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Summary

Current research into Activ e Networks, Open Signalling and other forms of mobile code
have made use of the abilit y to executeuser-suppliedcode at locations within the network
infrastructure, in order to avoid the inherent latency associated with wide areanetworks or to
avoid sending excessive amounts of data acrossbottleneck links or nodes. Existing research
has addressedthe design and evaluation of programming environments, and testbeds have
beenimplemented on traditional operating systems. Such work has deferred issuesregarding
resourcecontrol; this has beenreasonable,sincethis research has beenconducted in a closed
environment.

In an open environment, which is required for widespreaddeployment of such technologies,
the code supplied to the network nodesmay not be from a trusted source. Thus, it cannot be
assumedthat such code will behave non-maliciously, nor that it will avoid consuming more
than its fair shareof the available system resources.

The computing resourcesconsumedby end-userson programmable nodes within a network
are not free, and must ultimately be paid for in someway. Programmable networks allow
userssubstantially greater complexity in the way that they may consumenetwork resources.
This dissertation argues that, due to this complexity, it is essential to be able control and
account for the resourcesused by untrusted user-supplied code if such technology is to be
deployed e�ectiv ely in a wide-areaopen environment.

The ResourceControlled Activ e Node Environment (Rcane ) is presented to facilitate the
control of untrusted code. Rcane supports the allocation, scheduling and accounting of the
resourcesavailable on a node, including CPU and network I/O scheduling, memory allocation,
and garbagecollection overhead.

A protot ype implementation of Rcane over the NemesisOperating System is described; an
experimental evaluation is undertaken to demonstrate the value of such an approach. Sample
implementations of existing active network systemsthat have beenadapted to useRcane 's
resourcecontrol interfacesare presented.
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Chapter 1

In tro duction

This dissertation argues that in order to realise practical programmable networks, robust
resourcereservations and policing are necessaryon the programmable nodeswithin the net-
work. It presents the design, implementation and evaluation of an architecture { Rcane {
for the resource-controlled execution of untrusted code in an open programmable network.
The architecture supports secureQualit y of Service(QoS) provision to individual clients; it
prevents malicious, greedyor erroneousclients from interfering with the systemor with other
clients by consumingexcessive system resourcesand permits e�ectiv e accounting and billing
to the remote clients.

1.1 Motiv ation

1.1.1 The Case for Mobilit y

The speedsachieved by computers and communications networks are continuing to improve
over time. However, in the �eld of distributed processing,two obstacles inevitably stand
in the way of such progress. These two obstaclesare the inherent latency associated with
widely-distributed communications and the existenceof bottlenecks within networks.

1.1.1.1 Inheren t Latency

Firstly , the speed of light provides a fundamental limit on the speed of interactions be-
tween widely-separated computers. The round-trip time for interacting with a server half-
way around the circumferenceof the earth is, at an absolute minimum, about 200ms. This
assumesthat the transmission proceedsat the speedof light in optical �bre 1 { transmissions
in the current Internet su�er delays from switching and routing at multiple points along the
transmission path, with the result that packets typically take at least twice the theoretical

1The speed of light in �bre is approximately 66% of the speed of light in a vacuum
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minimum to reach their destination [Cheshire96]. Even techniques to adapt the Internet to
useoptical switching techniques can only approach the fundamental lower bound.

When it is necessaryto transfer a large quantit y of streamedmedia or other data betweentwo
widely separated locations, such latency may be di�cult to avoid; however by anticipating
future requestsand caching data at intermediate points in the network, it may be possibleto
minimise the latency experienced.

Such caching and prefetching is not possible for applications and services for which each
communication between two remotely located endpoints (t ypically a client and server) is
unique. When a client is communicating with a server on the other side of the planet, and
needsto make a seriesof inter-related queries(e.g. navigating through a web application or
talking to a remote mail daemon), there are three factors a�ecting the time taken to complete
the interaction:

� the time taken at the server to processeach query,

� the time taken at the client betweensuccessive queries,and

� the transmission latency in the round-trip betweenthe client and the server.

For a large class of interactions, and assuming a properly engineeredand su�cien tly well-
provisioned server, the processingtime at the server may be expected to be small.

If the activit y is human driven (as in the caseof many web application), the responsetime
of the human is likely to be the dominating factor; furthermore, since the processingof the
responsesis being performed in an unpredictable and unspeci�able way { i.e. by a human
brain { such processingmust take place at the client-side. However, when the client-side
processingmay be computer-driven, as in the caseof an email exchange, or in the caseof
de�ning a macro for automating repetitiv e actions in a web application, the time taken for
client-side processingwill be small. In this case,the high cost of the round-trip latency is the
dominant factor in the time for a task to be completed.

1.1.1.2 Bottlenec ks

The secondobstacle is that there will inevitably be regions of the network { typically at
or near the edges{ where the available bandwidth is orders of magnitude lower than that
available within the core of the network. This is currently the casewith the vast majorit y of
home subscribers to the Internet, who typically have 56Kbps connectionsover phone lines.
The adoption of technologies such as cable modems and Digital Subscriber Link (DSL) is
gradually improving this situation { however, it seemslikely that theseconnectionswill remain
bottlenecks as core network speedsincrease. Further bottlenecks are possibleat congested
points within the network.

When attempting to process large sourcesof data (such as a video stream or a remote
database), the time taken to transfer the volume of data over the bottleneck link { lim-
ited by the bottleneck bandwidth, rather than the latency { may be the dominant factor in
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the time taken. In the caseof a databasequery, the sizeof the eventual results required after
processingthe data may be orders of magnitude smaller than the data itself. In the case
of a video stream, the user may be prepared to settle for a lower quality (and hencelower
bandwidth) of video if it allows the video to be received in real-time; however, if the provider
of the video doesnot make such a low-bandwidth stream available, the userhasno alternativ e
but to transfer the entire stream over the bottleneck link. In both of these situations, the
abilit y to �lter or processthe high-bandwidth stream of data to produce a lower-bandwidth
representation before it has to crossa low-bandwidth or high-latency link would reduce the
time spent transferring data acrossthe bottleneck.

1.1.2 Programmable Net works

With the rise of the World-Wide Web, the intro duction of Java [Gosling95b] applets is an
example of a solution to the problem of inherent latency { by downloading program logic to
the client, the server can interact with the user'sdisplay without the high latenciesthat would
otherwise occur. However, this solution is lesse�ectiv e in situations where the interaction is
characterisedby a client querying a server to make useof a body of data maintained by that
server, such as when querying a databaseor posting to a newsserver.

An alternativ e is to permit such computation to be moved onto or toward the server. By
permitting clients to upload their own agents to be executed on the server, latency delays
can theoretically be reducedto a single round-trip time, even when multiple interactions are
required between the server and the client's agent. A disadvantage of moving code to the
server is that it burdensthe server provider with issuesof security and resourcecontrol on top
of any work required to implement and maintain the server { hencein many casesit may be
more appropriate to move the client's agent to specialised\computation servers" closeto the
desiredserver. A further re�nement, as espousedby the active networking communit y, is to
permit such processingto be performed within the forwarding path of the network switches.
This allows usersto exploit application-speci�c networking requirements, so as to make more
e�cien t use of the network. These two approaches of moving program logic from the client
towards the server fall under the general �eld of programmablenetworks { permitting users
of the network to utilise the resourcesof nodeswithin the network in ways not forseenby the
network providers.

For the purposesof this dissertation, the term programmable network is used to refer to
a network in which some of the nodes provide programmable extensionsto end users. To
obtain bene�ts from programmable networks it is not necessarythat all nodes within the
network are programmable; indeed, a totally programmable network would be likely to be
counter-productive on e�ciency grounds. The bulk of tra�c in a network can be adequately
servedby a traditional store-and-forward servicemodel. The latency and processingoverheads
experiencedby 
o ws through a programmable platform are likely to be substantially greater
than those experiencedthrough a hardware router or switch, thus forcing all tra�c through
a programmable platform would degradethe overall utilit y of the network.

The term open programmablenetwork is usedto imply that theseprogrammablefacilities are
available to all usersof the network (possibly in return for an additional payment), not just
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those usersemployed by or trusted by the network providers. Thus the code being executed
on the network nodes may be untrusted. It is therefore vital that the network providers are
able to prevent user-suppliedcode from compromising the safety of the network nodesor the
stabilit y of the network itself.

1.1.3 Un trusted Code

For the purposesof this dissertation, untrusted code is consideredto be any executablecode
that is supplied by a client to somekind of server (possibly an OS kernel, or a server within
the network), and that is executedby that server, but where there are no particular goalsor
trust shared in common betweenthe client and the server.

Thus this de�nition excludescertain instancesof mobile code:

� When both the client supplying the code and the server running the code share some
common goals(e.g. within a single organisation, or a widespreadgroup of co-operating
researchers), it is reasonableto assumethat the likelihood of denial of service (DoS)2

attacks and excessively greedyapplications is reduced. The resourcecontrol techniques
presented in this paper are still applicable in such environments, in order to improve
robustnessor help di�eren tiate the levelsof QoSrequired by di�eren t activities; however,
the inevitable overheadincurred by robust resourcecontrol may meanthat such control
is consideredexcessive for thesesituations.

� When the code is supplied by the server to the client 3, it is unlikely that resourceson
the client machine are as scarceas those on a server; moreover, although a DoS on a
client machine is likely to causeannoyanceand inconvenienceto the user, it is unlikely
to causemajor problems to an enterprise. Thus whilst someform of resourcecontrol
can be useful to prevent malicious Java applets from mounting DoS attacks on web
browsers,the techniques presented in this dissertation may not be necessary.

1.1.4 Issues of Resource Con trol

With the increased
exibilit y provided by programmablenetworks comesa greater complexity
in the ways that server and network resources{ including CPU time, memory and bandwidth
{ may be consumedby end-users. In a traditional network, the resourcesconsumedby an
end-userat a given network node may be roughly bounded by the bandwidth between that
node and the user; in most cases,the bu�er memory and output link time consumedin storing
and forwarding a packet are proportional to its size, and the CPU time required is likely to
be roughly constant. Thus, limiting the bandwidth available to a useralso limits the usageof
other resourceson the node. The resourcesconsumedby a client at a server can be similarly
bounded by limiting the rate at which requestsfrom that client are accepted. Since in each

2A Denial of Service attack is one in which an attacker gains no direct bene�t, but attempts to degrade
the service received by other usersof a node or network.

3 In this context a server is a multi-user system that receives requests, and a client is a single-user system
that makes requests.
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casethe code to be executed is under the control of the server/network node, there is no
straightforward way for the client to circumvent such resourcelimits.

When the client is permitted to specify or customisethe code that is executedon the server
or within the network, such resourcecontrol is more di�cult. Security measuresmay be
employed to permit only those clients trusted by the node to supply code, but this defeats
many of the advantages that code mobilit y can provide. Language restrictions and formal
proofs may be used to verify that the code performs no intrinsically illegal actions, but the
task of deciding in advancewhether a particular pieceof code will consumeexcessive resources
is, in general, intractable. Even in the absenceof speci�c DoS attacks, the task of allocating
resourcesaccording to a speci�ed QoSpolicy is complicated by a lack of knowledgeabout the
behaviour of the user-suppliedcode.

Moreover, if programmablenodesand computation serversarisewithin the network, it is likely
that commercialpressureswill require someform of charging for useof the servicesprovided.
In return, users will expect some assuredlevel of QoS. To o�er such QoS guarantees, the
environment in which the code executesneedsto provide isolation betweendi�eren t clients,
and �ne-grained scheduling and accounting mechanisms.

1.2 Con tribution

Diverseparadigms have previously beendeveloped to allow the remote execution of code at
nodes within a network. These have included projects from within the active networks and
open signalling communities, and from the more generalmobile code research communities.

Many of theseearlier projects have focusedon the basicsecurity mechanismsrequired for the
safeexecution of untrusted code. Thesemechanismshave involved the useof safelanguages,
proof-carrying code and high-level interpreters. Negotiation for accessto resourceshas also
beenstudied, particularly within the mobile code communities.

However, the mechanisms for regulating such accessto resourcesonce it has been granted,
to ensure that DoS attacks are preventable and to enable the provision of e�ectiv e QoS
guaranteesto the untrusted mobile code, have not previously beensu�cien tly studied.

Someprojects have temporarily ignored the issue,on the grounds that the suppliers of the
code were trusted not to consumeexcessive resourcesor perform DoS attacks. This is a
reasonableapproach to take when initially developing the high-level environment in which
the mobile code must run. However, to deploy such solutions in the real world is not practical.

Thoseprojects that have consideredresourcecontrol have tended to implement policing with
a very coarsegranularit y. Two solutions typically proposedhave been:

� If the processingfor any packet takes longer than a given period of time, then assume
that the packet is misbehaving and drop it.

� Employ a priorit y-based scheduler; at intervals check that threads are not exceeding
their allocated time, and reducetheir priorit y if they are.

16



Both of thesesolutions are unnaceptable if a node is attempting to support QoS guarantees
for clients, sincethey do not act on a su�cien tly �ne time scale.

Moreover, previous work on programmable networks has not su�cien tly addressedthe issues
of safely revoking and reclaiming the resourcesof clients who have exited or been aborted.
In a traditional operating system, using hardware protection between clients, each client is
typically su�cien tly isolated and self-contained that revoking the client's resourcesis rela-
tiv ely straightforward. The software protection used by many programmable network node
protot ypes provides a more lightweight environment; however these have typically provided
insu�cien t control over the reclamation of someof the node resources(such as memory and
threads) associated with departed clients, sincethere is no clear notion of resourceownership
at the virtual machine level.

Providing robust resourcecontrol helpsto prevent direct DoSattacks on a programmablenode
itself. A further problem that must beconsideredis that of preventing DoSattacks from being
launched by user code running on the node against other sites within the network. Whilst
identifying likely DoS behaviour in real-time is likely to be a hard problem, the maintenance
of accounting records (required for billing) will also facilitate tracing the culprit following a
DoS attack launched from a programmable network node.

The thesisof this work is that the provision of platforms for the generalexecutionof untrusted
code within a network requires an architecture with support for:

� �ne-grained resourcepartitioning, with accounting and scheduling

� lightweight communication betweenclients

� e�ectiv e resourcerevocation

This dissertation gives a rationale for such resourceusage. An architecture is presented,
along with a protot ype implementation on the Nemesisoperating system. The e�ectiv eness
of the architecture is evaluated to demonstrate that it provides the above properties. In
addition, implementations of two resourcecontrolled Activ e Network architectures, PLANet
and ANTS, have beendeveloped over the abstractions provided by Rcane , together with an
implementation of a multicast protocol that utilises the 
exibilit y provided by programmable
networks to trade memory consumption for bandwidth and latency.

1.3 Outline

The organisation of the remainder of this dissertation is as follows.

Chapter 2 provides background material relevant to this work. The development of networks,
from the earlier \passive" networks to the programmable nodeso�ered by active networks is
discussed.Relevant research in operating systemsand safelanguagesis also reviewed.
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Chapter 3 discussesthe resourcesthat need to be controlled in the presenceof untrusted
code, and the extent to which such control is required. It is arguedthat without such control,
widespreaddeployment of programmable nodes in a network is impractical.

Chapter 4 discussesthe Nemesisoperating system and the features that make it a suitable
platform for the resourcecontrol of untrusted code. Comparisonis madewith other operating
systemsto establish the suitabilit y of Nemesisas a basefor Rcane .

Chapter 5 intro duces the architecture for Rcane , an environment permitting the safe and
resource-controlled execution of untrusted code. The principles that guided its design are
discussed,and the abstractions usedto allow controlled accessto the resourceson a node in
a programmable network are presented.

A protot ype implementation of the Rcane architecture over the Nemesisoperating system
and the Objective Caml (OCaml) language is presented in Chapter 6. An overview of the
implementation is followed by an examination of the modi�cations made to OCaml to adapt
it to the requirements of the Rcane environment, and a description of important aspects of
the implementation.

Chapter 7 providesan evaluation of the key featuresof Rcane through the useof microbench-
marks, and demonstratesthat it providesan e�cien t mechanismfor resourceisolation between
multiple clients.

Chapter 8 examinesthe useof Rcane in the context of Activ e Networks; two di�eren t styles
of active networks and their implementation on Rcane are presented.

Finally, Chapter 9 summarisesthe main arguments of the dissertation and suggestsavenues
for future research.
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Chapter 2

Background

This section provides background information to the development of the architecture pre-
sented in this dissertation.

2.1 Evolution of Net work Services

2.1.1 Passive Net works

There has been much study of traditional passive networks { the most pervasive exam-
ple being the collection of networks communicating through the use of the Internet Pro-
tocol (IP) [Postel81]. This provides a commoninteroperabilit y layer throughout the Internet.
Although clearly someform of processing(whether hardware or software) is occurring within
the routers and switchesin a passive network1, the essential feature is that the interface pre-
sented to the user dealsonly in terms of data rather than code or customisability { the user
has no way to extend or customise the processingon a node within the network. Further-
more, although in many modern switches and routers the provider of the node can upgrade
the software on the node, such control generally occurs over a relatively long timescale.

The development of passive networks such as the Internet was guided by the principles given
in the end-to-end argument [Saltzer84], which states that certain functions of a distributed
system

can be correctly and completely implemented only with the knowledge and help
of the application standing at the end points of the [distributed] system

{ i.e. that supplying complex functionalit y within the network is non-optimal, since it is
probable that such functionalit y will either duplicate work that the application needs to
carry out at a higher level, or will fail to meet the needsof most users. Following the thesisof

1The development of purely optical switches may herald the arriv al of the truly passive network.
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thesearguments, IP supports only an unreliable, unsequencedform of data delivery. Higher
level protocolssuch asTCP and UDP are implemented only at the end-points of the network2,
and IP must be mapped over all link layers.

The serviceabstraction presented by passive networks is that of a connectionlessstore-route-
and-forward model for transporting packets from a sourcehost to a destination through a
seriesof routers. All routers processpackets using conceptually the samealgorithm, param-
etised only by certain header �elds in the packet (primarily the destination IP address).

Packet forwarding over connectionlessprotocols such as IP involvesa routing stage,typically
based on a longest-pre�x match of the destination address against a routing tree, which
may be both expensive and complicated [Waldvogel97]. Providing di�eren t levels of service
basedupon other parameters such as sourceaddressand protocol increasesthe complexity
further [Srinivasan98].

Wide Area Network (WAN) technologies such as X.25 [Jacobsen80],Asynchronous Trans-
fer Mode (ATM) [Fraser93] and Multiproto col Label Switching (MPLS) [Callon97] have at-
tempted to make useof simpler connection-oriented forwarding models. Theseaim to reduce
the cost of packet forwarding by performing the routing stageonceat connectionsetup time,
then performing a circuit look-up (which may be substantially cheaper than the routing oper-
ation performed during IP forwarding) at packet processingtime. By simplifying the packet
processingoperation, it is possibleto increasethe throughput of a switch, particularly if such
simpli�cations result in an algorithm that lends itself to implementation in hardware.

QoSprovision within passivenetworks hasbeenaddressedin several ways. Two of the primary
solutions being developed for the Internet are:

In tegrated Services allow each network 
o w or classof 
o ws to be mapped to a particular
QoSclass[Braden94]. This QoSclassis usedto schedulethe transmission(and limit the
bu�ering) of packets in these 
o ws. RSVP [Zhang93] has beenproposedas a protocol
for allowing the creation of 
o w speci�cations at routers.

Di�eren tiated Services attempt to reduce the amount of state required within the core
routers by requiring end nodesand intermediate routers to mark each packet with the
required per-hop forwarding behaviour [Blake98]. Service Level Agreements (SLAs)
may be set up betweendi�eren t network domains specifying the tra�c pro�le (such as
the averageand peak rates, and burst size) for di�eren t classesof packets.

2.1.2 Programmable Net works

In a programmablenetwork, the software on the network nodemay becustomisedor extended
at relatively short timescales;such customisation may be over the lifetime of a connection,
or even carried with each packet. This may be in order to perform packet processing(Active
Networking), connection control (Open Signalling), or more generalextensibility.

2Note that a router within the network may be consideredan end-point when speci�cally addressedas the
destination in an IP packet.
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2.1.2.1 Activ e Net working

The Activ e Networking [Tennenhouse97, Campbell99] communit y proposesmoving computa-
tion into the network in order to increasenetwork 
exibilit y, by replacing the simple packet
forwarding model usedby IP with a richer programmable model. Thus instead of allowing a
user to only specify the parameters (such as destination address)used in packet processing,
an active network permits enhancement or replacement of the forwarding routines themselves.
The bene�ts that can be gained from such programmabilit y include:

Customised routing: Customised routing algorithms could allow applications to circum-
vent de�ciencies in the standard IP routing behaviour or to tailor the QoS properties
of the route to the needsof their tra�c.

Deplo ymen t of new proto cols: Session/transport-level protocolssuch asHTTP and TCP
may be deployed purely at the end hosts, with no modi�cations required to network
routers. However, deploying new network-level protocols { such as IP multicast ex-
tensions [Deering89] { over the Internet requires long periods of time both for stan-
dardisation, and for implementation by router vendors. By providing a programmable
environment in which users can de�ne custom packet processingroutines, network-
level protocols can potentially be deployed substantially more quickly. Examples of
such protocolsdeployed over active networks include reliable multicast [Lehman98]and
transparent web cache redirection [Legedza98].

Access to non-standard resources: In the current Internet, router-speci�c resources(such
as enhancedcapabilities on a novel link-layer) cannot easily be utilised by end users,
since there is no way in the basic IP protocol to indicate a requirement to use such
resources. By specifying a more 
exible, extensible and programmable network sub-
strate, userscan more easily make useof enhancedcapabilities at certain nodeswithin
a network.

Dynamic adaptabilit y: Programmabilit y allows a 
o w to be dynamically processedat cer-
tain points within a network, such as to add FEC (Forward Error Correction) at lossy
points within a network [Hadzic98],or to transcode a high-bandwidth multicast stream
into a lower bandwidth stream beforesending it over a low-bandwidth link [Amir98].

Each of these advantages could be realised to some extent by making use of the IP op-
tions [Postel81] mechanism to communicate such requests for non-standard behaviour to
routers and endpoints. However, for this approach to be generally useful, somespeci�cation
for the required extensibility and programmabilit y must be reached. In this respect the IP
option mechanism is not ideal { although somespeci�c options are de�ned, there is no ac-
cepted standard for extensibility. Protot ype implementations of active network systemshave
beendeveloped to encode capsulecode within IP options [Wetherall96, Murphy97]; however,
to be of generalpractical bene�t, such useof options requiresmore uniform standardisation.
Furthermore, the use of IP options typically results in a packet experiencing lower-quality
processingthroughout the whole of the path it traverses;packets with options set tend to be
queuedwith lower priorit y, due to the extra complexity that they present to a router. The
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Activ e Network Encapsulation Protocol (ANEP) [Alexander97a]hasbeenproposedasa more

exible mechanism than IP options for encapsulatingactive network packets for transmission
over di�eren t lower-level media and protocols. It supports the multiplexing of packets from
multiple execution environments (EEs) over a single channel.

In [Bhattacharjee97], it is suggestedthat the end-to-end argument [Saltzer84] (discussedin
Section 2.1.1) does not preclude the existenceof active and programmable networks; it is
argued that the fundamental rationale behind the end-to-end argument is that:

Someservicesrequire the knowledge and help of the end-system-resident appli-
cation or user to implement, and so cannot be implemented entirely within the
network.

and that the corollary of this premise is that:

Someservicesmay best be supported or enhancedusing information 3 that is only
available inside the network.

Thus the addition of programmabilit y allowsendusersto implement preciselythe servicesthat
they need{ by executing user-suppliedcode within the network, the application-speci�c logic
required by the end-to-end argument may be combined with additional knowledgeregarding
the state of the network and with the higher bandwidth and lower latency a�orded to nodes
within the network. In [Saltzer98], the originators of the end-to-endargument agreewith this
suggestionin principle, but caution that end-to-end arguments should still be consideredon
a case-by-casebasis to determine whether such programmabilit y is bene�cial.

2.1.2.2 Op en Signalling

Analagously to the drive provided by Activ e Networks to open up the routing and packet
processingfunctions on the data path of a network node, research into Open Signalling has
attempted to provide a programmable interface to the control plane of a network node, typi-
cally a router or an ATM or telephony switch.

The control plane of a communications network is responsible for setting up, maintaining and
tearing down connectionsbetweenswitcheswithin the network. The interactions required for
such activit y, both between entities within the network and between the network and end
hosts, is known as signalling.

Historically, telephony networks existed to carry voice connectionsbetweenend-points. The
servicesavailable were de�ned by the network providers, and updated over long timescales.
The only signalling available to usersof the network was that for setting up point-to-p oint
calls (i.e. dialling). Within the networks, out-of-band signalling mechanismssuch asSignalling

3The author feels that this sentence would have been more e�ectiv ely phrased \. . . information and re-
sources . . . "
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System 7 [Jabbari91] were developed to provide greater security and scalability. Intelligent
Networks (IN) servicesweredeveloped over SS7,permitting the deployment of more advanced
(network-provided) servicessuch as conferencecalls and toll-free accessnumbers. Provision
of new and more sophisticated servicesby end-usersor third parties was not possible.

Initial attempts to de�ne standards for broadband (ATM and ISDN) signalling [ATMF96,
ITU-T94 ] followed paradigms inherited from the telephony standards and thus tended to
limit usersto only those servicesprovided by the network operator.

Alternativ e signalling strategies{ known as control architectures (CAs) { such as [Crosby95,
Hjalmtysson99, Newman96, Lazar96] have beenproposed;each with its own advantagesand
disadvantages. In [van der Merwe97] it was argued that no single control architecture could
provide for the needsof all applications and services.

Projects such asthe Tempest [van der Merwe97,Rooney98b]architecture from the University
of Cambridge aim to provide an environment to support 
exible management of connection-
oriented networks. Within the Tempest, the physical resourcesat an ATM switch are parti-
tioned through the useof a switch divider into multiple logical switchlets [van der Merwe96,
van der Merwe97]. Each switchlet appearsto its usersas an independent switch with its own
range of virtual paths and virtual circuits. Multiple CAs may then be run on the network,
each seeingthe appearanceof its own private network of ATM switches. Each CA has full
control over the range of VCIs and VPIs assignedto its switchlet, allowing it to manage
the connectionsestablishedwithin the virtual network. When a virtual network is created,
a general CA such as PNNI [ATMF96] or IP Switching [Newman96] may be employed, or
alternativ ely a Service Speci�c Control Architecture may be instantiated to provide better use
of network resourcesfor a particular application ([van der Merwe97]presents the exampleof
videoconferencing). Moreover, components of the architecture (such as a switch divider or a
CA) may be extended through user-suppliedcode to provide custom processingwithin the
network.

2.1.2.3 Lev el of Programmabilit y

Research into active networking and open signalling has beenundertaken at all levels, from
the physical layer [Hadzic98, Lee99] to the application layer [Amir98, Fry98]. Furthermore,
the level of programmabilit y provided by di�eren t projects has varied considerably.

Capsules: At the most fundamental level of programmabilit y, each packet contains both
executablecode and data. Such a packet is often referred to as a capsule4. When a capsule
arrives at a router, the code carried by that capsule is executed by the router, typically
parameterisedby the capsule'sdata (payload). Possibleactionsperformedby the codeinclude:

� Performing a routing decision and transmitting itself (or multiple copiesof itself ) out
along egresslinks from the router.

4Note that the terminology in the �eld of Activ e Networks is not yet well-de�ned.
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� Creating freshcapsules,and sendingthem on to new destinations or back to the original
capsule'ssource.

� Interacting with objects or other state in the router, either to obtain information about
the router or local network, or to perform somecontrol operation.

Alternativ ely, each capsulemay contain mostly data, but with somespeci�cation of the code
that should be used to processthe capsule5. If the speci�ed code is not found, the capsule
may be dropped, or the code may be obtained via someout-of-band mechanism.

The ALIEN [Alexander98a] architecture from the University of Pennsylvania and the Smart-
Packets [Kulkarni98] project from KansasUniversity both support capsules.An ALIEN cap-
suleconsistsof an OCaml [Leroy97] bytecode module and a payload; a SmartPacket contains
the serialisedclassde�nition and state for a Java object.

The Packet Language for Activ e Networks (PLAN) [Hicks98, Hicks99c] is built around the
two conceptsof invoking namedserviceson a node, and invoking a function on a remote node
{ such a remote invocation is semantically (and functionally) equivalent to sendinga packet.
A PLAN capsulecontains a chunk, which represents a delayed remote PLAN evaluation. (See
Section 2.2.2 for more details on PLAN chunks.)

The Activ e Node Transfer System (ANTS) [Wetherall98] and PAN [Nygren99] from MIT
support demand-loading and caching of code at a network node. Each active capsule is
tagged with a code identi�er. The code identi�er is implemented as a securehash (such as
MD5 [Rivest92] or SHA-1 [NIST95]) of the Java [Gosling95b] class(ANTS) or generic code
object (PAN) that should processthat capsule. This prevents malicious usersfrom hijacking
other users'capsules,sincethe only way to receiveanother user'scapsulesis to preloadexactly
the class/code that the originating user intended to be used for processingthe capsule. The
payload of the capsuleconsistsof a serialisedrepresentation of an instance of the speci�ed
class (ANTS) or generic data (PAN). In the event that the required code is not available
at the receiving node, a request is sent to the upstream neighbour (ANTS) or the speci�ed
code repository (PAN) from which the capsule was received, to obtain the class/code for
processingthat capsule(and any associated capsuletypesin the sameprotocol). In this way,
a capsulepulls the code required to processit through the network. Since code caching is
used,subsequent instancesof the samecapsuletype (within a period of time determined by
the level of caching) will be servicedimmediately, without the delay of requesting code from
elsewherein the network.

Capsulesmay be transient (as in the caseof ALIEN) or they may be permitted to maintain
persistent state at network nodes. The PLAN environment provides a resident servicethat
permits related packets to sharepersistent state.

The concept of capsulesis also applicable within the area of open signalling. Activ e Reser-
vation Protocols [Braden99] allow Java capsulesto be used for signalling (passive) network

o w requirements to a QoSenabledrouter, thus permitting greater 
exibilit y when specifying

5Such a speci�cation is, of course, semantically very similar to the headers on an IP packet, but with
enhanced
exibilit y.
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o w classes.The Smart Packets6 [Schwartz99] project from BBN Technologiesaims to im-
prove the 
exibilit y and reducethe bandwidth and latency required for network management.
Capsulescarrying management programs may travel around a network from deviceto device
interrogating and modifying SNMP [Case90]MIB databases,only needing to send packets
back to a monitoring station in the caseof an abnormal situation.

The Caliban [Rooney98a]interfacewithin the Tempestpermits similar SNMP querying through
the useof Java bytecode transported acrossa network. The Elastic Network Control provided
by the Haboob architecture [Bos99] supports remote invocation using granules (autonomous
program units) to customisebehaviour throughout all levels of a network.

Extensions: At an intermediate level of programmabilit y, active extensionsmay be loaded
on to a router or switch by an out-of-band mechanism. Associated with each extension is a
set of 
o ws, whosepackets should be processedby this extension.

ALIEN and PLAN both support the loading of OCaml extensions;this facilit y was used to
create an extensible active Ethernet bridge [Alexander97b] running over ALIEN. Extensions
register packet �lters to give accessto the network 
o ws that they wished to process. The
ComposableActiv e Network Elements (CANES) [Bhattacharjee98] architecture supports a
limited form of programmable extensions{ the behaviour of a 
o w of packets may be cus-
tomised by selectingtriggers that are called by pre-de�ned programsat certain points during
packet processing.

Network hardware may also be extended: the Programmable Protocol ProcessingPipeline
(P4) [Hadzic98] and other projects such as [Lee99] allow usersto download processinglogic
into �eld-programmable gate arrays (FPGAs), permitting high-speed custom processingat
the link layer and physical layer.

A generic extension intended to processa large class of packets may be classi�ed as an
execution environment (EE). An EE may itself permit extensibility by the end usersof the
network, either by directly executing the packets that it is processing,or through out-of-band
mechanisms. Systemssuch asANTS and PLAN may themselvesbe implemented asEEs over
a lower-level NodeOS (seeSection 2.1.2.4), allowing multiple active network environments to
co-exist on a single node.

Partially Programmable Net works: Not all proposalsfor active networking require that
the entire network be made programmable. [Smith98] presents Active Router Control, a
hybrid active/passive architecture which assumesa passive IP forwarding network as the
main \transp ort plane", and associating a \controller" with groups of IP routers, to deal
with higher level issuessuch as maintenance of routing tables. The controller itself may be
an active node, thereby permitting 
exible customisation of the network by users, without
degradingthe performanceof standard IP 
o ws that haveno requirement for activebehaviour.

A similar approach to partially programmable networks has resulted in the development of
the Activ e Networks Overlay Network (ANON) [Tschudin99]. ANON supports the creation

6Not to be confused with the SmartPackets project from Kansas Univ ersity.
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of programmable clusters of active nodes{ called segments { connectedtogether by a larger
overlay network.

Activ e Services: At the highest (and least 
exible) level of customisation, Activ e Ser-
vices [Amir98] (also referred to as Application Layer Active Networking [Fry98]) permit pro-
grammabilit y within the network, but only at the application layer. User-suppliedcode may
be executed on nodes within the network, but cannot replace the processingused for the
network or transport layer. This allows usersto experiencereducedlatency by moving com-
putations closer to the nodes with which they are interacting (e.g. a web document could
specify code to be executedon a programmable web cache, giving faster responsesthan by
connecting through to the original web server on each request [Marshall99]).

Xenoserverswereproposedin [Reed99]to provide hostsat strategic points within the network
that can supply execution services to untrusted clients, in return for payment. In many
respects the concept of Xenoservers is similar to Activ e Servicesbut aims to present an
environment in which resourceusageis strictly scheduled, accounted and charged for.

Within the open signalling communit y, projects such as the Hollowman [Rooney97]Tempest
CA support extensiblecontrol of ATM switches. Usersof thesearchitectures may supply code
in a safelanguage{ Java in the protot ype Hollowman implementation { to executeon or near
a switch in order to deploy application-speci�c policy for a particular connection. Such code
can interact with the virtual network's switchlets, to con�gure its VCI mappingsand resource
allocations with lower latency than code executingat end points of the network. This enables
more e�ectiv e control over the resourcesassociated with the CA's virtual network.

The Haboob [Bos99] takes the extensibility of Hollowman a stage further with the concept
of Elastic Network Control. It proposesSandboxes in which Dynamically Loadable Agents
(DLAs) may be executed. Sandboxesallow DLAs to present extensibleinterfacesthat may be
externally invoked { either by other DLAs or by external applications { by using the Simple
Uniform Framework for Interaction (SUFI ). Sandboxes may be instantiated at any location
with the network control and management architecture where extensibility is desirable. In
the example implementation, sandboxes are presented for the execution of DLAs written in
Java and TCL [Ousterhout90].

2.1.2.4 Platforms

The environment over which active network execution environments and open signalling and
mobile code systems are implemented has a fundamental e�ect on the properties of such
systems.Previously, the majorit y of active network projects have beendeveloped over various

a vours of the UNIX operating system. In particular, open sourcevariants such asLinux have
beenwidely useddue to the easewith which kernel modi�cations may be made, facilitating
modi�cations to network packet processing.

Running an active network systemin a Unix user-spaceenvironment hasthe advantage of be-
ing easily portable among di�eren t POSIX-compliant [NIST88] operating systems. However,
the abstraction presented by the operating systemoften obscuresa great deal of the detailed
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information and control over the data-path that a low-level active network system requires
to perform activities such as resourcescheduling.

Several projects have attempted to move all or part of the network programmabilit y inside the
OS kernel. The Network Element for ProgrammablePacket Injection (NEPPI) [Cohen99] is a
Linux IP router extendedto allow programmabletranslations on certain TCP 
o ws. Gateway
programs may request that packets on 
o ws which match a speci�ed �lter are passedup to
the user-level processingroutine, which may manipulate the packet directly, or may program
a speci�c manipulation (such aspacket redirection, addresstranslation or adjustment of TCP
sequencenumber and window size) into the router's forwarding tables for future packets on
that 
o w. By specifying TCP 
ag bits aspart of the �lter, a gateway program may for example
receive all connection setup packets (with the SYN
ag set) on a particular 
o w, but allow all
establishedconnectionsto be processedwithin the kernel router. Router plugins [Decasper98]
and the Click router toolkit [Morris99] have beenproposedto support a similar { but lower
level { functionalit y in an extensible router, with modules implemented for various functions
that a router may be required to perform, and connectionsset up betweenmodules and the
underlying platform.

PAN [Nygren99] supports an active network implementation running unsafenative code en-
tirely within a Linux kernel loadable module; it aims to perform zero-copy active routing for
those packets that are simply being custom-routed and forwarded to their ultimate destina-
tions.

Other projects have recognisedthat the I/O model of a traditional Unix workstation is not
optimal for supporting extensiblenetwork programmabilit y. Previous research has addressed
both the software and hardware architecture requirements.

The LancasterActiv e Router Architecture (LARA) [Cardoe99]provides a hardware/software
hybrid solution for implementing active network nodes at the edge of moderate sized net-
works. LARA usesa dedicated processorto act as a forwarding engine for each network
port, and a management node to overseethe system. Data-path communication betweenthe
forwarding enginesis performed over a high-bandwidth interconnect { the protot ype usesa
0.5Gb/s modi�ed SCSI bus. Control-path communications, including interactions with the
management node, use a standard bus. LARA/P AL (Platform Abstraction Layer) provides
a platform-independent interface over which di�eren t EEs may be instantiated.

The \holy grail" of active networking research is the Node Operating System(NodeOS).The
NodeOS [Peterson00a]interface is de�ned as part of the Activ e Networks Working Group
Architectural Framework [Calvert98]. It is intended to provide a minimal common �xed
point for active networking in the same way that IP provides a common �xed point for
passive Internetworking.

The NodeOSis, as its namesuggests,an OS-like interfaceover which multiple executionenvi-
ronments may operate. It usesthe abstraction of a 
ow to represent the resourcesassociated
with remote principals, and to manageresourceaccounting, scheduling and admissioncontrol.

Each EE de�nes a networking environment tailored for somespeci�c (or generic)requirement,
and presents that environment to a subset of end-usersof the network. The environment
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provided by the EE does not have to be programmable in itself { the EE may choose to
utilise the abstractions provided by the NodeOSto provide someform of customisedpassive
packet forwarding. In fact, IP itself may be regardedas a \legacy" EE, which sits alongside
other EEs and provides simple best-e�ort forwarding according to the node's default Internet
routing tables.

The NodeOSallows 
o ws to open channels on to the network. Such channelscomein three

a vours:

� In channelsallow a 
o w to receive packets matching somedemultiplexing speci�cation.

� Out channels allow a 
o w to transmit packets.

� Cut-throughchannelsallow a 
o w to join an In channel to an Out channel via a speci�ed
standard routing/pro cessingalgorithm. The routing and processingof packets in a cut-
through channel is performed entirely within the NodeOS, and so may potentially be
optimised.

