Technical Report R

Number 550

B UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Computer security —
a layperson’s guide, from the bottom

up

Karen Sparck Jones

June 2002

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/



(© 2002 Karen Sparck Jones

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Computer security -
a layperson’s guide, from the bottom up

Karen Sparck Jones

June 2002, Version 1.2

Abstract

Computer security as a technical matter is complex, and opaque for those who are not
themselves computer professionals but who encounter, or are ultimately responsible for,
computer systems. This paper presents the essentials of computer security in non-technical
terms, with the aim of helping people affected by computer systems to understand what
security is about and to withstand the blinding with science mantras that too often obscure
the real issues.

Computer security is about several things. Thus security is

(1) stopping outsiders destroying systems by virus or denial of service attacks;

(2) stopping invaders perverting systems by hacking into controls or data,

(8) stopping insiders using systems in ways their designers did not intend.
This note is primarily about (3). It is not about (1), but in large and amorphous organ-
isations (like governments) doing (3) properly means attending to (2) as well. Security
in sense (3) depends on policy. The purpose of this note is to show that effective security
policy requires attention to computational realities, i.e. to what sorts of things can be done
by technical means and, more importantly, to what cannot. Computer security depends,
critically, on people, and the principles involved are independent of technological detail.

Introduction

A great deal of information about people is held, manipulated and communicated
in computer-based systems. Information privacy, confidentiality and integrity matter to
people. Computer security is the means for supporting proper information states and op-
erations and for guarding against improper ones. Computer security is thus a very broad
notion, with pervasive application to computer systems and correspondingly large impli-
cations for security engineering. Maintaining privacy and confidentiality for information
about people, or particular to people, is one element of computer security. However it is
essential not to focus on these alone, since the way they are implemented follows from the
way security in general is implemented. Both formally and technically the mechanisms for
protecting information that individuals may regard as their private information may be,

3



and usually are, the same as the mechanisms for protecting the information intended only
for some particular process within a larger system. For example, the technical means for
preventing improper access to someone’s personal medical data within a system dealing
with different aspects of hospital administration may be exactly the same as those used
to stop one part of a system running a chemical plant from picking up numerical data
intended for another. Thus as this comparison suggests, talking about computer security
implies both that personally important notions like privacy and confidentiality have to be
independently defined, and that the way these notions are to be interpreted in the context
of computer capabilities and constraints has to be addressed.

There are many common beliefs about computer security that are wrong, for instance:

1. some particular technological gadget - SSL, or PKI, or whatever, is sufficient to
ensure security that meets some generic application needs, e.g. SSL will fix up
e-commerce;

2. even if current gadgets aren’t good enough, further work on encryption is all that’s
needed because we’ll get perfect encryption before long and then we’ll be able to
wrap all our communications and data up in it and there won’t be a security problem;

3. software comes in whole packages with built-in security, to check user access from the
outside, or to stop users when inside from going into particular places they oughtn’t
to be, so as long as you buy your software from a reputable producer everything

will be OK;

4. hardware comes in boxes which can have heavy-duty casing round them or tamper-
proof seals to stop people getting into them and e.g. interfering with the communi-
cation links;

and so on.

These are all misconceptions grounded in the belief that security is only about com-
puting systems in themselves, and nothing to do with the humans who design, build, use,
and manage them, which is in fact where all the real problems are. Security is primarily
a human problem, to do with the contexts in which systems are developed and used, and
only secondarily a purely technical problem that has to be, and can safely be, left to the
professionals.

Computer security has many deeply technical aspects ranging from the way chips are
made to the use of number theory in cryptography. However the essentials are perfectly
ordinary and familiar notions. These are therefore deliberately laid out without any tech-
nical apparatus, in Part 1 of this note. The situations used as examples in Part 1 may seem
trivial and hence unproblematic. But analysis shows that such simple cases can be much
more complicated, from a security point of view, than they appear. Security is a complex
matter, even without computation. The examples in Part 1 are intended both to illustrate
the key points that apply to security, computational as much as non-computational, and
to provide the background for the specifically computational manifestations of security
treated in Part 2. Computational security can be quite powerful, but can also be very
complicated, with ill as well as good effects. Part 2 provides some (though still mod-
est) technical detail, to show what security looks like in computational systems, and to
provide an explanatory context for frequently-encountered security jargon, for instance

4



‘public key encryption’. Tools like public key encryption are valuable means of maintain-
ing computer security. However they are not panaceas, and security in computational
situations requires just as careful and detailed analysis as in non-computational ones.

Note: technical terms are not universally agreed in the trade; this note seeks to follow
reasonably established practice.



Part 1 : Homely examples

I start with homely examples: but they illustrate all the essentials for computer secu-
rity. I will therefore present these examples in some detail, to provide appropriate hooks
for attaching specifically computational points later.

Access to a store

We have a store, with a lock, containing some goodies. We have an opener for the
store, operated by an agent.

EXAMPLE SETUP 1 :

Store is a wooden chest with an iron Lock
Goodies is a pile of ducats

Opener is a big iron device

Agent is a human

The assumptions are that the opener fits the lock, and that the opener when turned in
an obvious way opens the store.
As a mechanism for protecting the goodies this setup has weaknesses, including
1. there is no guarantee that the agent is authorised
2. there is no guarantee that the opener is unique
3. there is no guarantee that nothing other than the opener opens the lock
4. there is no guarantee that the store is robust.
Thus for instance anyone who can get at the opener can open the store, or someone with
a copy of the opener can, or possibly with a skeleton opener; as described, the store might
not be strong enough or heavy enough to resist being broken open or removed for more
serious and leisurely attack.
Also, considering the situation from the point of view of access for the agent rather
than protection for the goodies,
5. there is no guarantee that the lock will actually work
6. there is no means of recovering from loss of the opener
7. there is no certainty that the store is what it seems
8. there is no provision for knowing where the store is if it is moved.
Thus the lock might get rusted up or warped, the opener could be mislaid, the store might
be replaced by a copy not identified as such for some time, the store might be legitimately
moved but without record.
These are only some of the generic weaknesses in Setup 1, and some possible illustra-
tions of the specific forms they may take; but they are enough for now.
Since it is possible that existence of the goodies may be known or suspected, some of
the weaknesses leave the goodies exposed to threats, e.g.
1. the opener could be stolen, or copied
2. the store could be stolen.
From the agent’s point of view, someone else using or substituting for his opener could
be viewed as impersonation and regarded as a threat.

