
Technical Report
Number 593

Computer Laboratory

UCAM-CL-TR-593
ISSN 1476-2986

Paxos at war

Piotr Zieliński

June 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Paxos at War

Piotr Zieliński

University of Cambridge
Computer Laboratory

piotr.zielinski@cl.cam.ac.uk

Abstract

The optimistic latency of Byzantine Paxos can be reduced from three communi-
cation steps to two, without using public-key cryptography. This is done by making
a decision when more than (n + 3f)/2 acceptors report to have received the same
proposal from the leader, with n being the total number of acceptors and f the
number of the faulty ones. No further improvement in latency is possible, because
every Consensus algorithm must take at least two steps even in benign settings.
Moreover, if the leader is correct, our protocol achieves the latency of at most three
steps, even if some other processes fail. These two properties make this the fastest
Byzantine agreement protocol proposed so far.

By running many instances of this algorithm in parallel, we can implement Vector
Consensus and Byzantine Atomic Broadcast in two and three steps, respectively,
which is two steps faster than any other known algorithm.

1 Introduction

Consider a distributed system with many independent processes. In the Consensus prob-
lem [2, 18], all correct processes are expected to eventually decide on the same value,
proposed by one of the processes. Uniform Consensus is a stronger variant of the prob-
lem, where the decisions made by all processes (including the faulty ones) must be the
same. Keidar and Rajsbaum [11] proved that any Uniform Consensus algorithm needs at
least two communication steps to decide, even if there are no failures.

For the asynchronous crash-stop model, where processes can fail only by crashing,
there are several known algorithms that meet this lower bound [10, 14, 20]. This paper
presents an algorithm that achieves this bound in the asynchronous Byzantine model,
where faulty processes can exhibit arbitrary behaviour.

Paxos [14] is one of the algorithms achieving the two-steps latency in the crash-stop
model. To deal with malicious participants, two solutions have been proposed. Attiya and
Bar-Or [1] use unmodified Paxos with emulated robust shared memory, which requires
eight communication steps in failure-free runs. The other method, designing a Byzantine
version of Paxos, was first proposed by Castro and Liskov [5] and then generalized by
Lampson [17]. It not only achieves three communication steps in optimistic settings, but
also does so without public-key cryptography in failure-free runs.

3

latency

algorithm all leader public-key

Malhki and Reiter [19] 9 yes
Malhki and Reiter [19] 6 yes
Dwork et al. [9] 4 yes
Kihlstrom [12] 4 yes
Doudou et al. [8] 4 yes

Bracha [4] 9 no
Dwork et al. [9] 7 no
Castro and Liskov [5] 3 3 no
Kursawe [13] 2 — no

this paper 2 3 no

Figure 1: Comparison of several Byzantine agreement algorithms [7]. Latency is given for
two scenarios: with all processes correct and with the current leader correct. The “—”
denotes that the algorithm handles the latter scenario pessimistically. The last column
states whether public-key cryptography is used in failure-free runs.

In this paper, we present an improved version of this algorithm, which takes only
two communication steps to decide in failure-free runs. It is the first Byzantine version
of Paxos to achieve this early-deciding property. (The existence of such an algorithm
was suggested by Lamport [16].) Similarly to the original algorithm [5], we do not use
public-key cryptography in failure-free runs. In runs with failures, our algorithm may be
used with or without public-key cryptography, depending on which of the two variants
presented in this paper is used.

Several non-Paxos-based Byzantine agreement protocols have been proposed [8, 9, 12,
19]. They all require at least four communication steps in failure-free runs, which is
two more than our algorithm (Figure 1). The only exception is the optimistic Byzantine
agreement algorithm by Kursawe [13], which also takes only two communication steps to
decide in failure-free runs. However, if any of the processes has failed, a new pessimistic
Byzantine agreement protocol must be started. On the other hand, our algorithm needs
only one more communication step in such circumstances, provided that the leader is
correct.

The Validity property ensured by the algorithm from [13] is too weak to implement
other useful abstractions such as Atomic Broadcast [8]. The Validity property offered
by our algorithm is stronger and enables us to implement Vector Consensus [8] with no
additional message delay. This abstraction can in turn be used to construct an Atomic
Broadcast protocol that requires only one additional communication step [8].

Independently of this work, Vulovic et al. [22] have recently discovered a similar im-
provement to the original Byzantine Paxos algorithm [5]. However, their algorithm can
avoid using public-key cryptography only if more than n+3f

2
acceptors are correct.

The paper is structured in the following way. Section 2 describes the system model
and formally states the Byzantine Consensus problem. Section 3 introduces the notation.
The algorithm is presented in Section 4 and is used in Section 5 to implement fast Vector

4

Symbol Description

a, b, c, . . . Acceptors (c for correct acceptors)
v, w Elements of V
x, y Elements of V ∪ {⊥}
r, s, t Round numbers (s < r)
V , U Set variables

Figure 2: Conventional variable names used in the paper

Symbol Description

pr Proposer for round r
n Number of acceptors, n = |A|
f Upper bound on the number of faulty acceptors,

V Set of all values.
P Set of all processes.
A Set of all acceptors, |A| = |C|+ |F| = n.
C Set of all correct acceptors, |C| ≥ n− f .
F Set of all faulty acceptors, |F| ≤ f .
S Set of all round numbers s < r, that is, S = { s : s < r }.

Figure 3: Symbols used in the paper

Consensus [8] and thus Atomic Broadcast for Byzantine settings. Section 6 provides a
short summary and shows some possible directions of future research. The appendices
contain a formal proof of the correctness of our algorithm.

2 System model and problem statement

The system consists of a (possibly infinite) set P of processes, which communicate using
authenticated asynchronous channels. Processes can be either correct or faulty. It is nor-
mally assumed that only correct processes behave according to the specification, whereas
the faulty ones can exhibit an arbitrary behaviour. In this paper, however, we will con-
sider a model in which all processes behave according to the specification, but channels
from faulty processes do not offer any guarantees; they can create, modify, and lose any
number of messages. Although these two models are equivalent, the latter one makes
proving and reasoning much easier. Also, since all processes are “internally correct”, it
allows us to solve the Uniform Consensus problem. Since Uniform Consensus restricts
the behaviour of all processes (including the maliciously faulty ones), it is impossible to
implement it in a model with “internally faulty” processes.

Processes belong to two, not necessarily distinct, classes: proposers and acceptors.
The algorithm consists of many rounds r; in each of them, the proposer pr responsible for
this round issues a proposal and sends it to the acceptors, who try to make it a decision.
If the first round fails, then the second one is started, then the third, and so on. The
proposers for different rounds are not necessarily distinct. The proposer p1 of the first

5

round is called the leader. This is because in normal, failure-free runs, p1 will propose a
value, which will become the decision, and no other rounds will be started. We denote
the set of all proposable values by V .

The set A of acceptors consists of exactly n processes, whose task is to decide on the
value proposed by the proposer. We denote the set of correct acceptors by C and the
set of faulty acceptors by F . Although the algorithm does not have access to the sets C
and F (i.e., it does not know which acceptors are correct), we introduce these two sets
because of their usefulness in proofs.

As a convention, we use a, b, . . . for acceptors (c for correct ones), p for proposers, v
and w for values, V and U for set variables (Section 3.2), and r, s, t for round numbers.
We use round numbers as superscripts and process names as subscripts (round proposers
pr are the only exception). Figures 2 and 3 summarize the use of symbols and conventions.

For safety properties, we assume that channels from correct processes cannot create
or distort messages. We also assume that at most f acceptors are faulty (|F| ≤ f). For
liveness properties, we make the following additional assumptions. Firstly, for infinitely
many round numbers r, the proposer pr is correct (recall that these pr are not necessarily
different). Secondly, all channels from correct processes are reliable, that is, all messages
sent will eventually be received. Third, these channels will eventually be timely, that is,
their transmission latency will, from some point onwards, be smaller than some parame-
ter d. A run in which all processes are correct and the network is always timely is called
nice.

Each proposer pr has a constant singleton set inputr = {w} that contains its initial
proposal w. We assume that inputr ⊆ ranger ⊆ V, where ranger is a pre-agreed set of
possible proposals of process pr. The purpose of ranger is to restrict the potential damage
of a faulty pr issuing nonsensical proposals. For example, ranger can be the set of all
possible proposals signed by some external trusted entity. We define Ir to be inputr for
correct proposers pr and ranger for the faulty ones.

