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Fast Marching farthest point sampling

Carsten Moenning and Neil Dodgson

Abstract

Using Fast Marching for the incremental computation of distance maps across
the sampling domain, we obtain an efficient farthest point sampling technique
(FastFPS). The method is based on that of Eldar et al. [6, 7] but extends more
naturally to the case of non-uniform sampling and is more widely applicable. Fur-
thermore, it can be applied to both planar domains and curved manifolds and allows
for weighted domains in which different cost is associated with different points on
the surface. We conclude with considering the extension of FastFPS to the sampling
of point clouds without the need for prior surface reconstruction.

1 Introduction

We consider the problem of sampling progressively from planar domains or curved mani-
folds. Progressive sampling is characterised by the improvement of the sample-based ap-
proximation both qualitatively and quantitatively with the number of samples. Typical
applications include progressive transmission of image or 3D surface data in a client/server
environment, progressive rendering and radiance computing [12] and machine vision [26].
We are particularly interested in a progressive sampling technique supporting “progressive
acquisition”, i.e., a progressive sampling algorithm driving the data acquisition step in an
integrated mesh processing pipeline [17].

Eldar et al. [6, 7] introduce an efficient uniform irregular “farthest point” sampling
strategy featuring

• a high data acquisition rate,

• excellent anti-aliasing properties documented by the “blue noise” power spectrum
of the generated sampling distribution and

• an elegant relationship to the Voronoi diagram concept.

Overall, it compares favourably to other established sampling techniques such as Poisson
disk or jittering [3].

To improve a sample distribution’s efficiency its underlying uniform sampling strategy
should be made adaptive by taking into account variations in local frequency. Within
the farthest point context, this is most naturally achieved by incrementally computing a
Voronoi diagram in a non-uniform distance metric with the distance between two points in
a highly variable region being greater than the distance between two points in a relatively
smooth region. It is well-known that a Voronoi diagram’s desirable properties such as
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connected and convex regions are no longer guaranteed when dealing with a non-uniform
distance metric [13]. This leads Eldar et al. [6, 7] to conclude that finding the farthest
point in such a Voronoi diagram is impractical. They suggest using the Euclidean Voronoi
diagram with its vertices weighted by the bandwidth estimated in the local vertex neigh-
bourhood instead, with the individual weighting approach varying with the particular
application.

We propose an alternative farthest point sampling technique. This technique incre-
mentally constructs a discrete Voronoi diagram in a uniform or non-uniform distance
metric modelled in the form of (weighted) distance maps computed with the help of Fast
Marching [19, 20, 21]. The use of this technique yields an elegant and efficient imple-
mentation with the resulting Voronoi diagram remaining tractable even when modelling
a non-uniform metric. This way sampling the next point farthest away in a non-uniform
metric becomes practical and a more natural and more generally applicable extension of
the farthest point principle to the adaptive case is obtained.

In the following, we briefly review both the Voronoi diagram and the farthest point
sampling as well as the Fast Marching concept. We then put forward our farthest point
sampling algorithm, followed by a set of worked examples. We conclude with a brief
summary and discussion.

2 Previous Work

2.1 Voronoi diagrams

Given a finite number n of distinct data sites P := {p1, p2, . . . , pn} in the plane, for pi,
pj ∈ P , pi 6= pj, let

B(pi, pj) = {t ∈ R
2|d(pi − t) = d(pj − t)} (1)

where d may be an arbitrary distance metric provided the bisectors with regard to d remain
curves bisecting the plane. B(pi, pj) is the perpendicular bisector of the line segment pipj.
Let h(pi, pj) represent the half-plane containing pi bounded by B(pi, pj). The Voronoi cell
of pi with respect to point set P , V (pi, P ), is given by

V (pi, P ) =
⋂

pj ∈P,pj 6=pi

h(pi, pj) (2)

That is, the Voronoi cell of pi with respect to P is given by the intersection of the half-
planes of pi with respect to pj, pj ∈ P , pj 6= pi.