6



Other weaknesses e.g. mnatural failure of the lock, are not threats. But to ensure
protection for the goodies and access for the agent, it is proper to do a risk analysis to
find out how likely they are to occur and a loss analysis to work out what the consequences
of such a failure are.

For example, the risk of lock failure may be low and the cost of fixing it to ensure
access to the goodies calculated as low (and the risk of not being able to fix it be judged
very low). However while the risk of opener duplication might also be judged low, the
consequent risk of loss of the goodies could be high and cost of loss of the goodies also be
high.

The response to the analysis of the situation is some security procedure, for example
to keep the opener carefully locked up in some place known only to the agent, who carries
this subsidiary opener on their person, to keep the lock oiled, etc. Note, however, that
having created a security procedure in response to the initial situation, it is essential to
do a further security analysis, or audit, for the revised situation, e.g. what happens if the
subsidiary opener is lost or stolen?

This example, even though given with some elaboration, still omits much important
detail e.g. how many other people than the agent know that the store and opener exist
and where they are; just how robust the store is, e.g. is it very heavy indeed, bolted to
the floor, etc; how large and irreplaceable the goodies are. One of the important points
is whether the agent who is required to actually open the store is also the person we can
call the beneficial owner of the goodies, or is some intermediary.

Thus any particular version of Setup 1 would need much more exhaustive and careful
description than that sketched, and thus a much fuller analysis of its weaknesses and
threats, and risks and costs. For example, suppose the goodies are very valuable or very
bulky, and are thus divided into subsets in different places: this obviously implies a much
more elaborate scenario for the entire situation. For instance, should there be different
openers for each of the now separate stores or just the same one for all?

It is evident that whatever security procedure is adopted will have to make a safety /convenience
tradeoff. Thus e.g. having several stores in separate locations with different openers also
kept in separate places reduces the risk of losing all the goodies, but increases the man-
agement hassle of keeping control over all the openers and ensuring all the different locks
are oiled.

It is particularly important to consider the implications when the agent is not the
same person as the beneficiary, e.g. the beneficiary may be unable through illness to go
and get the goodies and have to employ someone else as their agent. The beneficiary may
think they have sufficient reason to trust their agent unreservedly and simply hand the
opener to them and tell them to use it on the store. Or they may decide to have a more
explicit delegation or handover subprocedure, i.e. a security protocol, e.g.
make the agent sign the borrowing book for the opener
hand the opener to the agent
tell the agent where to go for the store, what goodies to take, etc
receive the goodies and the opener from the agent
get confirmation from the agent that the store is in place and is locked

6. complete the signoff for the agent in the borrowing book.
Clearly, there has to be some trust in the agent even in this less informal case. Part of the
security analysis for the particular version of Setup 1 in question is determining whether

SANE i

7



the safety/convenience relationship is reasonable.
More importantly, the Setup 1 example emphasises two fundamental points about se-
curity:

FP1: There are always humans somewhere in a security situation, or there wouldn’t
be any point in having the security.

FP2: There have to be compromises between protection and access, since complete
safety precludes access and universal access nullifies safety.

FP1 applies even where the beneficiary and the agent are identical, since the bene-
ficiary’s interests over time are not necessarily well served by his own agency (e.g. he
forgets where he put the opener). However since most situations involve more than one
person, FP1 clearly has vital security implications. The need for compromise in FP2 is
manifest, e.g. it is not obvious what locking the goodies up in the store and throwing the
opener away achieves for the beneficiary.

Access to a person

Setup 1 had a passive physical object, the pile of goodies, as one side of the relationship.
Now consider the case where access is to a human. We start by considering only a scenario
for making a connection with the human.

Thus we imagine we have a room with a telephone, T1, in it on the human’s desk and
an external door with another telephone, T2, by it. The simple model is the entryphone
one.

EXAMPLE SETUP 2 :

Room is an office with a telephone T1, an entryphone inside-end

Human is a person in the room

Door is on the street with telephone T2, an entryphone outside-end, by it
Agent is a human at the door

‘Enter’ is an action that opens the door

This Setup is clearly analogous to Setup 1: the room is equivalent to the store and
telephone T'1 to the store lock, with the human in the room equivalent to the goodies in
the store. The telephone T2 is equivalent to the opener, and we have an access-wanting
agent as before. However it is necessarily a bit more complex because there has at least
to be some means for the human in the room to react to a ring on telephone T1 and open,
or allow the agent to open, the door. This is the ‘Enter’ action, realisable in various ways
e.g. the human descends and opens the door, he presses a button in his office to release
the catch and the door swings wide, the agent is sent the instruction to open the now
released door.

But now if we consider Setup 2 as described from the point of view of protection for
the human - i.e. as ensuring that only proper people should reach human’s room, - it has
clear weaknesses. These include



1. anyone can use telephone T2
2. there is no guarantee that the person who used T2 is the same as
the person entering.

Thus even a rather simple security analysis for the human suggests that more pro-
cedure is required, and indeed one can imagine that the agent might also be interested
in establishing that it is really human that they are going to see. One possible way of
dealing with human’s concern is to require that agent additionally submits a numerical
code or password when using their telephone T2. However, this obviously also requires
that human be satisfied that the password is only given to persons that human is willing
to see, and this in turn involves a further authentication subprocedure.