Figure 2.1 illustrates the architecture supported by the NodeOS. Currently , the NodeOS
speci�cation is at a draft stage. Several projects [Lepreau99, Hartman98, Merugu00] are de-
veloping implementations that are intended to guide the evolution of, and eventually conform
to, the �nal speci�cation.
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2.2 Safe Execution of Un trusted Code

2.2.1 Overview

Some active networks projects have produced environments that execute arbitrary native
code. PAN [Nygren99] provides such support in order to measure the inherent overhead
associated with various levels of activation within the network { execution of safeJava code
is also supported. Bowman [Merugu00] executesonly unsafecode; the authors state that

The choiceof [the] C programming languageto implement the Bowman systemcall
interface has given us good performance,but probably sacri�ces some
exibilit y
(code can only comefrom a priori -trusted parties).

This is something of an understatement { one of the fundamental advantages that pro-
grammable networks o�er is the abilit y for network providers to o�er 
exible and extensible
accessto their switchesand routers, upon which usersand third-parties can develop advanced
services.Restricting such serviceprovision to just thosewho are fully trusted by the network
provider defeatsthe purposeof an open programmable network.

Furthermore, debugging applications when portions of the application's logic and data are
spread throughout disparate nodes in the network is a substantial challenge. The use of
some form of safe language for network programabilit y substantially decreasesthe chances
of uncaught bugs, and increasesthe probabilit y that sensiblediagnostics may be obtained
in the event of a runtime error. Trusting another party not to load malicious native code
on to your node is insu�cien t in a programmable network { you also have to assumethat
they are capableof writing code without the possibility of arbitrary memory corruption, due
to behaviour such as running o� the end of a bu�er or using a pointer to previously freed
storage.

Therefore,many programmablenetworks and mobile codesystemsenforcesomeform of safety
requirements on the user-provided code that they execute. This may be implemented either
by requiring useof a safelanguage,or by permitting code to be written in an arbitrary source
languagewhile requiring that the executablecode conformsto certain well-de�ned properties.

2.2.2 Language-based control

Many mobile code and programmablenetwork systemsspecify that the end-user'scode must
be written in a particular safelanguage. [Alexander98a] and [Cugola97]analysethe require-
ments for a languagefor mobilit y and network programmabilit y.

Somesystemsreusean existing safelanguage.Java [Gosling95b]hasrapidly gainedgreat pop-
ularit y asa languagefor mobile code, due to its portabilit y, type-safety and security7. Java is

7Due to incompatabilities betweenimplementations, and to errors in bytecode veri�ers and security policies,
these features have beensomewhat compromised. However, it is plausible that these problems will be resolved
in the future.
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a strongly object-oriented languagewith hybrid static/dynamic typing. ANTS [Wetherall98],
PAN [Nygren99],SmartPackets [Kulkarni98], Hollowman [Rooney98a]and the Haboob [Bos99]
make useof Java in slightly di�eren t ways { ANTS and PAN processcapsulesusing demand-
loaded Java classes;SmartPackets capsulescontain the full de�nition for a Java class as
well as the serialised data for a single instance; Hollowman and Haboob support the dy-
namic loading of Java classesto perform control-path operations on network switches and
control architectures. Caml [Leroy97] is a dialect of ML [Milner97] that has been used
as a mobile code language by Rcane [Menage99]and several components of the Switch-
ware [Alexander98b]8 project including ALIEN [Alexander98a] and the SecureActiv e Net-
work Environment (SANE) [Alexander98c]. The TCL [Ousterhout90] scripting languagehas
also proved to be a popular basefor mobile code; the Haboob supports mobile agents written
in TCL, and Safe-TCL [Borenstein94], Agent TCL [Kotz97] and TACOMA [Johansen95] all
extend TCL, with support for migration and con�nement. The untyped nature of TCL, in
which all valuesare represented (conceptually) as strings { proceduresinterpret thesestrings
as being of the appropriate logical type { allows for simple but unstructured interfaces be-
tweenvarious components in a mobile code system. The TUBE [Halls97]environment utilises
properties of the Schemelanguageto support the suspensionof mobile agents to packageup
the state of their computation; this state may then be transferred to a di�eren t site and the
computation continued.

Other projects have developed their own languagesthat are speci�cally designed to have
suitable properties for mobile computing. [Schwartz99] de�nes a safe high-level language,
Sprocket, its mapping into a restricted CISC \assembly language", Spanner, and a virtual
machine environment in which Spannerprograms (Smart Packets) can be executed. An im-
portant feature of the Spannerenvironment is the addition of languagelevel (single pseudo-
opcodes)support for interrogating and modifying SNMP [Case90]MIB databases.This tight
integration with a particular network management architecture reducesthe system's 
exibil-
it y; however, it helps full�l one of Spanner'sdesign goals, that meaningful programs should
be expressablein a single unfragmented packet, typically under 1KB. Inferno [Lucent96] was
developed to provide an operating systemfor distributed servicessuch as telephony switches
and media servers. It supports the execution of programs in a high-level type-safelanguage,
Limbo.

The Switchware project has developed the Packet Languagefor Activ e Networks [Hicks99c].
PLAN is a restricted functional language similar to ML [Milner97], but with strong dy-
namic typing. The languagerestrictions allow PLAN programs to be safely executedwith-
out veri�cation or checking. Remote invocation and layered encapsulation are supported
through the notion of a chunk, a �rst-class object representing a suspendedPLAN function
call [Moore99b]. When a chunk is created, a string is marshalled consisting of the name of
the function or service to be invoked, the arguments to the function, and the de�nitions of
any PLAN functions required for the execution. Function names are not bound to actual
functions until execution time, allowing a PLAN program to refer to servicesthat exist on
remote nodesbut which are not resolvable at compilation. The OnRemote()primitiv e causes
a chunk to be executedon the speci�ed remote host. Once created, chunks may be manipu-

8 In [Moore99a] and [Hicks99a], two of the Switchware developers discuss their experienceswith an earlier
version of some switchware components written over Java, and comment on the advantages that they gained
after converting to use Caml.
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lated by a PLAN program or the servicesthat it invokes. For example,fragmentation may be
performed by splitting the binary contents of a large chunk into several portions, and using
each portion as one of the arguments to a chunk that invokesthe reassemble() serviceon a
remote node. Encryption, compression,reliable transfer and other network servicesmay be
performed in similar ways.

[Wakeman98]discussesvarious requirements for a languagefor programmable networks, and
proposesSafetynet as a new languagethat supports these requirements. Safetynet aims to
encode properties such as security and resourcecontrol into the language. This allows more
substantial type checking beyond simple safety properties.

Somelanguagessuch as PLAN support dynamic scoping of identi�ers, such that the unre-
solved bindings (for servicesand data) required by a mobile program must be satis�ed at
the executing site. Other languagessuch as Obliq [Cardelli94] use lexical scoping, whereby
all free bindings must be resolvable at the point when a program fragment is transmitted
over the network, and use of those bindings will e�ect remote invocations on objects at the
originating site. Such lexical scoping enablesa program fragment to seea more consistent
view of the state of the world; however, this high level of network transparency causesboth
unpredictable performanceand di�culties in speci�cally referring to state and serviceson the
execution node. In this respect, languageprimitiv es such as PLAN's OnRemote() combine
convenient accessto remote invocations with the clear distinction between local and remote
accesses.

2.2.3 Low-lev el control

Requiring the mobile code that a server executesto be written in a safe languagehas the
disadvantage of reducing the 
exibilit y available to remote users. An alternativ e approach
taken by some researchers has been to develop ways to permit arbitrary machine code or
assembly languageto be executedsafely.

Software Fault Isolation (SFI) [Wahbe93]runs each untrusted code module in a separatefault
domain. A fault domain is a region of memory associated with the untrusted module, within
which all loadsand stores{ and most jumps { are unrestricted. Code to be run is required to
executespecial bounds-checking code before any memory access,to ensurethat the address
being accessedis within the permitted data area9, or in the caseof a jump, that the address
being jumped to corresponds either to a valid basic block or to an entry point in a trusted
jump table to support cross-domainRPC. This accessdiscipline may be enforcedin two ways.
In the �rst instance the end-usermay employ a specially modi�ed compiler that inserts the
relevant checking code, combined with a veri�er that runs on the server to ensurethat the
checks are present. Alternativ ely, the server may usebinary rewriting techniquesto insert the
necessarychecks before loads, stores and jumps when the code is �rst supplied. This allows
any compiler to be usedon the client 10.

9Extensions to the SFI model have permitted multiple data segments to be accessibleto a single fault
domain; these segments may be shared between multiple domains.

10 Current implementations of SFI do place limitations upon the register usageof the code being isolated,
since someregisters are required to be reserved for e�cien t fault isolation.
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The encapsulationprovided by SFI allows any untrusted code to be safelyexecuted;however,
this is at the expenseof an executiontime overheadof approximately 5%, and with a relatively
crude protection model. Other research has focusedon the useof formal methods to reduce
the overheadof untrusted execution while providing a richer typing model. Typed Assembly
Language(TAL) [Morrisett98] and Proof-Carrying Code (PCC) [Necula97]have both been
developed asways of providing a typing discipline for low-level code. TAL supports a generic
type system for basic blocks, over the registers and stack of a processor,with higher-order
extensions to cope with the low-level control possibilities available to assembly code. For
example, part of the typing of a basic block might specify that the RA(Return Address)
register must contain a pointer to a block which expects register R0 to contain an integer;
thus any pieceof code that causesa control transfer to the basicblock must ensureRAcontains
a pointer to an appropriate return addressor continuation. TAL thus ensuresthat the typing
discipline is respected without prohibiting the calling conventions of any particular language
(such as tail-call recursion or continuation passing). This work has beenextended[Hornof99]
to allow the partial generation of certi�ed code, which may be veri�ed in a similar manner
to Java; the �nal compilation stage proceedson the execution host, taking advantage of
properties of that system. PCC allows the executinghost to publish arbitrary setsof pre- and
post-conditions for code segments that must be respectedby a client's code. Theseconditions
may determine both the behaviour of code supplied by the client, and the arguments that may
be passedto callback routines supplied by the host. From theseconditions and from analysis
of the code, a set of veri�c ation conditions may be generatedand proved o�ine by the client,
through the use of a theorem prover. The client presents this proof to the host along with
the code; verifying that the proof is valid is signi�cantly lessexpensive than generating the
proof initially .

2.2.4 Securit y

Safety is concernedwith enforcing the low-level characteristics of an environment for the
execution of untrusted code. Security, on the other hand, involvesdiscovering what resources
a program is authorised to access,and ensuring that a program does not gain unauthorised
accessto resourcesor information.

Whilst a sensiblesecurity policy is recognisedas vital for the e�ectiv e deployment of a pro-
grammablenetwork node, the development of such a policy is largely beyond the scope of this
dissertation. This section therefore brie
y reviews a selectionof security solutions proposed
for open and programmable networks, rather than surveying wider research on the general
issueof security.

At the level of inter-node cryptographic security, the SecureActiv e Network Environment
(SANE) [Alexander98c] allows peers in an active network to establish trust between each
other, by exchanging certi�cates that authenticate them, and to establish secret keys to
permit securecommunication. The �rm ware in the nodes is modi�ed to provide a Trusted
Computing Base.

Security in PLAN is achieved by restricting the namespaceof servicesavailable to a PLAN
program accordingto the capabilities that it carries[Hicks99b]. The servicesavailable through
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the namespaceare implemented in a general-purposeprogramming language,thus requiring
veri�cation before installation. Under the PLAN security scheme, a �rew all may be imple-
mented by encapsulating a PLAN chunk (seeSection 2.2.2) in a function call that severely
restricts the packet's namespaceand then evaluates the original chunk.

The Activ e Networks Security Working Group are de�ning the Security Architecture for
Activ e Nets [SecArch98]. This is intended to be developed in tandem with the NodeOS to
provide tailored security facilities.

Oasis[Hayton96] and KeyNote [Blaze99] both provide security policy architectures for services
in an open network { in each casepolicies may be speci�ed in a domain-speci�c language,
and enforcedupon the entities in the network.

2.2.5 Op erating System Extensions

In traditional operating systems, the user/kernel division provides an in
exible interface;
applications may useonly thoseabstractions and serviceswhich are provided by the interface.
This may result in ine�cien t behaviour, with substantially greater amounts of time spent in
user/kernel crossingsand memory copying than would be necessaryif a di�eren t abstraction
were being used.

Many operating systemspermit the loading of modules into the kernel. Theseare generally
used to provide support for particular of hardware. They may also be used to extend the
abstractions o�ered by the kernel, by providing extension system calls or a pseudo-device.
Non-administrators are generally not permitted to load their own kernel modules, even when
the module does not in itself extend the privileges of the user (i.e. it only performs actions
that the user would be permitted to perform, but in a more e�cien t manner), since there is
usually no support for verifying that such extensionmodules are safe.

To this end, various research projects have developed extensibleoperating systemsto permit
usersto employ more e�cien t abstractions for accessingthe resourceson a computer.

SPIN [Bershad95]from the University of Washingtonpermitted extensionswritten in Modula-
3 [Cardelli89] to be loaded into the kernel by user-processes,with the intention of improving
performanceby reducing the number of user/kernel crossings.User-level programs were run
under hardware protection, and socould be written in any language. In the protot ype, kernel
extensionshad to be signedby a trusted compiler.

Sinceuserswere permitted to load extensionsto respond to interrupt events, SPIN extended
the Modula-3 languagewith an EPHEMERALkeyword; EPHEMERALprocedurescould only call
other EPHEMERALprocedures, and hence could not lock critical resourcesbelonging to the
kernel (which were only accessiblethrough non-EPHEMERALprocedures). Thus they could be
safely aborted by the kernel if they spent too long in an interrupt serviceroutine.

VINO [Seltzer96] solves the problem of resource-hoardingby kernel extensionsin a di�eren t
way. The Vino kernel is extensiblethrough the useof SFI (seeSection2.2.3). The extensions
are all invoked through a transaction system,which allows the kernel to abort extensionsand
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undo changesmade to system state by the tardy extension.

The Exokernel [Engler95, Kaashoek97] project from MIT supports the notion of OS-in-a-
library in a similar way to Nemesis (see Chapter 4), although the primary motivation is
that of improved performancedue to reducedabstractions, rather than the goal of improved
QoS enforcement that underlies Nemesis. As such, its notions of resourceisolation between
processesare lesswell-de�ned.

The Exokernel permits extension in several ways. Dynamic Packet Filters [Engler96] allow
applications to pass
o w demultiplexing speci�cations down to the network driver. Untrusted
Deterministic Functions [Kaashoek97] (UDFs) allow library-based �le systemsto passmeta-
data parsing routines down to the kernel, where they may be safely executed. By initially
emulating the instructions of a UDF on a particular piece of meta-data, the kernel can be
satis�ed that the UDF will always return the sameresults for that meta-data, and hencecan
run the UDF natively on future occasions.

2.3 Resource Con trol and Accoun ting

Much research has beendone into mechanisms for controlling the resourcesallocated to en-
tities executing on a computer or within a network.

2.3.1 Resource Con trol in Op erating Systems

Traditional operating systemssuch asUnix, aswell asmore recent micro-kernels,are typically
optimised for performance,often at the expenseof reliable resourcepartitioning amongst the
di�eren t tasks occuring on the system.

A major factor in such unreliabilit y hasbeenthe tendency to move processinginto the kernel
(in the caseof monolithic systems)or into sharedservers (in the caseof micro-kernels). This
can causecrosstalk in the timeliness of receiving accessto resources,and also to obscurethe
amount of resourcesconsumedby each client on the system. Whilst someOS kernelsprovide
real-time scheduling of the CPU, such crosstalkand obsfuscationmeanthat simply scheduling
the CPU is insu�cien t.

Someapproaches to solving this problem have attempted to �t such resourcecontrol on to
traditional systems.LinuxSRT [Ingram99] modi�es the Linux scheduler to provide guaranteed
levels of accessto the CPU, and further demonstrates that by adding schedulers to shared
servers it is possibleto provide QoS in those servers, and thus avoid someof the crosstalk.

A major sourceof crosstalk in traditional operating systemsarisesdue to network protocol
processing,which in a monolithic kernel is often performed in interrupt handlers. In an
attempt to reduce this problem, techniques such as Lazy Receiver Processing[Druschel96]
and Signaled Receiver Processing[Brustoloni00] more properly account to applications the
time spent performing protocol processingtheir incoming streamsof packets. This is achieved
through the useof a packet �lter to associate incoming network data with a particular local
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socket. This data is then left unprocesseduntil such time as a read() is requestedon that
socket. In addition to more accurate accounting, a further bene�t of this technique was
observed { the improved temporal locality of the network data resulted in a lower number of
cache misses.In a traditional network stack the data is pulled into the cache on receipt (for
header checking, checksumming, etc.); by the time the data is copied to user-spacefor the
receiving application, it is likely to have beendisplaced from the cache. By only processing
the packet data directly before it is copied to user-spaceand used by the application, the
level of cache pollution is reduced.

In [Banga99],resource containers are proposedas a meanswhereby resourceaccounting and
protection may be separated. A resourcecontainer is associated with a particular activit y
and may be sharedbetweenmultiple processes;similarly, a process(particularly servers) may
hold multiple resourcecontainers { corresponding to di�eren t clients or classesof client {
allowing it to inform the OS to which of its containers it desires its current activit y (e.g.
the consumption of CPU cycles, or the protocol processingfor the tra�c on a particular
socket) to be accounted. Eclipse [Bruno99] provides a similar form of resourcecontrol, using
a reservation �le system to model hierarchical resourceguarantees.

Scout [Mosberger96b] takesthe two precedingideasa step futher, representing all activit y in
terms of paths. The informal notion of a path, commonly used in terminology such as \fast
path" and \data path", is formalised to consista set of modules{ referred to asrouters { that
processa particular classof data sequentially . For example,an incoming video stream being
displayed as part of a video conferencewould be represented by a path that begins in the
network subsystem.A packet classi�er in the link-level (Ethernet) devicedriver module would
recognisepackets that constitute the video stream and direct them to the video conference's
path. The path would continue through the network protocol modules (IP, UDP), which
would processany header information and possibly defragment IP packets. From here the
data would be passedinto a video decoder module that would translate the payloads of the
network packets into frames of video. These frames would �nally be passedto the video
display module in order to be viewed by the user.

The path mechanism in Scout allows modules to register interfaces; these interfacesmay be
usedto connectmodules together to form paths; this is similar to (but more extensible than)
the connectablemodules used by Click [Morris99]. A router graph is generatedto identify
valid con�gurations of connected modules. By associating a particular level of resources
with a path { rather than with a network subsystemor the video display subsystem{ Scout
attempts to o�er guarantees to particular activities. A further advantage is that the path
abstraction permits further optimisations such as partially evaluating the functions along
a path to provide versions specialised for a particular data stream [Mosberger96a]. The
performance improvements achieved by these optimisations must be o�set by the loss of
spatial locality in the processingcode causedby multiple specialised versions of common
functions.

Nemesis[Roscoe95, Leslie96] is an operating system designedto provide resourceguaran-
tees and QoS to applications. It is vertically-structured { i.e. wherever possible, applica-
tions perform work themselves(t ypically using shared libraries) rather than calling a shared
server to perform the work for them. By making applications lessreliant on shared servers,
crosstalk(interferencein the QoSreceivedby oneapplication dueto activit y causedby another
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application) is reduced. Where resourcesneed to be multiplexed (e.g. for CPU scheduling
and network output), such multiplexing is performed at the lowest possible level, in accor-
dance with the principles put forward in [Tennenhouse89]. Tasks such as protocol process-
ing [Black97], thread scheduling and virtual memory paging [Hand99] are safely delegatedto
the applications themselves. Nemesisis discussedfurther in Chapter 4.

2.3.2 Resource Con trol in Mobile Code and Safe Languages

Existing approachesto resourcecontrol in mobile code and safelanguageshave focusedon two
main areas: the negotiation for and allocation of resources,and the scheduling and accounting
of such resources.

D'A gents [Bredin98] usesa market-based approach, in which mobile agents bid for access
to resources.\Sealed" bids allow the resourceproviders to e�ectiv ely determine the current
demand { and hencemarket rate { for a resource. [Tschudin97b] describes a similar envi-
ronment that allows messengeragents [Tschudin97a] to bid for resources;actual allocation is
performed through lottery scheduling [Waldspurger94]. [Lal99] presents a framework to allow
mobile programs and hosts to specify constraints on the allocation of CPU. The framework
permits the speci�cation of real-time and non-real-time constraints; however, the current
implementations do not support real-time scheduling.

Most existing active and programmable network research has tended to ignore the issue
of resource control, focusing instead on the development of programming paradigms and
environments. Sincesuch work typically occursin a closedenvironment, with only a relatively
small set of researchers accessingthe systemsconcerned,this has beena reasonablechoice to
make.

Where thought has beengiven to resourcecontrol, it has typically beencoarsegrained. For
example,PLAN provides three facilities for controlling the execution of a packet's code:

� Associated with each packet is a Resource Bound (RB). The RB is an analogueof the
IP hop-count, and indeed is usedin a similar way { each network hop taken by a packet
decreasesits RB by one, and a packet whoseRB is exhausted is discarded. However,
use of the RB is more 
exible than in IP. If the code for a packet sendsout multiple
di�eren t packets, it may choosehow to split its RB amongst the new packets. The RB
is also used for evaluating recursive functions { by bounding the number of recursive
calls that may be made, a rough bound on the CPU time consumedmay be made.

� The total amount of memory allocated by a packet's code at a single node may be
bounded, and the packet aborted if it exceedsthis bound.

� The total amount of CPU consumedby a packet's codeat a singlenodemay bebounded,
and the packet aborted if it exceedsthis bound.

Safetynet [Wakeman98]usestype information to calculatea bound on the resourcesconsumed
by an active packet. A further feature of Safetynet is to draw a distinction betweenpacket-
forwarding code and ordinary code. Forwarding code is restricted in what operations it may
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perform; it may not allocate heap memory, and it must provably terminate. ANTS applies
similar restrictions to capsule forwarding code { the evaluate() method of a capsulemay
not call into other Java classes.

The conceptof Proof-Carrying Code hasbeenextended[Necula98]to permit formal reasoning
about the resourceusagebounds for untrusted agents. Whilst these techniques do go some
way to prevent seriousDoS attacks, they are insu�cien t for providing e�ectiv e �ne-grained
resourceguarantees.

More recent work hasbegunto focuson issuesof proper resourcecontrol. The speci�cation of
the NodeOS[Peterson00a] provides an interface for allocating and scheduling computing and
network resourceson a programmable node. Early implementations of this interface, such as
Bowman [Merugu00], have shown e�ectiv e isolation betweenmultiple 
o ws of packets passing
through a node.

Java hasproved a popular medium for resourceallocation and control architectures. The orig-
inal runtime de�nition contained support for priorities, which by themselves are insu�cien t
to provide e�ectiv e resourceguarantees. J-Res [Czajkowski98] and Conversant [Bernadat98]
extend Java's resourcecontrol, providing a measureof control over the consumption of re-
sourcesby Java threads. Both account memory allocations and CPU time to threads, and
attempt to provide CPU guarantees by adjusting the priorit y of threads basedon scheduler
feedback. A philosophical di�erence betweenthe two is that J-Resattempts to avoid changing
the Java runtime, thus improving portabilit y, at the expenseof e�cacy , whereasConversant
makessubstantial modi�cations to the runtime in order to provide facilities such as multiple
semi-independent heaps.

The J-Kernel [Hawblitzel98] providessupport for multiple untrusted threads in a Java system.
Di�eren t threads are isolated from oneanother in multiple protection domainswithin a single
heap, but communication is permitted through capabilities, which marshal parameters from
one domain to another. Ka�eOS [Back00] applies abstractions from OS designto a Java vir-
tual machine; threads are grouped into processes,and given independently garbage-collected
heaps. Processesmay share data in specially designated read-only heaps. The system is
divided into \user" and \k ernel" sections;user code is untrusted and may be terminated at
any time, whereaskernel code is trusted and may not be terminated. Resourceconsumption
by the di�eren t processesin a Ka�eOS system is accounted, to help prevent denial of service
attacks.

2.4 Summary

In this chapter, background information relating to the evolution of programmablenetworks,
resourcecontrol, and the execution of untrusted code hasbeenintro duced. This provides the
necessarybasis for the remainder of this dissertation, which presents the argument that the
combination of thesethree areasis vital for the widespreaddeployment of open mobile code
systems. In support of this argument, the Rcane architecture, its protot ype implementation,
and its evaluation are also presented.
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Chapter 3

Resource Con trol Requiremen ts

This chapter discusseswhy, and to what extent, resourcecontrol of untrusted code is nec-
essary. It considershow the resourcerequirements of user-supplied code are considerably
more complicated to predict than those of packets in a passive network. The types of re-
sourceswhich require control, and the way in which those resourcesshould be accounted, are
discussed.

3.1 The Case for Resource Reservations

The question of whether resourcereservations or overprovisioning of best-e�ort servicesis a
more cost-e�ective way providing serviceshas long beena bone of contention within the net-
working communit y. Advocates of reservations claim that modern multi-media applications
require the higher predictabilit y given by reservation-capable networks to provide a suitable
level of service. Opponents of reservations claim that a reservation-capablenetwork will only
provide satisfactory service when its blocking rate1 is low, and hence the provisioning lev-
els required would provide near-satisfactory service in a best-e�ort network { the di�erence
being met by a modest amount of over-provisioning, with much lower complexity than the
reservation-capable network.

3.1.1 Resource Reservations in Passive Net works

The Internet was conceived as a network giving only best-e�ort delivery. Protocols such as
TCP are designedso that in the presenceof contention they throttle back their output, so
as not to overload network switches. Token support for QoS was provided in the Type of
Service (ToS) bit, which allowed packets to be marked according to their tra�c type and
precedence. Such information is typically ignored by network routers, leading to a best-
e�ort servicefor all network users. Such behaviour is not always desirable,particularly when
attempting to use interactive applcations across a network, or view streamed multimedia

1The rate at which it refusesreservation requests
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data. Integrated Services(RSVP) [Zhang93] and Di�eren tiated Services(Di�Serv) [Blake98]
have beentwo approachesto providing QoS in the Internet (in the caseof Di�Serv, re-using
the IP ToS bit to actually support di�eren t servicetypes). More recent technologiessuch as
ATM have provided support for QoS from their inception.

[Breslau98] addressesthe question of whether resourcereservations are required in passive
networks. Di�eren t classesof applications and load distributions are considered,and expres-
sions are derived for the additional bandwidth required for a best-e�ort network to provide
equivalent service to a reservation-capable network. No de�nitiv e conclusionsare presented
about whether future networks should be reservation-capable. However, the authors note that
the greater the unpredictabilit y of the o�ered load, the greater the performanceadvantage of
a reservation-capable network over a best-e�ort network; in particular, with an exponential
or algebraic2 load distribution, the additional factor of bandwidth required by a best-e�ort
network can increasewithout bound as the basebandwidth increases.

In [Paxson94] tra�c traceswerestudied, with the conclusionthat much of the WAN tra�c in
the Internet could not be modelled with a Poissoninter-arriv als process,but instead exhibited
distributions with much larger variancesand self-similarity [Leland93, Crovella95]. Although
it is di�cult to predict the load distributions faced by future networks, such results suggest
that reservations will be necessary, at least for certain classesof tra�c.

It has beenclaimed [Deering95] that applications can adapt to whatever servicethe network
o�ers, rendering reservations unnecessary. Whilst this may be the case,such adaptation can
only occur by degrading the QoS delivered to the end user. For someapplications that do
not require interactive responseor low jitter, such as �le transfer or electronic mail, this may
be a practical solution. However, for multi-media applications adaptation can result in a
substantial reduction in the utilit y received by the end user.

A particular drawback to the argument that adaptation renders reservations unnecessary
is that it assumesall communications are of equal importance. This tends to reduce the
incentiv e for usersto put o� unimportant communication to times when the network is less
busy. By allowing (and charging for) reservations, important communications automatically
receive improved QoS over less important ones, since their usersare likely to be willing to
pay the additional cost to ensurehigh utilit y.

3.1.2 Resource Reservations in a Programmable Net work

For the remainder of this dissertation, the term open programmablenetwork is used to refer
to a network in which some of the nodesprovide programmable extensionsto end users. To
obtain bene�ts from programmable networks it is not necessarythat all nodes within the
network are programmable { indeed, sincethe latency and processingoverheadsexperienced
by 
o ws through a programmable platform are likely to be substantially greater than those
experienced through a hardware router or switch, providing programmabilit y for that pro-
portion of the tra�c that has no special requirements may be considereda waste. The term

2An algebraic distribution has a high variance in o�ered load; the probabilit y that k 
o ws are requesting
service is P(k) = �

� + k z .
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let hostileForwardPacket pkt =
while (true) do

allocateSomeMemory ();
sendPacketToNeighbours (pkt)

done

Figure 3.1: A hostile forwarding routine

An example of a forwarding routine potentially capableof consumingall available resources
at a node.

open programmablenetwork is usedto imply that theseprogrammable facilities are available
to all usersof the network (possibly in return for a payment), not just those usersemployed
by or trusted by the network providers.

Since providing programmable platforms within the network greatly increasesthe ways in
which end-usersmay consumeresources,it seemsreasonableto assumethat the variance
in load experienced by such platforms will be greater than that experienced by \passive"
networks. In a passive network the potential resourceload at a node causedby the activities
of a particular customer is likely to be roughly proportional to the bandwidth o�ered to that
customer. There is a direct correlation in the caseof bu�er storageand link utilisation; the
CPU cyclesrequired for forwarding a packet are likely to involve a constant per-packet cost
for the routing, and a copying cost proportional to the bandwidth 3. Thus, by limiting the
bandwidth that a customer receives, a network provider may limit the amount of resources
consumedby that customeron a network node. E�ectiv ely, the direct chargethat the provider
makes for the bandwidth includes an indirect charge for the use of other resourceson the
network node.

However, in a programmable network there are many more variables to take into account
when considering the system load { the loads generatedon resourcessuch as CPU cycles,
memory and outgoing link bandwidth may be totally unrelated to the incoming link band-
width. At the extreme, hostile, greedy, or carelessforwarding code could potentially consume
all available resourcesat a node. For example,within an active network node, allowing arbi-
trary customisation of the forwarding code used to processpackets would permit (if speci�c
controls were not put in place) a single packet to potentially consumeall available CPU,
memory and link bandwidth at a node (seeFig. 3.1).

It has been argued [Wetherall99b] that since part of the rationale behind programmable
networks is to trade o� bandwidth for other computing resources(such as memory and CPU
cycles),bandwidth is presumablythe scarceresourceat the node. Thereforesimply scheduling
bandwidth still su�ces to schedule other resourcesat the node. However, apart from the
obvious problem of grossDoS attacks, there are two 
a ws in this argument:

� This e�ectiv ely providesan incentiv e for end-usersto reducebandwidth requirements at
all costs,even if this results in ine�cien t useof other computing resources.For example,

3This is clearly not the caseif transport proto cols and some of the higher level functions of IP { such as
ICMP and subnet broadcast { are taken into account [CERT96, CERT98]. However, such abusesof IP are
generally fairly straightforw ard to detect as DoS attacks, and as such can be �ltered out by routers.
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a program that is transcoding a multicast video stream before transmitting it over a
low bandwidth link would be charged according to the sizeof its output stream { thus
its optimal courseof action would be to expend large amounts of CPU making a given
quality of video stream �t into the smallest possiblebandwidth, even if the majorit y of
that work only producesvery small incremental bene�ts.

� Programmable networks do not just reducebandwidth requirements at the expenseof
increaseduseof other computing resources;they can alsoreducelatency using the same
trade-o�s. In this casethe bandwidth consumedis potentially a small part of the total
resourceconsumption.

Thus, we conclude that simply limiting the incoming bandwidth is insu�cien t to allow the
provider to control overall resourceusageat a node.

Since the load variance in a programmable network may be expected to be greater than
that in a passive network, the conclusionsof the analysis presented in [Breslau98] may be
applied to suggestthat someform of resourcereservation and control will be required for a
programmable network.

3.2 Approac hes to Resource Con trol

[Wetherall99a] recognisesthat resource control is one of the major unsolved problems in
current active network research. The approach taken in [Wetherall99a] is to only acceptcode
certi�ed by a trusted authorit y { it is acknowledged that this is a seriousdrawback to the
provision of an open programmable network.

The resourcesconsumedby untrusted code need to be controlled in two ways. The �rst is
to limit the execution qualitativ ely { limit what the code can do. This involves restricting
either the languagein which the code can be written, and/or the (possiblyprivileged) services
which it can invoke. The secondrequirement is to limit the execution quantitativ ely { limit
how much e�ect its activities may have on the resourceusagein the system. Such resource
control may be performed in various ways, discussedin the following sections.

3.2.1 Con trol through pro of

Proof-carrying code [Necula97]can be generated;such code can be formally proved to respect
the typing disciplines that an execution server wishesto enforce. A veri�able type-safelan-
guagerepresents a subsetof proof-carrying code { in this casethe server haschosento enforce
the generalisedtype system used by the language. This, then, provides the qualitative con-
trol mentioned above. Furthermore someprevious work has usedsuch techniques to provide
limited quantitative control { e.g. using proofs to reasonabout the number of instructions
executedwithin a particular block of code, in order to show that a routine yields the processor
su�cien tly frequently to satisfy the execution server [Necula98].
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However, such proofs can be expensive to generate and are not particularly general. For
example, a block of code that could prove it would yield the processorevery 15ms would
be unlikely to get a chance to run on a node that had other clients who needed to run
every 10ms. Since such proofs are likely to be based on worst-casecosts, this could lead
to clients being unable to run their code even if it would not interfere with other clients'
guarantees. Conversely, if the samecode were supplied to a server whoseexisting client had
beenguaranteed to be scheduledevery 29ms,the 15msclient would get to run only onceevery
29ms { since it would be impossible to run the 15ms client twice in a row without missing
the 29msdeadline. A generalisedroutine could possibly be developed that took its allowable
running time as a parameter, and could be proved to return within a time bounded by that
parameter; however, such a routine would su�er both in code complexity and in the overheads
required to ensureit did not exceedits limits. Furthermore, when multiple resourcesneedto
be controlled simultaneously, such proofs becomesubstantially more complicated.

3.2.2 Con trol through scheduling/accoun ting

The alternativ e to requiring proof is to actively schedulethe resouceson the node,and measure
the resourcesconsumedto allow accounting to take place afterwards.

Scheduling may be either co-operative or pre-emptive. Co-operative scheduling relies on the
code being run to relinquish accessto the resourceat regular intervals; scheduling decisions
may only be madeat theseintervals. Typically only CPU cyclesare scheduledco-operatively,
although it could be argued that gaining accessto certain system resourcesthat require
mutual exclusion (e.g. binding to a speci�c TCP port, or grabbing the display server focus)
involvesco-operative scheduling.

Whilst co-operative CPU scheduling may be suitable for multiple threads within certain
applications, or { when used with care { within OS kernels, it has proved lesssuitable for
system-widescheduling, especially in the presenceof carelessor badly-behaved applications
that fail to relinquish accessto the CPU; this can result in a system user-interface hanging
whilst an application carries out a large calculation, or a real-time application missing its
deadlines. A systemwhich permits pre-emption betweendi�eren t clients is essential in order
to allow the various guaranteesto the clients on the system to be e�ectiv ely honoured.

It shouldbenoted that for someresources,fully pre-emptivescheduling is not possible. For ex-
ample, an Ethernet card cannot reschedulemore frequently than at packet boundaries. When
large (1500 byte) packets are being sent on a 100Mb/s network, this meansthat scheduling
decisionsmay only be taken at 120� s intervals. (These e�ects may be lessenedby through
use of a link layer such as ATM, which by virtue of its small cell size allows scheduling to
occur every 53 bytes, equivalent to 4� s on a 100Mb/s link.) In this case,it is necessaryto
account for any overrun, so that over two or more scheduling periods a client doesnot receive
excessive guaranteed accessto the resourcedue to such quantisation.

42



3.3 Resources requiring control

Once the decision has been taken to limit the resourcesavailable to untrusted code, the
resourcesthat need to be controlled must be selected. This section examinesthe di�eren t
resourcesavailable on a node in a programmable network, and discussesapproaches to con-
trolling each.

3.3.1 CPU cycles

One of the most obvious resourcesto be controlled is that of accessto a CPU. This includes
time spent executingthe untrusted codeand time spent executingin (trusted) systemlibraries.
In particular, time required for tasks such as packet processingand garbagecollection should
be accounted to the principal on whosebehalf the tasks are being performed.

Many di�eren t algorithms have been developed for scheduling CPU resources. Traditional
general-purpose operating systemssuch as Unix [Ritchie83] use time-sharing schemesthat
attempt to allocate the available CPU cycles fairly among the processes(or threads) in the
system. Each processhas a dynamic priorit y that decreaseswhen it receives CPU time,
and increaseswhen it is waiting on a run queue;at each point, the processwith the highest
dynamic priorit y is run. To improve interactive responseand the throughput of I/O bound
processes,such processesare given temporary boosts in their dynamic priorit y. Time-sharing
schemesmake no guarantees that a given processwill receive accessto the CPU with any
degreeof timeliness.

In an attempt to provide more reliable accessto the CPU for processesthat require it, some
schedulers intro duce \real-time" static priorit y classes{ at any point in time, the scheduler
runs the process(es)with the highest static priorit y. If a low-priorit y processis running and
a high-priorit y processbecomesrunnable, it typically preempts the low-priorit y process. If
several processesshare the highest priorit y value, they may be scheduled cooperatively or
preemptively.

Priorit y-basedschemeshaveseveral 
a wswhenseekingto provide resourceguarantees[Nieh94].
The �rst is that a priorit y is by de�nition a relative value { the amount of time received by
a processof a given priorit y is very dependent on the number of other processeswith equal
or higher priorit y. Thus although a processmay experiencegood accessto resourceswhen
it has the highest priorit y in the system, clearly only a few such processcan exist before
the problems associated with standard time-sharing occur. The second
a w is that priorities
are insu�cien t to deal with the caseof a processthat requires regular processingtime, but
which doesnot require priorit y over other tasks whenever it is runnable. In a programmable
network, an exampleof such a task would be the processingof routing updates{ theseshould
clearly not take priorit y over jitter-sensitiv e tasks; however, it is vital that they get to run for
a certain amount of time during every update period.

An approach to scheduling that attempts to ensurethat all processesmake progress,whilst
still allowing straightforward relative priorities, is lottery scheduling [Waldspurger94]. Each
processis allocated a number of \tic kets" according to someresourceallocation scheme. At
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each time slice, a processis chosenat random to receive CPU; the probabilit y distribution
usedis weighted by the number of tickets held by each process,soa processwith more tickets
receivesmore CPU time. This provides a very simple scheduling algorithm that is responsive
to users needs; however, since no guarantees are made to processesabout when they will
receive the CPU over short periods of time, it is unsuitable for jitter-sensitiv e activities.

