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Subdivision as a sequence of sampled Cp surfaces and

conditions for tuning schemes

Cédric Gérot∗ Löıc Barthe† Neil A. Dodgson‡

Malcolm A. Sabin§

Abstract

We deal with practical conditions for tuning a subdivision scheme in order to
control its artifacts in the vicinity of a mark point. To do so, we look for good
behaviour of the limit vertices rather than good mathematical properties of the
limit surface. The good behaviour of the limit vertices is characterised with the
definition of C2-convergence of a scheme. We propose necessary explicit conditions
for C2-convergence of a scheme in the vicinity of any mark point being a vertex of
valency n or the centre of an n-sided face with n greater or equal to three.

These necessary conditions concern the eigenvalues and eigenvectors of subdivi-
sion matrices in the frequency domain. The components of these matrices may be
complex. If we could guarantee that they were real, this would simplify numerical
analysis of the eigenstructure of the matrices, especially in the context of scheme
tuning where we manipulate symbolic terms. In this paper we show that an appro-
priate choice of the parameter space combined with a substitution of vertices lets us
transform these matrices into pure real ones. The substitution consists in replacing
some vertices by linear combinations of themselves.

Finally, we explain how to derive conditions on the eigenelements of the real
matrices which are necessary for the C2-convergence of the scheme.
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1 Introduction

A bivariate subdivision scheme defines a sequence of polygonal meshes each of whose
vertices is a linear combination of vertices belonging to the previous mesh in the sequence.
At the 2002 Curves and Surfaces Conference in Saint Malo, Malcolm Sabin gave to the
community a few challenges about subdivision schemes. One of them was to control the
artifacts that schemes could create. In [15], Sabin and Barthe catalogue some possible
artefacts. Some schemes (Loop [8], Catmull-Clark [4], Doo-Sabin [5],. . . ) are defined so
that each polygonal mesh is the control polyhedron of a Box-Spline surface which is the
limit surface of the sequence. In this case the behaviour of the limit surface is known,
except around extraordinary vertices or faces. An extraordinary vertex is a vertex of the
mesh whose valency is not equal to six if the mesh faces are triangles, or not equal to four
if the mesh faces are quadrilaterals. An extraordinary face is a non-triangular face in a
triangular lattice or a non-quadrilateral face in a quadrilateral lattice.

This article deals with practical conditions for tuning a scheme in order to control its
artifacts in the vicinity of a mark point. A mark point is a point of a mesh whose vicinity
keeps the same topology throughout subdivision. For some schemes, sometimes called
primal, the mark point is a vertex, for others, called dual, the mark point is a face centre.
In the latter case, we will refer to this face as a mark face. In most cases, the coefficients
of the linear combinations depend only on the local topology of the mesh, and not on its
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geometry. Moreover, we assume the scheme to be stationary: the coefficients remain the
same through the sequence of polygonal meshes.

Sabin has reviewed the state-of-the-art in tuning subdivision schemes [14]. Most work
alters local coefficient in order to fulfil sufficient conditions for getting a continuous limit
surface around the mark point [10, 17]. But looking for a mathematical C2-continuity
of the limit surface is possibly not the best way for controlling artifacts. For instance,
Prautzsch and Umlauf tuned the Loop and Butterfly schemes in order to make them
C1- and C2-continuous around an extraordinary vertex by creating a flat spot [11]; and
a flat spot may be considered as an artifact. Furthermore, the necessary and sufficient
conditions for C2-continuity of the limit surface are not explicit if the scheme is not based
on a Box-Spline.

In contrast, we may look for good behaviour of the limit vertices rather than good
mathematical properties of the limit surface. In this paper, we characterise good behaviour
of the limit vertices with the definition of C2-convergence of a scheme. This definition is
based on the interpretation proposed implicitly by Doo and Sabin [5]. Each control mesh
is viewed not as the control polyhedron of a Box-Spline surface but as the sampling of a
continuous surface. Thus the sequence of meshes are samplings of a sequence of continuous
surfaces which converges uniformly towards the limit surface. Naturally, C2-convergence
of a scheme is related to the C2-continuity of the limit surface: it is a sufficient condition
for it. And because the definition of C2-convergence of a scheme is theoretical and formal,
we propose in this paper explicit but only necessary conditions. In [6], we applied these
conditions at a mark point being a vertex. In this paper, these conditions are applied at
any mark point being a vertex of valency n or the centre of an n-sided face with n greater
or equal to three. They have already been proposed by Sabin as a condition related to the
C2-continuity of the limit surface [13]. By relating them to C2-convergence of a scheme,
we give some insights on why these conditions can be used for tuning a scheme, as has
been done by Barthe and Kobbelt [3].

The necessary conditions for C2-convergence of a scheme, proposed in this paper,
concern the eigenvalues and eigenvectors of subdivision matrices in the frequency domain.
Subdivision matrices in the frequency domain give the relationship between rotational
frequencies coming from the discrete Fourier transform of the vertices around the mark
point. That means that the components of these matrices may be complex. If we could
guarantee that they were real, this would simplify numerical analysis of the eigenstructure
of the matrices, especially in the context of scheme tuning where we manipulate symbolic
terms. In this paper we show that an appropriate choice of the parameter space combined
with a substitution of vertices let us transform these matrices into pure real ones. The
substitution consists in replacing subsets of vertices by linear combinations of themselves.
Of course a combination of surface samples does not, in general, belong to the same
surface. Thus, the conditions given above cannot be applied directly on the new pure real
matrices. In this paper, we explain how to derive conditions on the eigenelements of the
real matrices which are necessary for the C2-convergence of the scheme.

In the following section, we present the theoretical tools which we then use in Sect. 3
to establish the necessary conditions for a scheme to C2-converge. In Sect. 4 we show
how to derive real subdivision matrices in the frequency domain and conditions on their
eigencomponents which are necessary to achieve the C2-convergence of the scheme.
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Figure 1: Labelling of the vicinity of a mark point

2 Theoretical Tools

We first present our notation and then we introduce two tools: eigenanalysis of the Fourier
transformed subdivision matrices and Cp-convergence of a scheme. The eigenanalysis of
the Fourier transformed subdivision matrices gives us a description of the frequencies in
the limit surface around a mark point; we introduce invariances of a scheme which allow
us to write these frequencies more simply. The definition of Cp-convergence allows us to
derive a description of the limit points. Finally, we stress the fact that these interpretations
are valid if the vertices make up a good sampling of the surfaces.

2.1 Notation

If the mark point is a vertex, let it be A and n its valency (number of outgoing edges from
A). Otherwise, n is the number of edges of the mark face. We assume that the vicinity of
A is made up of ordinary vertices. This hypothesis is relevant because after a subdivision
step, the vertices of the mesh map to vertices with the same valency, and new vertices are
created which are all ordinary. Thus, after several subdivision steps, every extraordinary
vertex is surrounded by a sea of ordinary vertices. As a consequence, the vicinity of A,
or of a mark face, may be divided into n topologically equivalent sectors. In the jth
sector, let Bj, Cj, Dj. . . be an infinite number of vertices sorted from the topologically
nearest vertex from the mark point to the farthest. If there exist two vertices in one sector
on the same ring which are in complementary positions then they are labelled with the
same letter, but with a prime put on the vertex which is further anticlockwise from the
positive x-axis. An example is E and E ′ in Fig. 1(a). However, if the points are not in
complementary positions, then they are given distinct letters.

Let A(k) be the mark point if it is a vertex and

{

B
(k)
j , C

(k)
j , D

(k)
j . . .

}

j∈1...n
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its vicinity after k subdivision steps. All these vertices are put into an infinite vector

P(k) :=
[

A(k)B
(k)
1 · · ·B(k)

n C
(k)
1 · · ·C(k)

n D
(k)
1 · · ·D(k)

n · · ·
]T

if the mark point is a vertex and

P(k) :=
[

B
(k)
1 · · ·B(k)

n C
(k)
1 · · ·C(k)

n D
(k)
1 · · ·D(k)

n · · ·
]T

otherwise.
Finally, a surface is Cp-smooth if there exists a Cp-diffeomorphic parametrisation

of it from a subset of R
2. We define a parametrisation domain by projecting onto R

2

the polygonal mesh around the mark point. Depending on the injective 2D map which
interpolates the vertices, the projected polygonal faces may overlap. But we are looking
for surfaces which are as smooth as possible. So, we ask the polygonal mesh projection
to be injective. A(k) is projected onto (0, 0) if the mark point is a vertex, and ∀X ∈
{B,C,D, . . .}, ∀j ∈ {1, . . . , n}, X

(k)
j is projected onto (x

(k)
j , y

(k)
j ). For simplicity, we ask

(x
(k)
j , y

(k)
j ) to lie on the same circle for given k and X, and to be equally distributed on

the circle for given k and X, with a possible shift dα := αk − αk−1 between k − 1 and k
which is the same for all X and all k:

(x
(k)
j , y

(k)
j ) := (̺

(k)
X cos(θ(X,j,k)), ̺

(k)
X sin(θ(X,j,k)) ,

where

θ(X,j,k) :=
2π

n
(j + αX + αk) , αk = kdα . (1)

Furthermore, because the vertices X
(k)
j converge to the limit mark point if the scheme

converges [12], we ask that limk→∞(̺
(k)
X ) = 0. The choice of the phases αX , αk and the

radii ̺
(k)
X seem to remain free provided that the map is injective and the radii converge

to zero. But the characterisation of C1-convergence in Sect. 3.2 will fix the value of the
phases αX and αk and will reduce the possible values of the radii ̺

(k)
X .

Finally, note that for a complex number, c, we use the standard notation, |c|, for its
modulus and use the notation ϕc for its phase.

2.2 Eigenanalysis of the Transformed Subdivision Matrices

Consideration of the relationship between the spatial and frequency domains allows us to
produce necessary conditions for C2-convergence. As mentioned in the introduction, the
vertices after one step of subdivision are defined as linear combinations of the vertices in
the previous mesh. As a consequence, there exists a matrix M such that

P(k) = MP(k−1) .

We will refer to M = (Ml,h) as the subdivision matrix. In this section we introduce the
necessary notation for the definition of transformed subdivision matrices.

We may write the discrete rotational frequencies X̃(k)(ω) of each set of vertices {X(k)
j }j∈1...n

by applying a shifted Discrete Fourier Transform:

DFT
({

X
(k)
j

})

(ω) = X̃(k)(ω) =
n
∑

j=1

X
(k)
j exp

(

−2iπω

n
(j + φX + φk)

)



8 2 THEORETICAL TOOLS

with

X
(k)
j =

1

n

n−1
∑

ω=0

X̃(k)(ω) exp

(

2iπω

n
(j + φX + φk)

)

,

and i =
√
−1. Usually, the discrete Fourier transform is defined without the phase

φX + φk. We emphasise that a shift does not change the frequency content of the set of
points, but this shift will enable us to get pure real components of subdivision matrices in
the frequency domain in Sect. 4. Note that we use phases φX and φk independently of the
phases αX and αk of the parametric space introduced in Sect. 2.1. Indeed, φX and φk will
be chosen with regard to the algebraic structure of the subdivision matrix in Sect. 4.1,
whereas αX and αk will be fixed by the characterisation of C1-convergence in Sect. 3.2.

We now introduce two results directly related to this definition of the discrete Fourier
transform and which will be used in Sect. 3 to derive necessary conditions for C2-
convergence.

Lemma 2.1 Consider a set of vertices defined as

Yj = a cos(
2πΩ

n
(j + α)) + b sin(

2πΩ

n
(j + α)),

where a and b are constant and Ω ∈ {0, 1, 2}. Then, letting δω,Ω be the Kronecker function:

δω,Ω =

{

1 if ω = Ω,

0 else.

with a given φX + φk,

Ỹ (ω) =
n
∑

j=1

Yj exp

(

−2iπω

n
(j + φX + φk)

)

=

(

n
a − ib

2
δω,Ω + n

a + ib

2
δω,−Ω

)

exp

(

−2iπω

n
(α − φX − φk)

)

Proof

Yj =
a

2

[

exp

(

2iπΩ

n
(j + α)

)

+ exp

(

−2iπΩ

n
(j + α)

)]

+
b

2i

[

exp

(

2iπΩ

n
(j + α)

)

− exp

(

−2iπΩ

n
(j + α)

)]

=
a − ib

2
exp

(

2iπΩ

n
(j + α)

)

+
a + ib

2
exp

(

−2iπΩ

n
(j + α)

)

Ỹ (ω) =
n
∑

j=1

Yj exp

(

−2iπω

n
(j + φX + φk)

)

=

(

n
∑

j=1

Yj exp

(

−2iπω

n
(j + α)

)

)

exp

(

2iπω

n
(α − φX − φk)

)
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=

[

a − ib

2
exp

(

2iπα

n
(Ω − ω)

) n
∑

j=1

exp

(

2iπj

n
(Ω − ω)

)

+
a + ib

2
exp

(

−2iπα

n
(Ω − ω)

) n
∑

j=1

exp

(

−2iπj

n
(Ω + ω)

)

]

exp

(

2iπω

n
(α − φX − φk)

)

=

[

a − ib

2
exp

(

2iπα

n
(Ω − ω)

)

1 − exp (2iπ(Ω − ω))

1 − exp
(

2iπ
n

(Ω − ω)
)

+
a + ib

2
exp

(

−2iπα

n
(Ω − ω)

)

1 − exp (2iπ(Ω + ω))

1 − exp
(

2iπ
n

(Ω + ω)
)

]

exp

(

2iπω

n
(α − φX − φk)

)

=

(

n
a − ib

2
δω,Ω + n

a + ib

2
δω,−Ω

)

exp

(

2iπω

n
(α − φX − φk)

)

Lemma 2.2 If for all j ∈ {1, . . . , n}, limk→∞ X
(k)
j = 0 then for every ω {1, . . . , n},

limk→∞ X̃(k)(ω) = 0.

Proof limk→∞ X̃(k)(ω) = 0 if and only if limk→∞

∣

∣

∣
X̃(k)(ω)

∣

∣

∣
= 0. Furthermore,

lim
k→∞

∣

∣

∣
X̃(k)(ω)

∣

∣

∣
= lim

k→∞

∣

∣

∣

∣

∣

n
∑

j=1

X
(k)
j exp

(

−2iπω

n
(j + φX + φk)

)

∣

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

∣

n
∑

j=1

X
(k)
j exp

(

−2iπω

n
j

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

(

−2iπω

n
(φX + φk)

)∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

∣

n
∑

j=1

X
(k)
j exp

(

−2iπω

n
j

)

∣

∣

∣

∣

∣

which leads to the result.

If the discrete Fourier transform is defined without the phase, it is well-known [1] that there
exist transformed subdivision matrices M̃(ω) such that for all ω in

{

−⌊n−1
2
⌋, . . . , ⌊n

2
⌋
}

,

P̃(k+1)(ω) = M̃(ω)P̃(k)(ω)

where, if ω 6= 0,

P̃(k)(ω) :=
[

B̃(k)(ω)C̃(k)(ω)D̃(k)(ω) · · ·
]T

and otherwise

P̃(k)(0) :=
[

Ã(k)(0)B̃(k)(0)C̃(k)(0)D̃(k)(0) · · ·
]T

.

With our definition of the discrete Fourier transform with a phase αk, it is clear that
there exist such matrices but that they could depend on k. But because we have asked
dα = αk − αk−1 to be independent of k, the matrices M̃(ω) do not depend on k.
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For every discrete rotational frequency ω, the matrix M̃(ω) is assumed to be non-
defective (otherwise we should use the canonical Jordan form).

M̃(ω) = Ṽ(ω)−1Λ̃(ω)Ṽ(ω)

where the columns ṽl(ω) of Ṽ(ω)−1 are the right eigenvectors of M̃(ω), the rows ũT
l (ω) of

Ṽ(ω) are the left eigenvectors of M̃(ω), and Λ̃(ω) is diagonal whose diagonal components
λ̃l(ω) are the eigenvalues of M̃(ω), with l ≥ 1. Let L−

l (ω), Ll(ω), and L+
l (ω) be sets of

indices such that:

if q ∈ L−
l (ω) then

∣

∣

∣λ̃q(ω)
∣

∣

∣ <
∣

∣

∣λ̃l(ω)
∣

∣

∣

if q ∈ Ll(ω) then
∣

∣

∣λ̃q(ω)
∣

∣

∣ =
∣

∣

∣λ̃l(ω)
∣

∣

∣

if q ∈ L+
l (ω) then

∣

∣

∣λ̃q(ω)
∣

∣

∣ >
∣

∣

∣λ̃l(ω)
∣

∣

∣ .

Finally we define P(q, ω) := ũq(ω)TP̃(0)(ω).

Lemma 2.3 For every l ≥ 1,

P̃(k)(ω) −
∑

q∈L+
l

(ω)

λ̃q(ω)
kP(q, ω)ṽq(ω)

= λ̃l(ω)
k





∑

q∈Ll(ω)

P(q, ω)ṽq(ω) +
∑

q∈L−

l
(ω)

(

λ̃q(ω)

λ̃l(ω)

)k

P(q, ω)ṽq(ω)



 .

