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Abstract

Current methods for building models using implicit volume techniques present problems defining
accurate and controllable blend shapes between implicit primitives. We present new methods to extend
the freedom and controllability of implicit volume modeling. The main idea is to use a free-form curve
to define the profile of the blend region between implicit primitives.

The use of a free-form implicit curve, controlled point-by-point in the Euclidean user space, allows
us to group boolean composition operators with sharp transitions or smooth free-form transitions in
a single modeling metaphor. This idea is generalized for the creation, sculpting and manipulation
of volume objects, while providing the user with simplicity, controllability and freedom in volume
modeling.

Bounded volume objects, known as “Soft objects” or “Metaballs”, have specific properties. We also
present binary Boolean composition operators that gives more control on the form of the transition
when these objects are blended.

To finish, we show how our free-form implicit curves can be used to build implicit sweep objects.

1 Introduction

Providing interactive, precise and intuitive control of shapes is a fundamental issue in the development of
three dimensional modeling techniques. Direct manipulation of meshes, parametric shape representations
and, more recently, sub-division surfaces are common and useful solutions adopted by most commercial
software. Volume models are rapidly becoming a practical alternative to these methods due to the increase
in computing power and storage capacity of modern workstations combined with the latest developments in
graphics hardware. Better hardware along with improved volume visualization algorithms [1, 2] and data
structures [3], allow us to interactively and accurately render iso-potential surfaces or potential variations
in a volume.

A volume object is defined by a potential field f(p) that associates a potential value with each point p
of the Euclidean space E

3. Commonly used surface representations such as sub-division surface techniques
do not provide a true three-dimensional representation of the object. A surface in a volume representation
is a set of points defined with an iso-potential value (an implicit surface). Volume objects have several
important advantages: inside and outside can be distinguished easily, they allow efficient collision tests,
high quality triangle meshes of iso-potential surfaces [4], classical Boolean operations [5], blending [6, 7, 8],
and more advanced sweeping by moving solid [9], Boolean composition with soft transitions [10, 11] and
Constructive Volume Geometry algebra [12].

Most of these techniques are based on the blending properties of implicit surfaces. Early work used the
addition operator between field values to provide smooth transitions (blends) between implicit primitives
[6, 13, 14]. These transitions were approximately controlled by parameters embedded in the implicit
function that defined these methods. Later work exploited the locality property of the primitives as a
powerful method to build complicated objects from a small number of primitives combined with a large
range of operators [11, 15]. Composition operators like the ones proposed by Hoffmann et al [16] and
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Pasko et al [10] demonstrated that smooth transitions could be obtained using Boolean operators on
volumes defined by the inequality f(p) ≤ 0 (see also [17]), and Barthe et al [18] showed that in a restricted
application, accurate control of the transition could be obtained. One of the big advatages over other
modelling techniques, is that a variety of composition operations can be easily performed between implicit
primitives, thus accurate and intuitive control over these operations is a critical step to providing interactive
and efficient volume modeling software.

The goal of this work is to provide methods that will simply and accurately control the transitions
in composition operators and more generally increase the freedom in the manipulation of volume objects.
We use the theoretical interpretation of composition operators described in [18]. This leads us from
the definition of free-form implicit curves controlled point-by-point and with regular field variations, to
the generalization of Boolean composition operators, sculpture and modeling tools in a unique operator
based on the manipulation of this implicit free-form curve in the Euclidean modeling space. This greatly
increases the simplicity, the controllability and the freedom in volume modeling. We also adapt one of
our composition operators to provide union, intersection and difference Boolean operators with smooth
transitions controlled point-by-point between implicit primitives (or blobs). In this paper, the term ”blobs”
refers to implicit primitives with local influence radius, also known as skeletal implicit primitives, ”soft
objects” or ”metaballs”. And finally, because we have defined free-form profiles with regular variations,
we show how they can be swept to replace the single valued function used, until now, in implicit sweep
objects. This allow us to extend the variety of shapes produced and to remove the limits brought by single
valued profiles.

The organization of this paper is as follows: We first present a summary of the different modeling
techniques commonly used to build volume objects. Bounded primitives (like “Soft Objects” [14]), real-
functions and sampled potential field manipulations are described. It appears clear that, whatever the
model used, improvements in control are desirable when volume primitives are composed.

This is followed by the presentation of free-form implicit curves and, more generally, their two-dimensional
potential fields. Since these profiles are used to combine or define volumes, particular attention is focused
on the variations of the field around the iso-potential curve. In this section, we present open and closed
curves and we show the progress we have made in controlling the variations of the fields.

In Section 4 the application of free-form curves on volumes defined by the inequality f(p) ≤ 0 is
presented. This category regroups and generalizes most of the volume primitives, as shown in [17]. The
possibility of creating open or closed free-form curves allows us to merge the Boolean composition operators
(with or without smooth transitions) and operators to sculpt or create primitives in a single modeling
metaphor: the extrusion of the implicit curve G(X,Y ) = 0 in the “implicit space” I

2. Whatever the
operator, the user simply acts on the two combined potential functions f1 and f2 through the deformation
of the implicit curve G(f1, f2) = 0. We briefly illustrate the interactive manipulation of the implicit curves
in a two-dimensional section of the Euclidean modeling space using the modeling tool presented in [19] and
we discuss the limits of the intuitiveness and accuracy of this process.

In Section 5, we explain why our free-form curves are not directly applicable to bounded implicit
primitives and new Boolean composition operators with smooth transitions for blobs are defined. They
have several desirable properties including C1 continuous potential fields with a bounded transition and a
faithful reproduction of the field variations of the composed primitives. Operators for union, intersection
and difference are defined. We obtain point-by-point control for deforming the transition with a function
of R → R, which does not give true free-form control of the transition. However, as we discuss, it is not
obvious that, for blobs, this level of freedom is necessary at the transition level.