The concept of processor bandwidth allows processesto receive the guarantees that they
require to carry out jitter-sensitiv e tasks. At its most basic form, processorbandwidth may
be expressedas a percentage of the CPU. Whilst this is useful in itself, it does not take
into account the fact that di�eren t tasks will have di�eren t requirements for the frequency
at which they receive accessto the CPU. [Black94] presents a scheduler that divides up the
available CPU time into �xed length periods of time called jubilees. Within each jubilee,
time is allotted to all processesaccording to their allocated percentage share. This provides
a very simple run-time scheduling algorithm, but requires that all processesbe scheduled at
the same frequency (i.e. the inverse of the jubilee length). Thus the presenceof a process
that requires frequent scheduling causesall processesto be frequently scheduled, increasing
scheduling overheads. In the presenceof processeswith very di�eren t requirements for their
scheduling frequencies,a better solution is to guarantee each processa certain fraction of the
CPU over a process-de�nedperiod of time; thus the guarantee consists of a pair (p;s), to
allow a processto receive p secondsof processortime in each consecutive interval of length s
seconds.

The conceptof periodic deadlines may be employed to provide the appropriate regular access
to the CPU required by processorbandwidth scheduling schemes. [Liu73] describesthe Rate
Montonic (RM) and Earliest Deadline First (EDF) algorithms for scheduling hard real-time
tasks. RM calculatesstatic priorities for each task, according to the frequencyat which they
must run; at each scheduling decision,the runnable task with the highest priorit y is executed.
EDF e�ectiv ely recalculates such priorities dynamically, always running the task with the
closestdeadline. EDF has a greater runtime complexity than RM; however, [Liu73] shows
that EDF can give a feasibleschedule for any utilisation up to 100%,whereasRM can only
guarantee a feasible schedule up to 69% (ln2). EDF and RM are both designed for the
scheduling of periodic tasks, rather than generalpurposeprocessscheduling. [Roscoe95]shows
that by considering the guarantee made to a processas being a periodic task requiring s
secondsto run and with a deadline every p seconds,these algorithms are applicable to the
problem of processorbandwidth scheduling.

3.3.2 Memory Usage

Memory usageby untrusted code falls into �v e areas:
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3.3.2.1 Co de mo dules

These represent code that has been dynamically loaded, either at system initialisation time
or by remote clients. They are likely to be read-only4, allowing a single module to be shared
amongst multiple clients. A code module may have someform of persistent variables.

3.3.2.2 Thread stacks

Thread stacks provide the context associated with a computation occurring on the node. This
may be in order to forward or otherwise processa packet, or it may be in responseto some
other event, such asa timer expiring. Stacks represent a measureof concurrency{ if blocking
(or long-running) computations are expected to occur, the availabilit y of thread stacks for a
particular classof remote client limits the responsetime and processingrate for that classof
clients. Examples of such classesmight include a single client with resourcereservations, or
the set of \all best-e�ort clients".

3.3.2.3 Packet bu�ers

Packet bu�ers provide a level of queueing for both transmission and reception at network
interfaces. If a client had beenguaranteed exclusive accessto the CPU, and if the latency in
the paths between the network device drivers and the client were negligible, such bu�ering
would not be needed. However, neither of these conditions are likely to be met; thus to be
able to keep a transmission queue fed and avoid dropping incoming packets in the periods
betweengaining accessto the CPU, network bu�ering must be provided.

3.3.2.4 Heap memory

For someforms of communication in a programmable network, each packet may be totally
independent and not rely on 
o w-speci�c information stored at nodes in the network { such

o ws could include datagram 
o ws that consultedalternativ e routing tables, or capsulesthat
carried all their code and data with them. However, carrying multiple copies of the same
code and data around a network wastesbandwidth and processingtime (for marshalling and
unmarshalling betweenwire format and memory structures), and reducesthe amount of useful
payload in each packet.

Various approacheshave beentaken to provide persistent state at network nodes. The most
common approach has been to provide someform of soft state { data that may be 
ushed
from storage by the node if it requires the spacefor something else. Thus the client cannot
rely on this data remaining available between successive packet arrivals. Examples of this
form include:

4Whilst self-modifying code does have its uses, we regard its deployment in a programmable network as
foolish, due to the extreme complexity of debugging such code remotely and the prevention of sharing that
such modi�cation entails.
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� ANTS' [Wetherall98] code cache, in which the Java classesfor a particular packet type
are cached along the path taken by those packets.

� PLANet [Hicks99c] and Bowman [Merugu00] provide timed soft-state stores.

ANTS is structured such that in the event of an arriving packet's protocol code having been

ushed from the cache, it can be easily retrieved from the upstream node that last processed
the packet.

However, other kinds of data (such as 
o w routing information) may not be so easily regen-
erated. Furthermore, when all packets are processedby the sameset of threads { i.e. without
reserving stack resourcesfor particular remote clients { the only way to accessper-client
information is to store it in some form of lookup table. For example, PLANet's soft-state
mechanism uses a table keyed on client identi�er (for security) and a string supplied by
the client (to permit multiple data items to be stored by the sameclient). This represents
ine�ciency , a possible source of crosstalk (in the table locking) and an unnatural style of
programming.

For clients with reservations, an alternativ e is available { the codeenvironment usedto process
packets and events for a client may be specialisedto that client; therefore instead of invoking
a generalpacket processingroutine that locatesan appropriate function to call for this 
o w,
and provides accessto someform of soft-state lookup, instead the function speci�ed by the
client can be invoked directly, with language-level accessto persistent variables de�ned by
that client's code.

In order to store such data, heapspacemust be reserved for that client. It should be possible
to limit the amount of heap spaceconsumedby a particular client; conversely, it should be
possible to guarantee to that client that they will receive the amount of memory that they
have reserved.

3.3.2.5 Auxillary data structures

The system will need to maintain data structures concerning clients on the node. These
may be for administrativ e purposes(e.g. billing and accounting information) or for functional
purposes(e.g. structures relating to network connections). These structures are unlikely to
consumelarge amounts of memory during normal execution; however, the possibility of a
buggy or malicious client meansthat it is necessaryto limit this memory consumption. Such
structures are likely to fall into three classes:

� Structures of which a single instance exists per client (e.g. client identit y). These do
not present a resourcecontrol challenge,since there is no way for a malicious client to
increasethe resourceusageassociated with them.

� Structures that are associated with controlled resources.For example,a thread control
structure is going to be allocated in association with a thread stack; a network control
structure is going to be allocated in association with network bu�ers and a bandwidth
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reservation. Thesestructures do not need to be controlled individually { it will su�ce
to include their e�ects in the accounting for the controlled resources.

� Structures that may be created through client actions and which are not associated
with controlled resources(e.g. timer events). These should be accounted for in some
way. Two approachesare to track the allocations of each individual type of objects; or
to maintain a (�xed-size) per-client heap from which all such allocations are made.

3.3.3 Net work Bandwidth

In a node (switch or router) in a traditional passive network, the bandwidth o�ered to a
network 
o w is oneof the fundamental metrics of quality of service. In a programmablenode
it is quite likely to besecondaryto other resourcessuch asCPU cyclesor memory { if the client
purely wanted network bandwidth, it is likely that reserving resourceson a programmable
node would incur greater overheads(and hencebe more expensive) than setting up a 
o w
through a standard switch or router. However, the abilit y to reserve network resourceson a
programmable node is still vital; consider the situation in which a client has moved its logic
for a networked transaction to a node closer to the server, in order to reduce the latency of
the transaction. If the latency between the client and the server is 100ms,and the client's
code running on the network node only gains transmit accessto the network every 200ms,
the latency of the transaction will be increasedrather than decreasedby the migration.

Various transmission scheduling algorithms have beenproposedto share out network band-
width. These include weighted fair queuing [Demers89] and virtual clock [Zhang90] and a
modi�ed form of EDF [Black97].

3.3.4 Summary

This chapter has examined issuesrelating resourcereservation in programmable networks.
First the arguments for and against resourcereservations in passive networks wereconsidered.
By comparing the likely load variance at programmable nodeswith that of passive nodes, it
was concludedthat resourcecontrol in programmable networks would be required.

Two approaches to resource control were considered { control through proof and control
through scheduling. It was concluded that proof-based controls were useful for enforcing
safety properties, but for ensuring guaranteed accessto resourcesthey were less practical
than scheduling.

The chapter concludedwith a discussionof the resourceson a programmablenode that would
require control.
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Chapter 4

Nemesis

This chapter presents further detail on the NemesisOperating Systemdeveloped at the Uni-
versity of Cambridge. The origins of Nemesisare discussed,along with the properties that
make it suitable as a basefor the Rcane architecture to be presented in Chapter 5. More
information may be found in [Roscoe95, Leslie96, Barham96].

4.1 Overview

In traditional operating systems, tasks such as network protocol processing, paging, and
graphics rendering are performed either in a shared server or in the kernel { unless this
work is carefully scheduled and accounted for, it can causeQualit y of Service interference
(crosstalk) betweenapplications.

Nemesissimpli�es such accounting by requiring each client to perform much more of its own
work than in a traditional system;sharedservers (or the kernel) are neededonly to arbitrate
accessto shared resources.Wherever possible, these servers exist purely for setting up and
destroying accessconnections(e.g. providing accessto the blocks on a disk consituting a �le,
or installing a packet �lter to demultiplex network packets). Other operations such asnetwork
protocol processingor graphical rendering are performed in the application itself (t ypically
using sharedlibraries), with the servers just providing safescheduledaccessto the hardware.

This approach allows Nemesisto provide an e�ectiv e platform for \m ulti-service" systems,in
which di�eren t multi-media applications co-exist without experiencing interferencefrom one
another or from other applications with lesscritical time constraints.
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4.2 Op erating System Structure

4.2.1 Traditional Systems

Traditional operating system structures have fallen into three main categories:

Monolithic systemshavea singleoperating environment that hasfull accessto the machine's
resources.Typically only a single application runs at any one time, or elseco-operative
task-switching may be employed.

Kernel-based systemsseparateout applications from system services(scheduling, memory
protection, paging, scheduling, etc). Servicesrun in a privileged kernel; applications
run without system privileges, and isolated from each another.

Such systems are typically not designedwith the intention of accurately accounting
the consumption of resourcesto applications. Substantial amounts of work are often
performed within interrupt handlers, such as network receive routines; accounting such
work to the receiver can be problematic.

A further problem with the kernel-basedapproach is that the abstraction layer and the
protection layer are entwined; whilst a high level of protection is desirable, the high
abstraction level thus presented prevents an application from e�ectiv ely specifying the
relative importance of its own activities.

Although some research has addressedthese issues[Druschel96, Banga99, Ingram99,
Bruno99], e�ectiv e resourcecontrol in traditional kernel-basedsystemsis still an open
problem.

Microk ernel systemsaim to provide modularit y (and thus greater maintainabilit y and fault
isolation) by moving functionalit y from the kernel into servers. The kernel itself pro-
videssupport just for scheduling, memory protection and Inter-ProcessCommunication
(IPC); devicedrivers1 and servicessuch asnetworking, paging, �lesystems and memory
management are provided by (possibly privileged) servers.

Whilst this approach doesprovide a more 
exible method of OS design, the additional
modularit y and protection can increasethe overheadsof communication between ap-
plications and the various servers. However, previous work [H•artig97] has suggested
that with careful optimisations, the cost of such communication can be comparable to
a traditional kernel-basedsystem.

A more fundamental problem with the microkernel approach is that it makesaccurate
resourceaccounting even more di�cult than in the caseof a kernel. Let us take the
example of a network stack server. If it is to provide QoS, it must schedule the actual
transmission of outgoing packets and account for the bu�ering of incoming packets.
However, if it is also performing protocol processing(such as checksumming, IP frag-
mentation/reassembly, etc) on the data being transmitted and received, it must also
have su�cien t CPU resourcesto carry out such work; furthermore the server must be

1 In some situations, portions of device driv ers are placed within the microkernel for performance or other
reasons.
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able to accurately account such resourceconsumption to the client applications. Sim-
ilar problems apply with the rendering time used by a graphics server2 and the disk
bandwidth consumedby a paging server.

4.2.2 Vertical Structure

A new approach to OS structure, taken by Nemesis[Leslie96] and the Exokernel [Engler95],
is the vertically-structured system. Vertically structured systemsarosefrom the concept that
the association betweenabstraction and protection enforcedby kernel- and microkernel-based
systemswas unnecessary. In fact, while enforcing a high level of protection on applications is
desirable,enforcing the high level of abstraction is not.

In a vertically structured system,many tasks traditionally performed by the kernel or shared
servers are migrated into the application itself. The high level of abstraction provided by
traditional systemsis instead provided by sharedlibraries; sincethe work is performed by the
application itself it can be easily accounted to that application.

Nemesisand the Exokernel approach the conceptof a vertically structured systemfrom di�er-
ent directions { the Exokernel is essentially a kernel-basedsystemand Nemesisa microkernel.
However, in both systems,all but the control path activities (such as setting up IPC connec-
tions and specifying network packet �lters) and very low-level data path operations (such as
transferring individual disk blocks, ethernet frames and pixel blocks) have been moved into
the applications themselves; thus the work remaining for the kernel or the shared servers is
minimal and doesnot signi�cantly contribute to QoS crosstalk.

In the following sections,various aspects of Nemesisare described to illustrate the vertically
structured nature of the OS,and show why it is suitable asa basefor a programmablenetwork
node.

4.3 CPU Scheduling

Nemesisallows a domain to reserve a singleguaranteed allocation of CPU time, in the form of
a sliceof CPU received over a period of time. The scheduling period may be very �ne-grained,
and periods asshort asa millisecond are commonfor processesthat require low-latency. The
current implementations of Nemesisusethe Earliest Deadline First (EDF) [Liu73] scheduling
algorithm to allocate CPU time.

When an application becomeseligible to receive CPU time, it is entered at its activation
vector ; this will typically handle any incoming events (seeSection4.4) and then dispatch to a
user-level thread scheduler. This givesthe application full control over how its allotted CPU
time is used.

2The problem of accounting for time consumed by a graphics server has also been seento occur with the
X server on Unix systems [Barham96].
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BecauseNemesisrequires that applications perform their own work rather than relying on
servers, it is possible to signi�cantly regulate the total CPU load put on the system due
to an application's activit y. Furthermore, since far more of the activities accountable to an
application take placewithin that application's protection domain (rather than in a kernel or
server) the application hasfar more control over the scheduling of its own tasks. For example,
an application may choose to expend time on protocol processingfor a high importance
network stream, and defer any processingfor a low-importance stream. Such behaviour
cannot be easily achieved in a traditional OS, although projects such as Signalled Receiver
Processing [Brustoloni00] and Resource Containers [Banga99] have addressedthis problem
for monolithic kernel-basedsystems.

4.4 In terpro cess Comm unication

The Nemesiskernel provides only the simple event channel primitiv e for communication
betweendomains (Nemesisprocesses).An event channel is a monotonically increasinginteger
sharedbetweena senderand a receiver; when the senderincreasesthe value of the event, the
new value is made available to the receiver, and the receiver is optionally noti�ed of the
changeand unblocked if necessary.

On platforms in which transitions to kernel mode may be made cheaply, such as the Alpha
21164,such event increments are performed through system calls; on platforms such as Intel
x86 and StrongARM, where kernel transitions are more expensive, a per-processFIFO of
outgoing event increments is read by the kernel at reschedule time.

Higher levels of IPC may be built on top of these primitiv e events by applications, with
no additional support required from the kernel. A system service called the Binder allows
domains to establish event channels to other domains.

The standard Nemesislibraries provide synchronousclosure-basedIPC using shared-memory
segments. When an IPC invocation is made, the arguments to the invocation are marshalled
by the client into the shared-memorybu�er; on the server side the arguments are copied out
of the bu�er in order to make an invocation on the original closure.

This marshalling is performed by stubs that are generateddynamically, at runtime; when the
�rst IPC channel of a particular interface type is created, the methods in that interface are
analysed [Menage98a]. For each method, a bytecode description of the actions required to
marshal its parametersis generated;from this a machine code stub is synthesised. Such stubs
are cached, and reusedlater if a method with an equivalent bytecode sequenceis processed.
The low-level bytecode usedto describe marshalling actions allows signi�cant code sharing to
occur betweenstubs.

A secondform of IPC is the I/O Channel [Black94, Barham96]; this supports bu�ered asyn-
chronouscommunication betweendomainsusing three areasof sharedmemory. The �rst area
of memory contains the data bu�ers being transferred; the secondis used as a FIFO from
the consumer to the producer, for passingdescriptors indicating empty bu�ers (within the
data area); and the third is used as a FIFO from the producer to the consumerfor passing
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descriptors indicating full bu�ers. Event channelsare usedto synchroniseaccessto the FIFO
areas.

4.5 Device Arc hitecture

Nemesisusesthe DMM/D AM devicearchitecture proposedin [Barham96]. Control over each
device is split into two independent entities 3:

� The Device Abstraction Module provides data-path accessto the device. Connections
(t ypically abstracted behind an I/O channel) are establishedby the DMM, over which
clients may send and receive data. These connectionsmay be implemented in several
ways:

{ If the device is a user-safe device [Pratt97 ], the client may be given protected
direct accessto a set of registers on the card; thus the I/O channel encapsulates
the logic for communicating bu�er areasto and from the card.

{ If the dominant resourceconsumedwhen accessingthe device is CPU time, and
requeststo the devicemay be broken up into small units, a trap into kernel mode
(known as a device privileged section or callpriv [Barham96]) may be provided
by the device driver to accessthe device. For example, Nemesis frame bu�er
driversusea callpriv to allow clients to transfer small blocks of pixels into windows
that they own. Since the dominant resourceconsumedis CPU cycles(due to the
relatively low speedof the PCI bus), the CPU scheduler e�ectiv ely policesaccessto
the devicewith no additional scheduler required in the framebu�er devicedriver.

{ If the device has the abilit y to schedule betweenmultiple clients, but cannot pro-
vide protection between them, a callpriv may be used to provide the necessary
protection to make the device appear to be a user-safedevice. For example, the
DEC OPPO ATM adaptor has the abilit y to create multiple outgoing queuesof
packets, each separately scheduled. For this device, a callpriv is used to mark an
outgoing PDU for DMA and transmission on the client's queue.

{ For traditional devicesthat support neither scheduling nor protection, a thin device
driver layer is required to mediate accessto the device. This layer should provide
accessin terms of small requests(such as disk blocks, network frames or tiles of
pixels) and may be required to perform scheduling for clients.

� The Device Management Module (DMM) provides management and control for the
device; it is responsible for implementing accesscontrol and resourceallocation policies,
and for creating data connectionsbetweenclients of the device and the DAM. It takes
no part in data-path activit y.

3Note that in somecasesit provesconvenient to implement these two entities as two interfaces on the same
object; however, any synchronisation between the two is structured so as to avoid interfering with data-path
guarantees.
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4.6 Net work I/O

Nemesisprovides network accessin the form of I/O channels between applications and the
network deviceor devicedriver, over which link-level frames(such asEthernet framesor AAL5
PDUs) are exchanged. The application is responsible for performing any necessaryprotocol
processing(such as 
o w control, reliable delivery, IP fragmentation and reassembly, or TCP
checksumming and segmentation); the device driver needsonly to schedule the transmission
and reception of raw frames. Packet �lters are usedboth on transmission (to ensurethat the
packet headersare valid) and reception (to locate the I/O channel to which the packet should
be passed).

The NemesisFlow Manager is the DMM for the network { it is in charge of setting up the
I/O channelsbetweenclients and network devicesand con�guring packet �lters; any required
network accesspolicy for the system is implemented by the Flow Manager. However, once
such I/O channelshave beenset up, the Flow Manager plays no part in data-path activit y.

In the casewhere the network interface card is a user-safedevice, the client application may
communicate directly with the card. For traditional devicesthat cannot themselvesprovide
protection between multiple usersaccessingthe device, a thin device driver layer is needed.
This driver is responsible for scheduling and transmitting Ethernet framesfrom a set of client
I/O channels,and for receiving and demultiplexing incoming frames,and sendingthem down
the appropriate I/O channel if that channel hasempty bu�ers available. In the event that an
incoming I/O channel is full, the packet is dropped, either in the card or in the driver before
protocol processingtakesplace.

Sinceeach I/O channel acts as an independent queue,and processingtime is only expended
on processingpackets in that channel when the application so chooses,accurately scheduling
and accounting multiple incoming or outgoing network streamsin a singleapplication is more
straightforward under Nemesisthan under traditional systems. For example, a web server
could give priorit y to channels that corresponded to sites hosted for paying clients, and only
expend resourceson non-paying clients after all work for paying clients had beenperformed.

4.7 Summary

This chapter has provided detail on the NemesisOperating System. An overview of the
structure of the OSwaspresented, with a comparisonto the structures of traditional operating
systems.

Aspects of the system, including its devicearchitecture, inter-processcommunication models
and resourcescheduling modelswerepresented; it wasshown that Nemesispossessesfeatures
that support e�ectiv e resourceisolation betweenmultiple clients, and provides the abilit y for
applications to schedule the resourceconsumption of their own activities. These properties
suggestNemesisas a suitable base for the development of a platform for the execution of
untrusted code in a programmable network.
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Chapter 5

The RCANE Arc hitecture

This chapter describesthe ResourceControlled Activ e Node Environment (Rcane ) architec-
ture and the principles guiding its design. Rcane is designedto allow providers of nodes in
a programmable network to permit untrusted clients to run code on their nodes,without the
risk of Denial of Serviceattacks or excessive consumption of resources.

Rcane provides abstractions to control accessto CPU cycles,network bandwidth and mem-
ory, and allows lightweight and 
exible communication between clients. The structure and
mechanismsusedby Rcane to accurately account for theseresourcesare described, and their
applicabilit y to preventing various typesof DoS attack is discussed.

Many of the ideaspresented in this chapter were previously described in [Menage99].

5.1 In tro duction

In the previous chapter the NemesisOperating System was discussed. It was shown that
Nemesisprovidesbasicresourceguaranteesto applications, allowing multi-media applications
to co-existwith oneanother and with batch processeswithout the interferenceassociated with
traditional operating systems.

Given the resourcerequirements discussedin Chapter 3, this would seemto make Nemesisa
suitable platform for a programmable network node. However, in its basic form Nemesisis
unsuitable for such a rôle:

� Providing each remote client with their own (hardware protected) Nemesis domain
would be expensive in terms of both memory consumption and setup time. The in-
creasedmemory costs would reduce the scalability of the system. Many clients' appli-
cations (such as mobile agents) in a programmable network will be substantially more
ephemeralthan multimedia applications on a workstation, and so the increasedsetup
costscan turn into a substantial overhead.
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� Nemesisis designedto allow essentially benign applications on a workstation to com-
municate their resourceneeds(possibly overriden by the user) to the OS and for such
needsto be e�ectiv ely met by the OS. In an uncooperative environment such as a pro-
grammable network, applications may be greedy or even malicious, and hence more
control is needed.

� Nemesisis designedto run native code. In a heterogeneousprogrammable network,
unless we wish to burden clients with the task of producing and shipping multiple
binary formats { possibly for architectures for which they have no suitable compiler {
a common virtual machine layer is required over the OS.

The Rcane architecture, presented in this chapter, meets theserequirements.

5.2 Arc hitectural Principles

Rcane is designedto provide resourceisolation between multiple independent applications
on a node in a programmablenetwork, with the resourcesconsumedby each application being
paid for by a remote principal. The following aims underlie the designof the architecture:

� To provide guaranteesto applications that they will receive the Qualit y of Servicethat
they require in order to complete their tasks in a timely manner.

� To accurately account resourceconsumption to the client that causessuch consumption
to occur, in order that the client may later be be billed.

This section describeshow theseaims have shaped the overall architecture of Rcane .

5.2.1 System Structure

Rcane employs both horizontal layering (betweendi�eren t layers of trust) and vertical iso-
lation (betweendi�eren t clients).

5.2.1.1 Layering

Rcane follows the principles (proposedin [Alexander98a]) to partition the system into mul-
tiple layers:

� The Runtime is written in unsafenative code and provides accessto { and scheduling
for { the resourceson the node. Servicessuch as garbagecollection (GC) and thread
synchronisation primitiv esare also provided by the Runtime.
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Figure 5.1: Rcane Architecture Overview

� The Loader is written in a safelanguage(as are all higher levels). The Loader is entered
early in system initialisation. It is responsible for:

{ completing the initialisation of the Runtime,

{ loading the higher levels of the system, and

{ linking user-suppliedcode into the system.

� The Core, loaded at system initialisation time, provides safe accessto the Runtime
and the Loader and performs admission control for the resourceson the node. The
interface to the Core represents the \Red Line" identi�ed in [Back99] as a requirement
for security in a system using software protection.

� Modules are units of untrusted code. The include standard libraries, supplied by the
system and loaded at system initialisation time, and code supplied by remote users.
They have accessto the interfaces exported by the Core, but no direct accessto the
Runtime or the Loader except where permitted by the Core.

System modules in the Core are linked against entry points in the (unsafe) Runtime; these
are then exported through safe interfaces to which the untrusted modules can link directly.
The Runtime performs a policing function on the use of the node's resources. An overview
of the Rcane architecture is shown in Figure 5.1. The Safe/Native code boundary indicates
the division betweenunsafenative code (written in a languagesuch as C) and code written
in a safelanguagesupported by the Runtime's virtual machine. The Trusted/Un trusted code
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boundary indicates the division betweencode that is known to respect the security properties
of the node and other code; such code may be regarded as untrusted if it is supplied by an
untrusted source, or if it is from a trusted source but has not been su�cien tly checked to
ensurethat it would not compromisethe system. Within the Core and the Loader, although
all code is written in a safelanguage,the interfacesexported by the Runtime permit complete
control over the node1. Thus it is important that malicious code not be permitted to execute
within the Core.

5.2.1.2 Sessions

Rcane usesthe abstraction of a Sessionto represent a principal with resourcesreserved on
the node. A sessionis the analogueof a processin a conventional OS that useshardware pro-
tection, and is similar to the conceptof a 
ow in the Activ e Networks NodeOS[Peterson00a].
Sessionsare isolated, so that activit y occurring in one sessioncannot prevent other sessions
from receiving their guaranteed QoS, except in situations where explicit interaction is re-
quested(e.g. due to one sessionusing servicesprovided by another session).

To provide guaranteed levels of QoS to remote principals, Rcane allows sessionsto reserve
resourcesin advance. Requestsfor resourcereservations are processedby the Systemsession
(see below) and, if accepted, are communicated to the Runtime's schedulers. In general,
data-path activit y { e.g. sendingpackets { is carried out within the originating session.

In other activenetwork systems,the main resourceprincipal is the executionenvironment (EE).
This can lead to QoS crosstalk betweenthe di�eren t clients of an EE. The useof sessionsin
Rcane makesthe end-userthe resourceprincipal, allowing guaranteesto be mademore easily
to individual end-users. An EE then becomesa library that a sessionmay use to provide a
convenient programming abstraction, and a client may make use of more than one EE in a
singlesessionif desired. (SeeSection5.6 for a discussionof mechanismsallowing sharedstate
betweenmultiple instancesof the sameEE.)

Figure 5.2 shows part of the Session interface provided by the Core to permit control over a
sessionand its resources.(Certain functions concerningmodi�cation of resourcerequirements
are not shown.)

� createSession() requeststhe creation of a new session. Credentials to authenticate
the owner of the new sessionfor both security and accounting purposesare supplied,
along with a speci�cation of the required resourcesand the code to be executed to
initialise the session.

� destroySession() releasesany resourcesassociated with the current session.

� loadModule() requeststhat a suppliedcodemodule be loadedand linked for the session.

� linkModule() requests that an existing code module (possibly loaded by a di�eren t
session)be made available for use by this session. The module to be linked may be

1 In particular, someof the low-level features of the Runtime may permit languagesafety to be compromised.
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bool createSession (c : Credentials, r : ResourceSpec, code : CodeSpec);

void destroySession (void);

bool loadModule (l : LoadRequest);

bool linkModule (l : LinkRequest);

vp_id createVP (spec : CpuSpec);

bool bindDevice (d : Device, bu : BufferSpec, bw : BandwidthSpec);

Figure 5.2: The Session interface

speci�ed simply by the interface that it exports, or by a digest of the code implementing
the module to ensurethat a particular implementation is used.

� createVP() createsa new scheduled allocation of CPU time (seeSection 5.3).

� bindDevice() reservesbandwidth and bu�ers on the speci�ed network device(seeSec-
tion 5.4.

At system initialisation time two distinguished sessionsare created:

� The System sessionrepresents activit y carried out as housekeeping work for Rcane .
It has full control over the Runtime. Many of the control-path servicesexported from
the Loader and the Core are accessedthrough communication with the Systemsession.
Such system servicesinclude:

{ The code librarian and linker.

{ The sessionmanager.

{ The default network routing tables.

� The Best-E�ort sessionrepresents activit y carried out by all remote principals without
resourcereservations. Packets processedby the Best-E�ort sessionsupply code written
in a very restricted languageand are given minimal accessto system resources.Access
to the createSession() call in the Session interface is permitted, so that best-e�ort
code can initiate a new session;further work may then be performed by the newly
created session.

Figure 5.3showshow Rcane sessionsareorthogonal to the layering describedin Section5.2.1.1.
The horizontal dashed lines indicate boundaries of trust ; the vertical dashed lines indicate
boundariesof resource isolation. It can be seenthat someportions of the Core { such asthose
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dealing with data-path activit y { are directly accessibleto user sessions;untrusted code may
call them directly, possibly resulting in a direct call to the Runtime. The majorit y of the Core
code executesin the System Sessionand thus is not directly accessibleto the user sessions;
such separation may be achieved using a heap isolation technique such as that described in
Section5.5. Hencethis portion of the Core must be accessedthrough the inter-sessionservices
described in Section 5.6.

It can be seenthat each user sessionhas created an instance of either the PLAN [Hicks99c]
or ANTS [Wetherall98] execution environments, or both. Note that although multiple ses-
sions are using each EE, these instantiations are operating independently and without QoS
crosstalk, sinceresourcescheduling occurs in the Runtime, below the level of the EEs.

5.2.2 Securit y

When opening up a node to permit the execution of untrusted code, security is clearly an
important concern,with two important aspects that needto be considered.

The �rst aspect is that the server may not trust the code supplied by remote users. Therefore,
the server must restrict the abilit y of the user-supplied code to interfere with the code or
data of the server or of other users. Such restriction takes two forms: restricting the basic
operations { at the language/instruction level { that the user's code may perform (discussed
in Section 5.2.3) and restricting the higher-level servicesthat may be accessed.
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To identify which servicesa client is authorised to access,someform of security and trust
management framework is required. Rcane does not mandate any one particular security
framework, and detailed discussionof such is beyond the scope of this dissertation. Possible
frameworks suitable for specifying and implementing security policies in a programmable
network environment are presented in [Blaze99, Hayton96, Hicks99b].

The secondaspect of security that needsto be consideredis that the \un trusted" mobile code
may itself not trust the server. The server has total control over the environment in which
the mobile code executes;the server is at lib erty to examine or corrupt any of the client's
code or data, and can adversely a�ect the execution of the client's code. Once the code is
executing on the server the results of an attempt to verify the credentials of the server cannot
be trusted.

A possibleway to get around this problem is for the algorithms and data usedby the client's
code to be encrypted in someway; thus the server executesthe algorithms, but has no way
of understanding what the client is actually doing. This is similar in principle to the Chinese
Room Argument presented in [Searle80], in which a personcarries out a set of instructions to
manipulate Chinesesymbols, in order to take part in a (written) dialogue in Chinesewithout
understanding either the questionsor the answers. [Sander98] discussesmechanismsthrough
which a client's code may provide itself with limited protection against a malicious server,
and [Karjoth98 ] presents a protocol by which a mobile agent's owner may detect alterations
made by a malicious host to information gathered from other hosts; however, it is not clear
whether these approaches can be extended to provide a general protection mechanism for a
client's code.

Therefore, a tenet of the Rcane architecture is that the client supplying the code trusts the
server executing the code { this is similar to the requirement in the current Internet that
hosts trust the routers in the intervening network path, and does not preclude the use of
end-to-end encryption on sensitive portions of the payload that are not neededwithin the
network. Mechanisms for establishing such trust are beyond the scope of this dissertation.
An example of an active network architecture in which establishment of mutual trust is a
fundamental principle is given in [Alexander98c]. [Bos99]presents an interface through which
roaming agents may establish such trust.

Security of a client's data whilst the data is travelling over a network to/from an Rcane node
is to someextent the responsibilit y of the client. Rcane doesnot specify any secrecy, integrit y,
or authentication mechanisms for network 
o ws. Rather, it provides low-level accessto the
network over which the client may layer any desired security mechanisms before ultimately
processingthe data received in a network 
o w.

5.2.3 Code Safety

Since an active node is expected to execute untrusted code, there needsto exist a layer of
protection betweeneach principal and the node, and betweenmultiple independent principals.

One approach to such protection is to utilise the memory protection capabilities of the node's
hardware. Each principal's code will executewithin its own addressspace. This allows the
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execution of programs written in arbitrary languagesand compiled into native code. The
virtual machine and interfacesprovided to permit a principal's code to interact with the node
and with other principals on the node may take several forms.

The server may present a virtual machine that emulates the real machine [Goldberg74,
Bugnion97, Creasy81]or provides a trap-based interface to a well-de�ned kernel interface.
Advantagesof theseapproaches include the fact that arbitrary optimisation techniques may
be employed by the prinicipal supplying the code in order to improve e�ciency of execution.
Disadvantages include the cost of context switching between multiple protection domains,
and the storageoverheadsassociated with maintaining each domain.

An alternativ e is to require principals' code to bewritten in a typesafeand veri�able language.
Such languagesprevent the programmer from circumventing the type systemof the language
by treating an object/v alueof onetypeasthough it had a completely di�eren t type. Moreover,
programs are either supplied in sourceform or (more usually) compiled to someintermediate
form2 that the server can be con�dent respects the type system of the language. This allows
much of the protection checking to be done statically at compile or load time, and allows
much more lightweight barriers between principals. In particular, it means that untrusted
code may be safely executed in the sameaddressspaceas the Rcane runtime system, and
interactions betweenprincipals can be made almost as e�cien t as a direct procedurecall.

The constraint of veri�abilit y requires principals to supply code in one of three forms:

� Veri�able bytecode. This may be executedby an interpreter without further checks, or
converted into native code by a just-in-time compiler.

� Unveri�able bytecode or scripts that must be run by an interpreter with dynamic check-
ing. This is likely to run substantially more slowly than veri�able bytecode; however,
the startup costsof such code will be lower than that of code that must be veri�ed.

� Proof-Carrying Code: native code, with a proof that the code respects the typing and
the interfaces provided by Rcane [Necula98]. Proof-carrying code requires the client
to generateand prove extensive veri�cation conditions, to demonstrate that the code
respects the interfaces provided by the host. These proofs can grow exponentially in
the sizeof the code being proved safe.

Hybrid forms are possible; for example in Java bytecode, someinstructions (such as certain
dynamic casts) have to be checked at runtime, while other parts of a Java program can be
compiled to native code and run without checking.

A major advantage of using bytecode is that in a heterogeneousnetwork it removesthe need
for principals to supply native code speci�c to the architecture over which the node is running.

Executing bytecode is somewhatslower than executingnative code; however, the performance
improvements available when clients supply native code are limited for two reasons:

2 It is quite possible for multiple sourcelanguagesto compile to the sameintermediate form (as has occured
with Java bytecode [Gosling95a]), and thus such an approach need not overly restrict the freedom of the
programmer.
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1. Just-in-Time compilation [Cramer97] (JIT) techniquesallow a bytecode sequenceto be
converted into equivalent machine code at runtime, potentially providing performance
at the same level as that obtained from unsafe code. (For code that is migrating
frequently , the overheadof JIT-compilation may be wasted, since the code will not be
heavily executedat any one node { the techniques proposedin [Harris98] may be used
to permit user-control of such compilation).

2. Code provided as part of the system is trusted, and hencemay be fully compiled to
e�cien t native code when the system is created/installed. If the set of servicesand
libraries provided by the node is su�cien tly encompassing,most execution time will be
spent in thesesystem libraries, and the e�ciency of the user-suppliedcode will be less
relevant.

Three other possibilities for supplying safecode were consideredbut rejected:

1. Software Fault Isolation (SFI) [Wahbe93]would provide a guarantee that the applica-
tion was not able to accessobjects to which it did not have any access;however, it
would be unable to guarantee that the application respected the type safety of objects
within its heap. This would result in Rcane being unable to store any data within
the application's heap, nor trust the validit y of abstract objects passedto and from
Rcane interfaces. Furthermore, [Seltzer96] relates that the runtime checking overhead
associated with SFI can be very expensive for data-intensive code.

2. Code could be certi�ed by the compiler as being a true and valid compilation of a
program written in the safesourcelanguage. Such an approach has two drawbacks:

� It requires all programmers to use the same trusted compiler, or else requires a
trusted party to check the validit y of third-part y compilers and produce certifying
versionsof such. The useof veri�able code has no such requirement, sinceanyone
may produce a compiler that generatesveri�able code.

� Unless a small set of trusted authorities provide a \signed compilation" service
through which all programsmust be sent beforebeing deployed in a programmable
network, it would be necessaryfor the trusted compilers to be distributed to end-
users. In this situation it would be di�cult to prevent reverse-engineeringof the
compilers to retrieve the cryptographic keys used for code certi�cation. This is
shown by the caseof the DVD Content Scrambling System (CSS). CSS is an en-
cryption systemintended to prevent the playback of DVD �lms by unlicencedpro-
grams; the keys required to decrypt the per-disk key (which in turn could decrypt
the media content on the disk) were embeddedin licencedviewer programs. Since
the viewer programswererun in a hostile environment (i.e. a systemcontrolled by
an end-user) the keys were relatively easily retrieved through reverse-engineering.

Any malicious user who gains accessto the keys may sign arbitrary (possibly
invalid) programs. The use of veri�able code does not su�er from this drawback,
sincethe code can be veri�ed on its own merits, without requiring any special key
embeddedwithin the compiler.
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3. Code could be certi�ed as being provided by a trusted source(rather than, as in the
previous item, veri�ed code from an inherently untrusted source). This removes the
needfor protection, but instead relies on the owner of the node trusting every user who
may wish to executecode on the node3. In an open network this requirement is likely
to be unsatis�able.

For the reasonsgiven above, Rcane is oriented towards a node supporting the execution of
veri�able bytecode or proof-carrying code; however, many of the principles guiding the design
of Rcane could be applied to a systemthat permitted the execution of arbitrary native code.

5.2.4 Mo dules

The unit of code linkage in Rcane is the module. Each module exports a (possibly empty)
interface, and imports a set of interfaces from other modules. An interface is a strongly
typed set of functions and values. Multiple modules may export di�eren t implementations
of the sameinterface. Each implementation module and interface also has a code signature,
generatedfrom a securehash of the bytecode making up the module, or the types speci�ed
in the interface, to enablereferencesbetweenmodules and interfacesto be rapidly resolved.

The form taken by modules and interfaceswill depend on the safelanguagebeing employed.
In the caseof Java, a module may map to a Java class;in Caml [Leroy97] a structure would
be usedfor a module, and a signature would represent an interface.

5.2.4.1 Linking and Binding

Linking is the operation of intro ducing a new module into the system. In a system using
hardware protection, there is typically no needfor any veri�cation by the systemwhen a user
loads and links new code. In a system using software protection, however, it is necessary
that the systemcan verify that the module is safeto execute,using techniquessuch as those
described in Section5.2.3. Such veri�cation will involve checking that all of the new module's
imports can be resolved by existing modules, and that the code in the module respects the
typesystemof the languageand the typesof the imported interfaces.

