
TechnicalReport
Number 574

Computer Laboratory

UCAM-CL-TR-574
ISSN1476-2986

Sketchpad:A man-machinegraphical
communication system

Ivan Edward Sutherland

September2003

New prefaceby Alan Blackwell and
Kerry Rodden.

15 JJThomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www .cl.cam.ac.uk/

c
 2003 Ivan Edward Sutherland

This technical report is basedon a dissertation submitted January
1963 by the author for the degreeof Doctor of Philosophy to the
MassachusettsInstitute of Technology.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www .cl.cam.ac.uk/TechReports/

Serieseditor: Markus Kuhn

ISSN1476-2986

Preface to this Electronic Edition

Alan Blackwell and Kerry Rodden
University of Cambridge Computer Laboratory

Ivan Sutherland's Sketchpad is one of the most in�uential computer pro-
grams ever written by an individual, as recognized in his citation for the Tur-
ing award in 1988. The Sketchpad program itself had limited distribution —
executableversions were limited to a customized machine at the MIT Lincoln
Laboratory — so its in�uence has been via the ideas that it intr oduced rather
than in its execution. Sutherland's dissertation describing Sketchpad was a
critical channel by which those ideas were propagated, along with a movie of
the program in use, and a widely-cited conferencepublication [10]. Copies of
the dissertation were distributed relatively widely , but it was never published
commercially. It is still available in the form of a technical report from MIT,
but we believe it deserveswider readership — hence this electronic archival
publication.

After 40 years, ideas intr oduced in Sketchpad still in�uence how every
computer user thinks about computing. It made fundamental contributions in
the area of human–computer interaction, being one of the �rst graphical user
interfaces. It exploited the light-pen, predecessorof the mouse, allowing the
user to point at and interact with objectsdisplayed on the screen. This antic-
ipated many of the interaction conventions of dir ect manipulation, including
clicking a button to selecta visible object, and dragging to modify it. Smith's
Pygmalion [9], heavily in�uenced by Sketchpad, made a more explicit argu-
ment for the cognitive bene�ts of this kind of dir ect interaction and feedback,
coining the term “icon”, and making it clear that graphical images could rep-
resent abstract entities of a programming language. Smith was a member of
the team that developed the Xerox Star workstation on these principles; in a
retrospective article [4] they acknowledge that “Sketchpad in�uenced Star's
user interface as a whole as well as its graphics applications”, providing a di-
rect link to the commercialization of the Macintosh and Windows interfaces
and widely recognized bene�ts of dir ect manipulation [8].

Sketchpad encountered a critical challenge that remains central to human-
computer interaction. Sutherland's original aim was to make computers ac-
cessibleto new classesof user (artists and draughtsmen among others), while
retaining the powers of abstraction that are critical to programmers. In con-
trast, dir ect manipulation interfaces have sincesucceededby reducing the lev-
els of abstraction exposed to the user. Ongoing research in end-user program-

4

ming continues to struggle with the question of how to reduce the cognitive
challengesof abstract manipulation [1]. Nevertheless,Sutherland's attempt to
remove the division between users and programmers was not the only sys-
tem that, in failing to do so, provided the imaginative leap to a new program-
ming paradigm. Nygaard and Dahl's Simula [7] was the �rst conventional
programming language incorporating the principles of object orientation, but
Sketchpad's implementation of classand instance-basedinheritance (though
not called objects)predated Simula by several years.

There appears to have beena common in�uence through the work of Dou-
glas T. Ross,who is mentioned in the acknowledgements of this dissertation
and also cited in the MIT Lincoln Laboratory technical report basedon it. Ross
sat on the Algol 68committee with C. A. R. Hoare in the mid-1960s,where his
previous work on a record-like data structure (called a plex) in�uenced Hoare's
own ideas� on abstract data types [3], later credited by Nygaard and Dahl as
the origin of the classde�nition mechanisms in Simula [7].

Alan Kay's seminal Dynabook project, which led both to the Xerox Star
and to the explosion of interest in object oriented programming through his
language Smalltalk, was dir ectly in�uenced by Sketchpad. Kay has written of
the fact that the genesisof Smalltalk lay in the coincidental appearanceon his
desk of both a distribution tape of Simula and a copy of Sutherland's Sketch-
pad thesis [5]. Kay recognized that the two systems were based on the same
underlying type concepts (apparently derived via two dif ferent routes from
Ross'splex), and that thesecould form the basisof a more widely usable pro-
gramming system. In comparing these two routes of in�uence, Simula was a
far larger project than Sketchpad,rightly recognizedasthe �rst object-oriented
programming language, but we hope that the special emphasis of Sketchpad
on supporting abstraction in the user interface itself may yet becomeviable as
a result of ongoing research efforts [2,6].

As with many early publications of computer science,this dissertation is
also interesting for the way in which it explores important concepts that are
now considered familiar , but which at the time demanded continual small dis-
coveries by every researcher. The �rst-person account of the history of the
project in Chapter 2 reads almost like an excerpt from an autobiography, as
Sutherland describeshow he had to “follow the stumbling trail” towards gen-
erality, through the dif ferent versions of Sketchpad. His rather charming pro-
posal that dynamic data structuresshould be described using the terminology
“hen and chickens” hasbeena sad losswhen compared to the far moreprosaic
terminology of linked lists and garbage collection. The struggles of develop-
ing custom hardwar e while also exploring far-reaching abstractions are also
far removed from current research experiences.

Chapter 9 provides an immediate illustration of how far computer graph-
ics hasmoved on in the 40yearssinceSketchpad'sdevelopment. For example,
Sutherland says that “if the almost identical but slightly dif ferent frames that
are required for making a motion pictur e cartoon could be produced semi-
automatically , the entire Sketchpad system could justify itself economically

� Personalcommunication with C. A. R. Hoare.

5

in another way”. Now, of course, we are used to seeing entire feature �lms
created from computer graphics. Also, in choosing manipulation of facial fea-
tures as an example, Sutherland has anticipated the sometimes controversial
facilities available in modern photograph editing tools.

Sutherland's clear writing makes all of these issues a fresh source of en-
joyment to the contemporary reader, and we hope that it will reach a new
audience with the assistanceof this electronic edition, continuing the great in-
�uence that Sketchpad has had on both usersand programmers.

This Edition

Our aim in preparing this edition has been to create an archival copy of the
Sketchpad dissertation, suitable for electronic accessand scholarly reference.
Although created in consultation with current international research efforts in
electronic archival, it is clear that there are,asyet, no common conventions for
electronic archive formats. Our priorities have beenthat this edition should be
accessiblefor download using current technology (i.e. in a relatively small �le
size),that it should besuitable for electronic search and indexing, that it should
be easyto read both on paper and on the screen,and that it should be faithful
to the original document. Thesehave not been easy criteria to meet, and our
chosensolution (LATEX to PostScript to PDF) has several disadvantages, but is
the best overall solution we could �nd.

There are some editorial choices that should be explained. We thought it
important to indicate original page numbering, so that citations of the original
dissertation could be traced, but wished to avoid the decreased readability
that would have resulted from simply reproducing the original double-spaced
typescript. We therefore chose not to preserve page breaks and line breaks,
instead marking the positions of the original page breaks(with the k symbol)
throughout the main body of the text, giving the original page number in the
margin (next to the # symbol). For �gur es, the original page number is noted
in the caption. We also chosenot to correct any errors we found in the original
document, in order to provide the textual equivalent of a facsimile edition.
These include a few spelling errors (to Ivan's embarrassment), and also the
rather idiosyncratic fact that the original dissertation had two pages106.

An exact facsimile copy of the original dissertation (where the pageshave
simply been scanned,not transcribed) can be purchased in hardcopy or PDF
from the Digital Library of MIT Thesesat http://theses.mit.edu/ . Each
individual page can also be viewed asa GIF image, freeof charge, which may
be a useful referencefor readerswishing to check the layout of the original.

We are very grateful to Ivan Sutherland, who has encouraged this project,
and who personally proof-read the original scannedtext. We are also grateful
to Malcolm Sabin, who kindly loaned us his original copy of the dissertation
for over a year. This work hasbeensupported by the Engineering and Physical
SciencesResearch Council, UK.

September2003

6

References

[1] A. F. Blackwell. First steps in programming: A rationale for attention in-
vestment models. In Proceedingsof the IEEE Symposiaon Human Centric
Computing, 2002.

[2] A. F. Blackwell, T. R. G. Green and R. L. Hewson. Product design to
support user abstractions. In E. Hollnagel, editor, CognitiveTaskDesign.
Lawr enceErlbaum Associates,2002.

[3] C. A. R. Hoare. Record handling. In F. Genuys, editor, ProgrammingLan-
guages, pages291–347.Academic Press,1968.

[4] J.Johnson,T. L. Roberts,W. Verplank, D. C. Smith, C. Irby, M. Beard, and
K. Mackey. The Xerox Star: A Retrospective. IEEE Computer, 22(9):11–29,
1989.

[5] A. Kay. Theearly history of Smalltalk. ACM SIGPLANNotices, 28(3):69–95,
1993.Also in T.J.Bergin and R.G. Gibson, editors, History of Programming
LanguagesII , pages511–578.Addison-W esley, 1996.

[6] M. McCullough. Abstracting craft: Thepracticeddigital hand. MIT Press,
1996.

[7] K. Nygaard and O.-J. Dahl. The development of the Simula languages.
ACM SIGPLAN Notices, 13(8):245–272,1978. Also in R. Wexelblat, editor,
History ofProgrammingLanguages, pages439–493.Academic Press,1981.

[8] B. Shneiderman. Dir ect manipulation: A step beyond programming lan-
guages. IEEEComputer, 16(8):57–69,1983.

[9] D. C. Smith. Pygmalion:A ComputerProgramto ModelandStimulateCreative
Thought. Birkh äuser, Basel,1977.

[10] I. E. Sutherland. SketchPad: A man-machine graphical communication
system. AFIPSConferenceProceedings23, 1963,323–328.

SKETCHPAD, A MAN-MACHINE
GRAPHICAL COMMUNICA TION

SYSTEM

by

IVAN EDWARD SUTHERLAND

B.S.,Carnegie Institute of Technology
(1959)

M.S.,California Institute of Technology
(1960)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREEOF

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTSINSTITUTE OF TECHNOLOGY
January, 1963

8

Abstract

The Sketchpad system uses drawing as a novel communication medium for
a computer. The system contains input, output, and computation programs
which enableit to interpr et information drawn dir ectly on a computer display.
It has been used to draw electrical, mechanical, scienti�c, mathematical, and
animated drawings; it is a general purpose system. Sketchpad has shown the
most usefulness as an aid to the understanding of processes,such as the no-
tion of linkages, which can be described with pictur es. Sketchpad also makes
it easy to draw highly repetitive or highly accurate drawings and to change
drawings previously drawn with it. The many drawings in this thesis were all
made with Sketchpad.

A Sketchpad user sketches dir ectly on a computer display with a “light
pen.” The light pen is used both to position parts of the drawing on the dis-
play and to point to them to change them. A set of push buttons controls the
changesto bemade such as”erase,” or “move.” Except for legends,no written
language is used.

Information sketched can include straight line segments and circle arcs.
Arbitrary symbols may be de�ned from any collection of line segments,circle
arcs, and previously de�ned symbols. A user may de�ne and use as many
symbols ashe wishes. Any changein the de�nition of a symbol is at onceseen
wherever that symbol appears.

Sketchpad stores explicit information about the topology of a drawing. If
the user moves one vertex of a polygon, both adjacent sides will be moved. If
the user moves a symbol, all lines attached to that symbol will automatically
move to stay attached to it. The topological connections of the drawing are
automatically indicated by the user as he sketches. Since Sketchpad is able
to accept topological information from a human being in a pictur e language
perfectly natural to the human, it can be used asan input program for compu-
tation programs which require topological data, e.g.,circuit simulators.

Sketchpad itself is able to move parts of the drawing around to meet new
conditions which the user may apply to them. The user indicates conditions
with the light pen and push buttons. For example, to make two lines paral-
lel, he successivelypoints to the lines withthe light pen and pressesa button.
The conditions themselves are displayed on the drawing so that they may be
erasedor changedwith the light pen language. Any combination of conditions
can be de�ned asa composite condition and applied in one step.

It is easyto add entirely new types of conditions to Sketchpad'svocabulary.
Sincethe conditions can involve anything computable, Sketchpadcan be used

10

for a very wide range of problems. For example, Sketchpad has been used to
�nd the distribution of forcesin the members of truss bridges drawn with it.

Sketchpad drawings are stored in the computer in a specially designed
“ring” structure. The ring structure features rapid processing of topological
information with no searching at all. The basic operations used in Sketchpad
for manipulating the ring structure are described.

ThesisSupervisor: Claude E. Shannon
Title: Donner Professorof Science

Acknowledgements

I am indebted to ProfessorsClaude E. Shannon and Marvin Minsky for their
help and advice throughout the course of this research. Their helpful sugges-
tions at several critical times gave Sketchpad much of its presentcharacter.

Special thanks are due to ProfessorStevenA. Coons of the Mechanical En-
gineering Department and to Douglas T. Rossof the Electronic SystemsLabo-
ratory. Even though I was outside their Computer Aided Design group, they
provided at least as unstintingly of their time and ideas as if I had been their
only concern.

I owe a great debt to the MIT Lincoln Laboratory for the tremendous sup-
port it afforded me. I wish to thank Wesley A. Clark and JackL. Mitchell for
making the TX-2 computer available to me and for providing help to make the
special equipment I needed. I appreciate the helpful suggestions and interest
that they and all the members of Group 51 provided. Special thanks are due
Leonard M. Hantman for the additions he made to Sketchpad.

The Research Laboratory of Electronics at MIT provided me with of�ce
spaceand congenial of�ce mates whose discussion and interest I greatly ap-
preciate.

Finally, I wish to thank Lawr enceG. Robertswho was a constant sourceof
answers to speci�c questions I had both about the best ways to program TX-2
and about the mathematics of dif ferenceequations and matrix manipulations.

12

CONTENTS 13

Contents

I INTRODUCTION 17

II HISTOR Y OF SKETCHPAD 31

III RING STRUCTURE 37

IV LIGHT PEN 53

V DISPLA Y GENERATION 63

VI RECURSIVE FUNCTIONS 77

VII BUILDING A DRAWING, THE COPY FUNCTION 87

VIII CONSTRAINT SATISFACTION 93

IX EXAMPLES AND CONCLUSIONS 99

A CONSTRAINT DESCRIPTIONS 117

B PUSH BUTTON CONTROLS 119

C STRUCTURE OF STORAGE BLOCKS 121

D RING OPERATION MACRO INSTRUCTIONS 127

E PROPOSAL FOR AN INCREMENT AL CURVE DRAWING DIS-
PLAY 129

F MA THEMA TICS OF LEAST MEAN SQUARE FIT 135

G A BRIEF DESCRIPTION OF TX-2 137

14 CONTENTS

LIST OF FIGURES 15

List of Figures

1.1 Hexagonal Pattern . 19
1.2 TX-2 Operating Ar ea— Sketchpad in Use 20
1.3 Plotter Used with Sketchpad . 21
1.4 Line and Circle Drawing . 22
1.5 Illustrative Example . 23
1.6 Four Positions of Linkage . 26
1.7 Hexagon and Semicircle on SameLattice 27

3.1 N-Component Elements . 39
3.2 BasicRing Structure . 42
3.3 Line Segmentand End Points . 43
3.4 Zero and One Member Rings . 43
3.5 FreshPoint Block . 45
3.6 Compacting the Ring Structure 46
3.7 InstancesGeneric Block . 49
3.8 Generic Structure . 50

4.1 Light Pen . 54
4.2 Construction of Light Pen . 54
4.3 Predictive PenTracking . 56
4.4 Displays for PenTracking . 57
4.5 Addr essin Display Register . 58
4.6 Operation of PseudoPenLocation 60

5.1 Twinkled Display . 65
5.2 Coordinate Systems . 67
5.3 Display of Constraints . 74
5.4 Display of Scalarand Digits . 75

6.1 Applying Two Constraints Indir ectly to Two Lines 81

7.1 De�nitions to Copy . 90

9.1 Zig-Zag for Delay Line . 100
9.2 BCD Encoder for Clock . 101
9.3 ThreeBar Linkage . 103
9.4 Conic Drawing Linkage . 103
9.5 Dimension Lines . 105
9.6 Truss Under Load . 106

16 LIST OF FIGURES

9.7 Cantilever and Ar ch Bridges . 108
9.8 Winking Girl and Components 109
9.9 Girl Traced from Photograph . 111
9.10 Girl with FeaturesChanged . 112
9.11 Circuit Diagrams . 113

E.1 DDA for Drawing Lines . 130
E.2 DDA for Upright Conics . 132
E.3 DDA for General Conic . 133

Chapter I

INTRODUCTION

k The Sketchpad system makes it possible for a man and a computer to con- 8#
verse rapidly through the medium of line drawings. Heretofore, most inter-
action between men and computers has been slowed down by the need to
reduce all communication to written statementsthat can be typed; in the past,
we have been writing letters to rather than conferring with our computers.
For many types of communication, such asdescribing the shapeof a mechan-
ical part or the connections of an electrical circuit, typed statementscan prove
cumbersome. The Sketchpad system, by eliminating typed statements(except
for legends) in favor of line drawings, opens up a new area of man-machine
communication.

The decision actually to implement a drawing system re�ected our feeling
that knowledge of the facilities which would prove useful could only be ob-
tained by actually trying them. The decision actually to implement a drawing
system did not mean, however, that brute force techniques were to be used to
computerize ordinary drafting tools; it was implicit in the research nature of
the work that simple new facilities should be discovered which, when imple-
mented, should be useful in a wide range of applications, preferably includ-
ing some unforseen ones. It has turned out that the properties of a computer
drawing are entirely dif ferent from a paper drawing not only becauseof the
accuracy, easeof drawing, and speed of erasing provided by the computer,
but also primarily becauseof the ability to move drawing parts around on a
computer drawing without the need to erasethem. Had a working system not
been developed, our thinking would have been too strongly in�uenced by a
lifetime of drawing on paper to discover many of the useful servicesk that the 9#
computer can provide.

As the work has progressed,several simple and very widely applicable
facilities have been discovered and implemented. They provide a subpicture
capability for including arbitrary symbols on a drawing, a constraintcapability
for relating the parts of a drawing in any computable way, and a de�nition copy-
ing capability for building complex relationships from combinations of simple
atomic constraints.� When combined with the ability to point at pictur e parts
given by the demonstrative light pen language, the subpictur e,constraint, and

� Terms with specialized meanings are listed in the glossary at the very end of this thesis.

18 INTRODUCTION

de�nition copying capabilities produce a system of extraordinary power. As
was hoped at the outset, the system is useful in a wide range of applications,
and unforseen usesare turning up.

AN INTRODUCTOR Y EXAMPLE

To understand what is possible with the systemat presentlet us consider using
it to draw the hexagonalpattern of Figure1.1.Wewill issuespeci�c commands
with a set of push buttons, turn functions on and off with switches, indicate
position information and point to existing drawing parts with the light pen, ro-
tate and magnify pictur e parts by turning knobs, and observe the drawing on
the display system. This equipment asprovided at Lincoln Laboratory's TX-2
computer [1] is shown in Figure 1.2. When our drawing is complete it may
be inked on paper, as were all the drawings in the thesis, by the plotter [12]
shown ink Figure 1.3. It is our intent with this example to show what the com-13#
puter can do to help us draw while leaving the details of how it performs its
functions for the chapters which follow .

If we point the light pen at the display system and pressa button called
“draw”, the computer will construct a straight line segment� which stretches
like a rubber band from the initial to the present location of the pen asshown
in Figure 1.4. Additional pressesof the button will produce additional lines
until we have made six, enough for a single hexagon. To close the �gur e we
return the light pen to near the end of the �rst line drawn where it will “lock
on” to the end exactly. A sudden �ick of the pen terminates drawing, leaving
the closed irr egular hexagon shown in Figure 1.5A.

To make the hexagon regular, we can inscribe it in a circle. To draw the
circle we place the light pen where the center is to be and press the button
“cir cle center”, leaving behind a center point. Now, choosing a point on the
circle (which �xes the radius,) we press the button “draw” again, this time
getting a circle arc� whose length only is controlled by light pen position as
shown in Figure 1.4.

Next we move the hexagon into the circle by pointing to a corner of the
hexagon and pressing the button “move” so that the corner follows k the light16#
pen, stretching two rubber band line segments behind it. By pointing to the
circle and giving the termination �ick we indicate that the corner is to lie on
the circle. Each corner is in this way moved onto the circle at roughly equal
spacing around it asshown in Figure 1.5D.

We have indicated that the vertices of the hexagon are to lie on the circle,
and they will remain on the circle throughout our further manipulations. If we
also insist that the sides of the hexagon be of equal length, a regular hexagon
will be constructed. This we can do by pointing to one side and pressing the
“copy” button, and then to another side and giving the termination �ick. The
button in this casecopiesa de�nition of equal length lines and applies it to the

� The terms “cir cle” and “line” may be used in place of “cir cle arc” and “line segment” re-
spectively since a full circle in Sketchpad is a circle arc of 360or more degreesand no in�nite
line can be drawn.

AN INTRODUCTOR Y EXAMPLE 19

Figure 1.1: (Originally onpage10.)

20 INTRODUCTION

Figure 1.2:TX-2 OPERATING AREA — SKETCHPAD IN USE.On the display
canbe seenpart of a bridge similar to that of Figure 9.6.The Author is holding
the Light pen. The push buttons used to control speci�c drawing functions are
on the box in front of the Author . Part of the bank of toggle switches can be
seenbehind the Author . The size and position of the part of the total pictur e
seen on the display is obtained through the four black knobs just above the
table. (Originally onpage11.)

AN INTRODUCTOR Y EXAMPLE 21

Figure1.3:PLOTTERUSEDWITH SKETCHPAD. A digital and analog control
system makes the plotter draw straight lines and circles either under dir ect
control of the TX-2 or off-line from punched paper tape. (Originally on page
12.)

22 INTRODUCTION

Figure 1.4: (Originally onpage14.)

AN INTRODUCTOR Y EXAMPLE 23

Figure 1.5: (Originally onpage15.)

24 INTRODUCTION

lines indicated. We have said, in effect, make this line equal in length to that
line. We indicate that all six lines are equal in length by �ve such statements.
The computer satis�es all existing conditions (if it is possible) whenever we
turn on a toggle switch. This done, we have a complete regular hexagon in-
scribed in a circle. We can erase the entire circle by pointing to any part of
it and pressing the “delete” button. The completed hexagon is shown in Fig-
ure 1.5F.

To make the hexagonal pattern of Figure 1.1we wish to attach a large num-
ber of hexagonstogether by their corners, and so we designate the six corners
of our hexagon as attachment points by pointing to each and pressing a but-
ton. We now �le away the basic hexagon and begin work on a fresh “sheet of
paper” by changing a switch setting. On the new sheetwe assemble,by press-
ing a button to create each hexagon as a subpictur e, six hexagons around a
central seventh in approximate position asshown in Figure 1.5G.Subpictures
may be positioned, each in its entirety, with the light pen, rotated or scaled
with the knobsk and �xed in position by the pen �ick termination signal; but17#
their internal shape is �xed. By pointing to the corner of one hexagon, press-
ing a button, and then pointing to the corner of another hexagon we can fasten
those corners together, becausethesecorners have been designated as attach-
ment points. If we attach two corners of eachouter hexagon to the appropriate
corners of the inner hexagon, the sevenareuniquely related, and the computer
will reposition them as shown in Figure 1.5H. An entire group of hexagons,
onceassembled,can be treatedasa symbol. The entire group can be called up
on another “sheet of paper” asa subpictur e and assembledwith other groups
or with single hexagonsto make a very large pattern. Using Figure 1.5H seven
times we get the pattern of Figure 1.1. Constructing the pattern of Figure 1.1
takes lessthan �ve minutes with the Sketchpad system.

INTERPRETATION OF INTRODUCTOR Y EXAMPLE

In the intr oductory example above we have seenhow to draw lines and circles
and how to move existing parts of the drawing around. We used the light pen
both to position parts of the drawing and to point to existing parts. For exam-
ple, we pointed to the circle to eraseit, and while drawing the sixth line, we
pointed to the end of the �rst line drawn to closethe hexagon. We also saw in
action the very general subpicture, constraint, and de�nition copyingcapabilities
of the system.

Subpicture: The original hexagon might just aswell have beenanything else:
a pictur e of a transistor, a roller bearing, an airplane wing, a letter, or
an entire �gur e for this report. Any number of dif ferent symbols may
be drawn, in terms of other simpler symbols if desired, and any symbol
may be used asoften asdesired.k18#

Constraint: When we asked that the vertices of the hexagon lie on the circle
we were making use of a basic relationship between pictur e parts that
is built into the system. Basicrelationships (atomic constraints) to make

IMPLICA TIONS OF INTRODUCTOR Y EXAMPLE 25

lines vertical, horizontal, parallel, or perpendicular; to make points lie
on lines or circles;to make symbols appear upright, vertically above one
another or be of equal size;and to relate symbols to other drawing parts
such as points and lines have been included in the system. It is so easy
to program new constraint types that the set of atomic constraints was
expanded from �ve to the seventeenlisted in Appendix A in a period of
about two days; specialized constraint types may be added asneeded.