Free-form profiles can also be used in implicit sweep objects [20, 37]. Indeed only profiles defined by
functions of R → R are used in implicit modeling while there is no apparent reason to limit the user in the
form of the profile he wants to sweep. In Section 6 we show how to replace usual sweep profiles defined by
functions of R → R by our free-form profiles to remove limitations on the profile form without adding any
complexity for the user. The objects generated with our profiles have their field variations regular enough
to be nicely blended with other volume objects.



Different applications of two-dimensional potential fields for volume modeling 5

2 Related Works

Two different categories of potential functions can be distinguished to model volume objects: The first
form has functions which equal zero outside a boundary, and the second has functions which vary over the
whole of space. This last form is more expensive in evaluation. Even though our paper only deals with
non-bounded primitives, we briefly present both representation to allow the reader to clearly differentiate
them.

“Metaballs” [13] or “Soft Objects” [14] are bounded objects defined by a potential function f equalling
zero everywhere outside the object’s boundary. Inside this boundary, the potential varies from zero to one
and the volume object is defined by the set of points of E

3 for which f(p) ≥ C (where C is a pre-chosen
value in ]0, 1[). A wide variety of primitives are available [7, 20], and the blend is automatically computed
by summing the potential of the primitives. Many different blending functions [21, 22] and blending models
[23, 24] have been proposed to control the smoothness of the transition region, but the operators remain
limited to the blending and the control of which primitives must and must not blend. The locality of the
definition and the capacity to be automatically blended allow modeling techniques based on these objects
to be interactive [25, 26].

CSG composition operators are already supported by bounded primitives (using the Ricci’s min/max
operators [5]) but C1 discontinuities are introduced in the potential field of the resulting object, altering
the smoothness of the transition when it has to be blended, which is undesirable.

A solution using Ricci’s super-elliptic operator [5] to apply binary union and binary intersection opera-
tors with smooth transitions to implicit primitives has been proposed by Wyvill et al [11] (see Equation 1)

G(f1, f2) = (f1
n + f2

n)
1

n (1)

The quality of the created objects [15] shows that complicated objects can already be built, but it also
shows that further research is needed to increase the composition’s accuracy and variety to achieve better
interactive control in the blend region.

On the other hand, R-functions (real functions) and sampled potential fields can be grouped into a
second category [17] where potentials are given over all the Euclidean space E

3 and the volume object is
defined by the inequality f(p) ≤ 0. The opposite convention, where the volume is defined by f(p) ≥ 0, can
also be used. Bounded objects, described above, can be adapted to R-functions by considering only the
distance field minus the radius of the primitive. Other primitives can be obtained from different sources
when the potential field is reconstructed as a distance field [27, 28, 29]. These objects are fundamental for
volume modeling, as much for the variety of primitives as for the generalization of volumes to a unified
model. For R-function operators, volume objects are defined with the convention: f(p) ≥ 0. It has been
shown in [10] how to apply binary CSG operators (with or without smooth transitions), space mapping
operators and others. Equation 2 gives the example of the union operator with smooth transitions.

G (f1, f2) =

(
f1 + f2 +

√
f1

2 + f2
2

)
+

a0

1 +
(

f1

a1

)2

+
(

f2

a2

)2

(2)

Parameters a0, a1, a2 control the form of the transitions that do not have boundaries. Many other
operators have been proposed in the literature [16, 30, 8], but the level of control on the transition remains
globally equivalent. To correctly blend primitives, operator G must satisfy specific properties that are
well defined [8]. A binary operator G applied on potential functions f1 and f2 can be written as a two-
dimensional potential function G(X,Y ) composed with the combined three-dimensional potential functions
f1 and f2 (Equation 3).

G : R
3 → R

(x, y, z) → pot = G(f1(x, y, z), f2(x, y, z)) (3)
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Figure 1: Representation of the same profile G(X, Y ) = 0 in I
2 on the left and in E

3 on the right,
when f1 and f2 are two spherical potential fields. The resulting iso-potential surface (in yellow on
the right) has been cut away to show the details underneath.

Barthe et al [18] introduced the notion of implicit extrusion fields. The function G is considered as a
zero iso-potential curve G(X,Y ) = 0 defined in a two-dimensional “implicit space” I

2. A two-dimensional
“implicit space” can be seen as a curvilinear space in which each coordinate is a potential field (see
Equation 4).

G : I
2 → I

(X,Y ) → Z = G(X,Y )

or (f1, f2) → f3 = G(f1, f2)

with fi : R
3 → R i = 1..3

(x, y, z) → pot = fi(x, y, z) (4)

A point P (X = 3, Y = 2) (or P (f1 = 3, f2 = 2)) in a space I
2 is then represented in the Euclidean

space E
3 by the intersection between the 3 iso-potential surface of the field defined by f1 (which is the

set of points p of E
3 for which f1(p) = 3) and the 2 iso-potential surface of the field defined by f2 (which

is the set of points p of E
3 for which f2(p) = 2). This is the intersection between two surfaces which is

generally a curve. A point P of I
2 is represented by a curve in E

3. A curve (or profile) can be seen as a
continuous succession of points. The profile of I

2 is then represented by a continuous succession of curves
in E

3 (representing each point of the profile), which gives us the a surface. The profile G(X,Y ) = 0 defined
in I

2 is said to be extruded in E
3 along the intersections of f1 and f2 iso-potential surfaces (Figure 1). The

surface defined by the extrusion of profile G = 0 is the result of combining f1 and f2.
Full details are given in [18]. The authors explain how points and vectors defining the profile in I

2 can
be directly selected by the user in Euclidean space E

3, allowing accurate and intuitive control of the profile,
and, therefore, of the resulting object. The profile G = 0 is defined by a function H : R → R such as
Y = H(X) and G = Y − H(X). This greatly limits the freedom given to the user, and moreover removes
a part of the intuitive process. It also obliges the authors to propose specific operators for the union,
intersection and difference with a “functionally-defined” transition, which is a smooth transition defined
point-by-point from the Euclidean space E

3 with a single valued function H : R → R. Functions H are
defined with one-dimensional cubic polynomial splines [32] to interpolate the control points. Equation 5
shows the operator used for the union operator.