Proof Let X̃(k) be the lXth component of P̃(k),

P̃(k)(ω) = M̃(ω)P̃(k−1)(ω)

= M̃(ω)
k
P̃(0)(ω)

= Ṽ(ω)
−1

Λ̃(ω)
k
Ṽ(ω)P̃(0)(ω)

=

(

∑

X∈A,B,C,D,...

λ̃lX (ω)
k
ṽlX(ω)ũT

lX
(ω)

)

P̃(0)(ω)

=
∑

X∈A,B,C,D,...

λ̃lX (ω)
k
ṽlX(ω)

(

ũT
lX

(ω)P̃(0)(ω)
)

=
∑

X∈A,B,C,D,...

λ̃lX (ω)
kP(lX , ω)ṽlX(ω)

which implies the result.

Remark This lemma tells us that the combination

λ̃l(ω)
k ∑

q∈Ll(ω)

P(q, ω)ṽq(ω)
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is a good estimate of the frequency

P̃(k)(ω) −
∑

q∈L+
l

(ω)

λ̃q(ω)
kP(q, ω)ṽq(ω)

as k grows to infinity, in the same way that

∑

a+b=l

xayb

l!

∂lF
∂xa∂yb

(0, 0)

is a good estimate of the function

F(x, y) −
∑

a+b<l

xayb

(a + b)!

∂(a+b)F
∂xa∂yb

(0, 0)

as (x, y) converges to (0, 0).

2.3 Invariances

In this section, we present the invariances that a scheme may have and which simplify
the writing of the matrix’s, M̃(ω), components as a combination of the components of the
subdivision matrix M.

Let X
(k)
h be the l(X,h)th component of P (k).

Definition The scheme is rotationally invariant if

Ml(X,j),1 = Ml(X,q),1 =: mX,1 ,

M1,l(X,j)
= M1,l(X,q)

=: m1,X ,

if the mark point is a vertex, and

Ml(X,j),l(Y,h)
= Ml(X,j+q),l(Y,h+q)

=: m(X,Y ),j−h

with m(X,Y ),h = m(X,Y ),h+n, whatever the mark point is.

Let X̃(k) be the lXth component of P̃ (k), and M̃lX ,lY (ω) the components of M̃(ω).

Lemma 2.4 Consider a rotationally invariant scheme. If the mark point is a vertex, for

all Y ∈ {B,C,D, . . .},

M̃1,1(0) = M1,1

M̃1,lY (0) = nm(1,Y )

M̃lY ,1(0) = mY,1 .

Furthermore, whatever the mark point and the rotational frequency ω are,∀X ∈ {B,C,D, . . .},
∀Y ∈ {B,C,D, . . .},

M̃lX ,lY (ω) =
n
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + αX − αY + dα)

)

.
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Proof We prove the most general case, where the mark point is a vertex. Proving the
dual case follows trivially.

A(k+1) = M1,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

h=1

M1,l(Y,h)
Y

(k)
h

= M1,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

h=1

m(1,Y )Y
(k)
h

= M1,1A
(k) +

∑

Y ∈B,C,D,...

m(1,Y )Ỹ
(k)(0)

So,

Ã(k+1) = n

(

M1,1A
(k) +

∑

Y ∈B,C,D,...

m(1,Y )Ỹ
(k)(0)

)

= M1,1Ã
(k) +

∑

Y ∈B,C,D,...

nm(1,Y )Ỹ
(k)(0)

Furthermore, for all X ∈ {B,C,D, . . .}, for all j ∈ {1 . . . n},

X
(k+1)
j = Ml(X,j),1A

(k) +
∑

Y ∈B,C,D,...

n
∑

h=1

Ml(X,j),l(Y,h)
Y

(k)
h

= mX,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

h=1

m(X,Y ),j−hY
(k)
h

= mX,1A
(k) +

∑

Y ∈B,C,D,...

j−n
∑

q=j−1

m(X,Y ),qY
(k)
j−q

But, writing Y
(k)
h = Y

(k)
h+n, we get

X
(k+1)
j = mX,1A

(k) +
∑

Y ∈B,C,D,...

n
∑

q=1

m(X,Y ),qY
(k)
j−q

X̃(k+1)(ω) =
n
∑

j=1

(

mX,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

q=1

m(X,Y ),qY
(k)
j−q

)

exp

(

−2iπω

n
(j + αX + αk+1)

)

= mX,1

n
∑

j=1

A(k) exp

(

−2iπω

n
(j + αX + αk+1)

)

+
∑

Y ∈B,C,D,...

exp

(

−2iπω

n
(αX − αY + αk+1 − αk)

)

n
∑

q=1

m(X,Y ),q

n
∑

j=1

Y
(k)
j−q exp

(

−2iπω

n
(j + αY + αk)

)
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= mX,1Ã
(k)(0)δω,0

+
∑

Y ∈B,C,D,...

exp

(

−2iπω

n
(αX − αY + dα)

)

n
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
q

) n
∑

j=1

Y
(k)
j−q exp

(

−2iπω

n
(j − q + αY )

)

= mX,1Ã
(k)(0)δω,0

+
∑

Y ∈B,C,D,...

exp

(

−2iπω

n
(αX − αY + dα)

) n
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
q

)

Ỹ (k)

which leads to the result.

Remark Whatever the mark point is, the components of the matrix M̃(0) are real. Fur-
thermore, if the mark point is a vertex, for all Y ∈ {B,C,D, . . .}, the components M̃1,1(0)
and M̃1,lY (0) are real.

A consequence of this lemma is the following relationship between certain eigenelements
of a rotational invariant scheme.

Lemma 2.5 Consider a scheme with M̃(ω), ω ∈ {0, . . . , n − 1}, as transformed subdivi-

sion matrices. Let λ̃q(ω), q ∈ {0, . . . , n − 1}, be the eigenvalues of M̃(ω), and ṽq(ω) the re-

lated eigenvectors. If the scheme is rotationally invariant then, for all q ∈ {0, . . . , n − 1},
λ̃q(0) and ṽq(0) are real. Furthermore, for every ω ∈ {1, . . . , n − 1}, the eigenvalues and

eigenvectors of M̃(ω) may be sorted such that
{

λ̃q(ω) = λ̃∗
q(n − ω) , and

ṽq(ω) = ṽ∗
q (n − ω) ,

with c∗ being the conjugate of c.

Proof From lemma 2.4, if the scheme is rotationally invariant, then M̃(ω) = M̃∗(n−ω).
Furthermore,

M̃(n − ω)ṽq(n − ω) = λ̃q(n − ω)ṽq(n − ω) ,

M̃∗(n − ω)ṽ∗
q (n − ω) = λ̃∗

q(n − ω)ṽ∗
q (n − ω) ,

as a consequence,
M̃(ω)ṽ∗

q (n − ω) = λ̃∗
q(n − ω)ṽ∗

q (n − ω)

which leads to the result.

To introduce mirror invariance, we need some notation. Consider the half of the first sector
between the positive x-axis and the sector’s centre line. The vertices in this region may
be split into three families. The vertices which lie on the x-axis belong to the basement

family. In Fig. 1(a), B and D are in the basement. In Fig. 1(b), no vertex belongs to
the basement. The vertices which lie on the centre line of the sector belong to the ceiling

family. In Fig. 1(a), C and F belong to the ceiling. In Fig. 1(b), B, D and G belong to
the ceiling. The other vertices belong to the floor family. In Fig. 1(a), E belongs to the
floor. In Fig. 1(b), C, E and F belong to the floor. If the mark point is a vertex, A could
belong to the basement or to the ceiling, but we prefer to consider its case separately.
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Definition The scheme is p-mirror invariant, p ∈ Z, if

m1,X = m1,X′ and mX,1 = mX′,1

and
Ml(X,1),l(Y,h)

= Mlmir(X,1),lmir(Y,h−p)

with

mir(X, h) =







Xn−h+2 if X belongs to the basement,
Xn−h+1 if X belongs to the ceiling,
X ′

n−h+1 if X belongs to the floor.

Remark For instance, Loop [8] or Catmull-Clark [4] scheme are rotationally and 0-mirror
invariant whereas

√
3 scheme [7] is rotationally and 1-mirror invariant.

Lemma 2.6 If the scheme is both rotationally and p-mirror invariant, then, depending

on the nature of X and Y , m(X,Y ),q is equal to

X\Y basement ceiling floor

basement m(X,Y ),−q−p m(X,Y ),1−q−p m(X,Y ′),1−q−p

ceiling m(X,Y ),−1−q−p m(X,Y ),−q−p m(X,Y ′),−q−p

floor m(X′,Y ),−1−q−p m(X′,Y ),−q−p m(X′,Y ′),−q−p

Proof Let X and Y belong to the basement. If the scheme is p-mirror invariant, then

Ml(X,1),l(Y,h)
= Ml(X,1),l(Y,n−h+2+p)

Furthermore, if the scheme has rotational invariances, then

m(X,Y ),1−h = m(X,Y ),1−(n−h+2+p)

= m(X,Y ),h−1−p

Thus,
m(X,Y ),q = m(X,Y ),−q−p

Similar arguments are run for the other configurations.

2.4 Cp-Convergence

We propose the following definition for the Cp-convergence of a scheme. The scheme
Cp-converges in the vicinity of a mark point if

• for every X in the infinite vicinity {B,C,D, . . .} of A, there exist phases αX and,

for all j in {1, . . . , n}, for every k, radii ̺
(k)
X and a Cp-continuous function F (k)(x, y)

such that, if the mark point is a vertex then

A(k) = F (k)(0, 0) ,

and, whatever the mark point is,

X
(k)
j = F (k)(̺

(k)
X cos(θ(X,j,k)), ̺

(k)
X sin(θ(X,j,k))) ,
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• Furthermore, the sequence of pth differentials
(

dpF (k)
)

k
converges uniformly onto

dpF which is the pth differential of a Cp-continuous parameterisation F(x, y) of the
limit surface in the vicinity of the limit mark point.

• Finally, for all q ∈ 0 . . . p− 1, the sequence
(

dqF (k)(0, 0)
)

k
converges onto dqF(0, 0).

In this definition, an infinite vicinity {B,C,D, . . .} is taken into account. In any practical
application, we will consider only a finite number of vertices. An intuitive choice is the
minimal set of vertices whose linear combination defines the mark point at each subdi-
vision step [17]. This practical restriction is not inconsistent with finding only necessary
conditions for Cp-convergence.

From the definition, we see that if the scheme Cp-converges in the vicinity of a mark
point, then the sequence of meshes converges towards a Cp-continuous surface around
the limit mark point. But the converse is not true: a scheme, which converges towards
a Cp-continuous surface is not necessarily Cp-convergent. Note also that the definition
domain of F (k) shrinks as k grows since limk→∞(̺

(k)
X ) = 0 from Sect. 2.1.

2.5 Behaviour of the Limit Points

In Sect. 3 we will be considering the necessary conditions for C2-convergence. Therefore,
consider a scheme which C2-converges in the vicinity of a mark point. The parameterisa-
tion F(x, y) is C2-continuous. From its Taylor expansion around (0, 0), we may describe
the behaviour of the limit points in the vicinity of the limit mark point. In the following
lines, we detail this behaviour with derivatives of the limit function and according to the
regularity of the scheme convergence.

Lemma 2.7 If the scheme C0-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(A(k)) = F(0, 0) , if the mark point is a vertex, and

lim
k→∞

(X
(k)
j ) = F(0, 0) , whatever the mark point is.

Proof From the definition of C0-convergence, we know that

A(k) = F (k)(0, 0) and lim
k→∞

(

F (k)(0, 0)
)

= F(0, 0).

So,
lim

k→∞
(A(k)) = F(0, 0).

Furthermore,

‖X(k)
j −F(0, 0)‖ = ‖F (k)(ρ

(k)
X cos(θ(X,j,k)), ‖ρ(k)

X sin(θ(X,j,k))) −F(0, 0)‖
≤ ‖F (k)(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))

− F(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))‖

+ ‖F(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(0, 0)‖
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From the definition of C0-convergence, we know that F (k)(x, y) converges uniformly to-
wards F(x, y) in the vicinity V of (0, 0):

∀ε ∃Kε : k > Kε ⇒ ∀(x, y) ∈ V, ‖F (k)(x, y) −F(x, y)‖ < ε

Furthermore,

lim
k→∞

(ρ
(k)
X ) = 0 i.e. ∀α ∃Nα : n > Nα ⇒| ρ

(n)
X |< α

and there exists αV such that for all θ

| ρ |< αV ⇒ (ρ cos(θ), ρ sin(θ)) ∈ V

so,
k > max(Kε, NαV

) ⇒
‖F (k)(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))‖ < ε

Finally, from the definition of C0-convergence, we know that F(x, y) is C0-continuous in
(0, 0):

∀ε ∃αε :| ρ |< αε ⇒ ∀θ‖F(ρ cos(θ), ρ sin(θ) −F(0, 0)‖ < ε

So,
k > max(Kε, NαV

, Nαε
) ⇒ ‖X(k)

j −F(0, 0)‖ < 2ε

Lemma 2.8 If the scheme C1-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

((

X
(k)
j −F (k)(0, 0)

̺
(k)
X

)

−
(

cos(θ(X,j,k))
∂F
∂x

(0, 0) + sin(θ(X,j,k))
∂F
∂y

(0, 0)

)

)

= 0 .

Proof We define the following notation:

Fx = ∂F
∂x

(0, 0) Fy = ∂F
∂y

(0, 0)

∥

∥

∥

∥

∥

X
(k)
j −F (k)(0, 0)

ρ
(k)
X

−
(

cos(θ(X,j,k))
∂F
∂x

(0, 0) + sin(θ(X,j,k))
∂F
∂y

(0, 0)

)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F (k)(0, 0)

ρ
(k)
X

−
(

cos(θ(X,j,k))Fx + sin(θ(X,j,k))Fy

)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))

ρ
(k)
X

−F (k)(0, 0) −F(0, 0)

ρ
(k)
X

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

F(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(0, 0)

ρ
(k)
X

−
(

cos(θ(X,j,k))Fx + sin(θ(X,j,k))Fy

)

∥

∥

∥

∥

∥
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From the definition of C1-convergence, we know that dF (k)(x, y) converges uniformly
towards dF(x, y) in the vicinity V of (0, 0):

∀ε ∃Kε : k > Kε ⇒ ∀(x, y) ∈ V, ∀θ,

∥

∥

∥

∥

(

cos(θ)
∂F (k)

∂x
(x, y) + sin(θ)

∂F (k)

∂y
(x, y)

)

−
(

cos(θ)
∂F
∂x

(x, y) + sin(θ)
∂F
∂y

(x, y)

)∥

∥

∥

∥

< ε

Applying the Taylor-Lagrange inequality on (x, y) 7→ F (k)(x, y) − F(x, y), we get for all
(ρ cos(θ), ρ sin(θ)) in V ,

∥

∥

(

F (k)(ρ cos(θ), ρ sin(θ)) −F(ρ cos(θ), ρ sin(θ))
)

−
(

F (k)(0, 0) −F(0, 0)
)∥

∥ < ε | ρ |

In particular,
k > max(Kε, NαV

) ⇒

∥

∥

∥

∥

∥

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))

ρ
(k)
X

−F (k)(0, 0) −F(0, 0)

ρ
(k)
X

∥

∥

∥

∥

∥

< ε

Finally, from the definition of C1-convergence, we know that F(x, y) is C1-continuous in
(0, 0):

∀ε ∃αε :| ρ |< αε ⇒ ∀θ
∥

∥

∥

∥

F(ρ cos(θ), ρ sin(θ)) −F
ρ

− (cos(θ)Fx + sin(θ)Fy)

∥

∥

∥

∥

< ε

So,
k > max(Kε, NαV

, Nαε
) ⇒

∥

∥

∥

∥

∥

X
(k)
j −F (k)(0, 0)

ρ
(k)
X

−
(

cos(θ(X,j,k))
∂F
∂x

(0, 0) + sin(θ(X,j,k))
∂F
∂y

(0, 0)

)

∥

∥

∥

∥

∥

< 2ε

Lemma 2.9 If the scheme C2-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(

∆
(k)
X,j

̺
(k)
X

2 −
[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j,k))

2

+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(X,j,k))

4

])

= 0 .

with

∆
(k)
X,j := X

(k)
j −F (k)(0, 0) − ̺

(k)
X

(

cos(θ(X,j,k))
∂F (k)

∂x
(0, 0) − sin(θ(X,j,k))

∂F (k)

∂y
(0, 0)

)

.
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Proof We define the following notation:

Fxx = ∂2F
∂x2 (0, 0) Fyy = ∂2F

∂y2 (0, 0) Fxy = ∂2F
∂x∂y

(0, 0)

∥

∥

∥

∥

∥

X
(k)
j −F (k)(0, 0) − ρ

(k)
X cos(θ(X,j,k))

∂F(k)

∂x
(0, 0) − ρ

(k)
X sin(θ(X,j,k))

∂F(k)

∂y
(0, 0)

ρ
(k)
X

2

−
[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(X,j,k))

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j,k))

2

]∥

∥

∥

∥

=

∥

∥

∥

∥

∥

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F (k)(0, 0)

ρ
(k)
X

2

−ρ
(k)
X cos(θ(X,j,k))F (k)

x − ρ
(k)
X sin(θ(X,j,k))F (k)

y

ρ
(k)
X

2

−
[

(Fxx + Fyy)
1

4
+ (Fxx −Fyy)

cos(2θ(X,j,k))

