Technical Report R

Number 596

B UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Reconstructing 1/0O

Keir Fraser, Steven Hand, Rolf Neugebauer,
Ian Pratt, Andrew Warfield, Mark Williamson

August 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2004 Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, Mark Williamson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Reconstructing 1/0

Abstract part of the PC experience by workstation users and admin-
We present a next-generation architecture that addressedrators. However, in recent years the PC has supplanted
problems of dependability, maintainability, and manage-mainframes and special-purpose operating systems in the
ability of 1/0 devices and their software drivers on the PCenterprise. When every second of downtime impacts rev-
platform. Our architecture resolves both hardware and softenue, the traditional limitations of the architecture can n
ware issues, exploiting emerging hardware features to imlonger be tolerated.
prove device safety. Our high-performance implementax

tion, based on the Xen virtual machine monitor, providesThIS paper presents a set of changes intended to tran-

. . . . , sition toward dependable, maintainable and manageable
an immediate transition opportunity for today’s systems. . .
systems. We present a new system architecture which

addresses fundamentally unsafe issues in the current I/O
1 Introduction model, such as unrestricted device DMA. Our architec-
ture is built upon three key ideas. First, we mitigate the

Device drivers are one of the most troublesome aspect@kS of d(_avice misbehaviour bY enforcin_g isolation be-
of commodity operating systems — a weakness that hag/veen dewce—granulgrlty protggnon domains. Second, we
received scant attention as the PC platform has evolvedltroduce a set of simple, unified interfaces between OS
driven by the overriding goal of affordable performance.and driver software. These interfaces provide the required
It is now no longer sufficient to merely provide ever- separation of concerns between these hitherto conflated as-
improving data speeds; as these systems are increasin ct_s of systems softwar_e. Finally, we unify the_ control and
used in business-critical applications, it is essentiakto configuration of devices in a single OS-agnostic system in-

view their management and dependability terface.

Driver code is written for, and runs within a specific 0S. OUr @pproach is not merely an academic proposal. We
For purposes of execution, the two are inseparable on mod!2ve taken advantage of our experience with high perfor-
ern systems. This entanglement leads directly to thredhance thuallzatlon_ techniques to c_on_struct a complete
problems that urgently need addressing given the grOWingnplementanon of this proposal on existing hardware. Our

stake PCs hold in today’s enterprise server environments: Prototype solves all the above problems, except where con-
strained by the shortfalls of existing hardware, and presid

1. Dependability: The lack of isolation between execu- a transition path toward a new system architecture as well
tion of driver and OS code sacrifices dependability.as immediate benefit to present-day systems. In the follow-
Driver errors often cause catastrophic system crashesng subsections we discuss each of the fundamental con-

2. Maintainability: Device drivers must be rewritten for cerms more specifically.

each OS, and driver code is difficult and expensive to
develop and maintain. 1.1 Dependability

3. Manageability: The troubleshooting and resolution
of driver-related problems is often difficult and time
consuming in the ongoing administration of a system

Drivers on the PC architecture are frequently blamed as
a leading cause of system instability [1]. The fact that
‘driver code runs with the same privilege and in the same ad-
These concerns reflect the roots of the PC architecture asdaess space as the operating system means that even simple
desktop platform. Although inconvenient, system crashegointer errors may compromise system stability. However,
and tedious diagnosis of hardware problems are accepted dsver misbehaviour is not confined to just pointer errors:

T T T T O T code [2]. This, combined with the fact that OS interfaces
‘ApplicationApplication nApplication: }Application sApplication sApplication : . . .
! (process) # (process) ' (process) ¢ i (process) i (process) ! (process) : differ not only syntactically but also semantically (em9-

bttt b Viding very different threading models and communication

System Call Interface b System Call Interface : primitives) means that each driver requires developells wit
Networking File System ' : Networking File System : OS'SpeCIfIC expertlse.

* CPUScheduler Memory Mgmt. ' : CPUScheduler ~ Memory Mgmt. ThIS' coupllng'beneflts no Qne’ except as an |ner't|al forcg

: P T T e TR LR Ty behind established operating systems. Even Windows is

! Device Device Device : ! Device ‘I Device i Devie : Victim to the interface problem: Microsoft recently an-

i Driver Driver Driver } i Driver :i Driver :i Driver : nounced that the move to a 64-bit OS will require a new

i Traditional I/O Interface (I/O chipset) | Safe Hardware Interface . version of every device driver [3]. The lack of a common

1 bevice B pevice Device + | Device ! Device | Device [driver—OS interface is also an inhibitor to new OSs.

Traditional Architecture: Safe Device Architecture: Our approach is to unify the driver-OS interface and use

Devices, drivers, and operating Devices and drivers are isolated the isolation techniques discussed above to execute driver

system in a monolithic domain from the OS and each other

code in a completely separate execution context from that
of the OS. The OS is presented with an idealized interface
that describes a class of hardware, for instance storage de-
vices or network interfaces. This approach allows a single
driver to be used under any number of operating systems
— each OS-specific driver serves an entire class of devices
and typically comprises just a few hundred lines of code.

Figure 1: Isolation in a traditional O%hs) versus the Safe
Device approachrfis) which isolates device drivers from
the kernel and from each other, and usesafe hardware

interfaceto extend this isolation to the device level.

drivers may leak memory, deadlock, fail to correctly man-
age interrupts, or wedge the system inside an infinite loop] .3 Manageability

The broad spectrum of failure possibilities means thafypifieq access to drivers is not just needed from a data ac-
making systems dependable requires complete isolation Qfess perspective, but also for administration. Presehgy,
driver execution from that of the OS, applications and othek,ss of diagnosing and configuring hardware are specific
drivers. More importantly, it is crucial that mechanisms bey, gach driver and OS instance. This has led, for instance,
provided to ensure ongoing device availability, by recog-y specific device functionality being exposed under Win-
nising and reacting to driver failures. Our approach is t0yoys byt not Linux, and vice versa. The ad hoc means by
enforcecomplete vertical isolationf resources including yhich devices are currently administered equates to wasted
device hardware, driver code, and operating system. aqministrator time and all the costs that entails. By unify-

The difference between this new approach and traditiondd the control of devices in addition to their access, we
OS structure is shown in Figure 1 — device drivers are ex/10P€ t0 address these administrative concerns.

ecuted in a protection domain which restricts their access

to host memory, I/O mst.ructlons, device registers and N> Related Work

terrupt lines. Section 3 discusses our use of /0 Spaces, the

m.echanlsm by which we achieve 'these vertically ISOIated1'he current I/O architecture presents a multifaceted set of
slices through the system. In Section 4 we present a set of

technigues to address the difficult problemregognising challenging problems. This section attempts to summarize

. the great breadth of previous work that has attempted to
driver failure, and go on to identify problems that simply S
4 tackle individual aspects of the problem. We have drawn
cannot be solved with current hardware.

on many of these efforts in our own research. There are
two broad classes of work related to our own. First is a

large set of efforts both in systems software and hardware
development toward safe isolation. Second are attempts
Although hardly a simple undertaking, isolating driver to better structure the interfaces between devices and thei

code for safety only addresses a symptom of a Consider's_oftware, and the OSs and applications they interact with.

ably broader, architectural problem. Today, the develop-

ment of driver code is tightly coupled with the individual 2 1 Safe |solation

target operating system. Device vendors must maintain

separate source trees for each OS that they hope to suResearchers have long been concerned with the inclusion
port. Moreover, the individual driver OS interfaces are in-of extension code in operating systems. Extensible oper-
credibly complex; Swift et al identify more than four hun- ating systems [4, 5] explored a broad range of approaches
dred interface points between the Linux kernel and drivetto support the incorporation of foreign, possibly untrdste

