Technical Report A

Number 54

Computer Laboratory

Lessons learned from LCF

[Lawrence Paulson

August 1984

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1984 Lawrence Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Lessons Learned from LCH

Lawrence Paulson
Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG

England

August 1984

Abstract

The history and future prospects of LCF are discussed. The
introduction sketches basic concepts such as the language ML, the
logic PPLAMBDA, and backwards proof. The history discusses LCF
proofs about denotational semantics, functional programs, and dig-
ital circuits, and describes the evolution of ideas about structural
induction, tactics, logics of computation, and the use of ML. The

bibliography contains thirty-five references.

CONTENTS

Introduction

LCF and its Metalanguage

2.1. The language ML,
9.2. The logic PPLAMBDA . . .
2.3. Tactics and tacticals
2.4. Rewriting.
2.5. Building Theories

A Brief History

3.1. Proofs in denotational semantics

¢ 6 e © © o6 @ a & © @ o ° e @ % © 0

oooooooooooooooooo

oooooooooooooooooo

N D W NN

o =3

3.2. Verification of functional programs

3.3. Verification of digital circuits

The Development of Ideas

4.1. Structural induction
4.2, Tactics e e e e e
43. Logics
44. Standard ML

Future Directions

Bibliography

Lessons Learned from LCF

1. Introduction

The acronym LCF stands for Scott’s Logic for Computable Functions, but has
come to denote a family of interactive proof assistants for this and other logics.
This paper surveys several years’ experience with LCF, examining its abilities and
limitations. After an overview of LCF and ML, the paper describes the proofs that
have been performed and the ideas which have grown and developed, and discusses
future directions for the LCF approach. Below, “LCF” without qualification refers

to the family; sometimes a particular version of LCF is mentioned.

2. LCF and its Metalanguage

This section outlines the principles of LCF. The main components of any LCF
system are the metalanguage ML, a logic such as PPLAMBDA, subgoaling primi-
tives (tactics and tacticals), a simplifier for using rewrite rules, and primitives for

maintaining hierarchies of theories.

The Edinburgh LCF Manual [9] contains a full description. Though later ver-

sions of LCF vary in details, the fundamental concepts remain the same.

2.1. The language ML

An important aspect of LOF is that it can be programmed in its metalanguage
(ML). All commands are provided as ML functions. By writing ML text, you can
incrementally extend LOF with new commands and functions. This is how LCF
grew over the years. Some data structures and pattern-matching primitives are
implemented in Lisp, but the bulk of the theorem-proving software is written in
ML.

ML is a functional programming language that provides typical data structures
such as numbers, booleans, tuples, and lists. The most important control structure
is function call. Almost all ML text consists of function definitions and invocations,
though ML provides assignment and iteration statements. ML has a few unusual
features that were intended to support theorem proving, and have turned out to-

be generally useful:

'To appear in D. Bj¢rnér, editor, Workshop on Formal Software Development: Combining Speci-
fication Methods, Springer LNCS, 1984,

e Functions are first-class objects. They can be arguments or results of other
functions. All of LCF’s tacticals and rewriting operators are functions that
operate on other functions.

e Types are polymorphic, giving the security of rigid type systems such as
Pascal’s, with almost all the flexibility of typeless languages. ML gives each
expression the most general type possible. You can easily define functions

on lists, and use them on lists of integers, lists of booleans, etc.

e Exceptions (known as faslures) can be raised and handled. A common way
of combining LCF proof strategies is to try them one at a time until one
terminates successfully. It is impractical to determine in advance whether
a strategy is appropriate in a particular situation; instead, it proceeds as

far as possible, perhaps signaling failure after a long computation.

2.2. The logic PPLAMBDA

Most LCF proofs are conducted in PPLAMBDA, a natural deduction logic for
domain theory. Formulas are built up from the connectives, ¥, A, =>, etc. Theo-
rems can depend on assumptions. If 4,,---, A,, B are formulas, then a theorem
of the form [A;;---; A,] F B states that the conclusion B can be proved from
the assumptions Ay,---, A,. The theorem B has no assumptions. Inference
rules are typical of natural deduction: introduction and elimination rules for each
connective.

