
Technical Report
Number 545

Computer Laboratory

UCAM-CL-TR-545
ISSN 1476-2986

A HOL specification of the ARM
instruction set architecture

Anthony C.J. Fox

June 2001

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2001 Anthony C.J. Fox

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

A hol specification of the arm

instruction set architecture

Anthony Fox
Computer Laboratory, University of Cambridge

June 21, 2001

Abstract

This report gives details of a hol specification of the arm instruction set architecture.
It is shown that the hol proof tool provides a suitable environment in which to model the
architecture. The specification is used to execute fragments of arm code generated by
an assembler. The specification is based primarily around the third version of the arm

architecture, and the intent is to provide a target semantics for future microprocessor
verifications.

Contents

1 Introduction 6

2 Methodology 6

2.1 State Functions and Iterated Maps . 6
2.2 Memory and Finite Maps . 7

3 The ARM Programmer’s Model 7

3.1 The State-Space . 7
3.2 Configuration . 8
3.3 Registers, Modes and Register Access . 8
3.4 The Program-Counter . 12
3.5 Memory Organisation and Access . 12
3.6 Exceptions and Interrupts . 14
3.7 Bit-vector Operations . 15

4 The Instruction Set 16

4.1 Instruction Formats . 16
4.2 Instruction Summary . 18
4.3 Conditional Execution . 18
4.4 Branch and Branch with Link . 18
4.5 Data Processing . 20
4.6 PSR Transfer . 22
4.7 Multiply and Multiply-Accumulate . 23
4.8 Single Data Transfer . 25

3

4.9 Block Data Transfer . 27
4.10 Single Data Swap . 29
4.11 Software Interrupt . 30

5 State and Next-State Functions 30

6 Executing the Specification 31

7 Future Work and Conclusions 34

8 Acknowledgments 35

4

List of Figures

1 arm’s visible registers. 9
2 Format of the program status registers (psrs). 9
3 Little- and big-endian memory organisations. 13
4 Exception handling specification. 14
5 arm instruction set formats. 17
6 Branch and branch with link instruction encoding. 19
7 Branch and branch with link instruction execution. 19
8 Data processing instruction encoding. 20
9 Data processing instruction execution. 21
10 MRS instruction encoding. 22
11 MSR instruction encoding. 23
12 MRS instruction execution. 23
13 MSR instruction execution. 24
14 Multiply instruction encoding. 24
15 Multiply instruction execution. 24
16 Single data transfer instruction encoding. 25
17 Single data transfer instruction execution. 26
18 Block data transfer instruction encoding. 27
19 Block data transfer instruction execution. 28
20 Swap instruction encoding. 29
21 Swap instruction execution. 30
22 Software interrupt instruction encoding. 30
23 Software interrupt instruction execution. 30
24 The arm next-state function. 32

List of Tables

1 arm operating modes and register usage. 8
2 Register access operations. 11
3 PSR operations. 11
4 Memory access operations. 13
5 Exception vector addresses. 14
6 Primitive operations over the natural numbers and 32-bit words. 15
7 The arm instruction set. 17
8 arm condition codes. 18
9 Operations used to specify branch instructions. 19
10 Operations used to specify data processing instructions. 21
11 Operations used to specify psr transfer instructions. 22
12 Operations used to specify multiply and multiply-accumulate instructions. . . 24
13 Operations used to specify single data transfer instructions. 26
14 Operations used to specify block data transfer instructions. 28

5

1 Introduction

This report details the specification of the arm instruction set architecture in hol. The
specification is primarily based on version 3G of the architecture, although some of the features
of version 4 are adopted, for example, the inclusion of the system mode and the specification of
unpredictable behaviour with respect to program-counter usage (see Section 3.4). The official
arm architecture reference is [10]; Furber’s book is also a useful introductory text [5]. The
specification presented in this report was influenced work at Leeds using sml, see [8].

hol is founded on Church’s theory of simple types [1], and has its origins in Edinburgh
lcf [6] and Cambridge lcf [9]. The version of hol used in the production of this report is
hol98 Taupo-6, which is written in Standard ML (specifically MoscowML). The current hol

distribution may be found at www.cl.cam.ac.uk/Research/HVG/HOL.
Section 2 gives a brief overview of the approach taken in modelling the architecture. In

Section 3 the arm programmer’s model is discussed and it is shown how this may be translated
into hol. The programmer’s model establishes a level of abstraction—the programmer’s view
of the architecture. Section 4 gives details about the encoding and semantics of the main
the arm instruction classes. This is all brought together in Section 5 with the definition of
a next-state function, which provides an operational semantics for the architecture. Finally,
in Section 6 it is shown how the specification may be used to simulate the execution of arm

machine code.

2 Methodology

This section outlines the approach used to model the arm architecture. A more extensive
account of this methodology, in the context of microprocessor specification and verification,
may be found in [3].

2.1 State Functions and Iterated Maps

The arm architecture is modelled as a finite state machine and is given an operational se-
mantics. The set of all possible machine states, as perceived by the programmer, is called
the state-space and this is defined in Section 3.1. The system is modelled by a state function
F : T → A → A that specifies the state of the machine at clock cycle t ∈ T = {0, 1, . . . }
for a given preliminary (pre-initialised) machine state a ∈ A. The state function for the arm

architecture is an iterated map and is defined in Section 5.

Definition. Let A be a non-empty set (the state-space), and let T be a set of cycles (the
clock). A function F : T → A → A is called an iterated map when it is defined by the
equations:

F 0 a = h a,

F (t + 1) a = f(F t a)

where h : A → A is an initialisation function and f : A → A is a next-state function.

Iterated maps generate deterministic state sequences of the form:

h a, f(h a), f(f(h a)), . . . , f t(h a), . . .

6

With the arm architecture, an initialisation function is not used because all machine states
are suitable initial states1, therefore the state at time t is F t a = f t(a). One instruction is
executed on each successive clock cycle, therefore the state at cycle t corresponds with the
execution of t instructions.

The specification presented in this report is intended to be a purely abstract model of the
arm instruction set architecture. The state-space only contains components that are visible
to the programmer, and every effort is made to ensure that the specification is not too strong
or over-specified (i.e. implementation specific). This is done to ensure that the specification
represents a suitable target semantics for microprocessor implementations.

2.2 Memory and Finite Maps

Addressable memory is a core feature of most computer architectures and relatively large
numbers of general purpose registers are available with most risc machines, including the
arm. The functionality (if not the size and speed) of these two storage components is very
similar and both are modelled as maps from a finite address/index-space to a memory/register-
cell-space. hol provides a theory of finite maps, but for the purposes of this work it is sufficient
to model memory using a function m:’a→’b, where ’a and ’b are suitable (but not necessarily
finite) indices and data types.

Function application corresponds with a memory read, with m a representing the contents
of memory m at address a. A substitution function SUBST:(’a→’b)→’a#’b→’a→’b is used to
overwrite data at a given memory address, thus modelling a memory write:

d̀ef SUBST m (a,w) b = (if a = b then w else m b)

For example, SUBST m (a,w) is the memory m with the value w stored at address a.

3 The ARM Programmer’s Model

This section describes the arm’s programmer’s model and its formalisation in hol.

3.1 The State-Space

The arm state-space consists of a main memory, general-purpose registers and processor status
registers. This is represented in hol using the following data type declaration:

Hol datatype ‘state ARM = ARM of (w30→w32)⇒reg⇒psr‘;

The types w32, reg and psr are introduced in Section 3.3, and the main memory, of type
w30→w32, is discussed in Section 3.5. The type declaration introduces a type constructor
function:

ARM:(w30→w32)→reg→psr→state ARM,

and this acts much like an ml type constructor.

1This is not strictly true because some processor states are best avoided. For example, to avoid unpredictable
behaviour, it is important to ensure that the psr control bits (see Section 3.3) are set appropriately.

7

CPSR[4:0] Mode Use Accessible register set

10000 User Normal user code r0..r15 CPSR

10001 FIQ Processing fast interrupts r0..r7, r8 fiq..r14 fiq, r15 CPSR, SPSR fiq

10010 IRQ Processing standard interrupts r0..r12, r13 irq, r14 irq, r15 CPSR, SPSR irq

10011 Supervisor Processing software interrupts r0..r12, r13 svc, r14 svc, r15 CPSR, SPSR svc

10111 Abort Processing memory faults r0..r12, r13 abt, r14 abt, r15 CPSR, SPSR abt

11011 Undefined Handling undefined exception
traps

r0..r12, r13 und, r14 und, r15 CPSR, SPSR und

11111 System Running privileged operating
system tasks

r0..r15 CPSR

Table 1: arm operating modes and register usage.

3.2 Configuration

Like most microprocessors, arm designs support different operational configurations, to ac-
count for various system setups, absence/presence of auxiliary hardware and versions of in-
struction code. Such configuration is inherently implementation dependent and is principally
achieved by using a small number of special purpose registers that are hidden with respect
to the programmer’s model. Flags contained within these registers are read (and in some
cases set) using co-processor instructions. The hol specification in this report just models
the abstract architecture and, as such, only a limited amount of configuration is visible.

Three boolean constants are defined:

• ALIGN CHECK determines whether or not misaligned memory addresses generate exceptions,
see Section 3.5;

• BIG ENDIAN determines whether a big-endian or little-endian memory organisation is em-
ployed, see Section 3.5; and

• LATE ABORT controls the write-back behaviour of load/store instructions after data aborts,
see Sections 3.6 and 4.8.

The configuration is static (i.e. not reflected in the state-space), and hence term-rewriting may
be used to simplify the specification, thus providing an instance of a given configuration.