1.2 Maintainability

Operating
System A
(e.g. Windows XP)

code in an existing OS. Swift et al [2] leverage the experi- Device Channels:

ences of extensibility, particularily that of interpositi, to e

improve the reliability of Linux device drivers. While their L 5

work claims an improvement in system reliability it demon- | 3 |

strates the risk of a narrow focus: their approach sacrifices | unified interfaces: | = Device = Deviee | Device
Single driver source

performance drastically in an attempt to add dependabil- Drivers may be shared SRR
ity without modifying the existing OS. By addressing the

Operating
System B
(e.g. Linux)

Jabeuey ad1rsQg

Software
Hardware

. . X 5 Device Device Device
larger architectural problem and not fixating on a single
OS instance, we provide higher performance and solve a L e §
. I/0 Spaces: Legacy Interfaces:
broader set of issues, while still remaining compatibléawit Fravitis S e Original OS driver
ioti isolation for driver/device Still isolated for safety
eXIStmg SyStemS' instances No driver sharing or restart

Our implementation, presented in Section 4, uses a virtu-

alization layer to achieve isolation between drivers amd th Figure 2: Example of the next-generation 1/O architecture.
OS (or OSs) that use them. Providing a low-level systems

layer that is principly responsible for managing devices wa

initially explored in Nemesis [6] and the Exokernel [7]. thus there is no mitigation of the risks posed by erroneous
Our work refines these approaches by applying them to exdrivers. Secondly, our external perspective avoids the tra
isting systems. Additionally, Whitaker et al [8] speculate to which vendor consortiums such as UDI often fall victim:
as to the potential uses of a virtualized approach to systenhat of ‘interface unioning’. Rather than providing the ag-
composition, drawing strongly on early microkernel effort gregate interface present in all existing drivers, we seitl

in Mach [9] among others [10, 11]. Our work represents aa narrowerjdealizedinterface. While we provide mecha-
realization of these ideas, demonstrating that isolatam ¢ nisms to directly (and safely) expose the hardware should
be provided with a surprisingly low performance overhead.our interface be too constrictive, we have not found this

Commercial offerings for virtualization, such as VMWare to be a problem in our experiences with a large number of
9 ' network and storage devices and several OSs.

ESX Server [12], allow separate OSs to share devices.
While we have previously demonstrated [13] that our ap-Novel OS architectures have long struggled with a lack of
proach to virtualization provides higher performances thi device driver support. The vast number of available de-
work moves to focus specifically on additional concernsvices has compounded this problem, making the adoption
such as driver dependability; our implementation is nowof an existing driver interface attractive for fledgling sys

not only faster but also accommodates a strictly highet levetems. Microkernel systems such as Fluke [19] and L4 [20]
of driver dependability. have investigated wrapping Linux device drivers in cus-
tomized interfaces [21, 22]. Although the structure of our

Several research efforts have investigated hardware- . . . o .
g [@rchnecture is not entirely dissimilar to that of a microke

assisted approaches to providing isolation on the PC planel, our intent is to solve the driver interface issue for all

form. The Recovgry-Orlented Computing [14] project, gperating systems on the PC architecture, rather than make
whose goals are similar to our own, have used hardwargome set of existing drivers work for a single developmen-
for system diagnostics [15], but defer to ‘standard mecha: 9 9 P

nisms’ for isolation. Intel's SoftSDV [16], which is a de- tal OS.

velopment environment for operating systems supportingrhe LinuxBIOS project [23] replaces the proprietary BIOS
the IA-64 instruction set, uses PClI riser cards to proxy |/Oon Systems with a Specia“zed Linux image' This approach
requests. While their concern is in mapping device intergjlows fast startup and eases management, especially in
rupts and DMA into the simulated 64-bit environment, the cjyster environments where console access is not available

same approach could be used to provide device isolationhis is closely related to our device control interface vahic
Intel has also announced that their new LaGrande architeGye intend should be directly integrated with the BIOS.

ture [17] will protect memory from device DMA.

2.2 Better Interfaces 3 Architecture

Our goal of providing more rigid OS—device interfaces In this section we outline a new architecture that addresses
is hardly new. Most notably, corporate efforts such asthe dependability, maintainability and manageability ef d
UDI [18] have attempted to do just this. There are two keyvices and their control software. Note that we incorporate
limitations of UDI that we directly address. Firstly, we en- hardware modifications where they are necessary or desir-
force isolation whereas UDI-compliant drivers still exezu able, deferring until Section 4 a more pragmatic design that
in the same protection domain as the operating system, arallows for the limitations of existing systems.

Requirement 1: Driver Isolation 1/0 Space Isolation Layer Protects:

Memory: execute in logical fault domain el WD 0s S
CPU: schedule to prevent excessive consumption (DO",Laitf; ?""Ef_‘"l:) Execution Privilege
.. e e & IS| A
Privilege: limit access to instruction set d d Device Downcalls
Requirement 2: Driver — Device Isolation
I/O Registers: restrict access to permitted ranges Logical Isolation Layer) hware
Interrupts: allow to mask/receive only device’s interrupt ~ ~ " c ?,i;;t;;d]g,w',\,l—u;—l Hardware
Requirement 3: Device Isolation PCIBus Chipset/IOMMU Protect:
N : DMA to memory
Memory: . prevent DMA to arbltra_ry host memory | RO e .
Other Devices: prevent access to arbitrary other devices Device Device
(eg NIC) (eg SCSI) Smart Devices Protect:
. Fine-grained access through
Table 1: Requirements for Safe Hardware 1/0 Space labels

i |

As illustrated by Figure 2, our architecture compriseséhre Figure 3: Achieving Safe Hardware. The outlined region
parts which correspond directly to the problems identified.denotes a/O Space a vertical slice through the system
Firstly, we introducd/O Spacesvhich arrange that devices providing isolation for device and driver.

perform their work inisolationfrom the rest of the system.

This increases reliability by restricting the possiblerhar

inflicted by device faults. Secondly, we define a set of perdmportantly, our approach also addresses the problem of
classunified interfaceshat are implemented by all devices isolating physical device access. Currently, drivers may
of a particular type. This provides driver portability, &ko ~ Write to arbitrary device registers or mask inappropriate i
ing the need to reimplement identical functionality for a terrupts, and devices may DMA to invalid memory. We
range of different OS interfaces. Finally, our device man-introducel/O Spaceswhich extend the notion of logical
ager provides a consistecontrol and managementer- protection domains to incorporate resources specific to de-
face for all devices, simplifying system configuration andvices and their driver code (Figure 3).

diagnosis and treatment of device problems.

An /O Space is a vertical slice through the system, pro-
viding an isolated context for each device and its driver.
3.1 Isolation A controller within the I/O chipset maintains tables of ac-

cess permissions for each I/O Space, identifying accessibl
One reason for the catastrophic effect of driver failure onranges of memory addresses, device registers and interrupt
system stability is the total lack of isolation that pervade lines. Each I/O Space is represented by a numeric iden-
device interactions on commodity systems. The issues thaifier that is attached to every I/O transaction by a device
must be addressed to achieve full isolation are outlined iror driver operating within that Space. The controller uses
Table 1. The concerns are divided into three requirementshis identifier to validate the requested operation agéirest
isolating the execution of driver code from other softwareappropriate permission table.

components, ensuring that drivers may only access the dt?:— th dvant b ined by allocati f
vice they manage, and enforcing safe device behaviour. urther advantages can be gained by aflocating a range o
I/O Spaces to each device. Incorporating a notioalieht

Previous attempts at driver isolation [2] have placed drive identityinto each 1/0O Space would enable features such as
code in a separate logical fault domain, essentially providclient scheduling within the device, and safe DMA to ap-
ing virtual memory protection between the driver and theplication buffers [24]. It is also a small step to predicate
rest of the system. However, this is only a partial solutionbus arbitration on the requesting I/O Spaces, thus allowing
as it primarily protects memory; a logical isolation layer differentiated service to be provided to different clients

mustbe used to provide isolation of scheduling and access he impl ion th in Section 4
to privileged instructions. As the implementation that we present in Section 4 uses

virtualization, we have been able to address the physical
The implementation that we present in Section 4 uses a virisolation problems of host-to-device access by implement-
tual machine monitor (VMM) to achieve the required logi- ing within the VMM the 1/0-Space functionality of a next-
cal isolation between driver and OS code. By tracking andyeneration chipset. We believe that the isolation we have
retaining full control of each driver's CPU and memory use, achieved is the strongest possible without hardware mod-
the VMM provides isolation guarantees analogous to an Oications. Although our current implementation cannot
and its application processes. For example, if a faultyedriv protect against unsafe device DMA, we describe the mi-
becomes livelocked, or attempts to access a memory locaor modifications that would be necessary to take advan-
tion outside its heap, then this is disallowed by the VMM tage of a safe DMA controller. Emerging hardware re-
and signalled to the device manager (described in Sectiogearch [15, 16, 17] indicates that these hardware improve-
3.3) which takes appropriate remedial action. ments may soon be incorporated into the PC platform.

