necessarily true that there is such an appropriate
semantic clustering that could be used in conjunction with a very large
memory knowledge base and an arbitrary pattern of processing performed
on it. It is, however, more likely that a better than random clustering method
could be found if processing the knowledge base follows a more restricted
pattern of use, such as that required for performing certain very common
interpretation operations.

It turned out to be fairly easy to determine a good initial cluster size (4), by
trial and error, for minimising the number of nodes visited during searches,
for the particular memory knowledge base used by Capture. There is also a
fixed limit on the maximum size to which a cluster can grow as a result of
new memory entities being created and incorporated in existing clusters.

When a new entity is created, the system must choose the cluster into which
it will be incorporated. The choice of cluster is determined by a function that
is consistent with the clustering method being applied. For example, for
specialization clustering a cluster that includes a generalization of the
entity is chosen, otherwise, if there is no such cluster, a cluster including a
role-generalization of the new entity is chosen. When the maximum size is
exceeded for a particular cluster, a new cluster is created near the old one
in the cluster tree. Of course, the whole network could be reclustered after a
large number of updates take place, but this was not done automatically by
the system.

3.6 Other techniques for efficient retrieval

Despite the use of the indexing scheme for implementing memory searches
and the use of recorded propagations, for very large networks the cost of
marking large areas with temporary markers will still be high, perhaps
prohibitively so. An extension of the indexing scheme for use with very large

59

networks is therefore considered. This is aimed at reducing the marking
effort during propagate/intersect algorithms. The extension was not
included in the implemented system because it was felt that, given the size
of the experimental knowledge base, it would not lead to any discernible
increase in processing efficiency. However, in principle, using the extension,
we could perform "approximate” marker propagations on a high level of the
cluster tree and then use the information gained in this way to perform
restricted propagations, where necessary, on the network itself.

This would require the introduction of “cluster links" between the cluster
nodes as follows. If one or more pairs of nodes in different clusters are
linked by some link type, then a cluster link of the same type would be
created between the respective cluster nodes. Propagations that use these
cluster links are approximate in the sense that a cluster link does not imply
the existence of a network link between any two particular network nodes.

For each of the network propagations that we wish to avoid performing, an
approximate propagation is performed instead at the higher level using the
corresponding links. A desired combination of markers on a cluster node
means that the nodes in that cluster might be in the desired set. The paths
leading to the cluster nodes with this combination can then be traced back
to the sources of the marker propagations. The network nodes included in
these paths would then be marked with special "pass” markers. Restricted
propagations could then be performed on the main network by going
through nodes that have pass markers. This would lead to marking all the
nodes in the desired intersection, and should restrict marker spreading in

the main network considerably.

Apart from this extension other obvious efficiency enhancements are
possible, such as the replacement of the lists used for indicating the set of
markers on a node by bit vectors or AVL trees. This kind of very low level
efficiency enhancement was not considered to be interesting enough for
inclusion in an experimental system. It would be interesting, however, to try
to record some of the propagations that start at a set of nodes, rather than
restricting recorded propagations to those that start at a single node.
However, maintaining these recorded propagations would be more
complicated because the sets that they start from can change during

memory processing.

As far as clustering is concerned, a possibility that is worth investigating is
using the hierarchy derived from memory assertions directly as the search
tree. (*) Indexing markers would have to be distinguished from ordinary

(*) This was suggested to me by Graeme Ritchie, personal communication.

60

markers in this case. The scheme would have the advantages of not requiring
additional storage space for the indexing tree, and good correlation between
the "clustering” and some important marked sets. (Control over the cluster
size, however, is not possible. There is also the complication that the memory
hierarchies can branch upwards, which entails lower efficiency, or the need
to restrict indexing to a minimum spanning tree.)

All the implemented techniques and the suggestions in this section for
improving the efficiency of memory retrieval have, as stated earlier, the
property that they do not affect the outcome of retrieval operations. A
different class of techniques that may be useful are those that depend on
further information for determining, in a possibly error-prone way, sets of
entities that can be ignored during the retrieval process. This point is
returned to when possible applications of the context mechanism are

discussed.

3.7 Comments on Capture memory processing

This section makes some general remarks about the Capture memory
processing model and summarizes the main points about it that were
discussed in detail in previous sections.

The processing model is designed to enable retrieving semi-explicit
information stored in memory. "Threshold” conditions on searches allow
these retrieval operations to be restricted, if necessary, to entities that are
highly relevant to the current context, an issue that will be discussed in
detail in Chapter 5. Thus the model is not a general deductive retrieval
system in the sense that it could be used for any particular Al application,
for example one involving planning. Instead, the emphasis has been on
having as simple a basic model as possible, and trying to build a text
processing system relying only on this limited form of access to a knowledge
base. This is consistent with the simple, perhaps minimal, representation
formalism used by the system.

One advantage of having such a simple scheme for memory representation
and processing is that it is easier to specify what operations can be
performed on the memory knowledge base. There have been calls (see e.g.
[Ritchie83]) for more formal specifications of the operations that can be
performed on knowledge bases that have been termed semantic networks. 1
have not attempted to specify formally the operations that can be
performed by the processing model; however, the first steps towards this
have been taken by specifying the types of marking operation and memory
search that can be used to implement retrieval operations. Retrieval

61

operations were not, however, constrained in the way they combined the
available types of marking and search operation.

It is also the simplicity of the marker processing model and of the
representation formalism that makes it possible, in principle, to implement
memory retrieval on parallel hardware, or alternatively to take advantage of
software techniques for improving the efficiency of retrieval operations, as
was done for the implemented system. But if arbitrary functions were
defined that could access memory representation structures directly, it
would not be possible, without general purpose parallel hardware, to have a
massively parallel hardware scheme, or to have a uniform indexing scheme
that could be used for all software retrieval operations.

Although the advantage gained from a particular clustering method depends,
as already mentioned, on the pattern of use, once this method has been
chosen, the programmer exploiting the memory processing model described
in this chapter is to some extent freed from investing further effort in
making individual search operations more efficient. Freeing the programmer
using the knowledge base from efficiency considerations is cited by Fahlman
[Fahlman79] as a motivation for his parallel hardware design.

As stated earlier, it is difficult to judge how successful the implemented and
suggested techniques for improving the efficiency of memory retrieval will be
for processing large knowledge bases. This will depend on the particular
knowledge base, the clustering method, and, as with McDermott's scheme for
indexing Planner Databases [McDermott75], on the pattern of use. With the
small knowledge base used in the project, retrieval operations were
performed efficiently enough, so the size of the memory knowledge base was
not seen as a limiting factor. However, given that the techniques for
improving efficiency are expected to be relatively more effective for larger
knowledge bases represented in memory, it can be expected that these
techniques would be quite adequate if the memory knowledge base was an
order of magnitude larger than it is at present. If this turns out to be the
case then the use of software techniques should be adequate for
applications in the near future, until specialized hardware becomes
available. For natural language processing systems, the difficulty of
constructing all the other components required for extensive coverage
means that the lack of specialized hardware for memory processing is not
the current limiting factor.

In any case techniques for efficient simulation of specialized memory
processing hardware are useful for expérimenting with hardware designs.
For example, experience gained in the present project suggests that the
number of markers that can be stored at a node in Fahlman's design may be
too small. (This could be due to the way context information was represented

62

with markers in this project). The use of software simulators will be more
important for evaluating more complex hardware designs such as Hillis's
Connection Machine [Hillis81]. The use of "virtual connections” in his design,
instead of direct connections between processing elements, complicates the
implementation of retrieval operations, and makes it more difficult to
evaluate what the efficiency gains are for a particular application.

As will be discussed in Chapter 5, the use of the indexing scheme to perform
threshold searches provides the means for implementing a very flexible
context mechanism that is nevertheless computationally acceptable. It will
also be explained how the processing model allows traces of memory
processing to be used as a type of factor contributing to context.

The low-level implementation of retrieval operations in torms of the
processing model described in this chapter will not be discussed when it is
explained how these operations are used by the text interpretation and the
database capture task components of the system. The design of these
components is largely independent of the marker processing model used to
implement them. Nevertheless, the efficiency considerations discussed in
this chapter are important to the feasibility of using these components in
conjunction with larger scale knowledge bases.

63

Chapter 4

Interpretation

4.1 Interpretation operations in Capture

This chapter describes the operations that interpret the output of the
sentence analyser with respect to the current context and the contents of
memory. These operations will be referred to as language interpretation
memory operations (or simply interpretation operations). The operations
described are aimed at solving common language understanding problems
such as reference resolution, word sense and structural disambiguation, and
inferring implicit relationships between nouns and modifiers. All these
problems are considered to be basic to natural language understanding in
general; the interpretation operations used to solve them are themselves
thus assumed to be domain and task independent although they may exploit
domain and task knowledge.

"Interpretation” here is taken (intuitively) to be concerned with making
explicit the propositional content of fragments of language and
incorporating this content into memory. It is therefore dependent on
context and the existing knowledge in memory. The process of interpreting a
text does not result in some form of text representation that can stand
alone from memory, but rather results in the incorporation of new
information into an existing knowledge base, and in this way fits what
Schank often refers to as an "understanding” process. (The interpretation
process in Capture also results in the creation of new context information -
see Chapter 5.)

Since the analyser does resolve certain ambiguities, and its output does
indicate some semantic relationships between sentence constituents (as
illustrated in the following section), the basis for the interpretation process
is initiated by the analyser. However, any analyser that handles the
sentences of a text independently from one another cannot be expected to
resolve all ambiguities and references presented by each sentence in the
text. The interpretation component has the responsibility of handling
remaining ambiguities and references, and completing the interpretation
process by the incorporation of new knowledge into memory. Thus, in
Capture, the basically linguistic processing performed by the analyser is
separated from the interpretation process. This separation had the

64

advantage of allowing these processes to be studied in a focused way, and is
similar to the current approach taken at SRI (see [Grosz82]). The analyser is
not forced by this approach to make decisions that should really take
memory and context into account because it can pass alternative structures
to the interpretation component, as described later in this chapter, which
can apply context using the mechanism described in the next chapter.

The operations that were implemented are not considered to be an
exhaustive list but they are sufficient for processing the example descriptive
texts handled by the system. These examples, although much simpler than
completely unedited texts, were not trivial and did provide instances of the
requirements to be met by the interpretation component in sufficiently
challenging forms. The interpretation operations for handling certain
constructions are based on algorithms that are similar to the algorithms
used by other Al researchers for handling these constructions, and the most
relevant parallels of this sort will be indicated when the particular
interpretation operations are described. However, Capture integrates these
various procedures into an overall processing framework in a coherent way
by the common exploitation of the memory and context mechanisms,

The language interpretation operations embody the flow of control within
the system as a whole. Thus an operation that interprets a certain type of
clause can lead to the evaluation of other interpretation operations such as
reference resolution, case specialization, compound noun interpretation,
and the interpretation of subordinate clauses. All of these imply memory
processing. The way that task specific processing fits into this control
structure is explained later.

Interpretation operations are implemented by procedures (in fact LISP
functions) and as such are rather unrestricted. However, interpretation
operations are intended to have, and do in fact have, many characteristics
in common, the most important being as follows. Interpretation operations
take as arguments structures produced by the analyser. The operations may
evaluate other interpretation operations for processing substructures of
their arguments, and then use the results of these subsidiary evaluations.
The operations perform memory retrieval using the marker processing
' model described in the previous chapter. They can create new memory
entities and add new specialization and correspondence assertions to
memory. New context factors are also created by interpretation operations
as described in the chapter on the context mechanism.

At first sight it might appear that the interpretation of the analyser output

65

is compositional in nature (*) because of the way that the interpretation of
structures uses the results of the interpretation of substructures. An
example of a possible control sequence is one in which "interpret clause”
calls "interpret verb case” which in turn calls “interpret noun phrase’. But
the interpretation of analyser structures is not in fact compositional
because evaluating interpretation operations has side-effects creating
structures in memory and altering the current context information. These
side-effects can, in principle, influence the interpretation of other
structures that are at the same level as, or lower than, the original

structure in the analysis tree.

In order to provide necessary background the description of the various
interpretation operations is prefaced by a brief account of Boguraev's

sentence analyser and the structures it produces.

4.2 The analyser and its output

The analyser is described in [Boguraev79] and [Boguraev82]. It parses the
sentences of the input text independently of one another. The analyser
interleaves the use of syntactic information and semantic information
(based mainly on semantic category restrictions) during the processing of a
sentence. The control structure and grammar follow Woods' Augmented
Transition Network (ATN) formalism [Woods70].

The entry for a word in the system lexicon contains a list of word senses and
the syntactic category information associated with them. Each word sense
has a semantic definition which is a Wilksian semantic formula [Wilks75a].
Such a formula is a binary tree of semantic primitives, although the rules for
constructing a valid formula in Boguraev’s system differ slightly from Wilks’
original specification. The most important primitive in a formula is the
"head” and this plays a direct role in applying semantic category
restrictions. Also important are category restrictions on the fillers of verb
sense cases and the "arguments” of prepositions. The restrictions are used
to check the semantic well-formedness of structures being built by the ATN
interpreter. This is done at points when major constituents are constructed,
the most important of these being building the structure for a clause and
building the structure for a noun phrase.

The output of the analyser for a sentence is a structure for each reading of
the sentence, given that individual sentences may be ambiguous on their

(*) i.e. that the interpretation of a structure is only a function of the
interpretation of its substructures, see e.g. [Hirst83]

66

own (whether absolutely or because the semantic power of the analyser is
insufficient to resolve the ambiguities is irrelevant). The analyser output
structures are case-labelled dependency structures for clauses, and are
centred around the main verb sense. The case labels indicate a generic
relationship between the verb and its arguments (or sometimes, a noun and
its arguments). The labels are taken from an extended set of cases that
include the more conventional ones such as "agent”, "object” and
“recipient”, and others such as "mental-object”. The case slot fillers are
either representations of noun phrases (’noun-args’), representations of
states ("'state-args"”) or subordinate clauses with pointers to the actual case
fillers. Other information, about e.g. tense and aspect, is also included in the
representation of a clause. (The detailed structure of noun-args and state-
args will become clear later when the interpretation operations relating to
them are discussed.)

An example of a complex analysis structure is the one below produced for
"Smith who was a german trader collected P316 which is an arrow”. This
structure indicates that the sentence was analysed as a top level clause
("Smith collected P318") with verb sense "collectl” and two cases "agent”
and "object”. The noun group structures for “Smith" and "P316" each fill the
"agent” case of an embedded "bel” clause ('Smith was a trader” and "P316
is an arrow'). The adjective "german’ led to building an embedded "state-
clause” (which is the same as the structure for "the nationality of Smith is
german’). The semantic category primitives (e.g. “move” and "“man") that
follow noun and verb senses in these structures are ignored by the
interpretation component because it has access to the more specific
memory descriptions of the noun and verb senses.

The analysis structures can be regarded as "meaning representations” (see
e.g. [Sparck Jones83b]), but for the purpose of the Capture project they are
regarded primarily as data structures encoding linguistic analyses that need
to be further interpreted with respect to the current context and the
contents of memory. The structure of the Capture system allows it, in
principle, to be able to process the output of a more purely linguistic parser
(such as the structures used by Bresnan and Kaplan [Kaplan82] in
conjunction with “lexical functional grammar”). In this case some of
Capture's interpretation operations would have to be made more complex
and do some of the work performed in the present system by Boguraev's

analyser.

67

(clause
(type del)
(tns past)
(v
(collect1
move
(@@
agent
({(trace (clause v agent))
(clause
(type relative)
(tns past)
(v
(bel
be
(@@ agent (n (Smithl man)))
(e@
recipient
((trace (clause v agent))
(clause
(v
(be2
be
(e@
agent
(n (traderl man (@@ det (al one)))))
(e@
state
(st
(n (nationality NIL))
@0 (val (German1 kind))))))))))))))
object
((trace (clause v agent))
(clause
(type relative)
(tns present)

(@@ agent (n (P316 thing)))
(@@
object
(n
(arrowl
thing
(e@
det
(ant

one)))))))))))

68

The interpretation operations implemented in Capture are described below
with examples. They include various clause interpretation operations,
operations for predicate and argument derivation, noun phrase reference
interpretation, relationship interpretation, and for word sense and

structural disambiguation.

4.3 Sentence interpretation

"Interpret-sentence” is the highest level interpretation operation below the
"interpret-paragraph’ operation. This latter operation only alters context
information as described in Chapter 5 when context management is
discussed. (The creation of context information by this and other
interpretation operations will be left to Chapter 5.) For the present purpose
it is sufficient to say that, interpret-paragraph having been applied, each of
the sentences in the paragraph is interpreted using interpret-sentence.

The interpret-sentence operation performs two functions. The first of these
is calling appropriate disambiguation operations for selecting between
alternative structures produced by the analyser for the sentence if more
than one analysis is produced. The second function performed by interpret-
sentence is calling the appropriate clause interpretation operations for the
clauses in the selected analysis and handling the relationship between
embedded and higher level clauses (the various types of clause
interpretation operation are described in later sections of this chapter).
Usually, when an embedded clause is encountered, interpret-sentence
invokes the appropriate type of interpretation operation for this lower
clause, and hands back a memory entity which is used by the operation
interpreting the higher level clause. The memory entity that is passed back
is the result of interpreting the noun phrase structure that is shared
between the higher and lower clauses. This procedure is applied recursively
to handle any depth of embedding.

An example is the interpretation of "Smith supplies the machine that is
manufactured by Plexir"”, for which the analysis structure is

(clause

(type del)
(tns present)
(v
(supplyl
give
(@@ agent (n (Smith1 man)))
(@@
object
((trace (clause v object))

69

(clause
(type relative)
(tns present)
(aspect (passive))
(v
(manufacture
make
(@@ agent (n (Plexirl *org)))
(@@
object
(n
(machine
thing
(e@
det
(thet

one)))) 1)))).

The result of interpreting the shared structure (for "the machine'’) would be
a memory entity, such as 'P9999’, so that the interpretation of the higher
clause proceeds as though it were "Smith supplies P9999". The procedure for
handling embedded clauses is different for certain "be-clauses”, e.g. "P9999
is a computer that is manufactured by Plexir”. For this example, the entity
'P9999' is passed down to the embedded clause, which is interpreted as
though it were "P9999 is manufactured by Plexir”.

The operations for selecting between alternative analyses are described in
Section 4.10, after the various types of clause interpretation operations

have been described.

4.4 Predicate clause interpretation

There are two predicate clause interpretation operations, which correspond
to the two types of predicate clauses that are handled by the system. The
types of predicates, and the corresponding clauses, will be referred to as
nyerbal’ and "state” respectively. Each of the two clause interpretation
operations leads to the construction of structures in memory that encode
the propositional content of the clause. In both cases this involves the
creation of a new predicate instance entity in memory.

The two operations will involve subsidiary operations for predicate and
argument derivation. These will be described in Section 4.5. Clauses that
serve a referential function, such as restrictive relative clauses, are handled
by reference resolution operations (Section 4.7), and do not result in
structure creation. The interpretation of two different types of clauses, “be”
and "have' clauses, is described in Section 4.6. The description which follows
therefore applies only to the top level processing of the verbal and state

70

types of clause.

a) Verbal clause interpretation

Interpreting verbal clauses can be illustrated by the processing applied to
the analyser’s structure for “Plexir manufactures P777", which is

(clause

(type del)
(tns present)

(v
(manufacture
make
(@@ agent (n (Plexirl *org)))
(@@ object (n (P777 thing)))))).

The first step of processing is creating an instance of a predicate
corresponding to the verb. The entity created is an instance of the entity
corresponding to the verb sense (i.e. an instance of the entity
'manufacture’), or an instance of a specialization of the entity
corresponding to the verb sense. The second alternative applies to the
present example, the specialized predicate having been found by a task
specific operation (described elsewhere). In both cases, by the associativity
of specialization, the newly created entity, E1 say, is a specialization of the
verb sense taken from the analyser clause representation.

Each case of the clause is now processed, usually in the order in which the
filler of the case appears in the surface text. (*) The case labels are
specialized to the newly created predicate instance, E1, (see below). Thus
'agent’ is specialized to 'supplier/dbentity’ in this case, and the entity
'Plexir’ is asserted to fill the 'supplier/dbentity’ role for E1 by adding a
correspondence assertion to memory. Similarly, 'P777' is asserted to
correspond to the 'part/dbentity’ of E1.

In the example 'Plexir’ and 'P777' are explicit referents for which entities
were assumed to exist in memory, and the subsidiary noun-arg
interpretation operation that is given, for instance, the "noun-arg"” (n
(Plexir *org)), does not do any work. However, the situation appears the
same from the point of view of the clause interpretation operation when the
filler is more complex. Thus for the other types of noun-arg fillers a noun-
arg interpretation operation is evaluated, parametrized by information such
as the specialized role that the noun-arg fills, returning a unique memory

(*) This order is recovered by the system, if possible, by comparing the
output of the analyser against the original surface sentence.

71

entity that the clause interpretation operation can use as a filler. This is
done, as described in Section 4.7 on noun-phrase reference interpretation,
for definite noun phrases, pronouns, and noun phrases referring to newly
mentioned entities and sets of entities. The interpretation of embedded
clauses also results in a memory entity so that the processing can continue
as in the simple case.

b) State clause interpretation

State clause structures are produced by the parser after analysing
adjectival phrases and "be" phrases predicating properties (as opposed to
existence). The analyser structures constructed for these cases are the
same. For example, the structure given below is constructed both for "P777
is red"” and '"The colour of P777 is red”, (and also for "the red P777" in a

sentence containing this noun phrase).

(clause

(type del)
(tns present)

(@@ agent (n (P777 thing)))
(@@
state
(st (n (colour NIL)) (val (red1 kind))))))).

The processing of anaphora, embedded clauses, etc. is handled in a manner
that is transparent to the clause interpretation operation, in the style
described for verbal clause interpretation above. So to explain the state-
clause interpretation operation only a simple example is needed, say "P777
is red”. In the operation the first step is to create a predicate instance
entity, E2 say, in memory. This entity is derived from the "state-arg”

(st (n (colour NIL)) (val (red1 kind)))

which fills the state case of the clause, using a predicate specialization
operation. The value of the state is also taken from the state-arg and is
asserted to fill the specialization of the role 'be/state/value’ for E2. In the
context of the Machines Database the specialization for the example is
‘machine/colour/value’ and the assertion

(Corresponds: redl to E2 as
machine/colour/value to relp/machine/colour)

is created in memory.

72

Similarly, the filler of the 'agent’ case for the clause is asserted to fill the
specialization of the role 'be/state/agent’ for 'ER', and the following

assertion is created

(Corresponds: P777 to E2 as
machine/dbentity to relp/machine/colour).

4.5 Predicate and argument derivation

In the section on predicate clause interpretation above, it was stated that
predicates are derived during the interpretation of verb and state clause
structures. In fact, the predicate entities in memory that correspond to the
predicates for these clauses can be specialized by a task-specific operation,
as is the case when the system is working in the database capture mode. This
happens in a way that is transparent to the interpretation component, so
that different task-specific components could return different predicate
specializations, or a “null” task could simply always return the predicate
entity unspecialized. However, ignoring this, locating generic predicate
entities for these clause types is straightforward. Thus for verb clauses, the
required predicate entity has the same name, e.g. supplyl, as the verb sense
in the clause, and the derivation of the predicate entity is immediate. The
generic predicate entity for a state-clause is derived from the "state-arg”
which fills the "state” case of the clause. Thus the state-arg for "These
machines are blue'’ is

(st (n (colour NIL)) (val (bluel kind)))

and the corresponding generic predicate entity is 'colour/of’. ‘colour/of’ is
found by evaluating a memory retrieval operation that searches for a
specialization of 'be/state’ that has 'colour’ filling its 'be/state/generic’
role. The case labels in the analyser structures for the clauses must be
specialized, if possible, to the arguments of the predicate entities, or to task
specializations of these entities.

In both state and verb clauses, a memory retrieval operation, which can be
described as "role-specialization”, is used. This specializes role entities in
memory to the most specific entities corresponding to them, ie. the
specialized arguments that are owned by the corresponding predicates. This
depends on an assumption that Charniak calls the case-slot identity theory
[Charniak81]. This amounts to saying that the cases which can be identified
from a linguistic analysis of a sentence can be identified with generic slots in

a conceptual memory organized around frames.

73

The names of the generic role entities are derived from the case labels of the
analyser dependency structures. For the verb cases of verb clauses the
generic role entities have the same names as the case labels. For state
clauses the case label ‘'agent’ is mapped onto the role entity
'be/state/agent’ and the case label 'value' is mapped onto 'be/state/value’.
The generic (i.e. less specialized) role entities though less informative, can
still be used to continue processing when they cannot be specialized by the
role specialization operation.

As examples of specialized argument derivation, the case label "agent” in the
analyser representation for 'Plexir manufactures the machine” is mapped
onto the entity 'agent’ which is specialized, via 'makel/agent’ to
'manufacture/agent’, and the same label "agent” in the representation for
“This artifact is fragile” is mapped onto the entity 'be/state/agent’ and then
specialized to the entity 'condition/of /possessor’.

4.6 Be and Have clause interpretation

This section describes the interpretation operations used for handling two
special types of clauses, 'be-clauses” and "have-clauses”. These
interpretation operations are different in type from the predicate clause
interpretation operations described earlier because the clauses are mapped
directly onto memory assertions, rather than memory entities representing
a predicate instance. This is a consequence of the way memory is structured,
i.e. specialization and correspondence assertions are closely connected with
the classification and relationship senses of "be" and ""have” respectively.

a) Be-clause interpretation

This operation handles clauses like "P333 is a computer”, in which "is"”
asserts that an object can be described as fitting a certain type, i.e. generic
concept. This sense of the verb "be” is output as "bel” by the analyser,
instead of '"be2”, which is used for state assertions, (these reflect the use of
nominal and adjectival subject complements respectively). The structure for
"P3383 is a computer” output by the analyser is given below.

74

(clause
(type del)
(tns present)

(@@ agent (n (P333 thing)))
(0@
object
(n (computer thing (@@ det (al one)))))))).

The memory assertion created by the be-clause interpretation is a
specialization assertion. The operation involves finding, or creating, the
entities for the arguments of the specialization assertion corresponding to
the be-clause and then adding this assertion to memory. This is
straightforward for the example clause, and the new memory assertion is

(Specialization: P333 of computer (instance)).

The specific entity, 'P333’, is taken from the 'agent’ case of the clause, and
the generic entity, 'computer’ in this example, is derived from the ‘object’
case. If there is no entity 'P333’ in memory, a new entity is created.

More complex examples require further processing in order to determine the

generic and specific entities. Examples are:

1) This machine is a computer.
2) Wintron is a computer manufacturer.
3) P7780 is a disc-drive that is made by Plexir.

In (1) the noun phrase "This machine” is handled by reference resolution
and an entity is returned and used, in the same way as for definite
references in verb-clause and state-clause interpretation. In (2) the
compound "computer manufacturer” is analysed by the compound noun
interpretation mechanism run in "creation mode” (described later). The
compound noun interpretation creates, or locates, a memory entity that
corresponds to "computer manufacturer”, E17 say, and the new memory

assertion for the clause is

(Specialization: Wintron of E17 (instance)).

For sentence (3) the interpretation of the main clause is straightforward,
but the embedded structure (for "disc-drive made by Plexir") cannot be
handled in the normal way because this would lose the information that the
referent of “disc-drive" in this clause is known to be 'P7780'. Thus before the
embedded clause is handled by evaluating a verb-clause interpretation
operation, 'P7780’ is attached to the noun-arg structure for ""disc-drive”, so

75

precluding normal definite reference resolution, and the embedded
structure is then interpreted as "P7780 is made by Plexir".

b) Have-clause interpretation

As with be-clause interpretation, the interpretation of “have” clauses leads
to the creation of memory assertions, to represent their propositional
content, which in this case are correspondence assertions. An example is the
clause "it has a bolt”, for which the dependency structure is

(clause

(type dcl)
(tns present)

(v
(have8
have
(@@ agent (n (it dummy)))
(@@
object ‘
(n (bolt1 thing (@@ det (al one)))) M)).

The correspondence assertion that is created for this would be (assuming
'P9O980’ is the referent for "it")

(Corresponds: E18 to P9980 as
machine/component to machine)

where E18 is a newly created entity that is asserted to be a specialization of
'‘boltl’. A pair of entities is derived from the ‘agent’ and 'object’ cases of the
clause. A memory operation (described in Section 4.8 below) for finding the
relationship between this pair of memory entities is evaluated in order to
find as specific a relationship as possible that can be used in the
correspondence assertion. Thus this interpretation operation tries to make
the relationship described by the have-clause more explicit before its
propositional content is incorporated in memory. Again, this interpretation
operation can lead to the evaluation of reference and compound noun
operations. An example of this is "The machine supplied by Smith has an
adjustment bolt.”

76

4.7 Noun phrase reference interpretation

As explained in the previous sections, reference resolution is performed as a
subsidiary operation to the clause interpretation operations. The resolution
of definite references made by noun phrases is essential to any text
processing system that seeks to exploit the information conveyed by texts.
This is certainly true of the database capture task, tasks like story
understanding and summarizing, and even tasks that might be able to do
without "in-depth"” understanding, for example translation.

The interpretation operation described in this section resolves the definite
references made by various types of noun phrase by locating a memory
entity, or set of entities, that corresponds to the noun phrase. The noun
phrase types dealt with by the interpretation operations have included
pronouns, definite noun phrases, compound nominals, possessives, and
restrictive adjectival and relative clauses. Examples of these are:

It is made by Marconi.

P7720 comes from there.

These machines are red.

The terminal manufacturer makes P9920.
The cost of Mikota's peripheral is 235.
Smith supplies the blue machine.

Jones supplies the machine that is manufactured by Plexir.

The context mechanism is used to disambiguate possible candidate referents
when the constraints derived from the analyser representation are not
strong enough to identify a referent uniquely. The application of context to
reference resolution occurs after the constraints have been identified by
the reference interpretation operation, in a manner described in detail in
Section 5.3. This section is concerned with how the constraints on referents
are derived and how the output of this process is formulated as a memory

search request.