G (f1, f2) = min (f1, f2) − H (|f1 − f2|) (5)

This union operator (first proposed by Dekkers et al [31]) is built with a min function which requires
the C1 continuity to be explicitly controlled where f1 = f2. Our conclusion is that this model represents
a very interesting theoretical base and more research has to be done on profile definition to exploit the
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Figure 2: Example of binary composition trees to represent a polygon or an open curve by a real
function.

properties of profile extrusion and point-by-point control from the Euclidean modeling space in a more
powerful and intuitive volume modeling tool. To build a curve G(X,Y ) = 0 like the one shown in Figure 1,
free-form implicit curves are needed (the vertical X = 0 can not be defined with a single valued function).
This leads us to the study of implicit free-form profiles controlled point-by-point.

3 Implicit Free-Form Curves

In this section we present our free-form implicit curves. We propose the use of homogenous control parame-
ters to provide an intuitive solution to the user and for this reason we use free-form implicit curves controlled
point-by-point as a means of providing accurate and intuitive operators on volumes. The composition of
two primitives gives a new object which can be used as a primitive in a new composition. Because the
smoothness and the control of the form of the transition is highly dependant on the variational properties
of the primitives’ fields, potential fields used to combine them must preserve these properties as faithfully
as possible. This is why particular attention has to be focused on the regularity of the field variations
produced by our two-dimensional potential fields G.

It appears natural to try to use methods like the implicitization of parametric free-form curves [33, 34]
or the projection of the z value of a surface defined by an equation z = f(x, y) to define the implicit
free-form curve. But these methods provide bounded functions while we need to be able to produce infinite
open curves with the control of their limits. The first solution provides complicated equations and does
not ensure regular and homogenous potential field variations, and the second requires the user to design
the entire surface to create the profile and its variations, while they should be uniquely concentrating on
the form of the curve. For these reasons we use a different approach.

As shown by Pasko et al [36], it is possible to represent polygons with straight and curved edges by
real functions. The polygon is decomposed in a binary composition tree where the leaves are lines and the
nodes are union or intersection R-function operators (see Figure 2). This method also avoids internal and
unwanted zeroes. We choose it as a starting point to create our profiles. Indeed, it can easily be adapted
to open profiles, and because lines are combined, the extremities are perfectly controlled: They are simply
half lines. To provide a regular base for the field variations, we use lines defined by the zero iso-potential
of a linear potential function l(X,Y ). The linear potential function l splits the space into two half spaces:
One where l(X,Y ) < 0 (inside) and one where l(X,Y ) > 0 (outside). Function l has the one iso-potential
line at a distance of one from the zero iso-potential (the one iso-potential line is in the outside half space
defined by l, and the minus one iso-potential line in the inside half space). Because control points are used,
line equations are defined with pairs of points. Even if R-function Boolean composition operators without
smooth transition [10] already provide a potential field that is C1 continuous when both arguments are
not equal to zero (they are both equal to zero at the junction between two zero iso-potential lines), they
have a global impact on the line potential fields. This is a fundamental property because the variation of
the combined primitives directly depends on the variation of the field of the composition operator and we
want to provide volume objects with regular and smooth C1 continuous potential fields.
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Figure 3: In red, on the left, representation of the two-dimensional field iso-potential curves defining
our C1 continuous union operator ĝ∪(X, Y ). On the right, graph of the CP iso-potential curve and
important values for computing the equation of the arc of an ellipse.

To ensure more faithful conservation of the field variations, we propose a new operator that modifies
line potentials only around their junction. Indeed, the line metric reproduces the metric of X and Y (as
shown in Figure 3), i.e. the metric the potential functions f1 and f2 once used as a composition operator.
For convenience, we propose the following terminology: ĝ∪, ĝ∩, ĝ\ represent respectively our C1 continuous
Boolean union, intersection and difference operators. Operator ĝ∪(X,Y ) (see Figure 3 and Equation 6) is
defined by the fields of which it is composed outside a region bounded by two angles θ1 and θ2, and by an
arc of an ellipse inside it. If the angles are close to one another, the field is sharp at the transition level and
if θ1 is close to zero and θ2 close to π/2, the field is highly smoothed. We suggest the use of θ1 = π/8 and
θ2 = 3π/8, which gives a good average between a smooth field and the conservation of X and Y metrics.

θ1 ∈]0, π/4[, θ2 ∈]π/4, π/2[.

