TechnicalReport e sows

Number 561

2. UNIVERSITY OF
P CAMBRIDGE

Computer Laboratory

Resourcecontrol of untrusted codein
an open network environment

Paul B. Menage

March 2003

15 JJThomson Avenue
Cambridge CB3 OFD
United Kingdom

phone +44 1223 763500

http://www .cl.cam.ac.uk/



¢ 2003 Paul B. Menage

This technical report is basedon a dissertation submitted June
2000 by the author for the degreeof Doctor of Philosophyto the
University of Cambridge, Magdalene College.

Some gures in this documentare bestviewed in colour. If you
receiveda black-and-white copy, pleaseconsult the online version
if necessary

Technicalreports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www .cl.cam.ac.uk/TechReports/
Serieseditor: Markus Kuhn

ISSN1476-2986



Summary

Current researt into Active Networks, Open Signalling and other forms of mobile code
have made use of the ability to execute user-suppliedcode at locations within the network
infrastructure, in order to avoid the inherent latency assaiated with wide areanetworks or to
avoid sending excessie amourts of data acrossbottleneck links or nodes. Existing resear®
has addressedthe design and evaluation of programming ernvironments, and testbeds have
beenimplemented on traditional operating systems. Such work has deferredissuesregarding
resourcecontrol; this hasbeenreasonable,sincethis researt has beenconductedin a closed
ernvironment.

In an open ernvironment, which is required for widespreaddeployment of such technologies,
the code supplied to the network nodesmay not be from a trusted source. Thus, it cannot be
assumedthat suc code will behave non-maliciously, nor that it will avoid consuming more
than its fair share of the available systemresources.

The computing resourcesconsumedby end-userson programmable nodes within a network
are not free, and must ultimately be paid for in someway. Programmable networks allow
userssubstartially greater complexity in the way that they may consumenetwork resources.
This dissertation arguesthat, due to this complexity, it is essetial to be able control and
accourt for the resourcesused by untrusted user-supplied code if such technology is to be
deployed e ectiv ely in a wide-areaopen ervironment.

The ResourceControlled Active Node Environment (Rcane) is preseried to facilitate the
control of untrusted code. Rcane supports the allocation, scheduling and accourting of the
resourcesavailable on a node, including CPU and network 1/0 scheduling, memory allocation,
and garbagecollection overhead.

A prototype implementation of Rcane over the NemesisOperating Systemis described; an
experimental evaluation is undertakento demonstrate the value of such an approad. Sample
implementations of existing active network systemsthat have beenadapted to use Rcane's
resourcecortrol interfacesare presered.
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Chapter 1

In tro duction

This dissertation arguesthat in order to realise practical programmable networks, robust
resourceresenations and policing are necessaryon the programmable nodeswithin the net-
work. It preserns the design, implemertation and evaluation of an architecture { Rcane {
for the resource-cotrolled execution of untrusted code in an open programmable network.
The architecture supports secureQuality of Service (QoS) provision to individual clients; it
prevents malicious, greedyor erroneousclients from interfering with the systemor with other
clients by consuming excessie system resourcesand permits e ectiv e accourting and billing
to the remote clients.

1.1 Motiv ation

1.1.1 The Case for Mobilit y

The speedsachieved by computers and communications networks are corntinuing to improve
over time. However, in the eld of distributed processing,two obstaclesinevitably stand
in the way of sudh progress. These two obstaclesare the inherert latency assaiated with
widely-distributed communications and the existenceof bottlenecks within networks.

1.1.1.1 Inheren t Latency

Firstly, the speed of light provides a fundamertal limit on the speed of interactions be-
tween widely-separated computers. The round-trip time for interacting with a server half-
way around the circumferenceof the earth is, at an absolute minimum, about 200ms. This
assumeshat the transmission proceedsat the speedof light in optical bre * { transmissions
in the current Internet su er delays from switching and routing at multiple points along the
transmission path, with the result that padkets typically take at least twice the theoretical

1The speed of light in bre is approximately 66% of the speed of light in a vacuum
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minimum to reach their destination [Cheshire96]. Even techniquesto adapt the Internet to
use optical switching techniques can only approac the fundamertal lower bound.

When it is necessaryto transfer a large quarntit y of streamedmedia or other data betweentwo
widely separatedlocations, such latency may be dicult to avoid; however by anticipating
future requestsand caching data at intermediate points in the network, it may be possibleto
minimise the latency experienced.

Sudch caching and prefetching is not possible for applications and servicesfor which eadh
communication between two remotely located endpoints (typically a client and serwr) is
unique. When a client is communicating with a server on the other side of the planet, and
needsto make a seriesof inter-related queries(e.g. navigating through a web application or
talking to a remote mail daemon), there are three factors a ecting the time takento complete
the interaction:

the time taken at the sener to processead query,
the time taken at the client betweensuccessie queries,and

the transmission latency in the round-trip betweenthe client and the sener.

For a large class of interactions, and assuminga properly engineeredand su cien tly well-
provisioned serwer, the processingtime at the server may be expectedto be small.

If the activity is human driven (as in the caseof many web application), the responsetime
of the human is likely to be the dominating factor; furthermore, sincethe processingof the
responsesis being performed in an unpredictable and unspeci able way { i.e. by a human
brain { such processingmust take place at the client-side. Howewer, when the client-side
processingmay be computer-driven, as in the caseof an email excdhange, or in the caseof
de ning a macro for automating repetitiv e actions in a web application, the time taken for
client-side processingwill be small. In this case,the high cost of the round-trip latency is the
dominant factor in the time for a task to be completed.

1.1.1.2 Bottlenec ks

The secondobstacle is that there will inevitably be regions of the network { typically at

or near the edges{ where the available bandwidth is orders of magnitude lower than that

available within the core of the network. This is currently the casewith the vast majority of
home subscribers to the Internet, who typically have 56Kbps connectionsover phone lines.
The adoption of technologies suth as cable modems and Digital Subscriber Link (DSL) is
gradually improving this situation { however, it seemdikely that theseconnectionswill remain
bottlenecks as core network speedsincrease. Further bottlenecks are possibleat congested
points within the network.

When attempting to processlarge sourcesof data (such as a video stream or a remote
database), the time taken to transfer the volume of data over the bottleneck link { lim-
ited by the bottleneck bandwidth, rather than the latency { may be the dominant factor in
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the time taken. In the caseof a databasequery, the size of the eventual results required after
processingthe data may be orders of magnitude smaller than the data itself. In the case
of a video stream, the user may be prepared to settle for a lower quality (and hencelower
bandwidth) of video if it allows the video to be received in real-time; howewer, if the provider
of the video doesnot make such a low-bandwidth stream available, the userhasno alternativ e
but to transfer the entire stream over the bottleneck link. In both of these situations, the
ability to lter or processthe high-bandwidth stream of data to produce a lower-bandwidth
represenation before it hasto crossa low-bandwidth or high-latency link would reduce the
time spert transferring data acrossthe bottleneck.

1.1.2 Programmable Networks

With the rise of the World-Wide Web, the introduction of Java [Gosling95b] applets is an
example of a solution to the problem of inherent latency { by downloading program logic to
the client, the sener caninteract with the user'sdisplay without the high latenciesthat would
otherwise occur. However, this solution is lesse ectiv e in situations where the interaction is
characterisedby a client querying a server to make useof a body of data maintained by that
sener, such as when querying a databaseor posting to a newssener.

An alternative is to permit such computation to be moved onto or toward the serer. By
permitting clients to upload their own agerts to be executedon the sener, latency delays
can theoretically be reducedto a single round-trip time, even when multiple interactions are
required betweenthe serer and the client's agent. A disadvantage of moving code to the
seneris that it burdensthe sener provider with issuesof security and resourcecontrol on top
of any work required to implement and maintain the serer { hencein many casesit may be
more appropriate to move the client's agert to specialised\computation serers” closeto the
desiredsener. A further re nement, asespousedby the active networking community, is to
permit such processingto be performed within the forwarding path of the network switches.
This allows usersto exploit application-speci ¢ networking requiremerts, soasto make more
e cien t useof the network. Thesetwo approadces of moving program logic from the client
towards the sener fall under the general eld of programmable networks { permitting users
of the network to utilise the resourcesof nodeswithin the network in ways not forseenby the
network providers.

For the purposesof this dissertation, the term programmable network is used to refer to
a network in which some of the nodes provide programmable extensionsto end users. To
obtain bene ts from programmable networks it is not necessarythat all nodes within the
network are programmable; indeed, a totally programmable network would be likely to be
counter-productive on e ciency grounds. The bulk of trac in a network can be adequately
servedby atraditional store-and-forward servicemodel. The latency and processingoverheads
experiencedby o ws through a programmable platform are likely to be substartially greater
than those experiencedthrough a hardware router or switch, thus forcing all trac through
a programmable platform would degradethe overall utilit y of the network.

The term open programmable network is usedto imply that theseprogrammable facilities are
available to all usersof the network (possibly in return for an additional payment), not just
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those usersemployed by or trusted by the network providers. Thus the code being executed
on the network nodes may be untrusted. It is therefore vital that the network providers are
able to prevent user-suppliedcode from compromising the safety of the network nodesor the
stability of the network itself.

1.1.3 Untrusted Code

For the purposesof this dissertation, untrusted code is consideredto be any executablecode
that is supplied by a client to somekind of serer (possibly an OS kernel, or a server within
the network), and that is executedby that serer, but where there are no particular goalsor
trust sharedin common betweenthe client and the sener.

Thus this de nition excludescertain instancesof mobile code:

When both the client supplying the code and the serwer running the code share some
common goals (e.g. within a single organisation, or a widespreadgroup of co-operating

researters), it is reasonableto assumethat the likelihood of denial of service (DoS)?
attacks and excessiely greedyapplications is reduced. The resourcecortrol techniques
presenried in this paper are still applicable in such ervironments, in order to improve
robustnessor help di eren tiate the levelsof QoSrequired by di erent activities; however,
the inevitable overheadincurred by robust resourcecortrol may meanthat sud control

is consideredexcessie for these situations.

When the code is supplied by the sener to the client?, it is unlikely that resourceson
the client machine are as scarceas those on a sener; moreover, although a DoS on a
client madhine is likely to causeannoyance and inconvenienceto the user, it is unlikely
to causemajor problemsto an enterprise. Thus whilst someform of resourcecontrol
can be useful to prevent malicious Java applets from mounting DoS attacks on web
browsers,the techniques presened in this dissertation may not be necessary

1.1.4 Issues of Resource Control

With the increased exibilit y provided by programmable networks comesa greater complexity
in the ways that server and network resources including CPU time, memory and bandwidth
{ may be consumedby end-users. In a traditional network, the resourcesconsumedby an
end-userat a given network node may be roughly bounded by the bandwidth betweenthat
node and the user;in most casesthe bu er memory and output link time consumedin storing
and forwarding a padket are proportional to its size,and the CPU time required is likely to
be roughly constart. Thus, limiting the bandwidth available to a useralsolimits the usageof
other resourceson the node. The resourcesconsumedby a client at a server can be similarly
bounded by limiting the rate at which requestsfrom that client are accepted. Sincein eadh

2A Denial of Service attack is one in which an attacker gains no direct benet, but attempts to degrade
the service received by other usersof a node or network.

3In this context a server is a multi-user system that receives requests, and a client is a single-user system
that makesrequests.
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casethe code to be executedis under the control of the sener/network node, there is no
straightforward way for the client to circumvent sud resourcelimits.

When the client is permitted to specify or customisethe code that is executedon the sener
or within the network, sudc resourcecortrol is more dicult. Security measuresmay be
employed to permit only those clients trusted by the node to supply code, but this defeats
many of the advantagesthat code mobility can provide. Languagerestrictions and formal

proofs may be usedto verify that the code performs no intrinsically illegal actions, but the

task of decidingin advancewhether a particular pieceof code will consumeexcessie resources
is, in general,intractable. Even in the absenceof speci ¢ DoS attacks, the task of allocating

resourcesaccordingto a speci ed QoS policy is complicated by a lack of knowledgeabout the

behaviour of the user-suppliedcode.

Moreover, if programmablenodesand computation serversarisewithin the network, it islikely
that commercial pressureswill require someform of charging for useof the servicesprovided.
In return, userswill expect someassuredlevel of QoS. To o er sud QoS guaranees, the
ernvironment in which the code executesneedsto provide isolation betweendi erent clients,
and ne-grained scheduling and accourting medanisms.

1.2 Contribution

Diverseparadigms have previously beendeweloped to allow the remote execution of code at
nodes within a network. These have included projects from within the active networks and
open signalling communities, and from the more generalmobile code researdr communities.

Many of theseearlier projects have focusedon the basic security medanismsrequired for the
safeexecution of untrusted code. These medanismshave involved the use of safelanguages,
proof-carrying code and high-level interpreters. Negotiation for accessto resourceshas also
beenstudied, particularly within the mobile code communities.

Howewver, the mechanisms for regulating such accessto resourcesonce it has been granted,
to ensure that DoS attacks are preventable and to enable the provision of e ective QoS
guaraneesto the untrusted mobile code, have not previously beensu cien tly studied.

Someprojects have temporarily ignored the issue,on the grounds that the suppliers of the
code were trusted not to consume excessie resourcesor perform DoS attacks. This is a
reasonableapproad to take when initially deweloping the high-level ervironment in which
the mobile code must run. However, to deploy suc solutionsin the real world is not practical.

Those projects that have consideredresourcecontrol have tended to implement policing with
a very coarsegranularity. Two solutions typically proposedhave been:
If the processingfor any padket takeslonger than a given period of time, then assume
that the padket is misbehaving and drop it.
Employ a priorit y-based scheduler; at intervals ched that threads are not exceeding

their allocated time, and reducetheir priority if they are.
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Both of these solutions are unnaceptableif a node is attempting to support QoS guarantees
for clients, sincethey do not act on a su cien tly ne time scale.

Moreover, previous work on programmable networks has not su cien tly addressedthe issues
of safely revoking and reclaiming the resourcesof clients who have exited or been aborted.
In a traditional operating system, using hardware protection between clients, ead client is
typically su cien tly isolated and self-cortained that revoking the client's resourcesis rela-
tively straightforward. The software protection used by many programmable network node
prototypes provides a more lightweight ervironment; however these have typically provided
insu cien t control over the reclamation of someof the node resources(such as memory and
threads) assaiated with departed clients, sincethere is no clear notion of resourceownership
at the virtual machine level.

Providing robust resourcecontrol helpsto prevent direct DoS attacks on a programmablenode
itself. A further problem that must be consideredis that of preventing DoS attacks from being
launched by user code running on the node against other sites within the network. Whilst
identifying likely DoS behaviour in real-time is likely to be a hard problem, the maintenance
of accourting records (required for billing) will also facilitate tracing the culprit following a
DoS attack launched from a programmable network node.

The thesisof this work is that the provision of platforms for the generalexecution of untrusted
code within a network requires an architecture with support for:

ne-grained resourcepartitioning, with accourting and scheduling
lightweight communication betweenclients

e ectiv e resourcerevocation

This dissertation gives a rationale for such resourceusage. An architecture is presened,

along with a prototype implementation on the Nemesisoperating system. The e ectiv eness
of the architecture is evaluated to demonstrate that it provides the above properties. In

addition, implementations of two resourcecortrolled Active Network architectures, PLANet

and ANTS, have beendeveloped over the abstractions provided by Rcane, together with an

implementation of a multicast protocol that utilises the exibilit y provided by programmable
networks to trade memory consumption for bandwidth and latency.

1.3 Outline

The organisation of the remainder of this dissertation is as follows.

Chapter 2 provides background material relevant to this work. The developmert of networks,
from the earlier \passive" networks to the programmable nodeso ered by active networks is
discussed.Relevant researt in operating systemsand safelanguagesis also reviewed.

17



Chapter 3 discussesthe resourcesthat needto be cortrolled in the presenceof untrusted
code, and the extent to which such cortrol is required. It is arguedthat without such cortrol,
widespreaddeployment of programmable nodesin a network is impractical.

Chapter 4 discusseghe Nemesisoperating system and the featuresthat make it a suitable
platform for the resourcecortrol of untrusted code. Comparisonis madewith other operating
systemsto establish the suitabilit y of Nemesisas a basefor Rcane .

Chapter 5 introducesthe architecture for Rcane, an ervironment permitting the safe and
resource-cotrolled execution of untrusted code. The principles that guided its design are
discussed,and the abstractions usedto allow controlled accesso the resourceson a node in
a programmable network are preseried.

A prototype implementation of the Rcane architecture over the Nemesisoperating system
and the Objective Caml (OCaml) languageis presenried in Chapter 6. An overview of the
implementation is followed by an examination of the modi cations madeto OCaml to adapt
it to the requiremerts of the Rcane ernvironment, and a description of important aspects of
the implementation.

Chapter 7 provides an evaluation of the key featuresof Rcane through the useof microbend-
marks, and demonstratesthat it providesan e cien t medanismfor resourceisolation between
multiple clients.

Chapter 8 examinesthe useof Rcane in the context of Active Networks; two di erent styles
of active networks and their implementation on Rcane are preseried.

Finally, Chapter 9 summarisesthe main argumerts of the dissertation and suggestsavenues
for future researd.
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Chapter 2

Background

This section provides badkground information to the dewvelopmert of the architecture pre-
serted in this dissertation.

2.1 Evolution of Network Services

2.1.1 Passive Networks

There has been much study of traditional passive networks { the most pervasive exam-
ple being the collection of networks communicating through the use of the Internet Pro-
tocol (IP) [Postel81]. This provides a commoninteroperability layer throughout the Internet.
Although clearly someform of processing(whether hardware or software) is occurring within
the routers and switchesin a passiwe network?, the essetial feature is that the interface pre-
serted to the userdealsonly in terms of data rather than code or customisability { the user
has no way to extend or customisethe processingon a node within the network. Further-
more, although in many modern switches and routers the provider of the node can upgrade
the software on the node, such cortrol generally occurs over a relatively long timescale.

The dewvelopmert of passiwe networks suc asthe Internet was guided by the principles given
in the end-to-end argument [Saltzer84, which states that certain functions of a distributed
system

can be correctly and completely implemented only with the knowledge and help
of the application standing at the end points of the [distributed] system

{ i.e. that supplying complex functionality within the network is non-optimal, sinceit is
probable that such functionality will either duplicate work that the application needsto
carry out at a higher level, or will fail to meetthe needsof most users. Following the thesis of

1The developmert of purely optical switches may herald the arrival of the truly passive network.
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theseargumerts, IP supports only an unreliable, unsequencedorm of data delivery. Higher
level protocolssuch asTCP and UDP areimplemerted only at the end-points of the network?,
and IP must be mapped over all link layers.

The serviceabstraction presened by passiwe networks is that of a connectionlessstore-route-
and-forward model for transporting padkets from a source host to a destination through a
seriesof routers. All routers processpadkets using conceptually the samealgorithm, param-
etised only by certain header elds in the packet (primarily the destination IP address).

Padket forwarding over connectionlessprotocols such asIP involvesa routing stage,typically
based on a longest-pre x match of the destination addressagainst a routing tree, which
may be both expensive and complicated [Waldvogel97]. Providing di erent levels of service
basedupon other parameters such as sourceaddressand protocol increasesthe complexity
further [Srinivasan98].

Wide Area Network (WAN) technologiessudc as X.25 [Jacobsen80],Asynchronous Trans-
fer Mode (ATM) [Fraser93 and Multiproto col Label Switching (MPLS) [Callon97] have at-
tempted to make useof simpler connection-orierted forwarding models. Theseaim to reduce
the cost of packet forwarding by performing the routing stageonceat connection setup time,
then performing a circuit look-up (which may be substartially cheaper than the routing oper-
ation performed during IP forwarding) at padket processingtime. By simplifying the padket
processingoperation, it is possibleto increasethe throughput of a switch, particularly if suc
simpli cations result in an algorithm that lendsitself to implementation in hardware.

QoSprovision within passiwe networks hasbeenaddressedn seweral ways. Two of the primary
solutions being deweloped for the Internet are:

Integrated Services allow eat network ow or classof owsto be mappedto a particular
QoSclass[Braden94. This QoSclassis usedto schedulethe transmission (and limit the
bu ering) of padcets in these ows. RSVP [Zhang93 has been proposedas a protocol
for allowing the creation of o w speci cations at routers.

Dieren tiated Services attempt to reducethe amount of state required within the core
routers by requiring end nodes and intermediate routers to mark ead padket with the
required per-hop forwarding behaviour [Blake9§. Service Level Agreemens (SLAS)
may be set up betweendi erent network domains specifying the trac prole (such as
the averageand peak rates, and burst size) for di erent classesof padcets.

2.1.2 Programmable Networks

In a programmable network, the software on the network node may be customisedor extended
at relatively short timescales;sud customisation may be over the lifetime of a connection,
or even carried with ead padket. This may be in order to perform padet processing(Active
Networking), connection cortrol (Open Signalling), or more general extensibility.

ZNote that a router within the network may be consideredan end-point when speci cally addressedas the
destination in an IP packet.
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2.1.2.1 Activ e Net working

The Activ e Networking [Tennenhouse97Campbell99] community proposesmoving computa-
tion into the network in order to increasenetwork exibilit y, by replacing the simple padet
forwarding model usedby IP with a richer programmable model. Thus instead of allowing a
user to only specify the parameters (such as destination address)usedin padet processing,
an active network permits enhancemen or replacemen of the forwarding routines themseles.
The bene ts that can be gained from such programmability include:

Customised routing: Customised routing algorithms could allow applications to circum-
vent de ciencies in the standard IP routing behaviour or to tailor the QoS properties
of the route to the needsof their tra c.

Deplo yment of new proto cols: Session/transport-level protocolssuch asHTTP and TCP
may be deployed purely at the end hosts, with no modi cations required to network
routers. Howewer, deploying new network-level protocols { such as IP multicast ex-
tensions [Deering89]{ over the Internet requires long periods of time both for stan-
dardisation, and for implementation by router vendors. By providing a programmable
environment in which users can de ne custom padket processingroutines, network-
level protocols can potentially be deployed substartially more quickly. Examples of
such protocols deployed over active networks include reliable multicast [Lehman98]and
transparent web cade redirection [Legedza98.

Access to non-standard resources: In the current Internet, router-speci ¢ resourceqsuch
as enhancedcapabilities on a novel link-layer) cannot easily be utilised by end users,
since there is no way in the basic IP protocol to indicate a requiremert to use suc
resources. By specifying a more exible, extensible and programmable network sub-
strate, userscan more easily make use of enhancedcapabilities at certain nodeswithin
a network.

Dynamic adaptabilit y: Programmability allowsa ow to be dynamically processedat cer-
tain points within a network, such asto add FEC (Forward Error Correction) at lossy
points within a network [Hadzic98],or to transcode a high-bandwidth multicast stream
into a lower bandwidth stream before sendingit over a low-bandwidth link [Amir98].

Each of these advantages could be realised to some extent by making use of the IP op-
tions [Postel81] mechanism to communicate sud requests for non-standard behaviour to
routers and endpoints. Howevwer, for this approac to be generally useful, somespeci cation
for the required extensibility and programmability must be readhed. In this respect the IP
option medanism is not ideal { although somespeci c options are de ned, there is no ac-
cepted standard for extensibility. Prototype implementations of active network systemshave
beendeveloped to encade capsulecode within IP options [Wetherall96, Murphy97]; however,
to be of generalpractical bene t, suc useof options requires more uniform standardisation.
Furthermore, the use of IP options typically results in a padket experiencing lower-quality
processingthroughout the whole of the path it traverses;padets with options settend to be
queuedwith lower priority, due to the extra complexity that they presert to a router. The
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Activ e Network Encapsulation Protocol (ANEP) [Alexander97alhasbeenproposedasa more

exible mecanism than IP options for encapsulatingactive network padets for transmission
over di erent lower-level media and protocols. It supports the multiplexing of padkets from
multiple exesution environments (EEs) over a single channel.

In [Bhattacharjee97, it is suggestedthat the end-to-end argument [Saltzer84] (discussedin
Section 2.1.1) does not preclude the existence of active and programmable networks; it is
arguedthat the fundamental rationale behind the end-to-end argumert is that:

Some servicesrequire the knowledge and help of the end-system-residet appli-
cation or user to implement, and so cannot be implemented entirely within the
network.

and that the corollary of this premiseis that:

Someservicesmay best be supported or enhancedusing information 2 that is only
available inside the network.

Thusthe addition of programmability allows end usersto implemert preciselythe servicesthat
they need{ by executing user-suppliedcode within the network, the application-speci c logic
required by the end-to-end argumernt may be combined with additional knowledgeregarding
the state of the network and with the higher bandwidth and lower latency a orded to nodes
within the network. In [Saltzer9§, the originators of the end-to-endargumert agreewith this
suggestionin principle, but caution that end-to-end argumerts should still be consideredon
a case-ly-casebasisto determine whether such programmaubility is bene cial.

2.1.2.2 Open Signalling

Analagously to the drive provided by Active Networks to open up the routing and padet
processingfunctions on the data path of a network node, researd into Open Signalling has
attempted to provide a programmable interface to the cortrol plane of a network node, typi-
cally a router or an ATM or telephony switch.

The control plane of a communications network is responsiblefor setting up, maintaining and
tearing down connectionsbetweenswitcheswithin the network. The interactions required for
such activity, both between ertities within the network and betweenthe network and end
hosts, is known as signalling.

Historically, telephony networks existed to carry voice connectionsbetween end-points. The
servicesavailable were de ned by the network providers, and updated over long timescales.
The only signalling available to usersof the network was that for setting up point-to-p oint
calls(i.e. dialling). Within the networks, out-of-band signalling mecanismssud as Signalling

3The author feels that this sertence would have been more e ectiv ely phrased \. ..information and re-
sources ..."
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System 7 [Jabbari91] were developed to provide greater security and scalability. Intelligent
Networks (IN) servicesweredeveloped over SS7,permitting the deployment of more advanced
(network-provided) servicessudc as conferencecalls and toll-free accessnumbers. Provision
of new and more sophisticated servicesby end-usersor third parties was not possible.

Initial attempts to de ne standards for broadband (ATM and ISDN) signalling [ATMF96,
ITU-T94] followed paradigms inherited from the telephony standards and thus tended to
limit usersto only those servicesprovided by the network operator.

Alternativ e signalling strategies{ known as control architectures (CAs) { such as[Crosby95,
HjalImtysson99 Newman96 Lazar96] have beenproposed;ead with its own advantagesand
disadvantages. In [van der Merwe97]it was argued that no single control architecture could
provide for the needsof all applications and services.

Projects sucth asthe Tempest [van der Merwe97,Rooney98b]Jarchitecture from the University
of Cambridge aim to provide an environment to support exible managemen of connection-
oriented networks. Within the Tempest, the physical resourcesat an ATM switch are parti-
tioned through the useof a switch divider into multiple logical switchlets [van der Merwe96,
van der Merwe97]. Each switchlet appearsto its usersas an independert switch with its own
range of virtual paths and virtual circuits. Multiple CAs may then be run on the network,
ead seeingthe appearanceof its own private network of ATM switches. Each CA has full
control over the range of VCIs and VPIs assignedto its switchlet, allowing it to manage
the connectionsestablishedwithin the virtual network. When a virtual network is created,
a general CA such as PNNI [ATMF96] or IP Switching [Newman96] may be employed, or
alternativ ely a Service Speci ¢ Control Architecture may be instantiated to provide better use
of network resourcesfor a particular application ([van der Merwe97]presens the example of
videoconferencing). Moreover, componerts of the architecture (such as a switch divider or a
CA) may be extended through user-suppliedcode to provide custom processingwithin the
network.

2.1.2.3 Level of Programmabilit vy

Researt into active networking and open signalling has beenundertaken at all levels, from
the physical layer [Hadzic98, Lee99 to the application layer [Amir98, Fry98]. Furthermore,
the level of programmability provided by di erent projects has varied considerably

Capsules: At the most fundamenal level of programmability, ead packet contains both
executable code and data. Suc a padket is often referred to as a capsule*. When a capsule
arrives at a router, the code carried by that capsuleis executed by the router, typically
parameterisedby the capsule'sdata (payload). Possibleactions performedby the codeinclude:

Performing a routing decisionand transmitting itself (or multiple copiesof itself) out
along egresslinks from the router.

“Note that the terminology in the eld of Activ e Networks is not yet well-de ned.
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Creating fresh capsules,and sendingthem on to new destinations or bad to the original
capsule'ssource.

Interacting with objects or other state in the router, either to obtain information about
the router or local network, or to perform somecortrol operation.

Alternativ ely, eadh capsulemay contain mostly data, but with somespeci cation of the code
that should be usedto processthe capsule. If the specied code is not found, the capsule
may be dropped, or the code may be obtained via someout-of-band mechanism.

The ALIEN [Alexander984 architecture from the University of Pennsyhania and the Smart-
Padkets [Kulk arni98] project from KansasUniversity both support capsules.An ALIEN cap-
sule consistsof an OCaml [Leroy97] bytecode module and a payload; a SmartPadet contains
the serialisedclassde nition and state for a Java object.

The Padket Languagefor Active Networks (PLAN) [Hicks98 Hicks99c]is built around the
two conceptsof invoking named serviceson a node, and invoking a function on a remote node
{ such a remote invocation is semariically (and functionally) equivalent to sendinga padket.
A PLAN capsulecortains a chunk, which represens a delayed remote PLAN evaluation. (See
Section 2.2.2 for more details on PLAN chunks.)

The Active Node Transfer System (ANTS) [Wetherall98] and PAN [Nygren99 from MIT
support demand-loading and cacing of code at a network node. Each active capsuleis
tagged with a code identi er. The code identi er is implemented as a securehash (such as
MD5 [Rivest92]or SHA-1 [NIST95]) of the Java [Gosling95b] class (ANTS) or generic code
object (PAN) that should processthat capsule. This prevents malicious usersfrom hijacking
other users'capsules sincethe only way to receive another user'scapsuless to preload exactly
the class/code that the originating userintended to be usedfor processingthe capsule. The
payload of the capsuleconsistsof a serialisedrepresenation of an instance of the speci ed
class (ANTS) or generic data (PAN). In the evert that the required code is not available
at the receiving node, a requestis sert to the upstream neighbour (ANTS) or the specied
code repository (PAN) from which the capsule was received, to obtain the class/code for
processingthat capsule(and any assaiated capsuletypesin the sameprotocol). In this way,
a capsule pulls the code required to processit through the network. Since code cading is
used, subsequen instancesof the samecapsuletype (within a period of time determined by
the level of cadiing) will be servicedimmediately, without the delay of requesting code from
elsewherein the network.

Capsulesmay be transient (as in the caseof ALIEN) or they may be permitted to maintain
persisten state at network nodes. The PLAN ernvironment provides a resident servicethat
permits related padcets to share persistert state.

The concept of capsulesis also applicable within the area of open signalling. Active Reser-
vation Protocols [Braden99 allow Java capsulesto be used for signalling (passive) network
0 w requiremerts to a QoSenabledrouter, thus permitting greater exibilit y when specifying

®Such a speci cation is, of course, semartically very similar to the headerson an IP packet, but with
enhanced exibilit y.
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ow classes. The Smart Padkets® [Schwartz99] project from BBN Tednologiesaims to im-
provethe exibilit y and reducethe bandwidth and latency required for network managemen
Capsulescarrying managemem programs may travel around a network from deviceto device
interrogating and modifying SNMP [Case90]MIB databases,only needingto send padets
badk to a monitoring station in the caseof an abnormal situation.

The Caliban [Rooney98alinterfacewithin the Tempestpermits similar SNMP querying through
the useof Java bytecode transported acrossa network. The Elastic Network Control provided
by the Haboob architecture [Bos99 supports remote invocation using granules (autonomous
program units) to customisebehaviour throughout all levels of a network.

Extensions: At an intermediate level of programmability, active extensionsmay be loaded
on to a router or switch by an out-of-band medanism. Asscciated with ead extensionis a
set of ows, whosepadkets should be processedby this extension.

ALIEN and PLAN both support the loading of OCaml extensions;this facility was usedto
create an extensible active Ethernet bridge [Alexander97b] running over ALIEN. Extensions
register padket lters to give accessto the network o ws that they wished to process. The
Composable Activ e Network Elemernts (CANES) [Bhattacharjee99 architecture supports a
limited form of programmable extensions{ the behaviour of a ow of padkets may be cus-
tomised by selectingtriggers that are called by pre-de ned programsat certain points during
padket processing.

Network hardware may also be extended: the Programmable Protocol ProcessingPipeline
(P4) [Hadzic98] and other projects sudc as [Lee99 allow usersto download processinglogic
into eld-programmable gate arrays (FPGASs), permitting high-speed custom processingat
the link layer and physical layer.

A generic extension intended to processa large class of padkets may be classied as an
execution environment (EE). An EE may itself permit extensibility by the end usersof the
network, either by directly executingthe padetsthat it is processing,or through out-of-band
medanisms. Systemssuch asANTS and PLAN may themselvesbe implemented asEEs over
a lower-level NodeOS (seeSection 2.1.2.4), allowing multiple active network ervironments to
co-exist on a single node.

Partially Programmable Networks: Not all proposalsfor active networking require that
the entire network be made programmable. [Smith98] presenis Active Router Control, a
hybrid active/passive architecture which assumesa passiwe IP forwarding network as the
main \transp ort plane”, and assaiating a \controller" with groups of IP routers, to deal
with higher level issuessuch as maintenance of routing tables. The controller itself may be
an active node, thereby permitting exible customisation of the network by users, without
degradingthe performanceof standard IP o wsthat have no requiremert for active behaviour.

A similar approach to partially programmable networks has resulted in the dewvelopmen of
the Activ e Networks Overlay Network (ANON) [Tschudin99]. ANON supports the creation

®Not to be confusedwith the SmartPackets project from Kansas Univ ersity.
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of programmable clusters of active nodes{ called segments{ connectedtogether by a larger
overlay network.

Activ e Services: At the highest (and least exible) level of customisation, Active Ser-
vices[Amir98] (also referred to as Application Layer Active Networking [Fry98]) permit pro-
grammability within the network, but only at the application layer. User-suppliedcode may
be executed on nodes within the network, but cannot replace the processingused for the
network or transport layer. This allows usersto experiencereducedlatency by moving com-
putations closerto the nodes with which they are interacting (e.g. a web document could
specify code to be executedon a programmable web cace, giving faster responsesthan by
connecting through to the original web server on ead request[Marshall99]).

Xenoserverswere proposedin [Reed991to provide hostsat strategic points within the network
that can supply execution servicesto untrusted clients, in return for payment. In many
respects the concept of Xenoseners is similar to Active Servicesbut aims to presen an
environment in which resourceusageis strictly scheduled, accourted and charged for.

Within the open signalling community, projects such asthe Hollowman [Rooney97]Tempest
CA support extensiblecortrol of ATM switches. Usersof thesearchitectures may supply code
in a safelanguage{ Java in the prototype Hollowman implementation { to executeon or near
a switch in order to deploy application-speci ¢ policy for a particular connection. Such code
caninteract with the virtual network's switchlets, to con gure its VCI mappingsand resource
allocations with lower latency than code executing at end points of the network. This enables
more e ectiv e cortrol over the resourcesassaiated with the CA's virtual network.

The Haloob [Bos99]takesthe extensibility of Hollowman a stage further with the concept
of Elastic Network Control. It proposesSandimxesin which Dynamically Loadable Agents
(DLAs) may be executed. Sandboxesallow DLAs to presen extensibleinterfacesthat may be
externally invoked { either by other DLAs or by external applications { by using the Simple
Uniform Framework for Interaction (SUFI). Sandboxes may be instantiated at any location
with the network control and managemen architecture where extensibility is desirable. In
the example implementation, sandboxes are presened for the execution of DLAs written in
Java and TCL [Ousterhout90Q].

2.1.2.4 Platforms

The environment over which active network execution ervironments and open signalling and
mobile code systems are implemented has a fundamertal e ect on the properties of such
systems. Previously, the majorit y of active network projects have beendeveloped over various
a vours of the UNIX operating system. In particular, opensourcevariants suc asLinux have
beenwidely useddue to the easewith which kernel modi cations may be made, facilitating
modi cations to network padet processing.

Running an active network systemin a Unix user-spaceervironment hasthe advantage of be-
ing easily portable among di erent POSIX-compliant [NIST88] operating systems. Howewer,
the abstraction preseried by the operating system often obscuresa great deal of the detailed
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information and control over the data-path that a low-level active network system requires
to perform activities such as resourcesdeduling.

Se\eral projects have attempted to move all or part of the network programmability inside the
OSkernel. The Network Element for Programmable Padet Injection (NEPPI) [Cohen99is a
Linux IP router extendedto allow programmabletranslations on certain TCP o ws. Gateway
programs may requestthat padkets on ows which match a speci ed Iter are passedup to
the user-lewel processingroutine, which may manipulate the padket directly, or may program
a speci ¢ manipulation (such aspadket redirection, addresstranslation or adjustment of TCP
sequencenumber and window size) into the router's forwarding tables for future padets on
that ow. By specifying TCP ag bits aspart of the Iter, agateway program may for example
receive all connection setup padets (with the SYNag set) on a particular o w, but allow all
establishedconnectionsto be processedvithin the kernelrouter. Router plugins [Decasper9g
and the Click router toolkit [Morris99] have been proposedto support a similar { but lower
level { functionality in an extensiblerouter, with modulesimplemenrted for various functions
that a router may be required to perform, and connectionsset up between modules and the
underlying platform.

PAN [Nygren99 supports an active network implementation running unsafe native code en-
tirely within a Linux kernel loadable module; it aimsto perform zero-cofy active routing for
those padkets that are simply being custom-routed and forwarded to their ultimate destina-
tions.

Other projects have recognisedthat the I/O model of a traditional Unix workstation is not
optimal for supporting extensible network programmability. Previous researd has addressed
both the software and hardware architecture requiremerts.

The Lancaster Activ e Router Architecture (LARA) [Cardoe99]provides a hardware/software
hybrid solution for implementing active network nodes at the edge of moderate sized net-
works. LARA usesa dedicated processorto act as a forwarding engine for ead network
port, and a managemen node to overseethe system. Data-path communication betweenthe
forwarding enginesis performed over a high-bandwidth interconnect { the prototype usesa
0.5Gb/s modi ed SCSI bus. Control-path communications, including interactions with the
managemen node, use a standard bus. LARA/P AL (Platform Abstraction Layer) provides
a platform-independert interface over which di erent EEs may be instantiated.

The \holy grail" of active networking researt is the Node Operating System (NodeOS). The
NodeOS [Peterson00a]interface is de ned as part of the Active Networks Working Group
Architectural Framework [Calvert98]. It is intended to provide a minimal common xed
point for active networking in the same way that IP provides a common xed point for
passiwe Internetworking.

The NodeOSis, asits name suggests,an OS-like interface over which multiple execution envi-
ronments may operate. It usesthe abstraction of a ow to represen the resourcesassaiated
with remote principals, and to manageresourceaccourting, scheduling and admissioncortrol.

Each EE de nes a networking environment tailored for somespeci ¢ (or generic)requiremert,
and presens that ervironment to a subset of end-usersof the network. The ernvironment
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Figure 2.1: Structure of the NodeOS

provided by the EE does not have to be programmable in itself { the EE may choose to
utilise the abstractions provided by the NodeOSto provide someform of customisedpassiwe
padket forwarding. In fact, IP itself may be regardedas a \legacy" EE, which sits alongside
other EEs and provides simple best-e ort forwarding accordingto the node's default Internet
routing tables.