If pi represents an element on the convex hull of P , V (pi, P ) is unbounded. For a fi-
nite domain, the bounded Voronoi cell, BV (pi, P ), is defined as the conjunction of the
cell V (pi, P ) with the domain.

The boundary shared by a pair of Voronoi cells is called a Voronoi edge. Voronoi edges
meet at Voronoi vertices.
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The Voronoi diagram of P is given by

VD(P) =
⋃

pi ∈P

V (pi, P ) (3)

The bounded Voronoi diagram, BVD(P), follows correspondingly as:

BVD(P) =
⋃

pi∈P

BV (pi, P ) (4)

Figure 1 shows an example of a bounded Voronoi diagram.
Note that the Voronoi diagram concept extends to higher dimensions. For more detail,
see the comprehensive treatment by Okabe et al. [13] or the survey article by Aurenham-
mer [1].

Figure 1: Bounded Voronoi diagram of 12 sites in the plane.

2.2 Farthest point sampling

Farthest point sampling is based on the idea of repeatedly placing the next sample point
in the middle of the least-known area of the sampling domain. In the following, we
summarise the reasoning underlying this approach for both the uniform and non-uniform
case presented in [6, 7].

Starting with the uniform case, Eldar et al. [6, 7] consider the case of an image repre-
senting a continuous stochastic process featuring constant first and second order central
moments with the third central moment, i.e., the covariance, decreasing exponentially
with spatial distance. That is, given a pair of sample points pi = (xi, yi) and pj = (xj, yj),
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the points’ correlation, E(pi, pj), is assumed to decrease with the Euclidean distance, dij,
between the points

E(pi, pj) = σ2e−λdij (5)

with dij =
√

(xi − xj)2 + (yi − yj)2.

Based on their linear estimator, the authors subsequently put forward the following rep-
resentation for the mean square error, i.e., the deviation from the “ideal” image resulting
from estimation error, after the Nth sample

ε2(p0, . . . , pN−1) =

∫ ∫

σ2 − UT R−1U dx dy (6)

where
Rij = σ2e−λ

√
(xi−xj)2+(yi−yj)2

and
Ui = σ2e−λ

√
(xi−x)2+(yi−y)2

for all 0 ≤ i, j ≤ N − 1. The assumption of stationary first and second order central
moments has therefore yielded the result that the expected mean square (reconstruction)
error depends on the location of the N + 1th sample only. Since stationarity implies that
the image’s statistical properties are spatially invariant and given that point correlations
decrease with distance, uniformly choosing the N + 1th sample point to be that point
which is farthest away from the current set of sample points therefore represents the
optimal sampling approach within this framework.

This sampling approach is intimately linked with the incremental construction of a
Voronoi diagram over the image domain. To see this, note that the point farthest away
from the current set of sample sites, S, is represented by the centre of the largest cir-
cle empty of any site si ∈ S. Shamos and Hoey [22] show that the centre of such a
circle is given by a vertex of the bounded Voronoi diagram of S, BVD(S ). Thus, as
indicated in figure 2, incremental (bounded) Voronoi diagram construction provides sam-
ple points progressively. It can then easily be combined with a Delaunay tessellation-,
nearest neighbour- [13] or natural neighbour-based [23, 24, 25] reconstruction of the do-
main.

From visual inspection of images it is clear that usually not only the sample covariances
but also the sample means and variances vary spatially across an image. When allowing
for this more general variability and thus turning to the design of a non-uniform, adaptive
sampling strategy, the assumption of sample point covariances decreasing, exponentially
or otherwise, with point distance remains valid. However, since Voronoi diagrams in
non-uniform metrics may lose favourable properties such as cell connectedness, Eldar et
al. [6, 7] opt for the non-optimal choice of augmenting their model by an application-
dependent weighting scheme for the vertices in the Euclidean Voronoi diagram.