3.3 Registers, Modes and Register Access

In the arm programmer’s model, access to registers is determined by the current operating
mode of the processor. The current mode is encoded within five bits of a Current Processor
Status Register (cpsr), see Table 1. Seven modes are defined and these provide a means to
develop multi-user operating systems, and a mechanism to handle interrupts and exceptions.
Figure 1 shows the full set of 37 visible 32-bit registers, as organised by operating mode. The
program-counter is accessible in all modes and is treated as the general purpose register r15,
see Section 3.4. The Processor Status Registers (psrs) are used to keep track of the processor’s
operating mode, together with the interrupt status and the state of the condition code flags,
see Figure 2. The cpsr directly controls the execution of instructions, whereas the Saved
Processor Status Registers (spsrs) are used to effect mode changes—saving the cpsr value
for subsequent restoration. Conceptually the psrs are thirty-two bits long but, in terms of
the architecture presented here, bits five and 8–27 are all redundant.

8

r14 und
r13 und

r14 abt
r13 abt

r14 svc
r13 svc

r14 irq
r13 irq

r14 fiq
r13 fiq
r12 fiq
r11 fiq
r10 fiq
r9 fiq
r8 fiq

r15 (PC)
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

SPSR undSPSR abtSPSR svcSPSR irqSPSR fiqCPSR

user mode
fiq

mode
irq

mode
svc

mode
abort
mode

undefined
mode

Figure 1: arm’s visible registers.

31 30 29 28 27 8 7 6 5 4 3 2 1 0

N Z C V · · · I F · mode

Overflow

Carry / Borrow / Extend FIQ disable

Zero IRQ disable

Negative / Less than

flags control

Figure 2: Format of the program status registers (psrs).

9

Registers are represented in hol using the type w32, which is introduced with the data
type declaration:

Hol datatype ‘w32 = W32 of num‘;

One advantage of this choice of representation is that words can be constructed from unsigned
integer values, for example, the term "W32 123" represents the word 0x0000007B. By defining
the type w32 in this way, one can also make prudent use of hol’s built-in support for natural
number arithmetic—this simplifies the task of defining operations over words, see Section 3.7.
One should be aware that with this approach term equivalence does not correspond with word
equivalence because when one writes "W32 n " this is intended to mean the word with unsigned
value n mod 232. In practice this is not a problem because all operations over words are defined
so as to produce results in the desired range: 0 ≤ n < 232.

An alternative approach would have been to use lists or vectors/tuples of boolean values
to represent words. The advantage of using vectors or tuples is that the data type may
be of the correct cardinality (with exactly 232 possible values), hence term equivalence is
always word equivalence. Using lists helps when defining bit manipulation operations (such
as, concatenation and bitwise and/or/eor) but arithmetic operations (such as, addition and
multiplication) are more involved and would require a proof of correctness. There is also the
problem that term equivalence is not word equivalence even for values less than 232. This is
because leading zeroes may be present, for example, with the least-significant bits first, the
list [0;1] has the same word value as the list [0;1;0].

arm’s banks of visible registers are represented in hol using the data types reg and psr:

Hol datatype ‘reg = REG of (reg usr→w32)⇒(reg fiq→w32)⇒(reg irq→w32)⇒
(reg svc→w32)⇒(reg abt→w32)⇒(reg und→w32)‘;

Hol datatype ‘psr = PSR of w32⇒(spsr→w32)‘;

The general-purpose registers are modelled as a group of six maps from register indices to
words, and the psrs are modelled as a single word (the cpsr) together with a map from spsr

names to words. User registers are indexed by 4-bit words and all other register are named;
the following data type declarations achieve this:

Hol datatype ‘reg usr = W4 of num‘;

Hol datatype ‘reg fiq = r8 fiq | r9 fiq | r10 fiq | r11 fiq | r12 fiq | r13 fiq | r14 fiq‘;

Hol datatype ‘reg irq = r13 irq | r14 irq‘;

Hol datatype ‘reg svc = r13 svc | r14 svc‘;

Hol datatype ‘reg abt = r13 abt | r14 abt‘;

Hol datatype ‘reg und = r13 und | r14 und‘;

Hol datatype ‘spsr = spsr fiq | spsr irq | spsr svc | spsr abt | spsr und‘;

Note that "W4 16" is a valid term but it is not a valid register index: this is not a problem
because the arm specification ensures that all references to user registers are made using
numbers in the range 0–15. Table 2 describes the main functions used to access registers. The
operational modes are defined using the following data type:

Hol datatype ‘mode = usr | fiq | irq | svc | abt | und | sys‘;

The system mode sys was introduced in version 4 of the arm architecture.
Operations for manipulating psrs are listed in Table 3. The function DECODE PSR is used to

decode a psr (see Figure 2) and produce a tuple of the from:

(Z,N,C,V,irq,fiq,mode,valid) = DECODE PSR w

The last element of this tuple is only true when the 5-bit encoding of the mode in w is correct
i.e. when it is one the encodings in Table 1.

10

Operation Type Meaning / Use

CPSR READ psr→w32 Gives the state of the CPSR

CPSR WRITE psr→w32→psr Updates the state of the CPSR. The mode is forced to be
valid by mapping erroneous codes into the user mode

SPSR READ psr→mode→w32 Gives the state of the SPSR corresponding with a given
mode

SPSR WRITE psr→mode→w32→psr Updates the state of an SPSR with a new value

REG READ reg→mode→num→w32 Gives the state of general purpose register, as
referenced by mode and register number. The
program-counter is incremented by eight, this
corresponds with a data read for a 3-stage pipeline.

REG WRITE reg→mode→num→w32→reg Updates the state of a register with a new value, the
register is referenced by mode and number

INC PC reg→reg Increments the program-counter so as to point to the next
instruction i.e. adds four to its value

FETCH PC reg→w32 Gives the actual state of the program counter

Table 2: Register access operations.

Operation Type Meaning / Use

SET NZC bool→bool→bool→w32→w32 Set the N, Z and C flags of a PSR

SET NZCV bool→bool→bool→bool→w32→w32 Set all of the condition code flags of a PSR

SET MODE mode→w32→w32 Set the mode bits of a PSR

SET IFMODE bool→bool→mode→w32→w32 Set the interrupt status and mode bits of a PSR

DECODE PSR w32→bool#bool#bool#bool#mode#bool Decode a PSR

Table 3: PSR operations.

11

3.4 The Program-Counter

The program-counter is visible to the programmer and may be accessed as r15. When accessing
the program-counter pipelined functionality becomes apparent. The behaviour of the program-
counter is based around that of a 3-stage pipelined microprocessor, such as the arm6. The
state of the program-counter is used to fetch instructions, but by the time a given instruction
reaches the execute stage of the pipeline the program-counter will have a value that is eight
bytes (two instructions) ahead of instruction’s own address. In the hol specification, the
function REG READ gives the state of the program-counter at the execute stage and FETCH PC

gives the state of the program-counter at the fetch stage:

REG READ reg usr (W4 15) = (FETCH PC reg) ADD32 (W32 8)

Further complication arises with program-counter access when dealing with instructions that
require more than one cycle to execute. The program-counter is incremented on the first cycle
of execution and hence subsequent access to the program-counter (by the same instruction)
will yield a value of pc + 12, where pc is the address of the instruction being executed. After
version 4 of the architecture, program-counter usage that gives rise to this type of behaviour
is deemed to be unpredictable and is strongly discouraged.

Although such program-counter functionality made it easier to implement 3-stage pipelines,
it has resulted in further complicating the implementation of later designs. For example, to
be compatible, a 5-stage pipeline must simulate the program-counter behaviour of the 3-stage
pipeline. This need not have been the case and could have been avoided by imposing a clean
abstraction from the outset. There would be less of a problem if the programmer’s model
view of the program-counter were independent to that of an pipelined implementation i.e.
by specifying that the program-counter r15 always represents the address of the instruction
being executed. It would then have been a requirement of the implementation to provide this
straightforward functionality. In the case of pipelined designs this might simply involve using
two registers: one of which is visible to the programmer (the address of the instruction being
executed, which is incremented only at the end of instruction execution), and the other is a
hidden register, which is used to fetch instructions and is incremented after an instruction is
fetched.

3.5 Memory Organisation and Access

The arm memory system may be viewed as a linear array of bytes, numbered from zero to
232 − 1. This could be modelled in hol as a map from w32 to w8, where w8 is represents bytes.
Instead the memory is modelled as a map from w30 to w32, where w30 is given the data type
declaration:

Hol datatype ‘w30 = W30 of num‘;

The advantage of modelling the memory using word addressing is that, when loading and
storing words, byte ordering is less significant and one need not rely on mappings between
4-tuples of bytes and words. This helps improve the performance of simulation, where words
are the most common form of data to be accessed. The byte ordering is only of significance
when accessing bytes or when loading data using misaligned memory addresses, see Figure 3.
A 32-bit byte address is word aligned if, and only if, it is exactly four times greater than a
30-bit word address. When loading a word from a misaligned address 4n + q, for 30-bit value
n and 1 ≤ q ≤ 3, the word with address n is fetched and is either rotated 8q places left

12

Big-endian Word Addressed Little-endian

32 24 23 16 15 8 7 0

a byte3 byte2 byte1 byte0

4a byte3 byte0 4a

4a + 1 byte2 byte1 4a + 1

4a + 2 byte1 byte2 4a + 2

4a + 3 byte0 byte3 4a + 3

Figure 3: Little- and big-endian memory organisations.

Operation Type Meaning / Use

WORD ALIGN w32→w32 Force word alignment by clearing the two least significant
bits.

W32 W30 w32→w30 Convert a 32-bit word of value n into a 30-bit word of
value

⌊

n

4

⌋

MEM READ BYTE (w30→w32)→w32→w32#bool Models loading a byte from memory

MEM READ WORD (w30→w32)→w32→w32#bool Models loading a word from memory

MEM WRITE BYTE (w30→w32)→w32→w32→(w30→w32)#bool Models storing a byte to memory

MEM WRITE WORD (w30→w32)→w32→w32→(w30→w32)#bool Models storing a word to memory

Table 4: Memory access operations.

with the big-endian scheme (to ensure that the qth byte is the most-significant) or rotated 8q
places right with the little-endian scheme (to ensure that the qth byte is the least-significant).
When storing a word using a misaligned address, word alignment is simply forced i.e. no word
transformation takes place.

