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“All we know is the phenomenon: we spend our time sending

messages to each other, talking and trying to listen at the same

time, exchanging information. This seems to be our most urgent

biological function; it is what we do with our lives.”

— Lewis Thomas, “The Lives of a Cell”
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Chapter 1

Introduction

As processing on the data path moves into the network, the problem emerges

of how best to allocate and schedule scarce resources within routers. This

dissertation describes why this is a problem, how current work fails to address

this problem, and presents its solution in the form of Expert; a new NEOS

(Network Element Operating System) which supports accurate accounting and

scheduling of all resources.

1.1 Data processing in the network

The Internet is a hierarchy of interconnected networks. As distance from the

high-speed core increases, link speeds drop, aggregation decreases and the

amount of router memory and processing power available per byte increases.

In the core, traffic is switched entirely in hardware in order to cope with the vast

data rate. However, the static nature of this hardware acceleration loses flexibil-

ity: the ability to meet unplanned, evolving requirements has been exchanged

for performance gains. For a core offering only basic connectivity, this is not

a serious problem. In contrast, towards the edge of the network programmable

software-based routers become feasible, allowing considerable intelligence in

routing decisions [Pradhan99, Peterson99].

Furthermore, there are sufficient resources available near the edge today to al-

low these programmable routers to manipulate data in the packets [Amir98].

Useful data processing includes media transcoding, for example to allow het-

erogeneous receivers to participate in a high-bandwidth flow by down-sampling
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the media to an appropriate rate [Fox96]. Other potential manipulations in-

clude information distillation or filtering, for example to aggregate sensor data,

or generate a “thumbnails” video channel based on scaling down several other

channels.

Other uses of in-network data processing are transparent to the endpoints in-

volved. For example, protocol boosters [Feldmeier98] perform extra process-

ing in portions of the network to improve performance in some manner, e.g. by

ACK spacing, or maintaining a segment cache to shorten retransmit times on a

lossy network.

The need to process packet data is not limited to experimental or research sys-

tems; currently deployed network applications do so too. For example, some

protocols (e.g. FTP [Postel85], RTSP [Schulzrinne98], and H.323 [H323]) em-

bed endpoint information in the packet payload. Network elements that read

or rewrite this endpoint information (such as firewalls or NAT (Network Ad-

dress Translation) gateways [Egevang94]) thus need access not only to packet

headers, but also to packet bodies.

Another example of data processing on packet payloads arises in VPN (Virtual

Private Network) endpoints [Gleeson00]. A VPN ingress router aggregates

packets from multiple sources and encapsulates them for transmission through

a tunnel. At the far end of the tunnel, an egress router decapsulates and routes

the packets on to their next hop. Both of these VPN endpoint operations require

the packet payload to be processed (e.g. for checksum purposes), and in the

case of a secure VPN either encrypted or decrypted, both of which can be

CPU-intensive processing.

As these and other resource-intensive network-hosted functions are merged to

run on a single router, competition for scarce resources arises. The pressure

to integrate multiple functions into a single router comes from a variety of

directions:

• Separate network elements are more costly, partly due to the increased

amount of redundant equipment purchased, but also in terms of precious

rack-space.

• Having multiple network elements composed together may also compli-

cate the network architecture, especially if it needs to be transparent to

network users or an ISP (Internet Service Provider).

• A composition of network elements also makes dimensioning harder,
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since a single under-powered element can cause the whole chain to under-

perform.

A programmable router integrating multiple functions requires resource alloca-

tion problems to be addressed in one location by flexible software scheduling.

If no scheduling is performed then the system’s performance is not predictable

during overload conditions. Proper resource management also enables admin-

istrative control over how system resources are allocated to various applications

or flows. For example, this allows latency-sensitive ASP (Application Service

Provider) or VoIP (Voice over IP) flows to be isolated from the effects of best-

effort flows such as email or web traffic. This need to schedule computation

on routers is gradually being recognised by others (e.g. [Qie01]), however the

majority of current systems lack proper resource control.

There are two main reasons why this is the case. The first is that when the

primary resource being consumed is outgoing link bandwidth, scheduling just

this implicitly controls the consumption of other resources. However, sophisti-

cated per-packet processing now consumes multiple resources. This mandates

a holistic approach to managing system resources such as network bandwidth,

the CPU, memory, and disk.

The second reason that resource control is not currently provided is that over-

provisioning is seen as a viable alternative. Over-provisioning is an insufficient

replacement for resource management for several reasons. Peak loads can be

between a hundred and a thousand times larger than average loads [Schwarz00]

necessitating larger, more expensive, configurations which are only fully used

during short peak periods. Also, for the largest systems, the average load will

be approaching the maximum possible capacity of the system, so there is sim-

ply no way to over-provision. Finally, the hardware in use tends to lag behind

the cutting edge, due to the expense and disruption involved in commissioning

new equipment.

This dissertation has argued for a flexible NEOS which can support new ap-

plications as they emerge, while giving QoS (Quality of Service) guarantees

to the processing of data flows in order to the remain in control of resource

consumption when under overload conditions. The next section claims that

current OSes are unsuitable platforms for resource-intensive network-hosted

applications, and gives reasons why this is the case.
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1.2 Network Element Operating Systems

A NEOS is different from a workstation or server OS because it is transparent

to all but its administrators. For example, in a client OS, users are explicitly

authenticated. Server OSes run services on behalf of some local user, and the

services typically do their own application-level user authentication. However,

in a NEOS users are not explicitly authenticated. This is why resource control

on a network element is a challenge, because it is difficult to track resource

usage when the consumer has to be inferred from flow information combined

with administrative policy. Some protocols (for example IPSec) allow flows to

be tracked explicitly, making this problem somewhat easier.

This section now considers several existing NEOSes and argues that they are

inadequate because either they are inflexible, or they do not have sufficiently

detailed resource accounting.

Commercial embedded OSes are used by many network equipment vendors

in their products. For example, 3Com uses a mixture of VxWorks, QNX and

ThreadX [VxWorks99, Hildebrand92, ThreadX] along with other privately de-

veloped embedded OSes [Nessett00]. Cisco uses similar systems [QNX98],

alongside their own proprietary system known as IOS.

None of these products are designed with flexibility in mind; these closed sys-

tems do not allow administrator-supplied code to be run on them. They use

hard real-time OSes, requiring the job mix to be known in advance to allow a

one-off static resource partitioning to be made at design time.

We do not consider this kind of system any further, since they cannot be classed

as programmable routers either in name or in function.

Both Unix and Windows NT can be used to route traffic, and are general enough

platforms to enable data to be processed by locally-supplied code. Windows

2000 has support for scheduling network I/O, as do many of the modern Unices,

for example Linux with CBQ (Class-Based Queueing). However, their model

assumes that the only resource used by network flows is bandwidth; they do

not schedule other resources used in processing packets in the kernel.

In the case of a split kernel / user-space implementation, the amount of time

spent in the kernel is hard (if not impossible) to schedule, resulting in live-

lock [Mogul96, Druschel96] unless steps are taken to ensure new packets are

not accepted until they can be properly accommodated. For example, clocked
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interrupts [Smith93] can be used to reduce interrupt processing overheads.

The fundamental problem with these kinds of operating systems is that they are

built on a task-based scheduling paradigm which is ill-suited to recording the

resources used in processing flows of packets.

There are four reasons why task-based scheduling is inappropriate for process-

ing flows of packets:

1. When a single data flow is processed by multiple cooperating tasks, each

with their own resource allocations, it is hard to understand the required

allocation levels needed to achieve a balanced system, i.e. one in which

each task has a sufficient resource allocation, and no more.

2. There is a performance penalty due to the overheads of context switching

between tasks on a per-packet basis. These may be amortised by batching

multiple packets together before context switching, and this can happen

at any level in a system from interrupt mitigation schemes implemented

in devices to application-specified buffer flush trigger levels. However

any scheme which batches packets for common processing will by def-

inition increase their latency. There is a fundamental trade-off between

batch granularity and context switch overheads.

3. Multiple tasks co-operating to process a flow complicates resource recla-

mation since resources are owned by tasks, not flows. If the resources

associated with a flow need to be retracted, all the tasks involved need

to participate in the revocation. Depending on the system, atomic re-

source release may be impossible. As an example, Unix provides the

mechanism of process groups to allow multiple processes (e.g. a shell-

constructed pipeline) to be sent a signal atomically. However, killing

entire processes is a fairly coarse-grained approach to resource reclama-

tion, and more importantly, does not work if the processes were handling

multiple flows and the intention was to terminate just one flow.

4. When multiple tasks co-operate to process multiple flows, there are two

additional problems. Firstly, each task needs to perform a demultiplex

operation to recover the flow state. This is not too severe in the case

where there are few flows to distinguish between, but becomes time-

consuming when many flows are active. The standardisation of POSIX.1b

asynchronous I/O (which allows a callback function to be invoked when

data arrives) is an implicit acknowledgement of this problem. Secondly,
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Figure 1.1: An example path through a networking stack and an MPEG

code module.

if flows are to be differentiated within a task, the task needs to sub-

schedule any processing it does. However, this aggravates the first prob-

lem by greatly increasing the number of scheduler settings needing to be

decided for the system as a whole.

In the case of a Unix-like system, it is tempting to argue that if there is only

one user-space process on the data path, then only one task is involved and

thus many of the problems listed above become moot. This is not so, since the

kernel itself must be considered a task: context switches occur between it and

user processes.

In fact, in most Unices this situation is exacerbated, since the kernel is sched-

uled implicitly on interrupts. [Black95] argues that if any significant processing

is performed in the kernel, then this is automatically work which is not sched-

uled according to administrative policy but rather scheduled by external (in

this case, network) events. This implies an undesirable loss of control over the

system’s resource usage.

These problems with task-based systems can be addressed by the introduc-

tion of the notion of a path as a first-class schedulable entity. The Scout

OS [Mosberger96, Mosberger97] is an example of a system designed around

such data communication paths.

Paths map closely onto the human view of the processing performed on a

packet as it traverses OS and application code; an example path is shown in Fig-

ure 1.1. The motivations the Scout authors give for paths are the increased per-

formance of embedded Internet appliances available through ILP (Integrated

Layer Processing), code specialisation, and early discard of work under over-

load conditions. The path is also the entity to which the use of resources is

charged. A side-effect of this work on performance tuning is the improved

QoS isolation, although the authors do not cite this as a major motivation for
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them.

However, Scout is a static system which is configured and type-checked at

build-time: it does not support the dynamic loading of new code modules.

Its typesystem is fixed, and new types cannot be added at run-time. This is

unsurprising, given its original niche as an OS for Internet appliances.

Despite these problems with Scout, the concept of using paths as schedula-

ble entities is sound: per-path resource control directly simplifies the resource

allocation problem by providing one parameter per resource that governs all

processing applied to a particular flow of packets.

However, not all processing performed on a programmable router can be mean-

ingfully captured using only paths. For batch computation which proceeds

without significant interaction with other system components or is unrelated to

any particular traffic stream, the resource consumption is best represented and

controlled by a task abstraction.

Examples of such workloads includes system management tasks such as the

gathering and processing of statistics (e.g. for admission control), background

routing table optimisation [Draves99], or background management of cached

data (e.g. expiry, preemptive refresh, compression, index generation).

Having both paths and tasks allows each abstraction to be used where most ap-

propriate. A task-based system (e.g. Unix) without paths is not well suited to

accounting and scheduling different data streams. In contrast, a path-based sys-

tem (such as Scout) is optimised for processing high performance data streams,

but cannot account resources consumed on behalf of system housekeeping

tasks correctly.

It is the thesis of this dissertation that in an environment where a mix of data-

driven processing occurs alongside batch processing, both path and task ab-

stractions need to be provided by the underlying operating system in order to

prevent quality of service crosstalk between the competing workloads.

1.3 Dissertation outline

The balance of this dissertation is composed as follows. Chapter 2 covers re-

lated work and further motivates this dissertation by describing why previous

approaches are insufficient. Since Expert is substantially based on Nemesis,
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Chapter 3 provides a brief summary for readers unfamiliar with it. The Expert

architecture and its prototype implementation are described in Chapters 4 and

5: Chapter 4 covers the network device driver model, while Chapter 5 describes

paths in Expert. Chapter 6 presents a large-scale example application showing

how Expert’s unique features can be used to differentiate the processing per-

formed on flows of data. Finally, Chapter 7 describes how the techniques de-

veloped for Expert might be implemented on other operating systems, suggests

areas for further work, and concludes this dissertation.
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Chapter 2

Background

Today most enterprise-class routers offer some form of traffic shaping, which

their manufacturers are all too keen to pass off as a QoS-control architecture.

Cisco’s GSR12000 [McKeown95] is a typical example of such a router, of-

fering weighted fair queueing on outbound links. This is a reasonable way of

controlling the use of scarce link bandwidth, however the implicit assumption

is that most traffic is never subjected to much processing.

While this may be true of today’s protocols, open programmable routers offer

the potential to deploy new network-hosted functions that perform much more

computation on each packet, needing proper resource control for all resources

consumed. The IETF have recognised the existence of this niche, and termed

them middle boxes [Carpenter01], however they have not addressed resource

control concerns as yet.

Due to rapid changes in requirements, most middle boxes will be initially im-

plemented as modifications to existing software routers, even if they are subse-

quently turned into hardware.

There are a number of extant QoS-aware software routers, however they tend

to share the hardware vendors’ pre-occupation with scheduling bandwidth and

hoping other resources (mainly CPU) are adequately provisioned.

For example, the Pronto router [Hjálmtýsson00] concentrates on separating

service-specific logic from the forwarding fast path. This allows the coupling

between the service logic and the data path to be varied, giving a range of per-

formance trade-offs. Using service logic to perform connection admission con-

trol is an example of a lightweight service entirely on the control plane. Service
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logic which needs to peek frames occasionally or needs to sample all frames

but in an asynchronous manner is an example of a more resource-intensive ap-

plication. Finally, the most heavyweight variety of service logic supported by

Pronto makes service decisions inline on a per-packet basis; this corresponds

closely to the classic Active Network model described in [Tennenhouse96].

Unfortunately, the decision to implement Pronto as a minimal set of hooks

within the Linux kernel, while understandable, leads to the usual problems as-

sociated with resource control under Unix.

The Click modular router [Kohler00] is a more ambitious extension to the

Linux networking stack.1 It provides a convenient way of plugging code mod-

ules together to form a data-processing pipeline, type-checking the intercon-

nections to ensure they are sensible. Click does not provide an integrated re-

source scheduling framework: it allows traffic shaping, but it cannot identify

and schedule flows differently since its scheduling parameters are per-class, not

per flow. Click uses a non-preemptive scheduler, with packet queue modules

to force yields.

Click concentrates on the flow of data along paths between various modules.

This data-driven path-centric focus is not unique to Click: it is a recurring

idiom with some history.

This chapter begins by discussing other systems which use path-like abstrac-

tions to perform I/O. The use of IPC systems to perform I/O is considered next,

and previous work on IPC by thread tunnelling is described. Vertically struc-

tured OSes are presented as a means of avoiding IPC by allowing applications

to perform most of their own processing, but problems with their device han-

dling are outlined.

This chapter continues by describing active networks – they form a class of

applications which may benefit from being implemented over an OS offer-

ing quality of service guarantees to paths processing network flows. Finally,

this chapter discusses the conflicting pressures operating on device complex-

ity: some factors result in smarter devices, some result in dumber devices.

1It has since been ported to run natively over the University of Utah’s Flux OSKit, however,

the arguments presented here are still relevant.
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Figure 2.1: Protocol demux traces a path through session objects in the

x-Kernel.

2.1 The path concept

The idea of an execution path through code induced by a flow of packets with

certain properties common among them is not particularly new. This section

summarises the innovations in this field and traces the concepts back to their

sources.

2.1.1 The x-Kernel

The x-Kernel [Hutchinson91] is a flexible architecture to aid protocol im-

plementation. Its modular design provides facilities for hierarchical protocol

composition, reference counted buffer management, hash tables, timeouts, and

threads within multiple address spaces. The x-Kernel defines three sorts of ob-

ject: protocol, session, and message. Protocol objects hold global state about

a particular network protocol (e.g. which ports are in use), and are similar to

classes in an object-oriented language. Session objects hold per-flow state, and

can be viewed as the instantiation of protocol objects. Message objects are

the active entities in the system; they are moved through sessions by shepherd

threads.

When a packet arrives, a shepherd thread is dispatched from a pool in the kernel

to handle the network interrupt. It calls the demultiplex operation on each

protocol in turn, discovering which session object is associated with this packet

(or creating a new one if there is no current association). The demultiplex
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operation also selects the next protocol object to process the message with,

thus tracing a path through session objects and their associated protocol objects

as shown in Figure 2.1. If the next protocol object resides in user-space then

the shepherd thread switches to user mode and upcalls the application-supplied

protocol code. No pass is made through the CPU scheduler.

Packets are transmitted by an application pushing its payload into a previously

established session object. The session object encapsulates the payload ac-

cording to the protocol it is an instantiation of, and pushes the message down

towards the root of the protocol tree where the network device finally transmits

the frame. The user-space process issues a system call when it needs to cross

the user-kernel boundary on its way down towards the network device.

The motivation behind the x-Kernel was to allow layered protocol implemen-

tations to get the usual advantages of layered systems (e.g. maintainability and

flexibility) without the commonly perceived performance penalties described

in [Wakeman92]. The x-Kernel’s use of one thread per message was certainly

better than the alternative prevalent at the time: one thread per layer, with

queueing between each layer leading to high thread synchronisation overheads

and large queueing delays. Another problem with thread-per-layer schemes is

that bottlenecks are easily created: a single layer run by a thread with an insuf-

ficient guarantee limits the performance of all data flows through that layer.

However, thread-per-message also has its own problems. Without suitable in-

terlocking, threads can overtake each other leading to out-of-order message

delivery to the application. Care also needs to be taken to limit how many

shepherd threads are allocated to each connection, such that no connection is

starved due to other (overactive) connections. The x-Kernel uses a global pool

of shepherd threads, and so is vulnerable to this.

2.1.2 Scout v2

The Scout OS [Mosberger96, Mosberger97] was inspired by the x-Kernel, and

thus shares many of its features. The first public release of Scout was actually

the second internal version to be developed, hence it is known as “Scout v2”.

This section first describes Scout’s architecture in some detail, then considers

how it differs from the x-Kernel, and finally comments on Scout’s key features

and their suitability for providing QoS isolation between traffic flows.
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Architecture

Scout introduced the path as a core OS abstraction. A path encapsulates the

processing which happens to a flow of packets, and provides fast access to per-

flow state. Scout’s model of a path arose as the unifying concept tying together

multiple optimisations such as ILP, fbufs (Section 2.2.1), and per-connection

code specialisation [Massalin92].

Scout code modules are (confusingly) called routers. Routers are analogous to

x-Kernel protocol objects, and are organised at system configuration time into

a graph showing possible interactions between routers. Scout routers demulti-

plex incoming packets to stages, the corresponding entity to x-Kernel sessions.

A path is defined to be the sequence of stages used to process packets in a flow.

A path also includes four queues (two at each end of the path, one for outgoing

and one for incoming data), and any per-flow state required by the code the

path traverses.

Paths are created based on a set of attributes (or invariants) which are true for

all packets in a flow. Typically this will be the participants’ IP addresses, port

numbers and protocol types but in theory any other data could be used to select

the packets to be handled by the new path. The attributes are placed in a hash

table which the path creator then passes to the initial router on the path. This

router creates a stage for the path, and selects the next router needed based on

the path’s attributes. The next router is then invoked to extend the path with its

corresponding stage; this extension procedure continues in a recursive fashion

until one of two situations occur. Firstly, the attributes may not be sufficient to

determine the next router, in which case a per-packet decision will be needed on

the data path at that stage. An example of this occurs in the IP-level router, in

order to select the appropriate interface to transmit a packet. The second reason

the path extension procedure may stop is because the router has no successor

(e.g. it is an application, or an Ethernet driver).

Once all the stages are linked together to form the path their establish()

functions are called, giving them the chance to perform any path-global optimi-

sations or initialisations. The path is now live and will begin receiving packets,

assuming that it grew all the way to a device driver.

When a frame arrives at a network device driver it calls the demux() operation

on the router connected to it, as specified at system configuration time. The

demux() function recursively calls the routers above it to determine which
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Figure 2.2: Receive processing in Scout.

path the frame is for. Finally, a few other criteria are tested (see Figure 2.2)

before the frame is accepted.

Later, the system scheduler will select a thread from the receiving path’s thread

pool and activate it at the path’s entry point. This typically dequeues the first

message from the path’s input queue and calls the first stage’s deliver()

function. Processing of the message then continues from stage to stage until

the message reaches the end of the path, where is it added to the path’s output

queue. Scout uses a non-preemptive thread scheduler by default, so the thread

runs the entire path to completion (assuming there are no explicit yield points

in the code).

User applications are written to behave like routers. They can transmit pack-

ets by creating a path with appropriate attributes. Once the path is created,

deliver()-ing a packet to its user end results in the packet being encapsu-

lated and eventually queued for transmission by a device driver.

Comparison with x-Kernel

At first glance, the differences between Scout and the x-Kernel may seem cos-

metic, but there are some crucial changes:

Paths. Scout paths centralise state for all code layers involved in processing

packets from one flow, whereas the x-Kernel keeps this state distributed

with each layer, requiring flow state to be looked up at each layer for

every packet. This is despite [Tennenhouse89] giving clear reasons why

this kind of layered demultiplexing scheme gives rise to QoS crosstalk.

VM system. Because Scout is aimed at embedded Internet-connected systems,
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it uses a simple, single address space with no memory protection as

shown in Figure 2.3. This is in contrast to x-Kernel’s Unix-like protected

multiple address spaces.

Specialisation. By storing method pointers on a per-path basis, the Scout ar-

chitecture allows the selective replacement of a router implementation

with one tailored to the path in hand, potentially generated at run time.

This feature is not used in Scout v2, but it is not even possible on the

x-Kernel since its protocol methods are not per-session.

Flexibility. A Scout path can be used to represent any flow of data though

the system, whereas the x-Kernel is limited to network I/O. This is be-

cause a Scout router can have multiple interfaces to its code, whereas

x-Kernel’s protocol object only has a packet delivery interface. As an

example, Scout includes a framebuffer router which implements an ad-

ditional control API (Application Programming Interface).

In summary, Scout is a complete system with a small footprint built from the

ground up around paths, whereas the x-Kernel is more focused on replacing a

host OS’s network stack.
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Discussion

While the Scout architecture also notes that paths can be used for resource

control, the chief motivation is performance. This also explains the decision to

use a non-preemptive thread scheduler, since it has lower run-time overheads

and makes programming the system simpler and less error-prone than a fully

preemptive scheduler would.

Scout’s use of an early demultiplex strategy together with per-path input queues

ensures that paths do not have to share buffer resources, which would otherwise

lead to unpredictable loss behaviour during overload. Dedicated buffering is

more expensive in terms of total buffer memory needed, but offers better isola-

tion properties [Black97, Figure 7].

Although the demultiplex is done early on during receive processing, it is per-

formed by recursive upcalls; each router supplies a small amount of router-

specific demultiplex logic. While this is inherently flexible, it adds extra cost

to the demultiplex operation in the form of procedure call overhead and loss

of some locality of reference compared to an integrated table lookup based ap-

proach, which eventually leads to livelock [Qie01, Figure 4]. This problem is

exacerbated if the routers are in separate protection domains (e.g. some may

be from the core OS but others might be application-supplied). Work on safe

kernel extensions (see Section 2.4.3) addresses these concerns, but the problem

can be avoided entirely by deciding ahead of time what the demultiplex criteria

are to be, and implementing an efficient system that fulfils them. Packet filters

also attempt to solve this problem, but current technology is unable to handle

the longest-prefix matches needed to build an IP router.

Each Scout path also has a dedicated output queue, which means that messages

may be buffered after processing to postpone the execution of later stages, for

example to allow transmit shaping at the device driver. Unfortunately, the back-

pressure from later stages is only loosely coupled to the input stage, since all

available threads in the path’s thread pool must become blocked waiting to en-

queue their message in the output queue before the input queue is no longer ser-

viced. Thus the maximum number of messages in the path at any time is only

indirectly controlled, consisting of those queued in the path’s output queue,

plus one message per thread from the path’s thread pool, plus those messages

awaiting processing in the path’s input queue.

This uncertainty about exactly how many messages are being processed by a
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path is compounded by the fact that despite the Scout architecture encouraging

the use of long paths, in actual systems most paths are quite short because

their invariants are insufficiently strong. In particular, the design of the IP

protocol makes it impossible to know at path creation time which interface to

use for outgoing traffic since this requires a per-packet route lookup, whose

result may change depending on external network conditions [Mosberger97,

Section 2.2.3.1]. Short paths lead to extra buffering where they join or split,

and result in the following problems:

• There is a performance problem where two paths meet: messages need

to be queued on the source path’s output queue and the shepherd thread

suspended before scheduling a new thread from the destination path to

dequeue the message and start processing it. The Scout developers ad-

dress this situation by providing a mechanism for migrating a running

thread between paths, thus streamlining the queue operations and avoid-

ing the pass through the scheduler. However this solution has its own

problems: they do not limit the number of shepherd threads that may

tunnel in, thus further reducing their ability to reason about the maxi-

mum number of buffered packets in a Scout system.

• If there is a join or split then this is a point of resource contention, and

as such it needs to be scheduled to avoid crosstalk. Scout v2 does not do

this.

• Applying global optimisations to short paths may not be as useful as ap-

plying them to long paths, since there is less scope for optimisations to

be applicable. In some ways this is the same as doing piecewise optimi-

sation as the path is built up.

• Finally, if paths are to be principals in a resource control scheme then

they must fully encapsulate all processing done to packets belonging to

a flow from the moment they are recognised as such until they ultimately

leave the machine. Concatenating many short paths does nothing to help

account resource usage to traffic flows.

CPU time allocation is further confused by Scout’s scheduler architecture,

where a top-level scheduler delegates control to a fixed set of thread sched-

ulers in a round-robin fashion. Scout originally used a single system scheduler

to directly schedule threads. However, applications may benefit from an ap-

propriate scheduler choice, for example a video decoder may benefit from an
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EDF scheduler by specifying the next frame time as its deadline, thus ensuring

frames are displayed in a timely manner. Scout v2 accommodates this desire

for application-specific schedulers by the crude delegation system described

above, but note that applications still cannot implement an arbitrary scheduler:

they are restricted to the system-provided ones.

All Scout’s thread schedulers are non-preemptive and thus have a number of

advantages over preemptive schemes. Non-preemptive schedulers are simpler

to implement because there is much less machinery needed: there is no need

to save and restore CPU state, or provide any synchronisation facilities such as

semaphores, mutices or condition variables. Scout’s non-preemptive scheduler

also provides two kinds of block: one which preserves the stack, and one which

does not. The second of these is used to reduce the total amount of memory

used for thread stacks, which would otherwise be large given the thread-per-

message model Scout uses. Another benefit of explicitly yielding means data

is not competing against data from other threads for space in the processor’s

caches. Together, these effects mean that non-preemptive schedulers tend to

have higher performance than their preemptive counterparts. Finally, the con-

currency model is easier to understand so programmer errors are less likely to

happen.

However there are also drawbacks to non-preemptive schedulers. Program-

mers using these systems need to be aware of how much time passes between

yield points, so that time-sensitive threads are not starved of the CPU. On a

system like Scout where small, bounded, amounts of time are spent processing

each packet, this is a reasonable assumption. It becomes necessary to perform

proper preemptive scheduling if unknown amounts of processing need to be

done to the packet along a path, or if timeouts elsewhere need to be serviced

in a timely manner, or if the system is to remain interactive in the face of un-

known workloads. As system complexity increases it becomes harder to bound

the maximum time between when a thread yields until when it next regains the

CPU in a non-preemptive system, making it harder to offer latency guarantees

to threads or (ultimately) traffic flows. Furthermore, on multiprocessor systems

where threads can genuinely execute in parallel, the assumptions made by pro-

grammers using non-preemptive schedulers no longer hold true; proper locking

of shared data structures is needed, voiding most performance boosts or gains

in simplicity.

Systems that use scheduler activations [Anderson92] defer the choice of thread

scheduling policy to the user code being activated. For example, a simple path
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that merely forwards IP datagrams could run directly from the activation hander

in a non-preemptive manner, while a more complex path doing media rate con-

version involving a shared buffer might use a preemptive scheduler to decouple

the producer and consumer threads. In this manner, the simple IP forwarding

path can run with all the advantages of a stripped environment, while the more

complex processing is given a more supportive and richer environment.

Scout’s focus on embedded devices means that the system is static, i.e. most

configuration happens at build time, and runtime reconfiguration is impossible.

For example, all bindings between modules are specified in a configuration file

at system boot time, not based on evolving conditions at runtime; a path cannot

bind to a new module at runtime if the interaction has not already been provided

for in the config.build file. This lack of flexibility is understandable for an

embedded device, but undesirable in systems intended for continuous operation

(e.g. network elements) where service interruption is unacceptable, even for

reconfiguration or upgrades.

The typesystem used by Scout is fairly basic. A typesystem’s primary goal

is to allow the system architect to make assertions about data as it is passed

between code modules via typed interfaces, in the hope of catching and con-

taining programmer errors. Scout’s typesystem has runtime type assertions and

querying for primitive types, but not for interfaces. Interface type checks are

performed at system build time, when interfaces that are connected together

are checked to be of an appropriate type. Invocations on an interface are made

by passing the required operation code as an integer and passing in an opaque

buffer supplying any further arguments that might be needed, much like the

ioctl() feature of Unix. It is impossible to ensure at compile time that the

buffer contains correctly typed arguments, making the called code responsible

for argument checking at runtime. Adding new interface types at runtime is not

possible. All of these features make it harder to extend Scout dynamically.

Scout’s simple memory system makes the sharing of code and data easy, since

all memory is available to all paths. This protectionless scheme has its disad-

vantages, however. Without memory protection, malicious or erroneous code

continues to run unchecked, either producing incorrect results or causing an

error long after the initial problem has occurred. While Scout’s niche as an em-

bedded system with a fixed workload avoids the possibility of malicious code

being run, fine-grained memory protection would improve robustness.
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Figure 2.4: Structure of Escort, here shown running with three protection

domains: one for the MPEG application, one for the protocol stack, and

one for the device driver.

2.1.3 Escort

Escort is evolved from Scout v2, and extends it in two security-related direc-

tions [Spatscheck99]. Firstly, it adds memory protection between code mod-

ules to allow the safe execution of untrusted modules. Secondly, it adds accu-

rate accounting for resources consumed in an attempt to mitigate the effects of

DoS (Denial of Service) attacks. This section describes Escort and considers

its suitability for providing QoS isolation between competing traffic streams.

Architecture

Escort introduces pdoms (protection domains), specifying memory access rights

to the address space. Each module has a pdom associated with it; access rights

are linked to the module code, not the path running it. Potentially each module

can be in its own pdom, however for efficiency reasons modules which co-

operate closely (e.g. IP, TCP, ARP) should be in the same pdom, as shown in

Figure 2.4. The kernel operates within a privileged protection domain, which
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other pdoms may enter at fixed locations by making system call traps.