The main constraints on referents are encoded in the request as markers.
Each of these markers will have been used to mark a set of memory entities
satisfying a constraint, the derivation of constraints will be described later
in this section. The marking involved in this process is either performed
specifically for evaluating a reference interpretation operation, or will have
been performed previously in the case of recorded propagation markers
(Section 3.5).

The memory search request is a request for an intersection search to be
performed using the constraint markers, so that entities satisfying the
constraints can be located. The information in the request other than the
constraint markers is used to control the way the search is performed. In

77

the requests built by reference resolution operations this information
specifies that the initial search should be parametrized by a context
threshold, that the constraints on the search can be weakened if they are
too strong and no memory entities satisfy all of them, and that context
should be used to limit the number of referents to the "number expectation”
(explained below) that is encoded in the request. The request is evaluated, in
the manner described in the section on memory search requests, so that the
result of the request is a memory entity, or set of entities, that satisfies as
many of the constraints as possible, agrees with the number expectation,
and is the best choice with respect to the current context information.

Mellish [Mellish80] uses a reference resolution mechanism which monitors
the set of entities satisfying constraints that are derived from the text,
some of them by inference. These constraints are accumulated until they are
strong enough to identify the referent uniquely. Reference resolution in the
Capture system is similar to Mellish's mechanism as far as the accumulation
of constraints is concerned. It would also be possible to allow the reference
resolution operation to take advantage of further constraints derived from
inferences that are valid in the domain of discourse.

The constraints that can be derived from a sentence are applied immediately
by the reference resolution operation used in Capture, the context
mechanism being used to select between alternative candidates that satisfy
the constraints. For texts in general, and for the example texts processed by
Capture, it is not possible to wait until the accumulated constraints identify
a unique referent because this does not always happen. (This does tend to
happen, however, in the mechanics problem texts processed by Mellish's
system, presumably because in such texts the problem needs to be described
without any possibility of ambiguity.) The focus mechanisms that are used by
Grosz [Grosz77] and Sidner [Sidner79] for definite reference interpretation
are discussed in Chapter 5.

The way the constraints are derived from analyser structures is as follows. If
the head noun sense in the noun phrase is a generic entity in memory, then
a constraint marker is generated from a marker propagation that marks all
specializations (including role specializations) of this entity. For example,
for the phrase "the machine” for which the noun-arg representation
produced by the analyser is

(n (machine thing (@@ det (thel one))))

all entities below the entity ’'machine’ in the specialization and
correspondence hierarchies will be marked by the marker for this
constraint. The constraint marker for pronouns is derived by marking the
specializations of a generic entity in memory that subsumes the entities to

78

which the pronoun can refer. For example, if the head of the noun-arg is "it"
then the marker used for this constraint will be the one that marks all
entities below the entity ‘inanimate’ in the hierarchies. Other special
anaphoric words such as "there” and “then"” are treated similarly. Thus from
the noun-arg (n (therel spread)) in the analysis of "P7720 comes from
there” a constraint marker marking specializations of 'where/ent’ is
included in the search request.

The specialized role entities derived from the case labels of verb and state
clauses (as described in the section on predicate and argument
specialization) also generate a constraint marker. For example, the 'agent’
case in the analysis of “"He supplies the disc-drive” is used, in the context of
the Machines Database, to derive the entity 'supplier/dbentity’. Any entities
that can be described as a 'supplier/dbentity’ are marked by the marker for
this constraint.

Nominal modifiers, such as "terminal” in "The terminal manufacturer” and
possessors such as "“Mikota” in "Mikota's peripheral” are used to derive
another constraint marker. This marker is generated by a relationship
interpretation operation (evaluated in reference mode as described in
Section 4.8). Relative have-clauses, for instance the relative clause in "The
machine that has the bolt”, and also noun phrases such as “The machine
with the bolt”, are treated in the same way as possessives, so that
relationship interpretation can be used to generate a constraint based on a
more specific relationship than that suggested by "has" and "with".

Predicative restrictive relative clauses are used to generate a constraint
marker. This is the case for the relative clauses in "The machine that is
manufactured by Plexir”, and "“The machine that is blue”. In the first of
these examples the constraint marker marks the arguments of
specializations of the entity 'manufacture’ that have the
'manufacture/agent’ role filled with 'Plexir’. For the second example, the
entities marked are arguments of specializations of the derived predicate
‘colour/of’ that have the 'colour/of/colour’ role filled with 'bluel’. Since the
analyser representation for "the blue machine” is the same as for the
second example "that is blue”, the predicate constraint marker generated is
the same for both the adjectival noun phrase and the relative clause
examples.

Finally the “number expectation” for the referent (set) is derived fror: the
noun phrase representation and included in the search request. This can be
either an integer, or "many” i.e. an unknown number greater than one. The
number expectation is "“1" for singular noun phrases and "many" for plural
noun phrases, for instance “the IBM machines”, that do not indicate the
exact number of referents to be expected. This additional information is

79

available when the determiner is "both” as in "both machines” in which case
the number expectation is ""2"; or from number words, which are treated as
adjectives, as in “the three machines”, giving "3".

Details of the application of context information for reference resolution
and the algorithm for plural reference are given in the chapter on context.

4.8 Relationship interpretation

Of the types of interpretation operation that are subsidiary to clause
interpretation, it remains to describe ‘relationship interpretation”.
Relationship interpretation operations are used to derive explicit
relationships from language constructs in which relationships are implicit or
vague. These types of language construct include compound noun phrases,
possessive noun phrases, prepositional phrases using "with", and "have”
clauses. The interpretation of relationships is done in two different modes,
which will be called "reference” mode and "creation” mode respectively.
These two modes, roughly speaking, reflect the given/new distinction. In
"oreation” mode evaluation can lead to the creation of new memory
structures, whereas the results of evaluation in "reference” mode can be
used for memory searches e.g. for reference resolution.

There has been less work on relationship interpretation as compared with,
say, reference resolution. However, the problem of determining implicit or
vague relationships was addressed in natural language work at SRI (where it
is classified under "basic pragmatic functions” [Grosz81]), and more
recently by Steinacker and Trost [Steinacker83]. Compound noun analysis
(see e.g. [Sparck JonesB83a] for a discussion of the difficulties involved), is
treated in the Capture system as a special case of relationship
interpretation. Processes for the interpretation of compound nouns have
been investigated by McDonald [McDonald82]. The approaches adopted in
these projects all depend on the use of a conceptual memory, or knowledge
base, the relationships identified being chosen from among those
represented in memory. In particular, McDonald uses the NETL knowledge
representation language and marker processing for implementing his
compound noun interpreter. The algorithm used in Capture for relationship
interpretation is similar to the basic algorithm used by McDonald. McDonald
augments his basic algorithm with heuristics for selecting between possible
interpretations, a function which can be performed, in the interpretation
framework used by Capture, by the context mechanism (see Section 5.3).

The results of relationship interpretation operations are memory
correspondence assertions or memory entities taking part in inherited

80

correspondences. Relationship interpretation makes use of a number of
memory retrieval operations for locating the relevant correspondence
assertions. There are three basic memory retrieval operations for

relationship interpretation:

Op-1. Find a specialization of entity A that is the owner in a correspondence
assertion (or inherited correspondence) in which entity B is (or can fill) the

role.

Op-2. Find a specialization of entity A that is the role in a correspondence
assertion (or inherited correspondence) in which entity B is (or can be) the

owner.

Op-3. Find a specialization of entity A that is the role in a correspondence
assertion in which entity C is the owner, where C is also the owner in a
correspondence assertion in which the role is a specialization of B.

Each of these three retrieval operations will in general return more than one
result. Variants on these operations reflect how context is used, whether
only most specialized entities are to be accepted, and whether the results
from the three different types are to be combined (or compared).

Because of the use of these operations in compound noun analysis, the
arguments that were called "A"” and "B" above will be referred to as the
"head” and the "modifier” respectively. These head-modifier pairs are
recognised in analyser representations as follows.

a) Possessives. The analysis for a possessive noun phrase such as "P777's

manufacturer” is

(n (manufacturer man (@@ poss-by (n (P777 thing)))))

where 'manufacturer’ is the head and 'P777’ is the modifier.

b) Attribute modifier. The analysis of a prepositional phrase using "with", for
instance '"the machine with the bolt" is

(n
(machine
thing
(@@
attribute
(n (bolt1 thing (@@ det (thel one)))))
(@@ det (thel one)))).

Here 'machine’ is the head and 'bolt1’ is the modifier.

81

c) Nominal modifier. Simple noun-noun modification is represented in
analyser structures which do not postulate any relationship that might hold
between them. For instance the structure for "the computer manufacturer"

is

(n
(manufacturer
man
(@@ det (thel one))

(## nmod (((n (computer thing))))))).

d) Ambiguous nominal modifier. Since the analyser does not do any (non-
syntactic) analysis of noun-noun compounds, regarding nominal modifiers
simply as a list attached to the head, it is not possible for it to select among
possible noun senses corresponding to the surface noun modifiers. The
analyser representation contains a list of the noun senses for the ambiguous
modifier. For example the structure for "The terminal manufacturer” is

(n
(manufacturer
man
(@@ det (thel one))

(#4#

nmod
(({n (terminall thing))
(n (terminal? spread))))))).

One of 'terminall’ and ‘terminal?’ is selected as the modifier (Section 4.9),

'manufacturerl’ being the head.

When interpreting all these structures in "creation” mode, the result of the
relationship interpretation operation is a single (newly created) memory
entity. The result of relationship interpretation for a modifier-head pair in
"reference” mode is a set of specializations of the head.

A procedure is needed for dealing, in “creation” mode, with situations where
there is more than one modifier on a noun. These may be different types of
modifier (in the general sense of "modifier” adopted here) as well as multiple
nominal modifiers. The algorithm that was implemented repeatedly applied
the operation for creating a new entity from a modifier-head pair so that the
result of each application was used as the "head” in the following
application. However, the problem of determining the order in which this
should be done was not solved satisfactorily, even though a first

82

approximation to this was tried. (*) This problem also arises in the case of
multiple nominal modifiers in 'reference” mode. But interpretation of
"possessive”, "attribute”, and "nominal” modifiers happens independently in
nreference” mode. Each of these modifiers, if present, is combined directly
with the head of the noun phrase to produce a set of specializations of the
head that are then used for reference resolution.

The rest of this section will give some examples of relationship
interpretation for simple modifier-head pairs, first in “creation” mode and

then in '"reference’” mode.

a) creation mode

The interpretation in “creation” mode of "computer manufacturer”, taken
from the sentence "Plexir is a computer manufacturer”, say, proceeds as
follows. A retrieval operation, Op-1 above, when used in relationship
interpretation, locates the relationship represented by the correspondence

assertion

(Corresponds: manufacturer/goods to manufacturer as
organisation/obj to organisation)

because it is possible for 'computer’ to fill the 'manufacturer/goods’ role of
'manufacturer’. Two new memory entities, E1 and E2 say, are created and
then the following memory assertions are made

(Specialization: E1 of manufacturer)
(Specialization: E2 of computer)
(Corresponds: E2 to E1 as

manufacturer/goods to manufacturer).

The entity E1 representing the concept 'computer manufacturer” is
returned as the result of the interpretation operation.

Other actions might have occurred if the contents of memory had been
different. For example, if the original correspondence assertion was not
present, but instead, the following correspondence assertion was present
and located by retrieval operation Op-2

(Corresponds: machine/manufacturer to machine as
goods/manufacturer to manufactured/goods),

(*) The algorithm proposed by Marcus [Marcus80] for determining the
structure of compounds is promising for solving this problem since it is well
suited to the approach to relationship interpretation being described here,
which would play the role of his assumed semantic function.

83

then a new memory entity, E3 say, and the following memory assertions

would be created.

(Corresponds: E3 to computer as
machine/manufacturer to machine)

E3 would be the result of the interpretation operation in this case. The
retrieval operation Op-3 is not used in "creation” mode, and so if neither Op-
1 or Op-2 had suggested any possibilities then the result of the operation
would be just the entity 'manufacturer’ i.e. the head. If Op-1 suggests one or
more entities that could be owned by the head and at the same time Op-2
suggests one or more entities that could be filled by the head, then all of
these entities are compared by the context mechanism, which selects one of
them. The actions taken after this depend on whether Op-1 or Op-2
suggested the entity, and follow the pattern illustrated by the "computer

manufacturer' example,

Finally, we consider an example of relationship interpretation in "creation”
mode that is used to handle a "with"” prepositional phrase. When interpreting
the noun-arg representing ""a pot with a lid”, 'pot’ and 'lid’ are the head and
modifier respectively. Op-1 locates the memory correspondence assertion

(Corresponds: coverl to containerl as part2 to whole).

This is located because 'lid1’' is a specialization of ‘coverl’ and 'potl’ is a
specialization of ’containerl’. Two new memory entities, E4 and E5 say, are
then created together with the memory assertions

(Specialization: E4 of potl)
(Specialization: E5 of 1id1)
(Corresponds: E5 to E4 as coverl to containerl).

E4 is the memory entity that is the result of the interpretation operation i.e.
stands for the concept "a pot with a lid".

b) reference mode

Relationship interpretation in "reference” mode is a search operation that
does not involve the creation of new structures in memory. The three basic
operations Op-1, Op-2, and Op-3 are applied, each of which returns a
(possibly empty) set of specializations of the head of the pair. The union of
these sets is returned as the result of the operation, unless all the sets are
empty in which case the head itself is returned as the result. If the set of
candidate specializations of the head is non-empty, then the reference
resolution operation that initiated the relationship interpretation will mark
the entities in this set with a marker that is used along with the other

84

constraint markers in the reference resolution process. In other words, the
relationship interpretation operation can be thought of as a request to
search for specializations of the head that embody the constraint indicated

by the modifier.

An example is the interpretation of "the Mikota peripheral” given that the
following sentences have already occurred in the text being processed.

Plexir makes P7770 which is a disc-drive.

P9900 is a disc-drive that is made by Mikota.

P9000 is a computer that is manufactured by Mikota.

Mikota manufactures P8200.

P9200 is a printer.
For "the Mikota peripheral”, the basic operation Op-3 searches for
specializations of 'peripheral’ that are the role in a correspondence
assertion in which C is the owner, where C is any entity that is also the owner
in a correspondence assertion in which ‘'Mikota’ is the role. The
correspondence assertions located by Op-3 in this case would have predicate
instances that are specialization of 'makel’ or 'manufacture’ as their
owners. The specializations of the head returned by Op-3 in this case are
'P9900’ and 'P9200°. Similarly, the entities returned after interpreting "the
peripheral manufacturers” would be 'Plexir’ and 'Mikota’.

The interpretation of the possessive structure "Mikota’s peripheral” would
proceed in exactly the same way as that of its noun-noun compound
equivalent illustrated above, again returning 'P9900’ and 'P9200’ as the
possible specializations for the head.

An example that uses Op-1 is the relationship interpretation for "the
machine with the bolt” in the context of a previous sentence such as "Plexir
manufactures P7200 which has a bolt”. The sentence providing the context
would have led to the creation of an instance of 'boltl’, 'E19' say, and the

correspondence assertion

(Corresponds: E19 to P7200 as machine/component to machine).

Op-1 searches for specializations of 'machine’ which are in the owner
position in which specializations of 'boltl’ are in the role position. This
locates the correspondence assertion just mentioned and returns 'P7200' as
a candidate specialization for 'machine’.

4.9 Disambiguation operations

The interpretation operations described so far assume that a single analyser
structure has been selected for the sentence being processed. As explained

85

earlier in this chapter the analyser outputs alternative structures reflecting
‘ambiguities that it cannot deal with. The disambiguation operations of the
interpretation component that choose between these alternatives are

described in this section.

The alternative structures produced by the analyser are usually whole
sentence readings. An exception to this, in which alternative substructures
are indicated within a sentence representation, are alternative modifier
structures for compound nouns. The analyser produces such alternatives
either because they correspond to valid alternative analyses at the sentence
level, or because the analyser does not have access to the (domain)
knowledge that could be used for disambiguation. The operations described
in this section handle three types of ambiguity exhibited in the output of the
analyser; first, choosing between alternative analyses of a sentence that
reflect word sense ambiguity; second, choosing between alternative senses
for modifiers in nominal compounds; and third, choosing between alternative
analyses of a sentence with different case relationship structures. These
disambiguation operations depend on the context mechanism, and their
main action is to derive the alternatives they are meant to handle explicitly
and present them in a form that allows the context mechanism to choose
between them.

If two or more of the three types of ambiguity just mentioned occur in the
analyser output for a sentence, then these are handled in the following
order. The analyses are partitioned into groups that have the same word
senses (ignoring for the moment multiple senses of modifiers in compound
nouns). One of the groups is then selected using the sense disambiguation
operation. The case structure disambiguation operation is then applied to
this group of analyses to select one of them. The selected analysis is then
interpreted by one of the clause interpretation operations, and this leads to
noun modifier sense selection when ambiguous modifiers are encountered
during the interpretation of the analysis. Descriptions of the three

disambiguation operations and some examples are now given.

The word sense selection operation described below subsumes the
association based technique described by Philip Hayes [Hayes77b]. This is
because the context information on which disambiguation depends in
Capture combines the type of memory association information used by
Hayes with other types of context information as described in Chapter 5.

1) Analysis selection based on word senses

The combinations of word senses present in each of the candidate analyses
are extracted. For example, the combinations for the two analyses of "The

86

printer is green” are (be2 green? printer1) and (be? greenl printerR), which
may be paraphrased as "The man who prints is a novice" and "The colour of
the printing machine is green" respectively. A score is calculated for each of
the combinations. This score comes from the context activation for the
senses (as provided by the context mechanism) with an additional bias
weight for senses that do have memory entities. The bias is introduced so
that senses with memory entities associated with them are preferred over
those that do not, even when there is no context information attached to the
memory entities. The result of the operation is simply the analysis (or set of
analyses) for which the sense combination has the highest score. If more
than one of the combinations share the highest score, then one of these
would be chosen at random.

2) Selection of noun modifier senses

As mentioned above, the analyser does not produce alternative sentence
analyses for readings with different possibilities for the senses of noun
modifiers in compound noun phrases. Instead, the alternatives are
presented as a substructure of a single sentence representation (see
[Tait83]). This substructure only indicates the order in which nominal
modifiers occurred in the surface sentence and a list of noun senses for
each of them. This is because the analyser does not have available to it the
knowledge needed to determine the structure and meaning of noun-noun
compounds. An example is listing the two senses of "terminal” in the
structure for "The terminal manufacturer” (which was given earlier in the
previous section). The modifier sense disambiguation operation simply
selects, from the list of senses for each modifier, the sense that has the
highest context activation as provided by the context mechanism. The
selected sense is then used by a relationship interpretation operation. An
alternative strategy would be to use relationship interpretation to propose
possible interpretations starting with the different senses and then select
among these on the basis of context activation, but it is not clear whether
this more complex strategy would work better.

3) Selection of analyses on the basis of case structures

An example of a sentence for which the analyser produces more than one
case structure is "P4740 is manufactured by P5050's manufacturer in
London'. In one of these structures the prepositional phrase "in London" is
attached to the verb by the case label 'location’. In the other analysis the
prepositional phrase is attached to the noun "manufacturer” again using the
label 'location’. The disambiguation operation works by deriving from each
analysis structure a set of entities representing specializations of the case

87

labels present in the structure. This set of entities will consist of
'manufacture/agent’ 'manufacture/obj’, and ’'manufacture/loc’, for the
analysis in which the prepositional phrase is attached to the verb and the
set of entities derived from the other analysis consists of
'manufacture/agent’, 'manufacture/obj’ and ’'location’. As with the word
sense disambiguation operation, a score is calculated for each of the entity
sets and the analysis for which the entity set has the highest score is chosen
as the result of the disambiguation operation. The score is based on the sum
of the context activations of the entities in the set, together with a bias
towards more specialized entities over less specialized ones. In the example
given it is this bias that leads to the choice of the structure with the
prepositional phrase attached to the verb, because 'manufacture/loc’ is
more specialized than 'location’. However, in situations where all the case
relations have been specialized, the choice of structure depends solely on
the context activations of the memory entities to which the case labels were

specialized.

4.10 Discussion of coverage

The implemented interpretation operations described in this chapter clearly
only handle a small subset of English construction types. It is possible to
extend the coverage of the system to other, less common constructions,
both by making the implemented operations more sophisticated and by
including new interpretation operations. Some suggestions along these lines
will be made below. However this still leaves a number of quite important
language phenomena, representing a wide range of constructions, that
cannot be handled by the framework for parsing and interpretation used in
the Capture project. Some of these phenomena will be discussed under the
heading of "problems’ at the end of this section.

a) extensions

The possible extensions of coverage within the framework adopted in
Capture include the following.

-- The handling of some adjectival phrases should make use of relationship
interpretation (Section 4.8). An example is "the lidded pot"” for which
relationship interpretation should proceed as it does for "the pot with the
lid".

-- There are a number of constructions for which specialization assertions
should be created in a way similar to their creation during the

88

interpretation of be-clauses. Examples are "P300 is a fine example of shell
currency”, and "These artifacts were used as currency in the Massim area”.

-- During the interpretation of be-clauses it could be checked whether a
relationship (rather than the normal type inclusion) was intended. An
example is the second sentence in "The collection includes a number of
heads from the Pacific. The Daui heads are human". (*)

-- Reference to objects that have not been mentioned explicitly, but which
only implicitly exist in the descriptions of instance entities in memory. For
example the "ornaments” in "This canoe and its ornaments were collected in
Daui”. The memory representation is well suited to implementing reference
resolution of this type.

-- The interpretation of noun phrases could be extended to allow reference
resolution to cover generic entities. An example of a noun phrase for which
reference resolution should return a generic entity is “the dodo” in "The
dodo is extinct”. Again, the memory representation used in Capture is
suitable here, but the circumstances under which reference to generic
entities is applicable is still a matter of controversy among linguists and

philosophers.

-- Creation of instances of entities of known type, and their identification
with named objects when the name is given as new information. A simple
example of this is "Haddon collected a jug from Daui. This is P259".

-- A case of compound noun phrase interpretation that could be handled is
when the compound introduces a new object as well as conveying
information about it. An example is “"the canoe paddle P790" in the sentence
"The canoe paddle P790 was collected by Nilfisk".

-- Definite noun phrases with "“other” could be handled as another case of
reference resclution. The choice of entity satisfying the reference
constraints could be the "second best” candidate, as determined by context,
or a candidate closely associated with the "best candidate”. An example is
“The other spear comes from Woodlark".

b) problems

(*) Such examples can be thought of as ellipsis, but the analyser would not
recognise them as such, the analyser indeed does not handle ellipsis at all,
and other forms of ellipsis are problems for Capture: see below.

89

Turning now to limitations on the coverage of constructions that could be
handled by developing the interpretation operations of the Capture system,
there are at least the following three categories of problem phenomena. The
phenomena in category (1) are judged to be easier to deal with than those in
category (2), which are in turn considered more tractable than those in
category (3). The problems in category (1) are a consequence of the current
state of the analyser; it is difficult to see exactly how the work involved in
solving them would be partitioned between a better analyser and an
extended interpretation component. (2) and (8) are clearly problems for
Capture regardless of the quality of the analyser.

(1) Problems due to the incomplete coverage of grammatical constructions
by the analyser. In this category we have sentences with conjunctions
(except for simple noun phrase conjunctions); sentences for which
punctuation determines the parse; certain types of elliptical sentences;
sentences that can only be analysed with the help of a phrasal lexicon; and
sentences in which relationships are determined by the surface word order.
Examples are

"Plexir manufactures and supplies P2000"

"Haddon collected the spear and the jug from Keroka"

"Haddon collected the spear, and the jug from Keroka"

"So does Mikota"

"Haddon tried to pull the wool over their eyes”

"Clark and Nilfisk travelled to Daui in that order”

"P300 is a shell necklace in good condition”.

(2) There are a number of phenomena that can only be handled by complex
(but probably feasible) extensions to the memory representation and
interpretation mechanisms. These include negation, constructions conveying
temporal information, and conditional constructions. Examples are

"Smith does not supply this machine”

"The artifact must have come from Daui unless he

visited Keroka before 1890".

(3) Phenomena that would require new mechanisms to be incorporated in
addition to those forming the framework on which the Capture system is
based. These include modality, simile, and metaphor. For example

"The artifact probably comes from Woodlark but

could be from Keroka"

“The spear head is like a razor”.

In addition to the types of construction listed in this section, there are
constructions that cannot be handled by the database capture component
because they present difficulties for the process of translation into database
statements, given, in particular, the rather restricted data modelling

90

capabilities of current relational databases. These will be discussed in
Chapter 6.

In conclusion of this section, and of the chapter as a whole, 1 should
emphasize the underlying reason for the choice of the types of construction
handled by the interpretation component. The types chosen cover common
constructions that occur frequently. The aim was to demonstrate that a
significant number of common interpretation problems can be handled in a
coherent framework by the exploitation of the memory and context
mechanisms provided. It appears that these mechanisms can support an
interpretation component with a good complexity/performance ratio; this
ratio being important for the technological methodology adopted in this
project. The interpretation operations that were described often use the
context mechanism as an "oracle” for selecting between memory entities;
this mechanism is the subject of the next chapter.

91

Chapter 5

Context Mechanism

This chapter discusses the context mechanism used by the Capture system.
The representation, application, and management of context by the
mechanism are described in sections 5.2, 5.3, and 5.4 respectively. There are
also sections discussing some implications of the mechanism and its
applicability to other areas of text processing. Section 5.1 gives general
motivation for the design of the context mechanism; more detailed
comparisons with existing Al mechanisms for context are given in Section
5.8.

5.1 Use of context in text processing

A broad definition of the context with respect to which a fragment of text is
interpreted is that it is the knowledge the system has of the state of the
world, with further information saying which parts, or views, of this
knowledge take precedence at a given point, or for a particular text. In the
work reported here "context” is used to refer only to the additional
“precedence” information, and the context mechanism is concerned with the
way that this information is accumulated and used during text processing.
The knowledge that the system has of the world is stored in "memory"; this
knowledge includes the knowledge resulting from the interpretation of the
earlier part of the text. Thus while the broad definition of context includes
the contents of memory, context in the more restricted sense used here is
limited to information about how, at any point in processing, the existing
contents of memory take part in the interpretation of the incoming text.

Context information is needed to handle a key problem in interpretation:
given the potentially very large size of the system's knowledge base, the
problem is how should the system choose the right fragments of knowledge
so as to restrict the possible interpretations, inferences, and searches that
are part of its responses to language constructs.

The information for specifying which fragments of knowledge take
precedence has been encoded in different ways in various Al approaches to
context. Thus a number of systems have approached the restriction problem
by organizing the knowledge base into sections, often called "frames"
[Charniak78], so that when one of these sections has been activated the

92

retrieval and inference operations are confined to the knowledge
represented in that selected section. This approach is taken further when
the structure once activated, guides the interpretation of the text, the
interpretation being viewed as a process of instantiating predictions made
by the structure (see e.g. [DeJong79]). This active direction of text
interpretation is most naturally associated with the action or event
sequence structures commonly referred to as "scripts”, but it should be
noted that when more static (i.e. non-action) structures are used they can
still exert a quite powerful influence on the interpretation process, by the
tacit assumption that the input text is supplying fillers for the slots in the

structure. (*)

Two problems that are associated with approaches based on frames and
scripts are firstly that the correct frames or scripts are difficult to select
("the frame activation problem”), and secondly, that the rigidity of the
structures, especially scripts, means that systems based on this approach
can only handle texts that fit the predetermined structure. Work at Yale on
Memory Organisation Packets (MOPs) is a partly successful attempt to solve
the problem of script rigidity. MOPs are defined by Schank as follows
([Schank82b] p. 97): "A MOP consists of a set of scenes directed towards the
achievement of a goal. A MOP always has one major scene whose goal is the
essence or purpose of the events organized by the MOP." The knowledge from
many MOPS can be drawn on to construct a single script for the text being
processed, so that the knowledge used for interpreting the text is less rigid,
and so that the problem of having the same information represented in
many scripts is avoided.

As discussed in the chapter on memory processing, Fahlman [Fahlman79]
has advocated the use of parallel hardware as an alternative solution to
enabling deductive memory retrieval operations to be performed on a large
knowledge base. Thus, instead of restricting the retrieval process to
information in a frame corresponding to the current context, the whole of
the knowledge base is operated on in a well specified parallel manner (see
[Charniak82] for discussion).

This parallel approach shifts the main use of context from constraining the
scope of knowledge structures that retrieval operations use to choosing
between alternative results for these operations when they do not produce a
unique result. But this second mode of context application is also likely to be
needed to supplement the first if the knowledge structures used for context
selection are looser than those of early script systems, as they are when

(*) The term “script” has been used for various types of structures that
guide text processing, but I will use it in the more common action-sequence
sense adopted originally at Yale, see e.g. [Schank75].

93

MOPS are used (see [Lehnert83]). This is because loosening the rigid
expectations makes it more likely that alternative expectations are derived,
from different active MOPS, say. (As far as I can tell not much attention has
been devoted to the full consequences of this problem by protagonists of
MOPS and related structures.)

The use of context to disambiguate between alternative results of memory
operations can be thought of in terms of the current "focus"”. Focus is
related to the notion of context used here in that while context gives
information about the relevance of knowledge, focus specifies the entity (or
the group of entities) that is currently most relevant. In other words focus is

a derived notion that is determined by the current context information. (The
relationship between focus and Capture's representation of context
information will be discussed more precisely later.) Because of this, selecting
memory entities on the basis of context information can often be thought of
as choosing between them on the basis of how close they are to the focus of
the discourse. Also, returning to the issue of the application of context for
enhancing efficiency, the notion of focus can play a role because the
searches for the results of memory operations can begin with the items that

are in focus (see [Grosz77]).