De�nition Copying: In the intr oductory example above we asked that the
sidesof the hexagon be equal in length by pressinga button while point-
ing to the side in question. Here we were using the de�nition copying
capability of the system. Had we de�ned a composite operation such
as to make two lines both parallel and equal in length, we could have
applied it just aseasily. The number of operations which can be de�ned
from the basic constraints applied to various pictur e parts is almost un-
limited. Useful new de�nitions are drawn regularly; they are as simple
ashorizontal lines and ascomplicated asdimension lines complete with
arrowheads and anumber which indicates the length of the line correctly.
The de�nition copying capability makes using the constraint capability
easy.

IMPLICA TIONS OF INTRODUCTOR Y EXAMPLE

As we have seen in the intr oductory example, drawing with the Sketchpad
system is dif ferent from drawing with an ordinary pencil and paper. Most im-
portant of all, the Sketchpad drawing itself is entirely dif ferent from the trail
of carbon left on a piece of paper. Information about how the drawing is tied
together is stored in the computer as well as the information which gives the
drawing its particular appearance. Since the drawing is tied together, it will
keep a useful appearanceeven when parts of it are moved. For example, when
we moved the corners of the hexagon onto the circle, the lines next to each
cornerk were automatically moved so that the closed topology of the hexagon 19#
was preserved. Again, sincewe indicated that the corners of the hexagonwere
to lie on the circle they remained on the circle throughout our further manipu-
lations.

It is this ability to store information relating the parts of a drawing to each
other that makes Sketchpad most useful. For example, the linkage shown in
Figure 1.6was drawn with Sketchpad in just a few minutes. Constraints were
applied to the linkage to keep the length of its various members constant. Ro-
tation of the short central link is supposed to move the left end of the dotted
line vertically . Sinceexact information about the properties of the linkage has
been stored in Sketchpad, it is possible to observe the motion of the entire
linkage when the short central link is rotated. The value of the number in Fig-
ure 1.6was constrained to indicate the length of the dotted line, comparing the
actual motion with the vertical line at the right of the linkage. One canobserve
that for all positions of the linkage the length of the dotted line is constant,

26 INTRODUCTION

Figure 1.6: (Originally onpage20.)

IMPLICA TIONS OF INTRODUCTOR Y EXAMPLE 27

Figure 1.7: (Originally onpage20.)

demonstrating that this is indeed a straight line linkage. Other examples of
moving drawings made with Sketchpad may be found in the �nal chapter.

As well asstoring how the various parts of the drawing are related, Sketch-
pad stores the structure of the subpictur e used. For example, the storage
for the hexagonal pattern of Figure 1.1 indicates that this pattern is made of
smaller patterns which are in turn made of smaller patterns which are com-
posed of single hexagons. If the master hexagon is changed, the entire appear-
ance of the hexagonal pattern will be changed. The structure of the pattern
will, of course,be the same. For example, if we changethe basichexagon into
a semicircle, the �sh scalepattern shown in Figure 1.7 instantly results.

k SinceSketchpad stores the structureof a drawing, a Sketchpad drawing 21#
explicitly indicates similarity of symbols. In an electrical drawing, for exam-
ple, all transistor symbols are created from a single master transistor drawing.
If some change to the basic transistor symbol is made, this change appears at
once in all transistor symbols without further effort. Most important of all, the
computer “knows” that a “transistor ” is intended at that place in the circuit.
It hasno need to interpr et the collection of lines which we would easily recog-
nize asa transistor symbol. SinceSketchpadstoresthe topologyof the drawing
as we saw in closing the hexagon, one indicates both what a circuit looks like
and its electrical connections when one draws it with Sketchpad. One can see
that the circuit connections are stored becausemoving a component automati-
cally moves any wiring on that component to maintain the correctconnections.
Sketchpad circuit drawings will soon be used as inputs for a circuit simulator .
Having drawn a circuit one will �nd out its electrical properties.

28 INTRODUCTION

SKETCHPAD AND THE DESIGN PROCESS

Construction of a drawing with Sketchpad is itself a model of the design pro-
cess.The locations of the points and lines of the drawing model the variables
of a design, and the goemetric constraints applied to the points and lines of
the drawing model the design constraints which limit the values of design
variables. The ability of Sketchpadto satisfy the geometric constraints applied
to the parts of a drawing models the ability of a good designer to satisfy all
the design conditions imposed by the limitations of his materials, cost, etc. In
fact, since designers in many �elds produce nothing themselves but a draw-
ing of a part, design conditions may well be thought of as applying to thek22#
drawing of a part rather than to the part itself. If such design conditions were
added to Sketchpad's vocabulary of constraints the computer could assist a
user not only in arriving at a nice looking drawing, but also in arriving at a
sound design.

PRESENT USEFULNESS

At the outset of the research no one had ever drawn engineering drawings
dir ectly on a computer display with nearly the facility now possible, and con-
sequently no one knew what it would be like. We have now accumulated
about a hundr ed hours of experienceactually making drawings with a work-
ing system. As is shown in the �nal chapter, application of computer drawing
techniques to a variety of problems has beenmade. As more and more appli-
cations have been made it has becomeclear that the properties of Sketchpad
drawings make them most useful in four broad areas:

For Making Small Changesto Existing Drawings:

Eachtime adrawing is made, adescription of that drawing is stored
in the computer in a form that is readily transferred to magnetic
tape. Thus, as time passes,a library of drawings will develop,
parts of which may be used in other drawings at only a fraction
of the investment of time that was put into the original drawing.
Sincea drawing stored in the computer may contain explicit rep-
resentation of design conditions in its constraints, manual change
of a critical part will automatically result in appropriate changesto
related parts.

For Gaining Scienti�c or Engineering Understanding of Operations That Can
BeDescribed Graphically:

The description of a drawing stored in the Sketchpad system is
more than a collection of static drawing parts, lines and curves,
etc. A drawing in the Sketchpadsystem may contain explicit state-
ments about the relations between its parts so that as one part is

PRESENT USEFULNESS 29

changed the implications of this change becomeevident through-
out the drawing. It is possible, aswe saw in Figure 1.6,to give the
property of �xed length to lines soasto study mechanical linkages,
observing thek path of someparts when others are moved. 23#

As we saw in Figure 1.7 any change made in the de�nition of a
subpictur e is at once re�ected in the appearanceof that subpictur e
wherever it may occur. By making such changes,understanding
of the relationships of complex setsof subpictur es can be gained.
For example, one can study how a changein the basicelement of a
crystal structure is re�ected throughout the crystal.

As a Topological Input Device for Circuit Simulators, etc.:

Sincethe ring structure storage of Sketchpad re�ects the topology
of any circuit or diagram, it canserveasan input for many network
or circuit simulating programs. The additional effort required to
draw a circuit completely from scratch with the Sketchpad system
may well be recompensedif the properties of the circuit are obtain-
able through simulation of the circuit drawn.

For Highly Repetitive Drawings:

The ability of the computer to reproduce any drawn symbol any-
where at the pressof a button, and to recursively include subpic-
tureswithin subpictur esmakes it easyto produce drawings which
are composed of huge numbers of parts all similar in shape. Great
interest in doing this comesfrom people in such �elds as memory
development and micro logic where vast numbers of elements are
to be generated at once through photographic processes.Master
drawings of the repetitive patterns necessarycan be easily drawn.
Hereagain, the ability to changethe individual element of the repet-
itive structure and have the change at once brought into all sub-
elementsmakesit possible to changethe elementsof an array with-
out redrawing the entire array.

Thosereaderswho are primarily interestedin the application of Sketchpad
are invited to turn next to Chapter IX, page 120 for aditional examples and
conclusions.

30 INTRODUCTION

Chapter II

HISTOR Y OF SKETCHPAD

k When at the end of the summer of 1960 Jack I. Raffel told me that there 24#
was considerable interest at Lincoln Laboratory in making a computer “mor e
approachable” through advanced useof displays, I paid little heed, but a seed
had been planted. As work on TX-O computer at MIT during the winter of
1960-61brought me some familiarity with using display and light pen, the
idea began to grow in my mind that application of computers to making line
drawings would be exciting and might prove fruitful. Late in April, 1961,
following up Mr. Raffel's earlier suggestion, I approached Wesley A. Clark,
then in charge of computer applications in Group 51 of Lincoln Laboratory,
with the proposal that I use TX-2 in an investigation of computer drawing
techniques. I owe a great deal to Mr. Clark's initial enthusiasm and, though I
didn't know it at the time, to the many design features[1] he had incorporated
into TX-2 seemingly with just such a project in mind.

During the summer of 1960,Herschel H. Loomis had done some prelimi-
nary drawing work [6] on TX-2 which he was kind enough to demonstrate for
me in May, 1961,as my �rst contact with TX-2. During the summer of 1961
I devised a curve tracing program and some of the �rst notions about inter-
laced and twinkled display. Late in the summer of 1961a project to connect
an ink-line-on-paper plotting system to TX-2 was revived. An EAI plotter , [12]
painted bright red, had been at Lincoln Laboratory for two or threeyears be-
fore, but interest in the project had faded for lack of a user. Throughout the
Sketchpad effort I havek maintained a collateral interest in the hardwar e de- 25#
velopment necessaryto get the plotter working. The plotting system has been
incorporated asa part of the overall Sketchpadsystem,but of course its devel-
opment is only incidental to the research embodied in the thesis.

From the earliest stagesof the project development I had had the closest
contact with Professor Claude E. Shannon whose penetrating questions have
served as the measuring stick by which I could judge my progress.He agreed
to supervise the drawing effort as a thesis project in the fall of 1961. In the
processof contacting faculty members to form a thesis committee I became
aware that my effort was not unique and that I was not alone in my interest
and enthusiasm for graphical computer input and output. The availability
of computer controlled display systems and particularly of light pen devices

32 HISTOR Y OF SKETCHPAD

for manual input made it almost inevitable that computers would one day be
involved in engineering drawing. People at MIT had long talked of such an
application.

Computer application to geometric problems was not new. The APT (Auto-
matically Programmed Tool) development through which a computer is able
to control a milling machine to produce a complex metal part had evolved
many useful geometric manipulation techniques. I made contact with the
Computer Aided Design group at MIT which was composedpartly of the peo-
ple of the MIT Electronic SystemsLaboratory (formerly called the Servomech-
anisms Laboratory) who developed APT and partly of people in the Mechani-
cal Engineering Department who brought a knowledge of the problems faced
by designers to the project. I had been surprised that so little practical work
had been done in application of computers to line drawing, especially since
display k systems and light pens were relatively common when my work be-26#
gan. I can seenow, however, that I have had a unique opportunity to pursue
my interest. I was able to visit many separatelaboratories for discussion and
ideaswithout becoming soattached to any one that I was forced into its way of
thinking. In particular , members of the Mechanical Engineering Department,
notably Professor Steven A. Coons, who agreed to serve on my thesis com-
mittee, suggestedmechanical design problems and applications. Members of
the Electronic SystemsLaboratory, notably Douglas Ross,provided help and
advice on n-component elements. The Arti�cial Intelligence group, notably
Professor Marvin Minsky , another committee member, gave advice and en-
couragement in the niceties of pictur e representation and the kind of interest
aimed more at a fundamental understanding of the processesdeveloped than
in their practical application. Lincoln Laboratory provided not only advice but
also technical support including to date about 600hours of time on the TX-2.

Whatever successthe Sketchpad effort has had can in no small measure
be traced to the use of TX-2.� TX-2's 70,000wor d memory, 64 index registers,
�exible input-output control and liberal supply of manual intervention facil-
ities such as toggle switches, shaft encoder knobs, and push buttons all con-
tributed to the speedwith which ideas could be tried and acceptedor rejected.
Mor eover, being an experimental machine it was possible to make minor mod-
i�cations to TX-2 to match it better to the problem. For example, a push button
register was installed at my request. Now that we know what drawing on a
computer is like, much smaller machinescanbeused for practical applications.

RESEARCH PROGRESS

k Thus it was that in the fall of 1961work beganin earneston a drawing system27#
for TX-2. In the early fall I perfected my light pen tracking programs and
subroutines for displaying straight lines and presenting a portion of the total
pictur e on the display at increasedmagni�cation. In early November 1961,my
�rst light pen controlled drawing program was working. It is signi�cant that
at this time a notion of “str ong conditions” was used to give geometric nicety

� A brief description of TX-2 may be found in Appendix G.

RESEARCH PROGRESS 33

to the drawing. For example, lines could bedrawn parallel or perpendicular to
existing lines but carried no permanent trace of the relationship other than the
accident of their position. This early effort in effect provided the T-square and
triangle capabilities of conventional drafting. Somewhat before my �rst effort
was working, Welden Clark of Bolt, Beranek and Newman demonstrated a
similar program to me on the PDP-1computer. [5]

Early in December 1961Professor Shannon visited TX-2 to see the work
I had been doing. As a result of that visit the entire effort took new form.
First, ProfessorShannon suggestedpoint blank that I include circle capability
in the system. Second,I realized when he asked for paper to sketch a draw-
ing he intended to enter into the computer that the strong conditions notion
which simulated the conventional tools of drafting was not adequate for com-
puter drawing. As a result of including circles into the Sketchpad system a
richness of display experience has been obtained without which the research
might have been rather dry. As a result of trying to impr ove upon conven-
tional drafting tools the full new capability of the computer-aided drafting
system has come into being.

k In December1961,and during the �rst part of 1962,then, I beganworking 28#
on the problems of display generation for cirlces outlined in Chapter V. The
circle generating subroutine gave great dif �culty especially in the details of
edge detection and closure. At about this sametime I started work on the ring
structure representation of the drawing outlined in Chapter III; the prelimi-
nary drawing effort of November 1961had used conventional table storage.
By the �rst of February 1962, the ring structure was in use, but without the
generic blocks which give it its present �exibility . Intersection programs for
line, and circle, had been written and debugged, and the second generation
drawing program could be begun.

In making the second generation drawing program, explicit representa-
tion of constraints and automatic constraint satisfaction were to be included.
I learned of the matrix method described in Appendix F for �nding the min-
imum mean square error solution to linear equations from Lester D. Earnest
of the MITRE Corporation and obtained a macro, SOLVE, from Lawr enceG.
Robertswhich did the arithmetic involved. [8] Armed with the tools for repre-
senting and doing arithmetic for constraints I went gaily aheadwith program-
ming.

In the �rst crack at representing constraints I made two basicerrors which
have subsequently been corrected. First, I provided that the constraints be
tied not only to the variables constrained but also to related nonvariables. For
example, the horizontal constraint not only referred (as it should) to the two
end points of a line, but also (as has been subsequently removed) to the line
itself. It was impossible to make points have the same y coordinate without
having a linek between them; deletion of the line deleted the constraint aswell. 29#
In more recent work constraints refer only to variables so that lines need not
be presentto make points have the same y coordinate.

The second error in constraint representation was in the numerical com-
putation of the relationship represented by the constraint. At �rst I insisted
that for any constrained variable it be possible to compute dir ectly the linear

34 HISTOR Y OF SKETCHPAD

equation of best �t to the constraint. That is, for eachconstraint on a variable
the equation of a line could be found along which the constraint would be sat-
is�ed or nearly so. Not only was it dif �cult to compute the equation of such a
line, requiring a special purpose program for eachtype of constraint, but also
my lack of regard for the niceties of the scalefactor of the computed equation
resulted in instabilities in the constraint satisfaction process.Whereasfor the
relaxation procedure to operate properly it is necessaryto remove “energy”
from the system at each stage, my computations for certain casesadded en-
ergy. It was early summer of 1962before de�nition of the mathematical prop-
erties of constraint types in terms of a subroutine for computing dir ectly the
error intr oduced by a constraint not only cured the instability troubles but also
made it easyto add new constraint types.

Along with the new capabilities of the constraint satisfaction programs and
the extensive use to be made of constraints, the second generation drawing
program included for the �rst time the recursive instance expansion which
made possible instanceswithin instances.The trials of getting systemsto work
are many; one which stands out in my mind was that instances within in-
stancesrotated in the wr ong dir ection when thek outer instance was rotated.30#
Neither were the things I tried to do always correct. For example, the initial
instance expansion routine forced eachinstance of a pictur e to be smaller than
the master drawing for that instance. I have sincecometo appreciatethe value
of having somenormalizing factor in products so that all �xed point numbers
can be treated as signed fractions in the range, � 1 > = x > = 1, representing
the fraction of full scalede�ection on the coordinate system in question.

In late March 1962,I discovered that points could be related to instances
through the use of two linear equations relating the coordinates of the point
to the four components of the instance position. Armed with this new infor -
mation, the dif �culties I had been having with attachers on instancesyielded
to the samegeneral format used for other constraints. It becamepossible for a
single instanceto have asmany attachersasdesired, eachof which could serve
asattachment point for any number of instances.

The �rst actual programming of the maze-solving high-speed constraint
satisfaction methods proposed much earlier began about March 1962. I had
not had enough experience before that time with the ring structure to face
the extensive ring manipulations which would be required for this part of
the work. The development of the ring manipulation macros shown in Ap-
pendix D was started in connection with the maze solving routines.

By Memorial Day 1962,the second version of Sketchpad was considered
working well enough that a motion pictur e was made showing the various
drawing manipulations possible. It was possible to draw linek segmentsand31#
circle arcs and point to them to erasethem or move the points on which they
depend. A limited number of constraints were available which could make
lines horizontal or vertical, force points to lie on lines or circles, and relate
instancesto their attachment points. Constraint satisfaction was primarily by
relaxation, but for certain simple casesthe maze solving methods would give
more rapid results. It was possible to seethat sketching could indeed be done
on the computer.

RESEARCH PROGRESS 35

Not yet available were display for points or constraints, or any notion of
digits, text, scalars and dummy variables. It was almost impossible to add
new constraint types to the system, and even had they beenadded, the recur-
sive merging and the de�nition copying capability were not available to apply
them easily to the object pictur e. Sketchpad at this stage was a nice demon-
stration and toy but asyet lacked the richness of detail now available.

During the late spring of 1962,then, enough experience had been gained
with computer drawings to realize that more capabilities were needed. It was
possible for me, armed with photographs of the latest developments, to ap-
proach a great many people in an effort to get new ideas to carry the work
on to a successful conclusion. Out of these discussions came the notions of
copying de�nitions and of recursive merging which are, to me, the most im-
portant contributions of the Sketchpad system. Also out of these talks came
the conviction that a generic structure would be necessaryif the system were
to be made easy to expand. On June 9, 1962all this new information came
to a head and an entirely new system was begun which has grown with rel-
atively little k change into the �nal version described here. Had I the work to 32#
do again, I could start afresh with the sure knowledge that generic structure,
separation of subroutines into general purpose ones applying to all types of
pictur e parts and onesspeci�c to particular types of pictur e parts, and unlim-
ited applicability of functions (e.g. anything should be moveable) would more
than recompensethe effort involved in achieving them. I have great admira-
tion for those people who were able to tell me these things all along, but I,
personally, had to follow the stumbling trail described in this chapter to be-
come convinced myself. It is to be hoped that futur e workers can either grasp
the power of generality at onceand strive for it or have the courage to stumble
along a trail like mine until they achieve it.

Towards the end of the summer of 1962 the thir d and �nal version of
Sketchpad was beginning to show remarkable power. I had the good fortune
at this time to obtain the services of Leonard M. Hantman, a Lincoln Labo-
ratory Staff Programmer, who added innumerable service functions, such as
magnetic tape manipulation routines, to the system. He also cleanedup some
of the messy programming left over from my rushed efforts at getting things
working. For example, he shortened and impr oved my original ring manip-
ulation macros. Also, towards the end of the summer the plotting system be-
gan to be able to give useableoutput. Hantman added plotting programs to
Sketchpad through which the �gur esin this paper were made.

Computer time began to be spent lessand lesson program debugging and
more and more on applications of the system. It was possible to provide pre-
liminary services to other people, and so a user group wask formed and in- 33#
formal instruction was given in the use of Sketchpad. A library tape was ob-
tained and has ever since beencollecting pictur esfor possible futur e use. The
user group experienceshowed that relatively new userswith no programming
knowledge could produce simple drawings with the system if a skilled user
(myself) prepared the building blocks necessary. For example, a secretary de-
signed and drew an alphabet with the aid of a 10 � 10 raster of points to use
asend points. Both the raster and the alphabet are now a part of the library .

36 HISTOR Y OF SKETCHPAD

Even now, however, there are possibilities for application of the system not
yet even dreamedof. The richnessof the possibilities of the de�nition copying
function, and the new types of constraints which might easily be added to the
system for special purposes suggestthat further application will bring about a
new body of knowledge of systemapplication. For example, the bridge design
examples shown at the end of this paper were not anticipated.

There are, of course, limitations to the system. In the last chapter are sug-
gestedthe impr ovements, somejust minor changes,but somemajor additions
which would change the entire character of the system. It is to be hoped that
futur e work will far surpassmy effort.

Chapter III

RING STRUCTURE

k The Sketchpad system stores information about drawings in two separate 34#
forms. One is a table of display spot coordinates designed to make display
as rapid as possible; the other is a �le designed to contain the topology of
the drawing. The topological �le is set up in a specially designed ring struc-
ture which will form the major subject of this chapter. The ring structure was
designed to permit rearrangement of the data storagestructure for editing pic-
tures with a minimum of �le searching, and to permit rapid constraint sat-
isfaction and display �le generation. The ring structure was not intended to
pack the required information into the smallest possible storagespace.We felt
that we could write faster running programs in lesstime by including somere-
dundancy in the ring structure. This was considered more important than the
ability to store huge drawings. Mor eover, the large storagecapacity of the TX-
2 did not forcestorage conservation. The particular form of the ring structure
chosen has led to some of the most interesting features of the system simply
becausethe changesrequired to keep the ring structureconsistent led to useful
facilities such asrecursive merging discussedin Chapter VI.

N-COMPONENT ELEMENTS

In the drawings made by the Sketchpad system there are large populations
of relatively few types of entities with very little variation in format between
entities of each type. For example, an entirek drawing may be composed of 35#
line segmentsand end points, each line segment connecting exactly two end
points, and each point having exactly two coordinates. Becauseof this uni-
formity within each given type of entity, it is possible to set up a standard
storageformat for eachtype of entity with standardized locations for informa-
tion about the various properties which entities of that particular type usually
have. Eachentity, therefore, is representedin the computer asan n-component
element, that is, by a block of n consecutive registers in storage eachof which
contains a speci�c kind of information about that element. For example, the
coordinates of a point are always stored in the i th and j th registers of its n-
component element or block. Similarly , the nth and mth registersof a line block
always contain the addressesof the start and end point blocks for that line as

38 RING STRUCTURE

Figure 3.1shows. Particular numerical locations for various piecesof informa-
tion are shown in Appendix C.

MNEMONICS AND CONVENTIONS

In using n-component elements it has been found useful to give symbolic
namesto the various registersof eachelement so that the actual numerical lo-
cations of various kinds of information need not be remembered. Thus, for ex-
ample, the coordinates of a point are stored in the PVAL th and PVAL + 1st (for
Point VALue registers)of its n-component element. Sinceall programming for
Sketchpad is done in a symbolic programming language in terms of mnemon-
ics, it is easy to rearrange the internal format of any kind of n-component el-
ement by changing the numerical values assigned to the mnemonic symbols
used within that kind of element. In the �gur es in this thesis, symbolic loca-
tions ofk piecesof data within n-component elementsare shown to the right of37#
the data. Actual register addressesare shown to the left of the data. The posi-
tion of particular piecesof data may changefrom �gur e to �gur e asit becomes
necessaryto more fully illustrate the structure,but the mnemonic addresswill
indicate which data are being shown.

Although the use of mnemonics gives complete �exibility to the format of
n-component elements, certain conventions were followed in implementing
Sketchpad and in the �gur esof this thesis.

1. The location of an n-component element is the addressof its �rst (lowest
numbered) register;

2. The �rst component of the element (the contents of its �rst register) is
used to indicate the type of element; and

3. All numerical information such asvalues of coordinates is located at the
end (highest numbered locations) of the element.

In the �gur es,higher numbered registers run down the page, making the
location of an element the addressof its top register. Such element locations
are indicated by symbolic names to the left of the n-component element or
contained within components of other elementswhich make referenceto them.

Most of the components of the n-component elements in the Sketchpad
system are pointers containing addressesof other elements. Such pointers in-
dicate topological information such as the end points of a line segment. If an
n-component element is to be relocated in storage, that is, if the information it
contained is to be stored in some other registers to compact the storage struc-
tureprior to saving it on magnetic tape, the contentsof any topological compo-
nent referring to the element which is to be relocatedmust be changed to refer
to the new location.k However , relocation of an element in storage should not38#
change the appearanceof the pictur e represented,and so numerical informa-
tion such as the coordinates of points or the size of subpictur es must not be
changed. Segregation of numerical information at the end of the n-component
element facilitates the relocation of elements.

MNEMONICS AND CONVENTIONS 39

Figure 3.1: (Originally onpage36.)

