Technical Report VA

Number 579

2. UNIVERSITY OF
P CAMBRIDGE

Computer Laboratory

Practical lock-freedom

Keir Fraser

February 2004

15 JJ Thomson Avenue
Cambridge CB3 0OFD

United Kingdom
phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2004 Keir Fraser

This technical report is based on a dissertation submitted
September 2003 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, King’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/
Series editor: Markus Kuhn

ISSN 1476-2986

Summary

Mutual-exclusion locks are currently the most popular mechanism for interpro-
cess synchronisation, largely due to their apparent simplicity and ease of imple-
mentation. In the parallel-computing environments that are increasingly com-
monplace in high-performance applications, this simplicity is deceptive: mutual
exclusion does not scale well with large numbers of locks and many concur-
rent threads of execution. Highly-concurrent access to shared data demands a
sophisticated ‘fine-grained’ locking strategy to avoid serialising non-conflicting
operations. Such strategies are hard to design correctly and with good perfor-
mance because they can harbour problems such as deadlock, priority inversion
and convoying. Lock manipulations may also degrade the performance of cache-
coherent multiprocessor systems by causing coherency conflicts and increased
interconnect traffic, even when the lock protects read-only data.

In looking for solutions to these problems, interest has developed in lock-free
data structures. By eschewing mutual exclusion it is hoped that more efficient
and robust systems can be built. Unfortunately the current reality is that most
lock-free algorithms are complex, slow and impractical. In this dissertation I
address these concerns by introducing and evaluating practical abstractions and
data structures that facilitate the development of large-scale lock-free systems.

Firstly, I present an implementation of two useful abstractions that make it easier
to develop arbitrary lock-free data structures. Although these abstractions have
been described in previous work, my designs are the first that can be practically
implemented on current multiprocessor systems.

Secondly, I present a suite of novel lock-free search structures. This is interest-
ing not only because of the fundamental importance of searching in computer
science and its wide use in real systems, but also because it demonstrates the
implementation issues that arise when using the practical abstractions I have
developed.

Finally, I evaluate each of my designs and compare them with existing lock-
based and lock-free alternatives. To ensure the strongest possible competition,
several of the lock-based alternatives are significant improvements on the best-
known solutions in the literature. These results demonstrate that it is possible to
build useful data structures with all the perceived benefits of lock-freedom and
with performance better than sophisticated lock-based designs. Furthermore,
and contrary to popular belief, this work shows that existing hardware primi-
tives are sufficient to build practical lock-free implementations of complex data
structures.

Table of contents

1 Introduction

1.1 Motivation v v i e e e e e e e e e e e e e e e e e
1.2 Terminology discussion,
1.3 Contribution e
1.4 Outline e
1.5 Pseudocode conventions

2 Background

2.1 Terminology o v v v i e e e e
2.1.1 Lock-freedom
2.1.2 Wait-freedom
2.1.3 Obstruction-freedom

2.2 Desirable algorithmic features
2.2.1 Disjoint-access parallelism
2.2.2 Linearisabilityo oo L

2.3 Relatedwork
2.3.1 Non-blocking primitives
2.3.2 Universal constructions
2.3.3 Programming abstractions
2.3.4 Adhocdatastructures
2.3.5 Memory management

2.4 Summary ... L e e e e e e e e e e

3 Practical lock-free programming abstractions

3.1 Introduction o e
3.2 Multi-word compare-&-swap (MCAS)
321 Designo e e e e e e e
3.3 Software transactional memory
3.3.1 Programminginterface
3.3.2 Design . ..o e e e
3.3.3 Further enhancements

10
11
12

13
13
14
14
15
15
16
16
16
17
18
19
24
25
27

29
29
30
31
34
36
38
47

3.4 Summary e e e e e e e e e e e

4 Search structures

4.1 Introductionot
4.2 Functional mappings o ittt
4.3 Skiplists o o e
4.3.1 FSTM-baseddesign.
4.3.2 MCAS-baseddesign
4.3.3 CAS-baseddesign.
4.4 Binarysearchtrees
441 MCAS-baseddesign
4.5 Red-blacktrees
4.51 FSTM-baseddesign.
4.5.2 Lock-baseddesigns
4.6 SUMMATY . . . v v v v e e e e e e e e e e e e e e e e e e

5 Implementation issues

5.1 Descriptor identification
5.2 Storage management i . e e e e e
5.2.1 Objectaggregationo v v v
5.2.2 Referencecounting
5.2.3 Epoch-based reclamation.
5.3 Relaxed memory-consistency models
5.3.1 Minimal consistency guarantees
5.3.2 Memory barriers
5.3.3 Inducing required orderings
5.3.4 Very relaxed consistency models
S4 Summary ... e e e e e

6 Evaluation

6.1 Correctnessevaluation
6.2 Performance evaluation
6.2.1 Alternative lock-based implementations
6.2.2 Alternative non-blocking implementations
6.2.3 Resultsanddiscussion
6.3 SummMary e e e e e e e e e e e
7 Conclusion
7.0 Summary ... oL e e
7.2 Futureresearch e
References

51
51
52
53
55
55
55
60
61
68
68
69
72

75
75
77
77
78
79
81
82
83
83
85
86

89
89
91
92
94
95
101

105
105
106

108

1.1

Chapter 1

Introduction

This dissertation is concerned with the design and implementation of practical
lock-free data structures. By providing effective abstractions built from readily-
available hardware primitives, I show that a range of useful data structures can
be built. My results demonstrate that existing hardware primitives are suffi-
cient to implement efficient data structures that compete with, and often surpass,
state-of-the-art lock-based designs.

In this chapter I outline the background issues that motivated this work, and
state the contributions that are described in this dissertation. I then summarise
the contents of each chapter and describe the language conventions used in the
pseudocode examples throughout this document.

Motivation

Mutual-exclusion locks are one of the most widely used and fundamental ab-
stractions for interprocess synchronisation. This popularity is largely due to
their apparently simple programming model and their efficient implementation
on shared-memory systems. Unfortunately these virtues frequently do not scale
to systems containing more than a handful of locks, which may suffer a range
of problems:

e Care must be taken to avoid deadlock. To do so, locks are usually taken in
some global order, but this can affect the efficiency of some algorithms. For
example, a lock may be held for longer than would otherwise be necessary,
or a write lock may be taken even though updates are rarely required.

e Unfortunate scheduler interactions can cause critical operations to be de-
layed. A classic example is priority inversion, in which a process is pre-

empted while holding a lock which a higher-priority process requires to
make progress.

e Even when a data structure is accessed through a sequence of ‘fine-grained’
locks, processes will tend to form convoys as they queue at a sequence of
locks. This behaviour is exacerbated by the increased queuing time at a
lock when it is attended by a convoy.

Furthermore, system designers increasingly believe that parallelism is necessary
to satisfy the demands of high-performance applications. For example, high-
end servers often consist of a physically-distributed set of processing and mem-
ory nodes which communicate via a cache-coherent interconnect; in some cases
this architecture is applied to a conventionally-networked cluster of computers.
Meanwhile, on the desktop, simultaneous multithreading (SMT) is being intro-
duced, which allows a single processor core to harness parallelism among a set
of threads [Tullsen95].

Unfortunately, locks can compromise the reliability and performance of highly-
parallel systems in a number of ways:

e Mutual exclusion can needlessly restrict parallelism by serialising non-
conflicting updates. This can be greatly mitigated by using fine-grained
locks, but lock convoying and cache performance may then become an
issue, along with the extra cost of acquiring and releasing these locks.

e Even when an operation does not modify shared data, the required lock
manipulations can cause memory coherency conflicts, and contribute to
contention on the memory interconnect. This can have enormous impact
on system performance: Larson and Krishnan [Larson98] observe that
“reducing the frequency of access to shared, fast-changing data items” is
critical to prevent cache bouncing' from limiting system throughput.

e In a loosely-coupled system, such as a cluster, deadlock can occur if a pro-
cessing node fails or stalls while holding a lock. The problem of ensuring
system-wide progress in these situations has led to work on leased locks,
which preempt ownership when a lock is held for too long.

There is a growing interest in lock-free data structures as a way of sidestepping
these problems. By eschewing mutual exclusion it is hoped that more efficient
and robust systems can be built. Unfortunately the current reality is that most
lock-free algorithms are complex, slow and impractical. This dissertation ad-

YCache bouncing, or cache ping-pong, occurs when exclusive ownership of a cache line moves
rapidly among a set of processors.

8

1.2

dresses this situation by presenting and evaluating practical abstractions and
data structures that facilitate the development of large-scale lock-free systems.

Terminology discussion

This dissertation makes frequent use of a number of technical terms which I
define and discuss here for clarity and simplicity of reference. Many of these
are discussed in greater depth in the next chapter — this section is intended as a
glossary.

I use the term lock-free to describe a system which is guaranteed to make for-
ward progress within a finite number of execution steps. Rather confusingly,
a program which uses no mutual-exclusion locks is not necessarily lock-free
by this definition: in fact the term applies to any system of processes which is
guaranteed never to experience global deadlock or livelock, irrespective of the
progress of individual processes. Note that systems satisfying this property are
sometimes referred to as non-blocking. Following more recent usage, I instead
reserve this term for the more general property that a stalled process cannot
cause all other processes to stall indefinitely [Herlihy03a].

Since locks are disallowed in lock-free algorithms I instead use the compare-&-
swap (CAS) primitive to execute atomic read-modify-write operations on shared
memory locations. This primitive takes three arguments: a memory location, a
value that is expected to be read from that location, and a new value to write
to the location if the expected value is found there. The most common use
of CAS is to read from a memory location, perform some computation on the
value, and then use CAS to write the modified value while ensuring that the
location has not meanwhile been altered. CAS is supported in hardware by
most modern multiprocessor architectures. Those that do not implement CAS
provide alternative machine instructions that can be used to emulate CAS with
very little overhead.

Another commonly-assumed primitive is double-word compare-&-swap (DCAS)
which effectively executes two CAS operations simultaneously: both memory
locations are atomically updated if and only if both contain the expected initial
values. It is usually easier to build lock-free algorithms using DCAS because
it simplifies ‘tying together’ updates to multiple memory locations. However,
DCAS is not supported in hardware by any modern processor architecture.

The most common technique for handling update conflicts in lock-free algo-
rithms is recursive helping. If the progress of an operation A is obstructed by

1.3

a conflicting operation B, then A will help B to complete its work. This is
usually implemented by recursively reentering the operation, passing the invoca-
tion parameters specified by B. Operation B is responsible for making available
sufficient information to allow conflicting processes to determine its invocation
parameters. When the recursive call is completed, the obstruction will have been
removed and operation A can continue to make progress.

When discussing lock-based algorithms I make use of two common locking pro-
tocols. The first is the conventional mutual-exclusion lock which supports only
the operations acquire and release. These operations are used in pairs to pro-
tect a critical region: only one process at a time may acquire the lock and thus
enter its critical region. There are many situations in which most operations
are read-only, yet these readers are forced to acquire locks to gain protection
from occasional updates. In these cases, where the strict serialisation enforced
by mutual-exclusion locks is overkill, multi-reader locks are commonly used.
These can be acquired either for reading or for writing: multiple readers may
hold the lock simultaneously, but writers must acquire exclusive ownership of
the lock. Multi-reader locks are not a panacea, however, since the acquire and
release operations themselves create contention between otherwise read-only op-
erations. As I will show in Chapter 6, this contention can be a major bottleneck
in large-scale systems. It is generally preferable to find an algorithm which syn-
chronises readers without resorting to locks of any kind.

Contribution

It is my thesis that lock-free data structures have important advantages com-
pared with lock-based alternatives, and that tools for applying lock-free tech-
niques should be placed within reach of mainstream programmers. Existing
lock-free programming techniques have been too complex, slow, or assume too
much of the underlying hardware to be of practical use — in this dissertation
I introduce lock-free programming abstractions and real-world data structures
which run on a wide range of modern multiprocessor systems and whose perfor-
mance and simplicity can surpass sophisticated lock-based designs.

My first contribution is the design and implementation of two programming
abstractions which greatly reduce the complexity of developing lock-free data
structures. Based on the requirements of the data structure, a programmer can
choose between multi-word compare-&-swap (MCAS) and software transac-
tional memory (STM) to enforce serialisation of complex shared-memory oper-
ations. Although both these abstractions have been discussed in previous work,

10

1.4

I present results which show that my implementations are not only practical
to deploy, in contrast with existing lock-free designs, but also competitive with
locking strategies based on high-performance mutexes.

A further contribution is a suite of efficient lock-free designs for three search
structures: skip lists, binary search trees (BSTs), and red-black trees. These are
interesting not only because of the fundamental importance of searching in com-
puter science and its wide use in real systems, but also because they demonstrate
the issues involved in implementing non-trivial lock-free data structures. Per-
formance results show that these lock-free search structures compare well with
high-performance lock-based designs. To ensure the fairest possible competition
I derive a competing lock-based BST design directly from my lock-free algo-
rithm, in which only update operations need to acquire locks. This, together
with a novel lock-based design for concurrent red-black trees, represents a fur-
ther contribution to the state of the art.

By fully implementing each of my designs I am able to evaluate each one on
real multiprocessor systems. These results indicate that, contrary to popular
belief, existing hardware primitives are sufficient to build practical lock-free im-
plementations of complex data structures. Furthermore, the discussion of this
implementation work illustrates the issues involved in turning abstract algorithm
designs into deployable library routines.

Outline

In this section I describe the organisation of the remainder of this dissertation.

In Chapter 2 I describe previous work which relates to and motivates this disser-
tation. A recurring issue is that, except for a few simple data structures, existing
lock-free algorithms are complex and slow.

In Chapter 3 I motivate and present efficient lock-free designs for two easy-
to-use programming abstractions: multi-word compare-&-swap, and software
transactional memory.

In Chapter 4 I introduce lock-free designs for three well-known dynamic search
structures. Not only are these structures interesting in their own right, but they
also illustrate non-trivial uses of the abstractions presented in Chapter 3.

In Chapter 5 I discuss the implementation issues that are faced when turning the
pseudocode designs from Chapters 3 and 4 into practical implementations for
real hardware.

11

1.5

In Chapter 6 I explain how I tested my lock-free implementations for correct-
ness. I then present experimental results that demonstrate the practicality of my
new lock-free designs compared with competitive lock-based and non-blocking

alternatives.

Finally, in Chapter 7 I conclude the dissertation and suggest areas for further
research.

Pseudocode conventions

All the pseudocode fragments in this dissertation are written using a C-style
programming language. C is a simple and transparent language, which prevents
important design details from being hidden behind complex language-level con-
structs. However, for clarity I assume a sequentially-consistent memory model,
and I introduce the following new primitives:

e A datatype bool, taking values TRUE and FALSE.

e An integer datatype word, representing a word of memory in the native
machine architecture.

e A function CAS(word *address, word expected, word new) with the same
semantics as the well-known hardware primitive. It returns the previous
contents of address; if this differs from expected then the operation failed.

e A Java-style new operator which allocates a new instance of the specified
datatype. Unless otherwise specified, I assume that memory is automati-
cally garbage-collected.

e Tuples, first-class datatypes used to concisely represent non-scalar values.
They are declared by (types, ..., type,), denoted in use by (x1, ..., xy),
and can be freely passed to and from functions.

e An underscore can be used in place of a variable name on the left-hand
side of an assignment. This turns the assignment into a null operation,
and is particularly useful for discarding unwanted components of a tuple.

Furthermore, I write some standard C operators using a clearer representation:

Operator class C representation Pseudocode representation
Assignment = =

Equality === =, #

Relational < >, <=, >= <, >, <, >

Logical |, &&, ! V, A, &

Point-to-member

!
Vv
!

12

2.1

Chapter 2

Background

I begin this chapter by presenting in greater detail the technical terms that are
generally used when discussing non-blocking systems. Some of these terms de-
scribe rather abstract performance guarantees: I therefore introduce some addi-
tional formal properties that are desirable in high-performance systems, and that
are satisfied by all the lock-free algorithms in Chapters 3 and 4. In the remainder
of the chapter I summarise previous work relating to non-blocking systems and
discuss the limitations which place existing lock-free programming techniques
beyond practical use.

Terminology

In this dissertation I consider a shared data structure to be a set of memory loca-
tions that are shared between multiple processes and are accessed and updated
only by a supporting set of operations. Mutual-exclusion locks are commonly
used to ensure that operations appear to execute in isolation, act atomically and
leave the structure in a consistent state. However, as I described in Chapter
1, locks have many drawbacks including a very weak progress guarantee: if a
process never releases a lock that it has taken then it may be impossible for any
concurrent operations to complete as all may stall waiting to take the failed lock.

To solve this problem, several non-blocking properties have been proposed which
provide stronger progress guarantees by precluding the use of mutual exclusion.
All the non-blocking properties described here guarantee that a stalled process
cannot cause all other processes to stall indefinitely. The tradeoff which they ex-
plore is the range of assurances which may be provided to groups of conflicting
non-stalled processes. In general, stronger progress guarantees can be provided
at the cost of reduced overall performance.

13

2141

2.1.2

Lock-freedom

The most popular non-blocking property, and the one that I consider in the re-
mainder of this dissertation, is lock-freedom. A data structure is lock-free if
and only if some operation completes after a finite number of steps system-wide
have been executed on the structure. This guarantee of system-wide progress is
usually satisfied by requiring a process that experiences contention to help the
conflicting operation to complete before continuing its own work, thus ensuring
that every executing process is always ensuring forward progress of some oper-
ation. This is a very different approach to that taken by lock-based algorithms,
in which a process will either spin or block until the contending operation is
completed.

Considerable software infrastructure is often required to allow lock-free helping:
an incomplete operation must leave enough state in the shared structure to allow
a consistent view of the structure to be constructed, and to allow any process
to help it to complete; each operation must be carefully designed to ensure that
each execution step can update shared memory at most once, no matter how
many times it is ‘replayed’ by different processes; and reclamation of structures
in shared memory is complicated by the fact that any process may access any
shared location at any time.

Wait-freedom

Although lock-freedom guarantees system-wide progress it does not ensure that
individual operations eventually complete since, in theory, an operation may
continually be deferred while its process helps a never-ending sequence of con-
tending operations. In some applications a fairer condition such as wait-freedom
may be desirable. A data structure is wait-free if and only if every operation
on the structure completes after it has executed a finite number of steps. This
condition ensures that no operation can experience permanent livelock and, in
principle, a worst-case execution time can be calculated for any operation.

It is very difficult to implement efficient wait-free algorithms on commodity
hardware since fair access to memory is usually not guaranteed. Extensive
software-based synchronisation is usually required to ensure that no process is
starved. This is typically achieved by requiring each process to announce its cur-
rent operation in a single-writer memory location. Processes which successfully
make forward progress are required to periodically scan the announcements of
other processes and help their operations to complete. Over time, the scanning
algorithm should check every process in the system.

14

2.1.3

2.2

Note that the strict progress guarantees of wait-free algorithms are primarily
of interest in hard real-time applications, whose requirements are typically not
met by the types of multiprocessor system that I consider in this dissertation.
The probabilistic elements found in such systems (e.g., memory caches) cannot
provide the determinism required in hard real-time design.

Obstruction-freedom

Herlihy et al. have recently suggested a weak non-blocking property called obs-
truction-freedom, which they believe can provide many of the practical benefits
of lock-freedom but with reduced programming complexity and the potential
for more efficient data-structure designs [HerlihyO3a]. Since efficiently allowing
operations to help each other to complete is a major source of complexity in
many lock-free algorithms, and excessive helping can generate harmful memory
contention, obstruction-freedom can reduce overheads by allowing a conflicting
operation to instead be aborted and retried later.

More formally, a data structure is obstruction-free if and only if every opera-
tion on the structure completes after executing a finite number of steps that do
not contend with any concurrent operation for access to any memory location.
Thus, although obstruction-freedom is strong enough to prevent effects such as
deadlock or priority inversion, an out-of-band mechanism is required to deal
with livelock (which might be caused by two mutually conflicting operations
continually aborting each other). The cost of avoiding livelock in obstruction-
free algorithms has not yet been investigated empirically — for example, if ex-
ponential backoff is used when retrying a contended operation then it is not
certain that there will be a ‘sweet spot’ for the back-off factor in all applications.
Evaluation of different livelock-avoidance mechanisms is the subject of ongoing
research.

Desirable algorithmic features

In addition to the formal non-blocking properties that I describe above, there
are other concerns which must be addressed by practical lock-free designs, such
as performance and usability. To this end, all the lock-free algorithms that I
present in this dissertation are both disjoint-access parallel and linearisable.

15

2.2.1

2.2.2

2.3

Disjoint-access parallelism

The performance guarantees of the various non-blocking properties are some-
what abstract: for instance, they don’t promise that compliant operations will
execute efficiently on real hardware. One property which attempts to bridge
the gap between formal definition and real performance is disjoint-access paral-
lelism [Israeli94]. A set of operations are disjoint-access parallel if and only if
any pair of operation invocations which access disjoint sets of memory locations
do not directly affect each others” execution.

This prohibits performance bottlenecks such as using ‘ownership records’ to
serialise access to large regions of shared memory. However, it does not prevent
an operation from indirectly affecting another’s performance (perhaps via cache
effects).

Linearisability

Besides performance, another metric by which algorithms can be evaluated is us-
ability: in particular, does the algorithm behave as expected when it is deployed
in an application? One property which is commonly considered desirable in
concurrency-safe algorithms is linearisability [Herlihy90c]. This property is de-
fined in terms of requests to and responses from a compliant operation: if the
operation is implemented as a synchronous procedure then a call to that proce-
dure is a request and the eventual return from that procedure is a response. An
operation is linearisable if and only if it appears to execute instantaneously at
some point between its request and response.

Linearisability ensures that operations have intuitively ‘correct’ behaviour. Con-
current invocations of a set of linearisable operations will have a corresponding
sequence which could be executed by just one processor with exactly the same
outcome. Another way of looking at this is that linearisable procedures behave
as if the data they access is protected by a single mutual-exclusion lock which is
taken immediately after a request and released immediately before a response.

Related work

In the following section I present previous work relating to non-blocking data
structures and discuss why none of the proposed lock-free programming tech-
niques are viable general-purpose alternatives to using locks.

Firstly, I introduce the primitives that have previously been used to build non-

16

2.3.1

blocking data structures; unfortunately, a great deal of existing work is based
on primitives that are not supported by current hardware. Secondly, I present
universal constructions that can render concurrency-safe any suitable-specified
sequential implementation of a data structure. Thirdly, I present programming
abstractions that make it easier for programmers to directly implement non-
blocking data structures. Fourthly, since existing constructions and program-
ming abstractions are impractical for general use I present data structures that
have instead been implemented by using hardware primitives directly. Finally, I
discuss work in non-blocking memory management — an important yet often-
ignored aspect of lock-free design.

Non-blocking primitives

An early paper by Herlihy demonstrates that various classical atomic primi-
tives, including fetch-&-add and test-&-set, have differing levels of expressive-
ness [Herlihy88]. Specifically, a hierarchy is constructed in which primitives at a
given level cannot be used to implement a wait-free version of any primitives at
a higher level. Only a few of the well-known primitives discussed in the paper
are universal in the sense that they can be used to solve the n-process consensus
problem [Fischer85] in its general form.

One such universal primitive is compare-&-swap (CAS), which is used to build
the lock-free algorithms described in this dissertation. Originally implemented
in the IBM System/370 [IBM70], many modern multiprocessors support this
operation in hardware.

Rather than implementing a read-modify-write instruction directly, some pro-
cessors provide separate load-linked and store-conditional (LL/SC) operations.
Unlike the strong LL/SC operations sometimes used when describing algorithms,
the implemented instructions must form non-nesting pairs and SC can fail ‘spu-
riously’ [Herlihy93a]. Methods for building read-modify-write primitives from
LL/SC are well known: for example, the Alpha processor handbook shows how
to use them to construct atomic single-word sequences such as CAS [DEC92].
Such constructions, based on a simple loop that retries a LL/SC pair, are non-
blocking under a guarantee that there are not infinitely many spurious failures
during a single execution of the sequence.

It is widely believed that the design of efficient non-blocking algorithms is much
easier if a more expressive operation such as DCAS is supported [Greenwald99,
Detlefs00]. Unfortunately only the obsolete Motorola 680x0 family of proces-
sors supports DCAS directly in hardware [Motorola, Inc.], although Bershad
describes how to implement CAS on architectures with weak atomic primitives

17

2.3.2

using a technique that could easily be extended to DCAS [Bershad93]. This
technique involves using a single shared lock which is known to the operating
system, so contention will significantly affect performance under any memory-
intensive workload.