I have mentioned that all the commands of LCF are available as ML functions.
More importantly, the logic is available via ML. A logic consists of a data type
form of formulas, together with axioms and inference rules for proving theorems.
Formulas of the logic are ML values, with functions for taking formulas apart and
putting them together. Theorems are values of type thm. Axioms are predeclared
ML identifiers, while inference rules are functions mapping theorems to theorems.
Theorems form an abstract data lype, for a theorem can be constructed only via
axioms and inference rules, not by arbitrary manipulation of its representation.
Type-checking guarantees soundness, that every theorem is true.

For example, consider the PPLAMBDA rules for implication. The introduction
rule is called the “discharge rule” because it discharges (cancels) the assumption A
in the premiss. (Any assumptions other than A are passed along to the conclusion.)

A} - B
v FA=B
ML provides this rule as the function DISCH of type form — thm — thm.

3

The elimination rule is called Modus Ponens:

FA=B FA

B
ML provides this rule as the function MP of type thm — thm — thm. Like

many LCF inference rules, MP uses the failure mechanism to reject inappropriate

premisses. It fails unless its arguments have the form - A = B and |- A.

"The function concl, of type thm — form, maps any theorem I A to its conclu-
sion A. Now the ML function definition

let CUT bth ath =
MP (DISCH (concl ath) bth) ath;;
implements the cut rule:
[A]+ B FHA
FB

Many derived inference rules can be implemented as ML functions.

PPLAMBDA differs from other logics in its polymorphic type system, which
resembles ML’s. Furthermore, a type stands for a domain (complete partial order)
rather than a set. You can construct types for higher-order functions or infinite
streams. Every type includes the bottom element L; you can write formulas in-
volving the partial order, such as z C y. Logical terms include lambda expressions.
There is a fixedpoint operator and the rule of fixedpoint induction. Stoy describes
the theory of domains and its use in denotational semantics [35).

PPLAMBDA is best suited for difficult termination proofs and studies of de-
notational semantics and unbounded computation. A different problem area may
demand a different logic: an LCF system for hardware verification is mentioned
below. Versions of LCF have been written for several logics, but share most of the
same ideas (and code). My report describes the version of PPLAMBDA used in
Cambridge LCF [25]. Gordon introduces ML and illustrates how to embed a logic
in it [10].

2.8. Tactics and tacticals

In formal logic, and in the lowest level of LCF, inference consists of producing
theorems by applying rules to other theorems. This process, called forwards proof,
suffices to enumerate all theorems, but you will have to wait a long time before it
produces a theorem that interests you.

Most theorem-provers, whether human or mechanical, work in the backwards
direction. You start with a goal, the theorem to be proved, and proceed by re-

ducing goals to simpler subgoals. Even resolution theorem-provers use backwards

4

proof, though each resolution step is a forwards inference. Resolution consists of
negating the goal and adding it as an axiom, then deducing new theorems until a
contradiction occurs. The entire deduction is determined by the goal.
Functions called tactics reduce goals to subgoals. A complete tactical proof
consists of a tree of goals, whose leaves are known theorems, In Cambridge LOF,
the tactic CONJ_TAC reduces any goal of the form AA B to the two goals A and B,
and fails if its input is not a conjuction. The tactic DISCH_TAC reduces the goal
A = B to [A] B, the goal of proving B assuming A plus any previous assumptions.
The tactic function ACCEPT_TAC, applied to a theorem I A, reduces a goal
A to the empty list of subgoals (and fails on other goals). If you reduce a goal to
zero subgoals, you have solved it and can turn your attention to some other goal
in the tree.
These three tactics suffice to prove the goal A = (B = A A B). Call-
ing DISCH_TAC gives the goal [A]B = A A B. Calling DISCH_TAC again gives
[A; B]JA A B. Calling CONJ_TAC gives the two goals [4; B]A and [4; B]B. The
first can be solved by the tactic ACCEPT_TAC(ASSUME “A”), and the second by
ACCEPT_TAC(ASSUME “B”).
LCF provides operators called factscals for combining tactics into larger ones.
The basic ones are
THEN combines two tactics sequentially: the tactic fac; THEN fac, applies
tac; to the goal, gives the subgoals to fac,, and returns all resulting
subgoals.

ORELSE combines two alternative tactics: the tactic teac; ORELSE fac, applies
tacy to the goal. If tac, fails, then it applies tac,.

REPEAT makes a tactic repetitive: the tactic REPEAT fac applies fac to the goal,
its subgoals, etc. It returns a list of the goals on which Zfac fails.