40 RING STRUCTURE

Grosstransfers of the entirestoragestructurecanbeaccomplished by treat-
ing all topological pointers asrelative to somebasicaddress.In Sketchpad,for
example, a topological pointer to an n-component element contains not the ab-
solute computer addressof that element, but the location of the n-component
element relative to the �rst addressof the storagestructure area,LIST. At vari-
ous times it has beennecessaryto changethe location of the storage area,giv-
ing LIST a dif ferent value. The use of relative pointers proves useful for inter-
machine communication also, making it possible to store a given data struc-
ture anywhere in memory. In the illustrations, however, the relative pointing
is suppressed,as if LIST = 0.

REVERSEINDEXING

Supposethat index register � contains the relative location of the n-component
element for a line segmentand that it is desired to know the coordinates of that
line's start point (LSP).The addressof the start point block may be found in
the LSPth entry of the line block as shown in Figure 3.1. We can pick up this
addressusing reverseindexing by the instruction:

LDA � LSP+ LIST

load the accumulator from the LSPth entry of the block pointed to byk index39#
register � . LIST enters in becausepointers are relative. Now if we transfer the
contents of the accumulator to index register � and form the instruction:

LDA � PVAL + LIST

the X coordinate of the start point of the line will be placed in the accumulator.
Note that in theseinstructions we used the index register to indicate which

n-component element is being considered and the addressportion of the in-
structions to indicate the speci�c component selected. This is called “r everse
indexing” to distinguish it from “normal” indexing in which the index register
indicates the i th of the table referred to in the addressportion of the instruction.
The only normal thing about “normal” indexing, however, is the widespr ead
inclusion in computers of an instruction which increments an index register
and transfers control to a speci�ed location if the index register has not yet
reachedsomespeci�ed value, usually 0. The 709'sTIX instruction is typical.

A real value of the TX-2 for implementing the Sketchpadsystemturned out
to be its ability to resetan index register from a register indicated by the con-
tents of another index register (or even the prior contents of the index register
to be reset!). TX-2's accumulator is not used in this index register processing.
A special symbolism was built into the compiler to make it easyto use double
index instructions; the instruction:

RSX� j� LSP+ LIST

puts into � the addressof the start point of the line pointed to byk index regis-40#
ter � . The Sketchpad program consistsin large part of such instructions.

RING STRUCTURE 41

RING STRUCTURE

The basicn-component element structuredescribed abovehasbeensomewhat
expanded in the implementation of Sketchpad so that all referencesmade to a
particular n-component element or block are collected together by a string of
pointers which originates within that block. For example, all the line segments
which terminate on a particular point may be found by following a string of
pointers which starts within the point block. This string of pointers closeson
itself; the last pointer points back to the �rst. Mor eover, the string points both
ways to make it easy to �nd both the next and the previous member of the
string in casesomechangemust be made to them.

The ring structure, then, assignstwo registers to eachcomponent in the n-
component element. One is used for the dir ect referenceshown in Figure 3.1;
the other register is used to string similar referencestogether. The basic ring
consistsof two kinds of register pairs, the “hen” and “chicken.” The hen pair
is contained within a block which will be referred to, for example, in a point
block, while the chicken pair is contained in a block making reference to an-
other, for example, a line block making reference to the point. The chickens
which belong to a particular hen constitute all the referencesmade to the block
containing the hen. Figure 3.2 shows a typical ring; the inserting operation
and ordering shown will be explained below. Appendix C shows how the hen
and chicken blocks are arranged in dif ferent kinds of elements.k Figure 3.3 42#
shows the complete structure for a line segment and two end points with the
appropriate rings shown.

The mnemonic for a component is taken to be the upper (lower numbered)
of the register pair. The ring collecting ties, of course, are relative to LIST but
this hasbeensuppressedin the illustrations. The part of the upper register not
occupied by the chicken pointer contains a number which indicates how far
this particular element is from the top of the n-component element. This is the
small negative number showing in Figure 3.3. It is used to �nd the top of a
block when a component of it has beenfound asa member of a ring.

HUMAN REPRESENTATION OF RING STRUCTURE

In representing ring structures the chickens should be thought of as beside
the hens, and perhaps slightly below them, but not dir ectly below them. The
reason for this is that in the ring registers, regardless of whether in a hen or
a chicken, the left half of one register points to another register whose right
half always points back. By placing all such registers in a row, this feature is
clearly displayed. Mor eover, the meaning of placing a new chicken “to the left
of” an existing chicken or the hen is absolutely clear. The convention of going
“forwar d” around a ring by progressing to the right in such a representation
is clear, as is the fact that putting in new chickens to the left of the hen puts
them “last,” as shown in Figure 3.2. Until this representation was settled on,
no end of confusion prevailed becausethere was no adequate understanding
of “�rst,” “last,” “forwar d,” “left of,” or “befor e.”

42 RING STRUCTURE

Figure 3.2: (Originally onpage41.)

HUMAN REPRESENTATION OF RING STRUCTURE 43

Figure 3.3: (Originally onpage43.)

Figure 3.4: (Originally onpage43.)

44 RING STRUCTURE

BASIC OPERATIONS

k The basic ring structure operations are:44#

1. Inserting a new chicken into a ring at some speci�ed location in it, usu-
ally �rst or last.

2. Removing a chicken from a ring.

3. Putting all the chickens of one ring, in order, into another at some speci-
�ed location in it, usually �rst or last.

4. Performing someauxiliary operation on eachmember of a ring in either
forwar d or reverseorder.

Thesebasic ring structure operations are implemented by short sectionsof
program de�ned as MACRO instructions in the compiler language. By suit-
able treatment of zero and one member rings, that is of hens with none or one
chicken, asshown in Figure 3.4,the basicoperation programs operate without
making special cases. As stated in the macro language, the basic operations
becametrivially easyto use. For example,

PUTL � LSP� � ! PLS� �

puts the LSP(Line Start Point) entry of the line block pointed to by index reg-
ister � into the ring whose hen is the PLS (Point LineS entry) of the point
indicated by index register � , thus making � be the start point of � . If “ � ”
is read as “of ” and “ ! ” is read as “into”, the macro statement almost makes
sensein English. The format and function of all the ring manipulation macro
instructions used in Sketchpad can be found in Appendix D.

GENERATION OF NEW ELEMENTS

Subroutines are used for setting up new n-component elements in freespaces
in the storagestructure. Thesesubroutines placethek distance-to-the-top num-45#
bersin alternate registersasrequired and clearout the components sothat each
is an empty ring as shown in Figure 3.5. As parts of the drawing are deleted,
the registers which were used to represent them become free, indicated by
placing them in the FREESring. Data for new n-component elements could
be put into these free registers if suf�ciently long continuous blocks of free
storage were available, but Sketchpad is not at present equipped to do this.
Rather, new components are set up at the end of the storage area,lengthening
it, while freeblocks areallowed to accumulate. Garbagecollection periodically
compacts the storage structure by removal of the freeblocks and relocation of
the information above them (that is, information in higher numbered registers
illustrated lower on the page) as shown in Figure 3.6. Storage of a drawing
on magnetic tape can be done much more compactly for having removed all
internal freeregisters.

GENERATION OF NEW ELEMENTS 45

Figure 3.5: (Originally onpage46.)

46 RING STRUCTURE

Figure 3.6: (Originally onpage47.)

BOOBY TRAPS 47

BOOBY TRAPS

Every system which is devised for programming on computers has little prob-
lem areaswhich give humans more trouble than other parts; the ring structure
organization and operations are no exception. As was indicated above, the
visualization of the ring asa row of elements aids greatly in understanding of
the basicoperations. The use of relative addressing,while giving great power
for data communication, gave the programmer considerabledif �culty because
the term LIST must often but not always be added to or subtracted from the
addressportion of instructions. It took months before all the nuancesof these
problems were learned.

k By far the greatestdif �culty concerned processeswhich change the ring 48#
structure while other operations are taking place on it. For example, there
must be two versions of the basic macro which permits auxiliary operations
to be performed on all the members of a ring in turn. One version, LGORR
(Leonard's GO Round the ring to the Right), performs the auxiliary operation
on one ring member while remembering the next ring member so that if the
auxiliary operation deletes the current ring member the next one has already
beenfound. Another version of the basicmacro, LGORRI (LGORR Insertable),
rememberswhich ring member the auxiliary operation is being performed on
so that if the auxiliary operation puts a brand new member into the ring next
to the current one, the new one will not be overlooked. Neither macro will
function properly if both the current and the next ring members are deleted
simultaneously by the auxiliary function.

Early in the research the multiple sequencenature of the TX-2 was uti-
lized to provide immediate updating of the ring structure when push button
commands weregiven by the user. Trouble aroseif the display generation pro-
gram was working in the ring structure at the instant that it changed. It is now
clear that multiple sequencing and data channels must be used only to trans-
mit information into the computer and not to processthe ring structure, a job
properly left to the main computation stream. Main computation stream ring
manipulation hasimplications on futur emachine design sincemost of the ring
manipulations canbeperformed with index arithmetic alone without tying up
the main arithmetic element which meanwhile could beof useto someoneelse.
Perhaps several machines could share a single powerful arithmetic element if
they did the bulk of their processingwith index arithmetic.

GENERIC STRUCTURE, HIERARCHIES

k The organization of the elementsof the drawing into types hasfacilitated the 49#
generalization of the programs which comprise the Sketchpadsystem. The ef-
fort toward generality camerelatively late in the research effort becauseI did
not at �rst appreciatethe power that a general approach could bring. Consid-
erable reprogramming was done, however, to include as much generality as
possible. Those subroutines which had to do with a single kind of drawing
part were collected together and speci�cally labeled, both in the coding sheets

48 RING STRUCTURE

and block diagrams, but most importantly in the mind, as belonging to that
particular kind of entity. The remainder of the program was left completely
general.

The general part of the program will perform a few basicoperations on any
drawing part, calling for help from routines speci�c to particular types of parts
when that is necessary. For example the general program can show any part
on the display system by calling the appropriate display subroutine. Similarly ,
the general program is able to relocate objects on the display, making use of
speci�c routines only to apply a transformation to the various kinds of objects.
Again, the general program will satisfy any numerical constraints applied to
the drawing by the user, calling on speci�c subroutines only to compute the
error intr oduced into the system by a particular constraint.

The big power of the clear-cut separation of the general and the speci�c
is that it is easy to change the details of speci�c parts of the program to get
quite dif ferent results or to expand the system without any need to changethe
general parts. This was most dramatically k brought out when generality was50#
�nally achieved in the constraint display and satisfaction routines and new
types of constraints were constructed literally at �fteen minute intervals.

In the data storage structure the separation of general and speci�c is ac-
complished by collecting all things of one type together as chickens which
belong to a “generic” hen. The generic hen contains all the information which
makes this type of thing dif ferent from all other types of things. Thus the data
storage structure itself contains all the speci�c information, leaving only gen-
eral programs for the rest of the system. A typical generic block is shown in
Figure 3.7.

The generic blocks are further gathered together under super-generic or
generic-generic blocks according to four categories: Variables, Topologicals,
Constraints, and Holders, as shown in Figure 3.8. All pictur e parts which
have numerical information are ultimately gathered together under the VARI-
ABLES block by way of their own generic blocks. Ideally the VARIABLES
block should in some way indicate that there was numerical information, but
the generality has not been carried as far as this yet. Spacefor information
about the number of components of a variable (which is unnecessaryfor the
topological entities) could be omitted from the generic blocks for lines and cir-
cles. At present all generic blocks still carry spacefor all the information in
any of them simply becauseof historical reasons.This accounts for the spaces
seenin the Figure 3.7.

For the sakeof completenessthe four broad categoriesof things, the generic-
generic blocks, are brought together under the UNIVERSE block, which, as a
special case,is always located at the exact start ofk the storage structure, rel-53#
ative address1. The UNIVERSE block belongs to no higher block. I consid-
ered making it belong to itself so that continued upwar d searching through
the generic structure would appear to reachan unending string of UNIVERSE
blocks, but I could �nd no solid reason for so doing. Further work may de-
velop one, of course.

GENERIC STRUCTURE, HIERARCHIES 49

Figure 3.7: (Originally onpage51.)

50 RING STRUCTURE

Figure 3.8: (Originally onpage52.)

EXPANDING SKETCHPAD 51

EXPANDING SKETCHPAD

Addition of new types of things to the Sketchpad system's vocabulary of pic-
tureparts requiresonly the construction of a new generic block (about 20regis-
ters) and the writing of appropriate subroutines for that thing. The subroutines
might be easy to write, as they usually are for new constraints, or dif �cult to
write, as for adding ellipse capability, but at least a �nite, well-de�ned task
facesone to add a new ability to the system. Before the generic structure was
clari�ed, it was almost impossible to add the instructions required to handle a
new type of element.

52 RING STRUCTURE

Chapter IV

LIGHT PEN

k In Sketchpad the light pen is time shared between the functions of coor- 54#
dinate input for positioning pictur e parts on the drawing and demonstrative
input for pointing to existing pictur e parts to make changes.Although almost
any kind of coordinate input device could be used instead of the light pen for
positioning, the demonstrative input usesthe light pen optics asa sort of ana-
log computer to remove from consideration all but a very few pictur e parts
which happen to fall within its �eld of view, saving considerable program
time. Drawing systems using storage display devices of the Memotr on type
may not be practical becauseof the loss of this analog computation feature.

CONSTRUCTION OF LIGHT PEN

The light pen is a hand held photocell which will report to the computer when-
ever a spot on the display system falls within its small �eld of view. The
housing for the photocell is about the size of a fountain pen and is manipu-
lated much as a pen or pencil, hence the name. Many dif ferent varieties of
light pens have been built, including large cumbersome ones in the days be-
fore miniaturization, to be replacedby transistorized versions, and recently by
�ber optic pens connected by a �exible light pipe to a photocell mounted in-
side the computer frame. The particular pen used for the Sketchpad system
consistsof a photodiode and transistor preampli�er mounted in the pen hous-
ing and connectedto the computer by a length of small coaxial cable,asshown
ink the photograph of Figure 4.1,and in the drawing of Figure 4.2. It is used 55#
by Sketchpad primarily becauseits operation is relatively independent of the
distance it is held from the computer display, since it has a cylindrical �eld of
view.

Sincespots on the display system are intensi�ed one after another in time
sequence,whether or not eachspot is seenby the pen is individually reported
just after intensi�cation of that spot. The light pen ampli�er is designed so
that the pen is sensitive only to the bright blue �ash of the �rst intensi�cation
of a display spot and not to the dim yellow afterglow. The ampli�er output is
strobed only when a display spot has been intensi�ed to minimize room light
pickup. Although some computers require an interr ogation of a pen �ip-�op

54 LIGHT PEN

Figure 4.1: LIGHT PEN. Courtesy of MIT Electronic Systems Laboratory.
(Originally onpage56.)

Figure4.2:CONSTRUCTION OF LIGHT PEN. Drawing courtesy of Electronic
SystemsLaboratory. This drawing was made by conventional methods. (Orig-
inally onpage56.)

PEN TRACKING 55

to �nd out if a spot was seen,TX-2 usesthe interr uption of a sequencechange
to indicate this fact� . Thus if a seriesof points are displayed on the scopeby
a set of data transfer instructions, and one of thesepoints falls under the �eld
of view of the pen, subsequent instructions will be performed in the light pen
sequencerather than in the display sequenceuntil the light pen sequenceis
�nished. Thus it is unnecessary to interr ogate the pen speci�cally for each
display spot, the interr uption of sequencechanging serving automatic noti�-
cation that a spot was seen.For pen tracking, where a program branch is made
for every spot displayed, interr uption by the pen requires more program in-
structions than would a speci�c bit testing instruction, but for the demonstra-
tive use of the pen where any spot of the background display may fall within
the pen's �eld of view but is relatively unlikely to do so, the interr uption is a
real advantage.

PEN TRACKING

k The light pen and its connecting cable report to the computer immediately 57#
after any display spot has been shown which lies within the pen's view. By
displaying a cross-like pattern and noticing which spots fall within the light
pen's view, the computer can follow the motions of the light pen around the
screen. In order to follow normal motions of ahand held light pen I have found
it necessaryto redisplay the tracking crossabout 100times per second,taking 1
millisecond per display. When the crossis being “dragged” acrossthe screenat
the maximum speed I have achieved, successivecrossesare displayed about
0.2 inches apart and the maximum pen speed is thus 20 inches per second
which has proven quite enough for the experiments conducted. If the light
pen is moved faster than that, the tracking crosswill fall entirely outside of its
�eld of view and tracking will be lost. I use the lossof tracking asthe so-called
termination signal for all pen tracking operations.

Early in the systemdevelopment someeffort was spent trying to reducethe
computer time spent in pen tracking. It was attempted to have the computer
predict the location of the pen basedon its past locations so that a longer time
might elapsebetween display of tracking crosses.The assumptions of constant
velocity,

Xt = (Xt� 1 � Xt� 2) + Xt� 1

Yt = (Yt� 1 � Yt� 2) + Yt� 1 (4-1)

and constant acceleration,

Xt = 3(Xt� 1 � Xt� 2) + Xt� 3

Yt = 3(Yt� 1 � Yt� 2) + Yt� 3 (4-2)

where successivepen positions are denoted by subscripts, were tried. A picto-
rial representation of theseassumptions is shown in Figure 4.3.

k An attempt was made to combine various types of prediction according 59#

� TX-2's light pen is treated asan input device separatefrom its display. SeeAppendix G.

56 LIGHT PEN

Figure 4.3: (Originally onpage58.)

to the speedof motion of the pen, but all such efforts met with dif �cult stabil-
ity problems and were interfering with more important parts of the research.
Therefore, I decided to accept the ten per cent of time lost to tracking in order
to proceedto more interesting things. Other workers, notably Rolland Silvers
formerly of Bolt, Beranek and Newman, report better successwith predictive
tracking giving numbers like 3% loss.

Dif ferent methods of establishing the exact location of the light pen have
been tried using many dif ferent shapesof display. For example, the displays
shown in Figure 4.4all seemto be about the sameasfar astime taken to estab-
lish pen position and accuracy. As far asI know, no one hastaken into account
the motion of the pen during the tracking display period. I usethe logarithmic
scanwith four arms.

To initially establishpen tracking the Sketchpaduser must inform the com-
puter of an initial pen location. This hascometo be known as“inking-up” and
is done by “touching” any existing line or spot on the display whereupon the
tracking cross appears. If no pictur e has yet been drawn, the letters INK are
always displayed for this purpose.

DEMONSTRA TIVE USE OF PEN

During the remaining 90% of the time that the light pen and display system
are freefrom the tracking chore,spots are very rapidly displayed to exhibit the
drawing being built, and thus the lines and circlesof the drawing appear. The

DEMONSTRA TIVE USE OF PEN 57

Figure 4.4: (Originally onpage58.)

58 LIGHT PEN

Figure 4.5: (Originally onpage61.)

light pen is sensitive to thesespots and reports any which fall within its �eld
of view by thek interr uption of a sequencechange before another spot can be60#
shown. The table within the computer memory which holds the coordinates
of the spots also contains a tag on eachone as shown in Figure 4.5so that the
pictur e part to which this spot belongs may be identi�ed if the spot should be
seenby the pen.

A table of all such pictur e parts which fall within the light pen's �eld of
view is assembled during one complete display cycle. At the end of a dis-
play cycle this table contains all the pictur e parts that could even remotely be
considered as being “aimed at.” During the next display cycle a new table
is assembled which at the end of that cycle will replace the one then in use.
Thus, two storagespacesare provided, one for assembling a complete table of
display parts seen,the other for holding the complete table from the last dis-
play cycle so that the aiming computation described below in the sectionson
demonstrative language and pseudo pen location may avoid using a partially
complete table. Note that since the display of the TX-2 is independent of the
computations going on, the aiming computation may occur in the middle of a
display cycle.

Due to the relatively long time that a complete display cycle for a compli-
cated drawing may take, the aiming computation, by using information from
the previous complete display cycle, took excessivetime to “become aware”
of pictur e parts newly aimed at by the pen. Therefore, I require that any dis-
play part seen by the light pen which is not yet in the table being built for
the current display cycle be put not only in that table, but also in the table for
the previous display cycle if not already there. This speedsup the processof
locking onto elements ofk the drawing. Similarly , the information from a pre-62#
vious display cycle may contain many previously seendrawing parts which
are not currently within the light pen's �eld of view, especially if the light pen

DEMONSTRA TIVE LANGUAGE 59

has moved an appreciabledistance since the last complete display cycle. One
might attempt to detect large pen displacements during a display cycle and
indicate that the old light pen information is too obsolete to use if such dis-
placements occur. However , I have often found it handy to slide appreciable
distancesalong a line or curve, in which casethe light pen information is not
made entirely obsolete.Therefore,no such obsolescense-by-displacementrou-
tine has been incorporated into the Sketchpad system.

DEMONSTRA TIVE LANGUAGE

The table of pictur e parts falling within the �eld of view of the light pen, as-
sembled during a complete display cycle, contains all the pictur e parts which
might form the object of a statement of the type:

apply function F to .

e.g. erasethis line (circle, etc.). Sincethe one half inch diameter �eld of view
of the light pen is relatively large with respect to the precision with which it
may be manipulated by the user and located by the computer, the Sketchpad
systemwill rejectany suchpossibledemonstrative objectwhich is further from
the center of the light pen than somesmall minimum distance; about 1/8 inch
was found to be suitable. Although it is easy to compute the distance from
the center of the light pen �eld to a line segment or circle arc, it is not possible
to computek the distance from the light pen �eld center to a piece of text or a 63#
complicated symbol representedasan instance. For every kind of pictur e part
some method must be provided for computing its distance from the light pen
center or indicating that this computation cannot be made.

The distance from an object seenby the light pen to the center of the light
pen �eld is used to decreasethe size of the light pen �eld for aiming pur -
poses. A light pen with two concentric �elds of view, a small inner one for
demonstrative purposes, and a larger outer one for tracking would make this
computation unnecessaryand would give better discrimination between ob-
jects for which no distance computation exists. Lack of this discrimination is
now a problem. Design of such a pen is easy, and consideration of its develop-
ment for any futur e large scaleuse of engineering drawing programs should
be given serious consideration.

After eliminating all possible demonstrative objects which lie outside the
smaller effective �eld of view, the Sketchpad system considers objects topo-
logically related to the onesactually seen.End points of lines and attachment
points of instancesare especially important, but objectson which constraints
operate, or the value of a number as opposed to the digits which represent
this value may also be considered. Such related objects may not speci�cally
appear in the drawing but it must be possible to referencethem easily. If any
such object is suf�ciently closeto the center of the light pen �eld, it is added to
the table of possible demonstrative objectseven though it may have no display
and, therefore, was not seenby the light pen.

60 LIGHT PEN

Figure 4.6: (Originally onpage61.)

As described above, the aiming or demonstrative program �rst eliminates
from further consideration objects which are too far from thek center of the64#
light pen �eld to reducethe effective sizeof the �eld for aiming purposes. Next
it brings into consideration unseenobjectsrelated to the objectsactually seen.
After thesetwo proceduresthe number of objectsstill under consideration de-
termines the further courseof action. If no objectsremain under consideration,
nothing is being aimed at. If one object, it is the demonstrative object and the
light pen is said to be “at” it, e.g., the pen is at a point, at (on) a line, at (on)
a circle, or “at” a symbol (instance). If two objects remain, it may be possible
to compute an intersection of them. If the intersection is suf�ciently close to
the pen position, the pen is “at” the intersection. With two or more objects
remaining, the closestobject is chosenif such a choice is meaningful; or if not,
no object is pointed at, i.e., there is no demonstrative object.

The aboveconsideration of the demonstrative program hasbeenleft vague
and general purposely to point out that the speci�c types of objectsbeing used
in a drawing dif fer only in the details of how the various computations are
made. For example, although the Sketchpad system is not now able to do

PSEUDO PEN LOCATION 61

anything with curves other than circle arcsand line segments,the demonstra-
tive program requirements to add conic sections to the system, as it stands,
involve only the addition of computation procedures for the distance from
the pen location to the conic, routines for computing the intersection of con-
ics with conics, lines, and circles, and some indication of what topologically
related objects, e.g. foci, need be considered. Figure 4.6 outlines the various
regions within which the pen must lie to be considered “at” a line segment,
a circle arc, their end points, or their intersection. The relative sizesk of the 65#
error tolerated in the “suf �ciently close to” statementsabove are indicated as
well. The error tolerated is a �xed distance on the display so that confusion
becauseobjectsappear too closetogether can usually be resolved by enlarging
the drawing asdescribed in Chapter V.

The organization of the demonstrative program in Sketchpadis in the form
of a set of special casesat present. That is, the program itself tests to see
whether it is dealing with a line or circle or point or instanceand usesdif ferent
special subroutines accordingly . This organization remains for historical rea-
sonsbut is not to be considered ideal at all. A far better arrangement is to have
within the generic block for a type of pictur e part all subroutines necessaryfor
it.

PSEUDO PEN LOCATION

The demonstrative program computes for its own usethe location on a pictur e
part seenby the light pen nearest the center of the pen's �eld of view. It also
computes the location of the intersection of two pictur e parts. Thus when the
demonstrative program decides which object or intersection the light pen is
at, an appropriate pseudo pen location has also been computed. If no object
has been named as demonstrative object, the pseudo pen location is taken to
be the actual pen location. The statements “at a line,” “at a circle,” and “at a
point” take on true signi�cance, for the pseudo pen location will indeed be at
theseobjects.