To accessthe elements of a module's interface, a sessionmust be bound to that module.
Binding to a module instantiates the module into the namespaceof the requesting session.
Sessionsmay bind to modules either by presenting the desiredbytecode to the system (thus
simultaneously performing the linking and binding steps),or by referring to the codesignature
of the desiredmodule4.

3 It is important to bear in mind that just becausethe owner trusts the code signers, it doesnot mean that
he trusts those whosecode has been signed { the signature only serves to identify the author of the code, and
does not verify that it is safe.

4When referring to a module by its code signature, the module must have been previously loaded into the
system, possibly by a di�eren t sessionor at system initialisation.
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Binding may be explicit { as a direct result of a user request { or it may be implicit, called
recursively to satisfy the imports of another module that is currently being bound. During
binding, the module's functions and data are initialised sothat the interface exported by that
module may be usedby other modules in the samesession.

5.2.4.2 Privilege

Somemodules may have particular privilege levels associated with them. This may be the
caseif:

� the module allows unsafeaccessto the underlying Runtime,

� the module allows manipulation of important node state, or

� if the module contains proprietary algorithms that are not intended to be publicly
accessible.

Such privilege may be expressedin various ways. An implementation of Rcane may represent
privilege on a simple scale from \no privileges" to \full privileges", or more complicated
capability-basedmodels such as that proposedin [Hicks99b] may be used.

A module's privilege levels a�ect linking and binding:

Binding: When binding, the sessionrequesting the bind must have su�cien t privilege to
bind to the desiredmodule.

Linking: When linking, the sessionintro ducing the newmodule must havesu�cien t privilege
to bind to all of the module's imports.

5.3 CPU Managemen t

This sectionpresents the abstractions usedby Rcane to provide accessto the CPU(s) on the
node. The thread model was originally proposedin [Menage98b]and subsequently adopted
in a modi�ed form by the Activ e Networks NodeOSspeci�cation [Peterson00a].

Rcane 's CPU management abstractions are structured so as to allow sessionsto split their
tasks betweenmultiple scheduling classes,control the level of concurrency used for di�eren t
sets of tasks, and to service those tasks e�cien tly . Three important abstractions employed
are:

1. A virtual processor5 (VP) represents a regular guaranteed allocation of CPU time, ac-
cording to somescheduling policy (e.g. EDF [Liu73] or WFQ [Demers89]). All activities

5For those familiar with the NemesisOperating System, over which the protot ype of Rcane is based, this
abstraction is distinct from the normal Nemesisnotion of a VP.
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Figure 5.4: The Rcane CPU management architecture
Each VP represents a CPU allocation; thread pools permit events to be routed to worker

threads.

carried out within a single VP share that VP's CPU guarantee. A sessionmay have
one or more VPs; by requesting multiple VP's, a sessionmay organise its tasks into
multiple independently-scheduled classes.

2. A thread is the basicunit of execution,and at any time may be either runnable (working
on computation), blocked (e.g. on a semaphore,or awaiting more resourcesto become
available) or idle (in a quiescent state, awaiting the arrival of further work items).

3. A thread pool is a collection of one or more threads. Each thread is a member of one
pool. A thread pool acts asa queueingand dispatch point for packets and events. Each
pool is associated with a particular VP; its threads are only eligible to run when its VP
receivesCPU time.

Figure 5.4 shows an example of the CPU management architecture usedby RCANE. There
are two VPs shown. VP 1 contains a single thread pool, with a single thread. CPU time
reserved for VP 1 will be consumedby the singlethread, processingevents placedin the event
queueof VP 1's thread pool (seeSection5.3.1). VP 2 contains two thread pools; thesethread
pools contain two and three threads respectively. The CPU time reserved for VP 2 will be
sharedbetweenthe threads contained in the VP's two thread pools.

The choice of scheduling algorithm used to select between the thread pools (and threads)
within a single VP may be left to the application itself6 { unlike the top-level scheduler used
to selectbetweenVPs, there is no requirement that it be capableof supporting reservations or
�ne-grained scheduling. Sinceall the CPU time being consumedis accounted to the session,it

6The application may be restricted to choosing a scheduling algorithm from a set de�ned by the provider
of the Rcane node and implemented in unsafe code within the Runtime. Alternativ ely, the node may employ
extensible virtual machine [Harris99] or proof-carrying code [Necula97] techniques to permit an application to
schedule its own threads in a safe manner.
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may choosea simple scheduler that is e�cien t to run but which givesno particular guarantees
to threads, or it may choosea more complex scheduler to satisfy somepolicy for sharing its
CPU allocation betweenits di�eren t tasks.

5.3.1 Events

Each thread pool has an associated event queue. An event represents a callback into one of
a session'sfunctions. Events may be placed into the queuein two ways:

� An event may be requestedto occur after a given delay. For example, a thread may
specify that the (user-de�ned) handleTimeout() function be called with a given pa-
rameter in 100 milliseconds time. By default, an event requested in this way is sent
to the thread pool in which the thread is running, but the user may specify that the
event be sent to a spec�ed thread pool, or to the default thread pool for a speci�ed VP
belonging to the user's session.

� When a packet is received on one of a session'snetwork channels(seeSection 5.4), it is
turned into an event that will invoke that channel's processingfunction { speci�ed by
the application { with the contents of the packet as an argument to the function.

Whenever a thread pool's event queue is non-empty (either due to newly arrived packets,
or delayed events whose timeouts have passed)idle threads in the pool will be dispatched
to processthe events in the pool's queue. When a running thread has �nished its task, it
is dispatched to processthe next event from the event queue if the queue is non-empty, or
returns to the idle state if the pool's queueis empty.

This hybrid thread/event model allows sessionsa great deal of 
exibilit y in how they map
their work onto threads. Traditional multi-threaded programming may be performed, at
the expenseof an increasedamount of memory required for thread's stacks and greater ef-
fort on the part of the programmer to avoid concurrency bugs. Alternativ ely, by using the
continuation-passingstyle of programming that is promoted by events, a single thread might
be bound into a pool, serving multiple tasks consecutively from the sameevent queue,and
thus reducing the amount of stack memory used, but with less concurrency. The level of
concurrency allocated to a particular task is directly controlled by the number of threads
attached to the task's thread pool.

This 
exibilit y is extended to the level of CPU reservations. If a sessionhas two tasks of
the sameimportance to perform then a single CPU reservation (i.e. a single VP) may su�ce.
If however, a sessionhas multiple tasks to perform, multiple VPs may be appropriate. For
example,an application that is processinga network video stream, with packets arriving every
20ms and requiring 0.5ms to process,and which is also performing housekeepingprocessing
that should not be permitted to interfere with the network processing,may chooseto allocate
two VPs { one with a 0.5ms slice of CPU time every 20ms of real time, for the network
processing,and another with a less �ne-grained guarantee for the periodic processing. A
databaseserver that wishesto provide servicesto multiple clients simultaneously may bind
several threads into a pool to which incoming packets are directed.
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5.4 Net work I/O

Accessto network 
o ws is essential to allow mobile code to communicate both with its original
sourceand with the other resourcesin the network with which it wishesto interact.

Rcane allows sessionsto open channels to give accessto network resources.A channel is a
simplex or duplex 
o w of packets to and/or from the network.

Each channel that is capable of receiving packets has associated with it a demultiplexing
speci�cation (to selectthe incoming 
o w of packets to be directed to that channel) and a VP,
which is usedfor RX protocol processingon that channel.

One of the signi�cant sourcesof QoS crosstalk in a traditional operating system is the net-
working stack. In particular, the use of kernel threads to perform protocol processingcan
make it di�cult to correctly account the resourcesconsumedby a particular 
o w, and can
lead to livelock situations7 [Druschel96].

To prevent crosstalk betweenthe network activit y of di�eren t clients, all packets are demul-
tiplexed to their receiving pools by the Runtime using a packet �lter. Protocol processing
is not performed on packets before demultiplexing. Each channel contains a FIFO queueof
received packets { if this queue�lls up, subsequent packets arriving for that channel will be
discardeduntil such time as spacebecomesavailable in the queue.

At a later time, when the VP associated with the channel is eligible to receive CPU time,
protocol processingoccurs:

1. The packet is removed from the channel's packet queue.

2. Any required processingsuch as defragmentation or checksum validation is performed.

3. If speci�ed by the application, further demultiplexing into sub-
ows may be performed,
basedon the value of speci�ed key �elds within the packet data.

4. The contents of the packet are encapsulatedin a callback event to the function speci�ed
for the particular 
o w or sub-
ow. Incoming packets for each thread pool are stored in a
per-pool packet queue. This is conceptually part of the per-pool event queuedescribed
in Section 5.3.1. However, in order that the timely delivery of events to a client is not
compromised by a 
o od of incoming packets for that client, events in a pool's event
queuehave priorit y over packets in that pool's packet queue.

The time required for this protocol processingis entirely accounted to the VP associated
with the channel, and thus to the sessionthat opened the channel. Thus even a session
that is receiving large amounts of network data will not be able to interfere with the level
of resourcesreceived by other sessions. Moreover, if a sessionis receiving more data than
it can e�ectiv ely process,excesspackets will be dropped at the bottom level of the system,

7Liv elock occurs when little or no useful work is performed processingreceived data, as the system is too
busy processing(and throwing away) more incoming data.
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rather than consuming excessive bu�er resources,or causing needlessprotocol processing
to be performed before the packet is ultimately dropped. Ideally, such packet �ltering and
discardingwill beperformedin an intelligent network card [Pratt97, Pratt00 ], to avoid wasting
any CPU cyclesor bus bandwidth on data that is ultimately discarded.

An application may associate each 
o w or sub-
ow with a particular thread pool. The callback
event constructed by the protocol processingis placed in the packet queuefor the speci�ed
thread pool. This allows di�eren t logical 
o ws of packets to be processedby di�eren t thread
pools, possibly running in di�eren t VPs to give better QoS isolation between the di�eren t

o ws.

This network architecture allows each sessionfull control over decisionssuch as whether au-
thentication is used{ and if so,what kind { for packets on a given 
o w. For non-authenticated

o ws, a sessioncan specify a function that processesthe packet's payload immediately; should
authentication berequired, the session'sfavouredauthentication routines may be invokedwith
the relevant authentication data from the packet. Other protocol layers such as reliabilit y,
ordering and fragmentation may similarly be composedas required.

A sessionmay request a guaranteed allocation of bu�ers for receiving packets from a given
network device. Incoming packets demultiplexed to the sessionwill be accounted to this
allocation, and returned to it when packet processingis completed. Packets for sessions
without a guaranteed allocation are received into bu�ers associated with the Best-E�ort
session.Thus, although such sessionscan receive packets, they will be competing with other
sessionson the node.

Similarly, a sessionmay request its own allocation of guaranteed transmissionbandwidth and
bu�ers for a speci�ed network device,or may usethe transmissionresourcesof the Best-E�ort
session.

Figure 5.5 shows an example con�guration of the Rcane network architecture. SessionsA
and B have each opened a single channel to a network interface. Incoming network frames
are demultiplexed in the network packet �lter and placed in the appropriate channel FIFO
(or dropped if that channel is full). These frames are not processedfurther until the client
VP associated with that channel receivesprocessingtime.

In the caseof SessionA, no further demultiplexing is performed, and after protocol processing
(which is accounted to sessionA's VP), the frames' payloads are placed on the packet queue
for sessionA's thread pool. In the caseof sessionB, the protocol demultiplexing delivers
packets to one of two thread pools, each of which has its own CPU guarantee. Such a
setup might be used when a client is performing two activities, both of which require large
amounts of CPU time and one of which involves processingvery few packets. For example,
one activit y might involve processinga network data stream, and the other may involve
performing computations, directed by a low-bandwidth stream of control packets from the
end-user. Rather than set up a separatechannel for each activit y, the client may decidethat
any crosstalk intro ducedby the additional multiplexing and demultiplexing of the few packets
from the secondactivit y into a single channel is small, and that the reservation costs of a
secondchannel would be too great. Any crosstalk causedby this decision will be internal
to the client, and will not a�ect other clients. Hence Rcane allows clients to make such
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Figure 5.5: The Rcane network architecture

decisionsbasedon their own criteria.

Packet transmission is similar to that for reception, with link-level frames being placed in
an outgoing FIFO8. A transmit scheduler takes packets from the FIFOs according to the
reservations made by clients, and sendsthem out over the network.

5.5 Memory

As described in Section 3.3.2, the memory managed by Rcane falls into �v e categories:
network bu�ers, thread stacks, dynamically-loaded code, auxillary data structures, and heap
memory.

Network bu�ers (discussedin Section5.4) and thread stacks are accounted to the owning ses-
sion in proportion to the memory consumed.The chargesincurred for keepingcode modules
in memory are likely to be basedon a system speci�c policy (e.g. it may be the casethat
linking to a commonly usedmodule would be lessexpensive than loading a private module).
Techniques for accounting for auxillary data structures were presented in Section 3.3.2.5.

8Proto col processingon the TX side is not shown in Figure 5.5 due to lack of space.
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Heap memory presents more challenges. Safe languagesthat permit dynamic allocation of
memory have to ensurethat pointers cannot be used after the memory to which they refer
has been freed { such a pointer is known as a dangling pointer. Since the memory refer-
encedby a dangling pointer may have beenreusedfor a di�eren t type of object, it represents
a potential violation of the safe typesystem. To avoid dangling pointers, a garbagecollec-
tor [Wilson92] (GC) may be employed to ensurethat no memory block is freed while pointers
to it remain in existence.

The heap memory architecture employed by Rcane must therefore provide a garbagecollec-
tor; in order to meet the aims of isolation and accountabilit y, it should support the following
features:

� E�cien t tracking of the memory usageof each session.

� Prevention of crosstalk betweensessionsdue to GC activit y.

� Abilit y to revoke referencesfrom other sessionswhen a sessionis deleted.

Three di�eren t possibleapproacheswereconsidered,shown in Figure 5.6 and described in the
following sections.

5.5.1 Multiple Virtual Mac hines

The traditional approach to providing isolation betweenmultiple applications is to run each
application in a separatevirtual machine in a separateOS process. Most virtual machines
assumethat only one user is using the machine, even if parts of the code being executedare
not trusted to have full accessto the system. By allowing each VM to run independently , we
preserve the validit y of this assumption. This provides a good level of isolation, since each
application's accessto resourcesmay be controlled by the OS; however, using multiple VMs
has certain drawbacks:

� Communication betweendi�eren t applications is made considerably more di�cult.

� Sharing of VM data structures and code is not straightforward; for traditional native
applications, code sharing is e�ected by sharing text segments when they are loaded
from disk. In an environment such as Rcane , where code is supplied over the network,
and potentially transformed into native-code using JIT techniques, more complicated
strategieswould be required, involving co-operation betweenVMs to identify and coa-
lescesharedcode pages.

� It is less scalable due to the overhead associated with a new process(both in terms
of cyclesrequired to create the process,and system and user memory required for the
process).
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5.5.2 Single Tagged Heap

This approach usesa single garbage collected heap (and a single virtual machine) for all
applications. Each memory block is taggedto indicate which application allocated that block.
Whenever a block is allocated, the sizeof the block is added to the tally for that application.
When a block is garbagecollected, the owning application's tally is decremented. Use of a
single heap may reduce the amount of wasted empty space,by permitting the application
of statistical multiplexing techniques to reduce the total amount of memory required on the
node.

There are �v e signi�cant drawbacks to the single tagged heap approach:

1. If pointers are permitted to be passedbetweendi�eren t applications, then one applica-
tion may retain a pointer to objects allocated by another application. This may result
in blocks of memory that are no longer held by the allocating application (and thus
ought to be garbagecollected and decremented from the application's tally) remaining
live. Thus the application is no longer in charge of its own resources.
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Furthermore, if the allocating application exits or runs out of resources,there is no
way to free the memory that it allocated, without creating a dangling (unsafe) pointer.
This could lead to the situation where a seriesof malicious clients each create a session
to allocate large amounts of memory and make referencesto this memory available to
other (possibly innocent) sessions.When these sessionsexit (and henceare no longer
charged for resources)it may be impossibleto free the memory thus allocated.

One possiblesolution to this problem would be to specify that sessionsare held (jointly)
responsible for any memory that can be reached from their heap roots. However, per-
forming such analysis is expensive; moreover in the scenariopresented above, the result
would be that unwary clients could end up footing the bill for the storageallocated by
other sessionsand stored in placesaccessibleto them.

2. Garbagecollection incurs a processingoverhead,in order to locate unreachable memory
objects and return them to the free memory pool. With a single heap, there is no
straightforward way to account the CPU time required for garbagecollection activit y
to applications in proportion to the amount of activit y for which they were responsible.

3. Even when other applications do not retain pointers to memory blocks owned by an
application that exits, it is still not possibleto e�cien tly free the application's memory.
Since all memory blocks are mixed together in the heap, with no partitioning on a
per-application basis, it is necessaryto trace through the object graph of the exiting
application in order to identify and freeits memory. Thus, unlessCPU time is devoted to
such a task immediately when an application exits, the blocks owned by an application
persist as garbagefor someperiod of time after that application's sessionis destroyed.

4. If oneapplication causessigni�cant heapfragmentation (either through maliceor through
lack of knowledge of the node implementation's heap layout) then the useful memory
available for all applications may be severely reduced9.

5. There is an overhead in the form of the application tag on the front of each memory
block. In the caseof a languagesuch as ML [Milner97] that makesheavy useof small
immutable memory blocks, such tagging would add substantial overhead to the total
heap memory usage.

The JResproject [Czajkowski98] madeuseof a singletaggedheap. JResusedbinary-rewriting
techniques to causeall memory allocations to also call a routine to increment the current
thread's allocation total; object destructors weresimilarly rewritten to decrement the thread's
allocation. Apart from problems due to the example implementation being written mostly in
Java with little support from the JVM 10, associating allocations strictly with a thread can
causeproblems if a user wishesto have multiple threads co-operate.

9This drawback applies only to Mark/Sw eepgarbagecollectors { using a Stop/Cop y collector would remove
the problems associated with memory fragmentation.

10 Byzantine behaviour in destructors could cause the memory allocations to be decremented before ob-
jects were actually garbage collected, thus allowing users to consume more memory than was actually being
accounted to them.
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5.5.3 Multiple Indep endent Heaps

A hybrid approach is to make use of a separate heap for each application, within a single
virtual machine. This facilitates accounting for each application's usageof memory, sinceit is
only necessaryto track the amount of memory reserved for that application's heap, regardless
of whether that memory is free, live, or garbage.

It also makes it possible to account the CPU time required for garbage collection to each
application, sincegarbagecollection can be scheduled along with ordinary execution for each
Rcane session.

 Heap/Session A  Heap/Session B 

Heap block Legal pointer
(intra-heap)

Illegal pointer
(inter-heap)

Heap roots

Figure 5.7: Dangling pointers causedby inter-heap references

When using multiple independent heaps, it is essential that referencesbetween objects in
di�eren t heapsbe prevented. If such inter-heap referenceswere to exist, the type-safety guar-
anteesprovided by the useof a safelanguagecould be broken, asdemonstrated in Figure 5.7:
the heap belonging to sessionA contains a referenceto an otherwise unreferencedobject in
sessionB's heap. Since the garbage collectors are independent, B's collector will consider
the referencedobject to be garbage,and return it to the freelist. This will leave a dangling
pointer from A's heap; if this location is later reusedfor a di�eren t object, the typesystem
will be violated and arbitrary behaviour may occur.

Such inter-heap referencesmay be prevented either statically (by preventing accessthrough
the type-safety of the language) or dynamically (at runtime). Dynamic prevention requires
that every time a referenceis written to a �eld of a heap object, a check is performed to
ensure that the heap of the source and destination objects is the same. The Conversant
project [Bernadat98] implemented a dynamic checking system in Java, and experienced a
15% overhead on writes when using interpreted code, and a 55% overhead when using JIT-
compiled code. Ka�eOS [Back00] used similar checks, adding 25{41 cycles to the cost of a
write (excluding cache e�ects).
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In a type-safelanguagepointers may not be generatedarbitrarily , and may only be obtained
by allocating an object on the heap or reading an existing pointer from a variable. Thus
if each sessionbegins with pointers only to objects in its own heap, and the Runtime does
not permit pointers to be passedunsafely between heaps, there is no way for a malicious
programmer to generatean inter-heap reference{ he can only allocate a new object (in the
local heap) or accessa pointer already stored in a heap object (which is guaranteed to be a
referenceto an object in the local heap). Thus the property that no inter-heap references
exist is maintained, and requires no overhead for runtime checking. However, it does make
communication between di�eren t sessionsmore expensive, since values must be copied by
Rcane from one heap to another.

A secondreasonfor choosing static rather than dynamic inter-heap referenceprevention is
due to the overheadassociated with root tracing. When garbagecollection occurs for a given
heap, an important part of the collection activit y involvestracing all the roots11 of the heap
to provide a initial set of live heap objects. If static inter-heap referenceprevention were
not employed, it would be possible for threads executing in one sessionto have pointers in
their stacks which referred to objects in other heaps. Thus, all stacks in the virtual machine
would need to be traced to check for roots when garbage collecting any heap. This is an
unsatisfactory solution for two reasons:

� The time (accounted to the client owning the heap being collected) required for the
root tracing part of garbagecollection would increasewith the number of threads in the
entire system, reducing scalability and contributing to crosstalk betweensessions{ the
amount of GC work done by a sessionwould be dependent on the number of threads
created by other sessions.

� When performing root tracing on a thread's stack, it is necessaryto suspend execution
of that thread. This is becausewrite barriers12 are (usually) not usedon stack locations
due to the substantial overheads that would be incurred on every write to a stack
location.

Thus, dynamic referenceprevention would result in all threads on the systembeing sus-
pendeddue to garbagecollection activit y in other threads. This would causesubstantial
jitter in the CPU QoS received by sessions,reducing the isolation betweensupposedly
independent sessions.

Conversant [Bernadat98] provided a separateheap for each user application. Static members
of classesin the system heap were accessible{ when permitted through standard Java ab-
straction mechanisms{ to untrusted code; this required that garbagecollection of the system
heap causedroot tracing (and hencesuspension) of all threads in the system, since any of
them might have pointers to system heap objects on their stacks. Furthermore, Conversant
tagged every object with the identi�er of its heap, leading to increasedstorage usage. The
J-Kernel [Hawblitzel98] simulated multiple heaps in Java by requiring all accessesbetween

11 Roots are non-heap objects such as static variables, registers, and stack locations, which may contain
referencesto heap objects.

12 A write barrier is a synchronisation proto col between the garbage collector and the mutator (heap user)
to ensure that concurrent garbage collection is performed correctly. For more details see[Wilson92].
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di�eren t clients' data structures and objects to be through special capability objects. Invo-
cations on these objects causedparameters to be marshalled from the client domain to the
server domain in a similar way to Rcane 's service calls described in Section 5.6; however,
all threads in the J-Kernel execute in a single heap, so while some desirable properties of
heapseparation { such as the abilit y to revoke servicesand terminate sessions{ are achieved,
other properties such as accounting for memory usageand preventing GC crosstalk are not
straightforwardly realisable.

5.5.4 RCANE memory architecture

The Rcane memory architecture is basedaround the single virtual machine, multiple heaps
solution. Each sessionis given its own independent heap. The maximum reserved size for
this heap may be con�gured by the session,by requesting a particular sizefrom the Core.

An incremental garbagecollector { which processesa small portion of the heapeach time it is
invoked, rather than processingthe entire heapin a single invocation { is employed to prevent
excessive interruptions to execution. Such a property is essential to prevent the unpredictable
nature of garbagecollection from causing clients to miss their deadlines. Each sessionmay
tune the parametersof GC activit y { such as frequencyand duration of collection slices{ in
order to trade o� responsivenessagainst overhead.

Charging is basedon the sizeof the reserved memory blocks that comprise the heap, rather
than the amount of live memory within those blocks, simplifying the accounting processand
more accurately re
ecting the load placed on the system'smemory by each client.

Associated with each heap is a set of threads that may have referencesin their stacks to
objects within that heap. The threads in this set are those that must be suspendedin order
to perform root-tracing on the heap. Conversely, associated with each thread is a set of
heapsto which it has access.A thread gains accessto a heap when it invokesa service (see
Section 5.6) and losesaccessto that heap when it returns from the serviceinvocation. Thus,
the set of threads associated with a session'sheap is generally a (non-strict) superset of the
set of threads created by that session.

5.6 In ter-Session Services

As described in the previous section, in the Rcane architecture each sessionexecutesin its
own private heap. Thus pointers between di�eren t clients' sessionsare not permitted, with
the e�ect that communication between code executing in di�eren t sessionsthrough direct
procedurecall is not possible.

In many casesthis doesnot present a problem; sinceRcane aims to avoid sharedservers on
the data path, and instead to executedata-path code (such as network protocol processing
code) in the context of the sessionwhich is requestingsuch activit y, such isolation is actually
desirableas it simpli�es the provision of guaranteed accessto node resources.
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In somesituations, however, it may be necessaryor desirable to communicate with applica-
tions or servicesrunning in other sessions:

� When talking to the System sessionto request a change in reserved resources,or to
make useof servicesprovided by the System session(such as default routing tables).

� As described in Section5.2.1.2,EEs in Rcane are treated as libraries to be instantiated
by a client's session. Some EEs may have a requirement to maintain state shared
betweenmultiple instancesof an EE on a node, implying the need for communication
betweensessions.

� Somesessionsmay wish to export servicesto other sessionsrunning on the node (e.g.
extendednetwork routing tables, or accessto proprietary data or algorithms).

In each of these cases,code executing within one sessionrequires a way of interacting with
code or state within a di�eren t session. Such interaction could be implemented by a client
sessionwith no extra intervention on the part of Rcane by sendingnetwork packets through
a loopback network interface to another session.

The principal drawback of such an approach is ine�ciency . A secondarydrawback is the loss
of type-safety.

A more e�cien t and type-safesolution may be provided with support from the Rcane Run-
time layer. Such support can draw on previous research into RemoteProcedureCalls (RPC),
traditionally betweentwo processesexecuting in di�eren t hardware protection domains (pos-
sibly on distinct computers).

5.6.1 T yp es of RPC

RPC facilities may be provided in two main ways: messagepassing and thread tunnelling.
In [Lauer79] it was proposedthat thesetwo methods are duals of each other13, and that they
can be made equivalent in performanceterms provided that the underlying primitive system
operations are equally e�cient in each case. However, the QoS guarantee requirements of
Rcane , combined with the lightweight context switch available through useof a safelanguage,
mean that the two styles of RPC communication are not necessarilyequally applicable. The
following sectionsexamineboth messagepassingand thread tunnelling in the context of the
Rcane architecture.

5.6.1.1 Message Passing

RPC betweentwo separatedcomputers, (as presented originally in [Birrell84]) requires mes-
sagepassing. The sequenceof events which occur during a messagepassingRPC is asfollows:

13 In fact the argument in [Lauer79] is expressed in terms of monitors ([Hoare73]) rather than thread-
tunnelling { however, a similar dualit y can be drawn betweena thread-tunnelling system and a multi-threaded
messagepassing system.
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1. The calling thread of execution in the client processmarshalsa procedurereferenceand
a set of arguments into a bu�er, transfers this bu�er in someway to the server process,
and blocks awaiting a reply.

2. A thread within the server processreads the procedure referenceand the arguments
out of the bu�er, and constructs a call frame to invoke the speci�ed procedure with
the supplied arguments. On return from the invocation the server thread marshalsany
results or exceptionsinto a reply bu�er and transfers it back to the client.

3. The client thread is unblocked, unmarshalsthe results, and returns to its caller or raises
an exception as appropriate.

Many traditional RPC systems{ both inter- and intra-machine { usemessagepassing[Birrell84,
Birrell93, Roscoe95].

5.6.1.2 Thread Tunnelling

The time taken to reschedule to the server, and then back to the client, can add signi�cant
latency to the time taken for a messagepassingRPC to complete. Furthermore, the server
may not be eligible to receive CPU time at the point of the invocation, increasingthe latency
further. Thread tunnelling14 [Wilk es79, Bershad90, Chase93] aims to reducethe latency and
synchronisation costs associated with messagepassingon a intra-machine call by switching
the calling thread into the protection context of the server. This avoids the overheadof calling
into the scheduler and waking the server thread. If the arguments are small (i.e. can �t within
processorregisters) it may be possibleto leave the arguments within the processorregisters
and avoid the marshalling step entirely , thus reducing the latency further.

Sincethe thread owned by the client is executing the server's code, it is necessaryto require
that the server not be permitted to perform certain operations on the thread, such as termi-
nating it. This can ensuredby preventing the server from obtaining a handle on the current
thread ([Hawblitzel98]), or by wrapping each servicecall segment in a conceptually separate
thread ([Ford94]).

5.6.1.3 Discussion

In [Roscoe95], it is argued that thread tunnelling is unsuitable for systemsseekingto provide
resourceisolation for the following reasons.

Increased crosstalk: If a thread hastunnelled into a server domain, it is no longer possible
for the client to be responsible for scheduling that thread (i.e. the system kernel must be
responsible for scheduling not only processes,but also threads within processes),reducing
the control that a processhas over the scheduling of its threads. This in turn may lead to

14 Thread tunnelling may also be referred to as thread migration.
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increasedcrosstalk should a processneed to schedule a thread according to an application
de�ned policy in order to meet a deadline.

In a system such as the original implementation of Nemesis,where each processhas only
a single CPU allocation, this criticism is valid; however, the architecture used by Rcane
permits each client to reserve multiple guaranteed allocations of CPU time, and makes it
straightforward for clients to assigndi�eren t activities to di�eren t CPU allocations.

Furthermore, there is a signi�cant source of crosstalk in a message-passingsystem that is
absent or attenuated in a thread-tunnelling system.

In order to provide useful QoS guarantees to its clients, each server must schedule the CPU
cycles consumedby its threads according to the priorities of the clients that are calling it.
This complicates the server substantially . [Ingram99] describes the implementation of an X
server to perform such scheduling under a soft-real-time Unix system. Previous work on the
Nemesisdisplay system (described in [Barham96] and extended by the author) found that
a restricted form of thread tunnelling provided accessto the framebu�er with both lower
latency and lower crosstalk compared to the earlier message-passingdisplay server, without
substantially a�ecting the abilit y of applications to control their own scheduling policies.
The thread tunnelling mechanismspermit each client to be accurately charged for the CPU
cycles15 consumedon its behalf in the server.

Loss of control: Separately from issuesof scheduling, since the client is executing the
server's code, the server can control when the servicecall returns, and may (due to malice or
programming errors) fail to return to the client. In this situation, the client seesthe thread
ase�ectiv ely blocked, and thus cannot continue until the call returns. [Roscoe95]arguesthat
when using messagepassing, the client still has full control over its own threads, and may
continue with other processing,or decideto cancel the servicecall and raise an exception to
the caller. In a properly event-driv en and parallelised client, messagepassingdoesallow the
client to be relatively una�ected by a server failing to return. Experienceshows, however,
that many usesof messagepassingRPC treat it as a synchronous call, and hencewill block
until the server does return. Thus, provided that the thread-tunnelling mechanism provides
a way for the client to abort in the event of a call taking an excessively long time, message
passingand thread-tunnelling are little di�eren t in this respect.

Message passing can be pip elined: [Roscoe95]suggeststhat message-passingcan amor-
tise the overheadof a singlecontext switch over several RPC invocations, e�ectiv ely pipelining
requests. This approach has beenshown ([Black94]) to be e�ectiv e when the communication
being performed is in the form of bulk data transfer from client to server or vice versa, in
which caseclients have no needto block after each requestawaiting a reply. However, for tra-
ditional RPC, generating su�cien t outstanding invocations in the client to bene�t from such
amortisation would require that the client have a very large amount of inherent parallelism
available in its work to be exploited.

15 Note that if the server is being used to multiplex accessto a hardware device or other shared resource
where coarse-grainedsynchronisation may be required, such scheduling may still be necessary.
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A further problem with messagepassingis the availabilit y of server threads. When a message
passingRPC invocation is received by a server, it must be processedby a server thread.

This thread may be obtained in oneof several ways, each of which has its own disadvantages:

� The server may maintain a �xed set of worker threads to serviceall invocations on an
RPC binding (or set of bindings). Each thread servicesa complete invocation before
starting to servicethe next invocation (or blocking if no more work is available). In this
case,any invocation arriving when all worker threads are busy will wait until a thread
is free.

There are two main disadvantages with this approach. The �rst is that it becomes
an obvious source of crosstalk between applications { unless the server pre-allocates
su�cien t worker threads (most of which are likely to be sitting idle for most of the
time) clients with short deadlinescan block waiting for invocations on behalf of under-
resourcedclients to complete. The second is that in the presenceof recursive RPC
betweenseveral domains, it is possibleto enter a deadlock situation 16.

� The server maintains a set of worker threads (possibly just a single thread) and a set
of current invocations in various states of progress17. Each thread repeatedly requests
an outstanding invocation from the server's scheduler and performs a small amount of
work upon it.

Such an approach may be usefully employed in special purposeservers { such as event-
driven web servers{ wherethe likely properties of the requestare well-known in advance
and switching a thread between servicing di�eren t requests may be performed fairly
straightforwardly. This approach is not, however, particularly suited to the provision
of a generalpurposeRPC server; it is necessaryto structure each individual servicein
order to break requestsup into small chunks of work, each of which may be served in
a short amount of time without blocking. A further consideration is that the server
must employ someform of scheduler to decidewhich invocation each thread should be
working on at any given time; the disadvantagesof this are discussedabove, on page77.

� The server may fork new worker threads to service incoming requests(possibly main-
taining a cache of pre-forked idle threads up to somespeci�ed limit). This approach is
employed by many message-passingRPC systems, including [Birrell93]. It avoids the
crosstalkand deadlock problemsassociated with a �xed set of worker threads. However,
it incurs signi�cant additional overheadsdue to the costsof creating a new thread; such
costsmay also themselves intro duce additional crosstalk.

Thesedrawbacks are removed by the useof thread-tunnelling. The thread is supplied by the
client, so no overheadis incurred in creating a new thread. The client has more control over
the level of concurrencyusedfor its operations within the server, and no lesscontrol over the
scheduling than if the thread was executing within the client's own session.

16 Such deadlocks have been regularly observed by the author within the system servicesin Nemesis.
17 States might include Arrived , Unmarshalled , Returned, Marshalled , Completed, aswell asservice-speci�c

states.
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For the reasonsgiven above, Rcane employs thread tunnelling to provide inter-sessionser-
vices. It should be noted that while Rcane and Nemesisboth seekto provide QoS in their
RPC services,a major architectural di�erence between them is that clients within Rcane
are separatedthrough software protection, whereasNemesisuseshardware protection. This
results in the thread-tunnelling approach being somewhat more practical in Rcane than in
Nemesis.

5.6.2 Priorit y In version

Notwithstanding the arguments presented in the previous sections, thread-tunnelling is not
without potential pitfalls. One of the most obvious is that of priorit y inversion, identi�ed
in [Lampson80]. This can occur when a client thread with limited resourcesis executing
within a mutual exclusion region.

In a traditional systemusing priorities rather than guarantees,priorit y inversion may lead to
long-term starvation { if a high priorit y thread wishesto enter the mutual exclusionregion, it
must sleepuntil the low priorit y thread leavesthe region; in the meantime a medium priorit y
thread may preempt the low priorit y thread preventing the high priorit y thread from making
further progress. In a system providing guarantees, long-term starvation due to priorit y
inversion is less likely since even a low-priorit y task can be guaranteed a certain level of
accessto CPU resources.However, priorit y inversioncan still createsituations in which tasks
with �ne-grained guaranteesare held up due to an under-resourcedlow-priorit y task spending
a long period of time within a mutual exclusion region18. This situation should not arise to
the samedegreein a message-passingserver { provided that the server itself has su�cien t
resourcesguaranteed to it that it is not starved by other applications { but it should be noted
that any system that combines the provision of resourceguaranteeswith mutually exclusive
accessto sharedresourceswill su�er from similar problems.

[Lampson80] proposespriority inheritance as a solution to the problem of priorit y inversion:
whenever a thread holds the lock on a mutual exclusionregion, it runs with the highestpriorit y
of any thread waiting to enter the region. A similar approach is proposedin [Waldspurger94]
using the transfer of lottery scheduling tickets. This solution is lessapplicable to a system
using resource guarantees rather than priorities, since it could result in one client being
charged for resourcesconsumed by the server code whilst doing work done on behalf of
another client. Two possiblealternativ esare:

� Allow the server to \underwrite" a thread within a critical section with a resource
guarantee of its own.

This will enablethe server to ensurethat whilst in the critical section, the client thread
receives at least a given level of resources;thus the server may bound the crosstalk
causedby the mutual exclusion on the critical region.

� Permit the server to detect a client with a small resourceallocation, and either (a) raise
an exceptionto the client, or (b) block the client thread until the schedulercanguarantee

18 In the caseof a malicious (rather than simply resourcepoor) client, such situations may even be deliberately
engineered.
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that it will be able to completely executethe critical region without preemption. Such
a mechanism is usedin Rialto [Jones97]to provide dynamic real-time guarantees.

This solution potentially results in lessoverheadwithin the scheduler; however, it can
result in under-resourcedclients never gaining accessto the critical region.

Rcane employs the �rst of thesesolutions to limit crosstalk in inter-sessioncommunication,
due to its straightforward and wide-ranging applicabilit y.

5.6.3 Recovery from Clien t Failure

A secondpotential problem with thread-tunnelling occursdueto the fact that sessionsrunning
under Rcane are charged for the resourcesthat they consume,and hencea session(and its
threads) may be destroyed if it exhaustsits resources.

If a server exits or is destroyed whilst a client is executing in a servicewithin that server, an
exception may be raised in the client's domain at the point where control passedfrom the
client to the server.

If a client exits or is destroyed whilst executing within a server, the situation is more com-
plicated. Since the server's code is being executedon the client's thread, and that thread is
being destroyed, the server must be given a way to recover gracefully from the destruction
of the thread. If the server is manipulating sharedstate at this point, simply destroying the
client thread may leave the server's data in an inconsistent state. Various strategiesto allow
such recovery are possible:

Unin terruptible sections: PERC [Nilsen98]de�nes extensionsto Java that allow a block to
be marked asatomic { such a block is guaranteed not to be preemptedby the scheduler
or asynchronous exceptions. However, atomic sections are restricted in the type of
code that they may contain, and their execution time must be statically analysableand
below a certain threshold. Such an approach may not be practical for servers that make
non-trivial manipulations of sharedstate.

Rollbac k events: Since Rcane uses a garbage collected heap for each session,it is not
necessaryfor the server to explicitly free any memory allocated whilst servicing the
client. However, it is necessaryfor the server to be able to roll back any changesbeing
made to shareddata structures.

A possiblesolution would be to permit the server to specify a rollback event at the point
of entering a critical regionwhilst servicinga client call. The rollback event encapsulates
the actions that the server must perform in order to restore the invariant of the critical
region. Should it happen that the client thread is destroyed whilst still in the critical
region, the rollback event is posted to the thread pool speci�ed by the server (with the
critical region lock still held); the server's thread then executesthe recovery actions and
releasesthe critical region lock.

The use of rollback events is applicable to the most simple critical sections, where it
is possible to wrap up a set of actions to restore the critical section's invariant. It is

81



lesssuitable for more complex critical sections, particularly if interactions with other
sessionsor the network, etc., occur during the section.