2.3 Fast Marching

Fast Marching represents a very efficient technique for the solution of front propagation
problems which can be formulated as boundary value partial differential equations. We
show that the problem of computing the distance map across a sampling domain can be
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Figure 2: The next farthest point sample (here: sample point 13) is located at the centre
of the largest circle empty of any other sample site.

posed in the form of such a partial differential equation and outline the Fast Marching
approach towards approximating its solution.

For simplicity, take the case of an interface propagating with speed function F (x, y)
away from a source (boundary) point (u, v) across a planar Euclidean domain. When
interested in the time of arrival, T (x, y), of the interface at grid point (x, y), i.e., the
distance map T given source point (u, v), the relationship between the magnitude of the
distance map’s gradient and the given weight F (x, y) at each point can be expressed as
the following boundary value formulation

|∇T (x, y)| = F (x, y) (7)

with boundary condition T (u, v) = 0.
That is, the distance map gradient is proportional to the weight function. The problem
of determining a weighted distance map has therefore been transformed into the problem
of solving a particular type of Hamilton-Jacobi partial differential equation, the Eikonal
equation [9, 14] (figure 3). For F (x, y) > 0, this type of equation can be solved for T (x, y)
using Fast Marching.

Since the Eikonal equation is well-known to become non-differentiable through the de-
velopment of corners and cusps during propagation, the Fast Marching method considers
only upwind, entropy-satisfying finite difference approximations to the equation thereby
consistently producing weak solutions. As an example for a first order appromixation to
the gradient operator, consider [16]

[max(D−x
ij T,−D+x

ij T, 0)2+

max(D−y
ij T,−D

+y
ij T, 0)2]1/2 = Fij (8)
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Figure 3: The problem of determining the distance map originating from a point (u,v)
(left) formulated as a boundary value problem (right) solvable using Fast Marching.

where Fij ≡ F (i∆x, j∆y). D−x
ij T ≡ Tij−Ti−1j

h
and D+x

ij T ≡ Ti+1j−Tij

h
are the standard

backward and forward derivative approximation with h representing the grid spacing;
equivalently for D

−y
ij T and D

+y
ij T . Tij is the discrete approximation to T (i∆x, j∆y) on a

regular quadrilateral grid.

This upwind difference approximation implies that information propagates from smaller
to larger values of T only, i.e., a grid point’s arrival time gets updated by neighbouring
points with smaller T values only. This monotonicity property allows for the maintenance
of a narrow band of candidate points around the front representing its outward motion.
The property can further be exploited for the design of a simple and efficient algorithm by
freezing the T values of existing points and subsequently inserting neighbouring ones into
the narrow band thereby marching the band forward. The basic Fast Marching algorithm
can thus be summarised as follows [20, 21]:

0) Mark an initial set of grid points as ALIVE. Mark as CLOSE, all points neighbouring
ALIVE points. Mark all other grid points as FAR.

1) Let TRIAL denote the point in CLOSE featuring the smallest arrival time. Remove
TRIAL from CLOSE and insert it in ALIVE.

2) Mark all neighbours of TRIAL which are not ALIVE as CLOSE. If applicable, remove
the neighbour under consideration from FAR.

3) Using the gradient approximation, update the T values of all neighbours of TRIAL
using only ALIVE points in the computation.

4) Loop from 1).
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Arrangement of the elements in CLOSE in a min-heap [18] leads to an O(N log N) imple-
mentation, with N representing the number of grid points. Note that a single min-heap
structure may be used to track multiple propagation fronts originating from different
points in the domain.

Unlike other front propagation algorithms [4], each grid point is only touched once,
namely when it is assigned its final value. Furthermore, the distance map T (x, y) is
computed with “sub-pixel” accuracy, the degree of which varies with the order of the
approximation scheme and the grid resolution. In addition, the distance map is com-
puted directly across the domain, a separate binary image providing the source points
is not required. Finally, since the arrival time information of a grid point is only propa-
gated in the direction of increasing distance, the size of the narrow band remains small.
Therefore, the algorithm’s complexity is closer to the theoretical optimum of O(N) than
O(N log N) [20].