At a point P (XP , YP ) : θP = angle ([OX), [OP ))

if XP = YP = 0 ĝ∪(XP , YP ) = 0

if θP ∈ [θ2 − π, θ1] ĝ∪(XP , YP ) = YP

if θP ∈ [θ2, θ1 + π] ĝ∪(XP , YP ) = XP

if θP ∈ ]θ1, θ2[ ĝ∪(XP , YP ) = CP

where CP is the solution of :

(CP .cot(θ1) − XP )
2

(CP .cot(θ1) − CP )
2

+
(CP .tan(θ2) − YP )

2

(CP .tan(θ2) − CP )
2

= 1

if θP ∈ ]θ1 + π, θ2 + π[ ĝ∪(XP , YP ) = CP

where CP is the solution of :

(XP − CP .cot(θ2))
2

(CP − CP .cot(θ2))
2

+
(YP − CP .tan(θ1))

2

(CP − CP .tan(θ1))
2

= 1 (6)

Equation 6 appears, at first glance, to be difficult to solve, but it can be greatly optimized, and most of
the terms can be pre-computed. The closed form solution for the evaluation of CP is given in Appendix C.
Operators ĝ∩ and ĝ\ are built following the same construction and the same kind of equations are produced
(their equations are given in Appendix A). With these operators, or with R-functions, free-form profiles
G can be created. They are not smooth curves, but a succession of line segments, beginning and ending
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min max R-functions ĝ Barthe et al
open 106 148 457 135
closed 178 254 802 227

Table 1: Time in milliseconds to compute potential function values for the pictures shown in Figure 4.
Picture size is 5122 pixels, which corresponds to 262144 evaluations. The open curves are built with
six line segments and the closed curves are built with ten segments.

with a half line if they are open. To obtain smooth curves, we use the Boolean operators proposed in [18].
These operators provide a point-by-point control of a “functionally-defined” transition and, because they
are defined from functions of R → R, they provide regular and smooth field variations. The first point, the
middle point and the last point of the transition are then accurately controlled, which allows us to replace
the sharp transition by a simple smooth transition automatically joining the middle of each segment. An
exception is made for open curves where the beginning half-line is composed from the first control point
and the last one is composed to the last point. The middle point is used to select the smoothness of the
transition if necessary, but we recommend fixing it at a constant value to generate a smooth transition
automatically and avoid the manipulation of an additional parameter.

Figure 4 shows the difference of field variations obtained using different composition operators in both
an open and a closed profile G. Ricci’s min and max Boolean composition operators [5] leave the metric
of the combined primitives unchanged (Figure 4(a)). This is why the potential field computed with the
evaluation of the composition tree defining the profile G with these operators gives a valid reference to
evaluate the variations of the metric once the operators applied to compute the profile. Figure 4(b) shows
how potential fields obtained using Pasko’s R-function operators [10] are degraded in some areas (bottom
left corner for the open profile figure and bottom for the closed profile figure). As we see, our operators
ĝ∪ and ĝ∩ consequently increase the fidelity of the field variation for “segment profiles” (Figure 4(c)),
and Barthe et al operators allow us to produce a smooth free-form implicit curve with regular and quite
homogenous variations in its potential field (Figure 4(d)). For these reasons, our profiles satisfy the essential
properties to define combination operators on volume objects in efficient and controllable modeling tools.
Computing times are given in Table 1 to compare the cost of the different operators used to create free-form
profiles. We can note that the use of our new operators ĝ will increase the evaluation time of the curve by
an average factor ' 3.1, while smooth curves are more time efficient than the sharp ones produced with
the R-function composition operators.

4 Extrusion of Free-Form curves

We now present the application of our operators, based on a general representation of volumes. A volume
object is defined by the inequality f(p) ≤ 0. In this representation, function f does not uniformly return a
fixed scalar (zero for blobs) outside a fixed boundary. This gives more freedom to produce new operators
and to manipulate volumes. As we explained in Section 2, this representation allows the integration of
a wide variety of different volume primitives [17]. However composition operators remain controlled by
parameters embedded in an equation without an explicit link with a geometric parameter manipulable by
the user in a graphic interface. Barthe et al [18] give a solution to introduce point-by-point control of the
transition, and limitations of their method are discussed in Section 2. In this section we show how our
free-form profiles G allow us to exploit the interpretation of “implicit space” to greatly increase freedom,
accuracy and intuitive modeling in the manipulation of volumes. In fact, our method allows us to combine
composition, sculpting and modeling tools in a single operator.

Following Barthe et al [18], a two-dimensional function G(X,Y ) can be defined in an “implicit space”
I
2 to generate a volume object. The “implicit space” is defined by two potential functions of R

3 → R,
f1 and f2. As shown in Figure 1 and explained in Section 2, the profile is said to be extruded along
the intersections of f1 and f2 iso-potential surfaces. In fact, the choice of potential functions f1 and f2

define the trajectories of extrusion while the profile defines the free-from implicit curve which is going to
be extruded along these trajectories (Figure 5).
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Figure 4: Open and closed implicit free-form two-dimensional potential fields G built with different
operators: (a) Ricci’s min and max operators, (b) R-functions, (c) ĝ∪ and ĝ∩, and (d) Barthe et al
operators with smooth transitions. The white contours correspond to G ≤ 0 and the blue ones to
G > 0. The control points and the corresponding lines are drawn in yellow.
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Figure 5: Figures (a) to (d) show different profiles extruded in an implicit field I
2 defined by a

cylindrical potential field (for the abscissa X ≡ f1, in the central column) and a plane field (for the
ordinate Y ≡ f2, in the left column). Profiles are shown in the top left corner. They are extruded
around the cylinder, following the horizontal direction given by the plane. The final object produced
by the extrusion of the profile is shown in the right column. In Figures (e) and (f), the profile is the
one used in Figure (d). Figure (e) illustrates the modification in the extrusion when the cylinder is
replaced by a closed parallelepiped object, and Figure (f) illustrates the modification obtained when
the plane is replaced by a screw-like object. The result in (f) is that the profile is extruded around
the parallelepiped, following the iso-surfaces of the screw.
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Figure 6: Different free-form profile extrusions in a “implicit space” defined by two orthogonal
cylinders. The top row shows classical union, intersection and the two difference operators with
smooth transitions. The following row illustrates more advanced possibilities offered by our free-
form profile extrusion. In the profile pictures, the red line represents X = 0 and the green line
Y = 0.