Shared libraries implement hash tables, queues, heaps, time, and the C lan-

guage library. They are trusted by all modules so their code is mapped ex-

ecutable by all pdoms. To enable sharing, modules access mutable data by

explicitly passing an environment around instead of using absolute addresses

fixed at link time. This is very similar to the “closures” scheme described

in [Roscoe94] and used in Nemesis.

To track resource usage Escort uses an owner record, the principal to which

resources (such as CPU cycles, memory, threads and buffers) are accounted.

Owner records also specify limits on how much of these resource may be con-

sumed, and what action the operating system should take if it discovers over-

consumption. Escort extends Scout’s path data structure to include an owner

record, and the whole path structure is managed by the kernel to prevent unau-

thorised modification of the fields. Each pdom is also associated with an owner

record, allowing pdoms to have threads and memory accrued to them. Thus,

a pdom together with some threads allows Escort to schedule work in a more

traditional task-like manner. The Escort kernel also provides events. An event

is a function to be called at a specified time; the function runs in the context of

a module’s pdom, and uses a fresh thread.

Threads are accounted to a particular owner record, i.e. either a path or pdom.

Threads from a path migrate across pdoms boundaries as path processing oc-

curs, but threads from a pdom cannot migrate; they must remain within the

modules the pdom encompasses.

The migration happens using the normal procedure call standard. A protection

fault occurs because the destination of the call instruction is not executable by

the current pdom, and the kernel interprets this as a thread migration request.

If migration is allowed for this thread, it is given a fresh stack based on the

destination pdom, and the old pdom is pushed onto a kernel-maintained stack

of pdoms traversed. The kernel arranges for the new stack to contain an initial

stackframe with a distinctive (faulting) return address, so that it can regain

control when the function call returns in order to switch back to the previous

pdom, as recorded by its pdom stack.

Small parameters are passed via registers, while larger objects need buffers.

Escort uses IOBuffers to handle this case.

IOBuffers are a combination of user-accessible buffer memory together with
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some metadata. The metadata is kept and managed in the kernel which looks

after the allocation, freeing, locking and unlocking of buffers. All buffers are

owned, either by a pdom or a path. If the IOBuffer is owned by a pdom, then

the buffer is mapped read/write to that pdom, and no access to all other pdoms.

If the IOBuffer is owned by a path then it is mapped read/write to the allocating

pdom, and read-only to all other pdoms on the path. If later pdoms on the path

should not have read access to the buffer, then a termination domain can be

used to mark the desired limit of readability, and thus limit data transfer.

An IOBuffer can also be handed off to another owner record; for example, a

disk cache may want to hand out references to buffers. Both the original and the

new owner record are charged for the buffer to ensure that if the new owner no

longer wishes the buffer, the original owner is still below their ownership limit.

This is the same problem as Unix hardlinks in a quota-enabled filesystem.

IOBuffers are shared by a reference counting scheme, making read-only access

cheap. However, a locking mechanism is needed to ensure exclusive access,

for example to perform a consistency check on the data. When an IOBuffer is

locked, all write permissions are revoked, and the reference count incremented.

When the IOBuffer is later unlocked, the reference count is decremented. If the

count becomes zero, the IOBuffer is freed. The previously-held pdom access

rights are remembered, so if a buffer with the same rights is later needed this

buffer may be re-used without needing to clear it.

To summarise, Escort adds protection domains and a little extra book-keeping

to Scout. A side-effect of this is that task-like scheduling is possible by using

pdoms with threads or events within a module.

Discussion

Adding memory protection to Scout is worthwhile, addressing its lack of fault-

isolation. However, each pdom crossing needed on the data path incurs some

overhead: a system configured with a pdom per module suffers around a factor

of 4 lower performance than one with no protection crossings [Spatscheck99,

Figure 8]. There are two axes along which trade-offs can be made to improve

this situation: the pdoms can apply to larger collections of modules, reducing

the number of pdom crossings needed; and packets can be buffered before

pdom crossings, so that they may be processed in a batch thus amortising the

cost of the pdom switch over multiple packets.
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The end result is the same: the number of pdom switches per packet is reduced.

As larger pdoms covering more code are used, so the fault-isolation granularity

is reduced but the number of pdom crossings needed along a path is reduced.

Batching multiple packets before moving them together across a pdom bound-

ary increases the latency experienced by the packets but improves throughput

by reducing the number of pdom crossings needed per packet. Escort allows

control over the pdom granularity at system configuration time, but it has no

buffering between pdoms, and so offers no way to trade latency for throughput.

Because Escort (like Scout) uses a non-preemptive thread scheduler, it has a

number of problems scheduling the system. Although threads have a cycle

limit, the only way the kernel has to enforce these limits is retroactive: when the

kernel becomes aware that a thread has exceeded its cycle cap, it terminates the

thread. However, this happens after the limit has been exceeded, stealing time

from other threads and increasing jitter in the system. A preemptive scheduler

could instead suspend the over-active thread until it has sufficient cycle credit

to run once more, thus protecting other threads’ guarantees. Of course, this

assumes that the code will still run correctly (i.e. without races or deadlocks)

under a preemptive scheduler.

Background processing and timer-driven actions can be hard to implement in

non-preemptive systems. Most rely on registering functions to be called from

the idle loop or at a specified time, and keep the function’s state as a continu-

ation [Draves91, Milne76]. Escort events provide this facility, but also need to

record the pdom in which to execute the event’s function. Events are an ele-

gant solution to the background processing problem, but should be considered

as evidence of the need for task-like scheduling even in a path-centric operating

system.

Further evidence for the need to schedule tasks as well as paths come from the

combination of a pdom owner with threads. If Escort needs this combination to

simulate a task, the conclusion must be that certain jobs are best described and

scheduled in a task-like manner, even in the context of a path-based operating

system. Protection domains highlight the issue by requiring that all threads be

owned, either by a path or something else. If processing needs to be performed

out-with a path, then it can either be done in the kernel, or in a module by a

pdom-owned thread. Scout did such work in the kernel, but as it is unscheduled

the amount that can be done must be bounded to avoid affecting of the rest of

the system.
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While Escort correctly segments the work performed into path and task ab-

stractions, it is not able to offer fine-grained QoS isolation guarantees, mainly

because it lacks preemptive scheduling. However, there are other design deci-

sions which also impede its ability to isolate workloads:

• Escort’s demultiplexing strategy is almost identical to Scout’s: every

router’s demux() function is called to discover which path through the

routers the packet should take. The difference is that the demux() func-

tions are called from the kernel’s pdom, and thus have privileged access

to the entire memory space. Escort’s authors realise this is a problem, and

suggest using a filter language or proof carrying code to avoid running

untrusted code. Another alternative would be a table-lookup based ap-

proach which has the attraction of giving predictable demultiplex times.

• In Escort pdoms own heaps, but paths cannot. This means paths must

“borrow” memory from the pdoms they cross, complicating the account-

ing of memory resources. While this solves the problem of protecting

state which is private to a particular (module, path) combination, it

does not offer a clean solution to cross-module state (e.g. path global

attributes). The loaning arrangement also complicates resource reclama-

tion when a path terminates: each module that loans a path some mem-

ory must register a hook function with the OS which the OS calls on path

termination to allow the module to free its memory.

• Scout’s problems at inter-path boundaries (see Section 2.1.2) are aggra-

vated in Escort, because the previous solution of tunnelling a thread

directly from one path to the next cannot be used: quite correctly, the

threads are not allowed to tunnel between owners. Allowing tunnelling

between owners would make resource accounting much harder. Instead

Escort has a handoff function which creates a new thread belonging to

the destination owner. This extra overhead could be avoided by address-

ing the root problem, i.e. avoiding the creation of overly-short paths.

• Escort keeps a number of critical structures in the kernel in order to

vet access to them, e.g. path and pdom records, and IOBuffer meta-

data. A large number of system calls are provided to manipulate these

structures, but putting so much into the kernel risks making it a source

of QoS crosstalk, since the manipulations are unscheduled. Alternative

OSes (e.g. Exokernel or Nemesis) keep only the minimal functions re-

quired in the kernel, usually thread creation, memory access rights mod-

ification, and lightweight interprocess communication primitives. Then,
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more complex components like IOBuffers may be implemented over ba-

sic memory protection change primitives. The only critical data struc-

tures kept in the kernel are system scheduler related (and even then, with

activations the complexity of user-level threads can be kept out of the

kernel).

Scout v3

Scout v3 is currently in development. The aim is to extend Escort to include

a finer-granularity CPU scheduler [Qie01, Bavier99] capable of dealing with a

mixture of best-effort as well as real-time paths. This would address most of

the CPU scheduling problems in Scout and Escort, however it still leaves the

larger architectural questions open.

2.1.4 Resource containers

The motivation for Resource Containers [Banga99] is substantially similar to

that for this work: Banga et al observe a fundamental mismatch between the

original design assumptions surrounding resource control in general-purpose

OS designs, and OS use today as networked servers. Protection and schedul-

ing domains are made inseparable by the process abstraction, thus preventing

the correct scheduling of complex systems which span multiple protection do-

mains. Banga et al modify OSF/1 to add a new abstraction they call a resource

container to which CPU time and kernel resources such as network sockets are

accounted.

Processes then become purely protection domains, with threads bound to re-

source containers executing within them as shown in Figure 2.5. Banga et al

focus on improving web server performance by using resource containers to

partition incoming requests into two sets: high-priority and low-priority. Low-

priority requests are preferentially dropped to guarantee low response times for

high-priority requests. In this scenario, resource containers are used for the

same purpose as paths in Scout: as resource accounting principals.

Resource containers are not the scheduled entity, however: threads are. This

means it is entirely possible to have a resource container with no threads bound

to it. The authors argue that this is desirable in the case where one thread

services multiple resource containers, reducing the number of threads in the
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Figure 2.5: Resource containers in Unix: application 1 uses two threads

each within their own resource container.

system and scheduler state required. However, this means that resource con-

tainers become purely a passive accounting receptacle, rather than a schedul-

ing principal. It is meaningless to attach soft real-time deadlines to a resource

container, because the service thread’s scheduling is influenced by the other

resource containers it is servicing.

Banga et al distinguish their work from the previously discussed path-based

resource control schemes by claiming a more general solution, and presenting

an implementation set within a commodity operating system. It is different

from the research presented in this dissertation because their resource contain-

ers cannot span protection domains. They also target server systems, whereas

this work is focused on NEOSes. While there is much common ground, net-

work element OSes are different from server OSes for two reasons:

Flexibility. Server operating systems are tied to legacy APIs because of the

large body of existing code which would no longer compile were the API

to be changed. This limits possible OS improvements to those which are

not visible to user-supplied code. As a concrete example, witness the fact

that while zero-copy I/O schemes are widely accepted to enhance perfor-

mance, few OSes provide in-place receive semantics largely because of

the widespread popularity of the BSD sockets API. In contrast, since ap-

plications on a NEOS tend to be bespoke, they are written afresh. Thus, a

NEOS can have a radically different design including application-visible
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changes; the design constraints on a NEOS are imposed by the exter-

nally defined protocols exchanged with other network elements, rather

the code running on them.

Load. Load on a server is imposed by processes running on behalf of some ex-

plicitly authenticated user, to which the consumed resources are charged.

Load on a NEOS is imposed by flows of traffic, which are only tied to

resource guarantees by flow classification: there is no explicit concept of

a user consuming network element resources. For example, web servers

which commonly run as a single user yet provide service to many differ-

ent traffic flows make it impossible for a traditional server OS’s resource

control mechanisms to distinguish and processes separately the individ-

ual flows. Such workloads are typical on a NEOS. Banga et al describe

this same problem, but see the solution as a suite of modifications to the

server OS rather than as a separate class of OS.

2.1.5 Cohort scheduling

Cohort scheduling strives to increase instruction and data cache hit rates by

batching multiple server requests into cohorts and processing them together

in small stages, rather than individually all the way to completion [Larus01].

These chains of stages can be viewed as paths through the server’s code, with

data passing through them in waves. Larus et al focus on the speed gains pos-

sible by using cohorts to group related operations together in time and space.

The authors do not comment on the feasibility of scheduling cohorts with dif-

ferent CPU guarantees; indeed, by deliberately delaying some operations to

group them with others, latency is greatly increased (see [Larus01, Figure 6]).

Cohort scheduling deliberately introduces crosstalk by linking the fate of the

requests it batches together into a single cohort, in return for improved global

throughput. Cohort scheduling is therefore not useful as a system-wide sched-

uler in a NEOS offering quality of service guarantees to paths. However, within

individual paths the idea of batching related work together and performing it in

stages is sound. This batching topic is returned to several times in this disser-

tation.
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2.2 Other path-like I/O abstractions

While the x-Kernel, Scout and Escort all use paths as first-class schedulable

entities, the majority of the previously published work on I/O architectures does

not tie I/O channels to the OS scheduler. However, since the general principles

involved in moving bulk data through protection boundaries are largely the

same irrespective of scheduler interactions, this related work is now covered.

There are a number of approaches to giving another protection domain access

to data: the most basic is simply to copy it, however this has a high cost in

terms of the memory bandwidth consumed. An alternative is known as copy-

on-write, where the source buffer is marked read-only in both the producer and

consumer’s page tables. The first time either attempts to modify to the buffer it

is copied. This allows cheap sharing of buffers, assuming most shared copies

are not written to.

Several more sophisticated buffer copying schemes have been proposed over

the years. These are now discussed.

2.2.1 Refcounted copy semantics: Fbufs, IO-Lite

The Fbufs [Druschel93] I/O system was implemented within the x-Kernel to

provide a zero-copy framework for data movement. Fbufs have refcounted

copy semantics, described below.

Individual fbufs are chained together into a buffer aggregate datatype, with op-

erations allowing truncation, prepending, appending, concatenation and split-

ting of data in fbufs. Buffers are passed by reference to eliminate copying and

save memory. This means that buffers are immutable; if a buffer aggregate

needs to be modified, then a new (writable) buffer is allocated and linked into

the position where the change needs to be made, thus preserving the original

buffer and maintaining the validity of previously-issued references.

To copy an fbuf to another domain, the fbuf’s VM mappings are updated to

reflect the new access rights of the receiving domain, and the buffer’s reference

count incremented. When an fbuf is freed its reference count is decremented;

if it becomes zero then the buffer is put on a free list associated with its access

rights. This is to speed future allocation of buffers: the assumption is that the

producer and consumer protection domains will exchange further data in the
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future, and so will require buffers with those particular privileges again shortly.

This caching of appropriately protected buffers solves the main problem with

all page remapping schemes, which is their inherent cost due to page table up-

dates and TLB and cache flushes, especially on multiprocessor systems. By

caching buffers, MMU (Memory Management Unit) operations are only re-

quired when previously inactive domains begin exchanging data.

To be able to use these buffer caches effectively, an fbufs system needs to know

at buffer allocation time what path the data will traverse, so it can select appro-

priate permissions. In this way, the permissions cache can be considered to

induce paths in the I/O stream.

[Thadani95] describes how they implemented fbufs on Solaris. They extend

the Unix API to allow fbufs to be used as parameters to read and write calls;

they allow fbufs to be created from memory-mapped files; and they modify

certain device drivers to use fbufs.

IO-Lite [Pai00] generalises fbufs to make them more suitable as a generic I/O

facility, for example allowing them to be used to implement a filesystem cache.

Pai et al ported fbufs from the x-Kernel to FreeBSD, replacing both the buffer

cache and the networking subsystem thus allowing them to be unified.

2.2.2 Move semantics: Roadrunner, container shipping

Roadrunner [Miller98], like fbufs, uses buffer descriptors to keep references on

data movement within the system. However, it differs from fbufs in three broad

areas. Firstly, it uses move semantics when buffers cross protection bound-

aries: once a buffer is handed off, access to it is no longer allowed. This is

so the receiver can perform in-place read/write accesses to the data without

interfering with the buffer’s originator. Secondly, in contrast with fbufs, Road-

runner’s buffer descriptors only specify a single, contiguous, data area; any

scatter-gather lists must be maintained separately by the application. Roadrun-

ner allows buffers to be trimmed in-place both at the start and end, however this

only affects the single data area; it does not allow other buffers to be chained

together. Roadrunner’s final difference is that it supports in-kernel streaming

between arbitrary devices via a splice() system call.

While IO-Lite’s emphasis is on providing a unified caching model, Roadrun-

ner’s focus is on cross-device streaming. This explains Roadrunner’s use of

move rather than refcounted copy semantics, however its lack of gather sup-
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port means that headers need to be written directly in front of the data to be

transmitted. This makes copy-transmit (as used for TCP retransmissions) ex-

pensive, since the previous block is corrupted when the next block is prepared

for transmission.

The main reason Roadrunner is unsuitable for dealing with QoS-assured streams

is that all streaming is done by kernel threads, with weak isolation between the

threads being scheduled.

While Roadrunner is a complete OS, its I/O subsystem is substantially similar

to (and predated by) both the Container Shipping I/O system [Anderson95b,

Anderson95a], and the Penn. ATM Host Interface [Smith93]. Like Roadrun-

ner, Container Shipping uses page flipping (i.e. move semantics) to transfer

buffers between protection domains, however it moves lists of buffers, thereby

allowing data aggregation.

Because data transfer happens along explicit channels (named by a file descrip-

tor) and the Container Shipping system chooses buffer addresses, it can recycle

pages and page table entries, much like fbufs. In this way, file descriptors can

be considered as a path identifier for a one-hop path.

2.2.3 Upcalls

Upcalls [Clark85] allow receivers to be efficiently notified when new data ar-

rives. This inspired the design of the POSIX.1b 2 Asynchronous I/O (AIO)

architecture, which allows clients to register a function which will be called

when an I/O request completes [Gallmeister94]. The repeated association of a

function with a stream of similar I/O requests induces an implicit processing

path, and avoids the need to re-demultiplex the data once it arrives in the user

application.

Windows NT provides I/O Completion Ports which allow threads to block

awaiting for I/O associated with the port to complete. This unblocks a thread

and returns a status record [Russinovich98]. Completions ports can be used to

perform asynchronous I/O, and since the completion port is associated with a

particular file or socket, no further demultiplexing is necessary.

These solutions provide upcalls (or emulations of them) from the kernel to

2The standard was known as 1003.4 (realtime) before being renumbered to 1003.1b (realtime

extensions) in 1994.
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user processes. Within the kernel itself, the SysV STREAMS architecture uses

function calls to deliver data between modular layers [Sun95]. An upcall occurs

when protocol processing leaves the kernel and enters a user process. This

chain of calls through layer instances can be viewed as tracing a path through

the kernel, much in the same way as the x-Kernel does.

2.2.4 Path-based component frameworks

Building distributed systems that can handle time-sensitive data streams is

made easier by appropriate middleware abstractions. [Nicolaou91] presents

an extension to the ANSA platform [Herbert94] which allows complex mul-

timedia applications to be built. Nicolaou’s architecture uses a context id to

demultiplex data along an appropriate processing path, making it the earliest

use of a path-like concept. In this incarnation, it is not an OS mechanism, but

one provided by middleware above the OS.

More recently, InfoPipes [Koster01] and Strings of Beads [BeComm] are both

component frameworks where data travels along paths between code modules

with strongly typed interfaces. This allows the middleware to type-check mod-

ule chains, thus ensuring correct data flow. The Strings framework goes fur-

ther, using a prolog-like unification engine to infer the correct sequence of code

modules to compose in order to meet goal conditions set in a system configu-

ration file.

Such frameworks allow application logic to be specified at a high semantic

level of abstraction, and while they seem useful as system configuration tools,

ultimately the application must be run over an OS. If resource guarantees are

to be offered to these applications, the base OS must provide some support.

Additionally, an OS with a native path abstraction should allow a simpler, more

direct implementation of such path-based middleware.

2.3 Protection and IPC (Inter-Process Communication)

When today’s widely-deployed OSes were originally designed, I/O devices

were the bottleneck. How they were managed by the OS was immaterial: I/O

could be performed using the OS’s standard syscall or IPC mechanism (often

requiring inline transfers of large data buffers) without limiting performance.

The faster I/O devices now available benefit in terms of performance and/or
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functionality by appropriately tailored OS support for communication.

Much work has been done on IPC over the past 15 years, either to enrich

the primitives, or purely for performance reasons e.g. [Birrell84, Karger89,

Bershad90, Schroeder90, Liedtke93, Johnson93]. This work is relevant to the

provision of QoS-isolated traffic streams, because any system with protection

boundaries on the data path needs to ensure that IPC does not become a bottle-

neck, as argued in [Hsieh93].

2.3.1 Lightweight IPC

The early work on RPC [Birrell84, Schroeder90, Johnson93] focused on mak-

ing the non-local interactions appear to the programmer as simple procedure

calls. They are all message-based, since ultimately messages must cross the

network. Research into local-only RPC systems was prompted by the growth in

popularity of microkernels such as Mach 3.0, Amoeba, and Chorus [Golub90,

Tanenbaum90, Rozier92]. Such local RPC systems are typified by that used

in L3/L4 [Liedtke93]. While not offering a particularly rich IPC environment,

Leidtke’s system does present a variety of techniques which work well together

to increase IPC performance. In particular, he espouses scheduler by-passing,3

registers for small arguments, and the use of out-of-band data.

Leidtke is by no means the first researcher to propose a minimal IPC system

concerned only with local communication. [Karger89] describes how a trusted

linker can be used to minimise the number of registers that need to be spilled

to the stack or cleared when performing a cross-domain call. Procedure argu-

ments must either fit in the registers, or are placed in a separate argument seg-

ment, and a capability for this segment is transferred instead. In both schemes

no marshaling of arguments is performed. Complex messages can be imple-

mented over the basic primitives, but are not discussed.
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2.3.2 Capability-based IPC

The Cambridge CAP computer

The Cambridge CAP [Wilkes79] was a microcoded computer built to investi-

gate memory protection architectures. Access to memory was controlled by ca-

pabilities describing the rights available to segments specified by (base, limit)

tuples. The memory was tagged in order to stop untrusted programs from forg-

ing capabilities; only the privileged supervisor code was allowed to treat capa-

bilities as data and thus create or modify them freely.

Programs were structured using a number of protected procedures as depicted

in Figure 2.6. A protected procedure could be invoked by a process only if it

had an EN (enter) capability for it. An EN capability was a capability segment

containing capabilities for the protected procedure’s code, data, stack and per-

instance data. The only way an EN capability could be used is as an argument

to the ENTER instruction, which switched the stack and data to those described

by the EN capability, and forced the program counter to the start of the proce-

3Scheduler by-passing is a technique where control is transferred from the caller to the callee

directly, i.e. without a pass through the scheduler.
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dure’s code segment. The ENTER microcode also kept track of the previous

state on a special C-stack, allowing the RETURN instruction to revert to the

previous capabilities in force. Arguments could be passed to the protected pro-

cedure using the processor registers for numerical arguments and the C-stack

for capability arguments.

IPC in the CAP could either be done using this protected procedure model to

tunnel a process into trusted code, or it could use OS-provided libraries to pass

a message to a server process and block waiting for a reply. This second mode

of IPC needed a message channel to be negotiated with the server before any

messages could be exchanged; this is analogous to the binding stage in today’s

IPC systems.

Thus, the CAP computer provided a rich environment where either tunnelling

or message-based IPC could be used, as appropriate.

Mach 3.0

Mach’s original IPC system [Draves90] used ports to which requests could be

sent; knowing the name of a port was sufficient to be allowed to make invoca-

tions on it. Ports can be considered capabilities, since they cannot be fabricated

by untrusted applications. The only way an application could get a port is by

binding to the server.

EROS

Shapiro’s EROS system re-examines the use of capabilities in a modern OS. In

particular, the EROS IPC system [Shapiro96] uses true capabilities as ports. By

generating a fresh reply capability for each call, EROS allows a deeply nested

call chain to be short-circuited so long as the initial reply capability is handed

down to the innermost call level. When the innermost procedure wishes to

return to the top level, it uses the provided reply capability, directly returning

its result to the original caller.

While this is attractive from a theoretical viewpoint, it is doubtful whether this

feature is much use in real systems where each layer needs to perform error

handling for the failure case, making tail calls uncommon.
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2.3.3 IPC by thread tunnelling

Most of the IPC systems described so far have been message-based: a client

thread sends a request message to a server thread, causing it to unblock and

start processing the request. The client thread commonly blocks waiting for

the server’s reply. This can be called an active object [Chin91] IPC model,

because the server is an active arbitrator over its internal state, offering a well-

defined calling interface much like methods on an object.

By contrast, a thread tunnelling IPC model has no thread of control associated

with the “server” code. The server captures the calling client’s thread and uses

it to run its code within its own protection domain. This is very similar to the

protected procedures provided by the CAP computer and described previously

in Section 2.3.2.

Taos LRPC

[Bershad90] presents a full IPC implementation, complete with binding phase.

Control is transferred by trapping to the kernel, which provides CAP-like EN-

TER and RETURN system calls to invoke operations on an interface once bound.

Arguments are passed by copying them onto a special A-stack, which is mapped

to the server’s protection domain. Although a stack is kept recording crossed

protection domains thus allowing a thread to traverse multiple servers, no pro-

vision is made for recovery from failure mid-call.

Spring shuttles

Spring was designed as a platform for object-oriented distributed systems, and

thus needed an efficient IPC system. Spring introduces doors and shuttles as

the building blocks of its IPC system [Hamilton93].

Spring doors are analogous to Mach ports: they are capabilities, possession

of which allows a call to be made to another protection domain. Each door is

tailored to a specific client at bind time to allow servers to track their callers.

Servers provide a pool of threads (with stacks) which are made available to ser-

vice calls. When a call is made through a door, a free server thread is selected

by the kernel, and resumed at the door’s entry point. This creates a chain of

threads, one per server crossed. Spring threads are only an execution context

42



and are not used for resource accounting or scheduling. Such information is

instead kept in a shuttle object shared by all threads in a call chain.

Their system is complicated by the need to deal with a process in the middle of

a tunnel chain failing. This is partly a consequence of their retention of threads

within servers, rather than tightly binding a protection domain to code as done

in the CAP computer. Further complications arise from the need to support

Unix signals, and ptrace-style debugging and tracing.

Mach migrating threads

Ford and Lepreau [Ford94] present modifications to the previously described

Mach 3.0 IPC system, adding tunnelling behaviour. They use the terms static

threads and migrating threads for the two schemes. They use migrating threads

where possible, but retain the previous static threads system for use in some

more complex cases which their system cannot handle.

While they quote impressive speedups (a factor of 3.4 improvement when us-

ing migrating threads in place of static threads), they also encounter the same

problems as Spring: the need to support thread debugging/tracing, and propa-

gating aborts due to server failures. Unsurprisingly, their solutions are identical

to Spring’s, and unsatisfying for the same reasons.

2.3.4 Discussion

While thread tunnelling IPC systems are attractive both for their efficiency and

their directness in resource accounting, past implementations have been com-

plicated by attempting to solve too many problems. Both Mach and Spring are

forced to deal with intermediate server processes that fail, either in the local

case due to some other thread within the server performing an illegal access,

or due to whole machine failure in the remote case. Both Mach and Spring

also want to allow debugging and profiling of threads, but then need to ensure

that these facilities are disabled while the thread is executing code in a pro-

tection domain other than the tracing one. This restriction is analogous to that

on strace()ing setuid binaries on Unix, and imposed for exactly the same

security reasons.

By only tunnelling into passive objects, the CAP computer neatly side-steps

problems with failure within a protected procedure. The CAP also does not
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have a cross-domain debugging facility, and so does not need to check such

accesses. One problem the CAP does not address is what to do about failures

within a protected procedure while holding locks. In this case, it is more than

likely that data structures are not in a consistent state (after all, ensuring this

was presumably the reason the lock was acquired). How to recover from this is

hard, and impossible in the general case. This problem is considered later, in

Section 5.3.3.

These arguments supporting thread tunnelling are very similar to those pre-

sented in [Menage00, Section 5.6.1], the difference being that in Menage’s

environment, safety is assured by the use of a strongly typed language (ML),

rather than by hardware. A hardware implementation will necessarily have

larger overheads compared with a software scheme since the TLB (and possi-

bly data caches) need to be flushed when memory access rights are modified.

2.4 Protection models

Having considered ways of moving bulk data between protection domains, and

ways of passing control and small arguments between domains, this section

now discusses how such protection domains might be organised in a complete

system.

2.4.1 Kernel-based systems

In a kernel-based system such as Unix or NT, the operating system machin-

ery that implements confinement and resource allocation is protected from un-

trusted and potentially malicious user applications by placing it in a kernel.

Figure 2.7 shows how the address-spaces and protection domains are related

to each other. There is one protection domain for the kernel, granting it un-

restricted access to the entire memory map and any attached devices. This

protection domain is also the domain within which CPU exceptions and inter-

rupts are handled. Each task in the system runs within its own address space

and protection domain, which allows access to text and data, a dynamically

allocated stack and heap, and any regions shared between other tasks in the

system.

This inseparably joins task scheduling and protection, making it impossible

to schedule across protection boundaries (be it user–user or kernel–user). A
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number of different system organisations have been proposed that allow control

to be regained over scheduling.

2.4.2 Protected shared libraries

Banerji et al [Banerji97] introduce Protected shared libraries (PSLs) as a mech-

anism enabling the modular construction of high performance systems. PSLs

extend Unix shared libraries so they can access and update protected state, al-

lowing them to provide the services usually implemented as separate tasks.

PSLs are an implementation of passive objects, as discussed above in Sec-

tion 2.3.4, and as such are an implementation of thread tunnelling. Like the

previously discussed schemes, PSLs use an activation stack to record crossed

protection domains to allow nested PSL invocations. The difference is that

there is only one execution stack, whose access rights are changed so that only

the currently executing protection domain has access to it, thus avoiding the

complexity of maintaining thread or stack pools in the service protection do-

mains.

In addition to these protected libraries, Banerji et al describe context specific

libraries (CSLs), a flexible data sharing framework. A CSL can offer three

different scopes for data visibility: global, client, or domain. Global CSLs are

read/write shared memory areas much like Unix SysV shared memory, with
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the added feature that symbols may be used to refer to locations within the

shared region. Client CSLs allow library code read/write access to a per-client

read-only area, which can be used to maintain client-specific state. Domain

CSLs are poorly described, but appear to be identical to client CSLs with the

added property that dynamically allocated memory is read-only to all clients,

read/write to the library. The authors claim this is necessary to support the

sharing of C++ objects with virtual table pointers.

Whereas other tunnelling systems require clients to pre-register with servers via

a binding phase, PSLs do this implicitly during the execution of the dynamic

linker. This means that there can be only one instance of each library per

client. Also, the authors make only passing reference to the thorny issue of

what environment signal handlers should be run in when they are delivered

while executing within a PSL.

In summary, while this work is poorly presented and lacking detail, it is signif-

icant because it shows a continuing interest in thread tunnelling and alternative

protection schemes that improve performance while retaining modularity.

2.4.3 Safe kernel extensions

A finer-grained alternative to the usual kernel/user split is presented by Chi-

ueh et al [Chiueh99]. They argue that a monolithic kernel lacks extensibility,

and agree that dynamically loadable modules provide a reasonable model for

extension. However they are unwilling to completely trust certain modules and

find previous work in this area (e.g. software-based fault isolation [Wahbe93],

type safe [Bershad95] or interpreted [Arnold96] languages, or proof carrying

code [Necula97]) unsatisfying, and thus propose placing untrusted extensions

in a separate segment.