The pseudo pen location is displayed as a bright dot which locates itself
ordinarily at the center of the pen tracking cross. It is easyk to tell when the 66#
demonstrative object is a line, circle, point, or intersection, becausethis bright
dot locks onto the pictur e part and becomestemporarily independent of the
exact pen location. The pseudo pen location or bright dot is used as the point
of the pencil in all drawing operations; for example, if a point is being moved,
it moves with the pseudo pen location. As the light pen is moved into the areas
outlined in Figure4.6and the pen locks onto existing parts of the drawing, any
moving pictur e parts jump to their new locations as the pseudo pen location
moves to lie on the appropriate pictur e part. The pseudo pen location at the
instant that a new line or circle is created is used asthe coordinates of the �xed
end of that line or circle.

With just the basic drawing creation and manipulation functions of draw,
move, and delete and the power of the pseudo pen location and demonstrative
language programs, it is possible to make fairly extensive drawings. Most of

62 LIGHT PEN

the constructions normally provided by straight edge and compassare avail-
able in highly accurate form. Most important, however, the pseudo pen loca-
tion and demonstrative language give the means for entering the topological
properties of a drawing into the machine.

Chapter V

DISPLA Y GENERATION

k The display system, or “scope,” on the TX-2 is a ten bit per axis electrostatic 67#
de�ection system able to display spots at a maximum rate of about 100,000per
second.A display instruction permits a single spot to be shown on the display
at any one of slightly more than a million places,requiring 20 bits of informa-
tion to specify the position of the spot. Due to the multiple sequencedesign
of the TX-2 it is convenient to permit the display system to operate at its own
speed. The display will request memory cycles whenever they are required
to transmit more information to it, but the time actually taken in displaying a
spot will not be lost, for the rest of the TX-2 may be involved with other op-
erations meanwhile. It has been found useful, therefore, to store the locations
of all the spots of a drawing in a large table in memory and to produce the
drawing by displaying from this table. The display system, then, seesthe rest
of Sketchpadas32,000wor ds of core storage. The restof the Sketchpad is able
to compute and store spot coordinates in the display table without regard to
the timing of the display system.

The display spot coordinates arestored one to amemory wor d. The display
subprogram displays each in turn, taking 20 microsecondseachso that some
time will be left over for computation. If instead of displaying eachspot suc-
cessively, the display program displays every eighth in a system of interlace,
the �icker of the display is reduced greatly, but lines appear to be composed of
crawling dots. For large displays made up mostly of lines such an interlace is
useful. However , fork repetitive patterns of short lines, the effect may be that 68#
the entire drawing seemsto dancebecauseof synchronization between the in-
terlaceand the repetitive nature of the pattern. The interlace may be turned on
or off under user control by meansof a toggle switch.

Early display work with the display �le led to the discovery by the author
and others that if the spots were displayed at random, a twinkling pictur e re-
sulted which is pleasing to the eye and avoids �icker entirely (seeFigure 5.1).
However , small detail is lost becauseof the eye's inability to separatethe pat-
tern from the random twinkle unless the pattern is gross. Twinkling, like in-
terlace, is under user control by a toggle switch. Twinkling is accomplished
by scrambling the order of the display spot locations in the display �le. To
do this, eachsuccessiveentry is exchangedwith an entry taken at random un-

64 DISPLA Y GENERATION

til every entry has been exchanged at least once. Needless to say, whether a
scrambled �le is displayed successivelyor by interlace makes no dif ferenceto
its twinkling appearance.

MARKING OF DISPLA Y FILE

Of the 36 bits available to store each display spot in the display �le, 20 are
required to give the coordinates of that spot for the display system, and the
remaining 16 are used to give the addressof the n-component element which
is responsible for adding that spot to the display. Thus, all the spots in a line
are tagged with the ring structure address of that line, and all the spots in
an instance are tagged as belonging to that instance. The tags are used to
identify the particular part of the drawing being aimed at by the light pen for
demonstrative statements.SeeChapter IV, Figure 4.5,p61.

k If a part of the drawing is being moved by the light pen, its display spots70#
will be recomputed as quickly as possible to show it in successivepositions.
The display spots for such moving parts are stored at the end of the display
�le so that the display of the many nonmoving parts need not be disturbed.
Moving parts are made invisible to the light pen so that the demonstrative
and pseudo pen location computations described in Chapter IV will not “lock
on” to parts moving along with the pen.

COORDINA TE SYSTEMS

The coordinate systemof the TX-2 display systemhasorigin at the centerof the
scopeand requiresten bits of de�ection information located at the left of 18bit
computer subwords for eachaxis. Treatment of thesenumbers assigned frac-
tions of full scopede�ection leads to the most natural programming because
of the �xed point, signed fraction nature of the TX-2 multiply and divide in-
structions. The scopecoordinate system is natural to the ability of the TX-2 to
perform arithmetic operations simultaneously on two 18 bit half wor ds. It is
not suitable for representing variables with more than two components, nor is
the precision available in 18 bits adequate for all the operations for which the
Sketchpad system is applicable.

For convenience in representing many component variables and for more
than 18 bit precision, Sketchpad usesan internal coordinate system for draw-
ing representation divor ced from the representation required by the display
system. This internal system is called the “page” coordinate system. In think-
ing of the drawings in Sketchpad, the pagek coordinates are considered as71#
�xed. A page to scope transformation gives the ability to view on the scope
any portion of the page desired, at any degreeof magni�cation, as if through
a magnifying glass. The magni�cation feature of the scopewindow-into-the-
page makes it possible to draw the �ne details of a drawing. The range of
magni�cation of 2000available makes it possible to work, in effect, on a 7-inch
square portion of a drawing about 1/4 mile on a side.

COORDINA TE SYSTEMS 65

Figure 5.1: TWINKLING DISPLAY. Displaying the spots of a large display in
random sequencemakes the display appear to “twinkle.” This photograph
was exposed only long enough to show about half of the spots of a twinkling
display. It conveys the impr ession of a twinklings display as well as any still
pictur e can.
The curves are of the equation x4 � x2 + y2 = a2 for several values of a. They
were drawn by another program rather than by Sketchpad. (Originally onpage
69.)

66 DISPLA Y GENERATION

TRANSFORMA TIONS AND SCALE FACTORS

The page coordinate system is intended for use only internally and will al-
ways be translated into display or plotter coordinates by the output display
subroutines. Therefore, it is impractical to assign any absolute scalefactor to
the page coordinate system itself; it is meaningless to ask how big is the page.
It is, however, very important to know how big the visible representationsof
Sketchpad drawings will be, for one must make drawings in the correct sizes
if one is to communicate with machine shops. Dimensions indicated on the
drawing must correspond to the dimensions of the drawing in its �nal form
if full-size drawings are to be produced. The computer 's only concern with
the actual size of the page coordinate system is to know what decimal number
should be displayed for the value of a certain distance in page coordinates. As
Sketchpadnow stands, the value is such that one-to-onescaledrawings canbe
produced on the plotter if dimensions are read in units of thousandths of an
inch.

Page coordinates, then, are dimensionless signed fractions, 36 bits long
which are considered as �xed when considering drawing representations. In
order to avoid the troubles of over�ow , it is made dif �cult k for the user to gen-72#
erate page coordinates with values in the most signi�cant six or seven bits of
the 36 allowed. This is done by arti�cially limiting the maximum part of the
pagedisplayed on the scopeto 1/256 of the page's linear dimension. The 29or
30 bits of precision which remain are suf�cient for all applications. The max-
imum magni�cation of the display is also limited so that the “grain” of the
page coordinates cannot show on the display. The 2000-to-onescale change
mentioned above remains.

A scale factor for the display controls the size of the square which will
appear on the scope. The actual number saved is the half-length of the side
of the square, called SCSZfor SCope SiZe asshown in Figure 5.2. Also saved
are the page coordinates of the center of the scopesquare. By changing these
numbers the portion of the page shown on the scopemay be changed in size
and moved, but not rotated.

The shaft position encoder knobs below the scope (see Figure 1.2, p.11)
are used to control the scalefactor and square positioning numbers indicated
above. Rotation of the knobs tells the program to change the display scale
factor or the portion of the page displayed. In order to obtain smooth oper-
ation at every degree of magni�cation, unit knob rotations produce changes
in the scopesize and position numbers proportional to the existingscopesize
number, SCSZ.Rotation of the scalechange knob, therefore, causesexponen-
tial increaseor decreasein SCSZand this results in apparent linear change in
the view on the scope.

INSIDE OUT AND OUTSIDE IN DISPLA Y

k How the dir ection of rotation of the knobs affects the translation of the dis-74#
play is important from the human factors point of view. It is possible to think

INSIDE OUT AND OUTSIDE IN DISPLA Y 67

Figure 5.2: (Originally onpage73.)

68 DISPLA Y GENERATION

of moving the scopewindow above the page or moving the drawing beneath
the window . Since to the user the scope is physically there, and no senseof
body motion goeswith motion of the window , the knobs turn so that the op-
erator thinks of moving the drawing behind his window: rotation to the right
results in pictur e motion to the right or up. Similarly , rotation of another knob
to the right results in rotation of pictur e objectsto the right asseenby the user.
No such convenient manner of thought for the scale knob has been found.
Users get used to either senseof change about equally poorly; the major user
so far (the author) still must try the knob before being sure of which way it
should be turned.

The translation knobs wereprimarily used to locatea portion of the pictur e
in the center of the scopeso that it could be enlarged for detailed examination.
To make centering easier, a special function was provided which relocatesthe
pictur e so that the immediately preceding light pen position is centered. The
knobs are now used for �ne positioning of the pictur e to make the scopedis-
play all of an areawhich just barely �ts inside it. The light pen could perhaps
be used to control scopesize and positioning without referenceto the knobs at
all, perhaps with a coarseand �ne control. The question of what controls are
best suited to humans is wide open for investigation.

COORDINA TE CONVERSION AND EDGE DETECTION

k The reasonfor having the page–scopetransformation in terms of the location75#
of the scopecenter and the sizeof the scopeis that this form makesit very easy
to transform page coordinates into scopecoordinates.

PAGE COORDINA TE � CENTER OF SCOPE
SCOPESIZE

= SCOPECOORDINA TE

The processof division will yield over�ow if the point converted does not
lie on the scope.However , one can little afford the time that application of this
transformation to eachand every spot in a line would require. It is necessary,
therefore, to compute which portion(s) of a curve will appear on the scope,
and generate ONLY those portions for the human to see. The edge detection
problem is the problem of �nding suitable end points for the portion of a curve
which appearson the scope.

In concept the edge detection problem is trivial. In terms of program time
for lines and circles the problem is a small fraction of the total computational
load of the system, but in terms of program debugging dif �culty the problem
was a lulu. For example, the computation of the intersection of a circle with
any of the edgesof the scopeis easy, but computation of the intersection of a
circle with all four edges may result in as many as eight intersections, some
pairs of which may be identical, the scopecorners. Now which of theseinter-
sectionsare actually to be used asstarts of circle arcs?

THE SERVICE PROGRAM — LINE AND CIRCLE GENERATION 69

THE SERVICE PROGRAM — LINE AND CIRCLE GEN-
ERATION

k As the Sketchpadsystem now exists,all displays are generated from straight 76#
line segments,circle arcs,and single points. The details of generating the spe-
ci�c display spots for eachof thesetypes of display is relegated to a “service”
program. The service program also contains the actual display sub-program
for displaying the spots and retains control over the input and output to the
display �le. The service program takes care of the transformation of coordi-
nates from page coordinates to scope coordinates and computes the portion
of the line, circle, or point to be shown, if any. Since these service functions
have been working correctly, further programming was not required to make
reference to the details of scope size, position, coordinate transformation, or
display. For example, the routine which displays text on the scope uses the
line and circle service programs to composeeachletter.

The independence of the bulk of the program from the speci�cs of display
is a very valuable asset for futur e expansion and change to the system. For
example, when a line drawing scope capability was added to the TX-2, only
the serviceprogram needed to be changed to accommodateit. Mor eover other
people can and do use the service subroutines in their programs. The atti-
tude of independent parts divided by independence of function pervades the
Sketchpadsystem;being forced to divide the program into severalbinary por-
tions becauseit was, in toto, too big to handle, I divided it in the most natural
placesI could �nd.

The actual generation of the lines and circles for the present spot display
scopeis accomplished by meansof the dif ferenceequations:

xi = xi� 1 + Dx

yi = yi� 1 + Dy (5-1)

k for lines, and 77#

xi = xi� 2 +
2
R

(yi� 1 � yc)

yi = yi� 2 �
2
R

(xi� 1 � xc) (5-2)

for circles,where subscripts i indicate successivedisplay spots, subscript c in-
dicates the circle center, and R is the radius of the circle in ScopeUnits. In
implementing these dif ference equations in the program the fullest possible
use is made of the coordinate arithmetic capability of the TX-2 so that both the
x and y equation computations are performed in parallel on 18 bit subwords.
Including marking the points in the display �le with the appropriate code for
the ring structure block to which they belong (two instructions), and index-
ing, the program loops contain �ve instructions for lines and ten for circles.
About 3/4 of the total Sketchpad computation time is spent doing these 15
instructions!

70 DISPLA Y GENERATION

CIRCLE CLOSURE

It is an unfortunate property of dif ferenceequation approximation to dif feren-
tial equations that the tiny errors intr oduced by the �nite approximation may
accumulate to produce grossnoticeable errors. Although the dif ferenceequa-
tion (5-2) listed above for circle generation may seemmore complicated than
necessary, it is the small details of the equation that make it useable. Consid-
erable effort was required to �nd an equation which produced faithful circles
and could be implemented to take advantage of the parallel 18 bit arithmetic
available in the TX-2. Other equations tried either generated logarithmic spi-
rals due tok mathematical inadequacies, required more than 18 bit precision78#
to operate accurately, or required serial processingof the x and y equations,
which would consume more time.

For example, the dif ferenceequations:

xi = xi� 1 +
1
R

(yi� 1 � yc)

yi = yi� 1 �
1
R

(xi� 1 � xc) (5-3)

produce a logarithmic spiral which grows about (� � step size) in “radius”
eachturn. This spiral diver genceis predicted theoretically and is unrelated to
any roundof f error. It could be avoided by using the equations:

xi =
R

p
1+ R2

�
xi� 1 +

1
R

(yi� 1 � yc)
�

yi =
R

p
1+ R2

�
yi� 1 �

1
R

(xi� 1 � xc)
�

(5-4)

but the term Rp
1+ R2 is so little dif ferent from unity for the usual values of R

that it cannot be represented in 18 bits. The simple change from (5-3) to the
equations:

xi = xi� 1 +
1
R

(yi� 1 � yc)

yi = yi� 1 �
1
R

(xi � xc) (5-5)

where a new position of x is used to generate the next position of y. Equa-
tions (5-5) approximate a circle well enough and are known to close exactly
both in theory and when implemented, but becausethe x and y equations are
dissimilar , they cannot make use of TX-2's ability to do two 18 bit additions
at once. Note, however, that Equations (5-5) are ideally suited for implemen-
tation on machines which can perform onlyk one addition at a time. In fact,79#
Sketchpad usesEquations (5-5) to generatethe sine and cosine functions used
for rotations.

DISPLA Y PROGRAMS 71

DISPLA Y PROGRAMS

The display programs for line and circle segmentsare simply the line and cir-
cle drawing subroutines plus a small program which extracts the pertinent
numerical information from the ring structure to locate the line or circle seg-
ment properly. A similar routine for drawing dotted lines and dotted circles
would be useful—the samemanipulations that apply to lines and circlescould
be applied to the dotted curves aswell. To be consistent with the existing pro-
grams the dotted line program would usethe line or circle drawing subroutine
many times, oncefor eachdot. Although this would besomewhat inef�cient in
that the values of Dx and Dy in (5-1) would be recomputed eachtime, it could
be made to work with the minimum programming dif �culty . Alternatively ,
a special dotted line subroutine could be written. This would be especially
appropriate if output devices were used for which dotting could be accom-
plished in a special way as, for example, lifting the plotter pen periodically
while it is tracing a curve.

Another variation on lines and circles would permit making lines of var-
ious weights or with dif ferent styles of dots: center lines and the like. These
could each be put into the system as a dif ferent type of line, or all could be
treated as a single type with some numerical speci�cation of the line charac-
teristics. For example, two scalarsmight be used to indicate approximate dot
frequency and the ratio of dot length to dot period. A single scalarmight spec-
ify the line weight. k It is important that the properties of such a scalar would 80#
be the unit-less properties of ratios, invariant under changes to the scale of
the drawing and the transformations of instances.The existing scalarwith the
dimension of length would not serve.

Text, to put legends on a drawing, is displayed by means of special tables
which indicate the locations of line and circle segmentsto make up the letters
and numbers. Each piece of text appears in a single line not more than 36
characters in length of equally spaced characters which can be changed by
typing. Digits to display the value of an indicated scalarat any position and in
any size and rotation are formed from the sametype faceas text. It is possible
to display up to �ve decimal digits with sign; binary to decimal conversion
is provided, and leading zeros are suppressed. Whatever transformation is
applied to the magni�cation of subpictur esapplies also to the value displayed
by the digits. Digits which indicated lengths when a subpictur e was originally
drawn remain correct however it is used. Digits are intended for making size
notations on drawings by meansof dimension lines.

The instance, as will be described more fully in Chapter VI, behavesas a
single entity. The display spots which represent all the internal parts of in-
stancemust be marked with the addressof the instanceblock rather than with
the addressof the actual line or circle blocks which are the indir ectcauseof the
spots. The instance expansion program makes use of the line, circle, number,
and text display programs and itself to expand the internal structure of the
instance. A marker is used so that during expansion of an instance, display
spots retain the instance marking.

k Expansion of instances may be a most time consuming job. When just 81#

72 DISPLA Y GENERATION

the existence of an instance is important, but not its internal character, one
can display a frame around the instance without having its internal structure
show. The framing and expansion of instancesare individually controlled by
toggle switches. The instance frame is a square drawn around the outline of
the instance, that is, the smallest square which �ts around the master of the
instance in upright position. The sizeand location of this square are computed
whenever a drawing is �led away, provided that no instancesof the drawing
exist. In fact, the drawing is relocated so that the center of the frame is always
at the origin of the page coordinate system. This is done so that the coordinate
system of an instance will have origin at about the center of the instance. If in-
stancesof the pictur e exist, the program refrains from relocating pictur e origin
becauseto do sowould slightly relocateall instancesof the pictur e in the other
dir ection.

The instance expansion routine does some edge detection in a crude way
to avoid spending inordinate amounts of time deciding that eachline and cir-
cle in an instance grossly off the scopeis individually off the scope. Instances
are not expanded unless there is a fair chancethat some part of them will ap-
pear. The instance outline box is used for this purpose: the instance is not
expanded if its center is more than 1.5 times as far from the scopeedge as its
box size. Since the relatively new addition of avoiding box size recomputa-
tion and translation of a pictur e if instances of it exist, it is possible to have
parts of an instance extend any distance outside their box. Therefore, instance
parts might disappear inexplicably . This has, however, never been observed
in practice.

k A more complete treatment of the size of an instance for edge detection82#
which would cure the dif �culties outlined above could be made. One would
compute not only the size of the smallest outlining square each time an un-
instanced drawing is �led away, but also the size of the smallest surrounding
circle eachtime the drawing is �led away, whether or not it is instanced. The
smallest circle would be used to determine whether a particular instance was
worth expanding at all, or if the entire circle was contained on the scope, it
would indicate that further edge detection would be entirely unnecessary. In
computing the smallest enclosing circle, needlessto say, subpictur eswould be
considered only as objectswhich occupy their smallest enclosing circle; inter-
nal structure of instanceswould be ignored. Whereasnow only the smallest
enclosing box can be seen,in the proposed more complete treatment either the
smallest enclosing square or circle could be displayed.

DISPLA Y OF ABSTRACTIONS

The usual pictur e for human consumption displays only lines, circles,text, dig-
its, and instances. However , certain very useful abstractions are represented
in the ring structure storage which give the drawing the properties desired
by the user. For example, the fact that the start and end points of a circle arc
should be equidistant from the circle's center point is represented in storage
by a constraint block. To make it possible for a user to manipulate these ab-

DISPLA Y OF ABSTRACTIONS 73

stractions, each abstraction must be able to be seenon the display if desired.
Not only does displaying abstractions make it possible for the human user to
know that they exist, but also displaying abstractions makes itk possible for 83#
him to aim at them with the light pen and, for example, erasethem. The light
pen demonstrative language described in Chapter IV is suf�cient for making
all changesto objectsor abstractions which can be displayed. To make Sketch-
pad's light pen language universal, all objectsand abstractions representedin
Sketchpad's ring structure can be displayed. To avoid confusion, the display
for particular types of objects may be turned on or off selectively by toggle
switches. Thus, for example, one can turn on display of constraints aswell as
or instead of the lines and circleswhich are normally seen.

If their selection toggle switch is on, constraints are displayed asshown in
Figure 5.3.The central circle and letter are of �xed size on the scoperegardless
of the drawing scalefactor and are located at the average location of the vari-
ablesconstrained. The four arms of aconstraint extend from the top, right side,
bottom, and left side of the circle to the �rst, second,thir d, and fourth variables
constrained, respectively. If fewer than four variables are constrained, excess
arms are omitted. In Figure 5.3 the constraints are shown applied to “dummy
variables,” eachof which shows asa � .

Two dif �culties are encountered with this representation of constraints:

1. The constraint diagrams tend to overlap one another when a geometric
�gur e has several constraints applied to it, and

2. One character is not enough to display all the symbols and mnemonics
one would like to have for his constraints.

A more desirable arrangement would let the user draw the constraint rep-
resentation diagrams in the same way he makes other drawings, permitting
him to invent whatever mnemonics he could draw. It would alsok be nice to 85#
be able to relocate the body of a constraint representation at will to avoid the
unfortunate and confusing overlapping. How to locate it without explicit in-
structions would, however, be a problem. Mor eover, the constraint, having a
position itself, would have to betreatedasa variable and might beused to con-
strain itself, compounding an already messy business. Alternatively , instead
of locating the circle and letter at the center of the variables one could locate
them at random nearby. Any confusion of constraints could then be clari�ed
by recomputing the display �le to get a new set of random locations.

Another abstraction that can be displayed if desired is the value of a set
of digits. The value of a set of digits is stored as a variable separatefrom the
digits themselves. Moving digits means relocating them on the drawing or
rotating them. Making the digits bigger means just that, increasing the type
size. But making the value bigger changesthe particular digits seenand not
the type size. The value of a set of digits, a scalar, appears as a # connected
to the digits which display it by as many lines as there are setsof digits and
located at the averagelocation of thesesets,asshown in Figure 5.4.Sincethere
is usually only one setof digits displaying the value of a scalar, the # is usually
superimposed on it and connectedto it by a zero length line which looks like a

74 DISPLA Y GENERATION

Figure 5.3: (Originally onpage84.)

EMPTY DISPLA YS 75

Figure 5.4: (Originally onpage84.)

dot. The major dif �culty with this display is that values which have no digits
all lie exactly on top of one another at the origin.

EMPTY DISPLA YS

The frames which may be put around instancescan be thought of as abstrac-
tions of the existenceas opposed to the appearanceof thek instance. Mor eover, 86#
since it is possible to make an instance of a pictur e and then erasethe lines in
the master pictur e, it is possible to have an instance with no appearanceat all,
an empty instance. Before instanceframing was possible such empty instances
were inaccessibleto the light pen and likely to be forgotten by the user because
they could not show on the display. At the present time it is possible to lose
only text; a line of text composed entirely of spacesdoes not show.

THE AS YET UNDREAMT OF THINGS THA T WILL BE
DISPLA YED

The organization of Sketchpad display as a set of display subroutines with
identical external properties makes it possible to add new kinds of displays to
the system with the greatestease.At the presenttime the need for dotted lines
and circles, including center lines, dark lines, etc., and the need for a ratio
type unitless scalar for representing angles and proportions is clear. Conic

76 DISPLA Y GENERATION

sections would be useful. What other kinds of things may becomeuseful for
special purposes is as yet unknown; Sketchpad attempts to be big enough to
incorporate anything easily.

Chapter VI

RECURSIVE FUNCTIONS

k In the processof making the Sketchpad system operate, a few very general 87#
functions were developed which make no referenceat all to the speci�c types
of entities on which they operate. Thesegeneral functions give the Sketchpad
system the ability to operate on a wide range of problems. The motivation
for making the functions asgeneral aspossible camefrom the desire to get as
much result as possible from the programming effort involved. For example,
the general function for expanding instancesmakes it possible for Sketchpad
to handle any �xed geometry subpictur e. The rewards that come from imple-
menting general functions are so great that the author hasbecomereluctant to
write any programs for speci�c jobs.