Universal constructions

Universal constructions are a class of lock-free techniques that can be straight-
forwardly applied to a wide range of sequential programs to make them safe
in parallel-execution environments. Indeed, most of these constructions are in-

tended to be applied automatically by a compiler or run-time system.

Lamport was an early proponent of constructions that permit concurrent read-
ing and writing of an arbitrary-sized data structure without requiring mutual
exclusion [Lamport77]. His approach uses a pair of version counters, one of
which is incremented before an update, and the other immediately after. Read
operations read these variables in reverse order before and after accessing the
data structure, and retry if they do not match. This approach is not lock-free,
or even non-blocking, in the sense used in this dissertation, since a stalled writer
can cause readers to retry their operation indefinitely. Lamport also assumes an
out-of-band mechanism for synchronising multiple writers.

Herlihy describes a universal construction for automatically creating a non-
blocking algorithm from a sequential specification [Herlihy90b, Herlihy93a].
This requires a snapshot of the entire data object to be copied to a private loca-
tion where shadow updates can safely be applied: these updates become visible
when the single ‘root’ pointer of the structure is atomically checked and modified
to point at the shadow location. Although Herlihy describes how copying costs
can be significantly reduced by replacing only those parts of the object that are
modified, the construction still requires atomic update of a single root pointer.
This means that concurrent updates will always conflict, even when they modify
disjoint sections of the data structure.

Alemany and Felten extend Herlihy’s work to avoid the useless work done by
parallel competing processes accessing the same data structure [Alemany92].
They achieve this by including an in-progress reference count, and causing pro-
cesses to defer their work if they attempt to start an operation when the count
is above some threshold. If a process can make no further progress at this point
then it may yield the processor to a process that is currently updating the data
structure. If the threshold is set to one then update operations can update the
structure in place rather than making a shadow copy; an update log must be
maintained, however, so that these updates can be undone if the process is pre-

18

2.3.3

empted. Unfortunately this approach still precludes disjoint-access parallelism,
and the copy-avoidance optimisation requires OS support or scheduler activa-
tions [Anderson92].

Turek et al. address the problem of serialisation by devising a construction that
may be applied to deadlock-free lock-based algorithms [Turek92]. Each lock in
the unmodified algorithm is replaced by an ownership reference which is either
nil or points to a continuation describing the sequence of virtual instructions that
remain to be executed by the lock ‘owner’. This allows conflicting operations to
execute these instructions on behalf of the owner and then take ownership them-
selves, rather than blocking on the original process. Interpreting a continuation
is cumbersome: after each ‘instruction’ is executed, a virtual program counter
and a non-wrapping version counter are atomically modified using a double-
width CAS operation which acts on an adjacent pair of memory locations. This
approach permits parallelism to the extent of the original lock-based algorithm;
however, interpreting the continuations is likely to cause significant performance
loss.

Barnes proposes a similar technique in which mutual-exclusion locks are re-
placed by operation descriptors [Barnes93]. Lock-based algorithms are con-
verted to operate on a private copy of the data structure; then, after determining
the sequence of updates to apply, each required operation record is acquired in
turn, the updates are performed, and finally the operation records are released.
Copying is avoided if contention is low by observing that the private copy of the
data structure may be cached and reused across a sequence of operations. This
two-phase algorithm requires a nestable LL/SC operation, which has no efficient
implementation on current processors.

Greenwald introduces ‘two-handed emulation’ to serialise execution of concur-
rent operations [Greenwald02]. This requires each operation to register its in-
tent by installing an operation descriptor in a single shared location. As in the
scheme by Turek et al., the operation then uses DCAS to simultaneously up-
date the shared structure and a ‘program counter’ within the operation descrip-
tor. Processes which conflict with the current operation use the virtual program
counter to help it to completion while preserving exactly-once semantics. This
technique has limited applicability because of its dependence on DCAS. It is also
not disjoint-access parallel: indeed, all operations are serialised.

Programming abstractions

Although the universal constructions described in Section 2.3.2 have the benefit

of requiring no manual modification to existing sequential or lock-based pro-

19

2.3.3.1

grams, each exhibits some substantial performance or implementation problems
on current systems which places it beyond practical use. Another class of tech-
niques provides high-level programming abstractions which, although not auto-
matic ‘fixes’ to the problem of constructing non-blocking algorithms, make the
task of implementing non-blocking data structures much easier compared with
using atomic hardware primitives directly. The two best-known abstractions
are multi-word compare-&-swap (MCAS) and software transactional memory
(STM), which have both received considerable treatment in the literature.

These abstractions are not intended for direct use by application programmers.
Instead it is expected that programmers with parallel-systems experience will
implement libraries of support routines. Another possibility is to use MCAS
or STM to implement run-time support for higher-level programming-language
constructs such as monitors [Hoare74], atomic statements [Liskov83] or condi-
tional critical regions [Hoare85]. Existing implementations of these constructs
have generally been pessimistic in terms of the parallelism they exploit; for
example, critical regions are serially executed on a single processor [Brinch
Hansen78], or conservative locking is employed [Lomet77]. Efficient imple-
mentations of MCAS and STM may allow these constructs to be revisited and
implemented with improved performance characteristics.

Multi-word compare-&-swap (MCAS)

MCAS is a straightforward extension of the well-known CAS operation to up-
date an arbitrary number of memory locations simultaneously. An MCAS oper-
ation is specified by a set of tuples of the form (address, expected, new); if each
address contains the expected value then all locations are atomically updated to
the specified new values. The costs of the algorithms described here frequently
depend on the maximum number of processes that may concurrently attempt
an MCAS operation, which I denote by N. Many also require a strong form
of LL/SC that can arbitrarily nested: this form of LL/SC is not supported by
existing hardware.

Israeli and Rappaport describe a layered design which builds a lock-free MCAS
from strong LL/SC primitives [Israeli94]. They describe a method for building
the required LL/SC from CAS that reserves N bits within each updated memory
location; the MCAS algorithm then proceeds by load-locking each location in
turn, and then attempting to conditionally-store each new value in turn. The
cost of implementing the required strong LL/SC makes their design impractical
unless the number of concurrent MCAS operations can be restricted to a very
small number.

Anderson and Moir present a wait-free version of MCAS that also requires

20

2.33.2

strong LL/SC [Anderson95]. Their method for constructing the required LL/SC
requires at least log N reserved bits per updated memory location, which are
used as a version number to detect updates which conflict with an LL/SC pair.
Although this bound is an improvement on previous work, considerable book-
keeping is required to ensure that version numbers are not reused while they are
still in use by some process. A further drawback is that the accompanying Read
operation, used to read the current value of a location that may concurrently
be subject to an MCAS, is based on primitives that acquire exclusive cache-line
access for the location. This may have a significant performance cost if Read is
executed frequently.

Moir developed a stream-lined version of this algorithm which provides ‘condi-
tionally wait-free’ semantics [Moir97]. Specifically, the design is lock-free but an
out-of-band helping mechanism may be specified which is then responsible for
helping conflicting operations to complete. This design suffers many of the same
weaknesses as its ancestor; in particular, it requires a strong version of LL/SC
and a potentially expensive Read operation.

Anderson et al. provide specialised versions of MCAS suitable for both unipro-
cessor and multiprocessor priority-based systems [Anderson97]. Both algorithms
store a considerable amount of information in memory locations subject to
MCAS updates: a valid bit, a process identifier (log N bits), and a ‘count’ field
(which grows with the logarithm of the maximum number of addresses specified
in an MCAS operation). Furthermore, the multiprocessor algorithm requires
certain critical sections to be executed with preemption disabled, which is not
feasible in many systems.

Greenwald presents a simple design in his PhD dissertation [Greenwald99],
which constructs a record describing the entire operation and installs it into
a single shared location which indicates the sole in-progress MCAS operation.
If installation is prevented by an already-running MCAS, then the existing op-
eration is helped to completion and its record is then removed. Once installed,
an operation proceeds by executing a DCAS operation for each location speci-
fied by the operation: one update is applied to the address concerned, while the
other updates a progress counter in the operation record. Note that Greenwald’s
design is not disjoint-access parallel, and that it requires DCAS.

Software transactional memory (STM)

Herlihy and Moss first introduced the concept of a transactional memory, which
allows shared-memory operations to be grouped into atomic transactions [Her-
lihy93b]. They present a hardware design which leverages existing multiproces-
sor cache-coherency mechanisms. Transactional memory accesses cause the ap-

21

propriate cache line to be loaded into a private transactional cache, the contents
of which are written back to main memory at the end of a successful transac-
tion. The transactional cache snoops memory operations from other processors,
and fails a remote transaction if it attempts to obtain exclusive access to a cache
line that is currently ‘in use’ by a local transaction. Although this means that
the protocol is not non-blocking, in practice only a faulty processor will fail re-
mote transactions indefinitely. Starvation of individual processors can be dealt
with cooperatively in software; for example, by ‘backing off” when contention
is experienced. The major practical drawback of this design is that it requires
hardware modifications — convincing processor designers that a new untrialled
mechanism is worth the necessary modifications to the instruction-set architec-
ture and increased bus-protocol complexity is likely to be a significant battle.

Shavit and Touitou address this problem by proposing a software-based lock-
free transactional memory [Shavit95]. A notable feature is that they abort con-
tending transactions rather than recursively helping them, as is usual in lock-free
algorithms; non-blocking behaviour is still guaranteed because aborted transac-
tions help the transaction that aborted them before retrying. Their design sup-
ports only ‘static’ transactions, in which the set of accessed memory locations is
known in advance — this makes it difficult to implement certain common op-
erations, such as traversal of linked structures. A further limitation is that the

algorithm requires a nestable LL/SC operation.

Moir presents lock-free and wait-free STM designs [Moir97] which provide a
dynamic programming interface, in contrast with Shavit and Touitou’s static
interface. The lock-free design divides the transactional memory into fixed-size
blocks which form the unit of concurrency. A header array contains a word-
size entry for each block in the memory, consisting of a block identifier and a
version number. Unfortunately arbitrary-sized memory words are required as
there is no discussion of how to handle overflow of the version number. The
design also suffers the same drawbacks as the conditionally wait-free MCAS on
which it builds: bookkeeping space is statically allocated for a fixed-size heap,
and the read operation is potentially expensive. Moir’s wait-free STM extends
his lock-free design with a higher-level helping mechanism based around a ‘help’
array which indicates when a process i has interfered with the progress of some
other process j: in this situation 7 will help j within a finite number of execution
steps.

Recently, Herlihy et al. have implemented an obstruction-free STM with many
desirable properties [HerlihyO3b]. Firstly, the memory is dynamically sized:
memory blocks can be created and destroyed on the fly. Secondly, an implemen-
tation is provided which builds on a readily-available form of the CAS primitive

22

(this is at the cost of an extra pointer indirection when accessing the contents
of a memory block, however). Finally, the design is disjoint-access parallel, and
transactional reads do not cause writes to occur in the underlying STM imple-
mentation. These features serve to significantly decrease contention in many
multiprocessor applications, and are all shared with my own lock-free STM
which I describe in the next chapter. This makes Herlihy ef al.’s design an ideal
candidate for comparison in Chapter 6. The major difference is that my STM is
lock-free, and so does not require an out-of-band mechanism for relieving con-
tention to guarantee progress. As noted in Section 2.1, investigation of effective
contention-avoidance strategies in obstruction-free algorithms is still an area of
active research.

Harris and Fraser present an obstruction-free STM with a very different pro-
gramming interface [Harris03]. By storing the heap in the clear, without divid-
ing it into transactional objects, they avoid the overhead of copying an entire
object when it is accessed by a transaction. This may be particularly benefi-
cial when just a few locations are accessed within a large object. The interface
is further motivated by the desire to incorporate transactional techniques into
existing run-time environments. The in-the-clear representation allows non-
transactional reads and writes to be implemented as usual, reducing the number
of required modifications to the compiler or run-time system. The direct heap
representation is implemented by maintaining out-of-band ownership records to
manage synchronisation between concurrent transactions. A hash function can
be used to map heap locations to a smaller set of ownership records. To achieve
obstruction-freedom, transactions are allowed to steal ownership records from
each other. This requires careful merging of the existing transaction’s state,
which is complicated by the fact that multiple heap locations are likely to map
to the same record. Stealing an ownership record requires a double-width CAS
primitive to allow atomic update of the reference count and transaction pointer
contained within each ownership record. Unlike DCAS however, double-width
CAS is supported efficiently by most modern architectures. An empirical eval-
uation of the in-the-clear interface compared with traditional object-based APIs
is the subject of ongoing work: the former eliminates per-object overheads but

trades this for increased overhead on every transactional memory access.

It is interesting to note the similarities between recent STM designs and work on
optimistic concurrency control in transactional database systems [Herlihy90a,
Kung81, Wu93]. Care is needed when designing database systems to ensure
that disc-access times and network latencies (in distributed environments) do
not cripple performance. These potential bottlenecks can be avoided by opti-
mistically permitting overlapping execution of possibly-conflicting transactions.
However, unlike transactional memories, the intention is not necessarily to ex-

23

2.3.4

ecute these transactions simultaneously on different processors, but to harness
available bandwidth to support a higher transaction rate!. Since CPU and mem-
ory speeds are not usually a bottleneck in database systems, simpler mechanisms
can be used to enforce the ACID database properties when transactions attempt
to commit. For example, a single concurrency manager might generate a global
timestamp for each transaction and use this to safely resolve conflicts. This can
work well in a database system, but using such a centralised approach to imple-
ment a transactional memory would defeat the object of achieving a high degree
of CPU parallelism with minimal inter-processor communication overheads.

Ad hoc data structures

Although there are many universal constructions and programming abstractions
that seek to ease the task of implementing complex data structures, practical
concerns have caused most designers to resort to building non-blocking algo-
rithms directly from machine primitives such as CAS and LL/SC. Consequently
there is a large body of work describing ad hoc designs for fairly simple data
structures such as stacks, deques, and lists. It is worth noting that more com-
plex structures, such as binary search trees, are not represented at all, which in-
dicates just how difficult it is to build data structures directly from single-word

primitives.

Massalin and Pu describe the implementation of the lock-free Synthesis kernel
for a multiprocessor system based on the Motorola 68030 [Massalin91]. The
use of the 68030 processor means that several of the lock-free algorithms used in
key kernel components can safely depend on architectural support for the DCAS
primitive. However, this does mean that the kernel is not directly portable to any
other processor architecture.

The Cache Kernel, described by Greenwald and Cheriton [Greenwald96], suf-
fers from the same limitation. However, they note that in certain limited circum-
stances, DCAS may be implemented in software.

Although non-blocking designs exist for many simple data structures, such as
queues, stacks and deques, the only search structure which has received signif-
icant attention is the singly-linked list. Valois [Valois95] introduced the first
lock-free list design based on CAS. Although his algorithm allows a high de-
gree of parallelism, its implementation is very involved. Indeed, several later
papers describe errors relating to the management of reference-counted stor-
age [Michael95, HarrisO1]. Harris presented a simpler and significantly more

'Disc packs and networked servers usually support overlapping (or pipelined) requests. This
increases system bandwidth because the latencies of several data requests can be overlapped.

24

2.3.5

efficient design which uses ‘pointer marking’ to indicate when a node is logically
deleted [HarrisO1]. In Chapter 4 I apply the same technique to skip lists.

Greenwald notes that the availability of DCAS makes linked lists, and a great
number of other data structures, much easier to implement [Greenwald99].
However, no modern architecture implements this primitive.

Memory management

Many non-blocking algorithms in the literature are presented in pseudocode
which assumes that automatic garbage collection is provided as a run-time ser-
vice. This ignores the problem that many languages do not provide this support
and, furthermore, that most general-purpose garbage collectors are not non-
blocking or are unsuitable for highly-parallel applications. To deal with this, a
range of non-blocking memory-management techniques have been suggested.

Herlihy and Moss present a lock-free copying garbage collector [Herlihy92].
Each time a process updates an object it creates a new copy within a per-process
to region. Periodically each process will create a new to region; the old region
is added to a set of from regions to be reclaimed when it is safe to do so. Each
process occasionally runs a scan routine which scans for objects in a from re-
gion, copies them to its own to region, and updates references to that object to
point at the new copy. When a from region contains no live objects, and each
process has subsequently passed a ‘safe’ point, then that region can safely be re-
claimed. Apart from the copying overhead, the major drawback of this scheme
is the numerous parameters which are not fully explored in the paper. For ex-
ample, the frequency with which to regions are retired, and the rate at which
objects are scanned, are both likely to significantly affect heap size and execu-
tion time. Experimental analysis is required to determine satisfactory values for
these parameters.

Valois uses reference counts to ensure that an object is not reused while any
thread still holds a pointer to it [Valois95]. As there may be an arbitrary delay
between obtaining a reference to an object and incrementing the reference count,
objects reclaimed via reference counts must retain their type forever. Detlefs
et al. solve this by using DCAS to increment the counter while simultaneously
checking that the object remains globally accessible [DetlefsO1]. However, all
reference counting schemes suffer two serious drawbacks. Firstly, they can incur
a considerable cost in maintaining the reference counts. This is particularly true
for operations which read many objects: updates to reference counts may cause
read-only objects to become a contention bottleneck. Secondly, even when using
DCAS it is not safe to garbage-collect virtual address space as this may cause

25

the program to fault if an address which previously contained a reference count
becomes inaccessible (e.g., due to reclamation of page-table entries within the
OS, resulting in a page-not-present fault).

Kung and Lehman describe a system in which garbage objects are placed on a
temporary ‘limbo list’ [Kung80]. Periodically this list is copied by the garbage
collector and the status of each process in the system is noted. When all pro-
cesses have completed their current operation then all objects in the copied list
can safely be reclaimed: no references to these objects exist in the shared struc-
ture so newly-started operations cannot reach them. This technique, which has
subsequently been applied to several parallel algorithms [Manber84, Pugh90a],
has the advantage that it does not require extra atomic updates to safely ac-
cess objects. However, the limbo list will grow until all memory is consumed
if a process stalls for any reason, such as an unfortunate scheduling decision.
Cache utilisation may also be harmed because objects are likely to be evicted
from processor caches before they are reclaimed.

Limbo lists have recently been applied to memory reclamation in the read-copy
update (RCU) scheme, developed for lock-free data structures in the Linux ker-
nel [Arcangeli03]. This method of garbage collection is particularly suited to
the non-preemptive environment in which the Linux kernel executes. Since no
operation can block, and all processors can be trusted to cooperate, garbage lists
can be reclaimed within a reasonable time before they become excessively long.

Recent work by Michael describes a scheme in which processes ‘publish’ their
private references in a shared array of hazard pointers [Michael02]. The garbage
collector must not free any object referenced by this array. By reclaiming stor-
age only when a sufficient number of objects are on the garbage list, the cost of
scanning the array is amortised. However, the cost of updating a hazard pointer
when traversing objects can be significant. On modern processors a memory bar-
rier must be executed after updating a hazard pointer: implementing this barrier
in my own binary tree implementation increased execution time by around 25%.

Herlihy et al. formalise object use in a concurrent system by formulating the
Repeat Offender Problem [Herlihy02]. They present a solution to this prob-
lem, called Pass the Buck, which is similar in many respects to Michael’s hazard
pointers. The primary difference is that the cost of scanning the hazard array
is not amortised across a number of garbage objects. However, better cache
utilisation may be achieved by not delaying reuse of idle objects.

26

2.4

Summary

I began this chapter by introducing the standard terminology used to classify
non-blocking systems. By themselves, these terms do not describe all the de-
sirable features that a practical lock-free data structure is likely to possess — I
therefore introduced disjoint-access parallelism and linearisability which provide
additional performance and usability guarantees.

In the remainder of the chapter I described previous work relating to non-
blocking data structures. A recurring problem is that existing methods for sim-
plifying lock-free programming — universal constructions and high-level pro-
gramming abstractions — are impractical for general use. Either they restrict
parallelism, they require large amounts of memory for internal data structures,
or they make unreasonable assumptions about the underlying hardware (requir-
ing unsupported atomic primitives or arbitrary-width memory words). Using
hardware primitives directly is not a feasible alternative: apart from very simple
data structures it is too difficult to construct complex operations from single-

word atomic primitives.

If lock-free programming is to be a viable alternative to using locks, we need
tools that simplify the implementation of practical lock-free systems. In the next
chapter I present new designs for two programming abstractions that provide
this necessary support.

27

28

3.1

Chapter 3

Practical lock-free programming
abstractions

In Chapter 2 I described how existing implementations of lock-free program-
ming abstractions are impractical for general use. In this chapter I introduce
the first practical lock-free designs for two easy-to-use abstractions: multi-word
compare-&-swap, and software transactional memory. These new designs make
it easier for programmers to implement efficient lock-free data structures — this
is demonstrated in Chapters 4 and 6 which present the design and evaluation of
lock-free versions of three real-world search structures.

Introduction

Usability is perhaps the biggest obstacle to wider use of lock-free programming.
Although algorithms for simple data structures, such as array-based queues and
stacks, have been known for many years, it seems that existing hardware primi-
tives are too difficult to apply directly to more complex problems.

The limitations of single-word atomic operations have caused many researchers
to suggest that better hardware support is necessary before lock-free design can
be considered as a general-purpose alternative to using mutual exclusion. Al-
though a range of possible hardware extensions have been suggested, it is un-
likely that any one of them will be accepted by processor designers unless it
demonstrably improves the performance of existing programs. This impasse is
unlikely to be resolved unless a new style of concurrent programming appears
that can immediately benefit from better hardware support.

One way to tackle the complexity of lock-free programming on current hard-

ware is to build a more intuitive programming abstraction using existing prim-

29

3.2

itives. A range of abstractions have been proposed which present a tradeoff

between performance and ease of use.

Multi-word compare-&-swap (MCAS) extends the well-known hardware CAS
primitive to operate on an arbitrary number of memory locations simultane-
ously. This avoids the greatest difficulty in using single-word primitives directly:
ensuring that a group of related updates occurs atomically.

Although MCAS ensures consistency between groups of update operations, some
data structures also require consistency guarantees for read-only operations. To
this end, software transactional memory (STM) provides a higher-level trans-
actional interface for executing groups of reads and writes to shared memory.
Despite these advantages, STM may not be the best abstraction to use in all
situations: as I will show later, the easier-to-use interface and stronger synchro-
nisation often results in reduced performance compared with MCAS.

The main obstacle to wider use of these abstractions in lock-free programs is that
existing designs are impractical. Firstly, their performance is lacklustre: either
per-operation overhead is very high, or non-conflicting operations are unable to
proceed in parallel. In both cases, the designs look very unattractive compared
with lock-based solutions. A second problem is that non-existent primitives are
assumed, such as DCAS or a ‘strong’ form of LL/SC that allows nesting. In this
chapter I introduce the first practical lock-free MCAS design, and an efficient
object-based transactional memory called FSTM.

Multi-word compare-&-swap (MCAS)!

MCAS extends the single-word CAS primitive to operate on multiple locations
simultaneously. More precisely, MCAS is defined to operate on N distinct mem-
ory locations (a;), expected values (e;), and new values (n;): each a; is updated to
value n; if and only if each a; contains the expected value e; before the operation.

atomically bool MCAS (int N, word *a[|, word e[], word n[]) {
for (inti:=0;i< N;i++) if (*a[i] # €[i]) return FALSE;
for (inti:=0;i < N;i++) *a[i] :== nli];
return TRUE;

}

'"The work described in this section was conducted jointly with Dr T L Harris.
2The atomically keyword indicates that the function is to be executed as-if instantaneously.

30

3.2.1

MCAS descriptor MCAS descriptor

al Eﬁ—» UNDECIDED al —»{ SUCCESSFUL
aZB al: el —nl aZB al:el—nl

a2:. e2-—+-n2 a2: e2-—+n2

a3 a3: e3 —n3 a3 E a3: e3 —n3

(a) (b)

Figure 3.1: Two snapshots of a successful MCAS operation attempting to update three

memory locations (a1, as and a3). Snapshot (a) occurs just before location
a3 is acquired. The operation is undecided at this point, so all three loca-
tions still have their original ‘logical’ value, e;. Snapshot (b) occurs after the
operation is deemed successful: all locations are already logically updated
to n;, and the release phase has just physically updated location a;.

Design

Consider the following two requirements that must be satisfied by any valid
MCAS design. Firstly, it should appear to execute atomically: a successful
MCAS must instantaneously replace the expected value in each specified mem-
ory location with its new value. Secondly, if an MCAS invocation fails because
some location does not contain the expected value then it must be able to ‘undo’
any updates it has made so far and leave all memory locations as they were be-
fore it began executing. It is not immediately obvious how these requirements
can be satisfied by a design based on atomic read-modify-write updates to in-
dividual memory locations (as provided by CAS). How can multiple locations
appear to be updated simultaneously, and how can an in-progress operation be
undone or rolled back?