Cémbridge LCF provides additional tacticals for iteration down lists, for use
with tactic functions like ACCEPT_TAC. The tactical FIRST_ASSUM applies a tac-
tic function to the first assumption; if the resulting tactic fails, it tries the second,

third, ... assumption. So
FIRST_ASSUM ACCEPT_TAC
is a tactic which, when applied to the goal [4; B]B, acts much like the tactic
(ACCEPT.TAC(ASSUME “4”)) ORELSE (ACCEPT.TAC(ASSUME “B”)) ,

searching in the goal for the assumption B.

5

Using these tacticals, we can express the proof of A = (B == A A B) in many
ways:
DISCH.TAC THEN DISCH_TAC THEN CONJ_TAC THEN
(FIRST_ASSUM ACCEPT_TAC)

or

REPEAT (DISCH_TAC ORELSE CONJ_TAC ORELSE
(FIRST_ASSUM ACCEPT._TAC))

or, using a standard tactic for breaking down goals,
REPEAT (STRIP_TAC ORELSE (FIRST_ASSUM ACCEPT_TAC)) .

The rewriting tactics described in the following section can solve many similar
tautologies in one invocation.

Tactics are implemented in ML on top of the abstract data type for theo-
rems. Along with the list of subgoals, each tactic returns a validation function
for constructing the forwards proof. A tactic that reduces the goal A to the
subgoals By, - -, B, should return a validation which, given the list of theorems
F By, -, F B,, yields the theorem | A.

Once every subgoal has been solved, these validation functions can be pﬁt
together to produce the desired theorem as an ML value. A compound tactic
such as tac; THEN tac, not only keeps track of the subgoals produced by tacy
and fac,, but also combines the validations to make a proper validation for the
whole. The implementation of THEN requires tricky list manipulation. Cambridge
LCF provides simple commands for interactively applying tactics to goals, and
automatically keeps track of the validations.

My report describes the tactics of Cambridge LCF [26]. Schmidt gives a lucid
and thorough discussion of the interplay between forwards and backwards reason-

ing in natural deduction proofs [32].

2.4. Rewriting

Every implementation of LCF includes a simplifier for applying rewrite rules

and solving tautologies. A theorem of the form

Ftlzg, - on] = vz, -, 2]
is a rewrite rule that allows the simplifier to replace any term ¢|a,,---,a,] by
u[ay, - -,a,]. A theorem of the form
F Az, -y zn] =tz -, 20) = ufzy, -0, 2]

6

is a conditional rewrite rule. The simplifier replaces {[a,,---,a,] by ula,,---,a,]
whenever it can prove Alay,: - -, @,] by (recursive) simplification. When simplifying
a formula A = B, where A contains syntactically acceptable rewrite rules, the
simplifier assumes these while simplifying B. Rewriting can be used to simplify
terms, formulas, or theorems. It is most commonly used, via a standard tactic, to
simplify goals. Most proofs rely heavily on the simplifier.

The above discussion applies to the simplifiers in both Edinburgh and Cam-
bridge LCF, despite their many differences. The Cambridge LCF simplifier uses
operators for combining primitive rewriting functions into powerful ones, just as
tacticals combine tactics. This makes it easy to build simplifiers that use a par-

ticular rewriting strategy [27).

2.5. Building Theories

Any serious proof requires extensions to the standard theory provided by the
logic. LCF provides commands for declaring new constants, infix operators, and
types. To endow these new objects with properties, you can introduce axioms.
When introducing an axiom A, the command (an ML function) returns the theorem
F A as its value.

A’lbng proof may require weeks or months of interactive sessions. LCF provides
a simple database for recording theories. A theory file contains all the constants,
operators, types, and axioms of a theory. You can also store away theorems on the
file. You can retrieve the theorems in a later session, after asking LCF to restore
the logical context (constants, axioms, etc.) in which the theorem was proved.

You can define a theory to be an extension of several other theories, called
parents. This theory can become the parent of later ones, forming a hierarchy. A
theory hierarchy should be a sensible decomposition of the concepts involved in
the proof. For example, you might create a theory natf of the natural numbers,
and a theory list of lists. A theory defining the length of a list would have nat and
list and parents.

The theory primitives are simple, but powerful enough to handle substantial
proofs. My unification proof, discussed below, involves a hierarchy of several dozen

theories.