3.2 Unified Interfaces even when we do not use a unified virtualized device in-
terface, the architecture still provides isolation andcesgaf
Although the PC has standardized hardware interfaceshis transitional approach allows our architectural besefi
there is no such accepted standard for the interface to syso be realized in the short term, while we move to focus on
tem software, despite industry efforts [18]. Our solutionthe challenging problems of sound and video interfaces in
is to define a set of idealized high-level interfaces tai-the future.
lored for each class of device. OS vendors then need im- N) o
plement only a single, small driver pelevice clasghat If[is additionally worth obserylng t_hat_orgamsatlons con-
communicates via the unified interface: this can be delinué to move toward OS virtualization as a means of
veloped in-house by developers with intimate knowledgeMaKing better use of server hardware. Unified interfaces
of the OS, and subjected to appropriate quality-controfre particularly advantageous in a virtualized environmen
checks. By implementing the unified interface, hardwareVhere they can enabievice sharing

vendors automatically support every PC system. Furtherap, example of unified interfaces, legacy support, and de-
more, they may arbitrarily choose how the implementation, ¢ sharing was shown in Figure 2 in which two operat-
is divided between hardware and software, perhaps incofpg systems and three device drivers all run on a single
porating more functionality into higher-cost productsttha \,,achine. The two leftmost device drivers present a uni-
include advanced features such as I/O processors [25]. fieq interface which ‘wraps’ existing driver code. Using

Our unified device interfaces are based on those provideHis interface means that device drivers may be indiviguall
by the Xen VMM which, as we have previously demon- _scheduled, shared betv_veen operating systems, and rdstgrte
strated [13], provides low-overhead access to common ddD ¢ase of error. The rightmost operating system contains
vice classes. The essential features required for efficiert legacy driver; although this prevents separate scheglulin
data-path communication are to avoid data copies, to pra?’ §haring,_ the saf_e_hardware interface can still be used to
vide back pressure to the data source, and to use a fledit the driver's privileges.

ible and asynchronous notification primitive. Within our
architecture we incorporate these principles id@vice
channelslinking the unified interfaces exported by device
drivers to the operating systems using them. We provid . . .
details of a software implementation of device channels ir(?rhe final concern addressed by our architecture is that of

. . . Vi ntrol an nfiguration — an area that h n
Section 4.2. However, we were careful in our design not toOle ce control and configuratio an area that has bee

exclude the possibility of a hardware implementation particularly neglected during the PC’s evolution. The lack
' of standardized platform-wide control interfaces has ted t

Concerns regarding the feasibility of adopting standadliz the implementation of unique and proprietary configuration
device interfaces are very relevant, as acceptance is mofaterfaces for each OS and deviceA significant disad-

of a political problem than a technical one. Our efforts tovantage of this ad hoc approach is that system administra-
date have had a great deal of success in allowing a variors require additional training for each OS environment
ety of networking and storage devices to function throughand machine setup that they support, simply to understand
a common interface to Linux, NetBSD, and Windows XP. multiple different configuration interfaces that ultimigte

We have focused on these classes of device as we belieysovide identical functionality.
that network and disk are the two most crucial device in- . .
The transition of the PC platform into the server room

terfaces in a server environment. We do not presume that S .
eans that manageability is now more important than ever.

the interfaces we hav_e identified are complete, and expe he current jumble of configuration tools is inappropriate
them to evolve over time. However, experience so far ha?

shown that our model is valid; other groups (e.g. [26]) have o conflgurln_g and managing the large-scale clusters th_at
are common in enterprise environments. Console-based in-

m_de_pendently ported new devices to our architecture W'tqerfaces, although suitable for configuring small numbers
minimal effort. . S .

of desktop machines, are a major hindrance when configu-
The end-to-end argument [27] has been invoked by effortgation changes must be applied to hundreds of machines at
in the past, particularly Exokernels [7], as motivationte e a time. The growing problem of remote management is a
pose rather than to abstract hardware interfaces. While werimary motivation for the LinuxBIOS project [23].

believe that unified interfaces provide considerable benefi This final aspect of our architecture is handled jesice

we m | knowl hat it is likely im ibl f- : .
e must also acknowledge that it is likely impossible to e manager— essentially an extension to the system BIOS

fectively model all devices: emerging devices and special- . 4
o . ..~ that provides a common set of management interfaces for
purpose applications must be considered. In these situa-

. . . Il devices. The device manager is responsible for boot-
tions, we allow device access to be exposed directly, and 9 P

Itis through th'_s mechanism Fhat we address video and 1some common device classes do enjoy a consistent controbiegerf
sound devices in our current implementation. Note thabut even this consistency is not carried across differers. 0S

3.3 Control and Management

strapping isolated device drivers, announcing devicd-avai4.1.1 1/O Registers
ability to OSs, and exporting configuration and control in-

terfaces to either a local OS or to a remote manager. ~ X€n ensures memory isolation amongst domains by check-
ing the validity of address-space updates. Access to a

memory-mapped hardware device is permitted by extend-
ing these checks to allow access to non-RAM page frames
that contain memory-mapped registers belonging to the de-
vice. Page-level protection is sufficient to provide isiolat

We have implemented our next-generation 1/0 architecturdecause register blocks belonging to different devices are
for current PC hardware, based on the Xen virtual machingisually aligned on no less than a page boundary.

monitor. As described in [13], Xen divides the resources,\ ,qdition to memory-mapped 1/, many processor fam-
of a PC system amongst a set of secure and performanc

isolatedd . h of which ‘ ‘ fiies provide an explicit 1/0O-access primitive. For exam-
Isolateddomains each oTWhiCh runs a separate gues _Oper'ple, the x86 architecture provides a 16-bit I/O port space to
ating system and applications. Xen implements only isola

i hani task has d . which access may be restricted on a per-port basis, as speci-
lon mechanismsmanagement fasks, such as domain Crége g by an access bitmap that is interpreted by the processor
ation and resource allocation, are performed kgystem

troll L iald in with A . on each port-access attempt. Xen uses this hardware pro-
controfierrunning in a special domain with access {0 a priv-q o by rewriting the port-access bitmap when context-
ileged control interface.

switching between domains. Since the bitmap is large and

We begin this section by describing how we extended Xen'$Parse, for each domain Xen tracks and rewrites only the

virtual-machine and control interfaces to allow safe ac-aCtive words within the bitmap.

cess to hardware. By placing device drivers in a resource-

controlled domain separate from OS and application code4.1.2 Interrupts

configured with suitably restrictive hardware-accessipriv

leges, Xen provides the isolation of processor and hardwaré/henever a device’s interrupt line is asserted it triggers

contexts that we identified in requirements one and two ofxecution of a stub routine within Xen rather than caus-