Table 4 describes the functions used to model the data access operations of the arm

architecture. The memory read operations produce a pair consisting of a word (in the case of
byte access this is a zero extended byte value); and a boolean flag, which indicates whether
or not the operation generated an exception. For example,

(word,abort) = MEM READ WORD mem (W32 17)

models fetching a word from the misaligned 32-bit address 17. The first component word

evaluates to the forth word in memory mem rotated eight places left, if BIG ENDIAN is true,
and eight places right otherwise. The abort flag evaluates to the constant value ALIGN CHECK,
see Section 3.2.

Memory write operations also produce a pair, this time consisting of the updated memory,
and a flag to indicate the exception status. For example,

13

Exception Mode on entry Vector address

Reset Supervisor 0x00000000

Undefined instruction Undefined 0x00000004

Software interrupt (SWI) Supervisor 0x00000008

Prefetch abort (instruction fetch memory fault) Abort 0x0000000C

Data abort (data access memory fault) Abort 0x00000010

- reserved - - 0x00000014

IRQ (normal interrupt) IRQ 0x00000018

FIQ (fast interrupt) FIQ 0x0000001C

Table 5: Exception vector addresses.

d̀ef EXCEPTION (ARM mem reg psr) n =

let cpsr = CPSR READ psr in

let fiq’ = if (n = 1) ∨ (n = 7) then T else BIT32 6 cpsr

and (mode’,pc’) =

if n = 1 then (svc,W32 0) else

if n = 2 then (und,W32 4) else

if n = 3 then (svc,W32 8) else

if n = 4 then (abt,W32 12) else

if n = 5 then (abt,W32 16) else

if n = 6 then (irq,W32 24) else

if n = 7 then (fiq,W32 28) else ARB in

let reg’ = REG WRITE reg mode’ 14 ((FETCH PC reg) ADD32 (W32 4)) in

ARM mem (REG WRITE reg’ usr 15 pc’)

(CPSR WRITE (SPSR WRITE psr mode’ cpsr) (SET IFMODE T fiq’ mode’ cpsr))

Figure 4: Exception handling specification.

(mem’,abort) = MEM WRITE BYTE mem word (W32 17)

models storing the least-significant byte (bits 0–7) of word in the memory mem at the address
17. The word at address 4 is altered: if BIG ENDIAN is true then the third byte (bits 16–23) is
overwritten, otherwise the second byte (bits 8–15) is overwritten. The updated memory is mem’,
and the abort flag is the exception status. With respect to raising exceptions, the definitions
of the memory access operations may be tailored to correspond with a given implementation.
For example, to consider the case of a memory management unit that has access constraints
to ensure system code is protected. The only architecture specific exception is loading a word
using a misaligned address with ALIGN CHECK set.

3.6 Exceptions and Interrupts

The specification presented here makes little or no attempt to model the intricacies of exception
handling in an accurate way i.e. their precise timing and priorities. Seven types of exception
are considered and these are listed in Table 5. The processor’s response to a given exception
type (as numbered from 0 to 7) is specified by the function EXCEPTION defined in Figure 4. The
effect of the exception on the processor’s state is as follows:

• The memory does not change state.

14

Operation Type Meaning / Use

TIMES 2EXP m n num→num→num Shift left, i.e. n × 2m

DIV 2EXP m n num→num→num Shift right, i.e.
⌊

n

2m

⌋

MOD 2EXP m n num→num→num Select least significant bits, i.e. n mod 2m

DIVMOD 2EXP m n num→num→num#num Bitwise quotient and remainder, i.e. (
⌊

n

2m

⌋

, n mod 2m)

BITS h l n num→num→num→num Extract bit field, i.e.
⌊

n

2l

⌋

mod 2h−l+1

BIT m n num→num→bool Test bit, i.e. true if mth bit of n is equal to one

BIT32 n w num→w32→bool Test bit

LSB32 w w32→bool Test least significant bit

MSB32 w w32→bool Test most significant bit

W32 NUM w w32→num Unsigned value

ONE COMP32 w w32→w32 Bitwise compliment

TWO COMP32 w w32→w32 Arithmetic negation

w ADD32 v w32→w32→w32 Addition

w MUL32 v w32→w32→w32 Multiplication

w SUB32 v w32→w32→w32 Subtraction

w AND32 v w32→w32→w32 Bitwise and

w OR32 v w32→w32→w32 Bitwise or

w EOR32 v w32→w32→w32 Bitwise exclusive or

w LSL32 n w32→num→w32 Logical shift left (n places)

w LSR32 n w32→num→w32 Logical shift right (n places)

w ASR32 n w32→num→w32 Arithmetic shift right (n places)

w ROR32 n w32→num→w32 Rotate right (n places)

w ROL32 n w32→num→w32 Rotate left (n places)

w RRX32 b w32→bool→w32 Shift right using extend bit b

Table 6: Primitive operations over the natural numbers and 32-bit words.

• Register 14 is assigned the value of the program-counter plus four (i.e. the address of
the following instruction).

• The program-counter is assigned the vector address associated with the given exception.

• The cpsr is stored in the spsr associated with the given exception.

• The cpsr mode bits are changed to correspond with the mode of the given exception.

• The cpsr is updated to mask out irq interrupts (bit 7 is set).

• If the exception is a reset or a fiq interrupt then the cpsr is updated to mask out fiq

interrupts.

Jumping to the specified vector addresses will activate exception handling code—this should
deal with and return from the exception in a acceptable manner. The nature and requirements
of this code is not specified here.

3.7 Bit-vector Operations

In order to specify the arm architecture a number of word operations are defined, see Table 6.
The first six operations are defined over the natural numbers and are primarily used to decode
words. For example,

15

BITS 8 4 321 = 20

DIVMOD 2EXP 4 321 = (20,1)

because

32110 = 1010000012 and

2010 = 101002.

The operations over words can be expressed using natural number arithmetic, for example,
the following axioms are used:

d̀ef ONE COMP32 (W32 x) = W32 (2 EXP 32 - 1 - x)

d̀ef ADD32 (W32 x) (W32 y) = W32 ((x + y) MOD 2 EXP 32)

d̀ef LSL32 (W32 x) n = W32 ((x * 2 EXP n) MOD 2 EXP 32)

If appropriate, theorems are partially evaluated prior to use, for example:

d̀ef ONE COMP32 (W32 x) = W32 (4294967295 - x)

The bitwise operations AND32, OR32 and EOR32 are all defined using a function:

BITWISE32:(bool→bool→bool)→w32→w32→w32

This function takes a boolean operation and uses it in comparing the oddness of the two
arguments at powers of two.

4 The Instruction Set

In this section the bulk of the arm instruction set is specified. Eight classes of instructions
are considered; co-processor and thumb instructions are not covered.

4.1 Instruction Formats

The encoding of arm instructions is shown in Figure 5. Instructions in the undefined in-
struction class, together with the co-processor classes (labelled e., h. and i.) are all trapped
and raise the undefined instruction exception (see Section 3.6). Some instruction codes give
unpredictable (implementation dependent) behaviour and others are not defined at all, but
these do not raise an exception. These holes in the instruction-space have in some cases been
used to add more instructions in later versions of the architecture. For the purposes of the
hol specification, the result of executing unpredictable instructions is expressed using ARB,
which has hol definition

d̀ef ARB = εx. T

In the case of state, this represents a value x:state ARM such that T (truth) holds, which means
that it denotes an arbitrary state.

The hol specification will name the components of the arm instructions as they appear
in the literature (and figures in this report), but there are two notable exceptions due to
overloading—the flags I and S must be called Im and Sf because I is the identity map and S is
a combinator.

16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a. Cond 0 0 I Opcode S Rn Rd Operand 2

b. Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

c. Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

d. Cond 0 1 I P U B W L Rn Rd Offset

e. Cond 0 1 1 1

f. Cond 1 0 0 P U S W L Rn Register List

g. Cond 1 0 1 L Offset

h. Cond 1 1 0

i. Cond 1 1 1 0

j. Cond 1 1 1 1 Ignored by processor

a. Data Processing and PSR Transfer d. Single Data Transfer g. Branch
b. Multiply e. Undefined h. & i. Coprocessor Instruction
c. Single Data Swap f. Block Data Transfer j. Software Interrupt

Figure 5: arm instruction set formats.

Mnemonic Instruction Action

ADC Add with carry Rd := Rn + Op2 + Carry

ADD Add Rd := Rn + Op2

AND AND Rd := Rn AND Op2

B Branch R15 := address

BIC Bit clear Rd := Rn AND NOT Op2

BL Branch with link R14 := R15, R15 := address

CMN Compare negative CPSR flags := Rn + Op2

CMP Compare CPSR flags := Rn - Op2

EOR Exclusive OR Rd := (Rn AND NOT Op2) OR
(Op2 AND NOT Rn)

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd := (address)

MLA Multiply accumulate Rd := (Rm * Rs) + Rn

MOV Move register or constant Rd := Op2

MRS Move register to PSR status/flags Rn := PSR

MSR Move register to PSR status/flags PSR := Rm

MLA Multiply Rd := Rm * Rs

MVN Move negated register Rd := NOT Op2

ORR ORR Rd := Rn OR Op2

RSB Reverse subtract Rd := Op2 - Rn

RSC Reverse subtract with carry Rd := Op2 - Rn - 1 + Carry

RSB Subtract with carry Rd := Rn - Op2 -1 + Carry

STM Store multiple Stack manipulation (Push)

STR Store register to memory <address> := Rd

SUB Subtract Rd := Rn - Op2

SWI Software interrupt OS call

SWP Swap register with memory Rd := [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags := Rn EOR Op2

TST Test bits CPSR flags := Rn AND Op2

Table 7: The arm instruction set.

