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Abstract

Representations of quantum operations

We start by introducing a geometrical representation (real vector space) of quantum states
and quantum operations. To do so we exploit an isomorphism from positive matrices to a sub-
cone of the Minkowski future light-cone. Pure states map onto certain light-like vectors, whilst
the axis of revolution encodes the overall probability of occurrence for the state. This exten-
sion of the Generalized Bloch Sphere enables us to cater for non-trace-preserving quantum
operations, and in particular to view the per-outcome effects of generalized measurements.
We show that these consist of the product of an orthogonal transform about the axis of the
cone of revolution and a positive real symmetric linear transform. In the case of a qubit the
representation becomes all the more interesting since it elegantly associates, to each measure-
ment element of a generalized measurement, a Lorentz transformation in Minkowski space.
We formalize explicitly this correspondence between ‘observation of a quantum system’ and
‘special relativistic change of inertial frame’. To end this part we review the state-operator
correspondence, which was successfully exploited by Choi to derive the operator-sum repre-
sentation of quantum operations. We go further and show that all of the important theorems
concerning quantum operations can in fact be derived as simple corollaries of those concerning
quantum states. Using this methodology we derive novel composition laws upon quantum
states and quantum operations, Schmidt-type decompositions for bipartite pure states and
some powerful formulae relating to the correspondence.

Quantum cryptography

The key principle of quantum cryptography could be summarized as follows. Honest par-
ties communicate using quantum states. To the eavesdropper these states are random and
non-orthogonal. In order to gather information she must measure them, but this may cause
irreversible damage. Honest parties seek to detect her mischief by checking whether certain
quantum states are left intact. Thus tradeoff between the eavesdropper’s information gain,
and the disturbance she necessarily induces, can be viewed as the power engine behind quan-
tum cryptographic protocols. We begin by quantifying this tradeoff in the case of a measure
distinguishing two non-orthogonal equiprobable pure states. A formula for this tradeoff was
first obtained by Fuchs and Peres, but we provide a shorter, geometrical derivation (within
the framework of the above mentioned conal representation). Next we proceed to analyze the
Information gain versus disturbance tradeoff in a scenario where Alice and Bob interleave, at
random, pairwise superpositions of two message words within their otherwise classical com-
munications. This work constitutes one of the few results currently available regarding d-level
systems quantum cryptography, and seems to provide a good general primitive for building
such protocols. The proof crucially relies on the state-operator correspondence formulae de-
rived in the first part, together with some methods by Banaszek. Finally we make use of this
analysis to prove the security of a ‘blind quantum computation’ protocol, whereby Alice gets
Bob to perform some quantum algorithm for her, but prevents him from learning her input
to this quantum algorithm.

3



Acknowledgements

I am very grateful to my superviser, Dr. Anuj Dawar, who has never failed his role. For some
good advice and within the Computer Laboratory still, I would like to thank Prof. Glynn
Winskel and Dr. Alan Mycroft. I am also very appreciative of my collaborators: Dr. Louis
Salvail, Prof. Frank Kelly on one occasion, and above all Christophe Patricot − with whom
thoughts met friendship in an exceptional manner.

A small number of great friends made my stay in Cambridge into extremely happy days:
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Chapter 1

Overture

Nous dirons les choses au fur et à mesure que nous les verrons et que nous saurons.
Et ce qui doit rester obscur le sera malgré nous.

—Jules Supervielle

1.1 Scope and aims

This thesis presents one long line of thoughts in the field of quantum information theory. The

argument begins within the mathematical foundations of quantum theory, and ends with a

precise cryptographic protocol. But because the articulation must be placed somewhere let

us say that the thesis pursues two aims.

First we aim to provide a better understanding of quantum states and quantum opera-

tions. To make our intentions more specific: we attempt to improve the common intuition

and prove novel properties about the density matrix formalism of quantum theory. To make

our methods more specific: we thoroughly exploit several formal correspondences between

the mathematical structures of quantum theory and some other well-known mathematical

structures. In this manner one point of view comes to complement the other, one property

translates into another. Thus our work joins and adds to those of many who have stud-

ied representations of quantum states of quantum operations. In particular it builds upon

the Generalized Bloch Sphere representation and upon the state-operator correspondence to

achieve its ends. In the end we achieve a representation of non trace-preserving quantum

operations having numerous desirable properties and a connection with special relativity, as

well as a number of other significant mathematical results. It is this armoury which enables

us to tackle the quantum information theoretical problems next described.

Second we aim to contribute to quantum cryptography at the fundamental level. To make

our intentions more specific: we attempt to tame the tradeoff between information gain about

a quantum state and the disturbance this necessarily causes to the quantum state. Moreover

we attempt to use this analysis so as to open the door to a novel type of quantum cryptographic

15



16 CHAPTER 1. OVERTURE

applications. A commonplace about quantum theory is to say that measurements modify the
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object measured. Quantum cryptographic protocols rely upon this fact to detect the presence

of a malevolent eavesdropper. Thus to quantify these tradeoffs between information gain

and disturbance is a crucial problem, yet it is also an extremely difficult one. To make

our method more specific: we exploit the representation of non trace-preserving quantum

operations we developed earlier, together with some novel formulae arising from the state-

operator correspondence. In this manner we obtain, respectively, a geometrical rederivation

of the well-known formula for the simplest possible such tradeoff scenario, and a previously

unknown formula for an important more elaborate scenario. Armed with the latter result we

can describe a protocol related to, but different from, secure two-party computation: Alice

gets Bob to perform some quantum algorithm for her, but prevents Bob from learning her

input to this quantum algorithm.

1.2 Generalities

Quantum cryptography

For eighty years scientists have suffered the oddity of Quantum Theory, cursing its counter-

intuitiveness as they were working through the implications. Quantum measurements in

particular could be resented as a limitation. Why can we not just learn all there is to know

about a quantum state? Why can we not observe a quantum state without irreversibly

modifying this quantum state?

The attitude shift began in 1969, when Wiesner suggested one could actually exploit the

strange properties of quantum measurements as a way of achieving unforgeable banknotes

[64]. The idea might have seemed too original at the time, and one must await the year 1984

for Bennett and Serge Brassard to (re)invent quantum cryptography [7]. Their protocol, well-

established nowadays and commonly referred to as BB84, causes much immediate interest.

The two authors claim to achieve secure key distribution with unconditional security, some-

thing that was judged impossible back then. In other words they describe a manner in which

two remote parties could generate a long secret string, and this in spite of an eavesdropper

standing in between. Moreover the security is information theoretical and does not rely upon

any other assumption (e.g. presence of noise, computer power limitations) than that of the

laws of quantum physics being true.

One fundamental fact makes the BB84 protocol (and Wiesner’s unforgeable banknotes)

possible. The malevolent eavesdropper, as she seeks to gather information about the unknown

quantum states included in the transmissions will, in effect, cause damage to these states, in

a way that she cannot repair. Honest parties use this to detect her tampering and modify

their behaviour as a consequence. This mechanism is the cornerstone upon which quantum

cryptography is based.

To provide Bennett and Brassard’s proposal with a full-blown proof of security turned out
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to be an extremely difficult mathematical problem, however. The many attempts made to

quantify directly the tradeoff between how much information the eavesdropper can eavesdrop,

and what then are her chances of getting caught, have all turned out notoriously complicated

[22][47]. In order to circumvent these hardships Ekert proposed another secure quantum key

distribution protocol [18], where the notion of entanglement between quantum states plays a

central role. The ideas and notions thereby developed have had an important impact on the

field [33][3], to the point even where they ended up inspiring some of the key steps in Shor

and Preskill’s latest and nicest-known BB84 proof of security [56].

This long detour is somewhat symbolic of the current state of affairs in quantum cryp-

tography. In spite of being so central in quantum information theory, the tradeoff between

how much information one may gain about a quantum system versus how much disturbance

the observation must necessarily cause to the system, tends to be avoided. Those quantum

cryptographers who propose novel protocols find their way round the problem; most of their

proofs are a witty blend of quantum error correction, Bell inequalities, together with the par-

ticular symmetries of the protocol in question. Even the closely related question of optimal

quantum cloning (copy) of quantum states has received more attention [24][66]. But the two

issues cannot be equated trivially; the former seems to lie at the limit, as N tends to infinity,

of a non-universal asymmetric 1 to N quantum cloning machine.

Information gain versus disturbance tradeoff

Those quantum cryptographers who, against the trend, tackle information gain versus dis-

turbance tradeoff scenarios must therefore be driven by the search of novel fundamental

properties of quantum information. At least this was the case with Fuchs as he tackled,

together with Peres [21], the seemingly simple case of an eavesdropper trying to distinguish

two non-orthogonal equiprobable pure quantum states ensemble. For this purpose he does

acknowledge some amount of disappointment:

There are at least two (disappointing) things to notice about [our] equations (. . . ).

The first is the energy that had to be expended in order to work out a tradeoff

relation for one of - surely - the simplest possible cases. Given the hoped-for

foundational importance of the principle, this is rather curious. (. . . ) The second

thing to note about [our] equations is the relative complexity of the curve. (. . . )

This article was the first to tackle a tradeoff scenario for its own sake. For discrete distributions

this was also the last one. Of lesser interest for cryptography, but very important in terms

of its methods was the work by Banaszek [5], who quantified the tradeoff for the continuous

uniform n-dimensional ensemble. Barnum [6] made several accurate remarks upon the same

ensemble, suggesting the tradeoff remains unchanged for a uniform distribution over mutually

unbiased states.
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The approach to quantum information theory which we develop in this thesis owes much to

the problem of quantifying the information gain versus disturbance tradeoff. Our mathematical

findings are benchmarked against, and applied to resolving these tradeoffs - upon which we later

base the security of a novel protocol.

Quantum computation

In parallel with the blossoming of quantum cryptography one should mention the discov-

ery and the impressive developments of quantum computation. That story originated with

Feynman [20] as he suggested that no machine would simulate quantum physical phenom-

ena better than. . . a quantum system. Soon afterwards Deutsch proposed a Quantum Turing

Machine model of computation [16], and found, together with Jozsa, one particular prob-

lem which could be solved exponentially faster with such a quantum computer [17]. Two

major quantum algorithms have been discovered since: Shor’s integer factoring algorithm

[55] (which incidentally renders quantum cryptography all the more necessary as the algo-

rithm threatens to break all current public key encryption systems) and Grover’s unordered

search algorithm [26] (which brings only a square-root speedup but has an enormous range

of potential applications).
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Secure quantum computation

The history of quantum information theory has taught at least two lessons to its people. One

is to pick up some classical problem in computer science, and prove it can be done much

better using quantum theory. The other is to do cross-disciplinary work. The field of secure

quantum computation was an opportunity to do both quantum cryptography and quantum

computation, and to solve some rather involved classical scenarios.

In the traditional secure two-party computation scenario Alice has secret input x, Bob has

secret input y, and both of them wish to compute f(x, y). The function f is of course well-

known to the two parties; the usual example is that of two millionaires who wish to compare

their riches without revealing how much they have. There is no emphasis on computational

load in secure two-party computation, in the sense that if Alice knew Bob’s input y she might

as well compute f(x, y) on her own. Entering a secure two-party computation together with

Bob will not help alleviate Alice’s cost of computing f . In fact quite the opposite is true of

current protocols. The notion of ‘blind computation’, on the contrary, is asymmetric. Alice

is the only one to have a secret input x, Bob is the only one able to compute f . Alice wants

Bob to compute f(x) without him learning x. Thus an obvious motivation for Alice to enter

a blind computation together with Bob is to unload the computational task of computing f ,

but without having to trust Bob.

Whilst on the one hand issues of multi-party secure computation related scenarios enjoy

a vast amount of publication in the non-quantum computer science literature (as for instance

[1][9][65] to cite only a few), this is not, on the other hand, the case of blind computation

related scenarios which suffer as their most influential result a no-go theorem by Abadi,

Feigenbaum and Kilian [2] together with a general disbelief that this can be achieved. There

was a short regain of interest when Sander and Tschudin [52] gave a blind computation

protocol for evaluating polynomials relying on homomorphic encryption schemes, themselves

based on computational assumptions.

The uneven distribution of articles in quantum information is merely a reflection of the

situation in the non-quantum computer science literature. Much effort has gone, on the

one hand, into devising secure multi-party quantum computation protocols. In order to do

so scientists have long sought to provide an unconditional oblivious transfer, the primitive

upon which multi-party computation is founded in the classical realm [35]. But oblivious

transfer can be shown to imply bit commitment (the latter cryptographic primitive is readily

constructed from the former), whose security is in turn impossible to obtain from quantum

theory alone. This no-go theorem was derived independently by Lo and Chau [44] for perfectly

secure bit commitment protocols, and by Mayers [45][46] for the more general unconditionally

secure bit commitment protocols - i.e. those where the probability of a breach is vanishingly

small as the security parameter (the number of rounds) is increased. It follows that oblivious

transfer is also impossible to obtain unconditionally, a fact that is all the more discouraging if
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we consider that the primitive is itself a subcase of secure computation. Some other negative

consequences of the theorem are discussed in [43]. Yet there has been number of results

since, for some specific cryptographic tasks [36], with more than two players [14], using

computational assumptions which are thought to resist quantum computational power [15],

or even relying upon relativistic effects [34]. Blind quantum computation protocols, on the

other hand, have not been studied so far. The closest specimen is provided in [12], but there

are fundamental differences, and some problems with this protocol.

The present thesis approaches the issue of blind computation, which has not been studied

in a quantum information theoretical setting so far.

Representations of quantum operations and quantum states

Quantum theory is firmly founded upon a set of simple axioms, as defined for open systems by

Von Neumann [60]. However these axioms produce rather intricate optimization problems as

soon as they are applied to even the simplest quantum information theoretical scenario. Still

several researchers wish to believe that within quantum theory lies some intimate relation

between ‘information’ and ‘matter’. Landauer’s little sentence [40] ‘Information is physical’

has become somewhat of a motto in the field of quantum information theory, and prominent

researchers such as Zeilinger and Brukner seem to have vowed to recast quantum theory

altogether along these lines [67]:

In contrast to the theories of relativity, quantum mechanics is not yet based on

a generally accepted conceptual foundation. It is proposed here that the missing

principle may be identified through the observation that all knowledge in physics

has to be expressed in propositions and that therefore the most elementary sys-

tem represents the truth value of the proposition, i.e., it carries just one bit of

information. (. . . )

Without always pursuing such grand aims the field certainly makes an abundant use of al-

ternative representations of quantum states and quantum operations - so as to simplify, or

at least to bring useful insight to the calculations. There are two well-established families of

such representations, whose origins clearly predate quantum information theory.

The first one is the Bloch sphere picture of a qubit [8], related to the standard notion of

three-dimensional spin (or polarization), and generalized to n-dimensional quantum systems

it seems by Hioe and Eberly [29].

The second one is the operator sum representation of quantum operations by Kraus [37]. This

result was rediscovered independently by Choi [13] but relying upon an intriguing correspon-

dence between quantum states and quantum operations, through a map which can be traced

back to the work of Jamiolkowski [32].
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Since then a number of researchers have sought to modernize these representations in the

light of quantum information theory. Noticeable examples include Zanardi [66], Sudarshan

[58], Ruskai [51], Verstraete [61]. A considerable amount of efforts were devoted, in particular,

to taming the geometry of trace-preserving quantum operations.

Trace-preserving quantum operations are indeed important, for they precisely correspond to

the set of all physically allowed evolutions having probability of occurrence one on every input

state. On the contrary this type of operations excludes all those evolutions which may be

successfully undertaken with some finite probability, or whose probability depends upon the

input state. The effects of a quantum measurement knowing that some outcome occurs, for

instance, do not belong to this class, even though they will be the first thing one may wish

to visualize in a quantum information theoretical scenario.

The present thesis approaches the theme of representations of quantum states and quantum

operations with a view towards applications in quantum information theory. It focuses in

particular upon representations of non trace-preserving quantum operations, and upon the

intriguing role of the state-operator correspondence.

1.3 Summary of contributions

As we exploit an isomorphism from Hermd(C) into Rd2
we contribute in the following manner:

• By constructing a convenient geometrical (real vector space) representation of quan-

tum states. Because these do not need to be normalized we find that they map into a

subcone of a Minkowski cone in E1,d2−1, whose vertical cross-sections are nothing but

generalized Bloch spheres. We show that the conal representation has numerous ele-

gant properties: pure states map into light-like vectors, unitary operations correspond

to orthogonal transforms about the axis, and positive operations are represented by a

subset of the real symmetric positive matrices. The latter can also be drawn in the cone

- this allows us to visualize non trace-preserving quantum operations and their effects.

• By providing, for the conal representation of a qubit, explicit formulae for the coordi-

nates of states after non trace-preserving quantum operations, or for the scalar product

of two post-measurement states:

1

4
[2(Em.ρ0)(Em.ρ1) − (ηµµ′Emµ

Emµ′)(ηνν′ρ0
ν
ρ1

ν′)].

These constitute a sufficient armoury to deal, using only four-vectors, with the most

general evolutions to happen on a qubit.
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• By showing, in the case of a qubit still, that the conal representation elegantly asso-

ciates, to each measurement element of a generalized measurement, a special relativistic

Lorentz transformation in Minkowski space. More precisely each measurement element

acts proportionally to an element of the restricted Lorentz group together with future-

directed null boosts, giving rise to the following formulae:

ηµνρmµ
ρmν

= ηµνVmµ
Vmν

ηµ′ν′ρ
µ′ρν′

ρm0
= ηµνVmµ

ρ
ν

ηµνρµ
ρ

ν
= 2([Tr(ρ)]2 − Tr(ρ2)).

The rescaling introduced turns out to bring null boosts to finite linear maps in a natural

and unifying manner. We formalize explicitly this correspondence between ‘observation

of a quantum system’ and ‘special relativistic change of inertial frame’, thereby provid-

ing an original outlook upon, and a generalization of, the well-known group isomorphism

of 2 × 2 unimodular complex matrices onto the restricted Lorentz group.

• By recovering geometrically the formula given by Fuchs and Peres for the information

gain versus disturbance tradeoff, as it arises when attempting to distinguish two non-

orthogonal equiprobable quantum states.

As we exploit an isomorphism from elements of Mmn(C) to linear maps from Mn(C) to

Mm(C) we contribute in the following manner:

• By providing two triangular decompositions for pure states of a bipartite system, i.e.

local changes of basis so that vectors in Cm ⊗ Cn may be written with triangular coef-

ficients only.

• By providing two original algebraic tests on Completely Positive-preserving maps: one

testing extremality in the set of Trace-preserving operations, the other regarding the

factorizability or single operator decomposition, i.e. $̂(ρ) is of the form V̂ ρV̂ † for all ρ,

if and only if (
Tr($̂(In))

)2
−

∑

jl

Tr
(
$̂(Ejl)

†
$̂(Ejl)

)
= 0 (1.1)

These are particularly interesting in the sense that they do not depend on the operator

sum decompositions of these maps.
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• By endowing Herm+
n2(C) with a semi-group structure stemming from the composition

law on quantum operations. The composition law defines a group when restricted to

the set of totally entangled (pure) states, and yields a group isomorphism between max-

imally entangled (pure) states and SU(n). In addition we show that the set of quantum

operations is stable under component-wise product.

• By providing a number of useful formulae which arise from the state-operator corre-

spondence such as (with $ the state corresponding to the quantum operation $̂):

$̂
(
(ρ†ρ)t

)
= Tr2

(
(Im ⊗ ρ)$(Im ⊗ ρ†)

)

Tr
(
σ$̂(ρ)

)
= Tr

(
(σ ⊗ ρt)$

)

The first formula suggests potential physical interpretations of the state-operator cor-

respondence. The latter formula will simplify those many mathematical problems in

quantum cryptography which require a careful optimization of the fidelities induced by

a linear operator $̂.

• By discovering, using the latter formula, the information gain versus disturbance tradeoff

in an elaborate scenario. Suppose the eavesdropper performs an individual attack such

that, whenever a canonical basis state {|j〉}j=1...n is sent, she is able to identify which

with probability G. Then, whenever a pairwise superposition {(1/n2, ρjk}j,k=1...n, with

ρjk = (|j〉+i|k〉)(〈j|−i〈k|)
2 , is sent, her disturbance D is bounded below under the following

tight inequality:

D ≥ 1 − F (G)

F (G) =
1

2
+

1

2n

(√
G +

√
(n − 1)(1 − G)

)2
.

where, for optimal attacks, G varies from 1
n to 1 as D varies from 0 to 1

2− 1
2n .

• By highlighting the central, transversal role of the state-operator isomorphism in various

issues of quantum information theory.

As we build upon these last mathematical results we contribute

• By introducing a blind quantum computation protocol for the class of functions which

admit an efficient procedure to generate random input-output pairs. In this scenario
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Alice wants Bob to compute some well-known function f upon her input x, but wants to

prevent Bob from learning anything about x. The protocol relies upon the newly found

information gain versus disturbance tradeoffs to achieve unconditional security against

the most general attack: whenever Bob gathers log(n)+ log(G) bits of Shannon mutual

information about the input, he must get caught with probability at least 1 − F (G)N ,

where n denotes the size of the input and N is a security parameter, whilst G and F (G)

remain as in the previous paragraph.

1.4 Outline

Chapter 2 is addressed to the widest audience possible, and should not be thought to set the

tone of the thesis. There we introduce complex matrices, the postulates of quantum theory

and discuss the simplest known quantum algorithm.

Part I looks at representations of quantum operations, with a view towards quantum in-

formation theory.

Chapter 3 introduces a useful extension the Generalized Bloch Sphere which caters for non-

trace-preserving quantum operations. The properties of this conal representation of quantum

states and quantum operations are systematically explored.

Chapter 4 highlights the mathematical correspondence between generalized measurement el-

ements and changes of observers in special relativistic space-time, as it arises from the conal

representation. Possible interpretations are discussed.

Chapter 5 reviews and formalizes another correspondence, from quantum operations on the

one hand, to quantum states on the other hand. The systematic approach taken yields an

original presentation of the fundamental theorems about quantum operations, together with

some novel results.

Part II exploits the general methods developed in the first part so as to tackle a small set

of important problems in quantum information theory.

Chapter 6 recovers geometrically a well-known tradeoff between the information gain when

attempting to distinguish two non-orthogonal equiprobable pure states, and the disturbance

this causes.

Chapter 7 investigates a similar tradeoff in a scenario where the eavesdropper seeks to dis-

tinguish canonical basis states of a n-dimensional quantum system, but sometimes a pairwise

superposition of two canonical basis states is interleaved so as to detect his malevolent mea-

surements.

Chapter 8 provides a novel security protocol, whereby Alice gets Bob to perform some quan-

tum algorithm for her, but prevents him from learning her input to this quantum algorithm.

Finally Chapter 9 presents the conclusions of this thesis and how these may serve as

departure points for further promising research.
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1.5 How to read the thesis

Non-specialist readers have their chapter (starting page 27) but should probably not risk

themselves further. Specialist readers are advised to browse through Appendix A, which

presents the notation used throughout the thesis.

Further down the thesis readers will face a thematic ordering. Someone who focuses on

the foundations of quantum theory will be content reading only Part I. Real vector space

representations of quantum states and quantum operations bring an invaluable amount of in-

tuition to quantum physics, and the connection with special relativity is somewhat intriguing.

Moreover the state-operator correspondence is demonstrated to be a powerful mathematical

tool, so powerful in fact one may wonder about its physical meaning.

Someone with an exclusive interest in cryptography will find satisfaction reading only Part

II. The information gain versus disturbance tradeoff lies at the heart of cryptography. To

understand it geometrically should prove useful, and so should the general n-dimensional

quantum cryptographic primitive which we have built upon this tradeoff. The application to

blind quantum computation is in fact a somewhat striking use of this primitive.

There are numerous mathematical dependencies, however, which may prevent the cryp-

tographer from having an all too peaceful reading. The geometrical rederivation of Fuchs

and Peres’ information gain versus disturbance tradeoff is framed in the conal representa-

tion introduced on Chapters 3 and 4, whilst the derivation of the information gain versus

disturbance tradeoff for the n-dimensional quantum cryptographic primitive relies upon the

state-operator formulae given in Chapter 5. Every chapter of every part is in reality just one

element of a whole long story.

Yet we have tried, out of consideration for the opportunistic reader, to make it possible

for one to pick up a precise topic of interest. For example if looking for special relativity

related material the reader should go straight to Chapter 4; if looking for secure two-party

computation related material the reader should go straight to Chapter 8, etc. . . This was done

at the cost of a few repetitions, which the thorough mind must forgive.



Chapter 2

Quantum computation explained to

my mother

Technology, sufficiently advanced, is indistinguishable from magic.

—Arthur C. Clarke

There are many falsely intuitive introductions to quantum theory
and quantum computation in a handwave. There are also numer-
ous documents which teach those subjects in a mathematically
sound manner. To our knowledge the presentation in this chapter
is of the shortest in the latter category. The aim is to deliver
a short yet rigorous and self-contained introduction to Quantum
Computation, whilst assuming the reader has no prior knowledge
of anything but the fundamental operations on real numbers. Suc-
cessively we introduce complex matrices; the postulates of quan-
tum theory and the simplest quantum algorithm.

27
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In the mind of every scientist exists the intimate belief that one’s subject is not as difficult as it

may seem and, certainly, everyone should be able to understand it given a decent opportunity

and a finite amount of effort. The present chapter is addressed to the widest audience possible,

as an invitation to enter the subject of quantum information theory. In particular, and since

this thesis is written in a computer science department, we find it useful to dissipate the

popular fear of quantum mechanics − over just a few efficient pages.

This mathematically minimalist presentation should not be thought to set the tone of the

thesis. Yet it constitutes an interesting exercise per se: experienced physicists have expressed

a sense of curiosity when faced with the smallest set of mathematical definitions upon which

quantum theory is anchored; as well as an interest to use this path of presentation for their

courses.

2.1 Some mathematics

We will begin this introduction with about four pages of mathematics, mainly definitions.

These notions constitute the vocabulary, the very language of quantum theory, and every

single one of them will find its use in the second part, when we introduce the postulates of

quantum theory.

2.1.1 Complex numbers

A real number is a number just like you are used to. E.g. −4.3, 0,
√

2 are all real numbers.

A complex number, on the other hand, is just a pair of real numbers. I.e. suppose z is a

complex number, then z must be of the form (a, b) where a and b are real numbers.

Now we must teach the reader how to add or multiply complex numbers. Suppose we have

two complex numbers z1 = (a1, b1) and z2 = (a2, b2). Addition first: z1 + z2 is defined to be

the pair of real numbers (a1 +a2, b1 +b2). And now multiplication (when we put two numbers

next to one another, with no sign in between that means they are multiplied): z1z2 is defined

to be the pair of real numbers given by (a1a2 − b1b2, a1b2 + a2b1).

Sometimes we want to change the sign of the second (real) component of the complex number

z. This operation is called conjugation, and is denoted by an upper index ‘∗’, i.e. z∗ is defined

to be the pair of real numbers (a,−b).

Another useful operation we do on a complex number is to take its norm. The norm of

z = (a, b) is defined to be the real number
√

a2 + b2. This operation is denoted by two

vertical bars surrounding the complex number, in other words |z| is simply a notation for√
a2 + b2.
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2.1.2 Matrices

A matrix of things is a table containing those things, for instance:

(
♥ ♠
♦ ♣

)
is a matrix of

card suits. We shall call this matrix M for use in later examples.

A matrix does not have to be square. We say that a matrix is m × n if it has m horizontal

lines and n vertical lines. For instance a column is a 1 × n matrix e.g:

(
♥
♦

)
. Similarly a

row is a m × 1 matrix, e.g.
(

♥ ♠
)

is a row.

The ij-component of a matrix designates the ‘thing’ which is sitting at vertical position i

and horizontal position j in the table, starting from the upper left corner. For instance the

2 1-component of M is ♦. If A is a matrix then the ij-component of A is denoted Aij , e.g.

here you have that M11 = ♥, M21 = ♦ etc.

Given a matrix we often need to make its vertical lines into its horizontal lines and vice-versa.

This operation is called transposition and is written ‘t’. In other words if A is the m×n matrix

with ij-component Aij , then At is defined to be the n × m matrix which has ij-component

Aji. Thus we have At
ij = Aji. Here are two examples:

M t =

(
♥ ♦
♠ ♣

)
;

(
♥
♦

)t

=
(

♥ ♦
)

2.1.3 Matrices of numbers

Let us now consider matrices of numbers. The good thing about numbers (real or complex,

it does not matter at this point) is that you know how to add and multiply them. This

particularity will now enable us to define addition and multiplication of matrices of these

numbers.

In order to add two matrices A and B they must both be m×n matrices (they have the same

size). Suppose A has ij-components. Then A + B is defined to be the m × n matrix with

ij-components Aij + Bij .

If we now want to multiply the matrix A by the matrix B it has to be the case that the

number of vertical lines of A equals that of the number of horizontal lines of B. Now suppose

A is an m× n matrix with ij-components Aij , whilst B is n× r and has pq-components Bpq.

Then AB is defined to be the m×r matrix with iq-components Ai1B1q +Ai2B2q + ..+AinBnq.

To make things clear let us work this out explicitly for general 2 × 2 matrices of numbers:

Let A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)

Then A + B =

(
A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
and AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
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2.1.4 Matrices of complex numbers

Matrix addition and multiplication work on numbers, whether they are real or complex.

But from now we look at matrices of complex numbers only, upon which we define one last

operation called dagger. To do a dagger operation upon a matrix is to transpose the matrix

and then to conjugate all the complex numbers it contains. This operation is denoted ‘†’. We

thus have A†
ij = A∗

ji, in other words if A is the m×n matrix with ij-component Aij , then A†

is defined to be the n × m matrix which has ij-component A∗
ji.

Quite a remarkable n×n matrix of complex numbers is the one we call ‘the identity matrix’.

It is defined such that its ij-component is the complex number (0, 0) when i 6= j, and the

complex number (1, 0) when i = j. The n × n identity matrix is denoted In, as in:

I1 =
(

(1, 0)
)

and I2 =

(
(1, 0) (0, 0)

(0, 0) (1, 0)

)

Having defined the identity matrices we are now able to explain what it means to be a unitary

matrix of complex numbers. Consider M an n× n matrix of complex numbers. M is said to

be a unitary matrix if (and only if) it is true that M †M = In. Similarly consider V a 1 × n

matrix of complex numbers (a column). V is said to be a unit column if (and only if) it is

true that V †V = I1.

2.1.5 Some properties

The reader may choose to skip the following three properties, but they will be needed in order

to fully understand the comments which follow postulates 2.2 and 2.3.

Property 2.1 Let A be an n × m matrix of complex numbers and Im the m × m identity

matrix. We then have that AIm = A. In other words multiplying a matrix by the identity

matrix leaves the matrix unchanged.