Although the algorithm was presented in the context of a planar orthogonal grid, it
can easily be extended to the case of triangulated domains in 2D or 3D by modifying
the gradient approximation. Suitable upwind approximations are provided by Barth and
Sethian [2] and Kimmel and Sethian [8].
As shown by Kimmel and Sethian [9] this property can be exploited for the O(N log N)
computation of (geodesic) Voronoi diagrams either in the plane or directly on the surface
of a curved manifold.

3 Fast Marching farthest point sampling

For simplicity, we first consider the formulation of our Fast Marching farthest point sam-
pling algorithm for a uniform metric and a planar domain.

Starting with an initial sample point set S, we compute BVD(S ) by “simultaneously”
propagating fronts from each of the initial sample points outwards. This process is equiv-
alent to the computation of the Euclidean distance map across the domain given S and is
achieved by solving the Eikonal equation with F (x, y) = 1, for all x, y, and using a single
min-heap.

The vertices of BVD(S ) are given by those grid points entered by three or more propa-
gation waves (or two for points on the domain boundary) and are therefore obtained as
a by-product of the propagation process. The Voronoi vertices’ arrival times are inserted
into a max-heap data structure. The algorithm then proceeds by extracting the root
from the max-heap, the grid location of which represents the location of the next farthest
point sample. The sample is inserted into BVD(S ) by resetting its arrival time to zero
and propagating a front away from it. The front will continue propagating until it hits
grid points featuring lower arrival times and thus belonging to a neighbouring Voronoi
cell. The T values of updated grid points are updated correspondingly in the max-heap
using back pointers. New and obsolete Voronoi vertices are inserted or removed from the
max-heap respectively. The algorithm continues extracting the root from the max-heap
until it is empty or the sample point budget has been exhausted.
By allowing F (x, y) to vary with any weights associated with points in the domain, this
algorithm is easily extended to the case of non-uniform, adaptive sampling.
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FastFPS for planar domains

FastFPS for planar domains can be summarised as follows

0) Given an initial sample set S, n = |S| ≥ 1, compute BVD(S ) by propagating fronts
with speed Fij from the sample points outwards. Store the Voronoi vertices’ arrival
times in a max-heap.

1) Extract the root from the max-heap to obtain sn+1. S ′ = S ∪ {sn+1}. Compute
BVD(S ′) by propagating a front locally from sn+1 outwards using Fast Marching
and a finite difference approximation for planar domains (such as (8)).

2) Correct the arrival times of updated grid points in the max-heap. Insert the vertices of
BV (sn+1 , S ′) in the max-heap. Remove obsolete Voronoi vertices of the neighbours
of BV (sn+1 , S ′) from the max-heap.

3) If neither the max-heap is empty nor the point budget has been exhausted, loop from
1).

This algorithm is conceptually similar to Eldar et al. [7] but features a more natural and
consistent augmentation to the more interesting case of adaptive progressive sampling.

Extracting the root from, inserting into and removing from the max-heap with subse-
quent re-heapifying are O(log M) operations, where M represents the number of elements
in the heap. M is O(N), N representing the number of grid points. The updating of ex-
isting max-heap entries is O(1) due to the use of back pointers from the grid to the heap.
The detection of a (bounded) Voronoi cell’s vertices and boundary is a by-product of the
O(N log N) front propagation. Thus, the algorithm’s asymptotic efficiency is O(N log N).

FastFPS for triangulated domains

Certain applications such as the sampling of dense range maps or 3D object surfaces
require the extension of the FastFPS principle to curved manifolds. Since triangulated
domains may be more readily available on these surfaces than orthogonal rectilinear coor-
dinate systems, we use Fast Marching for triangulated domains [8, 9] to compute geodesic
Voronoi diagrams across the surface thereby generalising the FastFPS principle to the
case of curved manifolds.