4
+ Fxy

sin(2θ(X,j,k))

2

]∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

[

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))

]

ρ
(k)
X

2

+
−
[

F (k)(0, 0) −F(0, 0)
]

− ρ
(k)
X cos(θ(X,j,k))

[

F (k)
x −Fx

]

− ρ
(k)
X sin(θ(X,j,k))

[

F (k)
y −Fy

]

ρ
(k)
X

2

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

F(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(0, 0) − ρ

(k)
X cos(θ(X,j,k))Fx − ρ

(k)
X sin(θ(X,j,k))Fy

ρ
(k)
X

2

−
[

(Fxx + Fyy)
1

4
+ (Fxx −Fyy)

cos(2θ(X,j,k))

4
+ Fxy

sin(2θ(X,j,k))

2

]∥

∥

∥

∥

From the definition of C2-convergence, we know that d2F (k)(x, y) converges uniformly
towards d2F(x, y) in the vicinity V of (0, 0):

∀ε ∃Kε : k > Kε ⇒ ∀(x, y) ∈ V, ∀θ,

∥

∥

∥

∥

[(

∂2F (k)

∂x2
(x, y) +

∂2F (k)

∂y2
(x, y)

)

1

4
+

(

∂2F (k)

∂x2
(x, y) − ∂2F (k)

∂y2
(x, y)

)

cos(2θ)

4
+

∂2F (k)

∂x∂y
(x, y)

sin(2θ)

2

]

−
[(

∂2F
∂x2

(x, y) +
∂2F
∂y2

(x, y)

)

1

4
+

(

∂2F
∂x2

(x, y) − ∂2F
∂y2

(x, y)

)

cos(2θ)

4
+

∂2F
∂x∂y

(x, y)
sin(2θ)

2

]∥

∥

∥

∥

< ε
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Applying the Taylor-Lagrange inequality on (x, y) 7→ F (k)(x, y) − F(x, y), we get for all
(ρ cos(θ), ρ sin(θ)) in V ,

∥

∥

[

F (k)(ρ cos(θ), ρ sin(θ)) −F(ρ cos(θ), ρ sin(θ))
]

−
[

F (k)(0, 0) −F(0, 0)
]

− ρ cos(θ)
[

F (k)
x −Fx

]

− ρ sin(θ)
[

F (k)
y −Fy

]∥

∥ < ε
| ρ |2

2

In particular,

k > max(Kε, NαV
) ⇒

∥

∥

∥

∥

∥

∥

[

F (k)(ρ
(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k))) −F(ρ

(k)
X cos(θ(X,j,k)), ρ

(k)
X sin(θ(X,j,k)))

]

ρ
(k)
X

2

+
−
[

F (k)(0, 0) −F(0, 0)
]

− ρ
(k)
X cos(θ(X,j,k))

[

F (k)
x −Fx

]

− ρ
(k)
X sin(θ(X,j,k))

[

F (k)
y −Fy

]

ρ
(k)
X

2

∥

∥

∥

∥

∥

∥

<
ε

2

Finally, from the definition of C2-convergence, we know that F(x, y) is C2-continuous in
(0, 0):

∀ε ∃αε :| ρ |< αε ⇒

∥

∥

∥

∥

F(ρ cos(θ), ρ sin(θ)) −F(0, 0) − ρ cos(θ)Fx − ρ sin(θ)Fy

ρ2

−
[

(Fxx + Fyy)
1

4
+ (Fxx −Fyy)

cos(2θ)

4
+ Fxy

sin(2θ)

2

]∥

∥

∥

∥

< ε

So,

k > max(Kε, NαV
, Nαε

) ⇒ ∀θ

∥

∥

∥

∥

∥

X
(k)
j −F (k)(0, 0) − ρ

(k)
X cos(θ(X,j,k))

∂F(k)

∂x
(0, 0) − ρ

(k)
X sin(θ(X,j,k))

∂F(k)

∂y
(0, 0)

ρ
(k)
X

2

−
[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(X,j,k))

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j,k))

2

]∥

∥

∥

∥

<
3ε

2

Remark Note that the three lemmas tell us that the difference between two terms shrinks
onto zero as k grows to infinity. But this does not mean in general that both terms
converge towards the same limit. For example, in the case of the Kobbelt’s

√
3 scheme [7],

θ(X,j,k) = 2π
n

(j + αX + k/2) does not converge as k grows to infinity.
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dx
(0)

dF

F (x)

F (x)

dx

dF
(0)

ρ(θ)
(k+1)

ρ(θ)
(k) x

z

F(x)

(k)

(k+1)

(k)

dF
(0)

dx

(k+1)

(a) Bad sampling for approxi-
mating the first derivative

dx
(0)

dF

F (x)

F (x)

dx

dF
(0)ρ(θ)

(k)

ρ(θ)
(k+1)

x

z

F(x)

dF
(0)

dx

(k+1)

(k)

(k+1)

(k)

(b) Good sampling for ap-
proximating the first deriva-
tive

Figure 2: Sampling for derivative approximation

2.6 Good Sampling is Necessary

Lemmas (2.7), (2.8) and (2.9) tell us that the derivatives of the limit surface F may be
written as the limit of linear combinations of samplings of the interpolating functions F (k)

with their derivatives on (0, 0). That means that we have to know the values of F (k) and
its derivatives on (0, 0). In practice, we can replace them by the value of the limit function
F and its derivatives on (0, 0). But, to do so, the samplings have to fulfil the following
conditions:

lim
k→∞





∣

∣

∣

∂a+bF(k)

∂xa∂yb (0, 0) − ∂a+bF
∂xa∂yb (0, 0)

∣

∣

∣

̺(k)a+b+1



 = 0 (2)

which means that the radial parameters ̺(k) of the samples must not to shrink more
quickly than the functions F (k) converge to the limit surface.

For instance, we must have

lim
k→∞

(
∣

∣F (k)(0, 0) −F(0, 0)
∣

∣

̺(k)

)

= 0

if we want to take
F (k)(̺(k) cos(θ), ̺(k) sin(θ)) −F(0, 0)

̺(k)

as an approximation of

cos(θ)
∂F
∂x

(0, 0) + sin(θ)
∂F
∂y

(0, 0)

as illustrated in Fig. 2.
Another consequence of a bad sampling is a bad sorting of the eigenvalues among

the subdivision matrices in the frequency domain. Because the components of P(k) are
samples of the function F (k), the successive components

∑

q∈Ll(ω) P(q, ω)ṽq(ω) may be
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interpreted as the frequency of the successive sets

{F(0, 0)} ,
{

F (k)(̺
(k)
X cos(θ(X,j,k)), ̺

(k)
X sin(θ(X,j,k))) −F(0, 0)

̺
(k)
X

}

,

{

F (k)(̺
(k)
X cos(θ(X,j,k)), ̺

(k)
X sin(θ(X,j,k)))

̺
(k)
X

2

−
F(0, 0) + ̺

(k)
X cos(θ(X,j,k))

∂F
∂x

(0, 0) + ̺
(k)
X sin(θ(X,j,k))

∂F
∂y

(0, 0)

̺
(k)
X

2

}

and so on. So, the non-null frequency components of these successive sets are the same
as those of the successive dominant eigenvalues among all the subdivision matrices in the
frequency domain. The non-null frequency components of the successive derivatives of
the limit surface F at (0, 0) are successively the frequency of a position (0), a tangent
plane (±1), a quadric—a cup (0) or a saddle (±2)—and so on. If the sampling is good,
the frequencies of these successive sets follow the frequencies of the successive derivatives
of the limit surface. If the sampling is bad, these sets are bad approximations to the
derivatives of the limit surface F at (0, 0) and the successive main eigenvalues do not
come from the expected frequencies.

For instance, if the sampling is such that

lim
k→∞

(
∣

∣F (k)(0, 0) −F(0, 0)
∣

∣

̺(k)

)

6= 0

as illustrated in Fig. 2(a), the samples are too close to each other in comparison with
the distance between them and the limit point F(0, 0). Then the frequency of the set
of vectors F (k)(x, y) − F(0, 0), which is the frequency associated with the sub-dominant
eigenvalue among all the subdivision matrices in the frequency domain, is the frequency
of a point rather than the frequency of a plane. As a consequence, the sub-dominant
eigenvalues do not come from the frequencies ±1 as expected but from the frequency 0
(see lemma 3.3).

In summary, if the sampling is bad, on the one hand, we cannot say anything about
the convergence of the scheme, and on the other hand, the successive main eigenvalues do
not come from the expected frequency matrices. A simple way to overcome this problem
is to ask the successive interpolation F (k) to interpolate F with its derivatives at (0, 0),
which adds an extra constraint.

3 Necessary Conditions for C2-Convergence

and Derivatives of the Limit Surface

Lemmas (2.7), (2.8) and (2.9) describe the behaviour of the limit points. Applying the
Discrete Fourier Transform on these equations gives a description of the limit frequencies.
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Consistency between this description and the one given by lemma (2.3) implies necessary
conditions for the C2-convergence of the scheme. It gives also the partial derivatives
of the limit surface at the mark point. As notation, we say that if X̃(k)(ω) is the mth
component of P̃(k)(ω), then (ṽl(ω))X is the mth component of ṽl(ω). We assume without

any restriction that for every fixed ω, λ̃2(ω) is the eigenvalue of M̃(ω) with the greatest
modulus after λ̃1(ω) and possibly other eigenvalues with same modulus as λ̃1(ω): for all
ω, L1(ω) = L+

2 (ω). Finally, we choose the phases φk, introduced in the shifted discrete
Fourier transform in Sect. 2.2, to be written as φk = kdφ with dφ independent from k.

3.1 C0-Convergence

Lemma 3.1 If the scheme C0-converges, then

{

λ̃1(0) = 1 ,
∣

∣

∣λ̃1(ω)
∣

∣

∣ < 1 for ω 6= 0.

and if L1(0) = {1}, then

(ṽ1(0))X = ν0

with ν0 being a constant, and

F(0, 0) =
P(1, 0)

n
(ṽ1(0))X .

Proof From lemma 2.7, we know that if the scheme C0-converges in the vicinity {B,C,D, . . .}
of a mark point, then there exists a function F(x, y) such that

lim
k→∞

(A(k)) = F(0, 0), if the mark point is a vertex

and ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(X
(k)
j ) = F(0, 0) = F whatever the mark point is.

From lemma 2.2, we get ∀X ∈ {A,B,C,D, . . .}, ∀ω ∈ {0 . . . n − 1},

lim
k→∞

(X̃(k)(ω)) = DFT(F(0, 0))(ω) .

From lemma 2.1, taking Ω = 0 and a = F , we get

DFT(F(0, 0))(ω) = nF(0, 0)δω,0 .

From lemma 2.3, having supposed that for all q and ω,
∣

∣

∣
λ̃q(ω)

∣

∣

∣
≤
∣

∣

∣
λ̃1(ω)

∣

∣

∣
we get

lim
k→∞

(X̃(k)(ω)) = lim
k→∞

(λ̃1(ω)
k ∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X) .
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As a consequence,

lim
k→∞

(λ̃1(ω)
k ∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X) = nF(0, 0)δω,0.

Then,
{

λ̃1(0) = 1 ,
∣

∣

∣
λ̃1(ω)

∣

∣

∣
< 1 for ω 6= 0.

And

F(0, 0) =
1

n

∑

q∈L1(0)

P(q, 0) (ṽq(0))X .

In particular, if L1(0) = {1}, ∀X ∈ {A,B,C,D, . . .},
(ṽ1(0))X = ν0

with ν0 be a constant, and then

F(0, 0) =
P(1, 0)

n
(ṽ1(0))X .

Remark Not only do we get necessary conditions on eigenvalues and eigenvectors of
M̃(ω), but we also get the value of F(0, 0), that is the limit mark point.

3.2 C1-Convergence

Lemma 3.2 If the scheme C1-converges, then when k is large, if L1(1) = L1(−1) = {1},
the moduli of the eigencomponents |(ṽ1(1))X | and |(ṽ1(−1))X | are sorted like the radii of

the rings ̺X . Furthermore, if ∂F
∂x

(0, 0) + i∂F
∂y

(0, 0) 6= 0, the phases αk = kdα and αX must

satisfy

dα = dφ ± n

2π
ϕ(λ̃1(±1))

X

and (3)

αX = φX ±
(

ϕ(ṽ1(±1))X
+ ϕP(1,±1) ±

∂F
∂y

(0, 0)/
∂F
∂x

(0, 0)

)

. (4)

Proof From lemma 2.8, we know that if the scheme C1-converges in the vicinity {B,C,D, . . .}
of a mark point, then there exist functions F (k)(x, y) and F(x, y) such that ∀X ∈
{B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(

X
(k)
j −F (k)(0, 0)

ρ
(k)
X

− cos(θ(X,j,k))
∂F
∂x

(0, 0) − sin(θ(X,j,k))
∂F
∂y

(0, 0)

)

= 0 .

From lemma 2.2, we get ∀X ∈ {B,C,D, . . .}, ∀ω ∈ {0, . . . , n − 1},

lim
k→∞

(

DFT

(

X
(k)
j −F (k)(0, 0)

ρ
(k)
X

)

(ω)

− DFT

(

cos(θ(X,j,k))
∂F
∂x

(0, 0) + sin(θ(X,j,k))
∂F
∂y

(0, 0)

)

(ω)

)

= 0 .
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From equation (1) θ(X,j,k) = 2π
n

(j + αX + αk) so from lemma 2.1, taking α = αX + αk

and on the one hand Ω = 0 and a = F (k), and on the other hand Ω = 1 and a = Fx,
b = Fy, we get

lim
k→∞

(

X̃
(k)
j (ω) − nF (k)δω,0

ρ
(k)
X

−n
Fx ∓ iFy

2
exp

(

±2iπ

n
(αX + αk − φX − φk)

))

= 0 .

From lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get with ω = ±1,

X̃(k)(ω)

ρ
(k)
X

=
λ̃1(ω)

k

ρ
(k)
X





∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X +
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X



 (5)

So,

lim
k→∞





λ̃1(±1)
k

ρ
(k)
X

∑

q∈L1(±1)

P(q,±1) (ṽq(±1))X

−n
Fx ∓ iFy

2
exp

(

±2iπ

n
(αX + αk − φX − φk)

))

= 0 . (6)

As a consequence

lim
k→∞

∣

∣

∣

∣

∣

∣

λ̃1(±1)
k

ρ
(k)
X

∑

q∈L1(±1)

P(q,±1) (ṽq(±1))X

∣

∣

∣

∣

∣

∣

=
n

2
|Fx ∓ iFy|

which leads to,

ρ
(k)
X = AX,1(k)

∣

∣

∣λ̃1(1)
∣

∣

∣

k

∣

∣

∣

∣

∣

∣

∑

q∈L1(1)

P(q, 1) (ṽq(1))X

∣

∣

∣

∣

∣

∣

2

n
/ |Fx − iFy| (7)

= AX,−1(k)
∣

∣

∣λ̃1(−1)
∣

∣

∣

k

∣

∣

∣

∣

∣

∣

∑

q∈L1(−1)

P(q,−1) (ṽq(−1))X

∣

∣

∣

∣

∣

∣

2

n
/ |Fx + iFy| (8)

where

lim
k→∞

AX,1(k) = lim
k→∞

AX,−1(k) = 1

In particular, if L1(1) = L1(−1) = {1},

ρ
(k)
X =

∣

∣

∣λ̃1(1)
∣

∣

∣

k 1

νX,1(k)
|(ṽ1(1))X |

=
∣

∣

∣λ̃1(−1)
∣

∣

∣

k 1

νX,−1(k)
|(ṽ1(−1))X |
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where

lim
k→∞

νX,1(k) = ν1 =
n

2

|Fx − iFy|
|P(1, 1)|

lim
k→∞

νX,−1(k) = ν−1 =
n

2

|Fx + iFy|
|P(1,−1)|

This implies that when k is large, the moduli of the eigencomponents |(ṽ1(1))X | and
|(ṽ1(−1))X | are sorted as the parameters ρX .

From equation (6) we get also, if ∂F
∂x

(0, 0)+i∂F
∂y

(0, 0) 6= 0, and if L1(1) = L1(−1) = {1},

lim
k→∞

(

kϕλ̃1(±1) + ϕP(1,±1) + ϕ(ṽ1(±1))X
−
(

∓Fy

Fx

± 2π

n
(αX + αk − φX − φk)

))

= 0

lim
k→∞

(

kϕλ̃1(±1) ∓
2π

n
(αk − φk)

)

= −ϕP(1,±1) − ϕ(ṽ1(±1))X
∓ Fy

Fx

± 2π

n
(αX − φX)

lim
k→∞

(

k

(

ϕλ̃1(±1) ∓
2π

n
(dα − dφ)

))

= −ϕP(1,±1) − ϕ(ṽ1(±1))X
∓ Fy

Fx

± 2π

n
(αX − φX)

which leads to
{

ϕλ̃1(±1) = ±2π
n

(dα − dφ)

ϕ(ṽ1(±1))X
= ∓Fy

Fx
− ϕP(1,±1) ± 2π

n
(αX − φX)

which is equivalent to







dα = dφ ± n
2π

ϕ(λ̃1(±1))
X

and

αX = φX ± n
2π

(

ϕ(ṽ1(±1))X
+ ϕP(1,±1) ± ∂F

∂y
(0, 0)/∂F

∂x
(0, 0)

)

.