Proof: First note that a complex number (a, b) multiplied by the complex number (1, 0) is,

by definition of complex number multiplication, given by (1a−0b, 0a+1b), which is just (a, b)

again. Likewise note that a complex number (a, b) multiplied by the complex number (0, 0)

is given by (0a− 0b, 0a + 0b), which is just (0, 0). Now by definition of matrix multiplication

the iq-component of AIm is given by: (we denote Im by just I until the end of the proof)

(AI)iq = Ai1I1q + Ai2I2q + .. + AinInq

= Ai1(0, 0) + Ai2(0, 0) + .. + Aiq(1, 0) + .. + Ain(0, 0)

The second line was obtained by replacing the Ipq with their value, which we know from the

definition of the identity matrix. Now using the two remarks at the beginning of the proof
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we can further simplify this equation:

(AI)iq = (0, 0) + (0, 0) + .. + Aiq + .. + (0, 0)

= Aiq by complex number addition.

Thus the components of AI are precisely those of A. 2

Property 2.2 Let A be an m × n matrix of complex numbers and B be an n × r matrix of

complex numbers. Then the following equality is true:

(AB)† = B†A†

Proof: First note that

((a1, b1) + (a2, b2))
∗ = (a1, b1)

∗ + (a2, b2)
∗ (2.1)

This is obvious since

((a1, b1) + (a2, b2))
∗ = (a1 + a2, b1 + b2)

∗

= (a1 + a2,−b1 − b2) and

(a1, b1)
∗ + (a2, b2)

∗ = (a1,−b1) + (a2,−b2)

= (a1 + a2,−b1 − b2) as well.

Likewise note that

((a1, b1)(a2, b2))
∗ = (a1, b1)

∗(a2, b2)
∗ (2.2)

and also

(a1, b1)(a2, b2) = (a2, b2)(a1, b1) (2.3)

again this is easily verified by computing the left-hand-side and the right-hand-side of those

equalities.

Now by definition of matrix multiplication we have that

(AB)iq = Ai1B1q + Ai2B2q + .. + AinBnq
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Thus the components of (AB)† are given by

(AB)†iq = (AB)∗qi

= A∗
q1B

∗
1i + A∗

q2B
∗
2i + .. + A∗

qnB∗
ni

= B∗
1iA

∗
q1 + B∗

2iA
∗
q2 + .. + B∗

niA
∗
qn

where we used equations (2.1) and (2.2) to obtain the second line, and equation (2.3) to obtain

the third line. Now consider the components of B†A†. By definition of matrix multiplication

we have that

(B†A†)iq = B†
i1A

†
1q + B†

i2A
†
2q + .. + B†

inA†
nq

= B∗
1iA

∗
q1 + B∗

2iA
∗
q2 + .. + B∗

niA
∗
qn

where the last line was obtained using the fact that A†
ij = A∗

ji. Thus the components of (AB)†

are precisely those of B†A†. 2

Property 2.3 Let V be a n × 1 unit matrix of complex numbers (a column). Then it is the

case that:

|V11|2 + |V21|2 + .. + |Vn1|2 = 1

Proof: First let z = (a, b) be a complex number, and note that

z∗z = (a2 + b2, 0)

= (|z|2, 0)

Now consider the 11-component of V †V . We have:

(V †V )11 = V †
11V11 + V †

12V21 + .. + V †
1nVn1

= V ∗
11V11 + V ∗

21V21 + .. + V ∗
n1Vn1

where we used successively: the definition of matrix multiplication, and A†
ij = A∗

ji. The last

line can be further simplified using our first remark, namely:

V ∗
i1Vi1 = (|Vi1|2, 0)

Thus

(V †V )11 = (|V11|2, 0) + (|V21|2, 0) + .. + (|Vn1|2, 0)

= (|V11|2 + |V21|2 + .. + |Vn1|2, 0)
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Because V is unit the last line must be equal to (1, 0), and so we have proved the property.

2

2.2 Quantum theory

Quantum theory is one of the pillars of modern physics. The theory is 100 years old and thor-

oughly checked by experiments; it enables physicists to understand and predict the behavior

of any closed (perfectly isolated from the rest of the world) physical system. Usually these

are small systems such as atoms, electrons, photons etc. (only because they are generally less

subject to outside interactions).

2.2.1 States

Postulate 2.1 The state of a closed physical system is wholly described by a unit n × 1

matrix of complex numbers.

Comments. In other words a state is given by a column of n complex numbers

V =




V11

...

Vn1


 such that V †V = I1.

What we mean by closed physical system is just about anything which is totally isolated from

the rest of the world. The number of components n varies depending on how complicated the

system is; it is called the degrees of freedom or the dimension of the system. The postulate

itself is extremely short and simple. It is nonetheless puzzling as soon as you attempt to

apprehend it with your classical intuition.

Example. Consider a coin, which insofar as we have always observed, can either be ‘heads ⊚’

or ‘tails ⊛’. Thus we will suppose it has n = 2 degrees of freedom, and we will further assume

that the state:

‘heads ⊚ ’ corresponds to quantum state

(
(1, 0)

(0, 0)

)

whilst ‘tails ⊛ ’ corresponds to quantum state

(
(0, 0)

(1, 0)

)

Now if the coin was to be perfectly isolated from any outside interaction, it would start

behaving like a quantum coin. When exactly does this start to happen, in real physical

conditions, is a complicated matter and lies beyond the scope of this short presentation. To

this day the theory of decoherence, which seeks to describe the transition between classical
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and quantum behaviors, is still an open field of research. For such a quantum coin, however,

we do know that the state:

‘ ⊚ + ⊛ ’ =

(
( 1√

2
, 0)

( 1√
2
, 0)

)

would become perfectly allowable. Thus a quantum coin can be in a superposition of heads

and tails, i.e. it can be both heads and tails at the same time, in some proportion. Quantum

theory is more general than our classical intuition: it allows for more possible states. It is as

if ‘heads’ and ‘tails’ were two axes, and the quantum coin was allowed to live in the plane

described by those axes. This is called the ‘superposition principle’, and it is essential.

2.2.2 Evolution

Postulate 2.2 A closed physical system in state V will evolve, after a certain period of time,

into a new state W according to

W = UV

where U is a n × n unitary matrix of complex numbers.

Comments. In other words, in order to see how the quantum state of a closed physical system

evolves, you have to multiply it by the matrix which describes its evolution (which we call

U). U could be any matrix of complex numbers so long as it is n×n (remember V is an n×1

matrix) and verifies the condition U †U = In.

Note that this postulate is coherent with the first one, because evolution under U takes an

allowed quantum state into an allowed quantum state. Indeed suppose V is a valid state,

i.e. an n × 1 matrix verifying V †V = I1. By definition of the matrix multiplication an n × 1

matrix multiplied by an n×n matrix is also an n× 1 matrix, and thus W has the right sizes.

Is it a unit column? Yes:

W †W = (UV )†(UV ) by definition of W

= V †U †UV by Property 2.2

= V †InV since U is unitary

= V †V by Property 2.1

= I1 since V is unit

Thus W is a valid quantum state.
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2.2.3 Measurement

Postulate 2.3 When a physical system in state

V =




V11

...

Vn1




is measured, it yields outcome i with probability pi = |Vi1|2. Whenever outcome i occurs, the

system is left in the state:

W =




(0, 0)
...

(1, 0)
...

(0, 0)




← ith position

Example. Suppose you have a quantum coin in state: ‘ ⊚ + ⊛ ’ =

(
( 1√

2
, 0)

( 1√
2
, 0)

)
which you

decide to measure. With a probability p1 = | 1√
2
|2 = 1

2 you will know that outcome ‘1’ has

occurred, in which case your quantum system will be left in state ‘ ⊚ ’ =

(
(1, 0)

(0, 0)

)
. But

with probability p2 = 1
2 outcome ‘2’ may occur instead, in which case your quantum system

will be left in state ‘⊛’.

Comments. Thus a measurement in quantum theory is fundamentally a probabilistic process.

For this postulate to work well we need to be sure that the probabilities all sum up to 1 (so

that something happens 100% of the time). But you can check that this is the case:

p1 + ... + pn = |V11|2 + .. + |Vn1|2 by postulate 2.3

= 1 by Property 2.3

The other striking feature of this postulate is that the state of the system gets changed under

the measurement. In our example everything happens as though (this is an analogy!) the

quantum coin in state ‘⊚+⊛’ is asked to make up its mind between ‘⊚’ and ‘⊛’. The quantum

coin “decides” at random, but once it does it remains coherent with its decision: its new state

is either ‘⊚’ or ‘⊛’.

This feature provides the basis for quantum cryptography, which is one of the main topics

of this thesis. Indeed suppose Alice and Bob want to communicate secretly over the phone,

but Eve, the Eavesdropper, might be spying upon their conversation. What Alice and Bob
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can do is to send quantum coins to each other across the (upgraded) phone network. As Eve

attempts to measure what the honest parties are saying, she is bound to change the state of

the coin. This will enable [7] Alice and Bob to detect her malevolent presence.

2.3 Deutsch-Jozsa algorithm

The measurement postulate will (probably) make you think that quantum theory is just a

convoluted machinery whose only purpose is to describe objects which might be in ‘state 1’

with probability p1, in ‘state 2’ with probability p2 etc. until n. After all why bother thinking

of the state ‘⊚ + ⊛’ as a coin which is both heads ‘⊚’ and tails ‘⊛’ at the same time - when

after it gets observed it collapses to either heads ‘⊚’ or tails ‘⊛’ anyway?

No. You have to consider that the coin is both ‘⊚’ and ‘⊛’ until you measure it, because

this is how it behaves experimentally (until you measure it). In other words the only way

to account for what happens between the moment you prepare your initial system and the

moment you measure it is to think of the complex components of the state V as amplitudes,

proportions and not as probabilities. This has much to do with what Postulate 2.2 enables

us to do.

In this last part we shall illustrate this point by considering the simplest of all known quantum

algorithms [17]. An algorithm is just a recipe that is used to systematically solve a math-

ematical problem. But the mathematical problem we will now introduce cannot be solved

by classical means: it can only be solved using quantum theory, that is with a quantum

algorithm. The fact that this algorithm does work in practice ought to demonstrate that the

amplitudes of quantum theory permit us to do things which mere probabilities would not

allow, and cannot explain.

2.3.1 The problem

A boolean value is something which can either be True or False (but not both). For instance

the statement ‘the sky is blue’ has the boolean value True almost anywhere in the world with

the exception of England, where it takes the value False.

A boolean operator is just a ‘box’ which takes one or several boolean values and returns one

or several boolean values. In order to define our problem we need to become familiar with

two boolean operators, which we now describe.

The boolean operator Not takes the boolean value True into False and the boolean value

False into True. We denote this as follows:

Not(True) = False

Not(False) = True
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The boolean operator Xor (exclusive or) takes two boolean values and returns one boolean

value. It returns True either if the first boolean value it takes is True and the second one is

False or if the second boolean value it takes is True and the first one is False. Otherwise it

returns False. We denote this as follows:

Xor(True,False) = True

Xor(False,True) = True

Xor(False,False) = False

Xor(True,True) = False

In other words Xor compares its two input boolean values: it returns True if they are

different and False if they are the same. We are now ready to state the problem.

Problem 2.1 Suppose we are given a mysterious boolean operator F (a black box) which takes

one boolean value and returns another boolean value. We want to calculate Xor(F(False),F(True)),

i.e. the boolean value returned by Xor when applied to the two possible results of F. But we

are allowed to use the mysterious boolean operator F only once.

It is clear that this problem cannot be solved classically. This is because in order to learn any-

thing about F you will have to use F. But we are allowed to do this only once. Suppose we use

F on input boolean value False. This gives us F(False), but tells us nothing about F(True)

which may still be either True or False. Thus we cannot compute Xor(F(False),F(True))

and we fail to solve the problem. The same reasoning applies if we begin by using F to obtain

F(True).

But what would happen if we had the possibility to use F upon an input boolean value which

is both True and False, in some proportions (a superposition)?

2.3.2 The quantum setup

Now suppose that the mysterious boolean operator F is given in the form of a ‘quantum black

box’ instead. To make this more precise we need to call

‘False,False’ the quantum state




(1, 0)

(0, 0)

(0, 0)

(0, 0)




; ‘False,True’ the quantum state




(0, 0)

(1, 0)

(0, 0)

(0, 0)




;

‘True,False’ the quantum state




(0, 0)

(0, 0)

(1, 0)

(0, 0)




; ‘True,True’ the quantum state




(0, 0)

(0, 0)

(0, 0)

(1, 0)



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We assume we have access, for one use only, to a physical device which implements F as a

quantum evolution. This quantum evolution U must take

‘True,False’ into ‘True,F(True)’

‘False,False’ into ‘False,F(False)’

Notice that if for instance ‘F(True) = True’then ‘True,F(True)’ simply denotes the quan-

tum state ‘True,True’. Furthermore we assume U takes

‘True,True’ into ‘True,Not(F(True))’

‘False,True’ into ‘False,Not(F(False))’

The quantum evolution U is fully specified in this manner. In matrix form it is given as

follows:




(1 − FFalse, 0) (FFalse, 0) (0, 0) (0, 0)

(FFalse, 0) (1 − FFalse, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (1 − FTrue, 0) (FTrue, 0)

(0, 0) (0, 0) (FTrue, 0) (1 − FTrue, 0)




with:

FFalse equal to 1 if F(False) is True, and 0 otherwise.

FTrue equal to 1 if F(True) is True , and 0 otherwise.

Whatever the values of FFalse and FTrue, the matrix of complex numbers defined above is

unitary, i.e. U †U = I4. Thus according to postulate 2.2 this mysterious quantum black box

is perfectly allowable physically.

One may want to check that the matrix U does take ‘True,False’ into ‘True,F(True)’ etc.,

and that it is indeed unitary.

For our quantum algorithm we will need another quantum evolution:

H =




(1/2, 0) (1/2, 0) (1/2, 0) (1/2, 0)

(1/2, 0) (−1/2, 0) (1/2, 0) (−1/2, 0)

(1/2, 0) (1/2, 0) (−1/2, 0) (−1/2, 0)

(1/2, 0) (−1/2, 0) (−1/2, 0) (1/2, 0)




This H is also a unitary matrix of complex numbers.
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2.3.3 The solution

Algorithm 2.1 In order to solve problem 2.1 one may use the following algorithm:

1. Start with a closed physical system in quantum state ‘False,True’.

2. Evolve the system under the quantum evolution H.

3. Evolve the system under the quantum evolution U .

4. Evolve the system under the quantum evolution H.

5. Measure the system.

If Xor(F(False),F(True)) is False the quantum measurement always yields outcome ‘ 2’.

On the other hand if Xor(F(False),F(True)) is True the quantum measurement always

yields outcome ‘4’.

Thus the algorithm always manages to determine Xor(F(False),F(True)), and does so with

only one use of the quantum evolution U .

Proof: In Step 1 we start with a closed physical system whose quantum state is V =


(0, 0)

(1, 0)

(0, 0)

(0, 0)




.

After Step 2 the quantum state of the system has become HV . By working out this matrix

multiplication we have HV =




(1/2, 0)

(−1/2, 0)

(1/2, 0)

(−1/2, 0)




.

After Step 3 the quantum state of the system has become UHV . We can still work out

the matrix multiplication but obviously the result now depends upon our mysterious boolean

operator F. Indeed we have UHV =




(1/2 − FFalse, 0)

(−1/2 + FFalse, 0)

(1/2 − FTrue, 0)

(−1/2 + FTrue, 0)




.

Notice that UHV depends both upon F(False) and F(True), in some proportions.

After Step 4 the quantum state of the system has become HUHV and we have, by working

out the multiplication: HUHV =




(0, 0)

(1 − FFalse − FTrue, 0)

(0, 0)

(FTrue − FFalse, 0)




.

Finally in Step 5 we measure the state HUHV . According to Postulate 2.3 this yields:

- outcome ‘1’ with probability 0 (never).

- outcome ‘2’ with probability p2 = (1 − (FFalse + FTrue))
2.
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- outcome ‘3’ with probability 0 (never).

- outcome ‘4’ with probability p4 = (FTrue − FFalse)
2.

Now if Xor(F(False),F(True)) is False then FFalse and FTrue have to be the same. Thus

FFalse + FTrue equals either 0 or 2, whereas FTrue − FFalse is necessarily worth 0. As a conse-

quence p2 must equal 1 whereas p4 is worth 0.

Similarly, if Xor(F(False),F(True)) is True then FFalse and FTrue have to be different val-

ues. Thus FFalse + FTrue is necessarily worth 1, whereas FTrue − FFalse equals either −1 or 1.

As a consequence p2 is worth 0 whereas p4 must equal 1. 2

2.3.4 Comments

It is quite a remarkable fact that with only one use of the ‘quantum black box’ we succeed to

determine a quantity which intrinsically depends ‘on both possible values which the box may

return’. Although this algorithm does not seem extremely useful in every day life, it teaches

us an important lesson: the components of a quantum state must be viewed as proportions

(amplitudes), not as probabilities. The quantum coin can be both heads and tails in some

proportions, simultaneously, until you measure it.

Until recently this feature of quantum theory was essentially regarded as an unfortunate odd-

ity which made the theory difficult to grasp. But we are now learning to turn this feature

to our own advantage, as a means of ‘exploring several possibilities simultaneously’ (so to

speak).

This is recent research however, and to this day not so many quantum algorithms are known.

Yet we do know that Quantum Computers can factorize large integer numbers efficiently, or

even find a name within an unordered list of 100 people in only 5 tries. These are quite useful

things to be able to do. The best place to learn about them is [48].

With great pleasure we would have liked to make the thesis self-contained, pursuing this ex-

position to introduce axiomatically the necessary linear algebra, the density matrix formalism

of quantum theory, special relativity, results in multi-party computation, etc. Unfortunately

such a task would be somewhat unrealistic in terms of size, and would prevent an efficient

presentation of our research results. Most of the required notions, however, are explained

throughout the text. Chapter 5 in particular contains a review of the most important results

about quantum operations and quantum states − from an original and instructive perspec-

tive.

The reader is advised to consult Appendix A for a quick account of the notation used in the

thesis. The next part will define several of these again in a careful and precise fashion.
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Representations of quantum

operations
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Chapter 3

Conal representation of quantum

states and non trace-preserving

quantum operations

Eve and the apple was the first great step in experimental science.

—James Bridie

We represent generalized density matrices of a d-complex dimen-
sional quantum system as a subcone of a real pointed cone of
revolution in Rd2

, or indeed a Minkowski cone in E1,d2−1. Gener-
alized pure states correspond to certain future-directed light-like
vectors of E1,d2−1. This extension of the Generalized Bloch Sphere
enables us to cater for non Trace-preserving quantum operations,
and in particular to view the per-outcome effects of generalized
measurements. We show that these consist of the product of an
orthogonal transform about the axis of the cone of revolution and
a positive real linear transform. We give detailed formulae for the
one qubit case and express the post-measurement states in terms
of the initial state vectors and measurement vectors.

43
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The space of pure states of finite d-dimensional quantum mechanics, i.e. the (normalized) vec-

tors of Cd up to a complex phase, is, like all complex spaces, not easy to visualize. Physical

motions, let alone unitary time evolutions, have no clear geometrical interpretation. How-

ever, the set of hermitian operators on Cd, Hermd(C), is a d2-dimensional real vector space,

and as such is certainly easier to represent geometrically. States, or more generally density

matrices, form of course a subset of Hermd(C). The generalized Bloch sphere representation

([29][53][66]) is a famous application of this fact which has proved to be popular and eluci-

dating: a given density matrix can be represented as a real vector inside a (hyper) sphere.

It turns out that this representation defined for density matrices, or unit trace positive ele-

ments of Hermd(C), is only good at handling unitary or Trace-preserving quantum operations

on density matrices: the former induce rotations of the Bloch vector, the latter affine transfor-

mations [66]. Individual outcomes of generalized measurements, for example, are not directly

representable. Considering the insight the Bloch sphere representation gave to unitary and

Trace-preserving operations, it seems interesting, for the mere sake of geometry at first, but

mainly to give a useful picture to tackle quantum information problems, to extend it to cater

for non Trace-preserving quantum operations. This is further motivated by the fact that the

space of (semi-definite or definite) positive hermitian operators, hereafter denoted Herm+
d (C),

is a closed convex cone, and that all admissible quantum operations, whether Trace-preserving

of not, should be a subset of the transformations of this cone. We hope to convince the reader

that relaxing the unit trace condition and exploiting the conal geometry of Herm+
d (C) is often

illuminating.

In Section 3.1 we consider general quantum systems of d complex dimensions. We give

a representation of the set of positive hermitian matrices Herm+
d (C) as a subcone of a real

Minkowski cone in Rd2
, and analyze geometrical properties of generalized measurements in

this setting. We find that our approach is particularly useful to represent per-outcome post-

measurement states, and that pure states correspond to certain light-like vectors of the cone.

Unitary operators on the complex system become real orthogonal transforms, while positive

operators become real positive transforms. Section 3.2 should be of special interest for quan-

tum information theorists: we treat the d = 2 one qubit case in full detail. We find further

geometrical relations between measurement vectors, state vectors and post-measurement state

vectors and give explicit formulae.

3.1 Conal representation of d-dimensional quantum systems

The state of such a system is described by a d×d density matrix. We shall express hermitian

matrices as real linear combinations of Hilbert-Schmidt-orthogonal hermitian matrices, and

then restrict this representation to elements of Herm+
d (C). Herm+

d (C) turns out to be “iso-

morphic” to a convex subcone of a cone of revolution in Rd2
, or indeed a Minkowski future
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cone in E1,d2−1. We then analyze the effects of quantum operations on density matrices in

this representation.

3.1.1 Hermitian matrices

Let {τi}, i ∈ {1, . . . , d2 − 1}, be a Hilbert-Schmidt orthogonal basis (as in (3.1)) of d × d

traceless hermitian matrices, and let τ0 be the identity matrix I. Throughout this chapter

Latin indices will run from 1 to d2 − 1, Greek indices from 0 to d2 − 1, and repeated indices

are summed unless specified. We take the τµ’s to satisfy by definition:

∀ µ, ν Tr(τµτν) = dδµν (3.1)

with δ the Kronecker delta. {τµ}µ is a basis of Hermd(C), and any hermitian matrix A ∈
Hermd(C) decomposes on this basis as

A =
1

d

(
Tr(A)I + Tr(Aτi)τi

)

=
1

d
Tr(Aτµ)τµ (3.2)

Letting A = (Aµ) ∈ Rd2
with Aµ = Tr(Aτµ) be the component vector of A in this particular

basis, we have

∀ A, B ∈ Hermd(C), AB =
1

d2
AµBντµτν

hence TrAB =
1

d
A.B ≡ 1

d
AµBµ (3.3)

We shall call A the vector in Rd2
,
−→
A = (Ai) the restricted vector in Rd2−1, and φ the

coordinate map:

φ : Hermd(C) → Rd2

A 7→ A

Equation (3.3) says that φ is an isometric isomorphism of (Hermd(C), Tr( )) onto (Rd2
, (1/d)( . )).

Therefore any linear operator L on Hermd(C) defines via φ and φ−1 an operator on Rd2
,

M(L) = φ ◦ L ◦ φ−1. This definition yields the following ‘composition’ property :

Lemma 3.1 If L1, L2 are linear operators on Hermd(C), then M(Li) = φ ◦ Li ◦ φ−1 for

i= 1, 2 are endomorphisms of Rd2
and satisfy

M(L1 ◦ L2) = M(L1)M(L2) (3.4)
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In particular, any complex d × d matrix A defines via AdA : ρ 7→ AρA† a linear operator

on Hermd(C) which corresponds to a real endomorphism M(AdA) : ρ 7→ M(AdA)ρ ; and

AdAB = AdA ◦ AdB implies M(AdAB) = M(AdA)M(AdB). As a direct consequence of this

and the previous definitions , calling GLn(K) the group of invertible n × n matrices on the

field K, we get :

Lemma 3.2 For any subgroup G of GLd(C), the following mapping

ψ : G → ψ(G) ⊂ GLd2(R)

A 7→ M(AdA) = φ ◦ AdA ◦ φ−1 (3.5)

is a group homomorphism. ψ(G) is a subgroup of GLd2(R).

Note that since ψ(I) = ψ(−I) = I, ψ is not necessarily injective. Moreover ψ is certainly not

linear. An interesting subgroup is the Special Unitary group SU(d) = {U ∈ GLd(C) / UU † =

I, detU = 1}. We call SO(n) = {O ∈ GLn(R) / OOt = I, det O = 1} the special orthogonal

group in n-dimensions.

Lemma 3.3 Special Unitary transformations on Hermd(C), AdU : ρ 7→ UρU † with U ∈
SU(d), induce rotations of Rd2

about the I-axis. In fact the linear transforms ψ(U) : ρ 7→
ψ(U)ρ are special orthogonal and ψ(SU(d)) is a subgroup of SO(d2 − 1). It is a proper

subgroup when d ≥ 3. Moreover, ψ(U(d)) = ψ(SU(d)).

Proof: Let ρ = (1/d)(Tr(ρ)I + ρ
i
τi) a hermitian matrix. Using (3.3) and the fact that AdU

is Trace-preserving for U unitary:

UρU †.UρU † = (Trρ)2 +
(
ψ(U)ρ

)
i

(
ψ(U)ρ

)
i

= dTr(UρU †UρU †)

= dTrρ2 = ρ.ρ

= (Trρ)2 + ρ
i
ρ

i

In addition to preserving the first component ρ
0

= Trρ, ψ(U) preserves the Rd2−1 scalar

product ρ
i
.ρ

i
. For all U ∈ SU(d), there exist t ∈ R and B ∈ su(d) such that U = U(t) =

exp(tB). Since detψ(U(0)) = 1 and t 7→ det ψ(U(t)) is continuous and has values in {±1},
det ψ(U) = 1. Thus ψ(U) is a special rotation about the I -axis of Rd2

. By Lemma 3.2,

ψ(SU(d)) is a subgroup of the special orthogonal group SO(d2 − 1) ⊂ SO(d2). As for all

θ ∈ R, AdU = AdeiθU , ψ(U(d)) = ψ(SU(d)).

Since the {
√
−1τi} span the Lie algebra su(d), ψ(SU(d)) is the Adjoint group of SU(d). For

d = 2, we get the whole of SO(3), but this is not the case for d > 2, as is easily seen looking

at the dimensions:

dimSU(d) = d2 − 1, dimSO(d2 − 1) =
1

2
(d2 − 1)(d2 − 2)
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and dimSU(d) < dimSO(d2 − 1) for d > 2. 2

All the results of this section remain true of course when we just consider Herm+
d (C). From

now on, for any A complex d × d matrix we shall denote ψ(A) = M(AdA) the real endomor-

phism of Rd2
.

3.1.2 Generalized density matrices

In [66], Zanardi showed using a restriction of a mapping analogous to φ : A 7→ A that d × d

density matrices lie in a convex subset of a ball S ⊂ Rd2−1. We shall extend this to a convex

cone by considering generalized density matrices, by which we mean elements of Herm+
d (C)

having trace equal or inferior to one. As will become clear later this bigger space allows an

elegant per-outcome representation of generalized measurements - because the trace of the

positive matrix conveniently encodes the overall probability of occurrence for the state.

We define generalized pure states to be generalized density matrices which yield pure states

after rescaling them to unit trace. Note that these are not the “states of partial purity”

of the complex d-dimensional system, which are singular density matrices. In other words,

generalized pure states are not the elements of the boundary of Herm+
d (C) in the sense of

characteristic functions of cones (see [23] for example).
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Proposition 3.1 The cone of positive hermitian matrices Herm+
d (C) is isomorphic to a con-

vex subcone C of the following cone of revolution in Rd2
:

Γ = {(λµ) ∈ Rd2
/

d2−1∑

i=1

λ2
i ≤ (d − 1)λ2

0, λ0 ≥ 0} (3.6)

The set of generalized density matrices verifies λ0 ≤ 1.

The set of generalized pure states verifies C = C ∩ ∂Γ, where ∂Γ stands for the boundary of

Γ.

Proof: We begin as in [66]. Let P denote the space of (not generalized) pure states in

Hermd(C). In addition to being positive, ρ ∈ P satisfies Tr(ρ2) = Tr(ρ) = 1, so we have

Tr(ρ2) =
1

d
ρ.ρ =

1

d

(
(Trρ)2 + ρ

i
ρ

i

)
=

1

d

(
1 + ρ

i
ρ

i

)
= 1, hence

ρ
i
ρ

i
= d − 1 (3.7)

The restricted vector (ρ
i
) is on a (d2 − 2)-sphere of radius

√
d − 1, ∂Sd2−2, where S is the

corresponding ball. In Rd2
, ρ pure sits in the intersection of the cylinder (3.7) and the

ρ
0

= Tr(ρ) = 1 hyperplane, in other words on ∂Sd2−2 “centered” at (1, 0, . . . , 0).

Any density matrix can be expressed as a positive (convex) linear combination of pure states,

and any positive (convex) linear combination of pure states defines a density matrix. Calling

D the set of (not generalized) density matrices, D ⊂ Hull(P) and Hull(P) ⊂ D. Here Hull(P)

denotes the set of convex linear combinations of elements of P. Since D is closed, D =

Hull(P), a well-known result. As φ : Hermd(C) → Rd2
is linear and bi-continuous, φ(D) =

φ
(
Hull(P)

)
= φ(Hull(P)) = Hull(φ(P)). This set is a closed convex subset of S “centered” at

(1, 0, . . . , 0):

φ(P) ⊂ ∂Sd2−2 ⇒ Hull(φ(P)) ⊂ S

Calling S+ ≡ Hull(φ(P)) the image set of density matrices as a subset of Rd2−1, we get:

ρ ∈ D ⇔ Tr(ρ) = ρ
0

= 1 and (ρ
i
) ∈ S+

Now a non-zero ρ ∈ Hermd(C) is positive if and only if (1/Trρ)ρ is positive, that is if and

only if
(
(1/Tr(ρ))ρ

i

)
∈ S+. In Rd2

, recalling that Tr(ρ) ≡ ρ
0
, this reads

ρ ∈ Herm+
d (C) ⇔ ρ ∈ {(λ0, (λi)) ∈ Rd2

/(λi) ∈ λ0 S+} (3.8)

This clearly defines a cone C in Rd2
. As S+ ⊂ S, C is a subcone of the cone of revolution

Γ given by (3.6). φ being an isomorphism, C is convex and isomorphic to Herm+
d (C). As

pure states correspond to some points on the sphere ∂Sd2−2, generalized pure states lie in the

boundary of Γ. Calling C the set of vectors of C corresponding to generalized pure states,
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we have C ⊂ C ∩ ∂Γ. Moreover C ⊃ C ∩ ∂Γ follows from the fact that any rescaled positive

matrix ρ such that Tr(ρ2) = Trρ = 1 is a pure state. Remember that C is not the boundary

of C, but a cone over φ(P), the image set of pure states. 2

As we shall see in detail in Section 3.2 in d = 2 dimensions, generalized pure states

correspond to future-directed light-like vectors in Minkowski space. We have shown that this

remains true to a certain extent in d-complex dimensions, Γ being the future light-cone of

Minkowski space E1,d2−1 with metric ηµν = Diag(d− 1,−1, . . . ,−1). Thus the appearance of

a Minkowski product is to be expected.