Each of the general functions implemented in the Sketchpad system ab-
stracts, in some sense,some common property of pictur es independent of the
speci�c subjectmatter of the pictur esthemselves.For example, the instanceex-
pansion program is a representation of the fact that pictur esfrom many �elds
contain subpictur es with relatively �xed appearance. It is not claimed that
the general functions described in this chapter form a complete set, that is,
abstract all the common properties of pictur es. There is a de�nite need for a
general purpose function for making topological changesto a drawing. Such
a general purpose system is necessary, for example, to put �llets and rounds
on corners, or to be able to de�ne a vocabulary of dotted lines which could
be, “unr eeled, ” as it were, to any desired length. Nevertheless, the power ob-
tained from the small set of generalized functions in Sketchpad is one of the
most important results of the research.

k In order of historical development, the recursive functions in use in the 88#
Sketchpad system are:

1. Expansion of instances, making it possible to have subpictur es within
subpictur esto asmany levels asdesired.

2. Recursivedeletion, whereby removal of certain pictur eparts will remove
other pictur e parts in order to maintain consistencyin the ring structure.

3. Recursive merging, whereby combination of two similar pictur e parts
forcescombination of similarly related other pictur e parts, making pos-
sible application of complex de�nitions to an object pictur e.

78 RECURSIVE FUNCTIONS

4. Recursive moving, wherein moving certain pictur e parts causesthe dis-
play of appropriately related pictur e parts to be regenerated automati-
cally.

PUSH DOWN LISTS

A common method of keeping track of the recursion processis to use,a “push
down list,” a device much like a sinking table used in cafeteriasto hold dishes
so that as a dish is removed the next is ready. Each of the entries of a push
down list referencesthe next, so that if one is removed, the location of the next
will be available. A peculiarity of the Sketchpad system is that these push
down lists are formed dir ectly in the data storagestructure and not separately
by the program. This guaranteesthat if the data storagestructure �ts in mem-
ory, it may befully recursedwithout risk that the push down information over-
�ow the spaceavailable for it. As far as possible, Sketchpad usesparts of the
data structure otherwise used for other purposes to perform the push down
function.

Chapter III and Appendix C described the ring structure used for primary
pictur e storate in the Sketchpadsystem and showed the relationships between
various kinds of blocks. In this section as little referencek as possible will be89#
made to the exactnature of the blocks involved, becauseby avoiding reference
to speci�c structure the functions considered may be made applicable to any
speci�c structure. By way of example, however, some speci�c caseswill be
mentioned; bear in mind that theseare meant only to be illustrative.

DEPENDENT AND INDEPENDENT ELEMENTS

Certain pictur e elementsdepend in a vital way for their existence,display, and
properties on other elements. For example, a line segment must referencetwo
end points between which it is drawn; a set of digits must referencea scalar
which indicates the value to be shown. In threedimensions it might be that a
surface is represented as connecting four lines which in turn depend on end
points. If a particular thing depends on something else there will be in the
dependent thing a reference by pointer to the thing depended upon. In the
ring structure used in Sketchpad, there will be a ring with a “hen” pair in the
thing depended on and at least one “chicken” pair in a dependent thing. For
example, a ring will connecta point with all lines which use it asan end point;
the chicken pairs of this ring, being in the blocks for the lines in question, point
to the point asan end point of the lines.

Since there may be any number of rings passing through a given block,
a particular block may depend on some other blocks and simultaneously be
depended on by others. Such a block contains both hens and chickens. In
particular , all blocks contain at leastone chicken which indicates by a reference
to a generic block the type of thing represented. Some things are otherwise
totally depended upon, e.g. points, some things are totally dependent, e.g.
lines, and someboth depend and are depended on, e.g. instances.

RECURSIVE DELETING 79

RECURSIVE DELETING

k Consistency is of course maintained if a single thing upon which no other 90#
thing depends is deleted. To accomplish this, all chicken pairs in its block
are removed from their corresponding rings. The registerswhich comprised a
deleted block are declared “fr ee” by their addition to the FREESstorage ring.
In the Sketchpad system, line segments are entirely dependent and may be
deleted without affecting anything else. However , deleting a line may leave
end points on the drawing with no lines attached to them. A special button is
provided for removing all such uselesspoints from the drawing.

If a thing uponwhich otherthings dependis deleted,thedependentthings must
bedeletedalso. For example, if a point is to be deleted, all lines which terminate
on the point must also be deleted. Otherwise, where would these lines end?
Similarly , deletion of a variable requiresdeletion of all constraints on that vari-
able; a constraint must have variables to act on. Three dimensional surfaces
might be made to depend on lines which depend on points; if so, deletion of
a point would require deletion of a line which would in turn require deletion
of a surface. In Sketchpad, deleting a scalar forcesdeletion of all digits dis-
playing its value, which will forcedeletion of all constraints holding the digits
in position. Although the scalar-digits-constraint chain is the longest one in
Sketchpad, the programs could handle longer chains if they existed.

The recursivenessof deletion brings with it the dif �culty that one deletion
may cause any number of deletions. It may therefore be dif �cult to follow
the ring structure during deletions. For example, suppose that everything in a
particular pictur e is to be deleted, a facility which is provided. The program
applies the delete routine tok the �rst thing in the pictur e,saya point, and then 91#
to the next thing in the pictur e, say a line which terminated on the point. The
normal macro mentioned in Chapter III for applying functions to all the mem-
bers of a ring, LGORR, cannot be used, for at the time the next ring member
is to be located, both it and the current ring member may be so much mean-
ingless free storage. To delete everything in a pictur e, Sketchpad again and
again deletesthe �rst thing in the pictur e, thus chewing away until the pictur e
is gone.

The push down list for recursive deletion is formed with the pair of regis-
ters which normally indicates what type of thing a block represents. As soon
as it is found that a block must be deleted, it is declared “dead” by placing its
TYPE pair in a generic ring called DEADS. The �rst dead thing is then exam-
ined to seeif it forcesother things to be declared dead, which is done until no
more dead things are generated by the �rst dead thing. The �rst dead thing
is then declared “fr ee” and the new �rst dead thing is examined in exactly the
sameway until no more dead things exist. The DEADS ring, through registers
which normally indicate type, servesasthe push down list.

80 RECURSIVE FUNCTIONS

RECURSIVE MERGING

The single most powerful tool for constructing drawings, when combined with
the de�nition copying function described in Chapter VII, is the ability to merge
pictur e parts recursively. The recursive merge function makes it possible to
make statements such as “ this thing is to be related to that thing in such and
such a way.” The relationship may be treated as applying to things which it
relates only indir ectly. For example we shall soon seehow one line may be
made parallel to another even though the parallelism constraint applies only
to the locationsk of their end points. Similarly , a set of digits can be forced92#
to display the length of a line, even though the constraint involved refers to
the end points of the line and the value of the digits rather than to the line or
the digits themselves. The recursive merge function makes it meaningful to
combine anything with anything elseof the same type regardless of whether
the things are dependent on other things or depended on by others.

If two things of the sametype which are independentare merged,a singlething
of that type results,and all things which dependedon either of the mergedthings
dependon the result� of the merger. For example, if two points are merged, all
lines which previously terminated on either point now terminate on the single
resulting point. In Sketchpad, if a thing is being moved with the light pen
and the termination �ick of the pen is given while aiming at another thing
of the same type, the two things will merge. Thus, if one moves a point to
another point and terminates, the points will merge,connecting all lines which
formerly terminated on either. This makesit possible to draw closedpolygons.

If two things of the sametype which do dependon other things are mergedone
will beforcedto mergewith thethings dependedon by theother. Theresult� of merg-
ing two dependentthingsdependsrespectivelyon theresults� of themergersit forces.
For example, if two lines are merged, the resultant line must refer to only two
end points, the results of merging the pairs of end points of thek original lines.93#
All lines which terminated on any of the four original end points now termi-
nate on the appropriate one of the remaining pair. Mor e important and useful,
all constraints which applied to any of the four original end points now ap-
ply to the appropriate one of the remaining pair. This makes it possible to
speak of line segmentsas being parallel even though (becauseline segments
contain no numerical information to be constrained) the parallelism constraint
must apply to their end points and not to the line segmentsthemselves. If we
wish to make two lines both parallel and equal in length, the steps outlined
in Figure 6.1make it possible. Mor e obscure relationships between dependent
things may as easily be de�ned and applied. For example, constraint com-
plexes can be de�ned to make line segments be collinear, to make a line be
tangent to a circle, or to make the values representedby two setsof digits be
equal.

� The “r esult” of a merger is a single thing of the sametype asthe merged things.

RECURSIVE MERGING 81

Figure 6.1: (Originally onpage94.)

82 RECURSIVE FUNCTIONS

INSTANCES

The most powerful tool provided in the Sketchpad system for creating large
complex drawings quickly and easily is the instance. Instancesare recursively
expanded so that instancesmay contain other instancesto give an exponential
growth of pictur e produced with respect to effort expended. Instances may
have attachment points and therefore may connect points topologically much
as line segmentsdo. For example, an instance of a resistor may connect two
points both electrically and geometrically on the drawing. An instance also
has the properties of a four component variable: numbers are stored in each
instance block to indicate where, how big, and in what rotation that instance
is to appear on the pictur e. It took sometime to reconcile the topological prop-
erties of instanceswith their properties asvariables.

k The block of registers which representsan instance is remarkably small95#
considering that it may generate a display of any complexity. For the pur -
posesof display, the instance block makes referenceto a pictur e by means of
its chicken in a ring which ties a pictur e to all its instances. The instance will
appear on the display asa �gur e geometrically similar to the pictur e of which
it is an instance but at a location, size,and rotation indicated by the four num-
bers which constitute the “value” of the instance. An important omission as
this is written is the ability to make mirr or images. Right and left handed
�gur es must now be treated separately, whereasthe instance should indicate
whether a right or left handed version of the master is to be shown.

INSTANCES AS VARIABLES

The four numbers which specify the size, rotation, and location of the instance
are considered numerically as a four dimensional vector. In certain compu-
tations, the value of a variable is changed “as little as possible” if there is no
need to changeit further . The distance measured in the caseof instancesis the
square root of the sum of the squaresof the four components. For this reason,
and for simplicity in the use of the �xed point arithmetic of the TX-2, it is im-
portant that the four numbers used to representthe vector beof about the same
order of magnitude. The particular numbers chosenare the coordinates of the
center of the instance and the actual size of the instance as it appears on the
drawing times the sine and cosine of the rotation angle involved. In a typical
drawing thesefour numbers have reasonablysimilar rangesof variation.

k In our early work we attempted to use the position and the sine and co-96#
sine of the rotation angle times the reductionin size from the master pictur e in
order to avoid the normalization of master pictur e size implicit in the above
paragraph. This not only prevented having instanceslarger than their masters
becauseof the �xed point arithmetic, but also made distance in the four di-
mensional spacemeaningless. No attempt was ever made to use the size and
rotation numbers independently .

The transformations of coordinates represented by the above paragraphs
are:

RECURSIVE DISPLA Y OF INSTANCES 83

Poor
�

xd
yd

�
=

�
i1 i2

� i2 i1

� �
xm

ym

�
+

�
i3
i4

�
(6-1)

Better
�

xd
yd

�
=

�
i1 i2

� i2 i1

� �
xm=sm

ym=sm

�
+

�
i3
i4

�
(6-2)

where:

xd; yd = Display location in page coordinates.
xm; ym = Master location in page coordinates.
sm = Sizeof master pictur e in page coordinates.
i1 : : : i4 = 4 vector in instance, � 1 < i i < + 1.

RECURSIVE DISPLA Y OF INSTANCES

k In displaying an instance of a pictur e, referencemust be made to the pictur e 97#
itself to �nd out what pictur e parts are to be shown. The pictur e referred to
may contain instances,however, requiring further reference,and so on until a
pictur e is found which contains no instances. A recursive program performs
this function. At eachstagein the recursion, any pictur e parts displayed must
be relocated so that they will appear at the correct position, size and rotation
on the display. Thus, at eachstageof the recursion, sometransformation of the
form of Equation (6-2) is applied to all pictur e parts before displaying them. If
an instance is encountered, the transformation representedby its value must
be adjoined to the existing transformation for display of parts within it. When
the expansion of an instance within an instance is �nished, the transformation
must be restored for continuation at the higher level.

To avoid the dif �culties of taking an inverse transformation, the old trans-
formation is saved in registers provided for that purpose in the pictur e block
of the pictur e being expanded. Thus, the current transformation is stored in
program registers and is being used, whereasthe previous transformation is
saved in the pictur e block currently being expanded. The push down list is
provided also by indicating in the pictur e block being expanded the particular
instancethereof which is responsiblefor this expansion of the pictur e. The �rst
pictur e to be displayed starts with no transformation at all. Thus, if it contains
itself asan instance,one recursion is possible, saving the old transformation in
the pictur e block and saving the addressof the instance responsible for the ex-
pansion in the pictur e block aswell. Subsequentrecursions will be prevented,
however, becauseno instance is expandedk if the pictur e of which it is an in- 98#
stancealready belongs on the push down list. It would be possible to expand
such circular instancesfurther by providing some suitable termination condi-
tion such asreaching a level too small to show on the display. However , since
the instancesmight get larger rather than smaller, termination conditions are
far from simple.

84 RECURSIVE FUNCTIONS

ATTACHERS AND INSTANCES

Many symbols used must be integrated into the rest of the drawing by attach-
ing lines to the symbols at appropriate points, or by attaching the symbols
dir ectly to each other as if by zero length lines. For example, circuit sym-
bols must be wir ed up, geometric patterns made by �tting shapestogether, or
mechanisms composed of links tied together appropriately. An instance may
have any number of tie points, and conversely, a point may serveastie for any
number of instances.

An “instance-point” constraint block is used to relate an instance to each
of its tie points. An instance-point constraint is satis�ed only when the point
bears the same relationship to the instance that a point in the master pictur e
for that instance bearsto the master pictur e coordinate system. Instance-point
constraints are treated as a special casewhen an instance is moved so that
tie points always move with their instance, and lines terminating on the tie
points move as well. Each instance-point constraint makes reference to both
the instance and its tie points by meansof chickens.

To use a point as an attacher of an instance, the point must be designated
as an attacher in the master drawing of the instance. For example, when one
�rst draws a resistor, the endsof the resistormustk bedesignated asattachersif99#
wiring is to beattached. When an instanceis createdby pressingthe “instance”
button, toggle switches tell what pictur e the instance is to refer to. Along with
the instance element are created a point and an instance-point constraint for
eachattacher. Thesepoints are boni�de points in the object pictur e but are not
automatically attachersof the object pictur e. If they are to be used asattachers
when the object pictur e is instanced, they must be designated anew. Thus of
the three attachers of a transistor it is possible to select one or two to be the
attachersof a �ip-�op.

The entire internal structure of the instance is suppressedasfar asthe light
pen is concerned except for the attachers. Thus even on a densecircuit draw-
ing it is possible to connect elements with easebecauseat the highest level of
instance only the designated attachers will hold the attention of the light pen
program. Usually there are only a few attachers for eachblock no matter how
complicated internally , and so it is generally obvious which one to use.

RECURSIVE MOVING

At �rst only variables could be moved. Moving a variable means to change
somehow the numbers stored as the components of the variable, usually to
make the display for the variable follow light pen motions. A moving point,
for example, will be �rmly attached to the pseudo pen position, while a mov-
ing piece of text faithfully follows light pen displacements so that the part of
the text which was under the pen when the “move” button was pressedre-
mains under the pen. For variables with more than two components, moving
is partly controlled by the pen and partly by knobs. For example, the moving
text can be made larger ork rotated by two of the knobs.100#

RECURSIVE MOVING 85

The advent of the recursive merging and the de�nition copying functions
made it clear that one should be able to move anything regardless of whether
or not it is variable. To move a non-variable, a recursive processis used to �nd
whatever variables may be basic to the thing being moved. For example, if a
line is to be moved, the end points on which it depends must be moved. All
objectswhich arebeing moved areput in a ring whose hen is in the MOVINGS
generic block. The object actually attached to the light pen is �rst in the ring.
Upon termination only this �rst object in the MOVINGS ring may be merged
with other objects.

The numerical operation of moving is accomplished by the standard trans-
formation procedure. Thesmall transformation due to light pen position change
and knob rotation since the last program iteration is converted to the form of
Equation (6-2) and placed in the standard location. Each object in the MOV-
INGS ring is transformed by it. The generic block for each type of object, of
course, contains the subroutine to apply the transformation to such objects.
The generic block for lines, for example, indicates that no transformation need
be applied to the line becauseit contains no numerical values and will auto-
matically be moved when its end points are moved.

Moving objectsmust be invisible to the light pen. Sincethe light pen aims
at anything within its �eld of view, it would otherwise aim at a moving ob-
ject and a jerky motion would result. Motion would only happen when the
pen's �eld of view passedbeyond the object being moved. Mor eover, the dis-
play for moving objects must be recomputed regularly for the bene�t of the
human user, but the unmoving background need not be recomputed. The
display spot coordinates for objects being recomputedk is placed last in the 101#
display �le, above (in higher numbered registers) the �xed background dis-
play so that it may be recomputed without disturbing the rest of the display
�le. The light pen program rejectsany spots seenby the pen which come from
thesehigh display �le locations. Needlessto say, the entiredisplay �le must be
recomputed once to eliminate the former tracesof the newly moving objects.

86 RECURSIVE FUNCTIONS

Chapter VII

BUILDING A DRAWING, THE
COPY FUNCTION

k As experimentation with drawing systemsfor the computer progressed,the 102#
basic drawing operations evolved into their present form. At the outset, the
very general pictur e and relationship de�ning capability of the copy and re-
cursive merging functions were unknown and so considerable power had to
be built dir ectly into the system. Now, of course, it would be possible to use
much simpler atomic operations to draw simple pictur esembodying many of
the notions now treated asatomic.

DRAWING VS. MOVING

An idea that was dif �cult for the author to grasp was that there is no state of
the systemthat canbecalled “drawing.” Conventionally , of course,drawing is
an active processwhich leavesa trail of carbon on the paper. With a computer
sketch, however, any line segment is straight and can be relocated by moving
one or both of its end points. In particular , when the button “draw” is pressed,
a new line segment and two new end points are set up in storage, and one of
the line's end points is left attached to the light pen so that subsequent pen
motions will move the point. The state of the system is then no dif ferent from
its statewhenever a point is being moved.

Similarly , to draw acircle,onecreatesacenterpoint when the button “cir cle
center” is pressed,and createsin the ring structure a circle block and its start
and end points when the button “draw” is pressedwith a circle centerde�ned.
The end point of the circle arck is left attached to the light pen to move with 103#
subsequentpen motions. Sincethe start and end points of a circlearc should be
equidistant from its center point, an equal distance constraint is created along
with the circle but could be subsequently deleted without deleting the circle.

88 BUILDING A DRAWING, THE COPY FUNCTION

ATOMIC OPERATIONS

In general, when creating new points to serveasthe start of line segmentsand
circle arcsor centersfor circle arcs,an existing point is used if the pen is aimed
at one when the new point would be generated. Thus, if one aims at the end
of an existing line segment and presses“draw” the new line segment will use
the existing point rather than setting up another point which has the same
coordinates. Later motion of this point will move both lines attached to it; the
ring structure storagere�ects the intended topology of the drawing. Similarly ,
if one is moving a point and gives a termination signal while aiming at another
point, thesetwo points will be merged, again re�ecting the intended drawing
topology.

We have seenthat a constraint is set up to indicate that the start and end
points of a circle arc should be equidistant from its center whenever a new
circle arc is drawn. Similarly , constraints to indicate that a point should lie on
a line or circle are automatically setup if a point is either createdwhile the pen
is pointing to the line or circle or moved onto the line or circle. The constraints,
of course, do not apply to the line or circle itself but to the points on which it
depends. If the light pen is aimed at the intersection of line segments,k two104#
“point-on-line” constraints will be set up for a point created or left there, one
for each intersecting line. Threeor more line segmentsmay be forced to pass
through a single point by moving that point onto them successivelyto set up
the appropriate constraints. Constraint satisfaction will then move the lines
so that all of them pass through the point. In order to avoid cluttering up
the ring structure with redundant constraints, the point-on-line and point-on-
circle constraints are set up only if the point is not already so constrained.

GENERALIZA TION OF ATOMIC OPERATIONS

The atomic operations described above make it possible to create in the ring
structure new pictur e components and relate them topologically . The atomic
operations are,of course,limited to creating points, lines, circles,point-on-line
and point-on-cir cleconstraints. (The point-on-cir cleconstraint is the sametype
as used to keep the circle's start and end points equidistant from its center.)
Since implementation of the copy function it has become possible to create
any combination of pictur e parts and constraints in the ring structure. The
recursive merging function makes it possible to relate this set of pictur e parts
to any existing parts. For example, if a line segmentand its two end points are
copied into the object pictur e, the action of the “draw” button may be exactly
duplicated in every respect. Along with the copied line, however, one might
copy as well a constraint to make the line horizontal, or two constraints to
make it both horizontal and threeinches long, or any other variation one cares
to put into the ring structure to be copied.

k When one draws a de�nition pictur e to becopied, certain portions of it to105#
beused in relating it to other objectpictur eparts aredesignated as“attachers”.
Anything at all may bedesignated: for example, points, lines, circles,text, even

COPYING INSTANCES 89

constraints! The rules used for combining points when the “draw” button is
pressedare generalized so that:

For copying a pictur e, the last-designated attacher is left moving
with the light pen. The next-to-last-designated attacher is recur-
sively merged with whatever object the pen is aimed at when the
copying occurs, if that object is of like type. Previously designated
attachersare recursively merged with previously designated object
pictur e parts, if of like type, until either the supply of designated
attachers or the supply of designated object pictur e parts is ex-
hausted. The last-designated attacher may be recursively merged
with any other object of like type when the termination �ick is
given.

Normally only two designated attachersare used becauseit is hard to keep
track of additional ones.The order in which attachersare designated is impor -
tant becauseit is in this order that they will be treated. If a mistake is made in
ordering the attachers,redesignation of an attacher puts it last in the order. As
this is written there is no way to undesignate an attacher, exceptby deleting it,
an oversight which should be corrected.

If the de�nition pictur e to be copied consists of a line segment with end
points as attachers and a horizontal constraint between the end points, as
shown in Figure 7.1A, pressing the “copy” button will appear to the user ex-
actly like pressing the “draw” button. One end point of the line will be left
behind and one will follow the light pen. Subsequentconstraint satisfaction
will, however, make the line horizontal. If the de�nition pictur e consists of
two line segments,their four end points, and a constraint on the points which
makes the lines equalk in length, with the two lines designated asattachersas 106#
shown in Figure 7.1B,copying enables the user to make any two lines equal
in length. If the pen is aimed at a line when “copy” is pushed, the �rst of the
two copied lines merges with it, (taking its position and never actually being
seen). The other copied line is left moving with the light pen and will merge
with whatever other line the pen is aimed at when termination occurs. Since
merging is recursive, the copied equal-length constraint will apply to the de-
sired pair of object pictur e lines. If no lines are aimed at, of course, the copied
pictur e parts are seenat once with the scale factor so reduced that the entire
copied pictur e takes up about 1/16 of the display area.

If the pictur e to be copied consists of the erect constraint and the full size
constraint, both applying to a single dummy variable which is the attacher,
copying produces a useful constraint complex attached to the pen for subse-
quent application to any desired instance. With only one attacher, the instance
constrained is the one the pen is aimed at when termination occurs.

COPYING INSTANCES

As we saw in Chapter VI the internal structure of an instance is entirely �xed.
The internal structure of a copy, however, is entirely variable. An instance

90 BUILDING A DRAWING, THE COPY FUNCTION

Figure 7.1: (Originally onpage106.)

THE MECHANICS OF COPYING 91

always retains its identity asa single part of the drawing; one can only delete
an entire instance. Oncea de�nition pictur e is copied, however, the copy loses
all identity asa unit; individual parts of it may be deleted at will.

One might expect that there was intermediate ground between the �xed-
internal-str ucture instance and the loose-internal-structure copy.k One might 107#
wish to produce a collection of pictur e parts, some of which were �xed inter-
nally and some of which were not. The entire range of variation between the
instance and the copy can be constructed by copying instances.

For example, the arrow shown in Figure 7.1C can be copied into an ob-
ject pictur e to result in a �xed-internal-str ucture diamond arrowhead with a
�exible tail. As the de�nition in Figure 7.1C is set up, drawing diamond-
arrowheaded lines is just like drawing ordinary lines. One aims the light pen
where the tail is to end, presses“copy” and moves off with an arrowhead fol-
lowing the pen. The diamond arrowhead in this casewill remain horizontal.

Copying pre-joined instancescanproduce vast numbers of joined instances
very easily. For example the de�nition in Figure7.1D,when repetitively copied,
will result in a row of joined, equal size diamonds. In this casethe instances
themselves are attachers. Although each press of the “copy” button copies
two new instancesinto the object pictur e, one of theseis merged with the last
instance in the growing row. In the �nal row, therefore, each instance carries
all the constraints which were applied to either of the instances in the de�-
nition. This is why only one of the instances in Figure 7.1D carries the erect
constraint. Notice also that although the diamond is normally a two-attacher
instance, each of the diamonds in Figure 7.1D carries only one attacher. The
other has beendeleted so that eachinstance in the �nal row of diamonds will
obtain only one right and one left attacher, one from each of the copied in-
stances.