The NodeOSallows o ws to open channelson to the network. Sud channelscomein three
avours:

In channelsallow a o w to receive packets matching somedemultiplexing speci cation.
Out channelsallow a ow to transmit padkets.

Cut-throughchannelsallow a o w to join an In channelto an Out channelvia a speci ed
standard routing/pro cessingalgorithm. The routing and processingof padketsin a cut-
through channel is performed ertirely within the NodeOS, and so may potentially be
optimised.

Figure 2.1 illustrates the architecture supported by the NodeOS. Currently, the NodeOS
speci cation is at a draft stage. Seeral projects [Lepreau99 Hartman98, MeruguQ0] are de-
veloping implementations that are intended to guide the ewolution of, and evertually conform
to, the nal speci cation.
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2.2 Safe Execution of Untrusted Code

2.2.1 Overview

Some active networks projects have produced environments that execute arbitrary native
code. PAN [Nygren99 provides such support in order to measurethe inherent overhead
assaiated with various levels of activation within the network { execution of safeJava code
is also supported. Bowman [Merugu00] executesonly unsafecode; the authors state that

The choiceof [the] C programming languageto implemernt the Bowman systemcall
interface has given us good performance, but probably sacri ces some exibilit y
(code can only comefrom a priori -trusted parties).

This is something of an understatement { one of the fundamertal advantages that pro-
grammable networks o er is the ability for network providersto o er exible and extensible
accesdo their switchesand routers, upon which usersand third-parties can develop advanced
services.Restricting such serviceprovision to just thosewho are fully trusted by the network
provider defeatsthe purposeof an open programmable network.

Furthermore, debugging applications when portions of the application's logic and data are
spread throughout disparate nodes in the network is a substartial challenge. The use of
someform of safe languagefor network programability substartially decreaseshe chances
of uncaugh bugs, and increasesthe probability that sensiblediagnostics may be obtained
in the event of a runtime error. Trusting another party not to load malicious native code
on to your node is insu cien t in a programmable network { you also have to assumethat
they are capable of writing code without the possibility of arbitrary memory corruption, due
to behaviour such asrunning o the end of a bu er or using a pointer to previously freed
storage.

Therefore, many programmablenetworks and mobile code systemsenforcesomeform of safety
requiremerts on the user-provided code that they execute. This may be implemented either
by requiring useof a safelanguage,or by permitting codeto be written in an arbitrary source
languagewhile requiring that the executablecode conformsto certain well-de ned properties.

2.2.2 Language-based control

Many mobile code and programmable network systemsspecify that the end-user'scode must
be written in a particular safelanguage. [Alexander984 and [Cugola97]analysethe require-
merts for a languagefor mobility and network programmability.

Somesystemsreusean existing safelanguage. Java [Gosling95b]hasrapidly gainedgreat pop-
ularity asa languagefor mobile code, due to its portabilit y, type-safey and security’. Java is

"Due to incompatabilities betweenimplementations, and to errors in bytecode veri ers and security policies,
these features have been somewhat compromised. However, it is plausible that these problems will be resolved
in the future.
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a strongly object-oriented languagewith hybrid static/dynamic typing. ANTS [Wetherall98],
PAN [Nygren99], SmartPackets [Kulk arni98], Hollowman [Rooney98ajand the Haboob [Bos99
make useof Java in slightly di erent ways{ ANTS and PAN processcapsulesusing demand-
loaded Java classes;SmartPadkets capsulescontain the full de nition for a Java class as
well as the serialised data for a single instance; Hollowman and Haboob support the dy-
namic loading of Java classesto perform cortrol-path operations on network switches and
control architectures. Caml [Leroy97] is a dialect of ML [Milner97] that has been used
as a mobile code language by Rcane [Menage99]and seweral componerts of the Switch-
ware [Alexander98bf project including ALIEN [Alexander984 and the SecureActiv e Net-
work Environment (SANE) [Alexander98d. The TCL [Ousterhout9Q] scripting languagehas
alsoproved to be a popular basefor mobile code; the Haboob supports mobile agerts written
in TCL, and Safe-TCL [Borenstein94, Agent TCL [Kotz97] and TACOMA [Johansen9% all
extend TCL, with support for migration and con nement. The untyped nature of TCL, in
which all valuesare represeried (conceptually) as strings { proceduresinterpret thesestrings
as being of the appropriate logical type { allows for simple but unstructured interfacesbe-
tweenvarious componerts in a mobile code system. The TUBE [Halls97] environment utilises
properties of the Schemelanguageto support the suspensionof mobile agerts to padkageup
the state of their computation; this state may then be transferred to a di erent site and the
computation cortinued.

Other projects have deweloped their own languagesthat are speci cally designedto have
suitable properties for mobile computing. [Schwartz99] de nes a safe high-level language,
Sprocket, its mapping into a restricted CISC \assembly language”, Spnner, and a virtual

machine environment in which Spannerprograms (Smart Packets) can be executed. An im-
portant feature of the Spannerenvironment is the addition of languagelevel (single pseudo-
opcodes) support for interrogating and modifying SNMP [Case90MIB databases.This tight
integration with a particular network managemen architecture reducesthe system'’s exibil-

ity; however, it helpsfulll one of Spanner'sdesigngoals, that meaningful programs should
be expressablein a single unfragmented padket, typically under 1KB. Inferno [Lucent96] was
deweloped to provide an operating systemfor distributed servicessuc astelephorny switches
and media seners. It supports the execution of programsin a high-level type-safelanguage,
Limbo.

The Switchware project has developed the Padket Languagefor Activ e Networks [Hicks99c].
PLAN is a restricted functional language similar to ML [Milner97], but with strong dy-
namic typing. The languagerestrictions allow PLAN programsto be safely executed with-
out veri cation or chedking. Remote invocation and layered encapsulation are supported
through the notion of a chunk, a rst-class object represening a suspended PLAN function
call [Moore99b]. When a chunk is created, a string is marshalled consisting of the name of
the function or serviceto be invoked, the argumerts to the function, and the de nitions of
any PLAN functions required for the execution. Function namesare not bound to actual
functions until execution time, allowing a PLAN program to refer to servicesthat exist on
remote nodesbut which are not resohable at compilation. The OnRemote() primitiv e causes
a chunk to be executedon the speci ed remote host. Once created, chunks may be manipu-

8In [Moore994 and [Hicks99a], two of the Switchware developers discusstheir experienceswith an earlier
version of some switchware componerts written over Java, and commert on the advantages that they gained
after converting to use Caml.
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lated by a PLAN program or the servicesthat it invokes. For example,fragmentation may be
performed by splitting the binary contents of a large chunk into seweral portions, and using
ead portion asone of the argumernts to a chunk that invokesthe reassemble() serviceon a
remote node. Encryption, compression,reliable transfer and other network servicesmay be
performed in similar ways.

[Wakeman98]discussesvarious requiremerts for a languagefor programmable networks, and
proposesSafetynet as a new languagethat supports these requiremerts. Safetynet aims to
encale properties such as security and resourcecortrol into the language. This allows more
substartial type cheding beyond simple safely properties.

Somelanguagessud as PLAN support dynamic scoping of identi ers, sudc that the unre-
solved bindings (for servicesand data) required by a mobile program must be satis ed at
the executing site. Other languagessudc as Oblig [Cardelli94] use lexical scoping, whereby
all free bindings must be resolhable at the point when a program fragmern is transmitted
over the network, and use of those bindings will e ect remote invocations on objects at the
originating site. Sud lexical scoping enablesa program fragmert to seea more consisten
view of the state of the world; however, this high level of network transparency causesboth
unpredictable performanceand di culties in speci cally referring to state and serviceson the
execution node. In this respect, language primitiv es such as PLAN's OnRemote() combine
corveniert accessto remote invocations with the clear distinction betweenlocal and remote
accesses.

2.2.3 Low-lev el control

Requiring the mobile code that a serer executesto be written in a safe language has the
disadvantage of reducing the exibilit y available to remote users. An alternative approach
taken by some researtiers has beento develop ways to permit arbitrary machine code or
assenbly languageto be executedsafely

Software Fault Isolation (SFI) [Wahbe93]runs ead untrusted code module in a separatefault
domain. A fault domain is a region of memory assaiated with the untrusted module, within

which all loads and stores{ and most jumps { are unrestricted. Code to be run is required to
execute special bounds-deding code before any memory accessto ensurethat the address
being accesseds within the permitted data area’, or in the caseof a jump, that the address
being jumped to corresponds either to a valid basic block or to an entry point in a trusted

jump table to support cross-domainRPC. This accesdliscipline may be enforcedin two ways.
In the rst instance the end-usermay employ a specially modi ed compiler that inserts the
relevant cheding code, combined with a veri er that runs on the sener to ensurethat the
cheds are presert. Alternativ ely, the serner may usebinary rewriting techniquesto insert the
necessarycheds before loads, storesand jumps when the code is rst supplied. This allows
any compiler to be usedon the client?°,

9Extensions to the SFI model have permitted multiple data segmeris to be accessibleto a single fault
domain; these segmerts may be shared between multiple domains.

0 current implementations of SFI do place limitations upon the register usage of the code being isolated,
since someregisters are required to be reserved for e cien t fault isolation.
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The encapsulationprovided by SFI allows any untrusted code to be safely executed; however,
this is at the expenseof an executiontime overheadof approximately 5%, and with arelatively
crude protection model. Other researd has focusedon the use of formal methods to reduce
the overhead of untrusted execution while providing a richer typing model. Typed Assembly
Language(TAL) [Morrisett98] and Proof-Carrying Code (PCC) [Necula97]have both been
deweloped asways of providing a typing discipline for low-level code. TAL supports a generic
type system for basic blocks, over the registers and stack of a processor,with higher-order
extensionsto cope with the low-level cortrol possibilities available to assenbly code. For
example, part of the typing of a basic block might specify that the RA(Return Address)
register must cortain a pointer to a block which expects register ROto contain an integer;
thus any pieceof code that causesa cortrol transfer to the basicblock must ensureRAcontains
a pointer to an appropriate return addressor cortinuation. TAL thus ensuresthat the typing

discipline is respected without prohibiting the calling convertions of any particular language
(such astail-call recursionor continuation passing). This work has beenextended[Hornof99]
to allow the partial generation of certi ed code, which may be veried in a similar manner
to Java; the nal compilation stage proceedson the execution host, taking advantage of
properties of that system. PCC allows the executing host to publish arbitrary setsof pre- and
post-conditions for code segmetts that must be respectedby a client's code. Theseconditions
may determine both the behaviour of code supplied by the client, and the argumerts that may
be passedto callbad routines supplied by the host. From theseconditions and from analysis
of the code, a set of veri ¢ ation conditions may be generatedand proved o ine by the client,

through the use of a theorem prover. The client preseris this proof to the host along with

the code; verifying that the proof is valid is signi cantly lessexpensive than generating the
proof initially .

2.2.4 Security

Safety is concernedwith enforcing the low-level characteristics of an environment for the
execution of untrusted code. Security, on the other hand, involvesdiscovering what resources
a program is authorised to accessand ensuring that a program doesnot gain unauthorised
accesdo resourcesor information.

Whilst a sensiblesecurity policy is recognisedas vital for the e ectiv e deployment of a pro-
grammable network node, the developmert of such a policy is largely beyond the scope of this
dissertation. This section therefore brie y reviews a selection of security solutions proposed
for open and programmable networks, rather than surveying wider researt on the general
issueof security.

At the level of inter-node cryptographic security, the SecureActive Network Environment
(SANE) [Alexander98(d allows peersin an active network to establish trust between eath
other, by exdanging certi cates that authenticate them, and to establish secret keys to
permit securecommunication. The rm ware in the nodesis modi ed to provide a Trusted
Computing Base.

Security in PLAN is achieved by restricting the namespaceof servicesavailable to a PLAN
program accordingto the capabilities that it carries[Hicks99b]. The servicesavailable through
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the namespaceare implemented in a general-purpose programming language,thus requiring
veri cation before installation. Under the PLAN security scheme,a rew all may be imple-
mented by encapsulatinga PLAN chunk (see Section 2.2.2) in a function call that seerely
restricts the packet's namespaceand then evaluates the original chunk.

The Active Networks Security Working Group are de ning the Security Architecture for
Activ e Nets [SecArd98]. This is intended to be deweloped in tandem with the NodeOSto
provide tailored security facilities.

Oasis[Hayton96] and KeyNote [Blaze99 both provide security policy architectures for services
in an open network { in ead casepolicies may be specied in a domain-speci ¢ language,
and enforcedupon the ertities in the network.

2.2.5 Operating System Extensions

In traditional operating systems, the user/kernel division provides an in exible interface;
applications may useonly those abstractions and serviceswhich are provided by the interface.
This may result in ine cien t behaviour, with substartially greater amournts of time spert in
user/kernel crossingsand memory copying than would be necessaryif a di erent abstraction
were being used.

Many operating systemspermit the loading of modules into the kernel. These are generally
usedto provide support for particular of hardware. They may also be usedto extend the
abstractions o ered by the kernel, by providing extension system calls or a pseudo-device.
Non-administrators are generally not permitted to load their own kernel modules, even when
the module does not in itself extend the privileges of the user (i.e. it only performs actions
that the userwould be permitted to perform, but in a more e cien t manner), sincethere is
usually no support for verifying that such extension modules are safe.

To this end, various researt projects have developed extensible operating systemsto permit
usersto employ more e cien t abstractions for accessinghe resourceson a computer.

SPIN [Bershad95]from the University of Washington permitted extensionswritten in Modula-
3 [Cardelli89] to be loadedinto the kernel by user-processeswith the intention of improving
performanceby reducing the number of user/kernel crossings. User-level programs were run
under hardware protection, and so could be written in any language. In the prototype, kernel
extensionshad to be signedby a trusted compiler.

Sinceuserswere permitted to load extensionsto respond to interrupt events, SPIN extended
the Modula-3 languagewith an EPHEMERAEyword; EPHEMERAftocedurescould only call
other EPHEMERAocedures, and hence could not lock critical resourcesbelonging to the
kernel (which were only accessiblehrough non-EPHEMER@tocedures). Thus they could be
safely aborted by the kernel if they spert too long in an interrupt serviceroutine.

VINO [Seltzer9g solvesthe problem of resource-hoardingby kernel extensionsin a di erent
way. The Vino kernelis extensiblethrough the useof SFI (seeSection2.2.3). The extensions
are all invoked through a transaction system, which allows the kernelto abort extensionsand
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undo changesmade to system state by the tardy extension.

The Exokernel [Engler95 Kaashoek97] project from MIT supports the notion of OS-in-a-
library in a similar way to Nemesis(see Chapter 4), although the primary motivation is
that of improved performancedue to reducedabstractions, rather than the goal of improved
QoS enforcemen that underlies Nemesis. As sud, its notions of resourceisolation between
processesre lesswell-de ned.

The Exokernel permits extensionin seweral ways. Dynamic Packet Filters [Engler96] allow
applications to pass o w demultiplexing speci cations down to the network driver. Untrusted
Deterministic Functions [Kaashoek97 (UDFs) allow library-based le systemsto passmeta-
data parsing routines down to the kernel, where they may be safely executed. By initially
emulating the instructions of a UDF on a particular piece of meta-data, the kernel can be
satis ed that the UDF will always return the sameresults for that meta-data, and hencecan
run the UDF natively on future occasions.

2.3 Resource Control and Accoun ting

Much researt has beendone into medanismsfor controlling the resourcesallocated to en-
tities executing on a computer or within a network.

2.3.1 Resource Control in Operating Systems

Traditional operating systemssuc asUnix, aswell asmore recert micro-kernels,are typically
optimised for performance,often at the expenseof reliable resourcepartitioning amongstthe
di erent tasks occuring on the system.

A major factor in such unreliabilit y has beenthe tendencyto move processinginto the kernel
(in the caseof monolithic systems)or into sharedseners (in the caseof micro-kernels). This
can causecrosstalk in the timeliness of receiving accesgo resources,and alsoto obscurethe
amourt of resourcesconsumedby ead client on the system. Whilst someOS kernelsprovide
real-time scheduling of the CPU, suc crosstalk and obsfuscationmeanthat simply scheduling
the CPU is insu cien t.

Someapproadesto solving this problem have attempted to t suc resourcecortrol on to
traditional systems.LinuxSRT [Ingram99] modi es the Linux schedulerto provide guaraneed
levels of accessto the CPU, and further demonstratesthat by adding schedulersto shared
senersit is possibleto provide QoSin those seners, and thus avoid someof the crosstalk.

A major sourceof crosstalk in traditional operating systemsarisesdue to network protocol
processing, which in a monolithic kernel is often performed in interrupt handlers. In an
attempt to reduce this problem, techniques such as Lazy Receiver Processing[Druschel96]
and Signaled Receiwer Processing[BrustoloniO0] more properly accourt to applications the
time spernt performing protocol processingtheir incoming streamsof padkets. This is achieved
through the useof a pacet lter to assaiate incoming network data with a particular local
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socket. This data is then left unprocesseduntil such time asa read() is requestedon that

socket. In addition to more accurate accourting, a further benet of this technique was
obsened { the improved temporal locality of the network data resulted in a lower number of
cade misses.In a traditional network stadk the data is pulled into the cade on receipt (for

header cheking, chedksumming, etc.); by the time the data is copied to user-spacefor the

receiving application, it is likely to have beendisplacedfrom the cache. By only processing
the padket data directly beforeit is copied to user-spaceand used by the application, the

level of cache pollution is reduced.

In [Banga99],resource containers are proposedas a meanswherely resourceaccourting and
protection may be separated. A resourcecortainer is assaiated with a particular activity
and may be sharedbetweenmultiple processessimilarly, a process(particularly servers) may
hold multiple resourcecontainers { corresponding to dierent clients or classesof client {
allowing it to inform the OS to which of its containers it desiresits current activity (e.g.
the consumption of CPU cycles, or the protocol processingfor the trac on a particular
socket) to be accourted. Eclipse [Bruno99] provides a similar form of resourcecortrol, using
a reservation le systemto model hierarchical resourceguarartees.

Scout [Mosberger96l takesthe two precedingideasa step futher, represering all activity in

terms of paths. The informal notion of a path, commonly usedin terminology suc as \fast

path" and\data path", is formalisedto consista setof modules{ referredto asrouters { that

processa particular classof data sequettially. For example, an incoming video stream being
displayed as part of a video conferencewould be represetted by a path that beginsin the

network subsystem. A padket classi er in the link-level (Ethernet) devicedriver module would

recognisepadkets that constitute the video stream and direct them to the video conference's
path. The path would cortinue through the network protocol modules (IP, UDP), which

would processany headerinformation and possibly defragmen IP padkets. From here the

data would be passedinto a video decader module that would translate the payloads of the

network padkets into frames of video. These frames would nally be passedto the video
display module in order to be viewed by the user.

The path medanism in Scout allows modules to register interfaces;these interfacesmay be
usedto connectmodulestogether to form paths; this is similar to (but more extensible than)

the connectable modules used by Click [Morris99]. A router graph is generatedto identify

valid con gurations of connected modules. By assaiating a particular level of resources
with a path { rather than with a network subsystemor the video display subsystem{ Scout
attempts to o er guaraneesto particular activities. A further advantage is that the path

abstraction permits further optimisations such as partially evaluating the functions along
a path to provide versions specialised for a particular data stream [Mosberger96a]. The
performance improvemerts achieved by these optimisations must be o set by the loss of
spatial locality in the processingcode causedby multiple specialised versions of common
functions.

Nemesis[Roscax95, Leslie9q is an operating system designedto provide resource guaran-
tees and QoS to applications. It is vertically-structured { i.e. wherewer possible, applica-
tions perform work themselhes (typically using sharedlibraries) rather than calling a shared
sener to perform the work for them. By making applications lessreliant on shared seners,
crosstalk (interferencein the QoSreceived by oneapplication dueto activity causedby another
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application) is reduced. Where resourcesneedto be multiplexed (e.g. for CPU sceduling
and network output), such multiplexing is performed at the lowest possiblelevel, in accor-
dance with the principles put forward in [Tennenhouse8P Tasks sudc as protocol process-
ing [Black97], thread scheduling and virtual memory paging [Hand99 are safely delegatedto
the applications themseles. Nemesisis discussedfurther in Chapter 4.

2.3.2 Resource Control in Mobile Code and Safe Languages

Existing approadesto resourcecortrol in mobile code and safelanguageshave focusedon two
main areas: the negotiation for and allocation of resourcesand the scheduling and accourting
of suc resources.

D'Agents [Bredin98] usesa market-based approad, in which mobile agerts bid for access
to resources.\Sealed" bids allow the resourceproviders to e ectiv ely determine the current

demand { and hence market rate { for a resource. [Tschudin97b] describes a similar ernvi-

ronmert that allows messengeragents|[Tschudin974] to bid for resources;actual allocation is

performed through lottery schealuling [Waldspurger94]. [Lal99] presens a framework to allow

mobile programs and hosts to specify constraints on the allocation of CPU. The framework

permits the specication of real-time and non-real-time constraints; howewver, the current

implementations do not support real-time scheduling.

Most existing active and programmable network researt has tended to ignore the issue
of resource cortrol, focusing instead on the dewvelopmert of programming paradigms and
ernvironments. Sincesud work typically occursin a closedervironment, with only a relatively
small set of researdiers accessinghe systemsconcerned,this hasbeena reasonablechoice to
make.

Where thought has beengiven to resourcecortrol, it hastypically beencoarsegrained. For
example, PLAN provides three facilities for cortrolling the execution of a padket's code:

Asscciated with ead padket is a Resouice Bound (RB). The RB is an analogueof the
IP hop-oount, and indeedis usedin a similar way { ead network hop taken by a padket
decreasesdts RB by one, and a padcket whoseRB is exhaustedis discarded. However,
use of the RB is more exible than in IP. If the code for a padket sendsout multiple
di erent packets, it may choosehow to split its RB amongstthe new padets. The RB
is also usedfor evaluating recursive functions { by bounding the number of recursive
calls that may be made, a rough bound on the CPU time consumedmay be made.

The total amount of memory allocated by a padet's code at a single node may be
bounded, and the padet aborted if it exceedsthis bound.

The total amount of CPU consumedby a packet's code at a singlenode may be bounded,
and the padket aborted if it exceedsthis bound.

Safetynet [Wakeman98]usestypeinformation to calculate a bound on the resourcesconsumed
by an active padket. A further feature of Safetynet is to draw a distinction between packet-
forwarding code and ordinary code. Forwarding code is restricted in what operations it may
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perform; it may not allocate heap memory, and it must provably terminate. ANTS applies
similar restrictions to capsuleforwarding code { the evaluate() method of a capsule may
not call into other Java classes.

The conceptof Proof-Carrying Code hasbeenextended[Necula98]to permit formal reasoning
about the resourceusagebounds for untrusted agens. Whilst thesetechniques do go some
way to prevent seriousDoS attacks, they are insu cien t for providing e ective ne-grained
resourceguaranees.

More recen work hasbegunto focuson issuesof proper resourcecontrol. The speci cation of
the NodeOS|[Peterson004 provides an interface for allocating and scheduling computing and
network resourceson a programmable node. Early implementations of this interface, suc as
Bowman [Merugu00], have shown e ectiv e isolation betweenmultiple o ws of padcets passing
through a node.

Java has proved a popular medium for resourceallocation and cortrol architectures. The orig-
inal runtime de nition contained support for priorities, which by themselesare insu cien t
to provide e ectiv e resourceguarantees. J-Res [Czajkowski98] and Conversart [Bernadat98]
extend Java's resourcecortrol, providing a measureof corntrol over the consumption of re-
sourcesby Java threads. Both accourt memory allocations and CPU time to threads, and
attempt to provide CPU guaranteesby adjusting the priority of threads basedon scheduler
feedbad. A philosophicaldi erence betweenthe two is that J-Resattempts to avoid changing
the Java runtime, thus improving portabilit y, at the expenseof e cacy , whereasConversar
makes substartial modi cations to the runtime in order to provide facilities such as multiple
semi-independert heaps.

The J-Kernel [Hawblitzel98] provides support for multiple untrusted threadsin a Java system.
Di erent threads are isolated from one another in multiple protection domainswithin a single
heap, but communication is permitted through capabilities, which marshal parameters from

onedomain to another. Ka eOS [Back0Q] applies abstractions from OS designto a Java vir-

tual machine; threads are grouped into processesand given independertly garbage-collected
heaps. Processesmay share data in specially designated read-only heaps. The system is
divided into \user" and \k ernel" sections;user code is untrusted and may be terminated at

any time, whereaskernel code is trusted and may not be terminated. Resourceconsumption
by the di erent processesn a Ka eOS systemis accourted, to help prevent denial of service
attacks.

2.4 Summary

In this chapter, badkground information relating to the ewolution of programmable networks,
resourcecortrol, and the execution of untrusted code has beenintroduced. This providesthe
necessarybasisfor the remainder of this dissertation, which preseris the argumert that the
conbination of thesethree areasis vital for the widespreaddeployment of open mobile code
systems. In support of this argumert, the Rcane architecture, its prototype implemertation,
and its evaluation are also preserted.
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Chapter 3

Resource Control Requiremen ts

This chapter discusseswhy, and to what extent, resourcecontrol of untrusted code is nec-
essary It considershow the resourcerequiremerts of user-supplied code are considerably
more complicated to predict than those of padkets in a passiwe network. The types of re-
sourceswhich require control, and the way in which those resourcesshould be accourted, are
discussed.

3.1 The Case for Resource Reservations

The question of whether resourceresenations or overprovisioning of best-e ort servicesis a
more cost-e ective way providing serviceshaslong beena bone of contention within the net-
working community. Advocates of resenations claim that modern multi-media applications
require the higher predictabilit y given by resenation-capable networks to provide a suitable
level of service. Opponerts of resenations claim that a resenation-capable network will only
provide satisfactory service when its blocking rate! is low, and hencethe provisioning lev-
els required would provide near-satisfactory servicein a best-e ort network { the di erence
being met by a modest amount of over-provisioning, with much lower complexity than the
resenation-capable network.

3.1.1 Resource Reservations in Passive Net works

The Internet was conceiwed as a network giving only best-e ort delivery. Protocols such as
TCP are designedso that in the presenceof contention they throttle back their output, so
as not to overload network switches. Token support for QoS was provided in the Type of
Serviee (ToS) bit, which allowed padets to be marked according to their trac type and
precedence. Such information is typically ignored by network routers, leading to a best-
e ort servicefor all network users. Sudh behaviour is not always desirable, particularly when
attempting to use interactive applcations acrossa network, or view streamed multimedia

1The rate at which it refusesresenation requests
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data. Integrated Services(RSVP) [Zhang93 and Di eren tiated Services(Di Serv) [Blake9§
have beentwo approadesto providing QoSin the Internet (in the caseof Di Serv, re-using
the IP ToSbit to actually support di erent servicetypes). More recert technologiessuc as
ATM have provided support for QoS from their inception.

[Breslau9g addressesthe question of whether resourceresenations are required in passiwe
networks. Di erent classesof applications and load distributions are considered,and expres-
sions are derived for the additional bandwidth required for a best-e ort network to provide
equivalent serviceto a resenation-capable network. No de nitiv e conclusionsare preseried
about whether future networks should be resenation-capable. Howewer, the authors note that
the greater the unpredictabilit y of the o ered load, the greater the performanceadvantage of
a resenation-capable network over a best-e ort network; in particular, with an exponertial
or algebraic load distribution, the additional factor of bandwidth required by a best-e ort
network can increasewithout bound asthe basebandwidth increases.

In [Paxson94 tra c traceswerestudied, with the conclusionthat much of the WAN trac in

the Internet could not be modelled with a Poissoninter-arriv als process but instead exhibited

distributions with much larger variancesand self-similarity [Leland93, Crovella95]. Although

it is dicult to predict the load distributions faced by future networks, sud results suggest
that resenations will be necessaryat least for certain classesof tra c.

It hasbeenclaimed [Deering9g that applications can adapt to whatever servicethe network
o ers, rendering resenations unnecessary Whilst this may be the case,such adaptation can
only occur by degrading the QoS delivered to the end user. For someapplications that do
not require interactive responseor low jitter, sudc as le transfer or electronic mail, this may
be a practical solution. Howewer, for multi-media applications adaptation can result in a
substartial reduction in the utilit y received by the end user.

A particular drawbadk to the argumert that adaptation renders resenations unnecessary
is that it assumesall communications are of equal importance. This tends to reduce the
incentiv e for usersto put o unimportant communication to times when the network is less
busy. By allowing (and charging for) resenations, important communications automatically
receive improved QoS over lessimportant ones, since their usersare likely to be willing to
pay the additional costto ensurehigh utilit y.

3.1.2 Resource Reservations in a Programmable Network

For the remainder of this dissertation, the term open programmable network is usedto refer
to a network in which some of the nodes provide programmable extensionsto end users. To
obtain bene ts from programmable networks it is not necessarythat all nodes within the
network are programmable { indeed, sincethe latency and processingoverheadsexperienced
by ows through a programmable platform are likely to be substartially greater than those
experiencedthrough a hardware router or switch, providing programmability for that pro-
portion of the trac that hasno special requiremerts may be considereda waste. The term

2An algebraic distribution has a high variance in o ered load; the probabilit y that k o ws are requesting
serviceis P(k) = —+=.
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let hostileForwardPacket pkt =
while (true) do
allocateSomeMemory ();
sendPacketToNeighbours (pkt)
done

Figure 3.1: A hostile forwarding routine

An example of a forwarding routine potentially capable of consumingall available resources
at a node.

open programmable network is usedto imply that theseprogrammable facilities are available
to all usersof the network (possibly in return for a payment), not just those usersemployed
by or trusted by the network providers.

Since providing programmable platforms within the network greatly increasesthe ways in

which end-usersmay consumeresources,it seemsreasonableto assumethat the variance
in load experienced by such platforms will be greater than that experienced by \passive"

networks. In a passiwe network the potential resourceload at a node causedby the activities

of a particular customeris likely to be roughly proportional to the bandwidth o ered to that

customer. There is a direct correlation in the caseof bu er storageand link utilisation; the

CPU cyclesrequired for forwarding a padet are likely to involve a constart per-padket cost
for the routing, and a copying cost proportional to the bandwidth®. Thus, by limiting the
bandwidth that a customer receiwes, a network provider may limit the amount of resources
consumedby that customeron a network node. E ectiv ely, the direct chargethat the provider

makes for the bandwidth includes an indirect charge for the use of other resourceson the

network node.

However, in a programmable network there are many more variables to take into accourt
when considering the system load { the loads generated on resourcessuch as CPU cycles,
memory and outgoing link bandwidth may be totally unrelated to the incoming link band-
width. At the extreme, hostile, greedy or carelessforwarding code could potentially consume
all available resourcesat a node. For example, within an active network node, allowing arbi-
trary customisation of the forwarding code usedto processpadkets would permit (if specic
controls were not put in place) a single pacet to potentially consumeall available CPU,
memory and link bandwidth at a node (seeFig. 3.1).

It has been argued [Wetherall99b] that since part of the rationale behind programmable
networks is to trade o bandwidth for other computing resources(such as memory and CPU
cycles),bandwidth is presumablythe scarceresourceat the node. Therefore simply scheduling
bandwidth still suces to sdedule other resourcesat the node. Howewer, apart from the
obvious problem of grossDoS attacks, there are two a ws in this argumert:

This e ectiv ely provides an incentiv e for end-usersto reducebandwidth requiremerts at
all costs,evenif this resultsin ine cien t useof other computing resources.For example,

3This is clearly not the caseif transport protocols and some of the higher level functions of IP { such as
ICMP and subnet broadcast { are taken into accourt [CERT96, CERT98]. However, such abusesof IP are
generally fairly straightforward to detect as DoS attacks, and as such can be ltered out by routers.
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a program that is transcoding a multicast video stream before transmitting it over a
low bandwidth link would be charged accordingto the sizeof its output stream{ thus
its optimal courseof action would be to expend large amounts of CPU making a given
quality of video stream t into the smallest possiblebandwidth, even if the majority of
that work only producesvery small incremertal bene ts.

Programmable networks do not just reduce bandwidth requiremerts at the expenseof
increaseduseof other computing resourcesthey can alsoreducelatency using the same
trade-o0 s. In this casethe bandwidth consumedis potentially a small part of the total
resourceconsumption.

Thus, we concludethat simply limiting the incoming bandwidth is insu cien t to allow the
provider to control overall resourceusageat a node.

Since the load variance in a programmable network may be expected to be greater than
that in a passiwe network, the conclusionsof the analysis preseried in [Breslau99 may be
applied to suggestthat someform of resourceresenation and cortrol will be required for a
programmable network.

3.2 Approac hes to Resource Control

[Wetherall994 recognisesthat resource cortrol is one of the major unsolved problems in
current active network researd. The approad taken in [Wetherall994 is to only acceptcode
certied by a trusted authority { it is acknowledgedthat this is a seriousdrawbad to the
provision of an open programmable network.

The resourcesconsumedby untrusted code needto be cortrolled in two ways. The rst is
to limit the execution qualitativ ely { limit what the code can do. This involves restricting

either the languagein which the code can be written, and/or the (possibly privileged) services
which it can invoke. The secondrequiremert is to limit the execution quartitativ ely { limit

how much e ect its activities may have on the resourceusagein the system. Sud resource
control may be performed in various ways, discussedin the following sections.

3.2.1 Control through pro of

Proof-carrying code [Necula97]can be generated;suc code can be formally provedto respect
the typing disciplines that an execution serer wishesto enforce. A veri able type-safelan-

guagerepreserts a subsetof proof-carrying code { in this casethe serer haschosento enforce
the generalisedtype system used by the language. This, then, provides the qualitative con-
trol mentioned above. Furthermore someprevious work has usedsud technigquesto provide

limited quantitative cortrol { e.g. using proofs to reasonabout the number of instructions

executedwithin a particular block of code, in order to shaw that aroutine yields the processor
su cien tly frequertly to satisfy the execution server [Necula98].
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However, such proofs can be expensive to generate and are not particularly general. For
example, a block of code that could prove it would yield the processorevery 15ms would
be unlikely to get a chance to run on a node that had other clients who neededto run
every 10ms. Since such proofs are likely to be based on worst-case costs, this could lead
to clients being unable to run their code ewven if it would not interfere with other clients'
guarantees. Conversely if the samecode were supplied to a serer whoseexisting client had
beenguaranteedto be scheduledevery 29ms,the 15msclient would get to run only onceevery
29ms{ sinceit would be impossibleto run the 15msclient twice in a row without missing
the 29msdeadline. A generalisedroutine could possibly be developed that took its allowable
running time as a parameter, and could be proved to return within a time bounded by that
parameter; however, suc a routine would su er both in code complexity and in the overheads
required to ensureit did not exceedits limits. Furthermore, when multiple resourcesneedto
be controlled simultaneously, suc proofs becomesubstartially more complicated.

3.2.2 Control through scheduling/accoun ting

The alternativ e to requiring proof is to actively schedulethe resouce®n the node, and measure
the resourcesconsumedto allow accourting to take place afterwards.

Sdeduling may be either co-operative or pre-emptive. Co-operative scheduling relies on the
code being run to relinquish accessto the resourceat regular intervals; scheduling decisions
may only be madeat theseintervals. Typically only CPU cyclesare scheduled co-operatively,
although it could be argued that gaining accessto certain system resourcesthat require
mutual exclusion (e.g. binding to a specic TCP port, or grabbing the display serer focus)
involves co-operative scheduling.

Whilst co-operative CPU scheduling may be suitable for multiple threads within certain
applications, or { when used with care { within OS kernels, it has proved less suitable for
system-wide scheduling, especially in the presenceof carelessor badly-behaved applications
that fail to relinquish accessto the CPU; this can result in a system user-interface hanging
whilst an application carries out a large calculation, or a real-time application missing its
deadlines. A systemwhich permits pre-emption betweendi erent clients is essetial in order
to allow the various guaranteesto the clients on the systemto be e ectiv ely honoured.

It shouldbe noted that for someresourcesfully pre-emptive scheduling is hot possible. For ex-
ample, an Ethernet card cannot resdiedule more frequertly than at padket boundaries. When
large (1500 byte) padkets are being sent on a 100Mb/s network, this meansthat sceduling
decisionsmay only be taken at 120 s intervals. (These e ects may be lessenedby through
use of a link layer such as ATM, which by virtue of its small cell size allows scheduling to
occur every 53 bytes, equivalert to 4 s on a 100Mb/s link.) In this case,it is necessaryto
accourt for any overrun, sothat over two or more scheduling periods a client doesnot receive
excessie guaranteed accesdo the resourcedue to such quantisation.
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3.3 Resources requiring control

Once the decision has been taken to limit the resourcesavailable to untrusted code, the
resourcesthat needto be cortrolled must be selected. This section examinesthe di erent
resourcesavailable on a node in a programmable network, and discussesapproacesto con-
trolling ead.

3.3.1 CPU cycles

One of the most obvious resourcesto be cortrolled is that of accesgo a CPU. This includes
time spert executingthe untrusted code and time spent executingin (trusted) systemlibraries.
In particular, time required for tasks such as padket processingand garbagecollection should
be accourted to the principal on whosebehalf the tasks are being performed.

Many dierent algorithms have been dewveloped for scheduling CPU resources. Traditional
general-purpose operating systemssud as Unix [Ritchie83] use time-sharing schemesthat
attempt to allocate the available CPU cyclesfairly among the processeqor threads) in the
system. Each processhas a dynamic priority that decreaseswhen it receives CPU time,
and increaseswhen it is waiting on a run queue;at ead point, the processwith the highest
dynamic priority is run. To improve interactive responseand the throughput of /O bound
processessuc processesre giventemporary boostsin their dynamic priority. Time-sharing
schemesmake no guarartees that a given processwill receive accessto the CPU with any
degreeof timeliness.

In an attempt to provide more reliable accesso the CPU for processeghat require it, some
schedulersintroduce \real-time" static priority classes{ at any point in time, the scheduler
runs the process(es)with the highest static priority. If a low-priorit y processis running and
a high-priority processbecomesrunnable, it typically preempts the low-priority process. If
seweral processesshare the highest priority value, they may be scheduled cooperatively or
preemptively.

Priorit y-basedschemeshave seweral a wswhenseekingto provide resourceguarantees[Nieh94].
The rst is that a priority is by de nition a relative value { the amount of time received by

a processof a given priority is very dependert on the number of other processeswith equal
or higher priority. Thus although a processmay experience good accessto resourceswhen

it has the highest priority in the system, clearly only a few such processcan exist before
the problems assaiated with standard time-sharing occur. The second aw is that priorities

are insu cien t to deal with the caseof a processthat requires regular processingtime, but

which doesnot require priority over other tasks wheneer it is runnable. In a programmable
network, an example of suc a task would be the processingof routing updates{ theseshould

clearly not take priorit y over jitter-sensitiv e tasks; however, it is vital that they getto run for

a certain amourt of time during every update period.

An approacd to sdheduling that attempts to ensurethat all processesnake progress,whilst
still allowing straightforward relative priorities, is lottery scheluling [Waldspurger94]. Each
processis allocated a number of \tic kets" accordingto someresourceallocation scheme. At
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ead time slice, a processis chosenat random to receive CPU; the probability distribution
usedis weighted by the number of tickets held by ead process,soa processwith more tickets
receivesmore CPU time. This provides a very simple scheduling algorithm that is responsive
to users needs; however, since no guarantees are made to processesabout when they will
receive the CPU over short periods of time, it is unsuitable for jitter-sensitiv e activities.