As a consequence of Lemma 3.3, unitary transforms, since they leave Herm+
d (C) invariant,

yield rotations which leave C (globally) invariant. This fact deserves to be analyzed in detail

to understand the geometry of C. For the moment however, we shall consider the geometric

representation of general quantum operations in C.

3.1.3 Generalized measurements

We call a generalized measurement [48] a finite set {Mm}m of complex d × d matrices which

satisfy
∑

m M †
mMm = I, i.e. when averaging over all outcomes the process is Trace-preserving.

Note that we never use the repeated indices summation convention for m. The set of {Em}m =

{M †
mMm}m defines a Positive Operator Valued Measure (POVM), as Em ∈ Herm+

d (C) and∑
m Em = I. Given a quantum state or density matrix ρ ∈ D, the generalized measurement

{Mm}m on ρ yields outcome m with probability p(m) = Tr(Emρ), and if outcome m occurs,

the post-measurement state is ρ′m = (1/Tr(Emρ))(MmρM †
m). We shall call ρm = MmρM †

m ∈
Herm+

d (C) the unrescaled post-measurement state.

Recall that any complex matrix can be polar-decomposed into a product of a unitary matrix

and a positive matrix. For all m, there exists Um ∈ U(d) and Am ∈ Herm+
d (C) such that

Mm = UmAm. As Em = M †
mMm = AmAm, Am =

√
Em, the positive square root of Em.

Using this polar decomposition, ρ′m is represented in the cone C by

ρ′m ≡ φ(ρ′m) =
1

Tr(Emρ)
φ(Um

√
Emρ

√
EmU †

m)

=
1

Tr(
√

Emρ
√

Em)
ψ(Um)(

√
Emρ

√
Em)

Thus when outcome m occurs, the post-measurement state ρ′m of {Mm}m is the same as that of

{
√

Em}m up to a rotation ψ(Um), and similarly for the unrescaled states. As a consequence

we shall consider the geometrical effects of generalized measurements {
√

Em}m where Em

and
√

Em are in Herm+
d (C) and verify

∑
m Em = I, bearing in mind that the most general

measurements just involve rotations on the post-measurement state vectors. For example, in

Chapter 6, Eve is free to perform unitary transforms on her post-measurement states, and
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can decide this according to the outcome m. The procedure we use to find the disturbance

is to first measure with {
√

Em}m and then maximize on unitary transforms acting upon

post-measurement states. Using the conal representation, both sets of vectors {Em}m and

{
√

Em}m are in C, and
∑

m Em = (d, 0, . . . , 0). This enables us to represent elements of a

measurement inside C, and visualize the action of a particular non Trace-preserving operation√
Em on a given density matrix ρ, in other words find ρm in terms of Em or

√
Em.

3.1.4 Quantum operations represented in C

One might wonder here why not just rescale all the post-measurement states and only consider

the density matrices ρ′m. The reason for not doing so is that the generalized density matrices

encode extra information: their “height” in the cone, the first component ρm0
= Tr(Emρ),

is simply the probability of their outcomes. Under a given generalized measurement, post-

measurement vectors with identical first components are equiprobable. Thus the sections of

C of constant λ0 have a clear physical interpretation. Moreover note that for Em positive and

such that
∑

m Em = I, and for ρ a generalized density matrix, ρm0
is indeed always comprised

between 0 and 1. We shall now need the following simple properties:

Lemma 3.4 For A ∈ Hermd(C) and B, C ∈ Herm+
d (C),

Tr(BC) ≥ 0 Tr(BABA) ≥ 0

Proof: Let B =
√

B
√

B, then Tr(BC) = Tr(
√

BC
√

B) ≥ 0 since
√

BC
√

B ∈ Herm+
d (C).

Then polar decompose A into A = U |A|, with U unitary and |A| ∈ Herm+
d (C). As A ∈

Hermd(C), A = |A|U † = A†, and

Tr(BABA) = Tr(BU |A|B |A|U †) = Tr(U †BU |A|B |A|)

This is non-negative by the previous result since U †BU, |A|B |A| ∈ Herm+
d (C). 2

Unitary transforms induce rotations in C, and generalized measurements have the follow-

ing geometric properties:

Proposition 3.2 The linear transforms ψ(
√

Em) : ρ 7→ ρm associated to a generalized mea-

surement {
√

Em}m,
∑

m Em = I correspond to real symmetric matrices which are positive.

They individually map C into itself. In addition, for any generalized pure state θ, ψ(θ) maps

C into C.

The probability of outcome m for a quantum system in state ρ is given by

p(m) =
1

d
Em.ρ (3.9)
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Proof: By using (3.2) successively, we have

ρmµ
= Tr(

√
Emρ

√
Emτµ)

=
1

d
Tr(

√
Emτν

√
Emτµ)ρ

ν
(3.10)

≡ Mm
µν ρ

ν

Clearly Mm
µν is real symmetric by cyclicity of the trace and the fact that

√
Emτν

√
Em and τµ

are hermitian. (Actually ψ(A) is real for any d×d complex matrix A, and real symmetric for

any A hermitian). Let v = (vµ) ∈ Rd2
. Using (3.10) we get

vtψ(
√

Em)v = vµMm
µνvν =

1

d
vµTr(

√
Emτν

√
Emτµ)vν

=
1

d
Tr(

√
Em(vντν)

√
Em(vµτµ)) ≥ 0

This follows from Lemma 3.4 since vµτµ ∈ Hermd(C). Hence Mm
µν is a positive real (symmet-

ric) matrix.

The properties on purity simply follow from general facts on quantum operations on density

matrices which remain true for generalized density matrices:

For |u〉〈u| and |v〉〈v| generalized pure states, for any A complex d× d matrix and any gener-

alized density matrix ρ,

A|u〉〈u|A† = |A u〉〈A u| and

|v〉〈v|ρ|v〉〈v| = 〈v|ρ|v〉|v〉〈v| (3.11)

are generalized pure states. Relation (3.9) follows from (3.2) and Tr(
√

Emρ
√

Em) = Tr(Emρ).

2

The following properties will help to give a geometrical intuition of the action of the

ψ(
√

Em)’s. For
√

Em = |v〉〈v| pure, 〈v|ρ|v〉 = Tr(
√

Emρ) = (1/d)
√

Em.ρ. Thus using (3.11):

ψ(
√

Em)ρ =
1

d
(
√

Em.ρ)
√

Em

So ψ(
√

Em) is as was expected a non-normalized projection. For any
√

Em ∈ Herm+
d (C) ,

the d2 eigenvectors vσ of ψ(
√

Em) with eigenvalues λσ correspond to d2 hermitian matrices

Mσ ≡ φ−1(vσ) which satisfy
√

EmMσ
√

Em = λσMσ (no summation). As a consequence, if

ρ ∈ C is such an eigenvector, then the rescaled density matrix ρ is such that ρ = ρ′m, i.e. ρ is

unchanged if outcome m occurs.
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We now give the general expressions for ρm in terms of ρ ≡ (1/d)ρµτµ and
√

Em ≡
(1/d)

√
εντν , where we drop the index m and do not underline the components of the vectors

ρ and
√

Em for convenience. By definition:

ρm =
1

d3

√
εµρν

√
εστµτντσ

Expanding this using τ0 = I and grouping the products of the τi’s in hermitian terms, we

easily derive:

ρm =
1

d3

{√
ε0ρ0

√
ε0I + (2

√
ε0ρ0

√
εi +

√
ε0ρi

√
ε0)τi

+ (
1

2

√
εiρ0

√
εj +

√
ε0ρi

√
εj)(τiτj + τjτi)

+
1

2

√
εiρj

√
εk(τiτjτk + τkτjτi)

}
(3.12)

To push the general d-dimensional analysis further, we need a particular choice of τi’s whose

anti-commutation relations are convenient. We now treat in full detail the d = 2 (one qubit)

case and apply our geometric approach to a challenging quantum information theoretical

problem.

3.2 The Qubit case pushed further

Applied to qubit states the representation yields two of the most familiar objects in funda-

mental physics: the 2× 2 positive matrices yield a Minkowski future-light-cone in E1,3 whose

vertical sections are nothing but Bloch spheres. In this simple case we are able to give explicit

coordinates for states posterior to non Trace-preserving quantum operations. These formulae

remain simple provided Minkowski products are introduced alongside the Euclidians. They

constitute a sufficient armoury to deal, using only four-vectors, with the most general evolu-

tions to happen on a qubit, and thereby complement the analysis by Ruskai et Al. [51] on

the geometry of Trace-Preserving quantum operations.

3.2.1 The cone and the Bloch sphere

A suitable Hilbert-Schmidt orthogonal basis for 2× 2 traceless hermitian matrices is given by

the set of Pauli matrices:

τ1 = X =

(
0 1

1 0

)
τ2 = Y =

(
0 −i

i 0

)
τ3 = Z =

(
1 0

0 −1

)
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Figure 3.1: The conal representation of a qubit

Together with the identity

τ0 = I =

(
1 0

0 1

)

one may express any 2 × 2 hermitian matrix as a sum A = 1
2Aµτµ with the Aµ’s real. The

positivity conditions for those matrices turns out simple, and is a well-known result.

Lemma 3.5 The cone of positive hermitian matrices Herm+
2 (C) is isomorphic to the follow-

ing cone of revolution in R4:

Γ = {(λµ) ∈ R4 / λ2
0 −

3∑

i=1

λ2
i ≥ 0, λ0 ≥ 0}

Generalized density matrices verify λ0 ≤ 1.

Generalized pure states lie on the boundary of Γ.

Proof: The eigenvalues of A are given by λ± = 1
2(A0 ±

√
AiAi). A is positive if and only if

λ+λ− ≥ 0 and λ+ + λ− ≥ 0. This is equivalent to (with ηµν = Diag(1,−1,−1,−1)):

ηµνAµAν ≥ 0 ∧ A0 ≥ 0 (3.13)

The purity condition is an obvious consequence of Proposition 3.1. 2

Thus the generalized (not necessarily normalized) density matrices of a qubit cover the

whole Minkowski future-light-cone in E1,3 with height less or equal to one. Taking a vertical

cross-section of the cone is equivalent to fixing the trace A0 of the density matrix, which

might be thought of physically as the overall probability of occurrence for the state. By doing

so we are left with only the spin degrees of freedom along X, Y, Z, therefore each vertical

cross-section is a Bloch sphere with radius a = A0 (see FIG. 3.1 page 53).

The ability to represent states with different traces is convenient when dealing with quan-

tum ensembles {(px, ρx)}x. When we seek to represent non Trace-preserving quantum oper-

ations the feature becomes absolutely crucial.
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3.2.2 Post-measurement states

As we have seen in Subsection 3.1.3, the most general quantum operation can be described

as {Mm}m = {Um

√
Em}m with Um unitary and

√
Em positive (the only extra feature Kraus

operators allow is the possibility to ignore one’s knowledge of some measurement outcomes,

but in our setting this is easily dealt with by adding up the undistinguished non-normalized

post-measurement states). While the action of Um is well understood in terms of four-vectors

(as a mere rotation in the Bloch Sphere, see Lemma 3.3), we are not aware of a solid real

vector space geometrical framework for representing the effects of
√

Em - other than the one

presented here. In Lemma 3.6, if A ≡
√

Em while ρ is the initial state, then AρA stands

for the (not renormalized) ‘post-measurement’ state when outcome m has occurred (up to a

unitary evolution Um).

Lemma 3.6 Let A and ρ be two matrices in Herm+
2 (C). Then:

AρA =
1

8
[−ρ

0
(ηµµ′AµAµ′) + 2A0(A.ρ)]τ0

+
1

8
[ρ

1
(ηµµ′AµAµ′) + 2A1(A.ρ)]τ1

+
1

8
[ρ

2
(ηµµ′AµAµ′) + 2A2(A.ρ)]τ2

+
1

8
[ρ

3
(ηµµ′AµAµ′) + 2A3(A.ρ)]τ3

=
1

8
[ηνν′ρ

ν
(ηµµ′AµAµ′) + 2Aν′(A.ρ)]τν′ (3.14)

Proof: Consider

A = [ α β γ δ ] ρ = [ a x y z ]

We have:

AρA =
1

8
[a(α2 + β2 + γ2 + δ2) + 2α(βx + γy + δz)]τ0

+
1

8
[x(α2 + β2 − γ2 − δ2) + 2β(αa + γy + δz)]τ1

+
1

8
[y(α2 − β2 + γ2 − δ2) + 2γ(αa + βx + δz)]τ2

+
1

8
[z(α2 − β2 − γ2 + δ2) + 2δ(αa + βx + γy)]τ3 (3.15)

This formula can be obtained either by brute force calculation using the Pauli multiplication

relations, or by exploiting the fact that Pauli matrices form a Clifford algebra I.e. {τi, τj} =

2δijτ0 together with equation (3.12). Regrouping the terms gives formula (3.14). 2

Corollary 3.1 Let A and ρ be two matrices in Herm+
2 (C). AρA can be expressed as a linear
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combination of ρ, A and the Identity:

AρA =
1

2
(A.ρ)A +

1

4
(ηµµ′AµAµ′)(ρ − ρ0τ0)

This last corollary provides much geometrical insight on non Trace-preserving quantum op-

erations. We find that the effect of
√

Em is not that difficult to visualize: the resulting state

is a weighted sum of
√

Em, the initial state and the identity, with real coefficients.

It is a somewhat strange fact that the structure equation (3.15) does not become apparent

until one brings the Minkowski product to the rescue. The spurious appearance of special

relativistic products in quantum mechanics bears some explanation in this setting however,

since the Minkowski metric is intrinsically related to the characteristic function of pointed

cones of revolution. We shall develop this aspect of the conal representation in Chapter 4.

Finally it is important to notice that the results expressed in these two last subsections

are invariant under any orthogonal change of basis {τi}i. This is because rotations about the

vertical axis leave the Minkowski product invariant. The Pauli matrices have been helpful

in computing those results, but from now and in the rest of the chapter we may consider

ourselves in the more general setting of Section 3.1.

3.2.3 Square and square root

In our quest towards representing non Trace-preserving quantum operations in the cone we

have managed to obtain the probability of occurrence p(m) in terms of Em (Proposition 3.2).

In the previous subsection we have also worked out the evolved state ρm, but unfortunately

this was done in terms of
√

Em. In order to deal fully with these operations in the cone

formalism it seems, at first, that we need to understand ways of switching back and forth

from Em to
√

Em. The next Lemma is a direct consequence of equation (3.14), when ρ = I.

Lemma 3.7 The square of a matrix A in Herm+
2 (C) is given by:

A2 = A0 A − 1

4
(ηµνAµAν)τ0

Inversely the square root operation obeys:

√
A =

1

r
(A +

1

2

√
ηµνAµAν τ0) with r =

√
A0 +

√
ηµνAµAν

Note that A is proportional to
√

A if and only if A is generalized pure or A ∝ I.

But when we seek to express a function of Em in terms of
√

Em (or the reverse) the next

formulae become convenient.
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Lemma 3.8 Let A and ρ be two matrices in Herm+
2 (C). The following relations hold:

ηµν

√
Aµ

√
Aν = 2

√
ηµνAµAν

A2.ρ = A0(A.ρ) − 1

2
ρ
0
(ηµνAµAν)

√
A.ρ =

1

r
(A.ρ + ρ

0

√
ηµνAµAν) with r =

√
A0 +

√
ηµνAµAν

On the whole taking the square root of Em is not so easy. It would be much more convenient

if we could make all calculations in terms of Em, with the added advantage that the condition

∑

m

Em = 2τ0 (3.16)

is easily visualized. Results in the following subsection are most useful for this purpose.

3.2.4 Inner products through quantum operations

Consider two states ρ0, ρ1. Suppose they undergo a quantum operation {Mm}m = {Um

√
Em}m

and outcome m occurs. Rather than seeking the coordinates of the rescaled post-measurement

states ρ0
m

′
and ρ1

m
′
, we are often interested in their positions relative to one another. Note

this subsection reuses a number of notational conveniences introduced in Section 3.1.

Lemma 3.9 Let ρ0,ρ1 be two matrices in Herm+
2 (C) and

√
Em a measurement element in

Herm+
2 (C). The inner products of the post-measurement states satisfy:

ρ0
m.ρ1

m =
1

4
[2(Em.ρ0)(Em.ρ1) − (ηµµ′Emµ

Emµ′)(ηνν′ρ0
ν
ρ1

ν′)] (3.17)

ρ0
m

′
.ρ1

m
′
= 2 −

(ηµµ′Emµ
Emµ′)(ηνν′ρ0

ν
ρ1

ν′)

(Em.ρ0)(Em.ρ1)
−→
ρ0

m.
−→
ρ1

m =
1

4
[(Em.ρ0)(Em.ρ1) − (ηµµ′Emµ

Emµ′)(ηνν′ρ0
ν
ρ1

ν′)]

−→
ρ0

m
′
.
−→
ρ1

m
′
= 1 −

(ηµµ′Emµ
Emµ′)(ηνν′ρ0

ν
ρ1

ν′)

(Em.ρ0)(Em.ρ1)
(3.18)

Proof: By using (3.3) we have:

ρ0
m.ρ1

m =
√

Emρ0
√

Em.
√

Emρ1
√

Em

= 2Tr(
√

Emρ0
√

Em

√
Emρ1

√
Em)

= 2Tr(Emρ0Emρ1)

= Emρ0Em.ρ1
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From there we readily obtain equation (3.17) by applying equation (3.14) once. 2

By letting ρ0 = ρ1 = ρ in the above Lemma we get:

||ρm||2 =
1

4
[2(Em.ρ)2 − (ηµµ′Emµ

Emµ′)(ηνν′ρ
ν
ρ

ν′)]

||ρm
′||2 = 2 −

(ηµµ′Emµ
Emµ′)(ηνν′ρ

ν
ρ

ν′)

(Em.ρ)2

||−→ρm||2 =
1

4
[(Em.ρ)2 − (ηµµ′Emµ

Emµ′)(ηνν′ρ
ν
ρ

ν′)]

||
−→
ρm

′||2 = 1 −
(ηµµ′Emµ

Emµ′)(ηνν′ρ
ν
ρ

ν′)

(Em.ρ)2
(3.19)

Equation (3.19) clearly exhibits the general property we stated in Proposition 3.2: that is if

the initial state is generalized pure (ηµµ′ρ
µ
ρ

µ′ = 0) or the measurement is generalized pure

( ηµµ′Emµ
Emµ′ = 0) then we have ||

−→
ρm

′|| = 1 (pure), which implies that ρm is generalized

pure.

The above lemma enables us to determine all the relative positions (angles and norms)

of quantum states using relatively compact formulae which do not involve
√

Em. It is only

when the coordinates of each post-measurement state are required that one needs to take

the impractical square root of Em. But remember we are allowed an arbitrary rotation Um

in order to complete the quantum operation. This means we have full freedom to fix the

absolute coordinates at will (so long as the relative positions are respected).

Most quantum information theoretical problems seek to evaluate the limits of quantum

operations, e.g. quantum cloning [10], distinguishability [42], information gain versus distur-

bance tradeoff [5]. In these situations the precise individual coordinates of the states after

Ad√Em
tend not to matter; usually they will need to be rotated anyhow into a position which

optimizes the fidelity measure in question. What counts is the relative position of the post-

measurement states. Therefore these problems can be treated comfortably in our framework.

Chapter 6 provides a good example of such an application.

There are, however, some rare situations where we would like to see quantum operations

act step by step, yielding precise coordinates - instead of just fixing the coordinates of the

final state as we would do in order to avoid taking the square root of Em. This is the

case for instance in quantum complexity, where one needs an appreciation of how many basic

computational operations it takes to accomplish some calculation. Yet in this type of problems

it turns out that the basic operations can be taken to be unitary operators, with measurements

only performed at the end (principle of delayed measurement [48]). Therefore these scenarios

may still be analyzed comfortably within our conal representation: the basic unitary operators

will just be a set of chosen real orthogonal rotations, and the final measurement statistics will

be evaluated straight from Em.
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3.3 Concluding remarks

In this chapter we considered a linear embedding taking d × d positive hermitian matrices

into vectors of d2 real entries, φ : ρ 7→ ρ = (Tr(ρτµ))µ. It is a well-known fact that the most

general evolution a density matrix ρ may undergo is a generalized measurement {Mm}m =

{Um

√
Em}m, where the polar decomposition was applied. In order to represent the per-

outcome effect of Mm upon the real vectors we defined ψ : A 7→ φ ◦ AdA ◦ φ−1 and showed

that ψ(Um) is a real orthogonal transform while ψ(
√

Em) turns out to be a real positive

matrix. Thus the geometrical effect of a generalized measurement can be viewed in terms of

real transformations only.

Such a nice correspondence suggests quantum mechanics could be expressed elegantly over

the real numbers in this manner, quite differently from its formulation in terms of real Jordan

algebras [59]. However we first need to find an elegant characterization for the set of real

vectors φ(Herm+
d (C)), and the sets of allowed orthogonal and positive transforms. For now

we know that φ(Herm+
d (C)) is a subcone of the future-light-cone Γ = {(λµ) ∈ Rd2

/
∑d2−1

i=1 λ2
i ≤

(d− 1)λ2
0, λ0 ≥ 0}. Unfortunately the corresponding problem in the generalized Bloch sphere

is, as soon as d ≥ 3, regarded to be quite difficult by the researchers in the community.

One of the advantages of defining φ upon Herm+
d (C) instead of the restricted set of density

matrices is that Em = M †
mMm can be visualized. In order to characterize its effects we

derived rather compact and powerful formulae for the qubit case, such as the one giving the

scalar product of the post-measurement states:

1

4
[2(Em.ρ0)(Em.ρ1) − (ηµµ′Emµ

Emµ′)(ηνν′ρ0
ν
ρ1

ν′)]

By looking at such expressions it became apparent that Minkowski products have a crucial role

to play in our framework, and even more so as we showed that pure quantum states correspond

to light-like vectors (i.e. they sit on the boundary of Γ), even in dimensions greater than 2.

Such a link with special relativity deserved to be investigated further, this is the object of

the next chapter. Moreover in Chapter 6 we shall make use of the above-developed conal

representation of a qubit to retrieve a classical result in quantum cryptography: Fuchs and

Peres’ information gain versus disturbance tradeoff.



Chapter 4

Qubit quantum operations and

special relativity

Que me quiten lo bailado.

—Anónimo

We further investigate the isomorphism between non-normalized
qubit states and the future cone of Minkowski space, by show-
ing that positive operations on a qubit are proportional to pure
restricted Lorentz boosts. Thus we formalize a correspondence be-
tween generalized measurements on qubit states and the Lorentz
transformations of special relativity − or more precisely elements
of the restricted Lorentz group together with future-directed null
boosts.

59
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This chapter develops a connection between the conal representation and special relativity,

which was already hinted at in the previous chapter. The point we make is conceptual.

We mathematically relate two completely different theories, quantum mechanics of the qubit

on the one hand, special relativity on the other, and in the last section we daringly analyze

(making our assumptions clear) whether the correspondence can be given a physical meaning.

Moreover the formalism also suggests a Lorentz-invariant definition of mixedness and an

interesting information conservation law. Thus the skeptical reader may simply view these

results as a convenient formulation of qubit theory, in terms of real numbers only. Because this

general correspondence is somewhat independent of the intricacies of the d-dimensional conal

representation, we regard it as specially important to make its presentation self-contained. As

a consequence this introduction must quickly overview some background material and some

previous results.

As in Chapter 3 we consider generalized density matrices of a qubit, i.e. elements set of

2× 2 positive complex matrices having trace inferior or equal to one. Traditionally one tends

to consider normalized states only, i.e. unit trace Herm+
2 (C) matrices (density matrices).

Yet relaxing this condition has a clear physical meaning and we often do so in this thesis.

The most general evolution a qubit state may undergo is a generalized measurement (the

only extra feature Kraus operators allow is the possibility to ignore one’s knowledge of some

measurement outcomes) [48]. These are described by a finite set {Mm} of 2 × 2 complex

matrices satisfying
∑

m M †
mMm = I. This last condition is crucial to ensure that averaged

over all outcomes the process is Trace-preserving (conservation of probabilities), and is duly

reflected in Proposition 4.3 by an appropriate rescaling. If we let Em = M †
mMm we have

that
∑

m Em = I, Em ∈ Herm+
2 (C) and Mm = Um

√
Em using the polar decomposition.

Applied upon a density matrix ρ, the generalized measurement {Mm} yields outcome m

with probability p(m) = Tr(Emρ), in which case the post-measurement state is given by

ρ′m = (1/Tr(Emρ))(MmρM †
m). As usual we call ρm = MmρM †

m ∈ Herm+
2 (C) the unrescaled

post-measurement state. Note that the generalized measurement formalism can be viewed as

arising when the system is first coupled to an ancilla (through a unitary operation), which

then gets measured projectively and discarded. This work takes the more axiomatic view on

generalized quantum measurements.

We now restate the main ideas upon which the conal representation of the qubit is founded.

Let {τµ}µ=0...3 designate the set of the Pauli matrices I,X,Y and Z. These form a Hilbert-

Schmidt orthogonal basis of 2× 2 hermitian matrices, that is ∀ µ, ν Tr(τµτν) = 2δµν with δ

the Kronecker delta. Thus any matrix A ∈ Herm2(C) decomposes on this basis as

A = (1/2)
(
Tr(A)I + Tr(Aτi)τi

)
= (1/2)Tr(Aτµ)τµ.

Throughout this chapter, again, Latin indices run from 1 to 3, Greek indices from 0 to 3,

and repeated indices are summed unless specified. Letting Aµ = Tr(Aτµ), we shall call A the



61

vector (Aµ) ∈ R4 while
−→
A = (Ai) will designate the restricted vector in R3. Note that the

coordinate map

φ : Herm2(C) → R4

A 7→ A

is an isometric isomorphism, in the sense that

Tr(AB) =
1

2
A.B ≡ 1

2
AµBµ (4.1)
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Lemma 4.1 The cone of positive hermitian matrices Herm+
2 (C) is isomorphic to the follow-

ing cone of revolution in R4:

Γ = {(λµ) ∈ R4 / λ2
0 −

3∑

i=1

λ2
i ≥ 0, λ0 ≥ 0}

Generalized density matrices verifies λ0 ≤ 1.

Generalized pure states lie on the boundary of Γ.

Thus the generalized (not necessarily normalized) density matrices of a qubit cover the whole

Minkowski future-light-cone in E1,3 with height less or equal to one. Taking a vertical cross-

section of the cone is equivalent to fixing the trace A0 of the density matrix, which might be

thought of physically as the overall probability of occurrence for the state. By doing so we

are left with only the spin degrees of freedom along X, Y and Z, and therefore each vertical

cross-section is a Bloch sphere with radius a = A0 (see FIG. 3.1 page 53).

Where the use of Clifford algebras is encountered such a representation of hermitian and

positive 2 × 2 matrices is not totally uncommon: φ−1 is precisely the isomorphism used

to define Dirac spinors [54] in Quantum Field Theories. Moreover Havel and Doran have

already looked at quantum information theoretical processing upon four-vector representa-

tions of a qubit [27]: on page 8 they even apply a Lorentz transform to the qubit, but fall

short of remarking the one-to-one relation between generalized measurements and the Lorentz

transformations of special relativity. The vocabulary of geometric algebras would not have

served, in any case, the exposition of the simple and general correspondence highlighted in

this chapter.

We now consider the map ψ from 2 × 2 complex matrices to endomorphisms of R4 given

by:

ψ : A 7→ φ ◦ AdA ◦ φ−1

i.e. ψ(A) is the 4× 4 real matrix taking a vector ρ into AρA†. We have ψ(AB) = ψ(A)ψ(B).

Amongst the standard results we also have that ψ(U), with U unitary, is a special orthogonal

transform about the axis of revolution of the cone Γ (the proof can be found in Chapter

3). Indeed without loss of generality one can assume det(U) = 1, and so the special unitary

matrix can be written as:

U = cos(
θ

2
)I − i sin(

θ

2
)(−→nkτk) = e−i θ

2
−→nkτk (4.2)

and has image: ψ(U) =

(
1 0

0 Rθ(
−→n )

)
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Here Rθ(
−→n ) denotes the real rotation by an angle θ around the normalized axis −→n (to happen

in the Bloch sphere). Alternatively one may use the expression ψ(U)µν = (1/2)Tr(UτνU
†τµ).

The next results are not well-known.
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Lemma 4.2 Let
√

Em be a matrix in Herm+
2 (C), with

√
Em = [α β γ δ], and Em its square,

with Em = [a x y z]. Then

ψ(
√

Em) =
1

4




−X+2α2 2αβ 2αγ 2αδ

2αβ X+2β2 2βγ 2βδ

2αγ 2βγ X+2γ2 2γδ

2αδ 2βδ 2γδ X+2δ2




=
1

4




2a 2x 2y 2z

2x X+ 4x2

2a+X
4xy

2a+X
4xz

2a+X

2y 4xy
2a+X X+ 4y2

2a+X
4yz

2a+X

2z 4xz
2a+X

4yz
2a+X X+ 4z2

2a+X




(4.3)

with X = α2 − β2 − γ2 − δ2 = 2
√

a2 − x2 − y2 − z2.

Proof: ψ(
√

Em) can be computed in terms of
√

Em using the following simple formula:

ψ(
√

Em)µµ′ = (1/2)
√

Emν

√
Emν′

Tr(τντµ′τν′τµ)

This method requires lengthy calculations, subtler approaches were discussed in Chapter 3.

Now let ι = [1 0 0 0] = (1/2)φ(I) and observe that

ψ(
√

Em)ι ≡ φ ◦ Ad√Em
◦ φ−1ι

= (1/2)φ(
√

EmI
√

Em) ≡ (1/2)Em (4.4)

In other words, (1/2)Em has as components the first column of ψ(
√

Em). Thus we can now

proceed to the substitutions which yield the second form of ψ(
√

Em). Finally the X relation

stems from:

ηµν

√
Emµ

√
Emν

= 4 det(
√

Em) (4.5)

= 4
√

det(Em) = 2
√

ηµνEmµ
Emν

2

4.1 Quantum operations as Lorentz transforms and vice-versa

We begin by showing that elements of a generalized measurement act on a qubit either as

rescaled restricted Lorentz transformations or as rescaled future-directed null boosts. Then

we show that the reverse is also true. Remember that a Lorentz transform L ≡ Lµ
ν is called

restricted if it is proper (detL = 1) and orthochronous (L0
0 > 0). We will show that such
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an L decomposes uniquely into the product of a proper spatial rotation and a pure (timelike

future-directed velocity) boost. We like to think of null velocity boosts as limiting cases

of restricted boosts, or effectively as elements of the topological boundary of the restricted

Lorentz group, but they need to be rescaled to yield a finite linear transform. We shall call

these (rescaled) future-directed null boosts. They are singular transforms. It turns out the

rescaling introduced defines a natural unifying way of thinking about Lorentz transforms and

null boosts.

If Em = [a, x, y, z] corresponds to one particular measurement element Em = M †
mMm,

we shall call Vm the vector of coordinates (Vmµ
) = (1

2ηµνEmν
), i.e. Vm = [a/2, −x/2, −y/2, −z/2].