The properties that a profile G must respect in order to provide the union Boolean composition operator
with smooth transitions are well known [8], and “extrusion” properties of the profile are discussed in [18].
We simply recall bases to allow the reader to understand the “extrusion” mechanism. When the profile
follows the X axis (which corresponds to the line Y = 0), its representation in E

3 follows the zero iso-
potential surface of the field defined by f2 and when it follows the Y axis (which corresponds to the
line X = 0), its representation in E

3 follows the zero iso-potential surface of the field defined by f1 (see
Figure 1). These properties allow us to integrate the zero iso-potential surfaces of primitives defined by f1

and f2, and to realize the Boolean composition operators with smooth transitions. Furthermore, as shown
in Figure 6, more than classical smooth transitions, the profile can be used to sculpt the primitives and to
combine them with free-form transitions.

The link between the profile and the shape of the resulting object becomes less intuitive when profiles
are complicated. However, profile control points can be directly selected from the Euclidean space E

3.
Our volume objects are built and visualized using the modeling method proposed in [19]. We briefly
summarized this approach to illustrate the controllability of our operators. Volumes are stored in a regular
grid and visualized with a raycasting rendering using a triquadratic reconstruction [38]. A plane section
of the potential values is extracted from the grid and visualized as a picture in a new window (Figure 7
(a) and (b)). In this window, the user can interactively select the profile without the abstraction of the
form of the iso-potential surfaces of potential fields f1 and f2 (Figure 7 (c) and (d)). This shows that
being able to select the control points, and thus the profile directly in the Euclidean space E

3, restores the
accuracy lost by the definition of the profile in an “implicit space”. Moreover, to exactly follow the zero
iso-potential surface of potential function f1 or f2, the abscissa or the ordinate of a profile control points
can be explicitly fixed to zero. This is important when profiles are used to combine primitives.

With our approach, a wide variety of shapes and transitions can be produced, including all the ones that
Barthe et al’s models [18] could generate (because free-form profiles generalize “functionally defined” ones).
Furthermore, instead of disparate notions of composition operators, sculpture operator or primitive creation
tool, we present a unified modeling metaphor which is simply: Choose the adequate potential functions
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time 2D section time 2D section

263 1025

326 1448

1057 5238

369 not used

322 1363

Table 2: Time in milliseconds to compute potential function values for a 1283 grid (2097152 evalua-
tions). In the first column: (1st row) the Ricci’s min max operators, (2nd row) the sharp R-functions
operators, (3rd row) our operators ĝ, (4th row) the blending R-functions operators and (5th row) our
free-form curve operator. Time and potential field variations (in a two-dimensional plane section)
are shown : On the left for the classical sharp/blending operators and on the right, for a free-form
operator created with seven segments.
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Figure 7: (a) Three dimensional visualization of volume objects and selection of the plane section
in transparent blue. (b) Visualization of the plane section. Functions f1 and f2 are repectively: a
vertical cylinder and an horizontal plane. Colors are used to easily identify different regions: red if
f1 ≤ 0 and f2 ≥ 0, green if f1 ≥ 0 and f2 ≤ 0, purple if f1 < 0 and f2 < 0, bright gray if f1 > 0 and f2 > 0.
(c) The section of the resulting object is visualized in blue with a transparency effect. We show an
example of an open profile and its result. (d) Another example with a closed profile and its result.

Figure 8: Examples of volume objects illustrating composition, sculpting and primitive creation using
operators based on two-dimensional free-form potential fields.

f1 and f2 and create the profile G to generate the new object. Once this process is well understood,
our method is intuitive, and it provides a lot of freedom for the user to build different “implicit spaces”
and extrude profiles in them (Figure 8). In addition, profiles can be directly defined and manipulated
from the user modeling space E

3. This makes our model relevant for interactive volume modeling. The
limitations are essentially the complexity of the shape and the irregularity of the variations in the potential
fields function f1 and f2. Table 2 illustrates the simple example of the composition of two spheres, the
differences of computing time and the variations in the object potential field.

5 Boolean Composition Operators with Smooth Transition for

Blobs

We now focus on a bounded representation of volumes. We explain why we do not use our free-form profiles
but rather the operators ĝ∪ and ĝ∩. We show how they can be adapted to greatly increase the control and
the regularity of the variation of union and difference operators with smooth transitions on blobs. We also
present a solution to produce a difference operator with the same essential properties.
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Figure 9: Representation of the field of an adequate union operator to compose two spherical blobs with a
smooth transition.

A Blob is defined by the C0 iso-potential surface of its potential field f . The potential function f is
bounded and varies as an approximation of a Gaussian from one at its “center” to zero on its boundary.
Outside its boundary, the function f uniformly equals zero. At least four essential properties have to be
taken into account to propose adequate Boolean composition operators on blobs:

• The potential field produced by the composition operator must be at least C1 continuous everywhere
inside the object boundary.

• The “automatic blending” property by potential summation must be conserved through the compo-
sition.

• Blobs have bounded representation and the result of a composition must be a bounded object having
its bounding box easily computed from those of the combined primitives.

• The extremities of the composition’s transition should be able to be intuitively selected once the
blobs’ boundaries are fixed.

If our free-form profiles are used to combine bounded primitives, the value outside the boundaries of
the resulting object will not be zero but G(0, 0) = k (k ∈ R) and C0 discontinuities will be introduced
on the boundary where the transition is defined. This is unsuitable, and for these reasons, we propose a
different and more relevant method.