An alternative approach, which might also go some way to meeting agent’s concern
that they will really be seeing human, is to allow for some interaction between human
and agent designed for mutual authentication. The minimal form this could take would
be to have passwords offered by both parties. However this makes for a more complex
authentication requirement, and it might appear that a more natural interactive dialogue
might be more satisfactory, e.g. both agent and human provide substantive information
about themselves, relying on background world knowledge for plausibility assessment.

However, there are still weaknesses in such a scenario. Thus, for human, these include:

1. there is the possibility that agent is an impersonator

2. agent is not an impersonator but is acting under duress by an unknown,
while from agent’s point of view

3. there is no guarantee that human is not similarly suspect.
Note also that the situation as described, when considered in detail, has other weaknesses,
e.g.

4. there is no provision for ensuring that the door is closed when agent

is let in (or out).

Thus as before, it is necessary to complete a risk and loss analysis, e.g. of the agent being
an impersonator and what the human has to lose if so (e.g. if the human constitutes
goodies, and pseudo-agent kidnaps human, what will this cost real agent)?

Richer scenarios

Both Setup 1 and Setup 2 were necessarily anchored in physical location, Setup 1
by using a chest, Setup 2 by involving a door and office. We can clearly envisage the
case where the goodies in Setup 1 are not physical but are abstract, e.g. some data,
facts or information, and where it is not necessary for the agent to know anything about
where the goodies are held. However this emphasises the problem of whether the store
is genuine, and of also whether the goodies are what they seem. We already allowed
under Setup 1 for the possibility that the store was a fake, and we also assumed that
the agent would recognise ducats, that they would be genuine ducats, and also that the
agent (or beneficiary) would have some independent knowledge of how many ducats there
should be. However once seeing with one’s own eyes, albeit perhaps unreliably, is removed,
establishing that the store and the goodies are what they ought to be is a more challenging
issue.

Thus suppose we have



EXAMPLE SETUP 3 :

Store is a library service with a dialup as Lock
Goodies is a financial news summary

Opener is a dialup number

Agent is a human.

In this situation, unlike Setup 1, protection for the goodies is not immediately at issue
because the goodies do not belong to the agent (or the beneficiary). As described, there is
no need to establish that the agent is authorised, and so forth. However from the agent’s
point of view the weaknesses include

1. there is no check on whether the dialup number actually goes to the store

2. there is no guarantee that the goodies are genuine
while as before, if the beneficiary is separate from the agent, the beneficiary cannot know
whether the agent actually contacted the store or just made it all up.

Clearly, if we pursue the idea that some other human than the agent/beneficiary has
an interest in the goodies’ status and integrity, we get a richer and more symmetrical
situation. For example if we now have a human as the person responsible for the store
and goodies, they have security concerns e.g. that the goodies are not going to be stolen
by the agent and used to run a rival service. This might imply some requirement that
the agent is a legitimate user of the store and has also, perhaps, has undertaken not
to misuse the store and its goodies. Any scenario along these lines would require more
detailed description and analysis: thus for instance there has to be not merely a means
of authenticating the agent as who they claim to be, but of capturing their undertaking
on behaviour (since the goodies cannot be protected in themselves once they been given
to the agent as information).

Similarly, if we consider a version of the earlier Setup 2 where there is no physical
door and no need for the human and agent to meet and no presumption that they already
know one another, and where we do not limit ourselves simply to the agent’s access to the
human, but allow the human to give something to the agent, we have a situation much
like the one just considered. Thus - and simplifying by referring just to (human) agents
Al, A2, ... - we now have

EXAMPLE SETUP 4 :

Store is a reference service with a telephone T1

Information is (valuable) financial data

Agent Al is a human responsible for the store, and the information,
with use of T1

Opener is a phone number for the store

Agent A2 is a human user of of the store

Telephone T2 is available to A2.

Then, as indicated, we have a number of weaknesses including
1. protecting the information against intrusion
2. insuring the store against being unavailable
3. guaranteeing that agent A2 is legitimate
4. certifying that the store and the information are genuine (to A2)

10



that a full security analysis would have to address. Further, if we imagine that the
information is supplied not only by agent A1, but also by agent A2, say via recording to
the store, we then have a further weakness, namely

5. protecting the information in the store against damage,
interpreting damage to cover a range of possibilities, e.g. overwriting original recordings,
supplying conflicting data likely to confuse other users etc, which could occur either
without evil intent or through malice. Further, for example, depending on the detailed
character and value of the information, there is a weakness in

6. guarding the information against ripoff by agent A2.

Secrets and encryption

In Setup 1 we allowed for the possibility that other people might know about the
store chest or its goodies contents, as a threat one might wish to avoid. In a general way,
there are secrets to be kept. If agent and beneficiary are the same, and agent keeps their
counsel, the risk of someone else getting at the goodies is fairly small. However if, as was
tacitly assumed, the agent is not in the same place as the store and so has to go and
fetch the goodies and bring them back home, it is clearly desirable not to advertise the
existence of the goodies on the journey. One can imagine the agent concealing the ducats
in a modest shopping bag. Whether or not one should conceal the existence of the chest,
on the other hand, is not obvious: there is no general answer to what should be a secret.

We can similarly see that where the goodies are not concrete ducats but abstract finan-
cial information but this is valuable in its own way, as in Setup 4, it may be appropriate
to encrypt it en route to its user agent A2 to ensure that it does not also reach other eyes
en route. Indeed it may be sensible to keep it in the store in encrypted form as well to
guard against some unauthorised person breaking in and reading it there.

Further, with Setup 2, we allowed for the need to authenticate the agent seeking entry
to the human in the office, and imagined the agent using a password for this purpose. To
avoid others overhearing this when the agent uses telephone T2 and then using the pass-
word to gain improper access to the human, the password might be disguised (encrypted)
in some way, e.g. as a form of greeting.