Then vm = 2Vm/a is the corresponding normalized vector and −→vm = [−x/a, −y/a, −z/a] can

be thought of as a three vector velocity, whose norm is defined as usual: vm = (−→vm.−→vm)1/2.

Proposition 4.1 Let {Mm} = {Um

√
Em} be a generalized measurement on a qubit, with Um

unitary and
√

Em positive. Then for all m such that Em is not projective, we have:

ψ(Mm) =
√

ηµνVmµ
Vmν

RmL(vm) (4.6)

where Rm = ψ(Um) is a proper rotation about the axis of the cone and L(vm) is a pure

restricted Lorentz boost of normalized velocity vm. Thus ψ(Mm) is a restricted Lorentz trans-

form up to a (strictly positive) scalar. Similarly, if Em is projective, ψ(Mm) = (a/2)RmL(vm),

where L(vm) is a rescaled pure future-directed null boost of null velocity vm.

Proof: First recall that ψ(Mm) = ψ(Um)ψ(
√

Em), and by (4.2), ψ(Um) is a special orthogonal

transformation about the axis of the cone, so a restricted Lorentz transform. Suppose Em

(hence vm) timelike future-directed. Letting γ ≡ 2a/X in (4.3) and using the definition of
−→vm, we get:

4

X
ψ(

√
Em) =

(
γ −γ−→vm

T

−γ−→vm I + γ2

1+γ
−→vm

−→vm
T

)
≡ L(vm) (4.7)

As γ = 1/
√

1 − v2
m, L(vm) is precisely a pure Lorentz boost of velocity vm (see [54] for ex-

ample). Since vm is timelike future-directed, ψ(Mm) is a restricted Lorentz transform up to

the factor X/4 = (1/2)
√

ηµνEmµ
Emν

=
√

ηµνVmµ
Vmν

.

Now, when Em is null (Em projective) this factor vanishes and γ becomes infinite. Neverthe-

less one can write (4.3) for X = 0 as

2

a
ψ(

√
Em) =

(
1 −−→vm

T

−−→vm
−→vm

−→vm
T

)
(4.8)

We can see that this is in fact a pure null boost rescaled by a factor γ−1. Indeed, when
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vm → 1 the right-hand-side of (4.7) becomes

Lnull(vm) ∼ γ

(
1 −−→vm

T

−−→vm
−→vm

−→vm
T

)

and since a
2 = γ

√
ηµνVmµ

Vmν
, we precisely get

ψ(
√

Em) ∼
√

ηµνVmµ
Vmν

Lnull(vm)

Here the Minkowski product vanishes and the unrescaled pure null velocity boost is infinite.

Nevertheless rescaling Lnull(vm) by the factor γ−1 yields the right-hand-side of (4.8); thus

ψ(
√

Em) indeed corresponds to a rescaled pure null boost, which of course is not an element

of the Lorentz group. 2

As we said previously the natural rescaling by the Minkowski product precisely corre-

sponds to an appropriate rescaling of generalized Lorentz transforms bringing null boosts to

finite linear maps. Formally the essence of this Proposition can be thought of as a conse-

quence of the Alexandrov-Zeeman theorems relating the causality group (Lorentz group and

dilatations) to the Minkowski causal structure, though this approach would not cover null

velocity boosts. Note that the rescaled pure null velocity boosts (right-hand-side of (4.8)) are

in fact proportional to projections on the null four vectors Em.

Maybe the reader wonders here why the Lorentz pure boosts corresponding to positive mea-

surement elements Em are parameterized by vm and not Em. However since Em is an operator

acting on states and not a state, Em is better thought of as a co-vector, or element of the

dual space, in the same way as momenta are dual to positions in usual Special Relativity.

The (contravariant) vector corresponding to Em is precisely 2Vm, thus in the space of states,

and not operators, Em is represented by 2Vm. The factor of two was introduced merely for

convenience.

The following relations suggest the Minkowski product of the state vector of a qubit is an

important quantum information theoretical quantity:

Proposition 4.2 Let {Mm} be a generalized measurement, ρ a state vector and ψ(Mm)ρ ≡
ρm the unrescaled post-measurement state vector if outcome m occurs. We have:

ηµνρmµ
ρmν

= ηµνVmµ
Vmν

ηµ′ν′ρ
µ′ρν′ (4.9)

ρm0
= ηµνVmµ

ρ
ν

(4.10)

ηµνρµ
ρ

ν
= 2([Tr(ρ)]2 − Tr(ρ2)) (4.11)
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Proof: We make use of the previous proposition. Equation (4.6) implies

ηµνρmµ
ρmν

= ηµνVmµ
Vmν

ηµ′ν′(RmL(vm)ρ)µ′(RmL(vm)ρ)ν′

and (4.9) follows since RmL(vm) is a Lorentz transform. This relation remains true of course

when Vm is light-like (Em projective), since so is ρm. (Purity relations of Chapter 3).

For the second equation note that ρm0
= Tr(Emρ) = (1/2)Em.ρ, where the isometry (4.1)

was applied. Introducing the definition of Vm in this last equation yields the required result.

Equation (4.11) can be shown explicitly using the components of ρ and ρ2, but it seems

more interesting to use our isomorphism φ : ρ → ρ. Consider the linear map on E1,3,

Λ : (ρ
µ
) → (ηνµρ

ν
) (musical isomorphism). Then Λ̃ : ρ → φ−1 ◦ Λ ◦ φ(ρ) is a linear map on

Herm2(C). One finds easily Λ̃(ρ) = (Trρ)I− ρ. Using the fact that φ is an isometry (4.1), we

get

ηµνρµ
ρ

ν
≡ (Λρ).ρ = 2Tr(Λ̃(ρ)ρ) = 2([Trρ]2 − Tr(ρ2))

2

It seems interesting that this quantity, invariant under Lorentz transforms on the state vector

ρ, in fact measures the mixedness of qubit states: recall that a density matrix ρ is pure if

and only if Tr(ρ2) = (Trρ)2. Not only is purity preserved under a formal Lorentz boost, so

is this notion of mixedness. Moreover this quantity maps according to the simple relation

(4.9) under a generalized measurement. Note that since ηµνVmµ
Vmν

≤ 1, the mixedness

always decreases given a measurement outcome. But (4.9) and (4.10) suggest much more:

the mixedness of post-measurement states and their probabilities are invariant if both the

initial vector ρ and the measurement vectors Vm are Lorentz transformed. However, the

set of transformed measurement vectors does not sum to the identity, and it is unclear how

to interpret it as a quantum measurement. In Section 4.2 we will discuss the way a boosted

observer perceives measurement probabilities, but without using the approach equation (4.10)

might suggest. We now show that any Lorentz transformation can be thought of as an element

of a generalized measurement up to scale.

Proposition 4.3 Let L a restricted Lorentz transform or a rescaled future-directed null boost

of E1,3. L decomposes as L = RL(v) where R is a proper Lorentz rotation and L(v) a

pure velocity boost, rescaled when v is null. Then there exists a particular element M1 of a

measurement scheme {Mm}, ∑
m M †

mMm = I, such that for any qubit ρ,

Lρ ∝ ψ(M1)ρ (4.12)

Thus the effect of a Lorentz boost on a qubit can essentially be viewed as applying a particular

measurement element whose outcome occurs. More precisely there exits a family of such
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possible measurement elements M(λ) = U
√

E(λ) defined by U = U(R) as in (4.2) and√
E(λ) satisfying the following:

If L = RL(v) is a restricted Lorentz transform:

√
E(λ) = (1 +

√
1 − v2)−1/2[λ(1 +

√
1 − v2),−λ−→v ] with 0 < λ ≤

√
2

1 + v

while if L = RL(v) is a rescaled future-directed null boost:

√
E(λ) = [λ, −λ−→v ] with 0 < λ ≤ 1.

Proof: For completeness we first show the decomposition of restricted Lorentz transforms L

into L = RL(v) as above. This relies on the well-known spinor representation of the restricted

Lorentz group, or the two-to-one group homomorphism between unimodular 2 × 2 complex

matrices and restricted Lorentz transforms (see [54] for example):

ψ : SL(2, C) → SO(1, 3)+

A 7→ ψ(A) ≡ φ ◦ AdA ◦ φ−1

Indeed as AdA preserves the determinant and φ is such that for all ρ ∈ Herm2(C), det ρ =

(1/4)ηµνρµ
ρ

ν
, ψ(A) preserves the Minkowski product. The fact that ψ(A) ∈ SO(1, 3)+

and that ψ is two-to-one and onto can be checked explicitly. Let L any restricted Lorentz

transform. There exits a unique A ∈ SL(2, C) such that ψ(±A) = L. Polar decompose

A into A = U |A| with U unitary and |A| positive. (U is in fact special unitary and |A|
positive definite since det A = 1, and by unicity of the polar decomposition for A non-singular,

−A = (−U)|A|). Applying Proposition 4.1 to |A| with det |A|2 = 1, ψ(|A|) is a pure restricted

Lorentz boost, thus L = ψ(U)ψ(|A|) provides a decomposition. Since ψ(U) = ψ(−U), this

decomposition is unique.

Thus given L = RL(v), with R a proper rotation and L(v) a pure boost of future-directed

timelike velocity v = [1, −→v ], we use Proposition 4.1 to find M = U
√

E such ψ(M) ∝ L.

U = U(R) is given by (4.2) and we choose E = [1, −−→v ].

We then have to find λ > 0 such that λM can be part of a measurement scheme. This is

equivalent to λ2M †M positive (satisfied) and I − λ2M †M positive too. (λM and −λM are

equivalent in terms of measurement elements). With λM = U
√

E(λ), we have

E(λ) = [λ2, −λ2−→v ],

from which we find
√

E(λ) using (4.4):
√

E(λ) = (1+
√

1 − v2)−1/2[λ(1+
√

1 − v2), −λ−→v ].

Then requiring I − E(λ) positive is equivalent to (λ > 0): λ ≤
√

2
1+v
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Applying Proposition 4.1 we get:

ψ(M(λ)) =
λ2

2

√
1 − v2RL(v).

Thus for such λ the measurement elements M(λ) = U
√

E(λ) are all possible measurements

whose occurrence is equivalent up to factor to the restricted Lorentz boost L = RL(v).

Now let L a rescaled future-directed null boost. As we have shown, any restricted Lorentz

transform can be decomposed into a product of a proper rotation and a boost of timelike

future-directed velocity. Future-directed null boosts are no exception, and thus the rescaled

null boosts L may be assumed to be the product of a rotation R and a rescaled null pure

boost L(v) of type (4.8). The rotation can be dealt with as in the previous case. Defining

E = [1, −−→v ] null future-directed, we have L(v) ∝ ψ(φ−1(
√

E)). Then again we consider

E(λ) = λ2E (λ > 0) such that I−E(λ) is positive. This is equivalent to 0 < λ ≤ 1, and using

(4.4) we have
√

E(λ) = [λ, −λ−→v ] , which gives ψ(
√

M(λ)) = (λ2/2)RL(v). Note that the

scaling factor is always less than 1, indeed less than
√

(1 − v)/(1 + v) in the restricted case,

and 1/2 in the null case. 2

Overall we have shown that elements of generalized measurements on a qubit are equivalent

to rescaled restricted or null Lorentz transforms. Projective measurement elements are future-

directed null boosts, while mixed ones correspond to restricted Lorentz boosts. One can of

course think of these linear transforms as elements or limits of elements of the causality group

of E1,3.

4.2 Discussion

The following is a somewhat original discussion of Propositions 4.1 to 4.3. Our formalism

and its consequences suggest that qubit states may be viewed as spatio-temporal objects, or

indeed as four-vectors of a Minkowski spacetime. This differs only slightly from the notion of

spin as a spatial polarization direction, and thus may apply to 2 dimensional quantum systems

whose degrees of freedom can be thought of as spacelike. We shall adopt this point of view

from now, i.e consider naively qubits as four-vectors, and analyze the physical implications.

Let us begin by merely rephrasing the content of the correspondence that was established

in Section 4.1. Suppose Alice proceeds to a generalized measurement {Mm} = {Um

√
Em},∑

m M †
mMm = I on a qubit density matrix ρ (ρ is unit trace). With probability p(m) =

Tr(Emρ) this will yield her a (non-normalized) post-measurement state ρm = MmρM †
m. This

rather common situation turns out to be equivalent, according to Proposition 4.1, to the

following less usual scenario:
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Scenario 1: Suppose Alice is standing at the origin of an inertial frame of Minkowski space-

time, contemplating the four-vector ρ. Say she gives herself a set of rotations {Rm} and

four-vectors {Vm} such that
∑

m Vm = [1 0 0 0]. Now, with probability p(m) = ηµνVmµ
ρ

ν

she chooses to Lorentz boost herself up to velocity vector vm = Vm/Vm0
, to rotate the result-

ing space-frame by Rm and to rescale her coordinates by a factor of
√

ηµνVmµ
Vmν

(we are

assuming Em is not projective). She then looks back upon her object of contemplation and

sees ρm, the unrescaled post-measurement state. The case with Em projective is the limit of

the previous one when the boost vector vm becomes null, and the rescaling yields finiteness

of the corresponding linear transform.

Therefore a quantum measurement can be thought of, up to scale, as the observer taking

a Lorentz boost relative to his or her qubit. Notice that applying a second quantum mea-

surement {Nn} similarly corresponds to the observer taking a second (successive) Lorentz

transformation at random amongst {Ln}, say. Thus qubit quantum mechanics can easily be

axiomatized within the mathematics of special relativity, and pure measurement elements go

hand-in-hand with future-directed null boosts.

Difficulties are prompt to arise when one seeks to equate a measurement interaction, in

which the qubit is physically acted upon, with a (somewhat passive) coordinate transformation

in Minkowski spacetime: indeed the latter is purely kinematical, thus reversible, whereas the

former usually implies a collapse of the state. In the following scenario we dissociate one from

the other. In other words we consider special relativity and qubit quantum theory in their

most usual fashion, save for the fact that we continue to interpret the spin as a four-vector.

Scenario 2: Suppose Alice is at the origin of an inertial frame of Minkowski space, together

with a qubit density matrix ρ (unit trace) which we think of as a (normalized) spacetime

vector ρ. If we consider the point of view of Bob as he passes by in an inertial frame, this

suggests that Bob sees a boosted version of ρ, i.e. a state Λρ. This seemingly innocuous

point raises an important issue however: Λ is not restricted to Bloch sphere rotations, and

thus may indeed not correspond to a unitary operation. To understand its effect upon ρ we

must refer to Proposition 4.3: Λ acts, up to a factor, as a measurement element M1 whose

outcome always happens, even though Tr(M1ρM †
1) 6= 1. Thus {M1} can be thought of as a

non trace-preserving quantum operation (M1M
†
1 6= I) which systematically occurs. We shall

let ρBob ≡ Λρ ∝ M1ρM †
1 and proceed to reassure the reader: such a phenomenon would not

violate the principle of relativity. Bob does not make happen a non trace-preserving quantum

operation on the qubit. The laws of quantum mechanics remain exactly the same in every

inertial frame: only the change of observers, or more precisely the way a boosted observer

perceives a non-boosted state, is a non-orthodox quantum operation. If Bob were then to

decelerate down to the speed of Alice, his mathematical description of the qubit would return

to be ρ again.

Now suppose Alice measures ρ under a generalized measurement {Nn}. The probability
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associated with the transition from ρ to ρn is given by p(n) ≡ Tr(N †
nNnρ)/Tr(ρ) = ρn0

, as

usual when ρ is normalized. As Bob passes, he sees the initial state ρBob = Λρ, and the

post-measurement states ρBob
n = Λρn. Remember that the probability associated to a state is

simply given by the first component of its vector representation. Assuming Λ is a pure boost

of non-null normalized velocity v(Λ), we get:

pBob(n) ≡ Tr(ρBob
n )

Tr(ρBob)
=

ρBob
n 0

ρBob
0

=
p(n) −−−→

v(Λ).−→ρn

1 −−−→
v(Λ).−→ρ

≥ 0

In other words the probabilities associated with the transitions from ρ to ρn, in the same

way as lengths of objects, are not invariant under a change of observer. Thus if one believes

probabilities are absolute quantities independent of notions of space and time, one must

abandon trying to interpret the qubit as a four-vector.

Otherwise, the notion of probability as a physical quantity needs to be redefined (
∑

n p(n) is

not conserved, as the probability of a state transforms just like the time-component of a four

vector). The idea is disturbing, and certainly worth comparing with the contraction of any

spatial object (a ruler, say) under a Lorentz boost. As he passes by Bob will see Alice’s 20cm

ruler shrunk down to 15cm. But what we now have is that if Alice’s quantum ruler has half

a chance of being 22cm long, and another half chance of measuring 18cm, it may well turn

out that Bob instead perceives a quantum ruler of length 17cm with probability a third, and

14cm two third of the times.

Allowing the Lorentz boosts Λ to act on ρ as on spacetime vectors thus seems a radical

departure from Quantum Field Theories in Minkowski space, where the approach is to seek

unitary representations of the Poincaré group, i.e. the full Lorentz group together with trans-

lations. However, Poincaré invariance (see [63] for example) does not require any given state

of a theory to transform unitarily under a change of observer : for any two inertial observers

Alice and Bob, it requires the existence, given any state of the theory possibly measured by

Alice in her frame, of another state of the theory measured by Bob in his frame, such that

the statistics of their measurement outcomes on their respective states are the same. In this

sense, the action of a particular Poincaré transform on a state in Quantum Field Theory

corresponds to a change of inertial frame: it maps a given solution for an inertial family

of observers to another equivalent solution for another family of observers, hence it simply

cannot change the measurement statistics. Our second scenario does not involve a change of

inertial frame, but just a change of observer. It is true that nonetheless, Alice’s non-boosted

qubit viewed by a boosted observer Bob, though not necessarily unitarily equivalent to the

same non-boosted state viewed by Alice, should be an admissible state of the theory which

could be measured by Bob to yield measurement statistics with the usual properties. We are

not in this case, since in scenario 2, Bob is not performing a quantum operation on Alice’s

qubit. Note also that in the formalism developed above, pure states, whether viewed in their
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inertial frame or not, remain pure.

But if we begin to think of quantum measurement outcome probabilities as not invariant

under Lorentz transformations, then the Von Neumann entropy should not be either. On the

other hand the invariant quantity ηµνρµ
ρ

ν
seems a good measure of the mixedness of ρ, an

idea which is strongly supported by its equivalent form (4.11). With I(ρ) proportional to the

logarithm of ηµνρµ
ρ

ν
equation (4.9) becomes:

I(ρm) = I(Vm) + I(ρ)

This result is rather interesting as an information conservation law.

More generally we feel that the correspondence between qubit quantum operations and

special relativity transforms deserves further attention. The lines of thought suggested in this

discussion section need to be anchored in firmer ground and generalized to higher dimensional

quantum systems. Although most of the mathematical results of this chapter stem from the

exceptional isomorphism between Herm+
2 (C) and the future cone of Minkowski space, the

results in Chapter 3 give us hope to find a special relativistic interpretation to d-dimensional

systems also. Moreover the thorough study of the properties of quantum states and quantum

operations, which is pursued the next chapter, is likely to turn out helpful for this purpose.



Chapter 5

On quantum operations as quantum

states

Marins qui rêvez en haute mer, les coudes appuyés sur la lisse, craignez
de penser longtemps dans le noir de la nuit à un visage aimé.

—Jules Supervielle

We formalize Jamiolkowski’s correspondence between quantum
states and quantum operations isometrically, and harness its con-
sequences. This correspondence was already implicit in Choi’s
proof of the operator sum representation of Completely Positive-
preserving linear maps; we go further and show that all of the
important theorems concerning quantum operations can be de-
rived directly from those concerning quantum states. As we do so
the discussion first provides an elegant and original review of the
main features of quantum operations. Next (in the second half of
the chapter) we find more results stemming from our formulation
of the correspondence. Thus we provide a factorizability condition
for quantum operations, and give two novel Schmidt-type decom-
positions of bipartite pure states. By translating the composition
law of quantum operations, we define a group structure upon the
set of totally entangled states. The question whether the cor-
respondence is merely mathematical or can be given a physical
interpretation is addressed throughout the text: we provide for-
mulae which suggest quantum states inherently define a quantum
operation between two of their subsystems, and which turn out to
have applications in quantum cryptography.

73
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This chapter is concerned with the properties of positive matrices (quantum states) and the

linear maps between these, i.e. Positive-preserving linear maps and Completely Positive-

preserving linear maps (quantum operations), as provided by the density matrix formalism

of finite dimensional quantum theory. The analysis we carry out is formal and mathematical,

and although it focuses on quantum information theoretical issues, it should have applica-

tions in other domains. So far the thesis has concentrated upon finding real vector space

representations of quantum states and quantum operations, but in this chapter we remain

upon the complex field. We follow, instead, another driving line: formalizing and exploiting

systematically an isomorphism from hermitian matrices to Hermitian-preserving linear maps

and quantum states to quantum operations. To our knowledge, this isomorphism was first

suggested by Jamiolkowski [32], and later exploited by Choi [13] to obtain the operator sum

representation theorem. However the latter had already been independently derived by Kraus

[37] (see also [38]) in infinite dimensions. Our investigation shows that the isomorphism be-

tween states and operations has a much wider range of implications, whether to simplify the

proofs of well-known results or to point out novel properties, both technical and geometri-

cal. The presentation is rigorous and self-contained, it contains some introductory material

presented from an original perspective.

In Section 5.1, after setting our conventions, we relate vectors to matrices, and matrices

to superoperators, the idea being to map an mn×mn matrix to a linear operator from n×n

matrices to m × m matrices. These isomorphisms are often viewed pragmatically as rear-

rangements of the coordinates of vectors or matrices, but we formalize them more abstractly

as norm-preserving bijections between tensor product spaces. We derive original formulae re-

lating to these isomorphisms which we use throughout the chapter. One of them will simplify

those numerous mathematical problems in quantum cryptography which require a careful

optimization of the fidelities induced by a quantum operation. This formal setting leads in

Subsection 5.1.3 to the state-operator equivalence, inherently present in the works many, but

rarely exploited as such: non-normalized quantum states of an mn-dimensional system are

equivalent to quantum operations from an n-dimensional system to an m-dimensional one.

We use this correspondence in Subsection 5.2.1 to rederive all the main properties of quantum

operations from those of quantum states: the operator sum decomposition and its unitary de-

gree of freedom stem from the spectral decomposition and Hughston-Josza-Wooters theorems;

the factorizability of quantum operations up to a trace-out corresponds to the purification

of quantum states; and the polar decomposition of matrices is equivalent to the Schmidt

decomposition of pure states. Next, in Subsection 5.2.2, we consider properties of states (or

operations) whose translation in terms of operators (or states) was unknown to us previously.

Mainly we give a factorizability condition for quantum operations, i.e. a criteria for an op-

erator to be single operator in the operator sum representation; and we find two original

triangular decompositions of pure states of a bipartite system. Throughout the section the
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normalization of density matrices is unimportant. Yet for completeness the reader is reminded

of the well known Trace-preserving conditions in Subsection 5.2.3 (both in terms of states and

operators). Moreover we highlight the fact that maximally entangled pure states of a bipartite

system go hand in hand with isometric maps from one subsystem to the other (unitary maps

in case both systems have the same dimension). Choi’s extremal Trace-preserving condition

is also presented and recasted in terms of the rank of an easily constructed matrix.

Section 5.3 is devoted to geometrical structures of quantum states. We exploit the compo-

sition law on Completely Positive-preserving maps to define a semi-group structure on the

states of n2-dimensional quantum systems, and show that the subset of totally entangled pure

states is isomorphic to the group of invertible n× n matrices defined up to phase (with max-

imally entangled pure states corresponding to unitary transforms as in [39]). These group

isomorphisms have profound structural meaning, and are useful in finding nice coordinate

charts on such spaces. We also give an exotic composition law on operators stemming from

the Schur product on states. In Subsection 5.3.2 we make use of the dual mapping between

states and positive functionals, and readily show that the space of Positive-preserving maps

is dual to that of separable states of a bipartite system. This yields a simple result which is in

fact equivalent to Peres’ separability criterion. More generally the notion of duality seems to

help provide possible physical interpretations of the state-operator correspondence formulae,

notably as we show that the effect of any quantum operation can be viewed as the trace out

of a particular local single operation on its corresponding state.

We conclude in Section 5.4 and give a table summarizing the main results of this chapter.

5.1 The setting

Notation. The present chapter makes use of the same notational conventions that were

introduced in Chapter 3 (see also Appendix A), together with some minor additions. For

convenience we now recall the lot: we will denote by Md(C) the set of d × d matrices of

complex numbers, and by Hermd(C) its hermitian subset. Amongst the latter we will denote

by Herm+
d (C) the set of positive matrices, and also refer to it as the set of (non-normalized)

states of a d-dimensional quantum system. An important subset of Herm+
mn(C) is the set of

separable states, i.e. those which can be written in the form

ρ =
∑

x

λxρx
1 ⊗ ρx

2

where λx ≥ 0 and the ρx
1 and ρx

2 belong to Herm+
m(C) and Herm+

n (C) respectively. Later we

shall denote this set by HermS
mn(C).

Throughout the dagger operation † will be somewhat overloaded, in a manner which has now

become quite standard: as usual a ket A =
∑

Ai|i〉 will be taken into a bra A† =
∑

A∗
i 〈i|,



76 CHAPTER 5. ON QUANTUM OPERATIONS AS QUANTUM STATES

while a matrix Â =
∑

Aij |i〉〈j| will be mapped into its conjugate transpose Â† =
∑

A∗
ij |j〉〈i|.

In other words, † takes kets into bras using the canonical complex scalar product for vectors,

i.e. B† ≡ [A 7→ (B, A) =
∑

B∗
i Ai ≡ B†A], but for linear maps on vectors it denotes the usual

adjoint operation defined with respect to the same scalar product. We also make frequent use

of the conjugation operation ∗ which is defined in the canonical basis to take kets A =
∑

Ai|i〉
into A∗ =

∑
A∗

i |i〉, and similarly on bras. Linearity will refer to complex linearity.

Definition 5.1 A linear map Ω : Mm(C) → Mn(C) is Hermitian-preserving if and only if

for all ρ in Hermm(C), Ω(ρ) belongs to Hermn(C).

The following is a well-known fact:

Remark 5.1 If Ω : Mm(C) → Mn(C) is a Hermitian-preserving linear map, then so is Ω⊗Ir.

Proof: Let us denote by {τi} and {τj} two sets of hermitian matrices forming a basis of

Hermm(C) and Hermr(C) respectively, considered as a real vector spaces. {τi ⊗ τj} forms a

basis for Hermmr(C). Now consider Z ∈ Hermmr(C), so that Z =
∑

ij zijτi ⊗ τj with zij ∈ R.

We then have

(Ω ⊗ Ir)Z =
∑

ij

zijΩ(τi) ⊗ τj =
∑

ij

zijΩ(τi)
† ⊗ τ †

j =
∑

ij

(
zijΩ(τi) ⊗ τj

)†

= ((Ω ⊗ Ir)Z)†

2

Definition 5.2 A linear map Ω : Mm(C) → Mn(C) is Positive-preserving if and only if for

all ρ in Herm+
m(C), Ω(ρ) belongs to Herm+

n (C).

A Positive-preserving map is necessarily Hermitian-preserving since any hermitian matrix can

be expressed as the difference of two positive matrices. Note also that having Ω : Mm(C) →
Mn(C) a Positive-preserving linear map does not imply that Ω⊗Ir is also Positive-preserving.

Example. The map

t : Herm+
2 (C) → Herm+

2 (C)

ρ 7→ ρt

is clearly Positive-preserving, but (t⊗I2) is not: indeed let |β〉 = |00〉 + |11〉, |γ〉 = |01〉 +

|10〉 and |δ〉 = |01〉 − |10〉. Note that |00〉, |11〉, |γ〉 and |δ〉 form an orthogonal basis of

C2 ⊗ C2.

(t⊗I2)(|β〉〈β|) = |00〉〈00| + |10〉〈01| + |01〉〈10| + |11〉〈11|
= |00〉〈00| + |11〉〈11| + |γ〉〈γ| − |δ〉〈δ|
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which is not positive since 〈δ|(t⊗I2)(|β〉〈β|)|δ〉 < 0.

Definition 5.3 A linear map Ω : Mm(C) → Mn(C) is Completely Positive-preserving if and

only if for all r and for all ρ in Herm+
mr(C), (Ω ⊗ Ir)(ρ) belongs to Herm+

nr(C).

5.1.1 Isomorphisms

Next we relate vectors of Cm ⊗ Cn to endomorphisms from Cn to Cm. The tensor split of

Cmn into Cm ⊗ Cn is considered fixed, as will be all tensor splits throughout the chapter

unless specified otherwise. (Notions of entanglement will refer to a particular tensor product

of spaces, given a priori.) Let {|i〉} and {|j〉} be orthonormal basis of Cm and Cn respectively,

which we will refer to as canonical.

Isomorphism 5.1 The following linear map

ˆ : Cm ⊗ Cn → End(Cn → Cm)

A 7→ Â
∑

ij

Aij |i〉|j〉 7→
∑

ij

Aij |i〉〈j|

where i = 1, . . . , m and j = 1, . . . , n, is an isomorphism taking vectors A into m×n matrices

Â. It is isometric in the sense that:

∀A, B ∈ Cm ⊗ Cn, B†A = Tr(B̂†Â) (5.1)

Proof: This is trivial, but note that the definition of this isomorphism is basis dependent.

2

Following a very convenient notation introduced by Sudarshan [57][58] we will often use a

semicolon ‘;’ to separate output indices (on the left) from input indices (on the right), together

with the repeated indices summation convention. For instance the matrix Â : Cn → Cm will

be denoted Ai;j , so that w = Âv is simply written as wi = Âi;jvj . Thus the ‘hat’ operation

acts as follows:

if A ≡ Aij then Â ≡ Âi;j with Âi;j = Aij (5.2)

Another useful interpretation of this operation is provided in [61], by considering the canonical

maximally entangled state of Cn ⊗ Cn, |β〉 =
∑ |j〉|j〉. Indeed we have:

A = (Â ⊗ In)|β〉 (5.3)

Â = (Im ⊗ 〈β|)(A ⊗ In)

We now use the previous isomorphism to relate elements of Mmn(C) to linear maps from

Mn(C) to Mm(C). This formalizes some of the key steps by Choi [13] and finds its origins in
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the work of Jamiolkowski [32]. We highlight the isometric property of this bijection.

Isomorphism 5.2 The following linear map:

̂ : Cmn ⊗ (Cmn)† −→ End(Mn(C) → Mm(C))

$ 7−→ [$̂ : ρ 7→ $̂(ρ)]

such that AB† 7−→ [ρ 7→ ÂρB̂†] i.e.
∑

ijkl

AijB
∗
kl|i〉|j〉〈k|〈l| 7−→ [ρ 7→

∑

ijkl

AijB
∗
kl|i〉〈j|ρ|l〉〈k| ]

where i, k = 1, . . . , m and j, l = 1, . . . , n, is an isomorphism. It is isometric in the sense that:

∀ $,AC ∈ Mmn(C), Tr(AC†$) =
∑

jl

Tr
(ÂC(Ejl)

†
$̂(Ejl)

)
, (5.4)

where {Ejl = |j〉〈l|} is the canonical basis of Mn(C).