17

Code Suffix Flags Interpretation

0000 EQ Z set Equal / equals zero

0001 NE Z clear Not equal

0010 CS/HS C set Carry set / unsigned higher or same

0011 CC/LO C clear Carry clear / unsigned lower

0100 MI N set Minus / negative

0101 PL N clear Plus / positive or zero

0110 VS V set Overflow

0111 VC V clear No overflow

1000 HI C set and Z clear Unsigned higher

1001 LS C clear and Z set Unsigned lower or same

1010 GE N equals V Signed greater than or equal

1011 LT N is not equal to V Signed less than

1100 GT Z clear and N equals V Signed greater than

1101 LE Z set and N is not equal to V Signed less than or equal

1110 AL any Always

1111 NV none Never (use prohibited)

Table 8: arm condition codes.

4.2 Instruction Summary

A complete list of the specified instructions is presented in Table 7. The third column provides
an informal description of each instruction, mainly in terms of assignments to state compo-
nents. No attempt is made in this report to describe the full assembly code syntax for each
class on instruction, this may be found in the references [10, 5].

4.3 Conditional Execution

One of the characteristic features of the arm architecture is that all instructions are condition-
ally executed. This facilitates more compact and efficient assembly code control structures by
reducing the need for conditional branching. Bits 28-31 of an instruction store the condition
code (see Figure 5) and this is interpreted according to Table 8. Conditional execution is
specified in hol using a predicate function:

CONDITION PASSED:bool→bool→bool→bool→num→bool

Each instruction is executed if, and only if, CONDITION PASSED N Z C V Cond is true, where N, Z, C
and V are the condition flags (stored in the cpsr) and Cond is the instruction’s condition code
expressed as value in the range 0-14.

4.4 Branch and Branch with Link

This instruction class includes: regular branches (which, like all other instructions, are con-
ditionally executed); and subroutine style branches, which store the return address in a link
register. The encoding of these instructions is shown in Figure 6. This class of instruction is
specified in hol using the functions from Table 9. The function BRANCH, defined in Figure 7,
specifies the state of the processor after executing a branch instruction:

• An external decode determines the operating mode and instruction code (see Section 5),
and these are denoted by mode and n respectively.

18

31 28 27 25 24 23 0

Cond 1 0 1 L 24-bit signed word offset

Figure 6: Branch and branch with link instruction encoding.

Operation Type Meaning / Use

BRANCH state ARM→mode→num→state ARM Gives the state after executing a branch instruction

DECODE BRANCH num→bool#num Decodes a branch giving the link flag and 24-bit signed offset

SIGN EX OFFSET num→w32 Takes a 26-bit signed value and gives the 32-bit word equivalent

Table 9: Operations used to specify branch instructions.

d̀ef BRANCH (ARM mem reg psr) mode n =

let (L,offset) = DECODE BRANCH n

and pc = REG READ usr reg 15 in

let pc’ = pc ADD32 (SIGN EX OFFSET (4*offset)) in

if ¬(MSB32 pc = MSB32 pc’) then ARB

else

let reg’ = REG WRITE usr reg 15 pc’ in

if L then

ARM mem (REG WRITE reg’ mode 14 ((FETCH PC reg) ADD32 (W32 4))) psr

else

ARM mem reg’ psr

Figure 7: Branch and branch with link instruction execution.

19

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 0 0 # Opcode S Rn Rd Operand 2

destination register

first operand register

set condition codes

arithmetic/logic function

25 11 8 7 0

1 #rot 8-bit immediate

immediate alignment

11 7 6 5 4 3 0

#shift Sh 0 Rm

25 immediate shift length

0 shift type

second operand register

11 8 7 6 5 4 3 0

Rs 0 Sh 1 Rm

register shift length

Figure 8: Data processing instruction encoding.

• The 24-bit offset is shifted left two places, sign-extended and then added to the program-
counter. Note that the current value of the program-counter is obtained using REG READ,
hence it is eight bytes ahead of the actual program-counter value.

• If the link form of the instruction is specified (L is set) then the address of the instruction
following the branch is stored in register fourteen.

The memory and program status registers do not change state. An attempt to branch outside
the 32-bit address-space may give unpredictable results—this is detected by checking whether
or not the branch destination address has the same sign as the instruction’s own address.

4.5 Data Processing

There are sixteen different data processing instructions, and their encoding is illustrated in
Figure 8. The operation is determined by the 4-bit opcode field. A three-address format is
employed: the destination register and first operand are expressed directly; and the second
operand is computed using one of three methods. The operations used to specify the data
processing instructions are listed in Table 10. The function DATA PROCESSING, defined in
Figure 9, specifies the state of the processor after executing a data processing instruction:

• An external decode (see Section 5) determines the operating mode and instruction code
n, together with the status of the carry-out C and overflow V flags.

• The memory does not change state.

• The first operand rn is the state of register Rn.

20

Operation Type Meaning / Use

DATA PROCESSING state ARM→bool→bool→mode→num→state ARM Gives the state after executing a data
processing instruction

DECODE DATAP num→bool#num#bool#num#num#num Decodes the data processing
instructions into six fields

ADDR MODE1 reg→mode→bool→bool→num→bool#w32 Computes the carry out from the
shifter and second source operand,
using the register bank state, current
mode, carry flag status, immediate
flag and 12-bit operand fields. This
function makes use of the following
three functions

IMMEDIATE bool→num→bool#w32 Compute immediate shift operand

SHIFT IMMEDIATE reg→mode→bool→num→bool#w32 Compute shift by immediate operand

SHIFT REGISTER reg→mode→bool→num→bool#w32 Compute shift by register operand

ALU arithmetic num→w32→w32→bool→bool#bool#bool#bool#w32 Gives the flag status and result for the
execution of an arithmetic operation.
Takes the opcode, two operands and
the carry flag status

ALU logical num→w32→w32→bool→bool→bool#bool#bool#bool#w32 Gives the flag status and result for the
execution of a logical operation. The
overflow flag is not set by logical
operations, so the current value must
be provided

ARITHMETIC num→bool Holds true if the given opcode is that
of an arithmetic (as opposed to
logical) operation

TEST OR COMP num→bool Holds true if the given opcode is that
of a test or comparison operation.
These operations set the condition
flags without storing a result

Table 10: Operations used to specify data processing instructions.

d̀ef DATA PROCESSING (ARM mem reg psr) C V mode n =

let (Im,opcode,Sf,Rn,Rd,opnd2) = DECODE DATAP n in

if ((¬Im ∧ BIT 4 opnd2 ∧
((Rn = 15) ∨ (BITS 11 8 opnd2 = 15) ∨ (BITS 3 0 opnd2 = 15))) ∨
(Rd = 15) ∧ Sf ∧ ((mode = usr) ∨ (mode = sys))) then ARB

else

let (C s,op2) = ADDR MODE1 reg mode C Im opnd2

and rn = REG READ reg mode Rn in

let (N,Z,C’,V’,res) = if ARITHMETIC opcode

then ALU arithmetic opcode rn op2 C

else ALU logical opcode rn op2 C s V in

ARM mem (if TEST OR COMP opcode then

INC PC reg

else let reg’ = REG WRITE reg mode Rd res in

if Rd = 15 then reg’ else INC PC reg’)

(if Sf then

CPSR WRITE psr

(if Rd = 15 then SPSR READ psr mode

else SET NZCV N Z C’ V’ (CPSR READ psr))

else psr)

Figure 9: Data processing instruction execution.

21

31 28 27 23 22 21 16 15 12 11 0

Cond 0 0 0 1 0 R 0 0 1 1 1 1 Rd 0 0 0 0 0 0 0 0 0 0 0 0

destination register

SPSR/CPSR

Figure 10: MRS instruction encoding.

Operation Type Meaning / Use

MRS state ARM→mode→num→state ARM Gives the state after executing an MRS instruction

DECODE MRS num→bool#num Decodes an MRS instruction

MSR state ARM→mode→num→state ARM Gives the state after executing an MSR instruction

DECODE MSR num→bool#bool#bool#bool#num#num Decodes an MSR instruction into six fields

SPLIT WORD w32→w8#w8#w8#w8 Split a word into four bytes

CONCAT BYTES w8→w8→w8→w8→w32 Construct a word from four bytes (highest byte first)

Table 11: Operations used to specify psr transfer instructions.

• The pair (C s,op2), consists of the carry out from the shifter and the second operand,
and is computed using the function ADDR MODE1.

• The alu output (N,Z,C’,V’,res) is computed by the function ALU arithmetic if the oper-
ation is arithmetic (sub, add, rsb, adc, sbc, rsc, cmp or cmn) and by the function
ALU logic otherwise (and, eor, orr, mov, bic, mvn, tst and teq).

• If the operation is a test or comparison (cmp, cmn, tst or teq) then Sf must hold (see
below), the program-counter is incremented and no other register is updated.

• If the operation is not a test or comparison then the result res will be written to the
register Rd, and if this register is not r15 then the program-counter will also be incre-
mented.

• If the Sf flag is set then, if Rd = 15 then the cpsr will be updated to the current mode’s
spsr value, otherwise the cpsr flags are set in accordance with the output of the alu.

Unpredictable behaviour arises when shifting by a register value when one of the source reg-
isters is the program-counter; and when trying to restore a spsr (Sf set and Rd=15) when in
the user or system mode.

A fair amount of complexity is hidden under the definition of ADDR MODE1, which computes
the second operand. For example, in the shift by immediate/register functions, four types of
shifting are encoded using the Sh field (bits 5 and 6) but four more variants are available for
the cases when the shift amount is zero.

4.6 PSR Transfer

This class of instruction includes the mrs instruction, which copies a psr register to a general
purpose register, and the msr instruction, which is used to update a psr using a register or im-
mediate value. The encoding for these instructions is shown in Figures 10 and 11 respectively.
The operations used to define this class of instruction are listed in Table 11.

22

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 0 0 # 1 0 R 1 0 Field 1 1 1 1 Operand

field mask

SPSR/CPSR

25 11 8 7 0

1 #rot 8-bit immediate

immediate alignment

25 11 4 3 0

0 0 0 0 0 0 0 0 0 Rm

operand register

Figure 11: MSR instruction encoding.

d̀ef MRS (ARM mem reg psr) mode n =

let (R,Rd) = DECODE MRS n in

if (R ∧ ((mode = usr) ∨ (mode = sys))) ∨ (Rd = 15) then ARB

else

let word = if R then SPSR READ psr mode else CPSR READ psr in

ARM mem (INC PC (REG WRITE reg mode Rd word)) psr

Figure 12: MRS instruction execution.