The variant of Uniform Consensus considered in this paper is similar to the proposers-
acceptors-learners version in [16] and Lazy Consensus in [23]. Formally, the following
properties must be satisfied:

Agreement. No two acceptors decide on different values.

Validity. Each decision belongs to Ir for some round r.

Termination. All correct acceptors eventually decide.

3 Notation

3.1 Actions

We specify the algorithm as a collection of actions of the form (name, guard , body). Here,
name is the named action name, guard is a boolean expression, and body is an atomic
operation which is performed when the action is executed. We assume the following about
action execution. For safety properties: an action can be executed only if it is enabled
(guard is true). For liveness properties: an action enabled forever will eventually be
executed at least once. For performance properties: every enabled action that has not
been executed yet will be executed immediately.

6

Name Guard Body

Spreadp x ∈ V and p = owner V broadcast “x ∈ V ”
Updatep received “x ∈ V ” from owner V Vp ← x

Figure 4: Variable replication code for a process p.

3.2 Set variables

A set variable V is an initially empty set containing at most one element. It is stored at
a designated process called its owner. The variable V can be (atomically) updated only
by executing the assignment “V ← x”, which is a shortcut for “if V = ∅, then set V to
{x}”. Since V can contain at most one element, x ∈ V is equivalent to V = {x}.

For any x, the expression “x ∈ V ” is stable, which means that once it becomes true
it will remain so forever. Stability is an extremely useful property, because it allows us
to avoid using temporal formulae in derivations and proofs. This way we can restrict
our attention to a single moment of time. For example, consider an action that can be
executed only if x ∈ V in the past. Thanks to the stability of V we can replace the guard
“there is a time t in the past at which x ∈ V ” with a simpler one: “x ∈ V (now)”.

Since set variables can have at most one element, any variable V 6= ∅ can no longer
change; we say it is frozen. Any set variable V can be made frozen by executing “V ← x”
for any x, in particular for x being a special value ⊥ /∈ V. This model is equivalent to the
one proposed by Lampson [17], with Lampson’s x being {x} here, nil being ∅, and out
being {⊥}, but it is mathematically easier to deal with.

3.3 Replication

A set variable Vp owned by process p is a copy of V if it is updated only as described in
Figure 4. If x ∈ V , then the owner of V broadcasts “x ∈ V ”. Upon reception of “x ∈ V ”,
each process p updates its set variable Vp by executing Vp ← x.

If the owner of V is correct, this replication mechanism has two properties. Firstly, a
copy cannot contain elements absent from the original, that is Vp ⊆ V for any p. Secondly,
each element of V will eventually become a member of Vp. In the rest of this paper, the
details of the replication mechanism are not important, as long as these two properties
are preserved.

We adopt the convention that, for any V , variable Vp is the copy of V owned by p.
Since Vp is a set variable, it can also have copies. For example, Vpq is a copy of Vp owned
by q. The same process can be applied over and over again, leading to multi-index copies
Vpqr, Vpqrs, . . . owned by the last process in the index sequence. To avoid requiring an
infinite amount of memory, we assume that copies are created only if there is a possibility
that they might be needed by the algorithm. Finally, note that the existence of Vp does
not imply the existence of V . If Vp does not exist, then Vp is simply an independent
variable.

7

3.4 Arrays

We will often need to consider more than one set variable at once. For this purpose,
we assume that if the i − th index in the variable name is a set X, then the expression
denotes an array of all variables with the i − th index in X. For example, VApC denotes
a two-dimensional array AAC with Aac = Vapc for all a ∈ A and c ∈ C. (Recall that A is
the set of all acceptors and C is its subset containing only the correct ones.)

In our notation, an array has a given property iff all its entries have that property
(e.g., VAp 6= ∅ iff Vap 6= ∅ for all a ∈ A). Similarly, two arrays with the same dimensions
are in relation iff their corresponding elements are (e.g., VAp ⊆ VA iff Vap ⊆ Va for all
a ∈ A).

Only the size of the set C of correct acceptors is known to the algorithm (|C| ≥ n−f).
Therefore, we will often be interested in the number of entries V of a given array AP that
satisfy a given condition Z. By AP (Z), we denote the number of processes p ∈ P for
which Ap satisfies Z. Formally,

AP (Z) = |{ p ∈ P : Ap satisfies Z }|.

The condition Z can be one of “w”, “ŵ”, “◦”, and “•”, with the following meanings:

Z = w
def

⇐⇒ Ap = {w}, Z = ŵ
def

⇐⇒ Ap ⊆ {w},

Z = ◦
def

⇐⇒ Ap = ∅, Z = •
def

⇐⇒ Ap 6= ∅.

Condition “w” tests whether w belongs to Ap now, whereas “ŵ” tests whether w can
belong to Ap in the future. The other two conditions test whether Ap is empty (“◦”) or
not (“•”).

For example, for each p, the expression VCp(•) denotes the number of nonempty Vcp

that belong to correct acceptors c. As another example, VCA(w) is a one-dimensional
array BA such that for every a ∈ A the value Ba is the number of correct acceptors c for
which w ∈ Vca. Therefore, VCA(w) > f means that for every acceptor a, the number of
entries Vca corresponding to correct acceptors c is bigger than f .

We can treat actions also as set variables. For any action Actiona, we assume that
“Actiona ← ⊥” is executed whenever Actiona is executed. This allows us to write ex-
pressions like ActionA(•) > f , which is true if Actiona has been executed by more than f
acceptors a. We additionally assume that if Actiona acts as a boolean expression, then it
is equivalent to Actiona 6= ∅. This convention is consistent with the intuitive meaning of
“Actiona” in that context, which is “Actiona has been executed”.

3.5 Diagrams

We illustrate the paper with a number of diagrams that depict example executions of
the algorithm (e.g, Figure 5). As usual, arrows denote messages. Solid (black) arrows
are normal messages. Dashed (red) ones represent messages sent (or directly influenced)
by a faulty process. Such messages can be corrupted in any way, in particular, they can
even be lost by the channel and never reach their destination. Small black circles (•)
represent executions of one or more actions, whose names are written below or above the
column of “•”s. The diagrams might create the illusion of tight synchronization between

8

the processes. It is therefore important to remember that the purpose of this apparent
synchronization is merely to help the reader visualize the most common executions, not
to introduce any additional synchrony assumptions into the algorithm.

4 Byzantine Paxos

The Byzantine Paxos algorithm progresses in a sequence of (possibly overlapping) rounds,
starting with round 1. In each round r, the proposer pr selects a value and passes it to
acceptors, who try first to weakly and strongly accept it, and then to make it a decision
(Section 4.1). Because of a faulty proposer, round r might not progress. In this case, ac-
ceptors can independently locally freeze it and start the next round with another proposer
(Section 4.2).

To ensure Agreement and Validity, the value w proposed by pr must be provably good,
that is, admissible and valid. Admissibility means that no decision other than w can be
made in any round s < r. Validity requires that w should belong to Is for some s ≤ r,
that is, should be either inputs of one of the correct proposers ps, or ranges of a faulty ps.
Only good values can be weakly accepted and only weakly accepted values can become
a decision, which implies goodness of all decisions. Therefore, the algorithm satisfies
Validity. Also, since all decisions made at the same round are identical, the algorithm
satisfies Agreement. Testing goodness of a given w is covered by Section 4.3. Choosing a
w whose goodness can be verified by all acceptors is discussed in Section 4.4.

If the network is timely and pr is correct, then the decision will be reached within
three communication steps after pr proposed. If in addition all acceptors are correct, then
the number of steps required is reduced to two. Since we assume infinitely many correct
proposers in p1, p2, . . . , and the network being eventually timely, the former (three-step)
property implies Termination of the algorithm. The latter (two-step) property implies
that in nice runs (all processes correct and the network timely), the algorithm decides in
two communication steps, without using public-key cryptography.

4.1 Single round

The structure of each round r shown in Figure 5(a) is similar to the Bracha broadcast [4].
First, proposer pr selects a provably good w ∈ V (Sections 4.3 and 4.4) and sends it to
the acceptors. At each acceptor a, the proposal w goes through three acceptance levels:
weak, strong, and decision. Figure 5(b) shows that if all acceptors a are correct, then the
decision is made one step earlier – at the same time as strong acceptance.

Figures 6 and 7 present the algorithm and the variables it uses. In action Proposer,
process pr chooses a provably good w and writes it to the set variable P r by executing
P r ← w. The details of proving goodness will be presented later; for the moment, note
that input1 is always good in the first round, so p1 can propose it without any proof. If the
run is nice, all acceptors will decide in the first round; no proofs, and thus no public-key
cryptography, will be used.