I satisfy both these requirements by using a two-phase algorithm. The first phase
gains ownership of each data location involved in the operation. If the opera-
tion successfully gains ownership of every location then it is deemed successful
and all updates atomically become visible. This decision point is followed by a
second phase in which each data location is updated to its new value if the first
phase succeeded, or reverted to its old value if the first phase failed. Illustrative
snapshots of an example MCAS operation are shown in Figure 3.1. Note that
this two-phase structure has a further advantage in that an in-progress operation
can arrange to ‘describe itself’ to any remote operation that it may obstruct: this
allows recursive helping to be used to obtain the required lock-free progress
guarantee.

Each MCAS operation creates a descriptor which fully describes the updates
to be made (a set of (a;,e;,n;) tuples) and the current status of the operation

31

1 typedef struct {
int N;
3 word *a[], [], n[], status;
}+ MCASDesc;

5 bool MCAS (int N, word *a[], word e[], word n[]) {
MCASDesc *d := new MCASDesc;
7 (d—N, d—a, d—e, d—n, d—status) := (N, a, e, n, UNDECIDED);
AddressSort(d); /* Memory locations must be sorted into address order. */
9 return MCASHelp(d);

}

11 word MCASRead (word *a) {
word v;
13 for (v := CCASRead(a); IsMCASDesc(v); v := CCASRead(a))
MCASHelp((MCASDesc *)v);
15 return v;

17 bool MCASHelp (MCASDesc *d) {
word v, desired := FAILED;
19 bool success:
/* PHASE 1: Attempt to acquire each location in turn. */
21 for (inti:=0;i<d—N;i++)
while (TRUE) {

23 CCAS(d—ali], d—e][i], d, &d—status);

if (((v:= *d—ali]) = d—e]i]) A (d—status = UNDECIDED)) continue;
25 if (v =d) break; /* move on to next location */

if (7IsMCASDesc(v)) goto decision_point;
27 MCASHelp((MCASDesc *)v);

}
29 desired := SUCCESSFUL;

decision_point:
31 CAS(&d—status, UNDECIDED, desired);

/* PHASE 2: Release each location that we hold. */
33 success := (d—status = SUCCESSFUL);

for (inti:=0;i<d—N;i++)
35 CAS(d—ali], d, success ? d—nl[i] : d—e[i]);

return success:
37}

Figure 3.2: Two-phase multi-word CAS (MCAS) algorithm. MCASRead is used by ap-
plications to read from locations which may be subject to concurrent MCAS
operations. Conditional CAS (CCAS) is used in phase one to ensure correct-
ness even when memory locations are subject to ‘ABA’ updates.

(undecided, failed, or successful). The first phase of the MCAS algorithm then
attempts to update each location a; from its expected value, e;, to a reference
to the operation’s descriptor. This allows processes to distinguish currently-
owned memory locations, enables recursive helping of incomplete operations,
and permits atomic update of ‘logical’ memory values at the MCAS decision
point. Note that only owned locations can contain references to descriptors;
furthermore, descriptors themselves will never be subject to MCAS updates.

The current logical (or application) value of an owned location is found by inter-
rogating the MCAS descriptor that is installed there. The descriptor is searched

32

to find the appropriate address, a;. The current logical value is then either e;,
if the descriptor status is currently undecided or failed, or n;, if the status is
successful. All locations that are not currently owned store their logical value
directly, allowing direct access with no further computation or memory accesses.
To determine whether a location is currently owned, IsSMCASDesc(p) is used to
discover whether the given pointer p is a reference to an MCAS descriptor. Var-
ious implementations of IsMCASDesc are discussed in Chapter 5.

Pseudocode for MCAS and MCASRead is shown in Figure 3.2. Note that MCAS
must acquire update locations in address order. This ensures that recursive help-
ing eventually results in system-wide progress because each level of recursion
must be caused by a conflict at a strictly higher memory address than the pre-
vious level. Recursive helping is therefore bounded by the number of memory
locations in the shared heap. To ensure that updates are ordered correctly it
sorts the update locations before calling MCASHelp (lines 8-9). The sort can
be omitted if the caller ensures that addresses are specified in some global total
order. If addresses are not ordered then a recursive loop may be entered.

The CCAS operation used at line 23 in the first phase of the algorithm is a con-
ditional compare-&-swap. CCAS uses a second conditional memory location to
control the execution of a normal CAS operation. If the contents of the con-
ditional location are zero then the operation proceeds, otherwise CCAS has no
effect.

atomically void CCAS (word *a, word e, word n, word *cond) {
if ((*a=¢e)A (¥cond =0)) *a:=n;

The use of CCAS in MCAS requires that the undecided status value is repre-
sented by zero, thus allowing shared-memory locations to be acquired only if
the outcome of the MCAS operation is not yet decided. This prevents a phase-
one update from occurring ‘too late’: if a normal CAS were used then each
memory location might be updated more than once because a helping process
could incorrectly reacquire a location after the MCAS operation has already suc-
ceeded. This can happen if a CAS to install the descriptor is delayed, and in the
meantime the memory location is modified back to the expected value: this is
commonly called the ABA problem [IBM70].

The CCAS design in Figure 3.3 makes the following simplifying assumptions:
e Location cond must not be updated by CCAS or MCAS.

e Memory locations which might be updated by CCAS should be accessed
using CCASRead (or MCASRead, which is itself based on CCASRead).

33

3.3

1 typedef struct {
word *a, e, n, *cond;
3} CCASDesc;

void CCAS (word *a, word e, word n, word *cond) {
5 CCASDesc *d := new CCASDesc;

word v;
7 (d—a, d—e, d—n, d—cond) := (a, e, n, cond);
while ((v := CAS(d—a, d—e, d)) # d—e) {
9 if (~IsCCASDesc(v)) return;
CCASHelp((CCASDesc *)v);
11
CCASHelp(d);
13}
word CCASRead (word *a) {
15 word v;
for (v := *a; IsSCCASDesc(v); v := *a)
17 CCASHelp((CCASDesc *)v);
return v;
19 }
void CCASHelp (CCASDesc *d) {
21 bool success := (*d—cond = 0);
CAS(d—a, d, success ? d—n : d—e);
23}

Figure 3.3: Conditional compare-&-swap (CCAS). CCASRead is used to read from lo-
cations which may be subject to concurrent CCAS operations.

The pseudocode design begins by installing a CCAS descriptor in the location to
be updated (line 8). This ensures that the location’s logical value is the expected
value while the conditional location is tested, so that a successful CCAS opera-
tion linearises (atomically occurs) when the conditional location is read from. If
the update location doesn’t contain the expected value then CCAS fails (line 9);
if it contains another CCAS descriptor then that operation is helped to complete
before retrying (line 10).

If the update location is successfully acquired, the conditional location is tested
(line 21). Depending on the contents of this location, the descriptor is either
replaced with the new value, or with the original expected value (line 22). CAS
is used so that this update is performed exactly once even when the CCAS oper-
ation is helped to complete by other processes.

Software transactional memory

Although MCAS eases the burden of ensuring correct synchronisation of up-
dates, many data structures also require consistency among groups of read op-
erations. Consider searching within a move-to-front list, in which a successful
search promotes the discovered node to the head of the list. As indicated in Fig-

34

H2MH1™-3MHT H 3™ 2MH1HT
* * Movedto/h(ead
A B of list by op B. A
(a) (b)

Figure 3.4: The need for read consistency: a move-to-front linked list subject to two
searches for node 3. In snapshot (a), search A is preempted while passing
over node 1. Meanwhile, in snapshot (b), search B succeeds and moves node
3 to the head of the list. When A continues execution, it will incorrectly fail.

ure 3.4, a naive search algorithm which does not consider synchronisation with
concurrent updates may incorrectly fail, even though each individual read from
shared memory operates on a consistent snapshot of the list.

To deal with this problem I now turn to a higher-level abstraction, known as
software transactional memory (STM) because it groups shared-memory opera-
tions into transactions that appear to succeed or fail atomically. As discussed in
Chapter 2, existing STM designs vary greatly in the interface they provide to ap-
plication programmers and the underlying transactional memory mechanisms.

In this section I present a new transactional-memory design called FSTM. It is
the first lock-free design with all the following desirable features:

e Dynamic programming interface: it is not necessary to have precomputed
a transaction before presenting it to the transactional memory.

e Small, fixed memory overhead per block of transactional memory, and per
transactional read or write.

e Small number of shared-memory operations required to implement each
transactional read or write, assuming reasonable levels of contention.

It is important to note that the advantages of FSTM over MCAS generally come
at a cost. As I show in Chapter 6, a data structure implemented using MCAS
will usually outperform an equivalent FSTM-based design. However, in many
situations the extra time and complexity associated with programming using
MCAS will not be justified by the run-time benefits.

Following several previous transactional memory designs [Moir97,Herlihy03b],
FSTM groups memory locations into contiguous blocks, or objects, which act
as the unit of concurrency and update. Rather than containing pointers, data
structures contain opaque object references, which may be converted to directly-
usable machine pointers by opening them as part of a transaction. Each object

35

that is opened during a transaction is remembered as a consistency assumption
to be checked before closing the object during the commit phase.

This section begins by introducing the object-based programming interface and
a small example application that illustrates its use. Although the interface is
similar in spirit to that of Herlihy ez al., there are both syntactic and seman-
tic differences that can affect the implementation and execution of STM-based
applications. I then proceed to describe in detail how FSTM implements this
interface, and strives to hide concurrency issues from the application program-
mer. I conclude this section by discussing extra features and extensions that can
be added to the basic FSTM design to make it more useful in a wider range of
applications — several of these features are required by STM-based algorithms
in the next chapter.

3.3.1 Programming interface

FSTM supports a dynamic programming interface in which transactions can
be started and committed, and objects opened for access, at arbitrary program
points. The following functions are provided by the API:

stm *new_stm (int object_size)

Creates a new transactional memory supporting objects of length object size.

void free_stm (stm *mem)
Destroys a previously-created STM, and immediately releases all memory
associated with it, including all objects, to the garbage collector.

(stm_obj *, void *) new_object (stm *mem)
Creates a new object with respect to an existing transactional memory,
and returns two values: the first is an object reference that can be shared
with other processes, and the second is a directly-usable machine pointer
that can be used to initialise the object. This allows an application to
initialise a new object outside any transaction, before sharing it with any
other processes.

void free_object (stm *mem, stm_obj *0)
Frees a previously-allocated object to the garbage collector. This is used
when a transaction has successfully removed all references to an object
from shared memory.

stm_tx *new_transaction (stm *mem)
Starts a new transaction with respect to an existing transactional memory.
Returns a transaction identifier which can be used to manage the trans-

36

void *

void *

action and open objects for access and update. Note that transactions
cannot be nested; however, I discuss how this restriction might be lifted in
Section 3.3.3.

open_for_reading (stm_tx *t, stm_obj *o)

Opens an object for read-only access with respect to an in-progress trans-
action. The returned pointer cannot be used for updates, but can be used
for read accesses until the transaction commits. This function, along with
open_for_writing, can safely be invoked multiple times with identical pa-

rameters.

open_for_writing (stm_tx *t, stm_obj *o)

Opens an object for reading and writing with respect to an in-progress
transaction. The returned pointer is safe to use for any type of access un-
til the transaction commits.This function is idempotent: if the object has
already been opened for write access within transaction ¢ then the same
pointer will be returned again. This function, along with open_for_reading,
can safely be invoked multiple times with identical parameters — a previ-
ously read-only object will be upgraded for write access on the first invo-
cation of this function.

bool commit_transaction (stm_tx *t)

void a

Attempts to commit a transaction by checking each opened object for con-
sistency. If all open objects are consistent then the transaction succeeds
and all updates atomically become visible. Otherwise the transaction fails.
In all cases the transaction identifier becomes invalid.

bort_transaction (stm_tx *t)

Aborts an in-progress transaction. The transaction identifier immediately
becomes invalid, all opened objects are closed, and all updates are lost.
This is useful if the application determines that a transaction cannot com-
plete successfully and wants to avoid the expense of a commit operation
that cannot possibly succeed.

bool validate_transaction (stm_tx *t)

Checks the consistency of an in-progress transaction to determine whether
it can possibly complete successfully. If validation succeeds then the trans-
action may commit successfully; if validation fails then the transaction will
certainly fail to commit. This is useful in a number of scenarios; for ex-
ample, to check consistency before wasting time performing an expensive

computation.

37

3.3.2

1 typedef struct { stm *mem; stm_obj *head; } list;
typedef struct { int key; stm_obj *next; } node;

3 list *new_list (void) {

node *n;

5 list ¥ := new list;
[—mem := new_stm(sizeof node);

7 (I—head, n) := new_object(l—mem);
(n—key, n—next) := (0, NULL);

9 return |

¥
11 void list_insert (list *I, int k) {
stm_obj *prev_obj, ¥*new_obj;

13 node *prev, *new;
(new_obj, new) := new_object(l—mem);
15 new—key := k;
do {
17 stm_tx *tx := new_transaction(l—mem);
(prev_obj, prev) := (I—head, open_for_reading(tx, |—head));
19 while ((prev—next # NULL) A (prev—key < k))
(prev_obj, prev) := (prev—next, open_for_reading(tx, prev—next));
21 prev := open_for_writing(tx, prev_obj);
(new—next, prev—next) := (prev—next, new_obj);
23 } while (—commit_transaction(tx));

Figure 3.5: Linked-list creation and insertion, in which each list node is an STM object.

Figure 3.5 shows how this interface might be used to implement ordered linked-
list creation and insertion. Each list node references its neighbour using an
FSTM object reference rather than using a direct machine pointer. To ensure
consistency, all shared-memory references in a transactional memory must be
stored in this way and then opened for direct access within the scope of indi-
vidual transactions. For this reason, and to aid code readability, local variables
representing nodes in the list occur in pairs: one referring to the opaque object
identifier, and the other to a directly-accessible (but transaction-specific) version
of the node.

The above programming interface has several limitations that might be a nui-
sance in certain applications: for example, each instantiated transactional mem-
ory supports only a single size of object, and transactions cannot safely be
nested. I discuss these restrictions in more detail, and describe how they might
be lifted, in Section 3.3.3.

Design

When designing FSTM I attempted to minimise the total size of a transactional
memory, and the number of shared-memory operations required to perform a
transaction, by paying careful attention to heap layout. The current layout is
chosen to be memory-efficient while supporting a very lightweight commit oper-

38

3.3.2.1

list head node node

| | "2 | g application structures
N N . STM private structures
tﬁasn-(g:\g i L object L object
header header

Figure 3.6: Example FSTM-based linked list structure created by pseudocode in Fig-
ure 3.5. List nodes are chained together via object headers, which are pri-
vate to the STM. References to object headers are known as object refer-
ences and must be converted to list-node references using open_for_reading
or open_for_writing within the scope of a transaction.

ation. Making transactions commit quickly is particularly beneficial because it
is only during their commit phase that they modify shared memory and become
visible to other processes — a fast commit therefore reduces the window of op-
portunity for transactions to directly ‘see’ each other and incur the overheads of
recursive helping.

I begin this section by describing the memory layout when no transactions are in
progress. I then describe how transactions build a view of memory as objects are
opened for reading and writing, how this view is tested for consistency during
a transaction’s commit phase, and the procedure for making apparently-atomic
updates to the transactional memory.

Transactional memory layout

The current contents of an FSTM object are stored within a data block. Outside
of a transaction context, shared references to an FSTM object point to a word-
sized object header which tracks the current version of the object’s data via a
pointer to the current data block. This pointer is modified to point at a new
data block each time an update is successfully committed. The object references
introduced in Section 3.3.1 are implemented as pointers to object headers; how-
ever, object references are opaque to application programmers and can be used
only to uniquely identify or name an object, and to open an object for reading
or writing within a transaction via FSTM interface calls.

Figure 3.6 shows an example FSTM-based structure which might be created by
the linked-list pseudocode described in Section 3.3.1. The nodes of the linked
list are objects, so their contents are not directly accessible by the application.
Instead, a reference to an object header must be converted by FSTM into a
private pointer to the current data block.

39

3.3.2.2

list head node node shadow copy

2

........... i N
tﬁasnyl\g object object

header header

Y
[V
Y
w

tx descriptor
status | UNDECIDED object

read-only list j» handle

read-write list ——

next
handle

object ref
old data
new data

Figure 3.7: Example of a transaction attempting to delete node 3 from the list intro-
duced in Figure 3.6. The transaction has accessed one object (node 2) which
it has opened for writing. The read-only list is therefore empty, while the
read-write list contains one object handle describing the modified node 2.

Creating a transaction and accessing objects

The state of incomplete transactions is encapsulated within a per-transaction
descriptor structure which indicates the current status of the transaction and
stores information about every object which has been opened for use within the
transaction.

When an object is opened for read-only access, a new object handle is added to
a ‘read-only list’ within the transaction descriptor. This list is indexed by object
reference; each handle stores the object reference and data-block pointer (as read
from the object header at the time of opening). The data pointer is returned to
the application for use solely within the scope of the transaction.

The procedure is similar for objects that are opened for writeable access, except
that a shadow copy of the data block is created. The address of this copy is
stored, together with the object reference and the current data pointer, within a
‘read-write list” inside the transaction descriptor. It is the shadow copy which
is returned to the application: updates to this copy remain private until the
transaction commits.

Figure 3.7 illustrates the use of transaction descriptors and object handles by
showing a transaction in the process of deleting a node from an ordered linked
list. The transaction descriptor indicates that the current status of the trans-
action is undecided, and contains pointers to the empty read-only list and the
singleton read-write list. The sole object handle contains references to the only
opened object, the version of the object that was up-to-date at that time of open-

ing, and also the shadow copy containing pending updates by this transaction.

40

3.3.2.3

Committing a transaction

A transaction’s commit stage has a two-phase structure that is very similar to the
MCAS algorithm described in Section 3.2. Indeed, that algorithm can be used
almost unmodified:

Acquire phase The header of each opened object is acquired in some global total
order!, by replacing the data-block pointer with a pointer to the transac-
tion descriptor. If we see another transaction’s descriptor when making the
update then that transaction is recursively helped to complete.

Decision point Success or failure is then indicated by updating the status field
of the transaction descriptor to indicate the final outcome (atomic update
from undecided to successful or failed).

Release phase Finally, on success, each updated object has its data-block pointer
updated to reference the shadow copy, while read-only objects have their
original data pointers replaced.

Note that this algorithm slightly complicates finding the current data block of
an object: when an object is opened we may have to search within a transac-
tion descriptor to find the data-block pointer. For clarity, in pseudocode I use
is_stm_desc(p) to determine whether the given pointer p is a reference to a trans-
action descriptor. As with MCAS, reading from an acquired object header does
not need to involve recursive helping: the current logical version of the object
can be determined from the contents of the transaction descriptor.

The main drawback of this algorithm is that read-only operations are imple-
mented by acquiring and releasing objects within the STM. This may cause un-
necessary conflicts between transactions, both at the software level when multi-
ple transactions attempt to acquire a read-only object, and at the hardware level
as the object headers are ‘ping-ponged’ between processor caches. Many data
structures, particularly those used for searching, have a single root which is the
‘entry point’ for all operations on the structure. If care is not taken then an STM
implementation of this type of structure will suffer a performance bottleneck at
the object containing the entry point, from which all transactions must read.

I therefore modify the algorithm to only acquire objects that are on the trans-
action’s read-write list (i.e., that were opened for update). This is followed by
a read phase which compares the current data-block pointer of each object in
the transaction’s read-only list with the version that was seen when the object
was first opened. If all pointers match then the transaction’s status may be up-
dated to indicate success, otherwise the transaction must fail. Note that if the

!t is typically most efficient to use arithmetic ordering of object references.

41

read phase sees an object header that is currently owned by another transaction
then it will search within the owner’s descriptor rather than helping the owner
to complete (in fact, the latter approach may cause a recursive loop).

Unfortunately, incorporating a read phase creates a further problem: a successful
transaction with non-empty acquire and read phases may not appear to commit
atomically. This occurs when an object is updated after it is checked in the
read phase, but before the transaction’s status is updated to indicate success and
its updates become visible to other transactions. More concretely, consider the
following sequence of events which concerns two transactions, 77 and T5 (note
that z; denotes version i of object x):

1. T} opens z; for reading, and y; for writing.

2. T opens y; for reading, and z; for writing.

3. Ty acquires object y, then passes its read phase.

4. T acquires object z, then passes its read phase (finds y; in T1’s descriptor).
5. Ty commits successfully, updating object y to y; 1.

6. T, commits successfully, updating object = to x;11.

These transactions are not serialisable since 77 ought to see T5’s update or vice
versa. The inconsistency creeps in during step 5: T} invalidates T5’s read-check
of object y, but Ty is oblivious of the update and ‘successfully’ commits anyway.

This problem is handled by introducing two further changes:

e A new transaction status value, read-checking. This status value is ob-
served only during a transaction’s read phase.

e A transaction atomically commits or aborts when the descriptor status
changes to read-checking.

The second modification may appear perverse: how can a transaction commit its
changes before it has finished checking its assumptions? The key insight is that
it doesn’t matter that the final outcome is undecided if no other transaction will
attempt to read an object header that is owned by a read-checking transaction
T. 1 can arrange this by causing readers to do one of the following: (i) wait
for T to reach its decision point, (ii) help T to reach its decision point, or (iii)
abort T'. The second option seems the best choice for a lock-free design, as the
first option may stall indefinitely while careless use of abort can lead to livelock,
which also invalidates the lock-free property.

42

3.3.2.4

A | status: READ_CHECKING | B |status: READ_CHECKING
read list: y read list: x
write list: x write list: y

X reading reading y

Figure 3.8: An example of a dependent cycle of two transactions, A and B. Each needs
the other to exit its read phase before it can complete its own.

There is one final problem: what happens if there is a cycle of transactions, all
in their read phase and each trying to read an object that is currently owned by
the next? The simple example in Figure 3.8 shows that the algorithm enters a
recursive loop because no transaction can progress until the next in the cycle has
completed its read phase. The solution is to abort at least one of the transac-
tions; however, care must be taken not to abort them all or livelock may occur
as each transaction is continually retried and aborted. I ensure this by imposing
a total order < on all transactions, based on the machine address of each trans-
action’s descriptor. The loop is broken by allowing a transaction 7; to abort
a transaction Ty if and only if: (i) both are in their read phase; (ii) 72 owns a
location that T} is attempting to read; and (iii) 77 < T%. This guarantees that
every cycle will be broken, but the ‘least’ transaction in the cycle will continue
to execute.

Pseudocode

Figure 3.9 presents pseudocode for the open_for writing and commit_transaction
operations. Both operations use obj_read to find the most recent data block for
a given object reference; I therefore describe this sub-operation first. In most
circumstances the latest data-block reference can be returned directly from the
object header (lines 7 and 18). If the object is currently owned by a committing
transaction then the correct reference is found by searching the owner’s read-
write list (line 10) and selecting the old or new reference based on the owner’s
current status (line 16). If the owner is in its read phase then it must be helped to
completion or aborted, depending on the status of the transaction that invoked
its obj_read and its ordering relative to the owner (lines 11-15).

open_for_writing proceeds by checking whether the object is already open; if so,
the existing shadow copy is returned (lines 21-22). If the object is present on
the read-only list then the matching handle is removed (line 24). If the object is
present on neither list then a new object handle allocated and initialised (lines
26-27). A shadow copy of the data block is made (lines 29-30) and the object
handle is inserted into the read-write list (line 31).