Transaction logging: The useof transactions [Gray93] in databasesystemsand distributed
systemsto provide the ACID 19 properties has beenheavily researched. Each set of op-
erations on shared state is packaged up into a transaction. Upon completion of the
transaction, the operations are committed or aborted as a single group; if the transac-
tion is aborted, then its e�ects are undone and will never be seenby other concurrent
processes20.

In [Seltzer96], the use of transactions was proposed for untrusted kernel extensions{
calledgrafts { in the VINO operating system. Grafts areexecutedsafelythrough the use
of SFI [Wahbe93]. All accessesfrom grafts to regular kernel state are through accessor
functions. The accessorfunctions both implement policy on accessto kernel state, and
push undo functions on to a stack associated with the transaction. If the transaction is
aborted, theseundo functions are called to reversethe e�ects of the transaction.

The useof a transaction mechanism for dealing with the unexpected abort of clients is
similar semantically and in complexity to the use of rollback events, although it shifts
the burden of implementing the rollback mechanism from the servers on to any services
that those servers might invoke { thus any server that might be called as part of a
transaction would be required to implement undo functions.

Backup threads: An alternativ e possibility is to allow the server to specify a \backup
thread" when entering the critical region. In the event that a client thread is destroyed
within the critical region, the state of that thread may be transferred to the backup
thread, which continuesfrom the point where the client thread was destroyed.

This approach has several advantagesover the useof rollback events and transactions:

� It removesfrom the server the potentially complicated requirement of structuring
its critical regionssuch that the region's invariant can always be restored using a
rollback event.

� It is likely to be cheaper in the common case.The overheadof assigninga thread
to be usedasa backup is likely to be a small and constant cost comparedwith the
overhead of building a rollback event or transaction { since the vast majorit y of
serviceinvocations are expectedto completesuccessfully, this suggeststhat backup
threads will typically be more e�cien t. Also, the action of specifying a backup to
be usedin the event of failure may be optimised in the Runtime, whereasallocating
a rollback event will needto be server speci�c.

� Although crosstalk may be causedif no backup thread is available when entering
a critical region, the server may bound the level of such crosstalk through prudent
allocation of sets of backup threads to sets of critical regions. Furthermore, the
fact that a critical region is already an inherent sourceof crosstalk suggeststhat
any additional crosstalk e�ects may not be severe, and should be no worse than
that experiencedon a transaction-basedsystem.

� It may beintegrated with the resourcebackup mechanismdescribedin Section5.6.2.
19 Atomicit y, Consistency, Isolation and Durabilit y.
20 Weaker forms of transaction semantics are possible, and may be appropriate in somecircumstances.

82



For the reasonsgiven above, Rcane usesbackup threads to support recovery from client
failure in inter-sessionservices.

5.6.4 RCANE Services

As discussedin Section5.6.1,Rcane usesa form of thread-tunnelling betweendi�eren t heaps
to provide e�cien t and 
exible inter-sessionservices.The remainder of this section presents
further details of the Rcane inter-sessionservicearchitecture.

Servicesexported from one sessionto another are represented as closures(functions with as-
sociated state). To a client or a server, the serviceinvocation appearsto be a normal function
invocation. However, since the client and server are using di�eren t heaps, the Runtime is
required to provide support for transferring parameters from the client to the server, and
copying results back from the server to the client.

As in many traditional RPC systems,a singleserviceinvolvesboth client-side and server-side
data structures. The client-side handle contains information required for marshalling between
the two heaps,and a referenceto the server-sideexporter. The exporter contains a reference
to the real function that implements the service and a table of handles that other sessions
hold for this service.

A serviceinvocation normally involvesthe following steps in the Runtime:

1. Check that the servicereferencein the handle has not beenrevoked (seeSection5.6.5).

2. Add the current thread to the list of threads that have accessto the server's heap.

3. Copy parameters to the service invocation into the server's heap. Since the Runtime
hasdirect accessto both heaps,there is no needto marshal the parametersinto a bu�er
and then out into a data structure in the server's heap { this copy may be performed
directly. This step may be omitted if the parameters are small enough to �t within
registers.

4. Make the server's heap the primary heap of the current thread. This ensuresthat
memory allocations made during the courseof the service invocation use the server's
heap.

5. Invoke the underlying function.

6. Make the client's heap the primary heap of the current thread.

7. Copy the results from the server's heap to the client's, as in step 3.

8. Remove the current thread from the list of threads with accessto the server's heap.

9. Return the results to the client.

Any work carried out by the server during the invocation is performed using the client's
thread, and thus accounted to the client's CPU allocation. Figure 5.8 shows the Service
interface provided for creation and manipulation of services.
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type � ! � service

type � ! � handle

type permissions = Private | Sharable

type memlimit = int

type copyInfo = Tree | Graph

type reclaimInfo = Retained | Collected

type serviceAttr = permissions * memlimit * copyInfo * reclaimInfo

exception Revoked

exception Aborted

( � ! � service * � ! � ) create (func : � ! � ; attr : serviceAttr);

� invoke (s : � ! � handle; parms : � ; timeout : time);

void destroy (s : � ! � service);

void release (s : � ! � handle);

( � ! � handle) get handle (wrapper : � ! � );

Figure 5.8: The Service interface

� create() takes a \normal" function and returns a service descriptor and a service
function { invoking a handle referencing the returned service will cause the session
switch described above. Thus invoking a serviceappears to the client to be the same
as invoking an ordinary function.

Other parameters to create() specify:

{ Whether the servicemay be passedaround betweendi�eren t clients, or may only
be passedbetweenthe server and clients.

{ The maximum amount of data to be copied when invoking the service.

{ Whether the parameters to the function are in the form of a tree or a graph
(allowing optimisations to be made when copying).

{ Whether the servicereferenceis weak or strong. A weakly referencedservicewill
be garbagecollected (and revoked) once no pointers to it remain in the server's
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session,whereasa strongly referencedservicewill persist while oneor more clients
retain handleson it.

The memory limit passedto the create() function allowsserversto prevent DoSattacks
by clients. Without such a limit, a client could e.g. passin a very long list as a service
argument and causeexcessive amounts of the server's memory to be allocated. Ideally,
the server would be able to inspect the data before it was copied, but this could result
in untracked pointers from the server's heap to the uncopied data in the client's heap.

� invoke() makes a service invocation as described above. invoke() is not generally
needed,since when a client makes a normal invocation on a service the Runtime will
causethe service invocation to take place. However, invoke() gives the client greater
control over the execution of the serviceinvocation than is possiblethrough the normal
closure interface. The current speci�cation allows the client to specify a timeout, after
which period the Runtime will abort the service invocation and drop back into the
client. This allows a client to prevent a server from stealing its threads. Other client-
side control over the invocation could be added to future versionsof the interface.

� destroy() allows a server to withdraw the servicecontrolled by the given servicede-
scriptor. Clients attempting to invoke the service in future will experiencea Revoked
exception.

� release() allows a client to releasea handle on the given service.

� get handle() allows a client to obtain the service handle from a service closure, in
order to call invoke() or release() .

During both the invocation and return copying phases,the Runtime notes when a copied
value is itself a service, and createsa new reference(or reusesan existing reference)to the
sameservice,which is available in the destination session.Servicescan thus be passedfrom
sessionto session.Server-speci�ed policy can limit such copying to allow additional control
over which sessionscan utilise a service. The copy-by-referencenature of servicesalso allows
large data structures to be split in a natural way using servicesof type unit ! � , to avoid
excessive data copying.

The abilit y to passservicesbetween sessionsis roughly equivalent to the capability passing
used by the J-Kernel [Hawblitzel98] to pass object referencesbetween threads in di�eren t
protection domains. J-Kernel protection domains consist of disjoint set of objects in a single
heap,achieving similar functional isolation to Rcane but without the QoSisolation provided
by independent garbagecollectors.

Service passing is also similar in semantics to { although substantially more lightweight
than { the interface passing performed by RPC systems such as CORBA [OMG98], Java
RMI [Sun98] and Network Objects [Birrell93]. It di�ers from the explicit binding architec-
ture usedby the standard NemesisIPC implementations and traditional RPC systemssuch
asSUN RPC [SUN88]in that servicesare implicitly bound to when clients import them; how-
ever, the Service.get handle() operation allows a client to accessthe underlying handle of
a service,permitting explicit control if so desired.
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5.6.5 Abnormal Termination

It is expected that almost all Rcane service invocations will �nish normally, by returning
a result to the client. However, there are certain exceptional conditions that Rcane must
handle should they occur:

Uncaugh t server exception: If an exception is thrown by the code executing in the server,
and this exception is propagated out of the service invocation without being handled,
the exceptionmust be trapped by the Runtime. The Runtime is responsible for copying
the exception (along with its parameters,if any) back to the client's heap. Such copying
occurs in the sameway as with normal service results. Once the exception has been
copied to the client's heap, it may safely be thrown by the Runtime (in the client's
session)to the client's exception handling code.

Serv er rev okes service: It is important that servers are able to revoke servicesthat they
have previously o�ered to clients. To this end, Rcane provides the Service.destroy()
function, which a server may call on any servicethat it has created.

Service.destroy() marks all client handles for a given service as revoked, ensuring
that further invocations by thoseclients will fail with a Revokedexception. Thus, when
starting a service invocation, Rcane must check whether the client's handle still con-
tains a valid servicedescriptor; if the descriptor is no longer valid, a Revokedexception
must be raised to the client. Calls that are in progressat the time that the service is
destroyed are aborted and the calling threads are returned to their originating sessions.

Ab orted in vocation: Rcane allows clients to abort invocations (perhapsdue to a timeout,
or due to no longer requiring the results of an invocation). If such an abort occurs,
processingwithin the server invocation must halt, and the thread of control returns to
the client. Execution continueswith an Aborted exception being thrown, to inform the
client that this invocation was aborted.

If at the time the abort occurred, the server was executing in a critical section and had
registered a backup thread (seeSection 5.6.2) the execution state of the client thread
must be transfered to the server's backup thread. The backup thread may then be used
to allow the critical region to complete safely. Once the critical region has completed,
the backup thread may be released.

Clien t thread destro yed: The client thread may be destroyed during the course of the
service invocation { possibly due to the client calling Session.exit() , or the client's
sessionbeing terminated due to exhaustion of its resources.

In this situation, the behaviour on the server side is similar to that when the invocation
is aborted { from the server's point of view it is irrelevant whether the client aborted
the invocation or was destroyed. Behaviour di�ers on the client side { since the client
thread no longer exists, it is not necessaryto raise an Aborted exception; rather, the
resourcesassociated with the client thread may be simply releasedor recycled.

Serv er exits: In a similar fashion to the previous case,the server may be destroyed during
the course of the service invocation. If this occurs it is equivalent, from the client's
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point of view, to the server revoking the service { thus a Revokedexception is raised
to the client. Sincethe server resourcesare being destroyed, there is no requirement to
transfer thread state to backup threads that may have been registered by the server;
these threads, along with the sharedstate that such threads protect, will be destroyed
at the sametime.

In each of these cases,Rcane must ensure that the integrit y of the system is not compro-
mised by the abnormal termination; furthermore, sincesuch terminations are expected to be
rare comparedto successfulinvocations, they should not adversely a�ect the performanceof
successfulinvocations more than is necessary.

5.6.6 Service Mo dules

In order to passinterface referencesasparametersor results of an RPC call, it is necessaryto
be able to \b ootstrap" a client by providing a handle on an initial serviceor set of services.
From these initial services,the client may obtain further references.This bootstrap may be
performed in various ways:

� Using a trader with a well-known address,and allowing clients to lookup servicesby
name. This method is usedby Modula-3 Network Objects [Birrell93] and Nemesis.

� Using a shared �lesystem to store \stringi�ed" referencesto services,which may then
be retrieved by clients. This method is used by many CORBA implementations, such
as OmniORB [ORL97]21.

� Providing a system-generatedhandle to a bootstrap service. This method is more
applicable to intra-machine servicesthan to a fully distributed system. Nemesisprovides
newly createdprocesseswith a pre-generatedconnectionto the systemBinder (a service
which is usedto create further connectionsto other servers).

Rcane utilises the module space to provide a bootstrapping method that is similar to a
trader. Somemodulesmay be speci�ed at load time asService Modules. In general,a module
exports a collection of functions in its interface. In the caseof a servicemodule, all of these
exported functions must themselves be services. When a client in a di�eren t sessionlinks
against the service module, handles for the servicesexported by the module are created in
the client session.Invoking an operation on one of thesehandlescausesa serviceinvocation.

A servicemodule may have either shared state or per-client state. A shared servicemodule
is initialised once,when it is created by the server. When clients link against it, the handles
that each client receives all refer to the sameset of services. Thus it is suitable for services
that have no particular security requirement on them, or which are only called from trusted
clients.

21 Some CORBA ORBs, including OmniORB, also now support a well-known trader [OMG ] { however,
practical experience has shown that use of a shared �lesystem is often more straightforw ard and reliable.
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For a per-client servicemodule, a new interface is created each time a fresh client binds to it
{ the collection of handles in the interface that is returned to the client refer to the closures
thus generated. Thus the server may embed state that is speci�c to each client within these
closures.Per-client servicesallow a server to revoke servicesfor speci�c clients.

5.7 Accoun ting and Accoun tabilit y

SinceRcane separatesout the activities for each client, and usesresourcesaccounted to each
sessionto perform these activities, it is possibleto accurately calculate the amount of each
resourcethat a sessionhasconsumed.This allows the owner of a node to charge the end-user
responsible for the session;without such charging abilit y, it is di�cult to seehow it would be
practical to provide programmable servers in a network. Charging a 
at rate for accessto a
node would be likely to result in substantial contention for the resourceson the node { current
network protocolssuch asTCP are designedto throttle back their usageof the network when
they experiencecongestion,but enforcing such a requirement on the code supplied by users
of an Rcane node would be impractical other than by explicit scheduling.

5.7.1 Pricing and Charging

Pricing and charging policies will be system dependent. They are likely to be a�ected by
the resourcesavailable at the node, the location of the node (and hencewhether it is well-
connectedto other computing resources)and the 
uctuating demand from the remote users.

Resourcescharged for directly should include:

� Creating and maintaining a session.

� CPU guaranteesrequested.

� Actual CPU usage.

� Memory (heap, bu�ers, stacks, code, auxillary structures).

� Network reservations

� Network bandwidth transmitted and received.

Pricing policiesshouldalsotake into account the consumptionof resourcesthat are themselves
di�cult to account for directly. For example,aswell asconsumingraw CPU cycles,a running
thread will causethe processorto perform work in order to servicecache misses,TLB loads,
etc. Moreover, such activit y is likely to causeother threads to themselves experiencemore
cache misses,as they are forced to reload cache entries with their own data. Rcane 's use
of a single hardware protection domain and heavy sharing of code between sessionsmeans
that this problem is lesssevere than it would be when using multiple VMs, each in their own
process;however, it is still likely to lead to situations in which the activit y of one session
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may interfere with the QoS received by another session.Dealing with this problem is likely
to require support from hardware, or intricate layout of heapsin order to allow limits on e.g.
the amount of cache that may be usedby each session.Thesechargesmay be approximated
by charging more for activities (such asvery frequent guaranteed accessto the CPU) that are
statistically likely to be associated with such crosstalk-inducing behaviour..

Possiblepricing policies for resourcesare discussedin [Stratford99, Tschudin97b, Bredin98].
The actual billing may be accomplishedin one of several ways:

� The principal could be required to hold an account with the node provider; this account
would be debited directly with any usagecharges.

� A credit card account (or someequivalent) could be supplied at sessioncreation time {
the node provider could make chargesto this account.

� A digital payment schemesuch asMillicent [Glassman95] could be employed. In such a
scheme,cryptographically signedmoney certi�cates may be issuedto end usersthrough
the servicesof a broker, and presented to the node provider as payment for resource
consumption. For the reasonsto be outlined in Section5.7.2.2,digital cashthat can be
traced to a speci�c payer would be used, rather than untraceable \anonymous" digital
cash.

5.7.2 Dealing with Denial of Service A ttac ks

In addition to performing e�ectiv e resourcecontrol betweenmultiple, possibly greedy, clients,
Rcane must be capableof dealing e�ectiv ely with deliberately malicious clients who attempt
to commit denial of serviceattacks. TheseDoS attacks can be grouped into two main types
{ those against Rcane itself, and those launched from Rcane against other sites.

5.7.2.1 A ttac ks on R CANE

DoS attacks on Rcane could arise through malice. They could also arise due to buggy
programming, for example in the event that a user accidentally suppliescode that schedules
an inde�nite number of events, or 
o ods the network. Thus any action that could cause
consumption of limited resourcesshould be charged for { in this way, a denial of service
attack is e�ectiv ely transformed in a purchaseof service attack, and the attacker ends up
hurting only himself. SinceRcane employs strict resourcepartitioning, such attacks would
have no e�ect on any guaranteesmade to other clients.

In order for this to be practical, two properties are required of Rcane . Firstly , the system
must be developed such that any action that a user-suppliedprogram can take to consume
resourceson the node is charged for. Secondly, the system must be able to abort clients
whoseresourceshave been exhausted; this will prevent either a malicious or a buggy client
from carrying on a protracted DoS attack beyond the point at which the Rcane node owner
can be sure to receive payment. The architecture presented in this chapter ful�lls both of the
requirements, thus suggestingthat Rcane should be robust against DoS attacks.
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5.7.2.2 A ttac ks launc hed from R CANE

Recently , there have beenmany reports of \Distributed Denial of Service" attacks [CERT99],
in which large numbers of poorly-secured Internet hosts have been \enslaved" to 
o od a
particular victim { typically high-pro�le { site with packets, in order to overwhelm it and
prevent it from serving bona-�de customers. These hosts are typically enslaved through
exploiting unchecked overruns in �xed sized bu�ers, within server programs running with
root privileges; by sending appropriate strings to such servers it may be possibleto execute
abitrary root-privileged malicious code on the host. A secondform of attack that must be
consideredis one in which a malicious end-usermounts a cracking attack against a remote
host, in order to make unauthorised accessesor modi�cations to sensitive data (such ascredit
card details or trade secrets)or to defacea site's web pages.

The motivation behind Rcane of permitting the execution of untrusted user-suppliedcode
makes such attacks easier { it is no longer necessaryto exploit poorly written programs in
order to executeuser-suppliedcode on a node, as the system is designedpurposely to allow
such behaviour!

Both of these forms of attack may be very di�cult to distinguish from normal behaviour {
in particular, one of the features of the distributed DoS attacks that makes detecting them
di�cult is the fact that the load placed on each of the enslaved machines is not necessarily
abnormally high, and the e�ect is only seenwhen their streamsof packets merge,much closer
to the server. Thus we must conclude that detecting the launch of such attacks from the
Rcane node in real-time is in generalunlikely to be possible22.

Although it is impractical to detect and prevent such attacks, there are two factors that may
be usedto deter potential attackers. The �rst is that Rcane chargesfor resourceusage{ this
in itself would make including an Rcane node in a distributed DoS attack unattractiv e or
infeasiblein many cases.The secondand perhapsmore important factor is that Rcane needs
to keepa log of activit y in order to correctly chargeits clients for their resourceusage.This log
should be su�cien tly detailed to allow the node owner to trace back to an authenticated user,
in the event that Rcane has beenusedto mount a DoS or cracking attack on another host.
Without such a log, the node owner could be subject to criminal penalties for the activit y
carried out by the malicious end-user;the existenceof such a log would help to classRcane
node owners as \common carriers" (in the same way that ISPs are not held responsible
for attacks carried out over their networking services,since they can supply details of the
customer site connectedfrom a particular IP addressat any given time.)

The audit log should record, for any givenrecent point in time, which client owneda particular
local network endpoint (such as a UDP port). It is not necessaryto record such information
on a per-packet basis;however, it is necessaryto ensurethat a client cannot transmit a packet
with headerinformation indicating a port that the client doesnot own. Thus the transmission
packet �lters employedby Rcane are required to check any portion of the packet that is under
client control.

It may be observed that such an audit log could itself be used for the type of DoS attack

22 Note that it may be possible to use heuristics to detect certain common classesof attacks.
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againstRcane described in the previoussection;by repeatedly binding to and unbinding from
a network connection, a malicious application could causethe audit log to grow inde�nitely .
In this case,since the act of writing such an entry to the audit log will only occur when
a connection is opened or closed, the charge for creating the connection should take the
consumption of audit log resourcesinto account.

5.8 Summary

This chapter reviewed the fundamental principles required for the resourcecontrolled execu-
tion of untrusted code within a programmable network, and presented the architecture used
by Rcane , the ResourceControlled Activ e Node Environment.

The chapter openedwith a discussionof the architectural principles that underly the Rcane
architecture { namely that the resourcesused by each client in a programmable network
should be accounted to the correct consumer,and that the horizontal and vertical layering of
a programmable network node should re
ect this requirement.

An examination of the main computing resourcescontrolled by Rcane { CPU cycles,memory
and network bandwidth { followed, along with the abstractions presented to users of an
Rcane node to allow them to accessand control these resources. The interaction between
CPU guarantees,delayed events and incoming network packets was described.

A rationale for the use of an independent heap for each Rcane client was presented, and
the requirements for the Rcane inter-sessionservice architecture were examined, with the
conclusion that the lightweight nature of protection in Rcane suggesteda form of thread-
migration for communication betweenclients.

The chapter concluded with a discussionof issuesrelating to the accounting and billing of
remote users,and the prevention and detection of denial of serviceattacks.
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Chapter 6

Protot yp e RCANE Implemen tation

This chapter describesa protot ype implementation of Rcane , carried out in order to estab-
lish the feasibility of the architecture. It is an example implementation, and should not be
consideredde�nitiv e.

An overview of the implementation is given, with details of the languageand operating system
basesover which the implementation was developed. This is followed by discussionof some
of the features of these basesthat were found to be unsuitable for supporting the Rcane
architecture, and how thesede�ciencies were remedied.

The remaining sectionsof the chapter describehow the major parts of the Rcane architecture
were implemented.

6.1 Overview

The Rcane protot ype has been developed over the NemesisOperating System [Leslie96],
described in Chapter 4. Nemesiswaschosenas the baseplatform for Rcane for the following
reasons:

� It provides good support for low-level isolation of resourcesand Qualit y of Service.

� Its low-level protection boundaries allow better control over the resourcesavailable to
a program.

� The author has extensive experiencewith the principles and internals of Nemesis,and
has beeninvolved in development of the OS for several years.

As described in Section 5.2.1.1,Rcane consistsof four layers: the Runtime, the Loader, the
Core and loaded Modules.

The Runtime makes use of the Objective Caml interpreter [Leroy97] (OCaml) from INRIA
to provide a safe languageenvironment for untrusted code loaded by remote clients. Mod-
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i�cations were required to the OCaml interpreter to support multiple isolated heaps with
independent garbagecollection.

Other portions of the Runtime provide support for:

� The Rcane CPU management architecture, including real-time CPU scheduling and
support for threads, thread pools and events.

� E�cien t accessto NemesisI/O.

� Rcane inter-sessionservices.

� Low-level accessto sessioncreation and heap management, for accessby the Core and
the Loader.

The Loader contains the Rcane bytecode linker, as well as basic sessionmanipulation oper-
ations. It is contained entirely within the System session.

The Core provides an interface to client sessionsto allow them safeaccessto the resourceson
the Rcane node. Someportions of the Core executewithin the client sessionsthemselves.
These portions are those implementing facilities for which no accessto shared Core state is
required. Such facilities include:

� Safeaccessto features exported by the Runtime for CPU and event management.

� Data-path accessto network 
o ws, both on transmit and receive.

� Safeaccessto Caml extensionsprovided by Rcane .

Sinceuntrusted Rcane clients must supply code written in a safelanguage,it is not possible
for clients to corrupt or otherwise abusethe portions of the Core executing within the client
session.

Other portions of the Core, which do require accessto sharedCore state, executewithin the
System session.Theseportions include:

� Sessionmanagement routines.

� Control-path functionalit y for managing network devicesand 
o ws.

� The bytecode librarian.

In general,data-path operations such asgarbagecollection, network I/O and CPU scheduling
are implemented in native code in the Runtime for e�ciency . Most control path operations
(including bytecode loading and sessioncreation) are implemented in Caml in the Core for

exibilit y, safety, and easeof interaction with clients.
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The Best-E�ort sessionusesthe PLAN interpreter [Hicks98] to provide a limited execution
environment for unauthenticated packets, with PLAN wrappersaround the Session interface
to permit authentication and sessioncreation. Rcane interoperates with PLAN systems
running on standard (non resource-controlled) platforms, allowing straightforward control of
an Rcane system. Support for demand-loadedcode in the style of ANTS [Wetherall98] is
also provided.

Hooks are provided to allow a security framework to processcredentials and assignprivileges
to sessions.The focus of this implementation is on the safety, security and isolation of the
untrusted code itself, rather than on cryptographic authentication/authorisation and high-
level policies; therefore the default security model employed is very simple:

� Sessionsand clients are either privileged or unprivileged.

� The System sessionand the Best-E�ort sessionare privileged, and hencemay access
unsafecode sequencesand routines that managesystem state.

� Other sessionsand external clients are unprivileged, and may only executesafecode.

6.2 OCaml De�ciencies

OCaml is an implementation of the Caml dialect of ML [Milner97]. For the implementation
of Rcane , the compiler and interpreter from version 1.07 were usedas a base.

The decisionto useCaml was made for the following reasons:

� Caml has beenpreviously shown to be suitable for as a languagefor supporting mobile
code in active and programmable networks ([Alexander98a, Hicks99c]).

� Caml can be compiled to a compact bytecode that can be executed e�cien tly . The
OCaml compiler also supports compilation directly to native code.

� The OCaml VM is small (approximately 7000lines of code) and easily understood, sim-
plifying its integration with the resourcemanagement mechanismsrequired for Rcane .

� The OCaml VM is alsousedasan interpreter by other sourcelanguages,such asMoscow
ML [Romanenko99] { thus the choiceof VM doesnot restrict usersto a single language,
provided that they can generatebytecode modules that respect the typing rules of the
OCaml VM.

However, somefeaturesof Objective Caml 1.07were found to be unsuitable for implementing
Rcane . Where possible,thesede�ciencies have beenremedied. The de�ciencies fell into the
following areas:

� Thread model
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� Bytecode linker

� Confusion of interface and implementation

� Representation of exceptions

� Accessto unsafefeatures

� Just-in-time compilation

� Lack of bytecode veri�er

6.2.1 Thread Mo del

The default OCaml threading model has two implementations in the standard runtime li-
braries; neither implementation provides suitable support for QoS or for the event-driv en
processingmodel favoured by Rcane .

The Thread interface was replaced with one that supported the Rcane processingmodel.
The new version of the interface is shown in Figure 6.1. Further discussionof the operations
provided by this interface may be found in Section 6.3.

6.2.2 Byteco de link er

OCaml provides a simple dynamic linker that allows bytecode modules to be loaded into
the system. However, the facilities provided are insu�cien t to support generalisedloading of
mobile code.

The major de�ciency in the standard linker is that it only permits a single interface of a
given name to be available for dynamic linking at any one time. If a module is loaded,
any module exporting an interface of the samename (even if that interface has a di�eren t
signature) is hidden by the newly loaded module. Furthermore, the namespacefor locating
implementations is the sameasthe namespacefor specifying interfaces. This causesproblems
that will be discussedin Section 6.2.3.

Other de�ciencies include:

� The lack of abilit y to specify the particular versionof a given module against which you
wish your code to be linked.

� Poor support for obtaining details of the modules linked into the system.

� No support for loading modulesand then dynamically linking against symbols exported
from those modules.

� No support for multiple instantiations of the samemodule (required to allow multiple
client sessionsto each instantiate a given module in their own heap).

95



The abstract types used by the interface.
type thread
type vp
type threadpool
type event

Create a new thread to execute the given closure in the current thread pool, the speci�e d
thread pool or the speci�e d VP's default thread pool.
val create : ( � ! � ) ! � ! thread
val createp : threadpool ! ( � ! � ) ! � ! thread
val createv : vp ! ( � ! � ) ! � ! thread

Create a new idle thread in the current thread pool, the speci�e d thread pool, or the
speci�e d VP's default thread pool.
val make : unit ! thread
val makep : threadpool ! thread
val makev : vp ! thread

Create a new thread pool in the current VP or the speci�e d VP.
val pcreate : unit ! threadpool
val pcreatev : vp ! threadpool

Terminate the currently executing thread.
val exit : unit ! unit
Terminate the thread whosehandle is given.
val kill : thread ! unit

Return the thread currently executing.
val self : unit ! thread
Return the pool of the speci�e d thread.
val pool : thread ! threadpool

Causethis thread to go idle until more work is available for it.
val finished : unit ! unit

Suspend the execution of the calling thread for the speci�e d number of seconds.
val delay : float ! unit

Create an event to call the given closure in the current thread pool or speci�e d thread pool.
val event : float ! ( � ! � ) ! � ! unit
val eventp : threadpool ! float ! ( � ! � ) ! � ! unit
Cancel the speci�e d event.
val cancelEvent : event ! unit

Figure 6.1: The Thread interface
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Therefore, the bytecode linker was developed into a more generalisedform that permits:

� Multiple modules exporting the sameinterface, each of which is selectablefor linking
against dynamically.

� Multiple interfacesof the samename but with di�eren t signatures,which are automat-
ically selectedbetweenat link time, using the signature imported during compilation.

Further modi�cations were made to the linker to support multiple clients with independent
heaps,each of which may have a di�eren t set of modules instantiated in their session.This
work is described in Section 6.6

6.2.3 Confusion of in terface and implemen tation

The modi�cations to the linker described above permit multiple modules, each exporting the
same interface, to be loaded and available in the system; however, even with this scheme
it is not possible for any one module to link against multiple modules exporting the same
interface, due to the confusionof interface and implementation in Caml.

Such confusion (also observed in C++ [Stroustrup86]) occurs when a language makes no
distinction between an interface type { representing an abstract set of operations { and a
class { representing an implementation of oneor more interfaces,possibly sharing a common
state. This results in the useof abstract classesin C++ asa representation of interface types.
Caml su�ers from a similar problem { although Caml signatures provide e�ectiv e interface
types,the linking model usedby Caml makesit impossibleto have multiple implementations
of a given top-level interface type in the sameprogram.

To alleviate this problem, run-time dynamic linking (as opposed to the load-time dynamic
linking provided by the bytecode linker) was added to OCaml. A new abstract type con-
structor, dynspec (dynamic speci�cation), was added to the compiler. This may be used to
generatevaluesthat represent a particular method/v ariable in an speci�ed type of interface,
but with no speci�ed implementation 1.

For example, in the context of the Test interface given in Figure 6.2, a dynamic speci�er for
Test.number would have type int dynspec, and a speci�er for Test.print would have type
(string ! unit) dynspec. The compiler permits the textual nameof an interfacemember
to be usedas a constructor for its dynspec.

A function, getdyn() (get dynamic value) was added to the interface exported by the Core
to unsafeclients. By passinga dynspec and a referenceto a loaded module, the client may
obtain the member of that module's implementation speci�ed by the dynspec, provided that
the module does actually export the interface to which the dynspec refers. Thus by call-
ing getdyn(``Test.print'', moduleRef) { where moduleRef is a referenceto a previously

1These speci�ers are internally represented as a tuple of an interface name, interface typecode and o�set
within the interface
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An integer variable
val number : int

A simple function
val print : string ! unit

Figure 6.2: Test : a simple interface for demonstration purposes

loadedmodule { a client may obtain a referenceto the print function exported by that imple-
mentation of the Test interface, or receive an exception if the given module doesnot actually
implement the Test interface. Such dynamic linking facilities are not typically available in
ML.

6.2.4 Represen tation of exceptions

OCaml represents exceptionsas tuples consisting of a tag (the exception identi�er) followed
by the exeception'sparameters(if any). The tag is a referenceto a string containing the name
of the exception. When manipulating exceptions{ which in in Caml are �rst classvalues {
comparisonsaremadeby equality of referenceof the tags. For Rcane , comparisonby equality
is still valid within a singlesession.However, the multiple-heap architecture of Rcane requires
a separateinstantiation of each module usedby a session,in that session'sheap. Henceif an
exception is thrown acrossa serviceinvocation, such comparisonof exception tags by equality
is no longer valid { not only do the two di�eren t sessionseach have their own version of the
exception tag, but the deep copy of the exception value on an exceptional return from the
service invocation would create an exception with a new tag that was equal to neither the
client's nor the server's tag.

Three possibilities to remedy this were considered:

1. Compare exceptionsby value rather than by reference.

2. Add a special caseto the marshalling code, so that when copying an exceptional result
from client to server, the exception tag could be matched with the client's version of
the tag, and the correct version returned.

3. Alter the representation of exceptionsso that comparisonby equality was always valid.

The �rst solution, comparing exceptions by value, would add substantial overhead to all
exception matching operations.

While the secondsolution would su�ce for exceptionsraised directly acrossa serviceinvoca-
tion, the �rst-class status of exceptions in ML meansthat any data structure being passed
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as an argument or result may encapsulatean exception value. Thus the marshalling routines
would needto be generalisedto support such exceptiontranslation at any point in the copying
process. Such translation would be complicated and likely to be expensive, and would need
to be performed whenever an exception was raised acrossa service.

The third alternativ e{ altering the representation of exceptions{ waschosensinceit simpli�ed
the marshalling routines. The OCaml compiler was modi�ed to generate a di�eren t code
sequencein the initialisation code for modules, so that when an exception is de�ned, rather
than creating a string with the exception'sname(which wasthe original behaviour) it invokes
a routine in the Runtime to register the exception. The Runtime returns an atom2 for
that exception { exceptions are matched by module, exception name and position within
the module. This exception registration mechanism does intro duce a potential denial of
serviceattack from a module that registersa very large number of exceptions. Such attacks
are prevented by setting a limit on the number of exceptions that may be registered from
each module. More elaborate protection mechanisms would be possible,but have not been
implemented due to time constraints. The atom representing the exception may be passed
betweensessionswith no further need for translation. The Runtime also de�nes a primitiv e
operation for mapping an exception tag to its textual name. (Previously, the tag itself was
the name.) Such mapping is only required when reporting unhandled exceptions, and thus
the greater overheaddue to the indirection doesnot a�ect normal system performance.

6.2.5 Access to unsafe features

Although Caml is designedto be a safe language, the standard OCaml runtime library in-
terfacesinclude accessto unsafefeatures,such as marshalling and unmarshalling of arbitrary
data structures in a non-typesafemanner, and accessto array elements without boundscheck-
ing.

Following the principles suggestedin [Alexander98a], a module called Safestd was created.
Safestd exports each of the standard library modules (giving accessto abstractions such as
lists, arrays and hash tables) through thinned interfaces { i.e. only those elements of each
standard library interface that may be safely invoked by untrusted code are exported through
Safestd . An option wasaddedto the OCaml compiler to automatically bring the elements of
the Safestd module into the current namespacebeforecompiling a source�le, thuspermitting
existing OCaml code to be compiled to useSafestd without requiring sourcechanges.

6.2.6 Just-in-time compilation

To improve the execution performance of untrusted OCaml code, it would be bene�cial to
have a JIT (just-in-time) compiler [Cramer97] built in to the VM. A JIT compiler converts
bytecode into native machine code at runtime { such conversion may be performed at the
point of at which a particular function is �rst invoked, or it may be performed either earlier
or in the background [Harris98] to avoid increasingthe latency of execution.

2An atom is a shared system-wide integer identi�er for a particular entit y.
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No JIT compiler for OCaml 1.07 was available. A partial implementation of an OCaml JIT
compiler wasdeveloped asa proof of concept;a completeimplementation wasnot undertaken
due to time constraints.

6.2.7 Lack of byteco de veri�er

In order to guarantee that a loadedCaml bytecode module actually respects the de�nition of
the Caml language(and hencemay be safelyexecutedwithout needfor hardware protection)
it is necessaryto usea veri�er [Nipkow99]. The veri�er checks the execution structure of the
functions within the module, and ensuresthat the code does not perform illegal operations
such as:

� Dereferencingan integer.

� Accessingthe contents of an abstract data object.

� Branching to an invalid instruction.

� Accessingbeyond the limits of a heap object.

This may be performed through a data
o w-like analysis of the bytecode, assigningtypesby
inferencefor directly addressablelocations (such as the accumulator and the stack) at each
bytecode location, and ensuring that no clashesarise.

Currently there is no bytecode veri�er available for OCaml. However, the bytecode usedby
OCaml is su�cien tly similar in generalstyle to Java Virtual Machine Language[Gosling95a]
for it to be reasonableto posit that the sameprinciples used for constructing Java veri�ers
could be usedto create an OCaml veri�er. A designoutline for such a veri�er is presented in
Appendix A; this designhas not beenimplemented due to time constraints.

6.3 CPU managemen t

6.3.1 CPU Scheduling

CPU scheduling is accomplishedusing a modi�ed EDF [Liu73] algorithm similar to the At-
ropos algorithm described in [Roscoe95]. Each VP's guarantee is expressedas a slice of time
and a period over which the guaranteed time should be received (e.g. 300� s of CPU time in
each 40msperiod).

EDF is basedon a dynamic priorit y scheme. At any point in time, the runnable VP with the
closestdeadline { and which has guaranteed time remaining in its current period { is given
accessto the processor.

The scheduler maintains priorit y queuesof VPs in di�eren t states (Blocked with a time-
out, Runnable with no guaranteed time available, Runnable with guaranteed time available).
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These queuesare heap-orderedto allow the scheduler to scalewell with a large number of
VPs.

If none of the runnable VPs have guaranteed time remaining, the processoris shared out
fairly between the runnable VPs. The current scheduler walks along the queueof VPs that
are eligible for best-e�ort time and runs the VP that has received the least amount of best-
e�ort time sincethe most recent VP was created. The time required for this scanis linear in
the number of VPs and hencedoesnot scalewell. However, sincebest-e�ort time is only given
out when all guaranteeshave beenmet and slack time exists in the system, this ine�ciency
doesnot a�ect the enforcement of resourceguaranteesby Rcane . The choice of an optimal
algorithm for scheduling best-e�ort time is not consideredin this dissertation.

Whenever the Rcane scheduler is entered, the following sequenceof events occurs:

1. Unless the system was previously idle, the elapsed time since the last reschedule is
accounted to the previously running VP.

2. The next VP to be run is selected,and the period until its next preemption is calculated.
From this point onwards until the time that the next rescheduleoccurs,all work carried
out is on behalf of the new VP, and hencemay be accounted to it.

3. If there are packets waiting on the owning session'sincoming channelsthey are retrieved
and transferred to the appropriate pool's packet queues. (This is described further in
Section 6.5.) Any of the session'sidle pools that have pending events are marked as
runnable.

4. The next pool and thread to be run are selected. In the protot ype implementation,
scheduling between pools on the same VP and between threads in the same pool is
performed using a simple round-robin scheduler. Future work would include support
for client-specifedpolicy for pool/thread scheduling. Such support may permit selection
from a number of Rcane -provided policies, and/or the abilit y for a client to upload its
own scheduling policies in a safeway.

5. If the selectedthread is currently acting as a resourcebackup for another thread (see
Section 6.7.7), the backed-up thread is selectedinstead.