Proposal w is propagated from P r to its copies P r
a at all acceptors a, where it is

weakly accepted by action Weakr
a. As a result, if the proposer pr is correct, we have

P r
a ⊆ P r ⊆ {w} and subsequently W r

a ⊆ {w,⊥} for all a ∈ A. The possibility of ⊥ ∈ W r
a

arises from the fact that a can locally freeze round r at any time by writing ⊥ to W r
a and

9

A1

A2

A3

A4

pr

Proposer

P r ← w

Weakr

a

W r
a
← w

Strongr

a

Sr
a
← w

Decider

a

Dr
a
← w

(a) A4 is faulty

A1

A2

A3

A4

pr

Proposer

P r ← w

Weakr

a

W r
a
← w

Strongr

a

Sr
a
← w

Decider

a

Dr
a
← w

(b) All acceptors are correct

Figure 5: An example execution of a single round with n = 4 and f = 1.

Name Guard Body

Proposer provably good w P r ← w

Weakr
a good w ∈ P r

a W r
a ← w

Strongr
a W r

Aa(w) > n+f

2
Sr

a ← w

Decider
a W r

Aa(w) > n+3f

2
Dr

a ← w
Decider

a Sr
Aa(w) > 2f Dr

a ← w

Figure 6: Algorithm code for a single round r.

Symbol Description

Ir A non-replicated constant. For correct proposers, Ir = inputr con-
tains only the initial proposal of pr. For faulty ones, Ir = ranger,
the pre-agreed range of possible initial proposals of pr.

P r An individual set variable owned by pr, which contains the value w
proposed by pr and a proof that w is good at that round.

W r
a A weak approximation of the final decision at acceptor a.

If pr is correct, then there is a good w ∈ V such that W r
A ⊆ {w,⊥}.

Sr
a A strong approximation of the final decision at acceptor a.

There is a good w ∈ V such that Sr
A ⊆ {w,⊥} even if pr is faulty.

Dr
a The final decision at acceptor a. If w ∈ Dr

a, then for any round
r′ > r, proposer pr′ will eventually be able to prove that Dr

A ⊆ {w}.

Figure 7: Summary of round r variables.

10

Name Guard Body

Freezer
a Dr

a = ∅ and timerr
a > ∆ W r

a ← ⊥, Sr
a ← ⊥

Freezer
a Freezer

Aa(•) > f W r
a ← ⊥, Sr

a ← ⊥
Clockr

a Freezes
Aa(•) > 2f for all s < r start round r timer timerr

a

Decider
a Dr

Aa(w) > f Dr
a ← w

Figure 8: Code responsible for freezing round r.

Sr
a (see Section 4.2). On the other hand, a faulty pr can propose different values of w to

different acceptors, leading to W r
a * {w,⊥}.

To deal with faulty proposers that propose different values to different acceptors, we
introduce strong acceptance. Value w is strongly accepted at acceptor a (action Strongr

a
) if

more than n+f

2
acceptors report to have weakly accepted it. This ensures weak acceptance

by a majority of correct acceptors. Therefore, Sr
a ⊆ {w,⊥} for all a ∈ A, even if pr is

faulty.
Finally, acceptor a decides on a weakly accepted w (Decider

a) if the following guarantee
can be made. For any future round r′ > r, the proposer pr′ will be able to prove that
Dr

b ⊆ {w} for all b ∈ A, even if acceptor a is faulty (Section 4.3). This is implied by
either of the following conditions:

1. Condition Sr
Aa(w) > 2f , which states that more than 2f acceptors report to have

strongly accepted w, comes from the original Byzantine Paxos algorithm [5, 17]. It
ensures that if the network is timely and pr correct, then the decision will be reached
in three communication steps (Lemma B.12).

2. Condition W r
Aa(w) > n+3f

2
, which states that more than n+3f

2
acceptors report to

have weakly accepted w, is new and ensures better performance in failure-free runs.
It guarantees that the decision will be reached in two communication steps if less
than n−3f

2
> 0 acceptors are faulty (Lemma B.13).

4.2 Freezing rounds

A round with a faulty proposer may not make any progress. This can happen, for example,
when the proposer sends different proposals to acceptors, or does not send them at all.
Therefore, if an acceptor suspects that the current round r does not make progress, it
may (independently of other acceptors) locally freeze it, which will allow the next round to
start. Acceptor a locally freezes round r (Freezer

a) by executing “W r
a ← ⊥” and “Sr

a ← ⊥”,
which ensures that W r

a and Sr
a are non-empty. A round is considered frozen if it has been

locally frozen by all correct acceptors.
If an acceptor a has not decided at round r (Dr

a = ∅) and its timeout has elapsed
(timerr

a > ∆), then it locally freezes the round. Since this method cannot tell a faulty
proposer from a slow network, a situation can arise in which some (correct) acceptors
decide at round r and the others do not. In this case, the next round should start,
because otherwise the algorithm might not make progress. As explained in Section 4.3,
the proposer of that round cannot select a good proposal without round r being frozen
first. Therefore, in some situations, it might be necessary for an acceptor a to locally

11

A1

A2

A3

A4

pr

Decides

a

Ds
a
← w

timeout s

Freezes

a
Freezes

a
Clockr

a

Proposer

P r ← w

(a) More than f correct acceptors locally freeze

A1

A2

A3

A4

pr

Decides

a

Ds
a
← w

Decides

a

Ds
a
← w

(b) More than f correct acceptors
decide

Figure 9: Example executions of the freezing code from Figure 8, with n = 4, f = 1, and
faulty A4.

freeze round r, even if it has already decided (Dr
a 6= ∅). On the other hand, having

all acceptors freeze the round after the timeout has elapsed (whether they have made a
decision or not) would cause the next round to start unnecessarily.

We solve this problem by also making an acceptor locally freeze round r if more
than f acceptors report to have done so (Figure 8). This ensures that at least one correct
acceptor has already locally frozen round r, so faulty acceptors cannot jeopardize progress
by freezing all the rounds. At the same time, if more than f correct acceptors execute
Freezer, then eventually all acceptors will do so (Figure 9(a)). On the other hand, if at
most f correct acceptors ever locally freeze round r, then more than n−f−f > f correct
acceptors decide at that round. The new form of Decider

a from Figure 8, which decides on
w if more than f acceptors report to have done so, ensures that in this case all acceptors
will eventually decide (Figure 9(b)). Safety is guaranteed, because any set of more than
f acceptors must include a correct one.

The Decider
a action in Figure 8 is not necessary in the original Paxos algorithm. This is

because there every process that has not learned about the decision can start a new round
r, by requesting that all rounds s < r should be frozen. However, in Byzantine settings,
we cannot allow a single process to freeze a round, because then, malicious processes could
easily prevent progress by freezing all rounds. This is also the reason why, in this paper,
we do not differentiate between acceptors and learners [14].

Acceptor a starts the round r timer (Clockr
a) when it knows that more than f correct

acceptors have frozen all rounds s < r. This guarantees that eventually all correct accep-
tors will locally freeze all rounds s < r, which has two important consequences. Firstly,
the proposer pr will eventually be able to issue the proposal for round r. Secondly, all
acceptors a will eventually execute Clockr

a, which ensures a synchronization between the
Clockr

a actions at different acceptors a.

12

4.3 Predicate Good

In this section, we will construct a predicate Good(w) that is true only for good values w.
Recall that w is good if it is admissible (no decision other than w can be made in any
round s < r) and valid (w belongs to Is for some s ≤ r). Let S = { s : s < r } be
the set of all round numbers smaller than r. The predicate Good(w) is computed using
two arrays W̄ S

A and S̄S
A such that X̄S

C ⊆ XS
C for each X ∈ {W,S}. In other words, we

assume that X̄s
c ⊆ Xs

c for every s < r and every correct acceptor c. For example, X̄S
A

can be a copy XS
Ap of XS

A at process p. Since Good depends on X̄S
A, it should be written

formally as Good[W̄ S
A , S̄S

A] or Good[X̄S
A] but in this section we abbreviate it to Good. The

construction of Good ensures that if all X̄S
C are non-empty, then there is at least one w

for which Good(w) holds.

4.3.1 Computing Posss and Accs

In order to compute Good(w), we will first construct two sets for each s < r: Posss and
Accs. The set Posss contains all possible decisions that can be made at round s. In other
words, if Posss = K, then Ds

a ⊆ K will hold forever for every acceptor a. The set Accs

contains only values that have been weakly accepted at round s, that is, w ∈ Accs implies
w ∈W s

a for at least one a.
The sets Posss and Accs can be defined as

Posss =
{

w ∈ V : S̄s
A(ŵ) > f ∨ W̄ s

A(ŵ) > n+f

2

}
, Accs = {w ∈ V : W̄ s

A(w) > f }.