As shown with the application of super-elliptic operators [11], a solution to perform bounded operators
for union and intersection is to compose the boundaries of the combined primitives without smooth transi-
tion and to use an operator that provides a C1 continuous field everywhere outside the intersection of the
primitives zero iso-potential surfaces (see Figure 9). The difference operator can not be directly obtained
with this method. This is the reason why few difference operators with smooth transition exist on blobs,
and this is why we treat this operator separately. Our operators ĝ∪ and ĝ∩ are then excellent candidates
to be adapted and improved for our requirements. They already conserve the combined primitives’ metrics
outside the region bounded by the angles θ1 and θ2, and they produce the desired transition and continuity
properties. The adaptation of operators ĝ∪ and ĝ∩ to blob composition operators with smooth transitions
are denoted respectively g̃∪ and g̃∩. To allow precise and intuitive control, and to respect our constraints,
the transition must be defined by control points on the C0 iso-potential surface. The first transforma-
tion is to adapt the operator’s equation to the blob formulation and to define angles θ1 and θ2 from the
user Euclidean space E

3 by selecting control points p1(x1, y1, z1) and p2(x2, y2, z2) on the combined blob
surfaces respectively f1 = C0 and f2 = C0. Points p1 and p2 must be selected inside the intersection of
the blobs’ boundaries because no transition can be defined outside these limits. Indeed, at least one of
the combined primitives returns zero. The equation is first adapted by taking into account the following
properties: Potential function f(p) ≥ 0 inside the object and uniformly equals zero outside. These give us
the representation shown in Figure 10 and Equation 7 for the operator g̃∪ applied on two blobs defined by
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Figure 10: Union with smooth transition controlled point-by-point in the user Euclidean space E
3 and its

function representation.

their potential functions f1 and f2 (equations of operators g̃∩ and g̃\ are given in Appendix B).

Points p1 ∈ E
3 and p2 ∈ E

3 selected by the user

correspond to points P1 and P2 such as :

P1(C0, f2(p1)) and P2(f1(p2), C0).

θ1 = angle ([OX), [OP1)) , θ2 = angle ([OX), [OP2))

At a point P (f1(p), f2(p)) : θP = angle ([OX), [OP ))

if YP = 0 g̃∪(XP , YP ) = XP

if XP = 0 g̃∪(XP , YP ) = YP

if θP ≤ θ1 g̃∪(XP , YP ) = XP

if θP ≥ θ2 g̃∪(XP , YP ) = YP

if θP ∈ ]θ1, θ2[ g̃∪(XP , YP ) = CP

where CP is the solution of :

(XP − CP .cot(θ2))
2

(CP − CP .cot(θ2))
2

+
(YP − CP .tan(θ1))

2

(CP − CP .tan(θ1))
2

= 1

(7)

With operator g̃∪ in this form, only the boundaries of the transition can be controlled. For fixed angles
θ1 and θ2 it is necessary to be able to choose the smoothness of the transition. This leads us to add at least
one control point. In fact, adding one or more control points brings us to the same solution. To conserve
the C1 continuity in the field, we multiply g̃∪(P ) by a function m(θP ) where m is an interpolation function
of R → R when θP ∈ [θ1, θ2] and m(θP ) = 1 otherwise. A valid graph for function m is shown in Figure 11.
The link with the control points is done as follows: m(θ1) = 1,m′(θ1) = 0 and m(θ2) = 1,m′(θ2) = 0
to ensure C1 continuity at the beginning and the end of the transition. Then ki (i > 2) are computed
from the control points pi(xi, yi, zi) (i > 2) selected in the Euclidean modeling space E

3. Point pi allows
us to compute the point Pi(f1(pi), f2(pi)), followed by θPi

and Ci = g̃∪(Pi). The corresponding point ki

(i > 2), to interpolate, has then the coordinates: ki(θi, C0/Ci). We have chosen one-dimensional cubic
polynomial splines [32] to define function m when θP ∈ [θ1, θ2] for their adequate smoothness and oscillation
properties, and for their inexpensive computation cost. We finally obtain the union Boolean operator with
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Figure 11: Graph of an interpolation function m(θP ) used to deform the operator g̃∪ and allow the control
point-by-point of the transition.

Figure 12: The ring is built using two implicit cylinders and applying subtraction, the center image uses
the Ricci CSG subtraction operator,the right hand image, our smooth CSG subtraction g̃\.

“functionally defined” transitions for blobs in Equation 8.

g̃∪
final

(P ) = m(θP ).g̃∪(P ) (8)

The same path has been followed to build the intersection Boolean operator with “functionally defined”
transition for blobs g̃∩

final
(P ) = m(θP ).g̃∩(P ) from ĝ∩(P ).

The difference operator g̃\ cannot be obtained from operator ĝ\ in the same way because the C0

iso-potential surface of the blob defined by function f2 is not included in the difference of combined blob
boundaries. Ricci [5] proposed the realization of the difference operator without smooth transition on blobs
using the intersection operator applied on f1 and (2C0 − f2) instead of f2. The same method used on our

intersection operator g̃∩
final

gives the difference Boolean operator with “functionally defined” transition
on blobs g̃\

final. Figure 14 shows a ring object built from the ring of Figure 12 and a gem similar to that
in Figure 13. The gem has been further modified by two profile curves. The first profile curve modifies
the smooth intersection operation used to construct the gem. The second modifies the difference operation
between the gem and a sphere (implicit point primitive) at its centre. Finally, another sphere has been
added with a smooth union operation. The gem is then joined to the ring using another smooth union with
a profile curve. Table 3 illustrates different union composition operators with soft transition and allows us
to compare of the computation times, the potential field variations and the shape produced at the transition
level. The increase of the evaluation cost of the our operators is compensated by the controllability of the
form of the transition.