Before we give a proof we shall reassert Sudarshan’s notation in this case. Suppose $ =∑
$ijkl|i〉|j〉〈k|〈l| so that we can write $ ≡ $ij;kl. We then have:

$̂ ≡ $̂ik;jl with $̂ik;jl = $ij;kl (5.5)

so that $̂ : ρj;l 7→ $̂(ρ)i;k = $̂ik;jlρj;l

This notation views End(Mn(C) → Mm(C)) as m2 × n2 matrices, or as superoperators, thus

admitting the usual Hilbert-Schmidt inner-product:

Tr((ÂC†
jl;ik)($̂i′k′;j′l′)) (5.6)

where ÂC†
jl;ik is an n2 × m2 matrix. The superoperator formalism simply consists of labelling

a linear operator on matrices by a super-matrix, or more generally a linear map on tensors

by a bigger tensor, and hence helps define operator norms. In fact it will turn out to be a

cornerstone of the state-operator correspondence. It has had many applications in physics,

amongst them the super-scattering or ‘dollar’ operator formalism introduced in Quantum

Field Theory by Hawking [28], which, in contrast with the S-matrix formalism, allows non-

unitary evolutions (hence our notation).

Proof of Isomorphism 5.2. Elements of Cmn⊗(Cmn)† are all of the form
∑

x AxB†
x, and thus

by linearity the map ̂ is fully determined by the above. The fact that it is an isomorphism

is made obvious by Equation (5.5).

Now let AC ≡ ACij;kl and $ = $ij;kl. We now show that the notion of inner product given by (5.6)

is precisely that of the RHS of Equation (5.4). Since ÂCik;jl = ÂC(Ejl)i;k and ÂC†
jl;ik = ÂC∗

ik;jl, we
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have

Tr((ÂC†
jl;ik)($̂i′k′;j′;l′)) = ÂC†

jl;ik$̂ik;jl

=
∑

ikjl

ÂC(Ejl)
†
k;i$̂(Ejl)i;k

=
∑

jl

Tr(ÂC(Ejl)
†
$̂(Ejl))

Finally notice that ÂC†
jl;ik = ÂC∗

ik;jl = AC∗
ij;kl, using (5.5). Thus (5.6) is also equal to the LHS of

(5.4):

Tr((ÂC†
jl;ik)($̂i′k′;j′;l′)) = ÂC†

jl;ik$̂ik;jl

= AC∗
ij;kl$ij;kl = AC†

kl;ij$ij;kl

= Tr(AC†$)

2

In terms of the canonical maximally entangled state |β〉 of Cn ⊗Cn, using (5.3), we have that

$ = ($̂ ⊗ In)(|β〉〈β|) (5.7)

Note that |β〉〈β| =
∑

Ejl ⊗ Ejl, so we get

$ =
∑

jl

$̂(Ejl) ⊗ Ejl (5.8)

This relation is quite handy when one seeks to visualize the isomorphism in terms of matrix

manipulation. It is clear that the isomorphisms ˆ and ̂ are biased towards interpreting

states in Cmn = Cm ⊗ Cn as linear operations from states in the second subspace Cn into

states in the first subspace Cm. This will be made explicit in the forthcoming theorems.

Without difficulty we could do the contrary and view states in Cmn as operations from states

in Cm to states in Cn:

For A =
∑

ij Aij |i〉|j〉 ∈ Cmn, let Ǎ =
∑

ij Aij |j〉〈i|, i.e. Ǎ ≡ Ǎj;i = Aij , so that Ǎ = Ât. For

$ = AB† ∈ Mmn(C) let

̂

$ : Mm(C) → Mn(C), ρ 7→
∑

ijkl AijB
∗
kl|j〉〈i|ρ|k〉〈l|, which implies:

̂

$ ≡

̂

$jl;ik = $ij;kl = $̂ik;jl, i.e.

̂

$jl;ik = $̂
t

jl;ik. (5.9)
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In this case Equation (5.8) becomes:

$ =
∑

ik

Eik ⊗

̂

$(Eik) (5.10)

Note that with the usual tensor product convention of taking the right-hand-side matrix as

the one to be plugged into each component of the left-hand-side matrix, Equation (5.10) is

simply written $ = (

̂

$(Eik))ik, which is precisely Choi’s formalism. Thus many view these

two Isomorphisms as rearrangements of the coordinates of vectors or matrices. Although

all would work equally well with

̂

, from now on we shall keep to our initial version of the

isomorphisms, taking the second subspace into the first.

5.1.2 Useful formulae

The following two lemmas are simple but useful results related to isomorphisms 1 and 2.

Lemma 5.1 Let A, B ∈ Cm ⊗Cn, so that AB† ∈ Cmn ⊗ (Cmn)†, and let Tr1 and Tr2 denote

the partial traces on Cm and Cn respectively. Then we have:

Tr1(AB†) = (B̂†Â)t (5.11)

Tr2(AB†) = ÂB̂† (5.12)

Proof: let A ≡ Aij and B ≡ Bkl with i, k = 1, . . . , m and j, l = 1, . . . , n. AB† = AijB
∗
kl|i〉〈k|⊗

|j〉〈l|. Thus taking Tr1 sets i = k and taking Tr2 sets j = l:

Tr1(AB†)j;l = AijB
∗
il = B̂†

l;iÂi;j = (B̂†Â)t
j;l

Tr2(AB†)i;k = ÂijB
∗
kj = ÂB̂†

i;k

2
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Lemma 5.2 Suppose ̂ is defined for n fixed and for all d such that it takes any element of

Cdn ⊗ (Cdn)† to a linear map from Mn(C) to Md(C):

∀d, ̂ : Cdn ⊗ (Cdn)† −→ End(Mn(C) → Md(C)),

and let Tr1 denote the partial trace on the first r-dimensional subsystem of any system. We

then have:

∀ $ ∈ Crmn ⊗ (Crmn)†, T̂r1($) = Tr1 ◦ $̂

in other words Tr1 and ̂ commute.

Proof: In the following, i, k = 1, . . . , m and j, l = 1, . . . , n as usual, while p, q = 1, . . . , r. Let

$ ≡ $pij;qkl ∈ Crmn ⊗ (Crmn)∗, and ρ = ρj;l ∈ Mn(C).

Then $̂(ρ)pi;qk = $̂piqk;jlρj;l = $pij;qklρj;l is in Mrm(C). Since Tr1 sets p = q, (Tr1 ◦ $̂)(ρ)i;k =

$pij;pklρj;l. On the other hand Tr1($)ij;kl = $pij;pkl so T̂r1($) ≡ T̂r1($)ik;jl = $pij;pkl, thus

T̂r1($)(ρ)i;k = $pij;pklρj;l. 2

Next we give a novel and powerful formula relating linear operations $̂ to trace outs of

matrix multiplications involving $.

Proposition 5.1 Let $̂ a linear map from Mn(C) to Mm(C), σ, ρ two elements of Mn(C),

κ, τ two elements of Mm(C). Then we have:

κ$̂(ρσ)τ = Tr2

(
(κ ⊗ ρt)$(τ ⊗ σt)

)
(5.13)

where Tr2 denotes the partial trace over the second system Cn in Cm ⊗Cn. This implies that

for all ρ ∈ Mn(C) and κ ∈ Mm(C),

Tr
(
κ$̂(ρ)

)
= Tr

(
(κ ⊗ ρt)$

)
. (5.14)

Proof: Since (κ⊗ρt)ij;kl = κikρ
t
jl, (τ ⊗σt)ij;kl = τikσ

t
jl, and tracing out Cn consists of setting

j = l, we have

(κ ⊗ ρt)$(τ ⊗ σt)ij;kl = κii′ρ
t
jj′$i′j′;i′′j′′τi′′kσ

t
j′′l

Tr2
(
(κ ⊗ ρt)$(τ ⊗ σt)

)
i;k

= κii′ρj′l$i′j′;i′′j′′τi′′kσlj′′

= κii′$i′j′;i′′j′′ρj′lσlj′′τi′′k

= κii′ $̂i′i′′;j′j′′(ρj′lσlj′′)τi′′k

= κ$̂(ρσ)τ.

Equation (5.14) follows immediately by letting τ = Im, σ = In and taking the total trace.

2
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From Equation (5.13) one can also derive the following interesting formula: ∀ρ ∈ Mn(C),

$̂
(
(ρ†ρ)t

)
= Tr2

(
(Im ⊗ ρ)$(Im ⊗ ρ†)

)
(5.15)

We shall come back to Equation (5.15) in Subsection 5.3.2, with a more physical point of

view. For now note that the equation is slightly more general than the one given in [61]p4,

and that its equivalent form for

̂

is clearly seen to define a map from the first subspace into

the second: ̂

$
(
(ρ†ρ)t

)
= Tr1

(
(ρ ⊗ In)$(ρ† ⊗ In)

)
.

Moreover the original Equation (5.14) will have a wide range of applications in the field of

quantum information theory. This is because many of the mathematical problems raised

by quantum cryptography require a careful optimization of the fidelities induced by a linear

operator $̂. By means of this formula such involved expressions can elegantly be brought to

just the trace of the product of two matrices, as we shall see in Chapter 7.

5.1.3 The correspondence

We proceed to give the well-known three fundamental theorems about isomorphism 2.

Theorem 5.1 The linear operation $̂ : Mn(C) → Mm(C) is Hermitian-preserving if and only

if $ belongs to Hermmn(C).

Proof: [⇒] Suppose $̂ Hermitian-preserving, then by Remark 5.1 so is ($̂ ⊗ In). Now since

|β〉〈β| is hermitian it must be the case that ($̂ ⊗ In)(|β〉〈β|) = $ is hermitian. We used

Equation (5.7) for the last equality.

[⇐] Suppose $ Hermitian, so that $ij;kl = $∗kl;ij . Let ρjl = ρ∗lj ∈ Hermn(C). Using (5.5) we

have

$̂(ρ)i;k = $̂ik;jlρjl = $ij;klρjl

= $∗kl;ijρ
∗
lj = ($̂ki;ljρlj)

∗

= $̂(ρ)∗k;i

so that $̂ is Hermitian-preserving. 2

This result first appeared in [50]. In terms of components, $̂ is Hermitian-preserving if and

only if $ij;kl = $∗kl;ij , or equivalently $̂ik;jl = $̂∗ki;lj .

Theorem 5.2 The linear operation $̂ : Mn(C) → Mm(C) is Positive-preserving if and only if

$ belongs to Hermmn(C) and is such that for all separable state ρ in Herm+
mn(C), Tr($ρ) ≥ 0.
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Proof: $ is Hermitian by theorem 5.1 since $̂ is Hermitian-preserving. Using Equation (5.14)

in the following, with ρ, ρ1 ∈ Herm+
n (C) and σ, ρ2 ∈ Herm+

m(C), we have:

$̂ is Positive-preserving

⇔∀ρ, ∀σ, Tr
(
σ$̂(ρ)

)
≥ 0

⇔∀ρ, ∀σ, Tr
(
(σ ⊗ ρt)$

)
≥ 0

⇔∀ρ1, ∀ρ2, Tr
(
$(ρ1 ⊗ ρ2)

)
≥ 0

⇔∀ρ ∈ Herm+
mn(C) separable, Tr($ρ) ≥ 0

2
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This result is shown for instance in [31], in a different manner. We shall come back to its

geometrical consequences in Section 5.3.

Theorem 5.3 The linear operation $̂ : Mn(C) → Mm(C) is Completely Positive-preserving

if and only if $ belongs to Herm+
mn(C).

Proof: [⇒] Suppose $̂ Completely Positive-preserving. Since |β〉〈β| is positive it must be the

case that ($̂ ⊗ In)(|β〉〈β|) = $ is positive. We used Equation (5.7) for the last equality.

[⇐] Suppose $ positive. We want to show that for all r, $̂ ⊗ Ir : Mnr(C) → Mmr(C) is

Positive-preserving. Let AC ∈ M(mr)(nr)(C) be such that:ÂC = $̂ ⊗ Ir.

Explicitly, with s, t, u, v = 1, . . . , r, and i, k = 1, . . . , m and j, l = 1, . . . , n as usual,

($̂ ⊗ Ir)(is)(kt);(ju)(lv) = δsuδtv$̂ik;jl

= δsuδtv$ij;kl (5.16)

= ÂC(is)(kt);(ju)(lv)

= AC(is)(ju);(kt)(lv)

where we have used (5.5) to switch from $̂ to $ and ÂC to AC. Let V(kt)(lv) ∈ C(mr)(nr). Using

(5.16) and the fact that $ ∈ Herm+
mn(C), we get

V †ACV = V ∗
(is)(ju)AC(is)(ju);(kt)(lv)V(kt)(lv)

= V ∗
isjs$ij;klVktlt ≥ 0,

hence AC ∈ Herm+
(mr)(nr)(C). Then, by theorem 5.2, $̂ ⊗ Ir is Positive-preserving if for all

ρ1 ∈ Herm+
rm(C) and ρ2 ∈ Herm+

rn(C), Tr(AC(ρ1 ⊗ ρ2)) ≥ 0. This follows directly since ρ1 ⊗ ρ2

and AC are positive. 2

This result first appeared in [13] with a different proof. The (possibly non-normalized) states

of a mn-dimensional quantum system, or elements of Herm+
mn(C), are thus in one-to-one

correspondence with the (possibly non Trace-preserving) quantum operations, or Completely

Positive-preserving maps, taking an n-dimensional system into an m-dimensional system. We

claim that virtually all of the important, well-established results about quantum operations

are in direct correspondence with those regarding quantum states, through the use of theorem

5.3. In [13][39][58], the operator sum representation for Completely Positive-preserving maps

is derived in the proof of theorem 5.3, but in our approach we will think of it as stemming

directly from the properties of quantum states.
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5.2 Properties of quantum states and quantum operations

5.2.1 Properties rediscovered via the correspondence

Property 5.1 (Decomposition, degree of freedom.) A matrix ρ is in Herm+
d (C) if and

only if it can be written as

ρ =
∑

x

AxA†
x

where each Ax is a d-dimensional vector. Two decompositions {Ax} and {By} correspond to

the same state ρ if and only if there exists an isometric matrix U (i.e. U †U = I) such that

Ax =
∑

UxyBy. There is a decomposition {Ax} with rank(ρ) ≤ d non-zero elements and

such that A†
x′Ax ∝ δxx′.

Corollary 5.1 (Operator sum representation.) A linear map $̂ : Mn(C) → Mm(C) is

Completely Positive-preserving if and only if it can be written as

$̂ : ρ 7→
∑

x

ÂxρÂ†
x

where each Âx is an m×n matrix. Two decompositions {Âx} and {B̂y} correspond to the same

$̂ if and only if there exists an isometric matrix U (i.e. U †U = I) such that Âx =
∑

UxyB̂y.

There is a decomposition {Âx} with r ≤ mn elements and such that Tr(Â†
x′Âx) ∝ δxx′. r will

be referred to as the Choi rank of $̂, as this is the decomposition having the least number of

elements.

Proof of Property 5.1. This is the spectral decomposition theorem for positive matrices, to-

gether with the unitary degree of freedom theorem by Hughston, Josza and Wooters [48]p103.

2

Proof: of Corollary 5.1. Consider $̂ a Completely Positive-preserving linear operator. By

theorem 5.3, $ is positive, and so Property 5.1 provides decompositions upon that state. One

may translate back these decompositions in terms of quantum operations using Isomorphism

2: this yields nothing but Corollary 5.1. 2

Notice that the Choi rank of $̂ is equal to rank($).

Property 5.2 (Purification.) A matrix ρ is in Herm+
d (C) if and only if it can be written

as

ρ = Tr1(ρpure) with ρpure = V V †

where V is an rd-dimensional vector and Tr1 traces out the first r-dimensional subsystem (r

can be chosen equal to rank(ρ) ≤ d).
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Corollary 5.2 (Factorizable then trace representation.) A linear map $̂ : Mn(C) →
Mm(C) is Completely Positive-preserving if and only if it can be written as

$̂ : ρ 7→ Tr1($̂pure(ρ)) with $̂pure : ρ 7→ V̂ ρV̂ †

where V̂ is an rm× n matrix and Tr1 traces out the first r-dimensional subsystem (r may be

chosen equal to rank($̂) ≤ mn). Moreover if $̂ decomposes as {Âx} we have:

V̂ †V̂ =
∑

x

Â†
xÂx (5.17)

Proof of Property 5.2. [⇒] Suppose ρ decomposes as {Ax} and let V =
∑ |x〉Ax, with {|x〉}

an orthonormal basis of an ancilla system.

ρpure = V V † =
∑

xy

|x〉〈y| ⊗ AxA†
y

Tr1(ρpure) =
∑

xy

〈y|x〉AxA†
y =

∑

x

AxA†
x = ρ

If {Ax} is a spectral decomposition of ρ it counts rank(ρ) elements, and thus r can be chosen

to equal rank(ρ).

[⇐] 〈ψ|ρ|ψ〉 =
∑

i

〈i|〈ψ|V V †|i〉|ψ〉 ≥ 0 since

∀i 〈i|〈ψ|V V †|i〉|ψ〉 ≥ 0

2

The second corollary is not traditionally thought of as a ‘quantum operation equivalent’ of

quantum state purification. We now explicitly show how the result is again trivially obtained

from Property 5.2, by virtue of Theorem 5.3.

Proof of Corollary 5.2. Consider $̂ a Completely Positive-preserving linear operator. By

Theorem 5.3, $ is positive, and so Property 5.2 gives $ = Tr1($pure), $pure = V V †, where the

ancilla system can be chosen to be of dimension r = rank($). As a consequence we can use

Lemma 5.2 to retrieve $̂ = Tr1($̂pure), $̂pure : ρ 7→ V̂ ρV̂ †.

Moreover, denote by Tr1′ the partial trace over the m-dimensional system. For V = Vxij |x〉|i〉|j〉,
let V̂ ≡ Vxij |x〉|i〉〈j| the corresponding rm×n matrix. Since Tr1(ρpure) = ρ with ρpure = V V †,

and ρ =
∑

x AxA†
x, we get

(Tr1′ ◦ Tr1)(V V †) =
∑

x

Tr1′(AxA†
x) implying

V̂ †V̂ =
∑

x

Â†
xÂx by Equation (5.11)
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2

Notice that whenever $̂ is Trace-preserving, then Equation (5.17) reads V̂ †V̂ = In, so that V̂

is isometric. Thus we have derived as a simple consequence of properties of state purifica-

tion that any Trace-preserving quantum operation can arise as the trace-out of an isometric

operation.
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Property 5.3 (Schmidt decomposition.) Consider ρ = V V † a non-normalized pure state

in Herm+
mn(C) with V =

∑
Vij |i〉|j〉 in the canonical basis of Cm⊗Cn. Then there exists some

positive reals {λi} and some orthogonal basis {|ψi〉} and {|φi〉} of Cm and Cn respectively,

such that

V =
r∑

i=1

λi|ψi〉|φi〉,

with r ≤ m and r ≤ n. Moreover:

Tr1(ρ) =
r∑

i=1

λ2
i |φi〉〈φi| (n × n positive)

Tr2(ρ) =
r∑

i=1

λ2
i |ψi〉〈ψi| (m × m positive)

Corollary 5.3 (Polar decomposition.) Consider $̂ : Mn(C) → Mm(C), ρ 7→ V̂ ρV̂ † a fac-

torizable Completely Positive-preserving linear map, with V̂ =
∑

Vij |i〉〈i|. Then there exists

some positive reals {λi} and some orthogonal basis of Cm and (Cn)† , namely {|ψi〉} and

{〈φ∗
i |}, such that

V̂ =
r∑

i=1

λi|ψi〉〈φ∗
i |

with r ≤ m and r ≤ n. In other words:

V̂ = UJ = KU with

J =
√

V̂ †V̂ =
r∑

i=1

λi|φ∗
i 〉〈φ∗

i | (n × n positive)

K =
√

V̂ V̂ † =
r∑

i=1

λi|ψi〉〈ψi| (m × m positive)

U =
n∑

i=1

|ψi〉〈φ∗
i | (m × n isometric, i.e. U †U = In)

Proof of Property 5.3. Let ρ = V V †, V =
∑

Vij |i〉|j〉, and Tr2 the partial trace on the last

n-dimensional system. Since ρA = Tr2(ρ) is in Herm+
m(C), we can write

ρA =
r∑

i=1

λ2
i |ψi〉〈ψi|

where {λi} are strictly positive reals, r ≤ m, and {|ψi〉} is an orthonormal family of vectors

which we may complete into an orthonormal basis of Cm. By expressing the first subspace of
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V in this basis we can of course write:

V =
r∑

i=1

|ψi〉|φ̃i〉 with |φ̃i〉 = (〈ψi| ⊗ In)V

We have:

〈φ̃i|φ̃j〉 = Tr(|φ̃j〉〈φ̃i|)
= Tr((〈ψi| ⊗ I)V V †(|ψj〉 ⊗ I))

= Tr((|ψj〉〈ψi| ⊗ I)V V †)

= Tr(|ψj〉〈ψi|ρA)

= λ2
i δij

Thus {|φi〉 = |φ̃i〉/λi} is an orthonormal family of vectors in Cn, which we may again complete

into an orthonormal basis.

We now have V =
∑

λi|ψi〉|φi〉 , from which it is straightforward to verify that

Tr1(ρ) =
r∑

i=1

λ2
i |φi〉〈φi|

2

The well-known connection between the Schmidt decomposition and the polar decomposition

(itself trivially equivalent to the singular value decomposition) is now shown to arise naturally

using the state-operator correspondence.

Proof of Corollary 5.3. Consider $̂ : ρ 7→ V̂ ρV̂ †. Using Isomorphism 2 the corresponding

state in Herm+
mn(C) is ρ = V V †. Applying the Schmidt decomposition theorem yields

V =
r∑

i=1

λi|ψi〉|φi〉 and thus

V̂ =
r∑

i=1

λi|ψi〉〈φ∗
i |

with {|ψi〉} and {〈φ∗
i | = 〈φi|∗} some orthogonal basis of Cm and (Cn)† respectively. Now if we

call U the m×n isometric (i.e. U †U = In) matrix
∑n

i=1 |ψi〉〈φ∗
i |, we have that V̂ = UJ = KU ,

with

K =
r∑

i=1

λi|ψi〉〈ψi| =
√

Tr2(V V †) =
√

V̂ V̂ †

J =
r∑

i=1

λi|φ∗
i 〉〈φ∗

i | =

(√
Tr1(V V †)

)t

=
√

V̂ †V̂ .
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In the above K is m×m whilst J is n×n, and the last equality of each line was derived from

Equations (5.12) and (5.11). 2

Thus it seems that all the standard results about quantum operations are in correspon-

dence with those concerning quantum states. Of course although we derived the properties

of operators from those of states, we could equally have done the opposite. Next we seek

to apply the same principle to derive new results, as we consider properties of states and

operations which do not yet have any equivalent in terms of, respectively, operations and

states.

5.2.2 Properties discovered via the correspondence

We first derive a factorizability condition on quantum operations by making use of the well-

known property:

Property 5.4 (Purity condition.) Let ρ a matrix in Herm+
d (C). Then ρ is non-normalized

pure, i.e. of the form ρ = V V †, if and only if

Tr(ρ)2 − Tr(ρ2) = 0

Corollary 5.4 (Factorizability condition.) Let $̂ : Mn(C) → Mm(C) a Completely Positive-

preserving linear operator. Then $̂ is of the form $̂ : ρ 7→ V̂ ρV̂ †, i.e. it is factorizable, if and

only if (
Tr($̂(In))

)2
−

∑

jl

Tr
(
$̂(Ejl)

†
$̂(Ejl)

)
= 0 (5.18)

or equivalently in terms of indices

($̂ii;jj)
2 − $̂∗ik;jl$̂ik;jl = 0.

Proof of Property 5.4.[⇒] is obvious since ρ pure has only got one non-zero eigenvalue.

[⇐] Suppose ρ has eigenvalues {λi}. The purity condition amounts to

(
∑

i

λi)
2 =

∑

i

λ2
i implying

∑

i<j

λiλj = 0.

For the last relation to hold, since the λi’s are positive there can be at most one value of i

such that λi 6= 0. 2

Proof of Corollary 5.4. $̂ is factorizable is equivalent to $ being pure, thus by Property 5.4

to

Tr(Imn$)2 − Tr($2) = 0.
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Using $† = $ Equation (5.18) is a direct application of Equation (5.4) upon this last equation,

as can be seen from

Imn =
∑

kl

|kl〉〈kl|

so that Îmn : ρ 7→
∑

kl

EklρE†
kl

and Îmn : Ejl 7→ δjl Im

2

Next we give two new vector decompositions which stem from classical results on matrix

decomposition.
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Property 5.5 (One-sided triangular decomposition.) Let ρ = V V † a non-normalized

pure state in Herm+
mn(C), with V =

∑
Vij |i〉|j〉 in the canonical basis, and suppose m ≥ n.

Then there exists some orthogonal basis of Cm, namely {|ψi〉}, such that

V =

j=n∑

i≤j

µij |ψi〉|j〉

Proof: According to the QR decomposition theorem [30] the m×n matrix V̂ can be decom-

posed as V̂ = QR, where Q is m×n and verifies Q†Q = In whilst R is n×n upper triangular.

Thus we have:

V̂ = Q

j=n∑

i≤j

µij |i〉〈j|

V̂ =

j=n∑

i≤j

µij |ψi〉〈j|

V =

j=n∑

i≤j

µij |ψi〉|j〉

Since Q is isometric, the {|ψi〉 = Q|i〉} are orthonormal and can be extended to form a basis

of Cm. 2

On the one hand Property 5.5 is less powerful than the Schmidt decomposition, in the

sense that it yields ‘upper triangular’ coefficients µij instead of the neat diagonal form

V =
∑r

i λi|ψi〉|φi〉. On the other hand however Property 5.5 requires a change of basis

for the first subsystem only. Such a distinction is perfectly analogous to what separates the

polar decomposition (or more expressively its singular value decomposition corollary) from

the QR decomposition when speaking about matrices. Just like the QR decomposition the

one-sided state triangularization is easily computed.

Schur’s triangularization theorem can also be given a quantum state equivalent, as we now

explain. This seems of lesser interest however, since the procedure involves two changes of ba-

sis, one for each subsystem - a case which seems better covered by the Schmidt decomposition

(though here the two basis are simply related).

Property 5.6 (Two-sided triangular decomposition.) Let ρ = V V † a non-normalized

pure state in Herm+
m2(C), with V =

∑
Vij |i〉|j〉 in the canonical basis. Then there exists some

orthogonal basis of Cm, namely {|ψi〉} such that

V =

j=m∑

i≤j

µij |ψi〉|ψ∗
j 〉
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where ∗ denotes complex conjugation of the coordinates of a vector in the canonical basis.

Moreover the set {µii} is the set of the Schmidt coefficients {λi} of V (as defined in Property

5.3).

Proof: According to Schur’s decomposition theorem [30] the matrix V̂ can be decomposed

as V̂ = UTU †, where U is unitary and T is upper triangular and has the singular values

of V̂ in the diagonal (i.e. precisely the λi’s of the polar decomposition and of the Schmidt

decomposition). And so we have:

V̂ = U

j=m∑

i≤j

µij |i〉〈j|U †

V̂ =

j=m∑

i≤j

µij |ψi〉〈ψj |

V =

j=m∑

i≤j

µij |ψi〉|ψ∗
j 〉

Since U is unitary the {|ψi〉 = U |i〉} are orthonormal and can be extended to form a complete

basis of Cm. 2

5.2.3 Trace-preserving quantum operations

The results of Subsection 5.2.1, although extremely useful in quantum theory (quantum infor-

mation theory in particular), are in fact general results on positive matrices and Completely

Positive-preserving linear maps. The same is true of Subsection 5.2.2, and this is the reason

why we have barely mentioned the unit trace condition on density matrices so far. Yet in

quantum theory the states must have trace one (unless we start to consider the trace as encod-

ing some overall probability of occurrence), and quantum operation must be Trace-preserving

(so that they may always occur). We now give an account of the main known results re-

lated to these restrictions, augmented with some results stemming from the state-operator

correspondence.

Definition 5.4 A linear map Ω : Mn(C) → Mm(C) is Trace-preserving if and only if for all

ρ in Mn(C), Tr(Ω(ρ)) = Tr(ρ).

Definition 5.5 The state (1/d)Id ∈ Herm+
d (C) is called the maximally mixed state of Cd.

Moreover we say that $ ∈ Herm+
mn(C) is a maximally entangled state of Cm ⊗Cn if and only
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if $ is pure and verifies either of

(n ≤ m) Tr1($) = In

(m ≤ n) Tr2($) = Im

depending on the integers m and n (if m = n the two conditions are equivalent).
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Lemma 5.3 (Trace-preserving linear maps.) A Completely positive-preserving linear map

$̂ : Mn(C) → Mm(C) with decomposition {Âx} is Trace-preserving if and only if one of the

following six equivalent conditions is satisfied:

(i)
∑

Â†
xÂx = In, (ii) $̂kk;jl = δjl,

In terms of

̂

$ this is

(iii)
∑

ǍxǍ†
x = In, (iv)

̂

$(Im) = In,

In terms of the state $ this is

(v) Tr1($) = In, (vi) $kj;kl = δjl.

Proof: We have $̂(ρ) =
∑

ÂxρÂ†
x or using components $̂(ρ)i;k = $̂ik;jlρjl, so that Tr

(
$̂(ρ)

)
=

Tr
( ∑

Â†
xÂxρ

)
≡ $̂kk;jlρjl. Thus (i) and (ii) follow immediately. Using that Ǎ = Ât and̂

$jl;kk =

̂

$(Im)j;l = $̂jl;kk from (5.9), we get (iii) and (iv). (v) and (vi) follow from (i) and (ii)

using (5.11) and (5.5) respectively. 2

Note that these conditions imply, but are not equivalent to, (1/n)$ having unit trace. This

is because ‘$ has unit trace’ reads:

Tr($) = Tr
(
$̂(In)

)
= Tr

(
̂

$(Im)
)

= 1

or $kl;kl = $̂kk;ll =

̂

$ll;kk = 1.

Thus we have shown that Trace-preserving quantum operations $̂ : Mn(C) → Mm(C) go

hand in hand with unit trace states (1/n)$ ∈ Herm+
mn(C) whose partial trace on the first

subsystem yields the maximally mixed state: Tr1
(
(1/n)$) = (1/n)In. We immediately obtain

the following, which is a generalization of a result in [39] and [61]:

Lemma 5.4 (Unitary maps.) Let $̂ : Mn(C) → Mm(C) a Completely Positive-preserving

map. Then $̂ is isometric (i.e it can be written as $̂ : ρ 7→ ÛρÛ † with Û †Û = In) if and only

if n ≤ m and the corresponding state $ is maximally entangled (i.e. pure with Tr1($) = In).