The definition of Accs is simple. If w ∈ W̄ s
a for more than f acceptors a, then w ∈ W̄ s

c

for at least one correct acceptor c. Therefore, w ∈ W̄ s
c ⊆ W s

c implies that c has weakly
accepted w.

The definition of Posss is more complicated. Appendix A.3 shows that S̄s
a(w) ≤ f

implies Ss
Ab(w) ≤ f + f = 2f for all acceptors b at any time. Similarly, W̄ s

a (w) ≤ n+f

2

implies W s
Ab(w) ≤ n+f

2
+ f = n+3f

2
. Therefore, if w /∈ Posss, no acceptor b can ever decide

on w in round s.

4.3.2 Computing Good(w)

We define Good(w) to be true if at least one of the following conditions is met:

G1: w ∈ Ir and Posss = ∅ for all s < r,

G2: there is s < r such that w ∈ Accs and Posst ⊆ {w} for all t with s ≤ t < r.

The former condition implies that w ∈ Ir and that no decision can be made by any
round s < r. Since w ∈ Is for s = r, this means that w is good at round r.

The latter condition implies that w has been weakly accepted at round s, so it is good
(i.e., valid and admissible) at that round. Validity at round s implies validity at round r.
Admissibility at round s together with the fact that no decision different than w can be
made at rounds t with s ≤ t < r, implies admissibility of w at round r.

Appendix A.3 shows that if the entries S̄s
c and W̄ s

c corresponding to all correct accep-
tors c are non-empty, then |Posss| ≤ 1 and Posss ⊆ Accs. We will show that this implies
that Good(w) holds for at least one w. If all PossS = ∅, then Good(w) for w = inputr

because of (G1). Otherwise, let s be the highest round number for which Posss 6= ∅ and
w be the only element of Posss. Since w ∈ Posss ⊆ Accs, condition (G2) implies Good(w).

13

4.4 Proving goodness

Every process q ∈ A∪{pr} keeps arrays W̄ Sr
Aq and S̄Sr

Aq such that X̄Sr
Cq ⊆ XS

C . These arrays
can be used to compute Good[X̄Sr

Aq] as described in Section 4.3. Note that X̄Sr
Cq and thus

the predicate Good[X̄Sr
Aq] may be different for different q. As a result, a value considered

good by pr will not necessarily be considered good by all acceptors. In this section, we
will show how pr can choose w which will eventually be considered good by all acceptors,
so that they will all weakly accept it.

The general version of the algorithm is shown in Figure 10(c). There, proposer pr

can propose only a value w for which Good[X̄Sr
Apr

](w) holds. Each acceptor b maintains a
copy X̄Sr

Aprb of X̄Sr
Apr

. Action Collectsrab copies from X̄sr
aprb to X̄sr

ab all elements x for which
acceptor b can confirm that x ∈ Xs

a assuming a is correct. This ensures that X̄sr
ab ⊆ Xs

a

for all correct a, so Good[X̄Sr
Ab](w) holds only for good w. Moreover, if pr is correct then

every x ∈ X̄Sr
Apr

will eventually be a member of X̄Sr
Ab. Therefore (Lemma B.6), eventually

Good[X̄Sr
Ab](w) will hold for the value w proposed by pr, so Weakr

b will be executed.
The definition of Confirmed and the method of calculating X̄Sr

Apr

at pr depend on
whether or not public-key cryptography can be used, and are discussed in the next two
sections. In both cases, three properties must be guaranteed. First, eventually all X̄Sr

Cpr

must be non-empty so that Good[X̄Sr
Apr

](w) will hold for at least one w. Second, the
confirmation procedure must be safe, that is, Confirmedr

b(x ∈ Xs
c) =⇒ x ∈ Xs

c for
all correct acceptors c. Third, liveness requires that if x ∈ X̄sr

apr

for a correct pr, then
Confirmedr

b(x ∈ Xs
a) will eventually hold. Observe that in the simple solution with X̄sr

apr

=
Xs

apr

and Confirmedr
b(x ∈ Xs

a) ≡ x ∈ Xs
ab, the last property fails. This is because a faulty

acceptor a can easily cause Xs
a = Xs

apr

= {x}, but Xs
ab = {y} for some x 6= y.

Condition (G1) from Section 4.3.2 shows that in order to compute Good, acceptors
must also be able to confirm that the proposed value w belongs to Ir. This can be achieved
by checking whether w ∈ ranger, because faulty proposers pr have Ir = ranger, whereas
proposals from the correct ones do not have to be checked.

4.4.1 With public-key cryptography

With public-key cryptography, we can make acceptors sign their Xs
a variables, so that

confirming “x ∈ Xs
a” would amount to checking the signature. Since such signed Xs

a are
needed only for rounds r > s, we can defer the signing until round s has been frozen. As
a result, no public-key cryptography is used in nice runs.

For any set variable V , consider a tuple 〈x, V 〉σ signed by the owner of V . By signing
〈x, V 〉σ, the owner of V certifies that x ∈ V . Therefore, as long as the owner of V is
correct, the existence of 〈x, V 〉σ implies x ∈ V .

In Figure 10(a), we use auxiliary set variables X̂s
a to store tuples 〈x,Xs

a〉σ signed by a

in action Signs
a. Proposer pr executes “X̄sr

apr

← x” in Collectsra when its copy X̂s
apr

of X̂s
a

contains 〈x,Xs
a〉σ. Acceptor b confirms that x ∈ Xs

a if 〈x,Xs
a〉σ ∈ X̂s

aprb, where Xs
aprb is a

copy of Xs
apr

. For correct acceptors a, this ensures that x ∈ Xs
a.

4.4.2 Without public-key cryptography

Confirming that x ∈ Xa
s without the proving power of public-key cryptography is more

difficult, but possible. In Figure 10(b), the original vectors XS
A are replicated at all

14

A1

A2

A3

A4

pr

FreezeS
a

SignS
a

CollectSr

A

Proposer

CollectSr

Ab

Weakr

b

Name Guard Body

Collectsra 〈x,Xs
a〉σ ∈ X̂s

apr

X̄sr
apr

← x

Signs
a x ∈ Xs

a X̂s
a ← 〈x,Xs

a〉σ

Confirmedr
b(x ∈ Xs

a)
def

= 〈x,Xs
a〉σ ∈ X̂s

aprb

(a) with public-key crypto

A1

A2

A3

A4

pr

FreezeS
a

XS
Aa

set

CollectSr

A

Proposer

XS
AAa

set
CollectSr

Ab

Weakr

b

Name Guard Body

Collectsra Xs
aApr

(x) > 2f X̄sr
apr

← x

Confirmedr
b(x ∈ Xs

a)
def

= XaAb(x) > f

(b) without public-key crypto

Name Guard Body

Proposer Good[X̄Sr
Apr

](w) P r ← w

Collectsrab x ∈ X̄sr
aprb and Confirmedr

b(x ∈ Xs
a) X̄sr

ab ← x

Weakr
b w ∈ P r

b and Good[X̄Sr
Ab](w) W r

b ← w

(c) common code

Figure 10: The code ensuring that only good proposals are issued and accepted.

15

acceptors a, leading to copies XS
AA. These vectors are replicated again, leading to copies

XS
AAA and XS

AApr

. An acceptor b confirms that x ∈ Xs
a if x ∈ Xs

adb for more than f
acceptors d, which implies that for correct a the value x indeed belongs to Xs

a. Since
X̄sr

apr

is set to x if x ∈ Xs
adpr

for more than 2f acceptors d, every x ∈ X̄sr
apr

will eventually
belong to X̄sr

ab , even if a is faulty.

4.5 Example

In the previous sections, we described the structure of a single round (Section 4.1), freezing
a round and starting a new one (Section 4.2), and ensuring that the proposed value is
good (Sections 4.3 and 4.4). This section will show how these mechanisms work together.

If the proposer of the first round is correct and the network is timely, then a decision
will be reached at this round (Figure 5(b)). Figure 5(a) shows that this will happen even
if some of the acceptors are faulty. As a result, the inter-round protocols described in
Sections 4.2–4.4 are not necessary in this case.