Section 3.1. We incorporate the necessary control and marig immediate entry into the domain that is managing that

agement services, provided bylavice managein our ar- device. In this way Xen retains tight control of the sys-

chitectural outline, into a device-management subsysfem dem byschedulingexecution of the domain’s interrupt ser-

the system controller. vice routine (ISR). Taking the interrupt in Xen also allows
a timely acknowledgement response to the interrupt con-

We then proceed to describe how guest @Bsnectto troller (which is always managed by Xen) and allows the

drivers in other domains. We introduce an efficient methochecessary address-space switch if a different domain-s cur

for inter-domain communication based on shared memoryently executing. When the correct domain is scheduled

and asynchronous notifications, and outline the protogol fojt is delivered an asynchronowssent notificationwhich

setting updevice channelssing a core interface that links causes execution of the appropriate ISR.

every domain to the system controller. Device channels -~)]

provide a unified abstraction for high-performance datg<€n notifies each domain of asynchronous events, includ-

transfer: we describe how this abstraction is safely impleiNd hardware interrupts, via a general-purpose mechanism
mented by device drivers and used by guest OSs. called event channels Each domain can be allocated up

to 1024 event channels, each of which comprises a pair of
bit flags in a memory page shared between the domain and
Xen. The first flag is used by Xen to signal that an event is
pending When an event becomes pending Xen schedules
an asynchronous upcall into the domain; if the domain is
Our safe hardware interface enforces isolation of devicéocked then itis moved to the run queue. Unnecessary up-
drivers by restricting the hardware resources that they caga||s are avoided by triggering a notification only when an
access. To this end, we restrict access privileges to devicgyent first becomes pending: further settings of the flag are
I/O registers (whether memory-mapped or accessed via €%hen ignored until after it is cleared by the domain.

plicit I/O ports) and interrupt lines. Furthermore, whetre i) i

is possible within the constraints of existing hardware, we! N sécond event-channel flag is used by the domain to
protect against device misbehaviour by isolating devicemaskthe event. No no'Flflcatlon is triggered when a masked
to-host interactions. Finally, we virtualize the PC’s hard €vent becomes pending: no asynchronous upcall occurs
ware configuration spaceallowing the system controller @nd a blocked domain is not woken. By setting the
unfettered access so that it can determine each device’s rB1ask before clearing the pending flag, the domain is able

sources, while restricting each driver's view of the system{© Prevent unnecessary upcalls for partially-handled even
so that it cannot see resources that it cannot access. sources. When the mask is eventually cleared the domain

4 Design and Implementation

4.1 Safe Hardware Interface

can reread the pending flag to see whether another batch ¢ferhaps because the page does not belong to the driver),
work has arrived from the event source. it may instead program its hardware device to perform a
DMA to the page. Unfortunately there is no good method
for protecting against this problem with current hardware
as it is infeasible for Xen to validate the programming of

Each domain specifies a single upcall handler for all event
channel notifications. To avoid the expense of linearly
sganning all pending flags,saalectorWordpdicate{s which MA-related device registers. Not only would this re-
aligned groups of 32 channels are pending. This two-leve uire intimate knowledge of every device’s DMA engine,

hierarchy permits fast scapning in the common situatioqt also would not protect against bugs in the hardware it-
that few channels are pending. self: buggy hardware would still be able to access arbitrary

To avoid unbounded reentrancy, a level-triggered inté¢rrupSystem memory.
line must be masked at the interrupt controller until aH rel
evant devices have been serviced. Because of this, aft
handling an event relating to a level-triggered interrtiue,

A full implementation of this aspect of our design requires
%tegration of an IOMMU into the PC chipset. Similar
. . . to the processor's MMU, this translates the addresses re-
domain must calowninto Xen to unmask the interrupt guested by a device into valid host addresses. Inapprepriat

line. However, if an interrupt line is not shared by multiple host addresses are not accessible to the device because no

dgvice; then >§en can usually safely reconfigure it as edgl?happing is configured in the IOMMU. In our design, Xen
triggering. This obviates the need for unmask downcallsWould be responsible for configuring the IOMMU in re-

as they are not required for edge-triggered interrupt lines sponse to requests from domains. The required validation

When an interrupt line is shared by multiple hardwarechecks are identical to those required for the processor’s
devices, Xen must delay unmasking the interrupt until aMMU; for example, to ensure that the requesting domain
downcall is received from every domain that is managingowns the page frame, and that it is safe to permit arbitrary
one of the devices. Xen cannot guarantee perfect isolatiomodification of its contents.

of a domain that is aIIocat.ed a shared interrupt: if the dO'It is entirely reasonable to expect that IOMMU functional-
main never unmasks the interrupt then other domains can

be prevented from receiving device notifications. Howev r|ty will be included in commodity chipsets in the near fu-
€ prevented from receving device notifications. HOWEVeT, .. 64-bit systems already include an IOMMU that allows
shared interrupts are rare in server-class systems wipeh ty

. .) . 32-bit devices to access the full range of host memory. Al-
ically contain IRQ-steering and interrupt-controller com g Y

onents with enouah pins for every device. The broblem 0%houghthe IOMMU is intended to perform only translation,
ponents wi ugh pi Very cevice. > P . —and devices are not prevented from bypassing its memory
sharing is set to disappear completely with the introductio

) window, it is a small step to require that all memory trans-
of message-based interrupts as part of PCI Express [28]. actions pass through the IOMMU and thus also use it to

enforce protection.
4.1.3 Device-to-Host Interactions

As well as preventing a device driver from circumvent- 4.1.4 Hardware Configuration
ing its isolated environment, we must also protect agains . - .
possible misbehaviour of the hardware itself, whether duej;]he PEI ?]t_a?]ds(r:dhdegnes adge_nemmflggr?tlotn dspa((:je

to inherent design flaws or misconfiguration by the driver." o297 Whic araware gevices are detected and con-

software. The two general types of device-to-host interac!/9ured: Xen restricts each domain's access to this space so
that it can only read and write registers belonging to a de-

tion that we must consider are assertion of interrupt lines,
and accesses to host memory space. Vice that it owns. Thls_ serves a dual purpose: pot, only.does
it prevent cross-configuration of other domains’ devices,
Protecting against arbitrary interrupt assertion is naga s but it also restricts the domain’s view so that a hardware
nificant issue because, except for shared interrupt linegrobe detects only devices that it is permitted to access.

each hardware device has its own separately-wired conneg:r-h thod of toth f. i . t
tion to the interrupt controller. Thus it is physically im- € method oraccess fo the configuration space IS system-

possible for a device to assert any interrupt line other thaﬁepefnden;th and thte T%St co(;nrréci(n)énetr;lo ds are potelzlnltllglly
the one that is assigned to it. Furthermore, Xen retains fuIFnSta‘e_(%' e,rt[r)]r(?{ ec eh -mz € '::allséj orasma)
control over configuration of the interrupt controller ared s part ‘window’ that is shared amongst all device spaces).

can guard against problems such as ‘IRQ storms’ that Coul&)omams are therefore not permitted direct access to the

be caused by repeated cycling of a device’s interrupt line. ponfiguration space, but are fc_)rced to use a virtualized
yrep yelng P interface provided by Xen. This has the advantage that

The main ‘protection gap’ for devices, then, is that theyXen can perform arbitrary validation and translation of ac-
may attempt to access arbitrary ranges of host memory. Faress requests. For example, Xen disallows any attempt to
example, although a device driver is prevented from usinghange the base address of an I1/0O-register block, as the new
the CPU to write to a particular page of system memorylocation may conflict with other devices.

Guest Requests DMA:

1. Grant Reference for Page P2 placed on device channel
2. IDD removes GR

3. Sends pin request to Xen

between domains.