Consequently, the algorithm no longer considers points in an orthogonal grid but ver-
tices in a triangulated domain. Front propagation occurs directly on the surface with F

being a positive constant (uniform) or varying with any cost associated with the surface
points (non-uniform). This means gradient approximations such as (8) for the planar case
are generally no longer applicable and a suitable monotone and consistent finite difference
approximation to the Eikonal equation converging to a weak solution needs to be used.
Suitable approximations can be found in [2, 8].
The outline of FastFPS for triangulated domains is as follows

0) Given an initial sample set S, n = |S| ≥ 1, compute BVD(S ) by propagating fronts
with speed Fijk, Fijk ≡ F (i∆x, j∆y, k∆z), from the sample points outwards using
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Fast Marching and a finite difference approximation for triangulated domains [2, 8].1

March along the triangles and linearly interpolate the intersection curve between
pairs of distance maps of different origin across each triangle [9]. Store the Voronoi
vertices’ arrival times in a max-heap.

1) Extract the root from the max-heap to obtain sn+1. S ′ = S ∪ {sn+1}. Compute
BVD(S ′) by propagating a front locally from sn+1 outwards. March the triangles
touched by this local update procedure and interpolate the intersection curves.

2) Correct the arrival times of updated grid points in the max-heap. Insert the vertices of
BV (sn+1 , S ′) in the max-heap. Remove obsolete Voronoi vertices of the neighbours
of BV (sn+1 , S ′) from the max-heap.

3) If neither the max-heap is empty nor the point budget has been exhausted, loop from
1).

Triangle marching and the linear interpolation of the intersection curves are O(N) pro-
cesses, N representing the number of triangle vertices. The remaining operations are as
in FastFPS for planar domains so the overall complexity of FastFPS for curved manifolds
is O(N log N).

4 Worked examples

We present worked examples for FastFPS for both planar and triangulated domains.
FastFPS for planar domains is used to sample (greyscale) images adaptively followed by
their reconstruction using both non-Sibsonian natural neighbour and k nearest neighbour
interpolation. FastFPS for triangulated domains is applied to a terrain height field which
is then reconstructed using the Delaunay triangulation. Points are weighted by an esti-
mate of the local (intensity) gradient thereby favouring the sampling of points in regions
of relatively higher frequency.

Starting with the application of FastFPS for planar domains to image processing, we
consider the following interpolation problem. Given a finite number n of distinct points
in the plane, S := {s1, s2, . . . , sn}, let s0 denote another point inside the convex hull of
S. Given f(si), i ∈ [1, 2, . . . , n], we want to find the interpolated value f(s0), f(s0) rep-
resenting the image intensity at point s0.

The well-known Sibsonian natural neighbour2 interpolation scheme [23, 24] represents
one way of solving this problem. However, the computational dimensionality of the Sib-
sonian interpolant coincides with space dimension, i.e., in the planar case, areas and their
overlap need to be computed. Since it is preferable to use a more efficiently computable
interpolation scheme that is also based on the Voronoi diagram concept, we use the non-
Sibsonian natural neighbour interpolation scheme put forward by Sugihara [25].

1For approximation consistency reasons, Fast Marching for triangulated domains requires any ob-
tuse triangles in the given surface triangulation to be split into acute triangles during a preprocessing
step. Although this preprocessing step does not affect the algorithm’s asymptotic efficiency, it affects its
accuracy [8].

2A point si, i 6= 0, represents a natural neighbour of s0, if its Voronoi cell, V (si), is edge-adjacent to
V (s0) in V D(S).
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To summarise, we sample the image using FastFPS for planar domains with individual
points weighted by local intensity gradient approximations. As a result, we obtain a set
of adaptively distributed sample points, alongside their (bounded) Voronoi diagram. The
Voronoi diagram immediately provides the natural neighbour set and thus the natural
neighbour coordinates required for the computation of Sugihara’s [25] local coordinates.
The resulting set of local coordinates is used to interpolate the image intensity for all
points inside the convex hull of the set of sample points. Since the variation of the set of
natural neighbours with the position of s0 makes this non-Sibsonian interpolation scheme
C0-continuous only, we provide a 4 nearest neighbour reconstruction of the test images
as well.