6. If the selectedthread is active in a heap that is currently in a critical GC phase(see
Section 6.4.2) then the thread carrying out the critical GC is selectedinstead, and will
run until the critical GC activit y has completed.

7. The selectedthread is resumed.

6.3.2 Events and Thread pools

As described in the previous section, Rcane ensuresthat individual VPs receive the CPU
guarantees that they request. Within a single VP, the scheduling is controlled by the client
through the useof events and thread pools.
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Each thread pool may be used to represent an activit y being carried out by the client. By
assigningthread pools to VPs, the client may control which activities have their own CPU
guarantees,and which are multiplexed with other activities being carried out by that client.
Assigningthreads to thread pools allows the client to control the level of concurrencyavailable
to each activit y. Events and incoming packet 
o ws may be directed to particular thread pools,
which correspond to the activities associated with those events and 
o ws.

For each pool, Rcane maintains a list of events, ordered by the activiation time for that
event, and a list of pending packets. If a pool has pending events or packets, and has any
idle threads (or if a previously active thread completesits processingtask), the next event or
packet3 is removed from its queue,and the callback function registeredby the client for that
event or packet 
o w is invoked. When the callback function returns, the thread selectsa new
event or packet if one is available, or elseenters the idle state.

6.4 Memory managemen t

6.4.1 Heap Managemen t

Each client in Rcane hasan independent garbage-collectedheap. In general,only the threads
belonging to a particular client will have accessto that heap. However, when a thread makes
an inter-sessionservice invocation (see Section 6.7), it gains accessto the heap belonging
to the exporter of the service. To prevent the possiblegeneration of dangling pointers (as
described in Section 5.5.3), Rcane is required to ensurethat two properties always hold in
the system:

� No untrusted routine may have accessto objects in more than oneheapsimultaneously.

� Every thread that has accessto a particular heap must have its stack included in the
root-tracing activit y for that heap.

The former property is required sincethe garbagecollectorsin separateheapsare independent,
and are unable to follow inter-heap pointers. Thus an untrusted routine with accessto objects
in multiple heapsmay be able to store an inter-heap pointer in oneof the objects. The latter
property is required since the stacks of threads accessinga heap must be counted as roots
of that heap. This could be trivially satis�ed by tracing all threads' stacks when garbage
collecting any heap; however, not only would this lead to unnecessaryGC overhead,it would
also causesubstantial crosstalk betweensessions(as is shown in Section 7.4).

To preserve such safety whilst maintaining performance, the protot ype implementation of
Rcane maintains a collection of heap records. Each heap record denotes a segment of a
thread's stack that may contain roots into a particular heap. Theseheaprecordsareorganised
into two orthogonal data structures:

3Events are given priorit y over packets to allow events to be delivered as closeas possibleto their scheduled
time.
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Figure 6.3: Example con�guration of heapsand threads

� For each thread: a stack of heap recordsgiving the heapsto which it has access.

� For each heap: a list of heaprecordsgiving the threads which have accessto it. This list
can be usedto obtain the set of stack segments that must be scannedwhen performing
root-tracing for that heap.

Figure 6.3 shows a possiblecon�guration of threads and heaps. Thread 1 is executing purely
within sessionA, and hasstack referencesonly to objects within A's heap. Thus its stack will
only be used as a sourceof heap roots when garbagecollecting sessionA's heap. Similarly,
thread 3 is executing purely within sessionB's heap. Thread 2, however, has heap records
linking it to two heaps. It belongs to sessionA, and hence has a heap record linked into
heap A; having called through a serviceexported by sessionB, thread 2 may also have stack
referencesto objects in heap B; thus it also has a heap record linked into heap B. When
thread 2 returns from the service invocation, the heap record linking it to heap B will be
removed from its stack of heap records.

Heap recordsare added and removed from the thread stacks and heap lists in two ways:

� Whenever a thread makesan inter-sessionservicecall, it is switched into the heapof the
server. Section 6.7 describes how heap records are added and removed during service
invocation.
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� Routines running in the Runtime, the Loader and the Core are trusted and may switch
heaps when accessto a di�eren t heap is required (such as when creating a session,
copying objects betweenheaps,or initialising a module for a session).

The interface used to control heap switching is the same for both trusted Caml code and
service invocations. The push heap() function pushesa heap record on to the heap stack
of the current thread and links the samerecord on to the thread list of the heap to which
accessis being gained. From this point onwards, the thread will be included in garbage
collection activit y on the new heap, and hencemay safely accessobjects within that heap.
The pop heap() function performs the reverseof push heap() , popping the heap record at
the top of the current thread's heap stack and removing it from the heap's list of accessing
threads.

A referenceto the currently active heapis madeavailable to the trusted portion of the virtual
machine { this referenceis an l-value, and hencetrusted code executing in the virtual machine
may switch heapswithout the expenseof making a function call into the Runtime. (Prior to
this, push heap() should have beencalled on the heap being switched to.)

6.4.2 Garbage Collection

The garbage collector is based heavily on the OCaml collector { the fundamental garbage
collection algorithm usedis unchangedfrom that usedby OCaml 1.07.

Each sessionhas its own independent two-generationheap. The younger generation (minor
heap) is collectedvia Stop/Copy into the older generation. The older generation(major heap)
is collected with an incremental Mark/Sw eepalgorithm. Most allocations are made from the
minor heap, but native code in the Runtime may allocate large objects { or objects that are
expected to be long-lived { directly in the major heap.

[Doligez93] describes the GC algorithm used by Concurrent Caml Light (CCL), a di�eren t
dialect of Caml that sharesmany characteristics with Objective Caml. The two-generation
schemeand shading invariants usedin the CCL collector are the sameas in Objective Caml.
The CCL collector di�ers in that it provideseach thread with its own minor heapand requires
regular synchronisation between the garbagecollector thread and the mutators { since each
Rcane client has only a single heap, theseconcurrent portions of the CCL GC algorithm are
not relevant to Rcane .

If wewish to avoid using a write barrier on stack locationswhen tracing the roots of a session's
heap, it is necessaryto suspend all threads that might accessthat heap. To ensurethat all
appropriate threadsaresuspendedduring such critic al GC activit y, the heaprecordsdescribed
in Section 6.4.1 are usedto allow such suspensionto be performed easily and e�cien tly .

The top heap pointer on each stack is the thread's active heap, indicated through the use
of a �eld in the heap record. (For brief periods of time, such as while transferring control
betweentwo sessions,a thread will actually have both of the top two heapsmarked asactive.)
Whenever critical activit y is being carried out on a heap, all threads that are active in the
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heapare suspended,other than to carry out the GC work. Such suspensionis implicit { since
there may be many threads active in a heap, actually suspending and resuming all threads
in order to perform a small amount of root tracing would be excessive. Instead, if a thread's
active heap is in a critical GC phasewhen a thread is scheduled to run, execution is instead
diverted to the thread performing the critical GC activit y, in order to complete the critical
phaseas quickly as possible.

The majorit y of the Mark/Sw eep activit y can be carried out without halting any of the
threads. Currently a portion of Mark/Sw eep activit y is carried out after each collection of
the young generation. The amount of work done in each Mark/Sw eep phasemay be tuned
by the sessionowning the heap.

Tracking the threads that have accessto each heap minimises the number of threads' stacks
that must be traversedto identify roots, and prevents QoS crosstalk betweenprincipals that
are not interacting. Additionally , a thread executing a servicecall in a di�eren t sessionneed
not be interrupted (possibly whilst holding important server resources)due to critical GC
work in its own heap. Since no pointers to the client's heap can be carried through to the
server, the (untrusted) code running in the server cannot accessthat heap. Furthermore,
any pointers to objects in the client's heap that are stored in enclosingstack frames will not
be accesseduntil the thread returns from the service, since Caml does not permit dynamic
scopingof identi�ers 4. Thus a thread neednot be suspendedin order to perform root tracing
on heapsto which it has accessbut in which it is not marked as active. If a thread becomes
active in a heap in which critical GC activit y is being performed (such as when invoking or
returning from a service) it is suspendeduntil such activit y has completed.

The majorit y of GC activit y is not classedas critic al { one thread may be performing
Mark/Sw eep activit y on a heap concurrently with other threads accessingobjects within
that heap. A write barrier is usedon heap objects to ensurecorrect concurrent operation.

6.4.3 Low-memory conditions

Gracefully handling low-memory and out-of-memory situations is a di�cult challenge, and
one that is often met poorly by application and systemswriters.

Garbagecollection canmakerecovery from such events easier,sinceit is possiblefor exceptions
to be raised and left unhandled without leaving large swathes of unreclaimable memory that
exacerbatethe shortageof memory.

However, the garbagecollection can itself obscurethe details of memory management from
the programmer, particularly in languagessuch as ML in which memory allocation is often
implicit. Typical garbagecollecting allocators will increasethe sizeof the heap (up to some
large system-wide maximum) if insu�cien t free space is available to satisfy an allocation
request,sinceit is generally the casethat the application is working on behalf of the owner of
the machine, and henceshould have accessto as much memory as it requires. When running

4 If a language such as LISP [Steele84] or Perl [Wall87] { which do allow accessto identi�ers to be made
through the dynamic call chain to higher stack frames { were to be used as the safe language for an Rcane
system, such a guarantee would no longer be possible.
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on Rcane , in which relatively small per-sessionlimits on memory consumption may be made
in order to prevent excessive resourceconsumption by remote principals, the limit on the size
of the garbagecollectedheap may be reached somewhatsooner. Possiblecoursesof action in
the event of a low-memory condition include:

� Abort the session.

� Return a null pointer.

� Raisean exception.

� Call a programmer-provided \lo w-memory" hook.

Aborting the sessionis clearly undesirable, and should be kept as a last resort. Returning
a null pointer in Caml is not possible, since a fundamental feature of the ML family of
languagesis that all pointers are always valid { a constructor cannot return a null pointer.
This allows substantial optimisations without compromisingsafety. Raising an exception is a
valid operation at most times, and indeed raising Out of memoryis supported by the OCaml
garbagecollector for the rare occasionsin which it cannot obtain memory from the underlying
OS; however, this has certain drawbacks:

� Sinceany non-constant5 constructor may thus raisean exception,either the programmer
must explicitly check for the Out of memoryexception at a great many points in the
code; or else an Out of memoryexception must be treated as a generic abort signal
potentially causingthe sessionto terminate under programmer control.

� In a multi-generational heap, memory may becomeexhausted whilst copying from a
newer to an older generation. If this occurs, the state of the heapmay be such that it is
not safeto continue execution of the session,thus requiring termination of the session.

Low-memory situations in Rcane are handled with a combination of a callback, a bu�er zone
and the Out of memoryexception, as described in the following paragraphs.

To avoid the situation where heap memory is exhausted during a copying phase from the
minor heap to the major heap, Rcane maintains a free bu�er zone within the major heap
that is at least as large as the minor heap; thus even if the entire minor heap is copied into
the major heap during a minor collection { an event that generally does not occur { heap
memory will not be exhausted.

If, following a copying phasefrom the minor heapto the major heap, this bu�er zonehasbeen
encroached upon, a user-registeredcallback function is invoked to releasememory. This func-
tion may employ any desiredstrategy to reducememory usage,so as to allow the requested
allocation to complete. For the duration of the callback function, other threads attempting

5ML constructors may be divided into constant and non-constant constructors. Constant constructors
represent integers, literals and parameterlessmembers of algebraic types. Non-constant constructors represent
tuples, records and parameterised members of algebraic types, which require memory allocation.
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to allocate memory from that heap are suspended. Following the completion of the callback,
a garbagecollection pass is made. Memory allocations made directly from the major heap
(which occur only for large objects, and never due to implicit constructors) that would eat
into the bu�er zonecausean Out of memoryexception to be raised; this may be dealt with
by the user.

This strategy is clearly not perfect { in particular it doesnot addressthe following concerns
adequately:

� There is no way for the callback function to know the importance (to the client) of
the requestedmemory allocation. This could perhapsbe achieved by passingthe Caml
program counter at which the allocation was made, and allowing the callback to map
this in someway to a function identi�er or sourcecode line. Such a facilit y would need
support from the compiler and the OCaml runtime, along with substantial investment
and maintenancefrom the programmer.

� The action that may be taken within the recovery callback function is limited, since if
excessive memory is allocated during the callback, the sessionis by necessity aborted.

However, the approach taken by Rcane doeshave the bene�t that it is the clients that must
consider the implications of memory exhaustion, rather than the Rcane node itself. Since
the clients are in control of their memory allocation strategy, it is more straightforward for
them to perform such recovery considerations.

6.5 Net work I/O

Rcane provides accessto the network through the abstraction of channels. A channel is a
connection to a devicedriver associated with a particular network card6

Rcane channels are implemented over NemesisI/O channels. For clients with no network
resourcesreserved, multiple Rcane channels may map to the sameNemesisI/O channel; if
the client has reserved resources,the Rcane channel will have a dedicated I/O channel.

Each channel may be used to sendand receive packets on a set of 
o ws, speci�ed by packet
�lters. These packet �lters are installed by Rcane in the Nemesisdevice driver when the
channel is created.

The protot ype currently supports two classesof channels: session-basedvirtual networks and
channels for accessto local network endpoints.

Session-based virtual net works: A virtual network may be set up { as part of the con-
�guration of an Rcane node { either for a particular Ethernet frame type or for a

6 In the caseof a UDP channel associated with the INADDRANY(wildcard) IP addresson a node with multiple
network cards, the channel may transparently encapsulate multiple such connections.
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Field Meaning
protocol header Header for encapsulatingprotocol (UDP or Ethernet)
destination Ultimate destination of packet
resourcebound Resourcesassociated with packet
sessionID Network-wide identi�er for sendingsession

o w ID Demux identi�er for sub-
ow

Figure 6.4: The headerformat for RCANE virtual network packets

particular UDP port (with a given set of neighbours). Each packet sent on a virtual
network channel has a packet header as shown in Figure 6.4. This header format is
a pre�x of the PLAN [Hicks99c] packet header format, allowing straightforward useof
PLAN interpreters and interaction with existing PLAN nodes. The sessionidenti�er
�eld (seeSection 6.8.1) within the packet header is used to demultiplex the packet to
the appropriate session;the 
ow �eld may be usedto further demultiplex the packet if
the sessionhas speci�ed handlers for multiple sub-
ows of packets within the channel.

Lo cal net work endp oin ts: Sessionsmay open channelsto receive packets on network end-
points on the local node, in a similar manner to traditional sockets APIs. Policy for
accesspermissionsto packet 
o ws { such asrestricting unprivileged sessionsto bind only
to ports greater than 1024{ may be speci�ed on a per-node basis. Packets received on
local network endpoints needhave no particular packet format beyond that required for
the speci�cation and demultiplexing of the packet (e.g. a UDP header).

Link-level frames/packets are classi�ed on reception by the network device drivers via the
network packet �lter, which maps the packet to the appropriate channel. Packets for local
network endpoints are routed directly to the channel speci�ed for that endpoint. Packets
received on virtual network connectionsare classi�ed as follows:

1. Packets for sessionsthat havereservedguaranteedresourceson the givenvirtual network
deviceare routed to the channel created for that session.

2. Packets for sessionsthat have registeredon the receiving Rcane node, but which have
not reserved guaranteed resourceson the given virtual network device, are routed to
the channel created for the Best-E�ort session.

3. Packets for sessionsthat have not registered on the Rcane node are routed to the
channel created for the Best-E�ort session.

If the channel has free bu�ers available, the packet is placed in the channel { no protocol
processingis performedat this point. If the channel hasno freebu�ers, the packet is dropped.
Thus, if a sessionis not keeping up with incoming tra�c, its packets will get discarded in
the device driver, rather than queueing up within a network stack as might happen in a
traditional kernel-basedOS.
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At somelater point, when the VP associated with a given channel is scheduled by Rcane
to receive CPU time, the packets are extracted from the channels and demultiplexed to the
appropriate thread pools. At this point, the following operations are performed:

1. First, any required processingfor the encapsulatingprotocol (such asUDP or Ethernet)
is performed. After this stage, protocol processingfor a packet received on a local
network endpoint is complete,and the packet is addedto the event queuefor the thread
pool speci�ed by the receiving session.Further processingis required for packets from
virtual network devices,as described in the following stages.

2. If the packet is destined for a sessionregistered on the receiving node, but has been
queuedon the channel belonging to the Best E�ort session(due to the receiving session
not having reserved the appropriate network resources)it is at this point demultiplexed
to the destination session.

3. The 
o w identi�er in the packet headeris usedto demultiplex the packet to the appro-
priate thread pool and handler function, as speci�ed by the receiving session.

Such demultiplexing is performed within the Runtime for e�ciency , and is accounted to
the appropriate VP (since it is only performed when that VP has processingtime available).
Oncethe thread pool and handler function that are to be usedto handle the packet have been
selected,a callback event is constructed that invokesthe handler function. The arguments to
the handler function consist of the packet contents and the channel on which the packet was
received.

Once the client's callback has �nished processingthe packet, the bu�er memory is returned
to the underlying NemesisI/O channel, to be reusedfor future packets.

Transmit scheduling is performed by the Nemesisdevice drivers following a modi�ed EDF
algorithm, as described in [Black97]. Each client channel is given a transmission scheduling
period and slice of transmission time, in a manner analagousto the scheduling of CPU time.
The network device driver repeatedly selectsthe next \runnable" channel that is eligible for
network time, sendsa packet from that channel, and chargesthe channel for the time that
was taken up by the packet on the network link 7, rather than the CPU time consumedby
the driver in sendingthe packet (which is negligible when using a network card with e�ectiv e
DMA capabilities). Thus on a 100Mb/s Ethernet, a 1KB packet would be charged for 80� s
of link time. A channel is considered\runnable" when there are packets queued awaiting
transmission.

6.5.1 Enhancemen ts to Nemesis net work subsystems

In general,Nemesiswas found to provide a good match for the networking interface required
by the lower levelsof Rcane 's Runtime. The low-level protection boundariesof Nemesisallow
Rcane to enhancethe standard Nemesisnetworking abstractions to ensure that network
processingis only performed for a given client when that client's VP hasCPU time available.

7Note that the current implementation doesnot take into account link time wasted due to packet collisions.
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Extensions were required in the Nemesisgeneric network driver top-half to provide support
for session-basedvirtual networks and demultiplexing of raw Ethernet frames.

6.6 Byteco de Librarian

The bytecode librarian runs as part of the Loader, and is responsible for linking in modules
of bytecode, and keepingtrack of

� which modules a given sessionis privileged to link against,

� which sessionshave linked against each module,

� the dependenciesbetweenmodules, and

� the total amount of code memory consumedby each session.

OCaml stores the global data of each module in a heap record, and stores a pointer to that
record in the module's entry in the global array. Sinceeach sessionin Rcane requiresits own
copy of a module's global data items (in its own heap), Rcane provides each sessionwith its
own global array. If a sessionhas linked against a particular module, then that sessionwill
have a valid pointer to the given module's global data in the appropriate slot of its global
array, otherwise the slot will be null. This record is created at module initialisation time {
thus it is important for Rcane to ensurethat a sessionnot be allowed to executecode from
a module before that module's dependencieshave beeninitialised.

When a sessionlinks against a particular module, the code librarian �rst performs a depth-
�rst traversal of the module's dependencies,and links any previously unlinked dependencies.
Next, the initialisation code for that module is executed(in the context of the client's heap),
to create the global entry for the module. The global entry consistsof an array of closures
and values corresponding to the elements exported by the module's interface, and is stored
in the appropriate slot in the client's global array.

Note that the procedure for initialising ServiceModules { used to export an entire interface
of servicesfrom a server to a client { di�ers from the above description, and is more fully
discussedin section 6.7.5.

6.6.1 Linking

When a new module is to be linked into the system, the following stepsare performed:

Unmarshalling: The module is initially presented as a binary object. This object must be
unmarshalled to produce a structure describing the module.
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A

A

B

C

type t = int

let get_t() =
   42

let use_t(val:t)=
   print_int(val)

type t = string

let get_t ()=
   "hello"

let use_t(parm:t)=
   print_string(parm)

open A;

let get_t() =
   A.get_t();

open A;

let use_t(parm:t)=
   A.use_t(parm)

open B;
open C;

C.use_t(B.get_t());

 mA1 

 mA2 

 mB 

 mC 

 mD 

Interface implements importsModule

Figure 6.5: Potential type safety violation

Dep endency Chec king: Each module will have a set of statically imported interfaces. For
each such interface, there must have already beenlinked a module exporting that inter-
face. A particular import module may be speci�ed for a given interface8 to deal with
the situation where multiple modules export the sameinterface. If any of the imports
are unavailable, the link stagefails.

Furthermore, since opaque type de�nitions may be concealedbehind Caml interfaces,
it is necessaryto put the following constraint on the linkagetree of modules:

No module is permitted to refer to more than one module exporting any given interface.

The relation mArefers to mBis true when:

� Module mBexports interface B,

� mBis in the transitiv e closureof module mA's imports, and

� there exists an import path betweenmAand mBin which all modules make useof
typesdeclaredin interface B.

Such a constraint is required due to the following possiblescenario,shown graphically
in Figure 6.5:

1. Interface A declaresan abstract type t , with operations get t() (to return a value
of type A.t ) and use t(t) (to processa value of type A.t ).

2. Module mA1implements interface A, privately de�ning type t to be integer .

3. Module mA2implements interface A, privately de�ning type t to be string .

8A given implementation may be speci�ed by presenting a hash of its code.
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4. Module mBlinks against module mA1and implements interface B, which de�nes an
operation get t() .

5. Module mClinks against module mA2and implements interface C, which de�nes an
operation use t(t) .

6. Module mDlinks against modulesmBand mC. It may thus call C.use t(B.get t()) ,
passinga value of type integer to a routine expecting a value of type string .

This constraint is related to the requirement to prevent bridge classes[Saraswat97] in
Java from creating similar type system violations.

Veri�cation: The bytecode in the module must be shown to conform to the interfaceswhich
it imports/exp orts, and to respect any typing constraints associated with the languagein
which it is written, using techniquessuch asthosepresented in [Nipkow99]. Appendix A
presents a designoutline for a veri�er for Objective Caml bytecode.

Resolution: The imports of a module must be �xed up sothat they point to the correspond-
ing exports in the modules that are being imported.

6.7 Service Implemen tation

This section presents some of the key features of the implementation of the Rcane inter-
sessionservicearchitecture.

6.7.1 Overview

When adding servicesto Rcane , two main possibilities were considered:

� Extending the Objective Caml bytecode language and virtual machine de�nition to
provide speci�c instructions for invoking services.

� Adding support for servicesthrough the use of additional primitiv e functions written
in native code.

Sincethe Caml typing rules do not make it practical to identify serviceinvocations at compile
time, the latter option was chosen.

6.7.2 Represen tation

There are �v e components to an Rcane service:

� The service function is the actual function that the server sessionwishesto export to
the client, acrossan existing servicebinding.
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 Client Session 2  Client Session 1 

 Server Session 

Client wrapper

Client handle

Server wrapper

Server info block

Service function

Figure 6.6: The representation of servicesin Rcane

� The server info block contains all the server-sidestate required by Rcane to implement
the service. Within a service's info block, a table is maintained with entries for each
client that holds a handle for that service.

� The server wrapper is a function closure that is a copy of the servicefunction; thus it
could be called from within the server to obtain the samee�ects as calling the original
servicefunction. However, it has two additional properties:

{ It is tagged9 so that the inter-sessioncopying mechanisms can identify it as a
serviceand copy it correctly (as described in Section 6.7.4).

{ It contains additional information in the environment portion of the closure to
allow its info block to be located.

The server wrapper is the component that the server passesto the client.

� The client handle contains all the client-side state required by Rcane to implement the
service.

� The client wrapper is a closure of the same type as the server wrapper. However,
invoking the client wrapper causesthe service mechanism to be entered, and control
transferred to the servicefunction in the server's heap (seeSection 5.6.4).

9Every object in the OCaml heap has a tag as part of its header providing information about the object
type.
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Figure 6.6 shows the situation wherea server sessionexports two services.Client 1 hasbound
to both services;client 2 has bound only to one service.

6.7.3 T yp e-based Optimisations

In the OCaml heap, each object is either abstract (not traced internally by the garbage
collector, e.g. strings) or elsecontains a seriesof values. Each value is either an integer or a
pointer, distinguishable through checking its LSB10. This allows the garbagecollector and the
Rcane parameter copier to reliably trace objects through memory without risking confusing
pointers and non-pointers.

By default, parameters to Rcane servicesare copied by tracing the parameters' structures
in memory, and making copies in the new heap. In the casethat the server has speci�ed
the Graph attribute for the service, indicating that a parameter being passedmay contain
sharedstructures, the copying routine additionally maintains a list of previously encountered
objects, and ensuresthat pointer sharing in the sourceheap is preserved in the destination
heap.

However, as will be demonstrated in Section 7.3, this generic copying mechanism incurs
overheaddue to the checking and bookkeepingthat it must perform.

The nature of ML's algebraic type systemtends to conspireagainst fully optimising the copy-
ing routines. An algebraic type has multiple constructors, someof which may be constants
(represented as integers) and others of which may be some kind of object (represented as
pointers). An example of such a type, representing a tree containing strings and integers,
might be:

type tree = StringNode of string * tree * tree
| IntPairNode of int * int * tree * tree
| Leaf

Thus a value of type tree might contain:

� a pointer to a three element block with the tag StringNode containing a string pointer
and two tree values,

� a pointer to a four element block with the tag IntPairNode , containing two integer
valuesand two tree values,or

� the integer value Leaf .

10 This has the result that OCaml integers can hold one lessbit than a machine word.
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Hence,it is impossibleto fully determine until when actually performing the copy, what the
structure of a tree parameter will be. However, in many situations it is possible to make
guaranteesabout the type of a parameter and thus substitute an optimised copying routine.

In a similar manner to the dynamic stub generator developed by the author for Nemesis
IPC (seeSection4.4 and [Menage98a]),Rcane analysestype information about dynamically
loadedmodules, to identify situations in which the typesof parametersare known in advance.

A full implementation of Rcane would employ a mechanism similar to the Nemesisstub
generator: �rstly the type for a parameterwould beconverted into a simpli�ed representation,
and secondly this representation would be used to synthesise(or reuse) a suitable machine
code function.

Such type analysis is performed in the protot ype, but time constraints have prevented imple-
mentation of fully synthesisedcopying routines. As a proof-of-concept,any parameters that
can be shown to be:

� blocks containing only integer values,or

� integer lists

are copied using optimised copying routines. Note that since ML represents all non-pointer
types as integers, any algebraic type with purely constant constructors may be regarded as
equivalent to an integer for marshalling purposes,increasing the range of possibleoptimisa-
tions.

6.7.4 Copying Services Bet ween Sessions

Passingservices(either server or client wrappers)betweensessionsasthe parametersor results
of a serviceinvocation is usedasa mechanism to allow clients to bind to services.The tag on
a memory block for a server wrapper or client wrapper identi�es it as such to the parameter
copier. Rather than directly copying the contents of the wrapper to the destination heap,
instead it acts as follows:

1. The info block for the serviceis located via the pointers available in the client or server
wrapper.

2. If the destination heap belongsto the server, a pointer to the existing server wrapper
is returned as the result of the copy operation.

3. If the destination heap belongs to an existing client of the service, a pointer to the
existing client wrapper for that client's sessionis returned as the result of the copy
operation.

4. Otherwise, a handle and client wrapper for the service are created in the destination
heap, and added to the info block's client table.
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In this way, servicesmay be passedaround by referenceas parametersand results of service
invocations.

6.7.5 Service Mo dules

The servicepassingdescribed above allows servicesto be passedacrosspre-establishedservice
bindings. To \b ootstrap" initial bindings between a client and a server, and to provide a
convenient way of binding to a standard set of servicessupplied by a server, Rcane supports
service modules, as described in Section 5.6.6. Section 6.6 described how modules are linked
and initialised in a session. This section describes how the procedure di�ers for service
modules.

Each servicemodule is associated with a particular server. When a sessionbinds to a service
module, rather than executing the initialisation code of the module in the context of the
client's heap, the initialisation occurs in the server's heap. Every element in the global entry
of a service module must be a service. Rather than simply storing the global entry in the
global vector of the client session(which would result in an inter-heap reference),the entry
is copied using the samemechanism as is used for service invocation parameters. This has
the e�ect of creating handles for all the exported servicesin the client's session.Figure 6.7
shows how the servicesexported by a servicemodule are madeavailable to the client session.
The global entry for the servicemodule (visible to Rcane clients as the interface exported
by the servicemodule) hangso� the client's global vector. In the server's session,the various
servicestypically sharesomeor all of their state.

 Client Session  Server Session 

Global vector
(namespace)

Service module
global entry

Garbage-collected
pointer

Service

Figure 6.7: Example of a servicemodule

A servicemodule may beclassi�ed ashaving per-client state or sharedstate. The initialisation
code of a per-client servicemodule is executedwhen each new client binds to it { thus a new
set of servicesare created that are associated speci�cally with the client. A shared service
module is initialised once, when the server loads it. This createsa set of servicesthat are
copied to each client that binds to the servicemodule, with the result that all clients share
the sameset of services.A server that wishesto accessboth sharedand per-client state for a
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servicemay create two modules; the �rst module is a per-client servicemodule that actually
creates the desired services, and the second is an ordinary module bound in the server's
session,containing the desired shared state. The servicemodule imports the state module,
giving the per-client servicesaccessto the sharedstate.

6.7.6 Garbage Collection of Services

At creation time, a service is speci�ed as being either Retained or Collected { this allows
the server to control whether the service is kept alive as long as any clients hold a handle
on the service, or only while the server itself maintains a referenceto the info block. For
any servicethat is speci�ed as retained, Rcane maintains a heap root for that service'sinfo
block while clients are bound to the service, to ensurethat the servicedoesnot get garbage
collected whilst it is in use.

When a service info block is eventually garbagecollected, all client handles for that service
are marked asbeing revoked, causingfuture invocations using such handlesto raisea Revoked
exception.

If the client handle becomesunreachable and is garbagecollected11, the handle's entry in the
service'sclient table is removed.

Either the server or the client may explicitly force a service or a handle to be released(by
calling Service.destroy() or Service.release() respectively) without requiring the ser-
vice or handle to be garbagecollected �rst. Further attempts to usea handle or servicethat
has beenexplicitly releasedcausean exception to be raised.

6.7.7 Abnormal Service Termination

Not all service invocations can be assumedto complete correctly. Since the client or server
sessionsmay exit at any time, or be terminated due to exhaustion of resources,Rcane must
be able to support abnormal termination of serviceinvocations.

A structure describingeach serviceinvocation is linked in to a per-thread list and a per-service
list for the duration of the invocation. Theselists allow Rcane to identify:

� the threads belonging to a sessionthat are currently performing serviceinvocations to
other sessions(in the event of a client exiting, or aborting an invocation), and

� the threads currently executing in a session'sheap that are in serviceinvocations from
other sessions(in the event of a server exiting, or revoking a service).

If a service invocation is required to be terminated, the a�ected threads may be located
through theselinks, and exceptionsraised at the point of the serviceinvocation.

11 This will not happen whilst the client maintains a referenceto the client wrapper, since the client wrapper
contains a referenceto the handle.
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Additionally , to allow servers to deal with the casewherea client terminates whilst executing
in a critical region in a serviceinvocation, it is possibleto register backup threads for critical
regionsthat are executedas part of a serviceinvocation (discussedin Section 5.6.2).

A backup thread allows a server to guarantee a certain level of resources{ speci�cally , CPU
time and stack space{ to a client thread, to prevent a CPU-starved thread from causingQoS
interferencethrough spending too long in a critical section, or to allow the execution context
of a terminated thread to continue until it has exited the critical region.

In the protot ype implementation, backup threads are assignedto client threads by allowing a
thread pool to be associated with a mutex; when the critical region protected by the mutex is
entered, and the mutex is locked, an idle thread from the associated thread pool is assigned
to be a backup thread for the client thread. If no idle thread is available from that pool,
the locking thread blocks until a thread is available. When the client exits from the critical
region, the backup thread is made idle again.

The existenceof a backup thread has two signi�cant e�ects on a client thread:

� The backup thread is scheduledlikeany other thread. However, whena backup thread is
due to be run, rather than actually running the backup thread (which hasno execution
context, having been idle before being assignedto the client thread) the scheduler
instead runs the client thread. Thus the client thread receives CPU time from two
sources{ from its own VP's CPU guarantee, and from the CPU guarantee provided
by the server to the backup thread. Therefore client threads with su�cien t CPU time
are not limited by the level of CPU resourcesassignedby the server, whilst the server
can bound the level of crosstalk caused by the critical region through assigning an
appropriate level of resourcesto the backup thread pool.

� In the event that the client thread is destroyedor the client aborts the serviceinvocation,
the execution context (stack, registers and auxillary state) of the thread is transferred
to the backup thread. From this point on the backup thread acts as a normal thread,
continuing the execution of the critical section. When the critical section is completed,
the backup thread returns to the idle state.

6.7.8 System Services

Rcane usesa basic set of servicesto allow clients to communicate their requirements to the
System session.

The main interface is the Session interface, implemented as a per-client service module.
Each instantiation of this module maintains the state about a single session. Additionally ,
the Session priv module in the Systemsessionprovides auxillary routines and sharedstate.

As described in Section 5.2.1.2, the Session interface provides the primary point of access
for requesting QoS guarantees(for CPU, memory and network access),loading/linking code
modules, and sessioncreation/termination.
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To support accessto the network, the Rip and Arp servicemodulesprovide routing and address
resolution services.Thesemoduleswereported largely unchangedfrom PLANet [Hicks99c]{
someadaptation was required to �t into the resource-isolationmodel supported by Rcane .

6.8 Session Creation and Destruction

New sessionsare createdby invoking the Session.createSession() serviceexported by the
System session.Creating a sessioninvolves the allocation of a heap and a default VP (with
a single thread and best-e�ort accessto the CPU) as well as Runtime housekeepingdata for
the new session.Rcane aggressively cachesobjects such as heaps,threads and VPs to allow
sessioncreation and destruction to be very lightweight. When a sessionis created,credentials
are passedto authenticate the entit y that will be responsible for the session,and to provide a
mechanism by which Rcane may bill that entit y for resourceconsumption (seeSection 5.7).

SinceRcane aims to charge each sessionfor the resourcesthat it consumes,as much of the
sessioncreation work as possibleshould be undertaken on a VP owned by the newly created
session,rather than on one owned by the creating sessionor the System session. When a
sessionis created, it initially has no modules linked and no data. To bootstrap the newly
created session,the SessionBoot servicemodule, which is exported by the System Session,
is bound into it { this copiesa single service,accessibleas SessionBoot.bootstrap() , into
the new session. A callback event that invokes SessionBoot.bootstrap() is registered for
the session'sVP; at this point all further sessioncreation work is performed by the session
itself.

Upon invocation of SessionBoot.bootstrap() , the code librarian loads/links the initial
module speci�ed (in the call to Session.createSession() ) for the new session. This will
in turn link in any dependenciesof the initial module { typically thesewill include Safestd
(the standard library) and the Session interface itself.

When destroying a session(either through resourceexhaustion or at its own request), the
following sequenceof events occurs:

1. All client handlesheld by other sessionsfor servicesexported by the dying sessionare
marked asrevoked. All client threads from other sessionsthat are in serviceinvocations
to the dying sessionare jumped back into their calling sessions;in each casea Revoked
exception is raised at the point of invocation.

2. All of the dying session'sclient handles are marked as revoked. All threads belonging
to the dying sessionthat are in service invocations to other sessionsare jumped back
into the dying session.

At this point, the dying sessionis completely isolated from other sessions{ it has
no handles to other services(even to the System session),and no other sessionshave
handleson its exported services.

3. The session'snetworking resourcesare revoked.
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4. The session'sthreads are all terminated.

5. Housekeepinginformation maintained by the System sessionis released.

6. The Runtime structures and heap are released.

6.8.1 Session Iden ti�ers

Associated with each sessionis a network-wide unique sessionID , composedof the network
addressof the node at which the sessionoriginated, and a unique identi�er within that node.

When a new sessionis created at a node, it may either be associated with the sessionID of
the remote client that created it (provided that the remote client has not already created a
sessionat the current node), or may have a fresh sessionID generated,with the current node
as the originating node stored in the sessionID.

It is intended that this sessionID eventually be used to support resource transfer across
multiple programmable nodes, thereby potentially reducing the billing overheadsassociated
with programmable networks. Such support is currently limited { the resource bound �eld
in Rcane virtual network packets may be used to transfer resourceunits between sessions
owned by the sameclient on di�eren t nodes. Theseresourceunits are not yet fully integrated
with the Rcane resourceaccounting mechanisms.

6.9 Summary

This chapter has described the key implementation details of a protot ype of the Rcane
architecture built over the NemesisOperating System.

For the protot ype implementation, Objective Caml was chosenas the languageand Nemesis
asthe platform for Rcane . The rationale behind thesechoiceswasdiscussed,and a number of
de�cienciesin OCaml wereidenti�ed; in each casethe de�ciency wasremedied,or elseparallels
with existing research were presented that suggestedthat a remedy for such a de�ciency was
practical.

Although the protot ype implementation wasdeveloped over Nemesis,the Rcane architecture
could be implemented over any OS providing suitable support for QoS isolation; similarly,
any languagewith suitable safety properties could be usedas the client language.

The chapter then discussedimplementation details of the major features of Rcane . In each
casethe design decisionsthat promoted e�ectiv e QoS isolation and performance were pre-
sented. The EDF scheduling algorithm provides the CPU guaranteesrequired by the Rcane
architectures; the abstractions of events and thread pools, which provide an interface for the
CPU scheduler to clients, were discussed.To provide the separatedheapsthat allow Rcane
to prevent crosstalk due to garbagecollection, Rcane must keeptrack of the setsof threads
with accessto each heap, and must ensurethat inter-heap referencescannot be created by
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untrusted clients. The implementation employs a similar mechanism for network transmis-
sion as for CPU scheduling; this allows e�ectiv e transmissionguaranteesto be made. Packets
received over the network are demultiplexed as early as possiblein order to prevent crosstalk
betweendi�eren t clients' packets.

Inter-sessionservicessupport lightweight communication betweenclients executingon Rcane ;
several implementation details of serviceswere described: their structure, the optimisations
employed by Rcane to improve copying performance and the mechanisms used to ensure
safety in the event of abnormal termination.

Also discussedwere two control-path features of Rcane : the bytecode librarian and the
mechanismsfor registering and deleting clients' sessions.
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Chapter 7

System Evaluation

This chapter and Chapter 8 present the resultsof experiments carried out to test the protot ype
implementation of Rcane . Aspectsof the architecture areconsideredin terms of performance,
resourceisolation, and 
exibilit y.

The evaluation is structured into two parts. In this chapter, the basic Rcane system is as-
sessed{ the results of micro-benchmarks are presented for the key featuresof the architecture
presented in Chapters 5 & 6. Chapter 8 examinesthe use of Rcane as a basearchitecture
for active network systems.

7.1 Evaluation context

7.1.1 Exp erimen tal equipmen t

The majorit y of the experiments presented in thesechapters wereperformedon Intel Pentium
I I machines running at 300 MHz connected to 100Mb/s Ethernet. Someexperiments also
involved Intel PentiumPro machines running at 200MHz, connectedto 10Mb/s Ethernet.