The concept of processor bandwidth allows processesto receiwe the guarantees that they
require to carry out jitter-sensitiv e tasks. At its most basic form, processorbandwidth may
be expressedas a percentage of the CPU. Whilst this is useful in itself, it does not take
into account the fact that di erent tasks will have di erent requiremerts for the frequency
at which they receiwe accessto the CPU. [Black94] preserts a scheduler that divides up the
available CPU time into xed length periods of time called jubilees Within ead jubilee,
time is allotted to all processesaccordingto their allocated percertage share. This provides
a very simple run-time scheduling algorithm, but requiresthat all processede scheduled at
the samefrequency (i.e. the inverseof the jubilee length). Thus the presenceof a process
that requires frequernt sdeduling causesall processedo be frequertly scheduled, increasing
scheduling overheads. In the presenceof processeswith very di erent requiremerts for their
scheduling frequencies,a better solution is to guarantee eat processa certain fraction of the
CPU over a process-de nedperiod of time; thus the guarantee consists of a pair (p;s), to
allow a processto receiwe p secondsof processortime in ead consecutiwe interval of length s
seconds.

The conceptof periodic deadlines may be employed to provide the appropriate regular access
to the CPU required by processorbandwidth sdeduling schemes. [Liu73] describesthe Rate

Montonic (RM) and Earliest Deadline First (EDF) algorithms for scheduling hard real-time

tasks. RM calculatesstatic priorities for ead task, accordingto the frequencyat which they

must run; at ead scheduling decision,the runnable task with the highest priorit y is executed.
EDF e ectiv ely recalculates such priorities dynamically, always running the task with the

closestdeadline. EDF has a greater runtime complexity than RM; however, [Liu73] shows

that EDF can give a feasible schedule for any utilisation up to 100%, whereasRM can only

guaranee a feasible schedule up to 69% (In2). EDF and RM are both designedfor the

scheduling of periodic tasks, rather than generalpurposeprocessscheduling. [Rosce95]shows

that by considering the guarantee made to a processas being a periodic task requiring s

secondsto run and with a deadline every p seconds,these algorithms are applicable to the

problem of processorbandwidth scheduling.

3.3.2 Memory Usage

Memory usageby untrusted code falls into v e areas:
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3.3.2.1 Code modules

Theserepresen code that has beendynamically loaded, either at system initialisation time
or by remote clients. They are likely to be read-only?, allowing a single module to be shared
amongst multiple clients. A code module may have someform of persistert variables.

3.3.2.2 Thread stacks

Thread stacks provide the context assaiated with a computation occurring on the node. This
may be in order to forward or otherwise processa padket, or it may be in responseto some
other event, such asatimer expiring. Stads represen a measureof concurrency{ if blocking
(or long-running) computations are expectedto occur, the availabilit y of thread stads for a
particular classof remote client limits the responsetime and processingrate for that classof
clients. Examples of such classesmight include a single client with resourceresenations, or
the set of \all best-e ort clients".

3.3.2.3 Packet buers

Padket bu ers provide a level of queueing for both transmission and reception at network
interfaces. If a client had beenguaranteed exclusive accesgo the CPU, and if the latency in
the paths betweenthe network device drivers and the client were negligible, such bu ering
would not be needed. However, neither of these conditions are likely to be met; thus to be
able to keep a transmission queue fed and avoid dropping incoming padkets in the periods
betweengaining accesso the CPU, network bu ering must be provided.

3.3.24 Heap memory

For someforms of communication in a programmable network, eah padket may be totally
independert and not rely on o w-speci c information stored at nodesin the network { sud
o ws could include datagram o ws that consulted alternativ e routing tables, or capsulesthat
carried all their code and data with them. Howewer, carrying multiple copiesof the same
code and data around a network wastesbandwidth and processingtime (for marshalling and
unmarshalling betweenwire format and memory structures), and reducesthe amount of useful
payload in ead padket.

Various approadies have beentaken to provide persistert state at network nodes. The most
common approac has beento provide someform of soft state { data that may be ushed
from storage by the node if it requiresthe spacefor something else. Thus the client cannot
rely on this data remaining available between successie packet arrivals. Examples of this
form include:

4Whilst self-modifying code does have its uses, we regard its deployment in a programmable network as
foolish, due to the extreme complexity of debugging such code remotely and the prevention of sharing that
such modi cation entails.
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ANTS' [Wetherall98] code cache, in which the Java classedor a particular padket type
are cached along the path taken by those padkets.

PLANet [Hicks99qd and Bowman [Merugu0Q] provide timed soft-state stores.

ANTS s structured such that in the evert of an arriving padcket's protocol code having been
ushed from the cacde, it can be easily retrieved from the upstream node that last processed
the padket.

Howevwer, other kinds of data (such as o w routing information) may not be so easily regen-
erated. Furthermore, when all pacets are processedoy the sameset of threads{ i.e. without
reserving stack resourcesfor particular remote clients { the only way to accessper-client
information is to store it in someform of lookup table. For example, PLANet's soft-state
medanism usesa table keyed on client identi er (for security) and a string supplied by
the client (to permit multiple data items to be stored by the sameclient). This represens
ine ciency , a possible source of crosstalk (in the table locking) and an unnatural style of
programming.

For clients with resenations, an alternativ eis available { the code ervironment usedto process
padkets and events for a client may be specialisedto that client; therefore instead of invoking
a generalpadket processingroutine that locatesan appropriate function to call for this ow,
and provides accessto someform of soft-state lookup, instead the function speci ed by the
client can be invoked directly, with language-leel accessto persistert variables de ned by
that client's code.

In order to store such data, heap spacemust be resened for that client. It should be possible
to limit the amount of heap spaceconsumedby a particular client; conversely it should be
possibleto guararntee to that client that they will receive the amount of memory that they
have resened.

3.3.25 Auxillary data structures

The system will needto maintain data structures concerning clients on the node. These
may be for administrativ e purposes(e.qg. billing and accourting information) or for functional
purposes(e.qg. structures relating to network connections). These structures are unlikely to
consumelarge amounts of memory during normal execution; however, the possibility of a
buggy or malicious client meansthat it is necessaryto limit this memory consumption. Suc
structures are likely to fall into three classes:

Structures of which a single instance exists per client (e.g. client identity). Thesedo
not presen a resourcecorntrol challenge, sincethere is no way for a malicious client to
increasethe resourceusageassaiated with them.

Structures that are assaiated with cortrolled resources.For example, a thread control
structure is going to be allocated in assaiation with a thread stack; a network cortrol
structure is going to be allocated in assaiation with network bu ers and a bandwidth
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resenation. These structures do not needto be controlled individually { it will su ce
to include their e ects in the accouniing for the controlled resources.

Structures that may be created through client actions and which are not assaiated
with cortrolled resources(e.g. timer ewvents). These should be accourted for in some
way. Two approadcesare to track the allocations of ead individual type of objects; or
to maintain a ( xed-size) per-client heap from which all suc allocations are made.

3.3.3 Network Bandwidth

In a node (switch or router) in a traditional passiwe network, the bandwidth o ered to a
network o w is one of the fundamenrtal metrics of quality of service. In a programmable node
it is quite likely to be secondaryto other resourcessuch asCPU cyclesor memory { if the client
purely wanted network bandwidth, it is likely that reserving resourceson a programmable
node would incur greater overheads(and hence be more expensiw) than setting up a ow
through a standard switch or router. However, the ability to resene network resourceson a
programmable node is still vital; considerthe situation in which a client has moved its logic
for a networked transaction to a node closerto the sener, in order to reducethe latency of
the transaction. If the latency betweenthe client and the sener is 100ms, and the client's
code running on the network node only gains transmit accessto the network every 200ms,
the latency of the transaction will be increasedrather than decreasedby the migration.

Various transmission scheduling algorithms have been proposedto share out network band-
width. These include weightal fair queuing [Demers89 and virtual clock [Zhang9Q and a
modi ed form of EDF [Black97].

3.3.4 Summary

This chapter has examined issuesrelating resourceresenation in programmable networks.
First the argumerts for and againstresourceresenations in passive networks were considered.
By comparing the likely load variance at programmable nodeswith that of passiwe nodes, it
was concludedthat resourcecortrol in programmable networks would be required.

Two approaces to resource cortrol were considered{ control through proof and cortrol
through sdheduling. It was concluded that proof-based corntrols were useful for enforcing
safety properties, but for ensuring guaranteed accessto resourcesthey were less practical
than scheduling.

The chapter concludedwith a discussionof the resourceson a programmable node that would
require cortrol.
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Chapter 4

Nemesis

This chapter preseris further detail on the NemesisOperating System developed at the Uni-
versity of Cambridge. The origins of Nemesisare discussed,along with the properties that
make it suitable as a basefor the Rcane architecture to be preseried in Chapter 5. More
information may be found in [Rosc@95 Leslie9§ Barham96].

4.1 Overview

In traditional operating systems, tasks such as network protocol processing, paging, and
graphics rendering are performed either in a shared serer or in the kernel { unless this
work is carefully scheduled and accourted for, it can causeQuality of Service interference
(crosstalk) betweenapplications.

Nemesissimpli es sud accourting by requiring ead client to perform much more of its own
work than in a traditional system;sharedseners (or the kernel) are neededonly to arbitrate
accessto sharedresources. Wherever possible, these seners exist purely for setting up and
destroying accessconnections(e.g. providing accesgo the blocks on a disk consituting a le,
orinstalling a pacet lter to demultiplex network padets). Other operations such asnetwork
protocol processingor graphical rendering are performed in the application itself (typically
using sharedlibraries), with the senersjust providing safescheduled accesdo the hardware.

This approadc allows Nemesisto provide an e ectiv e platform for \m ulti-service" systems,in
which di erent multi-media applications co-exist without experiencing interferencefrom one
another or from other applications with lesscritical time constraints.
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4.2 Operating System Structure

4.2.1 Traditional Systems

Traditional operating system structures have fallen into three main categories:

Monolithic ~ systemshave a singleoperating environment that hasfull accesgo the machine's
resources.Typically only a single application runs at any onetime, or elseco-operative
task-switching may be employed.

Kernel-based systemsseparateout applications from system services(scheduling, memory
protection, paging, sdheduling, etc). Servicesrun in a privileged kernel; applications
run without system privileges, and isolated from ead another.

Such systemsare typically not designedwith the intention of accurately accourting
the consumption of resourcesto applications. Substartial amounts of work are often
performed within interrupt handlers, such as network receiwe routines; accourting suc
work to the receiver can be problematic.

A further problem with the kernel-basedapproad is that the abstraction layer and the
protection layer are entwined; whilst a high level of protection is desirable, the high
abstraction level thus preseried prevents an application from e ectiv ely specifying the
relative importance of its own activities.

Although somereseart has addressedthese issues[Druschel96, Banga99, Ingram99,
Bruno99], e ectiv e resourcecortrol in traditional kernel-basedsystemsis still an open
problem.

Microk ernel systemsaim to provide modularity (and thus greater maintainabilit y and fault
isolation) by moving functionality from the kernel into servers. The kernel itself pro-
vides support just for scheduling, memory protection and Inter-ProcessCommunication
(IPC); devicedrivers' and servicessud asnetworking, paging, lesystems and memory
managemem are provided by (possibly privileged) seners.

Whilst this approad doesprovide a more exible method of OS design, the additional

modularity and protection can increasethe overheadsof communication between ap-
plications and the various seners. However, previous work [Hartig97] has suggested
that with careful optimisations, the cost of such communication can be comparableto

a traditional kernel-basedsystem.

A more fundamertal problem with the microkernel approach is that it makesaccurate
resourceaccourting even more dicult than in the caseof a kernel. Let us take the
example of a network stack sener. If it is to provide QoS, it must sdhedule the actual
transmission of outgoing padkets and accourt for the bu ering of incoming padkets.
Howevwer, if it is also performing protocol processing(such as chedksumming, IP frag-
mentation/reassembly, etc) on the data being transmitted and received, it must also
have su cien t CPU resourcesto carry out such work; furthermore the server must be

'In somesituations, portions of device driv ers are placed within the microkernel for performance or other
reasons.
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able to accurately accourt such resourceconsumption to the client applications. Sim-
ilar problems apply with the rendering time used by a graphics sener? and the disk
bandwidth consumedby a paging sener.

4.2.2 \Vertical Structure

A new approadc to OS structure, taken by Nemesis[Leslie9q and the Exokernel [Engler95],
is the vertically-structured system. Vertically structured systemsarosefrom the conceptthat

the assaiation betweenabstraction and protection enforcedby kernel- and microkernel-based
systemswas unnecessary In fact, while enforcing a high level of protection on applications is
desirable, enforcing the high level of abstraction is not.

In a vertically structured system, many tasks traditionally performed by the kernel or shared
seners are migrated into the application itself. The high level of abstraction provided by
traditional systemsis instead provided by sharedlibraries; sincethe work is performed by the
application itself it can be easily accourted to that application.

Nemesisand the Exokernel approacd the conceptof a vertically structured systemfrom di er-
ent directions { the Exokernelis essetially a kernel-basedsystemand Nemesisa microkernel.
However, in both systems,all but the control path activities (such assetting up IPC connec-
tions and specifying network padet Iters) and very low-level data path operations (such as
transferring individual disk blocks, ethernet frames and pixel blocks) have beenmoved into
the applications themsehes; thus the work remaining for the kernel or the shared seners is
minimal and doesnot signi cantly contribute to QoS crosstalk.

In the following sections,various aspects of Nemesisare described to illustrate the vertically
structured nature of the OS, and show why it is suitable asa basefor a programmable network
node.

4.3 CPU Scheduling

Nemesisallows a domain to resene a single guararteed allocation of CPU time, in the form of
a sliceof CPU received over a period of time. The scheduling period may be very ne-grained,
and periods as short as a millisecond are common for processeghat require low-latency. The
current implementations of Nemesisusethe Earliest Deadline First (EDF) [Liu73] scheduling
algorithm to allocate CPU time.

When an application becomeseligible to receive CPU time, it is entered at its activation
vector ; this will typically handle any incoming events (seeSection4.4) and then dispatch to a
user-lewel thread scheduler. This givesthe application full cortrol over how its allotted CPU
time is used.

2The problem of accourting for time consumed by a graphics server has also been seento occur with the
X server on Unix systems[Barham96].
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BecauseNemesisrequires that applications perform their own work rather than relying on
seners, it is possibleto signi cantly regulate the total CPU load put on the system due
to an application's activity. Furthermore, since far more of the activities accourtable to an
application take placewithin that application's protection domain (rather than in a kernel or
sener) the application hasfar more control over the scheduling of its own tasks. For example,
an application may chooseto expend time on protocol processingfor a high importance
network stream, and defer any processingfor a low-importance stream. Suc behaviour
cannot be easily achieved in a traditional OS, although projects such as Signalled Receiver
Processing [BrustoloniO0] and Resouice Containers [Banga99] have addressedthis problem
for monolithic kernel-basedsystems.

4.4 Interpro cess Comm unication

The Nemesiskernel provides only the simple event channel primitiv e for communication
betweendomains (Nemesisprocesses)An evert channelis a monotonically increasinginteger
sharedbetweena senderand a receiver; when the senderincreasesthe value of the evert, the
new value is made available to the receiwer, and the receiwer is optionally notied of the
changeand unblocked if necessary

On platforms in which transitions to kernel mode may be made cheaply, such asthe Alpha
21164,such evernt incremerts are performed through system calls; on platforms such as Intel
x86 and StrongARM, where kernel transitions are more expensiwe, a per-processFIFO of
outgoing event incremernts is read by the kernel at reschedule time.

Higher levels of IPC may be built on top of these primitiv e events by applications, with
no additional support required from the kernel. A system service called the Binder allows
domainsto establish evert channelsto other domains.

The standard Nemesislibraries provide synchronous closure-basedPC using shared-memory
segmems. When an IPC invocation is made, the argumerts to the invocation are marshalled
by the client into the shared-memorybu er; on the serer side the argumerts are copied out
of the bu er in order to make an invocation on the original closure.

This marshalling is performed by stubsthat are generateddynamically, at runtime; when the

rst IPC channel of a particular interface type is created, the methods in that interface are

analysed [Menage98% For eat method, a bytecode description of the actions required to

marshal its parametersis generated;from this a machine code stub is synthesised. Suc stubs

are cadhed, and reusedlater if a method with an equivalent bytecode sequencds processed.
The low-level bytecode usedto describe marshalling actions allows signi cant code sharing to

occur betweenstubs.

A secondform of IPC is the I/O Channel [Black94, Barham96]; this supports bu ered asyn-
chronous communication betweendomainsusing three areasof sharedmemory. The rst area
of memory contains the data bu ers being transferred; the secondis usedas a FIFO from
the consumerto the producer, for passingdescriptors indicating empty bu ers (within the
data area); and the third is usedas a FIFO from the producer to the consumerfor passing
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descriptorsindicating full bu ers. Event channelsare usedto syncronise accesgo the FIFO
areas.

45 Device Arc hitecture

Nemesisusesthe DMM/D AM devicearchitecture proposedin [Barham96]. Control over eath
deviceis split into two independert ertities 3:

The Device Abstraction Module provides data-path accessto the device. Connections
(typically abstracted behind an I/O channel) are establishedby the DMM, over which
clients may sendand receiwe data. These connectionsmay be implemented in seweral
ways:

{ If the device is a user-safe device [Pratt97], the client may be given protected
direct accessto a set of registers on the card; thus the 1/O channel encapsulates
the logic for communicating bu er areasto and from the card.

{ If the dominant resourceconsumedwhen accessingthe deviceis CPU time, and
requeststo the devicemay be broken up into small units, a trap into kernel mode
(known as a device privileged section or callpriv [Barham96]) may be provided
by the device driver to accessthe device. For example, Nemesisframe bu er
driversusea callpriv to allow clients to transfer small blocks of pixels into windows
that they own. Sincethe dominant resourceconsumedis CPU cycles(due to the
relatively low speedof the PCI bus), the CPU scheduler e ectiv ely policesaccesgo
the device with no additional scheduler required in the framebu er devicedriver.

{ If the device hasthe ability to schedule betweenmultiple clients, but cannot pro-
vide protection betweenthem, a callpriv may be usedto provide the necessary
protection to make the device appear to be a user-safedevice. For example, the
DEC OPPO ATM adaptor has the ability to create multiple outgoing queuesof
padkets, eadh separately scheduled. For this device, a callpriv is usedto mark an
outgoing PDU for DMA and transmission on the client's queue.

{ For traditional devicesthat support neither scheduling nor protection, athin device
driver layer is required to mediate accesgo the device. This layer should provide
accessin terms of small requests(such as disk blocks, network frames or tiles of
pixels) and may be required to perform scheduling for clients.

The Device Management Module (DMM) provides managemen and cortrol for the
device;it is responsible for implementing accessortrol and resourceallocation policies,
and for creating data connectionsbetweenclients of the device and the DAM. It takes
no part in data-path activity.

%Note that in somecasesit provesconveniert to implement thesetwo ertities astwo interfaces on the same
object; however, any synchronisation between the two is structured so asto avoid interfering with data-path
guarantees.
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46 Network 1/0

Nemesisprovides network accessin the form of I1/O channels between applications and the
network deviceor devicedriver, over which link-level frames(such asEthernet framesor AAL5
PDUs) are exchanged. The application is responsible for performing any necessaryprotocol
processing(such as ow cortrol, reliable delivery, IP fragmertation and reasserbly, or TCP
chedksumming and segmetmation); the device driver needsonly to schedule the transmission
and reception of raw frames. Packet Iters are usedboth on transmission (to ensurethat the
padket headersare valid) and reception (to locate the I/O channelto which the padet should
be passed).

The NemesisFlow Manager is the DMM for the network { it is in charge of setting up the
I/O channelsbetweenclients and network devicesand con guring padket Iters; any required
network accesspolicy for the systemis implemented by the Flow Manager. However, once
such I/O channelshave beenset up, the Flow Manager plays no part in data-path activity.

In the casewhere the network interface card is a user-safedevice, the client application may
communicate directly with the card. For traditional devicesthat cannot themselves provide
protection between multiple usersaccessingthe device, a thin device driver layer is needed.
This driver is responsible for scheduling and transmitting Ethernet framesfrom a set of client
I/O channels,and for receiving and demultiplexing incoming frames, and sendingthem down
the appropriate 1/0 channelif that channel hasempty bu ers available. In the evert that an
incoming I/O channelis full, the padket is dropped, either in the card or in the driver before
protocol processingtakesplace.

Sinceead 1/0 channel acts as an independert queue,and processingtime is only expended
on processingpadkets in that channel when the application so chooses,accurately scheduling
and accourting multiple incoming or outgoing network streamsin a single application is more
straightforward under Nemesisthan under traditional systems. For example, a web sener
could give priority to channelsthat correspondedto sites hosted for paying clients, and only
expend resourceson non-paying clients after all work for paying clients had beenperformed.

4.7 Summary

This chapter has provided detail on the NemesisOperating System. An overview of the
structure of the OSwaspreserted, with a comparisonto the structures of traditional operating
systems.

Aspects of the system, including its device architecture, inter-processcommunication models
and resourcesdeduling models were preseried; it was shavn that Nemesispossesseteatures
that support e ectiv e resourceisolation betweenmultiple clients, and provides the ability for
applications to schedule the resourceconsumption of their own activities. These properties
suggestNemesisas a suitable basefor the developmert of a platform for the execution of
untrusted code in a programmable network.
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Chapter 5

The RCANE Arc hitecture

This chapter describesthe ResourceControlled Activ e Node Environment (Rcane ) architec-
ture and the principles guiding its design. Rcane is designedto allow providers of nodesin
a programmable network to permit untrusted clients to run code on their nodes,without the
risk of Denial of Serviceattacks or excessie consumption of resources.

Rcane provides abstractions to control accesg¢o CPU cycles,network bandwidth and mem-
ory, and allows lightweight and exible communication between clients. The structure and
medanismsusedby Rcane to accurately accourt for theseresourcesare described, and their
applicability to preverting various typesof DoS attack is discussed.

Many of the ideaspresened in this chapter were previously described in [Menage99].

5.1 Intro duction

In the previous chapter the NemesisOperating System was discussed. It was shown that
Nemesisprovides basicresourceguaranteesto applications, allowing multi-media applications
to co-existwith oneanother and with batch processesvithout the interferenceassaiated with
traditional operating systems.

Given the resourcerequiremerts discussedin Chapter 3, this would seemto make Nemesisa
suitable platform for a programmable network node. However, in its basic form Nemesisis
unsuitable for such a rdle:

Providing eat remote client with their own (hardware protected) Nemesisdomain
would be expensiwe in terms of both memory consumption and setup time. The in-
creasedmemory costswould reduce the scalability of the system. Many clients' appli-
cations (such as mobile agerts) in a programmable network will be substartially more
ephemeralthan multimedia applications on a workstation, and so the increasedsetup
costscanturn into a substartial overhead.
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Nemesisis designedto allow essetially benign applications on a workstation to com-
municate their resourceneeds(possibly overriden by the user) to the OS and for such
needsto be e ectiv ely met by the OS. In an uncooperative environment suc asa pro-
grammable network, applications may be greedy or even malicious, and hence more
cortrol is needed.

Nemesisis designedto run native code. In a heterogeneousprogrammable network,
unless we wish to burden clients with the task of producing and shipping multiple
binary formats { possibly for architectures for which they have no suitable compiler {
a common virtual macine layer is required over the OS.

The Rcane architecture, presened in this chapter, meetstheserequiremerts.

5.2 Arc hitectural Principles

Rcane is designedto provide resourceisolation between multiple independert applications
on anodein a programmable network, with the resourcesconsumedby ead application being
paid for by a remote principal. The following aims underlie the design of the architecture:

To provide guaranteesto applications that they will receive the Quality of Servicethat
they require in order to complete their tasks in a timely manner.

To accurately accourt resourceconsumptionto the client that causessuch consumption
to occur, in order that the client may later be be billed.

This section describes how these aims have shaped the overall architecture of Rcane.

5.2.1 System Structure

Rcane employs both horizontal layering (betweendi erent layers of trust) and vertical iso-
lation (betweendierent clients).

5.2.1.1 Layering

Rcane follows the principles (proposedin [Alexander984) to partition the systeminto mul-
tiple layers:

The Runtime is written in unsafe native code and provides accessto { and scheduling
for { the resourceson the node. Servicessuch as garbagecollection (GC) and thread
syndironisation primitiv esare also provided by the Runtime.
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Figure 5.1: Rcane Architecture Overview

Native Code

The Loader is written in a safelanguage(as are all higher levels). The Loader is ertered
early in systeminitialisation. It is responsible for:

{ completing the initialisation of the Runtime,
{ loading the higher levels of the system, and
{ linking user-suppliedcode into the system.

The Core, loaded at system initialisation time, provides safe accessto the Runtime
and the Loader and performs admission control for the resourceson the node. The
interface to the Core represetts the \Red Line" identied in [Back99] as a requiremert
for security in a system using software protection.

Modules are units of untrusted code. The include standard libraries, supplied by the
system and loaded at system initialisation time, and code supplied by remote users.
They have accessto the interfaces exported by the Core, but no direct accessto the
Runtime or the Loader except where permitted by the Core.

System modules in the Core are linked against entry points in the (unsafe) Runtime; these
are then exported through safeinterfacesto which the untrusted modules can link directly.
The Runtime performs a policing function on the use of the node's resources. An overview
of the Rcane architecture is shavn in Figure 5.1. The Safe/Native code boundary indicates
the division between unsafe native code (written in a languagesud as C) and code written
in a safelanguagesupported by the Runtime's virtual machine. The Trusted/Untrusted code
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boundary indicates the division betweencode that is known to respect the security properties
of the node and other code; such code may be regarded as untrusted if it is supplied by an
untrusted source, or if it is from a trusted source but has not beensu cien tly cheded to
ensurethat it would not compromisethe system. Within the Core and the Loader, although
all code is written in a safelanguage,the interfacesexported by the Runtime permit complete
cortrol over the nodet. Thusit is important that malicious code not be permitted to execute
within the Core.

5.2.1.2 Sessions

Rcane usesthe abstraction of a Sessionto represen a principal with resourcesresened on
the node. A sessionis the analogueof a processin a cornvertional OS that useshardware pro-
tection, and is similar to the conceptof a ow in the Activ e Networks NodeOS[Peterson004.
Sessionsare isolated, so that activity occurring in one sessioncannot prevent other sessions
from receiving their guaranteed Qo0S, except in situations where explicit interaction is re-
gquested(e.g. due to one sessionusing servicesprovided by another session).

To provide guaranteed levels of QoS to remote principals, Rcane allows sessiongo resene
resourcesin advance. Requestsfor resourceresenations are processedoy the System session
(see below) and, if accepted, are communicated to the Runtime's schedulers. In general,
data-path activity { e.g.sendingpadckets{ is carried out within the originating session.

In other active network systems,the main resourceprincipal is the executionenvironment (EE).
This can lead to QoS crosstalk betweenthe di erent clients of an EE. The use of sessionsn
Rcane makesthe end-userthe resourceprincipal, allowing guararnteesto be made more easily
to individual end-users. An EE then becomesa library that a sessionmay useto provide a
corveniert programming abstraction, and a client may make use of more than one EE in a
single sessionif desired. (SeeSection 5.6 for a discussionof medanismsallowing sharedstate
between multiple instancesof the sameEE.)

Figure 5.2 shaws part of the Session interface provided by the Core to permit cortrol over a
sessiomand its resources.(Certain functions concerningmaodi cation of resourcerequiremerts
are not shown.)

createSession() requeststhe creation of a new session. Credertials to authenticate
the owner of the new sessionfor both security and accourting purposesare supplied,
along with a speci cation of the required resourcesand the code to be executed to
initialise the session.

destroySession() releasesany resourcesassaiated with the current session.
loadModule() requeststhat a supplied code module be loadedand link ed for the session.

linkModule() requeststhat an existing code module (possibly loaded by a dierent
session)be made available for use by this session. The module to be linked may be

YIn particular, someof the low-level features of the Runtime may permit languagesafety to be compromised.
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bool createSession (c : Credentials, r : ResourceSpec, code : CodeSpec);
void destroySession (void);

bool loadModule (I : LoadRequest);

bool linkModule (I : LinkRequest);

vp_id createVP (spec : CpuSpec);

bool bindDevice (d : Device, bu : BufferSpec, bw: BandwidthSpec);

Figure 5.2: The Session interface

speci ed simply by the interfacethat it exports, or by a digest of the code implemerting
the module to ensurethat a particular implementation is used.

createVP() createsa new scheduled allocation of CPU time (seeSection 5.3).

bindDevice() resenesbandwidth and bu ers on the speci ed network device (seeSec-
tion 5.4.

At systeminitialisation time two distinguished sessionsare created:

The System sessionrepresens activity carried out as houseleeping work for Rcane.
It hasfull control over the Runtime. Many of the control-path servicesexported from
the Loader and the Core are accessedhrough communication with the Systemsession.
Such system servicesinclude:

{ The code librarian and linker.
{ The sessionmanager.
{ The default network routing tables.

The Best-E ort sessionrepresetts activity carried out by all remote principals without
resourceresenations. Padets processedoy the Best-E ort sessionsupply code written
in a very restricted languageand are given minimal accesgo systemresources.Access
to the createSession() call in the Session interface is permitted, sothat best-e ort
code can initiate a new session;further work may then be performed by the newly
created session.

Figure 5.3shavshow Rcane sessionare orthogonal to the layering describedin Section5.2.1.1.
The horizontal dashedlines indicate boundaries of trust; the vertical dashedlines indicate
boundariesof resource isolation. It canbe seenthat someportions of the Core { sudc asthose
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Figure 5.3: Orthogonality of sessionsand layering in RCANE.

dealing with data-path activity { are directly accessibleto usersessionsuntrusted code may

call them directly, possibly resulting in a direct call to the Runtime. The majority of the Core

code executesin the System Sessionand thus is not directly accessibleto the user sessions;
such separation may be achieved using a heap isolation technique sud as that described in

Section5.5. Hencethis portion of the Core must be accessedhrough the inter-sessionservices
described in Section5.6.

It can be seenthat ead user sessionhas created an instance of either the PLAN [Hicks994
or ANTS [Wetherall98] execution ervironments, or both. Note that although multiple ses-
sions are using eath EE, theseinstantiations are operating independertly and without QoS
crosstalk, sinceresourcescheduling occursin the Runtime, below the level of the EEs.

5.2.2 Security

When opening up a node to permit the execution of untrusted code, security is clearly an
important concern,with two important aspectsthat needto be considered.

The rst aspectisthat the server may not trust the code supplied by remote users. Therefore,
the sener must restrict the ability of the user-supplied code to interfere with the code or
data of the serwer or of other users. Such restriction takestwo forms: restricting the basic
operations { at the language/instruction level { that the user'scode may perform (discussed
in Section5.2.3) and restricting the higher-level servicesthat may be accessed.
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To identify which servicesa client is authorised to access,someform of security and trust
managemen framework is required. Rcane doesnot mandate any one particular security
framework, and detailed discussionof suc is beyond the scope of this dissertation. Possible
frameworks suitable for specifying and implementing security policies in a programmable
network environment are preseried in [Blaze99 Hayton96, Hicks99b].

The secondaspect of security that needsto be consideredis that the \un trusted” mobile code
may itself not trust the server. The sener hastotal cortrol over the environment in which
the mobile code executes;the sener is at liberty to examine or corrupt any of the client's
code or data, and can adversely a ect the execution of the client's code. Once the code is
executing on the sener the results of an attempt to verify the credenials of the server cannot
be trusted.

A possibleway to get around this problem is for the algorithms and data usedby the client's
code to be encrypted in someway; thus the serer executesthe algorithms, but has no way
of understanding what the client is actually doing. This is similar in principle to the Chinese
Room Argument preserted in [Searle8(, in which a personcarries out a set of instructions to
manipulate Chinesesymboals, in order to take part in a (written) dialoguein Chinesewithout
understanding either the questionsor the answers. [Sander98 discussesnedanismsthrough
which a client's code may provide itself with limited protection against a malicious sener,
and [Karjoth98] presers a protocol by which a mobile agert's owner may detect alterations
made by a malicious host to information gathered from other hosts; however, it is not clear
whether these approadces can be extendedto provide a general protection mecanism for a
client's code.

Therefore, a tenet of the Rcane architecture is that the client supplying the code trusts the
serner executing the code { this is similar to the requiremert in the current Internet that
hosts trust the routers in the intervening network path, and does not preclude the use of
end-to-end encryption on sensitive portions of the payload that are not neededwithin the
network. Mechanisms for establishing sudh trust are beyond the scope of this dissertation.
An example of an active network architecture in which establishmen of mutual trust is a
fundamertal principle is givenin [Alexander98d. [Bos99]preserts an interface through which
roaming agerts may establish such trust.

Security of a client's data whilst the data is travelling over a network to/from an Rcane node
isto someextent the responsibility of the client. Rcane doesnot specify any secrecyintegrity,
or authentication medanisms for network ows. Rather, it provides low-level accessto the
network over which the client may layer any desired security medanisms before ultimately
processingthe data received in a network o w.

5.2.3 Code Safety

Since an active node is expected to execute untrusted code, there needsto exist a layer of
protection betweenead principal and the node, and betweenmultiple independert principals.

One approad to sucd protection is to utilise the memory protection capabilities of the node's
hardware. Each principal's code will executewithin its own addressspace. This allows the

60



execution of programs written in arbitrary languagesand compiled into native code. The
virtual machine and interfacesprovided to permit a principal's code to interact with the node
and with other principals on the node may take seeral forms.

The server may present a virtual macdine that emulates the real macdiine [Goldberg74
Bugnion97, Creasy81]or provides a trap-based interface to a well-de ned kernel interface.
Advantages of these approadchesinclude the fact that arbitrary optimisation techniqgues may
be employed by the prinicipal supplying the code in order to improve e ciency of execution.
Disadvantages include the cost of context switching between multiple protection domains,
and the storage overheadsassaiated with maintaining ead domain.

An alternativ eis to require principals' code to bewritten in atypesafeand veri able language.
Sud languagesprevert the programmer from circumventing the type systemof the language
by treating an object/v alue of onetype asthough it had a completely di erent type. Moreover,
programs are either supplied in sourceform or (more usually) compiled to someintermediate
form? that the server can be con dent respects the type system of the language. This allows
much of the protection chedking to be done statically at compile or load time, and allows
much more lightweight barriers between principals. In particular, it meansthat untrusted
code may be safely executedin the sameaddressspaceasthe Rcane runtime system, and
interactions betweenprincipals can be made almost as e cien t as a direct procedure call.

The constraint of veri abilit y requires principals to supply code in one of three forms:

Veri able bytecode. This may be executedby an interpreter without further cheds, or
corverted into native code by a just-in-time compiler.

Unveri able bytecode or scripts that must be run by an interpreter with dynamic ched-
ing. This is likely to run substartially more slowly than veri able bytecode; howewer,
the startup costsof such code will be lower than that of code that must be veri ed.

Proof-Carrying Code: native code, with a proof that the code respects the typing and
the interfacesprovided by Rcane [Necula98]. Proof-carrying code requires the client
to generateand prove extensive veri cation conditions, to demonstrate that the code
respects the interfaces provided by the host. These proofs can grow exponertially in
the size of the code being proved safe.

Hybrid forms are possible;for examplein Java bytecode, someinstructions (such as certain
dynamic casts) have to be chedked at runtime, while other parts of a Java program can be
compiled to native code and run without cheding.

A major advantage of using bytecode is that in a heterogeneousetwork it removesthe need
for principals to supply native code speci ¢ to the architecture over which the nodeis running.

Executing bytecode is somewhatslower than executing nativ e code; however, the performance
improvemerts available when clients supply native code are limited for two reasons:

2|t is quite possiblefor multiple sourcelanguagesto compile to the sameintermediate form (as has occured
with Java bytecode [Gosling954]), and thus such an approach need not overly restrict the freedom of the
programmer.
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1. Just-in-Time compilation [Cramer97] (JIT) techniquesallow a bytecode sequencedo be
corverted into equivalent machine code at runtime, potentially providing performance
at the same level as that obtained from unsafe code. (For code that is migrating
frequertly, the overhead of JIT-compilation may be wasted, sincethe code will not be
heavily executedat any one node { the techniques proposedin [Harris98] may be used
to permit user-corirol of such compilation).

2. Code provided as part of the system is trusted, and hencemay be fully compiled to
e cien t native code when the system is created/installed. If the set of servicesand
libraries provided by the node is su cien tly encompassingmost execution time will be
spent in these systemlibraries, and the e ciency of the user-suppliedcode will be less
relevant.

Three other possibilities for supplying safe code were consideredbut rejected:

1. Software Fault Isolation (SFI) [Wahbe93]would provide a guarantee that the applica-
tion was not able to accessobjects to which it did not have any access;however, it
would be unable to guarantee that the application respectedthe type safety of objects
within its heap. This would result in Rcane being unable to store any data within
the application's heap, nor trust the validity of abstract objects passedto and from
Rcane interfaces. Furthermore, [Seltzer9q relates that the runtime chedking overhead
assaiated with SFI can be very expensiwe for data-intensive code.

2. Code could be certied by the compiler as being a true and valid compilation of a
program written in the safesourcelanguage. Suc an approac hastwo drawbadks:

It requires all programmersto usethe sametrusted compiler, or elserequires a
trusted party to ched the validity of third-part y compilers and produce certifying
versionsof such. The useof veri able code hasno sud requiremert, sinceanyone
may produce a compiler that generatesveri able code.

Unless a small set of trusted authorities provide a \signed compilation” service
through which all programsmust be sernt beforebeing deployedin a programmable
network, it would be necessaryfor the trusted compilersto be distributed to end-
users. In this situation it would be dicult to prevert reverse-engineeringof the

compilers to retrieve the cryptographic keys used for code certi cation. This is
shown by the caseof the DVD Content Scranbling System (CSS). CSSis an en-
cryption systemintendedto prevert the playback of DVD Ims by unlicencedpro-

grams; the keysrequired to decrypt the per-disk key (which in turn could decrypt

the media corntent on the disk) were embeddedin licencedviewer programs. Since
the viewer programswererun in a hostile environment (i.e. a systemcortrolled by

an end-user)the keyswere relatively easily retrieved through reverse-engineering.
Any malicious user who gains accessto the keys may sign arbitrary (possibly
invalid) programs. The use of veri able code doesnot su er from this drawbad,

sincethe code can be veri ed on its own merits, without requiring any special key
embeddedwithin the compiler.
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3. Code could be certied as being provided by a trusted source (rather than, asin the
previous item, veried code from an inherently untrusted source). This remaoves the
needfor protection, but instead relies on the owner of the node trusting every userwho
may wish to executecode on the node®. In an open network this requiremert is likely
to be unsatis able.

For the reasonsgiven above, Rcane is oriented towards a node supporting the execution of
veri able bytecode or proof-carrying code; however, many of the principles guiding the design
of Rcane could be applied to a systemthat permitted the execution of arbitrary native code.

5.2.4 Mo dules

The unit of code linkagein Rcane is the module. Each module exports a (possibly empty)
interface, and imports a set of interfaces from other modules. An interface is a strongly
typed set of functions and values. Multiple modules may export di erent implementations
of the sameinterface. Each implementation module and interface also has a code signature,
generatedfrom a securehash of the bytecode making up the module, or the types speci ed
in the interface, to enablereferencesbetweenmodules and interfacesto be rapidly resolved.

The form taken by modules and interfaceswill depend on the safelanguagebeing employed.
In the caseof Java, a module may map to a Java class;in Caml [Leroy97] a structure would
be usedfor a module, and a signature would represen an interface.