4.2.1 Sharing Memory

Guest OS Isolated)) _ _ _
- --_Device Driver The sharing mechanism provided by Xen differs from tradi-
; 2y (IDD) tional application-level shared memory in two key respects
| [P1] [p2f | [cARl. ; shared mappings aesymmetri@ndtransitory. Each page
iRt . of memory is owned by at most one domain at any time
Xen _:T ______ 4 '* ; and, with the assistance of Xen and the system controller,
.. --------- 6 that owner may force reclamation of mappings from within
Active Grant Table . . .
- - - other misbehaving domains.
Device Device Device

4. Xen looks up GR in active grant table

5. GR validated against Guest (if necessary)
6. Pinning is acknowledged to IDD

7. IDD sends DMA request to device

To add a foreign mapping to its address space, a domain
must present a valigrant referenceo Xen in lieu of the
page number. A grant reference comprises the identity of
the domain that is granting mapping permission, and an in-
. i : dex into that domain’grant table Every domain owns a
Figure 4: Using device channel to request a data transfer.privalte grant table that it shares only with Xen, in which
each entry is a tuplégrant D, P, R,U) permitting do-
The system controller is permitted access to the entire conmain D to map pageP into its address space; asserting
figuration space. This eases configuration of the safe hardpe poolean flagk restrictsD to read-only mappings. The
ware interface because the configuration space comprehefpag U is written by Xen to indicate whethdD currently
sively describes the hardware resources that belong to eaq;,lr,lapsp (i.e., whether the grant tuple iis use.
device. Thus the controller can automatically configure the
correct access permissions for a new device-driver domailhen Xen is presented with a grant refere(de) by a
without assistance from the system administrator. domainB, it first searches for inde% in domainA'’s active
grant table (AGT), a private table that is only accessible
by Xen. If no match is found, Xen reads the appropriate
tuple from the guest’s grant table and checks fHagrant

. i and D=B, and thatR=falseif B is requesting a writeable
Although the safe hardware interface can be configured t@y4pping. Only if the validation checks are successful will

allow a guest OS to run its own device drivers, this missescqp, copy the tuple into the AGT and mark the grant tuple
the potential improvements in reliability, maintainatyili 5¢ in use.

and manageability of running device drivers in isolatidn. |
is therefore expected that each device driver will run withi Xen tracks uses of grant references by associating a usage
an isolated driver domain (IDD) which limits the impact of count with each AGT entry. Whenever a foreign mapping
driver faults. is created with reference to an existing AGT entry, Xen in-

_ _ i crements that entry’s count. The grant reference cannot be
Guest OSs access a device througtieaice channelink o 10cated or reused by the granting domain until the for-

with its IDD. The channel is a point-to-point communica- gign domain destroys all mappings that were created with
tion link through which each end can send messages asyRzfarence to it.

chronously to the other. A device channel is established

by using the system controller to introduce the IDD to theAlthough it is clear that this mechanism allows strict check
guest OS, and vice versa. To make this possible, the systeing of foreign mappings when they are created, it is less
controller automatically establishes an initial contdodn- obvious how these mappings might be revoked. For exam-
nel with each domain that it creates. Figure 4 shows a guegtle, if a faulty IDD stops responding to service requests
OS requesting a data transfer through a device channel. Thben guest OSs could end up owning unusable memory
individual steps involved in the request are discussed latepages. We handle the possibility of driver failure by tak-
in this section. ing a deadline-based approach: if a guest observes that a

| d of ing IPC fund | orimiti . grant table entry is still marked as in use when it deter-
nstead of treating as a fundamental primitive, as INyineq that it ought to have been relinquished (e.g., because

most compartmentalized systems [8, 20], Xen itself has NG requested that the device channel should be destroyed),

concrete notl_on of a_control or device channel. Messageﬁ]en it signals a potential domain failure to the system con-
are communicated via shared memory pages that are a"?r'oller

cated by the guest OS but are simultaneously mapped into
the address space of the IDD or system controller. For thiThe system controller checks whether the specified grant
purpose, Xen permits restrictastharingof memory pages reference exists in the notifying domain’s AGT and, if so,

4.2 Device Channels

10

sets a deadline by which the suspect domain must relinthe buffer address when requesting a device transfer: the
quish the stale mappings. If a registered deadline passéBD specifies this grant reference when pinning the buffer.
but stale mappings still exist then Xen notifies the systenXen applies the same validation rules to pin requests as it
controller. At this point the system controller may choosedoes for address-space mappings. These include ensuring
to destroy and restart the driver, thereby forcibly reclagn that the memory page belongs to the correct domain, and
the foreign mappings. that it isn't attempting to circumvent memory-management
checks (for example, by requesting a device transfer di-

. . rectly into its page tables).
4.2.2 Descriptor Rings

Returning to the example in Figure 4, the guest’s data-
I/O descriptor rings are used for asynchronous transtransfer request includes a grant refereGfor a buffer
fers between a guest OS and an IDD. Ring updates argagep,. The request is dequeued by the IDD which sends
based around two pairs of producer-consumer indexes: thg pin request, incorporating GR, to Xen. Xen reads the
guest OS places service requests onto the ring, advancinghpropriate tuple from the guest's grant table, checks that
a request-producer index, while the IDD removes thesep, pelongs to the guest, and copies the tuple into the AGT.

requests for handling, advancing an associated requesthe |DD receives the addressBf in the pin response, and
consumer index. Responses are queued onto the same rifgn programs the device’s DMA engine.

as requests, albeit with the IDD as producer and the guest

OS as consumer. There is no requirement that requests 68 systems with protection support in the chipset (Sec-

processed in order: the guest OS associates a unique iderfion 4.1.3), pinning would trigger allocation of an entry in

fier with each request which is reproduced in the associatethe IOMMU. This is the only modification required to en-

response. This allows the IDD to unambiguously reordeforce safe DMA (Requirement 3 in Table 1). Moreover,

/O operations due to scheduling or priority consideration this modification affects only Xen: the IDDs are unaware
of the presence or otherwise of an IOMMU (in either case

The guest OS and IDD use a shaieter-domainevent hin yequests return a bus address through which the device
channel to send asynchronous notifications of queued dgsp, directly access the guest buffer).

scriptors. An inter-domain event channel is similar to the

interrupt-attached channels described in Section 4.h@. T In addition to pinning a guest buffer for DMA, an IDD may
main differences are that notifications are triggered by thelso use the grant reference to map the buffer into its ad-
domain attached to the opposite end of the channel (rathairess space. This allows support of legacy devices which
than Xen), and that the channeltilirectional each end do not support DMA; the IDD instead uses the main CPU
may independently notify the other, or mask incoming no-to transfer data to or from the device. Buffer mapping is
tifications. also useful for network-driver domains, which may choose
to copy each packet header into a guest-inaccessible buffer
. . e Pefore applying filtering rules. In this case the driver will

a descriptor ring from the notification of the other party. usually both map and pin the packet buffer: all modern net-

For example, in the case of requests, a guest may ENAUeHRk interfaces support scatter-gather DMA, so they can

multiple entries before notifying t he IDD; in thg.casfe of re- transfer the packet payload directly from the guest buffer.
sponses, a guest can defer delivery of a notification event

by specifying a threshold number of responses. This al-
lows each domain to independently balance its latency ang 5 4 pevice Sharing
throughput requirements.

We decouple the production of requests or responses

Since Xen can simultaneously host many guest OSs it is
4.2.3 Data Transfer essential to consider issues arising from device sharing.