These mechanisms become useful if the first round proposer is faulty. Figure 11 depicts
several scenarios in which proposer p1 and acceptor A3 are both faulty. In Figure 11(a), p1

behaves like a correct proposer, except that it sends a wrong proposal to A1, which weakly
accepts it. The faulty acceptor A3 sends its correct W 1

A3
to all acceptors except for A1,

which makes them strongly accept the correct proposal w. As a result, the faulty acceptor
A3 can make A2 and A4 decide on w, while preventing A1 from doing so. However, the
Decide action from Figure 8 will allow A1 to decide on w as well.

The scenario in Figure 11(b) is similar, except that only A4 is allowed to decide, which
makes the Decide action from Figure 8 inapplicable. Instead, acceptors A1 and A2 will
eventually time out and locally freeze the first round, which will cause A4 to do so as
well. As a result, p2 will issue a second round proposal. Both A2 and A4 report to have
strongly accepted w, and p2 knows that at least one of them is correct, so the second
round proposal must be w. Since p2 is correct, its proposal will eventually become a
decision, despite A3 being faulty. Note that although (some) acceptors decide both in the
first and the second round, these decisions are the same.

Figure 11(c) shows a scenario, in which p1 sends a (different) wrong proposal to every
acceptor, so no value is ever strongly accepted. As a result, the second round proposer p2

knows that no decision will ever be reached in the first round, so it can propose any value
v ∈ input2. As in the previous example, this value will eventually be decided on, despite
malicious efforts of A3.

5 Applications: Vector Consensus and Atomic Broad-

cast

Byzantine Paxos, as described in this paper, can be used to implement Vector Consensus
[8]. There, each acceptor a proposes a value prop[a] and the agreement should be reached
on a vector dec[A], with the following Validity conditions:

V1: For each correct acceptor c, we have dec[c] ∈ {△, prop[c]}, where △ is a special
symbol meaning “no value”.

16

A1

A2

A3

A4

p1

Propose1

P 1 ← w

Weak1

a

W 1

a
← w

Strong1

a

S1

a
← w

Decide1

a

D1

a
← w

Decide1

a

D1

a
← w

(a) decision in the first round

A1

A2

A3

A4

p1

p2 Propose1

P 1 ← w

Weak1

a

W 1

a
← w

Strong1

a

S1

a
← w

Decide1

a

D1

a
← w

Freeze1

a

Sign1

a

Freeze1

a

Sign1

a

Collect12C
Propose2

P 2 ← w

Collect12Cb

Weakr

2

Strong2

a

S2

a
← w

Decide2

a

D2

a
← w

(b) identical decisions in the first and the second round

A1

A2

A3

A4

p1

p2 Propose1

P 1 ← w

Weak1

a

W 1

a
← w

Freeze1

a

Sign1

a

Collect12C
Propose2

P 2 ← v

Collect12Cb

Weakr

2

Strong2

a

S2

a
← v

Decide2

a

D2

a
← v

(c) decision in the second round only

Figure 11: An example run with faulty proposer p1 and acceptor A3.

17

Name Guard Body

Ea.Initb — input1 = {prop[a]}, range1 = V , p1 = a
inputr = ranger = {△} for all r > 1

Ea.Doneb w ∈ Dr
b set dec[a] at b to w

Ea.Freeze1
b . . . and Ea′ .Decide1

b . . .
for at least n− f executions Ea′

Figure 12: Vector Consensus code for execution Ea at acceptor b.

V2: We have dec[c] = prop[c] for at least n− f − |F| ≥ n− 2f correct acceptors c.

V3: If the network is timely, then dec[c] = prop[c] for all correct acceptors c.

The Byzantine-Paxos-based Vector Consensus algorithm in Figure 12 has a number
of advantages over the one presented in [8]. In nice runs, it makes the decision in two
steps as opposed to at least four, without using public key cryptography. The bound
n− f − |F| in V2 is stronger than n− 2f from [8]. In the most common scenario, where
none of the acceptors are faulty, n− f − |F| = n− f acceptors a are guaranteed to have
dec[a] = prop[a]. Condition V3 implies that in nice runs dec[a] = prop[a] for all acceptors
a.

For each acceptor a, consider an independent execution Ea of Byzantine Paxos running
in parallel with all the other executions. The sequence of proposers p1, p2, . . . for this
execution has p1 = a and contains every acceptor (including a) infinitely many times.
For example, we can set pr = r mod n + 1 for r > 1. Proposer p1 is allowed to propose
any value (range1 = V) and its initial proposal input1 is {prop[a]}. Other acceptors can
propose only △, that is, inputr = ranger = {△} for all r > 1. The decision reached in Ea

is copied to dec[a] at all acceptors b by action Ea.Doneb. The choice of inputr and ranger

ensures V1.

Note that any execution Ec corresponding to a correct acceptor c has a correct first pro-
poser p1 = c. Therefore, if the network is timely, every acceptor a will execute Ec.Decide1

a

within three communication steps, before Freeze1
a. As a result, Ec will decide on p1’s

proposal (prop[c]), which implies V3.

We can satisfy V2 by guaranteeing that at least n−f executions Ea decide in the first
round. This can be achieved by not allowing acceptors to locally freeze the first round
until they have executed Decide1 for at least n − f executions Ea′ . This will eventually
happen, because at least n− f execution Ea have a correct first-round proposer p1.

Our Vector Consensus algorithm does not introduce any additional delay to Byzantine
Paxos, so in nice runs all executions Ea decide in two communication steps on the value
prop[a] proposed by p1 = a. Figure 13(a) shows one of the executions Ea in this scenario.
However, if some processes are faulty, then reaching a decision may require more than
one round, which normally involves waiting for the first round to time out. In order to
improve the performance in such scenarios, we will remove the timeout condition from the
guard of Ea.Freeze1

b and locally freeze the first round as soon as at least n− f executions
Ea have decided. Note that this change may affect V3 by preventing some of the current
acceptors from deciding in the first round.

18

A1

A2

A3

A4

Propose1

P 1 ← w
Weak1

b

W 1

b
← w

Decide1

b

D1

b
← w

(a) execution E2, all correct

A1

A2

A3

A4

Propose1

P 1 ← w
Weak1

b

W 1

b
← w

Strong1

b

S1

b
← w

Decide1

b

D1

b
← w

(b) execution E2, acceptor A3 faulty

A1

A2

A3

A4

Propose1

P 1 ← w
Weak1

b

W 1

b
← w

Freeze1

b

Sign1

a

Collect12C
Propose2

P 2 ← ⊥

Collect12Cb

Weakr

2

W 2 ← ⊥

Strong2

b

S2

b
← ⊥

Decide2

b

D2

b
← ⊥

(c) execution E3, acceptor A3 faulty, p2 = A1

Figure 13: An example execution of Vector Consensus.

Fortunately, only V1 and V2 are required to implement Atomic Broadcast [8]. The
method presented in [8] adds one communication step to the underlying Vector Consensus
protocol, which in our case leads to the latency of three communication steps in nice
runs. By repeating Vector Consensus every δ < d (where d is the message transmission
time) units of time, one can use the techniques for benign settings [21, 24] to achieve the
delivery latency of 2d+δ. Two-step delivery latency can be achieved in benign settings [24]
using one-step Consensus for the most common proposal. In Byzantine settings, however,
proposers may be malicious, so Consensus requires two communication steps in any case,
making the method from [24] not applicable.

Figures 13(b) and 13(c) depict a scenario with faulty acceptor A3. Figures 13(b) shows
that an execution with a correct proposer (such as A2) decides in three steps. On the
other hand, execution E3 with a faulty proposer A3 does not decide in the first round
(Figure 13(c)). Instead, it is frozen when all the other executions have decided, and the
second round, with a correct proposer A1, begins.

6 Conclusion and future work

In this paper, we have reduced the latency of the Byzantine Paxos algorithm [5,17] from
three to two communication steps in nice runs. At the same time, we still guarantee the

19

decision in three steps if the leader is correct. As in the original algorithm, each proposal
goes through three acceptance stages: weak acceptance, strong acceptance, and decision.
The main contribution of this paper lies in showing that the middle stage can be bypassed
if more than n+3f

2
acceptors have weakly accepted the same value.

If not all processes are correct, it may be necessary to execute more than one round.
For this case, we presented two variants of the inter-round protocol. The first variant is
simpler than the second but requires computationally expensive public key cryptography.
However, these protocols are only needed when failures occur, so their costs may not be
very important.

Finally, we proposed new implementations of Vector Consensus and Atomic Broadcast,
which use many instances of our Byzantine Paxos algorithm running in parallel. This
way, we have achieved a latency that is two communication steps smaller than that in [8].
Another advantage of our solution is that it does not use public-key cryptography.