Clearly, similar possibilities for having encrypted passwords could apply to Setup 4.

However using encryption adds complexity to the scenario, and thus in turn has to be
subjected to security analysis. For example, how easy and likely is it that unauthorised
agents will be able to crack it, and how costly will the consequences be, e.g. if a small
number of unauthorised people gain financial information?

Privacy and confidentiality

The setups presented so far illustrate security protection for information for a variety
of good reasons, but without any particular reference to privacy or confidentiality, where
in the narrowest case the former refers to my keeping information about myself secure
and the latter to my keeping information about others secure, but where more generally
achieving privacy e.g. for my medical data imposes a duty of confidentiality on others
dealing with them. The only assumption in the example setups has been that protection
is required because the goodies involved are of value to someone and should thus not

11



be open to corruption or misappropriation. The corresponding security procedures have
thus also involved secrets, but in a quite neutral sense not involving personal privacy or
confidentiality.

However it is easy to see that situations where information that would be viewed by
those involved as private or confidential, for example, a draft job application or referees’
comments on job applications, could figure in setups like those examined. For instance,
in the job case we could have a filing cabinet with the comments to which we need to
restrict access to certain agents and also use to certain modes for the different agents e.g.
to deposit and read, or to read or, at a different time, to remove for shredding. All of
this presupposes means of validating these agents and controlling their actions, as well as
excluding other agents, as well as ensuring the file comments are not accidentally as well
as deliberately altered.

Policies and practices

Doing a proper setup, i.e. situation, description and a security analysis for this, implies
work at 2 levels, those of security policy and security implementation.

Thus, for example, it is a matter of policy that the humans involved are treated only
as individuals, or are treated as having roles, independent of who they are as individuals.
Even in a very simple case this is helpful because it makes it possible to separate the
requirements for role holders from the requirements of individuals as candidates for roles.
For instance for Setup 2 we may require any human to be a member of some organisation
but any agent only to be an adult, and then keep one list of people with their various
properties rather than two lists for humans and agents respectively. This last is a matter
of implementation for the security policy, since there have to be safeguards about who is
on the list and checks that they have the required property.

Having a policy about roles makes it easier to maintain a useful distinction for security
purposes between agents that are authorised for some function and determining whether
an agent, or by extension an action by an agent, for example requesting information, is
authentic, i.e. is what it purports to be.

However, all aspects of a setup are within the scope of a security policy, and equally
will normally be open to different implementations with different risks. Thus if it is policy
that valuable goodies in the form of information shall be protected against accidental or
malicious damage, i.e. shall have their integrity assured, and that this will promoted by
duplication so if one is damaged the other can make it good, what risks (more points to
guard) and costs (of copying) follow?

General model

We can now, as the base for examining computer security, consider access to, and
transmission of, information in terms of the generic functional modules involved, and the
steps in the whole communication process. First, computer security has to be considered
in its own right. It should not be considered just as a byproduct of the fact that infor-
mation handling and agent communication are automated for good, independent reasons.
Second, computer security has to be examined for its own sake because of the intrinsic
properties that computational systems have. In (modern) computational systems secu-

12



rity can be violated in an instant and with extremely rapid and pervasive effects, so
system design implications for security have to be very carefully examined. At the same
time, computers offer particular means of realising security functions in ways that are not
merely simple analogues of non-computational ones: computer power means that security
functions can be carried out in ways that are not feasible otherwise, e.g. through complex
encryption algorithms, which imply distinctive properties in computer security regimes.
These are advantages that can make computational systems more secure, though this is
not guaranteed.

Computer security can make many individual entities and processes within an entire
setup relatively safe. However because setups involve people, i.e. computer systems are
not autonomous, security cannot be guaranteed. Further, while even apparently simple
setups are really quite complex from a security point of view, many setups are intrinsi-
cally complicated since they involve many entities and processes, so the danger of security
failures may be quite high.

The setup examples introduced earlier did not involve any computers. It is possible
to have all kinds of mixes of computational and non-computational elements in a setup.
For convenience we suppose that the goodies we are interested in are always information
that is computationally held and transmitted, and that the systems we are dealing with
are automated, i.e. computer-based, ones.

We can envisage the essential setup and system model, simplistically, as follows:

Agent System Store I nftSJtrg:Zn on Store System Agent
Al access access | access access A2
box box box box
X1 Y1l Al's| A2's Y2 X2
part | part
11 12

This structure covers a wide range of detailed situations including ones where the
information store functions as a primary data repository (analogous to a library) and
ones where the information store contains no more than the secondary routing information
needed to connect agents (analogous to a phone directory); situations where one agent is
concerned only to interact with the information store and not directly with another agent;
situations where the communication of information is essentially unidirectional, etc.

Of course the model also generalises to multiple agents, multiple stores, multiple boxes,
and hence multiple channels.

However for this note, the simple model is sufficient to demonstrate the many points
where security enters. Thus X1 and X2 have to have grounds for accepting or rejecting
interaction with A1 and A2, and also interaction with Y1 and Y2. The analogous situation
applies to Y1 and Y2 in relation to the modules on their two sides. Finally I has to have
grounds for interacting with Y1 and Y2, and perhaps also grounds for allowing internal
interaction between I1 and 12. These grounds may refer both to which module is engaged

13



in the interaction and also to any indirect third parties, and may refer both to what the
interaction is about, i.e. message content, or who is seeking it, i.e. message producer. As
this implies, the various boxes apart from the information store may have their own data
stores to enable communication control. Thus there are potentially many information
points that have to be kept secure. Equally, the communication channels between boxes
have to be kept secure.

All of this may seem absurdly elaborate. A simple example illustrates the need to
recognise how real such complexity is and thus how pervasive the need for security is.