7.1.2 Instrumen tation

The Rcane protot ype was instrumented in order that events of interest (for use during
debuggingand performancemeasurement) could be recorded in an in-memory log and later

ushed to disk for analysis. Events recordedin the log included:

� Scheduler entry/exit and scheduling logic

� State transitions for threads, thread pools and VPs

� Garbagecollection activit y
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� Packet transmission and reception

Logging of speci�c types of events was made con�gurable at compile time, allowing logs to
be kept only of the events of interest to a particular experiment, and preventing any wastage
of CPU cyclesdue to unwanted events being logged.

Events were recordedwith cycle-time accuracy; the time taken for a singleevent to be logged
was found to be approximately 0.2� s.

7.2 Scheduler Performance

The fundamental advantage of a programmable network over a passive network is that end-
usersmay perform computations at nodeswithin the network, and hencereceive lower latency
than if all interactions were required to take place between the end-user and the ultimate
destination. In order to provide low latency, it is vital that the user-supplied applications
running on the programmable node receive timely accessto the CPU. Alternativ ely, if the
application is attempting to processor �lter someform of multimedia data, it should receive
regular accessto the CPU in order to prevent excessive jitter in its results. Thus an important
feature of Rcane that must be shown is that it allows users to request and receive the
guaranteed accessto the CPU that they require.

To demonstratethe e�ectiv enessof the CPU guaranteesprovided by Rcane , the time received
by a set of sessionswas logged. Four sessionswere created at various times through the
experiment. Each sessionuseda single VP and was CPU bound.

All four sessionswere started with no particular guarantee, but with accessto best-e�ort
time. SessionsB, C and D werecreatedat 3 secondintervals following the creation of session
A, and requested10%, 20% and 30% sharesof the CPU respectively, each with a period of
4ms and with no accessto extra time.

Figure 7.1 shows the percentage of the total CPU that each VP received over each scheduling
period (i.e. betweenconsecutive deadlines). The scheduling period for each VP is usedsince
this is provides an accurate view of whether the contractual guarantee made to the sessionis
being honoured. SincesessionA's VP is running without a guarantee, it is assigneda notional
scheduling period of 100ms;hence,the trace shown is clearly coarserthan the traces for the
other sessions,whoseVPs have �ne-grained guarantees.

Also present in the system,but omitted from Figure 7.1 for clarit y, are the Systemsessionand
the Best-E�ort session.Figure 7.2 shows separatebreakdowns for all sessionsin the system,
including the System Sessionand the Best-E�ort session.

As may be seenfrom the traces of time received, Rcane respects the CPU guarantees that
have been given to the various sessions. In particular, sessionsB, C and D each initially
brie
y consumevarying amounts of CPU time (whilst running best-e�ort), but once they
reserve guaranteed allocations without useof best-e�ort time, they can be seento accurately
receive the guarantees that they requested. SessionA consumesany spare CPU time that
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Figure 7.1: CPU consumption by a set of sessions

is available, and so initially receives100%of the CPU { however, as each of the guaranteed
sessionsstart in sequence,its shareof the CPU is reduced.

The occasional spikes on the System sessiontrace in Figure 7.2 (a) re
ect periodic house-
keeping activit y (such as responding to routing information packets from other Rcane and
PLAN boxes). The activit y on the Best-E�ort sessiontrace in Figure 7.2 (b) re
ects the work
it performs in requesting the creation of new sessions.It can be seenthat the sessionswith
guaranteed CPU time are virtually una�ected by this activit y, whereassessionA, which is
running with no guarantee, experiencesa lossof processorbandwidth.

Thus it can be seen that sessionsrunning on Rcane , by requesting a particular slice of
CPU time over a particular period, may bound the latency with which they can processdata
received from other entities in the network, or calculate fresh data to be sent out to others.

Figure 7.3 shows the sameexperiment repeated, but with each sessionrequesting accessto
best-e�ort time in addition to any guaranteesthat they might alsorequest. It canbeseenthat
the total time received by each session
uctuates considerably; this is due to the distribution
of best-e�ort time beingbursty at the scaleof the sessions'scheduling periods. However, when
the best-e�ort time received by each sessionis excluded from the traces (seeFigure 7.4), it
can be seenthat the amounts of guaranteed time received by VPs belonging to sessionsB, C
and D still accurately match the reservations made by them.

It wasseenin Figure 7.3 that at a �ne grain (at the granularit y of the scheduling periods), the
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Figure 7.2: Total CPU consumption by a set of sessions(separatedviews)
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Figure 7.3: Total CPU consumption by sessionsusing best-e�ort time

amount of best-e�ort time received could vary substantially . Figure 7.5 shows the cumulativ e
best-e�ort time received by each domain, recorded at the end of each scheduling period for
each VP. It can be seenthat at each point in time, the slopesof all running sessionsare equal,
showing that over longer periods of time the scheduler is fairly allocating any slack time in the
system. As more sessionsare added to the experiment, the amount of best-e�ort CPU time
received by each session(and hencethe slope of the line on the cumulativ e trace) decreases.
As discussedin Section 6.3.1, in a complete implementation of Rcane , more sophisticated
schedulers { with features such as sharing out slack time in proportion to the amount of
guaranteed time reserved by each VP { may be used.

7.3 Service Performance

Rcane servicesare intended to provide lightweight communication betweensessions.A major
useof such communication is to accessservicesprovided by the system; alternativ ely it may
be in order to accessservicesprovided by another session(e.g. enhancedrouting tables) or to
allow a particular execution environment to sharestate betweenmultiple sessions.Straight-
forward data sharing is not possibledue to the isolated nature of di�eren t heapsin Rcane ,
therefore the inter-sessionservicesneedto have minimal overhead.

To measurethe performance of the service mechanism, a seriesof test service invocations
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Figure 7.4: Guaranteed CPU time received by a set of sessions(separated views), when
best-e�ort time is also being received by all application sessions.

wereperformed with di�eren t typesand sizesof parameters. Also performed, for comparison,
were a seriesof other non-service invocations. Each test was repeated one million times,
and the averagewas taken. The large number of iterations used for the tests ensuresthat
any amortised overheadsdue to garbage collection are accurately re
ected. Such garbage
collection runs will only occur every few thousand invocations, depending upon the size of
the heap. The tests were repeated with substantially larger (several megabyte) heaps,which
werefully garbagecollectedbeforecommencingeach test, to attempt to measurethe overheads
of copying without the overheadsof garbagecollection. However, theseproved to be actually
slightly slower than the tests that involved garbagecollection. This is presumedto be due
to the lossof cache locality when using a larger heap, and the cache pollution causedby the
garbagecollection runs betweeneach invocation.

Table 7.1 and Figure 7.6 show the times taken for the various invocations. Theseinvocations
are:
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Figure 7.5: Cumulativ e best-e�ort time received

Run time call: An invocation from the Caml virtual machine into the Runtime.

Lo cal function: An invocation of a Caml closure from within the virtual machine.

Callbac k: An invocation of a Caml closurefrom within the Runtime.

Null service: A full inter-sessionserviceinvocation with a single integer parameter1.

Null service with timeout: A serviceinvocation as above, but registering a timeout.

String service: An invocation of a service that takes a string, with string lengths varying
over 0{100 bytes.

Arra y service: An invocation of a service that takes an array, with the array size varying
over 0{100 elements (0{400 bytes).

List service: An invocation of a service that takes a linked list of integers, with the list
length varying over 0{100 elements (0{1200 bytes).

The time taken by the runtime call, local function call and callback is intrinsic to the ar-
chitecture of the OCaml virtual machine. It can be seenfrom Table 7.1 that a null service

1Due to the design of ML and the Caml VM, all functions take at least one argument. A void function is
represented as a function that takesa value of type unit , of which there is only a single value, () , represented
as an integer (zero) in the VM.
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Invocation Time (� s)
Runtime call 0.06
Local function 0.20
Callback 0.50
Null servicecall 1.50
Null servicecall with timeout 2.29

Table 7.1: Times for �xed-cost invocations

invocation is approximately six times slower than a local function call. An analysis of the
time spent in a serviceinvocation is given in Section 7.3.1.

From Figures 7.6 (a), (b) & (c), it can be seenthat in each casethe cost increasesroughly
linearly with the size of the parameters. Figure 7.6 (b) shows the time taken for array and
list servicesaccording to the number of elements being copied; Figure 7.6 (c) presents the
samedata according to the total amount of memory being copied { each list element consists
of a two word cell plus a word of heap metadata.

In Figure 7.6 (b), optimised and unoptimised forms of the array and list invocations are
shown. The string invocations and the unoptimised form of the array and list invocations
represent three di�eren t modesof parameter copying for the genericcopier:

� A string is a variable-sizedobject that may be copied in a singleoperation { the jagged
nature of the trace is due to word-copy optimisations in the memcpy()function.

� An array is a variable-sizedobject whose elements must each be checked and copied
individually .

� A list consistsof a seriesof small �xed-sized objects each of whoseelements must be
checked and copied in turn.

As described in Section 6.7.3, there are opportunities to optimise the copying basedon type
information; e.g. a serviceparameter that is known to be an integer array can be copied in a
single passas with a string.

In many cases,the nature of ML's type system means that the type of an object cannot
be determined until copy time; however, where possible Rcane uses type information to
substitute optimised copying routines in place of the generic copier. It can be seenfrom
Figure 7.6 (b) that the optimised versionsof integer array and integer list serviceinvocations
are substantially faster than those using the generic marshaller. In the caseof arrays, the
time taken to copy even a 100element array is insigni�can t when comparedto the time taken
for the remainder of the serviceinvocation. For lists, the copying overheadis still substantial,
due to the multiple allocations and the interactions required with the garbagecollectedheap;
however, it can be seento be signi�cantly faster than with the genericcopier.
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Figure 7.6: Serviceinvocation times for varying numbers of parameters

7.3.1 Breakdo wn of time consumed in service invocation

In order to determine how much of the overhead of a servicecall is due to the mechanisms
usedby Rcane , and how much is due to the particular languageusedto implement the safe
portions of Rcane , Figure 7.2 shows the breakdown of time amongst the various steps that
make up an null serviceinvocation.

This processof invoking a service is described in fuller detail in Section 6.7. Brie
y , these
stepsconsist of:

Lo cal function in vocation: Invoking the VM wrapper around the servicehandle.

Run time in vocation: Transferring control from the wrapper to the runtime.

Heap manipulation: Registering(and later deregistering)the calling thread with the server's
heap, to ensure that any roots to server heap objects that are stored in the calling
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Activit y Time
(� s) %

Cumulativ e Incremental
Local function invocation 0.24 0.24 15.2
Runtime invocation 0.34 0.10 6.3
Heap manipulation 0.60 0.26 16.5
Chain manipulation 0.77 0.17 10.8
Exception handling 0.90 0.13 8.2
Server callback 1.58 0.68 43.0
Total 1.58 1.58 100.0

Table 7.2: Breakdown of time spent in a serviceinvocation

thread's stack are correctly traced.

Chain manipulation: Linking the calling thread into the list of callers for the service, for
use in the event of server or client death.

Exception handling: Linking the runtime stack frame into the Caml exception chain, to
ensurethat any exceptionsraised by the serviceinvocation are handled in the runtime
and appropriate recovery performed before returning to the client.

Serv er callbac k: Recursively invoking the OCaml virtual machine in the server's heap to
call the actual servicefunction.

Almost half the time taken by a servicecall is due to the costsof invoking the Caml virtual
machine on the server's function. If the client speci�es a timeout for the call, this adds an
additional 0.7� s to the time required, representing an overheadof 45%. This cost consistsof
the time required to add and remove a timeout event for the serviceinvocation.

By comparing Table 7.1 and Table 7.2, it may be seenthat someof the stepstake longer when
executedas part of a serviceinvocation than when executedon their own { this is presumed
to be due to reducedcache locality.

7.3.2 Comparison with other IPC systems

Table 7.3 compares the performance of Rcane inter-sessionserviceswith IPC primitiv es
provided by other systems2

Nemesis Null IPC tests measurethe average time for 100000iterations of a full Nemesis
IPC call; I/O Ping tests measurethe time taken for an event to be passedover an I/O
Channel from one user-level thread to another in a di�eren t domain, and back. These
tests were performed for the casewhere both processeswere in the same protection

2The �gures in Table 7.3 for Windows NT, J-Kernel and L4 were taken from [Hawblitzel98].
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IPC type Hardware Time � s
Windows NT RPC PPro-200 109.0
Windows NT COM out-of-proc PPro-200 99.0
NemesisNull IPC (sameprotection domain) PI I-300 48.3
NemesisI/O Ping (sameprotection domain) PI I-300 39.5
NemesisNull IPC (di�eren t protection domain) PI I-300 69.8
NemesisI/O Ping (di�eren t protection domain) PI I-300 56.8
Rcane Null serviceinvocation PI I-300 1.5
J-Kernel Null LRMI (MS-VM) PPro-200 2.2
J-Kernel Null LRMI (Sun-VM) PPro-200 5.41
L4 Null IPC P-133 1.8

Table 7.3: Time taken for a null invocation by various IPC systems

domain (thus removing the needto perform a full context switch betweenthe processes)
and also the casewhere each processran in its own protection domain.

Windo ws NT RPC and COM tests measurea null invocation using two standard Windows
NT IPC mechanisms.

J-Kernel Null LRMI (Local RemoteMethod Invocation) measuresa call through a J-Kernel
Capability [Hawblitzel98], running under a Microsoft JVM and a Sun JVM.

L4 Null IPC measuresthe time for an IPC in the L4 microkernel [H•artig97]

It may be seenfrom Table 7.3 that Rcane servicesare substantially faster than IPCs on
Windows NT or Nemesis;they are comparable with IPCs over the J-Kernel. J-Kernel and
Rcane both take a similar approach to protection, by employing multiple disjoint setsof data
in a single addressspace,isolated through the useof type-safecode. An exact comparisonof
the e�cacy of Rcane and J-Kernel is di�cult, sincewhile Rcane has more runtime support
than the J-Kernel { which is implemented purely in Java (JIT-compiled where applicable)
{ the J-Kernel does not provide isolated heapsfor each client. Thus Rcane has to perform
additional work on a serviceinvocation to link (and later remove) the client's thread into the
server's heap.

The L4 microkernel hasbeenoptimised to provide fast IPCs betweensmall processesthrough
the useof non-overlapping memory segments, thus avoiding much of the overheadof address-
spaceswitching experienced by Nemesisand Windows NT IPCs. When the overhead due
to the Caml virtual machine is discounted from the Rcane service invocation times, and
accounting for the relative speedof the test equipment (300MHz vs. 133MHz) it can be seen
that L4 and Rcane achieve comparableperformance.

7.3.3 Abnormal Termination

In order to deal with arbitrary behaviour from user-suppliedcode (in particular, clients or
serversexiting voluntarily or through resourceexhaustionduring a serviceinvocation), Rcane

132



servicesmust be robust to abnormal termination situations. Four such scenarioswere con-
sidered:

Serv er death: If a server sessionis destroyed or exits whilst a service invocation from a
client is in progress,the client thread must be cleanly transferred back to the invoking
session,and a Revokedexception raised.

Clien t death: If a client sessionor thread exits whilst in a serviceinvocation to a server, the
thread must be cleanly disconnectedfrom the invocation chain for that server beforethe
thread is destroyed. Garbage collection will ensurethat any allocated data structures
are released.

Clien t abort: This is similar to client death, with the di�erence that it is initiated by the
client, and a Service.Aborted exception is raised in the client, rather than the thread
being destroyed.

Clien t death with backup: In either of the above cases,when the server was executing
within a critical region at the point when the abort/death occurred, and had registered
a backup thread pool for the critical region'smutex the state of the client thread is trans-
ferred to the backup thread, allowing execution of the critical region to be completed
cleanly.

Experiments were performed in which a client made serviceinvocations to a server, and the
di�eren t caseslisted above were made to occur. In each caseRcane behaved as intended.
This demonstratesthat the good performanceprovided by Rcane servicesdoesnot comeat
the expenseof safehandling of (uncommon) abnormal termination cases.

7.3.4 Resource Backup

In Section7.3.3 the thread backup mechanism of Rcane was evaluated to ensurethat termi-
nation of a client thread within a server's critical section doesnot result in corruption of the
data protected by that critical section.

As described in Section 5.6, since critical sections represent regions of mutual exclusion, it
is important that a server can prevent a resource-poor or malicious client from spending too
long in a critical sectiondue to lack of CPU resources;otherwisecrosstalkbetweenclients may
be experienced. Such control is a�orded to the server through the useof the thread backup
mechanism { by assigningCPU resourcesto the backup threads, server CPU resourcesmay
be usedon behalf of the client only in those sectionsof code that might causecrosstalk, such
as critical sections.

To demonstrate that this mechanism allows the server to provide an e�ectiv e bound on the
crosstalk experiencedby a client, a simple server and a pair of clients were constructed. The
bulk of the work performed by the server did not require accessto a critical section, and
hencecould be carried out without a backup thread. Additionally , each call also updated
somestatistics about server usage;thesestatistics were protected through a critical section.
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Figure 7.7: The e�ect of resourcebackup on crosstalk

Of the two clients, the �rst client (referred to as fast) received a 1ms CPU guarantee over a
10msperiod, and the second(slow) received a 1ms CPU guarantee over a 500msperiod. In
order to simulate a heavily-loaded system,neither client was given accessto best-e�ort CPU
time.

Three experiments were conducted:

1. The fast client was run on its own.

2. Both clients were run simultaneously; no resourcebackup was employed by the server.

3. Both clients were run simultaneously; the server backed up the critical section with its
own CPU resources.

In each case,the clients continuously invoked the servicesprovided by the server, and the
rate of servicecompletion by the fast client was measured. Figure 7.7 shows the results for
the three scenarios.It can be seenthat when the fast client is executing alone, it achievesa
constant servicerate.

When the slow client is also executing, but without resourcebackup in the server, the fast
client may be observed to occasionally experiencesevere crosstalk, for periods of up to 0.5s.
This is due to the slow client exhausting its CPU slice whilst executing within the critical
section. In this situation, the slow client does not receive any more CPU resourcesuntil
the start of its next period (after 0.5s), and the fast client is unable to obtain the mutex
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for the critical section since it is held by the slow client; thus it cannot make use of its
own guaranteed CPU resources.This is similar to but distinct from the problem of priorit y
inversion [Lampson80] { since Rcane 's CPU scheduler usesthe notion of guarantees rather
than priorities, there is not the samepotential for deadlock as in a priorit y inversion.

In the third case,when the server provides resourcebackup to the critical section, it can be
seenthat the fast client doesnot su�er any such crosstalk { on the occasionswhen the CPU
resourcesof the slow client are exhausted while it is holding the critical section lock, the
resourcesof the server are usedto ensureits progressuntil it has exited the critical section.

Rcane 's resourcebackup mechanism can thus be seenas an e�ectiv e tool for supporting
the client-resourcednature of Rcane 's inter-sessionservices,whilst still allowing a server to
bound the level of crosstalk experiencedby clients when accessingshareddata within critical
sections.

7.4 Garbage Collection Isolation

Rcane runs each sessionin a separateheap in order to eliminate crosstalk causedby garbage
collection { a sessionshould not be inconvenienceddue to the allocation behaviour of other
sessions.To demonstrate the utilit y of this approach, two scenarioswere considered. In (a),
VPs A and B are running in the samesession.Initially both are generatingsmall amounts of
garbage. After a period of time, A beginsgenerating large amounts of garbage. Scenario(b)
is the same,but with the two VPs running in separatesessions(and hencehaving separate
heaps). Figure 7.8 shows the outcome of thesescenarios.In (a), both VPs are initially doing
small amounts of GC work. A is running best-e�ort, whereasB has a guarantee of 1ms
in each 4ms period. When A switches to generating large amounts of garbage, the time it
spends garbagecollecting increasessubstantially . However, as shown by the noisy region at
the bottom right of the graph, B also ends up doing an irregular but substantial amount of
GC work. Although B has its own independent CPU guarantee, at times critical GC activit y
(such as root tracing) is taking place when its thread is due to run; this GC work must be
completed beforenormal execution can be resumed. In (b), B is una�ected by the extra GC
activit y causedby A, since it is running in a separatesessionand hencedoes not share its
heap; thus B's own GC activit y remains minimal.

This suggeststhat the decisionto placeeach sessionin its own heapwasa soundone. It should
be noted that this represents a worst casescenario,in that sessionA wasallocating very large
amounts of memory with very little computation in between allocations, and thus stressing
the garbagecollector; however, sinceRcane is designedto acceptcode from untrusted users,
such byzantine behaviour may be seenfrom malicious or buggy clients. Isolating each client
and accounting their resourceusagedirectly is fairer and more reliable than attempting to
identify this kind of behaviour basedon heuristics or arbitrary limits.
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System Time (ms)
Rcane 1.7
Nemesis 13.9
Linux (null) 0.4
Linux (quit-static) 0.7
Linux (quit-dynamic) 2.8
Linux (ocaml) 20.0
Linux (java) 394.0

Table 7.4: Time to create and destroy a process/session

7.5 Session Creation/Destruction

Until the full potential of programmablenetworks is widely realised,it is di�cult to predict the
typical lifetime of a session(representing a set of resourcereservations) or the rate at which
new sessionswill be created. However, since maintaining an unused resource reservation
on a node is likely to be expensive and wasteful, the architecture of Rcane should not,
if practical, preclude the possibility of clients creating and destroying sessionsover short
timescales. Therefore the overhead of creating and destroying a sessionon Rcane needsto
be low.

Table 7.4 shows the time taken to create and destroy a sessionin Rcane , and comparesit
with the time taken to create and destroy a domain in Nemesisand a variety of di�eren t
processesin Linux (running on equivalent hardware). The various casesare as follows:

R CANE : A wait4Last() function was added to the Session interface, to permit a session
to wait for its most recently createdchild sessionto exit, in a similar manner to wait4()
in Unix systems. The Best-E�ort sessionrepeatedly createsa sessionand waits for it
to exit. The child immediately exits.

Nemesis: A WaitFor() method was added to the DomainMgrinterface to permit a session
to wait for a given domain to exit. A benchmarking program repeatedly createsa child
domain that exits as soon as the standard Nemesisenvironment has beenset up.

Lin ux (n ull): The parent repeatedly calls fork() followed by wait4() , and the child im-
mediately calls exit() (without executing a new image).

Lin ux (quit-static): As above, but the child instead exec() s a statically linked program
that immediately calls exit() .

Lin ux (quit-dynamic): As above, but the child binary is dynamically linked.

Lin ux (o caml): As above, but the child binary is a Caml virtual machine, executing a
bytecode �le that immediately quits.

Lin ux (ja va): As above, but the child binary is a Java virtual machine.
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Activit y Time (%)
Creation Creating Runtime structures 9.3

Creating Core housekeepingstructures 10.7
Linking of minimal environment 27.3
Dynamic linking of Caml/R cane environment 30.6

Destruction Revocation of services 16.6
ReleasingRuntime structures 0.8
ReleasingCore housekeepingstructures 4.7

Table 7.5: Breakdown of time spent creating/destroying a session

In each case,the �gure in Table 7.4 represents the total time betweensuccessive creations in
many thousandsof ongoing tests. In particular, the test for Rcane was repeated one million
times with no increasein the memory usageof the Rcane domain.

The sessionunder test in Rcane performs very little work itself, but the environment in
which it runs is dynamically linked together at sessioncreation time; a full Caml standard
library is available, along with a full set of servicesfor accessingthe Session interface3 that
provides the main interface betweenthe system and client sessions.

It can be seenfrom Table 7.4 that Rcane compareswell to the dynamically-link ed binary
under Linux, particularly sincein the current implementation of Rcane , all layersapart from
the Runtime are run as interpreted Caml bytecode.

The overheadof creating and destroying a sessionin Rcane is also substantially lower than
the cost of running a separateCaml (or Java) virtual machine for each client, or creating a
separateNemesisprocess.

A breakdown of the time consumedin creating and destroying a sessionis given in Table 7.5.
This processis described in more detail in Section 6.8.

7.6 Net work Performance

Without accessto the network, an Rcane node is something of a white elephant; the CPU
and memory resourcesare likely to be available more conveniently and more cheaply on the
end-user'sown node. It is the combination of these 
exible programmable resourceswith
the location within the network or close to other resourcesthat enables the bene�ts of a
programmablenetwork to be realised. In particular, similarly to the needfor timely accessto
CPU resourcesrecognisedin Section 7.2, timely accessto the network is required to permit
users to gain the latency bene�ts from code mobilit y, or to processstreams of multimedia
data.

Therefore, this section examinesthe network performanceof the Rcane system, in terms of
the quality of serviceguaranteesthat it provides to clients executing on the system.

3As partially described in Figure 5.2
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7.6.1 Net work Transmission

Figure 7.9 shows a trace of network output from three sessions,each attempting to transmit
continuously.

� SessionD has no guaranteed bandwidth.

� SessionE has a transmission scheduling period of 6ms, during which it receives 2ms
worth of link bandwidth. This 33% shareequatesto 33Mb/s on the 100Mb/s link used
for this experiment.

� SessionF has a 6ms transmission scheduling period, and a dynamically changing guar-
antee (seebelow).

SessionF starts with a guarantee of 25%. After about 12s, it requests45%, thus reducing
the best-e�ort bandwidth received by D. After another 2s, it requests65%. Now the link is
saturated and there is no best-e�ort transmission time available for D. After a further 2s it
returns to 25%, allowing D to begin transmitting again. It can be seenfrom the trace that
the desiredresourceisolation is achieved.

The apparent noisinessof the traces shown for the sessionswith guaranteed resourcesis
explained by Figure 7.10, in which a 1 secondperiod from the same experiment is shown
magni�ed. SessionsE and F are both seento be oscillating around the actual value that they
had beenguaranteed. This is due to the quantisation e�ects causedby the useof large (1500
byte) packets and small transmission periods.

The network transmissionguaranteegiven to sessionE, 33Mb/s guaranteedover a 6msperiod,
is equivalent to 16.6_6 packets per scheduling period. Sinceit is not possibleto preempt access
to the network whilst a packet is in the processof being transmitted, sessionsalternately
overrun their guarantee in one period, and then receive correspondingly lessin the following
period, such that when the traces are averaged over two or more periods, the oscillation
becomesinsigni�can t. In the caseof sessionE, it managesto transmit either 16 or 17 packets
in each period.

This e�ect could be reduced through the use of a networking technology that usesa much
smaller maximum packet/cell size. For example,ATM uses�xed-sized cells of 48 bytes (plus
5 bytes of header information), which could therefore allow scheduling decisionsto be made
on a �ner granularit y.

7.6.2 Net work Reception

On a shared, unscheduled medium such as Ethernet it is not straightforward to provide
guaranteeson the number of packets received at a node for a particular client. However, the
level of guaranteed bu�ering and CPU time that a particular client receives will a�ect the
amount of incoming data on a network streamthat actually reachesthe client. To demonstrate
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this, the bandwidth of data that could be processedby a sessionrunning on an Rcane node
was measured.

A sessionon a neighbouring node (belonging to the same principal, and bearing the same
sessionID) transmitted approximately 97Mb/s acrossthe intermediate link. A CPU bound
sessionwith a 40% guarantee and a 10msperiod is also running on the receiving node. The
bu�er spacereserved by the receiving sessionwas varied between 1.5KB and 88KB; it was
guaranteed 10% of the CPU, with a scheduling period varying between1ms and 20ms. More
details of the experimental setup, including the method used to launch the various sessions,
are given in Section 8.2.3. 10% of the CPU had beenobserved to be more than su�cien t to
processthe entire incoming data stream on an otherwise unloaded node.
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Figure 7.11: Network receive bandwidth asa function of CPU scheduling period and bu�ering

Figure 7.11shows how the level of bu�ering and CPU scheduling period a�ect the amount of
data that can be processed.It can be seenthat when the sessionruns with a short scheduling
period, it is scheduled su�cien tly frequently to processall the incoming data even when its
bu�ering is relatively low. Similarly, when the sessionhas large amounts of bu�ering, it is
able to processall the data even if its scheduling period is long.

However, the CPU-bound sessionhas a guaranteed slice of 4ms every 10ms;as the receiving
session'sscheduling period increases,it �nds itself interrupted for longer periods of time, and
thus for modest levelsof bu�ering the sustainedreceive bandwidth falls { the receivingsession
losesaccessto the CPU for long enoughstretchesof time that its bu�ers are �lled up, resulting
in incoming packets being dropped in the network device driver. As the receiving session's
period increasessigni�cantly beyond the 4ms slice that is being received by the CPU-bound

141



session,no further reduction in processedbandwidth occurs.

It may also be seenthat at very low levels of bu�ering, the amount of data that can be
processeddrops o� rapidly due to the inherent latency in the NemesisI/O channelsbetween
the network devicedriver and Rcane .

The abilit y to make guarantees to clients about the level of resourcesreserved for them is
essential to allow clients to make tradeo�s (such as a longer scheduling period4 but a larger
amount of bu�ering) so that they may meet their deadlineswith maximum economy.

7.7 Summary

This chapter has presented an experimental evaluation of the key features of the Rcane
architecture in terms of performanceand quality of service. The evaluation was structured
into �v e main sections.

The scheduler was examined, and was shown to provide e�ectiv e guarantees of processor
bandwidth to sessionsrunning in Rcane . Such guarantees are vital to gain the latency
improvements associated with code mobilit y; they are also required for jitter-free processing
of streamsof data within a network.

The Rcane inter-sessionservice architecture was examined. Rcane serviceswere shown
to be e�cien t, and comparable with someof the fastest current IPC primitiv es. The type-
based marshalling optimisations performed by Rcane were shown to provide substantial
improvements over a marshalling strategy that takes no account of type information. The
breakdown of a service invocation showed that a substantial portion of the overhead in a
serviceinvocation is inherent in the Caml virtual machine usedby this implementation. These
results demonstrated that Rcane 's servicesprovide an e�ectiv e lightweight communication
mechanism betweenotherwise isolated sessions.

Such isolation was seento be e�ectiv e at ensuring sessionsreceived their CPU guarantess
rather than being interrupted by garbagecollection activit y due to other sessions;the ap-
proach taken by Rcane of providing multiple independent heapsprovided good guarantees
even in the presenceof heavy garbagecollection activit y causedby other sessions'pathological
useof memory.

Rcane 's sessionswereshown to be a lightweight alternativ e to processesin a general-purpose
operating system; in particular, creating and destroying an Rcane sessionwas seento be
substantially faster than instantiating and destroying a full virtual machine for each client.
Such a property is likely to be required of a node in a programmable network, as clients
may wish to cancel their reservations when not needed,or transfer their reservations around
the network. When running untrusted code, and in situations in which users' sessionsmay
be terminated due to lack of resources,Rcane must be capable of correctly handling ab-
normal termination situations without error. The di�eren t abnormal caseswere considered

4Since a shorter scheduling period requires more frequent reschedules and hencemore scheduler overhead,
it would be lik ely that an active node would charge more for a reduced scheduling period.
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experimentally; in each casethe correct behaviour was observed.

Timely accessto the network is essential if end-usersare to make e�ectiv e use of a pro-
grammable network platform such as Rcane . Rcane was seento provide e�ectiv e resource
guarantees for both network transmission (bandwidth) and network reception (bu�ering).
The abilit y of a sessionto trade o� its CPU scheduling requirements against its network
bu�ering requirements was demonstrated.

The experimental results presented in this chapter have shown that at a systemlevel, Rcane
provides the resourceisolation and guaranteesrequired for an e�ectiv e programmablenetwork
platform. The next chapter investigatesthe useof Rcane as an active network platform.
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Chapter 8

RCANE as an Activ e Net work
Platform

The previous two chapters presented an implementation of Rcane and evaluated key aspects
of the system. It was demonstrated that Rcane provides a platform with good resource
isolation and guarantees. In order to properly act as a programmable network node, Rcane
must be be su�cien tly 
exible to accommodate the multiple di�eren t styles of programming
that active networks, open signalling and other programmable network applications require.

This chapter examines the use of Rcane as the basis for an Activ e Network node, with
support for multiple di�eren t execution environments:

� The PLANet environment;

� The ANTS environment;

� Activ e Reliable Multicast.

8.1 Activ e Net works

In an active network, someor all of the nodes in the network may have their functionalit y
programmatically extended by end-usersof the network. The environment in which such
user-suppliedcode may executeis known asan Execution Environment (EE). The EE de�nes
the language or languagesin which the code should be written, and the servicesthat are
available to clients of the EE. It has been suggestedthat IP itself constitutes a simple EE,
using a languagewith one principal (implicit) service,route-and-forward-packet() , and a
collection of lesscommonly usedservices(ICMP messages).

In earlier active network research projects, each node has generally supported only a single
EE. Two research e�orts are underway to make it more straightforward to usemultiple EEs
on a single node:
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� The Activ e Network Backbone (ABone) [ABone] permits multiple EEs to run on a
single Unix node as separateprocesses.The Activ e Network Daemon [SRI99] receives
packets in the Activ e Network Encapsulation Protocol (ANEP) [Alexander97a] and
demultiplexes the packets to the relevant EEs.

� The NodeOS[Peterson00a]aims to provide a low-level operating-systemstyle interface
suitable for implementing active network EEs.

In both of these e�orts, the main resourceprincipal is the EE { an EE is a program that
controls resourceson behalf of multiple end-usersof the network. Whilst this model may
facilitate the straightforward development of an EE, it makes it di�cult for end-usersto ac-
curately control their own resources,particularly if they are interacting with multiple di�eren t
EEs simultaneously.

The approach taken by Rcane is that the session is the resourceprincipal, and that EEs
should e�ectiv ely be regardedas library code1 that a sessionmay instantiate to provide the
desired environment. Thus a client with simple needsmay interact directly with the raw
interfacesprovided by Rcane , whereasa client with more complex needsmay instantiate one
or more di�eren t EEs to provide a suitable environment services. In this way, the client has
full control over its resources,and can allocate them to its tasks as it wishes, rather than
being forced into a particular strategy provided by the EE.

A further advantage of this approach is that EE writers do not needto take resourcemanage-
ment speci�c issuesinto account { instead, they simply provide hooks through to Rcane 's
resourcemanagement, and leave the details to Rcane .

It should be noted that there is nothing to prevent an end-useror a service provider from
creating an Rcane sessionthat acts as a traditional EE supplying active network servicesto
other end-users;in this situation, the EE could still makeuseof Rcane 's resourcemanagement
facilities to help apportion resourcesbetween the di�eren t usersof the EE. However, some
features of Rcane { such as the heap isolation { are not applicable when isolating multiple
activities within a single session;furthermore, the usersof such an EE would then be forced
to follow the resourceallocation and programmabilit y features of the EE.

The next two sectionsdescribe the implementation of two active network EEs over Rcane {
PLANet and ANTS. Thesewere chosenfor several reasons:

� They are currently the two most popular EEs in usein the Activ e Networking commu-
nit y.

� They represent very di�eren t computation models: PLANet supports programs writ-
ten in an extremely restricted languageand carried with each packet, whereasANTS
supports demand-loadedprotocol code in a general-purposelanguage.

� They are both complex EEs requiring a high level of 
exibilit y in their underlying
platform.

1The view that an EE is e�ectiv ely a library available to applications is also �nding favour in discus-
sions [Peterson00b] regarding the NodeOS project.
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In each case,an overview of the EE is given, followed by a discussionof the suitabilit y of
Rcane as a platform for supporting that EE.

8.2 PLANet

8.2.1 Overview of PLANet

PLANet [Hicks99c] is an EE that supports the execution of programs written in the Packet
Languagefor Activ e Networks (PLAN) [Hicks98]. PLAN is functional languagereminiscent
of ML, but with very restricted functionalit y { in particular, unboundedrecursionand looping
are forbidden. PLAN programs construct complex behaviour by invoking services { routines
written in a lessrestricted language,which have full accessto the resourceson the node. Such
servicesare privileged code, and hencecannot generally be loaded by untrusted users.

A fundamental serviceprovided asa primitiv e by PLAN is OnRemote(){ this causesa remote
evaluation of a PLAN function on a di�eren t node. Such an evaluation is implemented by
sendinga PLAN packet to the remote node. The body of the packet contains any PLAN code
required for the evaluation { the function may either be speci�ed by a name to be looked
up at the remote host, or may be sent with the packet { along with any parameters that
the function needs. Someof these parameters may be for control purposes,and others may
represent data being transferred by the packet.

Other higher-level servicesprovided by a typical PLANet node include:

� Fragmentation and reassembly of packets;

� Reliable delivery;

� Compression;

� Checksumming.

Theseservicesall make useof the conceptof a chunk [Moore99b]{ a �rst-class PLAN object
representing a delayed function call. When a remote evaluation is made, the chunk is mar-
shalled into a packet and sent to the remote node. Such marshalling may also be performed
by servicesthat wish to provide layered protocols.

For example, supposewe wish to execute the test() function on a remote node, passinga
parameter that is larger than the MTU of the intervening links. The chunk representing this
remote evaluation would be speci�ed in PLAN as |test(bigArgument)| { the vertical bars
indicate that this is a chunk, rather than a direct function call2.

Attempting to call OnRemote()with this chunk to evaluate the test function on the remote
node would result in the raising of an MTUExceededexception. Consequently the packet must

2 In the latest versions of PLAN this would actually be written as |test|(bigArgument) due to syntax
changes.
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befragmented beforebeingsent, and then reassembled at the remotenode. The fragmentation
processis shown graphically in Figure 8.1 and described below.

fragment( |test("AVeryLongParam") |)

010110100 101100100 111001010

010110100101100100111001010

|reassemble(key,
"010110100") |

|reassemble(key,
"101100100") |

|reassemble(key,
"111001010") |

|test("AVeryLongParam") |

010110100 101100100 111001010

010110100101100100111001010

|reassemble(key,
"010110100") |

|reassemble(key,
"101100100") |

|reassemble(key,
"111001010") |

split

recombine

fragment()

reassemble()

marshal

unmarshal

test()
 Host A  Host B 

PLAN Chunk PLAN Service PLAN Invocation

OnRemote()

Figure 8.1: Fragmentation in PLAN { an exampleof the useof chunks

The fragment() service takes a chunk, marshals it into a bu�er, and splits this bu�er into
fragments smaller than the MTU, taking into account the overhead intro duced by fragmen-
tation. Each of these fragments is wrapped into a chunk that, when evaluated, passesthe
fragment as a parameter to an invocation of the reassemble() service;an additional param-
eter is a key distinguishing between fragments from di�eren t packets generatedby a single
client. The fragment() servicereturns thesesmaller chunks to the program, which may now
call OnRemote()without fear of exceedingthe MTU limit. When thesechunks are evaluated
at the far end, each call to reassemble() stores a fragment of the original chunk in a table
keyed on packet ID { onceall the original fragments have beenreceived, they can be stitched
together to form a larger bu�er. This bu�er is then unmarshalled to recreate the original
chunk, which is in turn evaluated to causethe desired invocation of test() .