43

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

typedef struct { word *data; } stm_obj;
typedef struct { stm_obj *obj; word *old, *new; } obj_handle;
typedef struct { word status;

obj_handle_list read_list, write_list;

int blk_size; } stm_tx;

static word *obj_read (stm_tx *t, stm_obj *o) {
word *data := o—data;
if ((is_stm_desc(data)) {
stm_tx *other := (stm_tx *)data;
obj_handle *hnd := search(o, other—write_list);
if (other—status = READ_PHASE)
if ((t—status # READ_PHASE) V (t > other))
commit_transaction(other);
else
CAS(&other—status, READ_PHASE, FAILED);
data := (other—status = SUCCESSFUL) ? hnd—new : hnd—old;

return data;

word *open_for_writing (stm_tx *t, stm_obj *o) {
obj_handle *hnd := search(o, t—write_list);
if (hnd # NULL) return hnd—new;

if ((hnd := search(o, t—read_list)) # NULL) {
remove(o, t—read_list);

} else {
hnd := new obj_handle;
(hnd—obj, hnd—old) := (o, obj_read(t, 0));

hnd—new := new bytes(t—blk_size);
memcpy(hnd—new, hnd—old, t—blk_size);
insert(hnd, t—write_list);

return hnd—new;

}

bool commit_transaction (stm_tx *t) {
word data, status, desired_status := FAILED;
obj_handle *hnd, *ohnd;
stm_tx *other;

for (hnd in t—write_list) /* Acquire phase */
while ((data := CAS(&hnd—obj—data, hnd—old, t)) # hnd—old) {
if (data = t) break;
if (—is_stm_desc(data)) goto decision_point;
commit_transaction((stm_tx *)data);

¥
CAS(&t—status, UNDECIDED, READ_PHASE);
for (hnd in t—read_list) /* Read phase */
if ((data := obj_read(t, hnd—obj)) # hnd—old) goto decision_point;

desired_status := SUCCESSFUL;
decision_point:
while (((status := t—status) # FAILED) A (status # SUCCESSFUL))
CAS(&t—status, status, desired_status);

for (hnd in t—write_list) /* Release phase */
CAS(&hnd—obj—data, t, status = SUCCESSFUL ? hnd—new : hnd—old);

return (status = SUCCESSFUL);

Figure 3.9: FSTM’s open_for_writing and commit_transaction interface calls. Algorithms

44

for read and read-write lists are not given here. Instead, search, insert, remove
and for-in iterator operations are assumed to exist. These operations may
store object information in a linked list, for example.

As I described in the previous section, commit_transaction is divided into three
phases. The first phase attempts to acquire each object in the read-write list
(lines 38—-43). If a more recent data-block reference is found then the trans-
action is failed (line 41). If the object is owned by another transaction then the
obstruction is helped to completion (line 42). The second phase checks that each
object in the read-only list has not been updated since it was opened (lines 45—
46). If all objects were successfully acquired or checked then the transaction will
attempt to commit successfully (lines 49-50). Finally, each acquired object is
released (lines 51-52); the data-block reference is returned to its previous value
if the transaction failed, otherwise it is updated to its new value.

The following proof sketch demonstrates that commit_transaction, as shown in
Figure 3.9, avoids both recursive loops and unbounded retry-abort cycles:

Definition 1. System-wide progress occurs whenever a transaction completes
successfully.

Definition 2. A transaction 7T in its read phase will abort a conflicting transac-
tion T3 also in its read phase if and only if 77 < T. Otherwise T will help T5.
< is a well-founded total order on incomplete transactions.

Definition 3. C is the reflexive transitive closure of the ‘aborts’ relation: T}
aborts Th <« T, C T5.

Definition 4. S is the set of all transactions created during the lifetime of the
system.

Lemma 1. A transaction can only fail if system-wide progress has been made
since the transaction began. The transaction observed that a location changed
during its execution. This can occur only as the result of a successful transaction,
and thus system-wide progress (definition 1).

Lemma 2. A recursive helping loop must contain at least one transaction in its
read phase. There cannot be a loop with only transactions in their write phase
since a transaction gains ownership of locations in a global total order.

Lemma 3. A recursive helping chain consists of two parts: a sequence of trans-
actions in their write phase, followed by a sequence of transactions in their read
phase. A transaction in its read phase never helps a transaction in its write phase.

Lemma 4. A recursive helping loop consists only of transactions in their read
phase. The loop contains at least one transaction in its read phase (lemma 2).
This transaction will help another transaction only if it is also in its read phase.

Lemma 5. Any sequence of recursive-helped transactions in their write phase
has finite length. First note that no such sequence can loop (lemma 2). Now,

45

because each transaction gains ownership of its updated blocks in a global total
order, no sequence can be greater than the number of objects in the system.

Lemma 6. Any sequence of recursive-helped transactions in their read phase has
finite length. No such sequence can loop (definition 2). Furthermore, if T} helps
T5 in the chain then T5 < T}. But < is well-founded so any sequence of helping
must be bounded.

Lemma 7. A process can recursively belp only to a finite depth. First I show
that such a process can never enter a recursive loop. If this were possible then
the loop must consist entirely of transactions in their read phase (lemma 4). But
such a loop is impossible (lemma 6). Furthermore, recall that any recursive chain
consists of two distinct sequences (lemma 3). Each of these sequences is finite in
length (lemmas 5 and 6).

Lemma 8. If T} aborts Ty then T either progresses to check the next location
specified in its read phase, or fails. Observe that obj_read contains no loops,
and the read phase of commit_transaction immediately fails or checks the next
location when obj_read returns (see Figure 3.9).

Lemma 9. A transaction can abort only a finite number of other transactions. A
transaction can access only a finite number of objects in a system with bounded
memory capacity. Assume a transaction 7" accesses N objects: it may therefore
check up to N object headers during its read phase. Since every abort causes T' to
check the next pointer in its list or fail (lemma 8), a maximum of N transactions
will be aborted.

Lemma 10. C is a partial order. Reflexivity and transitivity follow trivially from
definition 3. Asymmetry follows from definitions 2 and 3:

T1§T2:>T1<T2:>T274T1:>T2ZT1 (Tl#Tg)

Lemma 11. C is well-founded. Note that T} T Ty = T1 < T5. Result follows
from definition 2.

Lemma 12. System-wide progress occurs within a finite number of aborts. Con-
sider an incomplete transaction Ty. If Ty is aborted by 75 then 75 C Ty. Thus,
by lemma 11, there cannot be an endless chain of aborted transactions; a finite
number of aborts must reach a minimal transaction in the poset (S,C). This
minimal transaction cannot continually abort other transactions (lemma 9), so it
must either succeed or fail, or help another transaction to succeed or fail (lemma
7 disallows endless helping), within a finite number of steps. Success and failure
both imply global progress (definition 1 and lemma 1).

46

3.3.3

3.3.3.1

3.3.3.2

Theorem. Commit is lock-free. Let us consider the progress of a single pro-
cess X. This is sufficient because, over a large enough sequence of system-wide
steps, at least one process in the finite system-wide set must execute an arbi-
trarily large number of steps and, I assume, attempt an unbounded number of
transactions. Whenever X executes a transactional commit then that transac-
tion must progress to completion, progress a recursively-helped transaction to
completion, abort some transaction, or be itself aborted, within a finite num-
ber of steps (note that lemma 7 disallows endless recursive helping, and all other
code paths in commit_transaction lead directly to one of the preceding cases). If a
transaction is successfully or unsuccessfully brought to completion then system-
wide progress has occurred (definition 1 and lemma 1). If some transaction was
aborted, then reapply the above argument a finite number of times to achieve
system-wide progress (lemma 12).

Further enhancements

In this section I address some of the limitations of FSTM as described so far. The
extensions described here should make it easier to use transactions in real-world
applications. Briefly, these extensions deal with allowing multiple sizes of object,
nested transactions, early release of opened objects, and automatically restarting
inconsistent transactions.

Arbitrary object sizes

The basic FSTM design allows only a single fixed size of object per transactional
memory. This makes it a poor fit for applications which consist of heteroge-
neous collections of objects, or data structures with variable-sized nodes (e.g.,
skip lists). The obvious simple fix, which creates a transactional memory spec-
ifying a single ‘large enough’ object size, is very wasteful of memory if most
objects are small. Fortunately FSTM can easily be modified to handle arbitrary
object sizes within the same transactional memory, at the cost of increased per-
object overhead: (i) extend new_object to accept a size argument; (i) extend
object headers to contain a size field; and (iif) modify data-block allocations,
deallocations, and copy operations to use the new size field or argument.

Nested transactions

In hierarchically-structured programs it would be useful to allow a sub-operation
executed within a transaction to internally use transactions to commit shared-
memory updates. However, the basic FSTM design disallows this style of pro-
gramming because transactions cannot be nested. One solution is for sub-

operations to accept an in-progress transaction handle as a parameter and exe-

47

3.3.3.3

cute shared-memory operations with reference to this ‘outer’ transaction. This
manual fix complicates interfaces between application components and limits
portability (for example, it is difficult to support legacy code written before the
sub-operation interfaces were changed).

Allowing nested transactions raises questions about the precise semantics that
should be supported: “When should nested transactions linearise?”, “Should
a failing inner transaction cause outer transactions to fail?”, and so on. Here
I limit myself to outlining a simple semantics which permits a straightforward
extension to FSTM. In particular, nested transactions whose updates are com-
mitted appear to linearise at the same instant as the outermost transaction.
This allows a design in which a completed inner transaction is merged with
the smallest-enclosing transaction, thus ‘storing up’ the commit for later.

The basic idea is to maintain a list of in-progress transactions for each process, in
nested order. When an inner transaction completes, its open objects are merged
with the immediately enclosing transaction. When the outermost transaction
completes, the updates of all merged transactions are validated and committed.
When merging two transactions, if an object is open in both but with different
data-block versions then the inner transaction is failed if its version is out-of-
date; otherwise the merge is aborted and the outer transaction will eventually
fail because its version is out-of-date. After merging, objects opened by the com-
pleted inner transaction are considered part of the outer transaction. This is
a safe but conservative design choice: if an object opened by a completed in-
ner transaction becomes out-of-date before the enclosing transaction attempts
to commit then both transactions will have been retried even if the outer trans-
action has not directly accessed a stale object.

Early release

Herlihy et al. introduced the concept of an early-release operation, and provided
a design limited to objects opened for read-only access [HerlihyO3b]. This makes
it possible to reduce conflicts between concurrent transactions by releasing an
opened object before committing the transaction, if the programmer determines
that it is safe to do so. A released object is removed from the transactional set;
the transaction may then complete successfully even if the object is subsequently
updated before the transaction attempts to commit. Unfortunately Herlihy et
al.’s STM design, which acquires a transactional object as soon as it is opened
for writing, limits the benefit that could be obtained by extending the operation
to writeable objects.

Since FSTM does not acquire any objects until a transaction attempts to commit,
it is easy to implement a fuller version of early release that will work for any

48

3.3.3.4

opened object. Releasing an object with pending updates provides a number of
performance benefits: not only does it reduce the possibility of the transaction
failing, but it also obviates the need to acquire the object during commit and
avoids the possibility of failing other concurrent transactions that have accessed
the object. The red-black tree design in the next chapter provides an example
where early release offers a significant performance benefit.

Automatic validation

A non-obvious but in practice rather serious complication arises when dealing
with transactions which become inconsistent at some point during their execu-
tion. An inconsistent transaction cannot successfully commit: any attempt to
validate or commit the transaction will fail and the transaction must then be
restarted by the application. The problem is that an application making deci-
sions based on inconsistent data may not get as far as attempting validation or
commit. In practice there are two ways in which inconsistent data can prevent

progress: the application may crash, or it may loop indefinitely.

An application which suffers these problems can be modified to validate the
current transaction in appropriate places. This requires validation checks to be
inserted immediately before critical operations which may cause the application
to crash, and inside loops for which termination depends on transactional data.
A failed validation causes the application to abort the current transaction and
reattempt it, thus averting program failure or unbounded looping.

My experience when implementing transactional red-black trees was that deter-
mining where to add these validation checks in a complex algorithm is tedious
and error-prone. I further observed that validation checks were only required
in two types of situation: (i) to avoid a memory-protection fault, usually due
to dereferencing a NULL pointer; and (if) to prevent indefinite execution of a
loop containing at least one FSTM operation per iteration. I therefore extended
FSTM to automatically detect consistency problems in these cases.

Firstly, when a transaction is started FSTM saves enough state to automatically
return control to that point if the transaction becomes invalid: in a C/UNIX
environment this can be done portably using the POSIX set j np and | ongj np
routines.

Secondly, a handler is installed which catches memory-protection faults and val-
idates the in-progress transaction, if any. If the validation fails then the trans-
action is restarted, otherwise control is passed to the next handler in turn.
When there is no other handler to receive control, FSTM uninstalls itself and
re-executes the faulting instruction to obtain the system’s default behaviour.

49

3.4

Finally, each STM operation checks the consistency of one object currently
opened for access by the in-progress transaction. This avoids unbounded loop-
ing because the inconsistency will eventually be detected and the transaction
automatically restarted. If necessary, the overhead of incremental validation can
be reduced by probabilistically validating an open object during each STM op-
eration. The probability of validation can be reduced to gain faster execution of
STM operations at the expense of slower detection of inconsistencies. However,
in my implementation of FSTM I found that very little overhead is added by
checking a previously-opened object on every invocation of an STM operation;
this ensures that looping transactions are detected swiftly.

Summary

In this chapter I have introduced the first lock-free programming abstractions
that are practical for general-purpose use. As I will show in the next chap-
ter, these abstractions are much simpler to use than the single-word primitives
usually provided by hardware. Furthermore, the performance results I present
in Chapter 6 show that the performance overhead compared with direct use
of atomic hardware instructions is negligible when shared memory is moder-
ately contended, and that performance frequently surpasses that of lock-based
designs.

50

4.1

Chapter 4

Search structures

Introduction

Search structures are a key data-storage component in many computer systems.
Furthermore, when an indexed data store is shared between multiple processors
it is usually important that the data can be efficiently accessed and updated with-
out excessive synchronisation overheads. Although lock-based search structures
are often suitable, lock-free solutions have traditionally been considered wher-
ever reentrancy (e.g., within a signal or interrupt handler), process failure, or

priority inversion is a concern.

In this chapter I extend the argument for lock-free data structures by showing
that they can also be faster and easier to implement compared with using mutual
exclusion. As discussed in the Introduction, locks do not scale well to large
parallel systems. Structures based on fine-grained locking suffer a number of

problems:

e The cost of acquiring and then releasing a large number of small locks may
be unreasonable, particularly when access to the structure is not heavily
contended and a coarser-granularity scheme would suffice.

e Even when acquiring a read-only lock, updates in the acquire and release
operations may cause memory coherency traffic.

e Efficiently avoiding problems such as deadlock can require tortuous pro-
gramming; for example, to ensure that locks are acquired in some global

order.

By avoiding these weaknesses, the lock-free data structures in this chapter achieve
highly competitive performance and reduced complexity, despite relying on the
seemingly elaborate MCAS and STM designs proposed in Chapter 3. The perfor-
mance gains are largely due to eliminating lock contention and improving cache

51

4.2

locality. This is particularly beneficial for tree structures: if read operations must
acquire locks then the root of the tree can become a significant bottleneck, even
if multi-reader locks are used. Improvements in code complexity can partly be
attributed to the lack of convoluted ‘lock juggling’. Also, more subjectively,
MCAS and STM seem to fit well with the way we reason about concurrency
problems, in terms of regions of atomically-executed code rather than regions of
atomically-accessed data.

I present here lock-free designs for three well-known search structures: skip lists,
binary search trees (BSTs), and red-black trees. As I discuss in the next chapter, I
have implemented and tested these structures on a wide range of modern shared-
memory multiprocessor architectures, and the experimental results show that my
designs generally perform better than high-quality lock-based schemes.

Functional mappings

Each of the designs in this chapter can be viewed as implementing a functional
mapping from a domain of keys to a range of values. All that is required is that
the domain forms a totally-ordered set: that is, any pair of distinct keys has a
relative ordering over <.

In the following description I represent a function as a set of key-value pairs.
Each key is represented at most once in a set; any key which does not appear
maps to some distinguished value, 1. The abstract datatype supports lookup,
update and remove operations, all of which take a set S and a key & and return
the current mapping of & in S:

v if Jv.(kv)eSs
1 otherwise

op(S, k) = {

op € {lookup, update, remove}

In addition, update and remove modify the set in place:

Si\{(k,v)} if Fv.(kv)eS

Si,k : Siy1 = 1
remove() +1 {Si otherwise

S\ {(k,)} U{(k,w)} if Fv.(k,v)eS

dat Si, k, S = .
update(w) - { Si U{(k,w)} otherwise

In the following pseudocode I assume that key values are integers of type map-

52

4.3

21 -

Figure 4.1: Searching in a skip list. This example illustrates the path taken when search-

ing for the node with key 11.

key_t. Mapped values are pointers of type mapval_t, with L represented by
NULL.

Skip lists

Skip lists are probabilistic search structures which provide improved execution-
time bounds compared with straightforward binary search trees yet are much
simpler to implement than any guaranteed-O(logn) search structure [Pugh90b].
A skip list comprises multiple levels, each of which is a linked list. Every skip-list
node is present at the lowest level, and probabilistically present in each higher
level up to some maximum level that is chosen independently and randomly for
each node. This maximum is selected using a random number generator with
exponential bias: for example, the probability of inserting into level x is often
chosen to be 277, In my pseudocode designs I use a function rand_level to assign
a maximum level to a new node. Figure 4.1 shows how a node can be found
efficiently by using higher levels of the skip list to quickly ‘home in’ on the area
of interest.

A particularly useful property for parallel skip-list designs is that a node can be
independently inserted at each level in the list. A node is visible as long as it is
linked into the lowest level of the list: insertion at higher levels is necessary only
to maintain the property that search time is O(logn). Pugh used this insight to
design an efficient highly-parallel skip list implementation based on per-pointer
locks [Pugh90a] which significantly influenced my own designs presented here.

I present lock-free designs built from three different atomic primitives with the
aim of demonstrating the tradeoff between simplicity and, in the next chapter,
efficiency. The FSTM-based design is so straightforward that a compiler could
generate it automatically from the sequential algorithm. In contrast, the design
which uses CAS directly is considerably more complicated but can be expected
to execute faster. The MCAS-based design is a middle ground between these two

extremes.

53

11

13
15
17

19

21
23
25
27
29
31
33
35
37

39

41
43
45
47
49
51
53

55

54

(stm_obj **, stm_obj **, node_t *) list_search (stm_tx *tx, list_t *|, mapkey_t k) {

(x-obj, x) := (I—head, open_for_reading(tx, [—head));
for (i := NRLEVELS-1;i > 0; i--) {
while (TRUE) {
(y-obj, y) := (x—next[i], open_for_reading(tx, x—next[i]));
if (y—k > kg break;
(x-obj, x) := (y-obj, y);

(left_objlist[i], right_objlist[i]) := (x_obj, y_obj);

return (left_objlist, right_objlist, y);
}
mapval_t list_lookup (list_t *I, mapkey_t k) {
do {
tx := new_transaction(l—memory);
(o, -, succ) := list_search(tx, |, k);
v := (succ—k = k) ? succ—v : NULL;
} while (—commit_transaction(tx));
return v;

}

mapval_t list_update (list_t *|, mapkey_t k, mapval_t v) {
new_obj, new) := new_object(l—memory);
new—level, new—k, new—v) := (rand_level(), k, v);
do {
tx := new_transaction(l—memory);
(pred_objs, succ_objs, succ) := list_search(tx, I, k);
if (succ—k = k) { /* Update value field of an existing node. */
succ := open_for_writing(tx, succ_objs[0]);
(old_v, succ—v) := (succ—v, v);
} else {
old_v := NULL;
for (i:=0;i < new—level; i++4) {
pred := open_for_writing(tx, pred_objs]i]);
(pred—next[i], new—next][i]) := (new_obj, succ_objs]i]);

} while (—commit_transaction(tx));
if (old_v # NULL) free_object(new_obj);
return old_v;

mapval_t list_remove (list_t *|, mapkey_t k) {

do {
tx := new_transaction(l—memory);
(pred_objs, succ_objs, succ) := list_search(tx, I, k);
old_v := NULL;

if (succ—k =k){
old_v := succ—v;
for (i:=0;i < succ—level; i++) {
pred := open_for_writing(tx, pred_objs[i]);
pred—next[i] := succ—next[il;

} while (—commit_transaction(tx));
if (old_v # NULL) free_object(succ_objs[0]);
return old_v;

}
Figure 4.2: Skip lists built from FSTM.

4.3.1

4.3.2

4.3.3

FSTM-based design

Skip lists can be built straightforwardly from FSTM by representing each list
node as a separate transactional object (Figure 4.2). Each list operation is im-
plemented by encapsulating the sequential algorithm within a transaction, and
opening each node before directly accessing it. Every skip list contains a pair of
sentinel nodes, respectively containing the minimal and maximal key values; this
simplifies the search algorithm by eliminating code to deal with corner cases.

MCAS-based design

A nice feature of skip lists is that searches do not need to synchronise with
carefully implemented update operations, because the entire structure can be
made continuously consistent from their point of view. Pugh showed how to
do this by updating the pointers in a deleted node to point backwards, causing
searches to automatically backtrack when they follow a stale link [Pugh90a].

This technique can be used to build efficient skip lists from MCAS in a simple
manner, as shown in Figure 4.3. Insertions batch all their individual memory
writes and then perform a single MCAS operation (line 32), while searches check
each shared-memory location that they read to ensure it is not currently ‘owned’
by an MCAS(line 5). Deletions invoke MCAS to update each predecessor node
to point at its new successor (line 43). As described above, each pointer in a
deleted node is updated to point backwards, so that searches backtrack correctly
(line 44).

One case that deserves special mention is updating the mapping of a key that is
already present in the list. Here I can update the value field in place, rather than
deleting the node and inserting a new one. Since this is a single-word update, it
is possible to use CAS directly and so avoid the overheads of MCAS (line 24).
When a node is deleted its value field is set to NULL (line 46). This indicates to
other operations that the node is garbage, and forces them to re-read the data

structure.

CAS-based design

The direct-CAS design performs composite update operations using a sequence
of individual CAS instructions, with no need for a dynamically-allocated per-
operation ‘descriptor’. This means that great care is needed to ensure that up-
dates occur atomically and consistently. Figure 4.4 illustrates how conflicting
insertions and deletions can otherwise cause inconsistencies.

35

56

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

(node_t **, node_t **) list_search (list_t *I, mapkey_t k) {
x 1= &l—head;
for (i := NRLEVELS-1;i > 0; i--) {
while (TRUE) {
y := MCASRead(&x—next[i]);
if (y—k > k) break;
X i=y;

(left_list][i], right_list[i]) := (x, y);

return(left_list, right_list);

}

mapval_t list_lookup (list_t *|, mapkey_t k) {
(-, succs) := list_search(l, k);
return (succs[0]—k = k) ? MCASRead(&succs[0]—v) : NULL;

mapval_t list_update (list_t *I, mapkey_t k, mapval_t v) {
new := new node_t;
(new—level, new—k, new—v) := (rand_level(), k, v);
do {
(preds, succs) := list_search(l, k);
if (succs[0]—k = k) { /* Update value field of an existing node. */
do { if ((old_v := MCASRead(&succs[0]—v)) = NULL) break;
} while (CAS(&succs[0]—v, old_v, v) # old_v);
if (old_.v = NULL) continue;
return old_v;

}

for (i:=0;i < new—level; i++) { /* Construct update list. */
new—next|[i] := succs[i]; /* New node can be updated directly. */
(ptrli], old[i], new][i]) := (&preds[i]—next[i], succs[i], new);

} while (=MCAS(new—level, ptr, old, new));
return NULL; /* No existing mapping was replaced. */

mapval_t list_remove (list_t *|, mapkey_t k) {
do
(fareds, succs) := list_search(l, k);
if ((x := succs[0])—k # k) return NULL;
if ((old_v := MCASRead(&x—v)) = NULL) return NULL;
for (i:=0;i < succs[0]—level; i++) {
x_next := MCASRead(&x—next[i]);
if (x—k > x_next—k) return NULL;
(ptr[2*i], old[2*i], new[2*i]) := (&preds[i]—next][i], X, x_next);
(ptr[2*i+1], old[2*i41], new[2*i+1]) := (&x—next]i], x_next, preds[i]);

(ptr[2*i], old[2*i], new[2*i]) := (&x—v, old_v, NULL);
} while (=-MCAS(2*succs[0]—level+1, ptr, old, new));
return old_v;

}
Figure 4.3: Skip lists built from MCAS.

4.3.3.1

4.3.3.2

(o))
VY

o
'
'

=

o

o

(a) (b)

Figure 4.4: Unsynchronised insertion and deletion in a linked list. Snapshot (a) shows
a new node, 6, about to be inserted after node 5. However, in snapshot (b)
we see that node 5 is simultaneously being deleted by updating node 1 to
point at node 8. Node 6 never becomes visible because it is linked from the
defunct node 5.

Pointer marking

Harris solves the problem of ‘disappearing’ nodes, illustrated in Figure 4.4, for
singly-linked lists by marking a node’s forward pointer before physically deleting
it from the list [HarrisO1]. This prevents concurrent operations from inserting
directly after the defunct node until it has been removed from the list. Since,
for the purposes of insertion and deletion, I treat each level of a skip list as an
independent linked list, I use Harris’s marking technique to logically delete a
node from each level of the skip list in turn.

To implement this scheme I reserve a mark bit in each pointer field. This is
easy if all list nodes are word-aligned; for example, on a 32-bit architecture this
will ensure that the two least-significant bits of a node reference are always zero.
Thus a low-order bit can safely be reserved, provided that it is masked off before
accessing the node.