Our Byzantine Paxos algorithm can be generalized in at least two ways. Firstly, by
introducing a third kind of process that can fail only by crashing, it should be possible to
reformulate the algorithm presented in this paper to satisfy the lower bounds from [15].
Secondly, one can probably replace f by a safety bound s and a liveness bound l such
that the algorithm is safe if |F| ≤ s and live if |F| ≤ l. Finally, we hope the ranked
register [3, 6] can be generalized to handle Byzantine failures and be used to deconstruct
the algorithm presented in this paper in a modular way.

References

[1] H. Attiya and A. Bar-Or. Sharing memory with semi-Byzantine clients and faulty
storage servers. In Proceedings of the 22nd Symposium on Reliable Distributed Sys-
tems, Italy, October 2003.

[2] Michael Barborak, Miroslaw Malek, and Anton Dahbura. The Consensus problem
in fault-tolerant computing. ACM Computing Surveys, 25(2):171–220, June 1993.

[3] Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Deconstruct-
ing Paxos. Technical Report 200232, École Polytechnique Fédérale de Lausanne,
January 2001.

[4] G. Bracha. An asynchronous ⌊(n− 1)/3⌋-resilient consensus protocol. In Symposium
on Principles of Distributed Systems (PODC ’84), pages 154–162, New York, USA,
August 1984. ACM, Inc.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Pro-
ceedings of the Third Symposium on Operating Systems Design and Implementation,
pages 173–186, New Orleans, Louisiana, February 1999. USENIX Association.

[6] G. Chockler and D. Malkhi. Active disk Paxos with infinitely many processes. In
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing
(PODC), july 2002.

20

[7] Miguel Correia, Nuno Ferreira Neves, L. C. Lung, and Paulo Veŕıssimo. Low complex-
ity byzantine-resilient consensus. DI/FCUL TR 03–25, Department of Informatics,
University of Lisbon, August 2003.

[8] Assia Doudou and André Schiper. Muteness detectors for Consensus with Byzantine
processes. In Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing (PODC ’98), pages 315–316, New York, June 1998.

[9] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

[10] M. Hurfin and M. Raynal. A simple and fast asynchronous consensus protocol based
on a weak failure detector. Distributed Computing, 12(4):209–223, 1999.

[11] I. Keidar and S. Rajsbaum. A simple proof of the uniform consensus synchronous
lower bound, 2002.

[12] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Solving Consensus
in a Byzantine environment using an unreliable fault detector. In Proceedings of the
International Conference on Principles of Distributed Systems (OPODIS), pages 61–
75, 1997.

[13] Klaus Kursawe. Optimistic asynchronous Byzantine agreement. Technical Report
RZ 3202 (#93248), IBM Research, January 2000.

[14] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, December
2001.

[15] Leslie Lamport. Lower bounds on Consensus. Unpublished note, March 2002.

[16] Leslie Lamport. Lower bounds on asynchronous Consensus. In André Schiper,
Alex A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao, editors, Future Direc-
tions in Distributed Computing, volume 2584 of Lecture Notes in Computer Science,
pages 22–23. Springer, 2003.

[17] Butler Lampson. The ABCD of Paxos. In Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing. ACM Press, 2001.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[19] Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection in distributed
computations. In Proceedings of the 10th Computer Security Foundations Workshop
(CSFW97), pages 116–124, Rockport, MA, 1997.

[20] André Schiper. Early Consensus in an asynchronous system with a weak failure
detector. Distributed Computing, 10(3):149–157, April 1997.

[21] Pedro Vicente and Lúıs Rodrigues. An indulgent uniform total order algorithm with
optimistic delivery. In Proceedings of 21st Symposium on Reliable Distributed Systems
(SRDS 2002), 13-16 October 2002, Osaka, Japan. IEEE Computer Society, 2002.

21

[22] Marko Vulovic, Partha Dutta, and Rachid Guerraoui. Personal communication.

[23] André Schiper Xavier Défago. Specification of replication techniques, semi-passive
replication, and lazy consensus. Technical Report 07, École Polytechnique Fédérale
de Lausanne, 2002.

[24] Piotr Zieliński. Latency-optimal Uniform Atomic Broadcast algorithm. Technical
Report 582, Computer Laboratory, University of Cambridge, February 2004.
Available at http://www.cl.cam.ac.uk/TechReports/.

A Safety

As explained in Section 3.2, the stability of the membership in set variables allows one to
consider each sequence of implications/inequalities at a single moment of time. On several
occasions, however, we will use a special ∗-relations, such as “

∗
=⇒ ”, where the right-hand

side can be calculated for any moment of time. For example, for any set variable V we
have w ∈ V

∗
=⇒ V ⊆ {w} because the set V can only grow and cannot contain more

than one element. Note that the two arguments of a ∗-relation are treated differently, so
the relation is not symmetric. In particular, A

∗
=⇒ B is not equivalent to B

∗
⇐= A and

the same applies to other pairs such as
∗

≤ and
∗

≥.

Let VA and UA be two arrays of set variables such that Uc ⊆ Vc for all c ∈ C. For
example, for any process p, we can have UA

def

= VAp. Then, for any c ∈ C and w ∈ V,

w ∈ Uc =⇒ w ∈ Vc
∗

=⇒ Vc ⊆ {w} =⇒ Uc ⊆ {w}.

Hence,

UC(w) ≤ VC(w)
∗

≤ VC(ŵ) ≤ UC(ŵ) = UC(w) + UC(◦). (1)

Also,

VA(w) ≥ VC(w) ≥
︸︷︷︸

(1)

UC(w) = UA(w)− UF(w) ≥ UA(w)− t ≥ UA(w)− f. (2)

Lemma A.1. For any array VA, there is at most one x for which VC(x) > 1
2
|C|.

Proof. If VC(x) > 1
2
|C| holds for x ∈ {y, z}, where y 6= z, then

|C| ≥ VC(y) + VC(z) > 1
2
|C|+ 1

2
|C| = |C|.

We will prove the safety of our algorithm by induction on the round number. Assuming
that all theorems from this section hold for all rounds s < r, we will prove them for round
r.

22

A.1 Definitions

Here, we repeat some important definitions from the paper. A value w is admissible at
round r if no decision other than w can be made in any round s < r. A value is valid if
it belongs to Is for some s ≤ r. Finally, a value is good if it is both valid and admissible.

Recall that
Accr = {w ∈ V : W̄ r

A(w) > f }

and Possr = PSr ∪ PWr, where

PSr =
{

w ∈ V : S̄r
A(ŵ) > f

}
, PWr =

{
w ∈ V : W̄ r

A(ŵ) > n+f

2

}
.

Finally, the predicate Good(w) to be true if at least one of the following conditions is
met:

w ∈ Ir and Posss = ∅ for all s < r, (3)

there is s < r such that w ∈ Accs and Posst ⊆ {w} for all t : s ≤ t < r. (4)

A.2 Predicate Good(w)

Lemma A.2. If Confirmedr
b(w ∈ Xs

c) for c ∈ C, then w ∈ Xs
c .

Proof. With public-key cryptography:

Confirmedr
b(w ∈ Xs

c) =⇒ 〈w,Xs
c 〉σ ∈ X̂s

cprb =⇒ w ∈ Xs
c .

Without public-key cryptography:

Confirmedr
b(w ∈ Xs

c) =⇒ Xs
cAb(w) > f =⇒ Xs

cCb(w) > 0 =⇒ Xs
cC(w) > 0 =⇒ w ∈ Xs

c .

Lemma A.3. If X̄S
C ⊆ XS

C , then Good[X̄S
C](w) implies that w is admissible.

Proof. The assertion implies one of the following:

(1) For all rounds s < r we have Posss = ∅. By Lemma A.7 for round s, no decision is
ever made at any round s < r.

(2) There is s < r such that w ∈ Accs and Posst ⊆ {w} for all t : s ≤ t < r. On the
one hand, Lemma A.6 applied to Accs implies that no decision other than w is ever
made at any round t < s. On the other hand, Lemma A.7 applied to Posst implies
the same for t : s ≤ t < r.

Lemma A.4. If X̄S
C ⊆ XS

C , then Good[X̄S
C](w) implies that w is valid.

Proof. The assertion implies one of the following:

(1) Value w ∈ Ir. Then, w ∈ Ir ⊆
⋃

t≤r I t.