Virtual to physical address translations are unchanged from the usual kernel

ones, however the extension segment only confers access rights to extension

code and data, not the whole kernel. The authors correctly note that it may be

better to load each extension into a separate segment, but their initial imple-

mentation does not do this. Kernel services are exported to extension modules

much like system calls are offered to user processes, and there is a shared mem-

ory region used to exchange large arguments, e.g. packet contents for filtering

extensions.

There are a number of drawbacks to the whole scheme. Firstly, it is irrevocably
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tied to the integrated segmentation and paging of the Intel IA-32 architecture,

and while this processor is in widespread use in desktop and server machines

the situation in embedded systems is by no means so clear. Secondly, this

work is not suitable as a general way of structuring an entire system, since it

is not re-entrant: the underlying assumption is that calls are made from kernel

to extension, but not between extensions, and only in limited circumstances

back to the kernel (and certainly not with parameters which would lead to an

extension being re-invoked).

2.5 Vertically structured OSes

Vertically-structured OS designs (e.g. Exokernels or Nemesis) avoid the need

for many protection domains and the associated problems with IPC by devolv-

ing as much as possible directly to untrusted applications.

2.5.1 Nemesis

The Nemesis architecture is covered in detail in Chapter 3. This section as-

sesses Nemesis’ suitability as a resource-controlled NEOS.

Nemesis’ vertical structure is motivated by a desire to reduce quality of service

crosstalk between applications on a multimedia workstation [Leslie96]. By

multiplexing and protecting a machine’s real resources at the lowest possible

level, shared servers on the data path are reduced to those strictly necessary for

protection or multiplexing.

QoS crosstalk can occur when requests from multiple clients contend for ac-

cess to a shared resource in a server. Unless servers internally schedule the

resources they expend on a per-client basis, clients cannot be given meaning-

ful QoS guarantees. The X Server on Unix is cited as an example of such a

shared server whose use can be monopolised by one client to the detriment of

all others.

Instead of implementing OS services in shared servers, Nemesis places as much

functionality as possible into the applications themselves. Shared libraries are

used to provide default implementations of all OS components, while freeing

the application writer to override these defaults to make application-specific

trade-offs.
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However, shared servers are still needed for two reasons. Firstly, servers are

needed whenever state needs to be updated in a controlled manner, for exam-

ple network port allocations need to be serialised and centrally administered.

Secondly, servers are needed whenever a known-good portion of code must be

executed, usually for protection, security or policy reasons.

Mostly, servers of the first kind are on the control path and pose no performance

problems, as in the port allocation example given previously. However, when

the state being managed is for an I/O device, then the server is on the data

path and so is a potential source of QoS crosstalk or a performance bottleneck.

Drivers for devices which cannot be safely exposed to user code fall into this

category. [Barham96] describes in detail how devices are managed in Nemesis.

Barham considers both self-selecting and non-self-selecting network adaptors.

Self-selecting adaptors are able to identify data’s ultimate destination while

non-self-selecting adaptors cannot. This means that self-selecting adaptors typ-

ically need very little device driver intervention on the data path. Barham uses

the OTTO ATM host interface adaptor and its Nemesis driver as an example of

how self-selecting interfaces should be managed.

When Nemesis was designed, it was hoped that future high bandwidth I/O

devices would be self-selecting. However, this has not turned out to be the

case: there is a vicious circle between hardware vendors reluctant to change

their API due to lack of OS support, and OS vendors not wishing to change

their device driver model because no existing hardware would take advantage

of it, along with the need to re-write every driver to fit the new model. The

upshot is that the OS / device interface tends to stay fixed, and the result is high

bandwidth network adaptors which are non-self-selecting. For such interfaces,

a packet filter is needed in the device driver to demultiplex data to the correct

application. Naturally this means that the device driver is on the data path, but

this breaks Nemesis’ vertical structure and leads to the following problems:

• Increased crosstalk. Nemesis device drivers are scheduled like any

other process in order to bound their impact on the system. This design

decision is understandable for a multimedia workstation where multiple

devices compete for limited system resources, however in a network ele-

ment the network devices need prompt servicing in order not to overrun

their input queues, and are thus the most important. If the receive DMA

ring overflows then the hardware will drop packets indiscriminately, thus

introducing crosstalk.
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Figure 2.8: Cross traffic overflows pre-demux queue.

IRQ response packets context loss

(cycles) per IRQ switches %age

idle system 4290 26.8 2.33 0

while(1) 7370 28.7 3.33 48

Table 2.1: Crosstalk in the receive DMA ring

Figure 2.8 shows a low rate client flow multiplexed with high speed cross

traffic in a device’s DMA ring prior to being demultiplexed into client-

specific buffers. Functions left of line A are implemented in hardware;

the functions between lines A and B are in the kernel in most systems, but

in user-space in Nemesis. There are two points where loss can occur: in

hardware because the DMA ring overflows (line A), and in software be-

cause the demultiplex failed or there is inadequate client buffering (line

B). If loss occurs before line A then this will introduce crosstalk since

there is no discrimination between flows.

In an OS with kernel-resident device drivers the interrupt response time

is bounded and has low jitter, allowing the size of the receive DMA ring

to be statically determined to avoid this crosstalk. In Nemesis, separately

scheduled device drivers mean that the interrupt response latency is both

of larger magnitude and subject to a larger variance due to other system

activity. This means there must be larger amounts of buffering, and the

required size is harder to determine. This is the case regardless of the

device driver’s scheduling parameters, because even just passing through

the scheduler adds latency which is not present if the interrupt is serviced

immediately in the kernel.
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The following experiment demonstrates crosstalk in the receive DMA

ring. A probe flow of 10 pps (packets per second) is multiplexed with

cross-traffic at 116,000 pps and this mix sent to a Nemesis machine (a

200MHz Intel Pentium Pro with 32MB memory and a DEC DE500BA

100Mb/s Ethernet adaptor). The machine’s device driver classifies the

packets and is configured to discard the cross-traffic and deliver the probe

flow to an application which reflects the probe packets back to the sender,

where its loss rate is calculated. Table 2.1 shows various metrics for two

cases: when the Nemesis machine is idle; and when the Nemesis ma-

chine is running an infinite loop in user-space with no guarantee, only

using slack time in the schedule. The table lists the loss experienced

by the probe stream, as well as the average number of cycles it takes

to respond to an interrupt for the network device, the maximum number

of packets processed in response to a single IRQ, and how many con-

text switches were made while processing the DMA ring. The data was

gathered by instrumenting the device driver to read the processor’s cy-

cle count register. This data shows that with no other processing on the

machine, it can classify packets sufficiently fast to distinguish all probe

packets and respond to them correctly. However, once an extra context

switch is forced by using a looping process, the overhead is sufficient

to delay the demultiplex long enough to cause the DMA ring to over-

flow, and so cause crosstalk between the probe flow and the cross-traffic.

Changing the scheduler parameters to give the device driver a shorter pe-

riod and thus a faster response time would not help, since the overhead

is due to context switching.

• Increased latency. Any delay to the demultiplex will necessarily in-

crease latency, since applications cannot receive and take action on their

data before the demultiplex has taken place. Figure 2.9 shows the aver-

age round trip time taken by UDP packets of a given size for both Neme-

sis and Linux 2.2.14 on the same hardware. The gradient in both cases

is the same, showing that data-dependent processing costs are equivalent

for each OS. However, Nemesis has a much larger per-packet overhead.

Table 2.2 details the sources of this overhead. It shows where CPU time

is spent in receiving then reflecting back 980 byte UDP packets on the

same 200MHz machine. Note that over 10% of this delay is between re-

ceiving the interrupt and the driver responding to it, a delay which is not

present in operating systems with kernel-resident device drivers. How-

ever, the largest sources of latency are the RX and TX processing, which
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Figure 2.9: UDP round trip time vs. packet size.

both involve a full scheduler pass and context switch away from the de-

vice driver process to the application process. Again, this cost is due to

the device driver’s status as a separately protected and scheduled pro-

cess, and would not be present to the same extent in a more traditional

operating system.

• Complex accounting. As the number of clients using a device driver

increases, so does the driver’s resource requirements. Figure 2.10 shows

the percentage of total available CPU time used by the DE500 device

driver against the number of flows sent through the machine. Line A

shows the CPU requirement if flows are demultiplexed to individual

clients; line B shows the baseline, delivering the same data rate but as

a single flow to a single client. The CPU usage is also bandwidth depen-

dent, as shown by lines C and D. Therefore, when admitting a new flow

it is not enough to consider just the resources needed to process the flow

in an application; the additional resources needed though the entire sys-

tem need to be taken account of, with particular attention to the device

driver. Having the device driver domain as a separately scheduled entity

makes this extra resource requirement visible, but does not separate it out

into per-flow contributions to the overall resources needed. This makes
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Subsystem cycles %age

IRQ response time 6890 10.7

RX demux 2580 4.0

RX processing 25600 40.1

RX subtotal 35100 54.9

TX processing 19400 30.3

TX filter, DMA setup 9330 14.6

TX subtotal 28700 45.0

Total 63800 100.0

Table 2.2: UDP ping-pongs: latency contribution by subsystem. Does not

sum to 100% due to rounding.

it difficult to predict appropriate resource guarantees for device drivers

as flows are setup and torn down.

In short, the Nemesis network I/O model is predicated on self-selecting in-

terfaces and copes poorly with today’s badly designed devices. While recent

research into self-selecting adaptors is promising [Pratt01], the economic fac-

tors discussed previously mean that non-self-selecting interfaces are likely to

continue to dominate commodity systems.

2.5.2 Exokernels

Exokernels such as Aegis [Engler95] and Xok [Kaashoek97] also start from the

point of view that applications should be made responsible for as much of their

processing as possible. However, rather than doing this for QoS isolation rea-

sons, Exokernel’s design is motivated by the performance enhancements avail-

able to applications which by-pass inappropriate OS abstractions [Kaashoek96].

Exokernels make the OS a library which application writers are free to use or

ignore as they see fit.

Xok’s network support uses a compiled packet filter language, DPF, to demul-

tiplex incoming packets [Engler96]. They are delivered to rings of application

supplied buffers for later processing in user-space. Alternatively, the pack-

ets may be processed directly within the kernel by ASHs (Application-specific

Safe Handlers) [Wallach96]. Such processing is designed to have bounded run-
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time, however it occurs within the kernel on packet receipt and is not scheduled.

While individually an ASH may be innocuous, in a NEOS many ASHs would

be expected to be active concurrently and their cumulative effect can grow to

represent a sizable unscheduled workload on the system.

Packets are transmitted by handing wire-ready frames to the kernel which sends

them without performing any source address checking or bandwidth schedul-

ing. This minimal support is consistent with Exokernel’s focus on the efficient

multiplexing of multiple library OSes above the hardware, but it completely

ignores resource accounting and scheduling.

2.6 Active networks

In recent years, not many genuinely new operating systems have been devel-

oped [Pike00]. In part, this is due to the large body of legacy applications one

wishes to run on an operating system, which constrains the APIs which can be

offered. This interoperability problem is mitigated in operating systems for net-

work elements because existing protocols are normally well-documented and

there are well-understood mechanisms for deploying new protocols alongside
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existing ones; the set of “applications” is smaller and better defined.

This lower barrier to entry, along with recent work in Active Networks has

renewed interest in Network Element Operating Systems: researchers have

agreed on a NodeOS design [Peterson01] to act as a common platform for ac-

tive network experimentation. A NodeOS is a NEOS which runs EE (Execution

Environment) sandboxes within which untrusted code may be executed, usu-

ally in the form of bytecode [Wetherall98, Moore01]. Active networks cover

a spectrum of possibilities, ranging from automated firmware updates on man-

agement timescales, via per-connection code installation, all the way to code

run on per-packet timescales.

Resource control in a NodeOS can be done in a variety of ways. Basic control

can be achieved by deliberately restricting the power of the bytecode language,

for example removing looping constructs to ensure that run time is proportional

to code length, as is done in the SNAP scheme. More sophisticated control

can be achieved by using similar techniques to those used in soft real-time or

multimedia workstation OSes [Menage00].

Irrespective of the precise higher-level functionality presented to the network

or the user, Active Network EEs need to perform resource control on the code

they run. This means that they would benefit from being implemented over a

NEOS which supports accurate resource control natively.

The RCANE system [Menage00] is an architecture for just such a NEOS, ca-

pable of simultaneously hosting and isolating multiple EEs. However, because

it relies on OCaml bytecode to ensure protection between EEs, all environ-

ments must be implemented in languages which can be complied down to

the OCaml bytecode. This restriction meant that off-the-shelf EEs such as

the Java-based ANTS Toolkit needed to be re-implemented before they were

runnable on RCANE. By contrast, the system described in this dissertation runs

native machine instructions which serve as a lingua franca for all high-level

languages, allowing pre-existing bodies of code to be reused.

In conclusion, EEs are a class of application which would benefit from being

implemented over a resource-controlled NEOS.
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2.7 Smart devices

Commodity PC workstations are the hardware platform of choice for the ma-

jority of open programmable routers today, and it is not difficult to see why:

they offer plentiful cheap processor cycles, storage, and reasonable I/O per-

formance. In addition to this, their widely documented architecture allows a

competent programmer to target an OS for them with relative ease.

While the hardware’s I/O architecture is primitive compared to that of a main-

frame, this is not such an issue for two reasons. Firstly, having the main CPU

closely involved in directing I/O allows a great degree of flexibility in how

such I/O is managed, and this is naturally of interest to those implementing

open programmable routers. Secondly, there is a general trend towards more

powerful and flexible devices.

Evidence for this move towards more complex devices can be seen as early as

the work on Jetstream/Afterburner [Edwards95]. More recently, [Pratt97] ar-

gues for the offloading of the OS protection and multiplexing functions directly

onto devices, thus allowing them to be accessed safely by untrusted users.

[Fiuczynski98] describes an operating system for a smart device which can

be safely extended by untrusted users.

In a commercial setting, Alteon Web Systems have produced a very flexible

gigabit Ethernet chipset [Alt97]. A typical configuration consists of two MIPS

R4000-compatible processors and 1MB of RAM, allowing around 500 cycles

of processing to be performed per packet. [Pratt01] describes how this cycle

budget can be used to demultiplex incoming flows directly to the appropriate

user process and enforce per-flow transmit rate limits, so allowing safe user-

level access to the device.

This trends towards smarter devices with considerable CPU power and mem-

ory is evinced further by Intel’s IXP1200 network processor [Int01]. This is a

more aggressively parallel architecture than the Alteon described above: a sin-

gle IXP1200 chip has 6 micro-engines managed by a single StrongARM core.

The micro-engines perform data path manipulations such as TCP checksum of-

floading, and post events to the ARM core when more extensive processing is

required. A typical switch or router built using these on line cards would almost

certainly have a further processor to manage the system, leading to a three-tier

hierarchy of processing power: (1) route processor, (2) ARM cores, (3) micro-

engines. From top to bottom the amount of power available decreases while
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the proximity to the data stream increases.

Both smart devices like the Alteon and more complex CPU hierarchies like the

IXP1200 can be emulated on multiprocessor workstations by dedicating one

(or more) CPUs to I/O tasks, rather than using them in the more common SMP

(Symmetric Multi-Processing) arrangement [Muir98, Muir00].

These processor hierarchies come about because for technical or administra-

tive reasons, device vendors wish to isolate the resources used on their device

from others in the system. While dedicated hardware is certainly effective in

segregating processing, the correct resource balance needs to be statically de-

termined at hardware design time. This is unsuitable if the system is ever to

change role since it is likely that the processing balance between components

will be different from the initially-provisioned system. By using scheduling in

the OS to make the resource split, the system remains flexible.

For example, software modems have recently become popular for cost reasons

because the host processor is responsible for implementing higher level proto-

col features and often lower level signal processing. The OS must isolate of

the driver from the rest of the system to achieve correct operation of the de-

vice. Often software modem device drivers will not trust the OS to schedule

them correctly, and so they disable interrupts to ensure they are not preempted.

This is a really a symptom of inadequate scheduler support for hard real-time

processing. Alternatively, some drivers take no steps to ensure they are appro-

priately scheduled and hope that the system is lightly loaded, which results in

mysterious malfunctions when this assumption breaks down. A NEOS with a

real-time scheduling facility could correctly handle such devices, and would

allow a dial-in server consisting of many modems to be built more cheaply by

using software modems rather than full hardware implementations. An added

benefit is that new line coding schemes can be introduced simply by updating

the drivers.

By analogy with the modem example, smart Ethernet devices cost more than

dumb devices but are more easily virtualised. If many Ethernet interfaces are

needed in a single system then an implementation using dumb devices and a

proper resource controlled NEOS which can emulate a smart API over them

will lead to a cheaper, more flexible system. This is covered in Chapter 4.

Resource control in systems with multiple, asymmetric, processors is an in-

teresting problem, but not the main focus of this dissertation. The problem is

briefly considered in Section 7.4.
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2.8 Summary

The rise in use of middle boxes and active networks means that increasingly,

processing is being moved into the network. Current routers and switches

perform only outbound link bandwidth scheduling, so are unsuited as a plat-

form on which these more complex services may be built. Current OS designs

are poorly adapted to an I/O-centric workload, and although a number of re-

searchers have investigated promising path-based scheduling schemes, these

are not flexible enough to also schedule the background computations needed

in a realistic environment. A middle-ground is sought, blending traditional

task-based scheduling together with I/O-driven path-based scheduling in order

to correctly account and isolate the processing performed on resource-strapped

intelligent network nodes.

This dissertation presents the Expert OS,4 an operating system designed with

these issues in mind. Expert draws on the ideas of the Nemesis OS, which are

described in greater detail in the next chapter.

4“Expert” is an acronym: EXtensible Platform for Experimental Router Technology
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Chapter 3

Nemesis

As Expert is substantially based on Nemesis, this chapter presents a brief sum-

mary of the main concepts embodied in Nemesis. Readers already familiar

with Nemesis may wish to skip this chapter as no new work is described here.

Nemesis is an operating system for multi-service workstations. It is designed to

facilitate the accurate resource accounting and fine-grained scheduling needed

to support the processing of time-sensitive data such as audio or video streams.

Nemesis is vertically structured, i.e. applications are made responsible for as

much of their own processing as is compatible with the need to retain system

security. The entire operating system is structured to this end, redefining the

kernel-user boundary.

3.1 NTSC (Nemesis Trusted Supervisor Code)

The NTSC is Nemesis’ kernel. It exists only to multiplex the CPU and memory

between domains,1 and provides only a very basic event sending mechanism

for cross-domain communication. The NTSC converts CPU exceptions such

as page faults into events sent to the faulting user domain, thus allowing user

domains to perform their own paging [Hand99].

Nemesis is a single address space OS. This simplifies communication, since

pointers can be passed unmodified from one domain to another, although note

that just because Nemesis uses a single address space does not mean it lacks

1Described in Section 3.3.
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Figure 3.1: Structure of Nemesis.

memory protection – if a pointer references memory which is not readable by

the current domain then an attempt to dereference it causes a protection fault.

Another advantage of using a single address space is that it eliminates the need

to flush virtually-addressed caches on context switches, thus allowing higher

context switch rates to be used without adversely affecting overall system per-

formance. Frequent context switches allow device drivers to be scheduled no

differently than standard user domains.

Figure 3.1 shows how Nemesis uses its single address space. It contains mul-

tiple protection domains within which applications run, perhaps using shared

libraries. This diagram is included to aid comparison with the other operating

systems previously described in Chapter 2.

3.1.1 Interrupts

Interrupts may be reserved by privileged device driver domains. Once claimed,

the NTSC handles that interrupt by running a driver-supplied function, which

typically does nothing more than send an event to the driver domain, making it

runnable. The NTSC then masks the interrupt and performs a reschedule, only

selecting the device driver to run if it is within its guarantee. Eventually the
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driver’s event handler thread is run, performing any device-specific actions and

unmasking the interrupt.

Note that the CPU scheduler decides when to run a driver domain based on

its guarantees; it is not run directly in response to the interrupt. While this

increases the interrupt handling latency, it allows time spent within the device

driver to be bounded. Because the interrupt remains masked until explicitly

re-enabled by the driver, further device activity does not interrupt the CPU,

reducing the potential for livelock.

3.1.2 API

The NTSC is sufficiently small that its entire API may be summarised here. It

can be broadly divided into two categories: a passive API with no synchroni-

sation between the user domain and NTSC, and a more traditional active API

using system calls.

Passive API

The NTSC exports a read-only PIP (Public Information Page) globally at a

well known address, allowing the cheap publication of system-wide informa-

tion such as the current system time, enabled CPU features, and performance

counters.

Each domain has a DCB (Domain Control Block) split into two: a read-only

(dcb ro) and a read/write (dcb rw) portion. The dcb ro is used by the

NTSC to publish information to the user domain, such as its domain id, current

privileges, event endpoints, and memory manager bindings. The dcb rw is

written to by the user domain to communicate back to the NTSC, in order to

specify activation-related information (see Section 3.2) and memory manager

state. The dcb rw also holds an initial stack, and maintains event state.

Active API

The NTSC also makes available a number of system calls to manage the ma-

chine, interact with the scheduler, send events, perform low-level console I/O,

manage memory, and mask/unmask interrupts.
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3.2 Scheduler activations

Recognising that individual applications can benefit from tailored thread sched-

ulers, Nemesis allows user applications to schedule their own threads. The

NTSC uses a scheme based on scheduler activations [Anderson92] to allow

efficient user-level thread schedulers to be implemented.

While traditional OSes virtualise the CPU, attempting to hide preemption from

user processes, scheduler activations can expose each OS-level reschedule. A

user process has an activation handler which is upcalled by the kernel when-

ever the process is given the CPU. This activation vector is typically set to the

process’s thread scheduler entry point. While this runs activations are disabled

to avoid the need for a re-entrant thread scheduler. When activations are dis-

abled and a process is preempted, its context is saved in a reserved context

slot. When the CPU is later given back the this process, it is resumed from the

reserved context slot.

The activation handler upcall can terminate in a number of different ways. The

upcall can finish by re-enabling activations and continuing, or more commonly

by atomically re-enabling activations and restoring a previously saved thread

context. The upcall can also choose to re-enable activations and block waiting

for events or a timeout: this is used when the user-level thread scheduler has

decided that there are no currently runnable threads.

3.3 Protection, scheduling and activation domains

Nemesis distinguishes the three related but distinct concepts of protection,

scheduling, and activation domain, called pdom, sdom, and adom respectively.

A Nemesis domain runs with memory privileges granted by its pdom (protec-

tion domain); it is scheduled according to the resource guaranteed to it by its

sdom (scheduling domain); and it is entered at the location defined by its adom

(activation domain).

A protection domain defines the permissions on virtual address ranges; it does

not define a translation from virtual to physical addresses. Permissions include

the usual read, write and execute bits, as well as a meta bit. When set, the

meta bit allows the other bits to be modified, allowing primitive access control.

There is one special protection domain which is used to specify global access
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rights. A Nemesis domain’s memory access rights are thus the union of its own

pdom and any further global rights.

A scheduling domain is the entity dealt with by the kernel scheduler. An sdom

has a CPU time guarantee specified by the triple (p, s, l) and a boolean flag x.

The sdom receives a guaranteed slice of s nanoseconds in every period p, with

a latency of no more than lns between becoming eligible to run and actually

receiving the CPU. If the boolean x is true, it means the sdom is eligible to

receive a share of any slack time in the system.

An activation domain is the entity which is activated by the kernel. This com-

prises the address of an activation handler, and the state used by the activation

handler to make its user-level scheduling decisions. Nemesis only ever uses a

single adom with each sdom, however the concepts remain distinct.

When the word “domain” is used by itself, it means a Nemesis domain con-

sisting of one each of the above components. Chapter 5 examines the con-

sequences of binding pdoms to code modules and allowing sdoms to migrate

between them.

3.4 Same-machine communication

Another benefit of having a single address space is that sharing data is easy:

marshaling is kept to a minimum, and pointer representations are identical

across pdoms. Nemesis builds rich inter-domain communication facilities over

the basic event send mechanism provided by the kernel.

3.4.1 IDC (Inter-Domain Communication)

Servers export typed interfaces described by an IDL (Interface Definition Lan-

guage). Clients bind to server interface offers, at which time a buffer shared

between client and server is allocated with appropriate permissions, and two

event channels are connected so the server can block waiting for incoming

calls, and clients can block waiting for a server reply.

When a client makes a call to a server, the client marshals its arguments into the

pre-negotiated buffer and sends the server an event. This unblocks the server

which parses the call number and any arguments, invokes the operation, and

marshals any results back into the buffer before finally sending an event back
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to the client to notify it the call has completed. Since clients marshal their own

arguments, servers cannot assume the arguments are correctly formatted and

must parse them with care.

The Nemesis typesystem includes provision for runtime type queries, type-

cases, and reflection, all implemented over C’s native typesystem by macros

and programming conventions. New interfaces may be added to the system at

runtime, since the default marshaling system uses interface reflection to dis-

cover the number and shape of method arguments. This also allows shells to

make arbitrary interface invocations without needing the interfaces to be avail-

able at build time [Roscoe95].

3.4.2 CALLPRIV sections

A CALLPRIV is a small critical section of code which trusted domains such as

device drivers can insert into the kernel to make some function available to all

domains in the system via the ntsc callpriv() system call. They are run

with the CPU in supervisor mode, with full access to all memory and interrupts

disabled. Naturally, this means they cannot be preempted by the scheduler, so

they should run for a minimum amount of time.

For example, the framebuffer subsystem registers a CALLPRIV which untrusted

clients use to write to the framestore. The CALLPRIV accepts a tile of pixel data

and a location, checks the client is allowed to write to the co-ordinates given,

and if so masks the client pixels against an ownership bitmask and updates the

framestore.

They can be viewed as “custom CPU instructions” which drivers make avail-

able to the system. Like an instruction, they are atomic with respect to inter-

rupts, however this means their scope is limited to time-bounded code portions.

3.4.3 I/O channels

When bulk data needs to be passed between domains, there are two possibil-

ities open to the programmer. Firstly, they can use the normal IDC system to

pass the data either inline or via a pointer to a stretch of memory accessible in

the destination domain. However this is a synchronous operation between the

producer and consumer; by buffering multiple payloads before sending them

to the consumer, protection switch overheads can be amortised leading to im-
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Figure 3.2: An I/O channel.

proved throughput. This section describes this second, asynchronous, style of

I/O, and Nemesis’ support for it by I/O channels [Black95].

I/O channels are a connection-based unidirectional packet I/O system which

integrates: (1) buffer allocation, (2) queueing to amortise context switch over-

heads, and (3) back-pressure. Packets are described by iorecs: vectors of

(base, length) pairs which facilitate the common protocol processing steps of

adding or removing headers without needing to copy packet data.

At connection setup time a data area is allocated with permissions read/write

for the producer, read-only for the consumer. From this data area individual

packet buffers are allocated. In addition, two FIFO queues are used to hold

iorecs describing the packet data to be exchanged between producer and

consumer. Figure 3.2 shows this arrangement. The bottom FIFO holds empty

buffers from the consumer to the producer, which fills them with the payload

it wishes to transfer. The top FIFO holds these filled buffers en-route to the

consumer.

The FIFOs decouple the producer and consumer from each other, meaning that

queueing a full or empty buffer for transfer is unlikely to cause a context switch

immediately. The limited FIFO depth provides all four back-pressure points

needed:

• Producer underflow. Blocking the producer when there are no remain-

ing empty buffers (bottom FIFO empty).

• Consumer underflow. Blocking the consumer when there is no data

(top FIFO empty).
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• Producer overflow. Blocking the producer when the consumer has yet

to collect valid data (top FIFO full).

• Consumer overflow. Blocking the consumer when the producer has yet

to collect empty buffers (bottom FIFO full).

If the producer and consumer operate at different rates, then only two of these

four conditions will be regularly exercised. This makes it easy to forget the

other two block conditions, and leads to subtle bugs. All four block conditions

must be correctly implemented in a general system.

3.5 Network stack

Originally, Nemesis used a port of the x-Kernel as an expedient way of getting

a network stack. However, this suffered from the problems common to any

protocol server in a micro-kernel based system: because applications must ex-

change payload data with the protocol server in order to perform network I/O,

the protocol server itself becomes a point of resource contention and leads to

QoS crosstalk between data flows.

The network stack was re-designed following the Nemesis philosophy of push-

ing as much functionality as possible into applications as possible. I imple-

mented this new native network stack. Its main features are outlined below; a

fuller discussion has been published previously [Black97].

Figure 3.3 shows the organisation of the main components of the network stack.

Dotted boxes surround independently scheduled domains, while dark arrows

represent I/O channels (and show the direction of data transfer). Two applica-

tions have a total of three bi-directional flows directly connected to the device

driver domain. These flows were set up by the applications performing IDC

to the Flow Manager domain. The Flow Manager is the central control-plane

entity responsible for flow setup and teardown, port allocation, ARP cache

maintenance, and routing.

3.5.1 Receive processing

Packets arriving cause the hardware to generate interrupts which are converted

to events, making the device driver domain runnable. When the CPU sched-
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Figure 3.3: Overview of the Nemesis network architecture.

uler next allows it, the device driver runs and uses a table-driven demultiplex

to discover which flow the packet is destined for. If no applications have reg-

istered an interest in the packet, it is delivered to the Flow Manager so it can

reply with an ICMP Port Unreachable in response to unwanted UDP packets,

or a TCP reset (RST) packet for unwanted TCP segments. Non-IP packets are

silently discarded at this stage as well.

Assuming the demultiplex identified a flow, the data is copied from the DMA

receive ring into the flow’s application-supplied buffers, splitting the header

out into the first rec if multiple iorecs are available. The header size is de-

termined as part of the demultiplex operation, and will typically include all

headers up to OSI layer 4 (transport). If the I/O channel has no free buffers

available, then the application is not processing received data fast enough. In

this case, the device driver discards the received packet. This discard happens

before any protocol processing has occurred, and is early enough to provide

some measure of protection against traffic flooding [Black97, Figure 7].

Raw Ethernet frames are delivered to the application, making it the applica-

tion’s responsibility to perform receive protocol processing such as consistency
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checking and checksum verification, fragment reassembly, and Ethernet frame

padding removal. Should the application wish to forgo such sanity checks (e.g.

for performance reasons), it may directly access the payload delivered in the

second iorec without examining the headers at all. Such behaviour would be

a gross violation of RFC1122 (Host Requirements),2 but may be expedient in

purely local networks with low bit error rate datalink layers.

3.5.2 Transmit processing

Similarly, applications are also made responsible for formatting their own wire-

ready Ethernet frames. For programmer convenience, shared libraries are pro-

vided which implement the standard protocols. These libraries encapsulate the

application-supplied payload with appropriate headers, and queue the packet in

the I/O channel to the device driver.

The device driver domain performs two functions. Firstly, it verifies the frames

presented to it for transmission to ensure that they show the correct prove-

nance. This is done by a simple offset plus value and mask filtering technique,

asserting that particular values such as protocol type and source address/port

are the required ones for this I/O channel. This is fairly efficient since the

driver already knows which channel it is working on, and can directly find the

associated transmit filter to be applied.