For clarity, the marking implementation is abstracted via a set of pseudocode
operations which operate on pointer marks: is_marked(p) returns TRUE if the
mark bit is set in pointer p, mark(p) returns p with its mark bit set, while un-
mark(p) returns p with its mark bit cleared (allowing access to the node that it
references).

Search

The search algorithm searches for a left and a right node at each level in the
list. These are adjacent nodes with key values respectively less-than and greater-
than-or-equal-to the search key.

57

4.3.3.3

1 (node_t **, node_t **) list_search(list_t *|, mapkey_t k) {
retry: left ;= &l—head;
3 for (i:= NRLLEVELS-1;i>0;i-) {
left_next := left—next[i];

5 if (is_marked(left_next)) goto retry;
/* Find unmarked node pair at this level. */
7 for (right := left_next; ; right := right_next) {
/* Skip a sequence of marked nodes. */
9 while (TRUE) {
right_next := right—next[i];
11 if (—is_marked(right_next)) break;
right := unmark(right_next);
13 }
if (right—k > k) break;
15 left := right; left_next := right_next;
}
17 /* Ensure left and right nodes are adjacent. */

if ((left_next # right) A (CAS(&left—next[i], left_next, right) # left_next))
19 goto retry;
left_list[i] := left; right_list[i] := right;
21 }
return(left_list, right_list);
23}

The search loop interprets marked nodes and skips over them, since logically
they are no longer present in the list (lines 7-16). If there is a sequence of
marked nodes between a level’s left and right nodes then these are removed by
updating the left node to point directly at the right node (lines 17-19). Line
5 retries the entire search because if the left node at the previous level is now
marked then the search result as constructed so far is now stale.

The publicly-exported lookup operation simply searches for the required key,
and then returns the value mapping if a matching node exists.

1 mapval_t list_lookup(list_t *I, mapkey_t k) {

(-, succs) := list_search(l, k);
3 return (succs[0]—k = k) ? succs[0]—v : NULL;
}
Deletion

Removal begins by searching for the node with key k. If the node exists then it is
logically deleted by updating its value field to NULL (lines 4-6). After this point
any subsequent operations will see no mapping for k and, if necessary, they will

58

4.3.3.4

remove the defunct node entirely from the list to allow their own updates to
proceed. The next stage is to ‘mark’ each link pointer in the node; this prevents
any new nodes from being inserted directly after the deleted node, and thus
avoids the consistency problem in Figure 4.4. Finally, all references to the deleted
node are removed. This is done by a single call to list_search, which guarantees
that the node it matches is not preceded by a marked node.

1 mapval_t list_remove(list_t *|, mapkey_t k) {
(o, succs) := list_search(l, k);
3 if (succs[0]—k # k) return NULL;
/* 1. Node is logically deleted when the value field is NULL. */
5 do { if ((v := succs[0]—v) = NULL) return NULL;
} while (CAS(&succs[0]—v, v, NULL) # v);
7 /* 2. Mark forward pointers, then search will remove the node. */
mark_node_ptrs(succs[0]);
9 (.,) := list_search(l, k);
return v;
11}

The loop that marks a logically-deleted node is placed in a separate function so
that it can be used by list_update. It simply loops on each forward pointer in
turn, trying to add the mark until the mark bit is present.

1 void mark_node_ptrs(node_t *x) {
)

for (i:= x—level-1; i > 0; i--
3 do {
x_next := x—next[i];
5 if (is_marked(x_next)) break;
} while (CAS(&x—next][i], x_-next, mark(x_next)) # x_next);
7}
Update

An update operation searches for key k and, if it finds a matching node, it at-
tempts to atomically update the value field to the new mapping (lines 6-15). If
the matching node has a NULL value field then it is already logically deleted; after
finishing pointer-marking (line 10), the update completes the physical deletion
when it retries the search (line 5). If the key is not already present in the list then
a new node is initialised and linked into the lowest level of the list (lines 16-18).
The main loop (lines 19-32) introduces the node into higher levels of the list.
Care is needed to ensure that this does not conflict with concurrent operations
which may insert a new predecessor or successor at any level in the list, or delete
the existing one, or even delete the node that is being inserted (lines 25-26). A

59

4.4

new node becomes globally visible, and the insert operation linearises, when the
node is inserted into the lowest level of the list. If an update modifies the value
field of an existing node then that modification is the linearisation point.

1 mapval_t list_update(list_t *|, mapkey_t k, mapval_t v) {
new := new node_t;

3 (new—level, new—k, new—v) := (rand_level(), k, v);
retry:
5 (preds, succs) := list_search(l, k);

/* Update the value field of an existing node. */
7 if (succs[0]—k =k) {

do {
9 if ((old_v := succs[0]—v) = NULL) {
mark_node_ptrs(succs[0]);
11 goto retry;
}
13 } while (CAS(&succs[0]—v, old_v, v) # old.v);
return old_v;
15 }
for (i := 0; i < new—level; i++4) new—next[i] := succs]i];
17 /* Node is visible once inserted at lowest level. */
if (CAS(&preds[0]—next[0], succs[0], new) # succs[0]) goto retry;
19 for (i := 1; i < new—level; i++)
while (TRUE) {
21 pred := preds[i]; succ := succs]i];
/* Update the forward pointer if it is stale. */
23 new_next := new—next[i];
if ((new_next # succ) A
25 (CAS(&new—next][i], unmark(new_next), succ) # unmark(new_next)))
break; /* Give up if pointer is marked. */
27 /% Check for old reference to a 'k’-node. */
if (succ—k = k) succ := unmark(succ—next);
29 /* We retry the search if the CAS fails. */
if (CAS(&pred—next]i], succ, new) = succ) break;
31 (preds, succs) := list_search(l, k);
}
33 return NULL; /* No existing mapping was replaced. */
}

Binary search trees

Compared with skip lists, lock-free binary search trees (BSTs) are complicated
by the problem of deleting a node with two non-empty subtrees. The classical
algorithm replaces the deleted node with either the smallest node in its right

60

4.4.1

‘Search 3 ‘Search 3
preempted here cannot find node 3

o o

Figure 4.5: Consistency between search and delete operations.

Figure 4.6: An example of a small threaded BST.

subtree or the largest node in its left subtree; these nodes can be easily removed
from their current position as they have at most one subtree. Implementing this
without adding extra synchronisation to search operations is difficult because it
requires the replacement node to be atomically removed from its current location
and inserted in place of the deleted node.

MCAS-based design

The problem of making an atomic update to multiple memory locations, to effect
the simultaneous deletion and reinsertion, is solved by using MCAS. Although
this ensures that all the updated memory locations change to their new value at
the same instant in time, this is insufficient to ensure consistency of concurrent
search operations. Consider the concurrent ‘delete 2 and ‘search 3’ operations
in Figure 4.5. The search is preempted when it reaches node 4, and continues
only after node 2 has been deleted. However, since node 3 is relocated to replace
node 2, the search will complete unsuccessfully.

This problem could be avoided entirely by using FSTM, but there are likely
to be significant overheads compared with using the simpler MCAS operation.
Instead I use a threaded tree representation [Perlis60] in which pointers to empty
subtrees are instead linked to the immediate predecessor or successor node in the
tree (see Figure 4.6). If this representation is applied to the example in Figure 4.5,
the ‘delete 2’ operation will create a thread from node 4 to node 3 which acts as
a tombstone. The ‘search 3 operation can now be modified to follow this thread
to check for the relocated node instead of immediately, and incorrectly, failing.

61

4411

4.4.1.2

4.4.1.3

This neat solution permits the use of MCAS because the tree threads ensure that
search operations remain synchronised.

Thread links

Threaded trees must provide a way to distinguish thread links from ordinary
node pointers. I use a special mark value in the lowest-order bits of each link
field, similar to the deletion mark added to skip list nodes in Section 4.3.3. For
clarity I define some utility functions which act on node pointers: is_thread(p)
returns TRUE if p is marked as a thread, thread(p) returns p with the thread mark
set, and unthread(p) returns p with the thread mark cleared. These operations
can be implemented efficiently in a handful of bit-level machine instructions.

Further care is needed because, as discussed in the next chapter, MCAS may
also use mark bits to distinguish its descriptor pointers. MCAS reserves two bits
in every updated machine word for this purpose, but needs only to distinguish
between three classes of value: pointer to MCAS descriptor, pointer to CCAS
descriptor, and all other values. This means that a fourth mark value is available
for use in the BST representation. I provide an example of how to interpret mark
bits without introducing conflicts in Section 5.1.

Read operations

The key field of a BST node can be read directly as the key is never modified
after a node is initialized. Reads from pointer locations, including the subtree
and value fields of a node, must use MCASRead in case an MCAS operation is
currently in progress.

Another possibility is that a field is read after the node is deleted from the tree.
I handle this by setting all the pointer fields of a deleted node to an otherwise
unused value (NULL). This allows a read to detect when it has read from a
defunct node and take appropriate action, such as retrying its access from the

tree root.
Search operations

The search algorithm is encapsulated in a helper function, bst_search(t,k), which
returns a tuple (p, n) consisting of the node n with key &, and its parent p. If key
k is not in the tree then p is the final node on the search path, and n is the thread
link which would be replaced if k were inserted into the tree.

1 (node_t *, node_t *) bst_search(tree_t *t, mapkey_t k) {
retry:
3 p := &t—root;

62

4.4.1.4

n := MCASRead(&p—r);

5 while (—is_thread(n)) {
if (k < n—k) c := MCASRead(&n—l);

7 else if (k > n—k) c := MCASRead(&n—r);
else return (p, n);
9 /* We retry if we read from a stale link. */
if (¢ = NULL) goto retry;
11 p:=n,n:=¢c
}

13 /¥ If the thread matches, retry to find parent. */
if (k = unthread(n)—k) goto retry;
15 return (p, n);

The loop on lines 5-12 traverses the tree in the usual manner, checking for
concurrent MCAS operations on the search path, and retrying from the root
if the search traverses a deleted node. The test on line 14 is executed only if &
was not found in the tree. In that case, the thread link found at the end of the
search is followed to check if it leads to a node with key k. If so, the search must
be retried because, although the required node has been found, it is not possible

to find its parent without restarting from the root of the tree.

A lookup in a BST is implemented via a simple wrapper around bst_search:

1 mapval_t bst_lookup(tree_t *t, mapkey_t k) {
(-, n) := bst_search(t, k);
3 return is_thread(n) ? NULL : MCASRead(&n—v);
}

Update and insertion

There are two cases to consider when updating a (key, value) mapping. If
bst_search finds an existing mapping for key, it attempts to directly modify that
node’s value field (line 10). If no current mapping is found then it inserts a
newly-allocated node into the tree (line 21). CAS is used in both cases because

only one memory location needs to be updated.

1 mapval_t bst_update(tree_t *t, mapkey_t k, mapval_t v) {
new := new node_t; new—k := k; new—v := v;
3 retry:
do {
(p, n) := bst_search(t, k);
if (—is_thread(n)) {
7 do {

(&)

63

4.4.1.5

Insert3 o 'Insert 3
preempted here isin wrong subtree

Figure 4.7: Consistency between insertion and deletion.

old_v := MCASRead(&n—v);

9 if (old_v = NULL) goto retry;
} while (CAS(&n—v, old_v, v) # old_v);
11 return old_v;
}
13 if (p—k <k){
if (unthread(n)—k < k) goto retry;
15 (new—l, new—r) := (thread(p), n);
} else {
17 if (unthread(n)—k > k) goto retry;
(new—l, new—r) := (n, thread(p));
19 }

21 while (CAS((p—k < k) ? &p—r : &p—l, n, new) # n);

return NULL;
23}

Lines 14 and 17 deserve further comment. They are required because, if a node
has been moved up the tree due to a deletion, the search may no longer have
found the correct position to insert the new node. Figure 4.7 illustrates this
problem more clearly: the original root node is replaced by key value 4, so a
new node with key value 3 now belongs in the left subtree of the root.

It is instructive to note that lookups and deletions do #not need to worry about
this type of inconsistency. This may cause lookups and deletions to fail to find
a node even though a matching one has been inserted in a different subtree.
The failing operation is still linearisable because the inserted node must have
appeared after the failing operation began executing. This is because the failing
operation began executing before the deletion which caused the inconsistency
(‘delete 2’ in Figure 4.7), but the insertion of the new node must be linearised
after that deletion. The failing operation can therefore be linearised before the
new node was inserted.

Deletion

Deletion is the most time-consuming operation to implement because of the
number of different tree configurations which must be handled. Figure 4.8

64

3. 1S4 > 1
4.
|S1] >1
(and symmetric case: T < D and S; > D)
(»
- O, S > 1,
) s\ S\ - |S2] >0
L@
(and symmetric case: So, 71,7 < D and S; > D)
[S1] > 1,
6. |Sa] >0,
|S3] > 1

(and symmetric case: So,53,T1,T> < D and S; > D)

b4
Key: Asubtree O node /Iink .7 thread

Figure 4.8: Deleting a node D from a threaded binary tree. The cases where D is the
right-child of its parent P are omitted, but can be trivially inferred from the
left-child transformations. Only threads that are introduced or removed by
a transformation are included in its diagram. Where the target of a thread is
outside the subtree in the diagram, the destination node is represented by «.

65

shows all the different tree configurations that deletion may have to deal with,
and the correct transformation for each case. Although somewhat cumbersome,
the implementation of each transformation is straightforward: traverse the tree
to find the nodes involved, and retry the operation if a garbage node is tra-
versed or if the tree structure changes “under the operation’s feet”. For brevity
the pseudocode handles only cases 4-6 in Figure 4.8 and does not consider any
symmetric cases.

1 mapval_t bst_remove(tree_t *t, mapkey_t k) {
retry:
3 (p, d) := bst_search(t, k);
if (is_thread(d)) return NULL;

5 /* Read contents of node: retry if node is garbage. */
(dl, dr, dv) := (MCASRead(&d—l), MCASRead(&d—r), MCASRead(&d—v));
7 if ((dl = NULL) Vv (dr = NULL) Vv (dv = NULL)) goto retry;

if ((p—k > d—k) A —is_thread(dl) A —is_thread(dr)) {

9 /* Find predecessor, and its parent (pred,ppred). */
(pred, cpred) := (d, dlI);
11 while (—is_thread(cpred)) {
(ppred, pred, cpred) := (pred, cpred, MCASRead(&pred—r));
13 if (cpred = NULL) goto retry;
}
15 /* Find successor, and its parent (succ,psucc). */
(succ, csucc) = (d, dr);
17 while (—is_thread(csucc)) {
(psucc, succ, csucc) = (succ, csucc, MCASRead(&succ—l));
19 if (csucc = NULL) goto retry;

21 ptr[1], old[1], new[1]
ptr[2], old[2], new[2]

}

() := (&d—l, dI, NULL);

()
23 (ptr[3], old[3], new[3]) :

()

()

(

— (&d—r, dr, NULL);
&d—v, dv, NULL);

—(
ptr[4], old[4], new[4]) := (&succ—, thread(d), dI);
= (

25 ptr[5], old[5], new[5] &p—l, d, succ);
ptr[6], old[6], new[6]) := (&pred—r, thread(d), thread(succ));

27 if (succ =dr) { /* Case 4, Fig. 4.8. */

if (“-MCAS(6, ptr, old, new)) goto retry;
29 } else { /* Cases 5 - 6, Fig. 4.8. */

succ_r := MCASRead(&succ—r);
31 (ptr[7], old[7], new[7]) := (&succ—r, succ_r, dr);

(ptr[8], old[8], new[8]) := (&psucc—l, succ,
33 is_thread(succ_r) ? thread(succ) : succ_r);

if (-MCAS(8, ptr, old, new)) goto retry;
35 }
/% All symmetric and simpler cases omitted. */
37 telseif (...) ..

return dv;
39 }

66

4.4.1.6

Consistency of threaded binary search trees

It is not obvious that a threaded representation ensures that concurrent search
operations will see a consistent view of the tree. I therefore sketch a proof of
correctness which demonstrates that the representation is sufficient, by reference
to the tree transformations in Figure 4.8. This proof does not demonstrate that
the operations discussed so far are a correct implementation of a BST: it is in-
tended only to provide a convincing argument that nodes moved upwards in a
BST remain continuously visible to concurrent search operations.

Lemma 1. Threads to a node D can be safely removed when D is deleted. A
search treats a deleted node as no longer existing in the tree. Thus a search can
safely complete without finding D, and any thread to D is redundant.

Lemma 2. Threads from a node D can be moved to any node at or below that
node’s parent P when D is deleted. If a concurrent search has yet to reach D, it
will either: (i) follow the old link from P, find D deleted, and retry its operation;
or (ii) it will follow the new link or thread from P and thus will ultimately follow
the thread from its new location.

Lemma 3. A thread from a node D to its parent P can be safely removed when
D is deleted. 1f a concurrent search has not reached D then it will find P first
anyway. If the search has reached D, it will either: (i) follow the old thread
D — P; or (ii) it will detect that D is deleted and thus retry.

Theorem. The threaded representation ensures that search operations complete
correctly after any concurrent deletion. The threaded representation is sufficient
if, whenever a node is relocated, a thread is created at the end of the search path
for that node. Furthermore, that thread must remain in existence until the node
is deleted. I analyse each case in Figure 4.8 to prove that any search concurrent
with the deletion of some node D will find the correct node:

Case 1. Thread D — P is safely removed (lemma 3). D — « is safely relocated
to P (lemma 2).

Case 2. Thread D — « is safely moved into subtree S1 (lemma 2).
Case 3. Thread D — P is safely removed (lemma 3).

Case 4. Node T'1 is relocated. However any concurrent thread can still find 7'1
directly, without following a thread. If a search reaches D it will either: (i)
find T'1 by following the old link from D; or (ii) detect that D is deleted,
retry the search, and find 71 via the new link from P.

Case 5. Thread T2 — T'1 is removed. An argument similar to that in lemma 3

67

4.5

4.5.1

Rotate 7 /

\ /
\ ‘Search 2’ ‘Search 2
preempted here will now fail

Figure 4.9: Searches must be correctly synchronised with concurrent tree rotations, in
case the search path becomes invalid.

suffices to show that this is safe. Node T2 is relocated, but any search can
still find it. If the search has not reached D it will either: (i) find T2 at its
new location, or (ii) find D is deleted and retry. If the search has passed D
it will follow the new thread from T'1 to find T2.

Case 6. The thread S3 — T2 remains valid after the deletion. Although node
T2 is relocated, the argument in case 5 applies: a concurrent search will
always find T2 by following the new link from P, finding D deleted, or
following the existing thread.

Red-black trees

Unlike skip lists and unbalanced BSTs, red-black tree operations are guaranteed
to execute in O(logn) time. As might be expected, this performance guarantee
comes at the cost of increased algorithmic complexity which makes red-black
trees an ideal case study for applying lock-free techniques in a practical, non-
trivial application.

FSTM-based design

Since red-black trees make extensive use of rotation transformations to ensure
that the structure remains balanced, search operations must be careful to remain
synchronised with update processes. For this reason it would be very difficult
to build red-black trees using CAS or MCAS: as shown in Figure 4.9, some
additional technique would be required to synchronise search operations.

Despite this complexity, red-black trees can be implemented straightforwardly
using FSTM. Each operation (lookup, update, and remove) begins by starting
a new transaction. Each tree node is represented by a separate transactional
object, so nodes must be opened for the appropriate type of access as the tree
is traversed. Each operation finishes by attempting to commit its transaction: if
this fails then the operation is retried.

68

4.5.2

An interesting design feature is the use of FSTM’s early-release operation (Sec-
tion 3.3.3). A common trick when implementing red-black trees is to replace
NULL child pointers with references to a single ‘sentinel node’ [Cormen90].
By colouring this node black it is possible to avoid a considerable amount of
special-case code that is otherwise required to correctly rebalance leaf nodes.
In a transaction-based design, however, the sentinel node can easily become a
performance bottleneck. Insertions and deletions are serialised because they all
attempt to update the sentinel node’s parent pointer. This problem is neatly
avoided by explicitly releasing the sentinel node before attempting to commit
such transactions.

Since full pseudocode for each of the red-black tree operations would run to
many pages, I do not list the full design here. However, like the FSTM-based
skip-list design, each operation is a straightforward adaptation of the textbook
sequential design. For example, lookup proceeds as follows:

1 mapval_t list_lookup (list_t *I, mapkey_t k) {

do {

3 tx := new_transaction(l—memory);
v := NULL;
5 for (nb := l—root; nb # SENTINEL; nb := (k < n—k) ? n—l: n—r) {
n := open_for_reading(tx, nb);

7 if (k =n—k) {v:=n—v; break; }
9 } while (—commit_transaction(tx));

return v;

11}

Note that leaf nodes are distinguished by comparing against SENTINEL. This
is the global ‘sentinel node’ that is used in place of NULL to avoid many spe-
cial cases when rebalancing the tree. Updates and insertions perform an early
release (Section 3.3.3.3) of SENTINEL before attempting to commit, to avoid
unnecessary update conflicts.

Lock-based designs

Unlike skip lists and simple BSTs, there has been little practical work on par-
allelism in balanced trees. The complexity of even single-threaded implemen-
tations suggests that implementing a lock-based version which permits useful
amounts of parallelism is likely to be very difficult. Reducing this complexity
was one of the motivations for developing skip lists, which permit a simple yet
highly-concurrent implementation [Pugh90a].

69

4.5.2.1

Due to the lack of previous work in this area, I discuss two possible lock-based
red-black tree designs; in Chapter 6 I use these as a baseline against which to
compare my STM-based design. The first design is simple but serialises all oper-
ations which update the tree. The second design relaxes this constraint to allow
greater parallelism, but is significantly more complicated.

Serialised writers

Ellis presents two locking strategies for AVL trees, another search-tree design
which uses rotation transformations to maintain balance [Ellis§0]. Both lock-
ing strategies depend on a complicated protocol for mutual exclusion in which
locks can be acquired in a number of different modes. The second strategy ap-
pears to achieve some useful parallelism from simultaneous update requests, but
the implementation is extremely complicated. For example, the synchronisation
protocol allows a tree node to be locked or marked in five different ways, yet
the implementation of this intricate mechanism is not described.

Hanke describes how the simpler of Ellis’s two locking protocols can be directly
applied to red-black trees [Hanke99]. The protocol allows a node to be locked
by a process in one of three ways: by acquiring an z-lock (exclusive lock), a
w-lock (write-intention lock), or an r-lock (read lock). A node can be r-locked
by multiple processes simultaneously, but only one process at a time may hold
an x- or w-lock. Furthermore, a w-lock can be held simultaneously with r-locks,
but an z-lock excludes all other processes.

Using these locks, a lookup operation proceeds by acquiring r-locks as it pro-
ceeds down the tree. By using lock coupling at most two nodes need to be locked
at any time: each node’s lock is held only until the child’s lock is acquired.

Update and removal operations w-lock the whole search path from the root of
the tree so that rebalancing can safely occur after a node is inserted or deleted. If
rebalancing is required then any affected node is upgraded to an z-lock. Acquir-
ing w-locks in the first instance ensures that other operations cannot invalidate
the update’s view of the tree.

I took this protocol as a starting point for my own initial red-black tree de-
sign. First I note that all update and removal operations are effectively serialised
because they all acquire and hold a w-lock on the root of the tree for their dura-
tion. A simpler yet equivalent approach is to do away with w-locks entirely and
instead have a single mutual-exclusion lock which is acquired by every update
or removal operation. With w-locks no longer required, x- and r- locks map
directly onto the operations supported by standard multi-reader locks.

In my scheme, lookup operations still proceed by read-coupling down the tree.

70

4.5.2.2

Update and removal operations do not need to acquire read locks because other
writers are excluded by the global mutual-exclusion lock. If an operation needs
to modify nodes in the tree, perhaps to implement a rebalancing rotation, then
the subtree to be modified is write-locked. Write locks are acquired down the
tree, in the same order as lookup operations acquire read locks: this avoids the
possibility of deadlock with concurrent searches.

Concurrent writers

The scheme I outline above can be implemented as a simple modification of
a non-concurrent red-black tree design. Unfortunately the single writer lock
means that it will achieve very little parallelism on workloads which require a
non-negligible number of updates and removals.

Consider again the scheme in which updates and removals w-lock their entire
search path. This limits concurrency because these operations become serialised
at the root of the tree. The only reason that the whole path is locked is because,
after a node is inserted or deleted, rebalancing operations might be required
all the way back up the tree to the root. Unfortunately, until the rebalancing
rotations are executed we do not know how many rotations will be required; it
is therefore impossible to know in advance how many nodes on the search path
actually need to be write-locked.