Interpreting, for Capture, the view of context discussed in general above
amounts to the following. In the Capture system, the knowledge base,
including the results of earlier interpretation, are represented in memory
and made use of via memory operations. For the purpose of general text
processing, i.e. excluding task specific processing, the use of context
information amounts to restricting the processing and results of the
language interpretation memory operations that were discussed in the
previous chapter. Before the details of the Capture context mechanism are
given, two preliminary points should be made. First, as remarked in the
chapter on interpretation, the structures created in memory as a result of
processing (part of) a text do not include a representation of the structure
of the text of the type imposed by "text grammarians"”. However, some
information about the structure of the text does get encoded as context
information (in particular, as "recency of mention” factors that effectively
make available some information about the order of the original text).
Second, another aspect of context required for general text processing is
syntactic context, especially of the preceding sentence. It may be argued
that this does not fit in with viewing context as “that which restricts memory
operations”. However, if knowledge of syntactic structures, and the building
of instances of these occurs in memory, as it does for the RUS system
[Bobrow80] for example, then it might be possible to subsume syntactic
parallelism within this characterisation of context. No attempt has been
made to model this aspect of the context required for text processing in the
present version of the system, and indeed, as mentioned already, the

94

analyser processes each sentence independently from preceding ones.

Returning to Capture, the way in which context is applied to restrict the
results and processing of memory operations depends on the notion of
"context activation” for memory entities. At any given time during the
processing of a text, a context activation for each entity in memory can be
derived from the context information available at that point in processing.
The context activation of an entity is a numerical value that is calculated
from the current context in a manner explained in Section 5.2 below.
Context activation is used in the Capture implementation to influence
memory processing in the following two ways. First, the choice between
possible alternative memory entities (e.g. referents), or sets of memory
entities (e.g. word sense combinations), is done on the basis of comparing
numerical context activation values. Second, context activation can be used
to restrict memory processing if the searches implementing memory
operations are restricted to entities with context activations higher than a
specified threshold. The context mechanism is concerned with providing the
ability to accumulate, represent, and manage context information of various
sorts, derived from various sources, so that it can be applied in terms of

context activation.

Context information is accumulated and modified gradually using the
mechanism in a way which leads to gradual change of the context activations
of memory entities. This gradual change of the context information
represented results in a gradual shift of focus during the processing of a
text because we can think of the focus-space [Grosz77] within this
framework to be the set of memory entities, at any given time during
processing, that have context activations that are higher than some
predefined threshold. Further remarks comparing the context mechanism
with Grosz's use of focus will be given in Section 5.6. However, the context
mechanism does not boil down to a mechanism for maintaining a focus space
during reading since context activation is also used as the basis for

discriminating between entities that lie outside the focus-space.

The next section, on context representation, will describe how various
factors contributing to context are represented so that they can be
combined to derive the context activation of memory entities. The section
after that explains how context is applied for solving text processing
problems. The section on management of context factors describes how
context information is accumulated gradually during the reading of the text.

95

5.2 Representation of context information

Context information is represented, at any given time during processing, by
a collection of context factors. Each context factor contributes to the

context activation of a particular set of memory entities. This set of entities
is the scope of the context factor.

There are various types of context factor, each of the context factors
present being an instance of one of these types. The type of a context factor
determines the way that the factor is managed, as discussed later. The
different types of context factor that have been used and the specification

of their scopes are given later in this section.

Apart from its scope, a context factor (i.e. an instance of a context factor
type) has associated with it a significance weight. When a factor is created, it
is given an initial significance weight that depends on its type. Subsequently,
as the processing of a text continues, the weight of a factor is degraded,
often by gradual decay, in a way that also depends on the type of the factor.
The details of the management of the significance weights of the
implemented types of factor are given in Section 5.4.

We can now give a precise definition to the notion of context activation that
was mentioned in the previous section. The context activation of a memory

entity is the sum of the current significance weights of the context factors
within the scope of which the entity lies. Thus at any point in processing, the
relative importance of each entity is determined by the context factors that
contribute to its activation score.

At the implementation level, for each context factor there is a marker that
marks all the entities in its scope. The marker for a context factor is
indexed, for search purposes, in the manner described in the chapter on
memory processing (Section 3.5). The numerical significance weight of the
context factor is attached (as a LISP property) to its marker symbol. This
means that the significance weight of a context factor can be altered
without accessing the entities in its scope. The context activation of a
memory entity is calculated, at any given time, by examining the marks that
are attached to it and summing the significance weights attached to the

marker symbols.

The types of context factor currently implemented for the Capture system
fall naturally into seven major types, some of which include more than one
(sub)type. The classification into major types groups together types of
factor that are similarly motivated, but is not part of the context mechanism
as such. The seven major types and the ways that the scopes of the various
types are determined is as follows.

96

1) Recency

There are three types of recency of mention context factor. These are the
sentence factor type, the paragraph factor type and the text factor type.
The scope of a sentence factor includes any entities that are mentioned
explicitly in a sentence, or implicitly referred to by anaphoric expressions in
that sentence. The scope also includes any other memory entities that are
created as a result of interpreting the sentence. For example, assuming that
the referent for "the machine” is 'P7700' in the sentence "Marconi
manufactures the machine that is supplied by Smith",then the scope of the
sentence factor would be 'Marconi’, 'P7700’, 'Smith’, and 'E1’; where 'El’ is a
specialization of the predicate 'manufacture’ that is created during the
interpretation of the sentence. These entities will also be included in the
scope of a paragraph context factor for the paragraph including the
particular sentence. The scope of the paragraph factor is all the entities
referred to in the paragraph or created as a result of interpreting the
paragraph. Finally, for each text processed, there is a single text factor
whose scope consists of the entities mentioned in or created by the whole of
the text.

2) Emphasis

The scope of an emphasis context factor is a single memory entity. Such
entities are referents for noun phrases in sentences with a structure widely
regarded as foregrounding the referent. (Compare e.g. with Sidner's
syntactic marking [Sidner79]). Two types of emphasis factor were
implemented in Capture. "Syntactic-topic emphasis” factors foreground
topics of sentences in the passive voice, for example the referent of
"machine” in "The machine is supplied by Smith"”. "Be-clause emphasis"
factors foreground the agents of certain be-clauses, for example "Plexir” in
"Plexir is a manufacturer”.

3) Processing-history

These context factors increase the context activation of entities that take
part in memory processing. In other words a trace of memory processing is
used as a context factor because it is considered that a side-effect of a
memory entity’s involvement in processing should be that the entity is
foregrounded. Fortunately, in the framework of marker processing, and
given the way that context is represented in Capture, encoding traces of
memory processing as context information is straightforward. In fact, a
processing history factor has as its scope all of the memory entities that
were marked by a marker propagation in memory. No new marker symbol is

97

generated to specify the scope of this factor since the marker used in the
propagation can serve this purpose. For example, if during memory
processing a propagation for marking the entities above 'P6000' in the
specialization hierarchy is performed, then the scope of the corresponding
context factor might include, for example, ’'disc-drive’, 'peripheral’,
'machine/dbentity’, 'machine’, and 'inanimate’.

4) Deixis

The scope of a deixis context factor is the set of memory entities for which
the sum of significance weights from recency of mention context factors is
higher than a preset system constant. Thus the entities in the scope of such
a factor will have their context activations increased if they have been
mentioned frequently and recently enough in the preceding text. (*) The
behaviour of a deixis factor depends, in part, on that of other factors; this is
also true of association and subject-area factors (see below).

5) Subject-area

The subject area (or topic) type of context factor is designed to increase the
context activation of entities in memory that are considered to be related to
a particular subject area (in the sense of discourse topic). In fact, the scope
of such a context factor is the set of entities in memory that are related to
(i.e. take part in some of the same memory assertions as) a specified set of
entities that are taken a priori to represent concepts that are central to the
topic. For example, this set of "core” concepts for the "data processing
manufacturers and suppliers” topic (corresponding to the enterprise that
the Machines Database is concerned with) is taken to include the entities
'machine’, 'supplyl’, and 'manufacturer’. The entities in the scope of a
context factor for this topic might include ’'machine/component’,
'supplies/agent’, and 'Mikotal’. The information stating that certain entities
are central to a topic is itself represented by memory assertions.

8) Association

The purpose of associa’ion context factors is to increase the context
activation of entities in memory that are closely associated with entities
that are currently in focus (cf. Grosz's use of "implicit focus” [Grosz77] and
Sidner [Sidner79)). For this purpose an entity is closely associated with an

(*) This type of textual deixis is different from spatial and temporal deixis
factor types which are not currently handled by the system.

98

entity in focus if it is above the foregrounded entity in the specialization or
correspondence hierarchies, or if they both take part in a correspondence
assertion in memory. There are two types of association factor, primary
association factors and secondary association factors. The scope of a
primary association context factor is the set of all entities that are close, in
the above sense, to any entities that have context activations that are
higher than a certain preset constant. The scope of a secondary association
factor is all the entities associated with the entities in a particular primary

association factor.

7) Task

There is only one type of task-specific context factor in the current system.
The scope of such a factor is the set of memory entities describing a
particular database relation (Section 2.8). This type of context factor is
primarily relevant to the evaluation of some task-specific operations such as
the extraction of the names of relational columns, rather than to language
interpretation operations, although it can affect these latter operations
indirectly. An example of a task specific factor would have as its scope the
roles of the entity 'supplies/relp’, and the roles of these roles etc. The
entities 'SMC/MCNUM’, 'SMC/SID', and 'SUPPLIES/RELATION’ would be
included in the scope of this factor.

Apart from the task-specific factor type, I believe that the types of factor
listed above are all necessary for processing ''static” descriptive texts, e.g.
texts describing objects. Some other types, that could be similarly encoded,
will be mentioned later when the utility of the context mechanism for
processing different kinds of texts is discussed. Intuitively, however, it would
seem that the types of factor used by the system could play a role in
processing most other types of connected texts, e.g. stories, as well as simple
descriptive ones.

The "context factor”, encoded as a marked set and a significance weight, is
used as a uniform representation for the different aspects of context listed
above. The advantages of this uniform representation for the application
and management of context information will become apparent in the
discussions of application and management in Sections 6.3 and 5.4 which
follow.

99

5.3 Context application

There are two kinds of ways in which context information is applied in the
system. These are '"choice applications" and "threshold applications”. In
choice applications context activation is used to select between memory
entities or sets of memory entities. This is required (or at least has been
used in Capture for) reference resolution, word sense selection, database
name retrieval, and also, in a limited way, for some other operations. In
threshold applications a context activation threshold is used to define a
focus space. This is used to restrict reference resolution searches, to decide
on the referents of plural noun phrases, and to create association context

factors.

In choice applications, context information is applied at points at which the
system does not have enough specific information to select between
competing entities (or lacks more powerful mechanisms than Capture’s, e.g.
for inference, for extracting more from the available information). In
threshold applications, context information is used to locate the memory
entities that are currently most relevant, for such purposes as restricting
search processing. The way in which entities satisfying a threshold condition

are accessed was described in Section 3.5.

The application of context to specific problems will now be described. These
applications may involve either or both of choice and threshold applications
of context activation derived from any combination of factors, and the
descriptions will be given in terms of these derived activation values.
Appendix B gives some examples of the effect of particular types of context
factor when context is applied. The way the various types of context factor
are created during processing is explained in Section 5.4 below. The
descriptions of the various applications of context are followed by examples
showing how the problems occur in texts processed by Capture. ("

1) Application to singular definite reference

Searches for referents of singular definite noun phrases are done using
constraint markers, i.e. markers that mark all entities satisfying a
constraint on possible referents, as described in Section 4.7. An initial
search request that is parametrized by the focus threshold is evaluated.
Thus the search ignores entities that satisfy the constraints if they have
context activations that are lower than the threshold. It also ignores entities
that satisfy the threshold condition but not the constraints (Section 3.4). If

(*) The numbers given for these texts are from Appendix A, which includes
the output generated by the system for the texts.

100

this initial search fails to locate any candidate referents, then a second
search is made without the threshold condition. If more than one entity is
located by either search, the context activations of the entities are
compared and the one with the highest context activation is chosen. When
the context activations of the two best candidates for reference are equal, a
derived association factor is created (Section 5.4 below). If this in turn has
no selective effect then the choice between the best candidates is made
arbitrarily. Context activation is also used to select between the results of
searches for referents if the constraints on reference are weakened (Section
4.7).

The following example contains instances of singular definite reference.
Text no. A18:

Wintron manufactures P5050 which is a disc-drive. P1010 is a
computer which is made by this manufacturer. It has a bolt. P8770 is
a printer that is made by Plexir. Both peripherals are supplied by
Clark. Smith supplies the machine with the bolt.

P4740 is manufactured by P5050's manufacturer in London. It is a
micro-computer that is supplied by Jones. He supplies P8800 which is
a terminal. The cost of the computer is 25. The computers are red.
The three peripherals are green.

Examples:

-- The referent for "it" in "It has a bolt” is 'P1010’ which is preferred over
the other candidate 'P5050’ on the basis of context activation.

-- In the interpretation of "It is a micro-computer that is supplied by Jones"
'P4740' is selected as the referent for "it" because its context activation was
higher than that of 'P8770’, 'P1010’, and 'P5050’.

-- 'Jones' is chosen as the referent for "he" in "He supplies P8800 which is a
terminal”, the context activations for 'Smith’' and 'Clark’ being lower than
for 'Jones’.

-- The micro-computer 'P4740’ is selected as the referent for “computer” in
"The cost of the computer is 25" because 'P1010’, the only other computer
mentioned in the text, has a lower context activation than 'P4740'".

Text no. ARO:

Plexir manufactures P9000. It is a micro-computer. Wintron
manufactures P7000 which is a disc-drive. P9000 is supplied by Smith.

101

P8000 is a computer. It is supplied by Jones. The status of this
supplier is 10. The status of P9000's supplier is 20. The micro-
computer is red. The manufacturer manufactures P9090.

Example:

-- The referent for "manufacturer” in the last sentence of the text is taken
to be 'Plexir’, even though 'Wintron’ was the last mentioned manufacturer.

2) Application to plural definite reference

The application of context to the resolution of plural definite noun phrases
depends on whether the number of entities in the set being referred to is
known. When this is the case the correct number of referents is chosen from
the entities satisfying the reference constraints by selecting those with

highest context activations.
Text no. A16:
P8080 is supplied by Peters. The status of the supplier is 20.

Clark supplies P7780 and P7790. P7720 is supplied by Robinson. These
three machines are manufactured by Plexir.

Example:

-- A new entity is created as the referent for "machines” in "These three
machines are manufactured by Plexir". 'P7780’, 'P7790', and 'P7720’ are
specializations of this entity. In the process of choosing three machines,
'P8080’ was dropped because its context activation was lower than that for
the other machines that were chosen.

Text no. A21:

Haddon collected P33 which is an armlet. He collected P37 from
Woodlark. It is a necklace.

Bevan donated P571 and P352. P571 is a skirt. P352 is a necklace.
Bevan collected both artifacts at Mount-Hagen.

Example:

-- The referent for "artifacts” in "Bevan collected both artifacts at Mount-
Hagen" is taken to be 'P571' and 'P352'. The other artifacts mentioned, 'P33’
and 'P37' have lower context activations.

102

When the number of entities in the set being referred to is not known the
following algorithm is used. An initial search is made for a memory entity
which satisfies both the constraints and a focus threshold condition and has
already been created to describe the elements of a set. Such an entity may
have been the referent of another plural noun phfase or it may have been
created as a result of interpreting a simple conjunction. If the search
locates many such entities then the one with the highest context activation
is chosen as the referent. If, on the other hand, no such entity satisfying the
threshold condition is found, then a search is made for all (individual)
entities that satisfy the reference constraints. The set of entities located by
this search is taken to be the referent of the plural noun phrase, and a new
entity describing its elements is created.

Text no. A30:

Jones who was a trader collected P350 from Daui. He collected P370
from Woodlark. P350 is a necklace. P370 is an armlet. P391 is a
necklace that comes from Woodlark. The condition of these

ornaments is good.

Armstrong and Haddon were British. They were academics. Haddon
collected P597 and P598 from Daui. The artifacts are necklaces. The
condition of these Daui necklaces is poor.

P392 and P393 are armlets that were collected by Smith. This
collector was a trader. The artifacts are fair.

Examples:

—- The referent for "they" in '"They were academics” is an entity which
describes 'Haddon’ and 'Armstrong’. This entity was created during the
interpretation of the sentence "Armstrong and Haddon were British"”, and it
is chosen as the referent because it satisfies the threshold condition during

the interpretation of "They were academics".

-- The referent for "artifacts” in the sentence "The artifacts are necklaces”
refers to an entity describing 'P597' and 'P598'. Although there is another
entity (describing the artifacts 'P370', 'P350’, and 'P391’) which was created
as a result of interpreting "The condition of these ornaments is good”, this
entity did not satisfy the threshold constraint. The entity describing 'P597’
and 'P598' has a higher context activation and satisfies the threshold

constraint when the reference resolution is performed.

-- The referent for "artifacts" in "The artifacts are fair” is an entity that
describes 'P392' and 'P393'. This satisfied the threshold constraint, and its

103

context activation was higher than the entities describing the other groups

of artifacts.

3) Application to word sense disambiguation

It has already been mentioned in Section 4.9 that the context mechanism is
used in selecting from alternative word sense combinations presented by the
output of the analyser. The two cases that will be considered here are
disambiguation of words in general and disambiguation of compound noun
phrase modifiers. Structural disambiguation will be considered later.

All that the context mechanism does in the first case, word sense selection,
is compute the sum of the context activations of the set of word senses
present in each of the analyses. The analysis with the highest sum is then
selected (but see Section 4.9 for the handling of more complex cases). The
choice between alternative nominal modifier senses in compound noun
phrases is done simply by selecting the sense that has the highest context

activation.

Text no. A33:

P900 is a spear. P700 is an armlet. This artifact was collected in Daui.
It is common. The weapon was collected from there. P940 and P950
are arrows. P200 is a spear blade.

Examples:

-- Two analyses are produced for "P940 and P950 are arrows” with different
senses for "arrow”. The analysis containing the sense 'arrowl’ (a weapon) is
preferred over the analysis containing 'arrow?’ (a sign) because of the
higher context activation of 'arrowl’.

-- An analysis of "P200 is a spear blade” which contains 'bladel’ (part of an
instrument) is preferred over one containing 'blade?’ (loud jovial man),
because the context activation of 'bladel’ was higher than that of 'blade?’.

Text no. Al14:

Plexir manufactures P9999 which is a computer. It is supplied by
Smith. P1010 is a terminal that is supplied by Clark. This one is made
by Mikota. These machines are red.

P9000 is a green printer. It is made by Plexir. P4444 is a blue
computer. The cost of the machine is 7850. The peripheral is supplied
by the P9999 supplier. The terminal manufacturer makes the blue

104

machine. The cost of Mikota’s peripheral is 235.

Examples:

-- The analyser produces two analyses for the sentence "P1010 is a terminal
that is supplied by Clark”, one of which contains the sense 'terminall’ (a
computer peripheral), and the other 'terminal?’ (a place, as in hovercraft-
terminal). The analysis containing 'terminall’ is selected because it had a

higher context activation than ‘terminal?’.

-- The analysis of "This one is made by Mikota" that contains 'makel’ (which
corresponds to manufacturing) is preferred over an analysis containing
another sense of "make”, because of the higher context activation of

'makel’.

-- Two analyses are produced for "P9000 is a green printer”. One of these
contains the senses 'green?2’ and 'printer!l’, and can be paraphrased as “The
colour of the printing machine P9000 is green”. The other contains the
senses ‘greenl’ and 'printer2’, a possible paraphrase being "P9000 is a
novice at printing’. The analysis containing the first combination of senses
(colour and machine) is chosen because the activation sum for this
combination was higher than for the other combination.

-- During the interpretation of "The terminal manufacturer makes the blue
machine”, the analyser representation of the compound “terminal
manufacturer” presents 'terminall’ (peripheral), and 'terminal?’' (place), as
alternative senses for the modifier. The higher context activation of
'‘terminall’ means that it is chosen before the compound noun
interpretation (see Section 4.8) proceeds.

4) Selecting database names

As well as applying context to linguistic interpretation problems it is also
used in connection with the specific needs of the database capture
component. The context activation of the entities forming descriptions of
database relations allows the correct column names in the database
implementation to be selected. The task-specific memory operation for
selecting generic database entries (i.e. entities representing column name-
value slot pairs, as explained later in Section 6.4) chooses among alternative
entities on the basis of their context activation. In fact the context factors
that allow the selection of the correct database-related entities are
explicitly controlled (Section 5.4) by task-specific operations. Selecting
database names is a local (clause level) application of context information.

Explicit control is possible for task-specific operations because they are

1056

better defined, and hence easier to control, than language interpretation
operations. An example of this application of context is as follows.

P9000 is supplied by Smith. The cost of the machine is 200.

The column name 'SMC/MCNUM' (the machine number column in the
'SUPPLIES/RELATION’) is chosen during the processing of the first sentence
whereas 'MC/MCNUM' (the machine column in the 'MACHINES/RELATION') is

chosen for the second sentence.

A more interesting application of context for the database capture task is
selecting between alternative underlying predicates, as will be indicated

shortly.

5) Generating context factors

Another, rather different, way in which context activation is used during
processing is in the generation of further context factors. Context
activation thus plays a role in "bootstrapping’ context information. Thus the
generation of subject-area factors is conditional on whether the entities in a
predefined set concerned with that subject domain have, on average,
sufficiently high context activations. What counts as a "sufficiently high”
context activation for this purpose is determined by the size of the set
concerning the domain, and a preset system constant.

Further, the scope of association context factors, as opposed to their
creation, depends on existing context information. A context activation
threshold search is performed to locate a set of "highly active” memory
entities at the time the association factor is created, and the scope of the
primary association context factor is the set of entities associated with this
threshold set (Section 6.2).

6) Other applications of context activation

The five forms of context application just discussed are those which have
been most fully tested; but the implemented system is also capable of
applying context information for choosing between the results of other
memory operations. However, these additional uses of context activation
have only been tested in a few cases, so it cannot be said, with any degree of
confidence, that the context mechanism can be usefully applied to the
problems concerned. The intention of the remarks which follow is therefore
primarily to suggest that it is relatively straightforward to apply context
information in the style already described to a wide range of problems.

106

(6a) Relationship interpretation

The interpretation of implicit relationships for compound nouns,
possessives, and have-clauses, in creation mode (Section 4.8), allows the
application of context for choosing between alternative interpretations.
Context activation can be used for choosing between alternative memory
entities that capture the possible relationships. For example (assuming
there is only one sense for "distributor”), the relationship implicit in the
sentence 'The car has a distributor” may be captured by
'machine/component’ or ‘'merchandise/dealer’, and the context activations
of these two entities could be used to choose between them. (Strictly, the
relationships are captured by the pairs 'machine/component’ to 'machine’,
and 'merchandise/dealer’ to 'merchandise’.) Another example is determining
the relationship implicit in the nominal compound "“computer maintenance"
in the sentence "The success of the company depended on computer
maintenance”. The memory entities that would have to be chosen from, on
the basis of context activation, in this example might be
'‘computer/application’, or 'maintenance/of /machine’. (

(6b) Structural disambiguation

Choosing between alternative analyses of a sentence that are different in
structure but have the same word senses is performed using a score based
in part on context activation (Section 4.9). The score includes the sum of the
context activations of entities which are specializations of the case
relationships present in a particular structure. The score also includes a
bias for specialized case relationships over unspecialized ones. Most of the
examples of structural disambiguation that have been processed by the
system depend on this bias towards most specialized relationships rather
than context activation. It is therefore not clear, at present, whether this
way of applying context activation to structural disambiguation is likely to

be fruitful in general.

However, structural disambiguation using context activation alone was
specifically tested with the following example. Prior memory assertions were
created stating that a 'supplyl’ statement has the 'location’ case specialized
to 'supplies/loc’ and that this case can be filled by a 'city’. The text given
below was then processed.

(*) The interpretation in reference-mode of compound noun, and other
relationships, does not apply context directly. This is because relationship
interpretation in this mode simply generates another constraint for the
reference resolution process (see Section 4.7). Context activation is then
used for selection at the end of the reference resolution operation.

107

P9999 is a disc-drive that is supplied by Smith. This peripheral is
manufactured by Mikota. He supplies P7777 which is a terminal. It is
manufactured in London by Plexir. Clark supplies P9000 which is
manufactured by Marconi in Paris.

The context mechanism is used for disambiguation to choose between two
alternative structures produced by the analyser for the final sentence in the
paragraph. In one of the analyses the prepositional phrase "in Paris” is
attached to the embedded clause and the specialized case entities derived
from the sentence were 'manufacture/obj’, 'manufacture/agent’,
'manufacture/loc’, ’'supplies/obje’, and ’'supplies/agent’. In the other
structure the prepositional phrase is attached to the main clause, and the
specialized case entities were ’'manufacture/obj’, 'manufacture/agent’,
‘'supplies/obje’, 'supplies/loc’, and 'supplies/agent’. The first analysis was
chosen because of the higher context activation sum for the specialized case

entities derived from it.

(8¢c) Underlying database predicates

The database capture task uses an operation for mapping the predicates of
verb-clauses and state-clauses onto the predicates underlying database
relations (Section 6.4). The implemented system allows for choosing between
alternative underlying predicates on the basis of context activation.

An example of a situation in which context was applied for determining
underlying predicates is as follows. A column for the colour of an artifact
was added to the Artifacts Database; there is a colour column already in the
Machines Database. The underlying predicates referring to colour in the
descriptions in memory of the two databases were the entities
'relp/artifact/colour’ and 'relp/machine/colour’ respectively. A single
"confusing" text was created to try out the application of context to sorting
out the appropriate underlying predicates. The text processed using this
modified description of the Artifacts Database is given below.

P500 is an armlet. It was collected by Haddon. P550 is red.

P9000 is a disc-drive that is supplied by Smith. The cost of the
machine is 200. P8900 is red.

The underlying predicate chosen during the processing of "P550 is red" was
'relp/artifact/colour’. The other underlying predicate that was a
specialization of 'colour/of', 'relp/machine/colour’, was preferred during
the interpretation of "P9900 is red". These choices were made according to
context activation; and as a result the appropriate database creation

108

statements were generated.

It has not been possible in the present project to do any very thorough tests
on the application of context activation to relationship interpretation (in
creation-mode), structural disambiguation, and identifying underlying
database predicates. This is primarily because context dependent
ambiguities arising from these cases seem to occur less frequently than in
the other cases discussed earlier. Nevertheless, it appears that using the
context mechanism in these situations does not complicate the control
structure, and this is an important consideration for natural language

processing systems.

This section described how context activation is applied in Capture for
various disambiguation operations (choice applications) and for accessing
the memory entities that are most relevant to the current context
(threshold applications). The interpretation operations applying context
need not be aware of how the various factors that contribute to the context
activation values at any given time were created or how their weights were
managed. Some implications of the way context is applied in Capture are
described in Section 5.5 below.

109

5.4 Management of context factors

Having talked about the types of context factor used in the Capture system,
and having illustrated the sort of problem context application is intended to
handle, I will discuss the way that the various types of factor are managed
during the processing of a text.

In the model for context used by the system, the management of context
information amounts to creating context factors and adjusting the
significance weights associated with them. The creation of all context
factors, except processing history factors, is in fact done by the
interpretation operations and the task-specific operations. The specification
of interpretation and task-specific operations thus includes appropriate
calls to routines that create new context factors. (Processing-history
factors are directly created by the memory component even though they are
ultimately the result of evaluating interpretation and task operations.)

For some types of context factor, e.g. emphasis factors, the text processing
operation creating a factor also determines its scope. The scope of the other
context factors, e.g. association, is determined by the state of memory and
the context information present at the time the new factor is created. The
ability to create context factors when evaluating the text processing
operations that make use of memory allows us to view interaction with the
memory as resulting in the accumulation of context information. This is
indeed a significant feature of the Capture philosophy.

The significance weights associated with factors are initially assigned as
standard values, and are then subsequently degraded as processing
continues. The detailed way in which the significance weight of a context
factor is managed depends on its type. In particular, the initial weight
associated with a factor is determined by its type. To manage decay, the
system maintains lists of all the instances of factors of the different types
which are consulted when the significance weights of factors of any specific
type are degraded. This is because the significance weights of factors are not
degraded individually but rather all the factors of a given type are degraded
together. Factors are removed from the system when their significance
weights fall below a certain threshold.

The set of initial significance weights for the types was determined by trial
and error as the system developed and new test paragraphs were processed.
When a new type of factor was introduced, an initial weight for the type was
chosen intuitively, which was then increased or decreased according to the
behaviour of the system for the example texts. This was admittedly a fairly
crude approach and indeed was not even based on any serious conduct of
experiments. But in its defence, it should be said that attempts at more

110

controlled experiments would have been inappropriate in any case because
the example texts were written specifically for testing the system, and were
not taken from an independent corpus of texts. As a result, no claims can be
made about the real importance of the types of context information
represented by the Capture factor types and about the way they are
managed in the implemented system. Thus although the long term aim of the
research is to develop computational systems adequately handling linguistic
reality, it has not been possible in this project to demonstrate conclusively
that this is possible with the type of context mechanism developed.

A brief description is now given of the management of the various types of
context factor whose scopes were defined in the section on the
representation of context information. The significance weights of many of
the factors used in Capture are degraded using a standard degrading
procedure. This applies to sentence-recency, emphasis, deixis, subject-area
and association factors, while paragraph-recency factors, processing-history
factors and task-specific factors are not degraded using this standard
degrading procedure. This procedure is as follows. At those points during
processing when instances of certain context factor types (in fact recency
and emphasis factors) are created the significance weights of all existing
factors of the types mentioned above are divided by a system constant. This
standard degrading ratio was 2 in the final version of the system, and
integer arithmetic was used for convenience. After degrading factors in this
way those with zero weights are removed from the system'’s records. It needs
to be emphasized that degrading factors of a given type together, and
degrading in a standard way are just details of how context management was
carried out in the test Capture implementation, they are not regarded as
theoretically motivated elements of the context mechanism as such.