3. A Brief History

If we include Stanford LCF, the LCF project is over ten years old; only a few

7

of the many proofs can be mentioned. History really began with Edinburgh LCF,
the first version to include ML. Let us see what people have accomplished using

all this machinery.

3.1. Proofs in denotational semantics

For her dissertation, Cohn verified
o three schemes for recursion removal;
e a compiler from an if-while language into a goto language;
e a compiler for an abstract language with recursive procedures [4].

Cohn’s proofs rely on PPLAMBDA’s domain theory. The proof that two func-
tions are equal, f = g, often uses fixedpoint induction to prove that f C ¢ and
g C f. The compiler proofs involve denotational definitions of direct and con-
tinuation semantics, and also operational definitions. Due to the complexity of
comparing a high-level semantic definition with a low-level one, the second com-

piler was only verified on paper. Cohn later formalized part of this in LCF [7].

A related problem is the equivalence between denotational and axiomatic def-
initions of semantics. Sokolowski proved the soundness of Hoare rules for an
if-while language, relative to a denotational definition [34]. He took the unusual
step of allowing infinite programs in the language, and defined the while com-
mand as an infinite nesting of if commands. (In the logic PPLAMBDA, infinite
data structures are easier to handle than finite ones!) He verified each Hoarg rule,
which, by induction oilg.:‘Hoare proofs, demonstrates the soundness of the logic.
He could not formalize induction on Hoare proofs in LCF; one attempt violated

PPLAMBDA’s requirement‘that all functions be continuous.

Mulmuley has implemented theories and tactics for proving the existence of
inclusive predicates [23]. These proofs, which are extremely tedious to do by hand,
are important in compiler verification. He has LCF theories of the universal domain
U and the domain V of finitary projections of U. The correspondence between
domains and elements of V allows quantification over domains to be expressed in
PPLAMBDA. Asked to prove the existence of a predicate, Mulmuley’s system gen-
erates goals and gives each one to an appropriate tactic. The tactics use rewriting
and resolution. The system, which totals sixty pages of ML, handles several pred-
icates in the literature. It verifies Stoy’s predicate automatically [35); in another
example, only one goal out of sixteen requires human assistance. Mulmuley relies
on a machine-verified predicate in his construction of fully abstract models of the

8

lambda-calculus [24]. The system should allow the verification of more realistic

compilers than Cohn’s.

3.2. Verification of functional programs

Leszczylowski verified the algebraic laws of Backus’s functional language FP
[17]. He also proved the termination of a normalization function for conditional
expressions [16]. Because the logic PPLAMBDA allows reasoning abou$ non-
terminating functions, he could prove lemmas about the function before proving
termination. The termination proof may be contrasted with Boyer and Moore’s
[1). Their theorem-prover only allows total functions, requiring that every recur-
sive call decrease some numeric measure of the argument. They introduce the
normalization function along with the lexicographic combination of two measures
on conditional expressions.

Cohn and Milner proved the correctness of a simple parser for expressions
composed of atoms, unary operators, and binary operators within parentheses
[6]. They give a readable account of the LOF approach and structural induction.
Cohn later proved a much more difficult theorem for a parser where operators have
precedence and associativity [6]. Both proofs introduce a function for printing an
expression as a list of terminal symbols. Correctness is stated as: printing an

expression, then parsing it, gives back the same expression.

I recently verified a function for unification, formalizing a theory due to Manna
and Waldinger [18]. This required developing theories of lists, finite sets, expres-
sions, substitutions, and unifiers [28]. Before proceeding deeply into the unification
project, I decided to remedy some defects that Edinburgh LCF users had encoun-
tered, by providing a faster ML compiler, the connectives Vv, 3, anc <, a new
simplifier, and new tactics and tacticals. The resulting prover was called Cam-
bridge LCF.

The LCF proof is less elegant than Manna and Waldinger’s. They prove the
final theorem by well-founded induction, which is not available in LCF. I simu-
late their induction by nested structural induction on the natural nurivbers and on
expressions. PPLAMBDA is inconvenient for reasoning about functions that ter-
minate; this cannot be left implicit, but requires frequent appeals to termination
theorems. But PPLAMBDA is vital for proving that unification terminates. Its
termination relies on the correctness of the results of the nested recursive calls it
‘makes, so termination and correctness must be proved simultaneously.” The proof

requires extensive reasoning about the unification function before its termination

9

is known.