5.2.4.1 Linking and Binding

Linking is the operation of introducing a new module into the system. In a system using

hardware protection, there is typically no needfor any veri cation by the systemwhen a user
loads and links new code. In a system using software protection, howewer, it is necessary
that the system can verify that the module is safeto execute,using techniques suc asthose
described in Section5.2.3. Sud veri cation will involve cheding that all of the new module's

imports can be resolved by existing modules, and that the code in the module respects the

typesystemof the languageand the typesof the imported interfaces.

To accessthe elemeris of a module's interface, a sessionmust be bound to that module.
Binding to a module instantiates the module into the namespaceof the requesting session.
Sessiongnay bind to modules either by preseriing the desired bytecode to the system (thus
simultaneously performing the linking and binding steps), or by referring to the code signature
of the desired module®.

31t isimportant to bearin mind that just becausethe owner trusts the code signers, it doesnot mean that
he trusts those whose code has beensigned { the signature only servesto identify the author of the code, and
doesnot verify that it is safe.

4When referring to a module by its code signature, the module must have been previously loaded into the
system, possibly by a di eren t sessionor at system initialisation.
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Binding may be explicit { asa direct result of a userrequest{ or it may be implicit, called
recursively to satisfy the imports of another module that is currently being bound. During
binding, the module's functions and data are initialised sothat the interface exported by that
module may be usedby other modulesin the samesession.

5.2.4.2 Privilege

Somemodules may have particular privilege levels ass@iated with them. This may be the
caseif:

the module allows unsafeaccesso the underlying Runtime,
the module allows manipulation of important node state, or

if the module contains proprietary algorithms that are not intended to be publicly
accessible.

Sud privilege may be expressedn various ways. An implementation of Rcane may represen
privilege on a simple scale from \no privileges" to \full privileges”, or more complicated
capability-based models such asthat proposedin [Hicks99b]may be used.

A module's privilege levelsa ect linking and binding:

Binding: When binding, the sessionrequesting the bind must have su cien t privilege to
bind to the desired module.

Linking: When linking, the sessiorintro ducing the new module must have su cien t privilege
to bind to all of the module's imports.

5.3 CPU Managemen t

This section preserts the abstractions usedby Rcane to provide accesgo the CPU(s) on the
node. The thread model was originally proposedin [Menage98bland subsequetly adopted
in a modi ed form by the Activ e Networks NodeOS speci cation [Peterson00a].

Rcane's CPU managemen abstractions are structured so asto allow sessiongo split their
tasks between multiple scheduling classescortrol the level of concurrency usedfor di erent
sets of tasks, and to servicethose tasks e cien tly. Three important abstractions employed
are:

1. A virtual processor (VP) represerts a regular guaranteed allocation of CPU time, ac-
cording to somesdeduling policy (e.g. EDF [Liu73] or WFQ [Demers89). All activities

®For those familiar with the NemesisOperating System, over which the prototype of Rcane is based, this
abstraction is distinct from the normal Nemesisnotion of a VP.
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carried out within a single VP sharethat VP's CPU guarantee. A sessionmay have
one or more VPs; by requesting multiple VP's, a sessionmay organiseits tasks into
multiple independertly-scheduled classes.

2. A thread is the basicunit of execution,and at any time may be either runnable (working
on computation), blocked (e.g. on a semaphore,or awaiting more resourcesto become
available) or idle (in a quiescen state, awaiting the arrival of further work items).

3. A thread pool is a collection of one or more threads. Each thread is a member of one
pool. A thread pool acts asa queueingand dispatch point for padkets and evernts. Each
pool is assaiated with a particular VP; its threads are only eligible to run whenits VP
receives CPU time.

Figure 5.4 shows an example of the CPU managemen architecture usedby RCANE. There
are two VPs shown. VP 1 contains a single thread pool, with a single thread. CPU time
resened for VP 1 will be consumedby the singlethread, processingeverts placedin the evert
queueof VP 1's thread pool (seeSection5.3.1). VP 2 contains two thread pools; thesethread
pools contain two and three threads respectively. The CPU time resened for VP 2 will be
sharedbetweenthe threads contained in the VP's two thread pools.

The choice of scheduling algorithm usedto select between the thread pools (and threads)
within a single VP may be left to the application itself® { unlike the top-level scheduler used
to selectbetweenVPs, there is no requiremert that it be capableof supporting resenations or
ne-grained scheduling. Sinceall the CPU time being consumedis accourted to the sessionjt

5The application may be restricted to choosing a scheduling algorithm from a set de ned by the provider
of the Rcane node and implemented in unsafe code within the Runtime. Alternativ ely, the node may employ
extensible virtual machine [Harris99] or proof-carrying code [Necula97] techniques to permit an application to
schedule its own threads in a safe manner.
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may choosea simple schedulerthat is e cien t to run but which givesno particular guarantees
to threads, or it may choosea more complex scheduler to satisfy somepolicy for sharing its
CPU allocation betweenits di erent tasks.

5.3.1 Events

Each thread pool has an ass@iated event queue An ewvent represetts a callbad into one of
a session'sfunctions. Events may be placedinto the queuein two ways:

An event may be requestedto occur after a given delay. For example, a thread may
specify that the (user-de ned) handleTimeout() function be called with a given pa-
rameter in 100 millisecondstime. By default, an event requestedin this way is sert
to the thread pool in which the thread is running, but the user may specify that the
event be sert to a spec ed thread pool, or to the default thread pool for a speci ed VP
belongingto the user's session.

When a padket is received on one of a session'snetwork channels(seeSection5.4), it is
turned into an evert that will invoke that channel's processingfunction { speci ed by
the application { with the contents of the padket as an argumert to the function.

Whenewer a thread pool's event queueis non-empty (either due to newly arrived padckets,
or delayed events whosetimeouts have passed)idle threads in the pool will be dispatched
to processthe ewvens in the pool's queue. When a running thread has nished its task, it
is dispatched to processthe next evert from the evert queueif the queueis non-empty, or
returns to the idle state if the pool's queueis empty.

This hybrid thread/event model allows sessionsa great deal of exibilit y in how they map
their work onto threads. Traditional multi-threaded programming may be performed, at
the expenseof an increasedamournt of memory required for thread's stacks and greater ef-
fort on the part of the programmer to avoid concurrency bugs. Alternativ ely, by using the
contin uation-passingstyle of programming that is promoted by events, a single thread might
be bound into a pool, serving multiple tasks consecutiwely from the sameevert queue, and
thus reducing the amount of stadk memory used, but with lessconcurrency The level of
concurrency allocated to a particular task is directly cortrolled by the number of threads
attached to the task's thread pool.

This exibilit y is extended to the level of CPU resenations. If a sessionhas two tasks of
the sameimportance to perform then a single CPU resenation (i.e. a single VP) may su ce.
If howewver, a sessionhas multiple tasks to perform, multiple VPs may be appropriate. For
example,an application that is processinga network video stream, with packets arriving every
20ms and requiring 0.5msto process,and which is also performing houseleeping processing
that should not be permitted to interfere with the network processing,may chooseto allocate
two VPs { one with a 0.5ms slice of CPU time every 20ms of real time, for the network
processing,and another with a less ne-grained guarantee for the periodic processing. A
databasesener that wishesto provide servicesto multiple clients simultaneously may bind
seweral threads into a pool to which incoming padkets are directed.
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5.4 Network 1/0

Accessto network o wsis essetial to allow mobile codeto communicate both with its original
sourceand with the other resourcesin the network with which it wishesto interact.

Rcane allows sessiongo open channelsto give accessto network resources.A channelis a
simplex or duplex ow of packets to and/or from the network.

Each channel that is capable of receiving padets has assaiated with it a demultiplexing
speci cation (to selectthe incoming o w of padcketsto be directed to that channel) and a VP,
which is usedfor RX protocol processingon that channel.

One of the signi cant sourcesof QoS crosstalk in a traditional operating systemis the net-
working stadk. In particular, the use of kernel threads to perform protocol processingcan
make it dicult to correctly accourt the resourcesconsumedby a particular ow, and can
lead to livelock situations’ [Druschel96].

To prevent crosstalk betweenthe network activity of di erent clients, all padkets are demul-
tiplexed to their receiving pools by the Runtime using a padket Iter. Protocol processing
is not performed on padkets before demultiplexing. Each channel contains a FIF O queue of
received padkets { if this queue lls up, subsequeh packets arriving for that channel will be
discardeduntil sud time as spacebecomesavailable in the queue.

At a later time, when the VP assaiated with the channel is eligible to receive CPU time,
protocol processingoccurs:

1. The packet is removed from the channel's padket queue.
2. Any required processingsuc as defragmenation or chedksum validation is performed.

3. If speci ed by the application, further demultiplexing into sub- ows may be performed,
basedon the value of speci ed key elds within the packet data.

4. The contents of the packet are encapsulatedin a callbadk event to the function speci ed
for the particular o w or sub- ow. Incoming padckets for ead thread pool are stored in a
per-pool padket queue. This is conceptually part of the per-pool event queuedescribed
in Section5.3.1. Howewer, in order that the timely delivery of events to a client is not
compromisedby a o od of incoming padkets for that client, everts in a pool's evert
queuehave priorit y over padets in that pool's padket queue.

The time required for this protocol processingis ertirely accourted to the VP assiated
with the channel, and thus to the sessionthat opened the channel. Thus even a session
that is receiving large amounts of network data will not be able to interfere with the level
of resourcesreceived by other sessions. Moreover, if a sessionis receiving more data than
it can e ectiv ely process,excesspadkets will be dropped at the bottom level of the system,

"Livelock occurs when little or no useful work is performed processingreceived data, as the system is too
busy processing(and throwing away) more incoming data.
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rather than consuming excessie bu er resources,or causing needlessprotocol processing
to be performed before the padet is ultimately dropped. Ideally, such packet ltering and
discardingwill be performedin an intelligent network card [Pratt97, Pratt00], to avoid wasting
any CPU cyclesor bus bandwidth on data that is ultimately discarded.

An application may assaiate eadr o w or sub- ow with a particular thread pool. The callback
event constructed by the protocol processingis placed in the padket queuefor the speci ed
thread pool. This allows di erent logical ows of padkets to be processedby di erent thread
pools, possibly running in dierent VPs to give better QoS isolation between the di erent
O WS.

This network architecture allows eat sessionfull cortrol over decisionssuch as whether au-
thentication is used{ and if so,what kind { for packets on a given o w. For non-autherticated
0 ws, a sessiorcan specify a function that processeshe padket's payload immediately; should
authentication berequired, the session'davoured authentication routines may be invokedwith
the relevant authentication data from the padet. Other protocol layers sud as reliabilit y,
ordering and fragmentation may similarly be composedas required.

A sessionmay request a guaranteed allocation of bu ers for receiving packets from a given
network device. Incoming padets denmultiplexed to the sessionwill be accourted to this
allocation, and returned to it when padet processingis completed. Padkets for sessions
without a guaranteed allocation are received into bu ers assaiated with the Best-E ort
session.Thus, although such sessionscan receive padkets, they will be competing with other
sessionon the node.

Similarly, a sessionmay requestits own allocation of guaranteed transmission bandwidth and
bu ers for a speci ed network device,or may usethe transmissionresourcesof the Best-E ort
session.

Figure 5.5 shaws an example con guration of the Rcane network architecture. SessionsA
and B have ead opened a single channel to a network interface. Incoming network frames
are demultiplexed in the network padket Iter and placedin the appropriate channel FIFO
(or dropped if that channelis full). Theseframes are not processedfurther until the client
VP assaiated with that channel receives processingtime.

In the caseof SessionA, no further demultiplexing is performed, and after protocol processing
(which is accourted to sessionA's VP), the frames' payloads are placed on the padet queue
for sessionA's thread pool. In the caseof sessionB, the protocol demultiplexing delivers
padkets to one of two thread pools, eah of which has its own CPU guarantee. Suc a
setup might be usedwhen a client is performing two activities, both of which require large
amounts of CPU time and one of which involves processingvery few padets. For example,
one activity might involve processinga network data stream, and the other may involve
performing computations, directed by a low-bandwidth stream of cortrol padkets from the
end-user. Rather than setup a separatechannel for ead activity, the client may decidethat
any crosstalkintro ducedby the additional multiplexing and demultiplexing of the few padkets
from the secondactivity into a single channel is small, and that the resenation costs of a
secondchannel would be too great. Any crosstalk causedby this decision will be internal
to the client, and will not a ect other clients. Hence Rcane allows clients to make such
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Figure 5.5: The Rcane network architecture

decisionsbasedon their own criteria.

Padket transmission is similar to that for reception, with link-level frames being placed in
an outgoing FIFO8. A transmit scheduler takes packets from the FIF Os according to the
resenations made by clients, and sendsthem out over the network.

5.5 Memory

As described in Section 3.3.2, the memory managed by Rcane falls into v e categories:

network bu ers, thread stadks, dynamically-loaded code, auxillary data structures, and heap
memory.

Network bu ers (discussedin Section5.4) and thread stadks are accourted to the owning ses-
sionin proportion to the memory consumed. The chargesincurred for keepingcode modules
in memory are likely to be basedon a system speci c policy (e.g. it may be the casethat
linking to a commonly used module would be lessexpensive than loading a private module).
Tedniquesfor accourting for auxillary data structures were preseried in Section 3.3.2.5.

8Proto col processingon the TX side is not shown in Figure 5.5 due to lack of space.
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Heap memory presents more challenges. Safe languagesthat permit dynamic allocation of
memory have to ensurethat pointers cannot be used after the memory to which they refer
has been freed { such a pointer is known as a dangling pointer. Since the memory refer-
encedby a dangling pointer may have beenreusedfor a di erent type of object, it represens
a potential violation of the safetypesystem. To avoid dangling pointers, a garbage collec-
tor [Wilson92] (GC) may be employed to ensurethat no memory block is freed while pointers
to it remain in existence.

The heap memory architecture employed by Rcane must therefore provide a garbagecollec-
tor; in order to meetthe aims of isolation and accourtabilit y, it should support the following
features:

E cien t tracking of the memory usageof ead session.
Prevention of crosstalk betweensessiongdue to GC activit y.

Abilit y to revoke referencesfrom other sessionsvhen a sessionis deleted.

Three di erent possibleapproactheswere considered,shown in Figure 5.6 and described in the
following sections.

5.5.1 Multiple Virtual Mac hines

The traditional approad to providing isolation betweenmultiple applications is to run ead
application in a separatevirtual machine in a separate OS process. Most virtual machines
assumethat only oneuser is using the machine, even if parts of the code being executedare
not trusted to have full accesdo the system. By allowing eadh VM to run independertly, we
presene the validity of this assumption. This provides a good level of isolation, since each
application's accesso resourcesmay be cortrolled by the OS; howewver, using multiple VMs
has certain drawbadks:

Communication betweendi erent applications is made considerably more di cult.

Sharing of VM data structures and code is not straightforward; for traditional native
applications, code sharing is e ected by sharing text segmeis when they are loaded
from disk. In an environment such as Rcane , where code is supplied over the network,
and potentially transformed into native-cade using JIT techniques, more complicated
strategieswould be required, involving co-operation betweenVMs to identify and coa-
lesceshared code pages.

It is lessscalabledue to the overhead assaiated with a new process(both in terms

of cyclesrequired to create the process,and system and user memory required for the
process).
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Figure 5.6: Approachesto providing memory accouring

5.5.2 Single Tagged Heap

This approadc usesa single garbage collected heap (and a single virtual machine) for all
applications. Each memory block is taggedto indicate which application allocatedthat block.
Whenewer a block is allocated, the size of the block is addedto the tally for that application.
When a block is garbage collected, the owning application's tally is decremertied. Use of a
single heap may reduce the amount of wasted empty space,by permitting the application
of statistical multiplexing techniguesto reducethe total amourt of memory required on the
node.

There are v e signi cant drawbadks to the single tagged heap approad:

1. If pointers are permitted to be passedbetweendi erent applications, then one applica-
tion may retain a pointer to objects allocated by another application. This may result
in blocks of memory that are no longer held by the allocating application (and thus
ought to be garbagecollected and decremened from the application's tally) remaining
live. Thus the application is no longer in charge of its own resources.
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Furthermore, if the allocating application exits or runs out of resources,there is no

way to free the memory that it allocated, without creating a dangling (unsafe) pointer.

This could lead to the situation where a seriesof malicious clients eat create a session
to allocate large amounts of memory and make referencesto this memory available to

other (possibly innocert) sessions.When these sessionsxit (and henceare no longer
chargedfor resources)it may be impossibleto free the memory thus allocated.

One possiblesolution to this problem would be to specify that sessionsare held (jointly)
responsible for any memory that can be reached from their heap roots. Howewer, per-
forming sudch analysisis expensive; moreover in the scenariopresened above, the result
would be that unwary clients could end up footing the bill for the storage allocated by
other sessionsand stored in placesaccessiblego them.

. Garbagecollection incurs a processingoverhead,in order to locate unreachable memory
objects and return them to the free memory pool. With a single heap, there is no
straightforward way to accourt the CPU time required for garbage collection activity
to applications in proportion to the amourt of activity for which they were responsible.

. Even when other applications do not retain pointers to memory blocks owned by an
application that exits, it is still not possibleto e cien tly freethe application's memory.
Since all memory blocks are mixed together in the heap, with no partitioning on a
per-application basis, it is hecessaryto trace through the object graph of the exiting
application in order to identify and freeits memory. Thus, unlessCPU time is dewoted to
such a task immediately when an application exits, the blocks owned by an application
persist as garbagefor someperiod of time after that application's sessionis destroyed.

. If oneapplication causessigni cant heapfragmenation (either through malice or through
lack of knowledge of the node implementation's heap layout) then the useful memory
available for all applications may be sewrely reduced.

. There is an overheadin the form of the application tag on the front of eadr memory
block. In the caseof a languagesudc as ML [Milner97] that makes heavy use of small
immutable memory blocks, sudc tagging would add substartial overheadto the total
heap memory usage.

The JResproject [Czajkowski98 madeuseof a singletaggedheap. JResusedbinary-rewriting
techniques to causeall memory allocations to also call a routine to incremert the current
thread's allocation total; object destructors weresimilarly rewritten to decremen the thread's
allocation. Apart from problemsdue to the exampleimplementation being written mostly in
Java with little support from the JVM 10, assaiating allocations strictly with a thread can
causeproblemsif a userwishesto have multiple threads co-operate.

9This drawback applies only to Mark/Sw eepgarbage collectors { using a Stop/Copy collector would remove
the problems assaiated with memory fragmentation.

Byzantine behaviour in destructors could cause the memory allocations to be decremerted before ob-
jects were actually garbage collected, thus allowing usersto consume more memory than was actually being
accourted to them.
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5.5.3 Multiple Indep endent Heaps

A hybrid approad is to make use of a separate heap for ead application, within a single
virtual machine. This facilitates accourting for ead application's usageof memory, sinceit is
only necessarnyto track the amount of memory resened for that application's heap, regardless
of whether that memory is free, live, or garbage.

It also makesit possibleto accourt the CPU time required for garbage collection to eath
application, sincegarbagecollection can be scheduled along with ordinary execution for each
Rcane session.

s Heap/Session Armmmsssmmsss,, . & Heap/Session Brommsmmmmssssmie, .

Heap roots
Heap block ——p Legal pointer — — — - lllegal pointer
(intra-heap) (inter-heap)

Figure 5.7: Dangling pointers causedby inter-heap references

When using multiple independent heaps, it is essetial that referencesbetween objects in
di erent heapsbe prevented. If sud inter-heap referenceswereto exist, the type-safey guar-
anteesprovided by the useof a safelanguagecould be broken, asdemonstratedin Figure 5.7:
the heap belongingto sessionA cortains a referenceto an otherwise unreferencedobject in
sessionB's heap. Since the garbage collectors are independent, B's collector will consider
the referencedobject to be garbage,and return it to the freelist. This will leave a dangling
pointer from A's heap; if this location is later reusedfor a di erent object, the typesystem
will be violated and arbitrary behaviour may occur.

Sud inter-heap referencesmay be preverted either statically (by preventiing accessthrough
the type-safey of the language) or dynamically (at runtime). Dynamic prevention requires
that ewery time a referenceis written to a eld of a heap object, a ched is performed to
ensure that the heap of the source and destination objects is the same. The Conversan
project [Bernadat98] implemented a dynamic chedking system in Java, and experienced a
15% overhead on writes when using interpreted code, and a 55% overhead when using JIT-
compiled code. Ka eOS [Back00] used similar cheds, adding 25{41 cyclesto the cost of a
write (excluding cade e ects).
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In atype-safelanguagepointers may not be generatedarbitrarily , and may only be obtained
by allocating an object on the heap or reading an existing pointer from a variable. Thus
if eath sessionbeginswith pointers only to objects in its own heap, and the Runtime does
not permit pointers to be passedunsafely between heaps, there is no way for a malicious
programmer to generatean inter-heap reference{ he can only allocate a new object (in the
local heap) or accessa pointer already stored in a heap object (which is guararteed to be a
referenceto an object in the local heap). Thus the property that no inter-heap references
exist is maintained, and requires no overhead for runtime chedking. Howewer, it does make
communication between di erent sessionsmore expensiwe, since values must be copied by
Rcane from oneheapto another.

A secondreasonfor choosing static rather than dynamic inter-heap referenceprevertion is
due to the overheadassaiated with root tracing. When garbagecollection occursfor a given
heap, an important part of the collection activity involvestracing all the roots! of the heap
to provide a initial set of live heap objects. If static inter-heap referenceprevertion were
not employed, it would be possiblefor threads executing in one sessionto have pointers in
their stackswhich referredto objects in other heaps. Thus, all stacks in the virtual machine
would needto be traced to ched for roots when garbage collecting any heap. This is an
unsatisfactory solution for two reasons:

The time (accourted to the client owning the heap being collected) required for the
root tracing part of garbagecollection would increasewith the number of threadsin the
entire system, reducing scalability and contributing to crosstalk betweensessiong the
amournt of GC work done by a sessionwould be dependert on the number of threads
created by other sessions.

When performing root tracing on a thread's stad, it is necessaryto suspend execution
of that thread. This is becausewrite barriers'? are (usually) not usedon stack locations
due to the substartial overheadsthat would be incurred on every write to a stadk
location.

Thus, dynamic referenceprevention would result in all threads on the systembeing sus-
pendeddueto garbagecollection activity in other threads. This would causesubstartial
jitter in the CPU QoS received by sessionsreducing the isolation between supposedly
independen sessions.

Conversart [Bernadat98] provided a separateheap for ead userapplication. Static members
of classesin the system heap were accessible{ when permitted through standard Java ab-
straction mechanisms{ to untrusted code; this required that garbagecollection of the system
heap causedroot tracing (and hence suspension) of all threads in the system, since any of
them might have pointers to system heap objects on their stacks. Furthermore, Conversart
tagged every object with the identi er of its heap, leading to increasedstorage usage. The
J-Kernel [Hawblitzel98] simulated multiple heapsin Java by requiring all accessedbetween

1 Roots are non-heap objects such as static variables, registers, and stack locations, which may contain
referencesto heap objects.

12 write barrier is a synchronisation protocol betweenthe garbage collector and the mutator (heap user)
to ensurethat concurrent garbage collection is performed correctly. For more details see[Wilson92].
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dierent clients' data structures and objects to be through special capability objects. Invo-
cations on these objects causedparametersto be marshalled from the client domain to the
server domain in a similar way to Rcane's service calls described in Section 5.6; however,
all threads in the J-Kernel executein a single heap, so while some desirable properties of
heap separation{ such asthe ability to revoke servicesand terminate sessionq are achieved,
other properties such as accourting for memory usageand preverting GC crosstalk are not
straightforwardly realisable.

5,54 RCANE memory architecture

The Rcane memory architecture is basedaround the single virtual machine, multiple heaps
solution. Each sessionis given its own independert heap. The maximum resened size for
this heap may be con gured by the sessionby requesting a particular sizefrom the Core.

An incremertal garbagecollector { which processes small portion of the heapead time it is
invoked, rather than processingthe entire heapin a singleinvocation { is employedto prevent
excessie interruptions to execution. Suc a property is essetial to prevert the unpredictable
nature of garbage collection from causing clients to miss their deadlines. Each sessionmay
tune the parametersof GC activity { suc asfrequencyand duration of collection slices{ in
order to trade o responsivenessagainst overhead.

Charging is basedon the size of the resened memory blocks that comprise the heap, rather
than the amount of live memory within those blocks, simplifying the accourting processand
more accurately re ecting the load placed on the system'smemory by ead client.

Asscciated with eat heap is a set of threads that may have referencesin their stacs to
objects within that heap. The threads in this set are those that must be suspendedin order
to perform root-tracing on the heap. Conversely assaiated with ead thread is a set of
heapsto which it has access.A thread gains accesso a heapwhen it invokesa service (see
Section 5.6) and losesaccesdo that heapwhenit returns from the serviceinvocation. Thus,
the set of threads assaiated with a session'sheap is generally a (non-strict) superset of the
set of threads created by that session.

5.6 Inter-Session Services

As described in the previous section, in the Rcane architecture ead sessionexecutesin its
own private heap. Thus pointers betweendi erent clients' sessionsare not permitted, with
the e ect that communication between code executing in di erent sessionsthrough direct
procedurecall is not possible.

In many casesthis doesnot presen a problem; since Rcane aims to avoid sharedsernerson
the data path, and instead to execute data-path code (such as network protocol processing
code) in the context of the sessiornwhich is requesting such activity, suc isolation is actually
desirableasit simpli es the provision of guaranteed accesso node resources.
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In somesituations, however, it may be necessaryor desirableto communicate with applica-
tions or servicesrunning in other sessions:

When talking to the System sessionto request a change in resened resources,or to
make use of servicesprovided by the System session(such as default routing tables).

As described in Section5.2.1.2,EEsin Rcane aretreated aslibraries to be instantiated
by a client's session. Some EEs may have a requiremert to maintain state shared
between multiple instancesof an EE on a node, implying the needfor communication
betweensessions.

Somesessiongnay wish to export servicesto other sessionsgunning on the node (e.g.
extended network routing tables, or accesdo proprietary data or algorithms).

In eadh of these cases,code executing within one sessionrequires a way of interacting with
code or state within a di erent session. Such interaction could be implemented by a client
sessionwith no extra intervertion on the part of Rcane by sendingnetwork packets through
a loopbad network interface to another session.

The principal drawbadk of such an approad is ine ciency . A secondarydrawbad is the loss
of type-safey.

A more e cien t and type-safesolution may be provided with support from the Rcane Run-
time layer. Sudh support can draw on previous researt into Remote ProcedureCalls (RPC),
traditionally betweentwo processesxecutingin di erent hardware protection domains (pos-
sibly on distinct computers).

5.6.1 Typesof RPC

RPC facilities may be provided in two main ways: messagepassing and thread tunnelling.
In [Lauer79 it was proposedthat thesetwo methods are duals of eac other!3, and that they
can be made equivalent in performanceterms provided that the underlying primitive system
operations are equally e cient in each case Howewer, the QoS guarantee requiremerts of
Rcane , combined with the lightweight context switch available through useof a safelanguage,
meanthat the two styles of RPC communication are not necessarilyequally applicable. The
following sectionsexamine both messagepassingand thread tunnelling in the context of the
Rcane architecture.

5.6.1.1 Message Passing

RPC betweentwo separatedcomputers, (as presented originally in [Birrell84]) requires mes-
sagepassing. The sequenceof events which occur during a messageassingRPC is asfollows:

BIn fact the argument in [Lauer79] is expressedin terms of monitors ([Hoare73]) rather than thread-
tunnelling { however, a similar duality can be drawn betweena thread-tunnelling system and a multi-threaded
messagepassing system.
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1. The calling thread of executionin the client processmarshalsa procedurereferenceand
a set of argumerts into a bu er, transfersthis bu er in someway to the serer process,
and blocks awaiting a reply.

2. A thread within the serer processreads the procedure referenceand the argumerts
out of the bu er, and constructs a call frame to invoke the specied procedure with
the supplied argumerts. On return from the invocation the sener thread marshalsany
results or exceptionsinto a reply bu er and transfersit back to the client.

3. The client thread is unblocked, unmarshalsthe results, and returns to its caller or raises
an exception as appropriate.

Many traditional RPC systems{ both inter- and intra-machine { usemessageassing|[Birrell84,
Birrell93, Rosc@93.

5.6.1.2 Thread Tunnelling

The time taken to resdedule to the sener, and then back to the client, can add signi cant
latency to the time taken for a messagepassingRPC to complete. Furthermore, the server
may not be eligible to receive CPU time at the point of the invocation, increasingthe latency
further. Thread tunnelling!* [Wilk es79 Bershad9Q Chase93 aims to reducethe latency and
syndhironisation costs assaiated with messagepassingon a intra-machine call by switching
the calling thread into the protection context of the sener. This avoids the overheadof calling
into the scheduler and waking the sener thread. If the argumerts are small (i.e. can t within

processotrregisters) it may be possibleto leave the argumerts within the processorregisters
and avoid the marshalling step ertirely, thus reducing the latency further.

Sincethe thread owned by the client is executing the serer's code, it is necessaryto require
that the sener not be permitted to perform certain operations on the thread, such astermi-
nating it. This can ensuredby preverting the server from obtaining a handle on the current
thread ([Hawblitzel98]), or by wrapping ead servicecall segmen in a conceptually separate
thread ([Ford94]).

5.6.1.3 Discussion

In [Roscae9q, it is arguedthat thread tunnelling is unsuitable for systemsseekingto provide
resourceisolation for the following reasons.

Increased crosstalk: If athread hastunnelled into a server domain, it is no longer possible
for the client to be responsible for scheduling that thread (i.e. the system kernel must be
responsible for scheduling not only processesput also threads within processes)reducing
the control that a processhas over the scheduling of its threads. This in turn may lead to

¥ Thread tunnelling may also be referred to as thread migration.
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increasedcrosstalk should a processneedto schedule a thread according to an application
de ned policy in order to meet a deadline.

In a system such as the original implementation of Nemesis,where eat processhas only
a single CPU allocation, this criticism is valid; however, the architecture used by Rcane
permits ead client to resene multiple guaranteed allocations of CPU time, and makes it
straightforward for clients to assigndi erent activities to di erent CPU allocations.

Furthermore, there is a signi cant source of crosstalk in a message-passingystem that is
absen or attenuated in a thread-tunnelling system.

In order to provide useful QoS guaranteesto its clients, ead server must schedule the CPU
cycles consumedby its threads according to the priorities of the clients that are calling it.
This complicatesthe serwer substartially. [Ingram99] describesthe implementation of an X
sener to perform such scheduling under a soft-real-time Unix system. Previous work on the
Nemesisdisplay system (described in [Barham96] and extended by the author) found that
a restricted form of thread tunnelling provided accessto the framebu er with both lower
latency and lower crosstalk comparedto the earlier message-passinglisplay server, without
substartially a ecting the ability of applications to corntrol their own sdceduling policies.
The thread tunnelling mecanismspermit ead client to be accurately charged for the CPU
cycles® consumedon its behalf in the sener.

Loss of control:  Separately from issuesof scheduling, since the client is executing the
sener's code, the serner can cortrol when the servicecall returns, and may (due to malice or
programming errors) fail to return to the client. In this situation, the client seesthe thread
ase ectiv ely blocked, and thus cannot cortinue until the call returns. [Roscae95]arguesthat
when using messagepassing, the client still has full cortrol over its own threads, and may
continue with other processing,or decideto cancelthe servicecall and raise an exception to
the caller. In a properly event-driv en and parallelised client, messagepassingdoes allow the
client to be relatively una ected by a sener failing to return. Experience shows, however,
that many usesof messagepassingRPC treat it asa syndironous call, and hencewill block
until the serer doesreturn. Thus, provided that the thread-tunnelling medanism provides
a way for the client to abort in the event of a call taking an excessiely long time, message
passingand thread-tunnelling are little di erent in this respect.

Message passing can be pip elined: [Rosc@®95]suggestghat message-passingan amor-
tise the overheadof a singlecontext switch over several RPC invocations, e ectiv ely pipelining
requests. This approac has beenshown ([Black94]) to be e ectiv e when the communication
being performed is in the form of bulk data transfer from client to serwer or vice versa, in
which caseclients have no needto block after ead requestawaiting a reply. However, for tra-
ditional RPC, generatingsu cien t outstanding invocations in the client to benet from sud
amortisation would require that the client have a very large amount of inherent parallelism
available in its work to be exploited.

SNote that if the server is being used to multiplex accessto a hardware device or other shared resource
where coarse-grainedsynchronisation may be required, such scheduling may still be necessary
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A further problem with messageyassingis the availabilit y of server threads. When a message
passingRPC invocation is received by a sener, it must be processedby a serwer thread.

This thread may be obtained in one of seweral ways, eat of which hasits own disadvantages:

The server may maintain a xed set of worker threads to serviceall invocations on an
RPC binding (or set of bindings). Each thread servicesa complete invocation before
starting to servicethe next invocation (or blocking if no more work is available). In this
case,any invocation arriving when all worker threads are busy will wait until a thread
is free.

There are two main disadvantages with this approach. The rst is that it becomes
an obvious source of crosstalk between applications { unlessthe serer pre-allocates
su cien t worker threads (most of which are likely to be sitting idle for most of the
time) clients with short deadlinescan block waiting for invocations on behalf of under-
resourcedclients to complete. The secondis that in the presenceof recursive RPC
betweensewral domains, it is possibleto enter a deadlock situation 16,

The server maintains a set of worker threads (possibly just a single thread) and a set
of current invocations in various states of progress’. Each thread repeatedly requests
an outstanding invocation from the serwer's scheduler and performs a small amount of
work upon it.

Suc an approach may be usefully employed in special purposeseners{ sudc asevert-
drivenweb seners{ wherethe likely properties of the requestare well-known in advance
and switching a thread between servicing di erent requestsmay be performed fairly
straightforwardly. This approad is not, however, particularly suited to the provision
of a generalpurposeRPC sener; it is necessaryto structure ead individual servicein
order to break requestsup into small chunks of work, ead of which may be sered in
a short amount of time without blocking. A further consideration is that the sener
must employ someform of scheduler to decidewhich invocation ead thread should be
working on at any giventime; the disadvantagesof this are discussedabove, on page77.

The sener may fork new worker threads to serviceincoming requests(possibly main-
taining a cade of pre-forked idle threads up to somespeci ed limit). This approad is
employed by many message-passingRPC systems,including [Birrell93]. It avoids the
crosstalk and deadlack problemsassaiated with a xed setof worker threads. However,
it incurs signi cant additional overheadsdue to the costsof creating a new thread; such
costsmay alsothemselvesintro duce additional crosstalk.

Thesedrawbadks are removed by the useof thread-tunnelling. The thread is supplied by the
client, sono overheadis incurred in creating a new thread. The client has more cortrol over
the level of concurrencyusedfor its operations within the serwer, and no lesscontrol over the
sdcheduling than if the thread was executing within the client's own session.

18Such deadlocks have beenregularly obsened by the author within the system servicesin Nemesis.
17 States might include Arrived , Unmarshalled, Returned, Marshalled , Completed, aswell as service-sgeci ¢
states.
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For the reasonsgiven above, Rcane employs thread tunnelling to provide inter-sessionser-
vices. It should be noted that while Rcane and Nemesisboth seekto provide QoSin their
RPC services,a major architectural di erence betweenthem is that clients within Rcane
are separatedthrough software protection, whereasNemesisuseshardware protection. This
results in the thread-tunnelling approac being somewhatmore practical in Rcane than in
Nemesis.

5.6.2 Priorit y Inversion

Notwithstanding the argumerts preseried in the previous sections, thread-tunnelling is not
without potential pitfalls. One of the most obvious is that of priority inversion, identi ed
in [Lampson80]. This can occur when a client thread with limited resourcesis executing
within a mutual exclusionregion.

In atraditional systemusing priorities rather than guarantees, priorit y inversionmay lead to
long-term starvation { if a high priorit y thread wishesto enter the mutual exclusionregion, it
must sleepuntil the low priority thread leavesthe region; in the meartime a medium priorit y
thread may preempt the low priorit y thread preventing the high priorit y thread from making
further progress. In a system providing guarantees, long-term starvation due to priority
inversion is less likely since even a low-priority task can be guaranteed a certain level of
accesgo CPU resources.However, priorit y inversioncan still create situations in which tasks
with ne-grained guaranteesare held up dueto an under-resourcedow-priorit y task spending
a long period of time within a mutual exclusionregion'®. This situation should not arise to
the samedegreein a message-passingerer { provided that the serer itself has su cien t
resourcegguaranteedto it that it is not starved by other applications { but it should be noted
that any systemthat combinesthe provision of resourceguaranteeswith mutually exclusive
accesdo sharedresourceswill su er from similar problems.

[Lampson8(Q proposespriority inheritance as a solution to the problem of priorit y inversion:
wheneer a thread holdsthe lock on a mutual exclusionregion, it runs with the highest priorit y
of any thread waiting to enter the region. A similar approad is proposedin [Waldspurger94]
using the transfer of lottery schealuling tickets. This solution is lessapplicable to a system
using resource guarantees rather than priorities, since it could result in one client being
charged for resourcesconsumedby the sener code whilst doing work done on behalf of
another client. Two possiblealternativ esare:

Allow the serwer to \underwrite" a thread within a critical section with a resource
guarartee of its own.

This will enablethe serer to ensurethat whilst in the critical section,the client thread
receives at least a given level of resources;thus the server may bound the crosstalk
causedby the mutual exclusionon the critical region.

Permit the sener to detect a client with a small resourceallocation, and either (a) raise
an exceptionto the client, or (b) block the client thread until the scheduler canguarantee

81n the caseof a malicious (rather than simply resourcepoor) client, such situations may even be deliberately
engineered.
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that it will be able to completely executethe critical region without preemption. Such
a mechanism is usedin Rialto [Jones97]to provide dynamic real-time guaranees.

This solution potentially results in lessoverheadwithin the scheduler; however, it can
result in under-resourcedclients never gaining accesgo the critical region.

Rcane employs the rst of thesesolutions to limit crosstalk in inter-sessioncommunication,
dueto its straightforward and wide-ranging applicability.

5.6.3 Recovery from Client Failure

A secondpotential problemwith thread-tunnelling occursdueto the fact that sessionsunning
under Rcane are charged for the resourcesthat they consume,and hencea session(and its
threads) may be destroyed if it exhaustsits resources.

If a sener exits or is destroyed whilst a client is executingin a servicewithin that serwer, an
exception may be raised in the client's domain at the point where control passedfrom the
client to the serwer.

If aclient exits or is destroyed whilst executing within a serwer, the situation is more com-
plicated. Sincethe sener's code is being executedon the client's thread, and that thread is
being destroyed, the server must be given a way to recover gracefully from the destruction
of the thread. If the sener is manipulating shared state at this point, simply destroying the
client thread may leave the serer's data in an inconsistert state. Various strategiesto allow
such recovery are possible:

Unin terruptible  sections: PERC [Nilsen98]de nes extensionsto Java that allow ablock to
be marked asatomic { suc ablock is guaranteed not to be preemptedby the scheduler
or asyndironous exceptions. However, atomic sections are restricted in the type of
code that they may corntain, and their executiontime must be statically analysableand
below a certain threshold. Such an approach may not be practical for serersthat make
non-trivial manipulations of shared state.

Rollbac k events: Since Rcane usesa garbage collected heap for ead session,it is not
necessaryfor the serwer to explicitly free any memory allocated whilst servicing the
client. Howewer, it is necessaryfor the sener to be able to roll badk any changesbeing
madeto shareddata structures.

A possiblesolution would beto permit the serer to specify a rollback event at the point
of entering a critical regionwhilst servicinga client call. The rollback event encapsulates
the actions that the serner must perform in order to restore the invariant of the critical
region. Should it happen that the client thread is destroyed whilst still in the critical
region, the rollback event is postedto the thread pool speci ed by the sener (with the
critical regionlock still held); the sener's thread then executesthe recovery actions and
releaseshe critical region lock.