Remark Equations (3) and (4) imply the following relationship between dα, αX and dφ,
φX :

{

dα = dφ ⇔ λ̃1(±1) are real
αX = φX ⇔ ϕ(ṽ1(±1))X

do not depend on X.

This means that if we get real eigenvalues, and components of eigenvectors with the same
phase, then we have chosen phases φX and φk for the shifted discrete Fourier transform,
equal to the intrinsic phases αX and αk of the scheme.

If the scheme is rotationally invariant, we get from this lemma a possible practical
definition for the radii ̺X and also the values of the partial differences ∂F

∂x
(0, 0) and

∂F
∂y

(0, 0). Indeed,we know from lemma 2.5 that
∣

∣

∣
λ̃1(1)

∣

∣

∣
=
∣

∣

∣
λ̃1(−1)

∣

∣

∣
. So for every k,

|(ṽ1(1))X |
|(ṽ1(−1))X |

=
νX,1(k)

νX,−1(k)
.
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As a consequence,
|(ṽ1(1))X |
|(ṽ1(−1))X |

=
|P(1,−1)|
|P(1, 1)| .

And because this equation is true for every X and we can scale the eigenvectors (with
consequential effects on the left eigenvectors), we can get

|(ṽ1(1))X |
|(ṽ1(−1))X |

=
|P(1,−1)|
|P(1, 1)| = 1 ,

and so
ν1 = ν−1 .

For simplicity, we can define the radii ̺X as follows (implying ν1 = ν−1 = 1),

̺
(k)
X =

∣

∣

∣λ̃1(1)
∣

∣

∣

k

|(ṽ1(1))X | =
∣

∣

∣λ̃1(−1)
∣

∣

∣

k

|(ṽ1(−1))X | .

However the radii ̺X are defined, if the scheme is rotationally invariant, then

∣

∣

∣

∣

∂F
∂x

(0, 0) ∓ i
∂F
∂y

(0, 0)

∣

∣

∣

∣

=
2

n
|P(1,±1)|

∂F
∂x

(0, 0) ∓ i
∂F
∂y

(0, 0) =
2

n
|P(1,±1)| exp

(

i

(

ϕ(ṽ1(±1))X
+ ϕP(1,±1) ∓

2π

n
(αX − φX)

))

=
2

n
P(1,±1) exp

(

i

(

ϕ(ṽ1(±1))X
∓ 2π

n
(αX − φX)

))

Furthermore, if we define αX as αX = φX ± n
2π

ϕ(ṽ1(±1))X
, (or if ϕ(ṽ1(±1))X

does not depend
on X, as αX = φX after having scaled the eigenvectors (ṽ1(±1))X to be real) then

∂F
∂x

(0, 0) ∓ i
∂F
∂y

(0, 0) =
2

n
P(1,±1) .

which is equivalent to

{

∂F
∂x

(0, 0) = 2
n
ℜ (P(1, 1)) = 2

n
ℜ (P(1,−1)) ,

∂F
∂y

(0, 0) = 2
n
ℑ (P(1, 1)) = − 2

n
ℑ (P(1,−1)) .

Lemma 3.3 If the scheme C1-converges and the mark point is a vertex, then

∣

∣

∣λ̃2(0)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣ .

If the scheme C1-converges and the mark point is a face centre, then

∣

∣

∣
λ̃2(0)

∣

∣

∣
<
∣

∣

∣
λ̃1(±1)

∣

∣

∣
iff lim

k→∞







F (k)(0, 0) −F(0, 0)
∣

∣

∣λ̃1(±1)
∣

∣

∣

k






= 0 .
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Proof From equation (6) and lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get

with ω = 0,

X̃(k)(0) − nF(0, 0)

ρ
(k)
X

=
X̃(k)(0) − λ̃1(0)

k∑

q∈L+
2 (0) P(q, 0) (ṽq(0))X

ρ
(k)
X

=

λ̃2(0)
k

ρ
(k)
X





∑

q∈L2(0)

P(q, 0) (ṽq(0))X +
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0) (ṽq(0))X





If the mark point is a vertex, then

Ã(k)(0) = nA(k) = nF (k)(0, 0)

So,

0 = lim
k→∞

(

X̃(k)(0) − nF (k)(0, 0)

ρ
(k)
X

)

0 = lim
k→∞

(

(X̃(k)(0) − nF(0, 0)) − (Ã(k)(0) − nF(0, 0))

ρ
(k)
X

)

0 = lim
k→∞





λ̃2(0)
k

ρ
(k)
X

(
∑

q∈L2(0)

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]

+
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]

)





0 = lim
k→∞





λ̃2(0)
k

ρ
(k)
X

∑

q∈L2(0)

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]





Then, with lemma 3.2,
∣

∣

∣λ̃2(0)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣ .

If the mark point is a face centre, then

0 = lim
k→∞

(

X̃(k)(0) − nF (k)(0, 0)

ρ
(k)
X

)

0 = lim
k→∞

(

(X̃(k)(0) − nF(0, 0)) − (nF (k)(0, 0) − nF(0, 0))

ρ
(k)
X

)

0 = lim
k→∞





λ̃2(0)
k

ρ
(k)
X

(
∑

q∈L2(0)

P(q, 0) (ṽq(0))X +
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0) (ṽq(0))X)

−n
F (k)(0, 0) −F(0, 0))

ρ
(k)
X

)

0 = lim
k→∞





λ̃2(0)
k

ρ
(k)
X

∑

q∈L2(0)

P(q, 0) (ṽq(0))X − n
F (k)(0, 0) −F(0, 0))

ρ
(k)
X




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Then, with lemma 3.2,

∣

∣

∣λ̃2(0)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣ iff lim
k→∞







F (k)(0, 0) −F(0, 0)
∣

∣

∣λ̃1(±1)
∣

∣

∣

k






= 0 .

Remark If the mark point is a face centre, we do not control F (k)(0, 0). So, as explained
in Sect. 2.6, the sampling may be inadequate for our analysis.

Lemma 3.4 If the scheme C1-converges, and if ω 6∈ {−1, 0, 1}, then

∣

∣

∣λ̃1(ω)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣ .

Proof From equation (5) and lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get

with ω 6∈ {−1, 0, 1},

X̃(k)(ω)

ρ
(k)
X

=
λ̃1(ω)

k

ρ
(k)
X





∑

q∈L1(ω)

P(1, ω) (ṽ1(ω))X +
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X





So,

0 = lim
k→∞





λ̃1(ω)
k

ρ
(k)
X





∑

q∈L1(ω)

P(1, ω) (ṽ1(ω))X +
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X









= lim
k→∞

(

λ̃1(ω)
k

ρ
(k)
X

)

Then, with equations (7) and (8),

∣

∣

∣
λ̃1(ω)

∣

∣

∣
<
∣

∣

∣
λ̃1(±1)

∣

∣

∣
.

3.3 C2-Convergence

Lemma 3.5 If the scheme C2-converges and the mark point is a vertex, then

λ̃2(0) = λ̃1(±1)
2

,

and, if L2(0) = {2}, then

(ṽ2(0))X − (ṽ2(0))A

(ṽ1(1))2
X

and
(ṽ2(0))X − (ṽ2(0))A

(ṽ1(−1))2
X
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depend neither on X nor on k.

If the scheme C2-converges and the mark point is a face centre, then

λ̃2(0) =
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

iff

lim
k→∞

(

F (k)(0, 0) −F(0, 0)

ρ
(k)
X

2

)

=
ν2
±1

n

∑

q∈L2(0)

P(q, 0)
(ṽq(0))X

|(ṽ1(±1))X |
2 − Fxx + Fyy

4

Proof From lemma 2.9, we know that if the scheme C2-converges in the vicinity {B,C,D, . . .}
of a mark point, then there exist function F (k) and F(x, y) such that ∀X ∈ {B,C,D, . . .},
∀j ∈ {1, . . . , n},

lim
k→∞

([

X
(k)
j −F (k)(0, 0) − ρ

(k)
X cos(θ(X,j,k))

∂F(k)

∂x
(0, 0) − ρ

(k)
X sin(θ(X,j,k))

∂F(k)

∂y
(0, 0)

ρ
(k)
X

2

]

−

[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(X,j,k))

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j,k))

2

])

= 0 .

From lemma 2.2, we get ∀X ∈ {A,B,C,D, . . .}, ∀ω ∈ {0 . . . n − 1},

lim
k→∞

(

DFT

(

X
(k)
j −F (k)(0, 0) − ρ

(k)
X cos(θ(X,j,k))

∂F(k)

∂x
(0, 0) − ρ

(k)
X sin(θ(X,j,k))

∂F(k)

∂y
(0, 0)

ρ
(k)
X

2

)

(ω)−

DFT

((

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4

)

(ω)−

DFT

((

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(X,j,k))

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j,k))

2

)

(ω)

)

= 0 .

(9)
From lemma 2.1, taking α = αX +αk, and Ω = 0, and a = (Fxx +Fyy)/4, we get with

ω = 0

lim
k→∞

(

X̃(k)(0) − nF (k)(0, 0)

ρ
(k)
X

2

)

=
n(Fxx + Fyy)

4

From lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get

X̃(k)(0) − nF(0, 0)

ρ
(k)
X

=
X̃(k)(0) − λ̃1(0)

k∑

q∈L+
2 (0) P(q, 0) (ṽq(0))X

ρ
(k)
X

2 =

λ̃2(0)
k

ρ
(k)
X

2





∑

q∈L2(0)

P(q, 0) (ṽq(0))X +
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0) (ṽq(0))X







30 3 NECESSARY CONDITIONS

If the mark point is a vertex, then

Ã(k)(0) = nA(k) = nF (k)(0, 0)

So,

n(Fxx + Fyy)

4
= lim

k→∞

(

X̃(k)(0) − Ã(k)(0)

ρ
(k)
X

2

)

= lim
k→∞

(

(X̃(k)(0) − nF) − (Ã(k)(0) − nF)

ρ
(k)
X

2

)

= lim
k→∞





λ̃2(0)
k

ρ
(k)
X

2 (
∑

q∈L2(0)

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]

+
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]

)





= lim
k→∞





λ̃2(0)
k

ρ
(k)
X

2

∑

q∈L2(0)

P(q, 0)
[

(ṽq(0))X − (ṽq(0))A

]





= lim
k→∞













λ̃2(0)
∣

∣

∣λ̃1(±1)
∣

∣

∣

2







k

νX,±1(k)2
∑

q∈L2(0)

P(q, 0)

[

(ṽq(0))X − (ṽq(0))A

]

|(ṽ1(±1))X |
2







and because limk→∞ νX,±1(k) = ν±1,

λ̃2(0) =
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

,

and
∑

q∈L2(0)

P(q, 0)

[

(ṽq(0))X − (ṽq(0))A

]

|(ṽ1(±1))X |
2

does not depend on X.
In particular, if L2(0) = {2},

ν±1
2 (ṽ2(0))X − (ṽ2(0))A

|(ṽ1(±1))X |
2 = ν20

and

Fxx + Fyy = 4ν±1
2ν20

P(2, 0)

n

If the mark point is a face centre,

n(Fxx + Fyy)

4
= lim

k→∞

(

(X̃(k)(0) − nF(0, 0)) − (nF (k)(0, 0) − nF(0, 0))

ρ
(k)
X

2

)
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= lim
k→∞





λ̃2(0)
k

ρ
(k)
X

2 (
∑

q∈L2(0)

P(q, 0) (ṽq(0))X +
∑

q∈L−
2 (0)

(

λ̃q(0)

λ̃2(0)

)k

P(q, 0) (ṽq(0))X)

−n
F (k)(0, 0) −F(0, 0)

ρ
(k)
X

2

)

= lim
k→∞





λ̃2(0)
k

ρ
(k)
X

2

∑

q∈L2(0)

P(q, 0) (ṽq(0))X − n
F (k)(0, 0) −F(0, 0)

ρ
(k)
X

2





= lim
k→∞













λ̃2(0)
∣

∣

∣λ̃1(±1)
∣

∣

∣

2







k

νX,±1(k)2
∑

q∈L2(0)

P(q, 0)
(ṽq(0))X

|(ṽ1(±1))X |
2

−n
F (k)(0, 0) −F(0, 0)

ρ
(k)
X

2

)

and because limk→∞ νX,±1(k) = ν±1,

λ̃2(0) =
∣

∣

∣
λ̃1(±1)

∣

∣

∣

2

iff

lim
k→∞

(

F (k)(0, 0) −F(0, 0)

ρ
(k)
X

2

)

=
ν2
±1

n

∑

q∈L2(0)

P(q, 0)
(ṽq(0))X

|(ṽ1(±1))X |
2 − Fxx + Fyy

4
.

Remark If the mark point is a vertex, and if we define ̺
(k)
X as proposed in the remark

given after lemma 3.2, then, if L2(0) = {2}, we obtain

(ṽ2(0))X − (ṽ2(0))A

|(ṽ1(±1))X |
2 = ν20

and
∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0) = 4ν20
P(2, 0)

n
.

If the mark point is a face centre, we would find great advantage in asking for all k,
F (k)(0, 0) to be equal to F(0, 0) which is known to be

F(0, 0) =
P(1, 0)

n
(ṽ1(0))X .

from lemma 3.1. Indeed, in this case, we would get the same results as for a mark point
being equal to a vertex (see lemma 3.3 and lemma 3.5).

Furthermore, if the mark point is a face centre, we do not control F (k)(0, 0). So, as
explained in Sect. 2.6, the sampling may be inadequate for our analysis.
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Lemma 3.6 If the scheme C2-converges, then

∣

∣

∣λ̃1(±2)
∣

∣

∣ =
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

,

and if L1(2) = L1(−2) = {1}, then each of the ratios

|(ṽ1(2))X |
|(ṽ1(1))X |

2 ,
|(ṽ1(2))X |

|(ṽ1(−1))X |
2 ,

|(ṽ1(−2))X |
|(ṽ1(1))X |

2 , and
|(ṽ1(−2))X |
|(ṽ1(−1))X |

2

does not depend on X. Furthermore, if ∂2F
∂x2 (0, 0) − ∂2F

∂y2 (0, 0) ∓ i2 ∂2F
∂x∂y

(0, 0) 6= 0,

λ̃1(±2) = λ̃1(±1)
2

,

and

ϕ(ṽ1(±2))X
= ∓2

∂2F
∂x∂y

(0, 0)
(

∂2F
∂x2 (0, 0) − ∂2F

∂y2 (0, 0)
)−ϕP(1,±2) +2

(

ϕ(ṽ1(±1))X
±

∂F
∂y

(0, 0)
∂F
∂y

(0, 0)
+ ϕP(1,±1)

)

.

Proof From equation (9) and lemma 2.1, taking α = αX + αk, Ω = 2 and a = (Fxx −
Fyy)/4, b = (Fxy)/2,

lim
k→∞

(

X̃(k)(±2)

ρ
(k)
X

2 − n
Fxx −Fyy ∓ i2Fxy

8
exp

(

±4πi

n
(αX + αk − φX − φk)

)

)

= 0 .

From lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get

X̃(k)(ω)

ρ
(k)
X

2 =

λ̃1(ω)
k

ρ
(k)
X

2





∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X +
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X



 .

So,

lim
k→∞





λ̃1(±2)
k

ρ
(k)
X

2

∑

q∈L1(±2)

P(q,±2) (ṽq(±2))X

−n
Fxx −Fyy ∓ i2Fxy

8
exp

(

±4πi

n
(αX + αk − φX − φk)

))

= 0 . (10)

This implies that

lim
k→∞

∣

∣

∣

∣

∣

∣

λ̃1(±2)
k

λ̃1(±1)
2k

∑

q∈L1(±2)

P(q,±2)
(ṽq(±2))X
∣

∣(ṽq(±1))X

∣

∣

2ν2
X,±1(k)

∣

∣

∣

∣

∣

∣

=
n

8
|Fxx −Fyy ∓ i2Fxy| .
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And because
lim
k→∞

νX,±1(k) = ν±1

we get
∣

∣

∣λ̃1(±2)
∣

∣

∣ =
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

,

and
∣

∣

∣

∣

∣

∣

∑

q∈L1(±2)

P(q,±2)
(ṽq(±2))X

|(ṽ1(±1))X |
2

∣

∣

∣

∣

∣

∣

does not depend on X.
In particular, if L1(±2) = {1},

|(ṽ1(2))X |
|(ṽ1(1))X |

2 =
ν21

ν1

,
|(ṽ1(2))X |

|(ṽ1(−1))X |
2 =

ν21

ν−1

,

|(ṽ1(−2))X |
|(ṽ1(1))X |

2 =
ν−21

ν1

,
|(ṽ1(−2))X |
|(ṽ1(−1))X |

2 =
ν−21

ν−1

with

ν21 =
n

8

|Fxx −Fyy − i2Fxy|
|P(1, 2)|

and

ν−21 =
n

8

|Fxx −Fyy + i2Fxy|
|P(1,−2)|

which leads to the result.