3.3. Verification of digital circuits

M. J. C. Gordon has been verifying hardware. His Logic for Sequential Ma-
chines (LSM) extends PPLAMBDA with bit strings and communication lines. A
term can represent a device with inputs and outputs, with a binding mechanism
for indicating how devices are wired together. Only synchronous devices can be
specified: the next state depends on the current state and input lines. The domain
theory has been removed, for it is of little relevance to hardware. The prover for
this logic, built on top of Cambridge LCF, is called LOF_LSM [11].

As a case study in LCF_LSM, Gordon has verified a simple sixteen-bit com-
puter [12]. Its eight instructions are implemented using an ALU, memory, various
registers, and thirty-bit microcode controller. These components are specified,
and the configuration proved equivalent to a specification of the machine’s in-
tended behavior. Unusually, LOF_LSM proofs use mainly forwards proof rather
than tactics.

John Herbert used LCF_LSM to verify a chip used in the Fast Cambridge Ring
[14]. The chip, an eight-bit modulator-demodulator, was developed using the Cam-
bridge Design Automation system for gate arrays. Herbert modified the design
system to produce a file containing LCF_LSM axioms describing the implementa-
tion of the chip. He verified the implementation with respect to its functional

specification, another set of LOF_LSM axioms.

Melham used LCF_LSM to verify most of an associative memory unit, uncov-
ering a flaw in the original design [21]. The device includes memories, counters,
busses, and drivers. John Moxon verified a number of adders, including a carry-
lookahead adder, in Cambridge LCF.

4. The Development of Ideas

The most useful outcome of an LCF proof is not the theorem, but a better un-
derstanding of proof techniques. Interaction with LCF makes it easy to experiment

with different approaches.

" 4.1. Structural induction

Consider the theory of trees and other recursive data structures. The deriva-

10

tion of structural induction in PPLAMBDA is far from trivial. In her compiler
proofs, Cohn spent months developing theories of syntax trees for the source lan-
guages [4]. Problems she encountered persuaded the implementors to change the
treatment of union types, though she did not benefit from having the system shift
under her feet.

Some time later, Milner wrote an ML program for structural induction. When
Cohn and Milner verified a simple parser for expressions, Milner’s program gen-
“erated the theory of syntax trees [5]. Cohn and Milner still had the problem of
handling infinite data structures, which often creep into LCF types. My unification
work required types with strict constructors, which construct only finite objects.
I also studied mutually recursive types and types where the constructors satisfy

equational constraints [29].

4.2. Tactics

Our understanding of tactics has also grown. The Edinburgh LCF manual
lists only a handful of tactics, not even the basic CONJ_TAC and DISCH.TAC [9)].
The early LCF papers, especially by Cohn, describe additional tactics to introduce
or eliminate connectives, make use of assumptions, perform special substitutions,
and resolve implications against other theorems. These ideas are implemented in
Cambridge LCF.

Schmidt has studied tactics from an abstract point of view [32]. Sokolowski’s
new set of tactics implements these ideas, providing systematic rewriting and de-
composition of the goal and assumptions, and detection that the goal has been
reduced to tautologies [33]. Regular naming conventions emphasize the contrast
between introduction and elimination rules. Sokolowski’s major innovation is al-
lowing goals to contain pattern variables that can be unified against assumptions.

- His proofs are remarkably clean: the new tactics should be useful for most LCF

applications [34].

4.3. Logics

The proofs mentioned in the previous section were conducted in PPLAMBDA
or in Gordon’s Logic for Sequential Machines [11]. Gordon has also implemented a
Higher-Order Logic on top of Cambridge LCF [13]|. He plans to use it in hardware
proofs, as a successor to LCF_LSM. It should be applicable to proofs in classical
mathematics. Since the logic allows quantified predicate variables, it can directly

express inference rules such as induction.

11

I have been studying Martin-Lof’s Intustionsstic Type Theory [20], a logic con-
cerned with the computation of total recursive functions. Its type system is rich
enough to express logical proposi‘tions: you prove a proposition by constructing a
functional program that can be executed. You can specify the type of all sorting
functions, and satisfy the specification by exhibiting a function of that type. Pe-
tersson has embedded Type Theory in ML [30]. Constable and Bates have built a
substantial system, implementing a related logic on top of ML [8].