The device driver’s second function is to schedule packets from I/O channels

based on QoS parameters expressed in a similar fashion to the CPU param-

eters: (p, s, x). Note that the resource being scheduled is not network band-

width, since with Ethernet there is no reservation mechanism. Instead, the

resource scheduled is the opportunity for this I/O channel to transmit frames

for s nanoseconds out of a period p. Once all I/O channels have been granted

their guaranteed allocations, any channels with the x flag set are then given

round-robin access to the media. This unified scheduling model for both CPU

and network bandwidth is fairly simple to understand. Peak rates can be limited

by setting the slice to one Ethernet frame packetisation delay, and the period

to be the minimum desired mean inter-frame start time. In practice, since the

packetisation delay depends on the frame size, this does not give good results.
2In particular, it would violate at least sections 3.2.1.1 (IP version must be checked), 3.2.1.2

(IP header checksum must be verified), 3.2.1.3 (must discard mis-delivered IP datagrams);

3.2.1.8 (must pass IP options to transport layer), 3.2.1.8c (source route option); 3.3.2 (must

reassemble IP fragments); 4.1.3.4 (must validate UDP checksum), and 4.1.3.6 (must discard

mis-delivered UDP).
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3.5.3 Control plane

The Flow Manager domain is a trusted system server which has both an active

and a passive role. In its active role, it responds to packets which are otherwise

unclaimed and require a response, as described earlier. It also performs ARP

and caches the results on behalf of applications, thus ensuring that untrusted

applications cannot poison the ARP cache. In its passive role, the Flow Man-

ager maintains the routing table which applications consult to decide which

interface to connect through. It also performs TCP and UDP port allocation to

ensure no two applications are allocated the same port.

The Flow Manager also uses the port tables to instantiate the packet filters

needed when it causes new I/O channels between applications and devices

drivers to be established.

Nemesis was designed as a host OS, and its network stack reflects this. There

is no provision for the forwarding of IP datagrams, mainly because the table-

driven receive packet filter performs exact matches only. This means it is not

suitable for the longest prefix matches needed to discover the outgoing interface

for packets with destination addresses which are not local.

3.6 Summary

This chapter has briefly described Nemesis. It has shown how domains interact

with the kernel in a minimal fashion, building their own abstractions over the

low-level primitives offered by the NTSC.

It has introduced the separate notions of scheduling domain and protection do-

main, despite the fact that Nemesis domains always consist of exactly one sdom

and one pdom.

It has shown how Nemesis supports bulk packetised I/O, and how this facility

may be extended into a network architecture where device drivers safely export

a raw packet interface directly to untrusted user applications.

Section 2.5.1 argued that Nemesis is not directly suitable for use as a network

element OS. The next two chapters describe the problems faced in designing a

NEOS capable of offering resource control, and how Expert resolves them.
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Chapter 4

Network device driver model

This chapter describes how network devices are handled in the Expert archi-

tecture. It discusses design trade-offs and presents evidence that shows it is

possible to achieve good performance while preserving isolation between sim-

ple processing of data flows. Isolation is desirable because in an overloaded

system, it enables meaningful resource guarantees to be given.

This chapter concentrates on the network device driver model because it has

such a large effect on the overall performance of the system. Expert’s per-

formance goal encompasses not just the usual metrics of low latency, high

bandwidth, and high packets per second; but also includes isolation, for ex-

ample limiting the jitter clients experience due to the activities of each other,

and ensuring that all clients make progress (i.e. none suffer from deadlock or

livelock).

Prior work has shown that vertically structured operating systems (and corre-

spondingly, user-space network stacks) allow more accurate resource account-

ing than either monolithic kernel or micro-kernel systems [Black97]. For ex-

ample, by placing protocol processing in the application and using dedicated

application-supplied receive and transmit buffers, the Nemesis network stack

can control the resources consumed by packet communications on an Ether-

net. However, Nemesis uses a user-space device driver to demultiplex received

packets and rate-limit transmissions, effectively placing a shared server on the

data path.

Shared servers on the data path introduce three problems: firstly, they compli-

cate resource management, since both application and server resource guaran-
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tees need to be set appropriately. Secondly, shared servers degrade performance

by increasing the number of context switches (and thus protection switches and

expensive cache invalidations) needed, which directly increases the latency ex-

perienced by packets traversing the system. Finally, shared servers need to be

carefully coded to ensure they internally schedule their clients in order to avoid

crosstalk between them. Section 2.5.1 presented results demonstrating the first

two of these detrimental effects in Nemesis (see Figure 2.10 and Figure 2.9 in

particular); because Nemesis drivers schedule their clients they do not suffer

from excessive crosstalk, the third disadvantage of shared servers.

Expert uses two complementary mechanisms to avoid such shared servers.

Firstly, some device driver functionality is moved back into the kernel. Sec-

ondly, a limited form of thread tunnelling is introduced, allowing paths to

execute server functions using their own guarantees. A single system-wide

scheduler arbitrates the allocation of CPU time between both paths and tasks,

allowing data-driven processing to be scheduled on an equal footing with tra-

ditional compute bound tasks.

Expert’s design is described in two stages: basic interaction with network de-

vices is covered in this chapter while the thread tunnelling sub-system used by

paths is covered in the next chapter.

4.1 Receive processing

The fundamental problem in managing network devices is the following: until

an incoming packet has been classified, any resources expended in processing

it (e.g. CPU cycles or buffer memory) cannot be scheduled properly.

The best solution would be to use self-selecting devices capable of classify-

ing incoming packets in hardware [Pratt01], thus providing a hard partition

between classification processing and the host CPU. As discussed previously

in Section 2.5.1, such devices are unfortunately not common. The rest of this

section describes how to best cope with non-self-selecting devices; when self-

selecting devices become widespread, it is likely that the techniques described

here can moved out of the kernel and into the device.

Assuming non-self-selecting interfaces, the host CPU must expend resources

in classifying and buffering packets. How should these resource be accounted?

Accounting resource usage in arrears allows retrospectively accurate account-
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Figure 4.1: Network device driver models.

ing, but it cannot be used for scheduling purposes since any action taken on the

basis of such information would be out of date. This approach is not considered

any further.

Having accepted that it is impractical to account the cycle cost of demultiplex-

ing to the flows themselves, we are left with two options: either the costs are

accounted to a stand-alone driver entity, or the costs are distributed as evenly

as possible amongst all scheduling principals. User-space device drivers under

Nemesis are an example of the first of these; Unix-style drivers where interrupts

are handled in the context of the interrupted process epitomises the second ap-

proach (assuming smooth arrivals).

Expert’s contribution is to emulate a smart device by performing receive de-

vice handling and demultiplexing in the kernel directly in response to network

interrupts. This shares the cost of emulating a self-selecting device amongst all

processes as in the Unix model. Figure 4.1 shows for each device model the

location where card-specific receive processing (RX), demultiplexing (demux),

protocol processing (stack), and transmit scheduling and device handling (TX)

occurs. The location of code dealing with device discovery (probe) and man-

agement (control) is also shown. Management of a device means configuring

its demultiplex tables, changing transmit scheduler parameters, and gathering

statistics on the device or media (for example, to determine bytes transferred,

number of collisions, or line rate).

Splitting the device driver allows the best features of each of the other models to

be obtained without their accompanying deficiencies. Kernel-resident drivers
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both minimise interrupt response time and have lower context switch induced

penalties. This is because the arrival of an interrupt causes the CPU to trap to

supervisor mode, so remaining there to run the device driver has lower over-

head than switching to a separate protection domain, running driver code, then

switching back to the originally interrupted protection domain. Modern CPUs

rely on aggressive caching and prefetching of all manner of information (e.g.

branch prediction tables, TLBs, speculative execution, code and data) to yield

their full performance; this trend is unlikely to reverse. Expert is designed to

minimise protection switches, and amortise their cost by performing sufficient

work after a switch: placing the device driver’s data path in the kernel achieves

this goal.

The disadvantage of a kernel-resident driver is that all cycles spent executing

in the kernel are not cycles controlled by the system’s scheduler, so it adds

jitter to user-space processes. Table 2.2 showed that the receive portion of the

Nemesis device driver code is small enough and bounded in time such that the

jitter experienced by user processes is minimal: around 2580 cycles are need to

manage the device and perform a demultiplex. Section 4.4.2 provides further

results quantifying jitter on Expert and comparing it to jitter on Nemesis and

Linux.

One further question remains: should the device be handled by polling it, or

via interrupts? The assumption so far has been that the device posts an in-

terrupt to the kernel to signal the arrival or departure of packets. Polling has

the advantage of limiting livelock [Mogul96], and can lead to low latencies

(depending on polling frequency). On multi-processors machines, one CPU

can be devoted entirely to polled device management, allowing a more sophis-

ticated self-selecting device to be emulated. Such an arrangement would be

substantially similar to the Piglet OS [Muir00]. The disadvantage of reserving

an entire CPU to poll devices is that the resource partition formed is static: by

design, there is no way of allowing spare cycles on the I/O processor to be

used by other system components or user code. Polling schemes fit well into

hard real-time systems, where CPU requirements are known a priori, so that

the devices may be polled in a timely manner.

Clocked interrupts [Smith93] use regular interrupts to trigger device polls, thus

limiting interrupt processing overheads without needing the entire system to

be structured to support polling. The main problem with clocked interrupts is

in deciding how frequently they should be delivered: too fast and the system

degenerates into polling, too slow and the event delivery latency becomes too
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high.

The wide range of workloads expected to be run over a resource controlled

NEOS is unlikely to offer the a structured execution environment needed for

polling – indeed, part of the motivation for this style of NEOS comes from the

problems with the existing inflexible switch and router OSes of today. Thus,

Expert uses interrupts together with techniques similar to clocked interrupts to

be notified of device events.

Livelock is addressed by a variety of complementary techniques:

Limited interrupt processing. Expert, like other vertically structured operat-

ing systems, makes applications responsible for their own protocol pro-

cessing. This means the only functionality needed in the kernel device

driver is device-specific handling, and packet classification. By delay-

ing further processing to an explicitly scheduled application, the system

scheduler remains in control of processing. The system is not scheduled

by interrupts from network traffic arrivals, unlike event-based systems

such as Scout or Wanda [Black95].

Kernel resident driver. Livelock is caused by interrupts causing large amounts

of fruitless work to be performed. Even if protocol processing is no

longer performed in the interrupt hander, if the device driver is not in

the kernel the cost of context switching to the driver to classify and sub-

sequently discard packets can be considerably larger than the cost of

remaining in supervisor mode and doing the demultiplex and discard im-

mediately. Therefore Expert uses kernel-resident receive processing and

demultiplexing.

Interrupt mitigation. Most current network adaptors such as those based on

the Intel 21143 [Int98] have two interrupt mitigation parameters n and t

which can be used to limit the number of interrupts generated. Instead

of raising an interrupt for every packet received, the hardware generates

one for each batch of n packets. So that the system does not deadlock

when fewer than n packets have been received, an interrupt is also gen-

erated if there are packets outstanding and time t has elapsed since the

previous interrupt was generated. These two parameters together allow

the number of interrupts to be decreased by a factor of n at high packet

arrival rates while bounding the notification latency by t at low rates.

Sadly, many OSes do not use interrupt mitigation because picking appro-

priate values for n and t remains something of a black art. The follow-
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ing discussion attempts to clarify this guesswork by providing concrete

bounds on sensible parameter settings.

Modelling the system as a DMA queue with maximum depth d, an inter-

rupt response time r, and a minimum packet inter-arrival time i, we get

an upper limit for n:

nmax = d −

r

i

This assumes that the driver can process a packet from the DMA ring

faster than time i (i.e. the arrival rate is less than the departure rate). The

minimum value for n is 1, where the interrupt mitigation scheme degen-

erates into the usual single interrupt per packet. As n approaches nmax,

the probability of queue overrun increases, depending on the variance of

i and r. Since i has a fixed lower bound set by the wire format and r can

be directly measured on a running system, it should be feasible to modify

n dynamically in response to measured system metrics. As n is increased

two other effects become apparent: firstly, more buffers are needed be-

tween the application and device to avoid underrun; and secondly TCP

ACKs arrive in bursts, liberating bursts of data which multiplex poorly

in the network, causing congestion.

The choice for parameter t is wider, since it is purely an expression of

the applications’ tolerance of additional latency. At the lower limit, t > i

otherwise no batching will occur; the upper limit on t is unbounded.

Again, t can be set mechanically assuming that applications provide in-

formation on their latency tolerance. The latency l experienced by an

application is l = t + r, so if ltmin is the minimum of all application

latency tolerances lt requested, then t = ltmin − r. Note that ltmin < r

means there is an unsatisfiable application latency tolerance.

To summarise: Expert locates the receive processing and classification func-

tions of device drivers in the kernel in order to reduce application visible la-

tency, crosstalk in the DMA ring, and livelock.

4.1.1 Demultiplexing data

Once an Ethernet frame has been successfully received by the device driver, the

next task is to discover the packet’s destination. On workstations and servers,

most packets arriving will be for the local machine. However, for a NEOS,

local delivery is assumed to be an exceptional case: the majority of packets
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will require some processing before being forwarded towards their ultimate

destination.

While on the surface it seems that these two cases are distinct, they can be

unified. In the general form, classification discovers which FEC (Forwarding

Equivalence Class) each packet belongs to. Each FEC has associated parame-

ters specifying outgoing interface, queueing behaviour, and any transmit shap-

ing needed. Local delivery is achieved by defining a FEC with a special “out-

going” interface; packets destined for a local address are classified as belonging

to this FEC, removing this special case from the classification code. To further

reduce special cases, I assume that packets are always a member of some FEC:

packets which are unrouteable (i.e. match no routing table entry) are considered

members of a “discard all” FEC. This may be useful in a default-deny firewall,

where unexpected packets from external interfaces should be discarded.

Note that this says nothing about the granularity at which packets are assigned

to FECs. At one extreme, one FEC per flow may be desirable, for example

if each flow is to receive dedicated queueing resources. At the other end of

the spectrum one FEC may be used per outgoing interface, modelling the be-

haviour of traditional best-effort routers. Intermediate variations are useful

where best-effort traffic is to be handled as one resource class while picking

out specific flows for special processing or preferential queueing.

Expert uses paths to encapsulate the abstract notion of a FEC. A path is a sepa-

rate schedulable entity, with guarantees of CPU time, buffer memory availabil-

ity, and transmit bandwidth. A path also defines a sequence of code modules

which are to be traversed on receiving the packet. Packets are delivered to paths

and tasks via I/O channels. Paths are described in more detail in Chapter 5; this

section concentrates on how packets are demultiplexed to an appropriate I/O

channel.

Classification strategies

The way 4.4BSD demultiplexes received packets is by using branching com-

pares to determine the correct protocol, then using hash tables on source and

destination IP address and port numbers to find an appropriate socket buffer

in which to place the payload for locally terminated connections. For Unix

machines configured as routers, additional processing is performed if the des-

tination IP address is not a local one. Usually some trie-based scheme is used
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to find the longest prefix in the routing table which matches the destination IP

address [Bays74].

Research over the previous five years or so has been on two fronts, both improv-

ing the performance of this longest prefix match [Degermark97, Waldvogel97,

Srinivasan98a, Nilsson98], and generalising the classification to more dimen-

sions to additionally allow the source IP address and port numbers to determine

forwarding behaviour [Srinivasan98b, Lakhsman98].

Since it seems likely that further improvements will be made in this field, Ex-

pert encapsulates the demultiplexing decision behind a high-level interface, PF,

which may be implemented using any of the techniques cited above (or their

successors). Operations on PF include the Apply() method which takes a

buffer containing an Ethernet frame and returns which I/O channel the frame

is destined for, along with the header length, and IP fragment related informa-

tion (see later). Returning the IP header length enables application data and IP

headers to be delivered to different buffers despite variations in header length,

leading to a performance boost in some circumstances. Determining the header

length as a by-product of the classification stage is an approach which was first

used in the Nemesis network stack and later adopted by [Pratt01], but does not

seem to be prevalent elsewhere.

A separate interface is used to configure the classifier to add and remove pre-

fixes. Tasks and paths supply a 5-tuple specifying protocol, source and des-

tination port ranges and source and destination IP address prefixes. Because

the implementation of the demultiplex step is hidden behind this interface,

tasks and paths cannot directly supply an arbitrary bytecode filter describing

the packets they are to operate on. While less flexible, this insulates applica-

tions from knowledge about the particular classification algorithm in use. This

loss in flexibility is not an issue, since in practice the limited number of pro-

tocols in common use in the Internet and their hierarchical nature means that

arbitrary filters are unnecessary. Also, if a major new protocol were introduced,

the timescale would allow a new version of Expert to be released; a major new

protocol would not need to be supported faster than management timescales.

Classification despite incomplete information

One further problem faced by any demultiplexing scheme is how to handle

frames which do not contain sufficient information to be fully classified. TCP
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data segments and IP fragments are two examples of such frames: TCP data

segments cannot be associated with a particular flow until an appropriate SYN

packet has been seen, and IP body fragments do not carry port information so

they cannot be classified until the first (or head) fragment has arrived. Expert’s

basic solution is to allow the classifier to delay a decision until more informa-

tion is available (i.e. when the TCP SYN or IP head fragment arrives). The

delayed packet is held in temporary storage until either its destination is dis-

covered, or it is evicted (either by timing out or due to memory pressure). The

remainder of this section uses Expert’s handling of IP fragments as a concrete

example of how classification can still take place despite incomplete informa-

tion.

Most packet filter languages ignore IP fragments: only MPF [Yuhara94] sup-

ports them directly. Other filter languages (for example [McCanne93, Bailey94,

Engler96]) need the filter rules to be modified to explicitly recognise non-head

fragments. Expert’s solution separates fragment handling into three parts: (1)

the demux decision on head fragments, (2) postponing fragments until the head

arrives, and (3) actual reassembly (if any). This separation has the twofold ad-

vantage of insulating the classification algorithm from fragments, and delegat-

ing any reassembly to applications.

Since the head fragment is the only one to include port information, its ar-

rival sets up an additional temporary demux association keyed (in part) on the

IP identity field. This temporary association allows non-head fragments to be

recognised as continuations of the head so they may be delivered to the same

I/O channel. In order to allow a broad range of classification algorithms to be

used, they are not required to support such temporary associations themselves;

they are managed by a fragment pool. The only requirement of the classifi-

cation algorithm is that its Apply() method return a flag which is set if the

frame is an IP fragment, either the head or a body.

Body fragments which do not match any temporary demux associations are

delayed in the fragment pool until their head fragment arrives. The arrival of

the head fragment sets up a new temporary demux association and causes any

delayed body fragments to be delivered to the application for reassembly. Head

fragments which arrive but are discarded by the classifier nevertheless cause a

temporary demux association to be installed in the fragment pool, so that future

body fragments can be recognised and swiftly discarded. Body fragments in the

fragment pool are also discarded if no matching head fragment arrives before

some timeout, or if there is pressure for space.
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In this manner, rather than attempt a full reassembly (a fairly complex and no-

toriously error-prone procedure), the device driver postpones the delivery of

fragments which arrive out of order until a corresponding head fragment ar-

rives. When it does, the head fragment is delivered to the application, followed

by any further fragments queued. Re-ordering, packet overlap trimming and

the discarding of duplicates is left entirely up to the application to perform in

any manner it chooses, including the option of not performing reassembly at

all should this be useful (as might be the case in a normal non-defragmenting

router). In this way, bugs in reassembly do not compromise the safety of the

system; they are limited to the applications using the particular shared library

with that bug. As far as I am aware, this split between a trusted postponement

stage before demux and a later untrusted reassembly is unique to Expert, al-

though any other system performing early demux and supporting IP fragments

will necessarily need a similar system.

4.2 Kernel-to-user packet transport

Expert’s cross domain packet transport is based on the Nemesis I/O channel

model as described in Section 3.4.3. Packets are described by a vector of

iorecs: (base, length) pairs. Experience with the Nemesis model has led

to two refinements.

Firstly, although Nemesis allows an arbitrary number of (base, length) pairs to

describe a packet, it was observed that this feature is hardly ever used and con-

siderably complicates even the most straightforward code. Since in Nemesis

at most two iorecs are ever used (one for the header and one for the pay-

load), Expert limits packet vectors to two iorecs only. The usual argument

given for why multiple iorecs are needed is that lack of co-ordination in a

modular protocol stack means that neighbouring layers cannot assume space is

available in the packet buffer and so need to link in their own headers written

into private buffers. This line of reasoning does not take into account that the

protocol stack stays fixed once specified and will remain so for the duration of

a particular conversation. This can be exploited so that at stack configuration

time the various protocol layers ensure there is enough space for their headers

in the first iorec by reserving an appropriate amount. This relies on know-

ing the most common header size, which is true of the fielded protocols in the

Internet. Variable length headers (e.g. TCP or IP options) are be dealt with

by reserving for the largest common header size at stack configuration time.
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The packet classification stage determines the actual header size, and if head-

ers overflow the first iorec they continue in the second, into the application

area. This means that receiving oversize headers is possible, but incurs the ad-

ditional cost of either copying the application payload back over the extraneous

header bytes once they outlive their use, or writing applications which can deal

with the payload arriving at any address. This technique works well for TCP

options, where the connection MSS and SACK capability are negotiated dur-

ing connection establishment, but otherwise options (except SACK) are rare

during the data transfer phase.

The second refinement Expert provides over Nemesis relates to Packet Con-

texts. Packet Contexts are optional in Nemesis, and provide information to the

application-resident stack about original buffer allocation sizes, so that after

topping and tailing occurs, the original buffers may be recovered at a later stage

(most often as part of error recovery). Expert makes Packet Contexts manda-

tory and expands their remit to carry demultiplex-related information such as

the flow and receiving interface’s identifier. In this way Packet Contexts are

similar to MPLS labels. This allows multiple flows to share buffering and be

handled by the same path, while allowing the path to efficiently distinguish be-

tween them. Processing may also be keyed on incoming interface, a facility

particularly useful for firewall or encrypted VPN applications where packets

from “inside” and “outside” interfaces need separate treatment.

The major strength of the Nemesis model is retained: there is a closed loop of

packet buffers between the application and the driver. All buffers are owned

by the application, leading to clear accounting of the memory. The applica-

tion primes the device driver with empty buffers to be filled on packet arrival;

should packets for this application arrive and there are no free buffers the driver

drops the packets, controlling the load and minimising crosstalk to other flows.

The fixed number of buffers in circulation means that memory resources for a

particular application are both dedicated and bounded.

4.3 Transmit processing

Having eliminated the need for a separately scheduled device driver to perform

receive processing, this section now discusses how the same may be done for

transmit processing. The motivation for this is the same as for receive process-

ing: if instead of performing a user-to-user context switch, transmission can be
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triggered by a trap into the kernel then this should further reduce latency. Again

the small amounts of code involved should not greatly impact schedulability;

evidence that this is indeed the case is presented in Section 4.4.2.

4.3.1 Efficient explicit wake-ups

The model most Ethernet adaptors use is that of a transmit process which once

started by a driver command, asynchronously scans the transmit DMA ring

looking for frames to transmit. If the transmit process completes a full scan of

the DMA ring and finds no work, it stops and raises a status interrupt to inform

the driver of this fact.

The main advantage of this scheme is that the transmit costs scale with the rate

at which packets are queued. If packets are queued infrequently, then the driver

is continually starting the transmit process and being notified that it stops; this

overhead is not a problem since by definition the system is lightly loaded. If

the driver queues packets for DMA faster than they are drained, the driver need

only start the transmit process after queueing the first packet; after this further

packets may be queued without restarting the transmit process until the driver is

notified that it has stopped (when the ring drains). Note that this also minimises

the number of status interrupts generated.

These auto-tuning and self-scaling properties are attractive, so Expert uses a

scheme inspired by this model as Expert’s transmit API between applications

and the kernel-resident device driver. As in receive processing, the guiding

architectural principle here is that of a kernel-based emulation of a user-safe

Ethernet device.

Client applications have their own dedicated transmit queues, implemented as

I/O channels similar to those in Nemesis (Figure 3.2). Expert emulates an

asynchronous transmit process servicing these channels by running a transmit

scan in the kernel at strategic times. The transmit scan checks which user

I/O channels have packets available for transmission and loads them into the

hardware DMA ring, using a transmit scheduler to arbitrate access to the DMA

ring should multiple I/O channels have packets outstanding. Before loading a

packet onto the DMA ring, the transmit scan matches a template against the

packet’s header to ensure the application cannot transmit packets with forged

source address or port.

Network transmission in Expert is a two stage process: firstly the client queues
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Figure 4.2: Expert’s transmit scan.

one or more packet(s) in an I/O channel, then secondly the client explicitly

wakes the transmit scan, much as a device driver needs to explicitly start the

transmit process.

Figure 4.2 shows how the transmit scan is triggered initially by a client mak-

ing a kick tx CALLPRIV (1), and subsequently by the arrival of a transmit

complete interrupt (4). The transmit complete interrupt is raised by the adaptor

hardware when a frame has been transmitted, and causes the driver to do two

things: firstly, the transmitted buffer is returned to the client for re-use; sec-

ondly, another transmit scan is run, potentially loading more packets onto the

DMA ring (perhaps even from other clients’ I/O channels).

This means that once started, the transmit scan is regularly re-run by the trans-

mit complete interrupt, thus polling clients’ transmit queues. As packets leave

the DMA ring, more are loaded onto it. Once all clients’ queues drain, the

transmit scan loads no further packets onto the DMA ring and eventually the

ring clears, leaving the transmit subsystem back in the idle state.

The transmit scan is run as part of handling transmit complete interrupts for ef-

ficiency reasons. Because once started the transmit scan becomes self-clocking,

clients need only perform a kick tx CALLPRIV when there are no items on

the DMA ring (i.e. no transmit complete interrupt is expected). This means the

cost of explicitly waking the transmit subsystem is kept to a minimum when
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there are many packets to be transmitted – exactly the time when resources are

at their most scarce.

Clients discover the current status of the hardware by means of a PCSR (Pub-

lic Card Status Record) which is maintained by the device driver in a globally

readable stretch of memory. This allows clients to check whether a transmit

complete interrupt is pending before issuing a kick tx request, thus elimi-

nating redundant kicks. The device driver announces the location of the PCSR

when clients bind to I/O channels. The PCSR contains the kick tx CALL-

PRIV vector used to wake the transmit subsystem, and a boolean flag which is

set by the kernel-resident portion of the driver if the transmit scan will shortly

be run.

Under Nemesis, when a client queues a packet in an I/O channel an event is

sent to the network device driver domain, causing it to be marked runnable.

The act of queueing a packet implicitly wakes the driver domain. Later, when

the driver is next run by the system scheduler, the client’s packet is then de-

queued. This is in contrast with the scheme used by Expert described here,

where the device driver domain exists purely for control-path interactions and

is not involved in data path exchanges. Because Expert clients decide when

to invoke the kick tx CALLPRIV, they explicitly control when the transmit

subsystem is woken; and because it uses a CALLPRIV, a scheduler pass and

expensive user-to-user context switch is avoided. Furthermore, because of the

self-clocking behaviour of the transmit scan, transmission can be as cheap as

the few memory writes needed to queue a packet in a FIFO and check the

flag in the PCSR. When multiple clients are transmitting, one client’s trans-

mit queue may be drained as a result of another client’s kick tx CALLPRIV,

thus amortising the cost of entering the kernel by servicing multiple clients.

The cost of the transmit scan is accounted to the kernel for scans run from the

transmit complete interrupt handler; for scans run by an explicit kick the cost

is accounted to the client performing the kick. While this does introduce extra

crosstalk between clients, it was felt that the much increased system throughput

outweighed the slight increase in crosstalk.

In summary, Expert’s design uses an efficient implementation of explicit wake-

ups to increase the performance of the transmit subsystem by eliminating the

need for a user-space device driver on the data path. Section 4.4.1 below

presents results which quantify the performance of systems configured with

various device driver architectures, showing the benefit gained from moving

both transmit and receive processing into the kernel.
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“Transmit complete” interrupt mitigation

As already described, transmit complete interrupts are generated by the Eth-

ernet adaptor when the transmit DMA ring empties. However, most hardware

allows the transmit complete interrupt to be generated more often than this.

There exists a spectrum of possibilities, going from one interrupt when the

whole DMA ring drains to an interrupt for each transmitted frame, via inter-

mediate choices such as interrupting when the DMA ring is half empty. One

interrupt per frame certainly minimises the latency with which the driver learns

of the success (or otherwise) of transmissions, however the CPU overhead is

increased. Alternately, if the hardware raises an interrupt only once the DMA

ring is fully drained then the outgoing link will lie idle for the time taken to run

the device driver and have it queue further packets onto the transmit ring.

Expert’s solution to this dilemma is to dynamically adjust how often transmit

complete interrupts are raised. This relies on the adaptor having a flag in each

DMA descriptor specifying whether the adaptor should generate an interrupt

once the frame has been transmitted (such functionality is a standard feature of

the Intel 21143 family). When adding a descriptor to the DMA ring, the driver

always sets the new descriptor’s tx-complete flag. It also reads the previous

ring descriptor, and if the frame has not yet been transmitted then the driver

clears the tx-complete flag. In order to avoid the ring draining at high load

when no descriptors would have the tx-complete flag set, it is always set if the

descriptor is at the start or the mid-point of the ring, thus ensuring that the ring

is reloaded regularly.

This ensures that should a number of packets be queued in quick succession

only one interrupt will be generated, at the end of the burst. When packets are

queued into an empty ring slower than the ring’s drain rate then each packet

generates one tx-complete interrupt. In this manner the system automatically

adjusts to conditions, minimising interrupt load at high throughput while retain-

ing low-latency when lightly loaded. While this enhancement was originally

developed by me for Nemesis, I passed the idea and a sample implementation

over to the author of the Linux de4x5 driver and as a result it is now a standard

feature of this widely-deployed driver. Naturally, this feature is also present in

Expert.
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4.3.2 User-to-kernel packet transport

The I/O channels used by clients to transmit packets need to be different from

standard inter-domain I/O channels for two reasons. Firstly, because the trans-

mit scan (which dequeues packets from client I/O channels) is performed asyn-

chronously from within a transmit complete interrupt, the I/O channel’s en-

queue (PutPkt()) and dequeue (GetPkt()) methods need to be atomic

with respect to interrupts. A second consequence of GetPkt() being invoked

from within the kernel is that a blocking GetPkt() call should never be at-

tempted: supporting blocking within the kernel would require kernel threads

or some other mechanism to preserve CPU context between blocks and subse-

quent wake-ups. Expert does not use kernel threads, keeping the kernel small

and efficient.

The standard I/O channel implementation uses a pair of FIFOs which are them-

selves implemented using event counts designed for synchronisation between

user domains. They are unsuitable for use between user domains and the ker-

nel, and furthermore are over-engineered for the simple non-blocking case re-

quired in this particular circumstance. By only allowing the reading of an event

count’s value, rather than also allowing blocking until a particular value is

reached, the event count implementation need not maintain a list of blocked

threads. With this requirement lifted, a simple integer suffices to provide com-

munication (but not synchronisation) between user domains and the kernel.

These ultra-lightweight event counts are called NBECs (Non-Blocking Event

Counts).

NBECs

An NBEC is the address of a word of memory. Reading the NBEC is simple:

the address is dereferenced to get the event count’s value. Incrementing the

NBEC is only slightly harder: a load, increment, store instruction se-

quence must be run without being interleaved with an NBEC read operation.