One superficially attractive solution is to read-lock down the tree and then write-
lock on the way back up, just as far as rebalancing operations are required. This
scheme would acquire exclusive access to the minimal number of nodes (those
that are actually modified), but can result in deadlock with search operations
(which are locking down the tree).

The problem is that an exclusive lock must be continuously held on any imbal-
anced node, until the imbalance is rectified. Otherwise other update operations
can modify the node without realising it is imbalanced, and irreparably upset the
red-black properties of the tree. Unfortunately the rotation transformations that
rebalance the tree all require the imbalanced node’s parent to be updated, and
therefore locked — there is therefore no obvious way to avoid acquiring locks
up the tree.

A neat solution to this quandary is to mark nodes that are imbalanced. There
is then no need to continuously hold an exclusive lock on an imbalanced node,
so long as the update algorithms are revised to take the imbalance mark into
account. Fortunately the required revisions are already implemented for relaxed
red-black trees [Hanke97]. Relaxed data structures decouple insertions and dele-
tions from the transformations required to rebalance the structure. An update

71

4.6

which creates an imbalance marks the appropriate node and queues work for
a maintenance process which will perform the appropriate rebalance transform
some time later. Insertions and deletions in a relaxed red-black tree are simple
because it uses an external representation in which key-value pairs are stored
only in leaf nodes; internal nodes are simply ‘routers’ for search operations. The
rebalance transformations for a relaxed red-black tree include the usual node
rotations and recolourings, but three more transformations are included which
deal with conflict situations in which the transformations required by two im-
balanced nodes overlap. Without these extra transformations the two rebalance
operations would deadlock.

My fine-grained scheme borrows the external tree representation and extended
set of tree transformations used by relaxed red-black trees. I apply a simple
locking protocol in which all operations read-couple down the tree. When an
update or removal reaches a matching node, or the closest-matching leaf node,
this node is write-locked pending insertion, deletion, or value update. If an
insertion or deletion causes an imbalance then the imbalanced node is marked,
and all held locks are released. Rather than leaving the rebalancing work for
a maintenance process, the update operation then applies the transformations
itself.

Each local transformation is performed separately, and is responsible for acquir-
ing and releasing all the locks that it requires. The first stage of a transforma-
tion is to traverse the local subtree to work out which transformation must be
applied. This initial phase is executed with no locks held: if it detects an ob-
vious inconsistency then it will abort and retry the subtree search. When the
appropriate transformation has been selected, the subtree is write-locked, start-
ing with the node nearest the root. Before each node is locked it is checked
that the structure of the tree has not changed since the search phase: if it has
then the transformation is aborted and retried. Once all required locks are held,
the transformation is applied, the mark is propagated up the tree or removed
entirely, and then all locks are released.

Summary

In this chapter I have presented highly-concurrent designs for three popular types
of search structure. I introduced three lock-free skip-list designs based on CAS,
MCAS, and FSTM: this allows a fair comparison between the three primitives
in Chapter 6. I also presented an MCAS-based design for binary search trees:
CAS is too difficult to apply directly in this case and, as I will show later, FSTM

72

is an inferior choice when MCAS is a suitable alternative. Finally, I presented an
FSTM-based design for red-black trees: as with BSTs, CAS is too hard to use di-
rectly; MCAS is also unsuitable because red-black trees require synchronisation

between readers and writers.

In the next chapter I show how to turn these search-structure designs, and the
underlying programming abstractions, into portable implementations for real

hardware.

73

74

5.1

Chapter 5

Implementation issues

There is a considerable gap between the pseudocode I presented in the previous
chapters and a useful implementation of those algorithms. I bridge this in the fol-
lowing sections by tackling three main implementation challenges: distinguish-
ing ‘operation descriptors’ from other memory values (Section 5.1), reclamation
of dynamically-allocated memory (Section 5.2) and memory-access ordering on
architectures with relaxed memory-consistency models (Section 5.3).

I describe how these issues are resolved in my C implementation of the pseu-
docode algorithms, resulting in a portable library of lock-free abstractions and
structures for Alpha, Intel IA-32, Intel IA-64, MIPS, PowerPC and SPARC pro-
cessor families. Support for other architectures can easily be added by providing
an interface to the required hardware-level primitives, such as memory barriers
and the CAS instruction.

Descriptor identification

To allow implementation of the is-a-descriptor predicates from Chapter 3, there
needs to be a way to distinguish MCAS, CCAS, and FSTM descriptors from
other valid memory values. There are a number of techniques that might be
applied.

If the programming language’s run-time system retains type information then
this may be sufficient to distinguish descriptor references from other types of
value. This is likely to limit CCAS and MCAS to operate only on pointer-typed
locations, as dynamically distinguishing a descriptor reference from an integer
with the same representation is not generally possible. However, FSTM descrip-
tors are installed only in place of data-block pointers, so FSTM trivially complies
with this restriction.

75

In the absence of a typed run-time environment, an alternative approach is for
the storage manager to maintain a list of allocated descriptors. The appropri-
ate list can then be searched to implement each descriptor predicate. Note that
this approach also restricts CCAS and MCAS to pointer-typed locations, to pre-
vent confusion between descriptor references and identically-represented inte-
gers. The cost of searching the descriptor lists is likely to be impractical if more
than a handful of descriptors are allocated. The search time can be reduced by
allocating descriptors from a small set of contiguous pools. This shorter pool list
is then sufficient to distinguish descriptor references, and can be searched more
quickly.

The approach taken in my own implementations is to reserve the least-significant
two bits of any location which may hold a reference to a descriptor. This reser-
vation is easy if descriptor references are placed only in locations that other-
wise contain word-aligned pointers. On a 32-bit system, for example, aligned
references are always a multiple of four and the least-significant two bits are
guaranteed to be zero. This approach also requires descriptors to be aligned in
memory, so that the low-order bits of a descriptor reference can safely be re-
served for identification; non-zero settings of these bits are used to distinguish
the various types of descriptor from other heap values. The reserved bits are
masked off before accessing a descriptor via a reference that was identified in
this way.

Special care is needed to prevent clashing with the mark used to represent thread
references in the MCAS implementation of binary search trees (Section 4.4).
This can be achieved by assigning the following non-conflicting meanings to the
two reserved bits:

Reserved bits Interpretation
00 Ordinary heap reference
01 MCAS descriptor reference (Section 3.2)
10 CCAS descriptor reference (Section 3.2)
11 FSTM descriptor reference (Section 3.3)
11 CAS-based skip list: deleted node (Section 4.3.3)
11 MCAS-based BST: thread reference (Section 4.4)

By itself this technique is insufficient if further identifiers need to be allocated
without reserving more bits. One possible extension is to reserve a tag field at
a common offset in every type of descriptor. This would allow the different
types of descriptor to share one reference identifier, freeing two identifiers for
other purposes. The different descriptors can still be distinguished by reading
the common tag field.

76

5.2

5.2.1

Storage management

So far it has been assumed that a run-time garbage collector will automatically
reclaim dynamically-allocated memory that is no longer in use. However, there
are a number of reasons for considering a customised scheme. Firstly, many
run-time environments do not provide automatic garbage collection, so some
alternative must be sought. Secondly, the garbage collectors found in general-
purpose programming environments often do not scale well to highly-parallel
workloads running on large multiprocessor systems. Thirdly, general-purpose
collectors may not be designed to efficiently handle a very high rate of heap
allocations and garbage creation, but this type of workload is likely to be created
by FSTM (for example) which allocates a new version of an object every time
it is updated. Finally, general-purpose collectors with a “stop the world” phase
cannot provide the strong progress guarantees that lock-free applications may
require: systems which absolutely require this guarantee must provide their own
lock-free memory manager.

I use several schemes for managing the different types of dynamic object in my
lock-free algorithms. In each case the selected scheme strikes a balance between
the costs incurred by mutator processes, the rate and cost of garbage collection
(where applicable), and the time taken to return garbage objects to an appropri-
ate free list (slow reclamation increases the size of the heap and reduces locality
of memory accesses). The chosen schemes are described and justified in the fol-
lowing subsections: object aggregation (5.2.1), reference counting (5.2.2), and
epoch-based reclamation (5.2.3).

Object aggregation

Although the pseudocode design assumes so for simplicity, CCAS descriptors are
not dynamically allocated. Instead, several are embedded within each MCAS de-
scriptor, forming an aggregate. Embedding a small number of CCAS descriptors
within each MCAS descriptor is sufficient because each one can be immediately
reused as long as it is introduced to any particular memory location at most
once. This restriction is satisfied by allocating a single CCAS descriptor to each
process that participates in an MCAS operation; each process then reuses its de-
scriptor for each of the CCAS sub-operations that it executes. Unless contention
is very high it is unlikely that recursive helping will occur often, and so the aver-
age number of processes participating in a single MCAS operation will be very
small.

If excessive helping does ever exhaust the embedded cache of CCAS descriptors

77

5.2.2

then further allocation requests must be satisfied by dynamic allocation. These
dynamically-allocated descriptors are managed by the same reference-counting
mechanism as MCAS and FSTM descriptors.

The same storage method is used for the per-transaction object lists maintained
by FSTM. Each transaction descriptor contains a pool of embedded object han-
dles that are sequentially allocated as required. If a transaction opens a very
large number of objects then further descriptors are allocated and chained to-
gether to extend the node pool.

Object aggregation is best suited to objects whose lifetimes are correlated since
an aggregate cannot be reclaimed until all embedded objects are no longer in use.
Although some space may be wasted by aggregating too many objects, this is
generally not a problem if the embedded objects are small. In the cases of CCAS
descriptors and FSTM object handles, the space overhead is far outweighed by
the lack of need for dynamic storage management. Embedded objects are allo-
cated sequentially within an aggregate, and are not reclaimed or reused except as
part of the aggregate. Thus there is negligible cost associated with management

of embedded objects.

Reference counting

Each MCAS and FSTM descriptor contains a reference count which indicates
how many processes currently hold a reference to it. I use the method de-
scribed by Michael and Scott to determine when it is safe to reuse a descrip-
tor [Michael95]. This avoids the possibility of reclaiming a descriptor multiple
times, by reserving a bit in each reference count which is set the first time that
a descriptor is reclaimed and cleared when it is reused. The bit must not be
cleared until the reference count is incremented by the operation that is reusing
it. This prevents a delayed process from incrementing and then decrementing
the reference count from and back to zero, which would result in the descriptor
being reclaimed from under the feet of the new operation.

A descriptor’s reference count does not need to be adjusted to include every
shared reference. Instead, each process that acts on an operation descriptor
increments the reference count just once. The process is then responsible for
ensuring that all the shared references it introduces on behalf of the operation
are removed before decrementing the descriptor’s reference count.

Note that memory used to hold reference-counted descriptors cannot be reused
for other types of dynamically-allocated object, nor can it be returned to the
operating system. This is because at any time in the future a process with a stale

78

5.2.3

reference to a defunct descriptor may attempt to modify its reference count. This
will be disastrous if that memory location has been allocated a completely differ-
ent purpose or is no longer accessible by the process. This problem is addressed
by Greenwald and Cheriton’s type-stable memory, which uses an out-of-band
scheme, such as a stop-the-world tracing garbage collector, to determine when
no such stale references exist [Greenwald96]. I do not consider retasking of de-
scriptor memory in my implementation because a small number of descriptors
proved sufficient to satisfy all dynamic allocation requests.

Reference counting was chosen for MCAS and FSTM descriptors for two rea-
sons: (i) they are large, because they are aggregates containing embedded ob-
jects; and (if) they are ephemeral, since they do not usually persist beyond the
end of the operation that they describe. Since the descriptors are large it is im-
portant that they are reused as quickly as possible to prevent the heap exploding
in size to accommodate defunct-but-unusable descriptors. Reference counting
satisfies this requirement: a descriptor can be reused as soon as the last refer-
ence to it is relinquished. This is in contrast to techniques such as Michael’s
SMR [Michael02], in which garbage objects may be buffered for a considerable
time to amortise the cost of a garbage-collection phase. The main criticism of
reference counting is that reference-count manipulations can become a perfor-
mance bottleneck. However, since operation descriptors are short-lived and only
temporarily installed at a small number of memory locations, it is unlikely that
many processes will access a particular descriptor and therefore need to manip-
ulate its reference count.

Epoch-based reclamation

Apart from operation descriptors, all other dynamic objects (including search-
structure nodes, FSTM object headers and FSTM data blocks) are reclaimed by
an epoch-based garbage collector. The scheme builds on ‘limbo lists’ [Kung80,
Manber84,Pugh90a,ArcangeliO3] which hold a garbage object until no stale ref-
erences can possibly exist. However, I deviate from previous designs to improve
cache locality and efficiently determine when stale references cannot exist.

This style of garbage collection requires that, when an object is no longer refer-
enced from the shared heap, it is explicitly added to the current garbage list. It is
generally very simple to augment pseudocode with the required garbage-list op-
erations: for example, operations that successfully delete a node from a search
structure are then solely responsible for placing that node on the list. Only the
CAS-based skip-list design raises a significant complication. In this case, a node
may be deleted while it is still being inserted at higher levels in the list. If this

79

occurs then the delete operation cannot place the node on the garbage list, since
new shared references may still be created. This problem is solved by deferring
responsibility to the operation that completes last. Insertions and deletions both
attempt to set a per-node deferral flag: whichever operation observes that the
flag is already set is responsible for placing the node on the garbage list. A single
boolean flag is sufficient because only two operations may place a node on the
garbage list: the operation that inserted the node, and the delete operation that
logically deleted the node by setting its value field to NULL. Other processes that
help the deletion do not attempt to free the node and so need not be considered.

Note that an object can be added to the current limbo list only when there are
no more references to it in shared memory, and no new shared references will be
created. If this restriction is correctly applied then the only references that can
exist for a given limbo object are: (i) private, and (i) held by processes which
started their current operation before the object was ‘put in limbo’.

This property allows me to use a global epoch count to determine when no
stale references exist to any object in a limbo list. Each time a process starts an
operation in which it will access shared memory objects, it observes the current
epoch. When all processes have observed the current epoch, the limbo list that
was populated two epochs ago can safely be reclaimed. This now-empty list can
be immediately recycled and populated with garbage nodes in the new epoch;
thus only three limbo lists are ever needed.

It is not immediately obvious that once all processes have observed the current
epoch, the list populated during the previous epoch cannot be immediately re-
claimed. Note, however, that not all processes observe a new epoch at the same
time. Thus #wo limbo lists are being populated with garbage objects at any point
in time: the list associated with the current epoch (which processes are moving
to) and the list associated with the previous epoch (which processes are moving
from). Processes that have observed epoch e may therefore still hold private ref-
erences to objects in the limbo list associated with epoch e — 1, so it is not safe
to reuse those objects until epoch e + 1.

Whenever a process starts a shared-memory operation it probabilistically scans
a process list to determine whether all processes that are currently executing
within a critical region have seen the current epoch’. If so, the process prepends
the contents of the oldest limbo list to the free list and then increments the epoch
count. This scheme avoids the need for a maintenance process to perform recla-
mation, and attempts to distribute the workload of garbage collection among all
processes.

'Excluding processes not executing within a critical region ensures that quiescent processes do
not obstruct garbage collection.

80

5.3

Although limbo lists are accessed using lock-free operations, and garbage collec-
tion does not interfere with other mutator processes, this reclamation scheme is
not strictly lock-free. For example, a process which stalls for any reason during
a shared-memory operation will not observe updates to the epoch count. In this
situation the limbo lists will never be reclaimed and memory cannot be reused.
Other processes can make progress only until the application reaches its memory
limit. This drawback may also affect preemptively-scheduled systems, in which
a process may be descheduled in the middle of a shared-memory operation with
no guarantee when it will be rescheduled.

In situations where this limitation is unreasonable, an alternative and truly lock-
free scheme should be used. Unfortunately both SMR [Michael02] and pass-the-
buck [Herlihy02] incur extra overheads for mutator processes. Each time a new
object reference is traversed it must be announced before it is dereferenced. On
all modern architectures this requires a costly memory barrier to ensure that the
announcement is immediately made visible to other processors. To give some
indication of the overhead that these schemes incur, adding the memory barriers
that would be required in my lock-free BST algorithm increased execution time
by over 20%. Furthermore, freeing an object using pass-the-buck is expensive
because a global array of per-process pointers must be checked to ensure no
private references remain. SMR amortises the array scan over a suitably large
number of defunct objects, but this delays reuse and may harm cache locality
and increase the heap size. A more efficient scheme which provides a weaker
progress guarantee is likely to be preferable where that is sufficient.

Relaxed memory-consistency models

In common with most published implementations of lock-free data structures,
my pseudocode designs assume that the underlying memory operations are se-
quentially consistent [Lamport79]. As defined by Lamport, a multiprocessor
system is sequentially consistent if and only if “the result of any execution is the
same as if the operation of all the processes were executed in some sequential
order, and the operations of each individual processor appear in this sequence
in the order specified by the program”. If this property holds then each process
appears to execute instructions in program order, memory operations appear to
occur atomically and instantaneously, and operations from different processors
may be arbitrarily interleaved.

Unfortunately no contemporary multiprocessor architecture provides sequen-
tial consistency. As described by Adve and Gharachorloo, consistency guaran-

81

5.3.1

tees are instead relaxed to some degree to permit high-performance microarchi-
tectural features such as out-of-order execution, write buffers, and write-back

caches [Adve96].

Relaxed consistency models are much easier to describe using a formalised termi-
nology. I therefore define an execution order to be a total ordering, represented
by <, of memory accesses by all processors that are participating in some exe-
cution of a parallel application, as deduced by an external observer (note that
not all the memory accesses may directly result in processor-external interactions
due to architectural features such as caches and write buffers). I also define two
useful partial orders over the memory accesses of a parallel program: A <,,, B
if and only if A < B in all valid execution orders; and A <, B if and only if A
and B are executed on the same processor, and A occurs before B in the instruc-
tion sequence. Intuitively, <,,, expresses the guarantees provided by the memory
consistency model while <, represents ‘program order’.

Minimal consistency guarantees

Although processor architectures relax their memory-consistency models to vary-
ing extents, nearly all architectures provide the following minimal set of consis-
tency guarantees:

Coherency Writes to individual memory words are globally serialised, there is
only ever one up-to-date version of each memory word, and this latest
version is eventually visible to all processors in the system (in the absence
of further writes).

Self consistency If A and B access the same memory word, and A <, B, then
A <, B. Informally, accesses from the same processor to the same loca-
tion are seen by all processors to occur in program order. Some processor
architectures, including SPARC v9 and Intel IA-64, may violate self con-
sistency when both A and B are reads [Weaver94, Intel03].

Dependency consistency A <,, B if A and B are executed on the same proces-
sor, and (i) B depends on a control decision influenced by A (such as a
conditional jump), and B is a write; or (ii) B depends on state written by
A, such as a machine register. The Alpha architecture violates dependency
consistency [DEC92].

Further to these basic guarantees, many architectures provide additional and
stronger guarantees, although these generally fall short of the requirements for
sequential consistency. Examples of further guarantees provided by well-known
multiprocessor architectures include:

82

5.3.2

5.3.3

Intel IA-32 (P6, P4) If A <, B, and B is a write, then A <,, B. This prevents
memory operations from being delayed beyond any later write.

SPARC (Total Store Order) If A <, B, and A is a read or B is a write, then
A <, B. This is slightly stronger than IA-32 consistency because it also
prevents reordering of reads.

SPARC (Partial Store Order) If A <, B, and A is a read, then A <,, B. This
prevents reads from being delayed beyond any later memory operation.

Memory barriers

When a required ordering is not implicitly guaranteed by the memory model, it
can be established using barrier instructions. All memory operations before a
barrier must commit (become globally visible) before any later operation may
be executed.

Barrier instructions are often provided which affect only certain classes of mem-
ory access, such as read operations. These weaker forms can be used to improve
performance when they are a safe replacement for a full barrier. The most com-
mon forms of weak barrier are read barriers and write barriers, which respec-
tively affect only the ordering of reads and writes.

The most common use of barrier instructions is in the implementation of locking
primitives. A mutual-exclusion lock must ensure that memory accesses within
the critical region occur only while the lock is held; this usually requires in-
clusion of a barrier instruction in both acquire and release. Since the lock im-
plementation is responsible for coping with possible memory-access reordering,
applications do not need to pay special attention to relaxed consistency models
provided that all shared data is protected by a lock.

Inducing required orderings

Since the pseudocode in this dissertation assumes a sequentially-consistent mem-
ory model, the algorithms cannot be directly implemented for most modern pro-
cessor architectures. As described above, memory barriers must first be added
to enforce ordering between shared-memory operations where that is required

for correctness.

Unfortunately there is no automatic method for determining the optimal place-
ment of memory barriers. At the very least this would require a formal definition
of correctness for each shared-memory operation that is being implemented;
a demonstration of why the pseudocode implementation satisfies the correct-

83

ness condition on sequentially-consistent hardware is also likely to be required.
Given this information, it may be possible to devise an algorithm that accu-
rately determines which pairs of memory accesses need barriers between them
when the memory model is relaxed. In the absence of an automated method, the
accepted technique is to determine manually, and in an ad hoc fashion, where
barriers need to be placed. I base these decisions on analysis of the pseudocode;
essentially applying an informal version of the analysis method described above.
This is backed up with extensive testing on real hardware, the results of which
are checked off-line using a formal model of correctness. I describe this method
of testing in greater detail in the next section.

A simple illustration of this analysis is provided by the implementation of MCAS,
which consists of two phases with a decision point between them. Successful
MCAS operations linearise (must appear to atomically execute) when their sta-
tus field is updated to successful, during execution of the decision point. This
update must occur after all writes in the first phase of the algorithm; other pro-
cesses might otherwise see the MCAS descriptor in some locations, and therefore
see the new value, but still see the old value in other locations. A similar argu-
ment can be applied to writes in the second phase: updates which replace the
descriptor reference with the new value must be applied after the decision point,
otherwise locations which still contain the descriptor reference will appear to
still contain their old value. On some processor architectures, such as Alpha and
SPARC, write barriers are required immediately before and after the decision
point to guarantee these two ordering constraints. These barriers guarantee that
all previous memory writes are visible to other processors before any later writes
are executed.

A further complication for an implementation which must run on multiple pro-
cessor architectures is that each requires different barrier placements. The ap-
proach I have taken is to determine where barriers would be required by an ar-
chitecture which provides the minimal consistency guarantees described in Sec-
tion 5.3.1, and insert barrier functions into the implementation as necessary. For
each supported architecture I then map the barrier functions to the required ma-
chine instruction, or to a no-operation if the architecture implicitly guarantees
the order. For example, Intel IA-32 guarantees that memory writes will commit
in-order: explicit write barriers are therefore not required.

Even when the processor does not require an explicit barrier instruction, a hint
must sometimes be provided to the compiler so that it does not reorder criti-
cal memory accesses, or cache shared-memory values in local registers, across
memory barriers. In my C-based implementations, barriers are implemented as
assembly fragments that are not analysed by the compiler. Most C compilers will

84

5.34

therefore conservatively assume that shared memory is accessed and updated by

the barrier!

, even when it is empty or a no-op instruction. One exception is
the GNU compiler, gcc, which needs to be told explicitly what is accessed or
updated by an assembly fragment. This requires menory to be added to the list
of ‘clobbered’ values for each of the barrier fragments, so that memory accesses
are not reordered across the barrier, and all cached shared-memory values are

invalidated.

Very relaxed consistency models

Finally, it is worth mentioning the complications that arise if a processor ar-
chitecture does not guarantee the assumed minimal consistency guarantees. A
real-world example is provided by the Alpha 21264, which does not guarantee
dependency consistency [DEC92]. It is not immediately obvious how an imple-
mentation of the 21264 might violate this guarantee: how can a memory access
be executed before the instruction which computes the access address, for exam-
ple? One possibility is that value speculation is used to guess the access address
before it is computed: this allows the access to be executed early, and validated
later when the address is known with certainty. Although no current processor
implements value speculation, in practise the 21264 still violates dependency
consistency because of its relaxed cache-coherency protocol [Alp00]. When a
cache line is requested for exclusive access, an invalidate request is broadcast to
other processors so that they will throw away stale versions of the line. Most
processors will act on the invalidation request before sending an acknowledge-
ment back to the originating processor; however, the 21264 relaxes this require-
ment by allowing a processor to acknowledge the broadcast as soon as it enters
its request queue. The originating processor can therefore update the cache line,
and execute past write barriers, while stale versions of the line still exist!