EXAMPLE : MEDICAL DATA BASE

Al is a ward sister, A2 is a medical researcher.
Al and A2 are both users of patient record data, at I.
Al in addition has ward log data in Il, while A2 has epidemiologial data in I2.
For Al to access I, X1 has to accept her logon as a system user
(this could legimately be for other purposes than to reach I).
Y1 has to accept X1’s contact, and Al’s access to I.
Similar considerations apply to A2 via X2.
I1 has to accept Al for reading and writing data.
I2 can accept A2 for reading and writing data, but exclude Al.
I1 can also accept A2 for reading data only.

All of this depends on a secure creation, entry and transmission of, A1 and A2’s individual
authentication i.e. passwords, on secure authorisation of A1 and A2’s status with respect
to I, I1 and 12, also on secure authentication and authorisation as participating automated
agents between X1/Y1 and X2/Y2, also on security (and integrity) of the authentication
and authorisation data, though these processes and data serve only to support the me-
chanics of A1 and A2’s travels through the system. In addition, for the system to support
its primary functional task as a medical information system it is necessary to support the
security (and integrity) of information in I, I1 and 12, and in its transmission to and from
Al and A2 in reading and writing respectively.

Moreover, as even this rudimentary sketch suggests, security has to be regarded as
a systemic matter applying to an entire organisation, which depends critically on the
extent to which the security policy is made to stick throughout the organisation, not just
in the strictly computational parts. For example, people can be forced to adopt new
passwords by machines blocking access every month, but this in itself is not enough to
stop people choosing passwords that are relatively easy to guess. At the same time, as this
illustration suggests, while new technology, especially computing, appears to offer more
security power, the fundamental principles of security are independent of technology, and
it is easy with technology to create complexities that harbour damaging design failures
or implementation bugs.

14



Part 2 : Some technical amplification

It is evident that implementing computer security has many technical ramifications
as well as human management requirements. In Ross Anderson’s comprehensive Security
Engineering, the central technical areas include authentication and passwords, encryp-
tion, system access control in general, security management in distributed systems and
networks, and in systems with multiple different security regimes, with file and database
protection logistics as essential to all of these. As already mentioned, even these interact
with human factors, e.g. people’s inability to remember long passwords or PINs, and
the human role in security policy formulation and in system design, management and
evaluation is obvious.

The general presumption in Anderson’s book is not just that security can be com-
promised by acts of God, or the carelessness of man, or by plain old Murphy, but that
security systems have to be based on the principle that they will be attacked, not only by
criminals out for gain, or by vandals, but by ordinary people who put their convenience
first. Security imposes costs on individuals that they would prefer not to bear, and which
they regard as unnecessary by some plausible piece of self-justification (‘I know Bill would
let me look at his files if I asked him, so I'll not bother him but just get in there’).

In this part I will consider four technical areas - authentication, encryption, system
structure, and database administration, in some, but still minimal, technical detail. My
aims are to provide a context for the security jargon that is so frequently encountered
e.g. PGP, Kerberos protocol, RSA algorithm, Bell-LaPadula model, and CORBA, and to
emphasise that all the technology has its limitations, so it is always worth asking to be
shown precisely where the Emperor’s new clothes are. Anderson’s book provides splendid,
detailed further amplification with many real-life examples.

Authentication

Authentication minimally determines that an agent (human or system) is who they
say they are, but frequently also checks for legitimate time and place. Authentication is
therefore based on a protocol.

I shall start with what by the standards of the trade is a very simple protocol. It
is more complicated than might be expected, so the security motivation for the various
features calls for comment.

Protocol 1

A simple protocol for human user access to a system facility, file ... would be
that the user submits their identifier along with their password at a system
entry point, which may be physically separated from the main system and
not just a logical front end, combines the password with a nonsense string,
or ‘nonce’, encrypts this combination using an appropriate key, and passes
the resulting combination to the facility controller. The controller checks that
the identifier is a known one, decrypts the password-nonce combination using
the key, checks that password is recorded as associated with the identifier and
that the nonce has the required property (see below), and lets the user into
the facility by sending a suitable enter signal.

15



The reason for having a separate identifier and password, and not treating the password
as identifier, is that for many system management purposes it is desirable to recognise
that there is a single entity - the authorised user - who may have many passwords, for
different things or times, and further to allow the identifier to be public. The reason for
encryption is that if the entry point is separate from the facility control (as with an ATM
and a bank) it is important that an eavesdropper cannot listen in and pick up a password.
(The form of encryption is a separate matter: we can pretend here it is something with
as simple a key as a letter substitution table - though for technical reasons this would not
work in this case, - which might be common to all users or individualised for each user
and associated in the authentication database along with identifier and password). The
reason for the nonce is that it is necessary to ensure that the use of the password is fresh.
Even if a password is encrypted, an eavesdropper could capture it and submit it again
later. The nonce is logically a timestamp, though it may in practice be generated e.g. as a
random number, so the facility controller can be sure it has not been seen before without
having to rely on a timer or, more importantly, allow only one user into the facility at
any one time.

Though quite complex, this protocol has the defect that operation is entirely one
way. The facility has only to check whether what the user offers matches its records and
encoding conditions. Since the records might have been subverted, the protocol has its
limits (quite apart from whether the encryption method used can be broken).

Aadditional security can be achieved by seeing whether a purported user can respond
to a challenge from the controller.

Protocol 2

In this case the user initially does no more than invoke logon (ring the bell) at
the entry point. The system then sends their own nonce, e.g. random, string
to the user. The user, who is supplied with a suitable offline coding device,
enters the nonce string along with their own PIN into this device. The device
combines the two, encrypts the result by applying a stored key, and displays
the resulting number to the user who enters it into the system as his password
and submits it to the facility controller. The facility controller, armed with
knowledge of the user’s PIN and the encryption key, repeats the computation
and checks that she gets the same result.