The use of rollback ewvents is applicable to the most simple critical sections, where it
is possibleto wrap up a set of actions to restore the critical section's invariant. It is

81



less suitable for more complex critical sections, particularly if interactions with other
sessionor the network, etc., occur during the section.

Transaction logging: The useof transactions[Gray93]in databasesystemsand distributed
systemsto provide the ACID'° properties has beenheavily researtied. Each set of op-
erations on shared state is padkaged up into a transaction. Upon completion of the
transaction, the operations are committed or aborted as a single group; if the transac-
tion is aborted, then its e ects are undone and will never be seenby other concurrent
processe?’.

In [Seltzer9q, the use of transactions was proposedfor untrusted kernel extensions{
calledgrafts { in the VINO operating system. Grafts are executedsafelythrough the use
of SFI [Wahbe93. All accesse$rom grafts to regular kernel state are through accessor
functions. The accessoifunctions both implemert policy on accesgo kernel state, and
push undo functions on to a stack assaiated with the transaction. If the transaction is
aborted, theseundo functions are called to reversethe e ects of the transaction.

The use of a transaction medanism for dealing with the unexpected abort of clients is
similar semartically and in complexity to the use of rollback events, although it shifts
the burden of implementing the rollback medanism from the serverson to any services
that those serers might invoke { thus any serer that might be called as part of a
transaction would be required to implement undo functions.

Backup threads: An alternative possibility is to allow the serer to specify a \backup
thread" when entering the critical region. In the evert that a client thread is destroyed
within the critical region, the state of that thread may be transferred to the badkup
thread, which corntinuesfrom the point where the client thread was destroyed.

This approad has se\eral advantagesover the use of rollback events and transactions:

It removesfrom the sener the potentially complicated requiremen of structuring
its critical regionssud that the region's invariant can always be restored using a
rollback evert.

It is likely to be cheaper in the common case. The overhead of assigninga thread
to be usedasa badkup is likely to be a small and constart cost comparedwith the
overhead of building a rollback evert or transaction { since the vast majority of
serviceinvocations are expectedto complete successfullythis suggestgshat badkup
threads will typically be more e cien t. Also, the action of specifying a badkup to
be usedin the event of failure may be optimised in the Runtime, whereasallocating
a rollback event will needto be server speci c.

Although crosstalk may be causedif no badkup thread is available when entering
a critical region, the sener may bound the level of sud crosstalk through prudent
allocation of sets of badkup threads to sets of critical regions. Furthermore, the
fact that a critical region is already an inherent sourceof crosstalk suggeststhat
any additional crosstalk e ects may not be sewre, and should be no worse than
that experiencedon a transaction-basedsystem.

It may beintegrated with the resourcebadkup medcanismdescribedin Section5.6.2.

19 Atomicit y, Consistency, Isolation and Durabilit y.
20\weaker forms of transaction semartics are possible, and may be appropriate in some circumstances.
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For the reasonsgiven above, Rcane usesbadup threads to support recovery from client
failure in inter-sessionservices.

5.6.4 RCANE Services

As discussedn Section5.6.1,Rcane usesa form of thread-tunnelling betweendi erent heaps
to provide e cient and exible inter-sessionservices. The remainder of this section presens
further details of the Rcane inter-sessionservicearchitecture.

Servicesexported from one sessionto another are represerted as closures(functions with as-
sociated state). To a client or a sener, the serviceinvocation appearsto be a normal function
invocation. Howewer, since the client and serner are using di erent heaps, the Runtime is
required to provide support for transferring parameters from the client to the sener, and
copying results badk from the sener to the client.

As in many traditional RPC systems,a single serviceinvolvesboth client-side and sener-side
data structures. The client-side handle contains information required for marshalling between
the two heaps,and a referenceto the serer-sideexmrter. The exporter contains a reference
to the real function that implements the service and a table of handlesthat other sessions
hold for this service.

A serviceinvocation normally involvesthe following stepsin the Runtime:

1. Ched that the servicereferencein the handle has not beenrevoked (seeSection5.6.5).
2. Add the current thread to the list of threads that have accesgo the sener's heap.

3. Copy parametersto the serviceinvocation into the sener's heap. Sincethe Runtime
hasdirect accesdo both heaps,there is no needto marshal the parametersinto a bu er
and then out into a data structure in the sener's heap{ this copy may be performed
directly. This step may be omitted if the parameters are small enoughto t within
registers.

4. Make the sener's heap the primary heap of the current thread. This ensuresthat
memory allocations made during the course of the service invocation use the sener's
heap.

Invoke the underlying function.
Make the client's heapthe primary heap of the current thread.
Copy the results from the sener's heapto the client's, asin step 3.

Remove the current thread from the list of threads with accesso the sener's heap.

© © N o O

Return the results to the client.

Any work carried out by the sener during the invocation is performed using the client's
thread, and thus accourted to the client's CPU allocation. Figure 5.8 shows the Service
interface provided for creation and manipulation of services.
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type ! service
type ! handle

type permissions = Private | Sharable

type memlimit = int

type copylnfo Tree | Graph

type reclaiminfo Retained | Collected

type serviceAttr = permissions * memlimit * copylnfo * reclaiminfo
exception Revoked

exception Aborted

( ! service * | ) create (func I, attr : serviceAttr);
invoke (s : ! handle; parms : ; timeout : time);

void destroy (s : I service);

void release (s : I handle);

(! handle) get_handle (wrapper : S

Figure 5.8: The Service interface

create() takesa \normal" function and returns a service descriptor and a service
function { invoking a handle referencing the returned service will causethe session
switch described above. Thus invoking a service appearsto the client to be the same

asinvoking an ordinary function.
Other parametersto create() specify:

{ Whether the servicemay be passedaround betweendi erent clients, or may only

be passedbetweenthe server and clients.
{ The maximum amount of data to be copied when invoking the service.

{ Whether the parameters to the function are in the form of a tree or a graph

(allowing optimisations to be made when copying).

{ Whether the servicereferenceis weak or strong. A weakly referencedservice will
be garbage collected (and revoked) once no pointers to it remain in the sener's
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sessionwhereasa strongly referencedservicewill persist while one or more clients
retain handleson it.

The memory limit passedo the create() function allows serversto prevert DoS attacks
by clients. Without such a limit, a client could e.g. passin a very long list as a service
argumert and causeexcessie amourts of the serner's memory to be allocated. Ideally,
the serer would be able to inspect the data beforeit was copied, but this could result
in untracked pointers from the serwer's heapto the uncopied data in the client's heap.

invoke() makes a service invocation as described above. invoke() is not generally
needed,since when a client makes a normal invocation on a service the Runtime will
causethe serviceinvocation to take place. Howewer, invoke() givesthe client greater
cortrol over the execution of the serviceinvocation than is possiblethrough the normal
closureinterface. The current speci cation allows the client to specify a timeout, after
which period the Runtime will abort the service invocation and drop bad into the
client. This allows a client to prevernt a server from stealing its threads. Other client-
side control over the invocation could be addedto future versionsof the interface.

destroy() allows a sener to withdraw the service controlled by the given service de-
scriptor. Clients attempting to invoke the servicein future will experiencea Revoked
exception.

release() allows a client to releasea handle on the given service.

get _handle() allows a client to obtain the service handle from a service closure, in
order to call invoke() or release() .

During both the invocation and return copying phases,the Runtime notes when a copied
value is itself a service, and createsa new reference(or reusesan existing reference)to the
sameservice, which is available in the destination session.Servicescan thus be passedfrom
sessionto session. Sener-speci ed policy can limit sud copying to allow additional control
over which sessiongan utilise a service. The copy-by-referencenature of servicesalso allows
large data structures to be split in a natural way using servicesof type unit ! , to avoid
excessie data copying.

The ability to passservicesbetween sessionss roughly equivalent to the capability passing
used by the J-Kernel [Hawblitzel98] to passobject referencesbetween threads in dierent
protection domains. J-Kernel protection domains consist of disjoint set of objects in a single
heap, achieving similar functional isolation to Rcane but without the QoSisolation provided
by independert garbagecollectors.

Service passing is also similar in semarics to { although substartially more lightweight
than { the interface passing performed by RPC systemssudh as CORBA [OMG98], Java
RMI [Sun9g and Network Obijects [Birrell93]. It diers from the explicit binding architec-
ture usedby the standard NemesisIPC implemertations and traditional RPC systemssuch
asSUN RPC [SUNB88Jin that servicesare implicitly bound to when clients import them; how-
ewver, the Service.get _handle() operation allows a client to accesghe underlying handle of
a service,permitting explicit cortrol if so desired.
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5.6.5 Abnormal Termination

It is expected that almost all Rcane serviceinvocations will nish normally, by returning
a result to the client. However, there are certain exceptional conditions that Rcane must
handle should they occur:

Uncaugh t server exception: If anexceptionis thrown by the code executingin the sener,
and this exception is propagated out of the serviceinvocation without being handled,
the exception must be trapp ed by the Runtime. The Runtime is responsible for copying
the exception (along with its parameters,if any) bad to the client's heap. Sudh copying
occurs in the sameway as with normal service results. Once the exception has been
copied to the client's heap, it may safely be thrown by the Runtime (in the client's
session)to the client's exception handling code.

Server revokes service: It is important that seners are able to revoke servicesthat they
have previously o ered to clients. To this end, Rcane providesthe Service.destroy()
function, which a server may call on any servicethat it has created.

Service.destroy()  marks all client handlesfor a given service as revoked, ensuring
that further invocations by those clients will fail with a Revokedexception. Thus, when
starting a serviceinvocation, Rcane must chek whether the client's handle still con-
tains a valid servicedescriptor; if the descriptor is no longer valid, a Revokedexception
must be raised to the client. Calls that are in progressat the time that the serviceis
destroyed are aborted and the calling threads are returned to their originating sessions.

Ab orted invocation: Rcane allows clients to abort invocations (perhapsdueto a timeout,
or due to no longer requiring the results of an invocation). If such an abort occurs,
processingwithin the serwer invocation must halt, and the thread of control returns to
the client. Execution cortinueswith an Aborted exception being thrown, to inform the
client that this invocation was aborted.

If at the time the abort occurred, the server was executingin a critical sectionand had
registered a backup thread (see Section 5.6.2) the execution state of the client thread
must be transfered to the serer's backup thread. The badkup thread may then be used
to allow the critical regionto complete safely Once the critical region has completed,
the badkup thread may be released.

Client thread destro yed: The client thread may be destroyed during the course of the
service invocation { possibly due to the client calling Session.exit() , or the client's
sessionbeing terminated due to exhaustion of its resources.

In this situation, the behaviour on the sener sideis similar to that when the invocation
is aborted { from the senrer's point of view it is irrelevant whether the client aborted
the invocation or was destroyed. Behaviour di ers on the client side { sincethe client
thread no longer exists, it is not necessaryto raise an Aborted exception; rather, the
resourcesassaiated with the client thread may be simply releasedor recycled.

Server exits: In a similar fashion to the previous case,the serner may be destroyed during
the course of the service invocation. If this occurs it is equivalert, from the client's
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point of view, to the serwer revoking the service{ thus a Revokedexception is raised
to the client. Sincethe server resourcesare being destroyed, there is no requiremert to
transfer thread state to badkup threads that may have beenregistered by the sener;
thesethreads, along with the sharedstate that such threads protect, will be destroyed
at the sametime.

In eadh of these cases,Rcane must ensurethat the integrity of the systemis not compro-
mised by the abnormal termination; furthermore, sincesud terminations are expectedto be
rare comparedto successfuinvocations, they should not adverselya ect the performance of
successfulinvocations more than is necessary

5.6.6 Service Mo dules

In order to passinterface referencesas parametersor results of an RPC call, it is necessaryto
be able to \b ootstrap" a client by providing a handle on an initial serviceor set of services.
From theseinitial services,the client may obtain further references.This bootstrap may be
performed in various ways:

Using a trader with a well-known address,and allowing clients to lookup servicesby
name. This method is usedby Modula-3 Network Objects [Birrell93] and Nemesis.

Using a shared lesystem to store \stringi ed" referencesto services,which may then
be retrieved by clients. This method is usedby many CORBA implemertations, suc
as OmniORB [ORL97]%2.

Providing a system-generatedhandle to a bootstrap service. This method is more
applicableto intra-machine servicesthan to afully distributed system. Nemesisprovides
newly created processesvith a pre-generatedconnectionto the systemBinder (a service
which is usedto create further connectionsto other seners).

Rcane utilises the module spaceto provide a bootstrapping method that is similar to a
trader. Somemodulesmay be speci ed at load time as Serviee Modules In general,a module
exports a collection of functions in its interface. In the caseof a servicemodule, all of these
exported functions must themselwes be services. When a client in a di erent sessionlinks
against the service module, handles for the servicesexported by the module are created in
the client session.Invoking an operation on one of these handlescausesa serviceinvocation.

A servicemodule may have either shared state or per-client state. A shared service module
is initialised once,whenit is created by the server. When clients link againstit, the handles
that ead client receivesall refer to the sameset of services. Thus it is suitable for services
that have no particular security requiremert on them, or which are only called from trusted
clients.

21Some CORBA ORBs, including OmniORB, also now support a well-known trader [OMG] { however,
practical experience has shawn that use of a shared lesystem is often more straightforw ard and reliable.
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For a per-client servicemodule, a new interface is created eac time a fresh client binds to it

{ the collection of handlesin the interface that is returned to the client refer to the closures
thus generated. Thus the serner may embed state that is speci ¢ to ead client within these
closures. Per-client servicesallow a serer to revoke servicesfor speci ¢ clients.

5.7 Accoun ting and Accoun tabilit y

SinceRcane separatesout the activities for ead client, and usesresourcesaccourted to eadh
sessionto perform these activities, it is possibleto accurately calculate the amount of each
resourcethat a sessiorhasconsumed. This allows the owner of a node to charge the end-user
responsible for the sessionwithout such charging ability, it is di cult to seehow it would be
practical to provide programmable senersin a network. Charging a at rate for accesso a
node would belikely to result in substartial contention for the resourceson the node { current
network protocolssuch as TCP are designedto throttle badk their usageof the network when
they experience congestion,but enforcing such a requiremert on the code supplied by users
of an Rcane node would be impractical other than by explicit scheduling.

5.7.1 Pricing and Charging

Pricing and charging policies will be system dependert. They are likely to be a ected by
the resourcesavailable at the node, the location of the node (and hencewhether it is well-
connectedto other computing resources)and the uctuating demandfrom the remote users.

Resourcescharged for directly should include:

Creating and maintaining a session.

CPU guararteesrequested.

Actual CPU usage.

Memory (heap, bu ers, stads, code, auxillary structures).
Network resenations

Network bandwidth transmitted and received.

Pricing policiesshould alsotake into accourt the consumption of resourceghat arethemseles
di cult to accourt for directly. For example,aswell asconsumingraw CPU cycles,a running
thread will causethe processorto perform work in order to servicecade misses,TLB loads,
etc. Moreover, sud activity is likely to causeother threads to themselves experience more
cache misses,as they are forced to reload cace entries with their own data. Rcane's use
of a single hardware protection domain and heavy sharing of code between sessionsmeans
that this problem is lesssewrethan it would be when using multiple VMs, ead in their own
process;however, it is still likely to lead to situations in which the activity of one session
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may interfere with the QoS received by another session. Dealing with this problem is likely
to require support from hardware, or intricate layout of heapsin order to allow limits on e.g.
the amount of cadhe that may be usedby ead session.These chargesmay be approximated
by charging more for activities (such asvery frequernt guaranteed accesgo the CPU) that are
statistically likely to be assa@iated with sud crosstalk-inducing behaviour..

Possiblepricing policies for resourcesare discussedin [Stratford99, Tschudin97b, Bredin98].
The actual billing may be accomplishedin one of seeral ways:

The principal could be required to hold an accourt with the node provider; this accourt
would be debited directly with any usagecharges.

A credit card accourt (or someequivalent) could be supplied at sessioncreation time {
the node provider could make chargesto this accourt.

A digital payment schemesuc as Millicent [Glassman9% could be employed. In such a
scheme, cryptographically signedmoney certi cates may be issuedto end usersthrough

the servicesof a broker, and preseried to the node provider as payment for resource
consumption. For the reasonsto be outlined in Section5.7.2.2,digital cashthat canbe
traced to a speci ¢ payer would be used, rather than untraceable \anonymous" digital

cash.

5.7.2 Dealing with Denial of Service Attac ks

In addition to performing e ectiv e resourcecortrol betweenmultiple, possibly greedy clients,
Rcane must be capableof dealing e ectiv ely with deliberately malicious clients who attempt
to commit denial of serviceattacks. These DoS attacks can be grouped into two main types
{ those against Rcane itself, and those launched from Rcane against other sites.

5.7.2.1 Attac ks on RCANE

DoS attacks on Rcane could arise through malice. They could also arise due to buggy
programming, for examplein the event that a useracciderially suppliescode that schedules
an inde nite number of events, or o ods the network. Thus any action that could cause
consumption of limited resourcesshould be charged for { in this way, a denial of service
attack is e ectiv ely transformed in a purchaseof serviee attack, and the attacker ends up
hurting only himself. Since Rcane employs strict resourcepartitioning, suc attacks would
have no e ect on any guaranteesmadeto other clients.

In order for this to be practical, two properties are required of Rcane . Firstly, the system
must be deweloped such that any action that a user-suppliedprogram can take to consume
resourceson the node is charged for. Secondly the system must be able to abort clients
whoseresourceshave been exhausted; this will prevent either a malicious or a buggy client
from carrying on a protracted DoS attack beyond the point at which the Rcane node owner
canbe sureto receive payment. The architecture presened in this chapter ful lls both of the
requiremerts, thus suggestingthat Rcane should be robust against DoS attacks.
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5.7.2.2 Attac ks launc hed from RCANE

Recertly, there have beenmany reports of \Distributed Denial of Service" attacks [CERT99],
in which large numbers of poorly-secured Internet hosts have been\enslaved" to ood a
particular victim { typically high-prole { site with padkets, in order to overwhelm it and
prevernt it from serving bona- de customers. These hosts are typically enslaved through
exploiting unchedked overruns in xed sized bu ers, within server programs running with
root privileges; by sending appropriate strings to such senersit may be possibleto execute
abitrary root-privileged malicious code on the host. A secondform of attack that must be
consideredis one in which a malicious end-usermounts a cradking attack against a remote
host, in order to make unauthorised accessesr modi cations to sensitive data (such ascredit
card details or trade secrets)or to defacea site's web pages.

The motivation behind Rcane of permitting the execution of untrusted user-supplied code
makes sudh attacks easier{ it is no longer necessaryto exploit poorly written programs in
order to executeuser-suppliedcode on a node, as the systemis designedpurposelyto allow
such behaviour!

Both of these forms of attack may be very dicult to distinguish from normal behaviour {

in particular, one of the features of the distributed DoS attacks that makes detecting them

dicult is the fact that the load placed on ead of the enslaved machines is not necessarily
abnormally high, and the e ect is only seenwhen their streamsof padkets merge, much closer
to the sener. Thus we must conclude that detecting the launch of sud attacks from the

Rcane node in real-time is in generalunlikely to be possible?.

Although it is impractical to detect and prevent sud attacks, there are two factors that may
be usedto deter potential attackers. The rst isthat Rcane chargesfor resourceusage{ this

in itself would make including an Rcane node in a distributed DoS attack unattractiv e or
infeasiblein many cases.The secondand perhapsmore important factor is that Rcane needs
to keepa log of activity in order to correctly chargeits clients for their resourceusage. This log
should be su cien tly detailed to allow the node owner to trace badk to an authenticated user,
in the event that Rcane hasbeenusedto mount a DoS or cradking attack on another host.
Without such a log, the node owner could be subject to criminal penalties for the activity
carried out by the malicious end-user;the existenceof suc a log would help to classRcane

node owners as \common carriers" (in the sameway that ISPs are not held responsible
for attacks carried out over their networking services,since they can supply details of the
customer site connectedfrom a particular IP addressat any giventime.)

The audit log shouldrecord, for any givenrecert point in time, which client owned a particular
local network endpoint (such asa UDP port). It is not necessaryto record such information
on a per-padket basis;however, it is necessaryto ensurethat a client cannot transmit a padket
with headerinformation indicating a port that the client doesnot own. Thusthe transmission
padcket Iters employedby Rcane arerequiredto ched any portion of the padcet that is under
client corntrol.

It may be obsened that such an audit log could itself be used for the type of DoS attack

22Note that it may be possibleto use heuristics to detect certain common classesof attacks.
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againstRcane describedin the previoussection; by repeatedly binding to and unbinding from
a network connection, a malicious application could causethe audit log to grow inde nitely .
In this case,since the act of writing sudh an entry to the audit log will only occur when
a connection is opened or closed, the charge for creating the connection should take the
consumption of audit log resourcesinto accourt.

5.8 Summary

This chapter reviewed the fundamertal principles required for the resourcecortrolled execu-
tion of untrusted code within a programmable network, and presered the architecture used
by Rcane, the ResourceControlled Active Node Environment.

The chapter openedwith a discussionof the architectural principles that underly the Rcane
architecture { namely that the resourcesused by ead client in a programmable network
should be accourted to the correct consumer,and that the horizontal and vertical layering of
a programmable network node should re ect this requiremert.

An examination of the main computing resourcescontrolled by Rcane { CPU cycles,memory
and network bandwidth { followed, along with the abstractions presened to users of an
Rcane node to allow them to accessand cortrol these resources. The interaction between
CPU guarartees, delayed events and incoming network padkets was described.

A rationale for the use of an independert heap for eadh Rcane client was presened, and
the requiremerts for the Rcane inter-sessionservice architecture were examined, with the
conclusionthat the lightweight nature of protection in Rcane suggesteda form of thread-
migration for communication betweenclients.

The chapter concluded with a discussionof issuesrelating to the accourting and billing of
remote users,and the prevertion and detection of denial of serviceattacks.
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Chapter 6

Protot ype RCANE Implemen tation

This chapter describesa prototype implementation of Rcane, carried out in order to estab-
lish the feasibility of the architecture. It is an example implementation, and should not be
consideredde nitiv e.

An overview of the implementation is given, with details of the languageand operating system
basesover which the implementation was developed. This is followed by discussionof some
of the features of these basesthat were found to be unsuitable for supporting the Rcane

architecture, and how thesede ciencies were remedied.

The remaining sectionsof the chapter describe how the major parts of the Rcane architecture
were implemented.

6.1 Overview

The Rcane prototype has been dewveloped over the NemesisOperating System [Leslie94,
described in Chapter 4. Nemesiswas chosenasthe baseplatform for Rcane for the following
reasons:

It provides good support for low-level isolation of resourcesand Quality of Service.

Its low-level protection boundariesallow better cortrol over the resourcesavailable to
a program.

The author has extensive experiencewith the principles and internals of Nemesis,and
has beeninvolved in dewelopmen of the OS for seweral years.

As described in Section5.2.1.1,Rcane consistsof four layers: the Runtime, the Loader, the
Core and loaded Modules.

The Runtime makes use of the Objective Caml interpreter [Leroy97] (OCaml) from INRIA
to provide a safelanguageenvironment for untrusted code loaded by remote clients. Mod-
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i cations were required to the OCaml interpreter to support multiple isolated heaps with
independert garbagecollection.

Other portions of the Runtime provide support for:

The Rcane CPU managemem architecture, including real-time CPU sdeduling and
support for threads, thread pools and everts.

E cien t accessto Nemesisl/O.
Rcane inter-sessionservices.

Low-level accesso sessioncreation and heap managemen, for accessby the Core and
the Loader.

The Loader cortains the Rcane bytecode linker, as well as basic sessionmanipulation oper-
ations. It is contained ertirely within the System session.

The Core provides an interface to client sessiondo allow them safeaccesgo the resourceson
the Rcane node. Some portions of the Core execute within the client sessionsghemseles.
These portions are those implementing facilities for which no accessto shared Core state is
required. Sud facilities include:

Safeaccesdo featuresexported by the Runtime for CPU and evert managemen
Data-path accesgto network ows, both on transmit and receiwe.

Safeaccesgo Caml extensionsprovided by Rcane .

Sinceuntrusted Rcane clients must supply code written in a safelanguage,it is not possible
for clients to corrupt or otherwise abusethe portions of the Core executing within the client
session.

Other portions of the Core, which do require accesso shared Core state, executewithin the
System session.These portions include:

Sessionmanagemen routines.
Control-path functionality for managing network devicesand o ws.

The bytecode librarian.

In general,data-path operations such as garbagecollection, network I/O and CPU scheduling
are implemented in native code in the Runtime for e ciency . Most cortrol path operations
(including bytecode loading and sessioncreation) are implemented in Caml in the Core for
exibilit y, safety, and easeof interaction with clients.
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The Best-E ort sessionusesthe PLAN interpreter [Hicks98]to provide a limited execution
environment for unauthenticated padkets, with PLAN wrappersaround the Session interface
to permit authentication and sessioncreation. Rcane interoperates with PLAN systems
running on standard (non resource-coftrolled) platforms, allowing straightforward cortrol of
an Rcane system. Support for demand-loadedcode in the style of ANTS [Wetherall9§] is
also provided.

Hooks are provided to allow a security framework to processcredertials and assignprivileges
to sessions.The focus of this implementation is on the safety, security and isolation of the
untrusted code itself, rather than on cryptographic authentication/authorisation and high-
level policies; therefore the default security model employed is very simple:

Sessionsand clients are either privileged or unprivileged.

The System sessionand the Best-E ort sessionare privileged, and hencemay access
unsafe code sequencesand routines that managesystem state.

Other sessionsand external clients are unprivileged, and may only executesafecode.

6.2 OCaml De ciencies

OCaml is an implementation of the Caml dialect of ML [Milner97]. For the implementation
of Rcane, the compiler and interpreter from version 1.07 were usedas a base.

The decisionto use Caml was made for the following reasons:

Caml has beenpreviously shown to be suitable for asa languagefor supporting mobile
code in active and programmable networks (JAlexander98a, Hicks99q).

Caml can be compiled to a compact bytecode that can be executede cien tly. The
OCaml compiler also supports compilation directly to native code.

The OCaml VM is small (approximately 7000lines of code) and easily understood, sim-
plifying its integration with the resourcemanagemen medanismsrequired for Rcane .

The OCaml VM is alsousedasan interpreter by other sourcelanguages sud asMoscov
ML [Romanenko99 { thusthe choice of VM doesnot restrict usersto a single language,
provided that they can generatebytecode modulesthat respect the typing rules of the
OCaml VM.

However, somefeaturesof Objective Caml 1.07 werefound to be unsuitable for implementing
Rcane . Where possible,these de ciencies have beenremedied. The de ciencies fell into the
following areas:

Thread model
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Bytecode linker

Confusion of interface and implementation
Represetation of exceptions

Accessto unsafefeatures

Just-in-time compilation

Lack of bytecode veri er

6.2.1 Thread Mo del

The default OCaml threading model has two implemertations in the standard runtime [i-
braries; neither implementation provides suitable support for QoS or for the event-driven
processingmodel favoured by Rcane .

The Thread interface was replaced with one that supported the Rcane processingmodel.
The new version of the interface is shavn in Figure 6.1. Further discussionof the operations
provided by this interface may be found in Section 6.3.

6.2.2 Byteco de link er

OCaml provides a simple dynamic linker that allows bytecode modules to be loaded into
the system. Howeer, the facilities provided are insu cien t to support generalisedloading of
mobile code.

The major de ciency in the standard linker is that it only permits a single interface of a
given name to be available for dynamic linking at any one time. If a module is loaded,
any module exporting an interface of the samename (even if that interface has a di erent
signature) is hidden by the newly loaded module. Furthermore, the namespacefor locating
implementations is the sameasthe namespacdor specifying interfaces. This causegroblems
that will be discussedin Section6.2.3.

Other de ciencies include:

The lack of ability to specify the particular version of a given module against which you
wish your code to be linked.

Poor support for obtaining details of the modules linked into the system.

No support for loading modulesand then dynamically linking against symbols exported
from those modules.

No support for multiple instantiations of the samemodule (required to allow multiple
client sessiondo ead instantiate a given module in their own heap).
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The abstract types usel by the interface.
type thread

type vp

type threadpool

type event

Create a new thread to execute the given closure in the current thread pool, the specied
thread pool or the speci e d VP's default thread pool.

val create : (! ) ! I thread
val createp : threadpool ! ( ! ) ! I thread
val createv : vp! (! ) ! I thread

Create a new idle thread in the current thread pool, the speci e d thread pool, or the
speci e d VP's default thread pool.

val make: wunit ! thread

val makep: threadpool ! thread

val makev: vp ! thread

Create a new thread pool in the current VP or the specied VP.
val pcreate : unit ! threadpool
val pcreatev : vp ! threadpool

Terminate the currently exeuting thread.

val exit : unit ! unit
Terminate the thread whosehandle is given.
val kil : thread ! unit

Return the thread currently executing.

val self : unit ! thread
Return the pool of the speci e d thread.
val pool : thread ! threadpool

Causethis thread to goidle until more work is available for it.
val finished : unit ! unit

Suspend the execution of the calling thread for the speci e d number of seconds.
val delay : float ! unit

Create an eventto call the given closure in the current thread pool or speci e d thread pool.

val event : float ! ( ! ) ! I unit

val eventp : threadpool ! float ! ( ! ) ! I unit
Cancel the speci e d event.

val cancelEvent : event ! unit

Figure 6.1: The Thread interface
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Therefore, the bytecode linker was developed into a more generalisedform that permits:

Multiple modules exporting the sameinterface, ead of which is selectablefor linking
against dynamically.

Multiple interfacesof the samename but with di erent signatures, which are automat-
ically selectedbetweenat link time, using the signature imported during compilation.

Further modi cations were made to the linker to support multiple clients with independert
heaps,ead of which may have a di erent set of modules instantiated in their session. This
work is described in Section 6.6

6.2.3 Confusion of interface and implemen tation

The modi cations to the linker described above permit multiple modules, ead exporting the
same interface, to be loaded and available in the system; however, even with this scheme
it is not possiblefor any one module to link against multiple modules exporting the same
interface, due to the confusion of interface and implementation in Caml.

Sudch confusion (also obsened in C++ [Stroustrup86]) occurs when a language makes no
distinction between an interface type { represerting an abstract set of operations { and a
class{ represerting an implementation of one or more interfaces, possibly sharing a common
state. This resultsin the useof abstract classedn C++ asa represenation of interfacetypes.
Caml su ers from a similar problem { although Caml signatures provide e ectiv e interface
types,the linking model usedby Caml makesit impossibleto have multiple implemertations
of a given top-level interface type in the sameprogram.

To alleviate this problem, run-time dynamic linking (as opposedto the load-time dynamic
linking provided by the bytecode linker) was added to OCaml. A new abstract type con-
structor, dynspec (dynamic speci cation), was added to the compiler. This may be usedto
generatevaluesthat represen a particular method/v ariable in an speci ed type of interface,
but with no speci ed implementation *.

For example,in the context of the Test interface given in Figure 6.2, a dynamic speci er for
Test.number would havetypeint dynspec, and a speci er for Test.print  would have type
(string ! unit) dynspec. The compiler permits the textual name of an interface member
to be usedas a constructor for its dynspec.

A function, getdyn() (get dynamic value) was added to the interface exported by the Core
to unsafeclients. By passinga dynspec and a referenceto a loaded module, the client may
obtain the member of that module's implementation speci ed by the dynspec, provided that
the module does actually export the interface to which the dynspec refers. Thus by call-
ing getdyn(""Test.print", moduleRef) { where moduleRefis a referenceto a previously

1These speci ers are internally represerted as a tuple of an interface name, interface typecade and o set
within the interface
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An integer variable
val number: int

A simple function
val print : string ! unit

Figure 6.2: Test: a simple interface for demonstration purposes

loadedmodule { aclient may obtain a referenceto the print function exported by that imple-
mentation of the Test interface, or receive an exceptionif the given module doesnot actually
implemert the Test interface. Such dynamic linking facilities are not typically available in
ML.

6.2.4 Representation of exceptions

OCaml represens exceptionsas tuples consisting of a tag (the exceptionidenti er) followed
by the exeception'sparameters(if any). The tag is areferenceto a string containing the name
of the exception. When manipulating exceptions{ which in in Caml are rst classvalues{
comparisonsare madeby equality of referenceof the tags. For Rcane , comparisonby equality
is still valid within a singlesession.However, the multiple-heap architecture of Rcane requires
a separateinstantiation of ead module usedby a session,in that session'sheap. Henceif an
exceptionis thrown acrossa serviceinvocation, such comparisonof exceptiontags by equality
is no longer valid { not only do the two di erent sessionsead have their own version of the
exception tag, but the deep copy of the exception value on an exceptional return from the
service invocation would create an exception with a new tag that was equal to neither the
client's nor the sener's tag.

Three possibilities to remedy this were considered:

1. Compare exceptionsby value rather than by reference.

2. Add a special caseto the marshalling code, sothat when copying an exceptional result
from client to sener, the exception tag could be matched with the client's version of
the tag, and the correct version returned.

3. Alter the represeniation of exceptionssothat comparisonby equality was always valid.

The rst solution, comparing exceptions by value, would add substartial overhead to all
exception matching operations.

While the secondsolution would su ce for exceptionsraised directly acrossa serviceinvoca-
tion, the rst-class status of exceptionsin ML meansthat any data structure being passed
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asan argumert or result may encapsulatean exception value. Thus the marshalling routines
would needto be generalisedto support such exceptiontranslation at any point in the copying
process. Such translation would be complicated and likely to be expensiwe, and would need
to be performed whenewer an exception was raised acrossa service.

The third alternativ e{ altering the represenation of exceptions{ waschosensinceit simpli ed

the marshalling routines. The OCaml compiler was modi ed to generatea dierent code
sequencen the initialisation code for modules, so that when an exception is de ned, rather
than creating a string with the exception'sname (which wasthe original behaviour) it invokes
a routine in the Runtime to register the exception. The Runtime returns an atom? for
that exception { exceptions are matched by module, exception hame and position within

the module. This exception registration medcanism does introduce a potential denial of
serviceattack from a module that registersa very large number of exceptions. Such attacks
are prevented by setting a limit on the number of exceptionsthat may be registered from
eat module. More elaborate protection medanismswould be possible, but have not been
implemented due to time constraints. The atom represening the exception may be passed
between sessionswith no further needfor translation. The Runtime also de nes a primitiv e
operation for mapping an exception tag to its textual name. (Previously, the tag itself was
the name.) Sud mapping is only required when reporting unhandled exceptions, and thus
the greater overheaddue to the indirection doesnot a ect normal system performance.

6.2.5 Access to unsafe features

Although Caml is designedto be a safelanguage,the standard OCaml runtime library in-
terfacesinclude accesdo unsafefeatures, such as marshalling and unmarshalling of arbitrary
data structures in a non-typesafemanner, and accesdo array elemers without boundschedk-

ing.

Following the principles suggestedin [Alexander984d, a module called Safestd was created.
Safestd exports ead of the standard library modules (giving accesso abstractions such as
lists, arrays and hash tables) through thinned interfaces{ i.e. only those elemens of eah
standard library interfacethat may be safelyinvoked by untrusted code are exported through
Safestd . An option wasaddedto the OCaml compiler to automatically bring the elemeris of
the Safestd module into the current namespaceeforecompiling a source le, thuspermitting
existing OCaml code to be compiled to use Safestd without requiring sourcechanges.

6.2.6 Just-in-time compilation

To improve the execution performance of untrusted OCaml code, it would be bene cial to
have a JIT (just-in-time) compiler [Cramer97] built in to the VM. A JIT compiler converts
bytecode into native machine code at runtime { such cornversion may be performed at the
point of at which a particular function is rst invoked, or it may be performed either earlier
or in the background [Harris98] to avoid increasingthe latency of execution.

2An atom is a shared system-wide integer identi er for a particular etit y.
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No JIT compiler for OCaml 1.07 was available. A partial implementation of an OCaml JIT
compiler was developed as a proof of concept; a completeimplementation wasnot undertaken
due to time constraints.

6.2.7 Lack of byteco de verier

In order to guarantee that a loaded Caml bytecode module actually respectsthe de nition of
the Caml language(and hencemay be safely executedwithout needfor hardware protection)
it is necessaryto usea veri er [Nipkow99]. The veri er cheds the execution structure of the
functions within the module, and ensuresthat the code does not perform illegal operations
sud as:

Dereferencingan integer.
Accessingthe contents of an abstract data object.
Branching to an invalid instruction.

Accessingbeyond the limits of a heap object.

This may be performed through a data o w-like analysis of the bytecode, assigningtypes by
inferencefor directly addressablelocations (such as the accurrulator and the stadk) at eath
bytecode location, and ensuring that no clashesarise.

Currently there is no bytecode veri er available for OCaml. However, the bytecode used by
OCaml is su cien tly similar in generalstyle to Java Virtual Machine Language[Gosling95a]
for it to be reasonableto posit that the sameprinciples used for constructing Java veri ers
could be usedto createan OCaml veri er. A designoutline for such a veri er is presered in
Appendix A; this designhasnot beenimplemented due to time constraints.

6.3 CPU management

6.3.1 CPU Scheduling

CPU sdeduling is accomplishedusing a modi ed EDF [Liu73] algorithm similar to the At-
ropos algorithm described in [Rosce95. Each VP's guarantee is expressedas a slice of time
and a period over which the guaranteed time should be received (e.g. 300 s of CPU time in
ead 40msperiod).

EDF is basedon a dynamic priority scheme. At any point in time, the runnable VP with the
closestdeadline { and which has guararnteed time remaining in its current period { is given
accesdo the processor.

The scheduler maintains priority queuesof VPs in dierent states (Blocked with a time-
out, Runnable with no guaranteed time available, Runnable with guaranteed time available).
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These queuesare heap-orderedto allow the scheduler to scalewell with a large number of
VPs.

If none of the runnable VPs have guaraneed time remaining, the processoris shared out
fairly betweenthe runnable VPs. The current scheduler walks along the queue of VPs that
are eligible for best-e ort time and runs the VP that has receiwed the least amount of best-
e ort time sincethe most recen VP was created. The time required for this scanis linear in
the number of VPs and hencedoesnot scalewell. However, sincebest-e ort time is only given
out when all guarantees have beenmet and sladk time exists in the system, this ine ciency
doesnot a ect the enforcemen of resourceguaranteesby Rcane. The choice of an optimal
algorithm for sdheduling best-e ort time is not consideredin this dissertation.

Whenewer the Rcane sdeduler is entered, the following sequenceof events occurs:

1. Unless the system was previously idle, the elapsedtime since the last resdedule is
accourted to the previously running VP.

2. The next VP to berun is selected,and the period until its next preemption is calculated.
From this point onwards until the time that the next resdedule occurs, all work carried
out is on behalf of the new VP, and hencemay be accourted to it.

3. If there are padkets waiting on the owning session'sncoming channelsthey are retrieved
and transferred to the appropriate pool's padet queues. (This is described further in
Section 6.5.) Any of the session'sidle pools that have pending events are marked as
runnable.

4. The next pool and thread to be run are selected. In the prototype implementation,
scheduling between pools on the same VP and between threads in the same pool is
performed using a simple round-robin scheduler. Future work would include support
for client-specifedpolicy for pool/thread scheduling. Sudc support may permit selection
from a number of Rcane -provided policies, and/or the ability for a client to upload its
own scheduling policiesin a safeway.