In this case, this means without taking an interrupt part way through the se-

quence. On the Intel IA32 and IA64 architectures, this can be achieved with

a lock inc instruction. RISC architectures lack atomic increments of mem-

ory locations, so multiple instructions are required to read, increment and write

back a memory location. Since untrusted applications should not be allowed

to disable interrupts to make such multi-instruction code atomic, the only re-

maining approach is to use cas (compare-and-swap) or ll/sc (load-locked
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again: ld r1 <- (r0)

add r2 <- r1, #1

cas (r0), r1, r2

jne again

Figure 4.3: Pseudo-code to atomically increment a word.

and store-conditional). For example, Figure 4.3 gives code to increment the

NBEC at the address in r0. If another increment operation modifies the event

count’s value between the load and the cas instructions, then the cas fails, and

the operation is begun anew.

NBECs are directional, like any other event count. The event transmitter must

have read/write access to the memory word used, while the receiver must have

read access to the word. If the transmitter also allocates the NBEC, then this is

easy to arrange: the NBEC may be allocated on any publicly-visible heap the

transmitter chooses. However, if the transmitter deems the values transmitted

to be sensitive, it is necessary to allocate the NBEC on a private heap shared

only with the receiver’s protection domain.

One major restriction of this scheme is that the receiver must trust the trans-

mitter not to make the memory inaccessible at an unfortunate time. Where the

receiver is the kernel, and the transmitter an untrusted client, this cannot be

relied upon. Moreover, cleanly closing NBECs in the event of the death of a

transmitter is also a problem.

There are a number of solutions to this problem, but none of them are particu-

larly compelling. The receiver could catch memory faults resulting from read-

ing a closed (or invalid) NBEC, but this requires much machinery and would

complicate fault dispatching in the common case, for little gain in the rare case

that an NBEC is implicated. Alternatively, NBECs could be defined to require

double-dereference to read or increment, thus allowing a central location (e.g.

the Domain Manager) to mark dead NBECs as such. However, this would need

code similar to that in Figure 4.3 on all architectures to implement both reads

and increments atomically, thus destroying the simplicity which was originally

so attractive.

Therefore, Expert uses the Binder1 to allocate NBECs from its own memory

regions, whose continued availability it can ensure. NBECs have two additional

flag bits describing whether the receiver or transmitter has closed this channel:

1The Binder is a trusted system service used to set up user-to-user event channels.
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Figure 4.4: I/O channel, kernel side non-blocking.

if either are set then the channel has become disconnected and the remaining

endpoint can take action to recover. When such action has been taken, the other

bit is set: channels with both bits set are closed by both transmitter and receiver

and so may be garbage collected by the Binder. The current Expert prototype

only allows allocation of NBECs and discards rather than re-using them when

closed, however this two-bit scheme should solve the problem in an acceptable

manner.

Interrupt-atomic FIFOs and I/O channels

Interrupt-atomic I/O channels are implemented using two FIFOs each with one

NBEC and one standard event count to control access to slots in a shared buffer

as shown in Figure 4.4. There are four “flavours” of FIFO, depending on

whether the producer and/or consumer side is non-blocking. Since only the

kernel side of the I/O channels need to be non-blocking, only two of these

possible combinations are used for user-to-kernel transport in Expert.

The arrangement of blocking and non-blocking event counts is such that when

the producer (the client in user-space) queues a packet for transmission by call-

ing PutPkt(), the client blocks if there is insufficient space left in the top

FIFO. A successful client PutPkt() increments channel 0 (an NBEC) and

thus does not wake the user portion of the device driver. Later the kernel-

resident transmit scan polls the I/O channel by calling GetPkt(), which reads

86



the NBEC but cannot block should the top FIFO be empty. As previously dis-

cussed, blocking is undesirable anyway. When the transmit scan does dequeue

a packet from the top FIFO, it increments channel 1, thus waking the client if

it had blocked in PutPkt() due to a full top FIFO.

At some later stage, the packet’s transmission completes and the buffer is col-

lected by the kernel-resident driver for return to the client as part of the transmit

complete interrupt processing. Now the kernel performs a PutPkt() on the

lower FIFO; the kernel cannot block waiting for space to become available in

the FIFO, but again this would not be desirable. Lack of space is caused by the

client being slow to collect tx acknowledgements, and only affects this single

client, not the entire system. Also, the client can ensure the FIFOs are deep

enough to hold as many buffers as it allocates, so that even in the extreme case

when all packet buffers are awaiting collection by the client they can all fit. So,

assuming there is room in the lower FIFO, the kernel queues the transmitted

packet, and increments the channel 1 event count, thus unblocking the client if

it attempted a blocking GetPkt() when there were no tx acknowledgements

to collect.

In this manner, kernel-facing FIFO interfaces are non-blocking, while user-

facing FIFO interfaces support blocking. Also, the user-space portion of the

device driver is never woken by clients, since the NBECs are explicitly polled

by the kernel in response to a kick tx CALLPRIV. This ensures the user

portion of the device driver is not on the data path, and leads to the performance

benefits described in Section 4.4 below.

Application control over batch sizes

The FIFO between the driver and the application means the cost of trapping

to the kernel can be amortised over multiple packets, at the cost of increased

latency. Because FIFO enqueue and dequeue operations are exposed to the

applications, applications can control whether they operate in batch mode, at-

tempting to process as many packets as possible, or in packet-at-a-time mode,

where latency is minimised at the cost of extra kick tx calls. For example

Figure 4.5 shows latency-optimised code to echo all packets received, leading

to one kick per packet. Figure 4.6 shows the same application re-written to

batch as much work together as possible, leading to higher latencies but fewer

kicks thus making more CPU time available to other applications. Which vari-

ant should be used depends on the specific application’s latency requirements;
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while(1)

{

IO_Rec recs[2];

uint32_t nrecs;

/* Receive packet. Block until get one. */

nrecs = IO$GetPkt(rxio, recs, 2, FOREVER);

/* Queue it for transmission. */

IO$PutPkt(txio, recs, nrecs);

/* Send now. */

IO$Flush(txio);

/* Collect TX acknowledgement, potentially blocking. */

nrecs = IO$GetPkt(txio, recs, 2, FOREVER);

/* Send empty buffer back to driver for future RX */

IO$PutPkt(rxio, recs, nrecs);

}

Figure 4.5: Latency-optimised packet reflector.

this scheme allows explicit programmer control over the amount of batching.

4.3.3 Transmit scheduling

Although with Ethernet a station’s access to the media cannot be guaranteed,

there are still reasons to schedule individual applications’ access to the media.

Non-local flows may need to conform to a traffic specification in order to meet

an SLA (Service Level Agreement) with the ISP. Within this aggregate, individ-

ual flows may have differing priorities or timeliness constraints. Another use

for transmit scheduling is ACK-spacing, which reduces network congestion.

Scheduling media access by applications allows the NEOS to enforce such

constraints. There exists much prior research on packet scheduling algorithms

[Nagle87, Demers90, Parekh93, Parekh94, Floyd95], and so this dissertation

does not seek to extend this large body of work. Instead it presents a sched-

uler framework, delaying the choice of packet scheduler until system link time.

The framework also simplifies a scheduler’s implementation by separating the

fundamental scheduler algorithm (responsible for selecting which flow should

transmit next) from mundane tasks such as dequeuing the flow’s packet, check-

ing its source endpoint is correct, and enqueueing it on the hardware’s transmit

DMA ring.

Once again, transmit scheduling is a facility which should ideally be provided
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while(1)

{

IO_Rec recs[2];

uint32_t nrecs;

/* Block waiting for first packet. */

nrecs = IO$GetPkt(rxio, recs, 2, FOREVER);

do {

/* Queue it for transmission (no context switch). */

IO$PutPkt(txio, recs, nrecs);

/* Get next packet or break out if there isn’t one. */

} while (nrecs = IO$GetPkt(rxio, recs, 2, NOBLOCK));

/* Start sending queued packets now. */

IO$Flush(txio);

/* Collect any TX acknowledgements and recycle the buffers. */

nrecs = IO$GetPkt(txio, recs, 2, FOREVER);

do {

/* Send empty buffer back to driver. */

IO$PutPkt(rxio, recs, nrecs);

} while (nrecs = IO$GetPkt(txio, nrecs, 2, NOBLOCK));

}

Figure 4.6: Batching packet reflector.

by smart hardware. Following the Expert architecture, a smart device is emu-

lated by the kernel to allow dumb Ethernet devices to be safely shared amongst

untrusted applications.

Expert’s I/O scheduling abstraction is based on Nemesis, which is in turn based

on the ANSA Project’s concept of an Entry: I/O channels requiring service

are bound to an IOEntry; one or more service threads call the IOEntry’s

Rendezvous() method to collect the next quantum of work to be performed

(i.e. packet), or block if there is no work currently. Thus, an instance of an

IOEntry object encapsulates both the scheduling discipline and the list of

principals (I/O channels) to be arbitrated between.

Expert introduces NBIOEntry as a sub-type of IOEntry; an NBIOEntry

has a Rendezvous() method which instead of blocking the calling thread

returns the time at which the Entry would like to regain control, its wake-up

time. An IOEntry needs to block in two circumstances: either because all

I/O channels have no data pending transmission, or all have exceeded their rate

limit. The wake-up time is the special value infinity in the first case, or the

time when the first rate-controlled flow becomes eligible to transmit again in

the second case.
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An NBIOEntry is needed because Rendezvous() is called as part of the

transmit scan in kernel mode with interrupts disabled, and thus blocking would

deadlock the kernel. Instead, the transmit scan uses the returned wake-up time

to set a callback to run the transmit scan function again at the wake-up time.

This may involve programming the timer hardware to generate an interrupt at

this time if there is no interrupt already set for an earlier time.

The overall behaviour is that the timer hardware is used to pace outgoing pack-

ets, and thus the granularity of the scheduler is limited only by the system

timer’s resolution. Small inter-packet gaps might require a high rate of timer

interrupts, potentially swamping the CPU. However this is not likely, as this

high timer interrupt rate is needed only when the system has only a single

high bitrate I/O channel active. As more I/O channels become active, the

NBIOEntry needs to block less often since the probability of all channels

being idle or ineligible simultaneously drops, and so fewer timer interrupts are

needed.

Given that transmit scans are run from timer as well as tx-complete interrupts,

a further reduction in the number of client kicks is possible. The PCSR also

contains a timestamp giving the time at which the next transmit scan will run.

This allows latency-aware clients to avoid performing a kick tx if there will

be a scan soon enough to meet their needs. The likelihood is that most clients

will not be latency-aware and thus unnecessary kick tx calls will be made,

however the information is trivial to publish so it is made available anyway.

At high loads the transmit scan will almost always be run from the transmit

complete interrupts anyway, so clients can just check the boolean in the PCSR

rather than performing 64-bit arithmetic on timestamps to discover if a kick is

needed.

A further optimisation Expert makes is that kicks are channel-specific. This al-

lows the NBIOEntry to be notified of individual channels becoming runnable

when previously they had no packets pending. This additional information

means the scheduler implementation can segregate channels into those which

are active, and those which are waiting for more packets from client applica-

tions. By only scanning channels on the active list, the scheduler is made more

efficient in the presence of many inactive channels.

Expert has a number of schedulers provided. The basic round-robin sched-

uler demonstrates how simple a scheduler need be: the complete code for the

Rendezvous() method is given in Figure 4.7, and the remaining code to
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finish the definition takes approximately 150 lines of boiler-plate.

4.4 Results

This section presents results quantifying the performance of systems using a va-

riety of different device driver configurations, and shows that Expert’s division

of labour allows tight control over both CPU and network resources consumed

by packet flows, without undue penalties in traditional metrics such as latency

or throughput.

Five device driver configurations are measured, exploring all combinations of

transmit and receive processing occurring either in kernel or user-space, and

comparing them to Linux as an example of a system with all components (in-

cluding protocol processing) executing in the kernel.

Linux Version 2.2.16 of the Linux kernel, using version 0.91g of the tulip de-

vice driver. Interrupts, receive processing, transmit processing as well

as protocol processing all occur in the kernel. Linux was chosen as an

operating system which has been extensively tuned, and thus gives a ref-

erence performance achievable on the test hardware when no particular

attention is given to QoS issues.

kRX-kTX This is the configuration that is proposed by this dissertation, the Ex-

pert architecture. Both transmit and receive processing is performed in

kernel mode; no portion of the user-space device driver is on the data

path. Protocol processing occurs in the user application, unlike Linux.

The packets are fully demultiplexed on arrival, rather than being demul-

tiplexed in a layered fashion interleaved with protocol processing, as in

Linux. Also, user applications can transmit without trapping to the ker-

nel because of the transmit scan; Linux requires a kernel trap per packet

transmitted.

uRX-kTX Receive processing is moved to the separately-scheduled user-space por-

tion of the device driver. Device interrupts are converted to events by

the kernel, and all interrupt processing is performed by the user-mode

device driver. Transmissions are handled in the kernel, with user appli-

cations issuing tx kick CALLPRIVs as described in Section 4.3. The

transmit scan is run both in kernel mode via the CALLPRIV or a kernel
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/*

* Wait for any IO channel to become ready.

* "to" is the absolute time to time out.

*/

static IO_clp Rendezvous_m(NBIOEntry_clp self,

/* IN OUT */

Time_ns *to)

{

nbioentry_st *st = self->st;

bindlink_t *this, *end;

uint32_t nrecs;

/* Scan the binding list starting from the previous binding, and

* return the next one with work to do. */

/* exit if: 1) scanned entire list, but no bindings have work (ret = NULL)

* 2) found binding (ret = binding->io)

*/

this = st->last;

if (!this)

return NULL; /* no bindings registered yet */

end = this; /* get back here => didn’t find anyone */

do {

this = this->next;

if (this == &st->bindings)

this = this->next;

/* Is there work on this IO channel? */

IO$QueryGet(((binding_t*)this)->io, 0, &nrecs);

if (nrecs)

{

st->last = this;

return ((binding_t*)this)->io;

}

} while (this != end);

/* Block for whatever time was passed in: */

return NULL;

}

Figure 4.7: Round-robin transmit scheduler
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timer callback, and also from user-space in response to transmit com-

plete interrupts. Interrupts are occasionally disabled by the user-level

driver while it runs to enforce mutual exclusion between itself and ker-

nel timer callbacks. Thus, the user-space device driver is on the data

path to handle interrupts and demultiplex arriving packets, but not for

transmission. Protocol processing occurs in the user application.

kRX-uTX Interrupt handling and receive processing happens in the kernel as a di-

rect response to interrupts being raised. Transmission happens in user-

space; user applications queue their data in standard I/O channels, and

the user portion of the device driver services the channels when it is next

given the CPU by the system scheduler. The transmit scan is not used in

this configuration. The user-level portion of the driver blocks a thread in

the network scheduler rather than using a kernel timer triggered callback

to idle during inter-packet send gaps. Protocol processing occurs in the

user application.

uRX-uTX Both transmit and receive are handled in user-space, the kernel does

nothing other than convert interrupts into events sent to the user-level

device driver. This is similar to the classic Nemesis model. The device

driver is fully on the data path, needed for interrupt processing, receive

demux, and transmit processing. Protocol processing occurs in the user

application.

In all the follow experiments, fox (the machine under test) is a 200MHz Intel

Pentium Pro, with 32MB RAM and a DEC DE500BA 100Mb/s Ethernet adap-

tor (which uses the 21141 chipset). Fox runs the appropriate operating system

being tested. The machines meteors and snapper are used as traffic gen-

erators or monitors in some of the following experiments. Meteors is a dual-

CPU 731MHz Intel Pentium III with 256MB of RAM and has an SMC 1211TX

EZCard 10/100Mb/s Ethernet adaptor based on the RealTek RTL8139 chipset.

It runs Linux 2.4.2 SMP with the 8139too driver version 0.9.13. Snapper

is also a dual-CPU 731MHz Intel Pentium III, and has 896MB RAM and the

same Ethernet adaptor as meteors. Snapper runs Linux 2.4.3 SMP and

the same Ethernet driver as meteors. A Cisco Catalyst 3548XL switch con-

nects the test rig together. Since it has a backplane forwarding bandwidth of

5Gb/s [Cisco99] and 48 ports each at 100Mb/s is only 4.8Gb/s, it is effectively

non-blocking in this configuration.

The rationale behind using these faster machines as load generator and monitor
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station is that it makes overloading the test machine easy, and increases the

probability that the monitoring station will be able to capture packets without

losses. Looking at the behaviour of different systems when they are overloaded

is instructive because this is where differences in architecture matter – if a

system cannot shed load in a controlled fashion then it cannot offer different

service levels, and is vulnerable to denial of service attacks.

4.4.1 Traditional performance metrics

This section examines peak bandwidth, latency, and forwarding performance

for the five systems described above. These metrics are the dominant way of

characterising a network element from an external perspective. Little attention

is paid to QoS metrics; these are fully covered in Section 4.4.2.

Mean sustained bandwidth

This experiment measures the maximum sustainable transmit bandwidth achiev-

able by each test configuration, and whether it depends on the number of clients

competing to transmit. Of interest here is not so much the absolute maximal

bandwidth available, but its jitter – how does the presence of additional clients

affect how smooth their flows are?

The setup is as follows: fox runs between one and six sender clients, each at-

tempting to transmit MTU-sized UDP datagrams as fast as possible. On Expert

and Nemesis the sender clients are given CPU and network scheduler parame-

ters allowing them to make use of any extra time in the system, thus emulating

the best-effort behaviour of Linux; this also ensures that the schedulers do not

artificially limit performance. Snapper runs a listener process for each sender

which discards the received output, and uses tcpdump to monitor the arriving

packets. The packet arrival times are processed to calculate the mean band-

width over successive 200ms intervals, and these bandwidth samples are then

averaged to give an overall mean bandwidth for each configuration. The 95%

confidence interval of the samples is also calculated, giving a measure of the

jitter in the stream.

Figure 4.8 shows how for 1, 2, 4 and 6 competing clients, the bandwidth under

both Linux and Expert is independent of the number of clients: both manage

just under 95.7Mb/s regardless of how many clients compete for the available
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Figure 4.8: Mean sustained bandwidth vs. number of clients.

bandwidth. Nemesis’ performance degrades as more clients are added; it is not

clear how its performance might behave with more clients because attempts

to run the experiment with more than 6 clients met with difficulties due to

insufficient memory.

The 95% confidence intervals are more interesting: Nemesis has the largest

(3.9Mb/s), while Linux shows a slightly lower jitter than Expert, having a

confidence interval of 0.05Mb/s (compared to Expert’s 0.07Mb/s). Expert is

marginally faster overall, reaching 95.6Mb/s while Linux gets 95.5Mb/s.

Thus, Linux and Expert are indistinguishable when considering aggregate band-

width. The reality is much different if we compare the behaviour of individual

client flows, however.

Figure 4.9 shows the same 2-, 4- and 6-client experiments discussed previously,

but breaks down the bandwidths into one bar per client. Here we can see that

as the number of competing clients increases, the individual flows increase in

jitter. The 6-client experiment shows the largest difference between the three

OSes, and Linux is seen to share the bandwidth out unfairly, and with large

oscillations between the clients (confidence interval of 10.7Mb/s). Nemesis

is more stable, with a confidence interval of 2.24Mb/s, but Expert is almost

95



0

5

10

15

20

25

30

35

40

45

50

2 4 6

B
an

dw
id

th
 (

M
b/

s)

Number of competing clients

Expert
Linux

Nemesis

Figure 4.9: Per-client bandwidth.

two orders of magnitude more stable than Linux, with a confidence interval of

0.201Mb/s. Furthermore, Expert’s confidence interval is this low regardless of

the number of clients.

Also, neither Expert nor Nemesis dropped any packets, while Linux provided

no back-pressure at all to the transmitting clients. Once more than two clients

were competing for the same output bandwidth, Linux started silently dropping

between 72% and 75% of the packets presented for transmission by clients.

This failure is noted in the Linux sendto(2) manpage:

ENOBUFS The output queue for a network interface was full. This gener-

ally indicates that the interface has stopped sending, but may be caused

by transient congestion. (This cannot occur in Linux, packets are just

silently dropped when a device queue overflows.)

To summarise: Expert can transmit marginally faster, and can share available

bandwidth significantly more fairly and smoothly than either Linux or Neme-

sis. Nemesis has lower jitter than Linux when two or more clients compete for

bandwidth, but lower overall performance.
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Latency

Low latency of packets traversing a network stack is important because as link

speeds increase, the time spent by a packet queued in a buffer in a NEOS be-

comes a large component of the total end to end latency. Furthermore, since

latency is cumulative, even small latency contributions in a NEOS can add up

to significant delays in the complete network.

Latency varies with load, and should be at a minimum on an unloaded system.

Therefore, this experiment measures the latency of the system under test by

sending a single UDP packet to a user application which simply reflects the

packet back to its source; the system is otherwise unloaded.

The system under test is fox. Meteors runs a UDP pinger application which

writes a sequence number and cycle counter timestamp into each UDP ping

packet sent. When replies are received, their round trip time is calculated from

the cycle counter value in the packets and logged to a file. Several UDP pings

are sent, spaced by around 100ms to ensure the system returns to the idle state,

and the average UDP ping time is plotted. Meteors sweeps through a range

of packet sizes sending 400 pings at each size before moving onto the next.

The UDP payload sizes used are 8, 12, 16, 20, 24, 28, 32, 64, 80, 128, 256,

400, 512, 700, 1024 and 1400 bytes. The predominance of small sizes is to

probe for any special case handling of small packets, for example TCP ACKs.

Also, small packets may arise as a result of cross-machine RPC, where latency

greatly affects overall performance.

Figure 4.10 shows how the UDP ping time for the five systems under test vary

with packet size. The lines all have the same gradient, showing that all sys-

tems have the same data-dependent processing costs, however their different

absolute displacements quantify each system’s per-packet overhead.

The uRX-uTX configuration has the highest per-packet overhead which is un-

surprising given that 3 context switches are required to process each UDP ping

packet. Linux has the lowest overhead, closely followed by Expert. The two

intermediate systems, uRX-kTX and kRX-uTX, are someway between Expert

and uRX-uTX. Looking at the smallest packet size (8 bytes), the gains expected

by calculating the sum of the improvement of each of the two intermediate

systems is 0.156ms, which predicts accurately the measured improvement of

Expert over uRX-uTX of 0.168ms. Expert is better than expected presumably

due to the benefit of entirely eliding the user-portion of the device driver from
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Figure 4.10: Latency: UDP ping time against packet size.

the data path.

Forwarding performance

This experiment characterises the systems’ performance under increasing load.

In this experiment, meteors generates a flow of packets which are received by

fox and forwarded to snapper. The flow ramps up in rate from 1000pps to

19,000pps, sending 600 packets at each rate. The packets are UDP packets with

32 bytes of payload holding sequence number, timestamp and checksum infor-

mation. Meteors logs the send time and sequence number, while snapper

logs the arrival time and sequence number seen, allowing post-analysis of the

logs to calculate the average packet rate over each flight of 600 packets. Both

sender and receiver rates are calculated, and the sequence numbers are used

to match them up. This allows a graph of input rate against output rate to be

plotted.

Figure 4.11 shows how the five systems under test performed as the offered

load was ramped up. Configuration uRX-uTX, with the device driver fully on

the data path, cannot handle more than 3300pps, and in fact as the offered load
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Figure 4.11: Forwarding performance against load.

increases further actually gets worse, dropping to around 1400pps at loads over

10,000pps.

The intermediate systems (uRX-kTX and kRX-uTX) perform a little better,

managing 3800pps before dropping back down to 2400pps at offered loads

over 10,000pps.

Expert does much better, managing up to 9000pps before losses start to occur,

reaching a peak of 11,500pps before settling back to 9000pps at maximum

load, at which point it is dropping just over 50% of packets sent to it.

Linux does very well, only starting to drop at 12,500pps. However, once over-

loaded Linux suffers very badly from livelock. Overload happens at input rates

somewhere over 17,000pps, and is catastrophic – immediately almost 60%

packet loss is seen. The outlying point where Linux seems to recover is in

fact an unstable data point where Linux is queueing packets faster than it can

drain them, so momentarily it achieves very impressive performance, which

quickly degrades to the cluster of points at around 8000pps on the y-axis.

So, while Expert does not match Linux’s peak performance, Expert manages

better when overloaded and comes close to Linux’s performance. Again, the
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fact that neither of the intermediate schemes approach Expert’s performance is

due to the fact that the device driver is still on the data path, impeding perfor-

mance.

4.4.2 QoS metrics

Jitter due to kernel resident driver

Because Expert places the data handling portions of network device drivers in

the kernel, this may increase the jitter in CPU guarantees since interrupts are

disabled for longer periods of time. This experiment places a lower bound on

the jitter by measuring how long it takes to process an interrupt for the Ethernet

device. This is a lower bound on user-space visible jitter because while an

interrupt is being processed the scheduler is no longer in control of the CPU,

and so no scheduler would be able to offer guarantees at finer timescales than

the time taken to service interrupts.

Each kernel is instrumented to record the number of cycles it takes to run the

device driver every time it is entered due to an interrupt. These samples are

aggregated and counted to form a distribution. Again, fox is the machine

under test and it runs the instrumented kernel. To load fox, meteors is

configured to send it 32-byte UDP packets with exponentially distributed inter-

send times with a mean of 125µs (corresponding to 8000pps.)

An exponential distribution is picked because measurement of real traffic ar-

riving at my own workstation showed that packet inter-arrival times were ex-

ponentially distributed. The mean is chosen by consulting Figure 4.11 to find a

rate which can be handled by Expert. By picking a load near the middle of the

graph and using an exponential distribution, a wide portion of the load-space is

covered, including rates which Expert cannot handle without dropping packets.

While varying the packet size is also possible, it was felt that the range of loads

explored by varying the arrival rate was sufficient.

The experiment lasts five minutes, during which time approximately 2.4 mil-

lion packets are sent at rates ranging from 120pps to 19,000pps, thus covering

the full spectrum of conditions from fairly idle to fully loaded. Fox forwards

the packets to snapper (which discards them), so this experiment exercises

both transmit and receive portions of the system under test.

Figure 4.12 shows how long it takes to service an IRQ for the Ethernet device
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Figure 4.12: Distribution of time taken to process an Ethernet IRQ.

under Linux, Expert and Nemesis. A predictable system is one where on aver-

age interrupts are likely to be disabled for a short length of time and so do not

introduce excessive jitter into the schedule. The size of the distribution’s tail

must also be considered: a long-tailed distribution indicates a system where

occasionally the scheduler loses control for very large amounts of time, and

this will increase the jitter in client CPU allocations. For example, the distri-

bution for Linux shows just such a long tail, reaching up to 0.5ms to process

an interrupt in the worst case; this is because Linux is also performing protocol

processing in the kernel before returning control to the interrupted application.

By comparison, Nemesis has both a much tighter distribution and a signifi-

cantly lower mean (5µs versus Linux’s mean of 39µs). Nemesis’ worst-case

IRQ processing time is 8µs, which is smaller than Linux’s best-case (10µs).

Expert’s performance is somewhere in between the two extremes, as expected.

Expert’s mean is 30µs, which is better than Linux but much worse than Neme-

sis. Expert is designed to give high performance without losing predictability:

this is evinced by the small size of the distribution’s tail compared with Linux.

Expert’s worst-case time is 95µs, far less than 520µs for Linux. This is almost

certainly due to not performing protocol processing as part of IRQ processing.2

2Strictly speaking, protocol processing in Linux happens in a bottom-half handler after IRQ
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Figure 4.13: Distribution of IRQ times for different driver models.

To discover which aspect of Expert’s device driver model accounts for its pre-

dictable IRQ processing time, this section now presents the results of running

the same experiment on the kRX-uTX and uRX-kTX configurations, compar-

ing them against Nemesis (i.e. uRX-uTX) and Expert (i.e. kRX-kTX).

Figure 4.13 presents kRX-uTX and uRX-kTX alongside the Nemesis and Ex-

pert results from the previous graph. This shows that doing the receive process-

ing in the kernel is what pushes the minimum and mean IRQ processing time

up: both Nemesis and uRX-kTX have almost identical distributions. kRX-uTX

shows almost the same behaviour as Expert, except that Expert has a slightly

tighter distribution; this is presumably because Expert offers more opportuni-

ties to amortise IRQ work, so work queues do not build up to the same extent.

Table 4.1 shows how many IRQs were processed during each experiment, as

well as the average number of IRQs needed to forward each packet. Both

Nemesis and uRX-kTX place interrupt handling in user-space, and so take far

fewer interrupts than the three other configurations. This is because once the

kernel has converted an interrupt into an event to the device driver domain, that

handling. However, IRQs remain masked for the entire time and the scheduler is not entered, so

an interrupted process loses the CPU for at least this long.
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OS IRQs processed IRQs per packet

Linux 4,140,000 1.73

Expert 3,840,000 1.60

kRX-uTX 2,590,000 1.08

uRX-kTX 1,540,000 0.64

Nemesis 1,490,000 0.62

Table 4.1: Number of IRQs processed during experiment.

interrupt is masked until the driver is later run. It is unmasked once the driver

has performed whatever device-specific handling is needed. While it might

appear that these are more efficient results, note that this means the device is

ignored for longer, which can cause the receive DMA ring to overflow (see

table 2.1).

Forwarding costs

One way to measure of the efficiency of each driver scheme is to monitor how

much CPU time is left free for other user applications while forwarding pack-

ets – an efficient scheme will leave more CPU time free than an inefficient

scheme. As well as efficiency, it is desirable to remain in control of how much

time is consumed in forwarding packets. This experiment measures the frac-

tion of CPU time used to forward packets on Expert and Linux, both when a

forwarder application is run as a best-effort task on a loaded system, and when

the forwarder application has been given a guarantee (on Expert) or maximum

priority (on Linux).

In this experiment fox is again used to forward packets from meteors to

snapper. Fox runs two user-level processes: one which forwards the pack-

ets, and a second which emulates a CPU-bound process by consuming as much

CPU time as it is allocated. This “slurp” application3 loops reading the pro-

cessor cycle count register and maintains an exponentially weighted moving

average of how many cycles it takes to make one pass around its main loop; it

declares itself to have been de-scheduled if the time to make a pass exceeds its

current estimate by more than 50%. The fraction of the CPU received by slurp

is calculated by dividing the runtime by the sum of the de-scheduled time and

the runtime (i.e. all cycles available). For example, running slurp on an idle Ex-

3slurp is based on code originally written by Keir Fraser.
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Figure 4.14: Fraction of CPU used in forwarding packets.

pert system reports that 97.5% of all cycles are available to user applications,

whilst an idle Linux system makes 99.8% available.

The traffic profile generated by meteors is as before: 32-byte UDP packets

with exponentially distributed inter-send times having a mean of 125µs. The

machine snapper records the sequence numbers of forwarded packets, and is

used to calculate how many were lost. The experiment runs for approximately

48 seconds, sending around 400,000 packets.

Figure 4.14 shows the percentage of CPU time needed to forward packets, cal-

culated from the slurp data monitoring free CPU time. This way of calculating

used CPU ensures that that all forwarding costs are included irrespective of

their source: kernel, driver or application. Nemesis was not included in these

tests since at this load it loses approximately 75% of the test traffic, freeing

CPU time which it allocates generously to the slurp application which receives

around 58% of the machine’s cycles. However, at 75% loss it cannot really be

considered to be forwarding packets, so is excluded.