This protocol is quite different from the previous one and seems suprisingly cumber-
some. But it has important advantages. There are no stored passwords, though there are
stored encryption keys at either end and a PIN record for the user at the system end. The
password is guaranteed fresh for each system access, because it is newly generated (and
can also be more secure than the average human-chosen password). Encryption plays a
more central role since it is used to generate, and not merely encode, the password.

The weakness of the protocol is that it relies on the offline device which, in the ordinary
world, could be stolen and, since it is not difficult to hypothesise PINs, could allow
improper facility access. It is however a respectable protocol for use in establishments,
like banks, which have separate personnel security.

Moreover this protocol, when viewed as an abstract protocol model, is limited in the
same way as Protocol 1. It is based solely on determining whether one party, the user,

16



is legitimate. It does nothing to satisfy a user’s need to establish that the system is the
one they think it is (e.g. is not a bogus ATM). More generally, authentication has to be
allowed to be a peer-to-peer relationship with mutual authentication. This adds further
complexity because it is important to maintain parity of information and control.

Protocol 8

Here we have two users, conventionally Alice and Bob, and an intervening
system controller Sam. Suppose Alice wishes to communicate with Bob. She
signals Sam, using for this the personal key she has for interacting with Sam.
Bob naturally also has a different personal key for communicating with Sam.
In order to make Alice and Bob’s direct communication secure, Sam creates a
new session key for their interaction, and packages this up along with their two
identifiers and a timestamp or nonce to indicate freshness. Sam also encrypts
the package both for Alice with Alice’s key, and for Bob with Bob’s key. He
then sends Alice her package, and also sends her Bob’s package, for her to use
as a letter of introduction to Bob (she of course can’t read it herself). When
Alice now contacts Bob and presents the letter, Bob is able to establish that
the letter is acceptable because it is encrypted with the key he shares with
Sam, and that it is fresh, so he can respond to Alice. It may be appropriate
for him to add a challenge step, as with Protocol 2, before doing this, to ensure
that it is really Alice who is trying to communicate with him. However once
communication has been successfully opened up, Alice and Bob can use their
joint session key to send secure messages to one another.

Even this protocol, with what looks like rather careful detail, in fact has weaknesses.
Thus for example it is vulnerable to anyone who can steal Alice’s key for communicating
with Sam, since this would enable the impersonator to establish session keys for commu-
nicating with Bob or other users.

The protocol essentially assumes that the users are members of a mutually trusting
community and are primarily concerned that their communications with one another
be protected against outside intrusion. Unfortunately members of communities are not
always trustworthy. There are better forms of the protocol e.g. Kerberos, but these in
turn have their own weaknesses.

These three examples are about authenticating human users. But it is clear with
Protocol 3, that the agents can perfectly well be programs, and authenticating systems
to one another is as critical as authenticating humans. Even when humans are involved,
moreover, authenticating the individual may be less important than authenticating their
host organisation, e.g. what bank is signalling may matter more than which of their clerks
is bank representative. Finally, authentication applies to the content of messages as much
as to who sends it. It is not much use to Alice to know that it is indeed Bob at the other
end if she has no meens of knowing whether the actual message he is sending is authentic
or has been interfered with en route.

The take-home lesson about authentication is thus: analyse your protocol design and
implementation for every assumption and check these are reasonable in the circumstances
in which the protocol is to be used.

17



Non-repudiation

In communication between parties, authentication is knowing where a signal came
from and maintaining confidentiality is knowing where it went. Non-repudiation is ac-
knowledging that the signal happened. But this is not just a matter of system evidence,
e.g. in a log file. Ultimately there has to be a human human judge of whether, on the
basis of all the evidence, the transaction has occurred.

Encryption

Crytography is a large and extremely technical subject, invoking heavy mathematics.
This is therefore not the place to go into it. For present purposes the important points
about encryption are:

how easy is it to break a secret code cipher in the absence of a key ?
who has the key ?
where is it appropriate to apply encryption ?

We have already referred to an extremely simple cipher, letter substitition, with its
table key. The key lists the plain-letter/cipher-letter pairs; enciphering the header or
body of a message involves substituting the appropriate cipher letter for the given plain
letter, and deciphering is the reverse. Clearly both sender and receiver of the message
have to have a copy of the key.

Ciphers like this are far too easy to break without the key. Ciphers can be made more
complex, and hence encryption more secure, by stream or block techniques: in the first the
way a plain letter is treated depends on its position in the plaintext, in the second a block
of several letters is replaced. Things can be made more challenging to the code-breaker by
introducing randomness so e.g. it is not obvious which letters in an encrypted string belong
to the real message and which are just noise, produced by choosing a letter as instructed
by some random (strictly, pseudo-random) number generator. In general, encryption is
made more effective by making keys more opaque e.g. very long, by elaborating on the
enciphering process, e.g. applying several cycles, and by smothering everything in huge
numbers so, e.g. finding what numbers might have been multiplied together to produce
them is a big computing deal. However, as machines become more powerful, once-large
numbers become smaller. Moreover using random numbers in encrypting has a cost in
requiring a subsidiary ‘key’, namely information about that the generation algorithm is
and what ‘seed’ has been used to start it.

Quite apart from these issues, for any user wanting to communicate with many other
users (or many facilities), it is a nuisance to have to have separate keys for each one.
However it is clearly dangerous to assume that when a single key is known to a large
number of people or kept in many places, it will be secure.

Public key encryption

Having a pair of keys for each user (facility) and making one of them public is a way
of dealing with this problem. In public key encryption every agent has two keys, a public
one and a private one. Anyone who wants to communicate with Alice can use her public
key to encrypt their message, which can only be decrypted by Alice herself using her
private key. Thus if Bob sends Alice a message encrypted with her public key it is secure

18



because he alone knows what the message was before it was encrypted, and Alice is the
only person who can get at it after it has been encrypted. There is no need, in particular,
for anyone but Alice to know her decryption key.