5. If the selectedthread is currently acting as a resourcebadkup for another thread (see
Section 6.7.7), the badked-up thread is selectedinstead.

6. If the selectedthread is active in a heap that is currently in a critical GC phase(see
Section 6.4.2) then the thread carrying out the critical GC is selectedinstead, and will
run until the critical GC activity has completed.

7. The selectedthread is resumed.

6.3.2 Events and Thread pools

As described in the previous section, Rcane ensuresthat individual VPs receiwe the CPU
guaranteesthat they request. Within a single VP, the scheduling is cortrolled by the client
through the useof events and thread pools.
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Each thread pool may be usedto represert an activity being carried out by the client. By
assigningthread pools to VPs, the client may control which activities have their own CPU
guararntees, and which are multiplexed with other activities being carried out by that client.
Assigningthreadsto thread pools allows the client to cortrol the level of concurrencyavailable
to ead activity. Events and incoming padket o ws may be directed to particular thread pools,
which correspond to the activities assaiated with those events and o ws.

For eat pool, Rcane maintains a list of everts, ordered by the activiation time for that
evert, and a list of pending padkets. If a pool has pending everts or padkets, and has any
idle threads (or if a previously active thread completesits processingtask), the next event or
padket? is removed from its queue,and the callback function registeredby the client for that
event or padket ow is invoked. When the callbadk function returns, the thread selectsa new
evernt or packet if oneis available, or elseerters the idle state.

6.4 Memory management

6.4.1 Heap Managemen t

Each client in Rcane hasan independert garbage-collectecheap. In general,only the threads
belongingto a particular client will have accesdo that heap. However, when a thread makes
an inter-sessionservice invocation (see Section 6.7), it gains accessto the heap belonging
to the exporter of the service. To prevent the possible generation of dangling pointers (as
described in Section 5.5.3), Rcane is required to ensurethat two properties always hold in
the system:

No untrusted routine may have accesdo objects in more than one heap simultaneously.

Every thread that has accessto a particular heap must have its stack included in the
root-tracing activity for that heap.

The former property is required sincethe garbagecollectorsin separateheapsareindependert,

and are unable to follow inter-heap pointers. Thus an untrusted routine with accesgo objects
in multiple heapsmay be able to store an inter-heap pointer in one of the objects. The latter

property is required since the stadks of threads accessinga heap must be counted as roots
of that heap. This could be trivially satis ed by tracing all threads' stadks when garbage
collecting any heap; howewver, not only would this lead to unnecessaryGC overhead,it would
also causesubstartial crosstalk betweensessiongas is showvn in Section 7.4).

To presene suc safety whilst maintaining performance, the prototype implementation of
Rcane maintains a collection of heap records. Each heap record denotesa segmen of a
thread's stadk that may contain roots into a particular heap. Theseheaprecordsare organised
into two orthogonal data structures:

3Evernts are given priorit y over packets to allow events to be delivered as closeas possibleto their scheduled
time.
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Figure 6.3: Example con guration of heapsand threads

For eat thread: a stadk of heap recordsgiving the heapsto which it has access.

For eat heap: a list of heaprecordsgiving the threads which have accesdo it. This list
can be usedto obtain the set of stadk segmerts that must be scannedwhen performing
root-tracing for that heap.

Figure 6.3 shaws a possiblecon guration of threads and heaps. Thread 1 is executing purely
within sessionA, and has stadk referencesonly to objects within A's heap. Thusits stack will
only be used as a sourceof heap roots when garbage collecting sessionA's heap. Similarly,
thread 3 is executing purely within sessionB's heap. Thread 2, however, has heap records
linking it to two heaps. It belongsto sessionA, and hencehas a heap record linked into
heap A; having called through a serviceexported by sessionB, thread 2 may also have stadk
referencesto objects in heap B; thus it also has a heap record linked into heap B. When
thread 2 returns from the service invocation, the heap record linking it to heap B will be
removed from its stadk of heap records.

Heap records are added and removed from the thread stacks and heap lists in two ways:

Whenewer a thread makesan inter-sessionservicecall, it is switched into the heapof the

sener. Section 6.7 describes how heap records are added and removed during service
invocation.
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Routines running in the Runtime, the Loader and the Core are trusted and may switch
heaps when accessto a dierent heap is required (such as when creating a session,
copying objects betweenheaps,or initialising a module for a session).

The interface used to cortrol heap switching is the samefor both trusted Caml code and
service invocations. The push_heap() function pushesa heap record on to the heap stack
of the current thread and links the samerecord on to the thread list of the heap to which
accessis being gained. From this point onwards, the thread will be included in garbage
collection activity on the new heap, and hencemay safely accessobjects within that heap.
The pop_heap() function performs the reverseof push_heap() , popping the heap record at
the top of the current thread's heap stack and removing it from the heap'slist of accessing
threads.

A referenceto the currently active heapis made available to the trusted portion of the virtual
madhine { this referenceis an |-value, and hencetrusted code executingin the virtual machine
may switch heapswithout the expenseof making a function call into the Runtime. (Prior to
this, push_heap() should have beencalled on the heap being switched to.)

6.4.2 Garbage Collection

The garbage collector is based heavily on the OCaml collector { the fundamenal garbage
collection algorithm usedis unchangedfrom that usedby OCaml 1.07.

Each sessionhas its own independert two-generation heap. The younger generation (minor
heap) is collectedvia Stop/Copy into the older generation. The older generation(major heap)
is collectedwith an incremertal Mark/Sw eepalgorithm. Most allocations are made from the
minor heap, but native code in the Runtime may allocate large objects { or objects that are
expectedto be long-lived { directly in the major heap.

[Doligez93 describes the GC algorithm used by Concurrent Caml Light (CCL), a dierent
dialect of Caml that sharesmany characteristics with Objective Caml. The two-generation
sthemeand shading invariants usedin the CCL collector are the sameasin Objective Caml.
The CCL collector di ers in that it provides ead thread with its own minor heapand requires
regular synchronisation betweenthe garbagecollector thread and the mutators { since each
Rcane client hasonly a single heap, theseconcurrent portions of the CCL GC algorithm are
not relevant to Rcane.

If wewish to avoid using a write barrier on stack locations whentracing the roots of a session's
heap, it is necessaryto suspend all threads that might accessthat heap. To ensurethat all
appropriate threads are suspendedduring sud critic al GC activit y, the heaprecordsdescribed
in Section 6.4.1 are usedto allow such suspensionto be performed easily and e cien tly.

The top heap pointer on eat stad is the thread's active heap, indicated through the use
of a eld in the heap record. (For brief periods of time, sud as while transferring control
betweentwo sessionsa thread will actually have both of the top two heapsmarked asactive.)
Whenevwer critical activity is being carried out on a heap, all threads that are active in the
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heap are suspended,other than to carry out the GC work. Such suspensionis implicit { since
there may be many threads active in a heap, actually suspending and resuming all threads
in order to perform a small amournt of root tracing would be excessie. Instead, if a thread's
active heapis in a critical GC phasewhen a thread is scheduled to run, execution is instead
diverted to the thread performing the critical GC activity, in order to complete the critical
phaseas quickly as possible.

The majority of the Mark/Sw eep activity can be carried out without halting any of the
threads. Currently a portion of Mark/Sw eep activity is carried out after ead collection of
the young generation. The amount of work done in each Mark/Sw eep phasemay be tuned
by the sessionowning the heap.

Tracking the threads that have accessto ead heap minimises the number of threads' stacks
that must be traversedto identify roots, and prevents QoS crosstalk between principals that

are not interacting. Additionally , a thread executing a servicecall in a di erent sessionneed
not be interrupted (possibly whilst holding important server resources)due to critical GC

work in its own heap. Sinceno pointers to the client's heap can be carried through to the

sener, the (untrusted) code running in the serer cannot accessthat heap. Furthermore,

any pointers to objects in the client's heapthat are stored in enclosingstack frameswill not

be accesseduntil the thread returns from the service, since Caml does not permit dynamic

scopingof identi ers 4. Thus a thread neednot be suspendedin order to perform root tracing

on heapsto which it has accessut in which it is not marked as active. If a thread becomes
active in a heapin which critical GC activity is being performed (such as when invoking or

returning from a service)it is suspendeduntil such activity has completed.

The majority of GC activity is not classedas critical { one thread may be performing
Mark/Sw eep activity on a heap concurrertly with other threads accessingobjects within
that heap. A write barrier is usedon heap objects to ensurecorrect concurrert operation.

6.4.3 Low-memory conditions

Gracefully handling low-memory and out-of-memory situations is a dicult challenge, and
onethat is often met poorly by application and systemswriters.

Garbagecollection can make recovery from such everts easier,sinceit is possiblefor exceptions
to be raised and left unhandled without leaving large swathes of unreclaimable memory that
exacerbatethe shortage of memory.

Howewer, the garbage collection can itself obscurethe details of memory managemenmn from
the programmer, particularly in languagessud as ML in which memory allocation is often
implicit. Typical garbagecollecting allocators will increasethe size of the heap (up to some
large system-wide maximum) if insu cien t free spaceis available to satisfy an allocation
request, sinceit is generally the casethat the application is working on behalf of the owner of
the machine, and henceshould have accesg¢o as much memory asit requires. When running

4If a language such as LISP [Steele84 or Perl [Wall87] { which do allow accessto identi ers to be made
through the dynamic call chain to higher stack frames { were to be used as the safe language for an Rcane
system, such a guarantee would no longer be possible.
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on Rcane, in which relatively small per-sessiorlimits on memory consumption may be made
in order to prevent excessie resourceconsumption by remote principals, the limit on the size
of the garbagecollected heap may be reached somewhatsooner. Possiblecoursesof action in
the event of a low-memory condition include:

Abort the session.
Return a null pointer.
Raise an exception.

Call a programmer-provided \lo w-memory" hook.

Aborting the sessionis clearly undesirable, and should be kept as a last resort. Returning
a null pointer in Caml is not possible, since a fundamenal feature of the ML family of
languagesis that all pointers are always valid { a constructor cannot return a null pointer.
This allows substartial optimisations without compromising safety. Raising an exceptionis a
valid operation at most times, and indeed raising Out_of _memoryis supported by the OCaml
garbagecollector for the rare occasionsin which it cannot obtain memory from the underlying
OS; however, this has certain drawbadks:

Sinceany non-constart® constructor may thus raisean exception, either the programmer
must explicitly ched for the Out_of _memoryexception at a great many points in the
code; or elsean Out_of _memoryexception must be treated as a generic abort signal
potentially causingthe sessionto terminate under programmer cortrol.

In a multi-generational heap, memory may becomeexhausted whilst copying from a
newer to an older generation. If this occurs, the state of the heap may be suc that it is
not safeto cortinue execution of the sessionthus requiring termination of the session.

Low-memory situations in Rcane are handled with a combination of a callbadk, a bu er zone
and the Out_of _-memoryexception, as described in the following paragraphs.

To avoid the situation where heap memory is exhausted during a copying phase from the
minor heap to the major heap, Rcane maintains a free bu er zonewithin the major heap
that is at least as large as the minor heap; thus even if the entire minor heap is copiedinto
the major heap during a minor collection { an evert that generally does not occur { heap
memory will not be exhausted.

If, following a copying phasefrom the minor heapto the major heap, this bu er zonehasbeen
encroahed upon, a user-registeredcallback function is invoked to releasememory. This func-
tion may employ any desiredstrategy to reduce memory usage,so as to allow the requested
allocation to complete. For the duration of the callbadk function, other threads attempting

SML constructors may be divided into constant and non-constant constructors. Constant constructors
represert integers, literals and parameterlessmembers of algebraic types. Non-constant constructors represert
tuples, records and parameterised members of algebraic types, which require memory allocation.
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to allocate memory from that heap are suspended. Following the completion of the callback,
a garbagecollection passis made. Memory allocations made directly from the major heap
(which occur only for large objects, and never due to implicit constructors) that would eat
into the bu er zonecausean Out_of _memoryexceptionto be raised; this may be dealt with
by the user.

This strategy is clearly not perfect { in particular it doesnot addressthe following concerns
adequately:

There is no way for the callbadk function to know the importance (to the client) of
the requestedmemory allocation. This could perhapsbe achieved by passingthe Caml
program counter at which the allocation was made, and allowing the callbadk to map
this in someway to a function identi er or sourcecode line. Sud a facility would need
support from the compiler and the OCaml runtime, along with substartial investmert
and maintenancefrom the programmer.

The action that may be taken within the recovery callbadc function is limited, sinceif
excessie memory is allocated during the callback, the sessionis by necessiy aborted.

However, the approac taken by Rcane doeshave the benet that it is the clients that must
consider the implications of memory exhaustion, rather than the Rcane node itself. Since
the clients are in control of their memory allocation strategy, it is more straightforward for
them to perform such recovery considerations.

6.5 Network /O

Rcane provides accessto the network through the abstraction of channels. A channel is a
connectionto a devicedriver assaiated with a particular network card®

Rcane channels are implemented over Nemesisl/O channels. For clients with no network
resourcesresened, multiple Rcane channelsmay map to the sameNemesisl/O channel; if
the client hasresened resourcesthe Rcane channel will have a dedicated I/O channel.

Each channel may be usedto sendand receive padkets on a set of ows, speci ed by padket
lters. These padket lters are installed by Rcane in the Nemesisdevice driver when the
channel is created.

The prototype currently supports two classesof channels: session-basedirtual networks and
channelsfor accesdgo local network endpoints.

Session-based virtual networks: A virtual network may be setup { as part of the con-
guration of an Rcane node { either for a particular Ethernet frame type or for a

®In the caseof a UDP channel assaiated with the INADDBANY(wildcard) IP addresson a node with multiple
network cards, the channel may transparently encapsulate multiple such connections.
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Field Meaning

protocol header | Headerfor encapsulatingprotocol (UDP or Ethernet)
destination Ultimate destination of packet

resourcebound | Resourcesassaiated with packet

sessionlD Network-wide identi er for sendingsession

ow ID Demux identi er for sub- ow

Figure 6.4: The headerformat for RCANE virtual network padkets

particular UDP port (with a given set of neighbours). Each packet sert on a virtual
network channel has a padet header as shavn in Figure 6.4. This headerformat is
a pre x of the PLAN [Hicks99q padket headerformat, allowing straightforward use of
PLAN interpreters and interaction with existing PLAN nodes. The sessionidenti er
eld (seeSection 6.8.1) within the packet headeris usedto denmultiplex the padket to
the appropriate sessionthe ow eld may be usedto further denultiplex the padket if
the sessionhas speci ed handlers for multiple sub- ows of packets within the channel.

Local network endp oints: Sessiongnay open channelsto receive padkets on network end-
points on the local node, in a similar manner to traditional sackets APls. Policy for
accespermissionsto packet o ws{ suc asrestricting unprivileged sessiongo bind only
to ports greater than 1024{ may be speci ed on a per-node basis. Packets received on
local network endpoints needhave no particular padet format beyond that required for
the speci cation and denultiplexing of the padet (e.g. a UDP header).

Link-level frames/packets are classi ed on reception by the network device drivers via the
network padket Iter, which maps the packet to the appropriate channel. Padets for local
network endpoints are routed directly to the channel speci ed for that endpoint. Padkets
received on virtual network connectionsare classi ed as follows:

1. Pacetsfor sessionghat haveresenedguaranteed resourceson the givenvirtual network
device are routed to the channel created for that session.

2. Padkets for sessionghat have registeredon the receiving Rcane node, but which have
not resened guaranteed resourceson the given virtual network device, are routed to
the channel created for the Best-E ort session.

3. Padkets for sessionsthat have not registered on the Rcane node are routed to the
channel created for the Best-E ort session.

If the channel has free bu ers available, the padcket is placed in the channel { no protocol
processingis performedat this point. If the channelhasno freebu ers, the padet is dropped.
Thus, if a sessionis not keepingup with incoming trac, its padkets will get discarded in
the device driver, rather than queueingup within a network stack as might happen in a
traditional kernel-basedOS.
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At somelater point, when the VP assaiated with a given channel is scheduled by Rcane
to receive CPU time, the padkets are extracted from the channelsand demultiplexed to the
appropriate thread pools. At this point, the following operations are performed:

1. First, any required processingfor the encapsulatingprotocol (such asUDP or Ethernet)
is performed. After this stage, protocol processingfor a packet received on a local
network endpoint is complete,and the padket is addedto the evernt queuefor the thread
pool speci ed by the receiving session.Further processingis required for packets from
virtual network devices,as described in the following stages.

2. If the padket is destined for a sessionregistered on the receiving node, but has been
gueuedon the channel belongingto the Best E ort session(due to the receiving session
not having resened the appropriate network resources)it is at this point demultiplexed
to the destination session.

3. The ow identi er in the padket headeris usedto demultiplex the padket to the appro-
priate thread pool and handler function, as speci ed by the receiving session.

Sudch demultiplexing is performed within the Runtime for e ciency, and is accourted to
the appropriate VP (sinceit is only performed whenthat VP has processingtime available).
Oncethe thread pool and handler function that areto be usedto handle the padket have been
selected,a callbadk evert is constructed that invokesthe handler function. The argumerts to
the handler function consist of the padket contents and the channel on which the padet was
received.

Oncethe client's callback has nished processingthe padet, the bu er memory is returned
to the underlying Nemesisl/O channel, to be reusedfor future padets.

Transmit scheduling is performed by the Nemesisdevice drivers following a modi ed EDF
algorithm, as described in [Black97]. Each client channel is given a transmission scheduling
period and slice of transmissiontime, in a manner analagousto the sdeduling of CPU time.
The network devicedriver repeatedly selectsthe next \runnable" channel that is eligible for
network time, sendsa padket from that channel, and chargesthe channel for the time that
was taken up by the padket on the network link 7, rather than the CPU time consumedby
the driver in sendingthe packet (which is negligible when using a network card with e ectiv e
DMA capabilities). Thus on a 100Mb/s Ethernet, a 1KB padket would be charged for 80 s
of link time. A channel is considered\runnable" when there are padkets queued awaiting
transmission.

6.5.1 Enhancemen ts to Nemesis network subsystems

In general, Nemesiswas found to provide a good match for the networking interface required
by the lower levelsof Rcane 's Runtime. The low-level protection boundariesof Nemesisallow
Rcane to enhancethe standard Nemesisnetworking abstractions to ensure that network
processingis only performedfor a given client whenthat client's VP has CPU time available.

"Note that the current implementation doesnot take into accourt link time wasted due to packet collisions.
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Extensions were required in the Nemesisgeneric network driver top-half to provide support
for session-basedirtual networks and demultiplexing of raw Ethernet frames.

6.6 Byteco de Librarian

The bytecode librarian runs as part of the Loader, and is responsible for linking in modules
of bytecode, and keepingtrack of

which modules a given sessionis privileged to link against,
which sessionshave linked against eadh module,
the dependenciesbetweenmodules, and

the total amount of code memory consumedby ead session.

OCaml storesthe global data of each module in a heap record, and storesa pointer to that
record in the module's ertry in the glokal array. Sinceead sessionn Rcane requiresits own
copy of a module's global data items (in its own heap), Rcane provides ead sessionwith its
own global array. If a sessionhas linked against a particular module, then that sessionwill
have a valid pointer to the given module's global data in the appropriate slot of its global
array, otherwise the slot will be null. This record is created at module initialisation time {
thusit is important for Rcane to ensurethat a sessionnot be allowed to execute code from
a module beforethat module's dependencieshave beeninitialised.

When a sessionlinks against a particular module, the code librarian rst performs a depth-
rst traversal of the module's dependenciesand links any previously unlinked dependencies.
Next, the initialisation code for that module is executed(in the context of the client's heap),
to create the glokal entry for the module. The global entry consistsof an array of closures
and values corresponding to the elemeris exported by the module's interface, and is stored
in the appropriate slot in the client's global array.

Note that the procedurefor initialising ServiceModules{ usedto export an ertire interface
of servicesfrom a serer to a client { diers from the above description, and is more fully
discussedin section6.7.5.

6.6.1 Linking

When a new module is to be linked into the system, the following stepsare performed:

Unmarshalling:  The module is initially presenied as a binary object. This object must be
unmarshalled to produce a structure describingthe module.
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— MAL
type t = string

mB
let get_t ()= open A;

"hello” @
" let get_t() = e
let use_t(parm:t)= get_t()

A.get_t();
print_string(parm) gett)

mD
open B;
open C;
— MA2
type t = int me C.use_t(B.get_t());
let get_t() = open A;
42
let use_t(parm:t)=
let use_t(val:t)= A.use_t(parm)
print_int(val)
Module O Interfface e » implements =P imports

Figure 6.5: Potential type safety violation

Dep endency Checking: Each module will have a set of statically imported interfaces. For
eat sud interface, there must have already beenlinked a module exporting that inter-
face. A particular import module may be speci ed for a given interface® to deal with
the situation where multiple modules export the sameinterface. If any of the imports
are unavailable, the link stagefails.

Furthermore, since opaquetype de nitions may be concealedbehind Caml interfaces,
it is necessaryto put the following constraint on the linkagetree of modules:

No module is permitted to refer to more than one module exprting any given interface.

The relation mArefersto mBis true when:

Module mBexports interface B,
mBis in the transitiv e closure of module mAs imports, and

there exists an import path between mAand mBin which all modules make use of
typesdeclaredin interface B.

Such a constraint is required due to the following possiblescenario,showvn graphically
in Figure 6.5:

1. Interface Adeclaresan abstract typet, with operations get _t() (to return avalue
of type A.t) and use_t(t) (to processa value of type A.t).

2. Module mAlimplemerts interface A privately de ning typet to beinteger .
3. Module mA2mplements interface A privately de ning typet to be string .

8A given implementation may be speci ed by preserting a hash of its code.
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4. Module mBlinks against module mAland implemernts interface B, which de nes an
operation get _t() .

5. Module mdinks against module mA2Zand implements interface C, which de nes an
operation use_t(t)

6. Module mOinks against modulesmBand mCIt may thus call C.use_t(B.get () ,
passinga value of type integer to a routine expecting a value of type string

This constraint is related to the requiremert to prevernt bridge classes[Sarasvat97] in
Java from creating similar type system violations.

Verication: The bytecode in the module must be shavn to conformto the interfaceswhich
it imports/exp orts, and to respect any typing constraints assciated with the languagein
which it is written, usingtechniquessud asthose preseried in [Nipkow99]. Appendix A
preseris a designoutline for a veri er for Objective Caml bytecode.

Resolution: The imports of a module must be xed up sothat they point to the correspond-
ing exports in the modulesthat are being imported.

6.7 Service Implemen tation

This section preseris some of the key features of the implementation of the Rcane inter-
sessionservicearchitecture.

6.7.1 Overview

When adding servicesto Rcane, two main possibilities were considered:

Extending the Objective Caml bytecode language and virtual machine de nition to
provide speci ¢ instructions for invoking services.

Adding support for servicesthrough the use of additional primitiv e functions written
in native code.

Sincethe Caml typing rules do not make it practical to identify serviceinvocations at compile
time, the latter option was chosen.

6.7.2 Representation

There are v e componerts to an Rcane service:

The service function is the actual function that the sener sessionwishesto export to
the client, acrossan existing service binding.
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Figure 6.6: The represenation of servicesin Rcane

The serverinfo block contains all the server-sidestate required by Rcane to implemert
the service. Within a service'sinfo block, a table is maintained with entries for ead
client that holds a handle for that service.

The server wrapper is a function closurethat is a copy of the servicefunction; thus it
could be called from within the server to obtain the samee ects as calling the original
servicefunction. However, it hastwo additional properties:

{ It is tagged® so that the inter-sessioncopying medanisms can identify it as a
serviceand copy it correctly (as described in Section 6.7.4).

{ It contains additional information in the environment portion of the closure to
allow its info block to be located.

The serer wrapper is the componert that the sener passego the client.

The client handle contains all the client-side state required by Rcane to implement the
service.

The client wrapper is a closure of the sametype as the serer wrapper. Howewer,
invoking the client wrapper causesthe service mecanism to be entered, and cortrol
transferred to the servicefunction in the sener's heap (seeSection5.6.4).

9Every object in the OCaml heap has a tag as part of its header providing information about the object
type.
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Figure 6.6 shaws the situation where a server sessionexports two services. Client 1 hasbound
to both services;client 2 has bound only to one service.

6.7.3 Type-based Optimisations

In the OCaml heap, ead object is either abstract (not traced internally by the garbage
collector, e.g. strings) or elsecontains a seriesof values Each value is either an integer or a
pointer, distinguishable through cheding its LSBC. This allows the garbagecollector and the
Rcane parameter copierto reliably trace objects through memory without risking confusing
pointers and non-pointers.

By default, parametersto Rcane servicesare copied by tracing the parameters' structures
in memory, and making copiesin the new heap. In the casethat the sener has speci ed
the Graph attribute for the service, indicating that a parameter being passedmay corntain
sharedstructures, the copying routine additionally maintains a list of previously encourtered
objects, and ensuresthat pointer sharing in the sourceheap is presened in the destination
heap.

Howewer, as will be demonstrated in Section 7.3, this generic copying medanism incurs
overheaddue to the chedking and bookkeepingthat it must perform.

The nature of ML's algebraictype systemtendsto conspireagainst fully optimising the copy-
ing routines. An algebraic type has multiple constructors, someof which may be constarts
(represented as integers) and others of which may be somekind of object (represeried as
pointers). An example of such a type, represening a tree cortaining strings and integers,
might be:

type tree = StringNode of string * tree * tree
| IntPairNode of int * int * tree * tree
| Leaf

Thus a value of type tree might contain:
a pointer to a three elemen block with the tag StringNode containing a string pointer
and two tree values,

a pointer to a four elemen block with the tag IntPairNode , cortaining two integer
valuesand two tree values,or

the integer value Leaf.

This has the result that OCaml integers can hold one lessbit than a machine word.
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Hence,it is impossibleto fully determine until when actually performing the copy, what the
structure of a tree parameter will be. Howewer, in many situations it is possibleto make
guaranteesabout the type of a parameter and thus substitute an optimised copying routine.

In a similar manner to the dynamic stub generator developed by the author for Nemesis
IPC (seeSection4.4 and [Menage98a]),Rcane analysestype information about dynamically
loaded modules, to identify situations in which the typesof parametersare known in advance.

A full implementation of Rcane would employ a medanism similar to the Nemesisstub
generator: rstly the typefor a parameterwould be converted into a simpli ed represeration,
and secondlythis represertation would be usedto synthesise (or reuse) a suitable machine
code function.

Sudh type analysisis performedin the prototype, but time constraints have prevented imple-
mentation of fully synthesisedcopying routines. As a proof-of-concept,any parametersthat
can be shown to be:

blocks containing only integer values, or

integer lists

are copied using optimised copying routines. Note that since ML represens all non-pointer
typesas integers, any algebraic type with purely constart constructors may be regarded as
equivalent to an integer for marshalling purposes,increasingthe range of possible optimisa-
tions.

6.7.4 Copying Services Between Sessions

Passingservices(either serer or client wrappers) betweensessions@sthe parametersor results
of a serviceinvocation is usedas a mecanismto allow clients to bind to services.The tag on
a memory block for a server wrapper or client wrapper identi es it assuch to the parameter
copier. Rather than directly copying the contents of the wrapper to the destination heap,
instead it acts asfollows:

1. The info block for the serviceis located via the pointers available in the client or serer
wrapper.

2. If the destination heap belongsto the sener, a pointer to the existing server wrapper
is returned asthe result of the copy operation.

3. If the destination heap belongsto an existing client of the service, a pointer to the
existing client wrapper for that client's sessionis returned as the result of the copy
operation.

4. Otherwise, a handle and client wrapper for the service are created in the destination
heap, and addedto the info block's client table.
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In this way, servicesmay be passedaround by referenceas parametersand results of service
invocations.

6.7.5 Service Mo dules

The servicepassingdescribed above allows servicesto be passedacrosspre-establishedservice
bindings. To \b ootstrap” initial bindings between a client and a serer, and to provide a
convenient way of binding to a standard set of servicessupplied by a server, Rcane supports
service modules as described in Section 5.6.6. Section 6.6 described how modules are linked
and initialised in a session. This section describes how the procedure diers for service
modules.

Each servicemodule is assaiated with a particular server. When a sessionbinds to a service
module, rather than executing the initialisation code of the module in the context of the
client's heap, the initialisation occursin the sener's heap. Every elemen in the global entry

of a service module must be a service. Rather than simply storing the global entry in the
global vector of the client session(which would result in an inter-heap reference),the entry

is copied using the same mechanism as is used for service invocation parameters. This has
the e ect of creating handlesfor all the exported servicesin the client's session. Figure 6.7
shaws how the servicesexported by a servicemodule are made available to the client session.
The global entry for the service module (visible to Rcane clients as the interface exported

by the servicemodule) hangso the client's global vector. In the serer's sessionthe various
servicestypically sharesomeor all of their state.

o ClIENt SESSION wivviininin, e Server Session ,,

i Global'vector
i (namespace)

Service'module
global entry

0 5 ”, O
..................................................................................................

—_ Garbagg—collected © Service
pointer

Figure 6.7: Example of a servicemodule

A servicemodule may be classi ed ashaving per-client state or sharedstate. The initialisation

code of a per-client servicemodule is executedwhen ead new client binds to it { thus a new
set of servicesare created that are assaiated speci cally with the client. A shared service
module is initialised once, when the serwer loads it. This createsa set of servicesthat are
copiedto ead client that binds to the service module, with the result that all clients share
the sameset of services. A sener that wishesto accesdoth sharedand per-client state for a
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servicemay create two modules;the rst module is a per-client servicemodule that actually
creates the desired services, and the secondis an ordinary module bound in the sener's
session,containing the desired shared state. The service module imports the state module,
giving the per-client servicesaccesso the sharedstate.

6.7.6 Garbage Collection of Services

At creation time, a serviceis speci ed as being either Retained or Collected { this allows
the sener to control whether the serviceis kept alive as long as any clients hold a handle
on the service, or only while the sener itself maintains a referenceto the info block. For
any servicethat is speci ed asretained, Rcane maintains a heaproot for that service'sinfo
block while clients are bound to the service,to ensurethat the servicedoesnot get garbage
collected whilst it is in use.

When a serviceinfo block is eventually garbagecollected, all client handlesfor that service
are marked asbeing revoked, causingfuture invocations using such handlesto raise a Revoked
exception.

If the client handle becomesunreadhable and is garbagecollected!!, the handle's ertry in the
service'sclient table is remaoved.

Either the serwer or the client may explicitly force a serviceor a handle to be released(by
calling Service.destroy()  or Service.release()  respectively) without requiring the ser-
vice or handle to be garbagecollected rst. Further attempts to usea handle or servicethat
has beenexplicitly releasedcausean exceptionto be raised.

6.7.7 Abnormal Service Termination

Not all serviceinvocations can be assumedto complete correctly. Sincethe client or server
sessiongnay exit at any time, or be terminated due to exhaustion of resources,Rcane must
be able to support abnormal termination of serviceinvocations.

A structure describingead serviceinvocation is linkedin to a per-thread list and a per-service
list for the duration of the invocation. Theselists allow Rcane to identify:

the threads belongingto a sessionthat are currently performing serviceinvocations to
other sessiongin the evert of a client exiting, or aborting an invocation), and

the threads currently executingin a session'sheapthat are in serviceinvocations from
other sessiongin the event of a sener exiting, or revoking a service).

If a serviceinvocation is required to be terminated, the aected threads may be located
through theselinks, and exceptionsraised at the point of the serviceinvocation.

" This will not happen whilst the client maintains a referenceto the client wrapper, sincethe client wrapper
contains a referenceto the handle.
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Additionally , to allow senersto deal with the casewhere a client terminates whilst executing
in a critical regionin a serviceinvocation, it is possibleto register backup threads for critical
regionsthat are executedas part of a serviceinvocation (discussedin Section 5.6.2).

A badup thread allows a server to guarartee a certain level of resources{ speci cally, CPU
time and stack space{ to aclient thread, to prevent a CPU-starved thread from causingQoS
interferencethrough spending too long in a critical section, or to allow the execution context
of a terminated thread to cortinue until it has exited the critical region.

In the prototype implementation, badkup threads are assignedto client threads by allowing a
thread pool to be assaiated with a mutex; when the critical region protected by the mutex is
entered, and the mutex is locked, an idle thread from the assaiated thread pool is assigned
to be a badckup thread for the client thread. If no idle thread is available from that pool,

the locking thread blocks until a thread is available. When the client exits from the critical

region, the badkup thread is madeidle again.

The existenceof a badkup thread hastwo signi cant e ects on a client thread:

The badkup thread is stheduledlik e any other thread. However, whena badkup thread is
due to berun, rather than actually running the badkup thread (which hasno execution
context, having been idle before being assignedto the client thread) the sdeduler
instead runs the client thread. Thus the client thread receives CPU time from two
sources{ from its own VP's CPU guarantee, and from the CPU guarantee provided
by the serwer to the badkup thread. Therefore client threads with su cient CPU time
are not limited by the level of CPU resourcesassignedby the sener, whilst the sener
can bound the level of crosstalk causedby the critical region through assigning an
appropriate level of resourcesto the badkup thread pool.

In the event that the client thread is destroyed or the client aborts the serviceinvocation,
the execution context (stack, registersand auxillary state) of the thread is transferred
to the backup thread. From this point on the badkup thread acts as a normal thread,
continuing the execution of the critical section. When the critical sectionis completed,
the badkup thread returns to the idle state.

6.7.8 System Services

Rcane usesa basic set of servicesto allow clients to communicate their requiremerts to the
System session.

The main interface is the Session interface, implemented as a per-client service module.
Eacdh instantiation of this module maintains the state about a single session. Additionally ,
the Session _priv. module in the System sessionprovides auxillary routines and sharedstate.

As described in Section 5.2.1.2,the Session interface provides the primary point of access
for requesting QoS guarartees (for CPU, memory and network access),loading/linking code
modules, and sessioncreation/termination.
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To support accesgo the network, the Rip and Arp servicemodulesprovide routing and address
resolution services. Thesemodules were ported largely unchangedfrom PLANet [Hicks99c]{
someadaptation wasrequired to t into the resource-isolationmodel supported by Rcane.

6.8 Session Creation and Destruction

New sessionsare created by invoking the Session.createSession()  serviceexported by the
System session. Creating a sessioninvolvesthe allocation of a heap and a default VP (with
a single thread and best-e ort accesgo the CPU) aswell as Runtime houseleepingdata for
the new session.Rcane aggressiely cathesaobjects sud as heaps,threads and VPs to allow
sessioncreation and destruction to be very lightweight. When a sessionis created, credertials
are passedto authenticate the entit y that will be responsible for the sessionand to provide a
medanism by which Rcane may bill that ertity for resourceconsumption (seeSection 5.7).

SinceRcane aimsto charge ead sessionfor the resourcesthat it consumes,as much of the
sessioncreation work as possibleshould be undertaken on a VP owned by the newly created
session,rather than on one owned by the creating sessionor the System session. When a
sessionis created, it initially has no modules linked and no data. To bootstrap the newly
created session,the SessionBoot service module, which is exported by the System Session,
is bound into it { this copiesa single service, accessibleas SessionBoot.bootstrap() , into
the new session. A callbadk evert that invokes SessionBoot.bootstrap()  is registered for
the session'sVP; at this point all further sessioncreation work is performed by the session
itself.

Upon invocation of SessionBoot.bootstrap() , the code librarian loads/links the initial
module speci ed (in the call to Session.createSession() ) for the new session. This will
in turn link in any dependenciesof the initial module { typically thesewill include Safestd
(the standard library) and the Session interface itself.

When destroying a session(either through resourceexhaustion or at its own request), the
following sequenceof everts occurs:

1. All client handlesheld by other sessiondor servicesexported by the dying sessionare
marked asrevoked. All client threads from other sessionghat arein serviceinvocations
to the dying sessionare jumped badk into their calling sessionsjn ead casea Revoked
exception is raised at the point of invocation.

2. All of the dying session'sclient handlesare marked as revoked. All threads belonging
to the dying sessionthat are in serviceinvocations to other sessionsare jumped badk
into the dying session.

At this point, the dying sessionis completely isolated from other sessions{ it has
no handlesto other services(even to the System session),and no other sessionshave
handleson its exported services.

3. The session'snetworking resourcesare revoked.
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4. The session'sthreads are all terminated.
5. Houseleepinginformation maintained by the System sessionis released.

6. The Runtime structures and heap are released.

6.8.1 Session ldenti ers

Asscciated with ead sessionis a network-wide unique sessionlD, composedof the network
addressof the node at which the sessionoriginated, and a unique identi er within that node.

When a new sessionis created at a node, it may either be assaiated with the sessionlD of
the remote client that createdit (provided that the remote client has not already created a
sessionat the current node), or may have a fresh sessionlD generated,with the current node
asthe originating node stored in the sessioniD.

It is intended that this sessionID ewertually be usedto support resourcetransfer across
multiple programmable nodes, thereby potentially reducing the billing overheadsassaiated
with programmable networks. Such support is currently limited { the resouice bound eld

in Rcane virtual network padkets may be usedto transfer resourceunits between sessions
owned by the sameclient on di erent nodes. Theseresourceunits are not yet fully integrated
with the Rcane resourceaccourting medanisms.

6.9 Summary

This chapter has described the key implementation details of a prototype of the Rcane
architecture built over the NemesisOperating System.

For the prototype implementation, Objective Caml was chosenasthe languageand Nemesis
asthe platform for Rcane . The rationale behind thesechoiceswasdiscussedand a number of
de cienciesin OCaml wereidenti ed; in ead casethe de ciency wasremedied,or elseparallels
with existing researd were preseried that suggestedthat a remedy for such a de ciency was
practical.

Although the prototype implementation wasdeveloped over Nemesisthe Rcane architecture
could be implemented over any OS providing suitable support for QoS isolation; similarly,
any languagewith suitable safety properties could be usedasthe client language.

The chapter then discussedimplemertation details of the major featuresof Rcane. In eadh
casethe design decisionsthat promoted e ectiv e QoS isolation and performance were pre-
serted. The EDF sdeduling algorithm providesthe CPU guararnteesrequired by the Rcane
architectures; the abstractions of events and thread pools, which provide an interface for the
CPU sceduler to clients, were discussed.To provide the separatedheapsthat allow Rcane
to prevent crosstalk due to garbagecollection, Rcane must keeptrack of the setsof threads
with accessto ead heap, and must ensurethat inter-heap referencescannot be created by
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untrusted clients. The implementation employs a similar mecanism for network transmis-
sion asfor CPU sdeduling; this allows e ectiv e transmission guaranteesto be made. Padets
received over the network are demultiplexed as early as possiblein order to prevent crosstalk
betweendi erent clients' padets.

Inter-sessionservicessupport lightweight communication betweenclients executingon Rcane ;
seweral implementation details of serviceswere described: their structure, the optimisations
employed by Rcane to improve copying performance and the mecdanisms used to ensure
safety in the event of abnormal termination.

Also discussedwere two cortrol-path features of Rcane : the bytecode librarian and the
medanismsfor registering and deleting clients' sessions.
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Chapter 7

System Evaluation

This chapter and Chapter 8 presen the results of experiments carried out to test the prototype
implementation of Rcane . Aspectsof the architecture are consideredin terms of performance,
resourceisolation, and exibilit y.

The ewaluation is structured into two parts. In this chapter, the basic Rcane systemis as-
sessed the results of micro-benchmarks are preseried for the key featuresof the architecture
preseried in Chapters 5 & 6. Chapter 8 examinesthe use of Rcane as a basearchitecture
for active network systems.