The two left-hand columns compare Expert and Linux when the forwarder is

given a best-effort (BE) scheduling guarantee. In this case Linux does marginally

better, achieving slightly lower CPU cost and a lower loss rate, for much the
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same jitter. However, if Expert is configured to give the forwarder application

a guarantee of 3ms CPU time every 5ms (i.e. 60%), and under Linux the for-

warder is given a “nice” value of -20 (the highest priority available under Unix)

then the two right-hand columns show the resulting used CPU and loss rates.

It can be seen that Expert is in control of resources expended, allowing a much

larger percentage of the CPU to be used,4 resulting in an aggressive reduction

in the loss rate. The effect under Linux is visible, but does not greatly affect

the loss rate: Linux is unable to grant the forwarder application any more CPU

time. This shows that while Expert may not perform quite as efficiently as

Linux, it remains in control of the CPU resources it hands out.

4.5 Summary

This chapter described how Expert virtualises network devices at a low level

of abstraction, placing the minimal functions needed for protection and multi-

plexing within the kernel while leaving protocol processing to fully scheduled

user-space applications. Expert’s network device architecture can summarised

as a kernel-based emulation of a user-safe network device, allowing controller-

less network devices to be treated as next-generation smart devices.

To achieve this, Expert introduces the following novel mechanisms:

• Transmit descriptor re-writing. Application-supplied latency toler-

ances can be used to calculate receive interrupt mitigation parameters,

and on the transmit side DMA descriptor re-writing is used to limit

transmit complete interrupts. Reducing the number of interrupts taken

increases the amount of work which can be done by the interrupt han-

der once entered, thus amortising the cost of taking the interrupt over

multiple packets. Descriptor re-writing to coalesce transmit complete

interrupts reduces the interrupt rate by a factor of 15.6 for a DMA ring

size of 32, and saves 19.4% of CPU time.

• Asynchronous communication. Where synchronisation between user-

space and the kernel is not needed, communication can take place by

publishing data in a pre-arranged location. This technique is used both

in the way user transmit channels are speculatively polled by the kernel

4The time used is higher than the 60% guarantee given because the measured time includes

all overheads, not just the time spent by the forwarding application with the guarantee.
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by the transmit scan, and in the way that the kernel makes the interface

status available in the PCSR. This feature makes possible the following

two mechanisms:

• Transmit scan. As the transmit DMA ring drains, the transmit scan

optimistically polls user I/O channels for further packets which may be

loaded onto the DMA ring. This amortises the cost of entering the kernel,

either due to a user transmit wake-up, a transmit complete interrupt, or

the timer used for rate control. The transmit scan reloads an average

of 7.9 packets per scan at high loads, thus saving that many user-kernel

crossings, and so saving 24% CPU.

• Explicit wakeups. By reading the PCSR, user applications discover

whether a transmit scan will shortly be performed, allowing the applica-

tion to explicitly wake the transmission subsystem only when absolutely

necessary. For example, when two non-batching transmitter clients com-

pete, reading the PCSR allows 95% of wake-ups to be elided as unnec-

essary and reduces the CPU time required by 1.5%. More competing

clients allow greater savings: with four clients 99.9% of wake-ups are

elided, and 1.7% CPU is saved. This is because as more clients are mul-

tiplexed together, the transmission subsystem is more likely to be awake

already: efficiency increases as load rises.

• Batch size control. Expert allows applications to trade efficiency against

jitter by controlling how many packets are batched together before pro-

cessing them. Some applications need low jitter packet handling, some

are jitter-tolerant: Expert allows each to be handled appropriately. For

example, a packet reflector configured to process 32 packets per batch

uses 5.4% less CPU time than a jitter-reducing one which processes each

packet as soon as possible. The measured jitter for the batching reflector

is 8.4% worse than the non-batching reflector.

A comparative evaluation of Expert and intermediate device driver configu-

rations shows that the full benefits of the Expert architecture are only realised

when both transmit and receive processing is performed in the kernel; the inter-

mediate configurations show some benefit over placing the device driver fully

in user-space, however the difference is not compelling. The comparison with

Linux is favourable, with Expert showing marginally lower raw performance

traded for major increases in livelock resistance, stability and control over how

resources are consumed.
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Chapter 5

Paths

The previous chapter described how Expert eliminates from the data path shared

servers that drive network devices in user-space. However, shared servers are

still needed for a variety of reasons. This chapter examines those reasons, and

describes how some classes of server are unnecessary: their functionality can

be replaced by a limited form of thread tunnelling.

Servers fall into two categories: those on the control path used to monitor,

configure, and control the system as trusted mediators of exchanges; and those

on the data path for protection, security, correctness, multiplexing or reliability

reasons. Servers on the control path are uninteresting from a performance point

of view – their impact is limited. The performance of servers on the data path,

however, is a critical component of the overall performance of the system. This

chapter describes how the functions typically performed within such servers

may be executed directly by application threads in a secure manner.

5.1 The case for tunnelling in a vertically structured OS

We assume that a vertical approach has already been taken in designing the

system: this means that all processing that untrusted user applications are able

to perform themselves happens within their own protection domains using their

own guarantees. Any processing that applications cannot be trusted with must

happen in a server, which may be for a number of different reasons:

Correctness. The application cannot be trusted to correctly implement the
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server functions. For example if multiple applications get data and place

it in a shared cache for subsequent use, they must agree on cache re-

placement policies, and implicitly trust each other to only encache valid

data. Concrete examples include rendering font glyphs in a font server,

getting blocks off local disk, performing DNS queries, or retrieving web

objects. Correctness is not limited to cache maintenance: in some situa-

tions, protocol implementations must be correct, for example forcing the

use of a known-good TCP implementation.1

Security. The application is not trusted by the system, so it cannot authenti-

cate, authorise, or grant resources. This sounds somewhat tautologous,

but one practical upshot is that applications cannot be trusted with key

material, so for example they cannot be secure VPN end-points.

Multiplexing. The application cannot be trusted to arbitrate access to some

scarce resource. The previous chapter addressed this specifically with

respect to network devices, but any other system-wide resource which

needs mediation cannot be accessed directly by applications. Protection

is related to multiplexing: just as an application is not trusted to share a

resource, so it is not trusted to maintain the data privacy and integrity of

competing applications.

Minimum privilege. The application cannot be trusted to access only its own

address space. Applications inevitably have bugs, and limiting their ac-

cess rights is a useful debugging tool which promotes the speedy discov-

ery of these bugs. By placing functions in a server, they are isolated from

the rest of the system (and vice versa), permitting each to be debugged

with known (limited) interaction between them. Tight access rights act

as assertions about application behaviour.

The first three of these reasons reduce to forcing the application to perform

some function using system-approved code in a privileged protection domain.

The last is a case of executing the application’s code in a fresh, unprivileged,

protection domain.

Placing such code in a server task is the usual solution, however this leads to

the following problems when the server is on the data path:

1Arguably, a TCP sender should not need to trust the TCP receiver’s correctness, however

the protocol was designed when end-systems could generally trust each other and so makes a

number of design decisions which today are questionable [Savage99].
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1. When a single data flow is processed by multiple cooperating servers,

each with its own resource allocations, it is hard to understand the allo-

cation levels needed to achieve a balanced system, i.e. one in which each

server task has a sufficient resource allocation, and no more.

2. There is a performance penalty due to the overheads of context switching

between tasks on a per-packet basis. These may be amortised by batching

multiple packets together before context switching; however this will

by definition increase their latency. There is a fundamental trade-off

between batch granularity and context switch overheads.

3. Multiple tasks co-operating to process a flow complicates resource recla-

mation since resources are owned by tasks, not flows. If the resources

associated with a flow need to be retracted, all the tasks involved need to

participate in the revocation. Depending on the system, atomic resource

release may be impossible.

4. When multiple tasks co-operate to process multiple flows, there are two

additional problems. Firstly, each task needs to perform a demultiplex

operation to recover the flow state. Secondly, if flows are to be differ-

entiated within a task, the task needs to sub-schedule any processing it

does. However, this aggravates the first problem by greatly increasing

the number of scheduler settings needing to be decided for the system as

a whole.

Expert introduces the notion of a path which is allocated resources such as CPU

time guarantees and memory, and can cross protection domain boundaries to

tunnel into code which would previously have needed to be within a server

task. Paths are further described in Section 5.2.3.

Paths solve the problems above for the following four reasons: (1) By using

one path per data flow, the processing performed on the flow can be given a

single guarantee regardless of how many protection domains it needs to cross,

thus simplifying resource allocation. (2) Since paths are able to cross protec-

tion domain boundaries in a lightweight fashion, the latency experienced by

packets being processed can be reduced by avoiding the need to batch packets

together before a protection crossing. (3) Because paths provide a principal to

which resources are allocated (regardless of where allocation was made), dis-

covering all the resources which need to be reclaimed is simplified. Finally,

(4) paths provide a consistent execution context within which processing can
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take place. This eases access to path-local state avoiding the need for further

demultiplexing.

These aspects of paths are discussed in more detail in the following sections,

starting with a description of how Expert manages modules of code and execu-

tion contexts.

5.2 Code, protection and schedulable entities

Unix joins the two unrelated concepts of protection domain and schedulable

entity together into a single process abstraction which is the principal to which

both CPU time and memory access rights are granted. Shared library schemes

improve on this by allowing a process to dynamically link in new code, but

fundamentally the model is still that of an address space containing data and

code which is executed.

Expert provides a richer variety of code, protection and schedulable entities,

giving the application programmer more choice in how to go about solving

problems.

5.2.1 Modules

Modules in Expert are identical to Nemesis modules [Roscoe94]. They are

passive shared libraries similar to shared libraries under Unix. Modules are

purely code, with no thread of execution associated with them. Because they

keep no mutable state they may be freely shared between multiple protection

domains and so are mapped globally executable. Each module is named and

has a typed interface declaring types and method prototypes. Access to the

module is by looking up its name in a global namespace to discover the address

of its jumptable (and thus entry points for each method provided).

Modules which maintain per-instance state such as heap managers, hash tables

and FIFOs have their state explicitly passed in for each method invocation via

a pointer to an opaque structure. This structure is initially allocated by an

invocation on an associated factory module. This arrangement makes callers

responsible for holding module state, thus ensuring the memory resources are

accounted to the correct principal.

Because modules are globally executable, their page table entries do not need to
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be modified during a context switch. This reduces the cost of a context switch,

and also means cached module code is still valid and need not be flushed, thus

reducing cold cache penalties.

5.2.2 Tasks

Tasks are one of the two schedulable entities present in Expert, and are analo-

gous to processes in other operating systems. A task is composed of:

• a scheduling domain (sdom) which specifies the task’s CPU guarantee

and accounts consumed CPU time;

• a protection domain (pdom) which both grants memory access privileges

and owns stretches of memory; and

• an activation vector, initially pointing to the task’s entry point, which

most commonly installs a user-level thread scheduler before subsequently

overwriting the activation vector with the scheduler’s entry point.

These components of a task strongly reflect Expert’s Nemesis heritage; an Ex-

pert task corresponds closely to a Nemesis domain.

Tasks provide a way for programmers to capture resource consumption which

happens in a self-contained or CPU-bound manner with little communication

with other components, be they devices or other tasks or paths (see later). This

is the traditional scheduling abstraction provided by the vast majority of operat-

ing systems, and so programmers are familiar with the execution environment.

Tasks make procedure calls into modules, and while executing such code the

task is charged for any memory allocated and CPU cycles expended. Tasks may

bind to and make invocations on other (server) tasks, although if significant data

is exchanged then this is an indication that a path may capture the data flow and

resource consumption better.

Tasks are useful for providing services such as a system-wide traded names-

pace, low bandwidth serial I/O, network management (port allocation, partic-

ipating in routing protocols), load monitoring, control interfaces, or scripted

boot-time system configuration. While such functions could be placed in the

kernel, implementing them as scheduled user-space tasks allows their resource

usage to be limited or guaranteed as need be.
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5.2.3 Paths

In a NEOS, it is expected that the majority of processing will be data-driven,

i.e. triggered in response to packet arrival or departure. Paths are Expert’s sec-

ond schedulable entity and exist to capture the resources consumed by packets

as they pass though the system. They provide a consistent context across both

code modules and protection domain boundaries. The motivation for paths in

Expert is similar to that for paths in Scout (and Escort) as described in Sec-

tion 2.1.2, however Expert focuses more on using paths for resource control,

not just accounting.

An Expert path is a combination of a CPU guarantee (sdom), a base protection

domain for path-local allocations (pdom), and an entry point which performs

any initialisation needed before entering the main packet processing loop.

Typically the initialisation phase will set up one or more I/O channels with

demultiplex filters selecting which packets are to be received by this path. Be-

cause the kind of packets processed by a path are known ahead of time, path-

specific optimisations may be performed, such as code specialisation using in-

variants, or stack simplification. This aspect of paths in Expert is identical to

paths in Scout.

Paths are intended to be lightweight, allowing many hundreds or even thou-

sands of them to be concurrently active. Paths have a single thread of exe-

cution and are not usually activated; the motivation for this is explained in

Section 5.3.3.

The main distinguishing feature of a path is its ability to traverse multiple pro-

tection domains while remaining in the same scheduling domain. This means

that system functions can remain protected in a modular fashion without forc-

ing the unit of scheduling to follow the module boundaries. As the path traps

into a foreign protection domain the foreign domain’s rights are merged into

the path’s existing rights; thus the protected module can access its private state

as well as path-local state. The mechanism is described fully in Section 5.3.2.

In general, paths are indicated when data must cross one or more protection

domain boundaries, and there is a need to segregate multiple data flows and

treat them with different levels of service. Example applications which would

benefit from being implemented as paths include transcoding, encryption, VPN

encapsulation and NAT.
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Expert paths have the following features in common with Scout paths: they en-

able fast access to per-flow state across modules; they allow code specialisation

because the types of packets which will be processed are known ahead of time;

they provide a principal to which resources allocated across modules and pro-

tection domains may be accounted; and they are run in response to data arrival.

This is where the similarities end, however. Scout paths can only be established

following pre-determined connections between modules, whereas Expert paths

may use any modules including dynamically loaded ones. Scout paths pro-

cess their packets to completion without preemption, whereas Expert paths are

properly scheduled and may lose the CPU to prevent another path’s guarantee

from being violated. Escort adds memory protection to Scout, however it does

not provide ways of amortising the cost of crossing these protection bound-

aries. Expert uses pod I/O channels (described later) to give the application

programmer control over how and when packets cross protection boundaries

along a path.

5.2.4 Protected modules

A pod (Protected Module) is similar to a module but it cannot be called in an ar-

bitrary fashion: access is restricted to a single advertised entry point. Each pod

has an associated protection domain (its boost pdom), and its code is mapped

executable only by this protection domain. When the Loader 2 loads a pod, it

allocates a fresh pdom and registers it together with the pod’s entry point with

the kernel. Paths can trap into the pod by invoking a special kernel call which

notes the boost pdom and forces the program counter to the pod’s entry point.3

The kernel keeps a stack recording the boost pdom of each pod called, allowing

(limited) nested invocation of one pod from another. The access rights in force

at any time are the union of all pdoms on the boost stack plus the path’s base

pdom. This leads to a “concentric rings” model of protection, and is done

for performance reasons: it makes calling into a pod a lightweight operation

because as the access rights are guaranteed to be a superset of those previously

in force, no caches need to be flushed on entry.

Returning from a nested call is more expensive: there is by definition a reduc-

2Described later in Section 5.3.1
3This is a software implementation of the CAP computer’s ENTER instruction, except that a

stack switch is not forced. S. Mullender mentioned such a possibility during the initial design

of Nemesis [Leslie02], however the idea was not pursued.

113



tion in privileges, so page table entries must be modified and the appropriate

TLB entries flushed. However, this penalty is unavoidable; it is mitigated in

systems which permit multiple nested calls to return directly to a prior caller

(as in EROS) but I believe that common programming idioms mean that such

tail-calls are rare. For example, error recovery code needs to check the return

status from invoking a nested pod; often a return code needs mapping.

All pods are passive: they have no thread of execution associated with them.

This is in contrast with most other thread tunnelling schemes where the servers

tunnelled into can also have private threads active within them. Passive pods

make recovery from memory faults easier since they are localised to the tun-

nelled thread. Other tunnelling schemes need complex recovery code to deal

with failure of a server involved in a deeply nested call chain, whereas with

passive pods a memory fault can terminate a tunnelled path without needing to

terminate or unload the pod it was executing in at the time.

5.2.5 CALLPRIVs

A CALLPRIV (first described in Section 3.4.2) can be used by drivers to make

available small functions which run in kernel mode. While superficially a pod

may appear similar to a CALLPRIV, pods are fundamentally different for two

reasons. Firstly, because pods run in user mode with interrupts enabled they can

be preempted, and the system scheduler remains in control of the CPU. This

allows code in a pod to run for arbitrary lengths of time without jeopardising

any other path or task’s CPU guarantee. Secondly, since pods run within their

own protection domain this allows finer-grained protection of memory; there is

no need to grant access to the whole of memory, as is the case with a CALLPRIV

running in kernel mode.

So, pods are most suitable for longer running (or potentially unbounded) pro-

cessing, while CALLPRIVs are useful for small, tightly-defined critical sec-

tions.

5.3 Expert pod implementation

This section describes how Expert implements the concepts described above.
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5.3.1 Bootstrapping

System loader

Expert relies on the Loader (a trusted system task) to relocate and register new

modules and pods with the kernel at run time. Since Expert is a single address

space system, modules and pods are dynamically loaded at addresses which

may vary from run to run. Modules and pods are stored in the filesystem as

partially linked objects so the Loader has enough information to relocate the

code to its ultimate load address once this has been determined. This is the first

of the Loader’s two roles.

The Loader’s second role is to register information from modules and pods with

a namespace traded system-wide to allow other components to find the newly

loaded code. This takes place in two different ways depending on whether a

module or a pod has been loaded. For a module, the Loader registers types and

interfaces defined by the module with the typesystem, and exports the module’s

entry point to the namespace. For a pod, the Loader performs the same actions

but also allocates a fresh pdom and marks the pod’s pages “readable and exe-

cutable” by this pdom only. The Loader then registers the pod’s entry point and

pdom with the kernel, by calling Pod$Register() on the privileged Pod

interface shown in Appendix A.1.

Binding to a pod

Some systems do not require a binding phase before calls are made, for ex-

ample the CAP computer allowed calls to be made without prior negotiation.

However, using an explicit bind phase has a number of benefits:

• The pod can perform client access control checks at bind time, rather

than on every call, thus saving time on the fast path. This would not have

been a benefit for the CAP computer since it did access checks using

dedicated hardware.

• The pod can allocate and initialise per-client state at bind time.

• A pointer to this per-client state can be stored with the binding record

to speed pod access to it. This technique removes the need for each

pod along a path to perform a demultiplex operation on each packet to

recover its processing state.
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Figure 5.1: Steps involved in making a pod offer. See text for details.

• A pod may be instantiated multiple times re-using the same code, allow-

ing clients to select between instances by binding to a specific pod offer.

This is not possible if the binding is implicitly specified by the code en-

try point and client id. This may not seem important, but consider a pod

implementing a shareable hash-table: it would be unwise to assume each

client would only ever need a single hash-table.

Given these advantages, Expert uses an explicit bind stage before client calls

into a pod are permitted.

Figure 5.1 shows the sequence of calls involved in making a pod offer. In

step (1), the System task has just finished invoking the Loader and is in pos-

session of a newly registered Pod.ID. It calls Pod$Init() via IDC, asking

the Pod Binder to create a new instance of the pod and make an offer for it

available under the given name. The Pod Binder inserts a temporary bind-

ing for Pod.ID with a NULL state pointer into its own bindings list, and uses

the ntsc call pod() system call4 to tunnel into the pod (2). When a pod

is called with NULL state, this is taken to be an initialisation request. The

pod performs any pod-specific initialisation needed, and returns an opaque,

non-NULL pointer offer st which uniquely describes this pod instance. The

Pod Binder makes a Pod.Offer() by wrapping this pointer and the original

Pod.ID, then exports it to the whole system by placing it in a publicly traded

namespace (3).

4Described later in Section 5.3.2
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Figure 5.2: Steps involved in binding to a pod offer. See text for details.

Pod clients can inspect these offers, but not modify them. Clients bind to an

offer by name via IDC to the non-privileged PodBinder interface exported

by the Pod Binder task. Appendix A.2 describes the interface.

Figure 5.2 shows how the interface is used by a client wishing to bind to an

offer.

Binding is a two-stage process. First, the client must open the offer by calling

PodBinder$Open() via IDC to the Pod Binder (1.1). This names the offer

in the trader rather than passing in an offer directly, ensuring that arbitrary

offers cannot be forged by untrusted clients. The Pod Binder looks up the

given name in the trader (1.2), then writes an “unfixed” binding entry to the

client’s binding table (1.3).

At this stage, the pod has not been informed of the client’s desire to bind to it.

This happens when the client “fixes” its open binding in the second stage. The

client performs an ntsc call pod() requesting to bind to the pod (2.1).

The pod determines that the call is a bind request because the state it is passed
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in is the offer st it returned earlier. The current implementation distinguishes

offer st pointers by setting their bottom bit, however should this technique not

be possible on the particular architecture under consideration other techniques

are available; for example the both bind and offer state records could consist of

a common initial portion holding a flag whose value specifies whether this is

normal call or a bind request. The pod may reject the bind request and return

an error code. Should the pod accept, it allocates and initialises any per-client

state it needs (bind st), then calls PodBinder$SetState() via IDC (2.2)

which updates the client’s binding table to hold the new bind st pointer (2.3).

The client’s binding table is mapped read-only to the client to prevent it insert-

ing forged bindings into the table. Only the Pod Binder task is privileged to

update client binding tables.

The advantage of this two-stage binding scheme is that the pod is tunnelled

into by the client to perform the majority of the work of the bind: this means

the pod’s bind request handler runs in the same environment as future calls will

do, so it can fully vet the client. Also, per-client state can be allocated either

from the client’s own heap if it does not need to be trusted, or in a pod-local

heap with suitable protection if it must be trusted. Another advantage is that

the bind happens using client CPU resource guarantees; should binding be an

expensive operation then it is correctly accounted.

Note that the first call the client makes to the pod completes the binding pro-

cess, but is otherwise ignored.

5.3.2 Calling a pod

Having opened and fixed an offer to get a binding id, the client may now make

calls on this binding by tunnelling a thread into the pod. This section describes

how this tunnelling behaviour is achieved on the Intel processor architecture.

Similar implementation tactics are likely to work on other CPU architectures

since no special features of the Intel architecture are assumed, but CPUs with

a software-loadable TLB would most likely permit a simpler implementation.

Triggering the switch

So that pods maintain their integrity, clients may only call them at their pub-

licly advertised entry point. This can be enforced in one of two ways. In both
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cases, pod code must not be directly executable in the client’s protection do-

main (otherwise the client could simply jump into the pod at any point of its

choosing). This means that client will take a page fault if they try to execute

pod code directly.

The first way of triggering a switch is to use these page faults. For example,

Escort (the version of Scout with memory protection) looks up the faulting

address in an in-kernel table and if it is a known entry point it performs a

protection switch. This means that a protected call in Escort is no different

from a normal procedure call which has a certain pleasing simplicity about it,

however it does mean that all page faults need to be tested to determine whether

a protected module call is being attempted. This slows every page fault, even

if they are unrelated to cross-pdom calls.

The alternative, used by Expert, is to use a system call implemented using a

software interrupt to a handler which performs the minimal checks needed and

changes protection domain. This has the advantage that on most processor

architectures, taking a software interrupt is faster than a page fault since the

page tables do not need to be walked. For example, a system call on the test

machine takes 280 cycles on average while a page fault takes 440 cycles.5 It

also avoids polluting the fast-path of the page fault handler.

Expert introduces the ntsc call pod() system call, which takes as argu-

ments a binding id, a method number, and an opaque pointer to the method

arguments.

Pre-switch checks

The kernel implementation of ntsc call pod() checks that the binding id

is within the binding table in the client’s PCB, and that there is room on the

boost pdom stack for another pdom; these are the only tests needed, and both

are simple compares of a value against a limit.

Invalid (i.e. unallocated) binding ids are dealt with by having the Pod Binder

pre-allocate all possible binding ids to point to a stub which returns an error

code, thus creating a fast path by eliminating such error checking from the

in-kernel code. This is a specific use of the following general optimisation

technique: all inputs to a function should be valid or easy to validate, aiming

5In both cases, the measured value is the time taken to switch from user mode to a C envi-

ronment in kernel mode, then restore and switch back to user mode.
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to reduce the number of special cases or error recovery code needed in the

function itself.

The binding id is used to index into the client’s binding table to recover the pod

id to be called, and the state pointer to be passed in (either offer state or binding

state). The pod id is used to index into an in-kernel pod table to discover the

pod’s entry point and pdom.

The entire code to performs these checks, switch protection domain, and call

the pod entry address comes to just 44 instructions.

Argument marshaling

There is no marshaling needed when a client tunnels into a pod – types are

represented as defined by the native procedure call standard, either on the stack

or in registers as appropriate. For the Intel x86 architecture, they are passed on

the client’s stack frame.

Large arguments are passed by reference in pre-negotiated external buffers. For

example, packet data are passed using pod I/O channels; this is covered in more

detail in Section 5.3.4.

Pointers passed into a pod should not be blindly dereferenced by the pod; oth-

erwise a malicious client might be able to read memory it does not normally

have access to by using a pod to perform the access on its behalf. Similarly,

pods should not write through pointers passed to them without first checking

they point to reasonable areas. Pointers to large arguments like packets can

be checked to ensure that they lie within address ranges pre-negotiated at bind

time. For other pointers, the pod should manually walk the canonical protec-

tion tables to discover the rights the client has on the memory the pointer refers

to, and reject the call if the rights are insufficient.

There are two approaches to verifying the common case of arguments which

are pointers into the client’s stack. If the client is reasonably trusted, then

merely checking the pointer argument against the stack pointer is enough. This

gives some protection against bugs, but because a malicious client can set the

stack pointer to an arbitrary value before calling a pod, a paranoid pod would

have to perform the full pointer check described above.

An alternative to passing pointers is to pass small integers. The pod can use

them to directly index into a per-client table to retrieve an appropriate state
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pointer. The small integers can easily be range-checked to avoid illegal ac-

cesses, and since the table is per-client undesirable snooping of another client’s

data is avoided. The use of small integers as file descriptors in Unix is an

example of this technique.

Pdom stack manipulation

The last thing the kernel does before calling the pod is to push the pod’s pdom

onto the pdom stack, thus making available the rights granted by that pdom the

next time a page fault occurs.

Expert, like Nemesis, requires a software loadable TLB, and emulates one on

architectures without native support. This is done by maintaining a minimal

set of hardware page table entries which shadow a definitive set of protection

rights held by a pdom. When a page fault occurs, the kernel looks up the defini-

tive rights in the pdom and inserts an appropriate entry into the hardware page

tables. When a protection switch occurs, these extra page table entries are re-

moved and the TLB is flushed. The next time an access is attempted which

is not in the page tables, the page fault handler consults the new pdom’s ac-

cess rights to determine whether a hardware page table entry should be added,

or whether a genuine access violation has occurred. Most of the time, the

code or data being accessed is globally accessible and so the number of page

faults taken is low. This scheme’s efficiency is further improved by noting each

pdom’s working set when it is de-activated, and speculatively re-inserting those

mappings into the page table when switching back to that pdom.

Expert modifies this scheme to use a stack of pdoms as the canonical protection

information, rather than just a single pdom. When a page fault occurs, the

access is allowed if any pdom on the current stack would allow it.

The ntsc call pod() system call also needs to mark the current contents of

the hardware page table as non-authoritative since the pdom stack has changed,

otherwise clients can leave low privilege rights in the page table which are now

inappropriate for a higher privileged pod.

When the pod call returns the boost pdom is popped off the pdom stack, any

extra page table entries which were added are removed, and the TLB is flushed.

This ensures that pages which were previously accessible while running in the

pod are no longer available. Another system call, ntsc popadom(), is used

to pop the topmost pdom off the stack, and is called before returning from the
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pod.

To avoid each pod ending with ntsc popadom(), ntsc call pod() ac-

tually calls a wrapper function rather than calling the pod directly. This wrapper

calls the pod’s entry point, then pops the pod’s boost pdom, before finally re-

turning from the original ntsc call pod() system call to the pod’s caller.

This scheme is very similar to the way signals are handled in Unix: a special

sigreturn() system call exists to resume the main user program once its

signal handler returns, and the kernel arranges that this system call is made by

modifying the return address of an extra procedure call record it places on the

user stack.

5.3.3 Pod environment

This section describes how and why the runtime environment is modified when

a thread runs within a pod.

Activations and thread scheduling

Normally when the kernel grants the CPU to a task, it is activated as described

in Section 3.2. This allows the efficient implementation of user-level thread

schedulers by making it easy for the scheduler to be up-called regularly: the

task’s activation vector is set to the user-level scheduler’s entry point, thus al-

lowing user control over which thread to resume when receiving the CPU. Crit-

ical regions in the user-level thread scheduler are implemented by disabling ac-

tivations during these critical regions by setting a flag in the DCB. This flag is

checked by the kernel when activating a DCB to determine whether to resume

or activate the DCB.

However, allowing a thread to tunnel into a pod breaks the implicit assumption

in this scheme: it is no longer the case that all threads share the same protection

rights on memory. This means each thread context slot must also store the

pdom stack in force for that thread, and thread to thread context switches would

need kernel intervention if a protection switch is also involved.

Other operating systems which allowed tunnelling such as Mach or Spring did

not feature activations, and thus the kernel was always involved in switching

between threads. What are the choices available to Expert?
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1. Allow activations. If activations are allowed while some threads are

within pods, then the kernel must be involved in thread switches. Also,

the context slots could not be stored in user-writable memory, since oth-

erwise it would be possible to modify an untrusted thread’s saved pdom

stack and resume the thread to bypass the protection scheme. Context

slots cannot even be kept in read-only memory, since this would let an

untrusted thread monitor the context slot of a tunnelled thread and thus

discover data held in the thread’s registers which should be protected.

Therefore the context slots would need to reside in kernel memory, but

this would complicate the kernel by needing a dynamic memory alloca-

tor.

Another problem is that if the context slots are writable and managed by

the user-level scheduler, then it can perform a lightweight setjmp() to

save a thread’s state when it blocks. This is cheaper than saving all the

thread’s state since only the callee-saves registers need to be written to

the context slot; the caller-saves registers will have already been saved

on the thread’s stack by the compiler as part of its implementation of the

procedure call standard. The kernel is only needed to resume a thread if

the kernel preempted it. If, however, the context slots are not writable

by the user-level thread scheduler then the kernel is needed to resume all

threads, regardless of how they lost the CPU.

If activations were allowed, which activation handler should the kernel

call when activating a tunnelled thread? Certainly not the client’s, be-

cause if the kernel called the client’s activation handler then it would be

running untrusted client code using the pod’s boost pdom, which would

violate the protection scheme. Alternatively, the kernel might run an ac-

tivation handler specified by the pod, allowing it to schedule the threads

currently within itself in any manner it chooses. While this initially

sounds attractive, note that the pod might not run the thread from the

path which was granted the CPU. This destroys the direct connection be-

tween a path’s CPU guarantee and its rate of progress, and defeats the

purpose of this work.