4.4, Standard ML

Most of these developments have been implemented in ML. It is remarkable
that a language developed for proving theorems should prove useful in other areas,
but people want to use ML for symbolic processing, artificial intelligence, and even
systems programming. Milner’s Standard ML effort is a response to the demand
for improvements to the language and its implementations. The new Standard
takes account of experience with ML and related languages [22]. (This proposal
is not final; input/output and modules are still being considered.) The main
improvements are pattern-directed function calls as in HOPE [2], a more flexible
exception mechanism, and reference types. Implementations are under way, some

of which are more efficient than Pascal or compiled Lisp [3].

5. Future Directions

All indications are that LCF research will continue to progress in a variety of
approaches. Sannella and Burstall have implemented new operators for building
theories [31]. A theory can be abstracted, producing a theory whose details of
construction are hidden. A parametrized theory is be a function yielding theories;
it can be applied to any theory satisfying stated logical properties.

LCF’s theory package needs improvement. A theory contains declarations of
constants, types, axioms, and ancestor theories. LCF stores this information, plus
any theorems that have been proved, on a theory file. To work in a theory you
must load its theory file into LCF. You are then stuck in the theory for the rest
of the session. The current theory is part of LCF’s state, when perhaps theories
should be ML objects. LCF also needs a way of saving tactics and other ML objects
related to a theory.

More theorem-proving tasks should be automated: current LCF practice re-

lies excessively on rewriting. The resolution tactics are weak, but Sokolawski’s

12

unification techniques may allow someone to implement proper resolution. The
Knuth-Bendix completion procedure would be helpful in detecting conflicts be-
tween different rewrite rules [15). The LCF philosophy is cool towards artificial
intelligence ideas because they might make LCF hard to control, but heuristics
related to those of Boyer and Moore could be valuable [1].

Past LCF proofs have begun with a long phase of laying the groundwork:
theories of lists have been derived again and again. Manna and Waldinger have
put together fundamental theories of data structures: numbers, strings, trees,
lists, sets, bags, and tuples [19]. These could be formalized into a library of LCF

theories, to be included when needed in any proof.

Variants of LCF differ primarily in the logic used for proofs: PPLAMBDA, LSM,
higher-order logic, Intuitionistic Type Theory, etc. It requires great effort to embed
a new logic into LOF. Type Theory is defined on top of a theory of expressions:
an abstract syntax for typed abstraction and application. An implementation
of these expressions could provide syntactic functions such as occurrence testing,
substitution, pattern matching, and unification, which could be used to implement

nearly any logic. This would be a step towards a reconfigurable proof assistant.

Acknowledgements

R. Milner conceived most of the ideas behind LCF. M. J. C. Gordon has been
involved for many years, and worked closely with me at Cambridge. Gérard Huet
and Guy Cousineau contributed a great deal to the Lisp implementation of ML.
N. Shankar offered several comments on'th'is paper. I am also grateful to the

organizers of this most productive and enjoyable workshop.

13

6. Bibliography

1]

2]

3]

[4]

(5]

l6]

[7]

8]

9]

[10]

[11]

12]

[13]

R. Boyer and J Moore, A Computational Logic, Academic Press, 1979.

R. M. Burstall, D. B. MacQueen, D. T. Sannella, HOPE: an experimen-
tal applicative language, Report CSR-62-80, Dept. of Computer Science,
University of Edinburgh, 1981. '

L. Cardelli, ML, under Unix, Report (in preparation), Bell Labs, Murray
Hill, NJ, 1984.

A.J. Cohn, Machine Assisted Proofs of Recursion Implementation, Report
CST-6-79, PhD. Thesis, University of Edinburgh, 1980,

A.J. Cohn and R. Milner, On using Edinburgh LCF to prove the correctness
of a parsing algorithm, Report CSR-113-82, Dept. of Computer Science,
University of Edinburgh, 1982.

A. J. Cohn, The correctness of a precedence parsing algorithm in LCF,
Report 21, Computer Lab., University of Cambridge, 1982.

A. J. Cohn, The equivalence of two semantic definitions: a case study in
LCF, SIAM Journal of Computing 12, pages 267285, 1983.

R. L. Constable and J. L. Bates, The nearly ultimate PEARL, Report TR
83-551, Cornell University, 1984.

M. J. C. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF, Springer
LNCS 78, 1979.

M. J. C. Gordon, Representing a logic in the LCF metalanguage, in: D. Néel,
editor, Tools and Notions for Program Construction, Cambridge University
Press, pages 163-185, 1982.