Digital signatures
Digital signatures work the other way round: the signature can only be written (cre-
ated) by one person, but can be read (verified) by anyone.

Of course, as with authentication, encryption applies as much to messages between
programs and systems as between humans. For example one program may send another
a message consisting of a password to be checked (as with an ATM and a bank), and
commercial data may be encrypted for transmission between offices in different countries.

In a general way, it might appear that the more encryption the better. The examples
in Part 1 illustrate many points for where it can be applied within a single system.
However encryption has costs associated both with processing and key data conservation,
and it is not necessary to encrypt every bit, i.e. 0 or 1, in a complete communication.
What matters is knowing which bits to encrypt e.g. that it may be important to encrypt
authentication exchanges to avoid letting undesirable users or programs into a system,
but not necessarily the messages that are subsequently exchanged which could contain
only routine information; or it could be appropriate to encrypt the messages as well, for
extra security. There are encryption standards, and reputable encryption algorithms e.g.
RSA, the DES algorithm, as well as protocols for establishing and using keys, including
certifying the link between users and keys. What matters with encryption is getting sound
expert advice on whether a proposed encryption regime is adequate for its intended system
use.

Digital rights management

Security can be viewed primarily as protecting computer users and owners against
other people. Encryption is also used in digital rights management to protect others (the
holders of digital property, e.g. a music soundtrack) against computer owners who may
want to misappropriate it, say by copying it. There are important issues here (though
outside my present scope) about aggressive uses of security technology e.g. to protect
monopoly commercial positions.

System structure and operation

Modern computer systems are very large, i.e. very powerful, and very complicated, for
example because they consist of many machines. It is particularly important to recognise
that while an individual may think of their PC as an independent machine that just
happens to have a connection to the Internet, as a device for sending emails to others
out there, and of the Web as a convenient remote encyclopedia, in reality pretty well
everything is connected with everything else. This is why viruses spread so quickly.

The implications of this global connectivity for anyone concerned with security are:

first, that in general, any individual component agent (person, machine) will have

19



multiple connections with others, i.e. be linked for one or more functions (filing, archiv-
ing, emailing, web browsing etc) with many other systems, implying many interfaces for
which security has to be considered; and

second, that any agent will be connected with others indirectly as well as directly,
quite possibly through many intervening systems, so security chains or dependencies have
to be taken into account.

As this suggests, local security for any one component agent or system, in handling
both what it receives and what it sends, has to be thoroughly organised. For instance,
using an office analogy, if ordinary mail received through the post is put in pigeonholes
for addressees to pick up themselves, the mailroom has to be careful to keep incoming
FedExes separate as these have to be explicitly signed for. Equally, it is a mistake to
put outgoing FedExes in the outgoing postbag as this may introduce a delay - discovery
by the PostOffice, return to sender, restart with FedEx collector - which could seriously
affect the status of the enclosed message.

But equally, security propagation between one agent or system and another at a dis-
tance has to be thoroughly understood. There is no point in my labelling a sealed envelope
addressed to Dr X. and containing a personal reference, as Confidential if I cannot be sure
that the envelope, still sealed, will reach Dr X’s desk, for him alone to open. My initial
security mechanism - sealing and labelling - is subverted if the envelope is opened in a
secretary’s office and the actual reference letter is left exposed, for anyone in the office to
read, on a tray for Dr X to pick up when he comes in.

In both these situations, even the local one, the agent originating the action is not, and
cannot be, in control of what follows, and has to rely on others to support and maintain
their security requirement.

In general, that is, security in any individual case - i.e. for an action like sending
an email, depositing a data record, reading a file entry, checking a logon, or for a state
like that of an archive, a document being edited, or a calculation in progress, - depends
on security in a system as a whole. This does not imply that the same security regime
has to apply everywhere, just as it does not imply that any agent (human or machine)
can only have a single role with particular security status. Allowing for different regimes
for different purposes, and several different roles, provides the flexibility for systems to
operate effectively. (For example, requiring all mail to be FedExed, and hence requiring
everyone involved to have the role of FedEx sender /receiver or clerk, would be costly and
a waste of everyone’s time on the logistics of packing, logging, signing etc.)

At the same time, much of what is required for security is required for proper software
engineering from the most mundane and basic point of view: no-one wants a computer
operating system not to check what databases it is writing to, or not to worry about what
happens when it tries to make modifications requested by two distinct agents to the same
database at the same time, or not to bother when it sends the same email by multiple
routes to increase the chances of at least one getting to its destination, and fast, with
what happens to any later arrivals (a stockbroker’s client does not necessarily want the
broker to sell or buy more than one batch of shares).

The intimate relationship between security engineering and software engineering im-
plies that decent software engineering should provide some of the necessary underpinning

20



for security engineering in a narrower sense. But since software engineering in practice is
often far from satisfactory and, further, specific security requirements may be more strin-
gent than the default general ones, it is necessary to examine the requirements a security
regime imposes and to check whether the system’s foundations are actually adequate for
the proposed security building or will simply let it slowly sink into the ground, or crack
open and collapse.

One way of doing this is to assess a system’s ability to maintain a security status
hierarchy for agents (or more strictly, agent roles), that controls information flow and
action scope. For example, anything an ordinary user can see can be seen by some
privileged administrative users, and anything these can see can be seen by some top-level
superuser, but the reverse does not apply: information flows in one direction only. In the
most straightforward case, action could apply in the opposite direction: anything done
by a bottom-level user can be cancelled by an administrative user, who in turn may be
subjected to action by the superuser: more generally an action at the top would apply
downward all the way. This is a very simple illustration, and an actual situation could be
more complex: for example only some superuser actions might apply downwards, or some
end-user information be readable upwards. The same notions of course apply to software
as opposed to human agents. The general model of information flow referred to as the
Bell-Lapadula model was developed for military contexts, but the flow idea is the kind of
tool that can be usefully applied to analyse security, especially in terms of roles, in other
contexts. Similar strategies, applying notions of chinese walls or boxes, can be used to
check the security insulation of one part of a system from another.