1) Recency

Sentence recency factors and paragraph recency factors are managed
differently. Sentence recency factors are created by the “interpret-
sentence’ operation and given an initial weight of 100. The creation of a new
sentence-recency factor causes a standard degrade to occur. A paragraph
recency factor, with initial weight 50, is created by the "interpret-
paragraph” operation. The weights of paragraph recency factors are
degraded explicitly to 0 when a new factor of this type is created. The
creation of a paragraph recency factor also causes a standard degrade on

other factors.

111

2) Emphasis

Be-clause emphasis factors are created by the "interpret be-clause”
operation, and given an initial weight of 90. The creation of a be-clause
emphasis factor causes a standard degrade. Emphasis factors relating to the
syntactic topics of passive sentences are created by the operation for
interpreting case fillers, and given an initial weight of 20; this does not,

however, involve a standard degrade.

3) Processing-history

Since any memory operations can use memory retrieval that is implemented
by marker processing, processing-history factors can be created by any
memory operation. Such factors are given an initial weight of 20. The
significance weights of processing-history factors are degraded by dividing
them by 3. This happens at the end of processing a sentence. The weight of a
recorded factor is incremented (also by 20) when a request is made for the
propagation to be repeated; however, this is not a true incrementation; it is
really creating a new factor.

4) Deixis

Reference evaluation of noun phrases with deictic determiners generates a
deixis context factor that is given an initial weight of 90.

5) Subject-area

At most one subject-area factor can be generated by the "interpret-

paragraph’ operation. It is given an initial significance weight of 60.

8) Association

Association context factors are created by the operations for word sense
and structure disambiguation. They are also created as a result of
evaluating reference resolution operations when the best candidates for
reference have equal context activations. The two factors (primary and
secondary associations) generated by any one of these operations are
created before the selection done by the operation is performed so that the
factors can affect the result of the operation itself. The initial weight given
to each of the two association context factors is 50.

112

7) Task

Database capture task factors are created by the operation that builds
instances of underlying predicates for relations. The initial significance
weight given to such a factor is 180. The weight of the factor is degraded
explicitly (to the initial weight of a processing history factor) by the task
specific operation that generates database creation statements.

Thus, overall, the management of context factors in the Capture test
implementation is as follows. The evaluation of text processing operations
that interact with the memory component cause the creation of factors
which, depending on their type, are either degraded uniformly at specified
points during subsequent processing, or more directly by text processing
operations managing them.

One of the considerations that had to be taken into account with respect to
the management of context information was the overall activation of the
entities in memory. In the implemented system the initial weights and
degrading ratios ensure that after the first few sentences,the number of
highly activated memory entities does not keep increasing. That is, the
number of salient entities at a given time during processing is stable.
Because of this, the various constant activation thresholds used by the
system lead to roughly the same behaviour as the processing of the text is
performed. However, the introduction of new types of context factor in an
extended system might require a more flexible approach that would allow
system operation with very different overall activations of the entities in
memory. One way of doing this, which was not investigated, might be to
periodically reset the system thresholds to some fixed ratio of the sum of
the significance weights of all current context factors.

In the process of trying to determine first approximations for managing the
weights of the context factors, association factors seemed to cause
instability, whereas exact management of the weights given to other factors
did not seem to be necessary for stability. This may be because association is
a rather loose and unstructured factor type. It might therefore be
necessary, for systems using association as a context factor, to control the
circumstances under which different degrees of association can be used

profitably.

Very different schemes for the management of context information were
experimented with. For example, a mechanism was implemented in which
memory operations could be explicitly parametrized by only a specified set
of context factors. A separate mechanism was also implemented which
allowed memory operations to be parametrized by the set of factors that
were currently at the top of a “context factor stack”. These mechanisms

113

were finally abandoned because they greatly complicated the flow of control
in the system by requiring that multiple contextual environments should be
tracked so they could be applied as necessary. In contrast, application of
context in the final version of the system happens automatically with
respect to (all) the context information present at the time of application.
One of the issues that the project came increasingly to be concerned with
was how far this constraining but simple control structure is adequate for
text processing. The more complex control structures for managing context
information that were abandoned were too unconstrained, making both
programming and evaluation of the system more difficult. The fact that the
facilities originally provided by these control structures could be
implemented in terms of the simpler model for context management
suggests, but this is only a conjecture, that they may not be necessary

anyway.

5.5 Implications of the context mechanism

This section discusses some implications of the use of a Capture-like context
mechanism in other language processing systems. The implications are for
the application of context information in such systems, the class of texts
that they can (in principle) handle, and more generally, for the management

of context information in text processing.

In Capture’s context mechanism it is not necessary to specify explicitly how
the different types of context information interact during processing.
Basically, it is only necessary to specify the memory operations that cause
the creation of the various factor types, and to specify how the significance
weights associated with these types should be managed. After this at any
given point in the processing the context information present can be applied
without regard to the types of the factors that have been created. This
simplifies the design of the system in that new types of context factors can
be included without changing those parts of the system that apply the
context information to interpretation problems.

The use of significance weights gives a simple way of comparing the relative
importance of different types and instances of factors when context is
applied. The use of numerical values in Al systems in this way may seem ad
hoc, but it does have important advantages in certain cases, like the context
one presented here, because of the convenience of numerical values for
comparing, degrading, and combining the effects of different context
factors. For a discussion of the merits of the use of numerical values for a
different purpose see [Cater81].

114

A separate issue is that the approach taken for applying context information
makes the interpretation process more deterministic. Thus the context
mechanism acts like an "oracle' that determines the path to be taken at
choice points faced by the interpretation process. This leads to a more easily
manageable control structure, since it is not necessary to keep a record of
the alternative paths that were not followed, or to be able to decide when to

backtrack and try other alternatives.

Further, building a context mechanism for deterministic language
interpretation may result in a system which handles constraints on text
structure naturally, for example constraints on the occurrence of referring
expressions. Such a system would probably fail to process certain
(misleading) texts correctly. (*)

The Capture implementation is biased towards a deterministic interpretation
control structure. For example, some of the factor types used by the
Capture system make it more awkward to allow the whole system to
backtrack cleanly. In particular, "processing history” factors are (by their
very nature) unavoidable side-effects of processing. Thus a backtracking
mechanism for Capture would have to be able to save and reinstate
information about the context factors present at a given point during

processing.

A system that makes use of such a context mechanism for deterministic
interpretation clearly cannot handle texts that do not satisfy the following
condition. The "best” interpretation of each sentence with respect to the
context provided by the preceding sentences is in fact the correct
interpretation in the context of the complete text. Whether the context
mechanism can always determine the '"best” choice depends on how well the
range of context factors and significance weights capture all the elements
affecting the interpretation of text, which may be evaluated by agreement
with human interpretation. It is not difficult to construct texts that do not
satisfy the condition just given, i.e. that fool the interpretation process into
making decisions that need to be revised because they are inconsistent with
information supplied much later by the text. However, such misleading texts
are rare and a technological approach to practical text processing, such as
the approach taken in the design of Capture, can, I believe, afford to ignore
them.

(*) Cf. the claim made by Marcus [Marcus80] that a basically deterministic
mechanism for syntactic analysis can result in a grammar that elegantly
captures generalizations reflecting constraints on sentence structure; and
the expectation that a deterministic parser would fail to process "garden
path' sentences.

115

A separate implication of the context mechanism is that it allows different
components of the language processing system to contribute to the current
representation of context by creating context factors. This information is
then potentially available to any other component that makes use of the
knowledge stored in memory. Components creating factors can also manage
the factors belonging to them by altering their significance weights.

This view of context, whereby loosely speaking it cannot be placed in a single
box of a language processing system, possibly explains to some extent why
linguists have found it so difficult to arrive at a foolproof characterization of

what context is.

The components of a natural language processing system often correspond
to different levels of language analysis (syntax, semantics, pragmatics, etc.).
Because of this, and because of the relationship between context
information and the current focus, the above view of the management of
context in a language processing system is consistent with the view of focus
taken recently by Grosz, Joshi and Weinstein [Grosz83], i.e. that it does not
"yield comfortably to any account that is strictly a syntactic or semantic or

pragmatic one.”

The context mechanism provides the computational means for realizing this
view of context in automatic language processing systems. Furthermore, the
use of the indexing scheme for implementing "threshold searches"” gives a
computationally efficient way of accessing a constantly changing focus
space even when the factors that contribute to context are managed
independently by different components.

116

5.6 Comparison with other models for context and focus

In the first section of this chapter various context mechanisms were viewed
as means for restricting the use of a knowledge base for the purpose of
taking context into account when performing natural language
understanding. The following sections showed how this view of context is
realised in the Capture system as the representation and use of information
for constraining searches of operations using a particular memory model,
and for selecting from the results of these operations. In this section the
context mechanism developed for Capture is compared with other models for
context and focus. In order to avoid confusion the context mechanism used
in the Capture system will be referred to in this section as the Context

Mechanism.

In what follows I shall first briefly discuss the use of context mechanisms
based on scripts and related knowledge structures ([Schank75], [Tait82],
[Schank82a]); and also a "marker passing” theory of contextual influence
[Charniak83)]. Context mechanisms concerned with focus will then be
discussed ([Sidner79), [Wilensky82], and [Grosz77]). This work on focus is
the most important for the evaluation of the Context Mechanism.

Scripts, taken to mean knowledge structures that encode events in typical
situations, (see e.g. [Schank75], [Tait82]), have been used to provide a
strongly predictive context for processing texts by following the stereotypes
encoded in the scripts. Thus a script is typically used to encode sequences of
actions that occur in a certain type of situation, so that the understanding
process can interpret a text taken as being about this type of situation by
matching objects and events mentioned in the text against those expected
by the script. The Context Mechanism is an attempt at producing a more
flexible system that can deal with texts that do not fit any predetermined
standard situation exactly. Trying to apply scripts to interpreting such texts
can lead to errors because the predictions made by the script tend to take
over the interpretation process; scripts can lead to disaster if the script
chosen does not in fact fit the text at all (e.g. interpreting a news article in
which "Pope's death shakes world” occurs as news about an earthquake that
caused the death of one person).

It is not being argued that the use of knowledge structures concerning
typical situations cannot play a role in the interpretation of a certain type
of text (nor that, more generally, large memory structures should not be
used by a context mechanism for text processing). The problem is that
systems relying primarily on scripts tend naturally to rigidity as the penalty
for predictive control of interpretation. Thus early script systems were
clearly far too rigid; later script based approaches are either still too rigid
or are sufficiently underdetermined to raise the problems the original script

117

idea was intended to overcome (cf. the remarks on MOPS below). In contrast
the less rigid use of context information by the Context Mechanism means
that no single context factor can dominate the interpretation process to the
point of completely distorting the propositional content of the text. The
Context Mechanism is, roughly speaking, used to solve interpretation
problems when they arise, rather than to predict the message being

conveyed by the text.

There is no context factor type in the current Capture implementation for
taking advantage of stereotyped sequences of events; such a factor type did
not seem to be necessary for the system's current text application. However,
the Context Mechanism does not rule out the use of script-like information
to implement a type of context factor which would be used to increase the
context activation of memory entities in memory structures representing
generic sequences of events. This information would still not be used in a
strongly predictive fashion, but would have the advantage of being combined
with information represented by other context factors, and hence would not
dominate the interpretation. Another advantage of bringing scripts into this
framework is that context information derived from other factors could be
used to implement a reliable method of script activation (rather than e.g.
keyword triggering, or pattern matching against sentence representations).
This could be done by monitoring the context activation totals associated
with the sets of memory entities representing the various scripts, and
activating a script (i.e. increasing the activation of event entities in it) when
the total associated with it exceeds a certain threshold, or, perhaps, when
this is much higher than the totals associated with the other scripts
represented in memory.

More recent language understanding work [Lehnert83] makes use of MOPS to
overcome some of the problems associated with the use of scripts for
understanding narratives. MOPS (for a definition see Section 5.1) are smaller
and more generic structures than scripts, which can be combined in a
flexible way with one another to form individual scripts ad hoc, as suggested
by links (“strands"”) between different MOPS. Schank [Schank82a] claims
that generalizing and merging the information present in many scripts and
representing it in a non-redundant way as MOPS is a more realistic model of
human memory organization. This is consistent with the approach for
memory representation in the present system where memory entities are
not thought of as belonging strictly to large rigid structures but instead
derive their meaning from the whole of memory.

The use of MOPS does seem to represent an improvement over scripts in
terms of memory organization for natural language processing. However, it
is not clear whether the systems in which MOPS are used have an adequate
mechanism for deciding which MOPS to activate during processing. This is

118

particularly true if the number of MOPS present in memory, and the number
of "strands" between them, is realistically large. This is because in such a
situation the MOPS activated lexically, or by following MOP strands, need not
all be relevant to the current context. This suggests that it might be possible
to activate MOPS by monitoring the context activation of the memory
entities associated with them, in a scheme similar to that proposed above for
the use of the Context Mechanism for script activation.

Such a scheme may also provide a solution for the “frame activation
problem” as stated by Charniak [Charniak82]. In fact implementation of the
subject area context factor can by thought of as an attempt at such a
solution. Furthermore, this solution seems to be capable of handling
Charniak’s "baseball” example, which he concedes cannot be handled by his
own proposal for indexing on slots. Thus the context activations of (the
appropriate senses of) "ball, "bat”, "pitcher”, and ""diamond", could be used
to judge whether to create a context factor for the "baseball” subject area.

Judging from more recent publications [Charniak83], it appears that
Charniak has moved from the model based on indexing the roles of frames
towards a model based on marker passing for contextual influence. This
model has some properties in common with the Context Mechanism in that
they both attempt to make use of a NETL-like model for memory
representation, and marking to implement a context mechanism; however

there are fundamental differences.

Charniak's Marker Passing theory for context is one that is applied during
sentence analysis (see [Hirst82]), to assist the parser with which it acts in
parallel to choose word senses and case-labels. It is thus a mechanism for
disambiguating word senses and case-labels only within the context of the
single sentence in which they occur. The Context Mechanism used by
Capture, on the other hand, acts on sentences taken together, and deals
with interpretation problems that are unresolved at the sentence level using

extra-sentential context information.

In the Charniak and Hirst model, sense combinations are preferred if some
connection between them is found in the memory network by passing
markers in a way that is similar to their use by Quillian [Quillian68].
Charniak refers to this as "dumb marker passing”, and suggests that it
should be constrained somehow, but exactly how is unclear because the
theory described in [Charniak83] had not yet been implemented. ""Dumb
marker passing” uses information that is analogous to the information used
by Capture association factors and (to a lesser extent) processing-history
factors, but otherwise the relationship between marker passing in
Charniak’s theory and the use of marking in the Capture Context Mechanism
(i.e. as part of a general representation for different types of context

119

information) is only in terms of low level implementation mechanics. Thus
overall, the Charniak and Hirst mechanism operates at a different level of
language analysis than the Context Mechanism; further, the fact that both

mechanisms use ‘marking” is only a superficial similarity.

The Context Mechanism is more closely related, in its basic philosophy, to
focus based mechanisms for interpretation in context. The rest of this

section discusses mechanisms of this sort.

Sidner [Sidner79] has developed a theory of definite anaphora
interpretation (for English) that is based on determining the focus of a
discourse: this is the entity on which the speaker centers attention, and
which typically changes as the discourse progresses. This discourse focus is
generally the preferred candidate referent for an anaphoric expression, and
hence the knowledge-base element that is examined first during anaphor
interpretation. More specifically, Sidner’s algorithm for focussing keeps
track of the current focus, an alternative focus list, and a focus stack. Focus
can shift to an alternative focus if an anaphor cannot refer to the current
focus. The focus stack records such rejected items, so elements on the stack
can be considered after the list of alternate foci, if they prove
unsatisfactory. Elements that are associated with all these candidate
entities are also considered as possible referents for anaphoric expressions.
Association is defined with respect to information in a knowledge base that
is assumed to be similar to Fahlman's NETL, and is similar to the information
used for the Capture association context factor type.

Sidner provides detailed rules for the interpretation of various classes of
definite anaphora, which indicate how the (discourse) focus, alternative
focus list, focus stack, and associations, can be used to interpret the
anaphora. There are exceptions to the basic use of discourse focus which
include a recency rule for processing certain pronouns, the use of an "actor
focus’” as well as the discourse focus, and co-present foci for the
interpretation of anaphora such as "the onethe other".

These exceptions, and the need to keep track of alternative, associated, and
stacked foci, dilute the notion of a single discourse focus of attention. This
suggests that the use of context activation may be more appropriate since it
does not make assumptions about a single (if shifting) focus of attention,
but instead, relies simply on relative context activation. Additionally, taking
new context factors into account would require explicit detailed changes in
Sidner’s algorithms, whereas the algorithms used in the Context Mechanism

remain the same.

However, Sidner's work on definite anaphora comprehension is better
motivated linguistically, and much more sophisticated in its treatment of the

120

various types of anaphora, than the reference interpretation operations
implemented for Capture. It is therefore worth considering how the insights
of Sidner's work could be used effectively in a system with an organization
like that of Capture. In fact it appears that some features of Sidner's model
(such as the effect of linguistic form on emphasis and foregrounding) could
probably be incorporated into a more sophisticated version of Capture’s
interpretation operations and context factor management; others would fall
out naturally from the information encoded as context activation (such as
the preference ordering for various categories of reference candidate).

"Activation” is also being used, to indicate foregrounding, in a context
mechanism that is under development for the UC (Unix Consultant) system
at Berkeley. The mechanism is an extension to PHRAN [Wilensky81] and is
used by UC to support natural language dialogue with a user who is learning
to use the Unix operating system. The mechanism (described in
[Wilensky82]) maintains a "Context Model” which consists of a number of
entries (entities, broadly defined) with associated levels of activation.
Activation is used for what were termed "choice applications” in Section 5.3,
in particular for some aspects of reference and word sense selection. Entries
in the Context Model include assertions, objects, and representations that
will be sent to other components (e.g. a discourse planner). When the PHRAN
parser has analysed a sentence, the results of the analysis are matched
against entries in the Context Model, and new entries are added to the
model. The entries are grouped into "clusters' representing associated
fragments of knowledge, and increasing the activation of an entry causes an
increase in the activations of entries in the clusters to which it belongs (cf.
association factors). Activation decays over time, and entries with low
activations are removed. There is also an indexed database of clusters from
which clusters can be brought into the current Model when new entries
indexing them are added to the model. In the reverse direction, a new
cluster can be created from entries in the Model and placed in the database,
where it is indexed by those entries which are most highly activated.

In UC, the current Context Model and the database of clusters have a
combined function much like memory in the Capture system; the entries in
the Context Model correspond, roughly, to memory entities with context
activations that are higher than some threshold. In the Context Mechanism
it is not necessary to pull highly relevant items out of memory and keep
them in a current context model because it is always possible, using the
indexing scheme, to access these items efficiently and to restrict memory
searches to them. This additionally means that memory assertions
themselves can serve as associations (for the purpose of "spreading
activation"”) so that it is not necessary to have a separate index from entries
in a current context model to clusters in a database. The need in UC to
create and index new clusters (which does not arise in the Capture Context

121

Mechanism) causes some problems (pointed out in [Wilensky82]). The UC
system should be able to determine, on its own, when to create a new cluster
(an operation which can be regarded as storing the current context). At
present the UC system must be instructed explicitly by the user to do this. A
related problem is that the system cannot compare clusters and may
therefore create more than one cluster each of which describes the same

situation.

In the UC context mechanism there is no analogue of the "context factors”
used in Capture's Context Mechanism for independent management of
components of context activation. Again, the Capture indexing scheme allows
this generalization to be accommodated with efficient access to the most
salient entities. However, the use in UC of an activation-based model for
dialogue understanding indicates that this somewhat intuitive notion is
useful in language processing settings different from those involving
descriptive texts to which the Context Mechanism has been applied in the
Capture project. Further development of both the UC context mechanism
and the one described here may provide support for this claim.

Grosz's work on focus [Grosz77] directly influenced the design of the
Capture Context Mechanism; thus the Mechanism can be thought of as a
generalization of Grosz's "global focus” mechanism that is more widely
applicable, and that tries to address certain problems brought to light by

Grosz's work.

In Grosz's work focus information is used for resolving definite references
made in task-oriented dialogues. The dialogue fragments studied were taken
from conversations between an expert and a novice being instructed at
assembling an air compressor. Focus is represented as a highlighted set of
nodes in a knowledge base. This set is encoded as a space in the partitioned
network formalism developed by Hendrix [Hendrix78]. The focus space is
taken from spaces in a partitioning of the knowledge base that mirrors the
mechanical task of assembling an air compressor. Focus is used ([Grosz77]
p.5) to "differentiate among the items in the knowledge base on the basis of
relevance’, i.e. to select one space as salient so nodes in this focus space are
considered first as candidates for definite reference.

In what follows, I shall first consider the similarities between Grosz's focus
mechanism and the Context Mechanism, and then the way the Context
Mechanism extends and improves on Grosz's model. Grosz’s immediate focus
mechanism for ellipsis interpretation is a separate matter not of immediate
relevance to Capture, so I shall consider only her mechanism for global

focus.

122

It has already been mentioned that the set of memory entities with context
activations that are higher than a specified threshold can be thought of as
the counterpart, in Capture, of Grosz's focus space. In fact, initial
candidates for reference resolution are looked for in such a set of entities
using the threshold search (Section 5.3). If the search for referents in this
set fails, the search is widened to memory entities outside it, just as the
search for candidate nodes is widened to nodes outside the focus space in
Grosz's case. In Grosz's model the focus space is augmented by giving
precedence to nodes that are implicitly in focus, e.g. to subparts of those
objects or participants in those events that are in focus. In the Context
Mechanism information on which implicit focus depends is utilised either
explicitly in the form of association context factors or implicitly in the form

of processing-history context factors.

Turning now to the developments made in Capture, it should be emphasized
that in the Capture system the function of the Context Mechanism extends
beyond the resolution of references made by definite noun phrases. It is
used, for example, for choosing word sense combinations (Section 5.3). It is
not clear exactly how Grosz’s mechanism could be used effectively for
performing this function because of the difficulty of guaranteeing that
nodes corresponding to the correct word senses would be in focus (or
implicit focus), since only nodes concerned with a stage of the assembly task
would be in focus. Thus the form of the knowledge exploited for focus in
Grosz's model limits the function of the model.

An advantage of the Context Mechanism's use of context activation is that
the activations of arbitrary sets of entities, and in particular word sense
combinations, can be added in order to choose between the sets. This can
itself be used to trigger other factors (Section 5.4) to further sharpen
context. The analogue, in Grosz's focus framework, might be to count the
number of nodes belonging to each set that are included in the focus space,
but this would be less discriminating than summing context activations.
Context activation can, of course, be used to choose between any two
memory entities even when they are both included (or both not included) in
the analogue of the focus space that is defined by a context activation
threshold.

Another way in which the Context Mechanism extends the use of focus is
that it is designed to allow the combination of very different types of context
information. The type of discourse structure information that is based on
the mechanical assembly task in Grosz’s work could, in principle, be used as
a context factor type. This would imply a representation of the discourse
structure information in memory in Grosz's style, with the subsequent
creation of context factors increasing the context activations of subsets of
the entities in the structures corresponding to the partitions used by the

123

focus mechanism. The information represented by context factors generated
in this way could then be combined with that from other factors in the usual
way, contributing to the choice of referents for definite noun phrases.

The Context Mechanism also addresses a problem noted by Grosz which is
associated with the important issue of how focus is shifted during the
discourse. In her model shifting is heavily dependent on the structure
imposed by the assembly task, and in fact Grosz points out ([Grosz77] p.168)
that "The major problem to adapting the focus representation to kinds of
discourse other than task oriented dialogues is to augment the mechanisms
for shifting focus.. For such discourses, shifts in focus are often more
gradual than in the task dialogues, and structural indications of shifts
(segmentation) occur less often.” The Context Mechanism provides a means
for the gradual modification, through acquisition and degrading, of context
information. New context factors are created as a side-effect of interaction
with memory, and the significance weights associated with these factors are
degraded as processing progresses. This results in the presence of many
factors with different scopes, and a relatively smooth and gradual shift of
the focus space defined in terms of a context activation threshold.

The Capture Context Mechanism provides a less rigid alternative to strongly
predictive application of discourse knowledge structures. However, context
factors derived from knowledge structures such as scripts or the task-
oriented structures used by Grosz could contribute to the context
information represented and hence to the definition of focus. Context
information from other types of context factor can be used to "activate”
such structures. The Context Mechanism was claimed to have advantages
over a number of focus based mechanisms for interpretation in context.
Thus it is not necessary to keep salient entities separately from memory
because the indexing scheme allows efficient implementation of activation-
threshold searches. The Context Mechanism generalizes and improves
Grosz's mechanism for global focus by allowing for the following: the
application of context to a wider range of interpretation problerns;
discrimination between sets of entities and between entities outside the
focus space; a gradual shift of focus; and the combination of heterogeneous

context information in a uniform mechanism.

5.7 Using the context mechanism in other frameworks

The issue considered in this section is whether the Capture context
mechanism, viewed as a general Al technique for language processing
independently of the type of task and system structure tested here, could be
used for processing other types of text or within other system architectures.

124

With regard to processing a wider range of texts it would seem to be possible
to implement some additional context factor types that were not considered
to be necessary for, or testable in, the database capture task (or the
particular choice of test database domains). For example, for texts in which
spatial and temporal relationships are prominent, that is where temporal
and spatial proximity would affect foregrounding, it would seem appropriate
to provide context factor types for temporal proximity to events being
described, and for spatial proximity. The interpretation of texts describing
sequences of instructions for robot tasks would probably benefit from the
introduction of these factor types. Similarly, for modelling conversational
discourse, a type of context factor could be provided that would increase the
context activation of memory entities that are closely related to the
participants’ goals; such a factor type would in particular be needed in
human-machine dialogue to handle information relevant to the user's goals.

As suggested earlier, further types of context factor for processing texts
that follow scripts or other predictive discourse structures could be used to
"activate” such structures by increasing the context activations of the
entities that are part of the memory representations of such structures. It
may also be appropriate for processing certain types of narratives to have a
type of context factor that would be used to periodically foreground sets of
memory entities closely associated with the principal characters of the
narratives. This assumes that these characters could be identified in the
first place, and a similar assumption also applies to the activation of the
predictive discourse structures that were just mentioned. Lower level
context factors, such as the ones implemented in the present system, could
be used to "bootstrap” the creation of these higher level types of context
factor, by using context activation to choose the relevant discourse
structures and story characters.

These remarks about additional types of context factor for dealing with
more complex texts than the simple descriptive ones handled by the system
are, of course, only speculative. Thus I have not indicated how such
additional factor types would be managed, i.e. which text processing
operations would create instances of them and how their significance
weights would be degraded. However, the inclusion of new factor types does
not complicate the control structure for applying context information, and
because of this it is easy to envisage, if only at the general level, natural
ways of extending the range of data that might be dealt with within the
structure of the implemented system.

Moving to system structure, the context mechanism is largely independent
of many of the design decisions about system component relationships that
were made during the project. Some of the context factor types, in
particular history of processing and association, depend, respectively, on

125

the processing and representation models adopted in the system. It is
probably straightforward to design the counterpart of the association
function for a different underlying memory mechanism, although making use
of some trace of memory processing as a context factor type could prove
difficult for different memory processing models. (This may be considered to
be an advantage of the marker processing scheme.) In general, however, the
use of context factors and context activation should be applicable to
systems in which memory representation and processing were of a different
type from those used for Capture.

The context mechanism might also be useful in variations on the text
processing strategy used in the project. For example, it could be used in a
text processing system in which an inferencer would generate all possible
inferences by combining the results of language interpretation, with, and
only with, statements in a focus space determined by context activation.
This could constrain the inferences made by the system (e.g. by Cater's
system [Cater81]) without missing those necessary for understanding. This
type of context application is different from the application of context in the
present system which can be characterized roughly as constraining an
inference process which is primarily a matter of search, as opposed to one
constraining the generation of new statements within a less restricted

framework.

Another example of the use of the context mechanism in a different text
processing system environment would be its use for earlier interaction with
the (sentence) analyser component of the system. Thus the context
mechanism could be used to constrain, during parsing, the choice of word
senses and semantic features to be associated with the referents of
anaphora. Such a scheme would have disadvantages; for example, it is not
clear to what extent it is safe to make use of constraints predicated by
context before all the syntactic information in the sentence has been
utilised (see e.g. [Ritchie76]). In addition, for most cases, this use of memory
in conjunction with context to constrain analyser processing is simply an
issue concerning efficiency (given, of course, that cognitive modelling is not
being considered). Thus the incorrect possibilities considered by the
analyser, if it was not constrained, could be filtered out at a later stage by
the other components [Woods73]. Early application of context information
would therefore only seem worthwhile if the gains in efficiency were
important enough to offset the disadvantages, such as the one mentioned
above, associated with such an approach. If the gains in efficiency are
worthwhile, and this is unclear at present, then it seems likely that the
context mechanism developed for the present system would prove useful to

this approach.

126

Perhaps a more promising application for the context mechanism in aiding
the analysis process would be in the design of a robust analyser that would
cope with violations which would cause the type of analyser used by the
present system to fail. These violations include the lack of agreement
between semantic category restrictions on verb cases and their syntactic
fillers (see e.g. [Wilks78]), and various forms of ungrammaticality. In such
cases it might be possible for the context mechanism to choose the
appropriate senses for all the words occurring in the sentence, and to
choose referents for anaphora, to enable the analyser to produce at least a
partial structure for the sentence. Under such an arrangement, the context
mechanism would be operating in a mode that would be prone to error.
Despite this, the system could still be more useful than one that failed

completely.

127

Chapter 6

Database Capture Task

6.1 Language processing tasks

It is not easy to formulate a general definition for "understanding” natural
language texts. In particular what an understanding system does in terms of
drawing inferences and assimilating new information as a result of
processing a text (or any other form of discourse) probably depends largely
on the task for which the text was read. It is therefore appropriate,
especially within the context of automatic language processing, to evaluate
understanding with respect to a task to be performed as the result of
processing a text.