The control mechanisms for creating and destroying device
Although storing I/0 data directly within ring descriptass ~ channels naturally support multiple channels to the same
a suitable approach for low-bandwidth devices, it does notDD. In this section we describe how our block-device
scale to high-performance devices with DMA capabilities.and network IDDs support multiplexing of service requests
When communicating with this class of device, which in- from different clients.

cludes fast network interfaces and disc arrays, data lmfferw.th. block-device dri ideatchesof
are instead allocated out-of-band by the guest OS and indi- Ithin our block-device driver we servidgalchesot re-
uests from competing guests in a simple round-robin fash-

rectly referenced within 1/O descriptors. q
y P ion; these are then passed to a standard elevator scheduler

When programming a DMA transfer directly to or from its before reaching the disc controller. The low-level schedul
hardware device, the IDD must firgin the data buffer. As ing provided by the elevator, and also by many disc con-
described in Section 4.2.1, we enforce driver isolation bytrollers, gives us good throughput, while request batching
requiring the guest OS to pass a grant reference in lieu gbrovides reasonably fair access. We take a similar approach

11

for network transmission, where we implement a credit-As each guest OS boots, the manager informs it of the
based scheduler allowing each device channel to be alladevices to which it has been granted access. The guest
cated a bandwidth share of the formbytes everyy mi- OS then initiates device-channel creation by allocating a
croseconds. When choosing a packet to queue for trangnemory page for the I/O-communications ring and pass-
mission, we round-robin schedule amongst all the channelmg a grant reference to the IDD via the device manager.
that have sufficient credit. The manager allocates an inter-domain event channel link-

Sharing a high-performance network-receive path requirelés‘/g the guest OS fo the IDD, and passes one endpoint of

X is channel, together with the grant reference, to the IDD.
careful design because, apart from a few smart networ

interfaces that perform packet demultiplexing in hard- hen the IDD acknowledges setup of the device channel,

ware [24], it is not possible to DMA directly into a guest- the response is forwgrded to the guest OS together with its
event-channel endpoint.

supplied buffer. Rather than copying the packet into a
guest buffer after performing demultiplexing, we instead
exchange ownershigf the page containing the packet with) i .
an unused page provided by the guest OS. This avoid-3-2 Driver Failure and Restartability

copying overheads but requires the IDD to queue page-

sized buffers at the network interface. When a packet idn our design, the device manager is responsible for detect-
received, the IDD immediately checks its demultiplexing ing driver failure and coordinating recovery. There are sev
rules to determine the destination device channel. If no uneral ways in which the manager may determine that a driver

used pages are queued on the guest's network-receive rifps failed: for example, it may receive notification from
then the packet is dropped. Xen that the IDD has crashed, or an unresponsive IDD may

. fail to unmap or unpin guest buffers within a specified time
For safety, Xen does not permit IDDs to exchange ownperipd. The subsequent recovery phase is greatly simpli-
ership of arbitrary memory pages. Instead we extencﬁed by the componentized design of our I/O architecture:
the grant table (Section 4.2.1) to inclueechange tuples firstly, the shared state associated with a device channel is
(exchangeD, P, Q), permitting domainD to acquire own- gmal| and well-defined; and secondly, IDD-internal state

ership of page” in exchange for relinquishing ownership s 'soft' and therefore may simply be reinitialized when it
of another page. Unused exchange tuples are denoted bysiarts.

@Q=0; when the table entry is used, Xen rewrit@swith

the address of the page that was relinquished by the IDDThe recovery phase comprises several stages. First, the de-
When exchanging page ownerships, the IDD sends a revice manager destroys the offending IDD and replaces it
questexchangéP, GG) to Xen, whereP is a page frame be- with a freshly-initialized instance. The manager then sig-
longing to the IDD, and~ is anexchange granpassed to nals to the connected guest OSs that the IDD has restarted;
the IDD by the guest OS in a network-receive descriptor. each guest is then responsible for connecting itself to the
new device channel, using the normal signalling mecha-
nisms provided by the device manager. At this point, the
guest may also opt to reissue requests that may have been

We embed our device manager within the system Cong:\ffected by the failure (i.e., outstanding requests foralvhi

troller: a small privileged management kernel that is laade N° "éSponse was received before the IDD failed).
from firmware when the system boots. During bootstrapyye have implemented OS-specific network and block-
the device manager probes device hardware and creates ga ice drivers that are able to recover from an IDD restart.
IDD, loaded with the appropriate driver, for each detectedy, i recovery, the drivers retain a small amount of state
device. The device manager's ongoing responsibilities the , yeegtaplish channel connections and reissue incomplete
include per-guest device configuration, managing setup o|fequests. State held within the shared device-channel mem-
device channels, providing interfaces for hardware com‘ig-Ory (which may have been corrupted by the failed IDD)
uration, and reacting to driver failure. is discarded, increasing our tolerance to potential driver
faults.

4.3 Control and Management

4.3.1 Guest Configuration and Bootstrap

The device manager extends the domain—manageme%t Evaluation

functions of the system controller by allowing configura-

tion of restricted IDD access for each guest OS. For ex-

ample, a network-device channel may be prevented fronin this section we present an evaluation of our prototype
sending packets with a spoofed source address, or a blocknplementation. We begin by evaluating the impact of our
device channel may be limited to isolated regions of aisolation mechanisms on realistic application workloads
shared disc. using industry standard benchmarks such as Postmark [29],

12

11

10 99
1
0.9
11 11
S o I | I
E 0.6 I I I I I
<)
g o 11 I 11
-g 0.4 I I I I I
5 11 I 11
5 11 I 11
11 I 11
11 | 11
L 10-s IDD L 10-s IDD L I0-S IDD L 10-S IDD L I0-S IDD
Linux build time (s) PM (trans/s) OSDB-OLTP (tup/s) httperf (reqs/s) SpecWeb99 (score)

Figure 5: Application-Level Benchmarks. (L=L-SMP, 10-&=Space, IDD=IDD-SMP)

SPEC WEB99 and OSDB. We then proceed to investi- lish the overhead of implementing protected hardware ac-
gate our overheads on individual device subsystems usingess we measure a version of Xen/Linux containing disk
a series of network and disk micro-benchmarks to deterand network drivers that access the hardware via the pro-
mine the overhead of implementing the I/O Space protectetected interface, which provides virtualization of intgsts
hardware interface, and the additional overhead of deviceand segregation of hardware access. We label these re-
driver isolation via the device channel interface. Finally sults| O- Space. We also evaluate the performance of
we provoke a series of device-driver failures and measureur full-blown architecture using IDDs for each of the net-
system availability while recovering. work and disk devices, communicating with an instance of

Al . ¢ ; d Dell P Ed Xen/Linux using device-channel I/O interfaces. Each IDD
experiments were performed on a Dell FOWertdge, .y v o1 inux instance runs in its own isolated Xen do-

gs;&&u?\mr;fgzzggiqg;izé rgieé;jto Etﬁg\r/‘z: xve'ttCVéS(Bmain; the CPU to which each domain is bound depends
cards, and an Adaptec AIC-7899 Ultra160 SCSI controlleron the test configuration. We include results in which

. . the Xen/Linux instance executes on the same CPU as the
with two Fujitsu MAP3735NC 73GB 10K RPM SCSI . : . :
disks. Linux version 2.4.26 and RedHat 9.0 Linux wereIDDS (1 DD- UP), in which the Xen/Linux instance runs on

used throughout, installed on an ext3 file-system. Identi—al different physical CPUI(OD- SWP), and in which the

| device driver] de from Linux 2.4.26 i cisen/Linux instance is bound to a different ‘hyper thread’
cal device €r source code fron ux 2.4 S US€0yithin the same physical CPU DD- HT).
throughout our experiments, allowing us to measure only
those performance variations that are caused by varying the

/O system configuration. 5.1 Application-Level Benchmarks

(I)SrDcu_rrebnt wgplemhen';?non_of IfOIatE;]q Drlver_Don;(aln,s We subjected our test systems to a battery of application-
(IDDs) is based on the Xen virtual machine monitor. Xen's)q benchmarks, the results of which are displayed in Fig-

paravirtuslizzdf intggace :jesults in a very low virlf[ua{iza ure 5. Our first benchmark measures the elapsed time to do
3\%‘ overnea g ' h ank rlnke m;gé'gtggsdvzeoggp |cat|><znsa complete build of the default configuration of a Linux
enrunning benchmarks fike OVer A€My ernel tree stored on the local ext3 file system. The kernel

the measured overhead is less than 1% [13]. In the foIIow-Compile performs a moderate amount of disk /0 as well

ing experiments we can therefore attribute any slow dowr}iS spending time in the OS kernel for process and memory