From equation (10), we get also if Fxx −Fyy ∓ i2Fxy 6= 0, and if L1(±2) = {1},

lim
k→∞

(

kϕλ̃1(±2) + ϕP(1,±2) + ϕ(ṽ1(±2))X

−
(

∓ 2Fxy

Fxx −Fyy

± 4π

n
(αX + αk − φX − φk)

))

= 0

and because αk = kdα and φk = kdφ,
{

ϕλ̃1(±2) = ±4π
n

(dα − dφ)

ϕ(ṽ1(±2))X
= ∓ 2Fxy

Fxx−Fyy
− ϕP(1,±2) ± 4π

n
(αX − φX)

So, from lemma 3.2 we get
ϕλ̃1(±2) = 2ϕλ̃1(±1)

which leads to
λ̃1(±2) = λ̃1(±1)2 ,

and also

ϕ(ṽ1(±2))X
= ∓2

∂2F
∂x∂y

(0, 0)
(

∂2F
∂x2 (0, 0) − ∂2F

∂y2 (0, 0)
)−ϕP(1,±2) +2

(

ϕ(ṽ1(±1))X
±

∂F
∂y

(0, 0)
∂F
∂y

(0, 0)
+ ϕP(1,±1)

)

.
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Remark If the scheme is rotationally invariant, we know from lemma 2.5 that

|(ṽ1(2))X | = |(ṽ1(−2))X |

so,

ν21 = ν1
|(ṽ1(2))X |
|(ṽ1(1))X |

2 = ν1
|(ṽ1(−2))X |
|(ṽ1(1))X |

2 = ν−21 .

And we know from the remark after lemma 3.2, that ν1 = ν−1. Furthermore, if, as in the
same remark, we define αX as αX = φX ± n

2π
ϕ(ṽ1(±1))X

, then the difference of phases

ϕ(ṽ1(±2))X
− 2ϕ(ṽ1(±1))X

= ∓ 2Fxy

Fxx −Fyy

− ϕP(1,±2)

does not depend on X. As a consequence, we can scale the eigenvectors such that

(ṽ1(±2))X = (ṽ1(±1))2
X .

This leads to ν21 = ν1 and ∓ 2Fxy

Fxx−Fyy
= ϕP(1,±2). Furthermore, if we define the radii ̺X as

in the remark below lemma 3.2 (implying that ν1 = 1), then

|Fxx −Fyy ∓ i2Fxy| =
8

n
|P(1,±2)|

Fxx −Fyy ∓ i2Fxy =
8

n
|P(1,±2)| exp

(

iϕP(1,±2)

)

=
8

n
P(1,±2) .

which leads to

Fxx −Fyy =
8

n
ℜ (P(1, 2) exp (iφ)) =

8

n
ℜ (P(1,−2) exp (−iφ))

and

Fxy = − 4

n
ℑ (P(1, 2) exp (iφ)) =

4

n
ℑ (P(1,−2) exp (−iφ))

Lemma 3.7 If the scheme C2-converges, then

∣

∣

∣
λ̃2(±1)

∣

∣

∣
<
∣

∣

∣
λ̃1(±1)

∣

∣

∣

2

iff

lim
k→∞







∣

∣

∣

∂F(k)

∂x
(0, 0) ∓ i∂F(k)

∂y
(0, 0)

∣

∣

∣−
∣

∣

∣

∂F
∂x

(0, 0) ∓ i∂F
∂y

(0, 0)
∣

∣

∣

∣

∣

∣
λ̃1(±1)

∣

∣

∣

k






= 0 .

Proof From equation (9) and lemma 2.1, taking α = αX +αk, Ω = 1, and a = (F (k)
x ) 1

ρ
(k)
X

,

b = (F (k)
y )/ρ

(k)
X , we get with ω = ±1,

lim
k→∞





X̃(k)(±1) − ρ
(k)
X

n
2

(

F (k)
x ∓ iF (k)

y

)

exp
(

±2iπ
n

(αX + αk − φX − φk)
)

ρ
(k)
X

2



 = 0 .
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From lemma 2.3 having supposed that L1(ω) = L+
2 (ω) we get

X̃(k)(±1) = λ̃1(±1)
k ∑

q∈L+
2 (±1)

P(q,±1) (ṽq(±1))X

+λ̃2(±1)
k





∑

q∈L2(±1)

P(q,±1) (ṽq(±1))X +
∑

q∈L−
2 (±1)

(

λ̃q(±1)

λ̃2(±1)

)k

P(q,±1) (ṽq(±1))X



 .

So,
lim

k→∞
(D1(k) −D2(k) + D3(k)) = 0

where

D1(k) =
1

̺
(k)
X

2



λ̃1(±1)
k ∑

q∈L+
2 (±1)

P(q,±1) (ṽq(±1))X



 ,

D2(k) =
n

2̺
(k)
X

(

F (k)
x ∓ iF (k)

y

)

exp

(

±2iπ

n
(αX + αk − φX − φk)

)

,

D3(k) =
1

̺
(k)
X

2



λ̃2(±1)
k





∑

q∈L2(±1)

P(q,±1) (ṽq(±1))X

+
∑

q∈L−
2 (±1)

(

λ̃q(±1)

λ̃2(±1)

)k

P(q,±1) (ṽq(±1))X







 .

So,
lim
k→∞

(D3(k)) = 0 iff lim
k→∞

(D1(k) −D2(k)) = 0

We will prove that limk→∞ (D1(k) −D2(k)) = 0 iff

lim
k→∞







(

F (k)
x −Fx

)

± i
(

F (k)
y −Fy

)

∣

∣

∣λ̃1(±1)
∣

∣

∣

k






= 0 .

From equations (7) and (8), we get

D1(k) =
λ̃1(±1)

k

(

∣

∣

∣λ̃1(±1)
∣

∣

∣

k

AX,±1(k)

)2

∑

q∈L+
2 (±1) P(q,±1) (ṽq(±1))X

∣

∣

∣

∑

q∈L+
2 (±1) P(q,±1) (ṽq(±1))X

∣

∣

∣

2

(n

2
|Fx ∓ iFy|

)2

and

D2(k) =
F (k)

x ∓ iF (k)
y

∣

∣

∣λ̃1(±1)
∣

∣

∣

k

AX,±1(k)

n2

4

|Fx ∓ iFy|
∣

∣

∣

∑

q∈L+
2 (±1) P(q,±1) (ṽq(±1))X

∣

∣

∣

exp

(

±2iπ

n
(αX + αk − φX − φk)

)

which leads to

|D1(k)| − |D2(k)| =
n2

4

∣

∣

∣F (k)
x ∓ iF (k)

y

∣

∣

∣

∣

∣

∣

∑

q∈L+
2 (±1) P(q,±1) (ṽq(±1))X

∣

∣

∣

∣

∣

∣F (k)
x ∓ iF (k)

y

∣

∣

∣− |Fx ∓ iFy|
∣

∣

∣
λ̃1(±1)

∣

∣

∣

k

AX,±1(k)
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and so
lim
k→∞

(|D1(k)| − |D2(k)|) = 0

iff

lim
k→∞







∣

∣

∣
F (k)

x ∓ iF (k)
y

∣

∣

∣
− |Fx ∓ iFy|

∣

∣

∣λ̃1(±1)
∣

∣

∣

k






= 0 .

Furthermore,
ϕD1(k) = ϕλ̃k

1(±1)
∑

q∈L
+
2 (±1)

P(q,±1)(ṽq(±1))X

and

ϕD2(k) = ∓F (k)
y

F (k)
x

± 2π

n
(αX + αk − φX − φk) .

If L1(1) = L1(−1) = {1},

ϕD1(k) = kϕλ̃1(±1)ϕP(1,±1) + ϕ(ṽ1(±1))X

and from equations (3) and (4) we get

ϕD2(k) = ∓F (k)
y

F (k)
x

+ ϕ(ṽ1(±1))X
± Fy

Fx

+ ϕP(1,±1) + kϕλ̃1(±1)

which leads to
lim

k→∞

(

ϕD1(k) − ϕD2(k)

)

= 0 .

As a consequence,
lim

k→∞
(D3(k)) = 0

iff

lim
k→∞







∣

∣

∣
F (k)

x ∓ iF (k)
y

∣

∣

∣
− |Fx ∓ iFy|

∣

∣

∣λ̃1(±1)
∣

∣

∣

k






= 0 .

And because

lim
k→∞

(D3(k)) = lim
k→∞





1

̺
(k)
X

2



λ̃2(±1)
k ∑

q∈L2(±1)

P(q,±1) (ṽq(±1))X









we get
∣

∣

∣λ̃2(±1)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

iff

lim
k→∞







∣

∣

∣F (k)
x ∓ iF (k)

y

∣

∣

∣− |Fx ∓ iFy|
∣

∣

∣
λ̃1(±1)

∣

∣

∣

k






= 0 .
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Remark If the mark point is a face centre, we do not control F (k)
x or F (k)

y . So, as
explained in Sect. 2.6, the sampling may be inadequate for our analysis.

Lemma 3.8 If the scheme C2-converges, then for ω 6∈ {−2,−1, 0, 1, 2},
∣

∣

∣λ̃1(ω)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

.

Proof From equation (9) and lemma 2.1, taking α = αX , we get for ω 6∈ {−2,−1, 0, 1, 2},

lim
k→∞

(

X̃(k)(ω)

ρ
(k)
X

2

)

= 0

From lemma 2.3, having supposed that L1(ω) = L+
2 (ω) we get

X̃(k)(ω)

ρ
(k)
X

2 =

λ̃1(ω)
k

ρ
(k)
X

2





∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X +
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X





So,

0 = lim
k→∞





λ̃1(ω)
k

ρ
(k)
X

2





∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X

+
∑

q∈L−
1 (ω)

(

λ̃q(ω)

λ̃1(ω)

)k

P(q, ω) (ṽq(ω))X









= lim
k→∞





λ̃1(ω)
k

ρ
(k)
X

2

∑

q∈L1(ω)

P(q, ω) (ṽq(ω))X





which implies that,
∣

∣

∣λ̃1(ω)
∣

∣

∣ <
∣

∣

∣λ̃1(±1)
∣

∣

∣

2

Remark The necessary conditions for C2-convergence are quadratic domination between
eigenvalues and quadratic configuration of eigenvectors. As expected, they give the values
of the partial derivatives ∂2F

∂x2 (0, 0), ∂2F
∂y2 (0, 0) and ∂2F

∂x∂y
(0, 0).
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3.4 Discussion

Many authors interpret a subdivision scheme as a linear map between patches which
progressively fill in an n-sided hole around an extraordinary point. Prautzsch [10] and
Zorin [17] proposed necessary and sufficient conditions for Cp-regularity of the limit sur-
face, on the eigenvalues and eigenbasis functions of this linear map. In contrast, we
interpret a subdivision scheme as a linear map between samplings of two successive sur-
faces from a sequence of Cp surfaces. If this sequence converges with sufficient regularity
(Cp-converges) these samplings may be used to approximate the derivatives of the limit
surface. We propose necessary conditions for the C2-convergence of a scheme, which is
itself a sufficient condition for the C2-continuity of the limit surface, on the eigenvalues
and eigenvectors of the transformed subdivision matrix. As already stated, a scheme
which converges toward a C2-continuous limit surface does not necessarily C2-converge.
But it is interesting to understand the difference between our necessary conditions for
Cp-convergence, and the condition for the Cp-regularity of the limit surface proposed by
Reif, Prautzsch and Zorin.
C0-regularity We find the same conditions.
C1-regularity Because we ask the sub-dominant eigenvalues to come from M̃(1) and
M̃(−1), we assure the orthoradial injectivity of Reif’s characteristic map as described
in [9]; and because we ask the components of the associated eigenvectors to be sorted like

the parameters ̺
(k)
X , we assure the radial injectivity of this map.

C2-regularity Reif’s characteristic map [12] is given by the sub-dominant eigenbasis
functions. If the scheme is Box-Spline based, the eigenbasis functions are Box-Splines
with our eigenvectors as control points (more precisely, our eigenvectors provide their
radial coordinates). One of the conditions proposed by Prautzsch [10] and Zorin [17] for
C2-regularity, is that the eigenbasis functions z associated with the sub-sub-dominant
eigenvalue should belong to span {xiyj; i + j = 2} where x and y are the eigenbasis func-
tions associated with the sub-dominant eigenvalue. Our condition is the same, but with
the eigenvectors instead of the eigenbasis functions. And the eigenvectors provide the alti-
tude over the characteristic map of the control points of z. Around an ordinary vertex, we
have checked that the quadratic configuration of the eigenvectors is fulfilled for the Loop
and Catmull-Clark schemes. Stam does this for the quadratic configuration of eigenbasis
functions [16]. The possibility of getting quadratic configuration of both eigenvectors and
eigenbasis functions around an extraordinary vertex remains to be investigated.

4 Converting the Analysis to the Real Domain

The necessary conditions for C2-convergence of a scheme, proposed in the previous section,
concern the eigenvalues and eigenvectors of subdivision matrices in the frequency domain.
The components of these matrices may be complex. Having them real would simplify
numerical analysis of the eigenstructure of the matrices, especially in the context of scheme
tuning where we manipulate symbolic terms.

In this section, we present some mechanisms to make the subdivision matrices in
the frequency domain M̃(ω) real. We will prove that choosing convenient phases in the
parameter space makes some of these components real, but an additional mechanism is
necessary to make all of them real: vertex substitution. We derive necessary conditions
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on these new real matrices for C2-convergence of the scheme.

4.1 Choosing Convenient Phases

Lemma 4.1 If the scheme has rotational and p-mirror invariances, then for all X ∈
{B,C,D, . . .}, for all Y ∈ {B,C,D, . . .}, the components M̃lX ,lY (ω) are real if X or Y
do not belong to the floor, dφ = p/2, and the difference between the phases φX − φY is

chosen as follows:

X\Y basement ceiling

basement 0 −1/2
ceiling 1/2 0

Furthermore, if X or Y belongs to the floor, no phase makes the component M̃lX ,lY (ω)
real.

Proof From lemma 2.4,

M̃lX ,lY (ω) =
n
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

.

If X and Y belong to the basement then, from lemma 2.6,

m(X,Y ),q = m(X,Y ),−q−p .

So, if n − p − 1 is even,

M̃lX ,lY (ω) =
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p
∑

q=n−1−p

2
+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p

2
∑

q=1

m(X,Y ),n−q−p exp

(

−2iπω

n
(n − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)
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+

n−1−p

2
∑

q=1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+ exp

(

−2iπω

n
(n − q − p + φX − φY + dφ)

))

The last sum is real if (all the equalities are modulo n),

q + φX − φY + dφ = −(−q − p + φX − φY + dφ)

2(φX − φY + dφ) = p

In particular, this has to be true if X = Y . So,

dφ =
p

2

and
φX = φY .

The first sum remains. If p is even, with the relation derived above,
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p/2) exp

(

−2iπω

n
(n − (p/2) + φX − φY + dφ)

)

+

n−p+(p/2)−1
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+
n
∑

q=n−p+(p/2)+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p/2)

+

n−p+(p/2)−1
∑

q=n−p

m(X,Y ),q

(

exp

(

−2iπω

n
(q +

p

2
)

)

+ exp

(

−2iπω

n
(n − q − p +

p

2
)

))

= m(X,Y ),n−(p/2) +

n−(p/2)−1
∑

q=n−p

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

Finally, if n − p − 1 is even and p even,

M̃lX ,lY (ω) = m(X,Y ),n−(p/2) +

n−(p/2)−1
∑

q=n−p

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

+

n−1−p

2
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

= m(X,Y ),n−(p/2) +

n−(p/2)−1
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)
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If p is odd, with the relation derived above,

n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=

n−p+(p+1)/2−1
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+
n
∑

q=n−p+(p+1)/2

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=

n−(p+1)/2)
∑

q=n−p

m(X,Y ),q

(

exp

(

−2iπω

n
(q +

p

2
)

)

+ exp

(

−2iπω

n
(n − q − p +

p

2
)

))

=

n−(p+1)/2
∑

q=n−p

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

Finally, if n − p − 1 is even and p odd,

M̃lX ,lY (ω) =

n−(p+1)/2
∑

q=n−p

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

+

n−1−p

2
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

=

n−(p+1)/2
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q +

p

2
)

)

If n − p − 1 is odd,

M̃lX ,lY (ω) =
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

m(X,Y ),(n−p)/2 exp

(

−2iπω

n
((n − p)/2 + φX − φY + dφ)

)

+

(n−p)/2−1
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p
∑

q=(n−p)/2+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

m(X,Y ),(n−p)/2 exp

(

−2iπω

n
((n − p)/2 + φX − φY + dφ)

)
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+

(n−p)/2−1
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

(n−p)/2−1
∑

q=1

m(X,Y ),n−q−p exp

(

−2iπω

n
(n − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

m(X,Y ),(n−p)/2 exp

(

−2iπω

n
((n − p)/2 + φX − φY + dφ)

)

+

(n−p)/2−1
∑

q=1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+ exp

(

−2iπω

n
(n − q − p + φX − φY + dφ)

))

As before, the last sum is real if

dφ =
p

2

and

φX = φY ,

and the first sum is then real. There remains the following term

m(X,Y ),(n−p)/2 exp

(

−2iπω

n
((n − p)/2 + φX − φY + dφ)

)

= m(X,Y ),(n−p)/2 exp

(

−2iπω

n
((n − p)/2 + p/2)

)

= m(X,Y ),(n−p)/2 exp (−iπω)

which is real as well.
The same proof is valid if X and Y belong to the ceiling.
If X belongs to the basement and Y to the ceiling then, from lemma 2.6,

m(X,Y ),q = m(X,Y ),1−q−p .