2. Disable activations. Activations could be disabled when a thread tun-

nels into a pod: threads would always be resumed if preempted while

running within a pod.

3. Single threaded. A new schedulable entity could be introduced, which

does not normally run in a multi-threaded manner, and thus it would not

need activating either to regularly re-enter a scheduler.
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Expert uses a combination of these last two: paths are intended to be single

threaded, and this is enforced by having ntsc call pod() disable acti-

vations while a call is in progress. The ntsc popadom() system call re-

enables the usual activation / resume scheme once there is only one pdom left

on the pdom stack, i.e. control has returned to the base pdom.

This allows both paths and tasks to call pods. Applications requiring a full-

featured multi-threaded environment can be implemented using tasks. The ad-

vantage of allowing tasks to call pods is that control and initialisation of pods

may be done by tasks. Paths can then be used as lightweight single-threaded

I/O threads, typically collecting an input packet, processing it through one or

more pods before queueing the result for output. This is much like the Scout

model of a path, except that because Expert paths are preemptively scheduled

by the kernel, they may embark on more CPU-intensive processing without af-

fecting the responsiveness of the system (Scout copes with this by having the

programmer add explicit yield points to the code).

Note that if a thread which has tunnelled into a pod blocks, the entire task or

path owning the thread is blocked. This means that pods may use IDC to call

other tasks, but such calls will block all threads in the caller task or path for the

duration of the call. Pods “capture” threads which tunnel into them: the caller is

no longer in control of its own thread. This is required for security, but can lead

to unintended consequences in multi-threaded tasks: user-level threads will not

be scheduled in a timely manner, event delivery and timeouts will be delayed,

and incoming IDC calls will not be processed. This leads to the potential for

deadlock if a task tunnels into a pod which ultimately makes an IDC call back

to the original task. For all these reasons, single-threaded paths are the most

suitable entity to call into pods. Tasks should limit themselves to calling pod

methods which are short-running and non-blocking. If a task needs to perform

many long-running or blocking calls, this is an indication that a path is more

appropriate way of capturing the control flow.

Locks

Taking out locks in pods can also cause an effect similar to priority inversion:

because paths tunnelling into a pod bring their resource guarantees with them,

if the pod serialises their execution then a path with a large CPU guarantee can

become rate-limited by a path with a lower CPU guarantee. Several solutions

to this problem exist:
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• Paths running in a locked critical region can inherit the highest CPU

guarantee of all blocked paths. This is analogous to priority inheritance

in a priority-based system [Lampson80].

• [Menage00, Section 5.6.2] advocates having servers underwrite criti-

cal sections, providing spare CPU cycles to ensure a minimum rate of

progress through critical sections. Menage also suggests that servers

could simply reject calls from principals with insufficient CPU guaran-

tees.

• [Harris01, Section 7.6.3] suggests temporary CPU cycle loaning, where

blocked paths donate their cycles to the path currently running in the

critical region, thus “pushing” it through. The pushed path later repays

the loaned cycles once it has exited the critical section.

• Non-blocking data structures such as those proposed by [Greenwald99]

can be used.

• Critical regions can be kept to a minimum number and length. This prag-

matic solution is no defence against malicious paths which might pro-

ceed arbitrarily slowly, however it works well in most situations. A pod

written in this style will typically prepare all the details needed before

taking out a lock and making the update, thus expunging all superfluous

code from the critical region. This is the approach taken by Expert.

As with any case of abnormal termination, if any locks are held then the data

structures protected by the locks may be in an inconsistent state. Standard so-

lutions to this include rolling back changes, working on shadow copies before

committing, forced failure of the whole component, or using lock-free data

structures.

Stack switching

Conventional wisdom says that each protection domain should have its own

stack. This would imply that each pod would need to switch to a private stack

for the duration of its processing. This is the approach taken by Spring:6 each

server protection domain has a pool of threads, each of which includes a pre-

allocated stack. Execution takes place in the context of a “shuttle” which con-

6Spring was discussed in Section 2.3.3.
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trols the scheduling and accounting of the processing regardless of which pro-

tection domain it occurs within.

The reason for this is so that other threads which have not tunnelled cannot spy

on the tunnelled thread’s stack and so snoop sensitive intermediate data. More

importantly, if the stack is writable by other threads which have not tunnelled,

then one could re-write a return address in a stack frame of the tunnelled thread

and so divert it to run malicious code.

There are several advantages to not switching stacks on protection switch. The

performance is better, since arguments can be passed on it directly without

needing to be copied across, and stack pages are likely to be already in the

cache and already have a valid TLB entry. Also memory usage is reduced, by

requiring only T stacks rather than T ×P for T threads traversing P pods. This

could be mitigated by only allocating N < T stacks and sharing them on the

assumption that it is highly unlikely that all threads will simultaneously tunnel

into the same pod.

There is also the question of when stacks should be allocated: the logical time is

during the bind phase, however the allocation code needs to recognise multiple

binds from the same client and re-use the same stack for each.

Another alternative would be to use a single stack, and merely change the ac-

cess rights to flip it into the pdom being tunnelled into. This has an associated

performance cost, since the stack pages would need to have their entries in

both the client and pod pdoms updated to reflect the change in permissions.

The hardware page tables and TLB would not need updating however, because

as both the stack permissions and current pdom have changed together the ef-

fective access rights remain unmodified – the pdom updates are needed in case

the pod is preempted and later resumed.

The ntsc call pod() system call does not switch stacks, but instead uses

the caller’s stack while running inside a pod. The stack access rights are un-

modified. This is safe because since activations are disabled no other thread

can read or write the stack if the pod is preempted. The scheme has the twin

merits of being simple and fast.

In any case, a paranoid pod can manually perform a stack switch as its first

action, since the binding state passed in by the kernel can contain a pointer to

a pre-prepared stack. If the kernel were to always switch stacks, a pod would

no longer have the choice of whether to run on the same stack as its caller or
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not. Instead, Expert allows a range of security policies to be used depending

on how trusted the code running on a particular system is.

One remaining concern is that the pod could exhaust the available stack space.

A malicious client could use this to force the pod to take an unexpected memory

fault, which could compromise the security of the system. While this kind of

attack is not expected (given that the memory protection in Expert is mainly a

debugging and system partitioning tool rather than a security device), it can be

protected against by having pods check the stack pointer on entry and return

immediately if there is insufficient stack space remaining.

Pervasives

Both Nemesis and Expert keep a per-thread list of pointers to commonly used

(i.e. pervasive) objects. This pervasives record includes pointers to the current

threads package, an events package for synchronisation, a default heap alloca-

tor, a virtual processor interface, standard input, output and error I/O streams,

and various library entry points (e.g. for libc).

These objects form part of the processing environment of a thread, and must be

vetted when a thread tunnels into a pod. For example, if a pod calls printf()

then this will ultimately translate into method calls on the standard output ob-

ject in the pervasives record. Should the pod fail to override this object, then it

risks losing control to untrusted user code. A similar situation arises for all the

other members of the pervasives record.

Therefore, one of the first things a pod should do is to change the current per-

vasives to point to its own, trusted set. Typically, this will include known-good

I/O streams for diagnostic output, a trusted events package, and a private heap

manager.

How much is shared with the untrusted caller application is up to the pod. For

example if the pod wishes to also allocate state in the caller’s heap then the

caller and the pod must agree on the format of the heap’s state record. The

pod can then create its own trusted heap manager using system-wide library

code and the state pointer for the untrusted client heap. This is feasible because

paths are encouraged to use the system-wide libraries, so allowing interoper-

ability with pods. The disadvantage is that paths have less flexibility over the

implementation of their data structures if they are forced to use standard li-

braries. This is another reason why paths are kept separate from tasks: paths
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run in a stricter and less flexible environment, and benefit by being able to cross

protection boundaries efficiently.

The same issues surrounding shared heaps also apply to sharing event count and

sequencer primitives. In this case, the motivation is to allow a multi-threaded

task or path the ability to run single threaded while within a pod. The pod

creates at bind time a minimal events package which understands the standard

layout of a system-provided events package, but blocks the entire task (or path)

rather than yielding to another thread should the current thread of execution

block. This is needed to allow multi-threaded tasks to call pods, but causes

the task to lose control over the scheduling of its threads once one of them

tunnels into a pod. As previously discussed in Section 5.3.3, this is useful for

the initialisation and configuring of pods, but otherwise tasks are not expected

to make frequent calls to pods; single-threaded paths are more suited to making

frequent pod calls.

While the overhead involved in scrubbing the runtime environment on each

call might seem high, the new pervasives records can be prepared at the bind

stage, so that a single memory write is all which is required to enable it while

processing a call. Incidentally, such scrubbing would be needed in any system

supporting tunnelling; by making it explicit Expert gives the pod control over

how much of the client it wishes to trust, allowing the security policy to range

from fully trusting the client pervasives (insecure), to building a complete set

of fresh pervasives from scratch (secure).

5.3.4 Pod I/O channels

The movement of packetised data is expected to be a major feature of applica-

tions running on a NEOS. This section describes how pod calls can be used to

transfer such data between a client protection domain and a pod. This is useful

for three reasons:

1. Pods are most likely to be on the data path, and in a NEOS this means

the packet processing path. It is also desirable to link pods together via

I/O interfaces to form packet processing chains.

2. A uniform I/O API can be used, regardless of whether the packet data is

carried between two tasks using an I/O channel or within a path via pod

calls.
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Figure 5.3: Pod I/O scenarios.

3. The I/O API allows multiple packets to be batched together before flush-

ing them further down the pipeline, which amortises the cost of switch-

ing protection domain. While cost of ntsc call pod() is far lower

than using a full I/O channel,7 the costs are large enough to be worth

spreading over multiple packets.

The two basic scenarios when a path may want to call a pod to process packets

are shown in Figure 5.3.

Figure 5.3(a) shows the “pod on a stick” scenario: here the data flow is from

the path, through the pod, then back to the same path’s protection domain for

further processing. Figure 5.3(b) shows the “pod consumer” scenario: in this

case data flows from the path’s protection domain and is disposed of by one or

more pod(s). The pod is responsible for handing the data on to another pod, or

ultimately to the network device driver in the kernel for transmission.

An example of the “pod on a stick” scenario would be a shared packet cache.

A concrete example of this might occur in a network-based personal video

recorder implementation, where each connected client (or class of client) is

serviced by a dedicated path. The shared cache would store a moving window

of recently streamed video packets so that any of the per-client paths can seek

backwards in the stream, without each needing to keep a private cache. To en-

sure paths see a consistent cache state it would be implemented as a pod, and

paths call the pod to write new data to it or read from it. Perhaps some paths

represent users who have paid for certain video streams, and so other paths

7see Table 5.1
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should not be able to read packets from those streams from the cache. To en-

force this, the cache would need its own protection domain. If the cached data

does not need to be segregated then the paths could use lock-free algorithms to

access the cached data and so avoid the need to call a pod.

The second of these scenarios matches the structure of a layered network stack:

each layer performs its processing, then hands the packet on to the layer below

it for further processing. For example, if the lower layers of a protocol stack

need to be trusted, then they could be implemented as a pod which paths tun-

nel into to transmit data. The ring-like manner in which recursive pod calls

encapsulate each other (while mainly a performance trade-off) is suitable for

a system where successively lower layers of a protocol stack are more trusted

than those above them; this is a typical arrangement in many kernel-based sys-

tems, where the user-kernel boundary induces a coarse-grained two-level trust

boundary between untrusted protocols implemented in user-space (e.g. HTTP),

and trusted implementations residing within the kernel (e.g. TCP).

Implementation

The implementation of pod I/O channels in Expert is inspired by I/O chan-

nels in Nemesis, and similarly has two FIFOs which are used to exchange

iorecs describing buffers within a pre-negotiated data area. However the

implementation can be more efficient for two reasons. Firstly, because of the

single-threaded nature of paths these pod I/O channels will never be accessed

concurrently. This means concurrency controls can be dispensed with, leading

to a more efficient implementation. Secondly, the client remains in control of

the batching behaviour by explicitly calling IO$Flush() when it is prepared

to push data further along the processing path. The IO$Flush() method per-

forms an ntsc call pod() to transfer control to the pod to allow it to drain

queued packets from the I/O channel. Section 5.4.2 presents results showing

how the batch size can affect the performance of a pod I/O channel by an order

of magnitude, so being able to control it to trade latency against efficiency is

crucial.

The relaxed concurrency requirements means simple integers are used to con-

trol access to the FIFOs – full inter-domain event counts are not needed. Each

FIFO has two counters associated with it: one which records how many pack-

ets have been inserted into the FIFO (the write counter), and one which records

how many have been read (the read counter). They are used to determine
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Figure 5.4: FIFO and counter ownership in a pod I/O channel.

whether there is data to be read or space for writing, and if so, which FIFO slot

should be read or written next. Their purpose is identical to the inter-domain

event counts used to implement Nemesis I/O channels.

The difference is that Expert merges the implementations of the two FIFOs.

This is possible because they are always used in pairs, and the FIFOs share

the same memory access requirements as the counters. For both FIFOs each

counter is writable by either the producer or the consumer, but not both. Fig-

ure 5.4 shows which FIFOs and counters are owned (i.e. writable) by the pro-

ducer (client) and consumer (pod): the outbound FIFO needs to be writable

by the producer, along with its write counter owr. The read counter for the

outbound FIFO ord needs to be read-only by the producer, since it is updated

by the consumer. The return FIFO needs the mirror image of these rights: the

FIFO should be writable by the consumer, with its write counter rwr writable

by the consumer but read-only to the producer. The read counter ord should

be read-only to the consumer, and writable by the producer.

By gathering the client-writable FIFO and the two client-writable counters into

a single block of memory, Expert ensures that all have the same access rights,

and all are close together to ensure they are cache-efficient. Similarly, the pod-

writable FIFO and the other two pod-writable counters are gathered together

into another “split-FIFO”. These two split-FIFOs are only usable as a pair, but

this is their intended purpose. By contrast, Nemesis I/O channels implement

each FIFO using event counts, which take longer to increment or test than the

single memory words used as counters by Expert.
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In order to create such a pod-based I/O channel, the pod allocates a data area on

the client’s heap (so that both the client and the pod have write access to it). The

pod then allocates its split-FIFO on a heap which the client has only read access

to. The pod retains write access to the return split-FIFO and the associated

counters. Finally it allocates the client’s split-FIFO on the client’s own heap,

so the client may write to it. The pod returns a descriptor containing: pointers

to the data area and the two split-FIFOs; the binding id and method number to

be used to flush data onwards; and the FIFO depth. From this descriptor, the

client then creates an instance of the I/O interface. The pod does the same, but

swaps the split-FIFOs over in its copy of the descriptor, thus ensuring it reads

what the client writes and vice versa.

Note that because the pod is granted a superset of the client’s access rights to

memory, the pod has write access to the client’s split-FIFO. This is unimpor-

tant, since the client is already assumed to trust the pod.

5.4 Results

5.4.1 Micro-benchmarks

Micro-benchmarking is concerned with measuring the performance of individ-

ual small components of a system, leading to the (fallacious) assumption that

knowing the performance characteristics of the components allow some mea-

sure of the complete system behaviour to be deduced. This is not the case for a

number of reasons [Bershad92]:

• Measuring an operation in isolation does not accurately reflect its perfor-

mance when used as part of a real system, as it does not consider cache

effects.

• Micro-benchmarks give no indication of how often a benchmarked oper-

ation is performed. Amdahl’s Law says that:

Speedupoverall =
1

(1 − Fractionenhanced) + Fractionenhanced

Speedupenhanced

This means that unless the operation being benchmarked occurs fre-

quently (i.e. Fractionenhanced is large), its cost is mostly irrelevant.

• The results are impossible to compare, both across time (wait another
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OS proc call system call CALLPRIV pod call IPC

Linux (hot) 7 340 n/a n/a 3500

Linux (cold) 44 760 n/a n/a 9100

Expert (hot) 7 280 260 2900 19000

Expert (cold) 44 460 390 5000 21000

Table 5.1: Cycles taken for different calls with hot and cold caches.

18 months and performance will double), and across architectures (what

takes 20 cycles on a CISC CPU may take 30 cycles on a RISC CPU).

Despite these obvious pitfalls, micro-benchmarks can be used to give a rough

idea of the cost of various primitives. This section presents micro-benchmark

results comparing the cost of various protection switching schemes under Linux

2.2.16 and Expert. A proper evaluation of a moderately complex system built

using the primitives presented here is discussed in the next chapter.

As in previous experiments, fox is used as the test platform. It is an Intel

Pentium Pro running at 200MHz, with 32MB RAM, 256KB L2 and a split L1

cache: 8KB I / 8KB D.

Table 5.1 shows how many cycles it takes to execute a variety of different types

of call. The cache hot number is given first, then the cold cache. The cold

cache number is more meaningful, since calls which span protection domains

are likely to be made infrequently and thus without already being in the cache.

The tests are as follows: “proc call” is a C-level procedure call to a func-

tion which takes no arguments and returns no value. The “system call” is

getpid() on Linux, and ntsc send() on Expert (a comparable minimal

system call, since getting the current process ID does not require a kernel trap).

The “CALLPRIV” test is a trap to kernel, null procedure call, then return back

to user-space. The “pod call” is a switch from the untrusted client protection

domain to a pod environment with scrubbed pervasives, and back again. The

“IPC” test sends 4 bytes to another protection domain, and waits for a 4 byte re-

sponse. It does this using pipes under Linux, and a full event-count I/O channel

under Expert.

For hot cache experiments, the result quoted is the average of 100,000 calls.

The cold cache results are an exponentially weighted moving average of 40

calls, with activity in between each timed call to ensure the cache is filled
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with unrelated code and data. For Linux, this consists of forking two cat

processes and blocking for one second; the cat processes pull data through

the data cache, and because they are run as part of a shell script, much code is

executed thus clearing the instruction cache. For Expert, the caches are cleared

by listing a large traded namespace and blocking for one second. The results

from the procedure call experiments were used as a sanity check to verify that

the results matched across Linux and Expert.

Unsurprisingly, a procedure call takes the same amount of time on both op-

erating systems. A system call is marginally faster on Expert, but full IPC is

much slower. One possible reason for such slow IPC on Expert is that I/O

channels offer a richer feature set, including using scatter-gather lists, blocking

with timeouts, and preserving message boundaries, none of which were used

with pipes under Linux.

More interestingly, the table shows that an Expert pod call is between 17% and

45% faster than IPC on Linux. It also has better cache behaviour than IPC on

Linux, as can be seen from the cold cache numbers. If the pod trapped into is

configured to switch to a private stack, the cost rises to 4100 / 6300 cycles for

warm and cold caches respectively. Instrumenting the protection fault handler

shows that this extra cost arises because twice as many faults are taken when

the stack needs to be switched.

In summary, I/O using IPC on Expert is 85% slower than I/O using pods. The

next section presents further evidence for this.

5.4.2 Pod I/O performance

This section profiles the performance of the pod I/O channel mechanism which

is constructed over the basic ntsc call pod() system call.

In these experiments, fox is again the machine under test. A test client is run

which establishes a pod I/O channel to a pod in another protection domain. The

client sends 100,000 sequence-numbered packets to the pod, which verifies

each sequence number before returning the packets unmodified back to the

client. The client measures the number of cycles taken to transfer and retrieve

all 100,000 packets, and divides to get an average number of cycles expended

per packet. These are the quoted results in each case. The client is written to

queue as many packets as possible before flushing them.
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In all cases, the cache will be hot since the I/O operations are performed in a

tight loop. This is reasonable because it reflects how the API is used in real

applications: typically, they repeatedly call GetPkt(), process the data, then

call PutPkt() to pass it on. Once an I/O channel fills, the application calls

IO$Flush() thus yielding to allow the next stage on the path to enter its

processing loop.

Comparison against other I/O schemes

With a 32 packet deep pod I/O channel, Expert takes 580 cycles per packet. By

comparison, a Nemesis I/O channel of the same depth between two protection

domains and running the same I/O benchmark takes 6900 cycles per packet.

Linux running a port of the I/O API using two pipes (one for each direction),

and the readv() and writev() system calls for scatter / gather I/O takes

7300 cycles per packet, however with Linux it is impossible to control the

batching so it may well context switch for each packet. A Linux implemen-

tation using SysV shared memory regions may improve the performance by

allowing better control over the synchronisation of the producer and consumer

process, as well as removing copying overheads. However, note that in all tests

the packets were only four bytes long (the sequence number), so copy-related

overheads are minimal thus minimising any pipe-related penalty Linux might

incur. Nemesis and Expert pod I/O channels are both zero-copy, so the payload

size is not a factor.

Effect of batch size

To discover how much of an effect the batch size has, I repeated the Expert pod

I/O experiment with a range of I/O channel depths ranging from one packet (i.e.

no queueing) to 512 packets. Figure 5.5 shows how many cycles per packet are

taken to complete the previous experiment for I/O channel depths increasing in

powers of two.

Even when Expert cannot batch because the channel depth is limited to one

packet, at 5500 cycles Expert’s pod I/O channels are still faster than both

Nemesis with 32-deep channels and Linux. It can also be seen that at a depth

of 32 packets, most of the efficiency gains have been achieved, and deeper

channels will merely increase latency and waste memory.

135



100

1000

10000

1 4 16 64 256

C
os

t p
er

 p
ac

ke
t (

cy
cl

es
)

Batch size (number of packets)

Figure 5.5: Pod I/O depth vs. cost.

5.5 Summary

This chapter has argued that allowing threads to tunnel between protection do-

mains is useful for a variety of reasons. By using only one resource princi-

pal across multiple protection domains, resource allocation and scheduling is

simplified. Switching between tasks requires a scheduler pass which can be

avoided by tunnelling, allowing finer-grained de-composition of system func-

tions.

Expert allows the application programmer a very wide variety of ways of man-

aging code and threads. Tasks are used for traditional batch-mode processing

where little I/O is required, for example system services. Paths have a more

restrictive run-time environment but benefit from being able to make calls into

protected modules (pods). Tasks are used to implement and call active servers,

paths tunnel into passive pods.

Pods use an explicit binding phase to perform vetting and to setup any per-path

state needed. The kernel makes it easy for a pod to access this per-path state by

passing it as a parameter to all pod calls. Pods are more privileged than their

callers: these concentric rings of protection map naturally onto protocol stacks,
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and allow efficient tunnelling. Pods can choose their security policy: if a pod

trusts its client, it may use the client’s environment without limit as if it were

the client. If not, it may replace its inherited environment with a secure one,

including the option of performing a stack switch.

Pods can be considered a generalised form of SysV STREAMS [Sun95], where

there is no restriction on the interface offered by a pod. Thus, pods may be used

to implement stackable components, such as STREAMS modules or protocol

boosters [Feldmeier98].

Packet I/O to pods is implemented behind the same API as packet I/O to tasks,

bringing the same benefits: explicit control over batching, scatter / gather, and

bind-time checks allowing an uncluttered fast-path.

While the performance of the ntsc call pod() system call and the pod I/O

transport built using it is impressive, the application design flexibility enabled

by pods remains their raison d’être. The next chapter presents the design of

a complex streaming system supporting different levels of service which is

nevertheless simple to implement by using pods as an integral part of its design.
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Chapter 6

System evaluation

This chapter presents an extended example which demonstrates how Expert’s

network driver model together with paths allow the CPU and memory resources

used to be scheduled and accounted. This is so that when overloaded the system

may shed load gracefully, thus degrading the externally observed quality of

service in a controlled manner.

A streaming media transcoder is used as the example application run over Ex-

pert. The following section motivates the example, and further describes the

application’s requirements. The next section describes how Expert’s features

are used to implement the application. The final section presents a macroscopic

performance evaluation, and compares an implementation making full use of

Expert’s features against a single-task implementation.

6.1 Motivation

A new radio station, Rock Ireland, wishes to make its broadcasts available via

the Internet so as to reach a sizeable expatriate community. However, Rock

Ireland also needs to recoup the costs of its Internet operation, so it decides

to charge listeners for access to the streaming broadcast. To encourage new

listeners, Rock Ireland wants to provide a low-quality stream for free.

The radio station produces its output as a 44.1KHz stereo 192Kb/s stream of

MPEG-1 Layer III audio (MP3) [Pan93]. The subject of this example is a media

transcoder used to convert this source stream into three quality tiers: gold (the

unmodified stream, which is full-price), silver (44.1KHz stereo, 128Kb/s, at a
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Figure 6.1: Proposed location of transcoders within the network.

slightly cheaper price) and bronze (11KHz stereo, 32Kb/s, available for free).

Figure 6.1 shows how transcoders can be positioned towards the edge of the

network, moderately close to the clients they serve, thus minimising the traffic

crossing the core.

This extended example describes the design and implementation of such a

transcoder, and shows how Expert’s combination of paths and tasks allows

precise control over the scheduling and protection of the various components

which form the transcoder application. Control over resource scheduling al-

lows the transcoder to degrade the level of service experienced by non-paying

customers to ensure that paying customers are served promptly, allowing the

system to satisfy more paying clients. The fine-grained protection offered by

Expert should also increase the robustness of the system, although no empirical

evidence is offered for this.

An implementation taking full advantage of Expert’s features is compared to

an implementation with no memory protection using a task with threads. This

allows the overhead of fine-grained memory protection to be quantified, as well

as clearly demonstrating the need for proper scheduling to segregate the CPU

requirements of the individual streams when overloaded. Such a task-based

implementation strategy might be a suitable way of porting the application to

an OS lacking paths.
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6.1.1 Requirements

Isolation. Since some listeners pay money to listen to the streams, such streams

should be flawless and uninterrupted. The listeners who have paid noth-

ing must make do with whatever spare capacity is available in the sys-

tem.1 Thus the gold, silver and bronze tiers are not only media quality

metrics, but should also reflect the OS resources needed while process-

ing streams of these tiers to ensure that streams from higher tiers are

processed in a timely manner without loss.

This does not establish a route through the network with a guaranteed

quality of service, but it is assumed that the bottleneck resource in this

case is the CPU in the transcoder, not the network: the maximum band-

width emitted is 2.8Mb/s. However, should network resources also need

to be reserved, Expert’s path mechanism provides a natural entity to

which such a bandwidth reservation might be allocated. Alternatively,

if the expected competition in the network is purely local due to other

traffic flows through the transcoder, then the network driver’s transmit

scheduler could be used to rate-limit some flows in order to preserve

capacity for others.

Per-client customisation. To stop non-paying clients from snooping on the

streams which are payed for, gold and silver streams should be encrypted

with a per-client key. While this cannot stop a client from re-broadcasting

a paid-for stream, it foils freeloaders between the transcoder and the

client. Some kind of fingerprinting or digital watermarking scheme may

also be a requirement. However, note that digital watermarks may be

erased, so they do not provide a robust way of preventing re-broadcasting;

using them may be required to meet some contractual obligation.

Per-client audio splicing may be done, for example to target adverts,

offer different disc-jockey “personæ”, or provide personalised news and

weather.

The salient point is that there is a requirement to perform client-specific

non-trivial processing on streams which are paid for, be it encryption,

watermarking or some other customisation. In this example, AES (Ad-

vanced Encryption Standard) is used as the processing performed [FIPS-197].

Protection. The principle of minimum privilege should be applied when de-

1Of course, an unscrupulous radio station may wish to deliberately downgrade the quality of

the bronze stream to provide an incentive for listeners to pay for the higher quality streams.
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Figure 6.2: Data flow through the transcoder. See text for description.

signing the application: individual components should only be given ac-

cess to the minimum areas of memory they need to perform their func-

tions. This reduces the probability of accidental or malicious damage,

whether caused by programmer error, or Trojan code. For example, the

encryption keys should only be readable by the encryption modules, so

that key material cannot be leaked from the system. Also, it may be the

case that externally-provided media codecs are used, in which case they

might not be trusted as much as code written in-house.

The transcoder architecture described in the next section uses Expert’s paths

to meet these three requirement. In order to discover their cost and benefit, a

comparison is made with an implementation using a single task, thus foregoing

the desirable isolation and protection properties described above.

6.2 Architecture and implementation

Figure 6.2 shows how packets flow through the transcoder. Arrows depict data

movement and rate; thicker arrows correspond to higher data rates. The mod-

ules implementing the basic functionality are shown in rounded rectangles:

DEC is an MP3 decoder instance, each ENC is an MP3 encoder instance, and

each AES is an instance of an encryption module together with its key mate-
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rial. The rectangles represent the paths in this system: the common-rx path

handles network receive, decoding, and encoding; the gold paths perform en-

cryption and transmission, one per gold stream; the silver paths do the same

for each silver stream; and the bronze path encodes and transmits one or more

bronze streams. Note that there is a one-to-one mapping between gold and sil-

ver streams and their associated paths, whereas there is a single bronze path to

handle all bronze streams; this diagram shows three streams at each tier. Using

a path per stream allows independent scheduler control over each of the paid-

for streams to meet the isolation requirement, and provides memory protection.

Since bronze streams have no special scheduling needs, they can all be handled

by a single path.

The common-rx path decodes MP3 to PCM (Pulse Code Modulation) samples

then encodes back to MP3 again rather than operating directly in the Fourier

domain (which should be more efficient) for simplicity of implementation.2

The common-rx processing is given its own path because it performs work

which is needed by the other paths: if it does not made adequate progress,

then no other path will. Therefore, making common-rx a separate path allows

its scheduler settings to be appropriately tuned to ensure it is run frequently

enough.

Figure 6.2 also shows how other paths interact with the common-rx path via

its three caches: the 192, PCM, and 128 caches. The caches hold the received

192Kb/s MP3 frames (192 cache), the result of decoding them into PCM sam-

ples (PCM cache), and the result of re-encoding them to 128Kb/s MP3 (128

cache). Each cache is a ring buffer which allows multiple paths to make read

accesses concurrently with write accesses from the common-rx path.

To mediate these concurrent accesses, the caches are implemented as protected

modules (pods) into which paths may tunnel to insert (common-rx) or read (all

other paths) buffers containing either MP3 frames or PCM samples, depending

on the cache in question. These pods are shown by dotted rectangles in the

diagram. The state for the AES modules is held within pods to protect their

key material from the application logic and network stack also running within

the path.

2Source code for both MP3 encoders and decoders is widely available, but Fourier domain

transcoders are less prevalent.
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6.2.1 Caches

The caches perform several functions. They decouple the common-rx path

from its clients, while making available the last few packets processed to absorb

jitter in the system. They allow the controlled “spying” of intermediate packets

in the common-rx decode pipeline, without requiring readers to receive every

packet. Ensuring all readers receive all packets would limit the pipeline to

proceeding at the rate of the slowest reader. This would let paths with small

CPU guarantees rate-limit paths with larger guarantees: a classic example of

priority inversion.

Caches maintain a read pointer for each reader, and a current write pointer;

Figure 6.3 shows this arrangement. The read pointer may not overtake the

write pointer – attempting a read when there is no data available blocks the

reader. However, the read pointer may fall so far behind that it is no longer

within the range of the cache. Readers in this situation have their read pointer

set to the oldest valid contents of the cache, and are notified of how many

entries have been skipped over. Writers always write to the write pointer, and

because readers may be left behind, writers need never block.