23

(2) Value w ∈ Accs for some s < r. Then,

w ∈ Accs =⇒ W̄ s
A(w) > f =⇒ W̄ s

C (w) > 0 =⇒ W s
C (w) > 0 =⇒ w ∈ W s

b

for some b, so from the inductive assumption (this lemma for round s) we have
w ∈

⋃

t≤s I t ⊆
⋃

t≤r I t.

Lemma A.5. If w ∈W r
a for any a ∈ A, then w is good.

Proof. First, for any x and any c ∈ C we have

x ∈ Xsr
ca =⇒ Confirmedr

a(x ∈ Xs
c) =⇒

︸ ︷︷ ︸

Lemma A.2

x ∈ Xs
c .

Therefore X̄Sr
Ca ⊆ XS

C , so Lemmas A.3 and A.4 prove the assertion.

A.3 Sets Posss and Accs

Assume that for any X ∈ {S,W} we have X̄r
c ⊆ Xr

c for all c ∈ C. Therefore, we can use
rules (1) and (2) from the beginning of Section A.

Lemma A.6. If w ∈ Accr, then w is good at round r.

Proof. W r
A(w) ≥ W̄ r

A(w)− f > 0, so Lemma A.5 implies the assertion.

Lemma A.7. If w /∈ Possr, then no acceptor a ever executes Decider
a(w).

Proof. We will use the ∗-version of ≤ defined at the beginning of Appendix A. To obtain
a contradiction, assume that the left-hand side of “

∗

≤” is taken at the time when a hy-
pothetically executes Decider

a(w), and the right-hand side is taken at the “current” time
when w /∈ Possr. Since w /∈ PWr,

W r
Aa(w) ≤ W r

Ca(w) + f ≤ W r
C (w) + f

∗

≤ W̄ r
C (ŵ) + f ≤ W̄ r

A(ŵ) + f ≤ n+f

2
+ f = n+3f

2
.

Similarly, w /∈ PSr implies

Sr
Aa(w) ≤ Sr

Ca(w) + f ≤ Sr
C(w) + f

∗

≤ S̄r
C(ŵ) + f ≤ S̄r

A(ŵ) + f ≤ f + f = 2f.

A.4 Validity

Lemma A.8. If w ∈ Sr
a, then w ∈W r

b for some acceptor b.

Proof.

w ∈ Sr
a =⇒ W r

Aa(w) > n+f

2
=⇒ W r

A(w) > n+f

2
− f > 0 =⇒ w ∈ W r

b .

Lemma A.9. If w ∈ Dr
a, then w ∈ W r

b for some acceptor b.

Proof.

w ∈ Dr
a =⇒

{

W r
Aa(w) > n+3f

2
=⇒ W r

A(w) > n+3f

2
− f > 0 =⇒ w ∈ W r

b , or

Sr
Aa(w) > 2f =⇒ Sr

A(w) > 2f − f ≥ 0 =⇒
︸ ︷︷ ︸

Lemma A.8

w ∈ W r
b .

Lemma A.10. If w ∈ Dr
a, then w is good.

Proof. Lemma A.9 implies that w ∈ W r
b for some b ∈ A, so by Lemma A.5 w is good.

Corollary A.11 (Validity). If w ∈ Dr
a, then w is valid.

24

A.5 Agreement

Lemma A.12. If W r
Aa(v) > n+f

2
and W r

Ab(w) > n+f

2
, then v = w.

Proof. For (z, d) ∈ {(v, a), (w, b)}, we have

W r
C (z) ≥ W r

Cd(z) ≥ W r
Ad(z)−|F| > n+f

2
−|F| = 1

2
n+ 1

2
f− 1

2
|F|− 1

2
|F| ≥ 1

2
n− 1

2
|F| = 1

2
|C|.

Lemma A.1 implies that w = v.

Corollary A.13. If v ∈ Sr
a and w ∈ Sr

b for v, w ∈ V, then v = w.

Lemma A.14. If v ∈ Dr
a and w ∈ Dr

b , then w = v.

Proof. For (z, d) ∈ {(v, a), (w, b)}, we have

W r
Ad(z) > n+3f

2
or Sr

Ad(z) > 2f.

The former case obviously implies W r
Ad′(z) > n+f

2
. In the latter case,

Sr
A(z) ≥ Sr

C(z) ≥ Sr
Cd(v) ≥ Sr

Ad(v)− f > 2f − f ≥ 0,

hence z ∈ Sr
d′ for some acceptor d′, so W r

Ad′(z) > n+f

2
as well. The assertions follows from

Lemma A.12.

Theorem A.15 (Agreement). If w ∈ Dr
a and v ∈ Ds

b for some s ≤ r, then v = w.

Proof. If s = r, then it follows from Lemma A.14. Otherwise (s < r) from Lemma A.10.

B Liveness

Lemma B.1. If V is a set variable such that “V ← x” can be executed for at most one
x, then “V ← x” results in x ∈ V .

Proof. The “←” operation is the only way of modifying V , so V ⊆ {x} at any time.
Executing “V ← x” results in V = {x} both if V = ∅ and if V = {x}.

Corollary B.2. If “V ← x” can be executed only if x ∈ U , where V and U are set
variables, then “V ← x” results in x ∈ V .

Corollary B.3. If V is copy of a variable owned by a correct process, then then “V ← x”
results in x ∈ V .

In addition to the normal implication “A =⇒ B”, we introduce three “timed”

implications “A
ev

=⇒ B”, “A
d

=⇒ B”, and “A
∆

=⇒ B”, which all state that A implies
that B will eventually be true.

The first implication (“
ev

=⇒ ”) is used when the delay is caused by waiting for an
enabled action to be executed (e.g., W r

Aa(w) > n+f

2

ev
=⇒ Strongr

a). If the network is
timely, we assume that such an implication introduces no delay.

25

The second implication (“
d

=⇒ ”) is used when a single message passing is involved. In
this paper, we use it exclusively for reasoning about updating copies of a set variable V
owned by a correct process p:

x ∈ V
ev

=⇒ Spreadp

d
=⇒ UpdateA =⇒

︸ ︷︷ ︸

Corollary B.3

x ∈ VA

If the network is timely, we assume that such an implication introduces a delay smaller
than d. Therefore, when reasoning about the performance, it is sufficient to count the

number of “
d

=⇒ ” operations in the sequence of implications.

Finally, the third implication (“
∆

=⇒ ”) means that the right-hand side will become
true no later than ∆ units of time after the left-hand side, where ∆ is the timeout.

B.1 Proving goodness

Lemma B.4. If x ∈ Xs
c for c ∈ C, then eventually x ∈ X̄sr

cpr

.

Proof. With public-key cryptography:

x ∈ Xs
c

ev
=⇒ Signs

c =⇒
︸ ︷︷ ︸

Cor. B.2

〈x,Xs
c 〉σ ∈ X̂s

c

d
=⇒ 〈x,Xs

c 〉σ ∈ X̂s
cpr

ev
=⇒ Collectsrc =⇒

︸ ︷︷ ︸

Cor. B.2

x ∈ X̄sr
cpr

.

Without public-key cryptography (for any y 6= x):

x ∈ Xs
c

d
=⇒ x ∈ Xs

cC

d
=⇒ x ∈ Xs

cCpr

=⇒ Xs
cApr

(y) ≤ Xs
cFpr

(y) ≤ f ≤ 2f,

so action Collectsrc can only be applied to x. Therefore,

x ∈ Xs
cCpr

=⇒ Xs
cApr

(x) ≥ Xs
cCpr

(x) ≥ n− f > 2f
ev

=⇒ Collectsrc =⇒
︸ ︷︷ ︸

Lemma B.1

x ∈ X̄sr
cpr

.

Lemma B.5. If pr is correct and x ∈ X̄sr
apr

, then eventually Confirmedr
A(x ∈ Xs

a).

Proof. With public-key cryptography:

x ∈ X̄sr
apr

=⇒ 〈x,Xs
a〉σ ∈ X̂s

apr

d
=⇒ 〈x,Xs

a〉σ ∈ X̂s
aprA

=⇒ Confirmedr
A(x ∈ Xs

a).

Without public-key cryptography:

x ∈ X̄sr
apr

=⇒ Xs
aApr

(x) > 2f =⇒ Xs
aCpr

(x) > f =⇒ Xs
aC(x) > f

d
=⇒

Xs
aCA(x) > f =⇒ Confirmedr

A(x ∈ Xs
a).

Lemma B.6. If X̄S
A ⊆ X̄ ′S

A , then Good[X̄S
A](w) =⇒ Good[X̄ ′S

A](w).