Equivalently, in terms of indices, $̂ must verify $̂kk;jl = δjl and

∑

jl

Tr
(
$̂(Ejl)

†
$̂(Ejl)

)
= n2

Remark 5.2 (Bistochastic maps.) $̂ is bistochastic, i.e. it is Trace-preserving and sat-

isfies $̂(In) = Im, if and only if the state $ satisfies Tr1($) = In and Tr2($) = Im. Thus

bistochastic maps cannot be factorizable whenever m 6= n.
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Proof: The Lemma follows immediately from Lemma 5.3 and Corollary 5.4. The remark

follows from Lemma 5.3 and the fact that Tr2($) = $̂(Im). 2

The set of states $ ∈ Herm+
mn(C) satisfying Tr1($) = In is convex, hence its extremal

points correspond to extremal Trace-preserving quantum operations. Recall that the extremal

elements of a convex set S are those which cannot be written as sums of two distinct elements

of S. Extremal elements are important since they generate S, and so we now restate Choi’s

well-known theorem about extremal Trace-preserving maps (without reproducing the proof).

Theorem 5.4 (Extremal Trace-preserving.) Let $̂ : Mn(C) → Mm(C) a Trace-preserving

Completely Positive-preserving linear map with decomposition {Âx} and Choi rank r (i.e. r =

rank($)). Then $̂ is extremal in the set of Trace-preserving Completely Positive-preserving

maps if and only if one of the following three equivalent conditions is satisfied:

(i) the span of the set {Â†
xÂy} in Mn(C) is r2-dimensional;

(ii) the span of the set {ǍxǍ†
y} in Mn(C) is r2-dimensional;

(iii) the span of the set {Tr1(AxA†
y)} in Mn(C) is r2-dimensional.

Notice that this is a slightly different formulation from the one given in [13], where the {Â†
xÂy}

have to form a linearly independent set. This implies that the {Âx} are automatically linearly

independent themselves, and hence there must be r of them. Since different decompositions

can give the same operation, we thought it better to express the extremality conditions in

terms of any decomposition, and not just a minimal one.

Proof: We just prove the equivalence with Choi’s formulation. Let {V̂α} be a minimal

decomposition of $̂. Then Span({Ax}) = Span({Vα}) since both are equal to the support

(the image space) of $ (see Corollary 5.1); and trivially Span({Âx}) = Span({V̂β}) implies

Span({Â†
xÂy}) = Span({V̂ †

α V̂β}). 2

Remark 5.3 An extremal map $̂ has Choi rank r ≤ n since it must satisfy r2 ≤ n2, but this

condition is not sufficient.

Proof: Suppose U1 6= U2 unitary and $̂ : ρ 7→ (1/2)U1ρU †
1 + (1/2)U2ρU †

2 . Clearly U †
1U1 =

U †
2U2 = In, and thus this Trace-preserving Completely Positive-preserving map cannot be

extremal Trace-preserving. Yet it has Choi rank 2 regardless of a choice for n. 2

By pushing the consequences of Choi’s theorem further we obtain the following original criteria

for extremal Trace-preserving linear maps:

Proposition 5.2 (Extremal Trace-preserving.) Let $̂ : Mn(C) → Mm(C) a Trace-preserving

Completely Positive-preserving linear map of Choi rank r (i.e. r = rank($)) with $ its cor-

responding state, and $̂
†

: Mm(C) → Mn(C) its adjoint map (i.e. $̂
† ≡ $̂

†

jl;ik). Then $̂ is

extremal if and only if one of the following equivalent conditions is satisfied:
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(i) The Choi rank of $̂
† ◦ $̂ is equal to r2,

(ii) $ is such that the state in Herm+
n2(C) defined byACjj′;ll′ = $∗ij;kl$ij′;kl′

has rank r2.

Proof: If $̂ has operator sum decomposition {Ây} i.e. $̂(ρ) =
∑

y ÂyρÂ†
y, then we get that

$̂
†

has decomposition {Â†
x} i.e. $̂

†
(σ) =

∑
x Â

†

xρÂx. This can be seen using $̂
†

jl;ik ≡ $̂∗ik;jl for

example. Thus $̂
† ◦ $̂ has decomposition {Â†

xÂy}, and (i), using Corollary 5.1, is equivalent

to (i) in Theorem 5.4.

Next we restate (i) using indices and Equation (5.5).

($̂
† ◦ $̂)jl;j′l′ = $̂

†

jl;ik$̂ik;j′l′

= $̂∗ik;jl$̂ik;j′l′

= $∗ij;kl$ij′;kl′

≡ ÂCjl;j′l′ = ACjj′;ll′ .

Since $̂
† ◦$̂ is a Completely Positive-preserving map from Mn(C) to Mn(C), AC is in Herm+

n2(C)

by Theorem 5.3. We see that (i) is equivalent to (ii). 2

The relation between condition (i) and (ii) suggests that the composition law on quantum

operations could yield, through Isomorphism 5.2, an interesting structure upon states. We

pursue this idea in the following section.

5.3 Induced geometrical structure

The beginning of this section is maybe aimed at a mathematically-minded reader. We in-

vestigate simple algebraic and geometric properties stemming from the operator state cor-

respondence. These yield a nice group theoretic description of totally entangled states of a

bipartite system (Proposition 5.4), and a description of Positive-preserving maps as dual to

separable states (Theorem 5.2 restated). Proposition 5.6 however unravels a possible physical

interpretation of the correspondence.

5.3.1 Composition laws

We make use of some elementary facts about operators or positive matrices to define new

composition laws on the spaces of operators or positive matrices.

First, the set of Completely Positive-preserving linear maps from Mn(C) into itself is stable

under composition. This induces the following semi-group structure for states (recall that

semi-group elements do not need to have an inverse):
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Proposition 5.3 If $ and AC are in Herm+
n2(C), then so is

$ ⋄ AC ≡ ($ ⋄ AC)ij;kl = $ii′;kk′ACi′j;k′l, (5.19)

where all the indices run from 1 to n. (Herm+
n2(C), ⋄) is a semi-group with identity element

the canonical maximally entangled state |β〉〈β| ≡ δijδkl.

The set of non-normalized pure states, the set of unentangled states and the set of separable

states (together with |β〉〈β|), are sub-semi-groups of (Herm+
n2(C), ⋄). More precisely,

(AA†) ⋄ (BB†) = V V † where V̂ = ÂB̂ (5.20)

(µ1 ⊗ µ2) ⋄ (σ1 ⊗ σ2) = Tr(µt
2σ1)µ1 ⊗ σ2

Proof: The composition law is just the transcription of ($̂◦ÂC)ik;jl = $̂ik;i′k′ÂCi′k′;jl using (5.5),

and the identity element is clearly δijδkl. Next, the composition of two factorizable operations

is factorizable and trivially yields (5.20). Let AC = σ1 ⊗ σ2 and $ = µ1 ⊗ µ2 two unentangled

states. We have using Equation (5.15):ÂC(ρ) = Tr2
(
(I ⊗ ρt)(σ1 ⊗ σ2)

)
=

(
Tr(σt

2ρ)
)
σ1,

hence $̂ ◦ ÂC(ρ) = Tr
(
µt

2(Tr(σt
2ρ)σ1)

)
µ1 = Tr(µt

2σ1)Tr(σt
2ρ)µ1

and the last equation follows immediately.

Since the composition law is bilinear, the space of separable states of Herm+
n2 , together with

the identity |β〉〈β|, is also a sub-semi-group of (Herm+
n2(C), ⋄). 2

It seems natural at this point to look for subgroups of (Herm+
n2(C), ⋄). Clearly the largest

subgroup corresponds to the set of invertible quantum operations $̂, of which it is difficult

to give a physical description in terms of the states $: we just require $̂ik;jl to be invertible.

Since unentangled states yield projections (as was illustrated in the proof above), they are

not in this group; yet mixtures of them (separable states) may well yield invertible operations.

Definition 5.6 The positive definite matrices of Herm+
d (C) are sometimes called the totally

mixed states of Cd.

Moreover we say that $ ∈ Herm+
mn(C) is a totally entangled state of Cm ⊗ Cn if and only if

$ is pure and verifies either of

(n ≤ m) Tr1($) is totally mixed

(m ≤ n) Tr2($) is totally mixed

depending on the integers m and n (if m = n the two conditions are indifferent).



5.3. INDUCED GEOMETRICAL STRUCTURE 99

As in Chapter 3 we let GLn(C) denote the group of invertible n × n complex matrices, U(1)

its (normal) subgroup of matrices of the type eiθIn, and SU(n) the group of special unitary

n × n matrices, i.e. matrices U satisfying U †U = UU † = In and detU = 1. We have the

following:

Proposition 5.4 The set of totally entangled pure states in Herm+
n2(C), equipped with the

composition law ⋄, is a group which is isomorphic to the group GLn(C)/U(1). Its subset of

maximally entangled states is a subgroup isomorphic to SU(n).

Proof: Let us denote by T the set of totally entangled (pure) states in Herm+
n2(C). Note that

for any Â ∈ Mn(C), Â is invertible if and only if ÂÂ† is invertible, which by (5.12) is equivalent

to Tr2(AA†) invertible, in other words AA† totally entangled. Thus T = {AA† / Â ∈
GLn(C)}, and from (5.20), (T, ⋄) is a group with identity element |β〉〈β|.

χ : GLn(C) → T

Â 7→ AA†

is then trivially a group homomorphism, since χ(ÂB̂) = AA† ⋄ BB† by (5.20). χ is clearly

onto, and its kernel is U(1). Thus GLn(C)/U(1) is isomorphic to T .

χ restricted to U(n) maps onto the set of maximally entangled states by Lemma 5.4, so that

SU(n) = U(n)/U(1) is isomorphic to it. 2

These results are useful when one seeks to parameterize certain pure states of an n2-

dimensional system. The description of pure states in Hermn2(C) in terms of the homogeneous

space SU(n2)/SU(n2−1) is well-known, but yields a very complicated parameterization since

one must mod out the SU(n2 − 1). We have shown that we can in fact parameterize the set

of maximally entangled (pure) states of Hermn2(C) in terms of (the Euler angles of) SU(n),

without having to mod out any redundancy. The parameterization could have potential

applications in the study of entanglement, Bell states and EPR scenarios.

Next one can also define an original semi-group structure on the set of Completely Positive-

preserving maps by using an exotic composition law (the Schur product △) on the set of states:

Proposition 5.5 If $̂ and ÂC are Completely Positive-preserving maps from Mn(C) to Mm(C),

then so is

$̂ △ ÂC ≡ ($̂ △ ÂC)ik;jl = $̂ik;jlÂCik;jl

where the summation convention is suspended, and i, k = 1, . . . , m, and j, l = 1, . . . , n. This

composition law is obviously commutative, and the set of factorizable operations is stable under

it.

Proof: This stems, via Theorem 5.3, from the stability of the set of positive matrices under of

the Schur (or Hadamard) product [30]. I.e. the fact that the component-wise product of two
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positive matrices is a positive matrix, when applied to $ times AC, induces the corresponding

result for $̂ times ÂC.

We use the same symbol △ to denote all component-wise products of matrices. If $̂ and ÂC
have decompositions {Âx} and {B̂y} respectively, then $̂△ ÂC has decomposition {Âx △ B̂y}:
this implies the stability of factorizable operations. 2

5.3.2 Duality: states and functionals

When relating operators and states of a physical theory notions of duality between vector

spaces are often illuminating: operators sometimes induce functionals on the space of states,

which can in turn be thought of as states. In finite-dimensional Quantum Mechanics, a given

positive matrix can either represent a state or a positive functional, and we can switch from

one to the other easily.

So far we have equipped the algebra of complex d × d matrices, Md(C), with the complex-

bilinear form: (AC, $) = Tr(AC†$). This non-degenerate form naturally defines a canonical

pairing of Md(C) with M̃d(C), the space of linear functionals on Md(C):

˜ : Md(C) −→ M̃d(C)AC 7−→ [ÃC : $ 7→ Tr(AC†$)]

Since ˜ is an (anti-linear) isomorphism, any linear functional on Md(C) has a unique an-

tecedent by ˜ , thus is uniquely represented by an element of Md(C). Let {Eij}1≤i,j≤d a

canonical basis of Md(C) and {Ẽkl}1≤k,l≤d its corresponding peered basis, i.e. Ẽkl(Eij) ≡
Tr(E†

klEij) = δikδjl. Then the functional of AC, namely ÃC, is represented in the peered basis

by AC∗. Indeed, AC∗
klẼkl($ijEij) = AC∗

kl$kl = ÃC($).

When restricted to the real vector space of hermitian matrices Hermd(C), (AC, $) 7→ Tr(AC$)

yields a real scalar product, and H̃ermd(C) is defined similarly. It then becomes possible to

define the dual (sometimes called polar) of a subspace S of Hermd(C) as follows:

S
⋆ ≡ {σ̃ ∈ H̃ermmn(C) / ∀ρ ∈ S, σ̃(ρ) ≥ 0 } (5.21)

The convex cone of hermitian positive matrices Herm+
d (C) is clearly self-dual under this dual

pairing: AC ∈ Herm+
d (C) ⇔ ∀$ ∈ Herm+

d (C), Tr(AC$) ≥ 0

⇔ ∀$ ∈ Herm+
d (C), ÃC($) ≥ 0

⇔ ÃC ∈ Herm+
d (C)

⋆
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In the last line we have used the definition (5.21). Thus Herm+
d (C)

⋆
= H̃erm

+

d (C), hence

the set of non-normalized states is isomorphic to that of non-normalized linear probability

distributions on states, i.e. functionals which are positive on Herm+
d (C). In this sense, if AC

is an element of Herm+
d (C), then AC∗ ≡ ACt, represents its dual element, or associated linear

probability distribution, and conversely. We shall now explain why this picture is illuminating.

Separable states and Positive-preserving maps

We now denote by HermS
mn(C) the set of separable states of Cm ⊗ Cn, and define its dual

space by (5.21):

HermS
mn(C)

⋆ ≡ {σ̃ ∈ H̃ermmn(C) / ∀ρ ∈ HermS
mn(C), σ̃(ρ) ≥ 0 },

This is a convex cone too. The geometrical meaning of Theorem 5.2 is now clear in this

formalism:

Theorem 5.2 (restatement.) A linear operation $̂ : Mn(C) → Mm(C) is Positive-preserving

if and only if the linear functional of its associated state $, namely $̃, is in HermS
mn(C)

⋆
. In

other words, the convex cone of Positive-preserving maps is isomorphic to the dual of the

convex cone of separable states.

Remember that inclusions are reversed by duality:

HermS
mn(C) ( Herm+

mn(C)

⇔Herm+
mn(C)

⋆ ( HermS
mn(C)

⋆
.

Since not all states are separable, this confirms the fact that Positive-preserving maps are not

necessarily Complete Positive-preserving.

Remark 5.4 The set of $ in Hermmn(C) such that $̂ is Positive-preserving, i.e. such that $̃

belongs to HermS
mn(C)

⋆
, is stable under the transposes t1 on Cm and t2 on Cn.

Proof: For $̂ Positive-preserving, $̂ ◦ t2 ≡ $̂t2 and t1 ◦ $̂ ≡ $̂t1 are Positive-preserving too.

From this simple observation we readily obtain that the set of the $ is stable under partial

transpositions. 2

Remark 5.5 Remark 5.4 is equivalent the Peres’ criterion [49] for separability, which states

that the set of the separable states HermS
mn(C) is stable under partial transposition.
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Proof: [Peres ⇒ Remark 5.4] If $ is such that $̃ belongs to HermS
mn(C)

⋆
, then we have that

∀AC ∈ HermS
mn(C) Tr($AC) ≥ 0

⇒ ∀AC ∈ HermS
mn(C) Tr($ACt2) ≥ 0 by Peres

⇒ ∀AC ∈ HermS
mn(C) Tr($t2AC) ≥ 0

which means, by definition, that $̃t2 belongs to HermS
mn(C)

⋆
. The same applies with t1 .

[Remark 5.4 ⇒ Peres ] Now let $ belong to HermS
mn(C). Since HermS

mn(C) is a closed convex

set containing 0 we have, by the bipolar theorem (see for instance [62]), that HermS
mn(C) =

HermS
mn(C)

⋆⋆
. Thus $ belongs to HermS

mn(C)
⋆⋆

, and so

∀ÃC ∈ HermS
mn(C)⋆ Tr($AC) ≥ 0

⇒ ∀ÃC ∈ HermS
mn(C)⋆ Tr($ACt2) ≥ 0 by Remark 5.4

⇒ ∀ÃC ∈ HermS
mn(C)⋆ Tr($t2AC) ≥ 0

which means, by definition, that $t2 belongs to HermS
mn(C)

⋆⋆
= HermS

mn(C). The same

applies with t1 : we have recovered Peres’ criterion. 2

That the Peres’ criterion corresponds to the simple fact that $̂ Positive-preserving implies $̂◦t

Positive-preserving is a somewhat striking fact. This insight may well help to build tighter

criterions: recently the Horodeckis [31] have been following this line of thought.

Physical interpretation of formulae

When attempting to characterize separability the notions of duality seem to play a simplifying

role, as they help to clarify the correspondence induced by Isomorphism 2. Thus one may

wonder if these concepts could facilitate the interpretation of other results in this chapter.

We now give a formulation of quantum operations $̂ in terms of single operations on their

corresponding state $.

Proposition 5.6 Let $ represent a non-normalized quantum state of a bipartite system HA⊗
HB = Cm ⊗ Cn shared by Alice and Bob. Suppose Bob performs on $ a local generalized

measurement {Im ⊗ M
(x)
n }x. Call Im ⊗ M the element whose outcome occurs and let ρB ≡

(M †M)t ∈ Herm+
n (C).

Then the unrescaled post-measurement state as viewed by Alice is precisely $̂(ρB). Thus the

effect of any quantum operation $̂ can be viewed as the trace out of a particular local single

operation on its corresponding state $.
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Proof: The unrescaled post-measurement state is simply $M = (Im ⊗M)$(Im ⊗M †). Using

(5.15) this yields for Alice the state:

Tr2($
M ) = Tr2

(
(Im ⊗ M)$(Im ⊗ M †)

)

= $̂
(
(M †M)t

)

= $̂(ρB)

2

The fact that there is a transpose corroborates the idea of duality. Indeed, first M †M is

thought of as defining a functional σ 7→ Tr(M †Mσ), but then as we think of a quantum

operation as acting on states we act upon its transpose. The map M †M 7→ $̂
(
(M †M)t

)
,

though it is Positive-preserving, is not Completely Positive-preserving since it can be written

as $̂ ◦ t. However the same map defined from states to states, i.e. (M †M)t 7→ $̂((M †M)t), is

Completely Positive-preserving. Proposition 5.6 suggests that quantum states in Herm+
mn(C)

inherently defines a quantum operation between their two subsystems.

5.4 Summary and concluding remarks

In this chapter we made several new contributions, some technical, others more geometrical.

Amongst the technical results we provided two triangular decompositions for pure states of a

bipartite system, i.e. local changes of basis so that vectors in Cm ⊗ Cn may be written with

triangular coefficients only. We also gave two original algebraic tests on Completely Positive-

preserving maps: one regarding extremality in the set of Trace-preserving operations, the

other testing the factorizability or single operator decomposition. The latter is particularly

interesting since it does not depend on the operator sum decompositions of these maps. The

formulae in Proposition 5.1 should yield simplifications in optimization of fidelities of quan-

tum operations as encountered for instance in quantum cryptographic problems.

On the more geometrical side we endowed Herm+
n2(C) with a semi-group structure stemming

from the composition law on quantum operations. This in turn provided a group isomor-

phism between totally entangled (pure) states and GLn(C)/U(1), and maximally entangled

(pure) states and SU(n). This result sheds light on the geometry of entangled states as it

suggests, for future work, simple parameterizations and bi-invariant metrics on the corre-

sponding (group-)submanifolds of the set of pure states in Herm+
n2(C). In addition we showed

that the set of quantum operations is stable under component-wise product.

These contributions are interesting enough by themselves, but perhaps the most significant

achievement of this chapter is to demonstrate the central, transversal role of the state-operator

isomorphism as formalized in Isomorphism 2 and justified by Theorem 5.3. We have shown

that virtually all the main results regarding states/operators can be elegantly obtained as

corollaries of their operator/state analogue, which makes this correspondence one of the most
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Matrix $ Linear operator $̂

Hermitian Hermitian-preserving

Dual to separable Positive-preserving

Positive Completely Positive-preserving

Particular state $ Particular quantum operation $̂

Pure Factorizable

Unentangled σ1 ⊗ σ2 Projection ρ 7→
(
Tr2(σ

t
2ρ)

)
σ1

Separable Sum of projections
Dual to Positive-preserving

Tr1($) = I Trace-preserving

Tr1($) = I and Tr2($) = I Bistochastic

Particular ket A Particular evolution matrix Â

Maximally entangled Unitary

Totally entangled Invertible∑
i |i〉|i〉 I∑
i λi|i〉|i〉 Diag{λi}∑
i λi|ψi〉|ψ∗

i 〉
with ∀i, λi ∈ R Hermitian
with ∀i, λi ∈ R+ Positive

Theorems on states Theorems on quantum operations

Spectral decomposition, Operator Sum decomposition,
Unitary degree of freedom Unitary degree of freedom

Purification $̂(ρ) = Tr1(UρU †)
Bipartite decompositions: Matrix decompositions:
Schmidt Polar
One-sided triangular QR
Two-sided triangular Schur’s triangularization

Purity condition Factorizability condition

Formulae on states Formulae on quantum operations

Tr1/2(AB†) = (B̂†Â)t/ÂB̂†

Tr2
(
(κ ⊗ ρt)$(τ ⊗ σt)

)
= κ$̂(ρσ)τ

Tr2(I ⊗ ρ)$(I ⊗ ρ†)) = $̂((ρ†ρ)t)

Tr((σ ⊗ ρt)$) = Tr(σ$̂(ρ))

Tr(AC†$) =
∑

Tr(ÂC(Ejl)
†
$̂(Ejl))

Table 5.1: Summary of the state-operator correspondence.
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fruitful linear algebraic tool in the surroundings of quantum theory (see table 5.3.2 for sum-

mary). Even for more specialist issues of quantum information theory we find that the

isomorphism has a role to play, as was illustrated by the problem of characterizing separable

states.

On this occasion we introduced notions of duality, which serve both to facilitate the interpre-

tation of the state-operator correspondence and its related formulae, and to understand the

underlying geometry from a slightly more abstract point of view. The formulae themselves

should have numerous applications in quantum information theory (as we shall demonstrate

in Chapter 7), and could also provide a novel interpretation of states versus operations in

open systems (as suggested in Proposition 5.6).
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Part II

Quantum cryptography
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Chapter 6

The qubit information gain versus

disturbance

Dans les champs de l’observation le hasard ne favorise que les esprit préparés.

—Louis Pasteur

Alice draws uniformly at random a state amongst two pure states
{|ψ0〉, |ψ1〉}, and then sends it over a quantum channel. Eve, the
malevolent eavesdropper, gains access to this |ψx〉 and may use
this opportunity to try and learn about x. How much she learns
is quantified using information theoretical notions. But at the
receiving end honest Bob, whom we assume knows the value of
x, gets a chance to check whether Eve interfered. Indeed, sup-
pose Eve’s measurement and further manipulations have changed
|ψx〉 into ρx. If Bob measures {|ψx〉〈ψx|, I − |ψx〉〈ψx|} upon the
received state he has a probability 1−〈ψx|ρx|ψx〉 of detecting the
felony. The above idealized scenario captures a key ingredient for
any quantum cryptographic protocol, namely the fact that the
eavesdropper cannot observe a state without causing it an irre-
versible, detectable damage. In spite of their central role, infor-
mation gain versus disturbance tradeoffs upon discrete ensembles
remain largely unknown, due to the mathematical difficulties they
raise. In 1995 Fuchs and Peres managed to obtain an analytic for-
mula for the above case of two equiprobable non-orthogonal pure
states. In this chapter we rederive their result intuitively and
geometrically − in the context of the conal representation.

109
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The key principle of quantum cryptography could be summarized as follows. Honest par-

ties communicate using quantum states. To the eavesdropper these states are random and

non-orthogonal. In order to gather information she must measure them, but this may cause

irreversible damages. Honest parties seek to detect her mischief by checking whether certain

quantum states are left intact. The tradeoff between the eavesdropper’s information gain

(about an ensemble of quantum states), and the disturbance she necessarily induces (upon

this ensemble), can thus be viewed as the power engine behind quantum cryptographic pro-

tocols.

Yet while numerous protocol-specific proofs of security have been given, information gain

versus disturbance tradeoffs themselves have remained stubbornly difficult to quantify. The

problem was first taken over by Fuchs and Peres [21], who tackled the seemingly simple case

of the two non-orthogonal equiprobable states ensemble {(1/2, |ψ0〉), (1/2, |ψ1〉)}. For discrete

distributions this is just about the only result available. Of lesser interest for cryptography,

but very important in terms of its methods is the work by Banaszek [5], who quantified the

tradeoff for the continuous uniform n-dimensional ensemble. Barnum [6] makes several accu-

rate qualitative remarks upon the same ensemble, suggesting the tradeoff remains unchanged

for uniform distributions over mutually unbiased states.

Unfortunately Fuchs and Peres’ derivation involves lengthy algebra, a number of assump-

tions, and seems extremely difficult to apply to even slight variations of their scenario. One

should be able to find a method which gives a glimpse of intuition about the geometry of

optimal measurements: this is the purpose of the present chapter. The Cone, by enabling a

per-outcome geometrical representation of generalized measurements an their effects, greatly

facilitates the derivation of Fuchs and Peres’ formula and enables us to visualize the family

of optimal measurements. We hope this illustrates the power of the geometrical framework

developed in Chapter 3. But before we begin, let us describe the exact scenario once again,

formally:

Scenario 6.1 (Fuchs and Peres’) Consider a quantum channel for transmitting qubits.

Suppose Alice owns a random variable X = {(1
2 , 0), (1

2 , 1)}. According to outcome x she

prepares either |ψ0〉 or |ψ1〉 and sends it to Bob. Suppose that Bob, whenever the state |ψx〉
gets sent, measures

{Pintact = |ψx〉〈ψx| , Ptamper = I − |ψx〉〈ψx|} (6.1)

so as to check for tampering. Suppose Eve is eavesdropping the quantum channel, and has an

interest in determining whether Alice sent |ψ0〉 or |ψ1〉.
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6.1 Mathematical preliminaries

6.1.1 Information contribution

Suppose the {|ψx〉}x=0,1 states Alice prepares verify the following basic relations (with φ

defined as in Subsection 3.1.1, page 45):

vx = φ(|ψx〉〈ψx|)
√

v0.v1

2
= d =

√
1 − c2

By choosing a suitable basis in the Bloch Sphere and since the {|ψx〉}x are pure we may fix:

v0 = [ 1 c d 0 ] (6.2)

v1 = [ 1 −c d 0 ] (6.3)

The most general thing Eve can ever do is to attack the states with a measurement

{Mm}m. This procedure is equivalent to first measuring {
√

Em}m, and then, conditional to

m, applying the unitary transformation Um, with Em and Um defined as in Subsection 3.1.3.

It is rather interesting to observe that the second step has no other use but to ‘repair’ the

post-measurement states as much as is possible. The first step on the other hand may partially

destroy the initial states so as to collect the information Eve seeks. This is the step we now

study in order to quantify her information gain.

Let Y be the random variable arising from the measurement outcomes, i.e. Y = {(p(m), m)}m.

In this chapter we quantify Eve’s information gain in terms of Shannon mutual entropy (see

[48]):

I = H(X : Y ) = H(Y ) − H(Y |X)

= −
∑

m

p(m) log(p(m)) +
∑

x,m

p(x, m) log(p(m|x))

≡
∑

m

Im with Im = −p(m) log(p(m)) +
∑

x

p(x, m) log(p(m|x))

Im must be understood as the information contribution brought by the measurement element:

εm = [ α β γ δ ] = φ(Em)

By making use of the relations (6.2),(6.3) and (3.9) one can express Im geometrically in terms
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of scalar products in the cone:

Im = − (pm + qm) log(pm + qm) + pm log(2pm) + qm log(2qm)

with pm =
α + βc + γd

4
=

εm.v0

4
≡ p(0, m) (6.4)

qm =
α − βc + γd

4
=

εm.v1

4
≡ p(1, m) (6.5)

Notice that if εm is orthogonal to v1 (resp. v0) then Im = pm (resp. qm). Such a mea-

surement element may be said to be “all or nothing”: it brings a whole bit of information

when it occurs, but does so only with probability pm (resp. qm). Taken individually these

measurement elements seem ideal: they fully identify |ψx〉 and thus they let you reconstruct

the initial state perfectly, with no disturbance at all. The downside is that failure to occur

comes at a high price. In order to verify the trace-preservation condition (3.16) the other

measurement elements generally become rather inefficient with respect to the tradeoff. The

family of the optimizing {Mm}m is not constructed in such simple ways.

6.1.2 Disturbance contribution

Next we seek an expression of the disturbance contribution brought by each measurement

element. For this purpose we must first assume outcome m has occurred. Eve knows it,

and now she will try to maximize her chances of fooling Bob by applying a carefully tailored

unitary evolution Um. First we will give Dm as a function of Um, and next proceed to the

maximization which determines Um. As was already the case in Subsection 3.2.4, page 56,

upper indices x will be used to distinguish initial states, whilst lower indices m specify the

measurement outcome. Moreover note that ρx
m

′ is the rescaled (unit -trace) post-measurement

state.

p(fooling Bob|m) =
∑

x

p(x|m)Tr(|ψx〉〈ψx|Umρx
m

′Um)

≡
∑

x p(x|m)vx.rx
m

2

=
1 +

∑
x p(x|m)

−→
vx.

−→
rx
m

2
where

rx
m = [ 1

−→
rx
m ] ≡ φ(Umρx

m
′Um)

=
φ(Um

√
Em|ψx〉〈ψx|

√
EmUm)

p(m|x)
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Negating back to the disturbance we obtain:

D =
∑

m

Dm with

Dm = p(not fooling Bob, m)

=
p(m) − ∑

x p(x, m)
−→
vx.

−→
rx
m

2

=
p(m) − ∑

x p(x, m)‖−→vx‖ ‖−→rx
m‖ cos

̂
(
−→
vx,

−→
rx
m)

2

In our scenario the {|ψx〉}x are pure. Thus by Lemma 3.2 or equation (3.19) we have

‖−→vx‖ ‖−→rx
m‖ = 1 (i.e. the per-outcome effect of a measurement takes a pure state into a pure

state). Now let us deal with cos
̂

(
−→
vx,

−→
rx
m) by making the following definitions:

θ ≡
̂

(
−→
v0,

−→
v1)

θm ≡
̂

(
−→
r0
m,

−→
r1
m)

∆m ≡ θ − θm

ωm ≡
̂(−→

r0
m+

−→
r1
m,

−→
v0+

−→
v1

)

ωm is the angle between the bisector of (
−→
r0
m,

−→
r1
m) and that of (

−→
v0,

−→
v1). Given that we want to

minimize Dm in terms of Um we can safely assume
−→
r0
m,

−→
r1
m,

−→
v0,

−→
v1 to be coplanar. Thus Dm

may now be rewritten in terms of those angles as well as pm and qm:

Dm =
pm + qm − pm cos(∆m − ωm) − qm cos(∆m + ωm)

2

In this equation the values of pm, qm and ∆m are fully determined by εm, as described in

(6.4),(6.5), an the ‘inner product through measurement’ Equation (3.18). ωm on the other

hand solely depends on Um: it can be chosen at will by rotation in the Bloch Sphere. We

now show how Eve must tune ωm so as to minimize Dm.