The function MRS is defined in Figure 12 and it specifies the state after executing an mrs

instruction: if the R bit is set then the spsr is read and stored in register Rd, otherwise the
cpsr is read and stored. The program-counter is always incremented. This operation is
unpredictable when selecting an spsr read in the user or system modes, or if the destination
register is the program-counter.

The function MSR is defined is Figure 13 and it specifies the state after executing an msr

instruction. When the R bit is set an spsr update occurs, otherwise the cpsr value is modified.
The source value is determined by the Im bit, if it is set then an immediate value is computed
from the operand field opnd (using the function IMMEDIATE from Section 4.5), otherwise register
Rd is read. The functions SPLIT WORD and CONCAT BYTES are used to construct a new psr value
by updating the control and/or flags parts of the status register. Bits 16 and 19 (of the field
mask) are used to select the bytes to be updated, but the control bits can only be updated
when not in user mode. msr instructions are unpredictable with spsr transfer in the user
or system modes, when selecting control bit update with an immediate offset, or when the
program-counter is the source register Rm. The main memory does not change state and the
program-counter is incremented.

4.7 Multiply and Multiply-Accumulate

This class contains two instructions: multiply and multiply-accumulate. The encoding of these
instructions is shown in Figure 14. The operations used to specify this class of instruction
are listed in Table 12. The function MUL MLA, defined in Figure 15, specifies the state of the
processor after executing a multiply or multiply-accumulate instruction:

23

d̀ef MSR (ARM mem reg psr) mode n =

let (Im,R,bit19,bit16,Rm,opnd) = DECODE MSR n in

if (Im ∧ bit16) ∨ (R ∧ ((mode = usr) ∨ (mode = sys))) ∨ (¬Im ∧ (Rm = 15)) then ARB

else

let xpsr = if R then SPSR READ psr mode else CPSR READ psr

and src = if Im then SND (IMMEDIATE ARB opnd) else REG READ reg mode Rm in

let (x3,x2,x1,x0) = SPLIT WORD xpsr

and (s3,s2,s1,s0) = SPLIT WORD src in

let xpsr’ = CONCAT BYTES (if bit19 then s3 else x3) x2 x1

(if bit16 ∧ ¬(mode = usr) then s0 else x0) in

ARM mem (INC PC reg)

(if R then SPSR WRITE psr mode xpsr’ else CPSR WRITE psr xpsr’)

Figure 13: MSR instruction execution.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

operand registers

destination register

set condition codes

accumulate

Figure 14: Multiply instruction encoding.

Operation Type Meaning / Use

MUL MLA state ARM→mode→num→state ARM Gives the state after executing a MUL or MLA
instruction

DECODE MUL MLA num→bool#bool#num#num#num#num Decodes a MUL an MLA instructions

ALU multiply bool→w32→w32→w32→bool#bool#bool#w32 Gives the flag status and result of executing a
MUL or MLA instruction

Table 12: Operations used to specify multiply and multiply-accumulate instructions.

d̀ef MUL MLA (ARM mem reg psr) mode n =

let (A,Sf,Rd,Rn,Rs,Rm) = DECODE MUL MLA n in

if (Rd = Rm) ∨ (Rd = 15) ∨ (A ∧ (Rn = 15)) ∨ (Rs = 15) ∨ (Rm = 15) then ARB

else

let rm = REG READ reg mode Rm

and rs = REG READ reg mode Rs

and rn = REG READ reg mode Rn in

let (N,Z,C,res) = ALU_multiply A rm rs rn in

ARM mem (INC PC (REG WRITE reg mode res Rd))

(if Sf then CPSR WRITE psr (SET NZC N Z C (CPSR READ psr)) else psr)

Figure 15: Multiply instruction execution.

24

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 0 1 # P U B W L Rn Rd Offset

source/destination register

base register

load/store

write-back (auto-index)

unsigned byte/word

up/down

pre-/post-index

25 11 0

0 12-bit immediate

25 11 7 6 5 4 3 0

1 #shift Sh 0 Rm

immediate shift length

shift type

offset register

Figure 16: Single data transfer instruction encoding.

• The memory does not change state.

• The alu output (N,Z,C,res) is computed using the function ALU multiply. The multipli-
cand is register Rm, and the multiplier is register Rs. If the A bit is set then register Rn is
added to the product. According to the arm references, the carry-out flag C is assigned
a “meaningless value”, but in order to execute the hol specification (see Section 6) it is
set to false (though it may just as well be set true).

• The result is stored in register Rd and the program-counter is incremented.

• If Sf is set then the n, z and c flags of the cpsr are updated.

This class of instruction is unpredictable when any of the destination or source registers is the
program-counter, or when the destination register is the same as the multiplicand register Rm.

4.8 Single Data Transfer

This class includes: load instructions, which transfer data from memory to a register; and
store instructions, which transfer data from a register to memory. The encoding for this class
of instruction is shown in Figure 16. The operations used to specify this class of instruction
are listed in Table 13. The function LDR STR, defined in Figure 17, specifies the state of the
processor after executing a ldr or str instruction:

• The carry-out flag C is determined by an external decode.

• Two addresses are computed using the function ADDR MODE2: the address addr is used for
the load/store, and addr’ is the write-back address, which is used to update the base
register Rn. If the P bit is set (for pre-indexing) then these two addresses will be the
same.

25

Operation Type Meaning / Use

LDR STR state ARM→bool→mode→num→state ARM Gives the state after executing a LDR or
STR instruction

DECODE LDR STR num→bool#bool#bool#bool#bool#bool#num#num#num Decodes LDR and STR instructions

ADDR MODE2 reg→mode→bool→bool→bool→bool→num→num→w32#w32 Computes the memory address
operand and write-back address

Table 13: Operations used to specify single data transfer instructions.

d̀ef LDR STR (ARM mem reg psr) C mode n =

let (Im,P,U,B,W,L,Rn,Rd,offset) = DECODE LDR STR n in

if (W ∧ (¬P ∨ (Rn = 15) ∨ (Rn = Rd))) ∨
(Im ∧ (offset MOD 16 = 15)) ∨ (¬L ∧ (Rd = 15)) then ARB

else

let (addr,addr’) = ADDR MODE2 reg mode C Im P U Rn offset in

let wb reg = if W ∨ ¬P then REG WRITE reg mode Rn addr’ else reg in

if L then

let (data,r abort) = if B then MEM READ BYTE mem addr

else MEM READ WORD mem addr in

if r abort then

EXCEPTION (ARM mem (INC PC (if LATE ABORT then wb reg else reg)) psr) 5

else let reg’ = REG WRITE mode wb reg Rd data in

ARM mem (if Rd = 15 then reg’ else INC PC reg’) psr

else

let rd = REG READ reg mode Rd in

let (mem’,w abort) = if B then MEM WRITE BYTE mem rd addr

else MEM WRITE WORD mem rd addr in

if w abort then

EXCEPTION (ARM mem (INC PC (if LATE ABORT then wb reg else reg)) psr) 5

else

ARM mem’ (INC PC wb reg) psr

Figure 17: Single data transfer instruction execution.

26

31 28 27 26 25 24 23 22 21 20 19 16 15 0

Cond 1 0 0 P U S W L Rn Register list

base register

load/store

write-back (auto-index)

restore PSR and force user bit

up/down

pre-/post-index

Figure 18: Block data transfer instruction encoding.

• Within ADDR MODE2 a base address b is obtained from register Rn and an offset δ is computed
from the offset field, either as a 12-bit immediate value (when Im is set), or using the
function SHIFT IMMEDIATE from Section 4.5. If U is set (for up) then the write-back address
is b + δ, otherwise it is b − δ.

• If the W bit is set (for write-back) or if P is not set (for post-indexing) then Rn is assigned
the value of the write-back address addr’.

• If it is ldr instruction (L is set) then either a byte (B set) or word is read from the
address addr. If a data abort does not occur then this data is stored in register Rd. If
the destination register is not r15 then the program-counter is incremented. If there was
a data abort (r abort set) then an exception of type five is raised. In such cases the
constant LATE ABORT (see Section 3.2) dictates whether or not the register Rn is updated
with the write-back address. Term-rewriting may be used to eliminate this constant
from the specification.

• If it is a str instruction (L is not set) then register Rd is read, and its value is then stored
at address addr, either as a byte (B set) or as a word. The updated memory is denoted
by mem’. If there is data abort then an exception of type five is raised. In each case the
program-counter is incremented.

This class of instruction is unpredictable when using the program-counter as the offset,
when storing the program-counter, and when the write-back address Rn is the same as the
source/destination register Rd.

4.9 Block Data Transfer

This class of instruction is used to store and load blocks of registers to and from memory. Four
different types of stack structure are supported, there are modes to force user bank transfer,
ldm instructions can be used to effect mode changes and memory aborts can occur during
transfers; consequently this is the most complex class of arm instruction to specify. The
encoding for this class of instruction is shown in Figure 18. The operations used to specify
this class of instruction are listed in Table 13. The function LDM STM, defined in Figure 19,
specifies the state after executing an ldm or stm instruction:

• The variable list represents the list of registers that are to be processed. The function-
ality of an ldm instruction is influenced by whether or not the program-counter is in
this list.