7.1 Evaluation context

7.1.1 Exp erimental equipment

The majorit y of the experimerts presenied in thesechapters were performedon Intel Pentium
Il machines running at 300 MHz connectedto 100Mb/s Ethernet. Someexperiments also
involved Intel PertiumPro machinesrunning at 200MHz, connectedto 10Mb/s Ethernet.

7.1.2 Instrumen tation

The Rcane prototype was instrumented in order that events of interest (for use during
debuggingand performance measuremet) could be recordedin an in-memory log and later
ushed to disk for analysis. Events recordedin the log included:

Sdceduler entry/exit and scheduling logic
State transitions for threads, thread pools and VPs

Garbage collection activity
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Padket transmission and reception

Logging of specic typesof events was made con gurable at compile time, allowing logs to
be kept only of the events of interest to a particular experiment, and preverting any wastage
of CPU cyclesdue to unwanted events being logged.

Events wererecordedwith cycle-time accuracy;the time taken for a single evert to be logged
was found to be approximately 0.2 s.

7.2 Scheduler Performance

The fundamental advantage of a programmable network over a passive network is that end-
usersmay perform computations at nodeswithin the network, and hencereceiwe lower latency
than if all interactions were required to take place betweenthe end-userand the ultimate
destination. In order to provide low latency, it is vital that the user-supplied applications
running on the programmable node receive timely accessto the CPU. Alternativ ely, if the
application is attempting to processor Iter someform of multimedia data, it should receive
regular accesgo the CPU in order to prevernt excessiejitter in its results. Thus animportant
feature of Rcane that must be shown is that it allows usersto request and receiwe the
guaraneed accesgo the CPU that they require.

To demonstratethe e ectiv enesofthe CPU guaranteesprovided by Rcane , the time received
by a set of sessionswas logged. Four sessionswere created at various times through the
experiment. Eacdh sessionuseda single VP and was CPU bound.

All four sessionswere started with no particular guarantee, but with accessto best-e ort

time. Session®B, C and D were createdat 3 secondintervals following the creation of session
A, and requested10%, 20% and 30% sharesof the CPU respectively, eath with a period of
4ms and with no accesdo extra time.

Figure 7.1 shows the percenage of the total CPU that ead VP received over ead scheduling
period (i.e. betweenconsecutive deadlines). The scheduling period for ead VP is usedsince
this is provides an accurate view of whether the contractual guarantee made to the sessionis
being honoured. SincesessiomA's VP is running without a guarartee, it is assigneda notional
scheduling period of 100ms;hence,the trace shown is clearly coarserthan the traces for the
other sessionswhoseVPs have ne-grained guarartees.

Also presen in the system, but omitted from Figure 7.1for clarity, are the Systemsessiorand
the Best-E ort session.Figure 7.2 shows separatebreakdowns for all sessionsn the system,
including the System Sessionand the Best-E ort session.

As may be seenfrom the traces of time received, Rcane respectsthe CPU guaraneesthat
have been given to the various sessions. In particular, sessionsB, C and D ead initially
briey consumevarying amounts of CPU time (whilst running best-e ort), but once they
resene guaranteed allocations without useof best-e ort time, they can be seento accurately
receive the guaranteesthat they requested. SessionA consumesany spare CPU time that
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Figure 7.1: CPU consumption by a set of sessions

is available, and so initially receives 100% of the CPU { howewer, as eat of the guaranteed
sessionsstart in sequenceijts share of the CPU is reduced.

The occasional spikes on the System sessiontrace in Figure 7.2 (a) re ect periodic house-
keeping activity (such asresponding to routing information padkets from other Rcane and
PLAN boxes). The activity onthe Best-E ort sessiontrace in Figure 7.2 (b) re ects the work
it performs in requesting the creation of new sessions.It can be seenthat the sessionswith
guaranteed CPU time are virtually una ected by this activity, whereassessionA, which is
running with no guaranee, experiencesa loss of processorbandwidth.

Thus it can be seenthat sessionsrunning on Rcane, by requesting a particular slice of
CPU time over a particular period, may bound the latency with which they can processdata
received from other entities in the network, or calculate fresh data to be sert out to others.

Figure 7.3 shows the sameexperiment repeated, but with eadt sessionrequesting accessto
best-e ort time in addition to any guaranteesthat they might alsorequest. It canbe seenthat
the total time received by ead sessionuctuates considerably;this is due to the distribution
of best-e ort time beingbursty at the scaleof the sessionsstheduling periods. However, when
the best-e ort time received by ead sessionis excluded from the traces (seeFigure 7.4), it
can be seenthat the amounts of guaranteed time received by VPs belongingto sessionB, C
and D still accurately match the resenations made by them.

It wasseenin Figure 7.3that at a ne grain (at the granularity of the scheduling periods), the
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Figure 7.3: Total CPU consumption by sessionausing best-e ort time

amourt of best-e ort time received could vary substartially . Figure 7.5 shows the cumulativ e

best-e ort time received by ead domain, recorded at the end of eadr scheduling period for

eadt VP. It canbe seenthat at ead point in time, the slopesof all running sessionsare equal,

shaowing that over longer periods of time the scheduleris fairly allocating any sladk time in the

system. As more sessionsare added to the experiment, the amount of best-e ort CPU time

received by ead session(and hencethe slope of the line on the cumulativ e trace) decreases.
As discussedin Section 6.3.1, in a complete implementation of Rcane, more sophisticated

schedulers { with features such as sharing out sladk time in proportion to the amount of

guaranteed time resened by eadh VP { may be used.

7.3 Service Performance

Rcane servicesareintendedto provide lightweight communication betweensessions A major
use of such communication is to accessservicesprovided by the system; alternativ ely it may
bein order to accessservicesprovided by another session(e.g. enhancedrouting tables) or to
allow a particular execution ervironment to share state betweenmultiple sessions.Straight-
forward data sharing is not possibledue to the isolated nature of di erent heapsin Rcane,
therefore the inter-sessionservicesneedto have minimal overhead.

To measurethe performance of the service mechanism, a seriesof test service invocations
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Figure 7.4. Guaranteed CPU time received by a set of sessions(separated views), when
best-e ort time is also being received by all application sessions.

were performedwith di erent typesand sizesof parameters. Also performed, for comparison,
were a series of other non-serviceinvocations. Each test was repeated one million times,

and the averagewas taken. The large number of iterations used for the tests ensuresthat

any amortised overheadsdue to garbage collection are accurately re ected. Sucd garbage
collection runs will only occur every few thousand invocations, depending upon the size of
the heap. The tests were repeated with substartially larger (several megalyte) heaps,which

werefully garbagecollectedbeforecommencingead test, to attempt to measurethe overheads
of copying without the overheadsof garbagecollection. Howewer, theseproved to be actually

slightly slower than the tests that involved garbage collection. This is presumedto be due
to the loss of cadhe locality when using a larger heap, and the cacde pollution causedby the
garbagecollection runs betweenead invocation.

Table 7.1 and Figure 7.6 shaw the times taken for the various invocations. Theseinvocations
are:
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Run time call: An invocation from the Caml virtual machine into the Runtime.
Local function: An invocation of a Caml closurefrom within the virtual machine.
Callbac k: An invocation of a Caml closurefrom within the Runtime.

Null service: A full inter-sessionserviceinvocation with a single integer parametert.
Null service with timeout: A serviceinvocation as above, but registering a timeout.

String service: An invocation of a servicethat takesa string, with string lengths varying
over 0{100 bytes.

Arra y service: An invocation of a servicethat takesan array, with the array size varying
over 0{100 elemerts (0{400 bytes).

List service: An invocation of a servicethat takes a linked list of integers, with the list
length varying over 0{100 elemerns (0{1200 bytes).

The time taken by the runtime call, local function call and callbad is intrinsic to the ar-
chitecture of the OCaml virtual machine. It can be seenfrom Table 7.1 that a null service

'Due to the design of ML and the Caml VM, all functions take at least one argument. A void function is
represerted as a function that takesa value of type unit , of which there is only a single value, () , represerted
as an integer (zero) in the VM.
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Invocation Time ( s)
Runtime call 0.06
Local function 0.20
Callback 0.50
Null servicecall 1.50
Null servicecall with timeout 2.29

Table 7.1: Times for xed-cost invocations

invocation is approximately six times slower than a local function call. An analysis of the
time spert in a serviceinvocation is given in Section7.3.1.

From Figures 7.6 (a), (b) & (c), it can be seenthat in ead casethe cost increasesroughly
linearly with the size of the parameters. Figure 7.6 (b) shaws the time taken for array and
list servicesaccording to the number of elemeris being copied; Figure 7.6 (c) presers the
samedata accordingto the total amount of memory being copied{ ead list elemen consists
of a two word cell plus a word of heap metadata.

In Figure 7.6 (b), optimised and unoptimised forms of the array and list invocations are
shown. The string invocations and the unoptimised form of the array and list invocations
represen three di erent modes of parameter copying for the genericcopier:

A string is a variable-sizedobject that may be copiedin a single operation { the jagged
nature of the trace is due to word-copy optimisations in the memcpy() function.

An array is a variable-sized object whose elemens must eath be chedked and copied
individually .

A list consistsof a seriesof small xed-sized objects eat of whose elemens must be
cheded and copiedin turn.

As described in Section 6.7.3, there are opportunities to optimise the copying basedon type
information; e.g.a serviceparameter that is known to be an integer array can be copiedin a
single passas with a string.

In many cases,the nature of ML's type system meansthat the type of an object cannot
be determined until copy time; howewver, where possible Rcane usestype information to
substitute optimised copying routines in place of the generic copier. It can be seenfrom
Figure 7.6 (b) that the optimised versionsof integer array and integer list serviceinvocations
are substartially faster than those using the generic marshaller. In the caseof arrays, the
time takento copy evena 100elemen array is insigni cant when comparedto the time taken
for the remainder of the serviceinvocation. For lists, the copying overheadis still substartial,
due to the multiple allocations and the interactions required with the garbagecollected heap;
howewer, it can be seento be signi cantly faster than with the genericcopier.
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Figure 7.6: Serviceinvocation times for varying numbers of parameters

7.3.1 Breakdo wn of time consumed in service invocation

In order to determine how much of the overhead of a servicecall is due to the medanisms
usedby Rcane, and how much is due to the particular languageusedto implement the safe
portions of Rcane, Figure 7.2 shows the breakdown of time amongst the various stepsthat
make up an null serviceinvocation.

This processof invoking a serviceis described in fuller detail in Section 6.7. Briey , these
stepsconsist of:

Local function invocation: Invoking the VM wrapper around the servicehandle.
Run time invocation: Transferring cortrol from the wrapper to the runtime.

Heap manipulation:  Registering(and later deregistering)the calling thread with the serer's
heap, to ensurethat any roots to serer heap objects that are stored in the calling

130



Activit y Time

(s %

Cumulative | Incremenal

Local function invocation 0.24 0.24| 152
Runtime invocation 0.34 0.10 6.3
Heap manipulation 0.60 0.26| 16.5
Chain manipulation 0.77 0.17| 10.8
Exception handling 0.90 0.13 8.2
Sener callback 1.58 0.68| 43.0
Total 1.58 1.58 | 100.0

Table 7.2: Breakdown of time spent in a serviceinvocation

thread's stadk are correctly traced.

Chain manipulation:  Linking the calling thread into the list of callers for the service, for
usein the evert of serwer or client death.

Exception handling: Linking the runtime stack frame into the Caml exception chain, to
ensurethat any exceptionsraised by the serviceinvocation are handled in the runtime
and appropriate recovery performed before returning to the client.

Server callbac k: Recursiwely invoking the OCaml virtual machine in the sener's heap to
call the actual servicefunction.

Almost half the time taken by a servicecall is due to the costs of invoking the Caml virtual
machine on the server's function. If the client speci es a timeout for the call, this adds an
additional 0.7 sto the time required, represeting an overheadof 45%. This cost consistsof
the time required to add and remove a timeout evert for the serviceinvocation.

By comparing Table 7.1 and Table 7.2, it may be seenthat someof the stepstake longerwhen
executedas part of a serviceinvocation than when executedon their own { this is presumed
to be due to reduced cade locality.

7.3.2 Comparison with other IPC systems

Table 7.3 comparesthe performance of Rcane inter-sessionserviceswith IPC primitiv es
provided by other systemg

Nemesis Null IPC tests measurethe averagetime for 100000iterations of a full Nemesis
IPC call; I/O Ping tests measurethe time taken for an evert to be passedover an 1/0
Channel from one user-lewel thread to another in a di erent domain, and badk. These
tests were performed for the casewhere both processeswere in the same protection

2The gures in Table 7.3 for Windows NT, J-Kernel and L4 were taken from [Hawblitzel98].
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IPC type Hardware | Time s
Windows NT RPC PPro-200 109.0
Windows NT COM out-of-proc PPro-200 99.0
NemesisNull IPC (same protection domain) P11-300 48.3
Nemesisl/O Ping (same protection domain) PI11-300 395
NemesisNull IPC (di erent protection domain) | PI1-300 69.8
Nemesisl/O Ping (di erent protection domain) | PI1-300 56.8
Rcane Null serviceinvocation P11-300 15
J-Kernel Null LRMI (MS-VM) PPro-200 2.2
J-Kernel Null LRMI (Sun-VM) PPro-200 541
L4 Null IPC P-133 1.8

Table 7.3: Time taken for a null invocation by various IPC systems

domain (th us removing the needto perform a full cortext switch betweenthe processes)
and also the casewhere eat processran in its own protection domain.

Windo ws NT RPC and COM tests measurea null invocation using two standard Windows
NT IPC mecanisms.

J-Kernel Null LRMI (Local Remote Method Invocation) measuresa call through a J-Kernel
Capability [Hawblitzel98], running under a Microsoft JVM and a Sun JVM.

L4 Null IPC measuresthe time for an IPC in the L4 microkernel [Hartig97]

It may be seenfrom Table 7.3 that Rcane servicesare substartially faster than IPCs on
Windows NT or Nemesis;they are comparable with IPCs over the J-Kernel. J-Kernel and
Rcane both take a similar approach to protection, by employing multiple disjoint setsof data
in a single addressspace,isolated through the use of type-safecode. An exact comparison of
the e cacy of Rcane and J-Kernel is di cult, sincewhile Rcane hasmore runtime support
than the J-Kernel { which is implemented purely in Java (JIT-compiled where applicable)
{ the J-Kernel doesnot provide isolated heapsfor ead client. Thus Rcane hasto perform
additional work on a serviceinvocation to link (and later remove) the client's thread into the
sener's heap.

The L4 microkernel hasbeenoptimised to provide fast IPCs betweensmall processeshrough
the useof non-overlapping memory segmetts, thus avoiding much of the overheadof address-
spaceswitching experienced by Nemesisand Windows NT IPCs. When the overhead due
to the Caml virtual machine is discourted from the Rcane service invocation times, and
accourting for the relative speedof the test equipmert (300MHz vs. 133MHz) it can be seen
that L4 and Rcane adiieve comparable performance.

7.3.3 Abnormal Termination

In order to deal with arbitrary behaviour from user-suppliedcode (in particular, clients or
sernersexiting voluntarily or through resourceexhaustionduring a serviceinvocation), Rcane
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servicesmust be robust to abnormal termination situations. Four such scenarioswere con-
sidered:

Server death: If a serwer sessionis destrayed or exits whilst a service invocation from a
client is in progress,the client thread must be cleanly transferred badk to the invoking
session,and a Revokedexception raised.

Clien t death: If aclient sessionor thread exits whilst in a serviceinvocation to a sener, the
thread must be cleanly disconnectedfrom the invocation chain for that serer beforethe
thread is destroyed. Garbage collection will ensurethat any allocated data structures
are released.

Client abort: This is similar to client death, with the di erence that it is initiated by the
client, and a Service.Aborted exceptionis raisedin the client, rather than the thread
being destroyed.

Clien t death with backup: In either of the above cases,when the serer was executing
within a critical region at the point when the abort/death occurred, and had registered
a badkup thread pool for the critical region's mutex the state of the client thread is trans-
ferred to the badckup thread, allowing execution of the critical region to be completed
cleanly.

Experiments were performed in which a client made serviceinvocations to a server, and the
dierent caseslisted above were made to occur. In eath caseRcane behaved as intended.
This demonstratesthat the good performanceprovided by Rcane servicesdoesnot comeat
the expenseof safehandling of (uncommon) abnormal termination cases.

7.3.4 Resource Backup

In Section 7.3.3the thread badkup medanism of Rcane was evaluated to ensurethat termi-
nation of a client thread within a senwer's critical sectiondoesnot result in corruption of the
data protected by that critical section.

As described in Section 5.6, since critical sectionsrepresern regions of mutual exclusion, it
is important that a server can prevent a resource-por or malicious client from spending too
longin acritical sectiondueto lack of CPU resourcesptherwise crosstalk betweenclients may
be experienced. Such cortrol is a orded to the sener through the use of the thread badkup
medhanism { by assigningCPU resourcesto the badkup threads, server CPU resourcesmay
be usedon behalf of the client only in those sectionsof code that might causecrosstalk, suc
as critical sections.

To demonstrate that this mecdanism allows the serner to provide an e ectiv e bound on the
crosstalk experiencedby a client, a simple server and a pair of clients were constructed. The
bulk of the work performed by the server did not require accessto a critical section, and
hence could be carried out without a badkup thread. Additionally, ead call also updated
somestatistics about server usage;these statistics were protected through a critical section.
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Figure 7.7: The e ect of resourcebadkup on crosstalk

Of the two clients, the rst client (referred to asfast) received a 1ms CPU guarartee over a
10msperiod, and the second(slow) received a 1ms CPU guarantee over a 500msperiod. In
order to simulate a heavily-loaded system, neither client was given accesgo best-e ort CPU
time.

Three experiments were conducted:

1. The fast client wasrun on its own.
2. Both clients were run simultaneously; no resourcebackup was employed by the sener.

3. Both clients were run simultaneously; the serer badked up the critical section with its
own CPU resources.

In eat case,the clients cortinuously invoked the servicesprovided by the sener, and the
rate of service completion by the fast client was measured. Figure 7.7 shows the results for
the three scenarios. It can be seenthat when the fast client is executing alone, it achievesa
constart servicerate.

When the slow client is also executing, but without resourcebadup in the sener, the fast
client may be obsened to occasionally experiencese\ere crosstalk, for periods of up to 0.5s.
This is due to the slow client exhausting its CPU slice whilst executing within the critical
section. In this situation, the slow client does not receive any more CPU resourcesuntil
the start of its next period (after 0.5s), and the fast client is unable to obtain the mutex
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for the critical section since it is held by the slow client; thus it cannot make use of its
own guaranteed CPU resources. This is similar to but distinct from the problem of priority
inversion [Lampson8(Q { since Rcane's CPU sdeduler usesthe notion of guaranteesrather
than priorities, there is not the samepotential for deadlock asin a priority inversion.

In the third case,when the sener provides resourcebadup to the critical section, it can be
seenthat the fast client doesnot su er any such crosstalk{ on the occasionswhen the CPU
resourcesof the slow client are exhausted while it is holding the critical section lock, the
resourcesof the sener are usedto ensureits progressuntil it has exited the critical section.

Rcane's resourcebadkup medanism can thus be seenas an e ectiv e tool for supporting
the client-resourced nature of Rcane 's inter-sessionservices,whilst still allowing a sener to
bound the level of crosstalk experiencedby clients when accessingshareddata within critical
sections.

7.4 Garbage Collection Isolation

Rcane runs ead sessionin a separateheapin order to eliminate crosstalk causedby garbage
collection { a sessionshould not be inconvenienceddue to the allocation behaviour of other
sessions.To demonstrate the utilit y of this approad, two scenarioswere considered. In (a),
VPs A and B are running in the samesession.Initially both are generating small amourts of
garbage. After a period of time, A beginsgenerating large amourts of garbage. Scenario(b)
is the same, but with the two VPs running in separatesessiongand hencehaving separate
heaps). Figure 7.8 shows the outcome of thesescenarios.In (a), both VPs are initially doing
small amounts of GC work. A is running best-e ort, whereasB has a guarantee of 1ms
in eadh 4ms period. When A switchesto generating large amounts of garbage, the time it
spends garbage collecting increasessubstartially . Howewver, as shavn by the noisy region at
the bottom right of the graph, B also endsup doing an irregular but substartial amount of
GC work. Although B hasits own independert CPU guarartee, at times critical GC activity
(such asroot tracing) is taking place when its thread is due to run; this GC work must be
completed before normal execution can be resumed. In (b), B is una ected by the extra GC
activity causedby A, sinceit is running in a separate sessionand hencedoes not share its
heap; thus B's own GC activity remains minimal.

This suggestghat the decisionto placeead sessiorin its own heapwasa soundone. It should
be noted that this represerts a worst casescenario,in that sessionA wasallocating very large
amounts of memory with very little computation in between allocations, and thus stressing
the garbagecollector; however, sinceRcane is designedto acceptcode from untrusted users,
sudch byzantine behaviour may be seenfrom malicious or buggy clients. Isolating ead client
and accourting their resourceusagedirectly is fairer and more reliable than attempting to
identify this kind of behaviour basedon heuristics or arbitrary limits.
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Figure 7.8: Avoiding QoS crosstalk due to garbagecollection
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System Time (Mms)
Rcane 1.7
Nemesis 13.9
Linux (null) 0.4
Linux (quit-static) 0.7
Linux (quit-dynamic) 2.8
Linux (ocaml) 20.0
Linux (java) 394.0

Table 7.4: Time to create and destroy a process/session

7.5 Session Creation/Destruction

Until the full potential of programmablenetworks is widely realised,it isdi cult to predict the
typical lifetime of a session(represeriing a set of resourceresenations) or the rate at which
new sessionswill be created. Howewver, since maintaining an unused resource resenation
on a node is likely to be expensive and wasteful, the architecture of Rcane should not,
if practical, preclude the possibility of clients creating and destroying sessionsover short
timescales. Therefore the overhead of creating and destroying a sessionon Rcane needsto
be low.

Table 7.4 shows the time taken to create and destroy a sessionin Rcane, and comparesit
with the time taken to create and destroy a domain in Nemesisand a variety of dierent
processesn Linux (running on equivalent hardware). The various casesare as follows:

RCANE : A wait4Last() function was addedto the Session interface, to permit a session
to wait for its most recerily createdchild sessiorto exit, in a similar mannerto wait4()
in Unix systems. The Best-E ort sessionrepeatedly createsa sessionand waits for it
to exit. The child immediately exits.

Nemesis: A WaitFor() method was added to the DomainMgrinterface to permit a session
to wait for a given domain to exit. A bendhmarking program repeatedly createsa child
domain that exits as soon asthe standard Nemesisenvironment has beenset up.

Linux (null): The parent repeatedly calls fork() followed by wait4() , and the child im-
mediately calls exit() (without executinga new image).

Lin ux (quit-static):  As above, but the child instead exec() s a statically linked program
that immediately calls exit()

Lin ux (quit-dynamic):  As above, but the child binary is dynamically linked.

Lin ux (ocaml): As above, but the child binary is a Caml virtual macdhine, executing a
bytecode le that immediately quits.

Lin ux (java): As above, but the child binary is a Java virtual macine.
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Activit y Time (%)

Creation Creating Runtime structures 9.3
Creating Core houseleepingstructures 10.7

Linking of minimal environment 27.3

Dynamic linking of Caml/R cane ernvironment 30.6

Destruction | Revocation of services 16.6
ReleasingRuntime structures 0.8
ReleasingCore houseleepingstructures 4.7

Table 7.5: Breakdown of time spert creating/destroying a session

In eath case,the gure in Table 7.4 represerts the total time betweensuccessie creationsin
many thousandsof ongoingtests. In particular, the test for Rcane wasrepeated one million
times with no increasein the memory usageof the Rcane domain.

The sessionunder test in Rcane performs very little work itself, but the ervironment in
which it runs is dynamically linked together at sessioncreation time; a full Caml standard
library is available, along with a full set of servicesfor accessinghe Session interface® that
provides the main interface betweenthe systemand client sessions.

It can be seenfrom Table 7.4 that Rcane compareswell to the dynamically-link ed binary
under Linux, particularly sincein the current implementation of Rcane, all layersapart from
the Runtime are run asinterpreted Caml bytecode.

The overhead of creating and destroying a sessionin Rcane is also substartially lower than
the cost of running a separate Caml (or Java) virtual machine for ead client, or creating a
separate Nemesisprocess.

A breakdown of the time consumedin creating and destroying a sessionis givenin Table 7.5.
This processis described in more detail in Section 6.8.

7.6 Network Performance

Without accessto the network, an Rcane node is something of a white elephart; the CPU
and memory resourcesare likely to be available more convenierily and more cheaply on the
end-user'sown node. It is the combination of these exible programmable resourceswith
the location within the network or closeto other resourcesthat enablesthe benets of a
programmable network to berealised. In particular, similarly to the needfor timely accesgo
CPU resourcesrecognisedin Section 7.2, timely accessto the network is required to permit
usersto gain the latency bene ts from code mobility, or to processstreams of multimedia
data.

Therefore, this section examinesthe network performanceof the Rcane system,in terms of
the quality of serviceguaranteesthat it providesto clients executing on the system.

8As partially described in Figure 5.2
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7.6.1 Network Transmission

Figure 7.9 shows a trace of network output from three sessionsgad attempting to transmit
cortinuously.

SessionD has no guaranteed bandwidth.

SessionE has a transmission scheduling period of 6ms, during which it receives 2ms
worth of link bandwidth. This 33% share equatesto 33Mb/s on the 100Mb/s link used
for this experimert.

SessionF has a 6ms transmission scheduling period, and a dynamically changing guar-
antee (seebelow).

SessionF starts with a guarantee of 25%. After about 12s,it requests45%, thus reducing
the best-e ort bandwidth received by D. After another 2s, it requests65%. Now the link is
saturated and there is no best-e ort transmission time available for D. After a further 2sit
returns to 25%, allowing D to begin transmitting again. It can be seenfrom the trace that
the desiredresourceisolation is achieved.

The apparert noisinessof the traces shavn for the sessionswith guaranteed resourcesis
explained by Figure 7.10, in which a 1 secondperiod from the same experimert is shavn
magni ed. SessionE and F are both seento be oscillating around the actual value that they
had beenguaranteed. This is due to the quantisation e ects causedby the useof large (1500
byte) padkets and small transmission periods.

The network transmissionguarantee givento sessiorke, 33Mb/s guaranteed over a 6msperiod,

is equivalent to 16.66 padkets per scheduling period. Sinceit is not possibleto preempt access
to the network whilst a padket is in the processof being transmitted, sessionsalternately

overrun their guarantee in one period, and then receiwe correspondingly lessin the following

period, such that when the traces are averaged over two or more periods, the oscillation

becomesnsigni cant. In the caseof sessiorE, it managesto transmit either 16 or 17 padkets

in eadt period.

This e ect could be reduced through the use of a networking technology that usesa much
smaller maximum padket/cell size. For example, ATM uses xed-sized cells of 48 bytes (plus
5 bytes of headerinformation), which could therefore allow scheduling decisionsto be made
on a ner granularity.

7.6.2 Network Reception

On a shared, unscheduled medium such as Ethernet it is not straightforward to provide
guaranteeson the number of padets received at a node for a particular client. However, the
level of guaranteed bu ering and CPU time that a particular client receiveswill a ect the
amount of incoming data on a network streamthat actually reachesthe client. To demonstrate
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this, the bandwidth of data that could be processedby a sessionrunning on an Rcane node
was measured.

A sessionon a neighbouring node (belonging to the same principal, and bearing the same
sessionID) transmitted approximately 97Mb/s acrossthe intermediate link. A CPU bound

sessionwith a 40% guarantee and a 10msperiod is also running on the receiving node. The

bu er spaceresened by the receiving sessionwas varied between 1.5KB and 88KB; it was

guaranteed 10% of the CPU, with a scheduling period varying between1msand 20ms. More

details of the experimental setup, including the method usedto launch the various sessions,
are given in Section 8.2.3. 10% of the CPU had beenobsened to be more than su cien t to

processthe entire incoming data stream on an otherwise unloaded node.
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Figure 7.11: Network receive bandwidth asa function of CPU scheduling period and bu ering

Figure 7.11 shows how the level of bu ering and CPU sdeduling period a ect the amount of
data that canbe processed.lt canbe seenthat whenthe sessionruns with a short scheduling
period, it is scheduled su cien tly frequertly to processall the incoming data even when its
bu ering is relatively low. Similarly, when the sessionhas large amounts of bu ering, it is
able to processall the data even if its scheduling period is long.

Howewver, the CPU-bound sessionhas a guaranteed slice of 4ms every 10ms; as the receiving
session'sscheduling period increases|t nds itself interrupted for longer periods of time, and
thus for modestlevelsof bu ering the sustainedreceive bandwidth falls { the receiving session
losesaccesdo the CPU for long enoughstretchesof time that its bu ers are lled up, resulting
in incoming padkets being dropped in the network device driver. As the receiving session's
period increasessigni cantly beyond the 4msslice that is being received by the CPU-bound
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session,no further reduction in processedbandwidth occurs.

It may also be seenthat at very low levels of bu ering, the amount of data that can be
processeddrops o rapidly due to the inherent latency in the Nemesisl/O channelsbetween
the network devicedriver and Rcane .

The ability to make guaranteesto clients about the level of resourcesresened for them is
essetial to allow clients to make tradeo s (such as a longer scheduling period* but a larger
amourt of bu ering) sothat they may meet their deadlineswith maximum econony.

7.7 Summary

This chapter has preseried an experimental evaluation of the key features of the Rcane
architecture in terms of performance and quality of service. The evaluation was structured
into v e main sections.

The scheduler was examined, and was showvn to provide e ectiv e guarantees of processor
bandwidth to sessionsrunning in Rcane. Sud guarantees are vital to gain the latency
improvemerts assaiated with code mobility; they are also required for jitter-free processing
of streamsof data within a network.

The Rcane inter-sessionservice architecture was examined. Rcane serviceswere showvn
to be e cien t, and comparable with some of the fastest current IPC primitiv es. The type-
based marshalling optimisations performed by Rcane were shavn to provide substartial
improvemerts over a marshalling strategy that takes no accourt of type information. The
breakdowvn of a service invocation showved that a substartial portion of the overheadin a
serviceinvocation is inherert in the Caml virtual machine usedby this implementation. These
results demonstrated that Rcane 's servicesprovide an e ectiv e lightweight communication
medanism between otherwise isolated sessions.

Sud isolation was seento be e ectiv e at ensuring sessionsreceived their CPU guarantess
rather than being interrupted by garbage collection activity due to other sessions;the ap-
proach taken by Rcane of providing multiple independert heapsprovided good guararntees
ewvenin the presenceof heavy garbagecollection activit y causedby other sessionspathological
use of memory.

Rcane's sessionsvere shavn to be a lightweight alternativ e to processesn a general-purpose
operating system; in particular, creating and destroying an Rcane sessionwas seento be
substartially faster than instantiating and destroying a full virtual machine for ead client.
Sudch a property is likely to be required of a node in a programmable network, as clients
may wish to canceltheir resenations when not needed,or transfer their resenations around
the network. When running untrusted code, and in situations in which users' sessionsnay
be terminated due to lack of resources,Rcane must be capable of correctly handling ab-
normal termination situations without error. The di erent abnormal caseswere considered

4Since a shorter scheduling period requires more frequert reschedules and hence more scheduler overhead,
it would be likely that an active node would charge more for a reduced scheduling period.
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experimentally; in ead casethe correct behaviour was obsened.

Timely accessto the network is essetial if end-usersare to make e ectiv e use of a pro-
grammable network platform sudh as Rcane. Rcane was seento provide e ectiv e resource
guarartees for both network transmission (bandwidth) and network reception (bu ering).
The ability of a sessionto trade o its CPU sdeduling requiremerts against its network
bu ering requiremerts was demonstrated.

The experimental results preseried in this chapter have showvn that at a systemlevel, Rcane
providesthe resourceisolation and guaranteesrequired for an e ectiv e programmable network
platform. The next chapter investigatesthe use of Rcane asan active network platform.
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Chapter 8

RCANE as an Activ e Net work
Platform

The previous two chapters preseried an implementation of Rcane and evaluated key aspects
of the system. It was demonstrated that Rcane provides a platform with good resource
isolation and guarantees. In order to properly act asa programmable network node, Rcane
must be be su cien tly exible to accommalate the multiple di erent styles of programming
that active networks, open signalling and other programmable network applications require.

This chapter examinesthe use of Rcane as the basis for an Active Network node, with
support for multiple di erent execution ervironments:

The PLANet ervironment;
The ANTS ervironment;

Activ e Reliable Multicast.

8.1 Activ e Net works

In an active network, someor all of the nodesin the network may have their functionality
programmatically extended by end-usersof the network. The ervironment in which sud
user-suppliedcode may executeis known asan Execution Environment (EE). The EE de nes
the language or languagesin which the code should be written, and the servicesthat are
available to clients of the EE. It has beensuggestedthat IP itself constitutes a simple EE,
using a languagewith one principal (implicit) service,route-and-forward-packet() , anda
collection of lesscommonly usedservices(ICMP messages).

In earlier active network researd projects, ead node has generally supported only a single
EE. Two researd e orts are underway to make it more straightforward to use multiple EEs
on a single node:

144



The Active Network Backbone (ABone) [ABone] permits multiple EEs to run on a
single Unix node as separateprocesses.The Active Network Daemon [SRI99] receives
padkets in the Active Network Encapsulation Protocol (ANEP) [Alexander97a] and
demultiplexes the padkets to the relevant EEs.

The NodeOS[Peterson00ajaims to provide a low-level operating-system style interface
suitable for implementing active network EEs.

In both of these e orts, the main resourceprincipal is the EE { an EE is a program that
corntrols resourceson behalf of multiple end-usersof the network. Whilst this model may
facilitate the straightforward developmert of an EE, it makesit dicult for end-usersto ac-
curately cortrol their own resourcesparticularly if they areinteracting with multiple di erent
EEs simultaneously.

The approac taken by Rcane is that the sessionis the resourceprincipal, and that EEs
should e ectiv ely be regardedas library code! that a sessionmay instantiate to provide the
desired ervironment. Thus a client with simple needsmay interact directly with the raw
interfacesprovided by Rcane , whereasa client with more complex needsmay instantiate one
or more di erent EEs to provide a suitable environment services. In this way, the client has
full cortrol over its resources,and can allocate them to its tasks as it wishes, rather than
being forced into a particular strategy provided by the EE.

A further advantage of this approad is that EE writers do not needto take resourcemanage-
ment speci ¢ issuesinto accourt { instead, they simply provide hooks through to Rcane's
resourcemanagemen, and leave the details to Rcane .

It should be noted that there is nothing to prevent an end-useror a service provider from
creating an Rcane sessionthat acts asa traditional EE supplying active network servicesto
other end-users;n this situation, the EE could still make useof Rcane 's resourcemanagemem
facilities to help apportion resourcesbetweenthe dierent usersof the EE. However, some
features of Rcane { such asthe heapisolation { are not applicable when isolating multiple
activities within a single session;furthermore, the usersof such an EE would then be forced
to follow the resourceallocation and programmability features of the EE.

The next two sectionsdescribe the implemertation of two active network EEs over Rcane {
PLANet and ANTS. Thesewere chosenfor seweral reasons:

They are currently the two most popular EEs in usein the Activ e Networking comnu-
nity.

They represen very dierent computation models: PLANet supports programs writ-
ten in an extremely restricted languageand carried with ead padket, whereasANTS
supports demand-loadedprotocol code in a general-purposelanguage.

They are both complex EEs requiring a high level of exibilit y in their underlying
platform.

1The view that an EE is e ectiv ely a library available to applications is also nding favour in discus-
sions [Peterson00b] regarding the NodeOS project.
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In ead case,an overview of the EE is given, followed by a discussionof the suitability of
Rcane asa platform for supporting that EE.

8.2 PLANet

8.2.1 Overview of PLANet

PLANet [Hicks99q is an EE that supports the execution of programs written in the Padket
Languagefor Active Networks (PLAN) [Hicks9g. PLAN is functional languagereminiscert
of ML, but with very restricted functionality { in particular, unboundedrecursionand looping
are forbidden. PLAN programs construct complex behaviour by invoking services { routines
written in a lessrestricted language,which have full accesgo the resourceson the node. Such
servicesare privileged code, and hencecannot generally be loaded by untrusted users.

A fundamertal serviceprovided asa primitiv e by PLAN is OnRemote(){ this causesa remote
evaluation of a PLAN function on a dierent node. Suc an evaluation is implemented by
sendinga PLAN padket to the remote node. The body of the padket contains any PLAN code
required for the evaluation { the function may either be speci ed by a name to be looked
up at the remote host, or may be sent with the padet { along with any parameters that
the function needs. Some of these parameters may be for control purposes,and others may
represen data being transferred by the padket.

Other higher-level servicesprovided by a typical PLANet node include:

Fragmentation and reasserbly of padets;
Reliable delivery;
Compression;

Chedksumming.

Theseservicesall make useof the conceptof a chunk [Moore99b]{ a rst-class PLAN object
represerning a delayed function call. When a remote evaluation is made, the chunk is mar-
shalledinto a packet and sert to the remote node. Sudh marshalling may also be performed
by servicesthat wish to provide layered protocols.

For example, supposewe wish to executethe test() function on a remote node, passinga
parameter that is larger than the MTU of the intervening links. The chunk represeting this
remote evaluation would be specied in PLAN as |test(bigArgument)| { the vertical bars
indicate that this is a chunk, rather than a direct function call?.

Attempting to call OnRemote()with this chunk to evaluate the test function on the remote
node would result in the raising of an MTUExceededxception. Consequetly the padket must

2In the latest versions of PLAN this would actually be written as |test|(bigArgument) due to syntax
changes.
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befragmened beforebeing sert, and then reasserbled at the remote node. The fragmentation
processis showvn graphically in Figure 8.1 and described below.

— Host A — Host B
(teSt() e

Gragment( [test("AVeryLongParam") @ ! I

H I_ ________________ é ________________ 1
-fragment() ----- -E ------------------ " R
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! marshal !
! v ! 1
o 010110100101100100111001010 ! 1--reassemble()  --q------o-o-oooooo- :
! ' ! unmarshal !
| / splt \ | | | |
! ! ! |010110100101100100111001010 | !

+[010110100 | |1011001oo | [1112001010 |: ! X |

' ' ' /vrecolmbinvt\ '
(|reassemble(key, ) t[010110100 | [101100100 | [111001010 |:
E "010110100") E E 4 4 4 '
e | i — e
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E ( |reassemb|e(key )' "0101{0100") | E :
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"""""""""""""""""" "101100100") |

|reassemble(key,
- OnRemote() - - "111001010%) |

@ PLAN Chunk ' PLAN Service s » PLAN Invocation

Figure 8.1: Fragmertation in PLAN { an example of the use of chunks

The fragment() servicetakesa chunk, marshalsit into a bu er, and splits this bu er into
fragmerts smaller than the MTU, taking into accourt the overheadintroduced by fragmen-
tation. Each of these fragmerts is wrapped into a chunk that, when evaluated, passesthe
fragmen asa parameterto an invocation of the reassemble() service;an additional param-
eter is a key distinguishing between fragments from di erent packets generatedby a single
client. The fragment() servicereturns thesesmaller chunks to the program, which may now
call OnRemote()without fear of exceedingthe MTU limit. When these chunks are evaluated
at the far end, eadh call to reassemble() storesa fragment of the original chunk in a table
keyed on padcet ID { onceall the original fragmerts have beenreceived, they can be stitched
together to form a larger bu er. This buer is then unmarshalled to recreate the original
chunk, which is in turn evaluated to causethe desiredinvocation of test()

Other servicesmay be invoked to transform chunks in a similar way, so as to provide ar-
bitrary encapsulation and layering of protocols. For example, an invocation of the chunk

fragment(checksum(|test(arg)|)) returns a list of fragmerts that, when reassemled into
a single chunk, may be error-chedked before being evaluated. Conversely the invocation
checksum(fragment(|test(arg)|)) returns a list of fragmerts that will ead be individu-

ally error-cheded at the remote node before being reassniled into the original chunk.
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PLANet contains a very simple form of resourcecortrol { when a padet is sent into the
network, it is assaiated with a resouice bound value (RB). Each time a padket is routed by
a PLANet router, its RB value is decremened. The RB is analagousto a hop-court or time-
to-live eld in an IP padket, with two extensions:a unit of RB is consumedon any recursive
invocation; and when creating a new padket, the \parent" padket may choose how much of
its RB to transfer to the new padcket. The concept of the RB ensuresthat no PLAN padket
can consumeinde nite amournts of bandwidth or CPU time without connivancefrom PLAN
services,which are trusted to manipulate padkets' RB valuesonly in safeways. It doesnot,
however, give any guaranee of timely accessto resources,nor place concrete limits on the
resourcesthat can be consumed.