THE MECHANICS OF COPYING

k Needless to say, when a piece of ring structure is copied the de�nition pic- 108#
tureused is not destroyed; the copying procedure reproducesits ring structure
elsewhere in memory. However , the reproduction is not just a duplication of
the numbers in someregisters.The parts of the de�nition drawing to becopied
may be topologically related, and the parts of the copy must be related to each
otherin the sameway rather than to the parts of the master. Worse yet, some
parts of the de�nition may be related to things which arenot being copied. For
example, an instance is related to the master pictur e of which it is an instance,
and the copy of the instance must be related to the samemaster pictur e,not to
a copy of it.

To copy a pictur e, spaceto duplicate all the elements of the pictur e is al-
located in the free registers at the end of the ring structure. Each of the new
elementsis tied into its appropriate generic block ring by its TYPEcomponent.
Eachnew element is placed in this ring adjacent to the element it is a copy of.
That is, for each element in the master a duplicate element is set up adjacent
to it in the generic ring for that type of element. Appr opriate scaledvalues are

92 BUILDING A DRAWING, THE COPY FUNCTION

given to copied variables. The various referencesin the de�nition elements
are then examined to seewhether they refer to things that have been copied.
If they do, the corresponding components of the copied elements are made to
refer to the appropriate copiedelements. On the other hand, if a de�nition ele-
ment refersto something which hasnot beencopied, its copy refersto the same
element that its de�nition does.

When the complete copy has been made, the copies of all but the last-
designated of the attachers are recursively merged with the designatedk por-109#
tions of the object pictur e. The last-designated attacher is fastened to the light
pen with the recursive moving function. The last-designated attacher may
later on merge with another pictur e part.

Chapter VIII

CONSTRAINT SATISFACTION

k The major feature which distinguishes a Sketchpad drawing from a paper 110#
and pencil drawing is the user's ability to specify to Sketchpad mathematical
conditions on already drawn parts of his drawing which will be automatically
satis�ed by the computer to make the drawing take the exact shape desired.
For example, to draw a square, any quadralateral is created by sloppy light
pen manipulation, closure being assured by the pseudo light pen position and
merging of points. The sides of this quadralateral may then be speci�ed to
be equal in length and any angle may be required to be a right angle. Given
these conditions, the computer will complete a square. Given an additional
speci�cation, say the length of one side, the computer will create a square of
the desired size.

The processof �xing up a drawing to meet new conditions applied to it af-
ter it is already partially complete is very much like the processa designer goes
through in turning a basic idea into a �nished design. As new requirements
on the various parts of the design are thought of, small changesare made to
the size or other properties of parts to meet the new conditions. By making
Sketchpad able to �nd new values for variables which satisfy the conditions
imposed it is hoped that designers can be relieved of the need of much math-
ematical detail. The effort expended in making the de�nition of constraint
types as general as possible was aimed at making design constraints as well
asgeometric constraints equally easyto add to the system. To date,k however, 111#
Sketchpadis more of a model of the design processthan a complete designer's
aid both becauseit is limited to two dimensions and becauselittle advanced
application has asyet beenmade of it.

The work on constraint satisfaction hasbeensuccessfulasfar asit hasbeen
taken. The constraint de�nition and satisfaction programs generalize easily
to three dimensions; in fact, constraint satisfaction for instances is even now
treatedasa four dimensional problem. The high speedmazesolving technique
for constraint satisfaction described below works well where constraints have
been speci�ed unredundantly . There is much room for impr ovement in the
relaxation processand in making the “intelligent” generalizations that permit
humans to capitalize on symmetry and eliminate redundancy.

94 CONSTRAINT SATISFACTION

DEFINITION OF A CONSTRAINT TYPE

Each constraint type is entered into the system as a generic block indicating
the various properties of that particular constraint type. Generic blocks for
constraints need not be given symbolic programming names since virtually
no referenceis made to particular constraint types in the program. The generic
block tells how many variables are constrained, which of thesevariables may
bechanged in order to satisfy the constraint, how many degreesof freedom are
removed from the constrained variables, and a code letter for human reference
to this constraint type.

Any number of variables may berelated by a constraint, but the display for
constraints (seeChapter V) will be ambiguous if more than four variables are
indicated, and so no constraints relate more than four variables. Of thesevari-
ables,somemay bereferencedonly.k The routine which satis�es the constraint112#
by changing the values of someof the variables is forbidden to satisfy the con-
straint by changing a “for referenceonly” variable. For example, a constraint
could be implemented which would make its �rst variable equal to its second
by changing the �rst to match the second, but not the reverse. This kind of
one-way constraint is useful becauseit speedsup the relaxation procedure by
forcing re-evaluation of variables in a speci�ed order. For example, the con-
straint which makes the value of a number equal to the change in length of
a bridge beam, thus indicating the force carried by the beam, is one way. It
would be pointless to have an erroneous value of the indicator affect in any
way the relaxation procedure for the bridge. Again, the constraint which re-
lates a point to an instance in such a way that the point maintains the same
relationship to the instance that an original point in the master pictur e had to
the master pictur e, usesthe original point “for referenceonly” to discover just
what the correct relationship is. Thus the end terminal on a resistorwill always
stay at the end of the resistor. It would be out of keeping with the �xed geom-
etry nature of instancesto have the internal details of the instance changed to
make it �t into someawkwar d position.

The one-way type constraint, however, can lead to instabilities in the con-
straint satisfaction procedure. For example, if two scalarswere eachspeci�ed
to be twice the value of the other, with referenceonly made to the smaller,

A ! 2B

B ! 2A; (8-1)

k both variables would grow without bound, assuming, eachiteration, values113#
four times as big as before. If, however, a similar condition were set up with
normal two-way constraints, the values of the variables would approach zero,
a correct and stable result. Since the number of one-way constraints is small
and they are designed for and used in special applications only, very little
instability trouble of this kind has been observed. Future users who add one-
way constraints, however, are warned to be cautious of the instabilities which
may result.

NUMERICAL DEFINITION OF CONSTRAINTS 95

NUMERICAL DEFINITION OF CONSTRAINTS

After the �rst stumblings of trying to de�ne a constraint type in terms of the
equations of lines along which the constrained variables should lie to satisfy
the constraint, the numerical de�nition of constraints dir ectly in terms of an
error was devised. By using an error de�nition and considering the square
of the error as an energy, one not only re�ects dir ectly the intent of the relax-
ation process,but also makes it easyto write the de�ning subroutines for new
constraint types.

The de�ning subroutine for a constraint type is a subroutine which will
compute, for the existing values of the variables of a particular constraint of
that type, the error intr oduced into the system by that particular constraint.
For example, the de�ning subroutine for making points have the samex coor-
dinate (to make a line between them vertical) computes the dif ferencein their x
coordinates. What could be simpler? The computed error is a scalarwhich the
constraint satisfaction routine will attempt to reduce to zero by manipulation
of the constrained variables. The computation of the error may be non-linear
or time dependent, or it may involve parameters not a part of the drawing
suchk asthe setting of toggle switches, etc. The �exibility of computation sub- 114#
routines for de�ning constraints is tremendous.

In order to avoid over�ow dif �culties, the partial derivative of the error
with respect to the value of any of the components of a constrained variable
must be less than two. In order to make the constraints work well together,
it is necessarythat they be balanced, that is that the partial derivative of error
with respect to displacement be nearly equal for all constraint types. I have
arbitrarily tried to make the error subroutines compute an error about propor-
tional to the distance by which a variable is removed from its proper position.
In other wor ds, many of the existing constraint computation subroutines make
the partial derivative about unity .

LINEARIZA TION OF CONSTRAINTS

The method of �nding the least mean squares �t to a group of constraints
described below requires that a linear equation be given for each constraint.
To �nd the linear equation which best approximates the possibly non-linear
constraint for the present values of the variables, the error computed by the
subroutine is noted for several slightly dif ferent values of the variables. The
equation,

å
DE
Dxi

(xi � xio) = � Eo; (8-2)

where xi are the components of the variable, E is the computed error, and
subscript o denotes intial value, is used as the linear best �t. Actually , the
coef�cients computed are 1/2 the values shown in equation (8-2) to permit
error to be equal to displacement without generating over�ow .

k Some constraints may remove more than one degree of freedom from 115#
the variables constrained. For example, the constraint which locatesone thing

96 CONSTRAINT SATISFACTION

exactly mid-way between two others removes two degreesof freedom. Such
constraints must have asmany error computation subroutines asthere are de-
greesof freedom lost since eachsubroutine results in a single linear equation.
A subroutine which computes the distance from a variable to its correct loca-
tion without regard to the number of degreesof freedom being removed will
causeerratic results. A correct subroutine pair for constraining one thing to lie
between two others computes both how far out of line the center thing is and,
separately, 1/2 the dif ferencein the distancesfrom the center object to the two
outer ones(1/2 is put in to meet the maximum derivative requirement).

THE RELAXATION METHOD

When the one pass method of satisfying constraints to be described later on
fails, the Sketchpadsystem falls back on the reliable but slow method of relax-
ation to reduce the errors indicated by the various computation subroutines
to smaller and smaller values. For simple constructions such as the hexagon
illustrated in Figure 1.5, page 15 the relaxation procedure is suf�ciently fast
to be useful. However , for complex systems of variables, especially dir ectly
connected instances,relaxation is unacceptably slow. Fortunately, it is for just
such dir ectly connected instances that the one pass method shows the most
striking success.

The relaxation method of satisfying conditions is as follows:

Choose a variable. Re-evaluate it to reduce the total error intr o-
duced by all constraints in the system. Choose another variable
and repeat.

k Note that since each step makes some net reduction of total error, there116#
will be monotonic decreaseof error and thus stability is assured. Since re-
evaluating a variable will changeonly the error intr oduced by the constraints
which apply to that variable, only the changes in the errors intr oduced by
these constraints need be considered. Other variables and therefore the er-
rors of constraints applying only to them will remain constant. Sketchpad's
ring structure makes it easyto consider all constraints applying to a particular
variable sinceall such constraints are collected together in a ring whose “hen”
is in the variable.

It is important in the relaxation method that at each step, the very latest
computed values of all variables be used for error computations. From the
point of view of the program, this means that only one value for each vari-
able need be stored, eachbeing updated in turn. Former values not only may,
but must be discarded. It is also important that the change in error obtained
by completely satisfying a constraint by moving one of its variables be iden-
tical to to the change in error to be obtained by completely satisfying it by
moving another of its variables. The error computing subroutine de�nition
for a constraint computes the same error for a constraint no matter which of
its variables is to be moved. My original instability troubles with constraint
satisfaction camefrom insuf �cient care in meeting this condition.

LEAST MEAN SQUARES FIT TO LINEARIZED CONSTRAINTS 97

LEAST MEAN SQUARES FIT TO LINEARIZED CON-
STRAINTS

In implementing the relaxation method above, it is important to beable to �nd
quickly a new value for a variable which reduces the total error intr oduced
by the constraints on that variable. In particular , the linearized form of the
constraints results in a set of linear equationsk for the variable eachof which 117#
must be met as closely as possible. Unfortunately , there may be any number
of linear equations applying to a particular variable and these may be either
independent but incomplete, independent and complete, or redundant and
overde�ning. A general arithmetic macro, SOLVE, for �nding the best value
for a set of equations has beendevised.

SOLVE converts the given equations into an independent set of equations
whose solution will bea point of minimum mean squared error for the original
set. It is not always possible to solve the independent setof equations uniquely ,
and if it is not, SOLVE �nds that solution which results in the minimum change
from the existing value of the variable. The mathematical discussion pertinent
to SOLVE is given in Appendix F. I am indebted to Lawr enceG. Roberts for
providing me with the basicSOLVE program.

Seenfrom the outside, then, the linearization program and SOLVE make
it possible for Sketchpad to �nd a new value for any variable to more closely
meet the conditions indicated by constraints. Repeated application of these
programs to variables, in sequence,implements the relaxation process.Appli-
cation of theseprograms to selectedvariables to detect the number and degree
of independence of constraints is used as an important part of the one pass
constraint satisfaction method.

ONE PASS METHOD

Sketchpad can often �nd an order in which the variables of a drawing may
be re-evaluated to completely satisfy all the conditions on them in just one
pass. For the casesin which the one pass method works, it is far better than
relaxation: it gives correct answers at once; relaxationk may not give a correct 118#
solution in any �nite time. Sketchpadcan �nd an order in which to re-evaluate
the variables of a drawing for most of the common geometric constructions.
Ordering is also found easily for the mechanical linkages illustrated in the last
chapter. Ordering cannot be found for the bridge truss problems illustrated in
the last chapter.

The way in which the one pass method works is simple in principle and
was easy to implement as soon as the nuances of the ring structure manip-
ulations were understood. To visualize the one pass method, consider the
variables of the drawing as places, and the constraints relating variables as
passagesthrough which one might pass from one variable to another. Vari-
ablesare adjacent to eachother in the maze formed by the constraints if there
is a single constraint which constrains them both. Variables are totally unre-
lated if there is no path through the constraints by which one could passfrom

98 CONSTRAINT SATISFACTION

one to the other.
Suppose that some variable can be found which has so few constraints

applying to it that it can be re-evaluated to completely satisfy all of them.
Such a variable we shall call a “fr ee” variable. As soon as a variable is rec-
ognized as free, the constraints which apply to it are removed from further
consideration, becausethe free variable can be used to satisfy them. Remov-
ing theseconstraints, however, may make adjacentvariables free.Recognition
of thesenew variables as freeremoves further constraints from consideration
and may make other adjacent variables free, and so on throughout the maze
of constraints. The manner in which freedom spreadsis much like the method
used in Moore's algorithm [7] to �nd the shortest path through a maze. Hav-
ing found that a collection of variables is free, Sketchpad will re-evaluatek119#
them in the reverseorder, saving the �rst-found freevariable until last. In re-
evaluating any particular free variable Sketchpad usesonly those constraints
which were presentwhen that variable was found to be free.

In the ring structure representation of the drawing all variables found to
be free are placed in a special ring called the FREEDOMS ring. (Note that
the FREEring is used for empty spacesin storage and has nothing to do with
freedom in the present sense.) Each variable placed on the FREEDOMSring
has associatedwith it, by extra ties, those constraints which it will be used to
satisfy. In what order variables should appear in the FREEDOMS ring need
only be computed when the constraint conditions change. For a given set of
conditions the sameordering will serve for �nding many satisfactory values.
For example, aspart of a linkage is moved with the light pen, the ordering �rst
set up for the linkage servesuntil the conditions change.

Chapter IX

EXAMPLES AND
CONCLUSIONS

k In the �rst chapter we saw, as an intr oduction to the system, some simple 120#
examples of Sketchpad drawings. In the body of this report we have seen
many drawings, all of which, except the drawing of the light pen, Figure 4.2,
were drawn with Sketchpad especially to be included here. In this chapter
we shall consider a wider variety of examples in somewhat more detail. The
examples in this chapter were all taken from the library tape and thus serve
to illustrate not only how the Sketchpad system can be used, but also how it
actually has beenused so far.

We conclude from these examples that Sketchpad drawings can bring in-
valuable understanding to a user. For drawings where motion of the drawing,
or analysis of a drawn problem is of value to the user, Sketchpad excells. For
highly repetitive drawings or drawings where accuracy is required, Sketch-
pad is suf�ciently faster than conventional techniques to be worthwhile. For
drawings which merely communicate with shops, it is probably better to use
conventional paper and pencil.

PATTERNS

The instance facility outlined in Chapter I enables one to draw any symbol
and duplicate its appearanceanywhere on an object drawing at the push of
a button. The symbols drawn can include other symbols and so on to any
desired depth. This makes it possible to generate huge numbers of identical
shapes; if at each stage two of the previous symbols are combined to double
the number of basic shapes present, in twenty steps one million objects are
produced.

k The hexagonal pattern we saw in Figure 1.1, p.10, is one example of a 121#
highly repetitive drawing. The hexagonal pattern was �rst drawn in response
to a request for hexagonal “graph” paper. About 900 hexagons were plotted
on a single 30 � 30 inch plotter page. It took about one half hour to generate
the 900hexagons,including the time taken to �gur e out how to do it. Plotting
them takesabout 25minutes. The drafting department estimated it would take

100 EXAMPLES AND CONCLUSIONS

Figure 9.1: (Originally onpage122.)

them two days to produce a similar pattern.
The instance facility also made it easy to produce long lengths of the zig-

zag pattern shown in Figure 9.1. As the �gur e shows, a single “zig” was du-
plicated in multiples of �ve and three,etc. Five hundr ed zigs were generated
in a single row. Four such rows were plotted one half inch apart to be used for
producing a printed circuit delay line. Total time taken was about 45 minutes
for constructing the �gur e and about 15minutes to plot it.

In both the zig-zag pattern of Figure9.1and in the hexagonalpattern of Fig-
ure 1.1 the various subpictur es were fastened together by attachment points.
In the hexagonal pattern, each corner of the basic hexagon was attached to
the corners of adjacent hexagons. The position of any hexagon was then com-
pletely determined by the position of any other. In the zig-zag pattern of Fig-
ure 9.1, however, only a single attachment was made between adjacent zig-
zags. Additional constraints were applied to eachinstance to keep them erect
and of the samesize.

A somewhat less repetitive pattern to be used for encoding the time in a
digital clock is shown in �gur e 9.2. Each cross in the �gur e marks the posi-
tion of a hole. The holes will be placed so that a binary coded decimal (BCD)
number will indicate the time.

k Sketchpad was �rst used in the BCD clock project to produce 60 radial123#
lines at equal 6� spacing. To do this a single 6� wedge was produced by �rst
trisecting a right angle to obtain a 30� wedge and then cutting the 30� wedge
into �ve parts. The relaxation procedure was used in eachcaseto make three
or �ve sketched-in chords equal in length. Making the 6� wedge took a brand
new user less than one half hour including instruction time. The author has

PATTERNS 101

Figure 9.2: (Originally onpage122.)

102 EXAMPLES AND CONCLUSIONS

constructed other wedges assmall as1/128 of a circle in �ve minutes. All such
wedges becomea part of the library .

The 6� wedge has threeattachment points. By attaching �ve of the wedges
together, and then attaching three groups of �ve, a quadrant is constructed.
Fitting together four quadrants gives a complete circle based entirely on the
single 6� wedge. The advantage of constructing a full circle composed of 60
wedges is that any lines drawn in the original 6� wedge will appear 60 times
around the circle with no further effort on the part of the user. Sixty radial
lines were produced in this way.

Using the sixty radial lines plotted for him the BCD clock designer then
marked with pencil approximately where the crossesshould be placed to ob-
tain BCD coding. Returning to Sketchpad we put a pattern of dots in the 6�

wedge so that in the full circle, rings of dots appeared which could be aimed
at with the light pen. It was then an easy matter to place a cross exactly on
eachof the desired dots. Total time for placing crosseswas 20 minutes, most
of which was spent trying to interpr et the sketch.

LINKAGES

k By far the most interesting application of Sketchpadso far hasbeendrawing124#
and moving linkages. We saw in Chapter I the straight line linkage of Peau-
cellier, Figure 1.6,p.20. The ability to draw and then move linkages opens up
a new �eld of graphical manipulation that has never before been available. It
is remarkable how even a simple linkage can generatecomplex motions. For
example, the linkage of Figure 9.3hasonly threemoving parts. In this linkage
a central ? link is suspended between two links of dif ferent lengths. As the
shorter link rotates, the longer one oscillates ascan be seenin the multiple ex-
posure. The ? link is not shown in Figure 9.3so that the motion of four points
on the upright part of the ? may be seen.Theseare the four curves at the top
of the �gur e.

To make the three bar linkage, an instance shaped like the ? was drawn
and given 6 attachers, two at its joints with the other links and four at the
placeswhose paths were to be observed. Connecting the ? shaped subpictur e
onto a linkage composed of three lines with �xed length created the pictur e
shown. The driving link was rotated by turning a knob below the scope.Total
time to construct the linkage was �ve minutes, but over an hour was spent
playing with it.

Sketchpad can make linkages that one would hardly think of constructing
out of actual links and pins. For example, a Sketchpad sliding joint is ideal,
whereasto actually build a sliding joint is relatively dif �cult. Again, it is pos-
sible to make two widely separated links be of equal length by applying an
appropriate constraint, but to build such a linkage would be impossible.

k A linkage that would be dif �cult to build physically is shown in Fig-126#
ure 9.4. This linkage is basedon the complete quadrilateral. The threecircled
points and the two lines which extend out of the top of the pictur e to the right
and left are �xed. Two moving lines aredrawn from the lower circled points to

LINKAGES 103

Figure 9.3: The paths of four points on the central link are traced. This is a
15 second time exposure of a moving Sketchpad drawing. (Originally on page
125.)

Figure 9.4: As the “driving lever ” is moved, the point shown with a box
around it traces a conic section. This conic can be seenin the time exposure.
(Originally onpage125.)

104 EXAMPLES AND CONCLUSIONS

the intersections of the long �xed lines with the driving lever. The intersection
of these two moving lines (one must be extended) has a box around it. It can
be shown theoretically that this linkage producesa conic section which passes
through the place labeled “point on curve” and is tangent to the two lines
marked “tangent.” Figure 9.4Bshows a time exposure of the moving point in
many positions. The straight dotted lines are the paths of other, less interest-
ing points. At �rst, this linkage was drawn and working in �fteen minutes.
Sincethen we have rebuilt it time and again until now we can produce it from
scratch in about threeminutes.

DIMENSIONING OF DRAWINGS

It is important that a Sketchpad drawing be made in the correct size for many
applications. For example, the BCD clock pattern shown in Figure 9.2 was
plotted exactly 12 inches in diameter for the actual application. In fact, the
precision of the plotter is such that its plotted output can be used dir ectly as
a layout in many cases. But the size of a drawing as seen on the computer
display is variable. To make it possible to have an absolute scalein drawings,
a constraint is provided which forces the value displayed by a set of digits
to indicate the distance between two points on the drawing. The distance is
indicated in thousandths of an inch for “full size” plotted output.

k This distance indicating constraint is used to make the number in a di-127#
mension line. Many other constraints are used to make the arrowheads at the
end of the line be “parallel” to the dimension line and to make enough space
in the line for the dimension number. In some sensethe dimension line is a
complicated linkage; like a linkage it can be moved around while retaining its
properties. For example, the arrowheads stay the samesize even when the di-
mension line is made longer. A dimension line with small arrowheads is a part
of the library . This line is suitable for dimensions of the order of a few inches.
A three-four-�ve triangle dimensioned with this line is shown in Figure 9.5.

To produce the three-four-�ve triangle of Figure 9.5,threevertical and four
horizontal line segmentswere made to be the samelength. After erasing these
lines, the threecorrectly positioned corners of the triangle were dimensioned.
Putting in a dimension line is aseasyasdrawing any other line. One points to
whereone end is to be left, copiesthe de�nition of the dimension line by press-
ing the “copy” button, and then moves the light pen to where the other end
of the dimension line is to be. The size of the three-four-�ve triangle was ad-
justed so that even dimensions appeared. At other sizes,of course,the ratio of
the dimensions was correct but not so easyto recognizeat a glance. Total time
to produce dimensioned three-four-�ve triangle was threeminutes, exclusive
of time taken to produce the library version of the dimension line. The �rst
dimension line took about �fteen minutes to construct, but that need never be
repeated.

DIMENSIONING OF DRAWINGS 105

Figure 9.5: (Originally onpage128.)

106 EXAMPLES AND CONCLUSIONS

Figure 9.6: (Originally onpage128.)

BRIDGES

k One of the largestuntapped �elds for application of Sketchpad is asan input129#
program for other computation programs. The ability to place lines and circles
graphically , when coupled with the ability to get accurately computed results
pictorially displayed, should bring about a revolution in computer application.
With Sketchpadwe have a powerful graphical input tool. It happened that the
relaxation analysis built into Sketchpad is exactly the kind of analysis used for
many engineering problems. By using Sketchpad's relaxation procedure we
were able to demonstrate analysis of the forcedistribution in the members of a
pin connected truss. We do not claim that the analysis representedin the next
seriesof illustrations is accurateto the last signi�cant digit. What we do claim
is that a graphical input coupled to somekind of computation which is in turn
coupled to graphical output is a truly powerful tool for education and design.

In Figure 9.6 is shown a truss bridge supported at eachend and loaded in
the center. To draw this �gur e, one bay of the truss (shown below the bridge)
was �rst drawn with enough constraints to make it geometrically accurate.
These constraints were then deleted and each member was made to behave
like a bridge beam. A bridge beam is constrained to maintain constant length,
but any change in length is indicated by an associated number. Under the
assumption that eachbridge beamhasa cross-sectionalareaproportional to its
length, the numbers represent the forcesin the beams. The basic bridge beam
de�nition (consisting of two constraints and a number) may be copied and
applied to any desired line in a bridge pictur e. Each desired bridge member
wask changedfrom a line into a full bridge beamby pointing to it and pressing130#

ARTISTIC DRAWINGS 107

the “copy” button.
Using the bridge bay six times we construct the complete bridge. The load-

ing line and the one missing end member are put in separately. The six-bay
unloaded truss bridge is part of the library . It took less than ten minutes to
draw completely. Applying a load where desired and attaching supports, one
can observe the forcesin the various members. It takes about 30 secondsfor
new force values to be computed. The bridge shown in Figure 9.6 has both
outside lower corners �xed in position. Normally , of course, a bridge would
be �xed only at one end and freeto move sideways at the other end.