But there is a real problem in computer security with leakage: somehow, someway,
however things started with tight, or appropriate, security, the combination of system
spread and operational speed means that security will never be more than a goal, not a
fact. Good system design means minimising the consequences of leakage. It is especially
important to recognise the dangers that ‘bought-in’ packages involve. These may be
presented as complete (business) solutions to some functional requirement, but should
never be accepted as plugin black boxes. They need detailed security analysis like any
other software, in particular to establish that they do exactly what is specified and not
something subtly, but damagingly, different.

Viruses, worms and denial of service

Though the concern of this note is with guarding systems against misuse by their users,
whether careless or corrupt or elitist, rather than against invasion by teenage hackers, it
is important to recognise that invasions can affect legitimate operations e.g. through
changes of data or modifications of control regimes, even if they do not disrupt them
entirely. The kinds of attacks represented by viruses and worms (the strictly technical
differences between these do not matter here) can be far more damaging, and so can denial
of service attacks where systems are prevented from working by e.g. tsunamis of email.
Shutting proper users out of systems can lead to awkward, costly, or life-threatening
situations. Many such attacks are extremely undiscriminating and the fact that some
system ‘ought’ not to attract offensive attacks does not mean that it will not in practice
suffer, and security engineering has to allow for this.

21



Files and databases

Security for files and databases looms large in any computing application. The points
made about system security in the previous section are directly relevant to files and
databases. However the fact that databases may contain large amounts of sensitive infor-
mation about, or relating to, people or organisations, may be continually changing, may
have very long life times, and may often also necessarily have many users, means that
database security is particularly significant in practice.

Thus as well as guarding against accidental damage (whether to their content or their
physical storage devices), and ensuring that database functions including ‘delete item’
are correctly and fully implemented, it is particularly important to provide proper control
on (human or machine) agent access, and to ensure that the functions these agents can
execute are clearly specified. Agent roles and their capabilities, and role-based access
control, are valuable security mechanisms for this purpose, e.g. to distinguish powers
to read only or to write as well. (Applying these mechanisms is in turn facilitated by
convenient ways of modelling agents, e.g. as abstract ‘objects’, as in CORBA.)

Database security has many ramifications, e.g. keeping agent authorisations and
role assignments up to date, ensuring that the archiving that is essential for significant
databases is securely done and that the archives themselves are secure; ensuring that
distributed databases, or databases that exist in multiple copies, are equally secure in all
their parts or copies, and so forth.

In addition or rather, crucially, the social and economic functions that databases serve
means that the definition of the setup (i.e. human as well as computational context)
within which the database exists and is used is comprehensive enough to ensure that it
captures management roles with responsibility, and accountability, for the database. This
has be done as grounding for the other role assignments, even if the person(s) with the
roles for which responsibility and accountability are specified never actually see or use the
data themselves, and never go near the computer systems on which the databases live.
Further, it is necessary, since databases have non-trivial lives, to address the question
of responsibility and accountability over time, with their corresponding obligation to
maintain database information for as long as it may affect its subjects. It is essential not
to treat the way computational databases are implemented as a purely technical matter
that is independent of, and hence of no concern in detail to, those who are actually
responsible and accountable for what the databases hold and what they are used for.

Iris recognition - a cautionary example

Automated iris recognition appears to be an unrivalled means of achieving access secu-
rity for individuals: since the human iris is effectively unique, it is possible to authenticate
an individual, and hence allow them to access a store or facility. Further, iris recognition
is a computational security device becase of the processing required to transform the input
image of the iris and check it against the reference base of iris image transformations for
people.

However the security is not as complete as might be supposed, and belief in the power
of iris recognition security comes from considering it only from one point of view, namely
that it is impossible to substitute an alternative eye. Thus if the file form is for X’s eye,

22



Y’s eye can not be offered the input scanner and expected to match the file form. Thus
Y cannot gain access where only X is allowed.

But since there are two parts to the device, the input eye image and the file form, it
is also necessary to consider whether it is possible to substitute Y’s image form in the
file, thus allowing Y to impersonate X. Doing this depends on being able both to invoke
the input image transformation software, and to deposit the resulting form in the file. It
might also be impossible to sustain impersonation for long, for example if X appeared,
was denied access, and succeeded in raising doubts about the status of the file version.
However the possibility of tampering successfully with the file shows that iris recognition
does not offer the total access security many suppose.

To improve security it would be desirable e.g. to keep the transformation software
well separated from the file, ansd to supplement the use of iris recognition by other
means of personal identification/authentication. The latter would unfortunately reduce
the beautiful simplicity of the pure iris model; and it would not ensure that the file could
never be violated. But it might be better than relying on iris recognition alone.

Take home message

Computer technology, in radically changing the way information is handled, means
that every aspect of security for that information has to be rethought. But it also means
that, though computing offers new security devices, these have their own vulnerabilities
which may be more difficult, because of system scale and complexity, to detect and remowve,
and which therefore leave information systems open to the misuse or damage that go along
with having human beings anywhere around. These dangers are compounded by the fact
that systems themselves are continually modified in detail, often for good, independent
reasons, and much more significantly by the fact that the environments in which systems
operate evolve, so that the security assumptions and policies on which they are based no
longer apply, and unforeseen security disaster can strike.

I am grateful to Roger Needham and Ross Anderson for comment, to them and the latter’s
book for my security education, and to John Naughton for further comment.

Ross Anderson, Security Engineering, Wiley, 2001.

23