27

Operation Type Meaning / Use

LDM STM state ARM→mode→num→state ARM Gives the state after executing a LDM or
STM instruction

DECODE LDM STM num→bool#bool#bool#bool#bool#num#num list Decodes LDR and STR instructions

LDM LIST (w30→w32)→reg→mode→bool→bool→w32→num list→
reg#bool#w32

Gives the register state, abort status
and write-back address for an LDM
instruction

STM LIST (w30→w32)→reg→mode→bool→bool→w32→num list→
(w30→w32)#bool#w32

Gives the memory state, abort status
and write-back address for an STM
instruction

Table 14: Operations used to specify block data transfer instructions.

d̀ef LDM STM (ARM mem reg psr) mode n =

let (P,U,Sf,W,L,Rn,list) = DECODE LDM STM n in

let pc in list = BIT 15 n

and base in list = BIT Rn n in

if (LENGTH list = 0) ∨ (Rn = 15) ∨ (Sf ∧ ((mode = usr) ∨ (mode = sys))) ∨
(W ∧ ¬L ∧ (base in list ∨ Sf)) then ARB

else

let rn = REG READ reg mode Rn in

if L then

let mode’ = if Sf ∧ ¬pc in list then usr else mode in

let (reg’,r abort,rn’) = LDM LIST mem reg mode’ P U rn list in

let wb reg = if W ∧ (¬base in list ∨ r abort)

then REG WRITE reg’ mode Rn rn’

else reg’ in

let pc reg = if pc in list ∧ ¬r abort then wb reg else INC PC wb reg in

if r abort then

EXCEPTION (ARM mem pc reg psr) 5

else

ARM mem pc reg

(if Sf ∧ pc in list then CPSR WRITE psr (SPSR READ psr mode) else psr)

else

let mode’ = if Sf then usr else mode in

let (mem’,w abort,rn’) = STM LIST mem reg mode’ P U rn list in

let reg’ = INC PC (if W then REG WRITE reg mode Rn rn’ else reg) in

if w abort then

EXCEPTION (ARM mem reg’ psr) 5

else

ARM mem’ reg’ psr

Figure 19: Block data transfer instruction execution.

28

31 28 27 23 22 21 20 19 16 15 12 11 4 3 0

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

source register

destination register

base register

unsigned byte/word

Figure 20: Swap instruction encoding.

• The base address is read from register Rn.

• The mode used to access registers, denoted mode’, is determined by the Sf flag and, in
the case of ldm instructions, by the presence or absence of the program-counter in the
register list.

• The functions LDM LIST and STM LIST are used to compute the new register/memory state,
abort status and the address for register write-back. The type of stack implemented by
these operations is determined by the two flags P and U.

• Register write-back only occurs when the W bit is set. In the case of the ldm instruction, if
the base register is in the list then the load takes precedence over the write-back, except
when a data abort occurs, in which case the write-back occurs in order to facilitate
recovery.

• The program-counter is incremented in each case, with the exception of an ldm instruc-
tion in which the program-counter in the list and when there is not a data abort.

• If a data abort occurs then an exception of type five is raised.

• If the program-counter is in the list and the Sf bit is set then an ldm instruction causes
a mode change to occur (the spsr is restored).

This class of instruction is unpredictable: when the length of the register list is zero; when the
base register is r15; when changing mode in the user or system modes; and with write-back
for the stm instruction when the base register is in the list or when the Sf bit set.

4.10 Single Data Swap

The swap instruction provides a way to exchange data between a register and memory in
one cycle and without interruption, and this provides a mechanism to implement software
semaphores. The encoding of this class of instruction is shown in Figure 20. The function
SWP, defined in Figure 21, specifies the state of the processor after executing a swp instruction:

• The B flag determines whether a byte or word is swapped.

• The memory address is read from the base register Rn.

• Register Rm is stored in memory and the old memory value is stored in register Rd.

• A data abort raises an exception of type five.

29

d̀ef SWP (ARM mem reg psr) mode n =

let (B,Rn,Rd,Rm) = DECODE SWP n in

if (Rn = 15) ∨ (Rd = 15) ∨ (Rm = 15) ∨ (Rn = Rm) ∨ (Rn = Rd) then ARB

else

let (MEM READ,MEM WRITE) = if B then (MEM READ BYTE,MEM WRITE BYTE)

else (MEM READ WORD,MEM WRITE WORD) in

let rn = REG READ reg mode Rn

and rm = REG READ reg mode Rm in

let (word,r abort) = MEM READ mem rn

and (mem’,w abort) = MEM WRITE mem rm rn in

if r abort ∨ w abort then

EXCEPTION (ARM mem (INC PC reg) psr) 5

else

ARM mem’ (INC PC (REG WRITE reg mode Rd word)) psr

Figure 21: Swap instruction execution.

31 28 27 24 23 0

Cond 1 1 1 1 24-bit comment field (ignored by processor)

Figure 22: Software interrupt instruction encoding.

• The program-counter is always incremented.

This class of instruction is unpredictable if the any of the three register is r15, or if the base
register is the same as the source or destination register. The source and destination registers
may be the same.

4.11 Software Interrupt

The software interrupt instruction is used to enter supervisor mode in a controlled manner.
The encoding of this instruction is shown in Figure 22. The function SWI, defined in Figure 23,
specifies the state after executing a swi instruction, and this simply corresponds with an
exception of type three.

d̀ef SWI (ARM mem reg psr) mode n = EXCEPTION (ARM mem reg psr) 3

Figure 23: Software interrupt instruction execution.

5 State and Next-State Functions

Section 4 gave details of the semantics of the main classes of arm instruction. This section
gives a semantics for the entire instruction set architecture. The arm architecture is specified
by an iterated map state function:

d̀ef (STATE_ARM 0 a = a) ∧
STATE_ARM (SUC t) a = NEXT_ARM (STATE_ARM t a)

30

An initialisation function is not defined but one should be aware that in practice the memory
and psr registers need to be suitably initialised, see Section 6. The next-state function is
defined in Figure 24:

• An instruction is fetched using the word-aligned program-counter value. If a pre-fetch
abort occurs then an exception of type four is raised.

• The cpsr and current instruction are decoded. If the instruction’s execute condition is
not met then the program-counter is simply incremented, otherwise the instruction is
executed by the appropriate function from Sections 4.4 to 4.11.

• The decoding does not trap all of the holes in the instruction set i.e. it does not assert
the precise format for each instruction class. For example, if the bits of an mrs instruc-
tion are not set exactly in accordance with Figure 10 from page 22 then an undefined
instruction trap ought to be raised, but this is not asserted here. Instead the instruction
is executed as if it were an mrs instruction even though, strictly speaking, it is not.
The definition, as given, is adequate provided the code is restricted to version 3 of the
architecture.

This specification does not consider external control signals (such as reset, irq or fiq) be-
cause, at this level of abstraction, attempting to model the interrupt behaviour will severely
complicate the specification. The main reason for this is the granularity of the clock, which
ensures that each stage of instruction execution is indivisible (unlike those of a pipelined de-
sign) and therefore each instruction is considered in isolation. Exceptions on the other hand
expose the stepwise and parallel manner in which instructions are executed in microprocessor
designs. When an exception occurs in an arm6 processor:

• It may occur in combination with other exceptions, which either occur at precisely the
same time or at slightly different times but all corresponding with the same cycle t with
respect to the definition of STATE ARM.

• Three instructions may be effected.

• It is important to know the precise stage of instruction execution (memory access in-
structions all require a number of cycles to execute).

In other words, just as the program-counter behaviour is tainted with pipelined functionality
(see Section 3.4), so is exception/interrupt behaviour, but in this case the abstraction process
will adversely effect the readability of the specification. Mathematical tools exist for modelling
control signals at different levels of abstraction (by, for example, applying sampling functions
to streams of input value) but this topic is beyond the intended scope of this report, see [2].

6 Executing the Specification

One of the advantages of specifying the arm architecture with a next-state function is that
it is possible to execute the specification, either symbolically or using ground (variable free)
terms. This means that is possible to test the specification by running small programs. If
ground terms are used then the most efficient way to run the specification is by using the hol

library “computeLib”. First it is necessary to define a sensible initial state, for example:

31

d̀ef NEXT ARM (ARM mem reg psr) =

let (inst,p abort) = MEM READ WORD mem (WORD ALIGN (FETCH PC reg)) in

if p abort then

EXCEPTION (ARM mem reg psr) 4

else

let (N,Z,C,V,mode,valid mode) = DECODE PSR (CPSR READ psr) in

if ¬valid mode then

ARB

else

let n = W32 NUM inst in

let (cond,bits2726,bit25,bit24,bit23,bit22,

bit21,bit20,bits118,bits75,bit4) = DECODE INST n in

if ¬(CONDITION PASSED N Z C V cond) then

ARM mem (INC PC reg) psr

else

if bits2726 = 0 then

if bit24 ∧ ¬bit23 ∧ ¬bit20 then

if ¬bit25 ∧ ¬bit21 ∧ (bits118 = 0) ∧ (bits75 = 4) ∧ bit4 then

SWP (ARM mem reg psr) mode n

else

if bit21 then

MSR (ARM mem reg psr) mode n

else

MRS (ARM mem reg psr) mode n

else

if ¬bit25 ∧ ¬bit24 ∧ ¬bit23 ∧ ¬bit22 ∧ (bits75 = 4) ∧ bit4 then

MUL MLA (ARM mem reg psr) mode n

else

DATA PROCESSING (ARM mem reg psr) C V mode n

else

if bits2726 = 1 then

if bit25 ∧ bit4 then

EXCEPTION (ARM mem reg psr) 2

else

LDR STR (ARM mem reg psr) C mode n

else

if bits2726 = 2 then

if bit25 then

BRANCH (ARM mem reg psr) mode n

else

LDM STM (ARM mem reg psr) mode n

else

if bit25 ∧ bit24 then

SWI (ARM mem reg psr) mode n

else

EXCEPTION (ARM mem reg psr) 2

Figure 24: The arm next-state function.

32

ARM MEMORY (REG (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 211) (λx. W32 16))

where MEMORY is a suitably defined memory. The general purpose registers all hold zero, the
cpsr register holds 211 (supervisor mode with interrupts disabled), and the spsrs hold the
value sixteen (user mode).