Having drawn a basicbridge shape,one canexperiment with various load-
ing conditions and supports to seewhat the effect of making minor modi�ca-
tions is. For example, an arch bridge is shown in Figure 9.7 supported both
as a threehinged arch (two supports) and as a cantilever (four supports). For
nearly identical loading conditions the distribution of forcesis markedly dif-
ferent in thesetwo cases.

ARTISTIC DRAWINGS

Sketchpad need not be applied only to engineering drawings. The ability to
put motion into the drawings suggeststhat it would be exciting to try making
cartoons. The capability of Sketchpad to store previously drawn information
on magnetic tape means that every cartoon component ever drawn is avail-
able for futur e use. If the almost identical but slightly dif ferent frames that
are required for making a motion pictur e cartoon could be produced semi-
automatically , the entire Sketchpad system could justify itself economically in
yet another way.

k One way of cartooning is by substitution. For example, the girl “Ne- 132#
fertite” shown in Figure 9.8 can be made to wink by changing which of the
three types of eyes is placed in position on her otherwise eyelessface. Doing
this on the computer display has amused many visitors. A secondmethod of
cartooning is by motion. A stick �gur e could be made to pedal a bicycle by ap-
propriate application of constraints. Similarly , Nefertite's hair could be made
to swing. This is the more usual form of cartooning seenin movies.

Aside from its economics as a teaching or amusement device, cartooning
can bring the insights which are the prime value of Sketchpad drawings. The
girl seenin Figure 9.9 was traced from a photograph into the Sketchpad sys-
tem. The photograph was read into the computer by a facsimile machine used
in another project [8] and shown in outline on the computer display. This out-
line was then traced with wax pencil on the display face.Later, with Sketchpad
in the computer, the outline was made into a Sketchpaddrawing by tracing the
wax line with the light pen.

Once having the tracing on magnetic tape many things can be done with
it. In particular , the eyesand mouth were erasedto leave the featurelessface
which may also be seen in Figure 9.9. Returning to the tracing and erasing
everything except the mouth and then everything except an eye we obtained
features. In re�tting the featuresto the blank facewe discovered that, although

108 EXAMPLES AND CONCLUSIONS

Figure 9.7: (Originally onpage131.)

ARTISTIC DRAWINGS 109

Figure 9.8: (Originally onpage133.)

110 EXAMPLES AND CONCLUSIONS

the original girl was a sweet looking miss, an entirely dif ferent character ap-
pears if her mouth is made larger as in Figure 9.10. Using a computer to par-
tially automate an artistic processhas brought me, a non-artist, some under-
standing ofk the effect of certain features on the appearance of a face. It is136#
the understanding that can be gained from computer drawings that is more
valuable than mere production of a drawing for shop use.

ELECTRICAL CIRCUIT DIAGRAMS

Electrical engineers are, of course, interested in making circuit diagrams. It
is not surprising that Sketchpad should be applied to this task. Unfortunately ,
electrical circuits requirea greatmany symbols which have not yet beendrawn
properly with Sketchpadand arenot therefore in the library . After sometime is
spent working on the basicelectrical symbols it may be easierto draw circuits.
Sofar, however, circuit drawing has beena big �op.

The circuits of Figure 9.11 are parts of an analog switching scheme. You
can seein the �gur e that the more complicated circuits are made up of simpler
symbols and circuits. It is very dif �cult, however, to plan far enough ahead to
know what composits of circuit symbols will be useful as subpictur es of the
�nal circuit. The simple circuits shown in Figure 9.11 were compounded into
a big circuit involving about 40 transistors. Including much trial and error, the
time taken by a new user (for the big circuit not shown) was ten hours. At
the end of that time the circuit was still not complete in every detail and he
decided it would be better to draw it by hand after all.

CONCLUSIONS

Thecircuit experiencepoints out the most important fact about computer draw-
ings. It is only worthwhile to make drawings on thek computer if you get138#
something more out of the drawing than just a drawing. In the repetitive pat-
terns we saw in the �rst examples, precision and easeof constructing great
numbers of parts were valuable. In the linkage examples,we were able to gain
an understanding of the behavior of a linkage as well as its appearance. In
the bridge examples we got design answers which were worth far more than
the computer time put into them. If we had had a circuit simulation program
connected to Sketchpad so that we would have known whether the circuit
we drew worked, it would have beenworth our while to use the computer to
draw it. We are asyet a long way from being able to produce routine drawings
with the computer.

FUTURE WORK

The methods outlined in this report generalize nicely to three dimensional
drawing. In fact, work hasalready beenbegun to make a complete “Sketchpad
Three” which will let the user communicate solid objects to the computer. A

FUTURE WORK 111

Figure 9.9: (Originally onpage134.)

112 EXAMPLES AND CONCLUSIONS

Figure 9.10:(Originally onpage135.)

FUTURE WORK 113

Figure 9.11: (Originally onpage137.)

114 EXAMPLES AND CONCLUSIONS

forthcoming thesisby Timothy Johnsonof the Mechanical Engineering Depart-
ment will describe this work. When Johnsonis �nished it should be possible
to aim at a particular place in the threedimensional drawing through two di-
mensional, perspective views presentedon the display. Johnsonis completely
bypassing the problem of converting several two dimensional drawings into
a threedimensional shape. Drawing will be dir ectly in threedimensions from
the start. No two dimensional representation will ever be stored.

Work is alsoproceedingon dir ectconversion of photographs into line draw-
ings. Robertsreports a computer program [8] able to recognizek simple objects139#
in photographs well enough to produce three dimensional line drawings for
them. Roberts is storing his drawings in the ring structure described in Chap-
ter III so that his results will be compatible with the threedimensional version
of Sketchpad.

Much room is left in Sketchpad itself for impr ovements. Some impr ove-
ments are minor , such as including mirr or image subpictur es. Someimpr ove-
ments should be made to suit Sketchpad to particular usesthat come up. For
example, it is so interesting to study the path of particular points on a linkage
that Sketchpad should be able to store and later display the path of chosen
points.

Mor emajor impr ovements of the sameorder and power asthe existing def-
inition copying capability can be forseen. At presentSketchpad is able to add
de�ned relationships to an existing object drawing. A method should be de-
vised for de�ning and applying changeswhich involve removing some parts
of the objectdrawing aswell asadding new ones.Sucha capability would per-
mit one to de�ne what rounding off a corner means. Then, by pointing at any
corner and applying that de�nition, one could round off any corner. Sketch-
pad cannot now do this becauserounding off a corner involves disconnecting
the two lines which form the corner from the corner point and then putting a
small circular arc between them.

HARDW ARE

Sketchpadhaspointed out someweaknessesin presentcomputer hardwar e. A
proposal for a line drawing display which would greatly surpassthe capability
of the spot display now in use is given ink Appendix E. Sucha display would140#
not only provide �icker free display to the user, but also would relieve the
computer of the burden it now carries in computing successivespots in the
display.

There are two con�icting demands made by Sketchpad on the light pen.
On the one hand, the pen must have a fairly large �eld of view for easeof
tracking. On the other hand, it should have a small �eld of view for aiming at
objects. It should be possible to build a pen with two concentric �elds of view
which would report to the computer separately.

The arithmetic element of the computer is not used in doing the ring struc-
ture processing which forms a large part of Sketchpad. On the other hand,
the index registers and their associatedarithmetic are extensively used. This

HARDW ARE 115

suggests that several users could share an arithmetic element if suf�ciently
powerful index arithmetic were made available to eachof them.

116 EXAMPLES AND CONCLUSIONS

Appendix A

CONSTRAINT
DESCRIPTIONS

code variable description
types

43
T

point
instance
(point)

Point bearssamerelation to instance that (point)
bearsto its pictur e.
GENERATED AUT OMA TICALL Y WITH IN-
STANCES

33
L

p thing
p thing
p thing

Three things are collinear. Note: no distinction
made about ordering of variables.
GENERATED AUT OMA TICALL Y WHEN
POINTS ARE CREATED ON LINES

22
C

p thing
p thing
p thing

Distance from �rst to secondis equal to distance
from �rst to thir d. (First is circle center.)
GENERATED AUT OMA TICALL Y WHEN
POINTS ARE CREATED ON CIRCLES

24
E

4 thing Thing is erect or on its side.
" ! #

27
H

p thing
p thing

First thing is dir ectly above or below, or di-
rectly beside second thing. (Horizontal or ver-
tical line.)
GENERATED AUT OMA TICALL Y FOR ANY
LINE BY HORV BUTTON

30
I

4 thing
p thing
p thing

4 thing is “parallel” to line between p things.
Parallel to horizontal line meansupright. (To set
angle of text.)

118 CONSTRAINT DESCRIPTIONS

code variable description
types

34
M

p thing
p thing
p thing
p thing

Distance from �rst thing to secondis 1/3, 1/2, 1,
2, 3, times distance from thir d to fourth.

42
S

4 thing
4 thing

First thing is 1/3, 1/2, 1, 2, 3 times size of second
thing.

23
D

scalar
p thing
p thing

Value of scalarequalsdistance between things in
inches.

21
B

scalar
4 thing

Value of scalarequals size of thing in inches.

25
F

instance Instance is full size, i.e. the samesize as its mas-
ter pictur e.

47
X

p thing
p thing
p thing

First thing is at mid point of other two, e.g. di-
mension in dimension line is at center of line.

06
6

4 thing Thing is 1/32, 1/16, 1/8, 1/4, 1/2 or 1 inch in
overall size.

37
P

p thing
p thing
p thing
p thing

Line from �rst to second would be parallel or
perpendicular to line from thir d to fourth. (Lines
need not be there.)

36
O

4 thing
p thing

p thing will be next to 4 thing with enough space
for 5 digit number, e.g. to createspacein dimen-
sion line.

46
W

p thing
p thing

Distance between things is maintained what it
was last time meta of tog 22 was down. USES
META OF TOG 22. e.g. for bridges and linkages.

50
Y

scalar
(p thing)
(p thing)

Value of scalar is equal to change in distance be-
tween p things since meta of tog 22 was down,
sign considered. e.g. to display forcesin beams.
USESMETA OF TOG 22.

Appendix B

PUSH BUTTON CONTROLS

BUTTON
NAME

BIT
NUMBER

FUNCTION

Draw 1.8 Createa new straight line segmentor circle arc. End
of line or arc left attached to light pen.

Circle center 1.7 Center of circle is left where pen is pointing. Next
thing drawn will be circle arc.

Move 2.1 Object pointed at moves with light pen.
Delete 1.3 Object pointed at removed from drawing.
Instance 2.4 Instanceor pictur e whose number is in toggle regis-

ter 25 is created.

Copy 20
Copy 21
Copy 22
Copy 23

3.6
3.1
2.5
1.9

Four buttons. Copy de�nition pictur e indicated in
toggle registers20 to 23 respectively. Thesebuttons
can be set up to create equal length lines, dimen-
sion lines, etc. Any four functions can be available
at once.

Stop 1.6 Leave moving object wherever it is. Merge moving
object if aiming at objectof like type. Sameastermi-
nation �ick of the pen.

Text 4.3 Create line of text consisting only of the letter X.
Typing while a piece of text is moving adds to the
text displayed.

Number 3.7 Create a new set of digits and a scalar which is its
value. Digits left moving.

Hold 4.9 Following pen �ick not to be taken as termination
signal. Used to set pen aside for typing text.

Garbage 1.1 If pen is tracking, recenterpictur e so that place pen
is pointing at will be in the center. If pen not track-
ing, compact ring structure by removing garbage.

Constraint 2.8 Create a new constraint of the type numbered in
toggle register 25. Dummy variables are created.
Constraint left moving.

Horv 2.9 Apply horizontal or vertical constraint to line aimed
at. Choice is basedon 45� cutoff.

120 PUSH BUTTON CONTROLS

BUTTON
NAME

BIT
NUMBER

FUNCTION

Designate 2.2 Designate object. For copying a de�nition pictur e
with threeor more ties.

Tie 2.6 Object pointed at is an attacher of this pictur e.
Fix 3.3 This object must not move during constraint satis-

faction. Moving an object with the light pen un�xes
it.

Un�x 2.7 All �xed and designated objectsun�xed and undes-
ignated.

IBM 4.3 Read tape record. Number of record on tape given
in toggle 26. Typewriter con�rms successfulreading
or writing.

Library 3.9 Readarecord from the TX-2 library tape. Addr essof
record given in toggle register 27. Typewriter con-
�rms.

Library write Special start
point

Write a record on library tape. Typewriter con�rms.

Change
instance

2.3 Moving instance or instance pointed at is changed
to type indicated in Toggle register 25. Can change
resistor into diode, etc.

Dismember 4.4 Instance pointed at is reduced one level, i.e., its in-
ternal structure on the next level becomesusable.

Order 4.6 Lines are put in better order for plotting.
Disorder 4.5 Lines are put in worst order for plotting.
Punch 4.7 Punch plotter tape for object pictur e.
Plot 4.8 Plot object pictur e.

The following dangerous functions only operate if “meta” button (4.10)is pressedas
well.

Delete
constraints

1.2 All constraints in object pictur e are deleted.

Delete points 1.4 All unattached points in object pictur e are deleted.
Delete pictur e 1.5 Entire object pictur e is deleted.
IBM 4.3 Write IBM tape record. Typewriter con�rms.

Appendix C

STRUCTURE OF STORAGE
BLOCKS

(C) = Chicken (S)= Start of subroutine . = Spare register
(H) = Hen – = Ring part of component fg = Data part of block

TYPEOF STRUCTURE REMARKS
BLOCK

Universe
Variables TYPE (C) All theseshort generic blocks use the
Holders – sameformat. TYPE is a chicken (C)
Constraints SPECB (H) which connectsthe block to its next
Topos – higher level in the generic structure,�

NAME
:

�
seeFigure 3.8. SPECBis the hen (H)

Frees collecting the TYPEblocks in the next
Deads lower level. TYPEand SPECBserve this
Movings purpose in all blocks where they appear.
Curpics NAME contains a four letter typewriter
Freedoms code name for eachgeneric block.
Fixeds Counting lines, one �nds that TYPE=
Desigs 0, SPECB= 2, and NAME = 4.
Mergers
Works

Lines TYPE (C)
�

Generic blocks for lines, circlesand
pictur e blocks.

�

Circles –
Pictures SPECB (H)

–8
>>>>>>>>>><

>>>>>>>>>>:

NAME
DISPLAY
HOWBIG
:
MOVIT
SIZE
:
KIND

9
>>>>>>>>>>=

>>>>>>>>>>;

(S) Display subroutine.
(S) Fit scopearound this thing.

(S) Apply transformation to this thing (Degenerate)
Length of line, circle and pictur e blocks.

Put thesein PPART or PICBLKS of a pictur e
block.

122 STRUCTURE OF STORAGE BLOCKS

Scalars TYPE (C)
�

Generic blocks for various kinds of
variables.

�

Points –
Instances SPECB (H)
Texts –
Digits

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

NAME
DISPLAY
HOWBIG
:
MOVIT
SIZE
WHERE
KIND
TUPLE
VARLOC

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

Dummies (S)
(S)

(S) Apply transformation to this thing.

(S) Find position of thing on display.

Number components in vector.
Location of �rst vector component in block.

Hov TYPE (C) Generic blocks for various constraint
Porp – types.
etc. SPECB (H)
etc. –

NAME
DISPLAY (S)
HOWBIG (S) Degenerate.(Doesnothing.)
.
MOVIT (S) Degenerate.
SIZE
CONLET Letter to appear in display.
KIND
.
.
COMP (S) Error computing subroutine.
NCON Number degreesof freedom removed.
CHVAR Number of changeablevariables.

Picture TYPE (C) (Speci�c pictur e block.)
–
PICBLKS (H) Abstractions in pictur e. KIND of generic
– block tells if a thing is an abstraction.
PPART (H) Picture parts. Lines, Circles,Instances,
– Texts,and Digits in pictur e.
PWHOS (C) Put into SPECBof Curpics ring if this
– is current pictur e.
PPARTM (H) Moving parts of pictur e.
–
PATAP (H) Attachers of this pictur e.
–
PINS (H) Instancesof this pictur e.
–8
>>>>>>>>>><

>>>>>>>>>>:

PSIZE
PNAME
PSAVE
"
"
"
"
:

9
>>>>>>>>>>=

>>>>>>>>>>;

Overall size of this pictur e.
36bit “name” for this pictur e.
Spaceto savetransformation when recursively
expanding instances.

123

Line TYPE (C) (Speci�c line block.)
–
ATATAP (C) Put into PATAP of pictur e if this line
– is an attacher.
BWHOS (C) Which pictur e this thing belongs to.
–
VORD (C) Put into SPECBof Movings if this line
– is moving.
LSP (C) Start point of line. Goesinto PLSring
– of point.
LEP (C) End point of line.
–

Circle TYPE (C) (Speci�c circle block.)
–
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
CSP (C) Start point of circle arc.
–
CEP (C) End point of circle arc.
–
CIRCEN (C) Center point of circle.
–�

CVAL
"

�
Angle of circle arc (to avoid ambiguity).
Radius of Circle (to saverecomputation).

Point TYPE (C) (Speci�c point block.)
–
ATATAP (C)
–
BWHOS (C)
–
VORD (C) Put in SPECBof Freedomsduring maze-

solving constraint satisfaction.
–
VFLW (H) Constraints which this variable will
– be used to satisfy.
VCON (H) Constraints on this variable.
–
PLS (H) Lines and Circleson this point
–
IPCOTP (H) Instance-point constraints which use
– this point for referenceonly.�

PVAL
"

�
X coordinate of point.
Y coordinate of point.

124 STRUCTURE OF STORAGE BLOCKS

Instance TYPE (C) Speci�c instance block. Sizeof
– instance is half size of enclosing box.
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
VFLW (H)
–
VCON (H)
–
IWHA T (C) What pictur e this is an instance of.
–8
>><

>>:

IVAL
"
"
"

9
>>=

>>;

Sizetimes cosineof rotation.
Sizetimes sine of rotation.
X coordinate.
Y coordinate.

Text TYPE (C)
0

B
B
@

Particular lines of text. Sizeof
text is half height of letters. Position
of text is center of �rst letter in the
line.

1

C
C
A

–
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
VFLW (H)
–
VCON (H)
–8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

TVAL
"
"
"
TXTS
"
"
"
"
"
"
"
"
"

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

Sizetimes cosineof rotation.
Sizetimes sine of rotation.
X coordinate.
Y coordinate.
Text to be shown, four letters per
register, typewriter codes.

125

Dummy TYPE (C) (Particular dummy variable.)
–
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
VFLW (H)
–
VCON (H)
–�

TPVAL
"

�
X coordinate.
Y coordinate.

Digits TYPE (C)
�

A particular set of digits. Sizeof
digits is half height of �gur es.

�

–
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
VFLW (H)
–
VCON (H)
–
NTOSHOW (C) Scalarwhose value is to be shown.
–8
>><

>>:

NVAL
"
"
"

9
>>=

>>;

Sizetimes cosineof rotation.
Sizetimes sine of rotation.
X position.
Y position.

Scalar TYPE (A particular scalarblock.)
–
ATATAP (C)
–
BWHOS (C)
–
VORD (C)
–
VFLW (H)
–
VCON (H)
–
SSHOW (H) Digits showing this scalar's value.
–�

SVAL
:

�
Value of scalar.

126 STRUCTURE OF STORAGE BLOCKS

Constraint TYPE (C)
0

B
B
@

All constraint blocks have sameformat.
If fewer than four variables, block will
be shorter and VARIA TION will be moved
up.

1

C
C
A

–
ATATAP (C)
–
BWHOS (C)
–
CVTS,VORD (C) Variable used to satisfy this constraint
– in maze-solving method.
VAR1 First constrained variable.
–
VAR2 Secondconstrained variable.
–
VAR3
–
VAR4
–�

VARIA TION
–

�
Code for variations within a constraint
type. e.g.,horizontal or vertical.

Appendix D

RING OPERATION MACRO
INSTRUCTIONS

The macro instructions listed in this appendix are used to implement the basic
ring operations listed in Chapter III. Only the format is given here since to list
the machine instructions generated would be of value only to persons famil-
iar with the TX-2 instruction code. In each casethe macro name is followed
by dummy variables separatedby non-alphabetic symbols. The dummy vari-
ables XR and XR2 refer to index registers which contain the address of the
block which contains the ring element being worked on. The terms N of XR
or N � XR mean the Nth element of the block pointed to by index register XR,
for example, the LSP (line start point) register of the line block pointed to by
index register � .

LTAKE � N � XR

Take N of XR out of whatever ring it is in. The ring is reclosed. If N of XR is
not in a ring, LTAKE does nothing. N of XR must not be a hen with chickens.

PUTL � N � XR ! M � XR2
PUTR � N � XR ! M � XR2

Put N of XR into the ring of which M of XR2 is a member. N of XR is placed to
the left (PUTL) or right (PUTR) of M of XR2. M of XR2 may be either a hen or
a chicken. N of XR must not already belong to a ring.

MOVEL � N � XR ! M � XR2
MOVER � N � XR ! M � XR2

Combination of LTAKE and PUTL (PUTR). Assumes that both N of XR and M
of XR2are in the samering. Intended for reordering a ring.

CHGRL � N � XR ! M � XR2
CHGRR � N � XR ! M � XR2

Combination of LTAKE and PUTL (PUTR). N of XR and M of XR2 may be in
dif ferent rings.

LGORR � N � XR ! M � XR2 ! SUBR! LEXIT
LGORL � N � XR ! M � XR2 ! SUBR! LEXIT

128 RING OPERATION MACRO INSTRUCTIONS

Go around the ring of which N of XR is the hen. Exit to subroutine SUBRonce
for eachring member. The addressof the top of the block to which eachring
member belongs is put in XR before starting the subroutine. XR2 is used as a
working index register. The subroutine may destroy the contents of both XR
and XR2. The subroutine may delete individual members of the ring provided
recursive deletion does not delete additional ring members. The subroutine
must not generatenew ring members. Jump to LEXIT when �nished with the
ring. Go around the ring to the right (LGORR) or left (LGORL).

LGORRI � N � XR ! M � XR2 ! SUBR! LEXIT
LGORLI � N � XR ! M � XR2 ! SUBR! LEXIT

SameasLGORR except that the subroutine may generatenew members in the
ring. The subroutine must not delete the current member of the ring. New
members will be visited if they are put in the ring later in sequence.

COMBHR � N � XR ! M � XR2
COMBHL � N � XR ! M � XR2

The members of the ring whose hen is at N of XR are placed in the ring of
which M of XR2 is a member. N of XR must not be empty. The new members
are placed to the right (COMBHR) or left (COMBHL) of M of XR2. M of XR2
may be either a hen or a chicken. N of XR is left empty.

Appendix E

PROPOSAL FOR AN
INCREMENT AL CURVE
DRAWING DISPLA Y

In the course of the work with Sketchpad it has becomeall too clear that the
spot-by-spot display now in use too slow for comfortable observation of rea-
sonable size drawings. Mor eover, having the central machine compute and
store all the spots for the display is a waste of general purpose capacity that
might better be applied to other jobs. As a solution to thesedif �culties I pro-
posethat a special purpose incremental computer be used to generatethe suc-
cessivespots of the display at high speed. The central machine would provide
only a minimum of information about eachcurve to be drawn; e.g.,end points
of lines; start, center and arc length of circle arcs.

The technology of incremental computers is well developed, but so far asI
know, no onehasyet applied them dir ectly to the problem of computer display
systems. Basically the incremental computer works by adding one register to
another successively and detecting any over�ows or under�ows which may
be generated. Certain registers are incremented conditionally on the result of
over�ow or under�ow generation.

In the system of Figure E.1, the x and y increment registers are added to
the x and y remainder registersand over�ows or under�ows (dotted lines) are
used to increment the beam position of the display. A counter (not shown)
is provided to limit the length of the straight line generated. The unit would
request more information from the computer after the appropriate number
of additions. For drawing straight lines on a 1024� 1024raster display, the
increment registers should contain 10 bits plus sign, 11 bits in all each;the re-
mainder registersshould contain 10 bits with no sign; and the counter should
contain 10bits.

To understand how the system of Figure E.1 operates consider that its x
increment register contains the largest possible positive number and that its y
increment contains one half that value. The x addition would result in over-
�ow nearly every iteration, whereasthe y addition would result in over�ow
only on alternate additions, and so a line would be drawn up and to the right

130 PROPOSAL FOR AN INCREMENT AL CURVE DRAWING DISPLA Y

Figure E.1: (Originally onpage155.)

131

with a slope of 1/2.
The usual practice in incremental computers is to be able to step the incre-

ment registers by a single unit up or down according as over�ow or under-
�ow is produced in another addition. In the system of Figure E.2, the
+? is
an adder-subtractor which can increaseor decreasethe increment register by
the amount stored in the curvatur e register. The
+? adds or subtracts if over-
�ow or under�ow is generated in the other addition. Over�ow or under�ow
is signalled to the
+? adder along the dotted paths in Figure E.2.