∂Dm

∂ωm
= 0 ⇒ pm sin(∆m − ωm) − qm sin(∆m + ωm) = 0

The minimum occurs at:

ωm = arcsin
( pm − qm√

p2
m + q2

m + 2pmqm cos(2∆m)

)

which yields, after simplification:

Dm =
pm + qm −

√
p2

m + q2
m + 2pmqm cos(2∆m)

2
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6.2 Optimization and conclusion

How many elements should Eve’s measurement contain? Levitin has proved that there exists

a two-element measurement {Mm}m=0,1 which maximizes Eve’s information gain [41]. While

this was never formally shown to be the case for the measurements which optimize the infor-

mation gain versus disturbance tradeoff, there is strong numerical evidence in support of this

assumption [21]. Suppose this is the case and let εmµ
denote the µth coordinate of εm. Using

the trace-preservation constraint given by Equation (3.16) we have:

δε0µ
= −δε1µ

. (6.6)

Optimizing the Tradeoff implies finding a stationary point for the disturbance while keeping

the information gain fixed. We need to find ε0 such that

∑

µ

∂D

∂ε0µ

δε0µ
= 0

where the variations δε0µ
are subject to the additional constraint:

∑

µ

∂I

∂ε0µ

δε0µ
= 0

Using equation (6.6) and D = D0 + D1 and I = I0 + I1 this gives:

∑

µ

∂D0

∂ε0µ

δε0µ
=

∑

µ

∂D1

∂ε1µ

δε0µ
(6.7)

subject to
∑

µ

∂I0

∂ε0µ

δε0µ
=

∑

µ

∂I1

∂ε1µ

δε0µ
(6.8)

Guided by the geometrical picture of the scenario one may consider the following attack (see

FIG. 6.1):

ε0 = [ 1 β 0 0 ]

ε1 = [ 1 −β 0 0 ]
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Figure 6.1: Optimal measurement family

The fact that this is indeed a solution follows from its obvious symmetries:

For µ 6= 1
∂D0

∂ε0µ

=
∂D1

∂ε1µ

and for µ = 1
∂D0

∂ε0µ

= − ∂D1

∂ε1µ

(6.9)

For µ 6= 1
∂I0

∂ε0µ

=
∂I1

∂ε1µ

and for µ = 1
∂I0

∂ε0µ

= − ∂I1

∂ε1µ

(6.10)

Substituting (6.10) in the constant information constraint (6.8), we get δε01
= 0. Using this

fact together with equation (6.9) it becomes clear that condition (6.7) is fulfilled. Thus ε0

is a stationary point. We may now proceed to compute the values of the disturbance and

the information gain under this family of optimal attacks. First by making a few additional

observations:

p0 = q1 = p

p1 = q0 = q

D0 = D1 = D/2

I0 = I1 = I/2

D =
1

2
−

√
p2 + q2 + 2pq + cos(2∆m)

I = 1 + 2p log(2p) + 2q log(2q)

and second by plugging in the relations (3.18), (6.2)-(6.5), we reproduce the exact content of

Fuchs and Peres’ formulae:

D =
1

2
− 1

2

√
1 + (c2 − c4)(β2 − 2 + 2

√
1 − β2)

I =
1

2
((1 + βc) log(1 + βc) + (1 − βc) log(1 − βc))



116 CHAPTER 6. THE QUBIT INFORMATION GAIN VERSUS DISTURBANCE

where β is a parameter ranging from 0 to 1.

Therefore we have recovered Fuchs and Peres’ information gain versus disturbance formula

in an elegant and geometrical manner. In the future we should be able to extend this type

of analysis to the case of two non-equiprobable states - or without having to assume a two

element generalised measurement. Most importantly we illustrated the uses of the conal

representation developed in Chapter 3, and gathered some intuition about the family of

measurements which optimizes the information gain versus disturbance tradeoffs. No doubt

this understanding guided our steps as we tackled the much more complex, n-dimensional

scenario we present in the next chapter.



Chapter 7

Quantum decoys

Fortune may rob our wealth, but never our courage

—Seneca

Alice communicates with words drawn uniformly amongst
{|j〉}j=1...n, the canonical orthonormal basis. Sometimes how-

ever Alice interleaves quantum decoys |j〉+i|k〉√
2

between her mes-

sages. Such pairwise superpositions of possible words cannot be
distinguished from the message words. Thus as malevolent Eve
observes the quantum channel, she runs the risk of damaging the
superpositions (by causing a collapse). At the receiving end hon-
est Bob, whom we assume is warned of the quantum decoys’ dis-
tribution, checks upon their integrity with a measurement. The
present chapter establishes, in the case of individual attacks, the
tradeoff between Eve’s information gain (her chances, if a mes-
sage word was sent, of guessing which) and the disturbance she
induces (Bob’s chances, if a quantum decoy was sent, to detect
tampering). Besides secure channel protocols, quantum decoys
seem a powerful primitive for constructing n-dimensional quan-
tum cryptographic applications. Moreover the methods employed
in this chapter should be of interest to anyone concerned with
information gain versus disturbance tradeoffs derivations.
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In this chapter we quantify the disturbance induced upon the uniform ensemble of n-dimensional

states {(1/n2, ρjk}, where j and k range from 1 to n, and ρjk stands for the density matrix of

pairwise superpositions (|j〉+i|k〉)(〈j|−i〈k|)
2 (note that when j = k this is simply the basis state

|j〉〈j|). When making use of non-orthogonal states this is no doubt a natural distribution to

consider, and thus an important building block for n-dimensional cryptographic protocols.

Its π/2 phase renders the ‘pairing ensemble’ indistinguishable from the canonical ensemble

{(1/n, |j〉〈j|)}, for they both have density matrix I/n (the maximally mixed state). This fea-

ture enables the honest parties to hide the pairwise superpositions within classical messages

as a means of securing those, i.e. to use the superpositions as ‘quantum decoys’. In such

situations the eavesdropper seeks to gather information about the classical messages, not the

decoys. Therefore we quantify her information gain with respect to the canonical ensemble

{(1/n, |j〉〈j|)}, as suits the following scenario best:

Scenario 7.1 (Quantum decoys) Consider a quantum channel for transmitting n-dimensional

systems having canonical orthonormal basis {|j〉}. Suppose Alice’s message words are drawn

from the canonical ensemble {(1/n, |j〉〈j|)}j=1...n, whilst her quantum decoys are drawn from

the pairing ensemble {(1/n2, ρjk}j,k=1...n, with ρjk = (|j〉+i|k〉)(〈j|−i〈k|)
2 . Alice sends Bob, over

the quantum channel, either a message word or a decoy. Suppose that Bob, whenever a quan-

tum decoy ρjk gets sent, measures

{Pintact =
( |j〉 + i|k〉√

2

)(〈j| − i〈k|√
2

)
, Ptamper = I − Pintact} (7.1)

so as to check for tampering. Suppose Eve is eavesdropping the quantum channel, and has an

interest in determining Alice’s message words.

Little is known as we write these lines regarding cryptographic protocols involving n-dimensional

quantum systems (where n is left to vary), save for two interesting articles [3][11] (these focus

on mutually unbiased states). We hope our main result will prove a useful contribution to

this line of research:

Claim 7.1 (Statement of security) Referring to Scenario 1, suppose Eve performs an in-

dividual attack such that, whenever a message word gets sent, she is able to identify which

with probability G (mean estimation fidelity).

Then, whenever a quantum decoy gets sent, the probability D (induced disturbance) of Bob

detecting the tampering is bounded below under the following tight inequality:

D ≥ 1

2
− 1

2n

(√
G +

√
(n − 1)(1 − G)

)2
(7.2)

For optimal attacks G varies from 1
n to 1 as D varies from 0 to 1

2− 1
2n .

The remainder of this chapter is dedicated to proving the above statement. The method is

highlighted, as it seems applicable to several similar problems in quantum cryptography.
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In Section 7.1 we provide the necessary mathematical results required to prove Claim 7.1.

We recall, in particular, a key inequality upon eigenvalues of measurement elements (first

obtained in [5]), as well as a powerful formula arising from the state-operator correspondence

(first obtained in Chapter 5). Section 7.2 exploits the latter formula to express the probability

of Bob not detecting the tampering (induced fidelity) as a linear functional upon the positive

matrix corresponding to Eve’s attack. This brings about crucial simplifications, finally placing

us in a position to apply the inequality. We do so in Section 7.3, and prove our claim.

7.1 Mathematical methods

In this section we let {|i〉} and {|j〉} be orthonormal basis of Cm and Cn respectively, which

we will refer to as canonical.

The following result is a minor generalization of some steps by Banaszek [5].

Proposition 7.1 (Inequality) Consider a vector of complex numbers v = (ajr)jr together

with a function j : N −→ N. We then have:

f ≤
(√

g +
√

(m − 1)(n − g)
)2

With

g =
∑

r

|aj(r)r|2

f =
∑

r

|
m−1∑

j=0

ajr|2

And subject to ||v||2 = n.

Proof. Further let

vj = (ajr)r ; vj(r)
= (aj(r)r)r

v′j = (ajr)r with r such that j(r) 6= j

and notice that g = ||vj(r)
||2, f =

∑
ij vi.v

∗
j . The Cauchy-Schwartz inequality yields:

vi.v
∗
j ≤ ||vi|| ||vj ||

f ≤ (
m−1∑

j=0

||vj ||)2

f ≤ (
√

g +
m−1∑

j=0

||v′j ||)2 (7.3)
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The quadratic/arithmetic mean inequality yields:

1

m − 1

m−1∑

j=0

||v′j || ≤

√√√√ 1

m − 1

m−1∑

j=0

||v′j ||2

≤
√

n − g

m − 1
(7.4)

Combining Inequalities (7.3) and (7.4) yields the lemma. 2

For convenience we now remind the reader of some important definitions and results from

the state-operator correspondence. These were largely developed in Chapter 5, where all the

proofs can be found. First let us relate vectors of Cm⊗Cn to endomorphisms from Cn to Cm.

Isomorphism 7.1 The following linear map

ˆ : Cm ⊗ Cn → End(Cn → Cm)

A 7→ Â
∑

ij

Aij |i〉|j〉 7→
∑

ij

Aij |i〉〈j|

where i = 1 . . . m and j = 1 . . . n, is an isomorphism taking mn vectors A into m × n

matrices Â.

Second we relate elements of Mmn(C) to linear maps from Mn(C) to Mm(C).

Isomorphism 7.2 The following linear map:

̂ : Cmn ⊗ (Cmn)† −→ End(Mn(C) → Mm(C))

$ 7−→ [$̂ : ρ 7→ $̂(ρ)]

such that AB† 7−→ [ρ 7→ ÂρB̂†] i.e.
∑

ijkl

AijB
∗
kl|i〉|j〉〈k|〈l| 7−→ [ρ 7→

∑

ijkl

AijB
∗
kl|i〉〈j|ρ|l〉〈k| ]

where i, k = 1 . . . m and j, l = 1 . . . n, is an isomorphism.

Definition 7.1 A linear map Ω : Mm(C) → Mn(C) is Completely Positive-preserving if and

only if for all r and for all ρ in Herm+
mr(C), (Ω ⊗ Ir)(ρ) belongs to Herm+

nr(C).

Completely Positive-preserving linear maps from quantum states in Herm+
n (C) to quantum

states in Herm+
m(C) are exactly those which are physically allowable. They correspond, via

Isomorphism 7.2, to quantum states in Herm+
mn(C):

Theorem 7.1 [13] The linear operation $̂ : Mn(C) → Mm(C) is Completely Positive-

preserving if and only if $ belongs to Herm+
mn(C).
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Definition 7.2 A linear map $̂ : Mn(C) → Mm(C) is Trace-preserving if and only if for all

ρ in Mn(C), Tr(Ω(ρ)) = Tr(ρ).

Completely Positive-preserving linear maps having unit probability of occurrence on every

input quantum state are exactly those which are Trace-preserving. They correspond, via

Isomorphism 7.2, to quantum states in Herm+
mn(C) verifying

Tr1($) = In. (7.5)

Proposition 7.2 (State-operator formula) Let $̂ a linear map from Mn(C) to Mm(C)

and σ, ρ two elements of Mn(C). We have:

Tr
(
σ$̂(ρ)

)
= Tr

(
(σ ⊗ ρt)$

)

As with many quantum cryptographic problems our analysis will require a careful optimization

of the fidelity induced by a quantum operation $̂. By means of the above formula we shall

be able to write the induced fidelity as a linear functional upon $. This step is crucial to the

next section (Lemma 7.3).

7.2 Preliminary calculations

The purpose of these calculations is to express Eve’s information gain and induced disturbance

in terms of the eigenvalues of her measurement elements.

7.2.1 Information gain

There exists several well-motivated manners in which to quantify Eve’s information gain. The

one we shall adopt focuses on her ability to make a guess after the measurement. Compared

with the Shannon mutual entropy we used in the previous chapter, the mean estimation

fidelity is advantageously close in nature to the notion of disturbance.

Definition 7.3 (Mean estimation fidelity) The mean estimation fidelity of a generalized

measurement {Âr} with guesses {|ψr〉} w.r.t to an ensemble {(pi, |φi〉)} is defined by:

G =
∑

r,i

p(r, i)|〈φi|ψr〉|2

=
∑

r,i

pi〈φi|Â†
rÂr|φi〉Tr(|φi〉〈φi|ψr〉〈ψr|)

The mean estimation fidelity is to be understood as the average fidelity between the measurer’s

guess knowing outcome r occurred (the |ψr〉’s) and the ith state which was indeed originally

sent to him (the |φi〉’s).
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Notice it is justified to consider that Eve’s preferred attack is a generalized measurement. In

general she could perform a quantum operation, which leaves her the possibility to regroup

several measurement outcomes into one likelier outcome. But there is no information to be

gained by ignoring the break-up of the likelier measurement outcome. In fact this would

simply force some of the |ψr〉’s to be equal: the induced disturbance can only be made worse.

In our scenario Eve gathers information about the canonical ensemble {(1/n, |j〉)}j=1...n, for

which one obtains

G =
1

n

∑

r

Tr
(
〈j|Â†

rÂr|j〉 |j〉〈j|ψr〉〈ψr|
)

Clearly Eve’s optimal guess knowing outcome r occurred is |j(r)〉 such that 〈j(r)|Â†
rÂr|j(r)〉 =

maxj〈j|Â†
rÂr|j〉.

As a consequence

G =
1

n

∑

r

〈j(r)|Â†
rÂr|j(r)〉

=
1

n

∑

r

Tr
(
Âr|j(r)〉〈j(r)|Â†

r

)

=
1

n

∑

r

Tr
(
Id⊗|j(r)〉〈j(r)|ArA

†
r

)

where we applied Proposition 7.2. This yields:

Lemma 7.1 (Estimation as a linear functional) Let $̂ ≡ {Âr} be a generalized measure-

ments with best guess |j(r)〉, and $ ≡ {Ar} its corresponding quantum state.

Further let AC =
1

n

∑

r

Id⊗|j(r)〉〈j(r)|⊗|r〉〈r|

With j(r) such that 〈j(r)|Â†
rÂr|j(r)〉 = maxj〈j|Â†

rÂr|j〉.
Then the mean estimation fidelity of $̂ with respect to the canonical ensemble is given by

G =
∑

r

Tr
(AC (Ar⊗|r〉)(Ar⊗|r〉)†

)
. (7.6)

As we have seen the generalized measurement is equivalently described, using Isomorphism

7.1, by {Ar}, a set of non-zero non-normalized n2-dimensional vectors. Further consider the

larger vector v = (Aijr)ijr, i.e. with r itself an index of the complex components. The trace-

preserving condition upon the generalized measurement is easily seen to imply that ||v||2
should be equal to n. From Lemma 7.1 it is clear that when seeking an upper bound for G

under this fixed norm constraint, we may assume v to take the form v = (Ajjr)jjr, because

of the identity matrix on the first subsystem of AC. As we shall explain in subsection 7.2.2

this can be done at no cost for the mean induced fidelity. This way we reach the following
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Lemma:

Lemma 7.2 (Information) Consider a generalized measurement {Âr},
∑

r Â†
rÂr = Id, Âr

diagonal for all r, acting upon an n-dimensional system. Then the mean estimation fidelity

w.r.t the canonical ensemble verifies

G ≤ 1

n
g

with g =
∑

r |Aj(r)j(r)r|2 and j(r) such that |Aj(r)j(r)r|2 = maxj |Ajjr|2.

7.2.2 Disturbance

The notion of disturbance refers to Bob’s chances of detecting Eve’s alteration of the state

originally sent. For this purpose Bob can, at best, project the received state upon the span of

the original state. Thus the disturbance verifies D = 1 − F , where F is the induced fidelity.

Definition 7.4 (Induced fidelity) The fidelity induced by a quantum operation $̂ upon an

ensemble {(pi, |φi〉)} is defined by:

F =
∑

i

piTr(|φi〉〈φi|$̂(|φi〉〈φi|))

The induced fidelity is to be understood as the average fidelity between the output of the

quantum operation (the $̂(|φi〉〈φi|)’s) and its input (the |φi〉〈φi|’s). A straightforward ap-

plication of Proposition 7.2 yields: (with ∗ denoting componentwise complex conjugation as

usual)

F =
∑

i

piTr
((
|φi〉〈φi|⊗|φ∗

i 〉〈φ∗
i |

)
$
)

(7.7)

In our scenario Eve is tested on the pairing ensemble {(1/n2, ρjk}j,k=1...n, with ρjk = (|j〉+i|k〉)(〈j|−i〈k|)
2 ,

for which one obtains:

4 ρjk⊗ρ∗jk = |jj〉〈jj| + |jj〉〈kk| + i|jj〉〈jk| − i|jj〉〈kj|
+ |kk〉〈jj| + |kk〉〈kk| + i|kk〉〈jk| − i|kk〉〈kj|
− i|jk〉〈jj| − i|jk〉〈kk| + |jk〉〈jk| − |jk〉〈kj|
+ i|kj〉〈jj| + i|kj〉〈kk| − |kj〉〈jk| + |kj〉〈kj|

ρjk⊗ρ∗jk + ρkj⊗ρ∗kj =
1

2

(
|jj〉 + |kk〉

)(
〈jj| + 〈kk|

)

+
1

2

(
|jk〉 − |kj〉

)(
〈jk| − 〈kj|

)

∑

jk

ρjk⊗ρ∗jk =
1

4

∑

jk

((
|jj〉+|kk〉

)(
〈jj|+〈kk|

)
+

(
|jk〉−|kj〉

)(
〈jk|−〈kj|

))
(7.8)
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We now proceed to express Equation (7.8) in terms of projectors. Regarding the subspace of

repeated indices we observe that:

∑

jk

(
|jj〉+|kk〉

)(
〈jj|+〈kk|

)
= 2

∑

jk

(
|jj〉〈jj| + |jj〉〈kk|

)

= 2n
∑

j

|jj〉〈jj| + 2
( ∑

j

|jj〉
)( ∑

j

〈jj|
)

As regards the subspace of non-repeated indices the vectors |jk〉 − |kj〉 are already orthog-

onal to each other, so long as we maintain j < k. Combining our newly found spectral

decomposition with Equation (7.7) yields:

Lemma 7.3 (Fidelity as a linear functional) Let $̂ be a quantum operation, and $ its

corresponding quantum state.

Further let

£ =
1

2n
Prep +

1

2n
PβPrep +

1

n2

∑

j<k

( |jk〉 − |kj〉√
2

)(〈jk| − 〈kj|√
2

)
Pnonrep

With Prep =
∑

j

|j〉〈j| ⊗ |j〉〈j| Pnonrep = I−Prep

|β〉 =
1√
n

∑

j

|jj〉 and Pβ = |β〉〈β|

Then the fidelity induced by $̂ upon the pairing ensemble is given by

F = Tr(£ $). (7.9)

Using Theorem 7.1 $ is positive and may be thus be written $ =
∑

ArA
†
r, with {Ar} a set of

non-zero non-normalized n2 vectors. From Lemma 7.3 it is clear that, when seeking an upper

bound for F , we may assume all our Ar to lie in the subspace of projector Prep. In other

words Ar =
∑

j λr
j |jj〉. We then have, using Lemma 7.3 still:

F =
1

2n

∑

rj

(λr
j)

2 +
1

2n2

∑

rjk

λr
jλ

r
k

Corresponding to a measurement {Âr}, Âr =
∑

j λr
j |j〉〈j|,

∑
rj(λ

r
j)

2 = n under Equation

(7.5). This way we reach the following Lemma:

Lemma 7.4 (Disturbance) Consider a generalized measurement {Âr},
∑

r Â†
rÂr = I act-

ing upon an n-dimensional system. Then the disturbance induced upon the pairing ensemble

verifies

D ≥ 1

2
− 1

2n2
f
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Figure 7.1: Decoys’ information gain versus disturbance. In grey n=4, in black n=50.

with f =
∑

r |
∑n−1

j=0 Ajjr|2.

7.3 Optimization and conclusion

We are now set to prove Claim 7.1. From Proposition 7.1 we immediately have

1

2
− 1

2n2
f ≥ 1

2
− 1

2n2

(√
g +

√
(n − 1)(n − g)

)2
.

Applying Lemma 7.2 and 7.4 yields

D ≥ 1

2
− 1

2n2

(√
nG +

√
n(n − 1)(1 − G)

)2

which in turn is nothing but Inequality (7.2). A plot of the curve is shown in Figure 7.3. As

was the case with the continuous uniform ensemble [5] the generalized measurement family

{Âr}, Âr =
√

G|r〉〈r| +
√

1 − G

n − 1

(
I − |r〉〈r|

)

saturates the tradeoff for any fixed G ∈ [1/n, 1]. This may come as no surprise since the

corresponding n2 vectors Ar verify

Ar = λ|rr〉 + µ|β〉, λ≡
√

G−
√

1 − G

n − 1
, µ≡

√
1 − G

n − 1
.

In other words these unit vectors {Ar} can be thought of as superpositions of Eve’s two ex-

treme attacks: on the one hand λ = 1 yields the projective measurement {|r〉〈r|} maximizing

the mean estimation fidelity, whilst on the other hand µ = 1 yields the ‘do nothing’ measure-

ment {I} minimizing the disturbance. Viewed from the perspective of Lemma 7.3, Eve, as

she seeks to be more conservative, increases her component in the subspace of Pβ .
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The generalized measurement family ‘measure {|r〉〈r|} with probability p else leave it alone’

does not saturate the tradeoff, but linear combinations of pure states corresponding to mea-

surement elements do. Stated in this simple manner, our result suggests the state-operator

correspondence method developed in this paper could establish itself as a very natural pro-

cedure for deriving quantum cryptographic security bounds in general.

We believe there could be many quantum cryptographic applications of quantum decoys.

The next chapter develops their use for the purpose of blind computation.



Chapter 8

Blind quantum computation

One began to hear it said that World War I was the chemists’ war,
World War II was the physicists’ war, and World War III (may it never come)

will be the mathematicians’ war.

—Philip J. Davies

I do not know how World War III will be fought,
but I do know how World War IV will: with sticks and stones.

—Albert Einstein

We investigate the possibility of having someone carry out the
work of executing a function for you, but without letting him learn
anything about your input. Say Alice wants Bob to compute some
well-known function f upon her input x, but wants to prevent Bob
from learning anything about x. The situation arises for instance
if client Alice has limited computational resources in comparison
with mistrusted server Bob, or if x is an inherently mobile piece
of data. Could there be a protocol whereby Bob is forced to com-
pute f(x) blindly, i.e. without observing x? We provide such a
blind computation protocol for the class of functions which admit
an efficient procedure to generate random input-output pairs, e.g.
factorization. The setting is quantum, the security is uncondi-
tional, the eavesdropper is as malicious as can be.
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In the traditional secure two-party computation scenario[65, 1] Alice has secret input x, Bob

has secret input y, and both of them wish to compute f(x, y). The function f is of course well-

known to the two parties; the usual example is that of two millionaires who wish to compare

their wealth without disclosing how much they own[65]. Most protocols for secure two-party

computation are symmetric with respect to the computing power each party should carry

out during the execution. In these scenarios, if Alice knew Bob’s input y she could compute

f(x, y) on her own without having to invest more computing power. Entering a secure two-

party computation together with Bob will not help in diminishing Alice’s computing power

needed to evaluate f . In fact, most implementations require both Alice and Bob to invest

more computing power than what is needed for the mere evaluation of f .

Unlike secure two-party computation, blind computation is fundamentally asymmetric.

Alice is the only party with a secret input x, Bob is the only one able to compute f . Alice wants

Bob to compute f(x) without him learning too much about x. Thus an obvious motivation for

Alice to enter a blind quantum computation together with Bob is to unload the computational

task of computing f without having to compromise the privacy of her input. One could easily

imagine this occurring in a Grid architecture, or in any client-server relation with a mistrusted

server retaining the computational power. To make things more precise, suppose there were

only a handful of fully operational large-scale quantum computers in the world, and some

hungry academic decided to make use of her timeshare as scientist to crack some Swiss bank’s

RSA private key x. The hungry academic (Alice) will surely want to keep x secret from

the authorities handling the quantum computer (Bob), so that she does not get suspected

when subsequent international money transfers come to top up her meager income. But there

may be other reasons to enter a blind computation protocol than mere computational power

asymmetry. For instance Bob may possess some trapdoor information about the otherwise

well-known function f . Or perhaps x may represent some mobile agent’s code which ought to

be protected against the malicious host upon which it runs. Others may see blind quantum

computation as a somewhat philosophical issue: Is it possible to carry out some work for

someone whilst being prevented from knowing what the work consists in?

In the classical setting, blind computation has first been studied by Feigenbaum [19]. It

was shown that for some functions f , an instance x can be encrypted by z = Ek(x) in such

a way that Alice can recover f(x) efficiently from k and f(z). The construction cannot be

extended easily to general classes of functions. In particular, blind computation of the discrete

logarithm function (DLF) was shown possible but no blind computation of the RSA factoring

function (FACF) is known. Moreover Abadi, Feigenbaum, and Kilian [2] have shown that

no NP-hard problem can be computed blindly unless the polynomial-time hierarchy collapses

at the third level, and this seems to remain true when the privacy of Alice’s input is only

partial. Even when computational assumptions are invoked [52], none of the currently known
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classical blind computation protocols applies to general classes of functions. Rather they take

advantage of specific algebraic properties of particular functions. These constructions rely

upon encryption that are, in some sense, homomorphic with respect to function f . Clearly,

very natural candidates for f are not known to have this property like for FACF. It is not

surprising that such stringent requirements do not necessarily hold when Bob is running a

quantum computer.

In this chapter as in[19, 2], we are mainly concerned with information-theoretic security.

That is, although we allow Bob to learn some Shannon information about Alice’s input x,

we show that if Bob gets too much information then he will be detected by Alice with high

probability. Any server Bob who wants to remain in business should clearly avoid such a

detection. Our goal consists in finding protocols for blind computation for which a good

tradeoff between Bob’s ability of being detected and the amount of Shannon information

about Alice’s input can be established. Almost privacy was recently studied by Klauck [36] in

a two-party computation setting which differs from the asymmetric scenario imposed by blind

computations. Moreover, the security was only considered with respect to passive adversaries.

We want our solution to apply to a wider class of functions than the one considered in the

classical setting while being resistant to all adversaries, not just passive ones. As far as we

can tell, blind quantum computation has not been studied as such so far.

In Section 8.1 we present the basic ideas of our blind quantum computation protocol, as

well as the reasons which limit their use to a certain class of function. In Section 8.2 we

review and adapt a recent result in the information versus disturbance tradeoff literature. In

Section 8.3 we formalize the protocol and give a proof of its security. We conclude in Section

8.4 and mention possible extensions.

8.1 Principles of a solution

Let us now explain the basic principles underlying our blind quantum computation protocol.

Suppose Alice wants Bob to compute f(x) whilst keeping x secret. Moreover suppose Bob

possesses a quantum computer which implements f , i.e. he is able to implement a unitary

transform U such that U |q〉= |q〉|f(q)〉 for all input q. In order to achieve her purpose Alice

could hide her true input |x〉 amongst superpositions of other potential inputs |q〉+i|q′〉√
2

and

send all this to Bob so that he executes U . Now if Bob attempts a measure so as to determine

|x〉 he will run the risk of collapsing the superpositions. Alice may detect such a tampering

when she retrieves her results. The above suggestion has a weakness however: Alice is not

returned |q〉+i|q′〉√
2

, but

U
|q〉 + i|q′〉√

2
=

|q; f(q)〉 + i|q′; f(q′)〉√
2

,
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the result of Bob’s computation upon the superposition Alice had sent. Since Alice does not

want to compute f herself she is in general unable to check upon the integrity of such states.

There are many computational problems, however, where this need not be a problem.

For example say f takes composite numbers into the list of their integer factors. Then Alice

can easily (at the cost of a few multiplications) prepare several input-output pairs {(q, f(q))}.
Thus if Alice hides her true input |x〉 amongst superpositions |q〉+i|q′〉√

2
generated in this manner,

she will later be able to check whether |q;f(q)〉+i|q′;f(q′)〉√
2

are indeed being returned. Formally

the idealized class of functions for which our protocol will work is defined as follows:

Definition 8.1 (Random verifiable functions) Let S and S′ denote two finite sets. A

function f : S → S′ is random verifiable if and only if there exists, for all N , an efficient

probabilistic process which generates N input-output pairs {(q, f(q))} and such that the inputs

(the q’s) are uniformly distributed in S.

There are several promised problems for which we can define functions that are random

verifiable. Consider the language RSA-composite which contains natural numbers of a fixed

size that can be expressed by the product of two primes of the same size. The function f that

returns the prime factors is also random verifiable. In this case, f can be computed efficiently

on a quantum computer but not, as far as we know, on a classical computer. Another example

can be obtained from the graph isomorphism problem. Let Le,v be the set of all pairs of

isomorphic graphs with e edges and v vertices. We define function f : Le,v 7→ Se, where Se is

the set of all permutations among v elements, as f(G0, G1) = σ such that σ(G0) = G1. It is

easy to verify that f is random verifiable. The following efficient classical computation does

the job:

• Pick a random permutation σ ∈ Se,

• Generate a random graph G0 with e edges and v vertices,

• Output ((G0, σ(G0)), σ).

Although f is random verifiable by an efficient classical algorithm, it is not known whether

even a quantum computer can evaluate f efficiently.