So, if n − p is even,

M̃lX ,lY (ω) =
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p
∑

q=n−p

2
+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)
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=
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p

2
∑

q=1

m(X,Y ),n+1−q−p exp

(

−2iπω

n
(n + 1 − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p

2
∑

q=1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+ exp

(

−2iπω

n
(n + 1 − q − p + φX − φY + dφ)

))

The last sum is real if (all the equalities are modulo n),

q + φX − φY + dφ = −(−q + 1 − p + φX − φY + dφ)

2(φX − φY + dφ) = −1 + p

In particular, we know from above that

dφ =
p

2

So,
φX − φY = −1/2.

The first sum remains. If p − 1 is even, with the relation derived above,

n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p−1)/2 exp

(

−2iπω

n
(n − (p − 1)/2 + φX − φY + dφ)

)

+

n−p+(p−1)/2−1
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+
n
∑

q=n−p+(p−1)/2+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p−1)/2

+

n−p+(p−1)/2−1
∑

q=n−p+1

m(X,Y ),q

(

exp

(

−2iπω

n
(q − 1/2 +

p

2
)

)

+ exp

(

−2iπω

n
(n + 1 − q − p − 1/2 +

p

2
)

))
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= m(X,Y ),n−(p−1)/2 +

n−p+(p−1)/2−1
∑

q=n−p+1

m(X,Y ),q2 cos

(

2πω

n
(q − 1/2 +

p

2
)

)

Finally, if n − p is even and p − 1 even,

M̃lX ,lY (ω) = m(X,Y ),n−(p−1)/2 +

n−p+(p−1)/2−1
∑

q=n−p+1

m(X,Y ),q2 cos

(

2πω

n
(q − 1/2 +

p

2
)

)

+

n−p

2
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q − 1/2 + p/2)

)

= m(X,Y ),n−(p−1)/2 +

n−p+(p−1)/2−1
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q − 1/2 + p/2)

)

If p − 1 is odd, then in a similar fashion to that used above, we can prove that the sum
is real. Finally, if n − p is even and p − 1 odd, M̃lX ,lY (ω) is real.

If n − p is odd,

M̃lX ,lY (ω) =
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p+1)/2 exp

(

−2iπω

n
((n − p + 1)/2 + φX − φY + dφ)

)

+

n−1−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p
∑

q=n−1−p

2
+2

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p+1)/2 exp (−iπω)

+

n−1−p

2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p

2
∑

q=1

m(X,Y ),n+1−q−p exp

(

−2iπω

n
(n + 1 − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p+1)/2 exp (−iπω)

+

n−1−p

2
∑

q=1

m(X,Y ),q
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(

exp

(

−2iπω

n
(q − 1/2 + p/2)

)

+ exp

(

−2iπω

n
(n + 1/2 − q − p/2)

))

which is real.
If X belongs to the ceiling and Y to the basement then, from lemma 2.6,

m(X,Y ),q = m(X,Y ),−1−q−p .

So, if n − p − 2 is even,

M̃lX ,lY (ω) =
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p−2
2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p−2
∑

q=n−p−2
2

+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

=
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p−2
2
∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p−2
2
∑

q=1

m(X,Y ),n−1−q−p exp

(

−2iπω

n
(n − 1 − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−p−2
2
∑

q=1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+ exp

(

−2iπω

n
(n − 1 − q − p + φX − φY + dφ)

))

The last sum is real if (all the equalities are modulo n),

q + φX − φY + dφ = −(−q − 1 − p + φX − φY + dφ)

2(φX − φY + dφ) = 1 + p

In particular, we know from above that

dφ =
p

2

So,
φX − φY = 1/2.
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The first sum remains. If p + 1 is even, with the relation derived above,
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p+1)/2 exp

(

−2iπω

n
(n − (p + 1)/2 + φX − φY + dφ)

)

+

n−p+(p+1)/2−1
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+
n
∑

q=n−p+(p+1)/2+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

= m(X,Y ),n−(p+1)/2

+

n−p+(p+1)/2−1
∑

q=n−p−1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + 1/2 +

p

2
)

)

+ exp

(

−2iπω

n
(n − 1 − q − p + 1/2 +

p

2
)

))

= m(X,Y ),n−(p+1)/2 +

n−p+(p+1)/2−1
∑

q=n−p−1

m(X,Y ),q2 cos

(

2πω

n
(q + 1/2 +

p

2
)

)

Finally, if n − p − 2 is even and p + 1 even,

M̃lX ,lY (ω) = m(X,Y ),n−(p+1)/2 +

n−p+(p+1)/2−1
∑

q=n−p−1

m(X,Y ),q2 cos

(

2πω

n
(q + 1/2 +

p

2
)

)

+

n−2−p

2
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q + 1/2 + p/2)

)

= m(X,Y ),n−(p+1)/2 +

n−p+(p+1)/2−1
∑

q=1

m(X,Y ),q2 cos

(

2πω

n
(q + 1/2 + p/2)

)

If p + 1 is odd, in a similar fashion to that used above, we can prove that the sum is real.
Finally, if n − p − 2 is even and p + 1 odd, M̃lX ,lY (ω) is real.

If n − p − 2 is odd,

M̃lX ,lY (ω) =
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p−1)/2 exp

(

−2iπω

n
((n − p − 1)/2 + φX − φY + dφ)

)

+

n−1−p

2
−1

∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−2−p
∑

q=n−1−p

2
+1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)
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=
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p−1)/2 exp (−iπω)

+

n−1−p

2
−1

∑

q=1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+

n−1−p

2
−1

∑

q=1

m(X,Y ),n−1−q−p exp

(

−2iπω

n
(n − 1 − q − p + φX − φY + dφ)

)

=
n
∑

q=n−p−1

m(X,Y ),q exp

(

−2iπω

n
(q + φX − φY + dφ)

)

+m(X,Y ),(n−p−1)/2 exp (−iπω)

+

n−1−p

2
−1

∑

q=1

m(X,Y ),q

(

exp

(

−2iπω

n
(q + 1/2 + p/2)

)

+ exp

(

−2iπω

n
(n − 1/2 − q − p/2)

))

which is real.
If X or Y belongs to floor then, from lemma 2.6, we get relationship between m(X,Y ),∗

and m(X′,Y ),∗ or m(X,Y ′),∗ or m(X′,Y ′),∗ which does not lead to any simplification in the

writing of M̃lX ,lY (ω).

Remark This lemma tells us which formula of the discrete Fourier transform we have to
choose for each vertex when we write the subdivision matrices in the frequency domain.
In practice, this is equivalent to giving at each spatial vertex an index which is equal to
its angular coordinate (divided by 2π/n) in the parameter space and then applying the
classical formula of the discrete Fourier transform (without phases). Note that if p is not
null, the grid of the new vertices must be rotated by 2pπ/n and their angular coordinates,
which will provide the indices, have to be taken in the parameter space corresponding to
the old vertices. For an application of this technique see [2].

4.2 Substituting Vertices

Lemma 4.1 tells us that if X or Y belongs to the floor, no phase makes the component
M̃lX ,lY (ω) real. To overcome this problem, the solution is to exchange the vertices which
belong to the floor with new vertices defined as linear combinations of themselves with
their mirror images. The linear combination is chosen such that these new vertices belong
to the basement or the ceiling, as shown in Fig. 3. In this section we will refer to the
initial vertices as old vertices and to the vertices defined as a linear combination of an old
vertex which belongs to the floor with its mirror image as new vertices.

Lemma 4.2 If the scheme is rotationally and mirror invariant, and if, for all X belonging

to the floor, we substitute in the vector P(k) the vertices Xj and X ′
j by

H
(k)
j =

X
(k)
j + X

′(k)
j−1

2
and I

(k)
j =

X
(k)
j + X

′(k)
j

2
,
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D
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(k)
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(k)
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H
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Figure 3: Definition on new points lying on symmetry axes

then the new components of the subdivision matrix M may be written, if the mark point

is a vertex, as

mH,1 = (mX,1 + mX′,1)/2 ,

mI,1 = (mX,1 + xX′,1)/2 .

and, whatever the mark point is, for all old Y belonging to the basement or to the ceiling,

for all q ∈ {1 . . . n}, as

m(H,Y ),q = (m(X,Y ),q + m(X′,Y ),q−1)/2 ,

m(I,Y ),q = (m(X,Y ),q + m(X′,Y ),q)/2 .

Proof The new vertices H
(k)
j are defined as

H
(k)
j =

X
(k)
j + X

′(k)
j−1

2
.

So, as in the proof of lemma 2.4,

H
(k+1)
j =

1

2

(

mX,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

q=1

m(X,Y ),qY
(k)
j−q

+mX′,1A
(k) +

∑

Y ∈B,C,D,...

n
∑

q=1

m(X′,Y ),qY
(k)
j−1−q

)

.

which leads to
mH,1 = (mX,1 + xX′,1)/2 .

Furthermore,

n
∑

q=1

m(X′,Y ),qY
(k)
j−1−q =

n+1
∑

q=2

m(X′,Y ),q−1Y
(k)
j−q
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=
n
∑

q=1

m(X′,Y ),q−1Y
(k)
j−q + m(X′,Y ),n+1−1Y

(k)
j−n−1 − m(X′,Y ),1−1Y

(k)
j−1

=
n
∑

q=1

m(X′,Y ),q−1Y
(k)
j−q .

So,
m(H,Y ),q = (m(X,Y ),q + m(X′,Y ),q−1)/2 .

Similarly, we prove

mI,1 = (mX,1 + xX′,1)/2 and m(I,Y ),q = (m(X,Y ),q + m(X′,Y ),q)/2

Lemma 4.3 If the scheme is rotationally and mirror invariant, for all X belonging to

the floor, we substitute the vertices Xj and X ′
j in the vector P(k) by

H
(k)
j =

X
(k)
j + X

′(k)
j−1

2
and I

(k)
j =

X
(k)
j + X

′(k)
j

2
.

If the mark point is a vertex, then

m1,I = 2m1,X ,

m1,H = 0 .

For simplicity, for every old vertex Y which belongs to the floor, and for every new vertices

H and I coming from old E and E ′, we formally define the following coefficients which

are not new components of the subdivision matrix M:

m(H,Y ),q = (m(X,Y ),q + m(X′,Y ),q−1)/2 ,

m(I,Y ),q = (m(X,Y ),q + m(X′,Y ),q)/2 .

Then, whatever the mark point is, the new components of the subdivision matrix M may

be written for all Y being an old vertex belonging to the basement or a new vertex being

H-like, and for all q ∈ {1 . . . n}, as

m(Y,H),q = −2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

m(Y,I),q = 2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

.

Furthermore, the new components of the subdivision matrix M may be written for all Y
being an old vertex belonging to the ceiling, or a new vertex which is I-like, and for all

q ∈ {1 . . . n}, as

m(Y,H),q = −2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q

m(Y,X),l

)

m(Y,I),q = 2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q

m(Y,X),l

)

.
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Proof If the mark point is a vertex, then, as in the proof of lemma 2.4,

A(k+1) = M1,1A
(k) +

∑

Z 6∈{X,X′}

n
∑

q=1

m1,ZZ
(k)
j−q +

n
∑

q=1

m1,XX
(k)
j−q +

n
∑

q=1

m1,X′X ′(k)
j−q .

The scheme being mirror invariant,

m1,X = m1,X′

So,

A(k+1) = M1,1A
(k) +

∑

Z 6∈{X,X′}

n
∑

q=1

m1,ZZ
(k)
j−q +

n
∑

q=1

m1,X

(

X
(k)
j−q + X ′(k)

j−q

)

= M1,1A
(k) +

∑

Z 6∈{X,X′}

n
∑

q=1

m1,ZZ
(k)
j−q +

n
∑

q=1

2m1,XI
(k)
j−q .

Let Y be an old vertex which belongs to the basement. As in the proof of lemma 2.4,

Y
(k+1)
j = mY,1A

(k) +
∑

Z 6∈{X,X′}

n
∑

q=1

m(Y,Z),qZ
(k)
j−q +

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q .

And, from lemma 2.6,

m(Y,X),q = m(Y,X′),1−q

So,

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q =

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X),1−qX
′(k)
j−q

=
n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X),n+1−qX
′(k)
j−q

=
n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X),qX
′(k)
j−n−1+q

=
n
∑

q=1

m(Y,X),q

(

X
(k)
j−q + X ′(k)

j−1+q

)

=
n
∑

q=1

m(Y,X),q

(

X
(k)
j−q + X ′(k)

j−q − X ′(k)
j−q − X

(k)
j−q+1

+X
(k)
j−q+1 + . . . + X

(k)
j−1+q + X ′(k)

j−1+q

)

=
n
∑

q=1

m(Y,X),q

(

2

q
∑

l=1−q

I
(k)
j−l − 2

q−1
∑

l=1−q

H
(k)
j−l

)
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We can write the components for the I and the H separately now.

n
∑

q=1

2m(Y,X),q

(

q
∑

l=1−q

I
(k)
j−l

)

=
n
∑

q=1

2m(Y,X),q

(

0
∑

l=1−q

I
(k)
j−l +

q
∑

l=1

I
(k)
j−l

)

=
n
∑

q=1

2m(Y,X),q

(

n
∑

l=n+1−q

I
(k)
j−l +

q
∑

l=1

I
(k)
j−l

)

= 2m(Y,X),1

(

I
(k)
j−n + I

(k)
j−1

)

+ 2m(Y,X),2

(

I
(k)
j−n+1 + I

(k)
j−n + I

(k)
j−1 + I

(k)
j−2

)

+ . . . + 2m(Y,X),n

(

I
(k)
j−1 + . . . I

(k)
j−n + I

(k)
j−1 + . . . I

(k)
j−n

)

=
n
∑

q=1

2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

I
(k)
j−q .

Similarly,

n
∑

q=1

−2m(Y,X),q

(

q−1
∑

l=1−q

H
(k)
j−l

)

=
n
∑

q=1

−2m(Y,X),q

(

n
∑

l=n+1−q

H
(k)
j−l +

q−1
∑

l=1

H
(k)
j−l

)

=
n
∑

q=1

−2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

H
(k)
j−q .

If Y is a new vertex, coming from old vertices E and E ′ and which is H-like, then with the
components given in lemma 4.2 and the formal notation given in the text of this lemma,

Y
(k+1)
j = mY,1A

(k) +
∑

Z 6∈{X,X′}

n
∑

q=1

m(Y,Z),qZ
(k)
j−q +

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q .

Remind the formal notation are

m(Y,X),q = (m(E,X),q + m(E′,X),q−1)/2 ,

m(Y,X′),q = (m(E,X′),q + m(E′,X′),q−1)/2 .

From lemma 2.6, both E and X belonging to the floor,

m(Y,X),q = (m(E′,X′),−q + m(E,X′),1−q)/2

= m(Y,X′),1−q .

We find the same relationship with Y being an old vertex belonging to the basement. As
a consequence, the same proof may be run with the formal notation m(Y,X),q and m(Y,X′),q.

Now, let Y be an old vertex which belongs to the ceiling. As we have written in the
proof of lemma 2.4,

Y
(k+1)
j = mY,1A

(k) +
∑

Z 6∈{X,X′}

n
∑

q=1

m(Y,Z),qZ
(k)
j−q +

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q .

And, from lemma 2.6,
m(Y,X),q = m(Y,X′),−q
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So,
n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q =

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X),−qX
′(k)
j−q

=
n
∑

q=1

m(Y,X),q

(

X
(k)
j−q + X ′(k)

j+q

)

=
n
∑

q=1

m(Y,X),q

(

X
(k)
j−q + X ′(k)

j−q − X ′(k)
j−q − X

(k)
j−q+1

+X
(k)
j−q+1 + . . . + X

(k)
j+q + X ′(k)

j+q

)

=
n
∑

q=1

m(Y,X),q

(

2

q
∑

l=−q

I
(k)
j−l − 2

q−1
∑

l=−q

H
(k)
j−l

)

We can write the components for the I and the H separately now.

n
∑

q=1

2m(Y,X),q

(

q
∑

l=−q

I
(k)
j−l

)

=
n
∑

q=1

2m(Y,X),q

(

0
∑

l=−q

I
(k)
j−l +

q
∑

l=1

I
(k)
j−l

)

=
n
∑

q=1

2m(Y,X),q

(

n
∑

l=n−q

I
(k)
j−l +

q
∑

l=1

I
(k)
j−l

)

= 2m(Y,X),1

(

I
(k)
j−n+1 + I

(k)
j−n + I

(k)
j−1

)

+2m(Y,X),2

(

I
(k)
j−n+2 + I

(k)
j−n+1 + I

(k)
j−n + I

(k)
j−1 + I

(k)
j−2

)

+ . . . + 2m(Y,X),n

(

I
(k)
j−n + I

(k)
j−1 . . . I

(k)
j−n + I

(k)
j−1 + . . . I

(k)
j−n

)

=
n
∑

q=1

2

(

n
∑

l=n−q

m(Y,X),l +
n
∑

l=q

m(Y,X),l

)

I
(k)
j−q .