This chapter describes how Capture carries out a specific task, that of
creating a relational database, as the result of the text processing that it
performs. The present section attempts to delineate the type of task
processing performed by the Capture system as compared with that of other
experimental natural language processing systems. The description of the
task specific component of Capture, and the remarks made about other
systems, are only concerned with what happens (in the text processing
system) before an external system (e.g. a robot, a database management
system (DBMS), or an electronic mail system) takes over to actually perform
the task itself. This "one-way” assumption is a limiting one, i.e. it excludes
interaction between the language processor and the external task system
during the latter's operations; but it is one that is commonly made. Further,
Capture is not, at present, concerned with response to a user in natural

language, e.g. to seek clarification of input texts.

The style of task specific processing performed by Capture is very different
from a number of systems that have a similar application, i.e. generating a
database from a body of texts. These are the systems that perform this task
without the use of a knowledge base relating to the domain with which the
texts are concerned (i.e. the equivalent of memory in the Capture system).
Two examples of such systems are those described by Sager [Sager81] and
Cowie [Cowie83].

Sager's system uses sophisticated syntactic processing to produce tables
from the processed texts, one application being the automatic processing of

128

medical records. Each sentence is processed by a parsing component, a
transformation component (which 'regularizes’” the parse), and then
formatted by a third component into tables called "information formats” (in
later work the tables are derived by flattening a "format tree” produced for
the sentence). The last component uses rules that are specific to the domain
that is being handled. These rules use syntactic information and a domain
specific categorization of words in order to place each word from the
sentence in one of the columns of the information format. For example, in
medical radiology reports, there is a subcategory "TEST" of nouns that
includes "film'" and "X-rays”, and there is a TEST column in the information
format so that the processing of "X-rays indicate metastasis"” places "X-rays"
into this column. The information format for a subject area is not an existing
target database format, but is defined after analysing syntactic and lexical
regularities in a sample of the documents to be processed. Sager’s system is
thus not a database generator in the most commonly accepted sense of
database (e.g. a strict relational model database). The formatted material
generated can be described as a semi-formal database with a mixture of
structural and textual elements.

Cowie's system processes descriptive texts about single objects. It uses
keywords to identify parts of the object description (e.g. keywords "flower"
and "petal” for the flower-part of a plant description). It chooses fillers for
attributes of these parts (e.g. "red” would fill the colour attribute of the
flower-part of the plant description) by checking property names attached
to words in the dictionary (e.g. '"vision-colour” for 'red”). Syntactic
information is ignored; the text being split into segments at "pivotal points”
such as conjunctions and punctuation marks.

Apart from its straightforward limitations, e.g. failure to pick up relevant
information if it is somewhat indirectly expressed, the approach taken by
Cowie cannot handle text concerning more than one object or situation,
since this would confuse, or simply merge, the information associated with
the objects or situations described. A related problem is that both these
systems do not have satisfactory mechanisms for reference resolution, and
so would not be able to process the examples handled by the Capture
system, even though Sager's system does replace some of the words in the
format tables with antecedents (also appearing in the format tables), and is
therefore capable of handling some cases. Both systems make use of simple
domain specific lexical categorization. This is not adequate for database
classification of objects (described in Section 6.4) because one level of
lexical categorization does not capture, for example, the (specialization)
relationship between ""machine”, "peripheral”’, and "disc-drive”. In general,
both Cowie's and Sager's systems can be viewed as template-filler
processors, where the templates constitute a very minimal knowledge base,
and with rather weak control of the detailed character of the fillers, which

129

are primarily text strings.

However, if other tasks are considered, then we can find many examples of
language processing systems that make use of more interesting knowledge
bases. One category of such tasks are those that are essentially linguistic in
nature, for example translation, summarization, and question answering. The
systems described by Dejong [DeJong79] and Tait [Tait82] use knowledge
encoded in script-like formalisms in order to produce summaries of texts.
The BORIS system [Lehnert83] uses a conceptual memory knowledge base
organized in terms of MOPS, in order to achieve a depth of understanding
which allows sophisticated question answering behaviour after processing a

short story.

The knowledge based processing in Capture is better characterized as not
only making use of the knowledge base to perform language processing, but
also as using additional knowledge in order to perform an extra-linguistic
application task. Examples of other systems that fit this characterization
are the Consul system being developed at USC/ISI (see e.g. [Mark81]) and
the natural language interface to a graphics system developed at BBN (see
e.g. [Brachman79a]). Both these systems use the KLONE formalism for

knowledge representation.

In the BBN system the PSI/KLONE interface (i.e. the interface with "Parsing
and Semantic Interpretation using KLONE") is used to drive a sophisticated
graphics display using natural language commands. In addition to encoding
general conceptual knowledge about the objects being displayed (and
referred to by the user) the task requires encoding knowledge about how to
display these objects. A ""display expert” component uses both the general
conceptual knowledge and the display specific knowledge in order to drive
the actual display. Attached procedures are used to generate "display form”
concepts from object descriptions or from representations of commands to
alter the display. The attached procedure mechanism is then used again to
invoke "how to draw’” procedures attached to the "display form" concepts.

The Consul system is designed to provide a co-operative natural language
interface to interactive services such as an electronic mail service. The
knowledge base includes concepts in terms of which users phrase their
requests ('user knowledge'); knowledge about basic operations, such as
"transfer”, that can be used to describe services ("systems knowledge"); and
specific knowledge about a particular service (''service knowledge"”), such as
concepts for transfer operations for sending different kinds of messages.
The system uses rules, themselves represented in KLONE, for mapping user
knowledge requests (created by the parser) into service knowledge
structures that correspond to actually executable service operations. (If
this is not possible, then the knowledge structures are used for explaining

130

why the user’s request cannot be carried out.)

The framework chosen for application task processing in the Capture system
is very similar to that of these two knowledge-based approaches. Thus the
memory knowledge base used by Capture encodes language related, domain
related, and task-specific knowledge, and also encodes the relationships that
hold between them. In particular, the task specific knowledge is independent
from the language and domain related knowledge in the sense that memory
entities and assertions representing the task specific information (including
further restrictions on the domain knowledge that apply in the context of
the task) can simply be added to a memory knowledge base already
containing assertions encoding the language and domain related knowledge.
But the way that control is organized in the task-specific component in
Capture is different from the use of attached procedures, or the application
of mapping rules for operating on knowledge structures. In Capture, the
task-specific component uses the knowledge in memory via task-specific
operations. These have the same properties as the interpretation operations
used in the system, being procedures that interact with memory by the use
of retrieval operations and the creation of new memory assertions. These
task specific operations are called at a number of points during text
processing as described in the following sections.

It is not argued that Capture's approach to application task processing is to
be preferred as such to the approaches taken in the BBN and USC/ISI
systems, the motivation for the task component was rather different: the
implementation of the database capture component was mainly aimed at
verifying that a non-trivial application task could be performed
(demonstrating, as suggested earlier, a certain level of language
understanding) within the overall framework of the Capture system as a
whole, based on the representation and processing techniques developed in
the project.

6.2 The database capture task

The ""database capture task” is the processing of natural language texts to
extract that part of their propositional content that can be included in a
structured database with a pre-specified format, the "target database’.
There are many possible applications for a system performing this task such
as the generation of relational databases from e.g. personnel records,
computer maintenance records, etc.

A text processing system for database capture can also be used, of course,
by a human operator for the purpose of creating a database when no

131

independent text already exists. The question of whether or not writing texts
for such a system is superior to some other user interface (e.g. an
interactive form-filling system) was not addressed in this project.

It should be noted at this point that this task is distinct from that
performed by the kind of natural language interface for database update
discussed by [Kaplan81] and [Maier82]. Their type of database update
system would handle DBMS-oriented natural language commands such as
"Change the status value for Smith from 15 to 30". These systems
concentrate on the interpretation of command verbs with respect to a given
state of a database. The database capture task is concerned, instead, with
processing paragraphs of text that need not have been written with a
database in mind, and that do not make assumptions about the state of the
database. However, it is easy to see that there is an overlap between systems
performing the update and creation tasks: some updates could be
formulated in a more natural way detached from the database management
system. Most of the effort, by far, in building natural language interfaces to
databases has gone into the design of natural language query systems (e.g.
[Woods78b], [Walker78], [Boguraev83] and many others). Much of this work
has been concerned with interpreting the quantificational structure of
natural language questions in order to generate corresponding database
queries, an issue which was not tackled in this project. Clearly however,
natural language query systems are less suitable as an application task for
investigating mechanisms for interpreting connected prose as compared
with the database capture task (see below).

Database capture, in the sense defined, is considered to be a possible
practical application area for the general text processing techniques that
were developed in this project. Thus the work reported here on database
creation from natural language text is to a limited extent a study of the
feasibility of such an application of automatic text processing. However, the
main motive for choosing this task is its utility for testing the natural
language processing techniques used by the system. The advantages of the
database capture task in this respect are the following. Working with limited
discourse domains in this application does not mean that we have made a
simplifying assumption that is too unrealistic. The task requires the
interpretation of language constructs in context in order to generate
explicit database statements. This means that, in particular, there must be
mechanisms for anaphoric reference resolution, and the resolution of
sentence level word sense and structural ambiguity. These problems
associated with sentence level ambiguity are crucial to all text processing

tasks.

Another advantage of this task is that we can make simplifying assumptions
about the texts to be dealt with that cannot be made when performing other

132

types of processing. For example, in-depth comprehension of narratives
requires paying much attention to the affects and goals of the characters in
stories. Having a test text type which does not require handling such
complexities means that it is possible to concentrate on the more
straightforward linguistic aspects of descriptive text, such as reference
resolution and the derivation of the propositional content of descriptive
sentences. Techniques for dealing with these latter issues are, of course, still
relevant to processing narratives. Thus studying techniques for processing
simple descriptive texts, such as the texts used for database creation, which
are not concerned with human social affairs is considered to be worthwhile,
and probably a necessary first step, before general text processing can be
tackled.

The present system is not able to handle real, unedited, texts. This is
because the coverage of structures handled by Boguraev’s analyser is not
wide enough for this to be feasible (for example it cannot handle conjoined
clauses), and also because of the small size, at present, of the system
lexicon. In addition, the number and complexity of the language
interpretation operations would have to be increased since the ones that
were implemented cannot, and were not expected to, handle the full range of
interpretation possibilities exhibited by descriptive texts (see Section 4.10).
However, 1 believe that doing the work necessary to overcome these
shortcomings within the framework, for memory and context mechanisms, of
the present system could lead to a realistic system for database input for
some very restricted applications, though it is certainly the case that the
amount of work involved would be very considerable.

6.3 The target databases

The target databases used to illustrate the processing that can be
performed by the system are relational databases. The choice of the
relational model for this purpose was made because the model is well known
and has a reasonably well defined and simple organizational structure.
Attributing semantics to a relational database is not a well defined process,
although there have been attempts to incorporate semantic specification
into variations on the relational model (e.g. Borkin's Semantic Relation
Model [Borkin80]). The information in memory about a database can be
thought of as providing a kind of "conceptual schema”, or at least as
providing a semantic definition, for the database that is adequate for

133

performing the database capture task for simple texts. (*)

If a different database model had been used, then the form of the database
descriptions in memory would have to be changed (to a lesser or greater
extent depending on the kind of data model involved), and so would the task
specific operations, described later, that make use of these. However, the
language interpretation operations and the context mechanism used with
these operations would not be ‘affected by the choice of a different database
model. Examples indicating how the semantics of a relation in a relational
database are expressed in memory were given in Chapter 2 on memory
representation. Further details of this are included in the section below on
task specific operations.

As mentioned earlier, the two test databases were the Machines Database,
dealing with data processing machines, and the Artifacts Database, about
museum artifacts. The "enterprise”, in database systems jargon, for the
Machines Database could be a retail organization that wished to keep track
of descriptions of the data processing machines (models) that it marketed,
their suppliers and manufacturers. In this database MACHINES/RELATION
gives the model number, its cost, categorization into machine type (e.g.
computer or printer), the weight of the model, and (somewhat
unrealistically) its colour. The MANUFACTURES/RELATION specifies the
model number, the manufacturer name, and the city of manufacture. The
SUPPLIERS/RELATION gives the names of suppliers and their status (which
can be interpreted as credit status, or an indication of reliability). The
SUPPLIES /RELATION records the suppliers that (regularly) supply particular

models.

For the Artifacts Database the enterprise is envisaged to be an anthropology
museumn, the database being created from natural language records about
artifacts and collectors. In this database ARTIFACTS/RELATION gives the
number of an artifact, its condition, and a categorization of its type (e.g.
ornament or weapon). The ORIGIN/RELATION specifies the collector of an
artifact and its place of collection. The COLLECTORS/RELATION gives a
collector's name, occupation (e.g. missionary), and nationality. The test
databases thus have a modest level of complexity, and certainly cover data
broad enough to challenge the interpretation mechanism if described in
running text. There is of course no requirement for test purposes that the
number of database objects handled is large, i.e. that the database itself
should be large.

(*) It may be possible to provide more rigorous semantics for relational
databases via their memory descriptions and the semantics of memory
assertions discussed in Chapter 2, but investigating this was considered to
be out of the scope of the present project.

134

The specific column names of the relations in the two databases are listed
below. Underlined columns indicate the attributes forming 2 key for each

relation.

A) Machines Database

MACHINES/RELATION
MC/MCNUM MC/COST MC/TYPE MC/COLOR MC/WEIGHT
SUPPLIERS/RELATION
S/SID S/STATUS
SUPPLIES/RELATION
SMC/SID SMC/MCNUM
MANUFACTURES/RELATION
M/MNAME M/MCNUM M/CITY

B) Artifacts Database

ARTIFACTS/RELATION

ARTF/NUMB ARTF/TYPE ARTF/COND
ORIGIN/RELATION

ORIG/ARTN ORIG/COLL ORIG/PLAC
COLLECTORS/RELATION

COLL/NAME COLL/0OCCP COLL/NATN

The keys specified above are the only candidate keys for the relations. The
functional dependencies that are assumed to hold for the two enterprises
can be summarized by saying that all the relations are in "third normal
form" (they are, in fact, in fourth normal form). Thus there is no functional
dependency between, say, the colour of machines and their cost, or between
the occupation and nationality of collectors. (*)

One reason for handling two domains (and corresponding target databases)
was to increase the range of example texts. A second reason was to verify
that a change in the domain and target database would involve only
additions to the contents of memory (unless it turned out in practice that
the different domains naturally led to input texts of substantially different
complexity). This limitation of changes to memory only does hold for Capture
proper (i.e. excluding the analyser and its dictionary) as far as the tests
went, although processing examples from a second domain did bring to light
a number of "bugs” in the implementation.

(*) Explanations of functional dependency and third normal form are given
in many database system textbooks such as [Date81].

135

A number of assumptions were made about the capabilities of the database
management system to which the information extracted from the texts
would be passed, but care was taken to make these sensible ones, matching
the current state of DBMS research (though they were perhaps in advance of
current commercial DBMS). The first assumption is that the DBMS is thought
of as operating under the "open world assumption”. That is, assertions
corresponding to tuples that are not included in relations are interpreted as
being unknown, rather than false. This is because the database capture task
being performed is thought of as a process of accumulating information
rather than updating an existing complete model of the world described by
the database.

A second and necessary assumption, related to the open world assumption,
refers to the treatment of null values in the database. It is assumed that the
DBMS allows "null” or unknown values for entries in non-key columns. For
instance, a tuple in the 'MACHINES/RELATION’ with key 'P9000’ can have the
'MC/COLOR’' entry unknown. This is a necessary assumption for many of the
applications envisaged for database capture from text, because the texts
used need not have been written with a particular data model in mind, and
only known or observed information, which may not be complete, will be
recorded in the texts. Further, it is not always possible to specify default
values for particular columns of relations. A mechanism for default values is
in any case often considered to be the responsibility of the DBMS. (¥)

A third assumption is that the DBMS can enforce constraints about a
particular database in such a way that some of the information passed to it
by the text processing system could be ignored, or could lead to other side
effects in the database such as the deletion of a tuple. As noted earlier, it is
assumed that the DBMS has no way of communicating about these events to
the text processing system and therefore they cannot affect the
interpretation of the text. Thus, for example, if the sentence "P9000 is
green' is encountered, and then “"P2000 is red”, it is for the DBMS to perform
an update, or to ignore the information generated by the text processor for
the second sentence because it is considered to violate a constraint.

In summary, the text processing system assumes that it is sending
information to a sophisticated DBMS that has its own means for dealing with
incomplete or even inconsistent information. The database descriptions
represented in memory are thus not intended to help the DBMS carry out its
functions, but only to allow the text processing system to generate

(*) Nevertheless the framework of the Capture system can, 1 believe,
straightforwardly accommodate task-specific operations for some handling
of default database values, which would be specified in the descriptions of
database relations in memory, but this was not tried out.

136

information from text that may be used by a DBMS. The techniques used for
describing databases in memory could perhaps be useful for a DBMS since
the descriptions can be regarded as high level conceptual schema. Similar
techniques have indeed been tried for this purpose, but the problems
involved are considered to be database theory problems (as yet largely
unresolved), and only the text processing issues that are relevant to the
database capture task have been considered in the present work reported

here,.

One consequence of the assumptions just listed is that the interface between
the text processing system and the DBMS is very simple. The output of the
task processor component of the text processing system is a list of
"database creation statements'. Each database creation statement has the
form
(<relation name> (<list of (<column-name>, <value>) pairs>)).

One, or more, of the column names in a creation statement must form the
"key", or "joint key”, for the relation in the statement. For example,
processing the sentence "Plexir supplies P7720 which is a computer” results
in the following two database creation statements.

(SUPPLIES /RELATION ((SMC/SID Plexir) (SMC/MCNUM P7720)))
(MACHINES /RELATION ((MC/MCNUM P7720) (MC/TYPE computer))).

'MC/MCNUM’ is the key for the 'MACHINES/RELATION’, and 'SMC/SID’ and
'SMC/MCNUM' form the key for the 'SUPPLIES/RELATION'.

Database creation statements can be translated by a post-processor into a
request in the data manipulation language (DML), for example SEQUEL
[Chamberlin74], of the DBMS to include the new information into the target
database. The post processor would do this using a syntactic transformation,
and (depending on the DML) might also have to evaluate the rather trivial
memory operation of locating all the column names for a relation. (*) For
the first database creation statement, a SEQUEL-like statement might be

INSERT INTO SUPPLIES/RELATION:
<SMC/SID=Plexir, SMC/MCNUM=P7720>.

The assumption that the DBMS can handle unknown values is relevant here
because it allows database creation statements which do not contain all
column names to be translated into a DML statement for inserting a tuple
into the database. As remarked by Mike Gray ([Gray81] p.148) "When there
are unknown values in a database, it is not always appropriate to reject a

(*) Note that whether creation statements can be inserted efficiently is a
question for the DBMS.

137

request for the insertion of a new tuple whose key matches that of an
existing tuple. It may be possible to merge the information in them.” For the
second database creation statement above, the SEQUEL-like statement
might therefore be

INSERT INTO MACHINES /RELATION:
<MC/MCNUM=P7720,
MC/TYPE=computer,
MC/COLOR=*unknown¥,
MC/COST=*unknown¥*,
MC/WEIGHT=*unknown*>.

A further database creation statement generated from a later sentence

might be

(MACHINES /RELATION ((MC/MCNUM P7720) (MC/COST 900)))

with the corresponding DML statement

INSERT INTO MACHINES /RELATION:
<MC/MCNUM=P7720,
MC/TYPE=*unknown?*,
MC/COLOR=*unknown®*,
MC/COST=900,
MC/WEIGHT=*unknown*>.

It is assumed that the DBMS would merge the information (i.e. cost is 900)
from the second INSERT statement into the tuple created by the first one.

In a production system it would also be necessary to replace the word senses
that currently appear in database creation statements with surface lexical
stems, or with database specific codes (e.g. for colours). The information
required for doing this can easily be represented in memory if necessary.

The following sections will describe how the database creation statements
are generated by the task processor of the text processing system.

138

6.4 Task specific operations

This section describes memory operations that are specific to the database
capture task. More precisely, these operations are concerned with locating
the relational database description entities represented in memory that
correspond to language related entities in memory. The memory operations
know about the form in which these database descriptions are represented
in memory. Memory representation examples concerned with the database
descriptions were given in Section 2.8. As explained in that section, a
relational database is described in terms of collections of memory entities
for each of the relations in it. These collections are structured by
correspondence assertions (centred around an entity such as
'manufactures/relp’) in order to encode the relationships between language
related entities (e.g. 'manufacture’), predicates underlying relations (e.g.
'relp/manufactures’) and database name entities (e.g.
'"MANUFACTURES/RELATION’). The task-specific operations are implemented
in terms of memory retrieval operations, which in turn are implemented in
terms of the marker processing model described in Chapter 3.

Task specific operations can be classified into operations that either (a)
locate entities describing the predicates underlying relations that
correspond to language-related entities, or (b) extract (and check) actual
DBMS implementation names (i.e. the names of relations and columns) from
the entities describing the underlying predicates (e.g. 'relp/entry’ entities
standing for typical entries in the column of a relation, see Section 2.8).
Some of these operations are now described; the first three are of type (a),
while the following three operations are of type (b).

1) Locating underlying predicates

The predicates sought are specializations of language related and domain
related predicate entities, 'manufacture’ and 'colour/of’, for example. The
operation simply finds a specialization of the language-derived predicate
that is also asserted to be the 'relp/statement’ of a relation (Section 2.8).
For example, the following memory assertions

(Specialization: manufacture of makel)

(Specialization: relp/manufactures of manufacture)

(Corresponds: relp/manufactures to manufactures/relp as
relp/statement to db/relp)

are used to locate the underlying predicate entity 'relp/manufactures’ from
the language predicate entity 'makel’.

139

2) Classification of database entities

In both the test databases one or more of the underlying predicates
classified individual entities in the database domain. These classifications
appear in the target databases as the columns for machine type, artifact
type and collector occupation. The task-specific operation is given a memory
entity, 'P997' say, that is an instance of a type of object in the database
domain and, if possible, returns an entity that is a valid classification of the
object for that database. For example, the artifact type for 'P790', known to
be an armlet, would be 'ornament1’. Similarly 'P9000’, a minicomputer, would

yield 'computer’. The memory assertions used for the first example are

(Specialization: P790 of armletl (instance))

(Specialization: P790 of artifact/dbentity)

(Specialization: armletl of ornament1)

(Corresponds: db/artifact/types to artifact/dbentity as
dbentity/classif to dbentity)

(Specialization: ornament1 of db/artifacts/types).

The last two memory assertions encode task specific knowledge which
asserts that 'ornamentl’ is a valid database classification in the Artifacts
Database. In another database, for instance one about jewelry prices, the
entity 'armlet1’ might itself be a valid classification, though it is not in the
Artifacts Database. The database classification operation finds the generic
database entity, e.g. 'artifact/dbentity’, for the object that it is given, and
then uses the 'dbentity/classif’ associated with this to choose an entity that
is a valid classification and that is above the entity being classified in one of
the hierarchies.

3) Finding database description entities for domain-related entities

An operation of this type would, for instance, be given the domain-related
entity 'armletl’ and return 'artifact/dbentity’, and similarly 'disc-drivel’
would return 'machine/dbentity’. The following memory assertions are used
by the operation in the second example.

(Specialization: disc-drivel of peripheral)

(Specialization: peripherall of machine)

(Specialization: machine/dbentity of machine)

(Corresponds: machine/dbentity to supplies/relp as
relp/dbentity to db/relp)

The entity returned by the operation corresponds to a 'relp/dbentity’ in a
database description and shares an ancestor, in the specialization
hierarchy, with the domain-related entity given to the operation.

140

4) Database names for arguments of underlying predicates

This operation locates the names, in the target database, of the column and
relation appropriate to a database value, where this value has been asserted
to be the argument of an instance of an underlying predicate for the
relation. For example, suppose we are given the following memory assertions

(Specialization: E22 of relp/machine/weight (instance))
(Corresponds: 290 to E22 as
machine/weight/value to relp/machine /weight)

and have a part of the database description as follows.

(Specialization: MACHINES /RELATION of relation (instance))

(Corresponds: MACHINES/RELATION to machine/relp as
relp/relation to db/relp)

(Specialization: MC/WEIGHT of column (instance))

(Corresponds: machine/weight/entry to machine/relp as
relp/entry to db/relp)

(Corresponds: machine/weight/value to machine/weight/entry as
relp/entry/value to relp/entry)

(Corresponds: MC/WEIGHT to machine/weight/entry as
relp/entry/column to relp/entry)

(Corresponds: relp/machine/weight to machine/relp as
relp/statement to db/relp)

(Corresponds: machine/weight/value to relp/machine/weight as
weight /of /weight to weight/of).

The relevant underlying predicate is the entity 'relp/machine/weight’ and
the relevant generic argument to it is 'machine/weight/value’. Retrieval
operations for finding fillers of (inherited) roles in correspondence
assertions make use of the assertions listed above to locate
'machine/weight/entry’, and then the column name 'MC/WEIGHT'. The same
types of retrieval operations make use of the correspondence assertions to
locate the entity ‘'machine/relp’, and from this the relation
"MACHINES/RELATION'.

In general, however, locating the correct relation and column names is not
simply a matter of following a prescribed chain of role-owner relationships in
correspondence assertions. Thus the 'relp/entry’, with which the entities
'relp/entry/column’ and 'relp/entry/value’ are associated, may have its
'relp/entry/value’ filled by the name, or number, of a database entity rather
than a simple value (such as the weight value above). For example, the other
argument of the predicate instance 'E22’' may have been filled by inclusion of

the assertion

(Corresponds: P9999 to E22 as
machine/dbentity to relp/weight/of)

where the following assertions, in addition to those given above, appear in

141

the database description.

(Specialization: MC/MCNUM of column (instance))

(Corresponds: machine/mecnum/entry to machine/relp as
relp/entry to db/relp)

(Corresponds: menum/value to machine/menum/entry as
relp/entry/value to relp/entry)

(Corresponds: menum/value to machine/dbentity as
dbentity/number to numbered/dbentity)

(Corresponds: machine/dbentity to relp/machine/weight as
weight /of /possessor to weight/of)

(Specialization: machine/dbentity of numbered/dbentity).

The entity 'mcnum/value’ is used, instead of the generic argument of the
underlying predicate (i.e. 'machine/dbentity’), by the operation for locating
the column 'MC/MCNUM".

Thus the task specific operation for locating column names from predicate
arguments needs to check whether the predicate argument is described as a
numbered or named database entity, and then uses an appropriate "role",
'dbentity/name’ or 'dbentity/number’, of the database entity to locate the
column name in the database description.

Another complication in this operation is that the generic underlying
predicate argument, for instance 'machine/dbentity’ in the last example,
may take part in the description of more than one relation. The appropriate
names are chosen due to their higher context activation, which is
determined by a task specific factor whose scope is the set of entities in the
description of a database relation. This factor is created after the creation
of an instance of an underlying predicate for that relation. In the above
example this ensures that that 'MACHINES/RELATION' and '"MC/MCNUM' are
chosen as the results of the operation, but not 'MANUFACTURES/RELATION’
and 'MMC/MCNUM’, which would have been chosen if the predicate instance
'E22' had been created as a specialization of 'relp/manufactures’.

5) Database names for classification

It has been explained how a database entity, such as 'P790’, because it is an
‘armletl’ and an ‘'artifact/dbentity’, can be given a classification,
'ornamentl’, with respect to a target database. The part of the database
description that allows this to be done also indicates the database names
that are used to encode this classification in the target database. Simple
role extraction retrieval operations, specified by this task specific operation,
are used to obtain this information once the 'dbentity/classif' (see (2)
above) for the database entity has been identified. For the armlet example
this entity is 'db/artifact /types’, the relation name is

142

'ARTIFACTS /RELATION’, the column for 'P970' is 'ARTF/NUMB’, and the
column for 'ornamentl’ is 'ARTF/TYPE'. The relevant memory assertions, in
addition to the ones given in the section on classification of database

entities, are as follows.

(Corresponds: db/artifact/types to artifact/dbentity as

dbentity/classif to dbentity)
(Corresponds: ARTIFACTS/RELATION to db/artifact/types as

classif /relation to dbentity/classif)

(Corresponds: ARTF/NUMB to db/artifact/types as
classif /id/col to dbentity/classif)

(Corresponds: ARTF/TYPE to db/artifact/types as
classif /type/col to dbentity/classif)

6) Checking for keys

This operation simply checks that a list of entities representing columns
includes all the columns in the key for a relation. For example, the operation
succeeds if it is given the columns 'SMC/SID' and 'SMC/MCNUM’, and the
relation 'SUPPLIES/RELATION'. The relevant memory assertions in this case

are

(Corresponds: SMC/MCNUM to SUPPLIES/RELATION as
rel/key/col to relation)

(Corresponds: SMC/SID to SUPPLIES/RELATION as
rel/key/col to relation).

The operations that were described in this section provide the task-specific
component of the Capture system with the necessary tools for exploiting the
database-related knowledge represented in memory. The way these
operations are used in performing the database capture task is described in
the following section.

6.5 Interleaving interpretation and task operations

This section explains when the task processor evaluates task-specific
memory operations so that it can produce the database creation statements
corresponding to the text. In fact the evaluation of task-specific and
language interpretation operations is interleaved in a simple manner, as
explained in this section. An alternative to this mode of processing would be
to perform the necessary interpretation operations on all of the output of
the analyser for the text before evaluating the task-specific operations
required to produce the database creation statements. But this is a less

satisfactory option.

143

Thus there are two reasons why interpretation and task operations should
be interleaved. First, interleaving allows the interpretation process to make
use of certain assumptions about entities in the database domain. For
example, the interpretation process might be able to make use of the
assumption that in the database world the ‘object’ case of manufacturing
actions is normally filled by a ‘'machine’. The intention is to be able to make
use of such a restriction without its persisting when the database specific
part of memory is removed. An example of how this works is given later in
this section. The second reason for interleaving has to do with accumulating
context information. The evaluation of task-specific operations leads to the
creation of context factors. This can, in principle, aid subsequent
interpretation operations if, for example, the context activations of entities
concerned with the database domain are increased directly as a result of the
creation of these context factors, or indirectly if association or subject area
context factors are created.