In this chapter, we provide a blind quantum computation protocol for random verifiable

functions together with a thorough security analysis. The security is unconditional, it is

expressed in information theoretical terms and relies upon the laws of physics only. As was

hinted in this section our analysis will crucially depend upon the tradeoff between Bob’s

information gain about Alice’s true input (a canonical basis state) and the disturbance he

induces upon superpositions of potential inputs (pairwise superpositions of canonical basis

states).
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8.2 Information gain versus disturbance tradeoff

In order to construct a blind quantum computation protocol we needed to quantify the dis-

turbance upon pairwise superpositions of n-dimensional canonical basis states, as induced

when Bob seeks to learn information about the canonical basis. This is precisely what was

achieved with Claim 7.1 of the preceding chapter. For convenience we now recall these results,

rephrasing them in terms of induced fidelity and modifying the name of the parties to suit

the present scenario.

Scenario 8.1 (Quantum decoys) Consider a quantum channel for transmitting n-dimensional

systems having canonical orthonormal basis {|j〉}.
Suppose Alice’s message words are drawn from the canonical ensemble {(1/n, |j〉)}j=1..n,

whilst her quantum decoys are drawn from the pairing ensemble {(1/n2, ρjk}j,k=1...n, with

ρjk = (|j〉+i|k〉)(〈j|−i〈k|)
2 . Alice sends, over the quantum channel, either a message word or a

decoy, which she later retrieves.

Whenever she sends a quantum decoy |j〉+i|k〉√
2

she later measures the retrieved system with

{Pintact =
( |j〉+i|k〉√

2

)( 〈j|−i〈k|√
2

)
, Ptamper = I − Pintact} so as to check for tampering.

Suppose Bob is eavesdropping the quantum channel, and has an interest in determining Alice’s

message words.
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Proposition 8.1 (Quantum decoys’ security) Referring to Scenario 8.1, suppose Bob

performs an individual attack such that, whenever a message word gets sent, he is able to

identify which with probability G (mean estimation fidelity).

Then, whenever a quantum decoy gets sent, the probability F (induced fidelity) of Bob’s tam-

pering not being detected by Alice is bounded above under the following tight inequality:

F ≤ 1

2
+

1

2n

(√
G +

√
(n − 1)(1 − G)

)2
(8.1)

For optimal attacks G varies from 1
n to 1 as F varies from 1 to 1

2 + 1
2n .

In Chapter 7 Proposition 8.1 was proven at the level of each individual transmission. In

other words every time Alice sends one decoy, and later retrieves it, Bob’s chances of not

being detected are less than F (G), as given by the right-hand-side of Equation (8.1). Here

G stands for the mean estimation fidelity Bob would gain if a message word had been sent

instead, and this was later announced to him.

However let us now imagine that scenario 8.1 gets repeated N times round, and Alice happens

to send only decoys. In general Proposition 8.1 does not allow us to deduce Bob’s chances of

not being detected at all, because the probabilities {p(Bob passing round i) = F (Gi)}i=1..N

may not be independent. Here Gi stands for the mean estimation fidelity Bob would gain if

a message word had been sent at round i instead.

However if Scenario 8.1 is repeated conditionally upon Alice’s measurement outcome we can

no longer have such correlations:

Lemma 8.1 (Interactive decoys’ security) Referring to Scenario 8.1 suppose

Step 0. Alice prepares a pool of N +1 quantum states consisting of one message word together

with N quantum decoys.

Step 1. Alice sends Bob one quantum state drawn at random amongst those remaining in the

pool.

Step 2. Alice awaits to retrieve the quantum state she sent.

Step 3. If Alice sent a quantum decoy she measures the retrieved system so as to check for

tampering. Whenever she detects such a tampering she stops.

Step 4. If the pool is empty Alice stops the protocol, else she proceeds again with Step 1.

Say the message word was sent at position p. Then the probability of Bob reaching round m

(1 < m ≤ N + 1) is bounded above under the following tight inequality:

p(Bob reaches m) ≤
m−1∏

i=1,i6=p

F (Gi) (8.2)

where Gi stands for Bob’s mean estimation fidelity, if p is later announced equal to i, about

the message word sent at round i.
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Proof: Suppose Bob’s attack is constituted of successive measurements each yielding him Gi

− where Gi stands for Bob’s mean estimation fidelity, if p is afterwards announced equal to

i, about the message word sent at round i. We can assume Bob’s optimal strategy is of this

kind since he cannot distinguish a message word from a quantum decoy until he gets caught

or the pool is empty (because both canonical ensemble and the pairing ensemble have density

matrix I/n). We proceed to prove the Lemma by contradiction.

Suppose p(Bob reaches m) >
∏m−1

i=1,i6=p F (Gi). Then there exists a k for which

p(Bob reaches k) ≤
k−1∏

i=1,i6=p

F (Gi) and p(Bob reaches k+1) >
k∏

i=1,i6=p

F (Gi).

For such a k we thus have

p(Bob reaches k+1|Bob reaches k) > F (Gk). (8.3)

In other words Bob, on the kth round, is capable of collecting mean estimation Gk about a

message word whilst remaining undetected with probability more than F (Gk) upon a quan-

tum decoy, which is impossible. For instance say Bob now simulates the scenario in Lemma

8.1 until such a round k is reached, and then enters Scenario 8.1 with Alice. If Alice sends a

message word Bob obtains mean estimation fidelity Gk. But if Alice sends a quantum decoy,

Bob, according to Equation (8.3), remains undetected with probability strictly superior to

F (Gk). This contradicts Proposition 8.1. 2

Lemma 8.2 (Concavity of circular products) Consider f : [0, 1] → [0, 1] a concave,

continuous function and {xi}i=1...N+1 a set of real numbers in the interval [0, 1].

Suppose the sum t =
∑N+1

i=1 xi is fixed. We have

1

N + 1

N+1∑

p=1

( i=N+1∏

i=1,i6=p

f(xi)
)
≤ f

( t

N + 1

)N

.

Proof: By definition of concavity one has

1

2

(
f(x1) + f(x2)

)
≤ f

(x1 + x2

2

)
(8.4)

and f(x1)f(x2) ≤ f
(x1 + x2

2

)2

, (8.5)

where the latter equation trivially derives from f(x1)f(x2) ≤
(f(x1)+f(x2)

2

)2
. Let us now show

that

1

N + 1

N+1∑

p=1

i=N+1∏

i=1,i6=p

f(xi) ≤
1

N + 1

N+1∑

p=1

i=N+1∏

i=1,i6=p

f(yi), (8.6)
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where y1 = y2 = x1+x2
2 and yi = xi for i = 3 . . . N + 1. This result is in fact obtained by

combining (summing) two inequalities:

(
f(x1) + f(x2)

)N+1∏

i=3

f(xi) ≤
(
f(y1) + f(y2)

)N+1∏

i=3

f(yi)

f(x1)f(x2)
N+1∑

p=3

i=N+1∏

i=3,i6=p

f(xi) ≤ f(y1)f(y2)
N+1∑

p=3

i=N+1∏

i=3,i6=p

f(yi)

where former stems from Equation (8.4) and f(x) positive, whilst the latter stems from

Equation (8.5) and f(x) positive.

Equation (8.6) expresses the fact that, whenever two elements xi and xj , i 6= j are replaced

by their mean, the value of

π(x) ≡ 1

N + 1

N+1∑

p=1

( i=N+1∏

i=1,i6=p

f(xi)
)

is increased. Now let us define {x(k)} a sequence of vectors such that x(1) = (x1, x2, . . . , xN+1),

and x(k) is formed from x(k−1) by replacing both the largest and the smallest component by

their mean. As k goes to infinity this sequence of vectors tends to x(∞) = ( t
N+1 , t

N+1 , . . .).

By Equation (8.6) we have {π(x(k))} an increasing sequence of real numbers. As k goes to

infinity, and since π(x) is continuous in x, this sequence of real numbers tends to

π(x(∞)) = f
( t

N + 1

)N
.

This limit must therefore provide, for all x having components summing to t, a tight upper

bound on the value of π(x). 2

8.3 Protocol and Security

We are now set to give our blind quantum computation protocol:

Protocol 8.1 (Interactive version) Alice wants Bob to compute f(x) whilst keeping her

input x secret. Here f designates a random verifiable function implemented on a quantum

computer by a unitary evolution U .

Step 0. Alice efficiently computes 2N random input-solution pairs (q, f(q)) and prepares a

pool of N +1 quantum states consisting of her true input |x〉 together with N quantum decoys
|q〉+i|q′〉√

2
(or just |q〉 if q happens to be equal to q′).

Step 1. Alice sends Bob one quantum state |ψ〉 drawn at random amongst those remaining in

the pool.
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Step 2. Bob supposedly computes U |ψ〉 and sends the result back to Alice.

Step 3. If |ψ〉 was a quantum decoy Alice measures the retrieved system with

{
Pintact =

1

2

(
|q f(q)〉 + i|q′f(q′)〉

)(
〈q f(q)| − i〈q′f(q′)|

)
; Ptamper = I − Pintact

}
,

so as to check for tampering. Whenever she detects such a tampering she stops. If on the

other hand |ψ〉 was her true input Alice reads off f(x).

Step 4. If the pool is empty Alice stops the protocol, else she proceeds again with Step 1.

The security of this protocol is rigorously described through the following claim.

Claim 8.1 (Statement of security) Referring to Protocol 8.1 suppose Bob has no a priori

information about Alice’s true input x. Moreover suppose Bob performs an attack such that

his mutual information about Alice’s true input x now verifies

I ≤ log(n) + log(G) , G ∈ [
1

n
, 1]

Then the probability D (induced disturbance) of Alice detecting Bob’s tampering is bounded

below under the following inequality:

D ≥ 1 − F (G)N

Proof: We prove that the claim holds for a weakened form of Protocol 8.1, where we add

(whenever Alice used to stop the protocol):

Step 5. Alice publicly announces the position in which she sent her true input |x〉, if she did.

Until this stage, however, Bob has no means of knowing at which round true input |x〉 was sent.

This is because we have assumed he has no a priori knowledge about the true input. In his view

the state was drawn from the canonical ensemble {(1/n, |j〉)}j=1..n, whilst the quantum decoys

were drawn from the pairing ensemble {(1/n2, ρjk}j,k=1...n (with ρjk = (|j〉+i|k〉)(〈j|−i〈k|)
2 ), but

the two are undistinguishable for they both have density matrix I/n. We are, therefore, in the

precise case of Lemma 8.1. Without loss of generality we can assume Bob’s attack yields him

mean estimation fidelity Gi about Alice’s true input whenever the position is later announced

equal to i.

First we give an upper bound upon Bob’s mutual information I about true input x,

expressed in terms of GT =
∑

p Gp. Say the true input is at position p and suppose, on the

one hand, that Bob’s tampering is undetected by Alice. In this situation Bob’s best chance

of guessing the true input is Gp (by definition) and thus his Shannon uncertainty Hp about
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Alice’s true input is bounded as follows

Hp ≡
∑

−p(x|Bob’s outcome) log(p(x|Bob’s outcome))

≥ −⌊ 1

Gp
⌋Gp log(Gp) − (1 − ⌊ 1

Gp
⌋Gp) log(1 − ⌊ 1

Gp
⌋Gp)

≥ − log(Gp).

The RHS of the last line is often referred to as the ‘min-entropy’ sometimes denoted H∞ and

is commonly used to bound uncertainties in the above manner (i.e. Shannon uncertainty is

always at least H∞). As a consequence Bob’s mutual information Ip verifies

Ip ≤ log(n) + log(Gp). (8.7)

Suppose, on the other hand, that Bob’s tampering is detected by Alice at round m. In this

situation Bob may or may not have accessed the true input, and thus his uncertainty about

Alice’s true input is bounded as follows

(m < p) Hp ≥ log(n) ; (m ≥ p) Hp ≥ − log(Gp)

As a consequence Bob’s mutual information still verifies Inequality (8.7). Averaging over all

possible positions p = 1 . . . N + 1 Bob’s mutual information verifies

I =
N+1∑

p=1

1

N + 1
Ip ≤ log(n) +

N+1∑

p=1

1

N + 1
log(Gp)

≤ log(n) + log(
GT

N + 1
)

where the second line was obtained using the concavity of x 7→ log(x).

Second we give an upper bound upon the probability p(undetected) that Bob’s tampering

remains undetected by Alice, again expressed in terms of GT . Lemma 8.1 ensures that an

optimal strategy for Bob is to make a series of individual, independent measurement as in

Proposition 8.1, for this would saturate Inequality 8.2 whatever the position of the true input.

Suppose Bob adopts this strategy and say the true input is at position p. According to Lemma

8.1, Bob is undetected with probability

p(undetected|p) ≤
N+1∏

i=1,i6=p

F (Gi).
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Let us now average the above over all possible positions p = 1 . . . N +1. The probability that

Bob’s tampering remains undetected by Alice verifies

p(undetected) =
1

N + 1

N+1∑

p=1

p(undetected|p) ≤ 1

N + 1

N+1∑

p=1

( N+1∏

i=1,i6=p

F (Gi)
)

≤ F
( GT

N + 1

)N

where the last line was obtained using Lemma 8.2 upon the concave, continuous function

x 7→ F (x).

By letting G = GT

N+1 we recover our claim. 2

Protocol 8.1 requires N +1 communications between Alice and Bob. One could suggest a

modification whereby Alice would send Bob her whole pool (as prepared in Step 0 ), and later

proceed to check upon the integrity of each element of the pool which Bob returns, apart

from her true input. Formally this yields the following protocol:

Protocol 8.2 (Non-interactive version) Alice wants Bob to compute f(x) whilst keeping

her input x secret. Here f designates a random verifiable function implemented on a quantum

computer by a unitary evolution U .

Step 0. Alice efficiently computes 2N random input-solution pairs (q, f(q)) and prepares a

pool of N +1 quantum states consisting of her true input |x〉 together with N quantum decoys
|q〉+i|q′〉√

2
(or simply |q〉 if q happens to be equal to q′).

Step 1. Alice sends Bob the large quantum state
⊗N+1

i=1 |ψi〉 constituted of a random permu-

tation of all elements of the pool.

Step 2. Bob supposedly computes
⊗N+1

i=1 U |ψi〉 and sends the result back to Alice.

Step 3. For each location i, if |ψi〉 was a quantum decoy Alice measures

{
Pintact =

1

2

(
|q; f(q)〉 + i|q′; f(q′)〉

)(
〈q; f(q)| − i〈q′; f(q′)|

)
; Ptamper = I − Pintact

}
.

so as to check for tampering. If on the other hand |ψi〉 was her true input Alice reads off f(x).

When Bob is restricted to individual attacks (non-coherent attacks, i.e. Bob measures each

quantum state in the pool individually) then Claim 8.1 holds also for Protocol 8.2. We omit

the proof of this since it is similar, and in fact simpler than the one given for Protocol 8.1.

This is largely because we need not rely upon Lemma 8.1 when assuming individual attacks:

the probabilities F (Gi) of Bob’s tampering not being detected by Alice as she checks upon

location i are independent of each other by definition in this case.



138 CHAPTER 8. BLIND QUANTUM COMPUTATION

8.4 Concluding remarks

We have investigated the possibility of having someone else carrying out the evaluation of

a function for you without letting him learn anything about your input. We gave a blind

computation protocol for the class of functions which admit an efficient procedure to generate

random input-output pairs. The protocol relies upon quantum physical information gain

versus disturbance tradeoffs to achieve unconditional security against the most general attack:

whenever the server gathers log(n) + log(G) bits of Shannon information about the input,

he must get caught with probability at least 1 − F (G)N (where n denotes the size of the

input and N is a security parameter). Moreover the server cannot distinguish a weary client

who uses the blind computation protocol (sending one true input amongst N decoys) from

a normal client who simply makes repeated use of the server (sending N + 1 true inputs).

Thus if the server wanted to deny his services to suspected users of the protocol, he would

also have to refuse the normal clients.

Our protocol could be improved in several directions.

In terms of costs one may hope to reduce the set of quantum gates needed by Alice to

prepare her transmissions [12]; lower the size of the transmissions; lower the number or rounds

required. We leave it an open problem to find the security properties of the non-interactive

version of our protocol when Bob is allowed coherent attacks.

In terms of functionality one may wish to achieve tamper prevention rather than tamper

detection (Protocol 8.1 provides this to some degree but was not analyzed as such) or to

extend the class of functions admitting a blind computation protocol (identifying such a class

might have consequences in complexity theory [2]).
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Chapter 9

Achievements and Further research

I am satisfied with my life in the past years.
I have kept my good temper and do not take myself, nor others, too seriously.

—Albert Einstein

This conclusion interprets our main results in a more discursive and speculative manner than

was done previously. For this purpose the once cohesive thesis is separated into four main

themes of investigation, all of which may follow their own path in future work.

9.1 On quantum theory with real vector spaces

Geometrical representations constitute a privileged manner in which to provide intuition

about a theory. When phrasing axioms and concepts in terms of real vectors, these are

brought one step closer to our human experience of space and time. For some theories this

can be done without sacrificing mathematical rigour. For quantum theory, so central to mod-

ern physics and yet so hard to comprehend in its phenomena, the motivation to do so remains

enormous.

Achievements. One of the most intriguing features of quantum theory is, perhaps, the fact that

measurements must modify the state of the observed system. In this thesis we have extended

the most perfected available representation of quantum states and quantum operations (the

generalized Bloch sphere) to encompass this ‘post-selection’, ‘collapse of the wavefunction’,

phenomenon. But because the effect of a measurement knowing that some outcome occurred

is a non trace-preserving quantum operation (i.e. it does not in general occur with probability

one on every input state), the most elegant approach for our purpose was to also allow for

non-normalized quantum states (i.e. which do not necessarily have probability one). Thus in

our representation quantum states map into a subcone of a Minkowski cone in E1,d2−1,1, whose

vertical cross-sections are nothing but generalized Bloch spheres. This conal representation

has, it turns out, several desirable properties. Pure states map into light-like vectors, unitary
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operations correspond to orthogonal transforms about the axis, and positive operations are

represented by a subset of the real symmetric positive matrices. The latter can also be drawn

in the cone, thus enabling us to represent the measurement element themselves.

In the case of a qubit we provided explicit formulae for the coordinates of a state after a

non trace-preserving quantum operation, or for the scalar product of two post-measurement

states. Moreover this four-vector representation of two-dimensional quantum systems took a

whole new meaning when we realized that each measurement element acts proportionally to

a special relativistic Lorentz transformation in Minkowski space. The rescaling introduced

turns out to bring null boosts to finite linear maps in a natural and unifying manner. Thus

we have successfully provided a rigorous space-time analogue to qubit quantum mechanics.

Further research. One may argue there are not so many of us with hands-on experience of

special relativity, so the question whether the correspondence between ‘observation of a quan-

tum system’ and ‘special relativistic change of inertial frame’ is truly a simplifying one, could

be labelled a matter of taste. Even so the correspondence may turn out to be a unifying one.

Quantum field theories successfully unify quantum theory and special relativity, through the

use of faithful unitary representations of Lorentz transformations plus translations upon the

set of pure quantum states allowed by the theory. Our correspondence suggests a physically

different approach instead, whereby Lorentz transformations could act non-unitarily upon the

set of non-normalized mixed states. These ideas deserve further investigation. Moreover, even

though our results suggest a complete real vector space formulation of quantum mechanics

is possible along these lines, much remains to be learnt about the geometry of n-dimensional

quantum states.

9.2 On quantum operations as quantum states

It is fair to say that the Jamiolkowski-Choi correspondence between quantum operations

(from Herm+
n (C) to Herm+

m(C) ), and quantum states (elements of Herm+
mn(C)), had so far

been reserved to only a handful of uses. The most remarkable of these was the provision

of a simplified proof to the Kraus operator sum representation theorem, thereby obtained

as a mere quantum operation equivalent of spectral decomposition upon states. But could

it possibly be the case that all properties of quantum states have an elegant translation in

terms of quantum operations? Or inversely, instead of calculating with quantum operations

and investigating their properties, could it possibly be simpler to work upon their quantum

state equivalents?

Achievements. In this thesis we have highlighted the central, transversal role of the state-

operator isomorphism in various issues of quantum information theory, by rederiving all the

main properties of quantum operations from those of quantum states. Persisting with this
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translation work we then provided two triangular decompositions for pure states of a bipartite

system, and two original tests on Completely Positive-preserving maps: one for extremality

in the set of Trace-preserving operations, the other regarding the factorizability or single op-

erator decomposition. These are particularly interesting in the sense that they do not depend

on the operator sum decompositions of these maps.

We also endowed quantum states with a semi-group structure stemming from the composition

law on quantum operations. The composition law defines a group when restricted to the set of

totally entangled (pure) states, and yields a group isomorphism between maximally entangled

(pure) states and SU(n). Similarly we showed that the set of quantum operations is stable

under component-wise product.

Finally we provided a number of useful formulae arising from the state-operator correspon-

dence. One of these will simplify those many mathematical problems in quantum cryptogra-

phy which require a careful optimization of the fidelities induced by a quantum operation, as

was illustrated later when tackling information gain versus disturbance tradeoffs.

Further research. The state-operator correspondence may be just a useful one, or one that also

carries a physical meaning. Consider for instance a large state $, its corresponding quantum

operation $̂, and a small state ρ = (M †M)t. One has $̂(ρ) = Tr2
(
(Idm ⊗ M)$(Idm ⊗ M †)

)
,

which seems to say a lot if one stares at it long enough.

9.3 On information gain versus disturbance tradeoffs

Quantum measurements modify the state of the observed system. This is a commonplace

about quantum theory, and this is the basic principle upon which quantum cryptography

relies in order to detect the malevolent eavesdropper. Yet in spite of its central role, the

tradeoff between how much information can be gained about a quantum system, and how

much disturbance this may cause to the quantum system, has only rarely been quantified.

These problems were judged difficult, and no general method was available.

Achievements. In this thesis we began by recovering geometrically the formula given by Fuchs

and Peres for the information gain versus disturbance, as it arises when attempting to distin-

guish two non-orthogonal equiprobable quantum states. This would not have been achieved

without a representation of non trace-preserving quantum operations, such as the one earlier

developed.

Having built our intuition in this manner, we proceeded to obtain the information gain versus

disturbance tradeoff in a more elaborate scenario. Suppose Alice interleaves pairwise su-

perpositions { |j〉+i|k〉√
2

} at random amongst her otherwise classical message words {|j〉}j=1...n.

Moreover suppose Eve performs an individual attack such that, whenever a canonical basis

state (a message word) is sent, she is able to identify which with probability G. Making use
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of a general formula inspired by the state-operator correspondence we derived a tight lower

bound upon D(G), the disturbance she causes whenever a pairwise superposition (a quantum

decoy) is sent.

Further research. The last method we developed seems applicable to a myriad of different in-

formation gain versus disturbance tradeoff scenarios, and one should of course do so whenever

quantum cryptographic applications are in sight. At the more fundamental level our method

suggests one can construct optimal measurement families by: first finding the two extreme

attacks; second working out their corresponding state; third constructing superpositions of

these states; fourth working out the attacks which correspond to these superpositions. Such

a procedure would be quite elegant, and deserves further investigation. Finally let us note

that our ‘quantum decoys’ information gain versus disturbance tradeoff could have numerous

cryptographic applications other than the one next described. Since pairwise superpositions

are undistinguishable from classical message words, the former may be used to secure the

latter against tampering in a variety of situations.

9.4 On blind quantum computation

Following the rise of quantum cryptography many researchers have sought to design uncondi-

tionally secure two-party computation protocol. It was soon realized, however, that quantum

theory alone would not provide unconditionally secure bit commitment and oblivious trans-

fer. Faced with this elementary fact quantum cryptographers went on to investigate different

assumptions and various specific multi-party computation scenarios. And, whilst all this was

happening, quantum physicists continued their long complaint on how environment interac-

tion was the cause of an unforgiving noise, a noise which would prevent humankind from

playing with a quantum computer in the next thirty years, at least. But since environment

interaction (such as eavesdropping), is such an obstacle to quantum computation, why then

is it not just natural that the curious player could be brought to disadvantage in some secure

computation-related protocols?

Achievements. In this thesis we considered an asymmetric variant of secure two-party com-

putation, in which Alice wants Bob to compute some well-known function f upon her input

x, whilst preventing him from learning too much about x. Due to their difficulty, results for

such ‘blind computation’ problems are extremely scarce in the classical setting. There lies

the first reason why, we suspect, such scenarios have so far remained untouched by quantum

cryptographers. A second reason may be that solutions to these problems require cracking

some complicated information gain versus disturbance tradeoff. At least this was certainly

the case with the blind quantum computation protocol we constructed. Our protocol achieves

unconditionally secure blind quantum computation against malicious eavesdroppers, for the
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whole class of functions admitting an efficient procedure to generate random input-output

pairs. It provides a strong and natural sense in which curious players can be detected in a

secure computation-related protocol.

Further research. Our protocol may perhaps be improved in several directions. As regards

costs one may attempt to diminish the set of quantum gates required on Alice side, or reduce

the number and size of the transmissions. As regards functionalities one may seek to achieve

tamper prevention rather than tamper detection. It seems an interesting problem also to try

and determine the class of functions admitting a blind computation protocol. The question

could serve quantum complexity theory if one was to hope for a connection between how easy

a function is to secure, and how easy it is to compute. There are several such connections in

the classical setting.

Although quantum theory is one hundred years old, its information theoretical perspective is

much more recent. The problems raised by this young field do not have, as yet, systematic

methodologies to turn towards. Thus to provide a rigorous proof of security for a slightly

original quantum cryptographic protocol requires plunging into the abyss of the linear algebra

which surround quantum theory. We did so and returned with general methods for quantum

information theory, possible implications in theoretical physics, as well as the mathematical

proof of a blind quantum computation protocol.
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Appendix A

Notation

La véritable éloquence consiste à dire tout ce qu’il faut et à ne dire que ce qu’il faut.

—La Rochefoucauld
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A.1 Common formalism

a+ib the complex number (a, b) (i.e. with i2 = −1)
t, ∗, †, ⊗ transpose, conjugate, dagger, tensor product (see Chapter 2 and [48]).

Rd set of 1 × d matrices of real numbers (also called ‘real vectors’).

Cd set of 1 × d matrices of complex numbers (also called ‘vectors’ or ‘kets’).

u, v, w, |i〉, |j〉, |ψ〉, |φ〉 elements of Cd.

|i〉 ⊗ |j〉 = |i〉|j〉 = |ij〉 element of Cdd′

(Cd)† set of d × 1 matrices of complex numbers (also called ‘columns’ or ‘bras’).

v†, 〈i| = |i〉†, 〈ψ| = |ψ〉† elements of (Cd)†.

Md(C) set of d × d matrices of complex numbers.

H, M, U elements of Md(C).

Hermd(C) set of hermitian d × d matrices of complex numbers, i.e. such that M † = M .

Herm+
d (C) set of positive d×d matrices, i.e. such that for all v in Cd, vMv† ≥ 0. Also referred

to as the set of (non-normalized) quantum states.

ρ, E, |M | =
√

M †M elements of Herm+
d (C).

HermS
mn(C) set of separable states of a mn-dimensional quantum system i.e. of the form

ρ =
∑

x λxρx
1 ⊗ ρx

2 , where λx ≥ 0 and the ρx
1 and ρx

2 belong to Herm+
m(C) and Herm+

n (C)

respectively.

Id the d × d identity matrix.

Eij the matrix with ij-component one, and zero elsewhere.

Tr(M) trace of M , i.e. the sum of its diagonal elements M11 + M22 + . . ..

Trx(M) partial trace of M , removing subsystem x (see [48]).

det(M) determinant of M .

AdM adjoint operation of M , i.e. the function which takes ρ into MρM †.

δxy Kronecker delta, equal to one if x = y, and zero otherwise.

f ◦g composition of function f and g, i.e. the function such that for all x, (f ◦g)(x) = f(g(x)).

axbx under the repeated indices summation convention is the sum
∑

x axbx, i.e. the value of

the sum . . .+a3b3 +a4b4 +a5b5 + . . . over the entire range of x (this is also called the Einstein

summation convention).
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Hull(S) convex hull of the set S, i.e. the set generated by taking linear combinations of ele-

ments of S, weighted with coefficients in [0, 1] and summing to one.

p(event|another) probability of the event knowing another.

H(.) Shannon entropy (see [48]).

H(.|.) Shannon conditional entropy.

H(. : .), I(., .) Shannon mutual entropy.
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A.2 Formalism specific to Chapters 3, 4 and 6

A, B elements of Md(C).

i, j (Latin) indices ranging from 1 to d2 − 1.

µ, ν (Greek) indices ranging from 0 to d2 − 1.

θ, ∆, ω angles ranging from 0 to 2π.

v, w, r, ε elements of Rd2
.

−→v ,−→w ,−→n elements of Rd2−1.

τ0 the 2 × 2 identity matrix I2.

{τµ} elements of Hermd(C) verifying Tr(τµτν) = dδµν .

Aµ the real number given by Tr(Aτµ).

A = φ(A) the vector (Aµ), i.e. an element of Rd2
.

−→
A the vector (Ai), i.e. an element of Rd2−1.

v.w scalar product (also called inner product), i.e. the real number given by the sum vµwµ.
−→v .−→w scalar product (also called inner product), i.e. the real number given by the sum −→v i

−→w i.

||v|| the norm of v, i.e. the real number
√

v.v.

||−→v || the norm of −→v , i.e. the real number
√−→v .−→v .

ψ(M) the action of M in the cone, i.e. ψ(M) = φ ◦ AdM ◦ φ−1.

Rθ(
−→n ) rotation of angle θ about axis −→n .

L(v) pure Lorentz boost of velocity v (v must be an element of R4, see [54]).

η = Diag(d − 1,−1,−1, . . .) the d × d matrix with diagonal entries d − 1, −1, −1 etc. and

zeros elsewhere.

E1,d2−1 the set Rd2
implicitly endowed with Minkowski metric η.



A.3. FORMALISM SPECIFIC TO CHAPTERS 5 AND 7 151

A.3 Formalism specific to Chapters 5 and 7

End(S → S′) set of linear functions from the set S into the set S’ (these are called endomor-

phisms).

τ, σ, κ, ρ elements of Herm+
d (C).

A, B, V elements of Cm ⊗ Cn, i.e. elements of Cmn.

Â, B̂, V̂ elements of End(Cn → Cm), i.e. m × n matrices.

Ǎ, B̌, V̌ elements of End(Cm → Cn), i.e. n × m matrices.

$,AC elements of Mmn(C).

Ω, $̂, ÂC elements of End(Mn(C) → Mm(C)), i.e. linear functions taking n × n matrices to

m × m matrices.̂
$,

̂AC elements of End(Mm(C) → Mn(C)), i.e. linear functions taking m×m matrices to n×n

matrices.

i, k are indices ranging from 1 to m.

j, l are indices ranging from 1 to n.

Âi;j is equal to the matrix element Aij and is associated to the repeated indices summation

convention, so that w = Âv is simply written wi = Âi;jvj .

$̂ik;jl is equal to the matrix element $ij;kl and is associated to the repeated indices summation

convention, so that τ = $̂(ρ) is simply written τi;k = $̂ik;jlρj;l.
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