This relaxation of consistency means that certain lock-free programming idioms
cannot be straightforwardly implemented for the 21264. Consider allocating,
initialising and inserting a new node into a linked list. On most processors, the
only explicit synchronisation that is required is a write barrier immediately be-
fore the new node is inserted. Since other processes must read a reference to the
new node before they can access its contents, such accesses are data-dependent
on the read which finds the reference. The single write barrier executed by the in-
serting process is therefore sufficient to ensure that any process that observes the
new node will see correctly-initialised data. This is not the case for the 21264,

however: unless a read barrier is executed by the reading process it may see stale

"The same assumption is made for function calls to other object files, which also cannot be
analysed by the compiler.

85

5.4

data when it accesses the contents of the node. One solution which I considered
for my search-structure implementations is to execute a read barrier each time
a node is traversed. Unfortunately this significantly reduces performance — by
around 25% in my experiments. Instead, I pre-initialise heap memory with an
otherwise-unused garbage value, and ensure that this is visible to all processors
before I allow the memory to be allocated. Each time an operation reads from a
node it checks the value read against the garbage value and, if it matches, a read
barrier is executed before repeating the access. This vastly reduces the number of
executed barrier instructions, but at the cost of extra programming complexity
and specialisation for a particular type of processor.

Note that lock-based applications do not need special attention to execute cor-
rectly on the 21264, provided that shared data is only ever accessed after the
appropriate lock is acquired. This even applies to highly-concurrent designs in
which the locks themselves are dynamically allocated. Consider a version of the
linked-list example which uses per-node locks: if a lock is acquired before any
other field is accessed then that is sufficient to ensure that no stale data relating
to the node exists in the cache. This is because the lock field is accessed using
a read-modify-write instruction which gains exclusive access to the cache line
and handles any pending invalidate request for that line. Furthermore, as de-
scribed in Section 5.3.2, the acquire operation will contain a barrier instruction
which ensures that memory accesses within the critical region will not act on
stale data. Locking also removes the need for the write barrier before insertion:
an adequate barrier will be executed by the lock’s release operation.

Summary

I used the techniques described in this section to implement a portable library of
lock-free abstractions and structures for Alpha, Intel IA-32, Intel IA-64, MIPS,
PowerPC and SPARC processor families. Most of the library is implemented in
portable C code. The epoch-based garbage collector is implemented as an inde-
pendent module that is linked with each data-structure implementation. Refer-
ence counting, object aggregation and descriptor identification are implemented
directly within the MCAS and FSTM modules: this allows some degree of code
specialisation to tailor the implementation to its particular use.

Architecture-specific issues are abstracted by a set of macro definitions in a per-
architecture header file. Each header file encapsulates all the non-portable as-
pects of the implementation, and exports them via a set of uniformly-named

macros:

86

Macro declaration Comments

MB() Full memory barrier

RVB() Read memory barrier

WVB() Write memory barrier

CAS(a, e, n) CAS, returning previous contents of a

These macros are implemented in the form of small pieces of inline assembly
code. Each memory-barrier macro is implemented by a single machine instruc-
tion; the sole exception is WVB on Intel IA-32, which requires no implementation
because the architecture commits all memory writes in program order. The CAS
macro is implemented using a hardware CAS instruction where that is available;
on Alpha, MIPS and PowerPC I instead use a loop based on load-linked and
store-conditional.

These macro definitions are sufficient to reconcile the non-portable aspects of
almost all the various supported processor architectures. Alpha is the one ex-
ception which, as discussed in the previous section, needs special care to handle
the possible reordering of dependent memory accesses. For example, I ensure
that allocated objects are initialised to a known value that is visible to all pro-
cesses, the garbage collector has an extra epoch delay before reusing defunct
objects, during which time they are initialised to zero. By the time these objects
are reused the epoch will have changed and all processes will have started at
least one new critical section, and will thus have executed the necessary memory
barrier. Note that the Alpha architecture was retired several years ago by Com-
paq, and is now almost at the end of its life. No other processor architecture
relaxes the ordering between dependent memory accesses.

In the next chapter I present an evaluation of my lock-free implementations on a
modern SPARC multiprocessor system. However, the performance on other ar-
chitectures is very similar since the implementation differences are small. Perfor-
mance variations are expected across different execution platforms, even within
the same processor family, due to differences in CPU speed and memory subsys-
tem.

87

88

6.1

Chapter 6

Evaluation

In the previous chapter I discussed how the abstract pseudocode presented in
Chapters 3 and 4 could be turned into practical implementations for a range of
modern processor architectures. In this chapter I discuss how I validated the cor-
rectness of the resulting library of lock-free algorithms by processing operation-
invocation logs using an off-line model checker. I then present a performance
evaluation of the previously-discussed search structure designs on a modern
large-scale SPARC multiprocessor system. Since many of these structures are
built using the MCAS and FSTM designs from Chapter 3, my evaluation also
demonstrates the effectiveness of these primitives, and allows a comparison be-
tween them when they are used to implement ‘real world’ data structures.

Correctness evaluation

The C implementations of my lock-free algorithms are sufficiently complex that
some form of testing is required to ensure that they are free of errors. Testing
the final implementations, rather than relying on analysis of the underlying al-
gorithms, has the advantage that it encompasses aspects of the system that are
not considered in abstract pseudocode. This is particularly important for lock-
free algorithms for which issues such as placement of memory barriers can allow
subtle synchronisation bugs to creep in.

Run-time testing is, of course, limited to validating only the executions that
happen to occur during a finite set of test runs. However, other methods of
validating algorithms have their own weaknesses. Manual proofs of correctness
are very popular in the literature but tend to be complex and difficult to check;
there is also a considerable danger of making subtle invalid assumptions in a
complex proof. For example, while implementing a search tree design by Kung
and Lehman, which is accompanied by a ‘proof of correctness’ [Kung80], I was

89

hindered by a bug in their deletion algorithm — this highlights the danger of
substituting manual proof for implementation and testing. Automatic model
checkers are usually based on a search algorithm that can check only limited test
cases, or that requires significant simplification of the algorithm being checked
to produce a finite-state model.

The approach I take here is to log information about the operation invocations
executed by a number of parallel processes running a pseudo-random workload.
The log contains an entry for each operation invocation executed by each pro-
cess. Each entry specifies the operation that was invoked, its parameters, its final
result, and a pair of system-wide timestamps taken when the invocation began
and when it completed.

This log is processed by an off-line model checker which searches for a linearised
execution of the invocations that: (i) follows the requirement that an operation
appears to atomically occur at some point during the time that it executes, and
(ii) obeys the semantics of the abstract data type on which the operations act.
Condition (i) requires that any invocation B which begins executing after some
invocation A completes must be placed after A in the linearised execution; oth-
erwise B might appear to execute before it is invoked, or A might appear to
execute after it completes. Condition (i) simply means that the result of each
invocation in the serialised execution must match the result of simulating the
execution on the abstract data type.

Wing and Gong prove that finding such a schedule for an unconstrained parallel
execution is NP-complete [Wing93]. In the absence of a faster solution I use a
greedy algorithm which executes a depth-first search to determine a satisfactory
ordering for the invocations. Each step of the search selects an operation invo-
cation from the set S of those not already on the search path. A valid selection
must be consistent with the current state of the abstract data type and must have
a start timestamp smaller than the earliest completion timestamp in S. These
conditions ensure that abstract state remains consistent and that time ordering
is conserved. When an operation invocation is added to the search path, the
abstract state is modified as appropriate.

Since I need to check only the search structure designs described in Chapter
4, I make two simplifications to the checking algorithm. Firstly, checking ab-
stract state is simple: the state of the set datatype, as described in Section 4.2,
is represented by an array of values, indexed by key. Emulating or validating
an operation invocation requires a single array access. Furthermore, since the
only valid operations are lookup, update and remove, each of which depends
only on the current state of a single key, operations which act on different keys
can be linearised independently. This allows much larger logs to be processed

90

6.2

within a reasonable time: for a log of size N describing operations on a set with
maximum key K, the search algorithm is applied to logs of expected size N/K.
Since the expected execution time of the depth-first search is super-linear, this
is much faster than directly validating a log of size N. Furthermore, the search
algorithm can be applied to each key in parallel, making it practical to validate
longer test runs on a multiprocessor system.

The more executions of an implementation that are tested, the more confident
we can be that it contains no errors. A non-linearisable execution is firm evi-
dence that the implementation, and perhaps the original algorithm, is incorrect;
furthermore, it often gives some indication of where the bug lies. Since the
off-line scheduler performs a worst-case exponential-time search, the most ef-
fective way to test many operation invocations is to execute lots of very small
test runs. I tested each implementation for an hour on an UltraSPARC-based
four-processor Sun Fire V480 server. The log file from each run was copied to
a separate machine which ran the off-line checker. It is my experience that an
hour’s testing by this method is sufficient to find even very subtle bugs. Incorrect
implementations always created an invalid log within a few minutes; conversely,
I never found a bug in any implementation that was successfully tested for more
than half an hour.

Performance evaluation

All experiments were run on a Sun Fire 15K server populated with 106 Ul-
traSPARC III processors, each running at 1.2GHz. The server comprises 18
CPU/memory boards, each of which contains four processors and several giga-
bytes of memory. The boards are plugged into a backplane that permits commu-
nication via a high-speed crossbar interconnect. A further 34 processors reside
on 17 smaller CPU-only boards.

I submitted benchmark runs to a 96-processor dispatch queue. I limited ex-
periments to a maximum of 90 processes to ensure that each process could be
bound to a unique physical processor with minimal risk of migration between
processors or preemption in favour of system tasks.

Each experiment is specified by three adjustable parameters:

S — The search structure, or set, that is being tested
P — The number of parallel processes accessing the set
K — The average number of unique key values in the set

The benchmark program begins by creating P processes and an initial set, im-

91

6.2.1

6.2.1.1

plemented by S, containing the keys 0, 2, 4, ..., 2K. All processes then enter a
tight loop which they execute for 10 wall-clock seconds. On each iteration they
randomly select whether to execute a lookup (p = 75%), update (p = 12.5%), or
remove (p = 12.5%). This distribution is chosen because reads dominate writes
in many observed real workloads; it is also very similar to the distributions used
in previous evaluations of parallel algorithms [Mellor-Crummey91b, Shalev03].
When 10 seconds have elapsed, each process records its total number of com-
pleted operations. These totals are summed and used to calculate the result of
the experiment: the mean number of CPU-microseconds required to execute a
random operation.

I chose a wall-clock execution time of 10 seconds because this is sufficient to
amortise the overheads associated with warming each processor’s data caches,
and starting and stopping the benchmark loop. Running the benchmark loop
for longer than 10 seconds does not measurably affect the final result.

Alternative lock-based implementations

To provide a meaningful baseline for evaluation of the various lock-free data
structures, I have implemented a range of alternative lock-based designs. In
this section I briefly describe each of the designs that I implemented, including
several that improve on the previous best-known algorithm. I indicate beside
each design, in bold face, the name by which I refer to it in the results section. I
conclude this section by describing the scalable lock implementations on which

I build the lock-based designs.
Skip lists

Per-pointer locks

Pugh describes a highly-concurrent skip list implementation which uses per-
pointer mutual-exclusion locks [Pugh90a]. Any update to a pointer must be
protected by its lock. As discussed in Chapter 4, deleted nodes have their point-
ers updated to link backwards thus ensuring that a search correctly backtracks
if it traverses into a defunct node.

Per-node locks

Although per-pointer locking successfully limits the possibility of conflicting pro-
cesses, the overhead of acquiring and releasing so many locks is an important
consideration. I therefore also implemented Pugh’s design using per-node locks.
The operations are identical to those for per-pointer locks, except that a node’s
lock is acquired before it is first updated and continuously held until after the
final update to the node. Although this slightly increases the possibility of con-

92

6.2.1.2

6.2.1.3

flict between processes, in many cases this is more than repaid by the reduced
locking overheads.

Binary search trees

There are at least two existing concurrent search-tree designs which use per-node
mutual-exclusion locks, both of which are motivated by the need for efficient
querying in database systems.

Per-node locks (Kung)

Kung and Lehman [Kung80] note that deletion is the hardest operation to im-
plement. They deal with this by deleting only nodes with at most one subtree.
A node which has two subtrees is moved down the tree using standard rotation
transformations until it satisfies the required property. However, each rotation
requires two nodes to be replaced, to ensure consistency with other operations.
Furthermore the rotations can cause the tree to become very unbalanced, so the
algorithm attempts to apply the appropriate number of reverse rotations after
the node is deleted; this may not be possible if concurrent updates have occurred.

Per-node locks (Manber)

Manber and Ladner [Manber84] describe a rather different approach that deals
directly with nodes having two subtrees. Their solution is to replace the deleted
node with a copy of its predecessor. Removal of the old version of the prede-
cessor is postponed until all concurrent tree operations have completed. This
is feasible only if a maintenance process is able to determine the complete set
of currently-live operations. Each node may be tagged to indicate whether it is
a redundant copy to be eliminated by the maintenance process, whether it is a
copy of a previous node, and whether it is garbage. Interpreting and maintaining
these tags correctly significantly complicates the algorithm.

Per-node locks (Fraser)

The principles applied in my threaded lock-free design can be transferred to a de-
sign that uses locks. As with the existing lock-based designs, this avoids the need
for search operations to acquire locks. Operations which modify the tree must
lock nodes which have any of their fields updated. To prevent deadlock, locks
are acquired down the tree; that is, nodes nearest to the root are acquired first.
This simple locking strategy, applied to a threaded representation, allows an ef-
ficient BST implementation with no need for a maintenance process or costly
rotations.

Red-black trees

As I noted in Chapter 4, there are no existing designs for highly-parallel red-
black trees. I therefore implemented two designs of my own: the first serialises

93

6.2.1.4

6.2.2

all write operations using a single mutual-exclusion lock; and the second relaxes
this constraint to allow greater parallelism. The designs, which I call serialised
writers and concurrent writers in my evaluation, are described in greater detail
in Section 4.5.2.

Mutual-exclusion locks and multi-reader locks

To achieve good performance on a highly-parallel system such as the Sun Fire
server, these lock-based designs require carefully-implemented lock operations.

I implement mutual-exclusion locks using Mellor-Crummey and Scott’s scalable
queue-based spinlocks [Mellor-Crummey91a]. MCS locks avoid unnecessary
cache-line transfers between processors that are spinning on the same lock by
requiring each invocation of the acquire operation to enqueue a ‘lock node’
containing a private busy-wait flag. Each spinning process is signalled when it
reaches the head of the queue, by the preceding process when it calls the release
operation. Although seemingly complex, the MCS operations are highly com-
petitive even when the lock is not contended; an uncontended lock is acquired or
released with a single read-modify-write access. Furthermore, contended MCS
locks create far less memory traffic than standard test-and-set or test-and-test-
and-set locks.

Where multi-reader locks are required I use another queue-based design by the
same authors [Mellor-Crummey91b]. In this case each element in the queue is
tagged as a reader or a writer. Writers are removed from the queue one-by-one
and enjoy exclusive access to the protected data. When a reader at the head
of the queue is signalled it also signals the reader immediately behind it, if one
exists. Thus a sequence of adjacently-queued readers may enter their critical
regions simultaneously when the first of the sequence reaches the head of the

queue.

Alternative non-blocking implementations

The lock-free MCAS algorithm presented in Chapter 3 cannot be fairly com-
pared with any of the existing non-blocking designs from the literature. Each
of the previous MCAS designs places at least one significant constraint on the
locations that they update. For example, Israeli and Rappaport reserve a bit per
process in each updated word [Israeli94]; this limits synthetic tests to at most
64 processors, and practical tests to far fewer so that there is space left in each
word for application data. These limitations put the alternative designs beyond
practical use for the dynamic MCAS-based designs in Chapter 4.

My STM-based search structures are evaluated using both FSTM and Herlihy

94

6.2.3

6.2.3.1

et al.’s obstruction-free STM. Since the FSTM programming interface borrows
heavily from their design, switching between the two designs is generally straight-
forward. One exception is that the restricted form of early release (Section 3.3.3)
they provide cannot be applied to the red-black tree’s ‘sentinel node’ (Section 4.5).
This is because the sentinel node is opened for writing by all insertions and dele-
tions, but the restricted early release operates only on read-only objects. I avoid
this potential performance bottleneck by extending their transactional interface
to allow particular objects to be registered with non-transactional semantics.
Registered objects are accessed via the transactional interface in the usual way
but are not acquired nor validated during a transaction’s commit phase; in-
stead, remote updates are ignored and updates by the committing transaction
are thrown away. This interface extension is used by the red-black tree bench-
mark to register the sentinel node before measurements begin.

Results and discussion

In this section I present performance results for each of the parallel search struc-
ture designs that I described in Chapter 4. The results are split across a number
of figures, each of which shows experimental results for one class of search struc-
ture: either skip lists, binary search trees, or red-black trees.

Scalability under low contention

The first set of results measure performance when contention between concur-
rent operations is very low. Each experiment runs with a mean of 2'° keys in
the set, which is sufficient to ensure that parallel writers are extremely unlikely
to update overlapping sections of the data structure. A well-designed algorithm
which avoids unnecessary contention between logically non-conflicting opera-
tions should scale extremely well under these conditions.

Note that all the graphs in this section show a significant drop in performance
when parallelism increases beyond 5 to 10 processors. This is due to the archi-
tecture of the underlying hardware: small benchmark runs execute within one or
two processor ‘quads’, each of which has its own on-board memory. Most or all
memory reads in small runs are therefore serviced from local memory which is
considerably faster than transferring cache lines across the switched inter-quad
backplane.

Figure 6.1 shows the performance of each of the skip-list implementations. As
expected, the STM-based implementations perform poorly compared with the
other lock-free schemes; this demonstrates that there are significant overheads

associated with maintaining the lists of opened objects, constructing shadow

95

35
CAS-based —S—
FSTM-based —H—
Herlihy-STM-based —&—
30 - Per-pointer locks —@—
Per-node locks —A— L
%)
3 25 |
.y
c
ie]
£ %
5 L
(@) g 0
g
o 15
£
=
2
10 +
© b
o ° - ° - - 7
5
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Processors
25
CAS-based —S—
FSTM-based —5—
Herlihy-STM-based —&—
Per-pointer locks —@—
20 F Per-node locks —A—
" A
R
) A
=
c
ie]
® 15
i
(b) 2 0 =
o) H =
N
[]
o
] [
§ 10
o]
o
O
5@ 2
0 1 1 1
1 2 3 4 5

Processors

Figure 6.1: Graph (a) shows the performance of large skip lists (K = 2!9) as parallelism
is increased to 90 processors. Graph (b) is a ‘zoom’ of (a), showing the
performance of up to 5 processors.

copies of updated objects, and validating opened objects. Interestingly, under
low contention the MCAS-based design has almost identical performance to
the much more complicated CAS-based design — the extra complexity of using
hardware primitives directly is not always worthwhile. Both schemes surpass
the two lock-based designs, of which the finer-grained scheme is slower because
of the costs associated with traversing and manipulating the larger number of
locks.

Figure 6.2 shows results for the binary search tree implementations. Here the
MCAS scheme performs significantly better than the lock-based alternatives,
particularly as parallelism increases. This can be attributed to better cache lo-

96

Per-node locks (Fraser) —@—
Per-node locks (Manber) —A&—
6 Per-node locks (Kung) —&—
[%)
3 5
-
c
ie]
[
[
(@) g
g
o 3
£
=
Y
2 =
O
1F
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Processors
Per-node locks (Fraser) —@—
Per-node locks (Manber) —&—
Per-node locks (Kung) —&—
%)
3
=
c
ie]
©
@
(b) &
o
o
[]
o
]
£
=) 15
o
O
1
0.5

0 ! ! !
1 2 3 4 5

Processors

Figure 6.2: Graph (a) shows the performance of large binary search trees (K = 2'°)
as parallelism is increased to 90 processors. Graph (b) is a ‘zoom’ of (a),
showing the performance of up to 5 processors.

cality: the lock field adds a 33% space overhead to each node. Despite being
simpler, my own lock-based design performs at least as well as the alternatives.

Figure 6.3, presenting results for red-black trees, gives the clearest indication of
the benefits of lock-free programming. Neither of the lock-based schemes scales
effectively with increasing parallelism. Surprisingly, the scheme that permits par-
allel updates performs hardly any better than the much simpler and more conser-
vative design. This is because the main performance bottleneck in both schemes
is contention when accessing the multi-reader lock at the root of the tree. Al-
though multiple readers can enter their critical region simultaneously, there is
significant contention for updating the shared synchronisation fields within the

97

400
FSTM-based —5—
Herlihy-STM-based —&— >
Lock-based (serialised writers) —@—
350 Lock-based (concurrent writers) —A&—
[%)
3
g
c
ie]
@
[
(@) g
@
a
]
£
=
o)
o
O
0 10 20 30 40 50 60 70 80 90
Processors
30
FSTM-based —H— N
Herlihy-STM-based —&—
Lock-based (serialised writers) —@—
Lock-based (concurrent writers) —&—
%)
3
=
c
ie]
<]
@
(b) &
o
=
[]
a
]
£
o]
o
O
0 1 1 1

1 2 3 4 5
Processors

Figure 6.3: Graph (a) shows the performance of large red-black trees (K = 219) as par-
allelism is increased to 90 processors. Graph (b) is a ‘zoom’ of (a), showing
the performance of up to 5 processors.

lock itself. Put simply, using a more permissive type of lock (i.e., multi-reader)
does not improve performance because the bottleneck is caused by cache-line
contention rather than lock contention.

In contrast, the STM schemes scale very well because transactional reads do
not cause potentially-conflicting memory writes in the underlying synchronisa-
tion primitives. FSTM is considerably faster then Herlihy’s design, due to better
cache locality. Herlihy’s STM requires a triple-indirection when opening a trans-
actional object: thus three cache lines are accessed when reading a field within
a previously-unopened object. In contrast my scheme accesses two cache lines;
more levels of the tree fit inside each processor’s caches and, when traversing

98

6.2.3.2

60
’7 CAS-based —5—

Per-pointer locks —@—
Per-node locks —&—

50

40 +

CPU time per operation / ps

7 28 29 210 211 212 213 214 215 216 217 218 219

Mean set size

Figure 6.4: Effect of contention on concurrent skip lists (P = 90).

levels that do not fit in the cache, 50% fewer lines must be fetched from main

memory.
Performance under varying contention

The second set of results shows how performance is affected by increasing con-
tention — a particular concern for non-blocking algorithms, which usually as-
sume that conflicts are rare. This assumption allows the use of optimistic tech-
niques for concurrency control; when conflicts do occur they are handled using
a fairly heavyweight mechanism such as recursive helping. Contrast this with
using locks, where an operation assumes the worst and ‘announces’ its intent
before accessing shared data. As I showed in the previous section, this approach
introduces unnecessary overheads when contention is low: fine-grained locking
requires expensive juggling of acquire and release invocations. The results here
allow us to investigate whether these overheads pay off as contention increases.
All experiments are executed with 90 parallel processes (P = 90).

Figure 6.4 shows the effect of contention on each of the skip-list implementa-
tions. It indicates that there is sometimes a price for using high-level abstractions
such as MCAS. The poor performance of MCAS when contention is high is be-
cause many operations must retry several times before they succeed: it is likely
that the data structure will have been modified before an update operation at-
tempts to make its modifications globally visible. In contrast, the carefully-
implemented CAS-based scheme attempts to do the minimal work necessary to
update its ‘view’ when it observes a change to the data structure. This effort
pays off under very high contention; in these conditions the CAS-based design

99

60

Per-node locks (Fraser) —@—
Per-node locks (Manber) —&—
Per-node locks (Kung) —&—

50 F

40 +

CPU time per operation / ps

28 29 210 211 212 213 214 215 216 217 218 219

Mean set size

Figure 6.5: Effect of contention on concurrent binary search trees (P = 90).

performs as well as per-pointer locks. These results also demonstrate a par-
ticular weakness of locks: the optimal granularity of locking depends on the
level of contention. Here, per-pointer locks are the best choice under very high
contention, but they introduce unnecessary overheads compared with per-node
locks under moderate to low contention. Lock-free techniques avoid the need
to make this particular tradeoff. Finally, note that the performance of each im-
plementation drops as the mean set size becomes very large. This is because the
time taken to search the skip list begins to dominate the execution time.

Figure 6.5 shows performance results for binary search trees. As with skip lists,
it demonstrates that MCAS-based synchronisation is not the best choice when
contention is high. However, its performance improves quickly as contention
drops: the MCAS scheme performs as well as the lock-based alternatives on
a set containing just 256 keys. Further analysis is required to determine why
Kung’s algorithm performs relatively poorly under high contention. It is likely
due, however, to conflicts introduced by the rotations required when deleting

internal tree nodes.