8.2.2 RCANE Implemen tation of PLANet

Since seweral of the low-level networking interfaces (but not implementations) that Rcane
preseris to clients wereoriginally derivedfrom interfacesusedby PLANet, integrating PLANet
with Rcane was relatively straightforward. PLANet hasbeenthe primary EE running over
Rcane for large portions of the developmen, and has beenusedin experimernts as a vehicle
for transferring code to the Rcane box and for performing dumps of instrumentation traces,
ARP-style host resolution, and routing services.

The lower-levels of the PLANet networking code were removed, since similar functionality {
with the addition of resourceisolation properties { is provided by Rcane. The main PLAN
padket handler routine is now passedasa channelhandler to the Rcane networking interfaces.
Several portions of PLAN had to be reorganisedto take into accourt the fact that functions
previously handled by the PLAN EE itself were now being provided by Rcane, in the System
session.

Since Rcane allows clients to resene resources{ in particular, heap memory for storing
PLAN function de nitions { clients may specify a particular PLAN function to be attached
directly to the handler for a particular Rcane ow or sub ow. This providesthe cornvenience
and safety of PLAN programs but without the additional per-padet overhead of repeatedly
transferring and unmarshalling the required PLAN code or performing a symbol table lookup
to nd a specied function. Sud an extensionis impractical without an ervironment suc
as Rcane in which client code and data resourcescan be assaiated with particular network
connections.

PLANet running over Rcane interacts with unmodi ed versionsof PLANet running on Unix
boxes, demonstrating that it is not necessaryfor all nodesin a network to be running an
implementation of Rcane in order to bene t from Rcane's resourcecortrol models.

The prototype implementation of Rcane usesPLANet to provide its basic network services,
such as routing table updates, neighbour discovery, addressresolution (analogousto ARP)
and sessioncreation.
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Figure 8.2: Experimental topology for network receive bandwidth testing

8.2.3 Exp erimen tal use of PLANet

To illustrate the useof PLANet over Rcane, and its interaction with standard PLAN nodes,
Figure 8.2 shaws the setup usedby the network receive experiment describedin Section7.6.2.

Vixen and Barehands are Rcane nodes, and Saracenis a Linux node running a standard
PLAN daemon. All three machines are connectedvia switched Ethernet; separate PLANet
UDP virtual networks connect Saracento ead one of the Rcane nodes. A private 100Mb/s
Ethernet connectsVixen and Barehands, over which is run a PLANet Ethernet virtual net-
work.

A PLAN client running on Saracenconnectsto the PLAN daemonand sendsa PLAN padket.
This packet is evaluated within the daemon,and proceedsto sendremote invocation padcets
to Vixen and Barehands. In eat case,these padets create a sessionat the receiving node
for the client. Each padket also contains the contents of a bytecode module to be loaded
into the newly created session.The module loaded at Barehandscontin uously sendspadets
acrossthe 100MB/s private link between Vixen and Saracen. The module loaded at Vixen
requestsguararteesfor CPU time and network accessand then processesncoming padkets.
It monitors how its processingrate varieswhenit requestsdi erent levelsof network bu ering

and CPU sdeduling period.

An unrelated sessionis also running on Vixen; it is started at node initialisation, and repre-
sents corntention for the CPU from other clients of the node. SeeSection 7.6.2 for details of
the results of this experimert.
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8.3 ANTS

8.3.1 Overview of ANTS

The Activ e Node Transfer System (ANTS) [Wetherall98 usesa demand-loadedapproad to
load Java code on to a network node. Each padket (or capsule) corntains a type identi er
that speci es the Java classthat should be usedto processthe payload of the padket. The
type identi er is typically the MD5 [Rivest92] chedksum of the Java class le { since the
behaviour of the processingalgorithm is de ned by the code, which is in turn usedto generate
the chedksum, it is impossibleto register a malicious protocol that will receive padets not
intended for it 3.

When a padket is received at a node and its type identi er has beenunmarshalled, ANTS
looks in a code cade to obtain the relevant Java class; if this classis found, it is usedto
processthe padket, otherwise a requestis sern to the upstream node to ask for the relevant
Java code. Since ANTS has just received the padket from this upstream node, it is very
likely that the upstream node has a copy of the relevant code in its code cadhe. In this case
the upstream node forwards a copy of the code for the padket and any related packet types
belonging to its Protocol (an ANTS Protocol represens a collection of related padket types
that may be usedby a particular communications protocol), and the downstream ANTS node
loads this code and usesthe appropriate classto processthe padket. In the event that the
upstream node also has no copy of the appropriate class,the padet is dropped.

This model of code propagation allows protocol de nitions to be\pulled" through the network
behind the rst packet of a particular protocol. Thus, over time, those nodes being used by
o ws from a given protocol will tend to have the code for that protocol in their code cade.

8.3.2 RCANE implemen tation of ANTS

Since ANTS s written in Java, and the current implementation of Rcane has support only
for OCaml bytecode, a straight port of ANTS to Rcane was not possible. Instead, a simple
version of ANTS was written in Caml to run over the Rcane virtual network interfaces.

The structure of ANTS over Rcane is shown in Figure 8.3. Each OCaml module that
implemerts a protocol de nes a function to processpadkets from that protocol. The code
table provides a mapping from a module digest (the MD5 chedksum of a OCaml bytecode
module) to the protocol processingfunction implemented by that module.

The Ants.demux() function acts asthe handler for network padkets for a particular client. A
sessioncreatesan ANTS ernvironment, and passesa referenceto Ants.demux() to the Rcane
networking layer. When Rcane passesa padet to Ants.demux() , the type identi er of the
protocol type is retrieved from the padket, and the appropriate processingfunction is called.

3Theoretically, if one could generate a malicious proto col whose Java bytecodes chedksummed to the same
MD5 digest as the proto col being attacked, one could subvert the security of the ANTS model { however, this
is regarded as an intractable problem.
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Figure 8.3: The structure of the ANTS implementation on RCANE

If no module has beenregisteredfor the speci ed protocol type:

1. ANTS asksRcane whether a bytecode module with the appropriate digest has been
loaded on the node by a di erent session.If such a module is available, ANTS binds to
it, and registersits protocol processingfunction in the code table.

2. If the appropriate module is not found, the padket is addedto a queuefor that protocol
type and (if necessary)a code requestpadket is sert to the upstream node. This request
is itself an ANTS padket.

3. When a code reply padet corntaining the requestedbytecode module is received from
the upstream node, ANTS calls into Rcane to link the bytecode module and bind it
into the sessionin which ANTS is running. The bytecode module is initialised, and its
processingfunction is registeredin the code table.

Although ead sessionwill haveits own code table and instantiations of the protocol modules,
the actual bytecode for eadh module is shared by all sessionscoordinated by the bytecode
librarian in the Systemsession.

The protocol processingmodules may passa partially processedpadket bad into the ANTS
demultiplexer, thus allowing protocol layering in a natural way. As an example,the problem
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of fragmertation, which was presered in Section 8.2.1, is now consideredfor the Rcane
implementation of ANTS.

Figure 8.4 shavs how a custom protocol could be layered over Frag, a fragmertation and
reasserbly protocol when running on Rcane. When the rst padket of the streamis sert out
the following stepsoccur, assumingneither Frag nor Customhave beenusedrecertly at the
destination:

= Host A Host B

l«_Protocols not initially

Application present on Host B

v/

Custom Demux

VY

" Demux ==(Q)#-Custom

Librarian v v v Librarian
(System -« == | Oader Loader @ Pp-(System
Session) Session)

---------------------- » Packet flow P Invocation

Figure 8.4: Fragmertation in ANTS

1. The application calls Custom which calls Frag, which fragmerts the packet.
Frag sendsthe fragmerts to B.

Demuwon the destination looks up Frag and fails to nd it, and hencecalls the Loader.

oW N

Loader on B sendsa requestpadket for Frag.

5. Loader on A queries the code table and/or the librarian and sendsa reply padket
containing bytecode for Frag.

6. Loader on B loads Frag.
7. Demuxpasseshe fragmerts to Frag.

8. Frag reassemlesthe fragmerts into the original padket and passest badk to Demux
Steps 3{6 are repeatedin order to load Custom

9. Demuxpasseshe original packet to Custom
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Future padkets from the same stream reaching Host B would be directed directly to Frag,
reasserbled, and passedto Customwith no further network tra c.

This approad di ers from the approad taken by PLANet in that usersof a PLAN network
arerestricted to the services,such asfragmentation, installed by the node managers;therefore
service innovations may occur over a longer time scalethan userswould like. With ANTS,
end userscan easily upgrade the servicesthat they usewithin the network by simply sending
padkets bearing the module digest of the new service implementation. Howewer, current
versionsof ANTS do not fully support untrusted code, due to a lack of resourcecontrol over
user-suppliedprotocols [Wetherall994].

Thesedi erences are largely removed whenrunning over Rcane : both the ANTS and PLANet

environments allow usersto load their own code, although the out-of-band (PLANet) versus
demand-loaded(ANTS) distinction still exists. The resourceisolation provided by Rcane

meansthat ead user has a great deal of exibilit y to customisetheir own ervironment, but
cannot a ect other userseither in terms of resourcestarvation or by subversion of the EE by,
for example, replacing a commonly usedservicein the PLAN symbol table.

8.4 Activ e Reliable Multicast

Much previous work hasbeendone on implemerting e ectiv e reliable multicast. Standard IP
multicast [Deering89 provides IP delivery semartics to multiple recipients { i.e. delivery is
unreliable, and there is no guarantee that the senderwill be notied if the padcket does not
readh the destination. This lack of reliabilit y has resulted in multicast mainly being usedfor
video and audio applications, in which the loss of data merely degradesthe subjective value
of the application to the human userrather than causinginconsistenciesbetweenthe various
nodes in a distributed system. In cortrast, reliable multicast aims to provide reliability
on top of the multicast delivery, allowing the use of multicast for applications, such as a
sharedwhiteboard, that aretransferring data other than media streams. Additionally , reliable
multicast may provide congestion corntrol to reduce the load placed on the network by a
particular ow during periods of overload, and causaldelivery to prevert out-of-order delivery
of data.

Many dierent reliable multicast solutions have been proposed, including SRM [Floyd97];
indeed, the IETF hasfelt it necessaryto issueguidelines[Mankin98] to those developing new
reliable multicast transports, giving criteria that all new proposalsshould meetand suggesting
that:

Due to the nature of the technical issues,a singlecommonly acceptedtechnical
solution that solvesall the demandsfor reliable multicast is likely to be infeasible.

Protocolssud asmulticast have traditionally beenimplemented in network routers. In a eld
sudh as reliable multicast, however, where there is no clear agreemen over the protocols to
deploy, there is arisk that either di erent vendorswill deploy incompatible solutions, or that
many end-userswill nd that the deployed solutions are unsuitable for their requiremens.
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Consequetly this appearsto be an ideal domain for active networks { by providing a pro-
grammable interface on a network router, the vendors allow those implemerting reliable
multicast to deploy protocols and algorithms that suit their particular communication re-
quiremerts, rather than restricting end-usersto vendor-supplied protocols.

An example of such a protocol is the Activ e Reliable Multicast protocol (ARM) [Lehman98].
ARM was originally developedto run over ANTS, and to provide reliable one-to-mary multi-
cast semartics with no speci ¢ multicast support from the intervening network { the network
needsonly to provide programmability on a subsetof its nodes.

Nodesrunning ARM maintain a cache of recert data. When a downstream ARM node notices
that a packet hasbeendropped, it sendsa NACK badk up the multicast tree. When the next
upstream ARM node receivesthe NACK, it will ched its data cace for the requestedpadket;
if the padket is presen, it will be forwarded to the downstream node. If the padket is not
presen, the upstream node notes the fact that the downstream node needsa copy of the
padket, and forwards the NACK to the next upstream node. NACKs for the same packet
from multiple downstream nodesare coalescedresulting in only a single NACK being passed
to the next upstream node if the padket is not found in the cade.

When retransmissionsare received, they are only forwardedto thosenodesthat have expressed
aninterestin that padet's retransmission,i.e. thosenodesthat have previously sert a NACK.

Thus ARM aims to reducethe bandwidth requiremert for a reliable multicast streamin two
ways:

Upstream bandwidth is reduced since NACKs are coalesced. This helps prevent the
phenomenonof NACK implosion, in which a padket lost at an early stagein the multicast
tree causesa NACK from many (or all) receiversto be sert to the original sender.

Downstream bandwidth is reducedsince retransmissionsare selectively targeted to the
speci ¢ branches of the multicast tree that failed to receiwe the padet previously, and
retransmissionsfrom ARM cadesin the network neednot traversethe whole path from
the senderto the receiwer.

Furthermore, the latency for retransmissionsis reduced; with no support in the network
for cadiing and retransmissions,a NACK must travel all the way from the receiver to the
sender, and the retransmission must travel from the senderto the receiver. This results
in a minimum latency of one round-trip time to recover from a lost padket. Alternativ ely,
the receivers themselvesmust coordinate to supply retransmissionsto one another [Floyd97].
This has the drawbadk that multiple receivers may send the repair padket simultaneously;
thus in order to prevent o oding the network with repair padkets, ead such receiver must
wait a random amount of time before sendingthe repair, and aborting if it detects a repair
from another receiver. With ARM cacing in the network, the minimum recovery latency
is a round-trip time from the receiver to the next upstream ARM node, rather than to the
sender(as when the senderis responsible for repair padets), or a round-trip time to another
receiver plus a random elemen (as when receivers are responsible for repair padcets).
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ARM nodeswould be most valuably located near the endsof links that are expectedto su er
loss; in this way the lossmay be noticed and repaired at the earliest possibletime, and the
retransmission{ which represens wasteduseof the network links { will have the leastdistance
to travel.

In [Lehman98], an ARM network is shovn to have a recovery latency* of 0.2 RTT, com-
pared with SRM [Floyd97], which approaches1.4 RTT with 100 nodesin a multicast group.
Furthermore, the majority of ARM's benet, resulting in a recovery latency of 0.4 RTT,
is achieved when only 30% of the ARM routers caded fresh padkets (as opposedto repair
padkets, which were cached by all ARM routers). Also showvn was that ARM could cortrol
NACK implosion to the samelevel as SRM when only \strategic" nodes{ those with more
than two outgoing links in the multicast tree { wererunning ARM, with other nodesrunning
a standard multicast router; such strategic nodestypically constituted lessthan half the set
of possiblerouters.

8.41 ARM on RCANE

The reduction in latency and repair bandwidth achievedby ARM s at the expenseof increased
memory (and, to a much lesserextent, CPU consumption) on the ARM nodes,sincethey need
to cache data for later retransmission. In a programmable network without resenations, the
deployment of a protocol such as ARM could be expectedto lead to excessiely large caches
being maintained. Sincethe utilit y function of the cade is likely to monotonically increase
with the size of the cade, there is little incertiv e for usersto limit their usageof memory.

A possiblesolution would beto put a xed limit onthe amourt of ARM caching at a particular
node; howevwer, this would have two drawbadks:

It would not directly provide a way to favour important trac, or trac that would
especially bene t from cading.

Sincethe network is programmable, it would not prevent end-usersfrom running their
own ARM-lik e protocol that did not respect sud limits.

Alternativ ely, this problem canbe solved through the useof a programmablenetwork platform
such asRcane , which is capableof providing, and accourting for, robust resourceguarartees
to clients.

The implementation of ARM described in [Lehman98] maintains a single ARM cade for all
clients; under Rcane , a separatesessionvould be createdfor ead multicast stream, or group
of related streams, at the nodeswherethe stream'’s userswishedto employ active processing.
ARM is treated as a shared library, which ead client sessionmay instantiate to perform
active multicast processing.

4The recovery latency is de ned asthe time from a receiver detecting a packet lossto when it receivesthe
rst repair for that loss.
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An implementation of ARM has beendeweloped to run over Rcane. The low-memory call-
badks described in Section6.4.3are usedto inform ARM that it is approading the limit of its
resened heapsize. At this point older padkets, alongwith older structures describingNACKs
received and pending retransmissions,are recycledto reduce garbagecollection overheadsor
releasedto be reusedas a di erent type of object. ARM records the numbers of NACKs
received, and the number of times that the padket requestedby a NACK was not found in
the cadche. At intervals it cheds the ratio of these, and if the ratio is too high, it deduces
that the amount of cading it is using is insu cien t to e ectiv ely deal with the losson the
downstream links, and requestsa higher memory resenation from Rcane (assumingthat the
client is willing to pay for an additional memory resenation).
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Figure 8.5: Experimental topology for ARM testing

Figure 8.5 shows the experimental setup usedto demonstrate the use of ARM over Rcane.
Rocket, Vixen and Barehandsare eat running Rcane and are connectedby 100Mb/s Eth-
ernet. Saracenis running a PLAN daemonand is usedto cortrol the Rcane machines. The
link between Vixen and Rocket is assumedto be non-lossy The link between Vixen and
Barehands is arti cially made very lossy by dropping packets at Barehands with a given
probability. Sessionson all three nodes are started by a client who wishesto transfer an
ARM ow from upstream of Rocket to downstream of Barehands. Thus Rocket is acting as
an ARM sender,Vixen asan ARM router and Barehandsasan ARM receiver®. Initially , 25%
of padkets from Vixen to Barehandsare dropped; after 90 seconds50% are dropped. Vixen
is con gured to attempt to increaseits resened heap sizeif it discovers that it is servicing
lessthan 90% of the NACKSs from its cache over a 1 secondperiod.

Figure 8.6 shavs the memory usageof the ARM router on Vixen, along with the total number
of padets sert, the number of NACKs received from Barehands and the number of cace

SClearly in a real situation Rocket would be receiving from an upstream node, and Barehands would be
sending to a set of downstream nodes; this was not practical due to lack of suitable networking infrastructure.
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Figure 8.6: Memory usage,padet counts and cade hits for an ARM stream

\hits" (NACKs that could be sened from the cache). It can be seenthat the heap consumed
by ARM quickly grows to approximately 180kB; at this level, Vixen is able to service over
90% of the NACKs that it receives from Vixen directly from its cace. After 90 seconds
the loss on the link from Vixen to Barehands doublesto 50%. At this point, the number
of NACKs receivwed from Barehands increasessigni cantly, and the percertage of NACKs
servicedfrom the cace falls noticeably below 90%. Thus ARM increasesits resened heap
sizein an attempt to reduce the number of misses;the heap size grows to approximately
370kB over the courseof 40 seconds,at which point the level of NACK hits reachesthe target
of 90%, and the heap size stabilises.

This demonstratesthe ability of Rcane to constrain the amount of memory usedby di erent
clients on a node { an essetial property of any practical programmable network platform.

8.5 Summary

This chapter hasillustrated how Rcane providessupport for multiple di erent active network
and mobile code solutions. Two di erent active network models{ PLANet, in which code is
carried with ead padket, and ANTS, in which code is loaded out-of-band { wereimplemented
over Rcane.

Although PLANet haslimited support for preverting padketsin an active network from con-
suming unbounded amounts of bandwidth or CPU time, neither ANTS nor PLANet support
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the allocation of resourcesto clients, nor guarantee timely accesso those resources.

When running over Rcane, both of these environments are treated as libraries available for
useby applications; it thussu ces for accesqor hooks)to Rcane 's resourcecortrol interfaces
to be provided in the ervironment.

The problem of reliable multicast was considered. Due to the dicult y of de ning a single
reliable multicast protocol that meets all users' requiremerts, this appearedto be an area
in which active networking could be a practical solution; the bene ts experiencedthrough
the use of ARM, an Activ e Reliable Multicast protocol, were discussed. However, without
resource cortrol between clients, such solutions could lead to excessie resource usage on
nodes within the network. Rcane was seento provide an e ectiv e platform for cortrolling
sud resources.
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Chapter 9

Conclusions and Scope for Future
W ork

This dissertation has examined the requiremert for resourcecortrol in open programmable
networks. An architecture for supporting sud resourcecortrol was preseried, named Rcane
{ the ResourceControlled Active Node Environment. A sampleimplementation wasexamined
and evaluated. This chapter summarisesthe work and its conclusionsand makes suggestions
for further areasof study.

9.1 Summary

Chapter 2 described the badkground to this researd. It beganby looking at \passive" end-
to-end delivery networks, and their ewlution into programmable networks, in which end-
usersmay customisethe processingin someor all of the nodesin a network. A review of
the rationale for two of the main forms of programmable networks { active networks and

open signalling architectures { was preseried, followed by a taxonomy of dierent levels of
programmability and a review of platforms currently used for programmable networks. In

particular, the NodeOS{ an attempt to de ne a common standard for programmable nodes
in the sameway that IP provides a common standard for datagram routers { was discussed.
Related work in safelanguages,resourcecontrol and extensibility was surveyed.

Chapter 3 examined the requirement for resource cortrol within programmable networks.
The high variancein trac seenin current wide-areanetworks suggestedhat evenin passive
networks, the overheadsof resourceresenations may turn out to be cheaper than the costs
of overprovisioning best-e ort networks.

Open programmable networks were de ned as networks in which some subset of the nodes
provided programmable facilities accessiblgo all usersof the network. The fact that usersof
programmable networks have much more exibilit y, and that their resourceusagecannot be
conveniently limited through the useof bandwidth throttling, suggestedthat the requiremert
for resource usagewas likely to be greater in programmable networks than in traditional
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passiwe networks.

Two di erent approacesto resourcecortrol, through proof properties and scheduling, were
considered. The resourceghat required cortrol, such as CPU cycles,network bandwidth and
various typesof memory, were discussed,along with possibleapproacesto controlling ead.

In Chapter 4, the NemesisOperating Systemwas discussed.The featuresthat it providesto
facilitate resourcecortrol were examined.

The Rcane architecture was introduced in Chapter 5. The design principles underpinning
the architecture were preserted:

Untrusted clients should not be able to adverselya ect the operation of the node, thus
the systemshould be partitioned into multiple layers of security.

Resourceconsumption should be accouniable to the entity causingit to occur, thus
computation activities should, where possible,be partitioned on a per-cliernt basisrather
than through sharedseners.

Clients with guaranteed resourcesshould not experienceinterferencewith those guar-
anteesdue to the actions of other clients.

The concept of a sessionwas intro duced as a meansof accourting for resourcesconsumed
by a remote client, and the abstractions used by the architecture to support sdeduling and

accourting of various resourceswere preseried. Each sessioncan resere one or more alloca-

tions of guaranteed CPU time, or VP s; a session'sactivities may be multiplexed over its VPs

exibly , accordingto its own priorities, through the use of threads and thread pools. Events
allow the deferral of computations to a speci ed later time. Channels were preseried as an

abstraction of network streams;all processingassaiated with a channel is accourted to the

owning client, and scheduled accordingly. Rcane givesead sessionits own isolated heap to

prevent garbagecollection crosstalk; to permit lightweight communication betweensessions,
a form of thread-migrating IPC called a service was introduced. The possibleapproacesto

providing sud serviceswere examinedin detail. A discussionof accourting and billing issues
followed, accompaniedby the related topic of detecting and preventiing DoS attacks.

Chapter 6 described a prototype implementation of Rcane. The system was implemented
over the Nemesisoperating system and the Objective Caml bytecode interpreter. Nemesis
was chosenfor its good resourceisolation properties; OCaml was chosenasa simple and ex-

ible interpreter previously successfullyusedin active network researt). Seweral de ciencies
in thesetwo systemsthat had to be remediedwere discussed.Key aspects of the implemen-
tation were then preseried. A modi ed form of EDF is usedby Rcane to support e ective
guaranteed allocation of CPU time; Nemesisusesa similar form of scheduler to cortrol net-
work transmission bandwidth. To support Rcane's multiple heap architecture, the system
must keeptrack of which threads have accesgto a particular heap, and ensurethat garbage
collection runs involve all appropriate threads. The implementation of inter-sessionservices
was described, along with details of optimisations to improve parameter marshalling, and
medanismsto handle abnormal termination.
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An evaluation of the resourcecontrol facilities o ered by Rcane wasundertakenin Chapter 7.
Rcane was shown to provide e ectiv e resourceisolation between multiple non-cooperative
clients, and to provide lightweight medanismsfor communication and sessiorcreation. Reser-
vations of CPU and network output bandwidth were examined, and found to be respected,
garbagecollection interferencebetweendi erent sessionsvasfound to besigni cantly reduced,
compared to the situation in which multiple clients execute in the same garbage-collected
heap.

Finally, the application of Rcane to existing programmable network execution ernviron-
ments (EEs) was consideredin Chapter 8. Two active network environments { PLAN and
ANTS { were ported to or rewritten for Rcane. An overview of eath EE was preserted,
together with details of their Rcane implementations. The problem of padet fragmentation
was presenied for ead EE to provide a comparisonbetweenthe two approades.

The advantagesgained by running these EEs over Rcane were discussed.Neither EE previ-
ously had signi cant support for resourcecortrol; the useof Rcane asa platform meansthat
sud resourcecortrol neednot be provided by the EE, but can be delegatedthrough the pro-
vision of accesd0 Rcane''s interfaces. The Activ e Reliable Multicast protocol { designedto
reducerecovery latency and bandwidth consumption in reliable multicast streams{ was also
implemented; the e ectiv enessof Rcane 's memory consumption control was demonstrated.

9.2 Future Work

This sectionconsidersopen problemsin the areaof resourcecortrol in programmable networks
which could not be addressedin this dissertation due to lack of available time. Two main
areasare considered: issuesa ecting a single node, and the integration of a single Rcane
node into a larger programmable network.

9.2.1 Issues Aecting a Single Node

Seweral aspects of the Rcane architecture and prototype implementation with regard to
resourcecontrol on an individual node in a programmable network have put forward issues
that desene further attention.

9.2.1.1 Persistent Storage

Rcane hasnot focusedon providing accesdo persisternt disk storage{ although lesstransient
than independert capsules,the computations consideredhave either beenrelatively stateless
or sucien tly short-term not to require disk storage. However, it is ervisaged that some
clients in a programmable network may have requiremerts for accessto disk storage. An
OS such as Nemesis,which already has support for scheduled disk accesswith low levels of

1The NodeOS Draft Speci cation, for example, contains an AP| providing POSIX-lik e le access.
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inter-application crosstalk [Barham97], would provide a useful basefor the developmen of
e ectiv e resource-cofrolled medanismsfor persistert storage support.

9.2.1.2 Virtual Memory

For simplicity, this dissertation has not consideredthe use of paged virtual memory. This
is not considereda great drawbadk, since an application that is paging to disc is likely to
experiencesu cien t latency that any bene ts of executing within the network { closerto the
resourceswith which they wish to interact { are lost. Howewer, as with persistert storage,
some end-userswith high latencies on to the network coupled with requiremerts for large
amourts of state within the network may nd it pro table to requestan allocation of virtual
memory in addition to physical memory.

Given support for persistent storage mentioned in the previous chapter, it may prove to be
su cien t for sud applications to manually \page" their important data structures in and out
of les. A possibleimprovemert on this schemewould be to utilise the Nemesisself-paging
architecture [Hand99. This would allow eadt session'sheapto be badked by a Stretch Driver

{ an abstraction for controlling virtual memory. Each Stretch Driv er would have a connection
to a disk with a given level of QoS,and a certain set of physical pagesto populate with virtual

pages.

9.2.1.3 Inter-Session Services

The type-basedoptimisations for inter-sessionservice argumert copying described in Sec-
tion 6.7.3 are currently rather limited. Further work needsto be done to provide more
e ectiv e generation and sharing of marshalling routines. The medanisms used by Nemesis'
IPC marshalling system should prove to be adaptable to this task.

Also an open problem is the dewelopmen of further and richer medcanismsto support the
e cien t aborting of serviceswithout compromisingthe state of seners.

9.2.1.4 Selection of Resource Levels

Calculating the level of resourcesthat should be requestedin an ervironment such asRcane
is not straightforward. Tedniquessud as progress-basedeedbad& may be usedto measure
whether an application is satisfying the user'srequiremerts, and purchaseadditional resources
if not; alternatively task requiremerts, resenations and node resourcesmay be specied in
somegeneralisedresourceunits.

For example, the Eclipse [Bruno99] project measured processorbandwidth resenations in
terms of SPECIint95 [SPEC95] units; for a given platform, these units could be calibrated
by running the standard SPECint95 bendimarks. The NodeOS [Calvert98] has proposed
logarithmic \standard RISC cycles"to serve a similar purpose.
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A further possibility would be to measureapplications' resourcesusageat run time to deter-
mine their actual resourcerequiremerts; such measuremets could be used either to provide
feedbak to applications, allowing them to adapt their resenations basedon their past us-
age, or to enable Rcane to provide a higher degreeof multiplexing but with \probabalistic
guarantees", as described in [Barham98].

9.2.1.5 Integrated Scheduling

Currently Nemesissupports only a singleschaluling domain (sdom) per domain. A scheduling
domain represens a guarantee from the CPU schedulerin the Nemesiskernel. Thusin order to
provide di erent CPU guaranteesto client sessionsRcane must requesta single guarantee
with su cien tly low period and high slice to be able to meet its sessions'guarartees, and
employ a user-lexel EDF VP sceduler above the kernel CPU sdeduler, integrated with the
pool/thread scheduler.

Current researd [Stratford00] is investigating the separation of the sdomabstraction from
the domain, and thereby allowing a single Nemesisdomain to have multiple sdoms Building
on this work to provide eady Rcane VP with a separatesdomwould simplify the structure
of Rcane and potentially reduce scheduling overheads.

9.2.2 Network Integration

The work presenied in this dissertation has focused mainly on resourcecortrol at a single
node, without full considerationfor bandwidth resenations on sharedlinks, or global resource
policies. Sud a network may be fully programmable, or mainly passiwe with programmable
nodesplaced at strategic locations.

9.2.2.1 Bandwidth scheduling

The current implementation of network scheduling in Rcane is concernedonly with the local
link bandwidth. To gain the full benet from the resourceresenations provided by Rcane,
the network scheduling would needto be integrated with end-to-end bandwidth resenations.
It would be necessaryto provide the ability to resene bandwidth and bu ering for ows
on routers and switches (either programmable or passiwe) betweenthe node and the remote
resourceswith which it was communicating.

9.2.2.2 Resource Transfer

More work is required to integrate Rcane's resourceresenations with global resourceallo-
cation schemes. For example, it ought to be possiblefor a single sessionto transfer resources
very straightforwardly from one node to another. The resourcebound usedin Rcane virtual
network padkets provides a very trivial form of such resourcecredit transfer; however, this
has not beenfully integrated with the actual resourceresenation mecanisms.
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9.2.2.3 Billing

The billing sdhemesproposedin Section 5.7 have not beenimplemented. Linking the ac-
counting information gathered by Rcane to some concrete form of billing will be vital for
the e ectiv e deployment of an open programmable network.

9.3 Conclusion

It isthe thesisof this dissertation that resourcecontrol in active and programmablenetworks is
essetial if the exibilit y o ered by sudh networks is to be made open and available to general
end-usersof the network; and that sud resourcecontrol can be practically accomplished.
To this end, argumerts have beenpresened to support the casefor resourceresenations in
programmable networks. An architecture for providing such support has beenexhibited, and
its implementation and evaluation have beenexamined. It is concludedthat the dissertation
supports the thesis.

164



App endix A

An Outline Design for an Objectiv e
Caml Verier

In Chapter 6 the lack of bytecode veri cation for OCaml was discussed. This appendix
preseris a brief outline of a designfor a veri er for the OCaml virtual madhine. The design
is not complete, and the veri er hasnot beenimplemented due to time constraints; however,
this designsupports the proposition madein Section6.2.7that the lack of a veri er for OCaml
is not an insurmountable de ciency.

A.1 Intro duction

In order to safely executea bytecode module supplied by an untrusted remote client, it may
be necessaryto verify that the bytecode respects certain invariants; in the caseof OCaml
bytecode [Leroy97], such veri cation must ched that the bytecode respects the Caml type
system.

Veri cation involvestracing all possible paths through a module and ensuring that at ead
instruction, no type violation is committed. Such violations may be detected by showing the
possibleoccurrenceof one of seweral conditions:

Using a pointer in an arithmetic corntext.

Dereferencingan integer.

Dereferencingan abstract object.

Returning a value of the incorrect type from a function call.

Passinga value of the incorrect type to a function call.

Storing a value of the incorrect type in a structure.
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Modifying an immutable value.

These are all variations on the basic violation { i.e. using a value of one type in a context
that expectsa di erent type. The designpreserted in this chapter is for a a veri er that can
identify such violations in OCaml byte code; sincethe veri cation is performed on bytecode
rather than on sourcecode, it may be usedto verify OCaml virtual machine code generated
from any sourcelanguage,not just OCaml itself.

A.2 Concepts

In order to attempt to perform a violation of the type described in the previous section, the
program must obtain the value from somewhere.In the caseof the OCaml virtual machine,
the set of addressablelocations consistsof:

The accumulator { a single location that is usedfor most operations, including arith-
metic, dereferencing,and the return value from a function call. The type of the value
stored in the accumulator changesregularly at runtime.

The stack { a per-thread set of values, used for temporary storage and parameter
passing. Entries may be pushedon to or popped o the top of the stack at runtime.
The type assaiated with a particular stack location may not altered without popping
that location from the top of the stack and pushing a value of a di erent type.

The environment { a per-closurestructure that is initialised whenthe closureis created.
The typesof the elds in the environment are constart for a particular closure.

The glolal vector { any values accessiblethrough interfacesimported by the current
module. The types of the contents of the global vector are constart for a particular
module

Assceiated with ead bytecode location is a tuple (A;S; E; G) consisting of the types of ac-
cumulator, stadk, ervironment and global vector respectively. A simple fragment of Caml is
given in Figure A.1; Figure A.2 shaws how this tuple might be represerted by the veri er.

The typesof the stack and accunulator values are generally individual to ead instruction;
howewer, in the caseof an instruction that does not modify the type of the accunulator
nor perform any stadkk modi cations { sud asthe ADDnstructions in Figure A.2, the same
stack/accumulator record may be shared with the next instruction. All stack/accumulator
recordsfor a givenfunction sharean environment record{ in this case the functions are simple
enoughthat they have no ervironment, sothere can be no valid accessto the environment.
All ervironment recordsin a module sharethe sameglobal vector record.

Three di erent kinds of type may be stored in thesetuples:

unquali ed typessud asint , int ref, float , andint ! string
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Function to incrementits argument
X=x+1

let

inc

Function to incrementits
argument's referent

let

incref

X=x:1=Ix +1

(a) Fragment of Caml code

PC Instruction Meaning

0 ACcCo Acc  Stack[0]

1 ADD1 Acc  Acc +1

3 RETURN  Return

5 ACCo Acc  Stack[0]

6  GETFIELDO Acc  Acc[0]

7 ADD1 Acc  Acc +1

9 PUSHACCL1 Push Acc; Acc  Stack[1]

10 SETFIELDO Acc[0] Stack[0]; Pop

11 RETURN  Return

(b) Compiled bytecode

Figure A.1: Sample Caml code fragment and its compilation in OCaml bytecode

Environment
Global Vector
<empty> : <empty>
: //' A "\
int int [ Stack : | int ref | | int refl | int ref | |:
<empty> int je—Accumulator E <empty> int ref int - int ref
A / \ ' / 7 / \ int ref /
GET PUSH SET
ACCO ADD 1 RETURN 1 ACCO | FIELD ADD 1 FIELD |RETURN
0 ACC1 1
Figure A.2: Verier state for simple functions

universally quali ed typessuch as list and !

unknown types.

A.3 Verication

The veri cation processinvolves ensuring that this set of (A;S; E; G) tuples can be created
for all executableinstructions in a module, without any inconsistencies. Certain locations
in the bytecode { such asthe operand locations for instructions spanning multiple bytecode
locations { will not be executableand hencedo not require a tuple assaiated with them.

The veri er should maintain a stadk of locations to be chedked; this will be initialised to
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Instruction Pre state (PC = n) Post state(s)

Acc Sta Env PC Acc Stack Env
SETFIELDO (;::0) (;:00) E n+ 1| empty (...) E
APPLY2 ! ! (5 500 E n+1 (...) E
GETGLOBFIELD ? S E n+ 3| gm][f] S E
ACC2 ? (o) E n+1 (o) E
MAKEBLOCK3 (5 500 E n+21|(; ;) (...) E
BRANCHIF int S E n+2 int S E
" " " " n+o int S E
ADDINT int (int ,...) E n+1 int (...) E
ENVACC1 ? S (;::)|n+1 S (G

Figure A.3: Verier logic for a subsetof the OCaml virtual machine

contain the rst location of the module's initialisation code. To verify a particular location,the
possiblesetof (PC  state) pairs must be calculated. For ead pair in this setthe tuple at the
new PC must be unied with the new state, possibly specialising any unknown or quali ed
typesin the new PC's tuple, and the new PC must be pushedon to the location stad if it
has not already beenprocessedor if the uni cation processhas resulted in a changed state
for the new PC. In the caseof an instruction that createsa new closure,the PC of the closure
must also be pushedon to the location stadk, along with any information known about the
types of valuesin its ervironment and parameters. If the unication stage fails, then the
bytecode doesnot respect the virtual machine's type systemand should be rejected.

The transformation from (PC, state) to (PCP state9 is specic to the instruction at the
location being veri ed. Figure A.3 givesthis transformation for a represenativ e subsetof the
OCaml virtual machine instruction set:

SETFIELDOupdates the value of the rst eld in a record; the destination record is found in
the accurrulator, and the new value is on the top of the stadk.

APPLY 2calls a two argumert closure; the closureis found in the accunulator and the two
argumerts are on the top of the stack.

GETGLOBFIEL@btains a value from the global vector. The module m and the eld f are
taken from the two bytecode locations following the instruction.

ACC2loadsthe value at stadk position 2 into the accurrulator.

MAKEBLOCHK8Bocatesa new heapblock that is three words long. The block is initialised from
the valuesin the accurnrulator and the top two stadk locations.

BRANCHIbranchesif the integer value in the accurrulator is non-zero. The destination o set
o0 is taken from the bytecode location following the instruction.

ADDINTadds the value on the top of the stadk to the accurrulator.
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ENVACCIbadsthe value at environment position 1 into the accurrulator. In the OCaml heap,
a closureand its ervironment are the sameobject { the rst value in the object is the
bytecode location of the function referred to by the closure,and the subsequeh values
constitute the environment of the closure. Therefore ervironment position 1 is actually
the rst valuein the environment proper.

State transformations for other OCaml VM instructions may be constructed in order to
complete the designfor the veri er.
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