The sequences of task specific operations that are evaluated are different
for handling predicate clauses (verb and state clauses) from those for
handling "be-clauses”. These two cases will now be described with some
examples of the resulting database creation statements. The handling of
predicate clauses is described first.

1) Predicate clauses

After the generic predicate entity for the clause, e.g. 'manufacture’ or
'weight/of’, has been identified (Sections 4.5), a task-specific operation for
specializing this predicate entity is evaluated. In the database capture task
this is the operation that was referred to as locating underlying predicates
(Section 6.4), and it would return 'relp/manufactures’ for 'manufacture’ and
'relp/machine/weight’ for 'weight/of'. The predicate instance entity created
for the clause is asserted to be a specialization of the underlying predicate.
The evaluation of the task-specific operation has now been completed and
control is returned to the clause interpretation operation, which need not
know whether the predicate instance was specialized to an underlying
predicate for a relation.

However, if the newly created predicate instance was asserted to be an
underlying predicate, this can affect the evaluation of argument
specialization and reference resolution operations that are initiated by the
clause interpretation operation. For example, during the interpretation of
the sentence "It is manufactured by Plexir”, the predicate entity
'manufacture’ is specialized to 'relp/manufactures’ so that the argument
entity derived from the case label 'object’ is not 'manufacture/obj’ but
'machine/dbentity’. The fact that the object case may be described as a

144

'machine/dbentity’ can be used as a constraint by the reference resolution
operation that is evaluated for the pronoun "it".

The clause interpretation operation evaluates reference resolution
operations for each of the noun phrases of the clause, the referents in the
current example being 'Plexirl’ and a particular 'machine/dbentity’, 'P9000’
say. Control then reverts to the task processor. This evaluates a task-
specific operation for finding the database relation and column names for
each of the arguments of the instance of the underlying predicate created
for the clause. The task processor then merges the information that results
from evaluating these task-specific operations into one or more database
creation statements. For instance, the following database creation
statement is output for "It is manufactured by Plexir':

(MANUFACTURES/RELATION ((M/MCNUM P9000) (M/MNAME Plexir1))).

An example in which the underlying predicate is derived from a state-clause
is “The weight of the machine is 220". The interleaving of interpretation and
task-specific operations is the same as for the verb-clause case, so the
database creation statement output by the task processor might be

(MACHINES/RELATION ((MC/MCNUM P8000) (MC/WEIGHT 220))).

Finally, an operation is evaluated to check that the set of column names in
the database creation statement(s) includes the columns in the key of the

target relation as specified in memory.

2) Be-clauses

The output produced by the task processor for the sentence "P2000 is an
armlet” is

(ARTIFACTS/RELATION ((ARTF/NUMB P2000) (ARTF/TYPE ornament1))).

A be-clause interpretation operation (Section 4.6) begins processing the
analyser representation of the clause by identifying, or creating, the generic
entity for the clause, which is simply 'armletl’ in this case. It also evaluates
a reference resolution operation for identifying, or creating, the referent of
the subject of the clause (i.e. the entity whose description is being refined by
the clause) which in this case is the entity 'P2000’. 'P2000’ is then asserted
to be a specialization of 'armlet1’. At this point the be-clause interpretation
operation activates the task processor which handles the consequences, for
the task, of the new specialization assertion.

145

The task processor evaluates a memory operation (Section 6.4) to find a
generic database entity for the entity 'P2000’. This operation returns
‘artifact/dbentity’, and the following assertion is included in memory

(Specialization: P2000 of artifact/dbentity).

The task processor then evaluates an operation to find a classification of
'P2000’ with respect to the Artifacts Database. This operation succeeds for
'P2000’, and 'ornamentl’ is returned as a valid classification (Section 6.4).
Since the classification operation has succeeded the task processor
evaluates an operation that enables it to construct the database creation
statement that encodes this classification for the Artifacts Database. This
operation, which was referred to as finding database names for
classification, extracts the relation and column names from the description
of the Artifacts Database, and the database creation statement given above,

encoding the classification, is output by the task processor.

The database capture task processing for an embedded clause occurs, in the
manner described above for predicate-clauses and be-clauses, at the time
that the embedded clause is interpreted, i.e. before the interpretation of the
higher level clause has been completed. Thus the task output for embedded
clauses is produced first; for example, the output produced for the sentence
"Plexir manufactures P9000 which is supplied by Smith" is

(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9000)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P9000)))

Similarly, the sentence "P9000 is a computer that is manufactured by
Mikota' results in the following database creation statements

(MANUFACTURES/RELATION ((M/MNAME Mikota1) (M/MCNUM P9000)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P9000))).

Some embedded clauses do not convey new information, and these do not
generate any database creation statements. Restrictive relative clauses,
which are interpreted by reference resolution operations, are of this type.
For instance the sentence "Plexir manufactures the computer that is
supplied by Smith", might produce the output

(MANUFACTURES/RELATION ((M/MNAME Plexir1) (M/MCNUM P9000)))

Verb and state clauses for which the clause predicates do not correspond,
i.e. cannot be specialized to, the underlying predicate for a relation in the
target database, do not generate any database creation statements. An
example of such a clause is "Haddon donated P1234". Nonetheless, the
memory interpretation of such clauses is still important for the database

146

capture task because the information conveyed by them might be necessary
for later processing, for instance reference resolution in the interpretation
of the sentence '"The artifact that was donated by Haddon comes from
Woodlark™.

The task processing for clauses with plural noun phrases can result in the
generation of more than one database creation statement. The memory
interpretation of such clauses involves retrieving, or creating, a memory
entity that represents the set of objects referred to by the plural noun
phrase. For example during the interpretation of the sentence "Smith
supplies P9000 and P9090" an entity, 'E1’ say, will have been created, and
memory will contain the following assertions

(Specialization: P9000 of E1 (member))
(Specialization: P9090 of E1 (member))
(Corresponds: E1 to E2 as machine/dbentity to relp/supplies).

The task specific operations initiated by the task processor will return ‘E1’
and 'Smith’ as well as the database names. This is because it is 'E1’ that fills
the 'machine/dbentity’ argument of the underlying predicate instance 'E2'.
The task processor evaluates a retrieval operation for locating the elements
of the set represented by 'El' and then produces the following database

creation statements

(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9090)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9000))).

Similarly, the output generated for the sentence "They supply the printers”
might be

(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P1000)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P2000)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P1000)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P2000))).

6.6 Handling other constructions

There are different categories of constructions that cannot be handled by
the system, so database creation statements are not generated for them.
There are various reasons for these limitations. The main categories of
excluded constructions are

(1) Constructions that cannot be handled by the analyser or by the

interpretation component.

147

(2) Constructions that cannot be mapped in a straightforward way into
statements in a relational database.

(3) Cases for which the mapping into database creation statements depends
on inference mechanisms not supplied in this project.

(4) Cases that could be handled if the task specific operations were more
sophisticated.

(5) Constructions that could be handled if additional task specific
operations were defined.

Examples of categories (1), (2), and (3) will be given below under the heading
"limitations” and examples of (4) and (5) under the heading "extensions”. I
will indicate the categories to which, in my view, these examples belong.
Needless to say, these examples represent only a sample and there are many
other constructions that would not be handled by the system.

Limitations on coverage

-- A number of constructions that cannot be handled by the analyser were
described in Section 4.8. These include, for example, "P200 and P700 were
collected by Clark and Nifilsk respectively” (parallelism with surface order);
"The condition of P700 is not good” (negation); "So does Plexir" (ellipsis);
and "The spear head is razor sharp” (metaphor). (category 1)

-- Comparatives cause problems for database input. Examples are "P700 is
older than P900", and "The condition of P700 is better than the condition of
P200". The first example would require allowing the use of ranges of values
in the database. It might be possible to handle the second example using a
specification of allowable state descriptors (see below). (category 2)

-- Uncertain facts. For example "This artifact might have been collected in

Daui”. (category 2)

-- The database capture component always assumes a distributive
interpretation of statements such as "The cost of the machines is 200". Even
though the interpretation component does not commit itself to choosing a
distributive or collective interpretation, translation into database creation
statements must do this. (category 3)

-- Another type of quantification that cannot be handled by the database
capture task is exemplified by "Two of them are from Woodlark”. (category 2)

148

-- There are many cases that require rule-based inferences to manipulate
structures created by the interpretation component. In order to deal with
these a mechanism for applying rules represented in memory would have to
be implemented (cf. the mapping rules in Consul, [Mark81]). Examples are
"P700 arrived with P200"” (implying that they were collected at the same
place); “P300 was bought from a Woodlark trader” (possibly implying that the
origin of the artifact is Woodlark); and "P400 should be handled with care”
(implying that the artifact should be classified as "fragile”). (category 3)

Extensions of coverage

-- The database descriptions could include a specification of allowable state
value descriptions so that "The condition of this artifact is excellent” would
lead to 'good’ via the relationship in memory between the entities 'good’ and
‘excellent’. A similar extension is possible for place names and would make
use of knowledge of spatial inclusion for regions. (category 4)

-- Examples like “"Bevan supplied us with a canoe-prow from Daui” show that
the operation identifying underlying database predicates should check the
restrictions on the arguments of the underlying predicates. Currently these
restrictions are only used to aid the interpretation process. (category 4)

-- Relationship interpretation currently affects the generation of database
creation statements indirectly, via reference resolution. An additional task-
specific operation could be implemented in order to generate database
creation statements on the basis of relationship interpretation. For example,
if there was a relation in the Artifacts Database listing the parts of artifacts,
then a suitable database creation statement would be generated after
interpreting the relationship in ""The pot has a lid". (category 5)

-- For the purpose of generating database creation statements, a task
specific operation could be defined that would allow the inheritance of
specified properties from roles to owners in correspondence assertions. For
example, given the sentence "The pot's lid is in poor condition” we may wish
to state in the database that the condition of the whole assembly, pot plus
lid, is poor. (category 5)

-- Another necessary extension for a more complete system is the
implementation of a task specific operation for taking predicate names as
values for specified database columns. For example, the Artifacts Database
might have had a column indicating how an artifact was acquired by the
museum. The values generated would then include "bought” and
"bequeathed". (category 5)

149

6.7 Applicability to similar tasks

As the discussion of restrictions on texts handled for database capture
(Section 6.2) suggests, there are some restrictions on the other types of text
processing application task that might be undertaken using the techniques
explored in this project. The restrictions include handling only texts with
limited domains of discourse, because we do not know, and are unlikely to
know in the near future, how to represent in memory all of the knowledge
required for text processing without a domain limitation. An example of a
task requiring this knowledge might be summarizing all the articles in a news
magazine. However, it has to be accepted that this is not a limitation specific
to the Capture techniques. It applies to all knowledge-based approaches to
language processing investigated to date. Another restriction is that the
interpretation of the texts for the purpose of the task cannot depend on a
deep understanding of human social affairs and goals (see e.g. [Lehnert83]).
This rules out such tasks as answering questions about the motivation of
characters after reading passages from a novel. Research in this area is still
at a very preliminary stage, and so there is not much to take over for
inclusion in a Capture-like framework with wider applicability. Related to
this restriction is another one also concerned with the representation of
plans and goals. This is the need for "user modelling” required for
sophisticated processing of texts conveying, for example, a sequence of
instructions to be carried out by an automated office assistant. Another
restriction is that the techniques used in the project do not cover the type
of inference required for detailed analysis of causality and enablement for
physical events (see e.g. Waltz [Waltz81]).

These restrictions would still permit a number of application tasks to be
considered. One is gathering statistics from natural language reports.
Example applications are gathering statistics from medical reports (see
[Sager81]), weather reports and financial market reports. Another possible
application task is checking for the mention of specific facts or events when
analysing historical records. A related application is intelligent retrieval
from collections of legal documents such as patent records (see e.g.
[Lebowitz83]) or case reports. Another task associated with information
retrieval is the automatic classification of documents by processing their
abstracts. I believe the Capture techniques could be effectively applied to
such types of task, and would improve on the use of more superficial
analysis techniques (for instance those described in [King79] for historical
records).

Given a well developed system based on the techniques used in this project,
the alterations to the system necessary for tailoring it to one of the above
applications are as follows. It would be necessary to extend the dictionary to
enable the analyser to parse sentences in the new domain. The design of the

150

analyser as a general semantic parser [Boguraev83] means that, in principle,
the changes to the dictionary would only involve the inclusion of new words
and the addition of new word senses to existing entries. It would then be
necessary to create memory entities for the new word senses and relate
them using memory assertions to existing entities in memory.

The above alterations would still be task independent. Further memory
entities and assertions might have to be included in order to represent
further restrictions and specializations applicable in the context of the task.
Additional entities and assertions would also need to be included to
represent knowledge specific to the application task itself. Finally it would
be necessary to implement a task-specific component that would be invoked
after the creation of memory assertions, or (roughly in the manner used in
this project) at specific points during the processing of clauses, by the
language interpretation component. The realization of the task specific
component would include the implementation of task specific operations
that made use of memory retrieval. The complexity of the task component
and its task specific memory operations would very much be a function of
the complexity of the application task.

1561

Chapter 7

Summary and Conclusions

The work reported in this thesis was concerned with the development of
practical computational mechanisms for the representation and use of
knowledge and context for automatic text processing. The overall design
approach was that the basic mechanisms provided should be simple, well
defined, and efficient, but at the same time flexible enough for dealing with a
wide range of common language interpretation problems and types of factor

contributing to context.

In this chapter a brief summary is first given of the techniques developed in
this project. This is followed by some remarks about the performance of the
techniques in the Capture system, and a more general comparative
evaluation of the memory and context mechanisms involved. Finally, some of
the more promising directions for future research along the lines taken in

this project are indicated.

7.1 Techniques developed in this project

A representation formalism was developed for encoding a memory knowledge
base for a text processing system. Memory contains entities and two basic
types of assertions. Specialization assertions define a (tangled) hierarchy
that gives a classification of the entities in memory, while correspondence
assertions define a hierarchy that classifies the associations between them.
Subtypes of these assertions can give more information about classifications
and indicate the functionality implied by particular associations.

The representation of contextual information (other than the context
provided by the current contents of memory) is done uniformly in terms of
instances of various types of context factors, the types reflecting different
kinds of information that contribute to context. Each factor indicates that
the memory entities in its scope should be foregrounded, or regarded as
having an increased relevance, by an amount specified by the current
significance weight of the factor. Factors can be created by the operations
that are evaluated for performing the processing of a text. The application
of context for disambiguation and focusing makes use of the context
activation values of memory entities, these being derived from the context
information present by summing the significance weights of the relevant

152

context factors.

Language interpretation and application task components can exploit the
various types of knowledge stored in memory and the relationships between
these types that are also recorded in memory. The results of memory
retrieval operations for this purpose can be chosen, if necessary, on the
basis of the context activations of the relevant memory entities. The
retrieval operations are set operations implemented by marker processing
performed on the network structure derived from memory assertions. The
scopes of context factors are also implemented as marked sets (which
incidentally gives a convenient way of using traces of memory processing as
a factor contributing to context).

The main technique developed for increasing the efficiency of the memory
and context mechanisms was the automatic indexing of marked sets, and
hence processing and context information. This interacts with the technique
of recording certain marker propagations (used to decrease the effort
involved in marking) because the marked sets corresponding to the recorded
propagations need to be "maintained” when new memory assertions are
created. The indexing scheme can be used for efficient access to memory
entities that satisfy specified marking and/or activation threshold
conditions. In particular, this includes intersection searches that are
restricted to a "focus-space” determined by a specified context activation
threshold. The mechanism allows such searches to be done even though the
various context factors present can be managed independently by altering
their significance weights.

7.2 Observations on the evaluation of the techniques by Capture

Overall, the use of the techniques in the implemented Capture system was a
success in that a number of simple texts were correctly processed,
demonstrating non-trivial language interpretation and application task
processing. This involved the use of a memory knowledge base consisting of
around 450 entities and over 750 memory assertions, and the use of an
interesting range of context factor types.

Thirty or so different short example texts were successfully processed by
the system (as well as a similar number of non-interesting variants on
these). The example texts in Appendix A (which includes the final output
generated by these examples) pretty much exhaust the kinds of possibilities
that the present version of the Capture system can handle with respect to
the two target databases that were used. It should be noted that exactly the
same version of the Capture system (i.e. with the same initial contents of

163

memory, and initial significance weights for context factor types, etc.) was
used to produce all the output in Appendix A.

Unfortunately, many of these artificial examples read somewhat awkwardly.
This is partly due to the limitations on coverage at both the analysis and
interpretation levels. Another reason is that devising texts in order to test
particular constructions meant that the most natural choice of linguistic
expression to maintain cohesiveness was often sacrificed. For example, in
some cases where pronouns would have been appropriate other types of
definite reference were used instead (so it is just as well that this distinction
was not being used to generate context information, as it probably should in
a more complete system). Given the overall aims of this project, the
deficiencies of the example texts are not as serious as they would have been
if, for example, the main objective was to formulate a precise theory for the
interaction and relative importance of particular context factor types.

The implementation of the interpretation component concentrated on
operations for solving common language interpretation problems. These
operations seem to work reasonably robustly for the kind of simple
descriptive texts that were processed by the system. In particular, memory
is used during the interpretation of implicit relationships and various types
of clauses, and the context mechanism is vital for the operations
implemented for definite reference resolution, including plural references,
and for word sense disambiguation (of the type that cannot be handled by
the analyser).

The implementation of the database capture component illustrated the use
of knowledge specific to an application task, including the relationships in
memory between this knowledge and the language and domain related
knowledge. The task required solutions to text interpretation problems such
as reference resolution so explicit database creation statements could be
generated, and also knowledge of the domain so that, for example, the
classification of entities with respect to the target database could be

performed.

The implemented system for database capture is, however, still a long way
from being an ideal production text processing system. Building such a
system awaits solutions to a number of presently poorly understood
problems such as the processing of metaphors and robust parsing. Even a
more modest system would require a large amount of work, using the
techniques adopted in the implementation of Capture, for extending the
coverage of the system as much as possible. A number of extensions of
coverage were indicated in the chapters on interpretation and the database

capture task.

154

7.3 General conclusions about the memory and context mechanisms

The memory and context mechanisms provided by the techniques developed
in this project do have a number of identifiable advantages over previous
ones proposed by workers in Al. The techniques were not all tested (or could
not be tested) to the limit in the Capture system, but the mechanisms were
used to implement a working system capable of performing non-trivial text
processing; and on the basis of this experience some general claims about

the memory and context mechanisms can be made.

The memory representation system has the advantage of being simpler than
the semantic network formalisms on which it was based (the NETL and KL-
ONE systems) while still retaining their most important features. This is
important for ease of implementation and for the construction and
maintenance of knowledge bases. The formalism still has a number of
deficiencies in common with those on which it was based, such as the lack of
facilities for a sophisticated treatment of temporal information. Thus
although the representation has proved useful for solving some pervasive
language interpretation problems it was not intended to be (and is not
claimed as) a complete knowledge representation formalism adequate for all
possible text processing needs. The other main advantage of the
representation formalism, and one related to its simplicity, is that it can be
given a well specified semantics. This allows a greater degree of confidence
in using the representation, and gives a way of deciding the circumstances

under which operations can be performed on it.

The context mechanism is flexible enough to handle a wide range of
contextual phenomena. The mechanism provides a less rigid framework for
context management and application than that provided by script-like
approaches. The mechanism developed can be thought of as a generalization
of and improvement on Grosz's focus mechanism. Thus two important
advantages over Grosz’s mechanism are that various different factors
contributing to context can be combined when context is applied, and that
context can be accumulated and altered gradually, leading to a gradual shift
of focus during the processing of a text. Another advantage is that context
factors can be managed independently, and, if necessary, by different

components of the system.

The management of context factors by different components was not fully
tested in the implemented system. This was because, in Capture, some
factors (e.g. certain association factors) are created by the interpretation
component where, looking back, the memory component seems like a better
choice. The structure of the system also meant that contributions of surface
analysis to context were handled indirectly by the interpretation component
rather than directly by the analyser. It should be possible, however, to

1656

design a system that overcomes these problems of Capture and so make full
use of the advantages offered by the context mechanism.

The scheme for indexing marked sets is used profitably by both the memory
and context mechanisms and is a new technique developed in this project.
For memory processing it allows certain searches, including intersection
searches, to be performed efficiently; while the effort involved in marking
sets of entities is reduced by keeping records of certain marker
propagations. For the context mechanism, the indexing scheme allows ready
access to entities that are in focus where the degree of being in focus can be
specified. The indexing scheme offers a computationally efficient way of
doing this even though the various context factors can be managed
independently by frequent changes to their significance weights.

Various different semantic criteria can easily be used to make the indexing
more effective, and the experience gained from the Capture system indicates
that the semantic clustering criteria that were tried are preferable to
“random’ clustering. However, it needs to be emphasised that the size of the
memory knowledge base used by the implemented system was unfortunately
too small for serious investigation of the effectiveness of different clustering
criteria, or indeed the overall effectiveness of the use of the indexing
scheme as compared with other possible algorithms. This would require
observing the behaviour of the system with a very large knowledge base,
most of which would be irrelevant to any particular short text. Nevertheless,
since the efficiency of memory processing (let alone access to the focus set)
has been considered important enough for hardware designs to be
investigated, investigations of the possibilities offered by software methods
are surely worthwhile.

Much of the work in designing the memory and context mechanisms was
spent on trying to achieve a good "performance/complexity” ratio. In testing
how far the simplicity of the mechanisms could be pushed, it was discovered
that a number of more esoteric features of memory representation and the
application of context did not appear to contribute to performance and
could be abandoned. Apart from being interesting in itself, the fact that the
final simpler mechanisms can handle a wide range of phenomena means that
they are well suited for incorporation into experimental systems that are
investigating other aspects of language use.

7.4 Directions for further research

There are a number of promising directions for research that can take

advantage of and build on the memory and context mechanisms developed in

156

this project. Possibilities for extending the coverage of constructions and
the range of factor types, and for using the Capture techniques for different
system designs and application tasks, have already been indicated in
previous chapters. The mechanisms also provide a framework for carrying
out more linguistically motivated investigations than were attempted here.
Thus there is the possibility of developing a successful theory for tricky
problems in reference resolution, such as plural references and references
to generics. The resolution of plural references is certainly a problem in
which memory and context interact in a non-trivial way. Various possible
algorithms could be devised that made use of memory and context in order
to determine, for example, whether an existing set, a new set of entities, or a
generic description is intended as the referent.

Another area for which the mechanisms provide a good framework is the
interaction of different factors contributing to context, their relative
importance, the way they degrade over time, and the extent to which this
varies with different sorts of texts. The testing of various algorithms for
reference and of theories about the interactions of context factors really
needs to be done with respect to some corpus of collected texts. Care should
be taken when editing such texts, for the purpose of overcoming difficulties
not being investigated, that the amount of information lost should be kept to

a minimum.

An issue concerning the structure of natural language processing systems
that may be worth investigating is one raised by the following principle which
plays a part in the way reference resolution and the way that context
application are handled in the Capture system. The principle is that
information relevant to interpretation (e.g. constraints on reference and
context factors) should be accumulated and represented in a way that
allows it to be all applied at once. The extent to which this principle can be
realized affects robustness and control issues. Observing it may help
overcome problems that current designers face in deciding when to apply
certain bits of information, since there always seem to be counterexamples
to theories that state that certain information should be applied first.

Systems for language generation, as opposed to language interpretation,
that rely on the memory and context mechanisms described are worth
investigation. The role of these mechanisms would be especially relevant to
the choice of descriptions for objects and relationships. The specialization
and correspondence hierarchies present a range of possible descriptions
with varying degrees of specificity or generality, (cf. the work by D.D.
McDonald [McDonald81]). The context mechanism would help in choosing the
appropriate degree of specificity, and in determining whether to use
modifiers, implicit or explicit relationships, pronouns or other definite noun
phrases. For this purpose the context activations of the entities being

157

described could be used both absolutely by comparison with predetermined
thresholds, and relatively by comparison with other entities in memory that
candidate descriptions might refer to.

The design of the Capture system could serve as the basis for practical semi-
automated systems for database creation from collections of texts. Such a
system would depend on the intervention of a human operator for resolving
difficulties that it could not handle, and in this way would be similar to some
proposed designs (see e.g. [Kay80]) for translation aids. The approach of
finding simple solutions to common language interpretation problems taken
in the design of Capture should make it a good starting point for building
such a system. The quantifiable nature of context activation may also turn
out to be an advantage. Decisions made by the system on the basis of
context activation could be regarded as safe or not with respect to specified
safety margins. For example, if the difference between the context
activations of the best candidates for resolving a reference was less than
such a margin then the human operator could be asked to confirm the
decision taken by the system.

158

Appendix A
Example texts and output

This appendix contains the final output generated by the implemented
system for a number of example texts for the Machines Database and for the
Artifacts Database. The order in which these examples are presented roughly
reflects the order in which they were used for testing as the system
developed, so that the earlier examples in the appendix are simpler than the
later ones which exhibit a wider range of interpretation problems. However,
all the output given in this appendix was produced by exactly the same
version of the system (using the same initial memory knowledge base) in
September 1983. Typical times taken for the processing of each sentence in
these texts are around 0.4 seconds for the analysis phase and a further 0.8
seconds for interleaved interpretation and task-specific processing; this
includes Lisp garbage collection with the system running in about 1M bytes
of store on an IBM 3081.

159

TEXT AO1

JONES SUPPLIES P1234.

THE WEIGHT OF THE MACHINE IS 25.
THE STATUS OF THE SUPPLIER IS 10.
THE WEIGHT OF P6666 IS 25.

IT IS BLUE.

((SUPPLIES/RELATION ((SMC/MCNUM P1234) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/MCNUM P1234) (MC/WEIGHT 25)))
(SUPPLIERS/RELATION ((S/SID Jones) (S/STATUS 10)))
(MACHINES /RELATION ((MC/MCNUM P6666) (MC/WEIGHT 25)))
(MACHINES /RELATION ((MC/MCNUM P6666) (MC/COLOR blue1))))

TEXT A02

P888 IS GREEN.

THE WEIGHT OF THE MACHINE IS 40.
SMITH SUPPLIES IT.

JONES SUPPLIES IT.

HE SUPPLIES P789.

THE STATUS OF THE SUPPLIER IS 15.
THE STATUS OF SMITH IS 20.

HE SUPPLIES P999.

((MACHINES /RELATION ((MC/MCNUM P888) (MC/COLOR greent)))
(MACHINES /RELATION ((MC/MCNUM P888) (MC/WEIGHT 40)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P888)))
(SUPPLIES/RELATION ((SMC/SID Jones) (SMC/MCNUM P888)))
(SUPPLIES/RELATION ((SMC/MCNUM P789) (SMC/SID Jones)))
(SUPPLIERS/RELATION ((S/SID Jones) (S/STATUS 15)))
(SUPPLIERS/RELATION ((S/SID Smith1) (S/STATUS 20)))
(SUPPLIES/RELATION ((SMC/MCNUM P999) (SMC/SID Smith1))))

TEXT A03

THE WEIGHT OF P4444 IS 24.

SMITH SUPPLIES IT.

THE STATUS OF THE SUPPLIER IS 10.

THE STATUS OF JONES IS 20.

HE SUPPLIES P9999.

THE MACHINE IS RED.

CLARK SUPPLIES IT.

ROBINSON SUPPLIES THE MACHINE WHICH IS SUPPLIED BY SMITH.
THE WEIGHT OF THE MACHINE THAT JONES SUPPLIES IS 29.

160

((MACHINES/RELATION ((MC/MCNUM P4444) (MC/WEIGHT 24)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P4444)))
(SUPPLIERS/RELATION ((S/SID Smith1) (S/STATUS 10)))
(SUPPLIERS /RELATION ((S/SID Jones) (S/STATUS 20)))

(SUPPLIES /RELATION ((SMC/MCNUM P9999) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/MCNUM P9999) (MC/COLOR red1)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P9999)))
(SUPPLIES/RELATION ((SMC/SID Robinson1) (SMC/MCNUM P4444)))
(MACHINES /RELATION ((MC/MCNUM P9999) (MC/WEIGHT 29))))

TEXT AO4

SMITH SUPPLIES P9999.
JONES SUPPLIES P4444.
THEY SUPPLY P7777.

THE MACHINES ARE RED.

((SUPPLIES /RELATION ((SMC/MCNUM P9999) (SMC/SID Smith1)))
(SUPPLIES /RELATION ((SMC/MCNUM P4444) (SMC/SID Jones)))
(SUPPLIES /RELATION ((SMC/MCNUM P7777) (SMC/SID Smith1)))
(SUPPLIES /RELATION ((SMC/MCNUM P7777) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P9999)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P4444)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P7777))))

TEXT A0S

PHILIPS MANUFACTURES P4444.

IT IS RED.

THE COLOUR OF P4040 IS BLUE.

THE MACHINES ARE SUPPLIED BY SMITH.

JONES SUPPLIES P9999.

IT IS MADE BY MARCONI.

THE STATUS OF THE SUPPLIER IS 90.

THIS MACHINE IS GREEN.

CLARK SUPPLIES THE MACHINE WHICH IS MADE BY PHILIPS.
THE WEIGHT OF THE GREEN MACHINE IS 29.

((MANUFACTURES /RELATION ((M/MCNUM P4444) (M/MNAME Philips)))
(MACHINES /RELATION ((MC/MCNUM P4444) (MC/COLOR red1)))
(MACHINES /RELATION ((MC/MCNUM P4040) (MC/COLOR blue1)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P4444)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P4040)))
(SUPPLIES /RELATION ((SMC/MCNUM P9999) (SMC/SID Jones)))

(MANUFACTURES /RELATION ((M/MNAME Marconi) (M/MCNUM P9999)))

(SUPPLIERS /RELATION ((S/SID Jones) (S/STATUS 90)))
(MACHINES /RELATION ((MC/MCNUM P9999) (MC/COLOR green1)))

161

(SUPPLIES /RELATION ((SMC/SID Clark1) (SMC/MCNUM P4444)))
(MACHINES/RELATION ((MC/MCNUM P9999) (MC/WEIGHT 29))))

TEXT AO6

MARCONI MANUFACTURES P9999.
PHILIPS MAKES P4444.