Finally, Figure 6.6 presents results for red-black trees, and shows that locks are
not always the best choice when contention is high. Both lock-based schemes
suffer contention for cache lines at the root of the tree where most operations
must acquire the multi-reader lock. The FSTM-based scheme performs best
in all cases, although conflicts still significantly affect its performance. Her-
lihy’s STM performs comparatively poorly under high contention, despite a
contention-handling mechanism which introduces exponential backoff to ‘po-
litely’ deal with conflicts. Furthermore, the execution times of individual opera-

100

6.3

600 25

FSTM-based —H—
Herlihy-STM-based —&—
Lock-based (serialised writers) —@—
Lock-based (concurrent writers) —&—

500

400

2000}

CPU time per operation / ps

100

28 29 210 211 212 213 214 215 216 217 218 219

Mean set size

Figure 6.6: Effect of contention on concurrent red-black trees (P = 90).

tions are very variable, which explains the performance ‘spike’ at the left-hand
side of the graph. This low and variable performance is caused by sensitivity
to the choice of back-off rate: I use the same values as the original authors,
but these were chosen for a Java-based implementation of red-black trees and
they do not discuss how to choose a more appropriate set of values for different
circumstances. A dynamic scheme which adjusts backoff according to current
contention might perform better; however, this is a topic for future research.

Summary

The results I have presented in this chapter demonstrate that well-implemented
lock-free algorithms can match or surpass the performance of state-of-the-art
lock-based designs in many situations. Thus, not only do lock-free synchro-
nisation methods have many functional advantages compared with locks (such
as freedom from deadlock and unfortunate scheduler interactions), but they can
also be implemented on modern multiprocessor systems with better performance
than traditional lock-based schemes.

Figure 6.7 presents a comparison of each of the synchronisation techniques that
I have discussed in this dissertation. The comparative rankings are based on ob-
servation of how easy it was to design practical search structures using each tech-
nique, and the relative performance results under varying levels of contention
between concurrent update operations. CAS, MCAS and FSTM represent the
three lock-free techniques that I have evaluated in this chapter. RW-locks repre-

101

Run-time performance

Rank Ease of use Low contention High contention
1 FSTM CAS, MCAS CAS, W-locks
2 RW-locks — —
3 MCAS W-locks MCAS
4 W-locks FSTM FSTM
5 CAS RW-locks RW-locks

Figure 6.7: Effectiveness of various methods for managing concurrency in parallel ap-
plications, according to three criteria: ease of use for programmers, perfor-
mance when operating within a lightly-contended data structure, and perfor-
mance within a highly-contended data structure. The methods are ranked
under each criterion, from best- to worst-performing.

sents data structures that require both read and write operations to take locks:
these will usually be implemented using multi-reader locks. W-locks represents
data structures that use locks to synchronise only write operations — some other
method may be required to ensure that readers are correctly synchronised with
respect to concurrent updates.

In situations where ease of use is most important, FSTM and RW-locks are the
best choices because they both ensure that readers are synchronised with concur-
rent updates. FSTM is ranked above RW-locks because it avoids the need to con-
sider issues such as granularity of locking and the order in which locks should be
acquired to avoid deadlock. MCAS and W-locks have similar complexity: they
both handle synchronisation between concurrent updates but an out-of-band
method may be required to synchronise readers. Like FSTM, MCAS is ranked
higher than W-locks because it avoids implementation issues that pertain only to
locks. CAS is by far the trickiest abstraction to work with because some method
must be devised to efficiently ‘tie together’ related updates to multiple memory
locations.

When access to a data structure is not commonly contended, CAS and MCAS
both perform very well. W-locks tend to perform slightly worse because of re-
duced cache locality compared with lock-free techniques, and the overhead of
juggling locks when executing write operations. FSTM performs worse than
CAS, MCAS and W-locks because of transactional overheads and the need to
double read object headers to ensure that transactional reads are consistent dur-
ing commit. RW-locks generally perform worst of all, particularly for a data
structure which has only one point of entry: this root can easily become a per-

formance bottleneck due to concurrent updates to fields within its multi-reader
lock.

Under high contention, CAS-based designs perform well if they have been care-

102

fully designed to do the least possible work when an inconsistency or conflict is
observed — however, this may require a very complicated algorithm. The extra
space and time overheads of W-locks pay off under very high contention: MCAS
performs considerably worse because memory locations are very likely to have
been updated before MCAS is even invoked. FSTM also suffers because it, like
MCAS, is an optimistic technique which detects conflicts after time has been
spent executing a potentially expensive operation. However, it will still perform
better than RW-locks in many cases because contention at the root of the data
structure is still the most significant performance bottleneck for this technique.

If a data structure needs to perform well under greatly varying contention, then
it may appear that direct use of CAS is the best option. Unfortunately the com-
plexity of using CAS directly puts this option beyond reasonable use in most
cases. Another possibility is to implement a hybrid scheme; for example, based
on both MCAS and W-locks. Run-time performance feedback might then be
used to dynamically select which technique to use according to the current level
of contention. However, further research is required to determine whether the
overheads of run-time profiling and switching between synchronisation primi-
tives are outweighed by the benefits of using the most appropriate technique at
any given time.

103

104

7.1

Chapter 7

Conclusion

In this dissertation I have introduced a number of techniques for managing the
complexity of practical lock-free algorithms, and used these to implement real-
world data structures. Experimental results demonstrate that my designs per-
form at least as well as, and often surpass, lock-based alternatives under reason-
able levels of contention, yet provide all the usual benefits of lock-free design,
including freedom from deadlock, no risk of lock convoying, and no need to
choose between different locking granularities. In this chapter I summarise my
contributions and describe some potential avenues for future research.

Summary

In Chapter 1 I began by motivating the need for alternatives to mutual exclu-
sion when implementing highly-concurrent data structures. I then presented my
thesis, that the practical lock-free programming abstractions I introduce in this
dissertation allow a range of real-world data structures to be implemented for
modern multiprocessor systems. Furthermore, these implementations can of-
fer reduced complexity and improved performance compared with alternative
lock-based and lock-free designs.

In Chapter 2 I discussed terminology and related work in the field of lock-free
programming. The existing lock-free algorithms and techniques described in this
chapter are impractical for general use in real applications due to excessive run-
time overheads, or unrealistic constraints placed on the layout of shared memory
or the structure of overlying applications.

In Chapter 3 I presented the main contribution of this dissertation: the first
practical lock-free MCAS and STM designs. These make it easier to implement
lock-free data structures, while incurring a very reasonable overhead compared

with direct use of hardware primitives.

105

7.2

In Chapter 4 I presented a range of lock-free designs for real-world data struc-
tures, including skip lists, binary search trees, and red-black trees. Together
these represent a further major contribution of this dissertation. Some of these
designs are based on the abstractions presented in Chapter 3, providing insight
into how they can simplify the programmer’s task compared with direct use of
atomic primitives such as CAS.

In Chapter 5 I discussed the issues raised when implementing the pseudocode
designs of Chapters 3 and 4 on real hardware. These issues have frequently
been ignored in previous work, but must be resolved to produce useful imple-
mentations for modern processor architectures.

Finally, in Chapter 6 I described how I tested my lock-free implementations
for correctness. I then presented performance results for each of the lock-free
and lock-based search structures running a parallel workload. Since many of
the search structures are implemented using MCAS or FSTM, these results also
demonstrate the practicality of these abstractions.

In conclusion, my thesis — that practical lock-free programming abstractions
can be deployed on modern multiprocessor systems, and that this greatly sim-
plifies the implementation of competitive lock-free data structures — is justified
as follows. Firstly, I presented efficient designs for two suitable abstractions in
Chapter 3. Secondly, the simple MCAS- and FSTM-based search structures that
I presented in Chapter 4 demonstrate that real-world algorithms can be imple-
mented over these high-level abstractions. Finally, the performance results in
Chapter 6 show that structures implemented over these abstractions can match
or surpass intricate lock-based designs. Using the lock-free programming ab-
stractions that I have presented in this dissertation, it is now practical to deploy
lock-free techniques, with all their attendant advantages, in many real-world sit-
uations where lock-based synchronisation would traditionally be the only viable
option.

Future research

Obstruction-freedom is a recently-proposed progress guarantee for non-blocking
algorithms which may eventually result in more efficient parallel applications.
However, it is not yet clear whether this weaker guarantee will allow efficient
implementation of a richer set of data structures. Further investigation of the
‘programming tricks’ that are permitted by obstruction-freedom, and deeper
analysis of suitable contention-avoidance schemes, is required. For example,
obstruction-freedom allows operations to abort each other, rather than introduc-

106

ing a mechanism for recursive helping. Obstruction-freedom may permit other
performance-enhancing techniques that are disallowed in lock-free programs.

Efficient implementations of high-level abstractions are an important step to-
wards deployment of lock-free techniques in real-world computer systems. How-
ever, there remains the problem of how these abstractions can best be presented
to application programmers. Together with Harris I have made some progress
in this area: they discuss how transactions can be presented in the Java pro-
gramming language by introducing the atomic {...} construction [Harris03].
Shared-memory accesses within an atomic block are executed with transactional
semantics.

Although lexical scoping of atomic regions looks attractive, it is not clear whether
it is suitable in all situations. Different styles of concurrent programming could
be investigated by introducing lock-free techniques into existing complex paral-
lel systems, such as operating systems. The locking protocols in such systems are
often complex: locks may be dynamically acquired and released, and the pro-
tocol must often interact with other concurrency mechanisms such as reference
counts. These systems would provide an excellent testbed for experimenting
with methods for applying lock-free techniques, and measuring the possible im-
provements in terms of reduced complexity and enhanced performance.

Finally, existing techniques for determining placement of memory barriers in
parallel programs are not ideal. Manual placement does not scale well to large
programs, and is prone to error. Furthermore, conservative placement is of-
ten required to produce a portable implementation that can be compiled for a
wide range of processor architectures. Investigating semi-automated placement
strategies would relieve some of this burden from the programmer and allow
optimised placements to be calculated separately for each supported processor
architecture. However, note that this is not an issue that affects users of lock-free
data structures since, unlike the underlying memory-access primitives, these im-
plementations are usually linearisable. Rather, automatic placement is intended
to assist experts in the development of high-performance lock-free programming
abstractions and data-structure libraries for use by mainstream application pro-
grammers.

107

108

Bibliography

[Adve96]

[Alemany92]

[Alp00]

[Anderson92]

[Anderson95]

[Anderson97]

[ArcangeliO3]

Sarita V. Adve and Kourosh Gharachorloo. Shared
Memory Consistency Models: A Tutorial. IEEE Com-
puter, 29(12):66-76, 1996. (p82)

Juan Alemany and Edward W Felten. Performance
issues in non-blocking synchronization on shared-
memory multiprocessors. In Proceedings of the 11th
Annual ACM Symposium on Principles of Distributed
Computing (PODC ’92), pages 125-134, August 1992.

(p18)

Alpha 21264/EV67 Microprocessor Hardware Refer-
ence Manual. Hewlett Packard, 2000. (p85)

Thomas E. Anderson, Brian N. Bershad, Edward D. La-
zowska, and Henry M. Levy. Scheduler Activations: Ef-
fective Kernel Support for the User-Level Management
of Parallelism. ACM Transactions on Computer Sys-
tems, 10(1):53-79, February 1992. (p19)

James H. Anderson and Mark Moir. Universal Con-
structions for Multi-Object Operations. In Proceedings
of the 14th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’95), pages 184-193,
August 1995. (p21)

James H. Anderson, Srikanth Ramamurthy, and Rohit
Jain. Implementing Wait-Free Objects on Priority-Based
Systems. In Proceedings of the 16th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC
’97), pages 229-238, August 1997. (p21)

Andrea Arcangeli, Mingming Cao, Paul McKenney, and
Dipankar Sarma. Using Read-Copy Update Techniques

109

[Barnes93]

[Bershad93]

[Brinch Hansen78]

[Cormen90]

[DEC92]

[Detlefs00]

[Detlefs01]

[Ellis80]

[Fischer835]

110

for System V IPC in the Linux 2.5 Kernel. In Proceed-
ings of the USENIX 2003 Annual Technical Conference,
FREENIX Track, pages 297-310, June 2003. (pp 26, 79)

Greg Barnes. A Method for Implementing Lock-Free
Data Structures. In Proceedings of the Sth Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 261-270, June 1993. (p19)

Brian N. Bershad. Practical Considerations for Non-
Blocking Concurrent Objects. In Proceedings of the
13th International Conference on Distributed Comput-
ing Systems, pages 264-274. IEEE, May 1993. (p18)

Per Brinch Hansen. Distributed Processes: A Concur-
rent Programming Concept. Communications of the
ACM, 21(11):934-941, November 1978. (p20)

Thomas Cormen, Charles Leiserson, and Ronald Rivest.
Introduction to Algorithms. MIT Press, 1990. (p69)

Alpha Architecture Handbook. Digital Press, 1992.
(pp17, 82, 85)

David Detlefs, Christine H. Flood, Alex Garthwaite,
Paul Martin, Nir Shavit, and Guy L. Steele, Jr. Even Bet-
ter DCAS-Based Concurrent Deques. In Proceedings of
the 14th International Symposium on Distributed Com-
puting (DISC ’00), pages 59-73. Springer-Verlag, 2000.
(p17)

David L. Detlefs, Paul A. Martin, Mark Moir, and Guy
L. Steele Jr. Lock-Free Reference Counting. In Proceed-
ings of the 20th Annual ACM Symposium on Principles
of Distributed Computing (PODC *01), pages 190-199,
August 2001. (p25)

Carla Ellis. Concurrent Search and Insertion in AVL
Trees. IEEE Transactions on Computers, C-29(9):811-
817, 1980. (p70)

M.]J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of Distributed Consensus with One Faulty
Processor. Journal of the ACM, 32(2):374-382, 1985.

(p17)

[Greenwald02]

[Greenwald96]

[Greenwald99]

[Hanke97]

[Hanke99]

[HarrisO1]

[Harris03]

Michael Greenwald. Two-Handed Emulation: How to
Build Non-Blocking Implementations of Complex Data
Structures Using DCAS. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed
Computing (PODC ’02), pages 260-269, July 2002.

(p19)

Michael Greenwald and David Cheriton. The Synergy
Between Non-blocking Synchronization and Operating
System Structure. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementation
(OSDI °96), pages 123-136. USENIX Association, Oc-
tober 1996. (pp24, 79)

Michael Greenwald. Non-Blocking Synchronization
and System Design. PhD thesis, Stanford University,
August 1999. Also available as Technical Report STAN-
CS-TR-99-1624, Stanford University, Computer Science
Department. (pp17, 21, 25)

Sabine Hanke, Thomas Ottmann, and Eljas Soisalon-
Soininen. Relaxed Balanced Red-Black Trees. In Pro-
ceedings of the 3rd Italian Conference on Algorithms
and Complexity, volume 1203 of Lecture Notes in Com-
puter Science, pages 193-204. Springer-Verlag, 1997.

(p71)

Sabine Hanke. The Performance of Concurrent Red-
Black Tree Algorithms. In Proceedings of the 3rd
Workshop on Algorithm Engineering, volume 1668 of
Lecture Notes in Computer Science, pages 287-301.
Springer-Verlag, 1999. (p70)

Tim Harris. A Pragmatic Implementation of Non-
Blocking Linked Lists. In Proceedings of the 15th Inter-
national Symposium on Distributed Computing (DISC
’01), pages 300-314. Springer-Verlag, October 2001.
(pp 24, 25,57)

Tim Harris and Keir Fraser. Language Support for
Lightweight Transactions. In Proceedings of the
18th Annual ACM-SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Appli-
cations (OOPSLA’03), October 2003. (pp23, 107)

111

[Herlihy02]

[Herlihy0O3a]

[HerlihyO3b]

[Herlihy88]

[Herlihy90a]

[Herlihy90b]

[Herlihy90c]

[Herlihy92]

112

Maurice Herlihy, Victor Luchangco, and Mark Moir.
The Repeat Offender Problem: A Mechanism for Sup-
porting Dynamic-Sized, Lock-Free Data Structures. In
Proceedings of the 16th International Symposium on
Distributed Computing (DISC ’02). Springer-Verlag,
October 2002. (pp26, 81)

Maurice Herlihy, Victor Luchangco, and Mark
Moir. Obstruction-Free Synchronization: Double-
Ended Queues as an Example. 1In Proceedings of
the 23rd IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, May 2003. (pp9,
15)

Maurice Herlihy, Victor Luchangco, Mark Moir, and
William Scherer. Software Transactional Memory for
Dynamic-Sized Data Structures. In Proceedings of the
22nd Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC ’03), pages 92-101, 2003.
(pp22, 35, 48)

Maurice Herlihy. Impossibility and Universality Results
for Walt-Free Synchronization. In Proceedings of the 7th
Annual ACM Symposium on Principles of Distributed
Computing (PODC ’88), pages 276-290, New York,
August 1988. (p17)

Maurice Herlihy. Apologizing Versus Asking Permis-
sion: Optimistic Concurrency Control for Abstract
Data Types. ACM Transactions on Database Systems,
15(1):96-124, March 1990. (p23)

Maurice Herlihy. A Methodology for Implement-
ing Highly Concurrent Data Objects. In Proceedings
of the 2nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 197-206,
March 1990. (p18)

Maurice Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Ob-
jects. ACM Transactions on Programming Languages
and Systems, 12(3):463-492, July 1990. (p 16)

Maurice Herlihy and]. Eliot B. Moss. Lock-Free

[Herlihy93a]

[Herlihy93b]

[Hoare74]

[Hoare85]

[IBM70]

[Intel03]

[Israeli94]

[Kung80]

[Kung81]

Garbage Collection on Multiprocessors. 1EEE Trans-
actions on Parallel and Distributed Systems, 3(3):304—
311, May 1992. (p25)

Maurice Herlihy. A Methodology for Implementing
Highly Concurrent Data Objects. ACM Transactions
on Programming Languages and Systems, 15(5):745-
770, November 1993. (pp17, 18)

Maurice Herlihy and]. Eliot B. Moss. Transactional
Memory: Architectural Support for Lock-Free Data
Structures. In Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture (ISCA
’93), pages 289-301. ACM Press, May 1993. (p21)

C. A. R. Hoare. Monitors: An Operating System
Structuring Concept. Communications of the ACM,
17(10):549-557, October 1974. Erratum in Commu-
nications of the ACM 18, 2 (Feb. 1975). (p20)

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985. (p20)

IBM. System/370 Principles of Operation. Order Num-
ber GA22-7000, 1970. (pp 17, 33)

Intel. Intel Itanium Architecture Software Developer’s
Manual, Volume 1: Application Architecture, Revision
2.1. 2003. (p82)

Amos Israeli and Lihu Rappoport. Disjoint-Access-
Parallel Implementations of Strong Shared Memory
Primitives. In Proceedings of the 13nd Annual ACM
Symposium on Principles of Distributed Computing
(PODC ’94), pages 151-160, August 1994. (pp 16, 20,
94)

H. T. Kung and Philip L. Lehman. Concurrent Ma-
nipulation of Binary Search Trees. ACM Transactions
on Database Systems, 5(3):354-382, September 1980.
(pp26, 79, 89, 93)

H. T. Kung and John T. Robinson. On Optimistic Meth-
ods for Concurrency Control. ACM Transactions on
Database Systems, 6(2):213-226, June 1981. (p23)

113

[Lamport77]

[Lamport79]

[Larson98]

[Liskov83]

[Lomet77]

[Manber84]

[Massalin91]

Leslie Lamport. Concurrent Reading and Writing. Com-
munications of the ACM, 20(11):806-811, November
1977. (p18)

Leslie Lamport. How to Make a Multiprocessor
Computer that Correctly Executes Multiprocess Pro-
grams. IEEE Transactions on Computers, 28(9):690-
691, September 1979. (p81)

Per-Ake Larson and Murali Krishnan. Memory alloca-
tion for long-running server applications. In Proceed-
ings of the ACM-SIGPLAN International Symposium
on Memory Management (ISMM), pages 176-185, Oc-
tober 1998. (p8)

Barbara Liskov and Robert Scheifler. Guardians and
actions: linguistic support for robust, distributed pro-
grams. ACM Transactions on Programming Languages
and Systems, 5(3):381-404, July 1983. (p20)

D. B. Lomet. Process Structuring, Synchronization and
Recovery Using Atomic Actions. In David B. Wortman,
editor, Proceedings of an ACM Conference on Language
Design for Reliable Software, pages 128-137. ACM,
ACM, March 1977. (p20)

Udi Manber and Richard E. Ladner. Concurrency Con-
trol in a Dynamic Search Structure. ACM Transactions
on Database Systems, 9(3):439-455, September 1984.
(pp 26,79, 93)

Henry Massalin and Calton Pu. A Lock-Free Multi-
processor OS Kernel. Technical Report CUCS-005-91,
Columbia University, 1991. (p24)

[Mellor-Crummey91a] John Mellor-Crummey and Michael Scott. Algorithms

for Scalable Synchronization on Shared-Memory Multi-
processors. ACM Transactions on Computer Systems,
9(1):21-6S5, 1991. (p94)

[Mellor-Crummey91b] John Mellor-Crummey and Michael Scott. Scal-

114

able Reader-Writer Synchronization for Shared-Memory
Multiprocessors. In Proceedings of the 3rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, pages 106—113, 1991. (pp92, 94)

[Michael02]

[Michael95]

[Moir97]

[Motorola, Inc.]

[Perlis60]

[Pugh90a]

[Pugh90b]

[Shalev03]

[Shavit95]

[Tullsen95]

Maged M. Michael. Safe Memory Reclamation for
Dynamic Lock-Free Objects Using Atomic Reads and
Writes. In Proceedings of the 21st Annual ACM Sym-
posium on Principles of Distributed Computing (PODC
°02), July 2002. (pp26, 79, 81)

Maged M. Michael and Michael Scott. Correction of
a Memory Management Method for Lock-Free Data
Structures. Technical Report TR599, University of
Rochester, Computer Science Department, December
1995. (pp24,78)

Mark Moir. Transparent Support for Wait-Free Trans-
actions. In Distributed Algorithms, 11th International
Workshop, volume 1320 of Lecture Notes in Com-
puter Science, pages 305-319. Springer-Verlag, Septem-
ber 1997. (pp21, 22, 35)

Motorola, Inc. M68000 Family Programmer’s Refer-
ence Manual. Order Number M68000PM. (p17)

Alan J. Perlis and Charles Thornton. Symbol Manipula-
tion by Threaded Lists. Communications of the ACM,
3(4):195-204, 1960. (p61)

William Pugh. Concurrent Maintenance of Skip Lists.
Technical Report CS-TR-2222; Department of Com-
puter Science, University of Maryland, June 1990.
(pp 26, 53, 55, 69,79, 92)

William Pugh. Skip Lists: A Probabilistic Alterna-
tive to Balanced Trees. Communications of the ACM,
33(6):668-676, June 1990. (p53)

Ori Shalev and Nir Shavit. Split-Ordered Lists: Lock-
Free Extensible Hash Tables. In Proceedings of the 22nd
Annual ACM Symposium on Principles of Distributed
Computing (PODC °03), pages 102-111, 2003. (p92)

Nir Shavit and Dan Touitou. Software Transactional
Memory. In Proceedings of the 14th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC
’935), pages 204-213, August 1995. (p22)

D. Tullsen, S. Eggers, and H. Levy. Simultaneous Mul-

115

[Turek92]

[Valois95]

[Weaver94]

[Wing93]

[Wu93]

116

tithreading: Maximizing On-Chip Parallelism. In Pro-
ceedings of the 22nd Annual International Symposium
on Computer Architecture (ISCA 95), pages 392-403.
ACM Press, June 1995. (p8)

John Turek, Dennis Shasha, and Sundeep Prakash.
Locking without Blocking: Making Lock-Based Con-
current Data Structure Algorithms Nonblocking. In
Proceedings of the 11th ACM Symposium on Principles
of Database Systems, pages 212-222, June 1992. (p19)

John D. Valois. Lock-Free Linked Lists Using Compare-
and-Swap. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing
(PODC °9S5), pages 214-222, August 1995. (pp24,25)

David Weaver and Tom Germond. The SPARC Archi-
tecture Manual, Version 9. Prentice-Hall, 1994. (p 82)

Jeanette M. Wing and Chun Gong. Testing and Ver-
ifying Concurrent Objects. Journal of Parallel and
Distributed Computing, 17(1):164-182, January 1993.
(p90)

Zhixue Wu. A New Approach to Implementing Atomic
Data Types. PhD thesis, University of Cambridge, Oc-
tober 1993. Also available as Technical Report 338,
University of Cambridge Computer Laboratory. (p23)