The most effective way to define the memory is to make use of an arm assembler, such as
the portable gnu assembler as, available at www.gnu.org/software/binutils/. For example, the
following trace was generated using the command as -aln file.s:

1 .text

2 .align 0

3

4 0000 20F0B0E3 movs r15,#32 @ Reset

5 0004 0EF0B0E1 movs r15,r14 @ Undefined Instruction

6 0008 0EF0B0E1 movs r15,r14 @ Software Interrupt

7 000c 04F05EE2 subs r15,r14,#4 @ Prefetch Abort

8 0010 08F05EE2 subs r15,r14,#8 @ Data Abort

9 0014 0EF0B0E1 movs r15,r14 @ - Reserved -

10 0018 04F05EE2 subs r15,r14,#4 @ IRQ

11 001c 04F05EE2 subs r15,r14,#4 @ FIQ

12 0020 0800A0E3 mov r0, #8

13 0024 0B10A0E3 mov r1, #11

14 0028 1C0090E8 ldmia r0, {r2,r3,r4}

The source assembly code is shown to the right, with the line numbers shown in the leftmost
column. The third column is the encoding of each instruction i.e. arm machine code, and the
second column is the memory address for each instruction. The machine code is presented
in a little-endian manner, with each pair of hexadecimal digits representing one byte. For
example, the instruction on line 14 is converted into a 32-bit word as follows:

1C0090E8 7→ (00011100, 00000000, 10010000, 11101000) 7→ 11101000100100000000000000011100 7→ W32 3901751324

Hence, the memory is a function in which:

W30 0 7→ W32 3820023840

W30 1 7→ W32 3786469390

W30 2 7→ W32 3786469390

W30 3 7→ W32 3797872644

W30 4 7→ W32 3797872648

W30 5 7→ W32 3786469390

W30 6 7→ W32 3797872644

W30 7 7→ W32 3797872644

W30 8 7→ W32 3818913800

W30 9 7→ W32 3818917899

W30 10 7→ W32 3901751324

There are many ways to define such a function in hol. This program is very small and the
efficiency of access is not that critical, therefore the first eleven words can be stored in a list,
with instructions accessed using the function EL:num→’a list→’a. The first eight lines of code
constitute a minimalistic exception handler, which simply ignores the exception and returns
to the entry address. In the case of memory aborts and interrupts the instruction is retried
(note that with data aborts the program-counter is incremented before the exception is raised,
see Section 4.5). The reset exception jumps to the first line of the program. The result of
executing this program for four cycles is as follows:

33

` STATE_ARM 4 (ARM MEMORY RESET REG RESET PSR) =

ARM MEM

(REG

(Sb

(Sb

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 8)) (W4 1,W32 11))

(W4 2,W32 3786469390)) (W4 3,W32 3797872644))

(W4 4,W32 3797872648)) (W4 15,W32 44)) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 16) (λx. W32 16))

The registers 2, 3, and 4 have been loaded with the contents of the memory from addresses
8, 12, and 16, which is the expected result of executing the ldmia instruction. The mode is
changed to user mode after the first instruction is executed—exiting from the reset exception
handler.

This theorem was generated using CBV CONV, which rewrites terms using a call-by-value
strategy, similar to function evaluation in ML. On an 800MHz Athlon PC, each instruction
takes about half a second to execute. The performance is strongly dependent upon the defi-
nitions of the operations in Table 6 on page 15. For example, the performance is impaired by
explicitly using the following axiom:

d̀ef BITS h l n = (n DIV 2 EXP l) MOD 2 EXP (SUC h-l)‘;

Instead the value n is converted to a binary form, where it is possible to write efficient oper-
ations for division and remainder by powers of two. hol is used to prove that the optimised
versions of these operations conform with their axiomatic definition.

Both Sb and Sa are pseudonyms for the function SUBST. These two functions are used as
a means to produce normal forms for nested memory substitutions. The substitutions are
ordered and redundancy, caused by one substitution superseding another, is eliminated. This
means that although the program-counter is updated four times, only the resultant value of
44 is presented. This simplification is only appropriate when evaluating ground-terms.

The appendix contains examples of executing a range of instructions.

7 Future Work and Conclusions

This report has presented a hol specification of the arm instruction set architecture. The
approach taken was to model eight classes of instruction using state transforming functions.
Higher-order logic has been shown to be a good framework for modelling the architecture
in a concise and unambiguous manner. The logic allows axiomatic definitions to be proved
equivalent to optimised versions. Call-by-value term rewriting is used to simulate the execution
of small programs, enabling the specification to be demonstrated and tested.

The specification constitutes an abstract model of the architecture, and this can be used
as a basis for proving the correctness of microprocessor designs. The next research goal is to
model a 3-stage pipelined arm design and then prove its correctness. Ways must be found to
manage the scale of this proof goal—a subset of the instruction set will be tackled first. Ways
to incorporate and verify interrupt handling will also be investigated.

34

8 Acknowledgments

The approach taken in this work has been greatly influenced by research at the University of
Wales Swansea on the algebraic specification of microprocessors [7, 4].

This work is supported by EPSRC grant GR/N13135, “Formal Specification and Verifi-
cation of ARM6”. This project is in collaboration with the University of Leeds School of
Computing: Graham Birtwistle, Keith Hobley, Dominic Pajak and Daniel Schostak. Thanks
must go to them for their input, and to Mike Gordon for reading a draft of this report.

35

Appendix

Instruction Execution Examples

Unless otherwise indicated, it is assumed that the registers and the initial eight words of
memory are set in accordance with Section 6.

Branching

Code fragment:

(W32 32) 0800A0E3 mov r0, #8

label:

(W32 36) 020050E2 subs r0, r0, #2

(W32 40) FDFFFF1A bne label

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG (Sb (Sa (λx. W32 0) (W4 0,W32 6)) (W4 15,W32 36)) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 536870928) (λx. W32 16))

• The cpsr carry-out bit is set by the subtraction.

• The program-counter points to the subs instruction.

Code fragment:

(W32 32) 0800A0E3 mov r0, #8

label:

(W32 36) 020050E2 subs r0, r0, #2

(W32 40) FDFFFF1B blne label

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 6)) (W4 14,W32 44))

(W4 15,W32 36)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 536870928) (λx. W32 16))

• The link register has value 44.

Data Processing

Code fragment:

(W32 32) AA00E0E3 mvn r0, #0xaa

(W32 36) BB10E0E3 mvn r1, #0xbb

(W32 40) CC20E0E3 mvn r2, #0xcc

(W32 44) DD30E0E3 mvn r3, #0xdd

(W32 48) 002092E0 adds r2, r2, r0

(W32 52) 0130B3E0 adcs r3, r3, r1

36

Result:

` STATE_ARM 7 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (W4 0,W32 4294967125))

(W4 1,W32 4294967108)) (W4 2,W32 4294966920))

(W4 3,W32 4294966887)) (W4 15,W32 56)) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 2684354576) (λx. W32 16))

• The words r1,r0 and r3,r2 are loaded with 64-bit integer values 0xFFFFFF44FFFFFF55 and
0xFFFFFF22FFFFFF33 respectively.

• The 65-bit sum 0x1FFFFFE67FFFFFE88 is computed with the 64-bit result stored in r3,r2

and the 65th bit forming the carry-out. The result is negative, so the N bit of the cpsr

is also set.

Code fragment:

(W32 32) 0C00A0E3 mov r0, #12

(W32 36) 000180E0 add r0, r0, r0, LSL #2

Result:

` STATE_ARM 3 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG (Sb (Sa (λx. W32 0) (W4 0,W32 60)) (W4 15,W32 40)) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 16) (λx. W32 16))

• The register r0 is loaded with 12, and this then multiplied by five by using an add with
shift left.

Code fragment:

(W32 32) 0C00A0E3 mov r0, #12

(W32 36) 0A10A0E3 mov r1, #10

(W32 40) 012080E1 orr r2, r0, r1

(W32 44) 013000E0 and r3, r0, r1

(W32 48) 014020E0 eor r4, r0, r1

(W32 52) 0150C0E1 bic r5, r0, r1

37

Result:

` STATE_ARM 7 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 12)) (W4 1,W32 10))

(W4 2,W32 14)) (W4 3,W32 8)) (W4 4,W32 6))

(W4 5,W32 4)) (W4 15,W32 56)) (λx. W32 0) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The bitwise operations are tested with the values 11002 and 10102.

PSR Transfer

Code fragment:

(w32 0) 20F0A0E3 mov r15,#32 @ Reset

: : :

(w32 28) 04F05EE2 subs r15,r14,#4 @ FIQ

(w32 32) 0F02A0E3 mov r0, #0xf0000000

(w32 36) 120080E3 orr r0, r0, #0x12

(w32 40) 00F029E1 msr CPSR, r0

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG (Sb (Sa (λx. W32 0) (W4 0,W32 4026531858)) (W4 15,W32 44))

(λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 4026531858) (λx. W32 16))

• The mov instruction (at address zero) replaces the usual movs instruction—this means
that the code is executed in supervisor mode.

• The resultant cpsr value is 4026531858 = F000001216. All the flags are set and irq

mode is selected.

Code fragment:

(w32 0) 20F0A0E3 mov r15,#32 @ Reset

: : :

(w32 28) 04F05EE2 subs r15,r14,#4 @ FIQ

(w32 32) ED00E0E3 mov r0, #0xffffff12

(w32 36) 00F021E1 msr CPSR_c, r0

(w32 40) 00100FE1 mrs r1, CPSR

(w32 44) 00204FE1 mrs r2, SPSR

(w32 48) 0EF268E3 msr SPSR_f, #0xe0000000

38

Result:

` STATE_ARM 6 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 4294967058)) (W4 1,W32 18))

(W4 2,W32 16)) (W4 15,W32 52)) (λx. W32 0) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0))

(PSR (W32 18) (Sa (λx. W32 16) (spsr_irq,W32 3758096400)))

• The mov command at address 32 is converted, by the assembler, into a mvn command.

• Register r1 takes the cpsr value (which is changed to irq mode).

• Register r2 takes the spsr value for the irq mode.

• The spsr flags are then set.