THE STATUS OF SMITH IS 50.
THE STATUS OF CLARK IS 80.
THEY SUPPLY THE MACHINES.

((MANUFACTURES /RELATION ((M/MCNUM P9999) (M/MNAME Marconi)))
(MANUFACTURES /RELATION ((M/MCNUM P4444) (M/MNAME Philips)))
(SUPPLIERS /RELATION ((S/SID Smith1) (S/STATUS 50)))

(SUPPLIERS /RELATION ((S/SID Clark1) (S/STATUS 80)))

(SUPPLIES /RELATION ((SMC/MCNUM P9999) (SMC/SID Smith1)))
(SUPPLIES/RELATION ((SMC/MCNUM P9999) (SMC/SID Clark1)))
(SUPPLIES /RELATION ((SMC/MCNUM P4444) (SMC/SID Smith1)))
(SUPPLIES/RELATION ((SMC/MCNUM P4444) (SMC/SID Clark1))))

TEXT A07

P9999 IS GREEN.

P7777 1S RED.

JONES SUPPLIES THE MACHINES.

P888s IS RED.

MARCONI MANUFACTURES THE MACHINES THAT ARE SUPPLIED BY JONES.
PHILIPS MANUFACTURES THE RED MACHINES.

((MACHINES /RELATION ((MC/MCNUM P9999) (MC/COLOR greent)))
(MACHINES /RELATION ((MC/MCNUM P7777) (MC/COLOR red1)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P9999)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P7777)))
(MACHINES/RELATION ((MC/MCNUM P8888) (MC/COLOR red1)))
(MANUFACTURES /RELATION ((M/MNAME Marconi) (M/MCNUM P9999)))
(MANUFACTURES/RELATION ((M/MNAME Marconi) (M/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P8888))))

162

TEXT A0O8

MARCONI MANUFACTURES P9999.

IT IS SUPPLIED BY SMITH.

THE STATUS OF THE SUPPLIER IS 30.

THE STATUS OF JONES IS 40.

THEY SUPPLY P9900.

THIS MACHINE IS A COMPUTER.

IT IS MADE BY PHILIPS.

THE MACHINES ARE RED.

THE COLOUR OF P4444 IS GREEN.

THE COMPUTER MANUFACTURER MAKES THE GREEN MACHINE.
P9000 IS BLUE.

IT IS A DISC-DRIVE.

IT IS SUPPLIED BY THE STATUS 30 SUPPLIER.

HE GAVE P8888 TO THE P9999 MANUFACTURER.

THE DISC-DRIVE IS MADE BY THIS MANUFACTURER.

THE WEIGHT OF THE MACHINES THAT ARE MADE BY MARCONI IS 35.

((MANUFACTURES /RELATION ((M/MCNUM P9999) (M/MNAME Marconi)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(SUPPLIERS /RELATION ((S/SID Smith1) (S/STATUS 30)))

(SUPPLIERS /RELATION ((S/SID Jones) (S/STATUS 40)))
(SUPPLIES/RELATION ((SMC/MCNUM P8900) (SMC/SID Smith1)))
(SUPPLIES/RELATION ((SMC/MCNUM P9900) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P9900)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P9900)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P9999)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P9900)))
(MACHINES /RELATION ((MC/MCNUM P4444) (MC/COLOR green1)))
(MANUFACTURES /RELATION ((M/MCNUM P4444) (M/MNAME Philips)))
(MACHINES /RELATION ((MC/MCNUM P9000) (MC/COLOR blue1)))
(MACHINES /RELATION ((MC/TYPE disc-drivel) (MC/MCNUM P9000)))
(SUPPLIES/RELATION ((SMC/MCNUM P9000) (SMC/SID Smith1)))
(MANUFACTURES /RELATION ((M/MCNUM P9000) (M/MNAME Marconi)))
(MACHINES/RELATION ((MC/WEIGHT 35) (MC/MCNUM P9999)))
(MACHINES/RELATION ((MC/WEIGHT 35) (MC/MCNUM P9000))))

TEXT AO9

MARCONI MANUFACTURES P9999.

IT IS SUPPLIED BY SMITH WHO SUPPLIES P7777 WHICH IS RED.
THE RED MACHINE IS MADE BY PHILIPS.

THE ONE THAT IS MADE BY MARCONI IS BLUE.

((MANUFACTURES/RELATION ((M/MCNUM P9999) (M/MNAME Marconi)))
(MACHINES/RELATION ((MC/MCNUM P7777) (MC/COLOR red1)))
(SUPPLIES /RELATION ((SMC/MCNUM P7777) (SMC/SID Smith1)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))

163

(MANUFACTURES/RELATION ((M/MNAME Philips) (M/MCNUM P7777)))
(MACHINES/RELATION ((MC/MCNUM P9999) (MC/COLOR blue1))))

TEXT A10

P7777 IS A COMPUTER THAT IS MANUFACTURED BY PHILIPS.

THE MANUFACTURER MAKES P7700 WHICH IS SUPPLIED BY SMITH.
JONES AND CLARK SUPPLY THE COMPUTER.

THE STATUS OF THE COMPUTER SUPPLIERS IS 20.

((MANUFACTURES/RELATION ((M/MNAME Philips) (M/MCNUM P7777)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P7777)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P7700)))
(MANUFACTURES/RELATION ((M/MCNUM P7700) (M/MNAME Philips)))
(SUPPLIES/RELATION ((SMC/MCNUM P7777) (SMC/SID Clark1)))
(SUPPLIES /RELATION ((SMC/MCNUM P7777) (SMC/SID Jones)))
(SUPPLIERS /RELATION ((S/STATUS 20) (S/SID Clark1)))

(SUPPLIERS /RELATION ((S/STATUS 20) (S/SID Jones))))

TEXT A11

MARCONI MANUFACTURES P9999 WHICH IS A DISC-DRIVE.

IT IS SUPPLIED BY SMITH.

THE STATUS OF THE SUPPLIER IS 30.

THE STATUS OF JONES IS 40.

THEY SUPPLY P7777 WHICH IS MANUFACTURED BY PHILIPS.
IT IS A TERMINAL.

THESE MACHINES ARE RED.

P9000 IS MANUFACTURED BY MARCONL

IT IS A BLUE PRINTER.

P4444 1S GREEN.

THE BLUE MACHINE IS SUPPLIED BY THE STATUS 30 SUPPLIER.
THE TERMINAL MANUFACTURER MAKES THE GREEN MACHINE.

THE WEIGHT OF THE MACHINES THAT ARE MADE BY MARCONI IS 35.

SMITH SUPPLIES P1010 WHICH IS A COMPUTER.

THIS ONE IS MANUFACTURED BY IBM.

THE SUPPLIER SUPPLIES P6200 WHICH IS MADE BY PHILIPS.
THE WEIGHT OF THE COMPUTER IS 75.

((MACHINES /RELATION ((MC/TYPE disc-drive1) (MC/MCNUM P9999)))
(MANUFACTURES /RELATION ((M/MNAME Marconi) (M/MCNUM P9999)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(SUPPLIERS/RELATION ((S/SID Smith1) (S/STATUS 30)))

(SUPPLIERS /RELATION ((S/SID Jones) (S/STATUS 40)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P7777)))

164

(SUPPLIES/RELATION ((SMC/MCNUM P7777) (SMC/SID Smith1)))
(SUPPLIES /RELATION ((SMC/MCNUM P7777) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/TYPE terminall) (MC/MCNUM P7777)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P9999)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MCNUM P9000) (M/MNAME Marconi)))
(MACHINES /RELATION ((MC/MCNUM P9000) (MC/COLOR blue1)))
(MACHINES /RELATION ((MC/TYPE printer2) (MC/MCNUM P9000)))
(MACHINES/RELATION ((MC/MCNUM P4444) (MC/COLOR green1)))
(SUPPLIES/RELATION ((SMC/MCNUM P9000) (SMC/SID Smith1)))
(MANUFACTURES /RELATION ((M/MCNUM P4444) (M/MNAME Philips)))
(MACHINES /RELATION ((MC/WEIGHT 35) (MC/MCNUM P9999)))
(MACHINES/RELATION ((MC/WEIGHT 35) (MC/MCNUM P9000)))
(MACHINES/RELATION ((MC/TYPE computer) (MC/MCNUM P1010)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P1010)))
(MANUFACTURES /RELATION ((M/MNAME IBM) (M/MCNUM P1010)))
(MANUFACTURES /RELATION ((M/MCNUM P6200) (M/MNAME Philips)))
(SUPPLIES /RELATION ((SMC/MCNUM P6200) (SMC/SID Smith1)))
(MACHINES/RELATION ((MC/MCNUM P1010) (MC/WEIGHT 75))))

TEXT A12

P7777 IS A COMPUTER.

IT IS MANUFACTURED BY PHILIPS.

P9920 IS A DISC-DRIVE THAT IS MANUFACTURED BY MARCONL
THIS MANUFACTURER MAKES P8999 WHICH IS SUPPLIED BY JONES.
SMITH SUPPLIES THE COMPUTER.

THE STATUS OF P7777'S SUPPLIER IS 20.

((MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Marconi) (M/MCNUM P9920)))
(MACHINES/RELATION ((MC/TYPE disc-drive1) (MC/MCNUM P9920)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P9999)))
(MANUFACTURES /RELATION ((M/MCNUM P9999) (M/MNAME Marconi)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P7777)))
(SUPPLIERS /RELATION ((S/SID Smith1) (S/STATUS 20))))

TEXT A13

P9999 IS A MAIN-FRAME THAT IS SUPPLIED BY SMITH.
HE SUPPLIES P7777 WHICH IS A TERMINAL.

JONES SUPPLIES P7700.

IT IS A DISC-DRIVE.

MARCONI MANUFACTURES THE COMPUTER IN PARIS.
THE PERIPHERALS ARE MADE BY PHILIPS.

165

((SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P9999)))
(MACHINES /RELATION ((MC/TYPE terminal1) (MC/MCNUM P7777)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SUC/MCNUM P7777)))
(SUPPLIES/RELATION ((SMC/MCNUM P7700) (SMC/SID Jones)))
(MACHINES /RELATION ((MC/TYPE disc-drive1) (MC/MCNUM P7700)))
(MANUFACTURES/RELATION

((M/MNAME Marconi) (M/MCNUM P9999) (M/CITY Paris)))
(MANUFACTURES /RELATION ((M/MNAME Philips) (M/MCNUM P7777)))
(MANUFACTURES/RELATION ((M/MNAME Philips) (M/MCNUM P7700))))

TEXT Al14

PLEXIR MANUFACTURES P9999 WHICH IS A COMPUTER.
IT IS SUPPLIED BY SMITH.

P1010 IS A TERMINAL THAT IS SUPPLIED BY CLARK.
THIS ONE IS MADE BY MIKOTA.

THESE MACHINES ARE RED.

P9000 IS A GREEN PRINTER.

IT IS MADE BY PLEXIR.

P4444 1S A BLUE COMPUTER.

THE COST OF THE MACHINE IS 7850.

THE PERIPHERAL IS SUPPLIED BY THE P9999 SUPPLIER.
THE TERMINAL MANUFACTURER MAKES THE BLUE MACHINE.
THE COST OF MIKOTA'S PERIPHERAL IS 235.

((MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P9999)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P9999)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P1010)))
(MACHINES /RELATION ((MC/TYPE terminall) (MC/MCNUM P1010)))
(MANUFACTURES/RELATION ((M/MNAME Mikota1l) (M/MCNUM P1010)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P9999)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P1010)))
(MACHINES /RELATION ((MC/MCNUM P2000) (MC/COLOR greent)))
(MACHINES /RELATION ((MC/TYPE printer2) (MC/MCNUM P9000)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P9000)))
(MACHINES /RELATION ((MC/MCNUM P4444) (MC/COLOR blue1)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P4444)))
(MACHINES /RELATION ((MC/MCNUM P4444) (MC/COST 7850)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9000)))
(MANUFACTURES /RELATION ((M/MNAME Mikota1) (M/MCNUM P4444)))
(MACHINES /RELATION ((MC/MCNUM P1010) (MC/COST 235))))

166

TEXT A15

P8880 IS A COMPUTER THAT IS MANUFACTURED BY MIKGTA.
THE COST OF THE MACHINE IS 2695.

P7770 IS MANUFACTURED BY PLEXIR.
MARCONI MAKES P7200.
THE COST OF BOTH MACHINES IS 4000.

((MANUFACTURES /RELATION ((M/MNAME Mikotal) (M/MCNUM P8880)))
(MACHINES/RELATION ((MC/TYPE computer) (MC/MCNUM P8880)))
(MACHINES/RELATION ((MC/MCNUM P8880) (MC/COST 2595)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P7770)))
(MANUFACTURES /RELATION ((M/MCNUM P7200) (M/MNAME Marconi)))
(MACHINES /RELATION ((MC/COST 4000) (MC/MCNUM P7200)))
(MACHINES /RELATION ((MC/COST 4000) (MC/MCNUM P7770))))

TEXT A16

P8080 IS SUPPLIED BY PETERS.
THE STATUS OF THE SUPPLIER IS 20.

CLARK SUPPLIES P7780 AND P7790.
P7720 IS SUPPLIED BY ROBINSON.
THESE THREE MACHINES ARE MANUFACTURED BY PLEXIR.

((SUPPLIES /RELATION ((SMC/SID Peters1) (SMC/MCNUM P8080)))
(SUPPLIERS/RELATION ((S/SID Peters1) (S/STATUS 20)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P7790)))
(SUPPLIES /RELATION ((SMC/SID Clark1) (SMC/MCNUM P7780)))
(SUPPLIES/RELATION ((SMC/SID Robinson1) (SMC/MCNUM P7720)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P7780)))
(MANUFACTURES/RELATION ((M/MNAME Plexir1) (M/MCNUM P7790)))
(MANUFACTURES/RELATION ((M/MNAME Plexir1) (M/MCNUM P7720))))

TEXT A17

P9999 IS A DISC-DRIVE THAT IS SUPPLIED BY SMITH.

THIS PERIPHERAL JS MANUFACTURED BY MIKOTA.

HE SUPPLIES P7777 WHICH IS A TERMINAL.

IT IS MANUFACTURED IN LONDON BY PLEXIR.

CLARK SUPPLIES P9000 WHICH IS MANUFACTURED BY MARCONI IN PARIS.

" ((SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P9999)))
(MACHINES /RELATION ((MC/TYPE disc-drive1) (MC/MCNUM P9999)))

167

(MANUFACTURES/RELATION ((M/MNAME Mikotal) (M/MCNUM P9999)))
(MACHINES/RELATION ((MC/TYPE terminal1) (MC/MCNUM P7777)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SUC/MCNUM P7777)))
(MANUFACTURES/RELATION

((M/MNAME Plexir1) (M/MCNUM P7777) (M/CITY London)))
(MANUFACTURES/RELATION

((M/MNAME Marconi) (M/MCNUM P9000) (M/CITY Paris)))
(SUPPLIES /RELATION ((SMC/MCNUM P9000) (SMC/SID Clark1))))

TEXT A18

WINTRON MANUFACTURES P5050 WHICH IS A DISC-DRIVE.

P1010 IS A COMPUTER WHICH IS MADE BY THIS MANUFACTURER.
IT HAS A BOLT.

P8770 IS A PRINTER THAT IS MADE BY PLEXIR.

BOTH PERIPHERALS ARE SUPPLIED BY CLARK.

SMITH SUPPLIES THE MACHINE WITH THE BOLT.

P4740 IS MANUFACTURED BY P5050’'S MANUFACTURER IN LONDON.
IT IS A MICRO-COMPUTER THAT IS SUPPLIED BY JONES.

HE SUPPLIES P8800 WHICH IS A TERMINAL.

THE COST OF THE COMPUTER IS 25.

THE COMPUTERS ARE RED.

THE THREE PERIPHERALS ARE GREEN.

((MACHINES /RELATION ((MC/TYPE disc-drive1) (MC/MCNUM P5050)))
(MANUFACTURES /RELATION ((M/MNAME Wintron1) (M/MCNUM P5050)))
(MANUFACTURES /RELATION ((M/MNAME Wintron1) (M/MCNUM P1010)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P1010)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P8770)))
(MACHINES /RELATION ((MC/TYPE printer2) (MC/MCNUM P8770)))
(SUPPLIES /RELATION ((SMC/SID Clark1) (SMC/MCNUM P5050)))
(SUPPLIES /RELATION ((SMC/SID Clark1) (SMC/MCNUM P8770)))
(SUPPLIES/RELATION ((SMC/SID Smith1) (SMC/MCNUM P1010)))
(MANUFACTURES/RELATION

((M/MCNUM P4740) (M/MNAME Wintron1) (M/CITY London)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P4740)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P4740)))
(MACHINES/RELATION ((MC/TYPE terminal1) (MC/MCNUM P8800)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P8800)))
(MACHINES /RELATION ((MC/MCNUM P4740) (MC/COST 25)))
(MACHINES /RELATION ((MC/COLOR red1) (MC/MCNUM P1010)))
(MACHINES/RELATION ((MC/COLOR red1) (MC/MCNUM P4740)))
(MACHINES /RELATION ((MC/COLOR green1) (MC/MCNUM P5050)))
(MACHINES /RELATION ((MC/COLOR green1) (MC/MCNUM P8770)))
(MACHINES /RELATION ((MC/COLOR green1) (MC/MCNUM P8800))))

168

TEXT A19

PLEXIR MANUFACTURES P7777 WHICH IS COMPUTER.

IT HAS A SCREW.

WINTRON MAKES P9999 WHICH HAS A BOLT.

THE COST OF THE MACHINE WITH THE SCREW IS 9000.

THE MACHINE THAT HAS THE BOLT IS SUPPLIED BY CLARK.

((MACHINES/RELATION ((MC/TYPE computer) (MC/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Plexir1) (M/MCNUM P7777)))
(MANUFACTURES /RELATION ((M/MNAME Wintron1) (M/MCNUM P9999)))
(MACHINES /RELATION ((MC/MCNUM P7777) (MC/COST 9000)))
(SUPPLIES/RELATION ((SMC/SID Clark1) (SMC/MCNUM P9999))))

TEXT A20

PLEXIR MANUFACTURES P9000.

IT IS A MICRO-COMPUTER.

WINTRON MANUFACTURES P7000 WHICH IS A DISC-DRIVE.
P9000 IS SUPPLIED BY SMITH.

P8000 IS A COMPUTER.

IT IS SUPPLIED BY JONES.

THE STATUS OF THIS SUPPLIER IS 10.

THE STATUS OF P9000'S SUPPLIER IS 20.
THE MICRO-COMPUTER IS RED.

THE MANUFACTURER MANUFACTURES P9090.

((MANUFACTURES/RELATION ((M/MCNUM P9000) (M/MNAME Plexir1)))
(MACHINES/RELATION ((MC/TYPE computer) (MC/MCNUM P9000)))
(MACHINES /RELATION ((MC/TYPE disc-drivel) (MC/MCNUM P7000)))
(MANUFACTURES /RELATION ((M/MNAME Wintron1) (M/MCNUM P7000)))
(SUPPLIES /RELATION ((SMC/SID Smith1) (SMC/MCNUM P9000)))
(MACHINES /RELATION ((MC/TYPE computer) (MC/MCNUM P8000)))
(SUPPLIES /RELATION ((SMC/SID Jones) (SMC/MCNUM P8000)))
(SUPPLIERS /RELATION ((S/SID Jones) (S/STATUS 10)))

(SUPPLIERS /RELATION ((S/SID Smith1) (S/STATUS 20)))
(MACHINES/RELATION ((MC/MCNUM P9000) (MC/COLOR red1)))
(MANUFACTURES/RELATION ((M/MCNUM P9090) (M/MNAME Plexir1))))

169

TEXT A21

HADDON COLLECTED P33 WHICH IS AN ARMLET.
HE COLLECTED P37 FROM WOODLARK.
IT IS A NECKLACE.

BEVAN DONATED P571 AND P352.

P571 1S A SKIRT.

P352 IS A NECKLACE.

BEVAN COLLECTED BOTH ARTIFACTS AT MOUNT-HAGEN.

P576 IS FRAGILE.
HADDON DONATED IT TO LAMBERTS.
P220 IS A HARD BOX.

((ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P33)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P33)))
(ORIGIN/RELATION

((ORIG/ARTN P37) (ORIG/COLL Haddon1) (ORIG/PLAC Woodlark)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P37)))
(ARTIFACTS/RELATION ((ARTF/TYPE clothing1) (ARTF/NUMB P571)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P352)))
(ORIGIN/RELATION

((ORIG/PLAC Mount-Hagen) (ORIG/COLL Bevan1) (ORIG/ARTN P571)))
(ORIGIN/RELATION

((ORIG /PLAC Mount-Hagen) (ORIG/COLL Bevan1) (ORIG/ARTN P352)))
(ARTIFACTS/RELATION ((ARTF/NUMB P576) (ARTF/COND fragile1)))
(ARTIFACTS/RELATION ((ARTF/NUMB P220) (ARTF/COND hard1)))
(ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P220))))

TEXT AR2

P4830 IS A CANOE-PROW.

IT WAS DONATED BY HADDON.

HE COLLECTED IT IN DAUL

BEVAN COLLECTED P981 WHICH IS A CANOE MODEL FROM WOODLARK.
BOTH ARTIFACTS ARE FRAGILE.

((ARTIFACTS /RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P4830)))
(ORIGIN /RELATION

((ORIG/ARTN P4830) (ORIG/PLAC Daui) (ORIG/COLL Haddon1)))
(ARTIFACTS/RELATION ((ARTF/TYPE model1) (ARTF/NUMB P981)))
(ORIGIN/RELATION

((ORIG/COLL Bevan1) (ORIG/ARTN P981) (ORIG/PLAC Woodlark)))
(ARTIFACTS /RELATION ((ARTF/COND fragile1) (ARTF/NUMB P981)))
(ARTIFACTS /RELATION ((ARTF/COND fragile1) (ARTF/NUMB P4830))))

170

TEXT A23

P562 IS A POT THAT WAS DONATED BY HADDON.
THE CONDITION OF THE POT IS GOOD.

HE COLLECTED IT FROM WOODLARK.

P371 WAS COLLECTED BY BEVAN FROM THERE.
THIS ARTIFACT IS AN ARMLET.

((ARTIFACTS /RELATION ((ARTF/TYPE container1) (ARTF/NUMB P562)))
(ARTIFACTS/RELATION ((ARTF/NUMB P562) (ARTF/COND good1)))
(ORIGIN/RELATION

((ORIG/ARTN P562) (ORIG/PLAC Woodlark) (ORIG/COLL Haddon1)))
(ORIGIN /RELATION

((ORIG/COLL Bevan1) (ORIG/ARTN P371) (ORIG/PLAC Woodlark)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P371))))

TEXT A24

P20 IS A PADDLE THAT WAS COLLECTED FROM WOODLARK.
P70 WAS COLLECTED IN NEW-GUINEA.

THE WOODLARK ARTIFACT WAS COLLECTED BY ARMSTRONG.
HADDON COLLECTED P70.

THE CONDITION OF THESE ARTIFACTS IS GOOD.
ARMSTRONG’S PADDLE IS SMALL.

((ORIGIN/RELATION ((ORIG/ARTN P20) (ORIG/PLAC Woodlark)))

(ARTIFACTS/RELATION
((ARTF/TYPE navigation/artifact) (ARTF/NUMB P20)))

(ORIGIN/RELATION ((ORIG/ARTN P70) (ORIG/PLAC New-Guinea)))
(ORIGIN/RELATION ((ORIG/COLL Armstrongl) (ORIG/ARTN P20)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P70)))
(ARTIFACTS /RELATION ((ARTF/COND good1) (ARTF/NUMB P20)))
(ARTIFACTS /RELATION ((ARTF/COND good1) (ARTF/NUMB P70))))

TEXT A25

HADDON COLLECTED P590 WHICH IS A POT.

HE COLLECTED P520.

IT IS A CANOE WITH A PADDLE.

BOTH ARTIFACTS COME FROM NEW-GUINEA.

BEVAN COLLECTED P422.

THIS ARTIFACT IS A LARGE JUG WITH A LID.

THE CONDITION OF THE HADDON CONTAINER IS GOOD.
THE ONE THAT WAS COLLECTED BY BEVAN IS FRAGILE.

171

((ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P590)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P590)))
(ORIGIN/RELATION ((ORIG/ARTN P520) (ORIG/COLL Haddon1)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P520)))
(ORIGIN/RELATION ((ORIG/PLAC New-Guinea) (ORIG/ARTN P590)))
(ORIGIN/RELATION ((ORIG/PLAC New-Guinea) (ORIG/ARTN P520)))
(ORIGIN/RELATION ((ORIG/ARTN P422) (ORIG/COLL Bevan1)))
(ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P422)))
(ARTIFACTS /RELATION ((ARTF/NUMB P590) (ARTF/COND good1)))
(ARTIFACTS /RELATION ((ARTF/NUMB P422) (ARTF/COND fragile1))))

TEXT AZ6

ARMSTRONG COLLECTED P56.

IT IS A BOX.

THIS CONTAINER IS SMALL.

HADDON COLLECTED P62 AND P63.

THESE ARTIFACTS ARE JUGS.

THE CONDITION OF THE JUGS IS POOR.

ARMSTRONG'S ARTIFACT COMES FROM MOUNT-HAGEN.
THE JUGS WERE COLLECTED IN WOODLARK.

((ORIGIN/RELATION ((ORIG/ARTN P56) (ORIG/COLL Armstrong1)))
(ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P56)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P63)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P62)))
(ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P63)))
(ARTIFACTS /RELATION ((ARTF/TYPE container1) (ARTF/NUMB P62)))
(ARTIFACTS /RELATION ((ARTF/COND poor2) (ARTF/NUMB P63)))
(ARTIFACTS /RELATION ((ARTF/COND poor2) (ARTF/NUMB P62)))
(ORIGIN/RELATION ((ORIG/ARTN P56) (ORIG/PLAC Mount-Hagen)))
(ORIGIN/RELATION ((ORIG/PLAC Woodlark) (ORIG/ARTN P63)))
(ORIGIN/RELATION ((ORIG/PLAC Woodlark) (ORIG/ARTN P62))))

TEXT AR7

P4302 IS AN ARMLET.

P4370 IS A NECKLACE.

NILFISK COLLECTED THE ARMLET IN DAUL

THE COLLECTOR WAS A NORWEGIAN ANTHROPOLOGIST.
HE COLLECTED THE NECKLACE IN WOODLARK.

HE COLLECTED P4360 WHICH IS AN ARMLET FROM THERE.
THE CONDITION OF THIS ONE IS GOOD.

THE CONDITION OF THE DAUI ARMLET IS POOR.

((ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P4302)))

172

(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P4370)))
(ORIGIN/RELATION

((ORIG /COLL Nilfisk1) (ORIG/ARTN P4302) (ORIG/PLAC Daui)))
(COLLECTORS/RELATION ((COLL/NAME Nilfisk1) (COLL/NATN Norwegian1)))
(COLLECTORS/RELATION

((COLL/OCCP anthropologist1) (COLL/NAME Nilfisk1)))
(ORIGIN/RELATION

((ORIG/COLL Nilfisk1) (ORIG/ARTN P4370) (ORIG/PLAC Woodlark)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P4360)))
(ORIGIN/RELATION

((ORIG/COLL Nilfisk1) (ORIG/ARTN P4360) (ORIG/PLAC Woodlark)))
(ARTIFACTS /RELATION ((ARTF/NUMB P4360) (ARTF/COND good1)))
(ARTIFACTS/RELATION ((ARTF/NUMB P4302) (ARTF/COND poor2))))

TEXT ARS8

SMITH WHO WAS A BRITISH MISSIONARY COLLECTED P259.
P259 IS A NECKLACE WHICH COMES FROM DAUL

P261 IS AN ARMLET.

THE CONDITION OF BOTH ARTIFACTS IS GOOD.

THE MISSIONARY COLLECTED P593 AND P594 FROM WOODLARK.
P593 IS A JUG.

P594 IS AN ARMLET.

THE CONDITION OF THIS ARTIFACT IS GOOD.

THE JUG IS POOR.

((COLLECTORS /RELATION ((COLL/NAME Smith1) (COLL/NATN British1)))
(COLLECTORS/RELATION ((COLL/OCCP missionary1) (COLL/NAME Smith1)))
(ORIGIN/RELATION ((ORIG/ARTN P259) (ORIG/COLL Smith1)))
(ORIGIN/RELATION ((ORIG/ARTN P259) (ORIG/PLAC Daui)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P259)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P261)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P261)))
(ARTIFACTS /RELATION ((ARTF/COND good1) (ARTF/NUMB P259)))
(ORIGIN/RELATION

((ORIG/COLL Smith1) (ORIG/PLAC Woodlark) (ORIG/ARTN P594)))
(ORIGIN /RELATION

((ORIG/COLL Smith1) (ORIG/PLAC Woodlark) (ORIG/ARTN P593)))
(ARTIFACTS /RELATION ((ARTF/TYPE container1) (ARTF/NUMB P593)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P594)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P594)))
(ARTIFACTS /RELATION ((ARTF/COND poor2) (ARTF/NUMB P593))))

173

TEXT A29

P957 AND P950 WERE COLLECTED BY SMITH.

THESE ARTIFACTS ARE JUGS.

THE COLLECTOR WAS A MISSIONARY.

P921 AND P922 WERE COLLECTED BY BEVAN.

THESE ARTIFACTS ARE SPEARS THAT CAME FROM DAUL
BEVAN WAS A BRITISH ACADEMIC.

SMITH WAS AMERICAN.

((ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P950)))
(ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P957)))
(ARTIFACTS /RELATION ((ARTF/TYPE container1) (ARTF/NUMB P950)))
(ARTIFACTS/RELATION ((ARTF/TYPE container1) (ARTF/NUMB P957)))
(COLLECTORS/RELATION ((COLL/OCCP missionary1) (COLL/NAME Smith1)))
(ORIGIN/RELATION ((ORIG/COLL Bevan1) (ORIG/ARTN P922)))
(ORIGIN/RELATION ((ORIG/COLL Bevan1) (ORIG/ARTN P921)))

(ORIGIN /RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P922)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P921)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P922)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P921)))
(COLLECTORS/RELATION ((COLL/NAME Bevan1) (COLL/NATN British1)))
(COLLECTORS /RELATION ((COLL/OCCP academic1) (COLL/NAME Bevan1)))
(COLLECTORS/RELATION ((COLL/NAME Smith1) (COLL/NATN American1))))

TEXT A30

JONES WHO WAS A TRADER COLLECTED P350 FROM DAUL
HE COLLECTED P370 FROM WOODLARK.