Ir_elatlvr(?_ 0 natll;?a rl]_mux to odur Vo mbodlflgatlons. V\é%_pe— anagement, which typically introduces some additional
leve this establishes a good upper bound on the a Itlongverhead when performed inside a virtual machine. The

costs, but note that the overhead may reduce if future x8 esults show that the I/O Space virtualized hardware inter-
processars prowde_ ha_rdware asmsta_nce to reduce the c95te incurs a penalty of around 7%, whereas the full IDD
of virtualization, or if client-aware devices reduce thado architecture exhibits a 9% overhead.

on the host processor.
. Postmarks a file system benchmark developed by Network
We compare the performance _Of our ID_D prototype ag_amskppliance which emulates the workload of a mail server. It
a number of other conﬁguratlonsl, using a vanilla I"nuxinitially creates a set of files with varying sizes (2000 files
2.4.26 SMP kernel as our baseline- SVP). To estab- i sizes ranging from 5008 to 1MB) and then performs a
2hitp://www.spec.orglosg/web99/ number of transactions (10000 in our configuration). Each
3hitp://osdb.sourceforge.net/ transaction comprises a variety of operations includirg fil

13

creation, deletion, and appending-write. During each rurbandwidth in excess of 320Kb/s over a series of requests.
over 7GB of data is transferred to and from the disk. Post—FOr our experimental setuo we used the Apache HTTP
mark reports three figures for each configuration: the num- b P P

ber of transactions per second, and the aggregate read ang ver version 1.3.27 with thmodspecweb9plug-in to

. . . perform most of the dynamic content generation (SPEC
write throughputs. Since the relative results for all threerules require 0.5% of requests to use full CGI, forking a

metrics are very similar, we present only transaction rates eparate process). Under this demanding workload we find
The additional overhead incurred by I/O Spaces and the fu hat the overhead of I1/0 Spaces and even full device driver

IDD architecture are just 1% and 5% respectively. isolation to be minimal: just 1% and 2% respectively.

OSDBis an Open Source database benchmark that we
use in conjunction with PostgreSQL 7.3.2. The bench- 2 Network performance
mark creates and populates a database and then, in mul;_i’-' P

user mode, exercises two types of workload: Informayye eyaluated the network performance of our test config-
tion Retrieval (IR), which performs read-only operations |, .-+ no by usingtcp to measure TCP throughput over
over the entire database; and On-Line Transaction Proces&;l(‘:]abit Ethernet to a second host runningS\VP. Both

ing (OLTP), which both queries and updatgs tuplgs in_thehosts were configured with a socket buffer size of 128KB
database. As the default dataset of 40MB fits entirely into,

he buff h dad = -as this is recommended practice for Gigabit networks. We
the buffer cache, we created a dataset containing one Mikyse4teq the experiment using two different MTU sizes, the

lion tuples per relation, resulting in a 400MB database. Wedefault Ethernet MTU of 1500 bytes, and a smaller MTU
only present the results for the OLTP workload as IR doeg,¢ 555 pytes. The latter was picked as it is commonly used
not ggperate .S|gn|f|cant d|§k activity. We, '”Ves“gate t_heby dial-up PPP clients, and puts significantly higher stress
surprisingly h|gh resu!t achieved by IDD in our disk mi- on the I/O system due to the higher packet rates generated
crobenchmark in Section 5.3. (190,000 packets a second at 800Mb/s).

httperf-0.8was used to generate requests to an Apachgjsing a 1500 byte MTU all configurations achieve within a
2.0.40 server to retrieve a smglg 64kB static HTML do_cu-few percent of the maximum throughput of the Gigabit Eth-
ment. The benchmark was configured to maintain a singlenet card, which is the system bottleneck (Table 2). The
outstanding HTTP request, thus effectively measuring thejgo byte MTU provides a far more demanding test, expos-
response time of the server. 'I_'he resulting network bandmg the different per-packet CPU overheads between the
width generated by the server is around 200Mb/s. The I/Qonfigurations. The virtualized interrupt dispatch model
Space result exposes the overhead of virtualizing intésrup provided by 1/0 Spaces incurs an overhead of 11% on
in this latency-sensitive scenario in which there is N0 0p+ansmit and 5% on receive. This shows that, even under
portunity to amortise the overhead by pipelining requestseyireme load, retaining safe control of interrupt dispatch

Communicating with the IDD via the device channel inter- 5nq device acces can be achieved at reasonable cost.
face compounds the effect by requiring a significant num-

ber of inter-domain notifications. Despite this, the reggon The figures for our IDD implementation reflect the extra

time is within 19% of that achieved by native L-SMP. CPU cost of full driver isolation. The single CPU result
represents close to a worst case scenario, recording per-

SPEC WEB99s a complex application-level benchmark formance slow downs of around 50% relativeltoS\VP.

for evaluating web servers and the systems that host thenthis reflects the cost of rapid switching between protec-
The workload is a complex mix of page requests: 30% retion domains and the deleterious effect that this has on the
quire dynamic content generation, 16% are HTTP POSTcache and TLB. Enabling hyper-threadirigdD- HT) on
operations and 0.5% execute a CGlI script. As the servegur single-CPU configuration provides some relief, avoid-
runs it generates access and POST logs, so the disk worlqg the context switching and allowing a better data-flow
load is not solely read-only. During the measurement pethrough the processor's cache. Adding a second CPU

riod there is up to 200Mb/s of TCP network traffic and con- (| DD- SMP) provides further benefits, reducing the relative
siderable disk read-write activity on a 2.7GB dataset. deficit to 3% on transmit and 18% on receive.

A number of client machines are used to generate load for

the server under test, with each machine simulating a col5.3 Disk performance

lection of users concurrently accessing the web site. The

benchmark is run repeatedly with different numbers of sim-Unlike networking, disk 1/O typically does not impose
ulated users to determine the maximum number that cana significant strain on the CPU because data is typically
be supported. SPEC WEB99 defines a minimum Qualitytransferred in larger units and with less per-operation-ove
of Service that simulated users must receive in order tdiead. We performed experiments usithdjto repeatedly

be ‘conformant’ and hence count toward the score: aftemwrite and then read a 4 GB file to and from the same ext3
an initial warm-up phase, users must receive an aggregaféde system (Table 3). Read performance is nearly identical

14

TCP MTU 1500 TCP MTU 552 350
TX RX TX RX
L-SMP 897 897 808 808

I/O Space| 897 (0%) 898 (0%) 718 (-11%) 769 (-5%)
IDD-UP | 897 (0%) 843(-5%) 436(-46%) 379 (-53%)
IDD-HT 897 (0%) 897 (0%) 651 (-19%) 577 (-29%)
IDD-SMP| 897 (0%) 898 (0%) 778 (-3%) 663 (-18%)

300 B
250 ‘ b

200

150 | i

100 L
50 _‘mnmg ol MV—\A_WMUJ U

Table 2:ttcp: Bandwidth in Mb/s

packet inter-arrival latency (ms)

| read write
L-SMP 66.01 47.36 0 L L L L L L L
0 5 10 15 20 25 30 35 40
I/O Space| 65.78(-0%) 46.74(-1%) ime (5)
IDD-SMP| 65.16(-1%) 58.47(+23%)

Table 3:dd: Bandwidth in MB/s Figure 6: Effect of driver restart on packet arrivals.

in all cases, but attempts to measure write performance angoller. This approximately halves the network outage.
hampered due to an oscillatory behaviour of the Linux 2.4Since each driver domain requires just 3MB of memory,
memory system when doing bulk writes. This leads to ourthis solution may be attractive in some scenarios.