Multiply and Multiply-Accumulate

Code fragment:

(W32 32) 0A00A0E3 mov r0, #10

(W32 36) 1410A0E3 mov r1, #20

(W32 40) 1E20A0E3 mov r2, #30

(W32 44) 900103E0 mul r3, r0, r1

(W32 48) 902124E0 mla r4, r0, r1, r2

Result:

` STATE_ARM 6 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 10)) (W4 1,W32 20))

(W4 2,W32 30)) (W4 3,W32 200)) (W4 4,W32 230))

(W4 15,W32 52)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The product is 230, and when summed with the accumulator r2 this gives 230.

Single Data Transfer

Code fragment:

(W32 32) 0800A0E3 mov r0, #8

(W32 36) 4010A0E3 mov r1, #64

(W32 40) A121B0E7 ldr r2, [r0, r1, LSR #3]!

(W32 44) 0130D0E4 ldrb r3, [r0], #1

(W32 48) 0140D0E4 ldrb r4, [r0], #1

(W32 52) 0150D0E4 ldrb r5, [r0], #1

(W32 56) 0060D0E5 ldrb r6, [r0]

39

Result:

` STATE_ARM 8 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (W4 0,W32 19)) (W4 1,W32 64))

(W4 2,W32 3797872648)) (W4 3,W32 8))

(W4 4,W32 240)) (W4 5,W32 94)) (W4 6,W32 226))

(W4 15,W32 60)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The base address is 8 and the offset is 8, therefore the load and write-back address is 16
(which is the exception vector for the data abort).

• Post-indexing is used to load the same four bytes, starting from address 16. The bytes
are read using little-endian byte ordering. If big-endian ordering were used then the
contents of registers three to six would be reversed.

Code fragment:

(W32 32) 0400A0E3 mov r0, #4

(W32 36) 5010A0E3 mov r1, #80

(W32 40) CD20A0E3 mov r2, #0xcd

(W32 44) AB2C82E3 orr r2, r2, #0xab00

(W32 48) 002581E6 str r2, [r1], r0, LSL #10

(W32 52) 042001E4 str r2, [r1], #-4

(W32 56) 042041E5 strb r2, [r1, #-4]

Result:

` STATE_ARM 8 (ARM MEMORY RESET_REG RESET_PSR) =

ARM

(Sb (Sb (Sa MEMORY (W30 20,W32 43981)) (W30 1042,W32 205))

(W30 1044,W32 43981))

(REG

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 4)) (W4 1,W32 4172))

(W4 2,W32 43981)) (W4 15,W32 60)) (λx. W32 0) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• This example shows pre- and post-indexing with an upward offset.

• The byte is stored using little-endian byte-ordering. If big-endian ordering were used
then address 1042 would contain the value 3439329280.

40

Block Data Transfer

Code fragment:

(W32 0) 20F0A0E3 mov r15,#32 @ Reset

: : :

(W32 28) 04F05EE2 subs r15,r14,#4 @ FIQ

(W32 32) 1100A0E3 mov r0, #0x11

(W32 36) 00F021E1 msr CPSR_c, r0

(W32 40) FCFFF1E8 ldmia r1!, {r2-r15}^

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (W4 0,W32 17))

(W4 1,W32 56)) (W4 2,W32 3818975264))

(W4 3,W32 3786469390)) (W4 4,W32 3786469390))

(W4 5,W32 3797872644)) (W4 6,W32 3797872648))

(W4 7,W32 3786469390)) (W4 15,W32 0))

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (r8_fiq,W32 3797872644))

(r9_fiq,W32 3797872644))

(r10_fiq,W32 3818913809)) (r11_fiq,W32 3777097728))

(r12_fiq,W32 3908173820)) (r13_fiq,W32 0))

(r14_fiq,W32 0)) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The mode is changed to fiq, and then the exception handler is loaded into the registers
for this mode.

• The program-counter is in the register list and, because the Sf bit is set (achieved by
suffixing the command with a ^), a change to user mode occurs after the load.

• This toy program will eventually lead to unpredictable behaviour because on cycle eight
the ldm instruction is encountered again but this time in user mode, where the mode
change is not possible.

Code fragment:

(W32 0) 20F0A0E3 mov r15,#32 @ Reset

: : :

(W32 28) 04F05EE2 subs r15,r14,#4 @ FIQ

(W32 32) 1100A0E3 mov r0, #0x11

(W32 36) 00F021E1 msr CPSR_c, r0

(W32 40) C07FF1E8 ldmia r1!, {r6-r14}^

41

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (W4 0,W32 17))

(W4 1,W32 36))

(W4 6,W32 3818975264))

(W4 7,W32 3786469390))

(W4 8,W32 3786469390))

(W4 9,W32 3797872644)) (W4 10,W32 3797872648))

(W4 11,W32 3786469390)) (W4 12,W32 3797872644))

(W4 13,W32 3797872644)) (W4 14,W32 3818913809))

(W4 15,W32 44)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 17) (λx. W32 16))

• This is the same program as before, but with a different register list. The program-
counter is not in the list.

• This time the mode change does not occur but a user bank transfer is forced.

Code fragment:

(W32 32) 0800A0E3 mov r0, #8

(W32 36) 7F00B0E8 ldmia r0!, {r0-r6}

(W32 40) 7F0021E9 stmdb r1!, {r0-r6}

42

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa MEMORY (W30 949468154,W32 3818913800))

(W30 949468155,W32 3797872644))

(W30 949468156,W32 3797872644))

(W30 949468157,W32 3786469390))

(W30 949468158,W32 3797872648))

(W30 949468159,W32 3797872644)) (W30 949468160,W32 3786469390))

(REG

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb

(Sb (Sa (λx. W32 0) (W4 0,W32 3786469390))

(W4 1,W32 3797872612)) (W4 2,W32 3797872648))

(W4 3,W32 3786469390)) (W4 4,W32 3797872644))

(W4 5,W32 3797872644)) (W4 6,W32 3818913800))

(W4 15,W32 44)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The ldm register write-back is overwritten.

Single Data Swap

Code fragment:

(W32 32) 0800A0E3 mov r0, #8

(W32 36) 1010A0E3 mov r1, #16

(W32 40) 1820A0E3 mov r2, #24

(W32 44) 910002E1 swp r0, r1, [r2]

Result:

` STATE_ARM 5 (ARM MEMORY RESET_REG RESET_PSR) =

ARM (Sa MEMORY (W30 6,W32 16))

(REG

(Sb

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 3797872644)) (W4 1,W32 16))

(W4 2,W32 24)) (W4 15,W32 48)) (λx. W32 0) (λx. W32 0)

(λx. W32 0) (λx. W32 0) (λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• Register zero is overwritten with the memory contents from address 24. At the same
time register one is stored at this address.

• In practice this is not possible because the exception handler will be protected.

43

Code fragment:

(W32 32) 1100A0E3 mov r0, #0x11

(W32 36) 110C80E3 orr r0, r0, #0x1100

(W32 40) 1810A0E3 mov r1, #24

(W32 44) 900041E1 swpb r0, r0, [r1]

Result:

` STATE_ARM 5 (ARM MEMORY RESET_REG RESET_PSR) =

ARM (Sa MEMORY (W30 6,W32 3797872657))

(REG

(Sb (Sb (Sa (λx. W32 0) (W4 0,W32 4)) (W4 1,W32 24))

(W4 15,W32 48)) (λx. W32 0) (λx. W32 0) (λx. W32 0) (λx. W32 0)

(λx. W32 0)) (PSR (W32 16) (λx. W32 16))

• The first byte of the word at address six is altered.

• The old byte value is stored (zero extended) in register zero.

Software Interrupt

Code fragment:

(W32 32) 000000EF swi

Result:

` STATE_ARM 2 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG (Sa (λx. W32 0) (W4 15,W32 8)) (λx. W32 0) (λx. W32 0)

(Sa (λx. W32 0) (r14_svc,W32 36)) (λx. W32 0) (λx. W32 0))

(PSR (W32 147) (Sa (λx. W32 16) (spsr_svc,W32 16)))

• Supervisor mode is entered and irqs are disabled.

Code fragment:

(W32 32) 000000EF swi

(W32 36) 0A00E0E2 rsc r0, r0, #10

Result:

` STATE_ARM 4 (ARM MEMORY RESET_REG RESET_PSR) =

ARM MEMORY

(REG (Sb (Sa (λx. W32 0) (W4 0,W32 4294967285)) (W4 15,W32 40))

(λx. W32 0) (λx. W32 0) (Sa (λx. W32 0) (r14_svc,W32 36))

(λx. W32 0) (λx. W32 0))

(PSR (W32 16) (Sa (λx. W32 16) (spsr_svc,W32 16)))

• The exception handler simply returns to the next instruction.

44

References

[1] Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68,
1940.

[2] Anthony C. J. Fox. Algebraic Models for Advanced Microprocessors. PhD thesis, Univer-
sity of Wales Swansea, 1998.

[3] Anthony C. J. Fox. An algebraic framework for modelling and verifying microprocessors
using hol. Technical Report 512, University of Cambridge, Computer Laboratory, April
2001.

[4] Anthony C. J. Fox and Neal A. Harman. Algebraic models of correctness for micropro-
cessors. Formal Aspects of Computing, 12(4):298–312, 2000.

[5] Steve Furber. ARM: system-on-chip architecture. Addison-Wesley, second edition, 2000.

[6] Mike J. C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh lcf:
A Mechanised Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[7] Neal A. Harman and John V. Tucker. Algebraic models of microprocessors: Architecture
and organisation. Acta Informatica, 33(5):421–456, 1996.

[8] Dominic Pajak. ARM6 instruction set architecture specification. Technical report, Uni-
versity of Leeds, School of Computing, 2001. In preparation.

[9] Larry Paulson. Logic and Computation: Interactive Proof with Cambridge LCF, volume
Cambridge Tracts in Theoretical Computer Science 2. Cambridge University Press, 1987.

[10] David Seal, editor. ARM Architectural Reference Manual. Addison-Wesley, second edi-
tion, 2000.

45