P350 IS A NECKLACE.

P370 IS AN ARMLET.

P391 IS A NECKLACE THAT COMES FROM WOODLARK.
THE CONDITION OF THESE ORNAMENTS IS GOOD.

ARMSTRONG AND HADDON WERE BRITISH.

THEY WERE ACADEMICS.

HADDON COLLECTED P597 AND P598 FROM DAUL
THE ARTIFACTS ARE NECKLACES.

THE CONDITION OF THESE DAUI NECKLACES IS POOR.

P392 AND P393 ARE ARMLETS THAT WERE COLLECTED BY SMITH.
THIS COLLECTOR WAS A TRADER.
THE ARTIFACTS ARE FAIR.

((COLLECTORS/RELATION ((COLL/OCCP trader1) (COLL/NAME Jones)))
(ORIGIN /RELATION
((ORIG /ARTN P350) (ORIG/COLL Jones) (ORIG/PLAC Daui)))
(ORIGIN /RELATION
((ORIG /ARTN P370) (ORIG/COLL Jones) (ORIG/PLAC Woodlark)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P350)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P370)))

174

(ORIGIN/RELATION ((ORIG/ARTN P391) (ORIG/PLAC Woodlark)))

(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P391)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P391)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P350)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P370)))
(COLLECTORS/RELATION ((COLL/NATN British1) (COLL/NAME Haddon1)))
(COLLECTORS /RELATION ((COLL/NATN British1) (COLL/NAME Armstrong1)))
(COLLECTORS/RELATION ((COLL/OCCP academic1) (COLL/NAME Haddon 1))

(COLLECTORS /RELATION ((COLL/OCCP academicl) (COLL/NAME Armstrong1)))

(ORIGIN/RELATION

((ORIG/PLAC Daui) (ORIG/ARTN P598) (ORIG/COLL Haddon1)))
(ORIGIN/RELATION

((ORIG /PLAC Daui) (ORIG/ARTN P597) (ORIG/COLL Haddon1)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P598)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P597)))
(ARTIFACTS /RELATION ((ARTF/COND poor2) (ARTF/NUMB P598)))
(ARTIFACTS/RELATION ((ARTF/COND poor2) (ARTF/NUMB P597)))
(ORIGIN /RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P393)))
(ORIGIN /RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P392)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P393)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P392)))
(COLLECTORS /RELATION ((COLL/OCCP trader1) (COLL/NAME Smith1)))
(ARTIFACTS/RELATION ((ARTF/COND fair1) (ARTF/NUMB P393)))
(ARTIFACTS/RELATION ((ARTF/COND fair1) (ARTF/NUMB P392))))

TEXT A31

BEVAN COLLECTED P317 AND P325.

BOTH ARTIFACTS ARE CANOE-PROWS.

P219 IS A PADDLE THAT WAS COLLECTED BY ARMSTRONG.
ALL THREE ARTIFACTS COME FROM DAUL

THE CONDITION OF BEVAN'S ARTIFACTS IS GOOD.

P719 1S A CANOE THAT WAS COLLECTED FROM WOODLARK.
IT WAS COLLECTED BY SMITH WHO WAS A TRADER.

THIS COLLECTOR WAS AMERICAN.

BEVAN WAS A BRITISH ACADEMIC.

P219'S COLLECTOR WAS A BRITISH MUSEUM-KEEPER.

HE COLLECTED P918 WHICH IS A CANOE-PROW.

((ORIGIN/RELATION ((ORIG/COLL Bevan1) (ORIG/ARTN P325)))
(ORIGIN/RELATION ((ORIG/COLL Bevan1) (ORIG/ARTN P317)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P317)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P325)))
(ORIGIN/RELATION ((ORIG/COLL Armstrong1) (ORIG/ARTN P219)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P219)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P317)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P325)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P219)))

175

(ARTIFACTS/RELATION ((ARTF/COND good1l) (ARTF/NUMB P325)))
(ARTIFACTS/RELATION ((ARTF/COND good1) (ARTF/NUMB P317)))
(ORIGIN/RELATION ((ORIG/ARTN P719) (ORIG/PLAC Woodlark)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P719)))
(COLLECTORS/RELATION ((COLL/OCCP trader1) (COLL/NAME Smith1)))
(ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P719)))
(COLLECTORS/RELATION ((COLL/NAME Smith1) (COLL/NATN American1)))
(COLLECTORS/RELATION ((COLL/NAME Bevanl) (COLL/NATN British1)))
(COLLECTORS /RELATION ((COLL/OCCP academic1) (COLL/NAME Bevant1)))
(COLLECTORS/RELATION ((COLL/NAME Armstrong1) (COLL/NATN British1)))
(COLLECTORS/RELATION

((COLL/OCCP museum-keeper) (COLL/NAME Armstrongl)))
(ARTIFACTS/RELATION

((ARTF/TYPE navigation/artifact) (ARTF/NUMB P918)))
(ORIGIN/RELATION ((ORIG/COLL Armstrong1) (ORIG/ARTN P918))))

TEXT A32

THE CONDITION OF P971 IS GOOD.
HADDON COLLECTED IT.

HE WAS A BRITISH ACADEMIC.

BEVAN WAS A BRITISH MUSEUM-KEEPER.
HE COLLECTED P956.

THE CONDITION OF THIS ONE IS FAIR.
BOTH ARTIFACTS ARE SPEARS.

SMITH WHO WAS A GERMAN TRADER COLLECTED P316 WHICH IS AN ARROW.
HE COLLECTED P612 FROM WOODLARK.

THIS ARTIFACT IS A NECKLACE.

THE THREE WEAPONS COME FROM DAUIL

THE CONDITION OF THE ARROW IS GOOD.

THE ORNAMENT IS POOR.

((ARTIFACTS /RELATION ((ARTF/NUMB P971) (ARTF/COND good1)))
(ORIGIN/RELATION ((ORIG/COLL Haddon1) (ORIG/ARTN P971)))
(COLLECTORS/RELATION ((COLL/NAME Haddon1) (COLL/NATN British1)))
(COLLECTORS/RELATION ((COLL/OCCP academic1) (COLL/NAME Haddon1)))
(COLLECTORS/RELATION ((COLL/NAME Bevan1) (COLL/NATN British1)))
(COLLECTORS/RELATION ((COLL/OCCP museum-keeper) (COLL/NAME Bevan1)))
(ORIGIN/RELATION ((ORIG/ARTN P956) (ORIG/COLL Bevan1)))
(ARTIFACTS/RELATION ((ARTF/NUMB P956) (ARTF/COND fair1)))
(ARTIFACTS /RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P971)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P956)))
(COLLECTORS /RELATION ((COLL/NAME Smith1) (COLL/NATN German1)))
(COLLECTORS /RELATION ((COLL/OCCP trader1) (COLL/NAME Smith1)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P316)))
(ORIGIN/RELATION ((ORIG/COLL Smith1) (ORIG/ARTN P316)))
(ORIGIN/RELATION

((ORIG/ARTN P612) (ORIG/COLL Smith1) (ORIG/PLAC Woodlark)))
(ARTIFACTS/RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P612)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P316)))

176

(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P971)))
(ORIGIN/RELATION ((ORIG/PLAC Daui) (ORIG/ARTN P956)))
(ARTIFACTS/RELATION ((ARTF/NUMB P316) (ARTF/COND good1)))
(ARTIFACTS/RELATION ((ARTF/NUMB P612) (ARTF/COND poor?))))

TEXT A33

P900 IS A SPEAR.

P700 IS AN ARMLET.

THIS ARTIFACT WAS COLLECTED IN DAUL

IT IS COMMON.

THE WEAPON WAS COLLECTED FROM THERE.
P940 AND P950 ARE ARROWS.

P200 IS A SPEAR BLADE.

((ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P900)))
(ARTIFACTS /RELATION ((ARTF/TYPE ornament1) (ARTF/NUMB P700)))
(ORIGIN/RELATION ((ORIG/ARTN P700) (ORIG/PLAC Daui)))
(ORIGIN/RELATION ((ORIG/ARTN P900) (ORIG/PLAC Daui)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P950)))
(ARTIFACTS/RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P940)))
(ARTIFACTS /RELATION ((ARTF/TYPE weapon1) (ARTF/NUMB P200))))

177

Appendix B
Examples of the influence of context factor types

This appendix gives examples of the effects of particular types of context
factor in instances of the application of context information to
interpretation problems. As discussed elsewhere in this thesis, the
management of weights associated with context factors in the Capture
system is not regarded as a precise theory about the relative importance of
various factor types, but rather as an initial test of the context mechanism
developed in the project. The initial weights and degrading procedures used
during the processing of all the examples in this appendix are those detailed
in Section 5.4.

The numbers given are the differences in the contributions of major factor
types to the activations of the best two candidates that were chosen
between when context was applied. Thus only contributions that were
different are indicated, and negative numbers indicate contributions that
were against the choice made by the system. The example texts were
introduced in Section 5.3.

178

Example text A18 from Section 5.3(1)

Wintron manufactures P5050 which is a disc-drive. P1010 is a
computer which is made by this manufacturer. It has a bolt. P8770 is
a printer that is made by Plexir. Both peripherals are supplied by
Clark. Smith supplies the machine with the bolt.

P4740 is manufactured by P5050's manufacturer in London. It is a
micro-computer that is supplied by Jones. He supplies P8800 which is
a terminal. The cost of the computer is 25. The computers are red.
The three peripherals are green.

-- '"He supplies P8800 which is a terminal”;
‘terminall’ (machine) preferred to 'terminal?’ (place).
Differences: processing 16; association 12.

-- "The cost of the computer is 25",
'P4740’ preferred to 'P1010’ as referent for "the computer”.
Differences: recency 78; emphasis 13; processing 2; association -2.

Example text A20 from Section 5.3(1)

Plexir manufactures P9000. It is a micro-computer. Wintron
manufactures P7000 which is a disc-drive. P9000 is supplied by Smith.

P8000 is a computer. It is supplied by Jones. The status of this
supplier is 10. The status of P9000’'s supplier is 20. The micro-
computer is red. The manufacturer manufactures P9090.

-- "The manufacturer manufactures P9090",;
'Plexirl’ preferred to 'Wintronl' as referent for manufacturer.

Differences: association 50.

179

Example text A14 from Section 5.3(3)

Plexir manufactures P9999 which is a computer. It is supplied by
Smith. P1010 is a terminal that is supplied by Clark. This one is made
by Mikota. These machines are red.

P9000 is a green printer. It is made by Plexir. P4444 is a blue
computer. The cost of the machine is 7850. The peripheral is supplied
by the P9999 supplier. The terminal manufacturer makes the blue
machine. The cost of Mikota's peripheral is 235.

-- "This one is made by Mikota";
'makel’ (manufacture) preferred to 'make8’ (force).
Differences: association 136.

-- "P9000 is a green printer”;
'printer2’ (machine) preferred to 'printerl’ (person).
Differences: subject-area 30; processing 8.

-- "It is made by Plexir"’;

'P9000’ preferred to 'P1010’ as referent for "It".
Differences: recency 116; emphasis 44; association -26;
deixis -7; subject-area -7; processing 6.

180

Example text A33 from Section 5.3(3)

P900 is a spear. P700 is an armlet. This artifact was collected in Daui.
It is common. The weapon was collected from there. P940 and P950
are arrows. P200 is a spear blade.

-- "This artifact was collected in Daui";
'P700’ preferred to 'P900’ as referent for "This artifact”.
Differences: recency 75; deixis 90; emphasis 34.

-~ "It is cornmon’’;
'P700' preferred to 'P900’ as referent for "It".
Differences: recency 138; deixis 45; processing 32; emphasis 17.

-- "P940 and P9850 are arrows",;
‘arrowl’ (weapon) preferred to 'arrow?2’ (sign).
Differences: processing 10.

-- "P200 is a spear blade";

‘bladel’ (instrument) preferred to 'blade2’ (loud jovial man).
Differences: association 63; processing 3.

181

Example text from Section 5.3(6b)

P9999 is a disc-drive that is supplied by Smith. This peripheral is
manufactured by Mikota. He supplies P7777 which is a terminal. It is
manufactured in London by Plexir. Clark supplies P9000 which is
manufactured by Marconi in Paris.

-- "Clark supplies P9000 which is manufactured by Marconi in Paris";
'manufacture/loc’ preferred to ’'supplies/loc’ as a derived structure
relationship.

Differences: association 56; processing 12.

Example text from Section 5.3(6c)
P500 is an armlet. It was collected by Haddon. P550 is red.

P9000 is a disc-drive that is supplied by Smith. The cost of the
machine is 200. P9900 is red.

-- "P550 is red";

'relp/artifact/colour’ preferred to ‘relp/machine/colour’ as underlying
database predicate.

Differences: processing 6.

-- "P9900 is red";

'relp/machine/colour’ preferred to ‘relp/artifact/colour’ as underlying
database predicate.

Differences: task 20; processing 8.

182

Appendix C
Effect of clustering on search efficiency

This appendix shows how the number of nodes visited during search
operations for two example texts varied with the clustering method and the
cluster size used. It should be emphasised that the information given in this
appendix is only intended to give a general impression of how the various
clustering methods affected memory searches for the relatively small
memory knowledge base used by the test implementation. The size of the
knowledge base (around 450 entities) means that the information given here
cannot be regarded as experimental evidence, in any strong sense, about the
utility of the clustering methods tried.

The nodes counted include both the network nodes and the cluster nodes in
the indexing tree that were visited during searches performed for processing
the two example texts. These are the example texts given in Chapter 1 (i.e.
texts A30 and A14 in Appendix A). The maximum cluster size (i.e. the size to
which clusters are allowed to grow to when new entities are created) is, in
each case, 1.5 times the initial cluster size indicated.

183

thousands of nodes visited

Text A30

357

30+

251

random
204

creation
association

157

184

|

6

initial cluster size

[ev

thousands of nodes visited

ext A

35

30+ random

creation

association

specialization
25

20+

-
EN

oy~
m—

initial cluster size

185 -

References

[Bobrow?7]
D. Bobrow and T. Winograd, “An Overview of KRL, a Knowledge Representation
Language'; Cognitive Science 1, 1977, 3-46.

[Bobrow80]

RJ. Bobrow and B.L. Webber, "Knowledge Representation for
Syntactic/Semantic Processing”; Proceedings, AAAI-1, Pittsburgh, August
1980, 316-323.

[Boguraev79]

B.K. Boguraev, "Automatic Resolution of Linguistic Ambiguities” (PhD thesis);
Technical Report No. 11, Computer Laboratory, Cambridge University, August
1979.

[Boguraev82]
B.K. Boguraev and K. Sparck Jones, "A Natural Language Analyser for
Database Access'’; Information Technology: Research and Development, 1,
1982, 23-39.

[Boguraev83]

B.X. Boguraev and K. Sparck Jones, "How to Drive a Database Front End
Using General Semantic Information”; Proceedings, ACL Conference on
Applied Natural Language Processing, Santa Monica, 1983, 81-88.

[Borkin80]
S.A. Borkin, "Data Models: A Semantic Approach for Database Systems";
Cambridge, Mass.: MIT Press, 1980.

[Brachman78]
R.J. Brachman, "A Structural Paradigm for Representing Knowledge";
Technical Report No. 3605, Bolt Beranek and Newman Inc., May 1978.

[Brachman79a]

R.J. Brachman, "Taxonomy, Descriptions, and Individuals in Natural Language
Understanding’; Proceedings, 17th Annual Meeting of the ACL, San Diego,
1979, 33-37.

[Brachman79b]
R.J. Brachman, "On the Epistemological Status of Semantic Networks”. In
"Associative Networks'”, N.V. Findler (ed.), New York: Academic Press, 1979.

186

[Bundy79]
A. Bundy, "What's The Difference? Predicate Calculus and Semantic Nets
(Again)”; AISB Quarterly, October 1979, 8-9.

[CaterB1]
AW.S. Cater, "Analysis and Inference for English” (PhD thesis); Technical
Report No. 19, Computer Laboratory, Cambridge University, September 1981.

[Chamberlin74]

D.D. Chamberlin and R.F. Boyce, "SEQUEL: A Structured English Query
Language"; Proceedings, ACM SIGMOD Workshop on Data Description, Access
and Control, 1974, 249-264.

[Charniak78]
E. Charniak, "On the Use of Framed Knowledge in Language Comprehension’;
Artificial Intelligence, 11, 1978, 225-265.

[Charniak81]
E. Charniak, "The Case-Slot Identity Theory"; Cognitive Science, 5, 1981, 285-
289.

[Charniak82]

E. Charniak, ''Context Recognition in Language Comprehension”. In
"Strategies for Natural Language Processing”, W.G. Lehnert and M.H. Ringle
(eds.), Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1982.

[Charniak83]
E. Charniak, "Passing Markers: A Theory of Contextual Influence in Language
Comprehension”; Cognitive Science, 7, 1983, 171-190.

[Cowie83]
J.R. Cowie, "Automatic Analysis of Descriptive Texts"; Proceedings, ACL
Conference on Applied Natural Language Processing, Santa Monica, 1983,
117-123.

[Date81]
C.J. Date, "An Introduction to Database Systems'; 3rd Edition, Reading, Mass.:
Addison-Wesley, 1981,

[Dedong79]
G. Deldong, 'Prediction and Substantiation: A New Approach to Natural
Language Processing'; Cognitive Science, 3, 1879, 251-273.

187

[Deliyani79]
A. Deliyani and P.A. Kowalski, "Logic and Semantic Networks";
Communications of the ACM, 22, 1979, 184-192.

[Fahlman79]
S.E. Fahlman, "NETL: A System for Representing and Using Real-World
Knowledge"; Cambridge, Mass.: MIT Press, 1979.

[Fahlman80]
S.E. Fahlman, "Preliminary Design for a Million-Element NETL Machine";
Proceedings, AAAI-1 Conference, 1980, 249-252.

[Fahlman81]
S.E. Fahlman, D.S. Touretzky, W. van Roggen, "Cancellation in a Parallel
Semantic Network”; Proceedings, IJCAI-81, Vancouver, August 1981, 257-264.

[Gray81]

M.A. Gray, "Implementing Unknown and Imprecise Values in Databases"”. In
"Databases (Proceedings of the First British National Conference on
Databases)”, S.M. Deen and P. Hammersley (eds.), London: Pentech Press,
1981.

[Grosz77]
B.J. Grosz, "The Representation and Use of Focus in Dialogue
Understanding”; SRI Technical Note No. 151, SRI International, July 1977.

[Grosz81]
B.J. Grosz (ed.), "Research on Natural Language Processing at SRI"; SRI
Technical Note No. 257, SRI International, November 1981.

[Grosz82]

B.J. Grosz, N. Haas, G. Hendrix, J. Hobbs, P. Martin, R. Moore, J. Robinscn, and
S. Rosenschein, "DIALOGIC: A Core Natural-language Processing System'’
Proceedings of the Ninth International Conference on Computational
Linguistics, Prague, July 1982, 95-100.

[Grosz83]

B.J. Grosz, AK. Joshi and S. Weinstein, "Providing a Unified Account of
Definite Noun Phrases in Discourse'’; Proceedings, 21st Annual Meeting of the
ACL, 1983, 44-50.

[Hayes77a]
Patrick J. Hayes, "In Defence of Logic"; Proceedings, 1JCAI 5, Cambridge,
Mass., 1977, 559-565.

188

[Hayes77b]
Philip J. Hayes, "On Semantic Nets, Frames and Associations"”; Proceedings,
1JCAI 5, Cambridge, Mass., 1977, 99-107.

[Hendrix78]
G.G. Hendrix, "Encoding Knowledge in Partitioned Networks"; SRI Technical
Note No. 164, SRI International, June 1978.

[Hillis81]
W.D. Hillis, "The Connection Machine”; Al Memo 648, Artificial Intelligence
Laboratory, MIT, September 1981.

[Hirst82]

G. Hirst and E. Charniak, "Word Sense and Case Slot Disambiguation”;
Proceedings, National Conference on Artificial Intelligence, AAAI-82, August
1982, 95-98.

[Hirst83]
G. Hirst, "A Foundation for Semantic Interpretation”; Technical Report CS-
83-03, Department of Computer Science, Brown University, January 1983.

[Hobbs81] ,
J.R. Hobbs, "Metaphor Interpretation as Selective Inferencing”; Proceedings,
1JCAI-81, Vancouver, August 1981, 85-91.

[Kaplan82]

M.K. Kaplan and J. Bresnan, "Lexical-Functional Grammar: A Formal system
for Grammatical Representation”. In "The Mental Representation of
Grammatical Relations”, J. Bresnan (ed.), Cambridge, Mass.: MIT Press, 1982.

[Kaplan81]
S.J. Kaplan and J. Davidson, "Interpreting Natural Language Database
Updates"; Proceedings, 19th Annual Meeting of the ACL, 1981, 139-141.

[Kay80]
M. Kay, "The Proper Place of Men and Machines in Language Translation”;
Xerox Palo Alto Research Center, October 1980.

[King79]
T.J. King, "The Design of a Relational Database Management System for
Historical Records'; Ph.D. thesis, University of Cambridge, 1979.

[LebowitzBl]
M. Lebowitz, “"The Nature of Generalization in Understanding"; Proceedings,
1JCAI-81, Vancouver, August 1981, 348-353.

189

[Lebowitz83]
M. Lebowitz, "Intelligent Information Systems"”; Proceedings, 6th ACM SIGIR
Conference, 1983, 25-29.

[Lehnert83]

W.G. Lehnert, M.G. Dyer, P.N. Johnson, C.J. Yang and S. Harley, "BORIS - An
Experiment in In-Depth Understanding of Narratives”; Artificial Intelligence,
20, 1983, 15-62.

[Maier82]

D. Maier and S.C. Salveter, 'Supporting Natural Language Updates in
Database Systems'”; Proceedings, European Conference on Artificial
Intelligence, 1982, 244-249.

[Marcus80]
M.P. Marcus, “A Theory of Syntactic Recognition for Natural Language”;
Cambridge, Mass.: MIT Press, 1980.

[Mark81]
W. Mark, "Representation and Inference in the Consul System'; Proceedings,
1JCAI-81, Vancouver, August 1981, 375-381.

[Martin80]

W.A. Martin, '"Roles, Co-Descriptors, and the Formal Representation of
Quantified English Expressions”; Technical Manual 139, Laboratory for
Computer Science, MIT, May 1980.

[McDermott75]
D.V. McDermott, "Very Large Planner Type Data Bases”; Al Memo 339,
Artificial Intelligence Laboratory, MIT, 1975.

[McDonald82]
D.B. McDonald, "Understanding Noun Compounds” (PhD thesis); Report CMU-
CS-82-102, Department of Computer Science, Carnegie-Mellon University,
January 1982.

[McDonald81]
D.D. McDonald, "Language Production: the Source of the Dictionary";
Proceedings, 19th Annual Meeting of the ACL, Stanford, 1981, 57-62.

[Mellish80]
C.S. Mellish, "Some Problems in FKarly Noun Phrase Interpretation”;
Proceedings, AISB Conference, Amsterdam, July 1980.

190

[Minsky75]
M.L. Minsky, ""A Framework for Representing Knowledge". In “The Psychology
of Computer Vision”, Winston (ed.), New York: McGraw-Hill, 1975.

[Norton83]
L.M. Norton, "Automated Analysis of Instructional Text”; Artificial
Intelligence, 20, 1983, 307-344.

[Quillian68]}
M.R. Quillian, "Semantic Memory". In “"Semantic Information Processing"”, M.
Minsky (ed.), Cambridge, Mass.: MIT Press, 1968.

[Reimer83]
U. Reimer, and U. Hahn, "A Formal Approach to the Semantics of a Frame
Data Model”; Proceedings, 1JCAI-83, Karlsruhe, 1983, 337-339.

[Rieger75]

C.J. Rieger, "Conceptual Memory and Inference”; In "Conceptual Information
Processing”, R.C. Schank, N.M. Goldman, C.J. Rieger, and C.K. Riesbeck (eds.),
Amsterdam: North-Holland, 1875.

[Ritchie76]
G.D. Ritchie, "Problems in Local Semantic Processing"”; Proceedings, AISB
Conference, Edinburgh, 1976, 234-241.

[Ritchie77]
G.D. Ritchie, "Computer Modelling of English Grammar"; Thesis CST-1-77,
Department of Computer Science, University of Edinburgh, 1977.

[RitchieB83]

G.D. Ritchie and F.K. Hanna, ""Semantic Networks - A General Definition and A
Survey"; Information Technology: Research and Development, 2, 1983, 187-
231.

[Sager81]
N. Sager, '"Natural Language Information Processing"”; Reading, Mass.:
Addison-Wesley, 1981.

[Schank75]

R.C. Schank and the Yale Al Project, "SAM - A Story Understander";
Research Report No. 43, Department of Computer Science, Yale University,
1975.

191

[Schank82a]

R.C. Schank, "Reminding and Memory Organization: An Introduction to
MOPs"; In "Strategies for Natural Language Processing”, W.G. Lehnert and
M.H. Ringle (eds.), Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1982.

[Schank82b]
R.C. Schank, "Dynamic Memory"”; Cambridge: Cambridge University Press,
1982,

[Schubert79]

LK. Schubert, R.G. Goebel and N.J. Cercone, "The Structure and Organization
of a Semantic Net for Comprehension and Inference”’. In "Associative
Networks”, N.V. Findler (ed.), New York: Academic Press, 1979.

[Schmolze83]
J.G. Schmolze and T.A. Lipkis, 'Classification in the KL-ONE Knowledge
Representation System"; Proceedings, IJCAI-83, Karlsruhe, 1983, 330-332.

[Shapiro79]
S.C. Shapiro, '"The SNePS Semantic Network Processing System”; In
"Associative Networks", N.V. Findler (ed.), New York: Academic Press, 1979.

[Sidner79]

C.L. Sidner, "Towards a Computational Theory of Definite Anaphora
Comprehension in English Discourse"”; Technical Report AI-TR-537, Artificial
Intelligence Laboratory, MIT, June 1979,

[SmallB0]

S. Small, ""Word Expert Parsing. A Theory of Distributed Word-based Natural
Language Understanding”; Technical Report No. 954, Department of
Computer Science, University of Maryland, 1980.

[Sparck Jones83a]

K. Sparck Jones, "Compound Noun Interpretation Problems”. In "Computer
Speech Processing”, Lecture Notes, SERC/CREST-ITG Advanced Course,
Cambridge, July 1983.

[Sparck Jones83b]
K. Sparck Jones, "Shifting Meaning Representations"”; Proceedings, 1JCAI-83,
Karlsruhe, 1983, 621-623.

[Steinacker83]
1. Steinacker and H. Trost, "Structural Relations - A Case Against Case”,
Proceedings, IJCAI-83, Karlsruhe, 1983, 627-629.

192

[Tait82]
J.I Tait, "Automatic Summarising of English Texts"; Ph.D. Thesis, University
of Cambridge, 1982.

[Tait83]
J.1. Tait and K. Sparck Jones, "Automatic Search Term Variant Generation for
Document Retrieval’’; R&D Report No. 5793, British Library, 1983.

[Walker78]
D.E. Walker, "Understanding Spoken Language’; New York: Elsevier North-
Holland, 1978.

[Waltz81]
D.L. Waltz, "Toward a Detailed Model of Processing for Language Describing
the Physical World"”; Proceedings, IJCAI-81, Vancouver, August 1981, 1-6.

[Wilensky81]
R. Wilensky, "A Knowledge-based Approach to Language Processing: A
Progress Report”; Proceedings, IICAI-81, Vancouver, August 1981, 25-30.

[Wilensky82]

R. Wilensky, "Talking to Unix In English: An Overview of an On-line UNIX
Consultant”; Report No. UCB/CSD 82/104, Department of Computer Science,
University of California, Berkeley, September 1982.

[Wilks73]

Y. Wilks, "An Artificial Intelligence Approach to Machine Translation”. In
"Computer Models of Thought and Language”, R.C. Schank and K.M. Colby
(eds.), San Francisco: W.H. Freeman and Company, 1973.

[Wilks75a]
Y. Wilks, "An Intelligent Analyser and Understander of English";
Communications of the ACM, 18, 1975, 264-274.

[Wilks75b]
Y. Wilks, ""A Preferential, Pattern-matching Semantics for Natural Language
Understanding”; Artificial Intelligence, 6, 1975, 53-74.

[Wilks77]
Y. Wilks, "Good and Bad Arguments about Semantics Primitives";
Communication and Cognition, 10, 1977, 181-221.

[Wilks78]
Y. Wilks, "Making Preferences More Active”; Artificial Intelligence, 11, 1978,
197-223.

193

[Winograd72]
T. Winograd, 'Understanding Natural Language"”; Edinburgh: Edinburgh

University Press, 1972.

[Woods70]
W.A. Woods, ""Transition Network Grammars for natural language analysis”;

Communications of the ACM, 13, 1970, 591-6086.

[Woods73]
W.A. Woods, "An Experimental Parsing System for Transition Network

Grammars”. In "Natural Language Processing”, R. Rustin (ed.), New York:
Algorithmics Press, 1973.

[Woods78a]
W.A. Woods, "Research in Natural Language Understanding’’; Report No. 3797,

Bolt Beranek and Newman Inc., April 1978.

[Woods78b]
W.A. Woods, "Semantics and Quantification in Natural Language Question

Answering”; Advances in Computers, 17, 1978, 1-87.

[Zdybel81]

F. Zdybel, N.R. Greenfeld, M.D. Yonke and J. Gibbons, "An Information
Presentation System''; Proceedings, [JCAI-81, Vancouver, August 1981, 978-
984. '

194