Similarly,

n
∑

q=1

−2m(Y,X),q

(

q−1
∑

l=−q

H
(k)
j−l

)

=
n
∑

q=1

−2m(Y,X),q

(

n
∑

l=n−q

H
(k)
j−l +

q−1
∑

l=1

H
(k)
j−l

)

=
n
∑

q=1

−2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q

m(Y,X),l

)

H
(k)
j−q .

If Y is a new vertex, coming from old vertices E and E ′ and which is I-like then, with the
components given in lemma 4.2 and the formal notation given in the text of this lemma,

Y
(k+1)
j = mY,1A

(k) +
∑

Z 6∈{X,X′}

n
∑

q=1

m(Y,Z),qZ
(k)
j−q +

n
∑

q=1

m(Y,X),qX
(k)
j−q +

n
∑

q=1

m(Y,X′),qX
′(k)
j−q .

Remind the formal notation are

m(Y,X),q = (m(E,X),q + m(E′,X),q)/2 ,

m(Y,X′),q = (m(E,X′),q + m(E′,X′),q)/2 .
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From lemma 2.6, both E and X belonging to the floor,

m(Y,X),q = (m(E′,X′),−q + m(E,X′),−q)/2

= m(Y,X′),−q .

We find the same relationship with Y being an old vertex belonging to the ceiling. As a
consequence, the same proof may be run with the formal notation m(Y,X),q and m(Y,X′),q.

Remark The components m(Y,H),q and m(Y,I),q given in this lemma are not the only
possible choice. Indeed, the sets of new vertices I and J are linked by the following
equality:

n
∑

q=1

Ij−q − Hj−q = 0 .

Here, for example, to go from X
(k)
j−q to X ′(k)

j−1+q we turn in the same way regardless of
the relative position of these two vertices, even if we have to cross almost all the indices.
Thus, another possible choice is for all Y being an old vertex belonging to the basement
or a new vertex being H-like, and for all q ∈ {1 . . . n},

m(Y,H),q := −2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

+2
n
∑

l=1

m(Y,X),l

= 2

(

q
∑

l=1

m(Y,X),l −
n
∑

l=n−q+1

m(Y,X),l

)

m(Y,I),q := 2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

−2
n
∑

l=1

m(Y,X),l

= 2

(

n
∑

l=q

m(Y,X),l −
n−q
∑

l=1

m(Y,X),l

)

,

and for all Y being an old vertex belonging to the ceiling, or a new vertex which is I-like,
and for all q ∈ {1 . . . n},

m(Y,H),q := −2

(

n
∑

l=q+1

m(Y,X),l +
n
∑

l=n−q

m(Y,X),l

)

+2
n
∑

l=1

m(Y,X),l

= 2

(

q
∑

l=1

m(Y,X),l −
n
∑

l=n−q

m(Y,X),l

)
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m(Y,I),q := 2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q

m(Y,X),l

)

−2
n
∑

l=1

m(Y,X),l

= 2

(

n
∑

l=q

m(Y,X),l −
n−q−1
∑

l=1

m(Y,X),l

)

.

In practice, this choice cannot be taken blindly. For instance in the Catmull-Clark
scheme, we have for all q ∈ {1, . . . , n − 1} m(D,E),q = 0. So, if q < n,

m(D,H),q = −2

(

n
∑

l=q+1

m(D,X),l +
n
∑

l=n−q+1

m(D,X),l

)

= −2
(

m(D,E),n + m(D,E),n

)

= −4m(D,E),n ,

and if q = n

m(D,H),q = −2

(

n
∑

l=q+1

m(D,X),l +
n
∑

l=n−q+1

m(D,X),l

)

= −2
(

0 + m(D,E),n

)

= −2m(D,E),n .

But we have also

m(D,I),q = 2

(

n
∑

l=q

m(Y,X),l +
n
∑

l=n−q+1

m(Y,X),l

)

= 2
(

m(D,E),n + m(D,E),n

)

= 4m(D,E),n ,

whatever q is. That means that

D
(k+1)
j = . . . +

n−1
∑

q=1

−4m(D,E),nH
(k)
j−q + (−2m(D,E),n)H

(k)
j−n +

n
∑

q=1

4m(D,E),nI
(k)
j−q

= . . . + 4m(D,E),n

n
∑

q=1

(

I
(k)
j−q − H

(k)
j−q

)

−
(

−2m(D,E),nH
(k)
j

)

= . . . + 2m(D,E),nH
(k)
j .

So, in practice, it would be of great advantage to choose for all q ∈ {1, . . . , n − 1}
m(D,H),q = 0

and
m(D,H),n = 2m(D,E),n

and for all q ∈ {1, . . . , n}
m(D,I),q = 0
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Lemma 4.4 If the scheme is rotationally and mirror invariant, if for all X belonging to

the floor, we substitute in the vector P(k) the vertices Xj and X ′
j by

H
(k)
j =

X
(k)
j + X

′(k)
j−1

2
and I

(k)
j =

X
(k)
j + X

′(k)
j

2
,

and, in addition, if we choose the difference of phases given in lemma 4.1 for the old ver-

tices which belong to the basement or the ceiling, as well as for the new vertices which are

H-like or I-like, then all the components of the new subdivision matrices in the frequency

domain M̃(ω) are real.

Proof First of all, the components of the new subdivision matrix in the spatial domain
M are defined as real linear combinations of the components of the old subdivision matrix.
Thus, from lemma 2.4 we can deduce that the the new subdivision matrix in the frequency
domain M̃(0) is real.

As a consequence, for proving this lemma, we just have to check that the new subdi-
vision matrix in the spatial domain M is rotationally and mirror invariant. Consequently,
lemma 4.1 may be applied leading to the result.

By construction, the new subdivision matrix M is rotationally invariant: we have
defined the new components Ml(X,j),l(Y,h)

as m(X,Y ),j−h. So we just have to check that its
components follow the relationship given in lemma 2.6.

If X and Y belong to the basement or to the ceiling, then m(X,Y ),q have not changed
and follow the relationship given in lemma 2.6.

Let X be H-like coming from E and E ′. From lemma 4.2 we get

m(X,Y ),q = (m(E,Y ),q + m(E′,Y ),q−1)/2 .

If Y an old vertex belonging to the basement, from lemma 2.4,

m(X,Y ),q = (m(E′,Y ),−1−q + m(E,Y ),−q)/2

= m(X,Y ),−q .

If Y an old vertex belonging to the ceiling, from lemma 2.4,

m(X,Y ),q = (m(E′,Y ),−q + m(E,Y ),1−q)/2

= m(X,Y ),1−q .

If Y a new H-like vertex coming from F F ′, from lemma 4.3,

m(X,Y ),q = −2

(

n
∑

l=q+1

m(X,F ),l +
n
∑

l=n−q+1

m(X,F ),l

)

= m(X,Y ),n−q .

If Y a new I-like vertex coming from F F ′, from lemma 4.3,

m(X,Y ),q = 2

(

n
∑

l=q

m(X,F ),l +
n
∑

l=n−q+1

m(X,F ),l

)

= m(X,Y ),n+1−q .
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Now, let X be I-like coming from E and E ′. From lemma 4.2 we get

m(X,Y ),q = (m(E,Y ),q + m(E′,Y ),q)/2 .

If Y is an old vertex belonging to the basement, from lemma 2.4,

m(X,Y ),q = (m(E′,Y ),−1−q + m(E,Y ),−1−q)/2

= m(X,Y ),−1−q .

If Y is an old vertex belonging to the ceiling, from lemma 2.4,

m(X,Y ),q = (m(E′,Y ),−q + m(E,Y ),−q)/2

= m(X,Y ),−q .

If Y is a new H-like vertex coming from F F ′, from lemma 4.3,

m(X,Y ),q = −2

(

n
∑

l=q+1

m(X,F ),l +
n
∑

l=n−q

m(X,F ),l

)

= m(X,Y ),n−1−q .

If Y is a new I-like vertex coming from F F ′, from lemma 4.3,

m(X,Y ),q = 2

(

n
∑

l=q

m(X,F ),l +
n
∑

l=n−q

m(X,F ),l

)

= m(X,Y ),n−q .

As a consequence, the new subdivision matrix in the spatial domain M is rotationally
and mirror invariant if the new H-like vertices are considered as belonging to the basement
and the new I-like vertices to the ceiling. So, if the differences of phases φX − φY are
chosen like in lemma 4.1, the matrices in the frequency domain M̃(ω) are real.

Remark Zorin and Schröder proposed another way to get real subdivision matrices in
the frequency domain [18]. Basically, they put all the vertices on the ceiling, even the
vertices which belong to the basement (actually they stay in the frequency domain and
propose new frequency components as linear combination of existing ones). In a way this
is more systematic but it is much more expensive if we need to know the eigenvectors.
Indeed, their work concerned only the eigenvalues, so this was not a problem for them.

4.3 Necessary Conditions on the Real Matrices

Of course, if we process the eigenanalysis on the new real matrices, we cannot directly
apply the conditions given in Sect. 3 on their eigenelements.

More precisely, the eigenanalysis of the new real matrices in the frequency domain
provide the same eigenvalues, but eigenvector components

(ṽq(ω))H and (ṽq(ω))I

instead of
(ṽq(ω))X and (ṽq(ω))X′ .
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In the following lemma, we define formal components (ṽq(ω))X and (ṽq(ω))X′ from
(ṽq(ω))H and (ṽq(ω))I given by the eigenanalysis of the new real matrices. These formal
components are defined such that if we exchange the components (ṽq(ω))H and (ṽq(ω))I

of the eigenvectors with them, the conditions given in Sect. 3 applied on these new eigen-
vectors are necessary conditions for the C2-convergence of the scheme.

Lemma 4.5 Let ṽ1(0) be the eigenvector associated with the main eigenvalue of the new

real matrix in the frequency domain M̃(0) built in Sect.4.2. If for every H-like and I-like
new vertex coming from E and E ′, we exchange the components (ṽ1(0))H and (ṽ1(0))I by

(ṽ1(0))E := (ṽ1(0))I = (ṽ1(0))H

and

(ṽ1(0))E′ := (ṽ1(0))E

then the conditions given in Sect. 3.1 applied on this new eigenvector are necessary con-

ditions for the C0-convergence of the scheme.

Proof Let H and I be new vertices from E and E ′. From lemma 2.7 noting that ρ
(k)
E =

ρ
(k)
E′ ,

lim
k→∞

(I
(k)
j ) =

1

2

(

lim
k→∞

(E
(k)
j ) + lim

k→∞
(E

′(k)
j )

)

= F ,

and so
lim

k→∞
(Ĩ(k)(ω)) = nFδω,0.

Similarly,

lim
k→∞

(H
(k)
j ) =

1

2

(

lim
k→∞

(E
(k)
j ) + lim

k→∞
(E

′(k)
j−1)

)

= F ,

and so
lim

k→∞
(H̃(k)(ω)) = nFδω,0.

From lemma 2.3, we deduce that

F =
1

n

∑

q∈L1(0)

P(q, 0) (ṽq(0))I .

Assuming that L1(0) = {1},
F =

1

n
P(1, 0) (ṽ1(0))I .

And the classical condition on (ṽ1(0))E should be

F =
1

n
P(1, 0) (ṽ1(0))E .

So, we just have to define (ṽ1(0))E as

(ṽ1(0))E := (ṽ1(0))I

Similarly, we could define it as

(ṽ1(0))E := (ṽ1(0))H
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Lemma 4.6 Because we do not in practice define φE′ and φE, we can assume that φE′ =
αE′ and φE = αE.

Let ṽ1(±1) be the eigenvector associated with the main eigenvalue of the new real

matrices in the frequency domain M̃(±1) built in Sect.4.2. If for every H-like and I-like
new vertex coming from E and E ′, we exchange the components (ṽ1(±1))H and (ṽ1(±1))I

by

(ṽ1(±1))E := 2
(ṽ1(±1))H

exp
(

2iπ(φE−φH)
n

)

+ exp
(

2iπ(φE′−φH−1)

n

)

:= 2
(ṽ1(±1))I

exp
(

2iπ(φE−φI)
n

)

+ exp
(

2iπ(φE′−φI)

n

)

and

(ṽ1(0))E′ := (ṽ1(0))E

then the conditions given in Sect. 3.2 applied on this new eigenvector are necessary con-

ditions for the C1-convergence of the scheme.

Proof Let H and I be new vertices form E and E ′. From lemma 2.8 noting that ρ
(k)
E =

ρ
(k)
E′ , ∀j ∈ {1, . . . , n},

lim
k→∞

((

I
(k)
j −F (k)(0, 0)

̺
(k)
E

)

−
(

cos(θ(E,j,k)) + cos(θ(E′,j,k))

2

∂F
∂x

(0, 0) +
sin(θ(E,j,k)) + sin(θ(E′,j,k))

2

∂F
∂y

(0, 0)

))

= lim
k→∞

(

1

2

(

E
(k)
j −F (k)

ρ
(k)
E

+
E

′(k)
j −F (k)

ρ
(k)
E′

)

−
(

cos(θ(E,j,k)) + cos(θ(E′,j,k))

2

∂F
∂x

(0, 0) +
sin(θ(E,j,k)) + sin(θ(E′,j,k))

2

∂F
∂y

(0, 0)

))

= 0 .

So, from lemmas 2.1 and 2.2, and because θ(E,j,k) = 2π
n

(j + αE + αk)

lim
k→∞

(

Ĩ(k)(ω) − nF (k) δω,0

ρ
(k)
E

−n
Fx − iFy

2

exp
(

2iπ
n

(αE + αk − φI − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk)
)

2
δω,1

− n
Fx + iFy

2

exp
(

2iπ
n

(αE + αk − φI − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk)
)

2
δω,−1

)

= 0 .

From lemma 2.3, we deduce that

lim
k→∞

(

n
Fx − iFy

2

exp
(

2iπ
n

(αE + αk − φI − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk)
)

2

− λ̃1(±1)
k

ρ
(k)
E

∑

q∈L1(±1)

P(q,±1) (ṽq(±1))I



 = 0
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Assuming that L1(±1) = {1},

lim
k→∞

(

n
Fx ∓ iFy

2

exp
(

2iπ
n

(αE + αk − φI − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk)
)

2
−

λ̃1(±1)
k

ρ
(k)
E

P(1,±1) (ṽ1(±1))I

)

= 0

And the classical condition on (ṽ1(±1))E should be

lim
k→∞

(

n
Fx ∓ iFy

2
exp

(

2iπ

n
(αE + αk − φI − φk)

)

− λ̃1(±1)
k

ρ
(k)
E

P(1,±1) (ṽ1(±1))E

)

= 0

So, we just have to define formally (ṽ1(±1))E such that

n
Fx ∓ iFy

2

exp
(

2iπ
n

(αE + αk − φI − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk)
)

2

= n
Fx ∓ iFy

2

(ṽ1(±1))I

(ṽ1(±1))E

exp

(

2iπ

n
(αE + αk − φI − φk)

)

that is

(ṽ1(±1))E :=
2 exp

(

2iπ
n

(αE − φI)
)

exp
(

2iπ
n

(αE − φI)
)

+ exp
(

2iπ
n

(αE′ − φI)
) (ṽ1(±1))I

=
2

exp
(

2iπ
n

(φE − φI)
)

+ exp
(

2iπ
n

(αE′ − φI + φE − αE)
) (ṽ1(±1))I

Because we do not in practice define φE′ and φE, we can assume that φE′ = αE′ and
φE = αE and so we define formally (ṽ1(±1))E as

(ṽ1(±1))E :=
2

exp
(

2iπ
n

(φE − φI)
)

+ exp
(

2iπ
n

(φE′ − φI)
) (ṽ1(±1))I

Besides, from lemma 2.7 noting that ρ
(k)
E = ρ

(k)
E′ , ∀j ∈ {1, . . . , n},

lim
k→∞

((

H
(k)
j −F (k)(0, 0)

̺
(k)
E

)

−
(

cos(θ(E,j,k)) + cos(θ(E′,j−1,k))

2

∂F
∂x

(0, 0) +
sin(θ(E,j,k)) + cos(θ(E′,j−1,k))

2

∂F
∂y

(0, 0)

))

= lim
k→∞

(

1

2

(

E
(k)
j −F (k)

ρ
(k)
E

+
E

′(k)
j−1 −F (k)

ρ
(k)
E′

)

−
(

cos(θ(E,j,k)) + cos(θ(E′,j−1,k))

2

∂F
∂x

(0, 0) +
sin(θ(E,j,k)) + cos(θ(E′,j−1,k))

2

∂F
∂y

(0, 0)

))

= 0 .
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So, from lemma 2.1,

lim
k→∞

(

H̃(k)(ω) − nF (k) δω,0

ρ
(k)
E

−

n
Fx − iFy

2

exp
(

2iπ
n

(αE + αk − φH − φk)
)

+ exp
(

2iπ
n

(αE′ + αk − 1 − φH − φk)
)

2
δω,1

− n
Fx + iFy

2

exp
(

2iπ
n

(αE + αk − φH − φk

)

+ exp
(

2iπ
n

(αE′ + αk − 1 − φH − φk

)

2
δω,−1

)

= 0 .