There are a constant number of buffers in the cache (five in these experiments),

allowing readers to view a fixed amount of history (around 130ms, given 5

MP3 frames of 627 bytes each, arriving at 192Kb/s). Inserting a new buffer

into the cache returns the oldest buffer, which has been evicted. Rather than

storing buffers inline in the cache, (base, length) pairs reference externally

allocated buffers; this delegates the allocation of buffers and their permissions

to the writer. This implies that if the cache read operation returned such pairs

to the caller, the buffer referenced must not be overwritten until the client has

finished using the reference. This violates the design goal of not blocking the
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writer, so instead the cache read operation copies the contents of the referenced

buffer into a fresh location provided by the caller.

The cache insert and read algorithms are implemented in a pod for a number

of reasons. Concurrency control is simplified by providing a central location

where a lock can be taken out. From a CPU scheduling perspective, the cost of

performing the copy on reading a buffer is accounted to the reader. Also, be-

cause pods are explicitly bound to by clients, the per-client binding can include

the client’s read pointer, speeding access to it.

An alternative implementation would be to place the cache control data struc-

tures in a stretch of memory to which all clients have read/write access, and use

lock-free algorithms to manage concurrent updates to the cache. This would

be an interesting approach; the cache behaviour is complex enough to provide

some entertainment designing such an algorithm, however, all clients would

need to fully trust each other’s cache update algorithms. This is the approach’s

Achilles’ heel: one poorly coded cache client would affect the stability of all

the cache clients.

6.2.2 Buffer allocation and usage

At initialisation time, the common-rx path allocates, binds to, and exports the

three caches. It stocks them with their initial buffers, allocating them writable

by itself, but with no access to the other paths.

The 192 cache is somewhat special: its buffers come from the network stack.

The common-rx path strives to keep three-quarters of the available network-

ing buffers in the driver ready to be received into, but enters the remaining

buffers in the 192 cache to make them visible to gold paths. On packet arrival,

common-rx inserts it into the 192 cache, evicting the oldest buffer; this buffer

is handed back to the device driver to be received into, maintaining the 3:1 split

between network driver and cache.

Eviction is used in a similar manner all the way along the decode-encode

pipeline. For example, the result of decoding is placed into a pre-prepared

buffer and inserted into the PCM cache, returning an evicted buffer which is

noted for decoding into next time around. The same technique is used with the

result of the encoder and the 128 cache.

Because of the nature of the MP3 format, several MP3 frames are needed before
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any PCM samples are produced. The encoder is similarly bursty, accepting

multiple buffers of samples before producing the next MP3 frame. This is dealt

with by pushing the data (MP3 frame or samples) only as far down the pipeline

as it will go while still generating output, and relying on a continual stream

of incoming frames to drive the whole pipeline forwards. This eliminates the

need to have threads shuffling output from one stage to the next: the pipeline is

driven entirely by network packet arrival events.

6.2.3 Alternative architectures

Having described the path-based architecture above, this section describes two

alternative architectures, neither of which use paths. The first alternative pre-

sented shows how the previously stated requirements can be met using just

tasks, but argues that it would be inefficient. The second alternative shows

how an efficient task-based implementation is possible if the requirements for

protection and isolation are relaxed.

While it would be possible to implement the application purely using paths (for

example for use on Scout or Escort), the path-based version on Expert uses

separately scheduled tasks to implement system services such as the binder

and namespace trader, the serial console driver, the ps2 keyboard driver, Eth-

ernet card initialisation and media detection, network connection setup and

teardown, and an interactive shell from which the system may be configured

and new paths or tasks started. By scheduling these components separately as

tasks, their impact on the transcoder application is bounded. In Scout, such

tasks would either reside in the kernel, or be forced into a path model which

does not closely match their use.

Task-based

The simplest way of implementing the presented path-based architecture on

systems which do not allow tunnelling would be to use a task everywhere the

architecture calls for a path. When gold, silver and bronze tasks need to read

data from the common-rx task, this must be via one of the standard IPC mech-

anisms. In this case, using an I/O channel would be most appropriate since the

buffer could be passed between the protection domains without needing to be

marshaled. Note that the copy out of the cache would still be required to enable

the cache writer to remain non-blocking, but a further copy to marshal between

145



protection domains would be avoided by using an I/O channel.

This design retains the advantages of the path-based architecture: the common-

rx, gold, silver, and bronze components are separately scheduled, and so may

be given appropriate guarantees; and the separate tasks ensure that processing

occurs in distinct protection domains. It is not possible to protect the AES

key material as tightly as in the path architecture, and in the common-rx task

the cache data structures are not protected from the decoder and encoder, but

aside from these minor differences, the task-based architecture is functionally

identical to the path-based one.

However, since the measurements in Section 5.4.2 show that using I/O chan-

nels is approximately a factor of ten slower than tunnelling into a pod, this

architecture would be quite inefficient.

All-in-one

The all-in-one architecture avoids the performance problem with the task-based

architecture by using a single task containing a user-level thread for each path

in the original design. The common-rx, gold, silver and bronze threads all run

within a single protection domain. The task containing these threads is given a

CPU guarantee, but the individual threads are scheduled by a round-robin user

level scheduler and so have no guarantees.

This arrangement means that there is no memory protection between the en-

coder, decoder and AES components. Because the thread scheduler is round-

robin, there is no possibility of isolating the more important common-rx, gold

and silver threads from the bronze thread. This could be achieved by replacing

the thread scheduler with one implementing a more sophisticated algorithm.

This is not done in the all-in-one architecture in order to allow a comparison

between a system providing proper isolation (the path-based one) with one

which does not (the all-in-one design).

Synchronisation between the various threads is done by an implementation of

the cache using a mutex to protect the cache data structures and a condition

variable to allow readers to block and later be woken by inserts. Locking is

still required between the writer and the reader threads since the readers must

see a consistent view of the cache control data structures.

Other than this change in cache synchronisation primitives, the implementation
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Architecture implemented? protection? isolation?

path-based ✔ ✔ ✔
task-based ✘ ✔ ✔
all-in-one ✔ ✘ ✘

Table 6.1: Architecture summary.

hornet fox snapper

.

.

gold stream

silver stream

bronze stream

TC

Figure 6.4: Experimental set-up.

of the all-in-one architecture is identical to the path-based implementation, us-

ing threads rather than paths, naturally.

Table 6.1 summarises for each of the discussed architectures whether it has

been implemented, whether it provides memory protection between the ap-

plication’s components, and whether it provides quality of service isolation

between streams.

6.3 Results

This section describes two experiments. The first experiment quantifies the

cost of using paths to achieve proper protection between the components in

the transcoder, by comparing the amount of CPU time needed to achieve loss-

free operation both in the path-based and the all-in-one implementations. The

second experiment quantifies the benefit which scheduling provides, by mon-

itoring the transmission rates of the produced streams for both the path-based

and all-in-one implementations.

Figure 6.4 shows the experimental set-up. In both experiments, hornet (a

Pentium II 300MHz running Linux) is used as the “radio station” source, send-

ing a stream composed of 192 Kb/s MP3 frames. The frame size is variable, but

is typically around 627 bytes. Each frame is encapsulated in a UDP packet and
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sent to fox. The stream lasts around 146 seconds, and is paced to deliver it in

real-time. Fox is the machine under test, and runs either the path-based or the

all-in-one implementation of the transcoder under Expert. It derives a number

of output streams from the input and sends them to snapper (running Linux),

which discards them. Snapper also runs tcpdump to calculate the bitrates

achieved by each stream from fox.

6.3.1 Cost of protection

In this experiment, fox runs the transcoder application on an otherwise un-

loaded system, and grants the application as much CPU time as it desires: no

CPU limit is in place. The amount of CPU time actually consumed is recorded

by the scheduler as a fraction of the total cycles available to it.

The transcoder application is initially configured to serve one gold, one bronze

and one silver stream. The experiment consists of measuring the CPU time

requirement for both the path-based and the all-in-one designs as additional

silver streams are added. When loss begins to occur because the transcoder ap-

plication would need more CPU time than is available, no more silver streams

are added and the experiment for that architecture is over.

Figure 6.5 shows the measured CPU time required for loss-free operation of

the transcoder. The “path-based” line shows the cost for the path-based ar-

chitecture; the other line shows the cost for the all-in-one architecture. The

path-based version is, as expected, more expensive. Adding protection and

proper scheduling costs between 2% and 5% more than doing without, and the

slightly larger gradient indicates a higher per-stream overhead in the path-based

architecture than in the all-in-one case.

The authors of Escort noted an increase in CPU requirements of between 200

and 400 percent when adding memory protection to Scout [Spatscheck99, Sec-

tion 6]. In their case, this large performance gap may be explained by the fact

that Scout runs without protection, entirely in the CPU’s supervisor mode; by

comparison, the all-in-one design runs within one user protection domain with

occasional traps to supervisor mode to perform network I/O. The architectural

difference between Scout and Escort is thus much greater than the difference

between the all-in-one and the path-based designs: all-in-one and Scout are not

analogous systems.

Table 6.2 shows the fraction of total CPU time spent in each path for a path-
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Figure 6.5: CPU time required to service one gold, one bronze, and a vary-

ing number of silver streams.

Path CPU needed (%) Proportion (%)

common-rx 40.3 45.0

gold 1.6 1.7

silver 1.2 1.2

bronze 46.3 51.8

Total 89.4 100.0

Table 6.2: CPU requirements by path. Totals may not add up due to

rounding.

based transcoder configured with one each of the gold, silver and bronze streams.

The CPU requirement is given both as a fraction of all the cycles available on

the machine, and as a proportion of those spent in the transcoder. The remain-

ing cycles not spent in the transcoder are expended on other system tasks and

in the idle loop, neither of which are recorded in the table above.

The most expensive component in the architecture is the MP3 encoder, which

accounts for the majority of time spent in common-rx and bronze. One possible

reason for this is that when sample rate conversion is performed, the samples
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must be copied and smoothed to avoid aliasing, and this greatly increases the

CPU cost. It was originally envisaged that the silver streams would be 56Kb/s

at 22KHz, however preliminary work showed that the sample rate conversion

from 44.1KHz down to 22KHz required too much CPU time to fit the pro-

posed experiment on the test machine; transcoding from 44.1KHz at 192Kb/s

to 44.1KHz at 128Kb/s requires no sample rate conversion and is thus cheap

enough for the experiment to be viable.

A similar breakdown of costs for the all-in-one design is not available, because

the CPU usage of the individual threads is not visible to the system-wide sched-

uler and so went unrecorded. The total for all threads was recorded, and came

to 86.7% of the machine.

Because all-in-one is more efficient, it can serve about half as many more silver

streams for the same CPU budget. However, the next experiment shows that

once this limit is exceeded, i.e. when the system becomes overloaded, all-in-

one cannot discriminate between its clients and all streams begin to suffer loss.

A more efficient implementation such as all-in-more merely delays the point at

which overload is reached.

6.3.2 Benefits of isolation

In order to correctly handle overload situations, clients belonging to separate

resource tiers must be distinguished, and their effects isolated from each other.

This can be done by exposing the clients as first-class scheduling entities (paths

in this case), and running them with an appropriate quality of service.

In this experiment, fox services five gold streams, one bronze stream, and an

increasing number of silver streams. The path-based version is configured to

give the common-rx path a 45% share of CPU, the gold and silver paths get

2%, and the bronze path is allocated 15%. All of these shares of CPU time are

allocated over a 100ms time period, and all paths are allowed to use any slack

time in the system. These guarantees are sufficient to meet the CPU needs

for the common-rx, gold and silver paths, but the bronze path ideally needs

approximately 46%. This means that the bronze path will mostly be running

on slack time in the system, i.e. as the number of silver paths increase, the CPU

available to the bronze client will diminish. In this manner, the transcoder’s

administrator has expressed the policy that the bronze path’s performance is

unimportant compared to the common-rx, gold and silver paths.
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without isolation.

For the all-in-one version of the transcoder, the task is allocated 85ms/100ms

which allows it to monopolise almost all the machine’s resources. It is also

allowed the use of slack time in the system.

The produced streams are captured by snapper which calculates the aver-

age bandwidth achieved by an average gold and silver stream, and the average

bandwidth of the single bronze stream, over the whole experiment. In a loss-

less transcoder, the gold streams should average 192Kb/s, the silver streams

128Kb/s, and the bronze stream 32Kb/s.

Figure 6.6 shows these average bandwidths for the all-in-one case and the path-

based case. Ideally, all the lines should be horizontal and co-incident, which

would indicate that regardless of offered load, the streams continue uninter-

rupted. However, it is clear to see that the gold and silver streams without

isolation (i.e. the all-in-one design) suffer large amounts of loss as the load

increases. In comparison, the gold and silver streams with isolation (i.e. the

path-based version) continue almost unhindered, all the losses being concen-

trated on the bronze stream.

Lack of memory on fox prevented more silver clients from being run to further

151



extend the graph. However, once the CPU requirements of both the gold and

silver clients together reach a level where stealing cycles from the bronze client

is no longer sufficient, the gold and silver streams would begin to experience

loss.

Admission control could be used to reject requests to start new streams, thus

preventing the system becoming overloaded in the first place. While this is

true, the use of admission control is orthogonal to the techniques presented in

this dissertation.

To verify that the scheduler was correctly sharing resources between CPU-

bound tasks as well as the paths this chapter has focused on, a background task

was run during this experiment. It ran in a loop, consuming as much CPU time

as the scheduler allocated it, and occasionally printing how much it consumed.

It was given a best-effort guarantee only. Despite this task’s presence, the paths

ran according to their guarantees and were able to produce the results discussed

above.

6.4 Summary

This chapter used a media transcoder to show how paths can be used in a real

application to:

• map resource consumption onto meaningful entities, so that allocations

can be easily tuned;

• make efficient accesses to shared data;

• tightly control the visibility of sensitive data such as key material.

A path-based implementation of a media transcoder was compared to one im-

plemented within a single task using multiple threads. While the all-in-one

task implementation was 2%-5% more efficient when the system was not heav-

ily loaded, under high load it could not protect the CPU allocations of some

media streams by sacrificing the performance of others.

Despite the presence of a CPU-bound task running alongside the paths, the

scheduler isolated the processing for the paths making up the transcoder appli-

cation from the best-effort CPU-bound task.

152



Chapter 7

Conclusion

This dissertation has presented a number of techniques for managing resources

in a network element. This chapter summarises the work and its conclusions,

and proposes strategies for implementing the core contributions in the context

of more mainstream operating systems. Finally, topics for future study are

proposed.

7.1 Summary

Chapter 2 reviewed prior work establishing the concept of a path as a core OS

abstraction. Particular attention was drawn to the work on Scout, which advo-

cates using paths to encapsulate the processing performed on flows of packets.

The lack of a traditional task-like scheduling class in Scout (and its successor

Escort) was discussed, along with a selection of techniques the Scout develop-

ers have evolved to deal with this deficiency.

The conclusion drawn was that although paths are attractive when processing

packet flows, this is really the only setting when they are useful; tasks remain

necessary for system management and other background activities.

Chapter 2 continued by discussing Resource Containers, work motivated by

the fundamental mismatch between the original task-based design of operating

systems such as Unix, and their use in today’s network-centric environment.

The solution proposed by Resource Containers is to dissociate the scheduled

entity from the process abstraction; effectively creating a path-like entity which

is separately scheduled. Threads in a resource container cannot tunnel into
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other user-level protection domains however, so their use is limited.

IPC systems specialise in moving control flow and data across protection bound-

aries in a controlled manner. Chapter 2 went on to describe IPC systems, clas-

sifying them into those which block the calling thread and continue the call

within a separately scheduled server, and those which tunnel the calling thread

directly into the server. The Spring and Mach thread tunnelling systems were

described; however both are complicated by the need to handle failures mid-

call, and the baroque debugging and signal environment present in Unix.

Vertically structured systems strive to minimise IPC by making applications

responsible for the majority of their own processing. Both Nemesis and Exo-

kernels were discussed. Driver support for non-self-selecting network devices

was found to be lacking, forcing a separately scheduled device driver onto the

data path to demultiplex received packets and to check and schedule outgoing

packets.

In summary, current OS designs are poorly adapted to performing I/O-driven

processing with quality of service guarantees. Expert is introduced as an OS

which offers a hybrid between path- and task-based systems, allowing paths to

be used to capture resource usage which is driven by network flows, and tasks

to be used for resource usage which is mainly compute-bound.

Chapter 3 provided a brief summary of the Nemesis operating system. Since

Expert is largely based on Nemesis, many of the properties of Nemesis also

hold true of Expert, (e.g. both are single address space systems). Describing

Nemesis also allows a clear separation between the new features which Expert

introduces and the pre-existing Nemesis work.

Expert’s network device driver model was presented in Chapter 4. The aim

was to examine the performance impact of placing the device driver in the ker-

nel (where it enjoys low latency access to its device) compared with a fully

scheduled scheme with the device driver as a server in user-space (which min-

imises crosstalk due to network interrupt processing). While accepting that

smart devices capable of being exposed directly to untrusted user applications

are desirable, Expert takes a pragmatic approach to dealing with the cheap and

widely available range of network devices which are sadly not user-safe. In the

same way as cheap controllerless modems are now commonplace, cheap but

dumb Ethernet cards look set to become widespread.

Expert’s network driver model consists of emulating the low-level API pre-
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sented by a user-safe device within the kernel, thereby making dumb hardware

easily (although not directly) accessible to untrusted user programs.

The Expert device driver was benchmarked in a number of different config-

urations against Linux, a widely available Unix implementation. Expert had

slightly higher latency than Linux, but Expert survived livelock better, and was

able to share out transmit resources fairly. The distribution of time spent with

interrupts disabled was measured, giving a lower bound on the scheduling jitter

introduced. This showed that Expert’s mean was about an order of magnitude

larger than Nemesis’, however it was 30% lower than Linux’s. More impor-

tantly, the distribution for Expert had a much shorter tail than for Linux: this

implies that the worst-case scheduling jitter introduced in Expert is more tightly

bounded than in Linux.

Having dispensed with the need for a shared server to handle the network de-

vice, Chapter 5 discussed how tunnelling could be used to further reduce the

need for shared servers. Paths in Expert were described, their defining feature

being their ability to make calls into protected modules (pods) residing in a

different protection domain without losing the CPU.

Micro-benchmarks were run to quantify the cost of various control transfer

mechanisms. While tunnelling into a pod is just under ten times more expen-

sive than making a system call, it is 17-45% faster than pipe-based IPC on

Linux and almost an order of magnitude faster than Expert I/O channels.

Chapter 6 presented an extended example, showing how paths can be used in

a moderately complex application to segment the work into units which can

be given meaningful resource guarantees, and thus isolated from each other.

Large-scale benchmarks showed the overhead of using paths to achieve fine-

grained memory protection cost around 2-5% more CPU time than an imple-

mentation optimised for speed using multiple threads within a single task’s

protection domain. Naturally, the cost will depend on how often tunnelling oc-

curs in the application; these figures apply only to the specific mix of tunnelling

and processing in the example application described.

A second experiment showed how effective scheduling of the application’s

components could isolate the lucrative processing from the effects of best-effort

processing, thus allowing more paying streams to be serviced.
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7.2 Contributions

Expert uses a number of novel concepts:

• Transmit descriptor re-writing. This technique mitigates the number

of “transmit complete” interrupts generated by devices, dynamically ad-

justing the interrupt frequency to minimise latency at low loads and max-

imise throughput at high loads.

• Transmit scan. By amortising the cost of entering the kernel to deal

with a network interrupt by speculatively reloading the transmit DMA

ring, CPU cycles spent crossing the kernel-user boundary are saved. The

higher the transmit load, the more is saved. This is an example of em-

ulating a feature of a smart adaptor (in this case the transmit process)

within the kernel.

• Publicly readable system status records. Kernel-to-user and user-to-

kernel communication is made more efficient by publishing information

at well-known locations in publicly readable stretches of memory. The

only restriction is that synchronisation is not possible with this scheme,

meaning that achieving a consistent view of multi-word data is trouble-

some. While the technique has been used previously (for example in

Nemesis’ public information page and DCB) it is a powerful one and

deserves to be used more widely. In Expert, it is used to eliminate redun-

dant wakes of the transmit subsystem, and to read packet buffers from

the application transmit queues. The closest prior work is in the AFS

filesystem, where the gettimeofday() system call can be avoided

by resolving the address of a private kernel symbol holding the current

time, and using mmap() to map the page containing it into the AFS pro-

cess’s address space. This is ugly, and requires the AFS process to be

run as a privileged user in order to map kernel memory.

• Explicit batch-size control. Protection switch overheads can be amor-

tised by batching up work before making the switch. Expert allows appli-

cations direct control over the trade-off between small batches to achieve

low latency at a higher cost than large batches which increase latency but

improve throughput. Batch size may be controlled in network transmis-

sions and in pod I/O channels by the use of an explicit Flush() call.

The precise semantics of Flush() depend on the kind of I/O channel

in use: for pod I/O channels Flush() tunnels into the pod to drain
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the channel, whereas for I/O channels to the network driver Flush()

ensures a transmit scan will be run shortly.

• Lightweight protection switches. Expert’s pod system provides the

minimum kernel support needed for thread tunnelling. No marshaling

is performed, arguments are not vetted, the pod’s runtime environment

is not scrubbed, and the stack is not switched. All of these extra features

may be added on a per-pod basis depending on the application’s require-

ments. A concentric model of protection is developed, allowing efficient

tunnelling into pods, and easing the sharing of information between a

pod and its callers. In this manner, Expert provides the basic mechanism

for thread tunnelling with few restrictions on application flexibility. The

only constraint is the concentric protection scheme; lifting this restriction

is left to future work.

These concepts allow network flows to be handled both efficiently and pre-

dictably.

By making both tasks and paths scheduled by a single system-wide scheduler,

guarantees given to data-driven processing are integrated with those of more

traditional compute-bound tasks. Background services such as serial console

drivers and shells are implemented as tasks, and thus have bounded impact on

the rest of the system. This mix of paths and tasks is unique to Expert: this

dissertation has provided evidence to support the thesis that both are useful in

systems which strive to isolate data-flow driven processing from background

CPU-bound tasks. Such isolation is desirable in order for the system scheduler

to remain in control of the machine’s resources when overloaded.

The philosophy behind this work has been to address in a pragmatic manner

the problem of processing data flows with a commodity workstation to achieve

high performance in the face of dumb devices, but without sacrificing quality

of service isolation.

7.3 Integration with mainstream OSes

It is interesting to speculate how some of the ideas embodied in Expert might

be integrated with a mainstream operating system such as Linux.
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7.3.1 Network driver scheme

There is a large body of research already published on user-space networking

in a Unix environment [Thekkath93, Maeda93, Edwards95, Basu95, Black97,

Pratt01]. Much of this is still relevant. Where devices have been designed

appropriately, they may be exposed directly to user applications. For all other

devices, the same split between user-space and kernel processing described in

Chapter 4 is valid: the demultiplex must happen in the kernel, allowing the

received packets to be directly delivered into an application’s socket buffers.

The transmit scan can be implemented by checking all sockets buffers for pend-

ing output and speculatively loading them onto the DMA ring as described in

Section 4.3.

The BSD sockets API is not amenable to zero-copy operation, since the desti-

nation buffer addresses are known too late to be useful. A modified API that

exposes the pipelining inherent in any network stack, and thus gives more flexi-

bility over buffer management, would be needed to derive the full performance

gains available.

7.3.2 Pods on Linux

Pods in Expert fulfil what would be two distinct roles in a multiple address

space system such as Linux. With multiple address spaces tunnelling can either

be between process address spaces (as in Spring), or within a single process’s

address space but into a more privileged library (as in the Protected Shared

Library scheme [Banerji97]).

The Expert model merges the access rights of the caller and the callee: this

would be impossible with cross-address space calls but perfectly feasible if

pods are modelled as shared libraries with protected state.

The kernel would need to be modified to add a new system call to perform

the protection switch, and the trusted loader would also need to reside in the

kernel. An infrastructure for naming and binding to pods would also need to

be developed.

Under Unix a process’s runtime environment is implicit, unlike the pervasives

record in Nemesis and Expert. This makes the job of scrubbing the execution

environment somewhat harder. For example, the kernel call pod() routine
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should mask all signals, otherwise an application’s signal handler could be run

with pod privileges. A full list of state held in the kernel and standard library

would need to be compiled, to ensure it is preserved across pod calls and not

harmful to the correct operation of the pod.

7.3.3 Paths on Linux

The benefits of paths come from knowing ahead of time what kind of packets

will be received, so allowing customised or specialised handlers to be used.

This is likely to arise out of any user-space networking scheme since the kernel

will need to fully demultiplex packets as they arrive. Therefore, “paths” on

Linux could be implemented by using a user-space network stack along with

upcalls simulated by using the POSIX.1b asynchronous I/O API. This would

allow a handler function to be directly invoked on packet arrival in user-space.

7.4 Future work

This dissertation described how a uni-processor machine with dumb devices

might be scheduled to control resource usage in a network element. However,

network elements are becoming increasingly complex, now sporting a range of

processors of varying powers at a variety of distances from the data path. A

future avenue of research might be to investigate how resources in such non-

uniform multi-processor systems may be controlled in a unified manner.

Today’s devices can readily saturate the interconnects in a modern workstation.

In addition to scheduling the system’s CPU(s), a NEOS would need to schedule

access to the interconnect, be it the buses in a workstation or the switching

fabric in a router chassis. Investigating approaches to this remains future work.

Another area of interest might be to see what support an operating system might

offer for connection splicing, an increasingly common technique used in load

balancers in front of server arrays. By integrating packet classification with the

retrieval of application-supplied state, it should be possible to service spliced

connections faster.

Small changes to the ntsc call pod() system call would allow pods to ei-

ther use the concentric model of protection described in this dissertation, or use

a more classic protection switch model: the difference lies in whether the pod’s
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pdom is pushed onto the boost pdom stack, or swapped into the top position.

Enabling both schemes to co-exist would enable any of the other tunnelling

schemes described in the related work chapter to be implemented over this ba-

sic primitive.

Once paths are in widespread use within an OS, it becomes easy to write an

“ntop” diagnostic tool. In the same way as “top” produces a real-time display

of the largest consumers of CPU time, ntop would show a list of the largest

streams of data traversing a network element. Network monitoring tools al-

ready provide this kind of display, however ntop would also allow the resource

guarantees on each stream to be changed interactively, much like changing the

priority of a process with top. This could ease the acceptance of new protocols,

since network administrators could monitor the traffic levels and easily change

scheduling parameters as the need arises. Perhaps more routers would run with

IP multicast enabled if the administrator could write a rule that said multicast

traffic (and related processing) should take no more than 10% of the router’s

resources.
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Appendix A

Interfaces

This appendix shows the MIDDL interfaces used in Expert to define the APIs

used in manipulating Pods.

A.1 Pod.if

Pods provide shared code which runs in its own protection domain. Pods are

invoked by the ntsc_call_pod system call, which needs to be passed a

PodID. These PodIDs are indicies into the system-wide pod table maintained

by this module. Once the loader has finished relocating a new pod, it calls the

Register method on this interface to inform the kernel of the existence of a new

pod.

Pod : LOCAL INTERFACE =

NEEDS ProtectionDomain;

BEGIN

ID: TYPE = CARDINAL;

Pods are identified by PodIDs, typically small numbers from 0 upwards. They

are indices into the kernel’s pod table storing pod entry addresses and the pdom

they should execute in.

Entry: TYPE = DANGEROUS ADDRESS;

Pod’s entry point. It is called as a C function with the following prototype:

uint32_t pod_entry (void *binding_state,
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uint32_t method,

void *arguments);

Register : PROC [ entry : Entry,

pdid : ProtectionDomain.ID ]

RETURNS [ ok : BOOLEAN,

podid : ID ];

Returns True for success, in which case podid is valid. Once loaded, a pod is

registered with the kernel by called Register. This also assigns it a unique

Pod.ID.

Init : PROC [ podid : ID,

name : STRING,

args : DANGEROUS ADDRESS ]

RETURNS [ ok : BOOLEAN ];

Initialises podid with args (pod-specific format), and if successful places an

OfferP name into the (presumably traded) namespace.

Once registered, a pod is then initialised to get an offer_state pointer. This

together with the Pod.ID returned at the registering stage is used to make a

Pod.Offer:

Offer : TYPE = RECORD [ podid : ID,

offer_state : DANGEROUS ADDRESS ];

OfferP : TYPE = REF Offer;

Pod Initialisation and Binding

Pod initialisation is carried out by the Pod Binder domain. It generates a

temporary PodBinder.Binding with a NULL state, and insert it into its

own DCB. It then executes a ntsc_call_pod(bid, 0, NULL) with this

binding. Method 0 in the pod, with a NULL state is taken to be an initialisation

request. The pod should check that this is a bona-fide call from the PodBinder

task, then perform any initialisation required. Finally, it returns a pointer to any

instance-specific data it needs, which becomes the offer_state pointer in

the Offer
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See the untrusted interface PodBinding.if for details of how clients bind

to pod offers.

END.

A.2 PodBinder.if

Clients make invocations on pods via Bindings. This interface is used by

unprivileged clients to bind to pod offers which have previously been exported

to a traded namespace.

PodBinder : LOCAL INTERFACE =

NEEDS Pod;

BEGIN

Binding: TYPE = RECORD [ podid : Pod.ID,

state : DANGEROUS ADDRESS ];

Bindings are kept in the read-only portion of client PCBs, and record which

pods have been bound to, along with state for each binding.

BindingID: TYPE = CARDINAL;

A small integer used to refer to a Binding. It is used to designate which

binding is to be called by the ntsc_call_pod() system call.

Binding to an offer is a two-stage process; first the client calls the PodBinder

to Open the offer, then the client fixes it. Fixing a BindingID is done by the

client calling the pod, thus allowing the pod to allocate per-client state or reject

this client. Once fixed, the BindingID may be used by the client to call methods

in the pod.

A BindingID is generated by Opening an offer:

Open : PROC [ offer_name : STRING ]

RETURNS [ ok : BOOLEAN,

bid : BindingID ];

Once an offer had been opened and a BindingID for it is known, the client

should ntsc_call_pod() on the BindingID, passing it in as the argument.

If the call returns 0 then the bind has been accepted by the pod and the BindingID
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has been fixed. A non-zero return value indicates that the pod has declined

the binding; the value returned may indicate a pod-specific reason why. The

BindingID remains unfixed, and may be used again in another attempt to fix it

(perhaps the binding was declined due to temporary circumstances).

SetState : PROC [ bid : BindingID,

state : DANGEROUS ADDRESS ]

RETURNS [ ok : BOOLEAN ];

The SetStatemethod changes the state pointer associated with bid to state.

It returns True if it was successful, or False if the change was denied for se-

curity reasons. The change is only permitted if the topmost pdom on the current

pdom stack is the same as that of the pod associated with bid. This restriction

effectively means that SetState may only be called from within a pod to

change its own state for future invocations. Changing another pod’s state is not

permitted, nor is it permitted for the base pdom to change a pod’s state.

Close : PROC [ bid : BindingID ]

RETURNS [ ok : BOOLEAN ];

Clients may Close a BindingID at any time. The bid is no longer valid

and should not be used in ntsc_call_pod(). It does not matter if bid is

fixed or unfixed. Returns True if it succeeds, False if it failed (e.g. because

bid was invalid).

END.
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