The bounding box of the resulting object is easy to compute. For the union operator, the box is the
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Figure 13: The gemstones are built from implicit box primitives and an implicit cone, center image uses
the Ricci intersection operator, right hand image our smooth intersection g̃∩.

Figure 14: Applying the smooth CSG operators g̃∪, g̃∩, g̃\ and profile curve operators g̃∩
final

, g̃\
final on

blobs.
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time 2D section 3D object

(a) 246

(b) 884

(c) 940

(d) 1005

(e) 1933

(f) 2315

Table 3: Time in milliseconds to compute potential function values for a 1283 grid (2097152 evaluations).
(a) Using Ricci’s operator with n = 1, (b) Ricci’s operator with n = 3, (c) Ricci’s operator with n = 7, (d)

operator g̃∪, (e) operator g̃∪
final

with 3 control points and (f) operator g̃∪
final

with 5 control points. The
middle column shows two-dimensional sections of the full grid.
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Figure 15: On the left, the trajectory and the local Cartesian coordinate system for a trans-
lational primitive. On the right, the one for a rotational primitive.

union of those of the two combined primitives. For the intersection operator, it is their intersection and
for the difference it is the box of the object defined by function f1.

A function m of R → R is used to provide point-by-point control. Because such a function must be single
valued, we do not obtain a true free-form control of the transition. However, blobs are bounded primitives.
The transition in operators like ours is then essentially used to smooth the junction of two primitives when
they are combined. We assume that in a general case, to create the desired smooth transition, three, four
or five control points give enough flexibility. Free-form curves are needed in very specific cases, and often
it remains easier to build a new primitive and to combine it with a smooth transition.

6 Sweep Objects

Sweep objects or generalized cylinders [39, 40] are well known and fully used in modeling tools based on
parametric functions. Because they allow to greatly increase the variety of shapes with an intuitive formu-
lation, implicit definitions of sweep objects have been proposed [20, 37]. Under there implicit form, these
objects are based on the translational or rotational extrusion of two-dimensional implicit profiles, respec-
tively along or around a trajectory defined by a parametric free-form curve. The parametric formulation of
the trajectory allows to twist the profile or/and to interpolate several different profiles. Until now, implicit
profile definition has been based on single valued function of R → R. This consequently limits the variety
of shapes that sweep objects normally provide. In this section, we explain how to use our free-form profiles
to offset this restriction, and provide implicit sweep primitives f defined by the inequality f(p) ≤ 0. We
do not describe an entire model to define implicit sweep objects and we refer to Crespin en al [1996] and
Grimm [1999] to find complete and useful models to sweep implicit profiles.

For translational primitives, profiles are defined in a local Cartesian coordinate system. To evaluate a
point p of E3, its projection p′ on the trajectory is computed, and t is the value of the parameter of the
curve in p′. From the parametric definition of the curve, a local Cartesian coordinate system is obtained
(p′, x(t), y(t), z(t)). Axis x(t) is tangent to the trajectory, and profiles are defined in the plane (y(t), z(t))
(see Figure 15). Our profile is then defined as G(y(t), z(t)). For bounded trajectories, the extremities
can be closed by computing the profile coordinates as G(ρ(t).cos(ϕ(t)), ρ(t).sin(ϕ(t))) where ρ(t) is the
distance between the evaluated point p of E3 and its projection p′, and ϕ(t) is the angle between p and y(t).
Profiles are not directly defined as G(ρ(t), ϕ(t)) because ϕ(t) varies in [α, α + π/2[, and a C0 discontinuity
is generated at ϕ(t) = α in the potential field defined by G.

For rotational primitives, the same cartesian coordinate system is computed. Profiles are defined along
the trajectory for fixed values of ϕ(t), and extruded around it. The profile is then defined as G(ρ, t) where
ρ is the distance between the point p and its projection p′, and t is the parameter value of the trajectory
at point p′. If the trajectory is bounded, a particular attention has to be focussed on the extremities of
the trajectories. Indeed, as illustrated in Figure 15 the profile must be defined in the boundaries fixed by
the limits of variation of the parameter along the profile.

Figure 16 shows an example of translational primitive. Three profiles are defined along the trajectory
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Figure 16: Example of implicit sweep object. The three shown profiles are extruded along a line
segment, and the resulting object is combined with a simple primitive using our composition
method (see Section 4).

and interpolated with cubic functions. One can notice that the trajectory is outside the second profile.
Because our profiles provide regular and homogenous field variations, our sweep objects can be correctly
combined with other volume objects.

7 Conclusion and Future Work

Accurate and intuitive manipulation of volume objects is the next required step to provide efficient volume
modelling software. In this paper we have presented some solutions to these requirements when volumes
are composed. Recent work introduced the notion of “implicit spaces” as a theoretical base to accurately
control the transitions [18] and we have shown how this leads us to the study of free-form implicit curves
controlled point-by-point. Profiles require regular variations of their two-dimensional potential field and
the control of their extremities. The adaptation of a method proposed by Pasko et al [36] has allowed us
to provide open and closed profiles, defining line segments or smooth curves, with sufficient properties.