Use of the conditional adder permits a curvatur e to be speci�ed so that
curves can be drawn. The system of Figure E.2 will draw straight lines if the
numbers in the curvatur e registers are zero, circles if the numbers are equal
and opposite in sign, ellipses if the numbers are unequal and unlike in sign,
and hyperbolas if the numbers are like in sign. The ellipses and hyperbolas are
generated,however, with axesparallel to the coordinate axesof the display.

Theory and simulation show that just as in the incremental equation used
for generating circles (seeChapter V), the latest value of increment must be
used if the curve is to close. Therefore, the additions cannot all occur at once;
the order shown in Figure E.2 by the numbers 1–4 next to the adders makes
the circles and ellipses close. In a serial device it is possible to do the four
additions in just two add times by having only a one bit time delay between
the two additions for eachcoordinate, i.e.,
+? just before
+ .

Circlescanbe drawn with radii from about one scopeunit to a straight line
according to the numbers put in the curvatur e registers.Simulation shows that
if the increment and curvatur e registers contain 17 bits plus sign, 18 bits each
in all, and the remainder contains 17bits without sign, the largest radius circle
that can be drawn is just noticeably dif ferent from a straight line after having
passedfully across a 1024� 1024raster display. The simulation program for
this test is less than 100instructions long and requires,of course, no multiply
or divide. Simulation of larger incremental computers on small general pur -
pose digital computers should be a powerful way to get complex numerical
answers quickly and easily.

If the system of Figure E.2 is duplicated twice as shown in Figure E.3, a
general Conic Section drawing capability is obtained. I am indebted to Larry
M. Delfs for pointing out that the display incrementing outputs of the two
systems should be added together. The full system of Figure E.3 can draw
not only arbitrary conic sectionsbut a host of interesting cycloidal curves. For
drawing the simple straight lines and circles, the two halves of the system
would be loaded with identical numbers to gain a two-fold speedadvantage.

A trial design using 20 megacycle serial logic and 36 bit delay lines avail-
able commercially showed that the full system would be able to generatenew
display points at 0.9microsecondseachfor lines and circlesand slightly slower
(but not half speed) for complicated conics. This corresponds to a writing rate
of about 10,000inches per second. Samesaving in cost could be expected if
longer delay lines were used and a correspondingly slower operation speed
were tolerated. It appears possible to get similar performance from a parallel
scheme.

132 PROPOSAL FOR AN INCREMENT AL CURVE DRAWING DISPLA Y

Figure E.2: (Originally onpage157.)

133

Figure E.3: (Originally onpage159.)

134 PROPOSAL FOR AN INCREMENT AL CURVE DRAWING DISPLA Y

Appendix F

MA THEMA TICS OF LEAST
MEAN SQUARE FIT

The result quoted in this appendix is well known and is repeatedhere only for
reference.

Supposewe have P equations in N unknowns:

å N
j= 1 ai j x j = ci 1 � i � P; or AX = C: (F-1)

If P is larger than N there would in general be no exact solution. We wish
to �nd the values for the unknowns which minimize the sum of the squared
errors of the equations. The error in the i th equality is given by:

Ei =
N

å
j= 1

(ai j x j � ci); (F-2)

and the total squared error,

Et =
P

å
i= 1

"
N

å
j= 1

(ai j x j) � ci

#2

: (F-3)

We wish to minimize Et , and so we take partials with respect to each x j and
set all theseequal to zero. For a particular x j called xk,

� Et

� xk
=

�
� xk

P

å
i= 1

"
N

å
j= 1

(ai j x j) � ci

#2

: (F-4)

Sincethe partial of a sum is equal to the sum of the partials,

� Et

� xk
=

P

å
i= 1

�
� xk

"
N

å
j= 1

(ai j x j) � ci

#2

; (F-5)

or since �
� x (Q)2 = 2Q �

� x Q,

� E2

� xk
=

P

å
i= 1

2

"
N

å
j= 1

(ai j x j) � ci

#
�

� xk

"
N

å
j= 1

(ai j x j) � ci

#

: (F-6)

136 MA THEMA TICS OF LEAST MEAN SQUARE FIT

Now the last part of (F-6) is a sum of terms like a12x2 : : : only one of which
involves xk at all, namely aikxk. Therefore,

� E2

� xk
=

P

å
i= 1

2

"
N

å
j= 1

(ai j x j) � ci

#

(aik); (F-7)

which, when set equal to zero gives

0 =
P

å
i= 1

"
N

å
j= 1

(aik ai j x j) � aik ci

#

; (F-8)

or
P

å
i= 1

N

å
j= 1

aik ai j x j =
P

å
i= 1

aik ci : (F-9)

Changing the order os summation,

N

å
j= 1

P

å
i= 1

aik ai j

!

x j =

P

å
i= 1

aik ci

!

; (F-10)

which in matrix notation becomes:

AT AX = ATC: (F-11)

AT A is a square matrix of order N. Thus a system of any number of linear
equations can be reduced to a simpler system whose solution is the value of
the variables for least square �t to the original set of equations.

If the original equations are equations in two unknowns, a plot of (F-2)
with error squared in the upwar d dir ection is a parabolic valley. Since any
vertical section of a parabolic valley will be a parabola, and the sum of any
two parabolas in likewise a parabola, a plot of (F-3) can at most be an eliptic
paraboloid. The Equations (F-10) and (F-11) resulting from the method de-
scribed here represent the locus of locations where contour lines of the eliptic
paraboloid are parallel to the axes. The intersection of these loci, the solution
of (F-11), is the lowest point in the eliptic paraboloid, the least mean squares
�t to (F-1).

Appendix G

A BRIEF DESCRIPTION OF
TX-2�

At �rst glance, TX-2 is an ordinary single-address, binary digital computer
with an unusually large memory. It is an experimental machine — many of its
in-out devices are not commercially available. On closer inspection, one �nds
it hassomeimportant innovations — at least they were innovations at the time
TX-2 was built (1956).

The distinctivefeaturesof TX-2 are:

1. Simultaneous use of in-out machines through interleaved programs.

2. Flexible, “con�gur ed” data processing.

Someother virtues include:

1. Automatic memory and arithmetic overlap.

2. A “bit” sensing instruction (i.e., the operand is one bit!).

3. Addr essablearithmetic element registers.

4. Especially �exible in-out.

5. 64 index registers.

6. Indir ect — i.e. deferred addressing.

7. Magnetic Tape Auxiliary Storage

IN-OUT

The phrase “simultaneous use of in-out machines” should be taken quite lit-
erally. It does not mean simultaneous control. Each unit has its own buffer
register and only oneof thesecan be processedby TX-2 at any given instant. It

� By Alexander Vanderburgh

138 A BRIEF DESCRIPTION OF TX-2

is the relativespeed that is important. For example, the in-out instruction that
“�lls” the display scope buffer takes no more than 10 microseconds,but the
display itself takes from 20 to 100microseconds,i.e., up to ten times as long.
While the display is busy, the computer cancompute the next datum of course,
but it canalso initiate other in-out transfers. In practice, sincemost in-out units
are much slower than their associatedprograms, the computer spends a sig-
ni�cant percentageof the time just waiting (in “Limbo”), even when several
devices are in use. Interleaved initiation of in-out data transfers is partly au-
tomatic and partly program controlled. Each in-out routine is independently
coded and is operated by TX-2 according to its “priority .” Eachunit hasa “Flag
Flip-Flop” to indicate to control that it is ready for further attention. When a
unit is ready for further attention its routine will be operated unless another
unit of higher priority also needs attention. An index register is reserved for
eachin-out unit and is used as a “place-keeper” when its routine is not being
operated. The sharing among in-out routines of storage, index memory, and
the arithmetic element is the programmer 's responsibility.

“CONFIGURED” DATA PROCESSING

The “normal” wor d length for TX-2 is 36 bits. For many applications 18 or 9
bits would suf�ce, and in somecaseseachpieceof data requiresthe samepro-
cessing.Con�guration control permits “fractur e” of the normal wor d into two
18 bit pieces,four 9 bit pieces,or one 27 bit and one 9 bit. These“subwor ds”
are completely independent — for example, there are separateover�ow indi-
cators. In addition to “fractur e” there is “activity” and “quarter permutation”.
Any quarter wor d can be made “inactive” i.e., inoperative. The 9 bit quarters
of a datum from memory may be rearranged (permuted) before use. There
are 8 standard permutations — for example, the right half of memory can be
used with the left half of the arithmetic element. Nine bits are required for
complete con�guration speci�cation. Sinceonly 5 bits are available for bit thin
�lm memory is addressedby each instruction wor d, a special 32 wor d, 9 bit
thin �lm memory is addressedby eachinstruction that processesdata dir ectly.
A complete change to any of 32 con�gurations is therefore possible from in-
struction to instruction.

THE SMALLER VIR TUES

Overlap: TX-2 has two core memories — “S” memory, a vacuum tube driven
65,536wor d corememory, and “T” memory, a transistor driven 4096wor d core
memory about 20%faster. Instruction readout can be done concurrently with
the previous data readout if program and data are in separatememories.

The use of the arithmetic element is also overlapped. Instructions that fol-
low a multiply or divide operation will be done during the arithmetic time if
they make no referenceto the arithmetic element. The overlap is entirely auto-
matic and may be ignored if the programmer chooses.A careful programmer

THE SMALLER VIR TUES 139

can gain speedby doing indexing after multiply or divide and by putting pro-
gram and data in separatememories.

Bit SensingInstruction: One instruction — SKM — usesa single bit of any
memory wor d as its operand. Control bits provide 32 variations of skipping
setting, clearing, and/or complementing the selectedbit. This instruction can
also cycle the whole wor d right one place if desired.

AddressableArithmetic Element: Seventeenbits of the TX-2 instruction wor d
are reserved for addressing an operand. This would allow a 131,072wor d
memory. TX-2 has only 69,632registers of core storage. The toggle switch
and plugboard memories, the real time clock register, the knob register (shaft
encoder),and the arithmeticelementregistersuse55of the remaining addressing
capability. The arithmetic element registers are therefore part of the memory
system and can be addressed,e.g.,one can add the accumulator to itself.

FlexibleIn-Out : The TX-2 user must program eachand every datum trans-
fer. The lack of complex automatic in-out controls may seemto be a burden,
but the simplicity of the system gives the programmer much more preciseand
variable control than automatic systems provide. For example, coordination
of separatein-out units such asdisplay and light pen is possible. Mor eover, it
is relatively easyto attach new in-out machines asthey becomeavailable.

Index Memory and IndirectAddressing: Of the 64 index registers, one must
devote a few to each in-out unit's program. With all 21 in-out devices con-
currently in use, each program would have two index registers for normal
programming use. In practice, one seldom usesmore than half a dozen in-out
units, and each routine would then have 9 — clearly a luxury . Indir ect ad-
dressing provides a means for indexing normally nonindexable instructions,
or for double indexing normal instructions.

MagneticTapeAuxiliary Storage: EachTX-2 magnetic tape unit storesabout
70 million bits, 34 times the capacity of the core memory system. Like a mag-
netic drum the tape is addressable. It can be read in either dir ection at any
speed from 60 to 600 ips, and can be searched at a maximum of 1200ips. It
is used at present primarily for program storage. “Turn around time” — i.e.
the time required to saveone program and read-in in a dif ferent one is seldom
more than 2 minutes and often less than 30 seconds. (The read-in time, once
the desired section of the tape is found, is about 12 secondsfor 69,632wor ds.)
A standard IBM 729tape unit is also available.

140 A BRIEF DESCRIPTION OF TX-2

SUMMAR Y OF VIT AL STATISTICS — TX-2 — DECEM-
BER 1962

Word Length: 36bits, plus parity bit, plus debugging tag bit
Memory: 256� 256core 65,536wor ds 6.0 � seccycle time

64 � 64core 4,096wor ds 4.4 � seccycle time
Toggle switch 16wor ds
Plugboard 32wor ds

Auxiliary Memory: Magnetic Tape 2+ million wor ds, 70+ million bits per
unit (2 units in use, total of 10planned)

Tape Speeds: selectable60-300inches/sec, search at 1000
inches/sec (i.e. about 1600to 800036bit wor ds/sec)

IN-OUT EQUIPMENT

Input :

� Paper Tape Reader:400-20006 bit lines/sec

� 2 keyboards — Lincoln writer 6 bit codes

� Random number generator — average57.6� secper 9 bit number

� IBM Magnetic Tape (Model 729M6)

� Miscellaneous pulse inputs — 9 channels — push buttons or other
source

� Analog input — EpscoDatrac — nominal 11 bit sample,27kilocycle
max. rate

� 2 light pens — work with either scopeor both on one

Special memory registers :

� Real time clock

� 4 shaft encoder knobs, 9 bits each

� 592toggle switches (16 registers)

� 37push buttons — any or all can be pushed at once

Output :

� Paper tape punch — 3006 bit lines/sec

� 2 typewriters — 10charactersper second

� IBM Magnetic Tape (729M6)

� Miscellaneous pulse/light/r elay contacts— 9 channels (low rates)

� Xerox printer — 1300char. sec

� 2 display scopes— 7 � 7 inch usable area,1024� 1024raster

� Large board pen and ink plotter — 29”� 29” plotting area.15in/sec
slew speed. Off line paper tape control as well as dir ect computer
control.

Glossary

4-thing A four component variable: text, digits, or instance.

Aim To place the light pen so that light from the pictur e part aimed at falls
on the photocell and so that the center of the light pen �eld of view is
suf�ciently closeto the pictur e part.

Atomic Axiomatic, fundamental, built in. The atomic constraintsare listed in
Appendix A. The atomic operations areeachcontrolled by a push button
listed in Appendix B.

Attacher For instances, a particular point designated in the masterfor which in
the instancethe light pen will have a particular af�nity . Also the related
point created in the picturecontaining the instancewhen the instancewas
created.

For copying, any drawing part designated in the de�nition pictur e. Attach-
ers may be recursively mergedwith objectpictureparts when the de�nition
is copied.

Balance The property of equal weight among constraintsobtained by making
error in a constraintequal to displacement.

Block A set of consecutive registers used to represent a pictur e part. An n-
componentelement.

Chicken A subordinate ring member, composed of two registersone of which
referencesthe blockcontaining the henfor this ring, the other references
the next and previous chickens in the ring.

Circle A circle arc. A full circle is a circle arc 360� or more in length.

Constraint A speci�c storage representation of a relationship between vari-
ableswhich limits the freedom of the variables, i.e., reducesthe number of
degreesof freedom of the system. Also, constraintis sometimes used to
mean a type of constraint, as in “ther e are seventeenatomicconstraints.”

Constraint satisfaction The processof moving variablesso that all the condi-
tions on them embodied in the constraintsare met. It is not always possi-
ble.

142 GLOSSARY

Copying Duplication in storage the ring structure of a de�nition pictur e. A
copy is not to beconfused with an instance. Any instancemay bechanged
into a copy by dismembering.

De�nition A masterpicture. Especially a pictureto be used for copying, usually
containing a combination of atomicconstraints. Also the error computa-
tion routine associatedwith a constraint.

Delete To erase.Deleted blocksbecomegarbage.

Digits A set of �ve decimal digits plus sign, leading zeros suppressed. As
a variabledigits may be moved, rotated, or made larger on the display.
The particular value displayed is that of an associatedscalarand may be
changed only by movingthe scalar.

Dismembering The processof changing an instanceinto a copyby creating in
the ring structure a duplicate of the internal structure of the instance's
masterand removing the instance. A dismembered instancebecomesa
group of lines, etc., which may be individually moved, deleted, etc. Dis-
membering peelsoff only one layer of instanceat a time.

Dummy variable A particular two component variable used to locatethe arms
of a constraintwhen it is �rst created. Dummy variables may mergewith
any other kind of variableleaving any attached constraintsapplying to
that variable. Display for a dummy variable is a � .

Error The number computed by the de�nition subroutine for a constraint. Er-
ror is zero if the constraint is satis�ed and grows monotonically as the
constrained variablesare moved.

File A storage structure. A �le may be in either list form or tableform. Also a
collection of magnetic tape records.

Free A variablewhich hasso few constraintson it that it may be movedto satisfy
all of them. Sucha variable will be in the FREEDOMSring.

Garbage Freestorage inside the range of storageaddressesbeing used to rep-
resentthe drawing.

Hen A pair of registers in a blockused to indicate the �rst and last references
made to that blockby the chickensbelonging in the hen's ring. Also called
a key.

Instance A �xed geometry subpictur e representedvery compactly in storage
by reference to a masterand indication by four numbers of the size, ro-
tation, and location of the subpictur e. Internal structure of an instance
is visible and may contain other instances,but since it is identical in ap-
pearanceto the masterit cannot be changed without changing the master.
Except for size, rotation, and location, all instancesof one masterlook the
same.

GLOSSARY 143

Key Seehen.

Line A line segment. No representation for an in�nite length line exists in
Sketchpad.

Line segment A topological thing connecting two points. Contains no numer-
ical information. Sometimescalled a line.

List A particular form of storage structure in which each element stores not
only the information pertinent to it but also the addressof the next ele-
ment. Not to be confused with a table.

Location A position in the coordinate system represented by a pair of coor-
dinates. Not to be confused with a point which has a location. Also the
addressof a particular piece of information in storage.

Master A pictur e which is used to de�ne the visible internal structure of an
instance.

Merging Combination of two storageblocksto identify two pictur eparts, which
must beof like type, permanently. The resultof a merger of variablestakes
on the valueof the historically oldervariable. In the ring structure, merg-
ing makes one blockout of two, reducing the other to garbage. In certain
casesmerging is recursive.

Moving Changing the numerical information stored in a variable. Moving a
point storesa new coordinate locationover the previous one. Moving an
instance, text, or digits includes size changeand rotation. Moving a scalar
implies changing its valuebut doesnot changethe position of its display.
Moving is also the state a thing is in when it is attached to the light pen;
it may be stationary on the display. Moving is not to be confused with
relocating.

N-component element A particular form of storage in which various proper-
ties of each object represented are stored in consecutive registers. Also
the blockof registers representing an object.

Numbers Seescalarsand digits. Number often refers to digits and scalarscol-
lectively. Also the binary numbers stored for a variable.

Object picture A particular picture currently being worked on. Especially a
complicated pictureof particular interest to a user asopposed to a de�ni-
tion or masterpicturewhich is to be used asa portion of the objectpictur e.

Older The older of two blocksis the one with the lowest numbered address,
illustrated higher on the page. Sincenew blocks are taken from the free
spacein addresseshigher numbered than the drawing storage,an older
block was usually created sooner.

Picture A storage device to collect together related drawing parts. A “sheet
of paper”. Also the lines, points, instances, and constraints, etc., that are

144 GLOSSARY

drawn in the pictur e, collectively. Picturesare numbered so that any one
may be called to appear on the display. Within the limits of storage, as
many pictur esasdesired may be set up and used.

Point A speci�c representation in the ring structureused asan end point for a
line segment. Not to be confused with locationor spot. Also as a verb, to
aim at something with the light pen.

Pointer A storage register which contains the location of another storage reg-
ister rather than numerical data. Such a register is said to point to the
register whose addressit contains.

Pseudo pen location A locationnear the axis of the light pen which is used
as the “point of the pencil”. The pseudo pen location lies exactly on an
existing point or line or circle or at the intersection of lines if the pen is
aimedat them.

Relocating Changing the addressat which a particular blockis stored in mem-
ory. Not to be confused with moving.

Result The single thing which remains after two things have beenmerged.

Ring A set of pointerswhich closeson itself. In Sketchpad all rings point both
forwar d and back. A ring is composed of one henand many chickens.

Ring structure The type of storage structure used to represent the drawing's
topology. Seering.

Satisfy Seeconstraintsatisfaction.

Scalar A one component vector whose value can be displayed by a set of dig-
its. For display of the scalar itself a # is used.

Spot One of the bright dots on the display. Not to be confused with point or
location.

Table A form of storage structure in which successivepieces of information
are stored in successiveregisters in memory. Tables are the “conven-
tional” form of storage. Seealso list and ring structure.

Termination The processof taking things out of the movingstate. Termination
is usually done by giving a �ick of the light pen. Pressing “stop” also
terminates. Upon termination, merging may take place.

Texts Lines of textual material typed in and appearing in a standard type style
on the pictur e. Text is treated asa four component variable.

Tie An attacher.

Value The particular information stored in the numerical portion of a variable.
E.g., the locationof a point. Especially the value of a scalaras opposed to
the locationof the set of digits displaying this value.

GLOSSARY 145

Variable A pictur e part which contains numerical information. Scalars, points,
instances, texts, digitsand dummyvariablesarethe only variables at present.
Also used to denote a type of variable.

146 GLOSSARY

Bibliography

[1] Clark, W. A., Frankovich, J. M., Peterson, H. P., Forgie, J. W., Best, R.
L., Olsen, K. H., “The Lincoln TX-2 Computer,” Technical Report 6M-
4968,MassachusettsInstitute of Technology, Lincoln Laboratory, Lexing-
ton, Mass.,April 1, 1957,Proceedingsof theWesternJointComputerConfer-
ence, Los Angeles, California, February, 1957.

[2] Coons, S. A., Noteson GraphicalInput Methods, Memorandum 8436-M-
17,Dynamic Analysis and Control Laboratory, MassachusettsInstitute of
Technology, Department of Mechanical Engineering, Cambridge, Mass.,
May 4, 1960.

[3] Johnston,L. E.,A GraphicalInput DeviceandShapeDescriptionInterpretation
Routines, Memorandum to Prof. Mann, MassachusettsInstitute of Tech-
nology, Department of Mechanical Engineering, Cambridge, Mass.,May
4, 1960.

[4] Lickleder, J. C. R., “Man–Computer Symbiosis,” I.R.E. Trans. on Human
Factorsin Electronics, vol. HFE, pp. 4–10,March 1960.

[5] Lickleder, J. C. R., and Clark, W., “On-Line Man-Computer Communi-
cation,” Proceedingsof theSpring JointComputerConference, SanFrancisco,
California, May 1–3,1962,vol. 21,pp. 113–128.

[6] Loomis, H. H. Jr., GraphicalManipulation TechniquesUsing theLincolnTX-2
Computer, Group Report 51G-0017,MassachusettsInstitute of Technology,
Lincoln Laboratory, Lexington, Mass.,November 10,1960.

[7] Moore,E.F., “On the ShortestPath Through a Maze,” ProceedingsoftheIn-
ternationalSymposiumontheTheoryofSwitching, Harvar d University , Har-
vard Annals, vol. 3, pp. 285–292,1959.

[8] Roberts, L. G., MachinePerceptionof ThreeDimensionalSolids, Ph.D. The-
sis,MassachusettsInstitute of Technology, Electrical Engineering Depart-
ment, Cambridge, Mass.,February, 1963.

[9] Southwell, R.V., RelaxationMethodsin EngineeringScience, Oxford Univer -
sity Press,1940.

[10] Vanderburgh, A. Jr., TX-2 UsersHandbook, Lincoln Manual No. 45, Mas-
sachusettsInstitute of Technology, Lincoln Laboratory, Lexington, Mass.,
July, 1961.

148 BIBLIOGRAPHY

[11] Walsh, J.F., and Smith A. F., “Computer Utilization,” Interim Engineering
Report6873-IR-10and 11, Electronic Systems Laboratory, Massachusetts
Institute of Technology, Cambridge, Mass.,pp. 57–70,November 30,1959.

[12] Handbookfor VariplotterModels205Sand205T, PACE, Electronic Associates
Incorporated. Long Branch, New Jersey, June15,1959.

Biographical Note

Ivan Edward Sutherland was born on May 16,1938in Hastings, Nebraska. Af-
ter an early childhood near Chicago, he moved to Scarsdale,New York where
he graduated from ScarsdaleHigh School. Mr. Sutherland was a George West-
inghouse Scholar during his four years at Carnegie Institute of Technology,
Pittsburgh, Pennsylvania where he received the Bachelor of Sciencedegree in
Electrical Engineering in June1959.While at Carnegie he twice won the Amer -
ican Institute of Electrical Engineers Student Prize Paper Contest for District
2 (1958and 1959). As a graduate student he held a National ScienceFoun-
dation Fellowship for three years (1959 to 1962). He received the Master of
Sciencedegree in Electrical Engineering from California Institute of Technol-
ogy, Pasadena,California in June 1960. From September 1960 to December
1962,Mr. Sutherland was associatedwith the Research Laboratory of Electron-
ics at MassachusettsInstitute of Technology �rst asa full-time doctoral student
and then as a research assistant during the fall semesterof 1962. During the
summers of 1960,1961and 1962he was a Staff Member of the MIT Lincoln
Laboratory.

Mr. Sutherland is a coauthor of “An Electro-Mechanical Model of Simple
Animals,” (ComputersandAutomation, February 1958)and is the author of “Sta-
bility in Steering Control,” (ElectricalEngineering, April 1960).He is a member
of SigmaXi, Tau BetaPi, Eta Kappa Nu, and Pi Mu Epsilon. Mr. Sutherland be-
longs to the Institute of Electrical and Electronics Engineersand the American
Societyof Mechanical Engineers.