26

Proof. First, note that for any w the assumption implies

X̄S
A(w) ≤ X̄ ′S

A (w), X̄S
A(ŵ) ≤ X̄ ′S

A (ŵ).

Hence,

Posss[X̄s
A] ⊇ Posss[X̄ ′s

A], Accs[X̄s
A] ⊆ Accs[X̄ ′s

A].

The assertion follows from the definition of Good.

Lemma B.7. If X̄C 6= ∅, then |Poss| ≤ 1 and Poss ⊆ Acc.

Proof. S̄C 6= ∅, so S̄A(◦) = S̄C(◦) + S̄F(◦) = S̄F(◦). For any w ∈ PS:

SA(w) ≥ SC(w) ≥ S̄C(w) = S̄A(w)−S̄F(w) ≥ S̄A(w)−S̄F(•) ≥ S̄A(ŵ)−S̄A(◦)−S̄F(•) =

= S̄A(ŵ)− S̄F(◦)− S̄F(•) = S̄A(ŵ)− |F| ≥ S̄A(ŵ)− f > 0,

so there is a ∈ A such that w ∈ Sa. Hence,

W̄C(ŵ) ≥ WC(w) ≥ WCa(w) ≥ WAa(w)− |F| > n+f

2
− |F|.

The same is true for any w ∈ PW because

W̄C(ŵ) = W̄A(ŵ)− W̄F(ŵ) ≥ W̄A(ŵ)− |F| > n+f

2
− |F|.

Now, W̄C 6= ∅ =⇒ W̄C(◦) = 0, so for any w ∈ Poss = PW ∪ PS:

W̄C(w) = W̄C(w) + W̄C(◦) = W̄C(ŵ) > n+f

2
− |F| ≥

︸︷︷︸

see Lemma A.12

1
2
|C|.

Lemma A.1 applied to W̄C gives |Poss| ≤ 1. Moreover, Poss ⊆ Acc because

w ∈ Poss =⇒ W̄A(w) ≥ W̄C(w) > n+f

2
− |F| ≥ n−f

2
> f =⇒ w ∈ Acc.

Lemma B.8. If XS
C 6= ∅, then there is w for which Good[XS

C] holds.

Proof. Lemma B.7 implies |PossS | ≤ 1 and PossS ⊆ AccS . If all PossS = ∅, then w =
inputr satisfies Condition (3). Otherwise, Condition (4) is met by the single element w
of Posss, where s < r is the highest possible with Posss 6= ∅.

B.2 Single round with a correct proposer

Let r be a round which has a correct proposer pr and is never frozen. Assuming that all
round s < r have been frozen, we will prove that a decision will eventually be reached at
round r.

Lemma B.9. If every correct acceptor executes Freezes for all s < r, then eventually pr

will execute Proposer.

27

Proof.

FreezeSC =⇒ XS
C 6= ∅

d
=⇒
︸ ︷︷ ︸

Lemma B.4

X̄Sr
Cpr

6= ∅ =⇒
︸ ︷︷ ︸

Lemma B.8

∃w : Good[X̄Sr
Cpr

](w)
ev

=⇒ Proposer.

Lemma B.10. If w ∈W r
a , then pr has proposed w.

Proof.

w ∈ W r
a =⇒ w ∈ P r

a =⇒
︸ ︷︷ ︸

pr is correct

w ∈ P r.

Lemma B.11. If pr proposes w, then eventually w ∈W r
b for all acceptors b.

Proof. First, for any x we have

x ∈ X̄sr
apr

d
=⇒
︸ ︷︷ ︸

Lemma B.5

{

x ∈ X̄sr
aprb

Confirmedr
b(x ∈ Xs

a)

}

ev
=⇒ Collectsrab =⇒

︸ ︷︷ ︸

Cor. B.2

x ∈ X̄sr
ab .

Therefore,

w ∈ P r =⇒







d
=⇒ w ∈ P r

b

Good[X̄Sr
Apr

](w)
d

=⇒
︸ ︷︷ ︸

Lemma B.6

Good[X̄Sr
Ab](w)







ev
=⇒ Weakr

b =⇒
︸ ︷︷ ︸

Cor. B.2

w ∈ W r
b .

Lemma B.12. If pr proposes w, then every acceptor will decide on w in three communi-
cation steps.

Proof. Lemma B.2 for W , S, and D implies

Proposer d
=⇒
︸ ︷︷ ︸

Lemma B.11

w ∈W r
A

d
=⇒

w ∈ W r
CA =⇒ W r

AA(w) ≥ |C| ≥ n− f > n+f

2

ev
=⇒ Strongr

A =⇒ w ∈ Sr
A

d
=⇒

w ∈ Sr
CA =⇒ Sr

AA(w) ≥ |C| ≥ n− f > 2f
ev

=⇒ Decider
A =⇒ w ∈ Dr

A.

Lemma B.13. If pr proposes w and more than n+3f

2
< n acceptors are correct, then

every acceptor will decide on w in two communication steps.

Proof. Lemma B.2 for W and D implies

Proposer d
=⇒
︸ ︷︷ ︸

Lemma B.11

w ∈ W r
A

d
=⇒ w ∈ W r

CA =⇒ W r
AA(w) ≥ |C| > n+3f

2

ev
=⇒ Decider

A.

28

B.3 Whole algorithm

In this section, we assume that the network is eventually timely and the timeout ∆ > 5d.
We will prove that there is a round r at which all acceptors decide. For the sake of
contradiction assume that such a round does not exist. This is equivalent to saying that
Dr

C(•) ≤ f for all rounds r, because otherwise (for some w)

Dr
C(•) > f =⇒

︸ ︷︷ ︸

Lemma A.14

Dr
C(w) > f

d
=⇒ Dr

AA(w) > f
ev

=⇒
︸ ︷︷ ︸

Cor. B.2

Decider
A =⇒ w ∈ Dr

A,

which contradicts the assumption that not all acceptors decide at round r.

Definition B.14. Let U r ⊆ C be the set of all correct acceptors c that never decide at
round r, that is, for which Dr

c always equals ∅.

We have
|U r| = Dr

C(◦) = |C| −Dr
C(•) ≥ n− f − f > f.

Definition B.15. Round r has started if for every s < r, more than f correct acceptors
have executed Freezes. We denote the moment when r starts by an artificial action Startr.

Lemma B.16. For every started round r, all acceptors a will eventually execute Freezes
a

for all s < r.

Proof.

Startr ≡ Freezes
C(•) > f

d
=⇒ Freezes

AA(•) ≥ Freezes
CA(•) > f

ev
=⇒ Freezes

A.

Lemma B.17. Every round r will eventually start.

Proof. By contradiction. Let r be the lowest round for which Startr is never executed.
For all t < s < r, we have

Starts
d

=⇒
︸ ︷︷ ︸

Lemma B.16

Freezet
A

d
=⇒ Freezet

CA =⇒ Freezet
AA(•) ≥ |C| ≥ n− f > 2f

ev
=⇒

Clocks
A =⇒ Clocks

Us

∆
=⇒ Freezes

Us =⇒ Freezes
C(•) > f =⇒ Startr.

Lemma B.18. Action Clockr
a cannot be executed before Startr.

Proof. For any s < r:

Clockr
a =⇒ Freezes

Aa(•) > 2f =⇒ Freezes
C(•) > f ≡ Startr.

Lemma B.19. Round r cannot start earlier than ∆ after all rounds s < r started.

Proof. For any s < r, assume round s started at time ts. Lemma B.18 states that for no
acceptor a can Clocks

a be executed before time ts. Thus, no correct acceptor a executes
Freezer

a before ts + ∆, which proves the assertion.

29

Theorem B.20 (Termination). There is a round r, in which all correct acceptors de-
cide.

Proof. Lemmas B.17 and B.19 imply that there is r0 such that the network stabilizes
before round r0 starts. Let r ≥ r0 be a round with a correct proposer. Consider a
modified algorithm, in which round r cannot be frozen. Thus, for every s < r,

Startr
d

=⇒
︸ ︷︷ ︸

Lemma B.16

Freezes
A

d
=⇒
︸ ︷︷ ︸

Lemma B.9

Proposer d
=⇒

d
=⇒

d
=⇒

︸ ︷︷ ︸

Lemma B.12

Decider
A.

Assuming that round r starts at time t, the above series of implications shows that
the the modified algorithm decides by t + 5d. Lemma B.18 implies that round r will
not be frozen before t + ∆ > t + 5d. The assertion holds because modified algorithm is
indistinguishable from the original one until then.

30