So, we can similarly define (ṽ1(±1))E as

(ṽ1(±1))E :=
2

exp
(

2iπ
n

(φE − φH)
)

+ exp
(

2iπ
n

(φE′ − φH − 1)
) (ṽ1(±1))H

Remark For making the new frequency matrices real, we have chosen

φH = 0 and φI = 1/2 .

Furthermore if we choose
φE′ = 1 − φE = φ

then, the formal definition of (ṽ1(±1))E becomes

(ṽ1(1))E :=
(ṽ1(1))H

cos(2πφ
n

)

:=
(ṽ1(1))I

cos(2π(φ−1/2)
n

)
.

Furthermore,

cos(
2π(φ − 1/2)

n
) = cos(

2πφ

n
− π

n
)

= cos(
2πφ

n
) cos(

π

n
) + sin(

2πφ

n
) sin(

π

n
)

So,

(ṽ1(1))I

(ṽ1(1))E

=
(ṽ1(1))H

(ṽ1(1))E

cos(
π

n
) +

√

1 −
(

(ṽ1(1))H

(ṽ1(1))E

)2

sin(
π

n
)

1

sin(π
n
)2

(

(ṽ1(1))I − (ṽ1(1))H cos(π
n
)

(ṽ1(1))E

)2

= 1 −
(

(ṽ1(1))H

(ṽ1(1))E

)2

which leads to

(ṽ1(1))E = (ṽ1(1))E′ =

√

(ṽ1(1))H
2 +

(

(ṽ1(1))I − (ṽ1(1))H cos(π/4)

sin(π/4)

)2
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Lemma 4.7 Because we do not in practice define φE′ and φE, we can assume that φE′ =
αE′ and φE = αE.

Let ṽ2(0) be the eigenvector associated with the sub-dominant eigenvalue of the new

real matrix in the frequency domain M̃(0) built in Sect.4.2, and ṽ1(±2) the eigenvectors

associated with the main eigenvalue of the new real matrices in the frequency domain

M̃(±2) built in Sect.4.2. If for every H-like and I-like new vertex coming from E and E ′,
we exchange on the one hand the components (ṽ2(0))H and (ṽ2(0))I by

(ṽ2(0))E := (ṽ2(0))I = (ṽ2(0))H

and

(ṽ2(0))E′ := (ṽ2(0))E

and, on the other hand, (ṽ1(±2))H and (ṽ1(±2))I by

(ṽ1(±2))E := 2
(ṽ1(±2))H

exp
(

22iπ(φE−φH)
n

)

+ exp
(

2
2iπ(φE′−φH−1)

n

)

:= 2
(ṽ1(±2))I

exp
(

22iπ(φE−φI)
n

)

+ exp
(

2
2iπ(φE′−φI)

n

)

and

(ṽ1(±2))E′ := (ṽ1(±2))E

then the conditions given in Sect. 3.3 applied on this new eigenvector are necessary con-

ditions for the C2-convergence of the scheme.

Proof Let H and I be new vertices form E and E ′. From lemma 2.9 noting that ρ
(k)
E =

ρ
(k)
E′ , ∀j ∈ {1, . . . , n},

lim
k→∞





I
(k)
j −F (k)(0, 0) − ̺

(k)
E

(

cos(θ(E,j,k))
∂F(k)

∂x
(0, 0) − sin(θ(E,j,k))

∂F(k)

∂y
(0, 0)

)

̺
(k)
E

2

[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(E,j,k)) + sin(2θ(E′,j,k))

2

+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(E,j,k)) + cos(2θ(E′,j,k))

2

])

= lim
k→∞

(

1

2

∆
(k)
E,j + ∆

(k)
E′,j

̺
(k)
E

2

[(

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)

1

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(E,j,k)) + sin(2θ(E′,j,k))

2

+

(

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)

)

cos(2θ(E,j,k)) + cos(2θ(E′,j,k))

2

])

= 0 .

with

∆
(k)
X,j := X

(k)
j −F (k)(0, 0) − ̺

(k)
X

(

cos(θ(X,j,k))
∂F (k)

∂x
(0, 0) − sin(θ(X,j,k))

∂F (k)

∂y
(0, 0)

)

.
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So, from lemma 2.1,

lim
k→∞

(

1

ρ
(k)
E

2

(

Ĩ(k)(ω) − nF (k) δω,0

−ρ
(k)
E n

F (k)
x − iF (k)

y

2

exp
(

2iπ
n

(αE + αk − φI − φk

)

+ exp
(

2iπ
n

(αE′ + αk − φI − φk

)

2
δω,1

−ρ
(k)
E n

F (k)
x + iF (k)

y

2

exp
(

−2iπ
n

(αE + αk − φI − φk

)

+ exp
(

−2iπ
n

(αE′ + αk − φI − φk

)

2
δω,−1

)

−n
Fxx + Fyy

4
δω,0

+
Fxx−Fyy

4
− iFxy

2

2

exp
(

22iπ
n

(αE + αk − φI − φk

)

+ exp
(

22iπ
n

(αE′ + αk − φI − φk

)

2
δω,2

+
Fxx−Fyy

4
+ iFxy

2

2

exp
(

−22iπ
n

(αE + αk − φI − φk

)

+ exp
(

−22iπ
n

(αE′ + αk − φI − φk

)

2
δω,−2

)

= 0 .

From lemma 2.3, we deduce that assuming that L2(0) = {2},

Fxx + Fyy =
4

n
ν±1

2P(2, 0)
[(ṽ2(0))I − (ṽ2(0))A]

|(ṽ1(1))E|
2

And the classical condition on (ṽ2(0))E should be

Fxx + Fyy =
4

n
ν±1

2P(2, 0)
[(ṽ2(0))E − (ṽ2(0))A]

|(ṽ1(1))E|
2

So, we just have to define (ṽ2(0))E as

(ṽ2(0))E := (ṽ2(0))I

Similarly, we could define it as

(ṽ2(0))E := (ṽ2(0))H

From lemma 2.3, we also get that, assuming L1(2) = {1},

lim
k→∞

(

(Fxx −Fyy ∓ i2Fxy)
exp2 2iπ

n
(αE+αk−φI−φk) + exp2 2iπ

n
(αE′+αk−φI−φk)

2

− 8

n
ν±1

2P(1,±2)
(ṽ1(±2))I

|(ṽ1(±1))E|
2

)

= 0

And the classical condition on (ṽ1(2))E should be

lim
k→∞

(

(Fxx −Fyy ∓ i2Fxy) exp

(

4iπ

n
(αE + αk − φE − φk)

)

− 8

n
ν±1

2P(1,±2)
(ṽ1(±2))E

|(ṽ1(±1))E|
2

)

= 0 .
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So, because we assume that φE = αE and φE′ = αE′ , we just have to define (ṽ1(2))E as

(ṽ1(2))E :=
2

exp2 2iπ
n

(φE−φI) + exp2 2iπ
n

(φE′−φI)
(ṽ1(2))I

Similarly, we could define it as

(ṽ1(2))E :=
2

exp2 2iπ
n

(φE−φH) + exp2 2iπ
n

(φE′−φH−1)
(ṽ1(2))H

Remark As for the previous remark, if we choose

φH = 0 and φI = 1/2 .

and

φE′ = 1 − φE

then, the formal definition of (ṽ1(2))E becomes

(ṽ1(2))E =
(ṽ1(2))H

cos(22πφE

n
)

(ṽ1(2))E =
(ṽ1(2))H

2 cos(2πφE

n
)2 − 1

thus, with lemma 4.6

(ṽ1(2))E =
(ṽ1(2))H

2
(

(ṽ1(1))H

(ṽ1(1))E

)2

− 1

4.4 Sanity Check

In this section we will check these new necessary conditions. We consider the Catmull-
Clark scheme [4] around an ordinary mark point A. Firstly, we write the transformed
subdivision matrices with the original vicinity of A. We verify that this matrix cannot
be real. Then we write the transformed subdivision matrices with the new vicinity of A
where every vertex lies on a symmetry axis. We verify that, with appropriate phases, these
matrices are real. Finally, we check that the Catmull-Clark scheme around an ordinary
mark point satisfies the new necessary conditions.

The Original Transformed Subdivision Matrices For the phases associated with
each set of vertices, we choose:

φB = φD = 0

φC = φF =
1

2
φE′ = 1 − φE = 1 − φ
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Then, with

if ω 6= 0, P̃(k)(ω) =



















B̃(k)(ω)

C̃(k)(ω)

D̃(k)(ω)

Ẽ(k)(ω)

Ẽ ′(k)
(ω)

F̃ (k)(ω)



















and otherwise P̃(k)(0) =























Ã(k)(0)

B̃(k)(0)

C̃(k)(0)

D̃(k)(0)

Ẽ(k)(0)

Ẽ ′(k)
(0)

F̃ (k)(0)























we get

M̃(0) =
1

64





















36 24 4 0 0 0 0
24 32 8 0 0 0 0
16 32 16 0 0 0 0
6 38 12 6 1 1 0
4 28 24 4 4 0 0
4 28 24 4 0 4 0
1 12 36 2 6 6 1





















and

M̃(ω) =
1

64

















24 + 8 cos(πω/2) 8 cos(πω/4) 0
32 cos(πω/4) 16 0
36 + 2 cos(πω/2) 12 cos(πω/4) 6

24 exp− iπω
2

φ +4 exp
iπω
2

(1−φ) 24 exp
iπω
2

( 1
2
−φ) 4 exp− iπω

2
φ

24 exp
iπω
2

φ +4 exp− iπω
2

(1−φ) 24 exp− iπω
2

( 1
2
−φ) 4 exp

iπω
2

φ

12 cos(πω/4) 36 2 cos(πω/4)

0 0 0
0 0 0
expiπωφ/2 exp−iπωφ/2 0
4 0 0
0 4 0

6 exp− iπω
2

( 1
2
−φ) 6 exp

iπω
2

( 1
2
−φ) 1

















No φ lets the matrices M̃(ω) be real.

The New Transformed Subdivision Matrices We first give the new real matrices
and then their eigenelements. With

if ω 6= 0, P̃(k)(ω) =



















B̃(k)(ω)

C̃(k)(ω)

D̃(k)(ω)

H̃(k)(ω)

Ĩ(k)(ω)

F̃ (k)(ω)



















and otherwise P̃(k)(0) =























Ã(k)(0)

B̃(k)(0)

C̃(k)(0)

D̃(k)(0)

H̃(k)(0)

Ĩ(k)(0)

F̃ (k)(0)






















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and

φH = 0

φI =
1

2
we get

M̃(0) =
1

64





















36 24 4 0 0 0 0
24 32 8 0 0 0 0
16 32 16 0 0 0 0
6 38 12 6 2 0 0
4 28 24 4 4 0 0
4 28 24 4 0 4 0
1 12 36 2 0 12 1





















and

M̃(ω) =
1

64

















24 + 8 cos(πω/2) 8 cos(πω/4) 0 0 0 0
32 cos(πω/4) 16 0 0 0 0
36 + 2 cos(πω/2) 12 cos(πω/4) 6 2 0 0
24 + 4 cos(πω/2) 24 cos(πω/4) 4 4 0 0
28 cos(πω/4) 24 4 cos(πω/4) 0 4 0
12 cos(πω/4) 36 2 cos(πω/4) 0 12 1

















which are real.
The eigenvalues are

λ̃1(0) = 1 λ̃2(0) =
1

4
λ̃1(1) =

1

2
λ̃1(2) =

1

4

The eigenvectors are

ṽ1(0) =





















1
1
1
1
1
1
1





















ṽ2(0) =





















−2
1
4
10
13
13
22





















ṽ1(1) =

















1√
2

2
2

2.1213
2.8284

















ṽ1(2) =

















1
2
4
3
4
8

















The New Conditions applied on the New Eigenvectors The eigenvalues satisfy
to the necessary conditions given in Sect. 3.
From lemma 4.6, with φH = 0, φI = 1/2 and φE′ = 1 − φE, we get

|(ṽ1(1))E| = |(ṽ1(1))E′| =

√

|(ṽ1(1))H |
2 +

( |(ṽ1(1))I | − |(ṽ1(1))H | cos(π/4)

sin(π/4)

)2

so,

|(ṽ1(1))E| = |(ṽ1(1))E′|

=

√

4 +

(

2.1213 − 2 cos(π/4)

sin(π/4)

)2

=
√

5



66 4 CONVERTING THE ANALYSIS TO THE REAL DOMAIN

From lemma 4.7, we get
(ṽ2(0))E = (ṽ2(0))I = (ṽ2(0))H

so,
(ṽ2(0))E = 13

From lemma 4.7, with φH = 0 and φE′ = 1 − φE, we get

(ṽ1(2))E =
(ṽ1(2))H

2
(

(ṽ1(1))H

(ṽ1(1))E

)2

− 1

so,

(ṽ1(2))E =
3

2
(

2√
5

)2

− 1

= 5

Then, the following vectors

ṽ1(0) =





















1
1
1
1
1
1
1





















ṽ2(0) =





















−2
1
4
10
13
13
22





















ṽ1(1) =

















1√
2

2√
5√
5

2.8284

















ṽ1(2) =

















1
2
4
5
5
8

















should satisfy to the new necessary conditions. They do. Indeed,

• ∀X ∈ {A,B,C,D,E,E ′, F},
(ṽ1(0))X = ν0 = 1

• ∀X ∈ {B,C,D,E,E ′, F},
|(ṽ1(1))X | = |(ṽ1(−1))X | and they have to be sorted as the parameters ̺X

And more precisely, having λ̃1(1) = λ̃1(−1) = 1/2, and fixing ν1 = ν−1 = 1,

̺
(k)
X =

|(ṽ1(1))X |
2k

=
|(ṽ1(−1))X |

2k
.

The map between the mesh and this parameter space is injective, as expected.

• ∀X ∈ {B,C,D,E,E ′, F},
(ṽ2(0))X − (ṽ2(0))A

(ṽ1(1))2
X

=
(ṽ2(0))X − (ṽ2(0))A

(ṽ1(−1))2
X

=
ν20

ν2
1

= ν20 = 3 .

• ∀X ∈ {B,C,D,E,E ′, F},
(ṽ1(2))X

(ṽ1(1))2
X

=
ν+21

ν2
1

= ν+21 = 1 ,
(ṽ1(2))X

(ṽ1(−1))2
X

=
ν+21

ν2
−1

= ν+21 = 1 ,

(ṽ1(−2))X

(ṽ1(1))2
X

=
ν−21

ν2
1

= ν−21 = 1 ,
(ṽ1(−2))X

(ṽ1(−1))2
X

=
ν−21

ν2
−1

= ν−21 = 1 .



67

5 Conclusion

In this paper we have presented practical conditions for tuning a scheme in order to control
its artifacts in the vicinity of a mark point. To do so, we have looked for good behaviour
of the limit vertices rather than good mathematical properties of the limit surface. The
good behaviour of the limit vertices is characterised by the definition of C2-convergence
of a scheme. Because this definition is theoretic and formal, we have proposed necessary
explicit conditions. These conditions are applied at any mark point being a vertex of
valency n or the centre of a n-sided face with n greater or equal to three.

The necessary conditions for C2-convergence of a scheme that we have proposed in this
paper concern the eigenvalues and eigenvectors of subdivision matrices in the frequency
domain. The components of these matrices may be complex. Having them real would
simplify numerical analysis of the eigenstructure of the matrices, especially in the context
of scheme tuning where we manipulate symbolic terms. In this paper we have shown that
an appropriate choice of the parameter space combined with a substitution of vertices lets
us transform these matrices into pure real ones. The substitution consists in replacing
some vertices by linear combinations of themselves. But the conditions given above cannot
be applied directly on the new pure real matrices. So we have explained how to derive
conditions on the eigenelements of the real matrices which are necessary for the C2-
convergence of the scheme.
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[6] C. Gérot, L. Barthe, N. A. Dodgson, and M. A. Sabin. Subdivision as a sequence
of sampled Cp surfaces. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors,
Advances in Multiresolution for Geometric Modelling. Springer-Verlag, 2004.

[7] L. Kobbelt.
√

3-subdivision. In SIGGRAPH 2000 Conference Proceddings, pages
103–112, 2000.



68 REFERENCES

[8] C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Uni-
versity of Utah, 1987.

[9] J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision. SIAM

J. Numer. Anal., 35(2):728–748, 1998.

[10] H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Adv.

Comput. Math, 9:377–389, 1998.

[11] H. Prautzsch and G. Umlauf. Improved triangular subdivision schemes. In Proc

Computer Graphics International, pages 626–632, 1998.

[12] U. Reif. A unified approach to subdivision algorithm near extraordinary vertices.
Computer Geometric Aided Design, 12:153–174, 1995.

[13] M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In
A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geo-

metric Modelling, pages 69–97. Springer-Verlag, 2002.

[14] M. A. Sabin. Recent progress in subdivision — a survey. In N. A. Dodgson, M. S.
Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Mod-

elling. Springer-Verlag, 2004.

[15] M. A. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. In A. Cohen,
J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo

2002, pages 353–362. Nashboro Press, 2003.

[16] J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary param-
eter values. In SIGGRAPH 98 Conference Proceddings, pages 395–404, 1998.

[17] D. Zorin. Stationary subdivision and multiresolution surface representations. PhD
thesis, California Institute of Technology, 1997.
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