Other servicesmay be invoked to transform chunks in a similar way, so as to provide ar-
bitrary encapsulation and layering of protocols. For example, an invocation of the chunk
fragment(checksum(|test(arg)|)) returns a list of fragments that, when reassembled into
a single chunk, may be error-checked before being evaluated. Conversely, the invocation
checksum(fragment(|test(arg)|)) returns a list of fragments that will each be individu-
ally error-checked at the remote node beforebeing reassmbled into the original chunk.
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PLANet contains a very simple form of resourcecontrol { when a packet is sent into the
network, it is associated with a resource bound value (RB). Each time a packet is routed by
a PLANet router, its RB value is decremented. The RB is analagousto a hop-count or time-
to-liv e �eld in an IP packet, with two extensions: a unit of RB is consumedon any recursive
invocation; and when creating a new packet, the \parent" packet may choosehow much of
its RB to transfer to the new packet. The concept of the RB ensuresthat no PLAN packet
can consumeinde�nite amounts of bandwidth or CPU time without connivancefrom PLAN
services,which are trusted to manipulate packets' RB valuesonly in safeways. It doesnot,
however, give any guarantee of timely accessto resources,nor place concrete limits on the
resourcesthat can be consumed.

8.2.2 RCANE Implemen tation of PLANet

Since several of the low-level networking interfaces (but not implementations) that Rcane
presents to clients wereoriginally derivedfrom interfacesusedby PLANet, integrating PLANet
with Rcane was relatively straightforward. PLANet has beenthe primary EE running over
Rcane for large portions of the development, and has beenusedin experiments as a vehicle
for transferring code to the Rcane box and for performing dumps of instrumentation traces,
ARP-style host resolution, and routing services.

The lower-levels of the PLANet networking code were removed, sincesimilar functionalit y {
with the addition of resourceisolation properties { is provided by Rcane . The main PLAN
packet handler routine is now passedasa channelhandler to the Rcane networking interfaces.
Several portions of PLAN had to be reorganisedto take into account the fact that functions
previously handled by the PLAN EE itself werenow being provided by Rcane , in the System
session.

Since Rcane allows clients to reserve resources{ in particular, heap memory for storing
PLAN function de�nitions { clients may specify a particular PLAN function to be attached
directly to the handler for a particular Rcane 
o w or sub
ow. This provides the convenience
and safety of PLAN programs but without the additional per-packet overheadof repeatedly
transferring and unmarshalling the required PLAN code or performing a symbol table lookup
to �nd a speci�ed function. Such an extension is impractical without an environment such
as Rcane in which client code and data resourcescan be associated with particular network
connections.

PLANet running over Rcane interacts with unmodi�ed versionsof PLANet running on Unix
boxes, demonstrating that it is not necessaryfor all nodes in a network to be running an
implementation of Rcane in order to bene�t from Rcane 's resourcecontrol models.

The protot ype implementation of Rcane usesPLANet to provide its basic network services,
such as routing table updates, neighbour discovery, addressresolution (analogousto ARP)
and sessioncreation.
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Figure 8.2: Experimental topology for network receive bandwidth testing

8.2.3 Exp erimen tal use of PLANet

To illustrate the useof PLANet over Rcane , and its interaction with standard PLAN nodes,
Figure 8.2 shows the setup usedby the network receive experiment described in Section7.6.2.

Vixen and Barehands are Rcane nodes, and Saracenis a Linux node running a standard
PLAN daemon. All three machines are connectedvia switched Ethernet; separatePLANet
UDP virtual networks connect Saracento each one of the Rcane nodes. A private 100Mb/s
Ethernet connectsVixen and Barehands,over which is run a PLANet Ethernet virtual net-
work.

A PLAN client running on Saracenconnectsto the PLAN daemonand sendsa PLAN packet.
This packet is evaluated within the daemon,and proceedsto sendremote invocation packets
to Vixen and Barehands. In each case,these packets create a sessionat the receiving node
for the client. Each packet also contains the contents of a bytecode module to be loaded
into the newly created session.The module loaded at Barehandscontinuously sendspackets
acrossthe 100MB/s private link between Vixen and Saracen. The module loaded at Vixen
requestsguaranteesfor CPU time and network access,and then processesincoming packets.
It monitors how its processingrate varieswhen it requestsdi�eren t levelsof network bu�ering
and CPU scheduling period.

An unrelated sessionis also running on Vixen; it is started at node initialisation, and repre-
sents contention for the CPU from other clients of the node. SeeSection 7.6.2 for details of
the results of this experiment.
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8.3 ANTS

8.3.1 Overview of ANTS

The Activ e Node Transfer System (ANTS) [Wetherall98] usesa demand-loadedapproach to
load Java code on to a network node. Each packet (or capsule) contains a type identi�er
that speci�es the Java classthat should be used to processthe payload of the packet. The
type identi�er is typically the MD5 [Rivest92] checksum of the Java class �le { since the
behaviour of the processingalgorithm is de�ned by the code, which is in turn usedto generate
the checksum, it is impossible to register a malicious protocol that will receive packets not
intended for it 3.

When a packet is received at a node and its type identi�er has been unmarshalled, ANTS
looks in a code cache to obtain the relevant Java class; if this class is found, it is used to
processthe packet, otherwise a request is sent to the upstream node to ask for the relevant
Java code. Since ANTS has just received the packet from this upstream node, it is very
likely that the upstream node has a copy of the relevant code in its code cache. In this case
the upstream node forwards a copy of the code for the packet and any related packet types
belonging to its Protocol (an ANTS Protocol represents a collection of related packet types
that may be usedby a particular communications protocol), and the downstream ANTS node
loads this code and usesthe appropriate class to processthe packet. In the event that the
upstream node also has no copy of the appropriate class,the packet is dropped.

This model of codepropagation allows protocol de�nitions to be \pulled" through the network
behind the �rst packet of a particular protocol. Thus, over time, those nodesbeing usedby

o ws from a given protocol will tend to have the code for that protocol in their code cache.

8.3.2 RCANE implemen tation of ANTS

SinceANTS is written in Java, and the current implementation of Rcane has support only
for OCaml bytecode, a straight port of ANTS to Rcane was not possible. Instead, a simple
version of ANTS was written in Caml to run over the Rcane virtual network interfaces.

The structure of ANTS over Rcane is shown in Figure 8.3. Each OCaml module that
implements a protocol de�nes a function to processpackets from that protocol. The code
table provides a mapping from a module digest (the MD5 checksum of a OCaml bytecode
module) to the protocol processingfunction implemented by that module.

The Ants.demux() function acts as the handler for network packets for a particular client. A
sessioncreatesan ANTS environment, and passesa referenceto Ants.demux() to the Rcane
networking layer. When Rcane passesa packet to Ants.demux() , the type identi�er of the
protocol type is retrieved from the packet, and the appropriate processingfunction is called.

3Theoretically , if one could generate a malicious proto col whoseJava bytecodes checksummed to the same
MD5 digest as the proto col being attacked, one could subvert the security of the ANTS model { however, this
is regarded as an intractable problem.
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Figure 8.3: The structure of the ANTS implementation on RCANE

If no module has beenregisteredfor the speci�ed protocol type:

1. ANTS asks Rcane whether a bytecode module with the appropriate digest has been
loaded on the node by a di�eren t session.If such a module is available, ANTS binds to
it, and registers its protocol processingfunction in the code table.

2. If the appropriate module is not found, the packet is addedto a queuefor that protocol
type and (if necessary)a code requestpacket is sent to the upstream node. This request
is itself an ANTS packet.

3. When a code reply packet containing the requestedbytecode module is received from
the upstream node, ANTS calls into Rcane to link the bytecode module and bind it
into the sessionin which ANTS is running. The bytecode module is initialised, and its
processingfunction is registered in the code table.

Although each sessionwill have its own code table and instantiations of the protocol modules,
the actual bytecode for each module is shared by all sessions,coordinated by the bytecode
librarian in the System session.

The protocol processingmodules may passa partially processedpacket back into the ANTS
demultiplexer, thus allowing protocol layering in a natural way. As an example, the problem
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of fragmentation, which was presented in Section 8.2.1, is now considered for the Rcane
implementation of ANTS.

Figure 8.4 shows how a custom protocol could be layered over Frag, a fragmentation and
reassembly protocol when running on Rcane . When the �rst packet of the stream is sent out
the following stepsoccur, assumingneither Frag nor Customhave beenusedrecently at the
destination:

Loader

Frag

Custom

 Host A  Host B 

Demux Demux

FragApplication

Custom

Librarian
(System
Session)

Loader
Librarian
(System
Session)

Protocols not initially
present on Host B

Packet flow Invocation

1

2

3

4
5

7 8

9

6

1

5

Figure 8.4: Fragmentation in ANTS

1. The application calls Custom, which calls Frag, which fragments the packet.

2. Frag sendsthe fragments to B.

3. Demuxon the destination looks up Frag and fails to �nd it, and hencecalls the Loader.

4. Loader on B sendsa request packet for Frag.

5. Loader on A queries the code table and/or the librarian and sends a reply packet
containing bytecode for Frag.

6. Loader on B loads Frag.

7. Demuxpassesthe fragments to Frag.

8. Frag reassembles the fragments into the original packet and passesit back to Demux.

Steps3{6 are repeated in order to load Custom.

9. Demuxpassesthe original packet to Custom.
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Future packets from the samestream reaching Host B would be directed directly to Frag,
reassembled, and passedto Customwith no further network tra�c.

This approach di�ers from the approach taken by PLANet in that usersof a PLAN network
are restricted to the services,such asfragmentation, installed by the node managers;therefore
service innovations may occur over a longer time scalethan userswould like. With ANTS,
end userscan easily upgrade the servicesthat they usewithin the network by simply sending
packets bearing the module digest of the new service implementation. However, current
versionsof ANTS do not fully support untrusted code, due to a lack of resourcecontrol over
user-suppliedprotocols [Wetherall99a].

Thesedi�erences are largely removedwhenrunning over Rcane : both the ANTS and PLANet
environments allow usersto load their own code, although the out-of-band (PLANet) versus
demand-loaded(ANTS) distinction still exists. The resourceisolation provided by Rcane
meansthat each user has a great deal of 
exibilit y to customisetheir own environment, but
cannot a�ect other userseither in terms of resourcestarvation or by subversion of the EE by,
for example, replacing a commonly usedservicein the PLAN symbol table.

8.4 Activ e Reliable Multicast

Much previous work has beendone on implementing e�ectiv e reliable multicast. Standard IP
multicast [Deering89] provides IP delivery semantics to multiple recipients { i.e. delivery is
unreliable, and there is no guarantee that the senderwill be noti�ed if the packet does not
reach the destination. This lack of reliabilit y has resulted in multicast mainly being usedfor
video and audio applications, in which the lossof data merely degradesthe subjective value
of the application to the human user rather than causinginconsistenciesbetweenthe various
nodes in a distributed system. In contrast, reliable multicast aims to provide reliabilit y
on top of the multicast delivery, allowing the use of multicast for applications, such as a
sharedwhiteboard, that are transferring data other than mediastreams. Additionally , reliable
multicast may provide congestion control to reduce the load placed on the network by a
particular 
o w during periods of overload, and causaldelivery to prevent out-of-order delivery
of data.

Many di�eren t reliable multicast solutions have been proposed, including SRM [Floyd97];
indeed, the IETF has felt it necessaryto issueguidelines[Mankin98] to thosedeveloping new
reliable multicast transports, giving criteria that all newproposalsshouldmeetand suggesting
that:

Due to the nature of the technical issues,a singlecommonly acceptedtechnical
solution that solvesall the demandsfor reliable multicast is likely to be infeasible.

Protocolssuch asmulticast have traditionally beenimplemented in network routers. In a �eld
such as reliable multicast, however, where there is no clear agreement over the protocols to
deploy, there is a risk that either di�eren t vendorswill deploy incompatible solutions, or that
many end-userswill �nd that the deployed solutions are unsuitable for their requirements.
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Consequently this appears to be an ideal domain for active networks { by providing a pro-
grammable interface on a network router, the vendors allow those implementing reliable
multicast to deploy protocols and algorithms that suit their particular communication re-
quirements, rather than restricting end-usersto vendor-suppliedprotocols.

An exampleof such a protocol is the Activ e Reliable Multicast protocol (ARM) [Lehman98].
ARM wasoriginally developed to run over ANTS, and to provide reliable one-to-many multi-
cast semantics with no speci�c multicast support from the intervening network { the network
needsonly to provide programmabilit y on a subsetof its nodes.

Nodesrunning ARM maintain a cache of recent data. When a downstream ARM node notices
that a packet hasbeendropped, it sendsa NACK back up the multicast tree. When the next
upstream ARM node receivesthe NACK, it will check its data cache for the requestedpacket;
if the packet is present, it will be forwarded to the downstream node. If the packet is not
present, the upstream node notes the fact that the downstream node needsa copy of the
packet, and forwards the NACK to the next upstream node. NACKs for the samepacket
from multiple downstream nodesare coalesced,resulting in only a singleNACK being passed
to the next upstream node if the packet is not found in the cache.

When retransmissionsarereceived, they areonly forwardedto thosenodesthat haveexpressed
an interest in that packet's retransmission,i.e. thosenodesthat have previously sent a NACK.

Thus ARM aims to reducethe bandwidth requirement for a reliable multicast stream in two
ways:

� Upstream bandwidth is reduced since NACKs are coalesced. This helps prevent the
phenomenonof NACK implosion, in which a packet lost at an early stagein the multicast
tree causesa NACK from many (or all) receivers to be sent to the original sender.

� Downstream bandwidth is reducedsinceretransmissionsare selectively targeted to the
speci�c branchesof the multicast tree that failed to receive the packet previously, and
retransmissionsfrom ARM cachesin the network neednot traversethe whole path from
the senderto the receiver.

Furthermore, the latency for retransmissions is reduced; with no support in the network
for caching and retransmissions,a NACK must travel all the way from the receiver to the
sender, and the retransmission must travel from the sender to the receiver. This results
in a minimum latency of one round-trip time to recover from a lost packet. Alternativ ely,
the receivers themselvesmust coordinate to supply retransmissionsto one another [Floyd97].
This has the drawback that multiple receivers may send the repair packet simultaneously;
thus in order to prevent 
o oding the network with repair packets, each such receiver must
wait a random amount of time before sending the repair, and aborting if it detects a repair
from another receiver. With ARM caching in the network, the minimum recovery latency
is a round-trip time from the receiver to the next upstream ARM node, rather than to the
sender(as when the senderis responsible for repair packets), or a round-trip time to another
receiver plus a random element (as when receivers are responsible for repair packets).
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ARM nodeswould be most valuably located near the endsof links that are expected to su�er
loss; in this way the loss may be noticed and repaired at the earliest possibletime, and the
retransmission{ which represents wasteduseof the network links { will have the leastdistance
to travel.

In [Lehman98], an ARM network is shown to have a recovery latency4 of 0.2 RTT, com-
pared with SRM [Floyd97], which approaches1.4 RTT with 100 nodes in a multicast group.
Furthermore, the majorit y of ARM's bene�t, resulting in a recovery latency of 0.4 RTT,
is achieved when only 30% of the ARM routers cached fresh packets (as opposedto repair
packets, which were cached by all ARM routers). Also shown was that ARM could control
NACK implosion to the samelevel as SRM when only \strategic" nodes { those with more
than two outgoing links in the multicast tree { were running ARM, with other nodesrunning
a standard multicast router; such strategic nodes typically constituted lessthan half the set
of possiblerouters.

8.4.1 ARM on RCANE

The reduction in latency and repair bandwidth achievedby ARM is at the expenseof increased
memory (and, to a much lesserextent, CPU consumption) on the ARM nodes,sincethey need
to cache data for later retransmission. In a programmable network without reservations, the
deployment of a protocol such as ARM could be expected to lead to excessively large caches
being maintained. Since the utilit y function of the cache is likely to monotonically increase
with the sizeof the cache, there is little incentiv e for usersto limit their usageof memory.

A possiblesolution would be to put a �xed limit on the amount of ARM caching at a particular
node; however, this would have two drawbacks:

� It would not directly provide a way to favour important tra�c, or tra�c that would
especially bene�t from caching.

� Sincethe network is programmable, it would not prevent end-usersfrom running their
own ARM-lik e protocol that did not respect such limits.

Alternativ ely, this problem canbesolved through the useof a programmablenetwork platform
such asRcane , which is capableof providing, and accounting for, robust resourceguarantees
to clients.

The implementation of ARM described in [Lehman98]maintains a single ARM cache for all
clients; under Rcane , a separatesessionwould be createdfor each multicast stream, or group
of related streams,at the nodeswhere the stream's userswished to employ active processing.
ARM is treated as a shared library , which each client sessionmay instantiate to perform
active multicast processing.

4The recovery latency is de�ned as the time from a receiver detecting a packet loss to when it receives the
�rst repair for that loss.
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An implementation of ARM has beendeveloped to run over Rcane . The low-memory call-
backs described in Section6.4.3are usedto inform ARM that it is approaching the limit of its
reserved heapsize. At this point older packets, along with older structures describingNACKs
received and pending retransmissions,are recycled to reducegarbagecollection overheadsor
releasedto be reused as a di�eren t type of object. ARM records the numbers of NACKs
received, and the number of times that the packet requestedby a NACK was not found in
the cache. At intervals it checks the ratio of these, and if the ratio is too high, it deduces
that the amount of caching it is using is insu�cien t to e�ectiv ely deal with the loss on the
downstream links, and requestsa higher memory reservation from Rcane (assumingthat the
client is willing to pay for an additional memory reservation).
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Figure 8.5: Experimental topology for ARM testing

Figure 8.5 shows the experimental setup used to demonstrate the useof ARM over Rcane .
Rocket, Vixen and Barehandsare each running Rcane and are connectedby 100Mb/s Eth-
ernet. Saracenis running a PLAN daemonand is usedto control the Rcane machines. The
link between Vixen and Rocket is assumedto be non-lossy. The link between Vixen and
Barehands is arti�cially made very lossy, by dropping packets at Barehands with a given
probabilit y. Sessionson all three nodes are started by a client who wishes to transfer an
ARM 
o w from upstream of Rocket to downstream of Barehands. Thus Rocket is acting as
an ARM sender,Vixen asan ARM router and Barehandsasan ARM receiver5. Initially , 25%
of packets from Vixen to Barehandsare dropped; after 90 seconds50% are dropped. Vixen
is con�gured to attempt to increaseits reserved heap size if it discovers that it is servicing
lessthan 90% of the NACKs from its cache over a 1 secondperiod.

Figure 8.6 shows the memory usageof the ARM router on Vixen, along with the total number
of packets sent, the number of NACKs received from Barehands and the number of cache

5Clearly in a real situation Rocket would be receiving from an upstream node, and Barehands would be
sending to a set of downstream nodes; this was not practical due to lack of suitable networking infrastructure.
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Figure 8.6: Memory usage,packet counts and cache hits for an ARM stream

\hits" (NACKs that could be served from the cache). It can be seenthat the heapconsumed
by ARM quickly grows to approximately 180kB; at this level, Vixen is able to service over
90% of the NACKs that it receives from Vixen directly from its cache. After 90 seconds
the loss on the link from Vixen to Barehands doubles to 50%. At this point, the number
of NACKs received from Barehands increasessigni�cantly , and the percentage of NACKs
serviced from the cache falls noticeably below 90%. Thus ARM increasesits reserved heap
size in an attempt to reduce the number of misses; the heap size grows to approximately
370kB over the courseof 40 seconds,at which point the level of NACK hits reachesthe target
of 90%, and the heap sizestabilises.

This demonstratesthe abilit y of Rcane to constrain the amount of memory usedby di�eren t
clients on a node { an essential property of any practical programmable network platform.

8.5 Summary

This chapter hasillustrated how Rcane providessupport for multiple di�eren t active network
and mobile code solutions. Two di�eren t active network models { PLANet, in which code is
carried with each packet, and ANTS, in which code is loadedout-of-band { wereimplemented
over Rcane .

Although PLANet has limited support for preventing packets in an active network from con-
suming unbounded amounts of bandwidth or CPU time, neither ANTS nor PLANet support
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the allocation of resourcesto clients, nor guarantee timely accessto those resources.

When running over Rcane , both of theseenvironments are treated as libraries available for
useby applications; it thus su�ces for access(or hooks) to Rcane 's resourcecontrol interfaces
to be provided in the environment.

The problem of reliable multicast was considered. Due to the di�cult y of de�ning a single
reliable multicast protocol that meets all users' requirements, this appeared to be an area
in which active networking could be a practical solution; the bene�ts experienced through
the use of ARM, an Activ e Reliable Multicast protocol, were discussed. However, without
resourcecontrol between clients, such solutions could lead to excessive resourceusageon
nodes within the network. Rcane was seento provide an e�ectiv e platform for controlling
such resources.
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Chapter 9

Conclusions and Scope for Future
Work

This dissertation has examined the requirement for resourcecontrol in open programmable
networks. An architecture for supporting such resourcecontrol waspresented, namedRcane
{ the ResourceControlled Activ eNodeEnvironment. A sampleimplementation wasexamined
and evaluated. This chapter summarisesthe work and its conclusionsand makessuggestions
for further areasof study.

9.1 Summary

Chapter 2 described the background to this research. It beganby looking at \passive" end-
to-end delivery networks, and their evolution into programmable networks, in which end-
users may customise the processingin someor all of the nodes in a network. A review of
the rationale for two of the main forms of programmable networks { active networks and
open signalling architectures { was presented, followed by a taxonomy of di�eren t levels of
programmabilit y and a review of platforms currently used for programmable networks. In
particular, the NodeOS{ an attempt to de�ne a common standard for programmable nodes
in the sameway that IP provides a common standard for datagram routers { was discussed.
Related work in safelanguages,resourcecontrol and extensibility was surveyed.

Chapter 3 examined the requirement for resourcecontrol within programmable networks.
The high variance in tra�c seenin current wide-areanetworks suggestedthat even in passive
networks, the overheadsof resourcereservations may turn out to be cheaper than the costs
of overprovisioning best-e�ort networks.

Open programmable networks were de�ned as networks in which somesubset of the nodes
provided programmable facilities accessibleto all usersof the network. The fact that usersof
programmable networks have much more 
exibilit y, and that their resourceusagecannot be
conveniently limited through the useof bandwidth throttling, suggestedthat the requirement
for resourceusagewas likely to be greater in programmable networks than in traditional
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passive networks.

Two di�eren t approaches to resourcecontrol, through proof properties and scheduling, were
considered.The resourcesthat required control, such asCPU cycles,network bandwidth and
various typesof memory, were discussed,along with possibleapproachesto controlling each.

In Chapter 4, the NemesisOperating Systemwas discussed.The features that it provides to
facilitate resourcecontrol were examined.

The Rcane architecture was intro duced in Chapter 5. The design principles underpinning
the architecture were presented:

� Untrusted clients should not be able to adverselya�ect the operation of the node, thus
the system should be partitioned into multiple layers of security.

� Resourceconsumption should be accountable to the entit y causing it to occur, thus
computation activities should, wherepossible,bepartitioned on a per-client basisrather
than through sharedservers.

� Clients with guaranteed resourcesshould not experienceinterferencewith those guar-
anteesdue to the actions of other clients.

The concept of a session was intro duced as a meansof accounting for resourcesconsumed
by a remote client, and the abstractions usedby the architecture to support scheduling and
accounting of various resourceswere presented. Each sessioncan reserve one or more alloca-
tions of guaranteed CPU time, or VP s; a session'sactivities may be multiplexed over its VPs

exibly , according to its own priorities, through the use of threads and thread pools. Events
allow the deferral of computations to a speci�ed later time. Channels were presented as an
abstraction of network streams; all processingassociated with a channel is accounted to the
owning client, and scheduled accordingly. Rcane giveseach sessionits own isolated heap to
prevent garbagecollection crosstalk; to permit lightweight communication betweensessions,
a form of thread-migrating IPC called a service was intro duced. The possibleapproaches to
providing such serviceswereexaminedin detail. A discussionof accounting and billing issues
followed, accompaniedby the related topic of detecting and preventing DoS attacks.

Chapter 6 described a protot ype implementation of Rcane . The system was implemented
over the Nemesisoperating system and the Objective Caml bytecode interpreter. Nemesis
waschosenfor its good resourceisolation properties; OCaml waschosenasa simple and 
ex-
ible interpreter previously successfullyused in active network research. Several de�ciencies
in thesetwo systemsthat had to be remediedwere discussed.Key aspects of the implemen-
tation were then presented. A modi�ed form of EDF is usedby Rcane to support e�ectiv e
guaranteed allocation of CPU time; Nemesisusesa similar form of scheduler to control net-
work transmission bandwidth. To support Rcane 's multiple heap architecture, the system
must keep track of which threads have accessto a particular heap, and ensurethat garbage
collection runs involve all appropriate threads. The implementation of inter-sessionservices
was described, along with details of optimisations to improve parameter marshalling, and
mechanismsto handle abnormal termination.
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An evaluation of the resourcecontrol facilities o�ered by Rcane wasundertaken in Chapter 7.
Rcane was shown to provide e�ectiv e resourceisolation between multiple non-cooperative
clients, and to provide lightweight mechanismsfor communication and sessioncreation. Reser-
vations of CPU and network output bandwidth were examined, and found to be respected;
garbagecollection interferencebetweendi�eren t sessionswasfound to besigni�cantly reduced,
compared to the situation in which multiple clients execute in the same garbage-collected
heap.

Finally, the application of Rcane to existing programmable network execution environ-
ments (EEs) was consideredin Chapter 8. Two active network environments { PLAN and
ANTS { were ported to or rewritten for Rcane . An overview of each EE was presented,
together with details of their Rcane implementations. The problem of packet fragmentation
was presented for each EE to provide a comparisonbetweenthe two approaches.

The advantagesgained by running theseEEs over Rcane were discussed.Neither EE previ-
ously had signi�cant support for resourcecontrol; the useof Rcane asa platform meansthat
such resourcecontrol neednot be provided by the EE, but can be delegatedthrough the pro-
vision of accessto Rcane 's interfaces. The Activ e Reliable Multicast protocol { designedto
reducerecovery latency and bandwidth consumption in reliable multicast streams{ was also
implemented; the e�ectiv enessof Rcane 's memory consumption control was demonstrated.

9.2 Future Work

This sectionconsidersopenproblemsin the areaof resourcecontrol in programmablenetworks
which could not be addressedin this dissertation due to lack of available time. Two main
areasare considered: issuesa�ecting a single node, and the integration of a single Rcane
node into a larger programmable network.

9.2.1 Issues A�ecting a Single No de

Several aspects of the Rcane architecture and protot ype implementation with regard to
resourcecontrol on an individual node in a programmable network have put forward issues
that deserve further attention.

9.2.1.1 Persisten t Storage

Rcane hasnot focusedon providing accessto persistent disk storage{ although lesstransient
than independent capsules,the computations consideredhave either beenrelatively stateless
or su�cien tly short-term not to require disk storage. However, it is envisaged1 that some
clients in a programmable network may have requirements for accessto disk storage. An
OS such as Nemesis,which already has support for scheduled disk accesswith low levels of

1The NodeOS Draft Speci�cation, for example, contains an API providing POSIX-lik e �le access.
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inter-application crosstalk [Barham97], would provide a useful base for the development of
e�ectiv e resource-controlled mechanismsfor persistent storagesupport.

9.2.1.2 Virtual Memory

For simplicit y, this dissertation has not consideredthe use of paged virtual memory. This
is not considereda great drawback, since an application that is paging to disc is likely to
experiencesu�cien t latency that any bene�ts of executing within the network { closerto the
resourceswith which they wish to interact { are lost. However, as with persistent storage,
some end-userswith high latencies on to the network coupled with requirements for large
amounts of state within the network may �nd it pro�table to requestan allocation of virtual
memory in addition to physical memory.

Given support for persistent storage mentioned in the previous chapter, it may prove to be
su�cien t for such applications to manually \page" their important data structures in and out
of �les. A possibleimprovement on this scheme would be to utilise the Nemesisself-paging
architecture [Hand99]. This would allow each session'sheap to be backed by a Stretch Driver
{ an abstraction for controlling virtual memory. Each Stretch Driv er would have a connection
to a disk with a given level of QoS,and a certain set of physical pagesto populate with virtual
pages.

9.2.1.3 In ter-Session Services

The type-basedoptimisations for inter-sessionservice argument copying described in Sec-
tion 6.7.3 are currently rather limited. Further work needs to be done to provide more
e�ectiv e generation and sharing of marshalling routines. The mechanisms used by Nemesis'
IPC marshalling system should prove to be adaptable to this task.

Also an open problem is the development of further and richer mechanisms to support the
e�cien t aborting of serviceswithout compromising the state of servers.

9.2.1.4 Selection of Resource Lev els

Calculating the level of resourcesthat should be requestedin an environment such as Rcane
is not straightforward. Techniques such as progress-basedfeedback may be used to measure
whether an application is satisfying the user'srequirements, and purchaseadditional resources
if not; alternativ ely task requirements, reservations and node resourcesmay be speci�ed in
somegeneralisedresourceunits.

For example, the Eclipse [Bruno99] project measuredprocessorbandwidth reservations in
terms of SPECint95 [SPEC95] units; for a given platform, these units could be calibrated
by running the standard SPECint95 benchmarks. The NodeOS [Calvert98] has proposed
logarithmic \standard RISC cycles" to serve a similar purpose.
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A further possibility would be to measureapplications' resourcesusageat run time to deter-
mine their actual resourcerequirements; such measurements could be usedeither to provide
feedback to applications, allowing them to adapt their reservations basedon their past us-
age, or to enableRcane to provide a higher degreeof multiplexing but with \probabalistic
guarantees", as described in [Barham98].

9.2.1.5 In tegrated Scheduling

Currently Nemesissupports only a singlescheduling domain (sdom) per domain. A scheduling
domain represents a guaranteefrom the CPU scheduler in the Nemesiskernel. Thus in order to
provide di�eren t CPU guarantees to client sessions,Rcane must request a single guarantee
with su�cien tly low period and high slice to be able to meet its sessions'guarantees, and
employ a user-level EDF VP scheduler above the kernel CPU scheduler, integrated with the
pool/thread scheduler.

Current research [Stratford00] is investigating the separation of the sdomabstraction from
the domain, and thereby allowing a single Nemesisdomain to have multiple sdoms. Building
on this work to provide each Rcane VP with a separatesdomwould simplify the structure
of Rcane and potentially reducescheduling overheads.

9.2.2 Net work In tegration

The work presented in this dissertation has focusedmainly on resourcecontrol at a single
node, without full considerationfor bandwidth reservations on sharedlinks, or global resource
policies. Such a network may be fully programmable, or mainly passive with programmable
nodesplaced at strategic locations.

9.2.2.1 Bandwidth scheduling

The current implementation of network scheduling in Rcane is concernedonly with the local
link bandwidth. To gain the full bene�t from the resourcereservations provided by Rcane ,
the network scheduling would needto be integrated with end-to-endbandwidth reservations.
It would be necessaryto provide the abilit y to reserve bandwidth and bu�ering for 
o ws
on routers and switches (either programmable or passive) between the node and the remote
resourceswith which it was communicating.

9.2.2.2 Resource Transfer

More work is required to integrate Rcane 's resourcereservations with global resourceallo-
cation schemes.For example, it ought to be possiblefor a single sessionto transfer resources
very straightforwardly from onenode to another. The resourcebound usedin Rcane virtual
network packets provides a very trivial form of such resourcecredit transfer; however, this
has not beenfully integrated with the actual resourcereservation mechanisms.
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9.2.2.3 Billing

The billing schemesproposed in Section 5.7 have not been implemented. Linking the ac-
counting information gathered by Rcane to someconcrete form of billing will be vital for
the e�ectiv e deployment of an open programmable network.

9.3 Conclusion

It is the thesisof this dissertation that resourcecontrol in activeand programmablenetworks is
essential if the 
exibilit y o�ered by such networks is to be madeopen and available to general
end-usersof the network; and that such resourcecontrol can be practically accomplished.
To this end, arguments have beenpresented to support the casefor resourcereservations in
programmablenetworks. An architecture for providing such support has beenexhibited, and
its implementation and evaluation have beenexamined. It is concludedthat the dissertation
supports the thesis.
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App endix A

An Outline Design for an Ob jectiv e
Caml Veri�er

In Chapter 6 the lack of bytecode veri�cation for OCaml was discussed. This appendix
presents a brief outline of a design for a veri�er for the OCaml virtual machine. The design
is not complete, and the veri�er has not beenimplemented due to time constraints; however,
this designsupports the proposition madein Section6.2.7that the lack of a veri�er for OCaml
is not an insurmountable de�ciency.

A.1 In tro duction

In order to safely executea bytecode module supplied by an untrusted remote client, it may
be necessaryto verify that the bytecode respects certain invariants; in the caseof OCaml
bytecode [Leroy97], such veri�cation must check that the bytecode respects the Caml type
system.

Veri�cation involves tracing all possiblepaths through a module and ensuring that at each
instruction, no type violation is committed. Such violations may be detected by showing the
possibleoccurrenceof one of several conditions:

� Using a pointer in an arithmetic context.

� Dereferencingan integer.

� Dereferencingan abstract object.

� Returning a value of the incorrect type from a function call.

� Passinga value of the incorrect type to a function call.

� Storing a value of the incorrect type in a structure.
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� Modifying an immutable value.

These are all variations on the basic violation { i.e. using a value of one type in a context
that expects a di�eren t type. The designpresented in this chapter is for a a veri�er that can
identify such violations in OCaml byte code; since the veri�cation is performed on bytecode
rather than on sourcecode, it may be usedto verify OCaml virtual machine code generated
from any sourcelanguage,not just OCaml itself.

A.2 Concepts

In order to attempt to perform a violation of the type described in the previous section, the
program must obtain the value from somewhere.In the caseof the OCaml virtual machine,
the set of addressablelocations consistsof:

� The accumulator { a single location that is used for most operations, including arith-
metic, dereferencing,and the return value from a function call. The type of the value
stored in the accumulator changesregularly at runtime.

� The stack { a per-thread set of values, used for temporary storage and parameter
passing. Entries may be pushed on to or popped o� the top of the stack at runtime.
The type associated with a particular stack location may not altered without popping
that location from the top of the stack and pushing a value of a di�eren t type.

� The environment { a per-closurestructure that is initialised when the closureis created.
The typesof the �elds in the environment are constant for a particular closure.

� The global vector { any values accessiblethrough interfaces imported by the current
module. The types of the contents of the global vector are constant for a particular
module

Associated with each bytecode location is a tuple (A ; S; E; G) consisting of the types of ac-
cumulator, stack, environment and global vector respectively. A simple fragment of Caml is
given in Figure A.1; Figure A.2 shows how this tuple might be represented by the veri�er.

The types of the stack and accumulator values are generally individual to each instruction;
however, in the caseof an instruction that does not modify the type of the accumulator
nor perform any stack modi�cations { such as the ADDinstructions in Figure A.2, the same
stack/accumulator record may be shared with the next instruction. All stack/accumulator
recordsfor a given function sharean environment record{ in this case,the functions aresimple
enough that they have no environment, so there can be no valid accessto the environment.
All environment records in a module sharethe sameglobal vector record.

Three di�eren t kinds of type may be stored in thesetuples:

� unquali�ed typessuch as int , int ref , float , and int ! string .
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Function to increment its argument
let inc x = x + 1

Function to increment its
argument's referent
let incref x = x := !x + 1

(a) Fragment of Caml code

PC Instruction Meaning
0 ACC0 Acc  Stack[0]
1 ADD1 Acc  Acc +1
3 RETURN1 Return
5 ACC0 Acc  Stack[0]
6 GETFIELD0 Acc  Acc[0]
7 ADD1 Acc  Acc +1
9 PUSHACC1 Push Acc; Acc  Stack[1]
10 SETFIELD0 Acc[0] Stack[0]; Pop
11 RETURN1 Return

(b) Compiled bytecode

Figure A.1: SampleCaml code fragment and its compilation in OCaml bytecode

int

int

<empty>

int

<empty> <empty>

int ref

int ref

<empty>

int ref

int

int ref

int ref

int

int ref

int ref

int ref

Global Vector

1ACC 0 ADD RETURN 1 ACC 0
GET

FIELD
0

ADD 11 PUSH
ACC 1

SET
FIELD

1
RETURN

Stack

Accumulator

Environment

Figure A.2: Veri�er state for simple functions

� universally quali�ed typessuch as � list and � � � ! � .

� unknown types.

A.3 Veri�cation

The veri�cation processinvolves ensuring that this set of (A ; S; E; G) tuples can be created
for all executable instructions in a module, without any inconsistencies. Certain locations
in the bytecode { such as the operand locations for instructions spanning multiple bytecode
locations { will not be executableand hencedo not require a tuple associated with them.

The veri�er should maintain a stack of locations to be checked; this will be initialised to
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Instruction Pre state (PC = n) Post state(s)
Acc Stack Env PC Acc Stack Env

SETFIELD0 (� ; : : :) (� ; : : :) E n + 1 empty (. . . ) E
APPLY2 � ! � ! 
 (� ; � ; : : :) E n + 1 
 (. . . ) E
GETGLOBFIELD ? S E n + 3 G[m][f ] S E
ACC2 ? (� ; � ; 
 ; : : :) E n + 1 
 (� ; � ; 
 ; : : :) E
MAKEBLOCK3 � (� ; 
 ; : : :) E n + 1 (� ; � ; 
 ) (. . . ) E
BRANCHIF int S E n + 2 int S E
" " " " n + o int S E
ADDINT int (int ,. . . ) E n + 1 int (. . . ) E
ENVACC1 ? S (� ; : : :) n + 1 � S (� ; : : :)

Figure A.3: Veri�er logic for a subsetof the OCaml virtual machine

contain the �rst location of the module's initialisation code. To verify a particular location,the
possibleset of (PC � state) pairs must be calculated. For each pair in this set the tuple at the
new PC must be uni�ed with the new state, possibly specialising any unknown or quali�ed
types in the new PC's tuple, and the new PC must be pushed on to the location stack if it
has not already beenprocessed,or if the uni�cation processhas resulted in a changedstate
for the new PC. In the caseof an instruction that createsa new closure,the PC of the closure
must also be pushed on to the location stack, along with any information known about the
types of values in its environment and parameters. If the uni�cation stage fails, then the
bytecode doesnot respect the virtual machine's type system and should be rejected.

The transformation from (PC, state) to (PC0, state0) is speci�c to the instruction at the
location being veri�ed. Figure A.3 givesthis transformation for a representativ e subsetof the
OCaml virtual machine instruction set:

SETFIELD0updates the value of the �rst �eld in a record; the destination record is found in
the accumulator, and the new value is on the top of the stack.

APPLY2calls a two argument closure; the closure is found in the accumulator and the two
arguments are on the top of the stack.

GETGLOBFIELDobtains a value from the global vector. The module m and the �eld f are
taken from the two bytecode locations following the instruction.

ACC2loads the value at stack position 2 into the accumulator.

MAKEBLOCK3allocatesa new heapblock that is three words long. The block is initialised from
the values in the accumulator and the top two stack locations.

BRANCHIFbranchesif the integer value in the accumulator is non-zero. The destination o�set
o is taken from the bytecode location following the instruction.

ADDINTadds the value on the top of the stack to the accumulator.

168



ENVACC1loadsthe value at environment position 1 into the accumulator. In the OCaml heap,
a closureand its environment are the sameobject { the �rst value in the object is the
bytecode location of the function referred to by the closure,and the subsequent values
constitute the environment of the closure. Therefore environment position 1 is actually
the �rst value in the environment proper.

State transformations for other OCaml VM instructions may be constructed in order to
complete the designfor the veri�er.
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