M. J. C. Gordon, LCF_LSM: A system for specifying and verifying hardware, _
Report 41, Computer Lab., University of Cambridge, 1983.

M. J. C. Gordon, Proving a computer correct with the LCF_LSM hardware
verification system, Report 42, Computer Lab., University of Cambridge,
1983.

M. J. C. Gordon, Higher Order Logic: description of the HOL proof gener-
ating system, Report (in preparation), Computer Lab., University of Cam-
bridge, 1984.

14

[14] J. M. J. Herbert, Verification by formal proof of the Cambridge Fast Ring
modulator and demodulator chip, Report (in preparation), Computer Lab.,

University of Cambridge, 1984.

[15] G. Huet and D. Oppen, Equations and rewrite rules: a survey, in: R. Book,
Editor, Formal Language Theory: Perspectives and Open Problems, Aca-
demic Press, pages 349-406, 1980.

[16] J. Leszczylowski, An experiment with ‘Edinburgh LCT',’ in: W. Bibel and
R. Kowalski, editors, Fifth Conference on Automated Deductson, Springer
LNCS 87, pages 170-181, 1980.

[17] J. Leszczylowski, Theory of FP systems in Edinburgh LCF, Report CSR-
61-80, Dept. of Computer Science, University of Edinburgh, 1980.

[18] Z. Manna, R. Waldinger, Deductive synthesis of the unification algorithm,
Science of Computer Programming 1, pages 5-48, 1981.

[19] Z. Manna, R. Waldinger, The Logical Basis for Computer Programming:

Volume I: Informal Reasoning, In preparation, 1984.

[20] P. Martin-Lof, Constructive mathematics and computer programming, in:
L. J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewski (editors), Logic, Method-
ology, and Science VI, North Holland, pages 153-175, 1979.

[21] T. Melham, Proof of correctness of the flooding sink memory chip, Report
in preparation), Dept. of Computer Science, University of Calgary, 1984.
gary,

[22] R. Milner, A proposal for Standard ML, Report CSR-157-83, Dept. of
Computer Science, University of Edinburgh, 1983.

[23] K. Mulmuley, The mechanization of existence proofs of recursive predicates,
in: R. E. Shostak, editor, Seventh Conference on Automated Deductson,

Springer LNCS 170, pages 460-475, 1984.

[24] K. Mulmuley, Full Abstraction and Semantic Equsvalence, PhD thesis (in
preparation), Carnegie-Mellon University, 1984.

[25] L. Paulson, The revised logic PPLAMBDA: a reference manual, Report 36,
Computer Lab., University of Cambridge, 1983.

[26] L. Paulson, Tactics and tacticals in Cambridge LCF, Report 39, Computer
Lab., University of Cambridge, 1983.

[27] L. Paulson, A higher-order implementation of rewriting, Science of Com-

puter Programming 3, pages 119-149, 1983.

15

[28] L. Paulson, Verifying the unification algorithm in LOF, Report 50, Com-
puter Lab., University of Cambridge, 1984. (To appear in Science of Com-
puter Programming.)

[29] L. Paulson, Deriving structural induction in LCF, in: G. Kahn, D. B. Mac-

~ Queen, G. Plotkin, editors, International Symposium on Semantics of Data
Typeé, Springer LNCS 173, pages 197-214, 1084.

[30] K. Petersson, A programming system for type theory, Report 21, Depart-
ment of Computer Sciences, Chalmers University, Goteborg, Sweden, 1982,

[31] D. Sannella, R. Burstall, Structured theories in LCF, Report CSR-129-83,
Dept. of Computer Science, University of Edinburgh, 1983.

[32] D. Schmidt, A programming notation for tactical reasoning, in: R. E. Shos-
tak, editor, Seventh Conference on Automated Deductson, Springer LNCS
170, pages 445-459, 1584.

[33] S. Sokolowski, A note on tactics in LCF, Report CSR-140-83, Dept. of .
Computer Science, University of Edinburgh, 1083. '

[34] S. Sokolowski, An LCF proof of the soundness of Hoare’s logic, Report
CSR-146-83, Dept. of Computer Science, University of Edinburgh, 1983.

[35] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory, M.1.T. Press, 1977.

16