To manipulate volumes defined by the inequality f(p) ≤ 0, we have grouped in a single modeling tool:
creation, sculpture and Boolean composition operators with sharp or smooth free-form transitions. We
have shown how accuracy is ensured and explained how to understand and use our modeling metaphor
in an efficient way. The techniques described in this paper generalize the models given in [18] and
provide controllability and freedom of expression to the user and greatly extend the possibilities offered by
operators on volumetric objects. The point-by-point control curve provides the possibility of interactively
designing blended shapes, however more work needs to be done on volume data structure manipulation
and modeling interface design to add interactivity to the modeling process. Adaptive structures like ADF
[3] and interactive ray casting algorithm for isosurface visualization [1] can be used respectively to store
a sampled potential field and accurately render the surface. A sampled field structure stores the potential
values after each operation, removing the expensive evaluation of an increasingly complicated potential
field function. This technique allows us to accurately render the modeled object directly without the use of
an additional data structure like polygons. These reasons provide a good justification for the investigation
of the combination of these techniques, to provide interactive volume modeling solutions.

Because sampled volumes are large data structures, the development of multiresolution techniques to
store and reconstruct potential fields represents another important step.

Free-form profiles can also be used in implicit sweep objects [20, 37]. Indeed, only profiles defined by
single valued functions of R → R are used in implicit modeling, while there is no apparent reason to limit
the user by the form of the profile they want to sweep. Our profiles allowed us to create swept objects
defined by an inequality f(p) ≤ 0. Since they have regular and homogenous field variations, sweep objects
are correctly combined with other volume objects.
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A Operators ĝ∩ and ĝ\

• Operator ĝ∩:

θ1 ∈]0, π/4[, θ2 ∈]π/4, π/2[.

At a point P (XP , YP ) : θP = angle ([OX), [OP ))

if XP = YP = 0 ĝ∪(XP , YP ) = 0

if θP ∈ [θ2 − π, θ1] ĝ∪(XP , YP ) = XP

if θP ∈ [θ2, θ1 + π] ĝ∪(XP , YP ) = YP

if θP ∈ ]θ1, θ2[ ĝ∪(XP , YP ) = CP

where CP is the solution of :

(XP − CP .cot(θ2))
2

(CP − CP .cot(θ2))
2

+
(YP − CP .tan(θ1))

2

(CP − CP .tan(θ1))
2

= 1

if θP ∈ ]θ1 + π, θ2 + π[ ĝ∪(XP , YP ) = CP

where CP is the solution of :

(CP .cot(θ1) − XP )
2

(CP .cot(θ1) − CP )
2

+
(CP .tan(θ2) − YP )

2

(CP .tan(θ2) − CP )
2

= 1

• Operator ĝ\:

Operator ĝ\ is directly obtained from operator ĝ∩ using the following expression:

ĝ\(X,Y ) = ĝ∩(X,−Y )

B Operators g̃∩ and g̃\

• Operator g̃∩:

To points p1 ∈ E
3 and p2 ∈ E

3 selected by the user

correspond points P1 and P2 such as :

P1(C0, f2(p1)) and P2(f1(p2), C0).

θ1 = angle ([OX), [OP1)) , θ2 = angle ([OX), [OP2))

At a point P (f1(p), f2(p)) : θP = angle ([OX), [OP ))

if YP = 0 g̃∪(XP , YP ) = 0

if XP = 0 g̃∪(XP , YP ) = 0

if θP ≤ θ1 g̃∪(XP , YP ) = YP
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if θP ≥ θ2 g̃∪(XP , YP ) = XP

if θP ∈ ]θ1, θ2[ g̃∪(XP , YP ) = CP

where CP is the solution of :

(CP .cot(θ1) − XP )
2

(CP .cot(θ1) − CP )
2

+
(CP .tan(θ2) − YP )

2

(CP .tan(θ2) − CP )
2

= 1

• Operator g̃\:

Operator g̃\ is directly obtained from operator g̃∩ using the following expression:

g̃\(X,Y ) = g̃∩(X, 2.C0 − Y )

C Closed form solution for the evaluation of CP in our new com-

position operators

• Solution for the equation:

(CP .cot(θ1) − XP )
2

(CP .cot(θ1) − CP )
2

+
(CP .tan(θ2) − YP )

2

(CP .tan(θ2) − CP )
2

= 1

CP is the greater solution of the following equation:

a.CP
2 + b.CP + c = 0

with

a =
(tan(θ2) − 1)

2

tan2(θ1)
+ tan2(θ2).

(
1

tan(θ1)
− 1

)2

−

(
1

tan(θ1)
− 1

)2

.(tan(θ2) − 1)
2

b = −2.

(
XP .

(tan(θ2) − 1)
2

tan(θ1)
+ YP . tan(θ2).

(
1

tan(θ1)
− 1

)2
)

c = XP
2.(tan(θ2) − 1)

2
+ YP

2.

(
1

tan(θ1)
− 1

)2

CP is then obtained with:

CP =
−b +

√
(b2 − 4.a.c)

2.a

• Solution for the equation:

(XP − CP .cot(θ2))
2

(CP − CP .cot(θ2))
2

+
(YP − CP .tan(θ1))

2

(CP − CP .tan(θ1))
2

= 1
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CP is the lower solution of the following equation:

a.CP
2 + b.CP + c = 0

with

a =
(tan(θ1) − 1)

2

tan2(θ2)
+ tan2(θ1).

(
1

tan(θ2)
− 1

)2

−

(
1

tan(θ2)
− 1

)2

.(tan(θ1) − 1)
2

b = −2.

(
XP .

(tan(θ1) − 1)
2

tan(θ2)
+ YP . tan(θ1).

(
1

tan(θ2)
− 1

)2
)

c = XP
2.(tan(θ1) − 1)

2
+ YP

2.

(
1

tan(θ2)
− 1

)2

CP is then obtained with:

CP =
−b −

√
(b2 − 4.a.c)

2.a

• All the terms in θ1 and θ2 can be precomputed (once θ1 and θ2 are selected), which greatly decreases
the cost of the evaluation of CP . For instance, a can be totally pre-computed.