IDD configurations actually outperforming standard Linux

as the extra stage of queueing provided by the device chater have_also _Conducted s_|m|Iar exp_erlm_ents restarting
nel interface leads to more stable throughput. block device drivers. The driver downtime in such exper-

iments is largely determined by the time to scan the SCSI
bus for devices. In situations where this is known in ad-

5.4 Device Driver Recovery vance the driver could be restarted with a specific list of
devices, avoiding the scan time.

In these tests we provoked our network driver to perform

an illegal memory access, and then measured the effect Oél Conclusion

system performance. In this scenario detection of the de=

vice driver failure is immediate, unlike internal deadlock _)
or infinite looping where there will be a detection delay de-We have presented a next-generation I/O architecture
pendent on system timeouts. which solves existing problems of dependability, mairtain

ability and manageability. Key to achieving this is the sep-
To test driver recovery we caused an external machine taration of device drivers from operating systems; by run-
send equally-spaced ping requests to our test system atning each device driver in a separately protected and sched-
rate of 200 packets per second. Figure 6 shows the intesled environment, we increase the robustness of systems to
arrival latencies of these packets at a guest OS as we injeplgs in hardware and software. By using unified device
a failure into the network driver domain at 10-second in-driver interfaces we casharedevices between a number
tervals. During the recovery period after each failure weof co-existing operating system instances, and dynangicall
recorded network outages of around 275ms. Closer exantestartdevice drivers in case of error or upgrade_
ination revealed that much of this period is spent execut-

ing the device driver's media detection routines while de_Umﬂed _mterfaces alsp increase portability, aIIowmg-dqc
termining the link status. ferent kinds of operating systems to use the same device-

specific code; the operating system need provide only a
During driver restart, packets that are received at the netsimple generic driver for an entire class of devices. Even
work interface are lost. A 275ms average recovery timewvhen generic interfaces are inappropriate (e.g. for non-
can interact with TCP’s congestion control mechanism tomainstream or non-shareable devices), the isolation we of-
cause a longer effective interruption to service. We haveer can still increase reliability and aid management.

performed experiments running full-rate TCP connections .
between two hosts while restarting the network driver. InAIthough the hardware required to fully support our /O

this scenario we observed the TCP connection begin RToqrchltecture 's not yet available, we have implemented a

triggered retransmissions during the outage, effectivel)PrOtc.)type which .m.akes use of a virtual machine monitor to
adding additional time to complete system recovery. provide the requisite functionality. The prototype supgpor
nearly all the features of our architecture (a notable excep

We have repeated these experiments using a ‘hot standbgibn being protection against erroneous DMA), and gives
driver domain that resets the network interface and readsurprisingly good performance — overhead is generally less
vertises device channels when signalled by the system conhan a few percent, and restartability can be achievednvithi

15

a few hundred milliseconds. Furthermore, we believe thaf14] A. Brown and D. Patterson. Embracing failure: A case for
our implementation can naturally incorporate and benefit
from emerging hardware support for protection.

[15]

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating system errors.Aroceedings [
of the 18th ACM Symposium on Operating Systems Princi-
ples pages 73-88, October 2001.

M. Swift, B. Bershad, and H. Levy. Improving the reliability
of commodity operating systems. Rioceedings of the 19th
ACM Symposium on Operating Systems Principeges
207-222, October 2003.

Microsoft calls for 64-bit driver support. InfoWorld Maga-
zine Online, May 2004.

M. . Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In

Proceedings of the 2nd Symposium on Operating SysterrléL9

Design and Implementatippages 213-227, October 1996.

B. Bershad, S. Savage, P. Pardyak, EInGSirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Extensi-
bility, safety and performance in the SPIN operating system.[2
In Proceedings of the 15th ACM Symposium on Operating
Systems Principlepages 267-284, December 1995.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, 2
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed

16]

[17]

(18]

]

0]

1

multimedia applications.|EEE Journal on Selected Areas [22]

In Communicationsl4(7):1280-1297, September 1996.
D. Engler, Kaashoek F, and J. O'Toole Jr. Exokernel: an

operating system architecture for application-level resourcd23]

management. IProceedings of the 15th ACM Symposium
on Operating Systems Principld8ecember 1995.

[8] A.Whitaker, R. Cox, M. Shaw, and S. Gribble. Constructing [24]

9]

[10]

[11]

[12]

[13]

services with interposable virtual hardware.Froceedings
of the 1st Symposium on Networked Systems Design and Im-
plementationpages 169-182, March 2004.

R. Baron, R. Rashid, E. Siegel, A. Tevanian, and M. Young.[25]

Mach-1: An Operating Environment for Large-Scale Multi-
processor ApplicationdEEE Softwarg2(4).

D. Hildebrand. An Architectural Overview of QNX. IRro-
ceedings of the Workshop on Micro-kernels and Other Ker-
nel Architecturespages 113-126. USENIX Assoc., 1992.

F. Armand. Give a process to your drivers. Rroceedings
of the EurOpen Autumn 1991 ConferepBedapest, 1991.

C. A. Waldspurger. Memory resource management in

[26]

[27]

VMware ESX server. IiProceedings of the 5th Symposium [28]

on Operating Systems Design and Implementatjmages
181-194, December 2002.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, |. Pratt, and A. Warfield. Xen and the
art of virtualization. InProceedings of the 19th ACM Sym-
posium on Operating Systems Principleages 164-177,
October 2003.

16

[29]

Recovery-Oriented Computing (ROC). Rroceedings of
the 2001 High Performance Transaction Processing Sympo-
sium, Asilomar, CAOctober 2001.

D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda,
N. Treuhaft, D.A. Patterson, and K. Yelick. Roc-1: Hard-
ware support for recovery-oriented computing. IEEE
Transactions on Computers, vol. 51, npF2bruary 2002.

R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang.
SoftSDV: A pre-silicon software development environment
for the IA-64 architecture. Intel Technology Journal
3(Q4):14, November 1999.

Intel Corp. Lagrande technology architectural
overview, September 2003. Order number 252491-
001, http://www.intel.com/technology/
security/downloads/LTArch_Overview.pdf

Introduction to UDI version 1.0. Project UDI, 1999. Tech-
nical white paperhttp://www.projectudi.org/

B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proceedings of the 2nd USENIX Symposium on Oper-
ating Systems Design and Implementatipages 137-151,
October 1996.

J. Liedtke. On micro-kernel construction. Pmoceedings of
the 15th ACM Symposium on Operating Systems Pringiples
pages 237-250, December 1995.

K. T. Van Maren. The Fluke device driver framework. Mas-
ter’s thesis, University of Utah, December 1999.

C. Helmuth. Generische portierung von linux-gertetreibern
auf die drops-architektur, July 2001. Diploma Thesis, Tech-
nical University of Dresden.

R. Minnich, J. Hendricks, and D. Webster. The Linux BIOS.
In Proceedings of the 4th Annual Linux Showcase and Con-
ference October 2000.

I. Pratt and K. Fraser. Arsenic: A user-accessible gigabit
ethernet interface. IRroceedings of the Twentieth Annual
Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM-01pages 6776, April 2001.

Intelligent I/O (L O) architecture specification, Revision 2.0,
1999. LO Special Interest Group.

B. Clark, T. Deshane, E. Dow, S Evanchik, M. Finlayson,
J. Herne, and J.N. Matthews. Xen and the art of repeated re-
search. IrProceedings of the Usenix annual technical con-
ference, Freenix trackluly 2004.

J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in
system design.ACM Transactions on Computer Systems
2(4):277-288, November 1984.

PCI Express base specification 1.0a. PCI-SIG, 2002.

J. Katcher. PostMark: A new file system benchmark. Tech-
nical Report 3022, Network Appliance, October 1997.