Figure 4 shows the adaptive sample point distributions generated by FastFPS for
planar domains when applied to the Lena and Mandrill test images. The image intensity
gradient is approximated using the derivative of a Gaussian filter. Points are clearly
more densely sampled in regions of relatively high variation of frequency. Figure 4 also
presents the corresponding reconstructions based on Sugihara’s [25] natural neighbour
and 4 nearest neighbour interpolation respectively.

We apply FastFPS for triangulated domains to a regularly triangulated height field
of the Maruia region in New Zealand. Figure 5 shows the wireframe and Gouraud-
shaded Delaunay triangulations of the sample point sets produced by the algorithm for
different sample point budgets. Regions of higher curvature feature a higher resolution
triangulation than relatively smoother regions. Similarly to above, the importance of
vertices was judged by an approximation of the local curvature.

5 Conclusions

We presented an alternative progressive farthest point sampling technique based on the in-
cremental construction of discrete Voronoi diagrams across planar domains or triangulated
surfaces in 3D using Fast Marching. The method is similar to Eldar et al. technique [6, 7]
but extends more easily to the case of adaptive sampling and is more generally applicable.
The algorithm is efficient and easily implementable.
Possible applications include image processing tasks, image encoding and compression,
image registration, progressive transmission and rendering of 2D and 3D surfaces, pro-
gressive acquisition of 3D surfaces, etc. The availability of the Voronoi diagram of the
sample set further facilitates certain image and surface processing (natural neighbour,
nearest neighbour, Delaunay triangulation reconstructions), encoding/compression [15]
and registration [4] applications.

Surfaces in 3D may not be readily available in triangulated form or the computation
of a triangulation may be undesirable since it may otherwise not be required by the ap-
plication. This is, for example, the case when dealing with implicit surfaces.
Apart from this, the need for the splitting of any obtuse into acute triangles as part of the
FastFPS algorithm for triangulated domains is undesirable. Although this preprocessing
step does not add significantly to the algorithm’s computational complexity, it under-
mines its accuracy. This comes in addition to the “uncertainty” generally associated with
numerical analysis over polygonal surfaces [5]. Numerical analysis on Cartesian grids, by
contrast, represents a more robust technique.

For future research, we therefore intend to incorporate Mémoli and Sapiro’s [10] ex-
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tension of the Fast Marching technique to implicit surfaces into the FastFPS concept.
This extension works on Cartesian grids, retains the efficiency of the “conventional” Fast
Marching approach and has the additional benefit of being applicable to triangulated or
unorganised point sets as well. Mémoli and Sapiro [11] use their extended Fast Marching
technique to produce (geodesic) Voronoi diagrams directly across point clouds without
the need for any prior reconstruction of the underlying manifold. By incorporating this
technique into the FastFPS concept, surfaces in 3D would no longer necessarily need to
be processed in their triangulated form, acute or otherwise.
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Figure 4: Lena (a.) and Mandrill (e.) test images, the adaptive point set distributions (b. and
f.) generated by FastFPS for planar domains and their 4-nearest neighbour (c., g.)
and non-Sibsonian natural neighbour interpolation (d., h.). The sample sets are 6.1%
(Lena) and 3.1% (Mandrill) of image size (512x512) respectively.
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Figure 5: The Maruia region in New Zealand (a.). Wireframe and Gouraud-shaded representa-
tions of the Delaunay triangulations produced by FastFPS for triangulated domains
for sample point budgets of 6.1% (b., c.) and 10.0% (d., e.) of the height field size
(360x360) respectively.
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